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Introduction

Lasers (Light Amplification by Stimulated Emission Radiation) are used

in many industrial processes. Nowadays, lasers have a lot of practical

applications. They can be used to probe matter without influencing it.

For example, LiDAR (Light Detection And Ranging equivalent to the well

known RADAR), allows to probe the atmospheric concentration of differ-

ent chemicals. Lot of sensors can be realized using lasers, starting from

temperature sensors, flow sensors, deformation sensors and more. Usu-

ally the main interest to use laser light is to avoid any contact with the

probed object, the non invasive measurement, and also the fact that laser

sensors can do their measurements even under hard conditions in terms of

temperature, chemical risk, and the insensibility to high electric fields. As

the price of lasers has decreased drastically those applications become less

and less expensive and are no more reserved to high level experimental

research facilities.

The research on lasers is divided into several thematics. One of them

is to cover new wavelength ranges. For this purpose new materials are

tested, and energy conversion techniques are developed. The physics of

laser resonators can also be investigated. For example the research on

ultra-short pulses, which also needs research on new materials and op-

tics conception. More technical research can be performed in order to

obtain more optical power by scaling up laser systems. Researchers are

always pushing to the limit of laser systems. In the beginning there were

the rubis laser, gaz lasers and dye lasers. Nowadays, the development of

semiconductor lasers provides pump sources for other lasers, easily avail-

able. Those lasers have opened the way for Diode Pumped Solid State

(DPSS) lasers. A wide range of wavelengths are available today as various

regimes (continuous wave (CW), Q-switched, mode-locking...). One of the

main work of researchers nowadays is to find a way to obtain a specific

regime at a specific wavelength because lasers are just tools which need to

be set for each task needed.

A challenging part in the laser field is to increase the output power. In

fact, by pushing the limits, effects which were neglected for low output

1



2 Introduction

power have more influence on the laser efficiency. In the case of solid state

lasers with bulk materials, the maximal output power available is mainly

limited by the thermal effects occurring inside the material. The rapid

development of pump diodes provides high pump power easily available.

In order to achieve higher output power the heat transferred to the active

medium has to be removed. The choice of the material becomes then

very critical. Nowadays, the Yttrium Aluminum Garnet (YAG) is the most

common material. It exhibits good thermal conductivity and high damage

threshold. Furthermore, it can be easily doped with rare earth ions. Those

are the two reasons why this material is the most used in laser industry.

The research presented in this thesis is investigating a biaxial material

as gain medium along a specific orientation in order to be able to reach

higher output power.

Recently, a publication showing a so-called conical refraction (CR) laser

attracted some interest. This laser had an efficiency reaching the stokes

limit and an excellent beam quality with up to 3 W of output power. As

the authors did not observe any thermal effect, this laser was a promising

configuration in order to easily increase the output power of lasers. The

theory of such a laser is not known up to now. That is why, this thesis

has been started. The aim was to check the results of the mentioned pub-

lication, using similar Neodymium-doped KGW (KGd(WO4)2) crystals.

In a second time, Holmium-doped KYW (KY(WO4)2) crystals have been

investigated in order to test this so-called conical refraction laser with a

quasi-three-level laser scheme. This was the main motivation of the the-

sis. During this research we discovered that the way of obtaining the laser

effect along the optic axis of a biaxial crystal is not so obvious. Indeed,

the properties of those crystals strongly depend on the orientation and

on the polarization. Those properties are described in this thesis espe-

cially along the optic axis. Therefore, after a brief description of lasers,

the description of the biaxial crystals of KGW and KYW is provided in

Chapter 2. As the values of refractive indices given in literature were not

accurate enough to predict the dispersion of the optic axis, measurements

have been carried out for those two crystals. Furthermore, the absorption

properties along the optic axis have been investigated. This knowledge is

important in order to understand the last Chapter of this thesis. The con-

ical refraction phenomenon being the main topic, the Chapter 3 explains

this phenomenon in a simple way. The laser experiments at the end of this

thesis present an innovative laser resonator.



1Laser theory and practical

aspects

Introduction

In this first chapter, the basic theory is described. Starting from the stimu-

lated emission proposed by Einstein the laser rate equations are given for

four-level and quasi-three-level lasers. Only the continuous wave regime

is mentioned in this chapter. A lot of energy transfer effects, as upcon-

version or cross-relaxation are not explained. The different laser modes

observable for classical laser resonators are shown. Finally, the thermal

issues, especially the thermal lens effect is described. The aim of this

chapter is to introduce the basics of lasers in a simple way, showing the

thermal limitation of the usual setup. Advanced readers might skip this

chapter.

3



4 Chapter 1. Laser theory and practical aspects

1.1 Stimulated emission

The story of lasers starts with the prediction of the stimulated emission

by Einstein in 1917. This phenomenon has been introduced in order to

fit the new model of light taking into account levels of energy introduced

by Planck in 1900, with the spectral emission of a blackbody. Without

this phenomenon the density of energy emitted by a blackbody radiation

cannot be predicted due to the fact that the stimulated emission happens

more often than the spontaneous emission.

It is really simple to understand that atoms (more often ions in the

most case of lasers) can absorb and emit light (photons). The electronic

shields of an atom have several energy levels depending on the nature of

the atom. Once the electrons of the atom are on an excited state (higher

energy level) by absorbing light or being heated, the atom will tend to

de-excite (dissipate this energy). This de-excitation occurs by radiative

emission and non-radiative (mainly heat). The absorbed and emitted pho-

tons depend only on the electronic configuration of the atom, which will

determine the frequency ν of the light. These are the basic phenomena

occurring in an atom. The third effect called stimulated emission, takes

place when an atom at the excited state receives an incident photon, there

is then a higher probability for the atom to emit a photon. The energies of

the emitted photon and the incident photon are equal. This effect occurs

only if the transition of equal energy is possible in the atom. That means,

it exists a transition of energy hν (with h the Planck constant and ν the

frequency) corresponding to the incident photon energy (cf. Figure 1.1).

Figure 1.1 – Schematic illustration of the stimulated emission effect.

This phenomenon can be expressed using the Einstein coefficients. As-

suming a group of atoms (Ntot) having N1 atoms non-excited and N2 atoms

excited, the Einstein coefficients A21 for the spontaneous emission, B12 for

the absorption and B21 for the stimulated emission can be used to de-

scribe the occupancy of the two levels. Those coefficients correspond to

the probability of an atom to be excited or de-excited with a light emission.

The coefficient A21 expressed in s−1 gives the probability of spontaneous

absorption. Both B factors will influence the level distribution only in

presence of an electromagnetic wave with the same energy than the one

of the transition. They are expressed in J−1.m3.s−2.



1.2. Population inversion, Pumping 5

Figure 1.2 – Schematic of a two-level system with Einstein’s coefficients.

The variation of the level population follows equation 1.1. Where ρν0

is the spectral density distribution and Ne
1, Ne

2 the populations of levels 1,

2 at thermal equilibrium (cf.Figure 1.2).

A21N2 + B21ρν0 Ne
2 = B12ρν0 Ne

1 (1.1)

Ne
2

Ne
1
=

g2
g1

exp(− hν0

kbT
) (1.2)

The thermal occupancy of two different levels at thermal equilibrium

is given by the Boltzmann equation 1.2 for a two-level system with g1 and

g2 the degeneracy of each level, kb and T being the Boltzmann constant

and the temperature, respectively.

1.2 Population inversion, Pumping

The stimulated emission is the key of laser emission. However, it is not

sufficient to create laser emission. Lasers are light amplifiers. In order to

amplify one needs optical gain inside an optical medium. The upper level

of the two-level system should be more populated than the lower level. At

thermal equilibrium this can not occur. The thermal equilibrium popula-

tion ratio of a two-level system, described by the Equation 1.2, expresses

the fact that the upper level is always less populated than the lower level.

The population inversion consists to increase this ratio to obtain an abnor-

mal situation with more population on the upper level. This is done by

adding energy to the system, to force the population to be on the upper

level. The material is "pumped", by adding this energy. The pumping of

the medium can be performed electrically or optically. Nowadays, most of

the lasers are pumped by laser diodes or other lasers. They are replacing

the flash-lamp pumping since they exert a better overall efficiency. Some

gaz lasers pumped by electrical discharge, are still commercially available

due to the fact that they cover specific wavelengths which can not be easily

reached by other lasers with the power required for their applications.

This population ratio is defined by the factor βpop being equal to

the difference of the number of atoms on the excited and ground state
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(βpop = N2
Ntot

). The inversion population occurs when βpop is superior to

0.5. This beta factor can be used to estimate the gain of a laser medium,

knowing the total population Ntot and the absorption cross section σa and

the emission cross section σe expressed in cm2. The equation (1.3) can be

then used to predict the optical gain of a medium for a specific frequency.

This equation is used to rapidly estimate the potential laser transition of a

crystal. It is important to note that this equation is always valid and does

not depend on the pumping scheme. In fact, the pumping scheme is taken

into account in the parameter βpop related to the population inversion.

g(ν) = [βpop.σe(ν)− (1 − βpop).σa(ν)]Ntot (1.3)

1.3 Laser equations

In this section the basic laser equations are given. The difference between

the four-level system and quasi-three level system is discussed.

1.3.1 Three-level system

The three-level system is of course represented by three energy levels. The

lower level N0 is composed of several levels but with energy differences

on the order of the thermal energy. That means all those subs-levels can

be considered as only one level since at room temperature.

Figure 1.3 – Scheme of a three-level system.

With such a system (see Figure 1.3) the gain medium can absorb for the

pumping wavelength (corresponding to the 0→2 transition) and the lasing

wavelength (corresponding to the 1→0 transition). That means that when

one wants to amplify the lasing wavelength additional losses are created

by re-absorption. In order to be able to obtain laser operation in such

a system one needs more pumping energy in order to compensate those

re-absorption losses. In practice, strict three-level systems do not really

exist due to the subs levels of the ground level, they are called quasi-
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three-level. In this thesis the term quasi-three-level system just refers to

the re-absorption.

The principal equation in order to be able to predict the output power

of a laser is the conservation of the energy in the laser cavity. In fact, the

circulating power is amplified by the gain medium and reflected by mir-

rors. In order to have some power out of the laser cavity one of the mirrors

is only partially reflective, this is the output coupler with a transmission

of TOC. The value of the output coupler has to be chosen with respect to

the gain of the laser medium. Indeed, an optimum value of this output

coupler gives a better overall efficiency of the system. The output coupler

induces some losses which have to be compensated by having more gain.

Some other losses are generated by diffraction inside the laser cavity, or

unwanted reflection losses on the element interfaces. Those losses will be

expressed by the term Λ. For most of the systems this term is in the order

of a few percent at maximum in order to easily reach the threshold of the

laser.

The conservation of the energy in the laser systems gives the rela-

tion (1.4). It expresses the fact that the gain (G), here without unit (G = egL

with L the length of the gain medium), has to compensate the losses of

the system. In fact, the pumping energy of a laser system is needed to

create a gain able to compensate the losses, then the laser emission can be

observed. All the energy added by the pumping system is then only used

to generate more output power of the laser.

(1 − TOC)(1 − Λ)G2 = 1 (1.4)

It is possible to calculate the threshold of the laser using equation

(1.6) with the saturation intensity defined by equation (1.5) taken from [1].

Those equations are derived from the laser rate equations which are not

described in this thesis. They express the variation of the population for

the different levels.

Isat =
hc

λp(σs
a + σs

e )τf luo
(1.5)

In this equation, λp is the pump wavelength, σs
a and σs

e the absorp-

tion and emission cross sections at the laser (signal) wavelength. τf luo

corresponds to the fluorescence lifetime of the electronic transition. The

pumping intensity of the laser will have to reach this saturation intensity

in order to obtain population inversion.

The laser threshold can be estimated using the following equation:
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Pth =
IsatS
ηabs

(ln G + σa(λs)NL) (1.6)

The term ηabs is the fraction of the absorbed pump power. The term

S corresponds to the area of the pump beam. G is the gain, N the ion

concentration, and L the gain medium length. This expression is approxi-

mative. It assumes a nearly perfect overlap of the pump and cavity modes

inside the gain medium.

The output power of the laser is then expressed by equation (1.7) where

ROC is the reflectivity of the output coupler.

Pout =
λp

λs

− log ROC

2 log G
ηabs(Pp − Pth) (1.7)

Those simple equations are very practical in order to estimate the laser

threshold and select the design of a gain medium.

1.3.2 Four-level-system

In four-level lasers, ions in the laser medium can be considered to have

four-levels as shown in Figure 1.4. In the schematic, Ni, with i = 0, 1,

2, 3, representing the normalized electron population on each level. Wij

is the rate transition in electrons per second, and τij the lifetime of the

transitions.

Figure 1.4 – Scheme of four-level systems.

The population inversion in the case of four-level systems occurs be-

tween level 3 and 2. For this purpose, the transitions 4→3 and 2→1 have

to be much faster than the transition 3→2. In this case there are always

more ions in the state three than in the state two. This leads to inversion

of population as soon as one starts to pump the material.

The laser rate equations derived from such simple system are similar

to the case of the three-level systems. Only the terms taking into account

the re-absorption of the lasing wavelength have to be removed.
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1.4 Laser resonators

1.4.1 Stability condition

Two mirror cavity

The stability condition of a laser resonator is the key condition to build

up a laser. In the case of a cavity composed of two mirrors, this stability

condition can be written in a simple way using the well-known parameters

g1 an g2.

Those parameters depend on the mirrors used. They are given in the

equation (1.8). The multiplication of those parameters should follow 0 6

g1g2 6 1.

g1 = 1 − L
R1

g2 = 1 − L
R2

(1.8)

Figure 1.5 – Stability region (in blue) using parameters g1 and g2.

Those simple equations are used in order to describe only two mirror

cavities. Using the (g1 , g2) coordinates the stability point is easily asset

for a plano-plano cavity (1,1) (see Figure 1.5).

Using ABCD matrix

The ABCD matrix system is used to describe the beam propagation. The

geometric optics approach is very powerful since most of the optical com-

ponents can be described by such a matrix. The cavity matrix is deter-

mined by simply multiplying the matrix elements. The stability is ex-

pressed by equation (1.9)
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0 6
A + D + 2

4
6 1 (1.9)

This approach allows to take into account the variation of different

parameters inside the laser cavity, as the thermal lens created inside the

laser medium. This study is performed at the end of this chapter using

this method.

1.4.2 Cavity Modes

The classical modes are determined by the alignment of the laser cavity.

In order to obtain the best efficiency one has to use the fundamental mode

which is the Gaussian mode. This mode provide excellent beam quality

and high energy density.

It mainly exists two types of modes in order to describe the laser cavity

modes, the Hermit-Gauss and the Laguerre-Gauss. The term Gauss, is

always present, since those modes are always restricted as a Gaussian

mode. Otherwise those modes exert an infinite transverse mode. The

Laguerre-Gauss mode describes modes with cylindrical symmetry. Such

kind of modes can be observed in fiber lasers for example. The Hermit-

Gauss modes are present for rectangular symmetry, this is often the case

of misaligned conventional cavities with mirrors.

The electric field of the Hermit-Gauss mode can be calculated using

the equation (1.10) and the Laguerre-Gauss one by the equation (1.11). The

factors m,n (horizontal, vertical) and l,p (azimuthal, radial) correspond to

the order of the mode for Hermit-Gauss and Laguerre-Gauss, respectively.

When those parameters are set to zero the mode corresponds to the clas-

sical Gaussian case, i.e. the Transverse Electromagnetic Mode 00 (TEM00).

Emn ∝
1√

1 + Z2
Hm

(

X

√

2
1 + Z2

)

Hm(Y

√

2
1 + Z2 ) exp(−X2 +Y2

1 + Z2 )

× exp(−i(
(1 + Z)πR

λ
+

(X2 + Y2)Z
1 + Z2 − (m + n + 1)(

π

2
− arctan(

1 − Z
1 + Z

))

with X =x

√

2π

Rλ
, Y = y

√

2π

Rλ
, Z = z

2
R

(1.10)
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Elp ∝ cos(lι)
(2ρ)l

(1 + Z2) l+1
2

Lp

(

(2ρ)2

1 + Z2

)

exp(− ρ2

1 + Z2 )

× exp(−i(
(1 + Z)πR

λ
+

ρ2Z
1 + Z2 − (l + 2p + 1)(

π

2
− arctan(

1 − Z
1 + Z

))

with ρ2 = X2 + Y2, Z = z
2
R

.

(1.11)

Few different modes are shown on Figure 1.6.

Figure 1.6 – Hermit-Gauss modes on the top, and Laguerre-Gauss modes on the bottom

and from left to right TEM01, TEM10, TEM11, TEM21.

1.4.3 Bessel modes

Here, it is useful to describe also an other kind of mode, which is not

directly present in classical laser cavities, the Bessel-Gauss mode. In this

case it is a simple Bessel function restricted by a Gaussian mode for the

same reason than for the two previous ones. It is interesting to know that

this kind of modes have attracted more and more interest in the last years.

Indeed, the true Bessel (with infinite energy) beams are diffraction free. In

practice, only Bessel-Gauss beams can be generated. Pure Bessel beams

would need an infinite amount of energy. However, this is sufficient to ob-

serve interesting properties as beam healing, and longer ’Rayleigh range’

than for classical Gaussian beams. Such a beam can be generated using

diffracting surfaces, spatial light modulators etc. The conical refraction

can be a way to generate such a beam but with complex polarization de-

pendency. In fact, the most commonly used way to generate Bessel-Gauss

beams are inefficient or power limited by the used optical element . The

use of conical refraction in order to generate such a beam can be a way

to increase the power if it is needed. In fact, nowadays Bessels-Gauss

beams are studied only at low power. Thus, high output power is still not

required.
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The electric field of a Bessel-Gauss beam can be simply expressed by

equation (1.12) from [2]. With w0 the waist of the Gaussian beam, z0 the

Rayleigh range (= πw2
0

λ ),Ψ the phase shift, k the wave vector (= 2π
λ =

√

k2
ρ + k2

z with kρ =
√

k2
x + k2

y) and A the angle of the incident plane wave

as shown on Figure 1.7. It is important to note that when A = 0, the result

is a simple plane wave. The perfect Bessel beam is reached when the waist

of the Gaussian envelope tends to the infinite.

Em(ρ, z = 0) ∝ Jn(kρ sin(A))e−
(

ρ
w0

)

Em(ρ, z) ∝
w0

w(z)
Jn

(

kρ sin(A)

1 + iz
z0

)

e
i
((

k− (kρ sin(A))2

2k

)

z−Ψ(z)
)

e



− A
w(z)2

+ ik

2z
[

1+( z0
z )

2
]





(

(ρ2+kρ sin(A))2 z2

k2

)

(1.12)

One of the applications of Bessel-Gauss beams could be the propa-

gation in atmosphere. Hence, the beam degradation due to atmospheric

turbulences is reduced. If the beam is large enough, due to the beam

healing properties, it can be focused behind small objects. The minimal

distance needed to reconstruct the Bessel beam profile can be estimated

using equation (1.13) [3] .

zreconstruct =
wobjectk

2kz
(1.13)

There is a main drawback of such a beam compared to the classical

Gaussian beam. It is the intensity! Bessel-Gauss beams always have less

energy in the center region than classical Gaussian beams. In order to

obtain the same intensity at the central part of the beam (drawn on Fig-

ure 1.8, one needs to have almost a factor γ = 1.5 times more power for

a Bessel-Gauss beam (with γ =
∫

IGaussian
∫

IBessel−Gaus
). This limits drastically the

benefits of such a beam.

Figure 1.7 – Bessel-Gauss beam propagation created using two plane waves with a cone

angle A.
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Figure 1.8 – Intensity profiles, comparison between a Bessel-Gauss (full line) and a

Gaussian beam (dashed line) for beams having the same intensity in the center region.

Several publications are describing how to obtain Bessel resonators [4,

5]. These results are not described here. However, it is important to keep

in mind that the conical refraction phenomenon described in Chapter 3 is

a way to obtain such beams.

1.5 Thermal Issues

By increasing the power of a laser the thermal load inside the laser

medium also increases. This thermal load cannot be avoided and is mainly

generated due to the "quantum defect" of the laser transition. This heat

modifies the properties of the laser medium. Those modifications reduce

the overall laser efficiency. Even if this heat can be removed efficiently,

a thermal gradient will still be present in the medium and modify the

transverse optical path length distribution of the laser beam. Almost all

parameters are temperature dependent as the lattice parameters of the

medium, the thermal conductivity, and the spectroscopic properties of the

laser medium. In this section we will discuss the amplitude of those mod-

ifications and their influence on the overall efficiency of the laser. The

ultimate limit of a laser medium is the fracture of the material caused by

a too strong stress build-up on the crystal.

1.5.1 Thermal fracture

The ultimate limit of a solid state laser is the fracture of the crystal. This

can be avoided by choosing reasonable doping concentration, pump in-

tensity, and cooling design. The thermal fracture of a material occurs

when the mechanical stress inside the material reaches the ultimate ten-

sile strength (also called ultimate strength or simply tensile strength) value

of the material.
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Crystal Value Ref.

YAG 200 MPa [6]

KGW 63–137 MPa [7]

Table 1.1 – Ultimate tensile strength parameter of KGW in comparison with YAG.

This parameter is on the order of hundred MPa for most of the dielec-

tric media used as gain media. The value of the ultimate strength for two

crystals is given in Table 1.1. The higher this limit the more resistant will

be the material.

The internal pressure of the crystal under diode pumping can be esti-

mated using finite element analysis. Of course, in the case of lasers, the

pump intensity and some other parameters as the thermal conductivity

and the Young modulus of the material have to be taken into account.

In real conditions the mounting of the crystal often adds some initial

stress. This results in a lower pressure limit than the measured one.

1.5.2 Thermal lensing

Cylindric configuration

The thermal lens results from the heat deposition on the material. In the

case of a Gaussian laser pumping scheme the intensity profile is given by

the equation 1.14 [6]. Where α0 is the linear absorption and wp the radius

of the pump beam.

I(r, z) = I0e
−2 r2

w2
p e−α0z (1.14)

For a radial heat flow the thermal focal lens can then be expressed by

equation 1.15 [6]. The term Pheat corresponds to the thermal load generated

by the absorbed pump power, Pheat = Pabsηheat, with ηheat the fraction of

the absorbed pump power converted into heat ("thermal fractional load").

f =
πKw2

p

Pheat
dn
dT

1
1 − e−α0l (1.15)

In that case the thermal bulging of the facets of the crystal is not taken

into account. However, for high power those thermal bulging has a non

negligible contribution on the thermal lens.

The thermal lens is driven by three temperature dependent properties.

The most important is the refractive index variation dn
dT . The other one

is due to the stress induced by the heating, and modifying also the re-

fractive indices, called the photo-elastic effect (PPE). Those two result in
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Parameter Value

K 2.8 W.m−1.K−1

wp 100 µm
dn
dt -120 × 10−7

n0 2

αT 2.8 W.m−1.K−1

ν 0.3

Table 1.2 – List of parameters of KYW used to show the thermal lens evolution.

a change of the refractive indices while the thermal load increases. The

last parameter which is part of the overall thermal lens results from ge-

ometrical aspects. In fact under high power the crystal tends to expand

which is resulting in a bulging of the facets of the crystal. This additional

contribution, Qdist, creates a positive lens.

The optical power of the overall lens can then be determined using the

equation 1.16 [8] in the plane stress approximation. This approximation is

used for long and thin crystals. In the case of a ratio between the length

and the diameter of the crystal of 1.5, this term overestimates the bulging

effect by 35% [9]

D =
1
f
=

Pheat

2πKw2
p
(

dn
dT

+ PPE + Qdist) (1.16)

The bulging term can be expressed as Qdist = (n0 − 1)(1 + ν)αT , with

ν the Poisson ratio and αT the thermal expansion coefficient.

The photo-elastic effect is expressed as PPE = 2n3
0αTC, where C is the

photo-elastic coefficient depending on the radial and azimuthal position.

Those equations can be used in order to estimate the thermal lens

which will result from the monoclinic double tungstate crystal. On Fig-

ure 1.9 is plotted a simple case using the parameters shown in Table 1.2.

This case corresponds to a KYW crystal, but without any anisotropy taken

into account. In fact, as it will be described in the next Chapter the param-

eters of such a crystal strongly depend on the orientation and then exert

an asymmetric thermal lens effect. The values plotted here are just given

to have an order of magnitude.

In the simple case present here, the created thermal lens is negative.

Depending on the crystal properties this lens can either be positive or

negative. All those parameters will be strongly dependent on the orienta-

tion in the case of monoclinic double tungstates. This will give rise to an

astigmatic thermal lens and some possibility to obtain a so called ather-
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Figure 1.9 – Thermal lens evolution in a KYW crystal with the parameters in Table 1.2.

mal propagation direction, in which the thermal lensing will be drastically

reduced.

Such an athermal direction can be calculated considering different pa-

rameters depending on the experimental conditions. The variation of the

optical path length with the temperature should be zero. In literature one

can find two definitions of the athermal direction, the etalon configura-

tion and the laser cavity configuration [10]. The first one corresponds to

light propagating through a crystal in which the variation of the interfer-

ence fringe (∆F) with the temperature (representing the variation of the

optical path length) is expressed by the equation (1.17). In the case of the

so-called laser cavity configuration, the back reflection of the light by a

mirror is taken into account. In this case the variation of the fringe with

the temperature is given by the equation (1.18).

∆F
∆T

=
2L
λ

[

dn
dT

+ nα

]

(1.17)

∆F
∆T

=
2L
λ

[

dn
dT

+ (n − 1)α
]

(1.18)

In those two equations the crystal is considered to be heated uni-

formly [10]. Furthermore, we can see that the term PPE present in the

equation (1.16) is neglected.

The athermal direction is obtained when the fringe variation is equal

to zero.

Thus in the case of the laser cavity configuration one has to find an

orientation which fulfills equation (1.19).
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dn
dT

= −(n − 1)α (1.19)

This equality can be obtained only for some orientation in anisotropic

media.





2Monoclinic double

tungstates

Introduction

This chapter is devoted to the study of the properties of monoclinic double

tungstates (KYW, KGdW, KLuW). Those materials have been intensively

studied during the last decades. Even if several publications describe the

optical properties, the complexity of those crystals always imposes some

uncertainty on their measurements and interpretation. Simple parame-

ters as the refractive indices are still not well known, or at least not well

enough to predict the orientation of the optic axis. In the first section of

this chapter, the tools needed to understand into detail monoclinic crys-

tals are given. A short description of the symmetry system will help the

reader to be familiar with those low symmetry crystals. Afterwards, a

thorough description of the refractive index measurements is given. The

aim of this demonstration is to explain the origin of the measurement un-

certainties often present in the literature. Reading those first sections the

reader will be able to easily understand the different properties describing

those crystals. The refractive indices available in literature are provided as

well as the absorption for Holmium-doped KYW and Neodymium-doped

KGW is discussed. The absorption dependency with both orientation and

polarization near the optic axis is investigated theoretically. This investi-

gation is of great importance for the absorption measurements presented

in Chapter 4 and the laser experiments presented in Chapter 5.

19
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2.1 Crystal symmetry

Before going into the detailed description of the monoclinic system, an

overview of all crystallographic symmetry systems with their specific no-

tations will be provided. This section will only focus on optical properties

of crystals. A thorough description of the symmetry and group theory

will not be provided. More details can be found in the book written by

Powell [11]. Then the focus will be rapidly on the monoclinic case and the

consequences on optical properties.

2.1.1 Seven symmetry systems

Crystals are ordered matter. The atoms, or group of atoms, in crystals

are periodically arranged. The same structure is repeated along the whole

volume of the crystal. This initial structure defines the lattice parameters

and further the crystallographic system of the crystal. It exists seven sym-

metry systems depending on the lattice parameters. These parameters are

a, b and c, the length of the space between two identical structures along a

specific orientation, and α, β and γ, the angles between those orientations.

A classical representation of those parameters is drawn in Figure 2.1.

Figure 2.1 – General frame of a crystallographic orientation.

These parameters have different values depending on the shape of the

unit cell of the crystal. Even for the simple case of a mono-atomic crys-

tal several arrangements are possible. The lattice parameters depend on

this arrangement. The seven symmetry systems are described by specific

conditions of these lattice parameters. In table 2.1, all the systems are

referenced with their parameters and optical class.

For this thesis only biaxial crystals are interesting, due to the fact that

the effect of conical refraction occurs only in such crystals. The discussion

is focused on the monoclinic system since the availability of monoclinic
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System Parameters Optical class

Triclinic a 6= b 6= c Biaxial

α 6= β 6= γ 6= 90˚

Monoclinic a 6= b 6= c Biaxial

α = γ = 90˚ 6= β

Orthorhombic a 6= b 6= c Biaxial

α = β = γ = 90˚

Trigonal a = b = c Uniaxial

α 6= β 6= γ

Tetragonal a = b 6= c Uniaxial

α = β = γ = 90˚

Hexagonal a = b 6= c Uniaxial

α = β = 90˚; γ = 120˚

Cubic a = b = c Isotropic

α = β = γ = 90˚

Table 2.1 – Description of the seven crystallographic systems.

double tungstate crystals as laser material and their capabilities to exhibit

conical refraction are of great interest for later experiments. As it will be

discussed in the next chapter some other biaxial crystals might be investi-

gated.

2.1.2 Monoclinic system

The monoclinic system is described by an axial symmetry along one of

the crystallographic axes or a mirror symmetry. The lattice parameters

are all different. Two angles within the plane perpendicular to the sym-

metry axis (or parallel to the mirror plane) are equal to 90˚. The mono-

clinic systems can be divided into three classes depending on the nature of

the symmetry: the monoclinic-sphenoidal class having an axial symmetry,

the monoclinic-domatic class having a mirror symmetry and finally, the

monoclinic-prismatic class exhibiting axial and mirror symmetries. Those

different classes existing within the monoclinic system are of great inter-

est. Indeed, the monoclinic-prismatic class, to which belong monoclinic

double tungstate crystals, is centro-symmetric. That means, there is a cen-

ter of symmetry. Due to this symmetry, some effects as piezo-electricity,

pockels effect, frequency doubling (χ2 = 0) do not exist for such crys-

tals [12]. Thus, they are generally good candidates for higher order effects

as Raman conversion (χ3) or Kerr effect since no energy is lost in the pre-
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viously mentioned effects. Only the monoclinic-prismatic class exhibits

such properties within the monoclinic system.

Two different Bravais lattices can be used to describe the monoclinic

systems. The monoclinic symmetry can be either determined in a prim-

itive (P) lattice or in a based-centred (C) lattice. The difference between

those lattices is shown on Figure 2.2. In the case of monoclinic double

tungstates, it exists a two-fold symmetry (C2) and a mirror symmetry per-

pendicular to the b-axis (C2/c). It is conventional to use the C2/c space

group in order to describe monoclinic double tungstate crystals. How-

ever, in some publications one can find the space group P2/c (also noted

I2/c). A simple transformation, shown in equation (2.1) can be used to

switch from one lattice to the other. Furthermore, sometimes the P2/a

space group is used. One can obtain it by permuting the axes a and c of

the P2/c space group.

Figure 2.2 – Schematic of the primitive (on the left) and the based-centered (on the right)

monoclinic lattices.

ac = ap + cp

bc = −bp

cc = −cp

(2.1)

with the different parameters corresponding to the axes indicated in Fig-

ure 2.3.

In practice, during the crystal growth by the TSSG (Top Seeded So-

lution Growth) method the crystal has the shape of the primitive Bravais

lattice (P2/c). Therefore, it is useful to specify the used frame when de-

scribing the crystal orientation.

The importance of this crystallographic frame is crucial when mea-

surements have to be performed along a specific orientation. This leads to

strong differences between several publications for the same values since

they are not measured within the same crystal orientation. Those rather

complicated notations add confusion in the description of the monoclinic

double tungstates.
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Figure 2.3 – Primitive and based-centered monoclinic frames.

Since the notation C2/c is the most commonly used, it is this space

group that we will mostly use to describe and compare the different mon-

oclinic double tungstate crystals. Some authors claim that the base-centred

system should be used to describe the monoclinic double tungstates [13]

according to international nomenclature.

Figure 2.4 – Boule of KYW grown along the crystallographic b-axis, the a and c direction

are shown corresponding to the P2/c space group, picture from FEE GmbH.

2.1.3 Crystallographic parameters of KREW

This thesis is in large part devoted to the use of KGW and KYW crystals

which belong to the monoclinic double tungstates KREW family, with RE

(Rare Earth) ions. It exists mainly three ions used to create monoclinic

double tungstates, Gadolinium (Gd), Yttrium (Y) and Lutetium (Lu). In

order to use those materials as laser gain media they are doped with clas-

sical rare earth ions used for laser operation as Neodymium (Nd3+), Yt-

terbium (Yb3+), Erbium (Er3+), Thulium (Tm3+), Holmium (Ho3+) and

others... Doping concentrations up to 100% have been realised using

Holmium ions [14]. There are several publications giving the crystallo-

graphic parameters of the KREW. The ones shown in Table 2.2 are the

most accurate measurements performed using the true C2/c space group.

The crystallographic matrices (KYW, KGW, KLuW) are very similar, and
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Crystal Space group a b c β Ref.

KGW C2/c 10.652 10.374 7.582 130.80˚ [15]

KLuW C2/c 10.576 10.214 7.487 130.68˚ [16]

KYW C2/c 10.64 10.35 7.54 130.5˚ [17]

Table 2.2 – Lattice parameters of KREW, previously introduced in Figure 2.3, in

Ångström.

this results in very similar properties (described in the following) for all

those matrices.
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2.2 Dielectric tensor in dielectric media

The most important parameter in an optical material is the dielectric per-

meability tensor (usually named dielectric tensor). This tensor of rank

two carries the principal information for light propagation through the

medium. It defines the propagation directions and the absorption proper-

ties.

In this section, the origin of this tensor will be briefly discussed and a

thorough description is performed.

2.2.1 Susceptibility tensor

The dielectric tensor comes from the link between the electric field ~E and

the macroscopic polarization ~P of the medium. This polarization is created

by the incident wave in the medium. In the case of dielectric media this

relation is expressed by the equation (2.2).

~P = ǫ0χ~E (2.2)

~D = ǫ0~E + ~P (2.3)

The term χ is called the susceptibility tensor. Inserting the equa-

tion (2.2) into the constitutive relation equation (2.3) valid for dielectric

media, the latter equation can be simplified:

~D = ǫ0(1 + χ)~E (2.4)

The well-known equation (2.5) is found by defining the dielectric per-

meability ǫr = 1 + χ.

~D = ǫ0ǫr~E (2.5)

It is possible to prove, considering the Poynting hypothesis, that the

values of the permeability tensor respect the condition ǫ∗ij = ǫji, with i and

j integer 1, 2 and 3 and the star corresponding to the complex conjugate.

This induces that the tensor ǫr is a Hermitian matrix. One of the properties

of such a matrix is to be symmetric.

The general case of the ǫr matrix is written in the following form:

ǫr =









ǫ11 ǫ12 ǫ13

ǫ12 ǫ22 ǫ23

ǫ13 ǫ23 ǫ33









(2.6)
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As it is a Hermitian matrix, it is possible to diagonalize it. That means

it exists a base X, Y, Z in which the matrix can be written as following:

ǫr =









ǫx 0 0

0 ǫy 0

0 0 ǫz









=









n2
x 0 0

0 n2
y 0

0 0 n2
z









(2.7)

The ni (i = x, y, z) correspond to the main refractive indices of the

medium. This is the main characteristic of an optical medium.

2.2.2 Crystallographic symmetry

The number of refractive indices of a crystal depends on the crystallo-

graphic symmetry. A discussion of the seven crystallographic systems

linked to the optical properties is performed in the following.

The crystallographic symmetry depends on the crystallographic frame

parameters of the crystal. Figure 2.5 represents the crystallographic frame

{a, b, c} with arbitrary length and angle. The parameters of this frame

depend on the material symmetry. The seven crystallographic frames were

described in Table 2.1 with their ’optical class’.

The isotropic crystals have the highest symmetry level. It results from

those symmetries that the refractive index is the same for every direction

inside the crystal.

For lower symmetry crystals, two different refractive indices are ob-

served. Each one corresponds to one eigen polarization state. These prop-

erty differences are directly linked to the crystallographic symmetry. In-

deed, the symmetry will affect the dielectric tensor ((2.6)) components.

This thesis being mainly devoted to monoclinic crystals, the symmetry

impact on the dielectric tensor will be derived from such system.

The monoclinic-prismatic system has a two-fold rotation symmetry

around the b-axis. All the optical properties depend on this symmetry.

These crystals exhibit also a mirror symmetry plane perpendicular to the

rotation axis.

We will not go into the detailed symmetry properties by describing all

the crystallographic point and space group symmetries since they do not

induce any change of the optical properties.

Application to the monoclinic system

The dielectric tensor of a monoclinic crystal is derived in this section.
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Figure 2.5 – Schematic of the different frames used; the crystallographic frame {a, b, c},

the main dielectric frame {X’, Y’, Z’} and the orthogonal frame {1̂, 2̂, 3̂}.

Using the crystallographic frame {a, b, c} of a monoclinic system and

assuming the direct orthogonal frame {1̂, 2̂, 3̂} with the orientation 2̂ being

collinear with the crystallographic b-axis, the general dielectric tensor is

the same than in equation (2.6).

The dielectric tensor ǫr is affected by the symmetry of the crystal. This

tensor can be rewritten by applying the crystal symmetry operator R. It

results another dielectric tensor ǫ′r which should be equal to the previous

one since the symmetry leads to have the same crystallographic arrange-

ment and so the same propagation properties.

The equation (2.8) gives the relation between both of those dielectric

frames:

ǫ′r = RǫrR−1 (2.8)

In the case of monoclinic crystals the symmetry operator R is a two-

fold rotation symmetry around the crystallographic b-axis. In the frame

{1̂, 2̂, 3̂}, this corresponds to a rotation of an angle π around the orientation

2̂. The R operator is then a simple rotation matrix given in equation (2.9)

(In this particular case R=R−1).

R =









cos π 0 − sin π

0 1 0

sin π 0 cos π









=









−1 0 0

0 1 0

0 0 −1









(2.9)

Inserted in equation (2.8), with ǫ′r = ǫr , the new equation (2.10) is set.
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







ǫ11 ǫ12 ǫ13

ǫ12 ǫ22 ǫ23

ǫ13 ǫ23 ǫ33









=









−1 0 0

0 1 0

0 0 −1

















ǫ11 ǫ12 ǫ13

ǫ12 ǫ22 ǫ23

ǫ13 ǫ23 ǫ33

















−1 0 0

0 1 0

0 0 −1









=









ǫ11 −ǫ12 ǫ13

−ǫ12 ǫ22 −ǫ23

ǫ13 −ǫ23 ǫ33









(2.10)

The only way to fulfil the equation (2.10) is to set ǫ12 = ǫ23 to 0. The

dielectric tensor of a monoclinic crystal becomes :

ǫr =









ǫ11 0 ǫ13

0 ǫ22 0

ǫ13 0 ǫ33









(2.11)

The equation (2.11) is the general matrix for a monoclinic crystal for

an orthogonal frame having the orientation 2̂ along the crystallographic

axis b.

The triclinic system does not have any symmetry. The general dielec-

tric tensor does not have null terms. The orthorhombic system has an

orthogonal crystallographic frame. The dielectric tensor is then directly

diagonalized when using the crystallographic frame.

Uniaxial crystals (i.e. trigonal, tetragonal and hexagonal systems) are

characterized by a rotational symmetry of π
2 around one axis which lets

the system invariant. This leads to have ǫ11 = ǫ22 if this rotation is around

the axis 3̂. It is important to note that in uniaxial crystals the optic axis

coincides with one of the principal axes. The optic axis is then fixed and

does not have any dispersion, in contrast to biaxial crystals.

The cubic system is the most simple to describe since an additional

symmetry leads to have ǫ11 = ǫ33. The propagation properties are then no

more dependent on the orientation and are the same for every polarization

state.

Table 2.3 summarizes all the different dielectric tensors for the differ-

ent symmetry systems using an orthogonal frame matched, as far as it is

possible, to the crystallographic frame.

2.3 Measurement of the refractive indices - Prism

method

The refractive indices are the first parameter to be measured in optical ma-

terials besides the absorption spectra. They are needed in order to describe
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System Dielectric tensor

Triclinic









ǫ11 ǫ12 ǫ13

ǫ12 ǫ22 ǫ23

ǫ13 ǫ23 ǫ33









Monoclinic









ǫ11 0 ǫ13

0 ǫ22 0

ǫ13 0 ǫ33









Orthorhombic









ǫ11 0 0

0 ǫ22 0

0 0 ǫ33









Trigonal, Tetragonal, Hexagonal









ǫ11 0 0

0 ǫ11 0

0 0 ǫ33









Cubic









ǫ11 0 0

0 ǫ11 0

0 0 ǫ11









Table 2.3 – Dielectric tensor of the different systems for an orthogonal frame having an

orthogonal frame matched, as far as is possible, to the crystallographic frame.

the propagation of light inside the medium. Furthermore, for non-linear

media, they allow to calculate the orientation for non-linear conversion.

The main method used to measure refractive indices in biaxial media is to

use prisms. This method can be used to measure all refractive indices, also

of low symmetry materials under certain conditions as described in the

following. The precision of such measurements is typically on the order

of 10−3. Other methods using interferometry allow relative measurements

down to 10−6.

The refractive indices depend on the wavelength, the temperature and

pressure. This dependency can be significant on the order of 10−6K−1,

10−6nm−1. In isotropic media there is only one refractive index describing

the material properties. Materials which exhibit anisotropy have proper-

ties depending on the polarization and the orientation. Uniaxial materi-

als have two main refractive indices, whereas biaxial materials have three

main refractive indices.
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Figure 2.6 – Schematic of light propagation inside a prism with an angle A.

In this section, the prism method used to measure the refractive indices

of biaxial materials is described in detail. The limitation of this measure-

ment in case of biaxial media is also explained.

2.3.1 Description of the method

The refractive index measurement using the minimum deviation method

(prism method), consists in the measurement of the angle of the light

deviation though a prism of the measured material placed on a rotative

plate. The prism is rotating until this angle reaches a minimum. Knowing

the angle A of the cut of the prism, this angle measurement allows the

calculation of the refractive index. This method is simple and robust. In

fact, the minimum of deviation is easy to observe. However, in the case of

a biaxial material precautions have to be taken in order to be sure of the

measured values.

Figure 2.6 depicts the different angles of the minimum deviation

method.

The Snell-Descartes law applied for a ray of light passing through the

prism gives the equations 2.12 and 2.13, with nair and nprism the refractive

indices of the air and the prism. i1, i′2 the incident angles and i′1, i2 the

refraction angles.

nair sin(i1) = nprism sin(i′1) (2.12)

nprism sin(i′2) = nair sin(i2) (2.13)

The angle A of the prism is known, so the deviation angle D can be

determined using the equation (2.14).

D = i1 + i2 − A (2.14)
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Knowing that A = i′1 + i′2 and using equations (2.12) and (2.13) the

deviation angle becomes :

D = i1 + arcsin
[

nprism

nair
sin(A − arcsin[

nair

nprism
sin(i1)])

]

− A (2.15)

The equation (2.16) comes from the simplification of the equation (2.15)

using the small angles approximation.

D = A(
nprism

nair
− 1) (2.16)

On Figure 2.7 is presented the calculation of the deviation angle for

prisms with different parameters A. The refractive index was set to 2. The

minimum deviation angle increases with the angle A. The small angles

approximation can be used only if the angle A is smaller than 10˚. In this

case the deviation angle does not change.

Figure 2.7 – Deviation angle as a function of the incident angle for a refractive index of

2. Black curves correspond to the complete equation 2.15 and red curves use the simplified

equation 2.16. Blue curves are the minimum deviation calculated from 2.17.

In practice, the minimum angle deviation is measured to calculate the

refractive index. The minimum deviation angle occurs when i′1 = A
2 , equa-

tion (2.17) is deduced. With a simple manipulation on this equation the

refractive index of the prism can be calculated using the equation (2.18).

In order to have a higher accuracy of the refractive index, the deviation

angle has to be as high as possible. Usually, the angle A of the prisms are

around 40˚. The deviation angles with such an angle are higher than those

on Figure 2.7.

Dmin = A(
nprism

nair
− 1) (2.17)
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nprism =
nair sin( A+Dmin

2 )

sin( A
2 )

(2.18)

The accuracy of the refractive index is determined by the measurement

of the minimum deviation angle and the accuracy of the angle A. So, to

be able to know the refractive index with an accuracy of 10−4 the angle A

should be known with an uncertainty of 12” and Dmin with 0.6˚ [18].

2.3.2 Case of biaxial media

General case

In the case of biaxial media, three main refractive indices allow the de-

scription of the wave surfaces of the crystal. They are represented by an el-

lipsoid having each refractive index (np, nm, ng) on the axes of the orthog-

onal dielectric frame (X, Y, Z). In the particular case of monoclinic crystals,

one of the dielectric frame axes corresponds to the crystallographic b-axis.

Figure 2.5 depicts all different frames used for monoclinic crystals. The

axes a, b and c represent the crystallographic axes with b⊥(a,c) and β the

obtuse angle between a and c.

In order to measure the principal refractive indices, the light has to

propagate along a principal direction of the dielectric frame.

Knowing only one of these dielectric orientations, the three refractive

indices can not be directly measured.

However, only two prisms can be enough to measure the three main

refractive indices. Considering the orthogonal frame (1, 2, 3) with 2‖b and

3‖c, depicted on Figure 2.5, the refractive indices for every propagation

direction possible is described by the matrix (2.19).

[

1
εr
′

]

=









n−2
11 0 n−2

13

0 n−2
22 0

n−2
13 0 n−2

33









(2.19)

As there are only four unknown values, only four measurements are

necessary. That means only two prisms are sufficient to fill this matrix

since on each prism two measurements corresponding to the two polar-

ization eigen-states can be performed. This matrix (2.19) can be diagonal-

ized. The new matrix resulting from such transformation describes the

eigen dielectric frame (X’, Y’, Z’). In monoclinic crystals the b-axis corre-

sponds to one of the dielectric axes, the diagonalized matrix (2.20) simply

consists in rotation around this axis (here the axis 2).
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[

1
εr

]

=









n−2
1 0 0

0 n−2
2 0

0 0 n−2
3









(2.20)

In the case of monoclinic double tungstates this rotation corresponds

to a counter-clockwise rotation around the axis 2 described by the equa-

tion (2.21). The transition between the two matrices can be done using the

equation (2.22).

R2 =









cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ









(2.21)

[

1
ε′r

]

= [R2]

[

1
εr

]

[R2]
−1 (2.22)

In the following, it is considered that two prisms are cut with the axes

2 and 3 perpendicular to the bisectrix of the angle A, corresponding to the

direction of the light propagation when the deviation angle is minimal.

Thus, with the first prism, cut along the axis 2, the measurement with light

polarized along [1, 0, 0] and [0, 0, 1] in the base (X’, Y’, Z’) will provide the

direct measurement of the refractive indices n1 and n3.

The second crystal oriented along the axis 3 will provide the measure-

ment of n22 = n2 and n13. The latter is not an eigen value of the dielectric

frame. However, knowing that it is only a rotation, the refractive indices

can be deduced using the equation (2.23).

n−2 =
(

1 0 0
)









n−2
11 0 n−2

13

0 n−2
22 0

n−2
13 0 n−2

33

















1

0

0









= n−2
11 = n−2

1 cos2φ − n−2
3 sin2φ

(2.23)

This fourth measurement gives information on the rotation of the el-

lipsoid around the b-axis. The angle of the rotation φ can be measured

using equation (2.24) for a counter-clockwise rotation. This allows the

measurement of the ellipsoid rotation around the b-axis as a function of

the wavelength.

cos 2φ =
n−2 + n−2

3

n−2
1 + n−2

3

(2.24)

With all those measurements, the 3 main refractive indices and the

angle φ can be known. In order to be general it is important to note that
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the refractive indices np < nm < ng in the base (X, Y, Z), do not correspond

to n1, n2, n3, respectively. In fact, the order of the refractive indices can be

known only after the measurement of the monoclinic crystal.

Monoclinic Double tungstates and measurement accuracy

In the particular case of the monoclinic double tungstates (KGdW, KYW,

KLuW) some refractive index measurements have already been per-

formed. The ellipsoid orientation is known. The X axis corresponding

to the refractive index np is parallel to the crystallographic b-axis. The

angle φ is around 17˚ to 21,5˚ [13, 19].

On the basis of those measurements, the error on the refractive index

values as a function of the misalignment between the crystal cut and the

dielectric frame is described. Figure 2.8 shows the error on the measure-

ment as a function of the misalignment using the equation (2.25).

ǫng ≃ −1
2

ǫcutn3
gn−2

p (2.25)

with ǫcut the maximal cut error in order to have an error ǫn on the refrac-

tive index value.

This equation is expressing the refractive index ng since this angle is

the most sensitive to the cut error. In fact, the nm refractive index is de-

scribed by a circle, so it is not sensitive to any misalignment, and for the

np refractive indices the radius of curvature of the surface is flatter than

the one for the ng refractive index.

Figure 2.8 – Error on the measurement of the refractive index as a function of the cutting

error; full line: for the measurement of ng; dashed line : on the measurement of np in

KGdW at 1.06 µm.

Equation 2.25 is obtained for a cutting error of the crystal correspond-

ing to an angle of misalignment ǫcut with respect to the X axis in the (X,
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Z) plane. This error is small. We have ǫcut ≈ sin ǫcut. Thus using the same

method than in the previous section 2.3.2, the incident polarization vector

becomes [ǫcut, 0, 1]. The cutting error is given by equation (2.26).

n−2 =
(

ǫcut 0 1
)

[

1
εr

]









ǫcut

0

1









= ǫ2
cutn

−2
p + n−2

g (2.26)

Using a limited development of the first order, we obtain condition

(2.25) with ǫng being the maximal error tolerance. It results that in order

to have an accuracy of 10−3 the cutting angle error has to be less than

30 mrad. 9.5 mrad corresponding to an accuracy of 10−4.

2.3.3 Discussion

The measurement of the refractive index in monoclinic crystals is not an

easy task. The precision of the cutting angle of the crystal is important if

a high accuracy is required. Of course, in practice one needs to know the

uncertainty of the angle measurement in order to obtain the total error.

Furthermore, the prisms are often cut with the measured refractive index

axis perpendicular to one of the prism facets and the angle measured is

not the minimum deviation angle. However, this leads to the same error

inserted by the cutting error.

The measurements of the refractive indices cited in publication [13]

have been realized using three prisms cut along the dielectric axis. The

orientations used are the same for all wavelengths. However, it is known

that the dielectric frame may rotate [20]. So the refractive index mea-

surements can not be performed for different wavelengths with the same

accuracy. An error is added due to the crystal cut and the ellipsoid ro-

tation. This measurement can not give an accuracy better than 5x10−3,

which is not sufficient in order to predict the optical axis dispersion.

In the publication [21], there is another problem. The crystal cut orien-

tations are confused. It seems that the measurements were performed in

the same way than in the publication [13].

It exists some other publications were the refractive indices of mono-

clinic double tungstates are given [19, 22] with probably the same method.

The values published in the two last articles are, from the experience

gained within this thesis, the ones that predict the orientation of the optic

axis with the best accuracy (within 1˚).
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2.4 Optical properties

In this section the optical properties of the KREW are given. The basic

properties of the crystal used in the experiments are provided. The refrac-

tive index is taken from literature as well as the absorption and emission

properties in case of the Holmium-doped KYW and Neodymium-doped

KGW crystals.

2.4.1 Refractive indices

The refractive index is the most important parameter needed to describe

the light propagation inside a medium. In case of the monoclinic double

tungtate, in the previous section it has been demonstrated that due to the

symmetry of these crystals one needs to have three different refractive in-

dices in order to describe all the possible orientations. In the next chapter,

the conical refraction effect which is strongly sensitive to the refractive in-

dex will be discussed. In fact, to be able to predict the orientation of the

optic axis within ±0.2˚ the refractive indices have to be known with an

accuracy on the order of 10−4. Unfortunately, as it has been discussed in

the previous section, most of the measurements are not accurate enough

to well predict the orientation of the optic axis, especially around 2 µm.

In the precedent section a thorough description of the refractive index

measurement shows the difficulty to obtain good refractive index mea-

surements available for a wide wavelength range. In fact, the rotation of

the ellipsoid with the wavelength is never taken into account. This leads

to an error and thus to a higher inaccuracy of the refractive index mea-

surement for wavelengths far away from the wavelength used to measure

the dielectric frame orientation (mainly 633 nm and 1064 nm).

Literature reviews

The refractive index values available in literature for the monoclinic dou-

ble tungstates will be first described. Those refractive index measurements

are always linked to a dielectric frame. In the case of monoclinic double

tungstates the dielectric frame is fixed by the value of the angle φc be-

tween the crystallographic c-axis and the Ng axis of the dielectric frame.

The Sellmeier equations used in literature differ to authors. It exists three

types of equations with two of them which are very similar. The parame-

ters of those different equations are listed in Table 2.4 with their Sellmeier

equations given below the crystal name in the table.
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Crystal Ai Bi Ci [nm] Di [×10−9nm−2] Range [µm] φc [˚] Ref.

ng 1.3867 0.6573 170.02 0.2913

KGW:Er3+ nm 1.5437 0.4541 188.91 2.1567 0.4–1.5 21.5±1 [13]

(2.27) np 1.5344 0.4360 186.18 2.0999

ng 1.28065 0.75436 159.499 1.94

KGW:Nd3+ nm 1.04111 0.95487 140.9584 0.5 0.44–0.64 - [21]

(2.27) np 1.08690 0.88137 140.2105 0.6

Crystal Ai Bi Ci [µm] Di [×1039 µm−2] Range [µm] φc [˚] Ref.

ng 3.55544 0.46438 0.15213 -34.08

KYW nm 3.57271 0.30991 0.17484 -34.01 0.45–1.5 18.5 [17]

(2.28) np 3.50441 0.24431 0.18268 -30.22

ng 2.39921 1.75636 0.20075 13.263

KYW nm 2.52932 1.46328 0.20629 20.927 0.45–1.5 18.5 [22]

(2.28) np 2.69161 1.15780 0.21270 18.815

Crystal Ai Bi Range [µm] φc [˚] Ref.

ng 3.1278346 0.161512

KYW nm 2.9568303 0.1591855 0.4–1 17.5±0.5 [19]

(2.29) np 2.8124935 0.1529056

Table 2.4 – Sellmeier parameters of KREW from literature.

ni = Ai +
Bi

1 − (Ci
λ )

2
− Diλ

2 (2.27)

n2
i = Ai +

Bi

1 − (Ci
λ )

2
− Diλ

2 (2.28)

n2
i − 1 =

Aiλ
2

λ − B2
i

(2.29)

The Sellmeier equations are very useful to describe the dispersion of

the refractive indices. However, as it is not easy to compare the different

values obtained in the literature by simply reading those parameters, the

different values of the refractive indices are represented on Figure 2.9.

The difference between each publication is significant. The main issue

is often the small number of points used to perform the Sellmeier fits.

This reduces drastically the accuracy of the refractive indices and does not

allow to extend the range too far from the last measurement point. The

measurements provided by [19, 22] are accurate enough in order to predict

the orientation of the optic axis with an uncertainty of 1˚.
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Figure 2.9 – Dispersion of the refractive indices of KREW taken from several references.

Ng (black), Nm (green), Np (red).

2.4.2 Absorption/Emission along the dielectric axes

In this section the absorption spectra available in literature will be given

additionally. The different KREW matrices are represented. However, due

to similar crystal fields the absorption does not differ from one matrix to

another one when the doping ion is the same.

Holmium-doped KREW

The absorption, for all experiments in this thesis, is given for the 5I8 → 5I7

transition around 2 µm. The emission is also between those two energy

levels 5I7 → 5I8 for 2 µm radiation. The Ho3+ ion can also be used at the
5I6 → 5I7 transition for light emission around 3 µm. The complete energy

diagram of Holmium in KGW is depicted on Figure 2.10.

The absorption suffers from the same complexity like the other pa-

rameters in KREW, leading to unclear results obtained in some publica-

tions. In the next paragraph, a small description of the classical measure-

ment performed in order to obtain the absorption of this crystal will be

given. This will facilitate the interpretation of the results published by

other groups.

The measurement of the absorption is always performed along the

main directions of the dielectric frame. It has already been discussed in
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Figure 2.10 – Energy diagram of Holmium in KGW, taken from [23]. The energy is in

103cm−1.

the previous section that these directions may differ from one publication

to another. This can cause slight differences in the measurements. How-

ever, there is one well-known orientation of the KREW, the Np axis of the

dielectric frame which is along the b-crystallographic axis. In such an ori-

entation the polarization spectra, E‖Nm and E‖Ng can be measured. In

order to measure the absorption in the polarisation E‖Np, another mea-

surement is often performed with a crystal cut perpendicularly to Ng.

Then the measurement of E‖Nm can be performed once more and should

be the same than the one performed along the Np cut crystal. The mea-

surements in literature provide at maximum those three spectra, E‖Np,

E‖Nm and E‖Ng. Of course, those measurements are enough for most of

the applications. However, as it will be discussed in the next section, it

has been proven that the eigen-frame of the absorption may differ from

the dielectric frame [24]. In that case a fourth measurement is needed if

one wants to fully describe the absorption in such crystals.

Nevertheless, in this section the measurements available from litera-

ture are reported in case of Holmium-doped-KREW. There is no spec-
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troscopic difference between the KLuW, KYW and KGW when they are

doped with the same ion [25]. On Figure 2.11, one can observe the typical

absorption cross section of Holmium-doped KREW. The higher absorp-

tion cross section is always for the polarization E‖Nm. The lower one is

the E‖Ng and therefore is often not reported. This is true even for other

doping ions [26]. The maximum absorption peak occurs at 1960 nm for all

Holmium-doped KREW. Under E‖Nm polarization the absorption cross

section is estimated to be around 1.5 ×10−20cm2 [27]. This wavelength is

the pumping wavelength used in the laser experiments in Chapter 5.

Figure 2.11 – Absorption (on the left) and emission (on the right) cross section of

Holmium-doped KLuW, from [28].

Neodymium-doped KREW

Since few experiments have been carried out with Neodymium ions as

dopant, we succinctly provide here the absorption cross section of those

ions in KREW. The behaviour is the same as described in the previous

paragraph. The maximum absorption is for the E‖Nm and occurs around

810 nm. The absorption cross section is then around 25 ×10−20cm2 [29].

This is a very strong absorption line. The absorption transition moves the

electron from the 4I9/2 to the 4F5/2 and allows lasing at 1067 nm [30]. In

practice this wavelength is not used there to pump this crystal since the

absorption is far too high. This is discussed in more detail in Chapter 5.

2.4.3 Absorption along the optic axis

The absorption is typically measured along the main orientations of the

dielectric frame. However, those orientations do not correspond to the

optic axis. So, the question is, if it is possible to predict the absorption

along the optic axis of a monoclinic double tungstate. The answer is,

of course, yes. In this section, the simple model used to describe the

absorption along the optic axis is described. Some equations are added in
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Figure 2.12 – Absorption cross section of Neodymium-doped KGW, from [29].

order to take into account the different polarization states near the optic

axis.

Model

In order to fully understand the measurements shown at the end of this

section, we carried out some simulations. Considering the dielectric frame

(X, Y, Z), with nx < ny < nz, the monoclinic axis is along the X axis

(also labeled Np) of the dielectric frame in these double tungstate crys-

tals [31]. Consequently, optical properties are free to rotate around this

axis [32]. Therefore, the monoclinic specificity does not affect the angu-

lar distributions of absorption at the vicinity of the dielectric plane (X,

Z) that contains the optic axes. Thus, the properties around these axes

can locally be approximated as an orthorhombic biaxial distribution. In

this case, the well-known double-layer surface of refractive indices [33]

can be extended to complex optical indices, by introducing complex op-

tical indices nj = nj + iκ j, j=x, y, z in the dielectric frame, assuming the

weak absorption hypothesis with κ j « nj [34]. Such an approach allows the

analytical calculation of the refractive indices and absorption coefficients,

from Equation (2.30).

n±(θ, φ) =





2

−B ∓
√

(B
2 − 4C)





1/2

(2.30)

with B = −u2
x(n

−2
y + n−2

z ) − u2
y(n

−2
x + n−2

z ) − u2
z(n

−2
x + n−2

y ), C =

u2
xn−2

y n−2
z + u2

yn−2
x n−2

z + u2
zn−2

x n−2
y and ux, uy, uy express the propagation
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directions in spherical coordinates :ux = cos(φ)sin(θ), uy = sin(φ)sin(θ),

uz = cos(θ), with θ and φ the spherical angles in the dielectric frame.

Numerical simulation

For all the following simulations, the values given in Equation (2.31) have

been used. This matrix representation of the complex optical index is

given for the pump wavelength of 1.96 µm. The κxx value comes from the

polarized absorption measurement along the Z(Ng) axis for E//X(Np).

The κyy is the mean between the polarized absorption measurement along

the Z(Ng) axis for E//Y(Nm) and the one measured near the optic axis

with the same polarization state. κxx and κyy are given with an uncertainty

of 0.2 x 10−5(≈ 0.1 cm−1). The κzz has not been directly measured. It has

been adjusted in order to better fit the polarized absorption measurement

point near the optic axis for the E⊥Y(Nm) polarization state. It results a

higher uncertainty estimated at 0.4 x 10−5(≈ 0.2 cm−1).

It has been proven by [24] that the eigen-frame of the imaginary part

of the optical indices might not match with the one of the real part. This

results in non-diagonal terms in the imaginary part of the matrix repre-

sentation of the complex optical index. In the monoclinic YCa4O(BO3)3

(YCOB) crystal the non-diagonal terms are κxz = κzx, due to the fact that

the plane of mirror symmetry corresponds to the dielectric plane that con-

tains the optic axes (X,Z), leading the Y-axis to be parallel to the monoclinic

axis. In the case of KYW, it is the X-axis that is perpendicular to this mir-

ror symmetry plane, so that κyz = κzy might be different from zero. In this

case the solution of the imaginary part of n+ in the YZ-plane in Figure 2.13

is expected to rotate around the X-axis, depending on such non-diagonal

value. Since the measurements performed here are close to the XZ-plane

(where the evolution of n± remains unchanged even if considering non-

zero non-diagonal terms), κyz has been set to 0 in the following numerical

simulations.

n =









1.957 0 0

0 1.994 0

0 0 2.035









+ i









0.9 0 0

0 2.2 κyz

0 κzy 0.6









×10−5 (2.31)

Note that the relation between the imaginary part of the complex op-

tical index and the linear absorption coefficient in cm−1 is α = 4πκ
λ (with

λ corresponding to the wavelength in vacuum).
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Figure 2.13 – Evolution of absorption coefficients in cm−1 for the principal dielectric

plane of the Holmium-doped KYW(1%at.) crystal. Dots are measurement points of a

Holmium-doped KYW crystal and triangles taken from Holmium-doped KLuW [28].

Note that the relative orientation of the bilobar distribution in the (Y,Z) plane is still

to be determined, since κyz is not measured yet, which does not affect our study along the

optic axes.

On Figure 2.14 are drawn the imaginary part of n± with the coordi-

nates ∆θ = 0 and ∆φ = 0 corresponding to the optic axis. The angle ∆θ

varies in the XZ-plane when the angle ∆φ is equal to zero. Figure 2.14

shows the discontinuity of the imaginary part of n± along the optic axis.

The numerical simulations are performed by depicting internal and exter-

nal layers of the imaginary index surface.

In order to take into account the polarization we introduce a new set

of equations, valid only at the vicinity of the optic axis :

nE⊥Nm = n+cos2( ι
2 ) + n−sin2( ι

2)

nE‖Nm = n+sin2( ι
2 ) + n−cos2( ι

2)
(2.32)

with the function sin2( ι
2) drawn on Figure 2.15. The parameter ι sim-

ply consists in the angle between the XZ-plane and the direction of wave

propagation, which can vary from 0 to 2π while considering the optic axis

as the origin. This approach, in agreement with our experimental observa-
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Figure 2.14 – Simulated absorption profiles in cm−1 corresponding to the imaginary part

of n± near the optic axis of Holmium-doped KYW(1%at.) with a numerical resolution of

0.1 mrad.

tions as will be shown in Chapter 4, continuously extends the polarization

distribution for propagation at the optic axis to those at the vicinity of such

optical singularity. Those equations express the fact that on Figure 2.13, in

the XZ-plane, the section of the external layer of the imaginary part cor-

responds to E‖Nm. They represent the contribution of each polarization

eigen state. The imaginary part gives the absorption coefficient for one

specific polarization. In the case of the real part, those sums do not give a

relevant information, but only a weighted average of the refractive index

value.

Figure 2.15 – Variation of the value sin2( ι
2 ) near the optic axis. The arrows show the

incident polarization to obtain only one refracted spot.

The computation of Equation (2.32) is given on Figure 2.16. A good

agreement with the measurements performed at ISL (see Figure 4.9 in

Chapter 4) is obtained using the values given in Equation (2.31). The evo-

lution of the absorption is identical on both, measurements and numerical

simulations.

Those calculations give a thorough understanding of the absorption at
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the vicinity of the optic axis. It results that the absorption properties must

be the same for both optic axes since they lie in the XZ-plane perpendicu-

lar to the mirror plane of the monoclinic symmetry. It is important to note

that all those simulations are only valid for the wavelength of 1.96 µm.

Indeed, the shape of the absorption profile will completely change for an-

other resonant wavelength since the maxima and minima of absorption

for each wavelength along the dielectric axes are different [32].

∆θ [°]

∆φ
 [°

]

−1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8 90°

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

∆θ[°]

∆φ
 [°

]

−1 −0.5 0 0.5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8 0°

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 2.16 – Simulated absorption profiles in cm−1 near the optic axis of Holmium-

doped KYW(1%at.) with a resolution of 2 mrad (corresponding to our measurements at

the vicinity of the optic axis). 90˚and 0˚correspond to E‖Nm and E⊥Nm, respectively.

Using the same equations it is possible to deduce the emission cross

sections near the optic axis. In Figure 2.17 the emission cross section

profiles corresponding to the maximum emission line near 2076 nm of

Holmium-doped KLuW are shown (value taken from [28]). The profiles

for both polarizations are similar with the absorption profiles. The mea-

surement of the emission cross sections along the optic axis can not be

easily performed. Those simulations are the only way to estimate the val-

ues of emission cross sections near the optic axis.

Figure 2.17 – Simulated emission cross section in ×10−20cm2 near the optic axis of

Holmium-doped KLuW.
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2.5 Thermal Properties

This section is devoted to the thermal properties of the monoclinic double

tungstate crystals. As all those properties also depend on the orientation

it is very delicate to determine the ’true’ value for one specific orienta-

tion. Furthermore, the different values obtained in literature add some

confusion. For some of those parameters even the measurement methods

used are unclear. The reader should be aware that as for the refractive

indices is it very difficult to predict the value of those parameters. How-

ever, it is possible to get an order of magnitude of those parameters. This

is enough to compare those materials with other ones, or along different

orientations.

2.5.1 Thermal conductivity

In Table 2.5 all parameters of the thermal conductivity for the KREW are

listed. For information, the dependency of the thermal conductivity with

respect to the temperature is given in Figure 2.18. In this Figure, the mon-

oclinic double tungstate crystals have the same behavior than most of the

laser crystals. The thermal conductivity increases for lower temperature.

That means more heat can be removed at lower temperature. In practice,

this is not interesting for laser setups which should be able to work at

room temperature.

Crystal system a b c Ref.

KGW I2/a 2.6 3.8 3.4 [7]

KGW C2/c - 2.6 3.4- [35]

KYW C2/c - 2.7 - [35]

KLuW C2/c 3.06 2.36 3.9 [36]

Table 2.5 – Thermal conductivity of monoclinic double tungstates along the crystallo-

graphic axis in W.m−1.K−1.

2.5.2 Thermal expansion

Under heating, the crystal will tend to expand. This changes the lattice

parameter. The thermal expansion coefficient αT can be expressed in a

similar way like the optical properties of the refractive indices. In the

general case it is represented by a matrix (2.33). The thermal expansion is

expressed in K−1.
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Figure 2.18 – Thermal conductivity vs temperature along the b-axis, from [35].

αT =









α11 α12 α13

α12 α22 α23

α13 α23 α33









(2.33)

2.5.3 Temperature dependence of the refractive index

The modification of the temperature influences also the refractive index

of a crystal. It is a parameter called dn
dT . This parameter has only taken

into account the temperature elevation inside the crystal. As it will be

described later the measurement of this parameter has to be performed

with a crystal free to expand. Otherwise the refractive index change will

also have a contribution to the stress inside the medium.

The measurements of this parameter in monoclinic double tungstates

have been widely studied. However, the difficulty to measure accurately

this value and to be sure of the different contributions leads to a wide

spreading of the results given in literature about those parameters.

The different methods used to measure this parameter are quickly de-

scribed.

The first method consists in simply measuring the refractive index of

the material at different temperatures. In monoclinic crystals, at least two

crystals with a prism shape are needed. The refractive indices can then

be measured for different temperatures when the prism is inside an oven.

This measurement has the same uncertainty like in the refractive indices

measurement. Since the variation of the refractive indices with respect

to the temperature is small (on the order of 10−6K−1), the variation of

the temperature has to be important in order to be able to observe any

difference in the measurement, the sensibility of the measurement being
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Crystal λ[nm] Np Nm Ng Ref.

E‖Nm ? E‖Ng E‖Np ? E‖Ng E‖Np ? E‖Nm

KGW 633 11 65 -182 [37]

KGW 633 -80 67 -141 [37]

KGW:Nd3+ 1064 -116.4 -193.1 -164.6 -196.7 -150.2 -119.9 [38]

KGW 1064 -120.2 -172.0 -161.1 -181.2 -157.5 -129.3 [38]

KGW 1064 -157 -118 -173 [39]

KLuW 1064 -146 -66 -100 [39]

KGW 1064 -118 -173 -157 [40]

KYW 1064 -89 -124 -146 [40]

KLuW 1064 -66 -100 -146 [40]

Table 2.6 – δn
δT of monoclinic double tungstate. Values given in ×10−7K−1

in the order of 10−4. Furthermore, the possible rotation of the dielectric

frame with the temperature is always neglected.

Another method, which is more relevant for such a small variation is to

use interferometric methods in order to measure the phase shift and then

be able to define the refractive index difference. With such an interfero-

metric approach, it is possible to measure the variation of the refractive

indices. The crystal can then be heated using a laser pulse [7]. The vari-

ation of the temperature has then to be estimated, and depends on the

laser and the crystal parameters. This estimation strongly degrades the

accuracy of the measurement since most of the parameters depending on

the temperature are roughly estimated.

It results from the measurements of the article [38], that the factor δn
δT is

mainly determined by the polarization state along the dielectric axis more

than by the propagation direction.



3Conical refraction

Introduction

In this chapter, the effect of conical refraction will be explained with all

its facets. After a brief history about this unique effect, it is first explained

using geometric optics. Furthermore, the practical aspect of the conical

refraction is discussed. Finally, the full diffraction theory of conical re-

fraction described by Belskii and Khapaliuk in 1978 [41] is presented. The

origin and application of this effect is also given at the end of this chapter.

49
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3.1 History of conical refraction

The conical refraction is a very old phenomenon. It has been first pre-

dicted by Hamilton in 1832. He was studying the propagation of light

through biaxial media using Fresnel’s wave approach. Even if Fresnel

was aware of the optic axes, he did not notice the singularity of this ori-

entation in biaxial crystals. Drawing the surface of a biaxial medium,

Hamilton wrote the equations describing the propagation along the op-

tic axis of a biaxial medium. He predicted that the light going out from

biaxial crystals in such an orientation has to be a cone. He called this

phenomenon Conical Refraction. He described two kinds of conical re-

fraction, an internal and an external one. The detailed structures of both

of these phenomena are described in the next section. Few months later,

Lloyd [42] experimentally observed this effect using a natural aragonite

crystal. After its discovery this phenomenon has not attracted any inter-

est from the research community. Only few works are reported over 100

years.

In 1839 Poggendorf [43] found out that the conical refraction is com-

posed of a dark ring surrounded by two bright rings. This discovery had

not been predicted by Hamilton. The presence of this dark ring resulting

from the singularity will be intensively discussed in the following section

since even nowadays its origin is studied in a recent paper [44].

In 1905, Voigt was interested by this effect in optically active materials.

In 1946, Raman [45] experimented this phenomenon in Naphthalene.

This material was able to generate very large cone angles of light due to a

high refractive index difference.

In 1969, Portigal [46] rewrote the solution of the conical refraction, us-

ing similar work on acoustic waves. Bloembergen investigated the second

harmonic generation effect along the conical refraction [47, 48].

In 1970, Lalor [49] started to write down the theory of conical refrac-

tion.

But it is Belskii and Khapaliuk, in 1978, who published the equations

which are able to predict the intensity profile. They applied the diffraction

theory for propagation along the optic axis and found out the integral

description of the propagation of the conical refraction. The same year,

Schell and Bloembergen [50] performed experiments on optically active

materials.

In 1994, Fève and Boulanger studied the conical refraction in the KTP

crystal [51] and compared it with other materials [52] in 1997.
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The theory was rewritten by Berry in 2004 [53], with respect to pre-

vious work [54, 55]. In the following years the thesis of Jeffrey [56] was

about the mathematical studies of this singularity.

All those publications were mainly about either the theory of conical

refraction, either some basic experiment describing the rings’ profile. No

real applications were studied using this effect before the last decade. This

is due to the complexity of this phenomenon. Since this effect is not easy

to understand, it is difficult to take advantage of it. A good example is a

note published in 1964 [57] that proposed to use the conical refraction for

laser beam steering. The authors propose to produce a spot able to move

circularly by switching the polarization of the beam passing through a

biaxial crystal. In practice this cannot work since at the output of the

biaxial crystal one would observe a crescent-shaped beam, not a spot.

Within the last 5 years the number of publications about conical re-

fraction increased. This is mainly due to the availability of long biaxial

crystals with good optical quality. Most of them are about the description

of conical refraction [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69] and beam

shaping [70, 71, 72, 73, 74, 75].

Some laser experiments have been performed using this effect. The

first one was realised by Hellström [76]. In this work an athermal orien-

tation of an Ytterbium-doped KYW laser proposed in a previous publi-

cation [10] was investigated. They thought this orientation was close to

the optic axis. During their experiments they discovered that they were

able to modify the output polarization of their laser by moving the output

coupler. Two other publications [77, 78] report laser operation along the

optic axis. However, as it will be discussed in this thesis these results seem

to be false. A comparison with the results published at a conference [79],

give rise to some doubt about the veracity of these publications.

There are other fields under investigation as microscopy [80, 81], op-

tical tweezers [82, 83, 84], second harmonic generation [48, 85, 86, 87, 88]

and demonstration of the Orbital Angular Momentum (OAM) of light [89].

It seems that for some researchers the conical refraction is not enough

complicated since, recently, they investigated this effect with metamateri-

als [90].

This short history of the conical refraction demonstrates that it needs

time and tools to investigate this rather complex phenomenon. At the be-

ginning there were no lasers to investigate this effect. As soon as lasers

were available the investigation on conical refraction revived but with lim-

ited experiments due to the poor quality of the crystals available. Nowa-
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days, with the monoclinic double tungstates good crystals are available

in order to study the conical refraction. This results in a strong increase

of publications about the conical refraction during the last decade. For

readers interested in the historical aspects of the conical refraction, they

should refer to the chapter about the history of the conical refraction in

the thesis of Jeffrey [56].
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3.2 Description of the conical refraction

Before starting to confuse the reader with complicated equations giving

the perfect solution of the conical refraction pattern, a practical description

of the conical refraction phenomenon will be performed in this section.

Several patterns of conical refraction are shown and practical information

about the crystal orientation are given.

3.2.1 Origin

The conical refraction comes from a singularity point appearing in the re-

fractive index surface of biaxial crystals. The construction of this surface

will be detailed later. In this section only intuitive aspects are discussed.

For a biaxial medium, this surface is a double-layered surface, one surface

for each polarization. When those surfaces cross each other, the refrac-

tive indices are equal for both polarizations. This particular orientation is

called the optic axis and corresponds to an orientation were both polariza-

tions should be refracted with the same angle. This surface is drawn for

a biaxial crystal on Figure 3.1 with X, Y, Z the dielectric axes. The optic

axes lay in the plane XZ. Usually, the incident beam perpendicular to the

entrance facet is refracted along the normal of the wave surface. As there

are two surfaces for the two orthogonal polarizations the refracted beam

of a biaxial crystal is usually composed of two spots. The green curve in

Figure 3.1 represents the surface corresponding to the E‖Y(Nm) polariza-

tion for a beam propagating in the XZ plane. The red curve in the XZ

plane corresponds to the surface of the E⊥Y(Nm) polarization.

Figure 3.1 – One octant of the refractive index surfaces of a biaxial crystal.

Now let us think about a single ray passing along a biaxial crystal.

If we consider the case drawn on Figure 3.2, one single ray will have an

infinity of possible propagation directions inside the crystal. This is the

internal conical refraction (ICR). For the sake of simplicity, on Figure 3.2
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only two of those solutions are drawn. In fact, when observing this sur-

face in 3 dimensions the propagation of this ray is a cone composed by

an infinite number of rays. This is the Hamilton’s vision of the conical

refraction.

Figure 3.2 – Scheme of a single ray refracted along the optic axis of a biaxial crystal.

However, this is an idealistic case assuming it is possible to send only

one optic ray through the optic axis of the crystal. In practice, the beam

has always a certain radial extension within the crystal. In this case, the

singularity point is surrounded by the light. As it is a singularity, the

point of equal refractive index for both polarizations is infinitesimal. In

other words, none of the light can reach this point. This was already

pointed out by Portigal and Burstein in 1969 [46]. In this case, drawn on

Figure 3.3, the unpolarized beam is split depending on the polarization

and the ’position’ with respect to the optic axis. The thickness of the beam

leads to a refraction around the singularity. This case is described in the

next section.

Figure 3.3 – Scheme of a beam passing through a biaxial crystal.

From this basic figure we can conclude that the waist of the incident

beam influences the thickness of the annular section of the cone. This will

lead to a condition needed to observe the conical refraction on the length

of the crystal and the incident beam radius.

The 3D representation of this effect is given on Figure 3.4. On this

Figure the cone of conical refraction can be easily observed.
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Figure 3.4 – Scheme of a beam passing through a biaxial crystal, with a photograph of

the typical crescent shaped profile of a polarized refracted beam.

3.2.2 Practical aspects

Crystal orientation

In this section some hints are provided in order to rapidly find out the

crystal orientation. Observing the conical refraction nowadays is very sim-

ple. One just needs a biaxial crystal cut perpendicularly to one of the optic

axes, and focus a laser beam into this crystal. The ring pattern will be vis-

ible near the focal plane of a lens positioned in front of the crystal. If the

crystal is too short or has a low cone angle a second lens can be used after

the crystal in order to magnify the ring.

Using polarized light, the orientation of the crystal can be determined

by the orientation of the crescent of the polarized conical refraction (CR)

pattern. Figure 3.5 shows those patterns for several orientations with a

fixed polarization. The axes X, Y, Z, correspond to the dielectric frame

corresponding to the refractive indices nx < ny < nz, respectively.

The orientation of the dark part of the ring gives an information of the

dielectric frame. It is important to note that all the patterns described in

this section are those directly observable at the focal point. If a lens is used

to image the ring those patterns will be reversed.

The first remarkable thing about this crescent shaped phenomenon

is that when one turns the crystal clockwise, the crescent turns counter-

clockwise. This is due to the complex polarization dependency of the

conical refraction. In fact, if you consider a fixed polarization, by turning

the crystal you will go from one eigen-polarization state (e.g E⊥Y) to the

other one (e.g E‖ Y).

This polarization dependency can be used in order to determine the

orientation of the crystal. The polarization E‖ Y is affected by the ordinary

refractive index. So, for an incident beam perpendicular to the crystal

surface, the beam is not deviated. Observing the part of the cone which

is not deviated inside the crystal and turning the incident polarization to
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know the corresponding polarization allows to predict the orientation of

the dielectric frame, referring to Figure 3.5.

Figure 3.5 – Representation of the output beam (on a screen directly after the crystal)

passing along one optic axis of a biaxial crystal for a polarized incident beam.

In practice, it might be difficult to observe the un-deviated side of the

cone when the crystal is short or is not well cut for the wavelength used.

In fact, when the crystal is tilted, the incident beam is no more perpen-

dicular to the crystal face leading to a shift of the exit beam. The crescent

shaped pattern can be used to orient a crystal with a square cross section

having one side perpendicular to the Y axis. Furthermore, this method is

very practical to orient several crystals in order to obtain cascaded conical

refraction [65, 60, 91, 69]. When the crescent shape is tangent with the in-

cident polarization (case of the first and third pictures on Figure 3.5), the

plane XZ (NpNg) is perpendicular to the incident polarization. And when

the crescent shape is ’perpendicular’ to the incident polarization (case of

the second and fourth pictures on Figure 3.5), the XZ (NpNg) is then tan-

gent to the incident polarization. It is then possible to even know in which

orientation is the Z-axis by observing the dark side of the rings. In the first

case, the Z-axis is pointing on the side of the dark rings. In the second

case, it is pointing on the opposite side of the dark rings.

In the case of a conical refraction laser, it is more important to know

how is oriented the XZ plane in order to use the polarization of maximum

absorption. The second information on the orientation of the Z-axis is

useful for cascaded conical refraction. This orientation corresponds to the

side in which the cone expands.

External Conical Refraction - ECR

The internal conical refraction (ICR) showed before is the easiest to ob-

serve since a laser beam passing through a biaxial crystal is sufficient to

observe this effect. However, the laws of refraction are similar for both

interfaces air-crystal and crystal-air. In other words, the cone of conical

refraction can be generated in air at the exit face of the crystal. The propa-

gation direction inside the crystal is different than for the case of internal
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conical refraction. In fact, it is along the biradial axis that the light should

propagate to give rise to external conical refraction (ECR).

In practice, this effect can be observed by adding an aperture at the

exit face of the crystal. The aperture filters the light passing through the

biradial axis giving rise to ECR. In the case of several biaxial crystals,

one can observe this phenomenon by sending a conically refracted beam

through the biaxial crystal. When the crystal is aligned along the biradial

axis, the beam will follow this axis. On Figure 3.6 a scheme of this effect

is drawn. The picture represents an ECR propagation inside the crystal

when the focal point of the incident beam is shifted inside the crystal. In

that case we observe a tube of light propagating along the biradial axis.

This effect has not been deeply studied yet and has been demonstrated

in a few publications [58], like the ICR, no practical applications have been

found up to now.

Figure 3.6 – Scematic of the external conical refraction (ECR.

3.2.3 Index and wave surfaces and conical refraction

The index and wave surfaces have already been described in the previous

chapter for the description of the absorption near the optic axis in biaxial

crystals. In this section, we will focus on the dependency of the conical

refraction with respect to these surfaces. The directions and the angles

of the cones of ICR and ECR are related to the index and wave surfaces,

respectively.

Index surfaces

The index surfaces are described by the refractive index of the material.

In the previous chapter, the imaginary part of these surfaces using equa-

tion (2.30) from [33] has already been drawn. This equation is valid for

orthorhombic crystals. It can be used for lower symmetry crystals only if

the dielectric tensor is expressed using the dielectric frame (i.e. the frame

of the diagonalized matrix). As it was mentioned in the previous chapter,

this eigenframe of the real part of this matrix may differ from the imagi-

nary part [24] in the case of monoclinic crystals. Here is given the general

equation valid whatever the crystal symmetry or the frame used.
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In order to describe the index surface, the ’index equation’ is used.

This equation can be found in optics books [92]. This equation is, in most

of the cases, written using the dielectric eigen frame. This is equation (3.1),

where ki (with i = x, y, z) represents the propagation direction (∑
i

k2
i = 0)

. This equation in n2 has four solutions. In physics, we retain only the

positive solutions. Then we obtain two solutions n+ for the external index

surface and n− for the inner surface. When drawing those two surfaces

in the dielectric plane, they simply result in a circular and an elliptical

surface.

nxkx

n2 − n2
x
+

nyky

n2 − n2
y
+

nzkz

n2 − n2
z
= 0 (3.1)

Or in a more compact way :

∑
i

niki

n2 − n2
i

= 0 (3.2)

The solutions of this equation are the same as for in the equation (2.30)

of the previous chapter.

Wave surface

The wave surface is expressed by the same equation than the refractive

index surface just by replacing the ni by 1
ni

with i=x,y,z. This surface

represents the equivalent surface for external conical refraction. It also

contains the ray path of the beam.

3.2.4 Influence of those two surfaces on conical refraction

In this section some ray tracing simulations of rays passing along the optic

axis are provided. This is performed in order to understand the influence

of each surface on the conical refraction pattern. After describing the

simulation, one case considering an unpolarized beam, and another one

considering the polarization will be presented.

Description of the computation

In order to fully understand the influence of each surface on the conical

pattern, a very simple simulation is proposed here. It consists in having

a collimated beam being refracted by the refractive index surfaces along

the optic axis. In this simple case, the refracted rays propagate to the

normal of these surfaces. The surfaces are generated using the equations
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of the previous section. The incident beam is represented by a perfectly

collimated Gaussian beam, with the profile stored in a matrix. This beam

is then refracted on the refractive index surface. The deviation of the beam

is then stored in another matrix. This last matrix can be used to determine

the beam profile after propagation.

This computation of ray tracing has a fixed number of rays determined

by the incident beam matrix. The resolution of this simulation is then

determined by the size of this matrix. In the following the output will

have some artefact coming from the choice of using a fixed matrix as input.

However, it is sufficient in order to understand more deeply the conical

refraction phenomenon and to observe the impact of both surfaces.

In the last part of this section the polarization of the light is taken

into account. In this case we used two incident matrices each one having

one state of polarization. They are both refracted on the surfaces taking

into account the influence of the polarization as it was described in the

previous chapter. Then both matrices can be summed in order to obtain

the pattern of unpolarized light.

It is important to note that ray tracing does not allow to observe the

exact double rings shaped beam of conical refraction since interference is

not taken into account.

Unpolarized beam

When the light is unpolarized, it is a very simple case. We just have to

assume, wherever the beam is, it is equally refracted by both surfaces.

This has already been done for example in the thesis of Sluijter [93]. In

this case he has even taken into account the solid angle of the incident

beam. In this case he demonstrated that the ring of the conical refraction

gets broader when the solid angle increases.

The contribution of the inner and the outer refractive index surfaces

is simulated on Figure 3.7. This simulation helps us to understand this

phenomenon in more detail. The inner surface seems to be responsible of

the internal part of the cone, and the outer surface generated the outer part

of the cone. This information seems, at first sight, not really important.

However, this is of drastic importance in the case of polarized light as it is

shown in the following.

The ray tracing simulation allows also to simulate misalignment of

the conical refraction. The transition from classical double refraction to

conical refraction is depicted on Figure 3.8. This simulation is realistic.
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Figure 3.7 – Simulation of conical refraction showing the contribution of the inner and

the outer refractive index surfaces. From left to right, incident beam, refraction on the

inner surface, refraction on the outer surface, refraction on both surfaces.

It is exactly what happens in the lab when the crystal is tilted. During

this transition one of the double refracted spots changes its shape from a

circular one to a crescent-shaped and then a ring-shaped. The other spot

is lengthened horizontally, before having the crescent-shape and then a

ring-shape. In practice, the second spot is not so thin when it is stretched.

The divergence will produce broader patterns.

Figure 3.8 – Simulation of the transition from double refraction to conical refraction.

With those two simulations, the visible part of the conical refraction is

described. However, it is also important to know what happens inside the

crystal and how this double ring-shaped beam appears. The evolution of

the incident beam with respect to the propagation length inside the crystal

is depicted on Figure 3.9. The true evolution inside the crystal can only

be described by using ray tracing simulation. In fact, the usual equation

used to describe conical refraction shown in the next section describes the

evolution in the Fourier plane, in other words, the evolution of the beam

shape at the focal point of a lens after the refraction has occurred. The

light rapidly diverges after the crystal entrance and after few millimeters

the rings can be observed (with a 40 µm incident beam and a KGW crystal

used in this simulation).

Figure 3.9 – Simulation of the propagation of the beam inside the crystal, from left to

right at, 0 mm, 1 mm, 5 mm, 10 mm, 15 mm, respectively.
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Polarized beam

The case of a polarized beam is more tricky. The link between polar-

izations and refraction surfaces is not trivial when going away from the

principal planes of the dielectric frame. The link between the orientation

and the polarization has already been discussed in the previous chapter.

The same equations (2.32) are used here in order to know the part of the

beam that is refracted on each surface. The transformation from the dou-

ble to the conical refraction is illustrated on Figure 3.10 for a polarized

incident beam. The polarization was set to E⊥Y(Nm), and the surfaces

were tilted within the XZ plane. In this case, there is only one refracted

spot when the crystal is tilted away from the optic axis. Then, when the

beam is close to the optic axis it is refracted by both surfaces, and the

crescent-shaped beam appears. It is interesting to observe that the propa-

gation of the different polarizations leads to have orthogonal polarization

for each opposite side of the cone.

Figure 3.10 – Simulation of the transition from double refraction to conical refraction in

the case of a polarized incident beam. The misalignment angles are, from left to right,

2 mrad, 1 mrad, 0.4 mrad, 0.2 mrad, 0 mrad, respectively.

In this section, the surface and polarization dependency for conical

refraction have been discussed. Those simulations give a thorough under-

standing of how the beam is refracted along the optic axis.
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3.3 Mathematical theory of conical refraction

In this section the mathematical description of the conical refraction is

given. The first equations were derived by Hamilton [94]. Several authors

proposed some equations based on Fresnel’s waves approach aspect to de-

scribe the conical refraction [46, 49]. Here, we will use the same equations

as the ones provided by Berry [53] based on the diffraction theory under

paraxial approximation. They are derived from the theory of Belskii and

Khapalyuk [41], but written in a more practical form. Those equations

are able to predict the double ring-shaped beam of conical refraction and

allow to predict the space profile evolution of a conically refracted beam.

3.3.1 Parameters of conical refraction

The description of some parameters needed to fully understand the coni-

cal refraction equation will be provided in this section. The ring radius of

a conically refracted beam will depend of the cone angle and the length

of the crystal. The cone angle is related to the refractive index difference.

This is completely dependent of the crystal. Thus, there are only two ways

to modify the conical refraction ring radius, either by modifying the length

of the crystal, or by changing the crystal. The conical refraction angles A

of several media are given in Table 3.1.

Angle A

The calculation of the angle A is performed using the refractive index

surfaces of a biaxial crystal. The calculation gives the semi-angle A of the

cone as represented on Figure 3.11.

Figure 3.11 – Scheme showing the semi-angle A of the conical refraction.

Using a geometrical approach, the semi-angle A can be determined.

This expression takes several forms in the literature.

This angle only depends on the crystal’s refractive indices and is given

by equation (3.3).

Table 3.1 shows these values for some different crystals.
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Matrices np nm ng A[˚] Ref.

KY(WO4)2 2.021(39) 2.064(94) 2.111(75) 1.25(28) [95]

Nd:KGd(WO4)2 1.937 1.986 2.033 1.38(45) [7]

Er:KGd(WO4)2 1.981(9) 2.010(3) 2.061(0) 1.08(15) [13]

KLu(WO4)2 ? ? 2.113 ? [16]

BaY2F8 1.573(6) 1.575(8) 1.581(4) 0.12(74) [96]

Er:Li6Y(BO3)3 1.570(7) 1.570(8) 1.624(7) 0.08(47) [97]

Naphtalen 1.525 1.722 1.945 6.97(39) [95]

KTP 1.738 1.747 1.833 0.91(24) [33]

BiBO 1.7585 1.7854 1.9190 1.92(38) [98]

Table 3.1 – Refractive indices and angle A for several biaxial crystals at 1060 nm.

A =
1

nm

√

(nm − np)(ng − nm) (3.3)

3.3.2 Conical refraction equations

Figure 3.12 – Semi-angle A.

The parameter ρ0 simply consists in the multiplication of the semi-

angle A (see Figure 3.12) and the length of the crystal divided by the inci-

dent beam waist radius w to obtain a parameter comparable for different

crystals and incident beam waist.

ρ0 ≡ Al
w

(3.4)

In order to express the radius of the beam we use the parameter ρ,

where r represents the radial position.

ρ ≡ r
w

(3.5)

The ζ parameter corresponds to the propagation distance inside the

crystal and is given by equation (3.6). With Z between 0 and l the crystal

length corresponding to the propagation taking into account the refractive

index of the crystal. The real propagation z is equal to, z = l(1 − 1
nm
),
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for Z = 0. At the exit of the crystal both are equal to l [53] and k the

wavenumber.

ζ ≡ Z
kw2 (3.6)

3.3.3 Diffraction equations

Now all parameters have been introduced, the equation of the diffraction

theory is provided. The origin of those equations will not be described

in this thesis. The reader is referred to the original work of Belskii and

Khapalyuk [41], as well as Berry [53], and the thesis of Jeffrey [56] for

more details.

Incident beam

Here only the classical Gaussian beam (see Figure 3.13) is taken into ac-

count as incident beam. Various incident beams can be investigated. In

fact, each kind of beam refracting on the surface will exert a specific beam

profile. Some authors have investigated super-gaussian beams [64], top-

hat beams [62], Laguerre-Gauss beams [71, 67], elliptical beams [63] and

of course conically refracted beams [69, 65, 91]. For most of those beams

the refracted patterns are still rings, with different number and spacing.

For the experiment presented in this thesis the Gaussian case is the most

relevant one, since the pumping laser source has a good beam quality.

Furthermore, the classical solutions of the resonating modes inside a laser

cavity are Gaussian.

Figure 3.13 – Representation of a Gaussian beam.

A Gaussian beam is expressed by the following equation, with w the

beam waist radius, and r the radius position (along the propagation axis).

E ∝ exp (− r2

2w2 ) (3.7)
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Berry’s equations

For circularly polarized light the intensity pattern of the beam can be ex-

pressed with the following equation :

I(ρ, ζ, ρ0) =
1

1 + ζ2 |C0(
ρ√

1 + iζ
,

ρ0√
1 + iζ

)|2 + |C1(
ρ√

1 + iζ
,

ρ0√
1 + iζ

)|2

(3.8)

with,

C0(u, u0) =
∫ ∞

0 q exp− q2

2 cos(u0q)J0(uq)dq,

C1(u, u0) =
∫ ∞

0 q exp− q2

2 sin(u0q)J1(uq)dq,
(3.9)

The intensity profile after the conical refraction can be used using this

equation (3.8). This equation can be found in literature under various

forms, but it is always an integral with a Bessel function, a cosine or a

sine, and a function depending on the incident beam. It is possible under

some conditions to use approximations instead of those integrals as it has

been done in [53]. However, in that case one is loosing in generality, and

different equations have to be used depending of the position.

The integration of the equation 3.9 is not an easy task. In fact, it is an

integration to the infinite with strongly oscillating terms inside this inte-

gral. Numerically, the infinite cannot be reached. Furthermore, depending

on the integration method it might be possible or not to calculate it. It is

important to point out that there is a lack of information in most of the

publications considering those integrations. As it is always calculated nu-

merically, the result is an approximation of the real value. The integration

method used and the different parameters should be known but this is

not specified in most of the publications. Only publication [59] explicits

the upper limit of the integral used.

Figure 3.14 shows the result of this equation for ρ0 = 60 and ζ = 0

using an upper limit of 2 and the Simpson algorithm to calculate the inte-

gral. The calculations have been done for ρ = 0 up to ρ = 80. Figure 3.14

shows the profile of the inner and the outer rings.

It is also possible to calculate the profile along the propagation di-

rection ζ. This case is drawn on Figure 3.15. The parameter ζ is varying

horizontally and the parameter ρ vertically. In the middle of the figure one

can observe the classical double ring-shaped beam resulting from conical

refraction with the Poggendorff’s dark ring. At the edge of the figure the

so-called Raman spot is present with the highest intensity.
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Figure 3.14 – Intensity profile for ρ0 = 60 and ζ = 0, with the upper limit of the integral

fixed at 2.

Figure 3.15 – Intensity profile for ρ0 = 60 and ζ from -20 to 20, with the upper limit of

the integral fixed at 2 for ρ0 = 2.

3.4 Different beam profiles resulting from CR

In the previous section the main pattern of conical refraction has been

given with the classical double-ring shape of conical refraction. In this

section, the different patterns that can be observed from different conical

refractions are presented using a biaxial crystal cut perpendicularly to the

optic axis. Those patterns are given in order to provide the possibility to

every experimentator to rapidly find out what one is observing. As it is

shown in this section a lot of patterns can result from conical refraction.

This section is strongly inspired by the publication of Peet [66].

Let’s first of all explain the different terminology used in order to de-

scribe those patterns. In order to observe the conical refraction, we used a

classical 2f system. This simply consists in a two-lens system, as it is used

in order to observe the diffraction pattern of a pinhole. In our case the bi-
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axial crystal does not need to be exactly at the focal point of the first lens in

order to observe the conical refraction. It can be positioned wherever be-

tween the two lenses, when the distance between the two lenses is equal to

the sum of both focal lengths plus a small distance z0 taking into account

the refractive index of the crystal. With such a system the second lens is

just an imaging lens. When the distance of those two lenses is equal to

the sum of both focal lengths plus the z0 terms, the image produced on a

screen or a camera at the infinite is the near field. This near field coincides

with the double ring-shaped beam of conical refraction. When the second

lens is removed we will observe the far field of the conical refraction.

3.4.1 Near field

The incident beam polarization is important as it can be linearly, circu-

larly or unpolarized. Furthermore, we can put an analyzer just before the

camera in order to separate two linearly polarized components.

These are the simplest cases that one can observe with conical refrac-

tion. The pictures have been computed using the integrals shown in the

previous section. The simulations of the CR beam pattern have been per-

formed using 2 µm wavelength and a relatively large input beam (100 µm)

in the case of a KGW crystal. This leads to have a parameter ρ0 small.

Therefore, the CR pattern is thick and the inner ring is barely visible.

Those patterns are very similar as the ones we obtained during the laser

experiment at 2 µm. In Figure 3.16 are represented those different pat-

terns for different incident polarizations and analyzer orientations (linear

polarizer set before the screen).

The different polarization patterns are obtained using the azimuthal

angle ι as it has been performed in the previous section and in publica-

tion [66]. The intensity is normalized for each picture with respect to its

maximum. The images are given with a linear scale of the intensity.

The classical double ring-shaped patterns of conical refraction can be

observed for unpolarized or circularly polarized incident light. In the case

of polarized light the crescent-shaped patterns are observed using polar-

ized incident beam and analyzer. By crossing the incident polarization

and the analyzer two opposite parts of the rings can be observed.
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Figure 3.16 – Near field profiles of conical refraction, for λ= 2 µm, w0=100 µm and

A=20 mrad.

3.4.2 Far field

The near field patterns, shown on Figure 3.16 are well-known and are

constituted of the double ring-shaped beam, simply transforming into

crescent-shaped beams depending on the polarization.

It is interesting to investigate the far field profiles, since this is the

mode that we observed when there is no second lens or this one is not at

the right position. This case is shown in Figure 3.17. For an unpolarized

beam without any analyzer the beam almost looks like a Gaussian beam.

If it is well aligned this Gaussian beam looks circular. A brighter dot in

the center of this Gaussian profile can be observed when the beam profile

is taken in between the near and far fields. This results from the so-called

Raman spot.

All the polarized components can be calculated using the diffraction

theory described in the previous section. The terms B0 and B1 represent

the solution for both circular polarizations (right and left). In case of cir-

cularly polarized light the far field beam is a Bessel-Gauss beam defined

by the B0 and B1 components. The pattern is then a Bessel-Gauss beam

of order 0 (with maximum intensity in the center of the beam) and order

1 (with minimum intensity in the center of the beam). Using the azimuth

angle ι described in the previous section it is possible to deduce the case

using an analyzer for E‖Nm and E⊥Nm using the equations (3.10) and

(3.11) provided in [66].

IE‖Nm
∝| B1 cos ι |2 (3.10)

IE⊥Nm ∝| B0 + B1 sin ι |2 (3.11)
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The patterns resulting from polarized light are less intuitive than the

ones observed in the near field. In Figure 3.17 are represented the far field

beam profiles for conically refracted beams with ρ = 1.5. Those profiles

are observed in the conical refraction laser presented in the last chapter.

Figure 3.17 – Far field profiles of conical refraction, ρ = 1.5. From left to right, unpolar-

ized, with analyzer parallel to Nm, with analyzer perpendicular to Nm.

3.4.3 Raman spot

The transition between the near field and the far field pattern of coni-

cal refraction exerts the so-called Raman spot of conical refraction. This

pattern described by Raman [45] shows a bright spot in the center of the

pattern. This spot appears when the distance is long enough to observe

the convergence of the inner ring. The central spot intensity decreases

during the propagation. At the far field (in the case of unpolarized light)

a Gaussian profile of the beam can be observed. The intensity profile of

this Raman spot is simply a brighter spot in the middle of the Gaussian

envelop appearing in the middle field.

This phenomenon can be used to align the crystal for conical refraction.

In practice, this spot is centered when the light propagates along the optic

axis. However, in the case of misalignment this spot is no more centered.

A simple way to align the crystal is then to move this bright spot in the

center of the pattern. This is useful when one uses a highly divergent

beam, e.g fiber coupled pump diode beam with high numerical aperture.

With such a beam, it is not possible to observe the double ring-shaped

beam, but the Raman spot can be observed.





4Dispersion and absorption

measurement

Introduction

In this chapter the measurements on the dispersion of the optic axis and

the absorption measurement of the Holmium-doped KYW are described.

Those measurements have been carried out in order to know if this disper-

sion is significant. The dispersion measurements have been performed at

LOMA in the University of Bordeaux. The absorption measurements were

carried out at ISL. Those latter are in agreement with the study performed

in Chapter 2 about monoclinic crystal absorption along the optic axis.

71
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4.1 Dispersion of the optic axis

In our CR experiments the propagation direction is along the optic axis

of the monoclinic crystal, which offers an easy way to measure the dis-

persion of this optic axis. Moreover, the measurement of the wavelength

dispersion of the optic axis permits to check the validity of the Sellmeier

equations given in literature. In fact, when calculating the dispersion with

these equations, these measurements are not accurate enough to predict

the orientation for a large wavelength range as pointed out in Chapter 2.

The angle V giving the dispersion, between the nz (Z) axis and the optic

axis in the X-Z plane, can be easily calculated using equation 4.1 [92] given

without any approximation.

tan2(V) =
n2

z(n
2
y − n2

x)

n2
x(n2

z − n2
y)

(4.1)

For example, the dispersion resulting from the different measurements

provided by the literature has been calculated and is shown on Figure 4.1.

The absolute value and the shape of the dispersion are completely dif-

ferent for the dispersion calculations. The flat asymptote at higher wave-

length is visible. The difference observed between all those measurements

cannot be explained by the difference in doping. In fact, these matrices are

similar and should not have such a big difference. The dispersion should

be similar to the evolution of the refractive indices: an important increase

to short wavelengths, a plateau for the wavelength in the transparency re-

gion and another strong variation at the end of the transparency region

near 5 µm.

Figure 4.1 – Dispersion of the optic axis in KREW.
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4.1.1 X-ray diffraction measurements

The X-ray diffraction measurements of KGW samples have been per-

formed at the ICMCB, University of Bordeaux. It consists in an X-ray

beam passing through the crystal. The diffracted beam is recorded behind

the crystal. The diffraction pattern can then be used to obtain the crys-

tallographic orientation of the sample. The picture resulting from such

experiment is shown in Figure 4.2. This picture has been taken with one

of the Neodymium-doped KGW samples cut perpendicularly to the optic

axis for a wavelength of 633 nm.

Figure 4.2 – X-ray diffraction pattern of Neodymium-doped KGW sample cut perpen-

dicularly to the optic axis for a wavelength of 633 nm.

The software OrientExpress is used to find the orientation of the sam-

ple. The lattice parameters of the material have to be known. The lattice

parameters from Pujol et al. [13] have been used to find the orientation. In

Figure 4.3 is shown the stereo visualization of the crystal orientation ob-

tained. The lattice parameters used are given in this figure. A schematic

representation of the crystal is also presented with the orientation of the

dielectric frame. The angle of 35˚corresponds to the dispersion plane ob-

served. The orientation of the crystallographic b-axis has also this angle.

This orientation corresponds to an angle V of 43.3˚for the Neodymium-

doped KGW.

It is important to note that the samples are mechanically aligned inside

the X-Ray beam. The crystal facet might not be perfectly perpendicular to

the X-ray beam. This results in an angle uncertainty of 1˚.

4.1.2 Experimental setup

The measurements of the angular variation of the optic axis orientation

with wavelength were performed at LOMA in Bordeaux. The range from
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Figure 4.3 – Orientation of Nd3+:KGW calculated using the software OrientExpress.

430 nm up to 1580 nm could be covered using a Ti:Sapphire laser, a com-

pact OPO (Chameleon/Coherent) and optional frequency doubling with

a BBO crystal. The wavelength of the primary Ti:Sapphire source is tun-

able from 680 nm to 1080 nm. With the OPO it is possible to reach the

wavelength range from 1040 nm up to 1580 nm. By doubling the Ti:Sa

laser, the wavelengths from 430 nm to 530 nm, and by frequency doubling

of the output beam after the OPO, 520 nm to 670 nm were obtained. To

ensure very precise alignment of the incident beam on the crystals for

all wavelengths, the beam of the selected wavelength was injected into a

single-mode optic fiber. Two different fibers have been used for the vis-

ible and the infrared range, Thorlabs P1-460A-FC-2 and P1-630A-FC-2,

respectively. A collimated output FC connector was used to ensure that

the output beam will point exactly in the same direction even when the

fibers are switched. A lens (f=125 mm) was used to focus the light inside

the crystals, another one (f=125 mm) was used to more or less collimate

the beam after the crystal, and a last one of short focal length (f=40 mm)

was used to magnify the rings for better observation, and to correct the

focal variation with wavelength. Figure 4.4 shows a schematic drawing of

the experimental setup. The two Nd-doped (at 3 at%) KGW samples with

dimensions 3x4x11 mm, and an undoped KGW crystal with the dimen-

sions 3x3x10 mm were used. Each of the samples was fixed on a crystal

mount which was positioned on a goniometer driven by a microcontroller

with an angular step of 10−3 degrees.

The sample mount was very accurately fixed in the center of the go-

niometer. The doped crystals were cut for internal conical refraction (ICR)

at 633 nm with a misalignment of 1.25 mrad. Therefore, the first alignment

for ICR was performed at this wavelength for one of the doped crystals by

turning the goniometer until the CR rings appeared.
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Figure 4.4 – Scheme of the experimental setup.

To ensure that the plane of variation of the optic axis was perpendicu-

lar to the rotation axis of the goniometer, a simple and efficient alignment

procedure was applied. The wavelength was changed and the goniometer

was turned until the ICR was aligned in the vertical rotation axis. Instead

of tilting the crystal with the horizontal rotation axis to have correct align-

ment, the crystal was rotated with respect to the propagation axis. To

check the alignment, an upper and a lower wavelength several hundred

nanometers apart were set successively and verification has been done to

ensure that only the goniometer has to be turned to re-obtain the rings for

both wavelengths. Figure 4.5 shows the intensity profile when the crystal

is aligned and misaligned for conical refraction. With this method, the

horizontal plane of the crystal is well aligned in its dispersion plane.

Figure 4.5 – Intensity profile when the crystal is aligned for conical refraction (left), and

misaligned (right).

The second Nd-doped crystal was then aligned with back reflection,

whereas the undoped KGW was the most difficult to align in the right

plane due to its large cutting imprecision which leads to a deviation of

70 mrad. This difference can be explained by the fact that the crystals

were bought from different companies.

As not all wavelengths were available simultaneously because of the

switching from the Ti:Sapphire laser to the OPO, realignment of the fiber

injection was necessary. Correct reproducibility was ensured by checking

the overlap for some wavelengths accessible with the different sources.
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4.1.3 Results

The angular variation obtained with this measurement system for KGW

and Nd-doped KGW is shown in Figure 4.6 with a comparison to the

calculated optic axis angle from the refractive indices of Er-doped KGW

and Nd-doped KGW using equation 4.1. It is important to note that the

measurements performed with this method only give the relative variation

of the angle. In order to compare the result with calculated values, the

reference angle of 43.3˚ and 42.1˚ at 630 nm has been chosen to scale the

experimental values of Nd-doped KGW and undoped KGW, respectively.

Those reference angles have been determined using X-ray measurements

of the crystals. The measured variation angles of the goniometer scale

have been divided by ny, to take into account the refraction at the entrance

surface.

A variation of the optic axis is observed becoming asymptotic in the

infrared region. The variation within the range of 430 nm to 1580 nm

is about 2.4˚. No significant difference of the curve shape is observed

between the doped and undoped double tungstates. Some measurement

points could not been taken for the doped KGW crystals, because of the

absorption in the visible region of these samples. For example at 600 nm,

one should consider if those absorption bands could lead to a change of

the birefringence and thus influence the dispersion. However, the highest

variation of the birefringence due to absorption reported in [21] is about

10-6 and located at 600 nm. This is far too low to have a significant impact

on the optic axis orientation and can thus be neglected.

During the measurement process only a single screw was used to align

successively each wavelength for ICR. The orientation changes observed in

KGW therefore can only occur in one plane within our wavelength mea-

surement range and within the mechanical accuracy. A rotation in the

other plane may exist on a very small level or for an extended measure-

ment range.

The measurements were reproducible with an uncertainty of around

0.1˚ in relative measurements. The uncertainty of the reference used is

much higher, and was determined by the X-ray diffraction measurement

to approximately 1.5˚ (indicated by the error bars in Figure 4.6). For some

points the relative uncertainty is slightly higher, due to the difficulty to

align for ICR with low intensity. This problem occurs beyond 1500 nm,

and for some absorption regions of the Nd-doped samples in the visible

range. However, one can observe that the shapes of the measured and the
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Figure 4.6 – Angle V as a function of the wavelength (calculated KGW and KYW:

obtained using Sellmeier equations from Pujol et al. [13] and from Loiko et al. [22],

respectively, measurement of the angle V variation is referenced at 43.3˚ and 42.1˚ at

630 nm for Nd-doped KGW and undoped KGW, respectively; green and pink curves are

calculated using the modified nz refractive index).

theoretical curves are significantly different in the infrared region. This

arises from the extreme sensitivity of the angle V on the refractive index

value differences. In fact, a slight change of only one of the three refrac-

tive indices values changes the shape of the calculated graph and allows

for a good agreement in the two curves. In the next paragraph such a

correction of the refraction index is shown. As can be seen in Figure 4.6

the prediction calculated from the indices of reference [21] does not match

our experimental result at all. This is probably due to Sellmeier fitting

performed over a limited wavelength range with a limited number of data

points only.

4.1.4 Modification of the refractive index "nz"

In this part a correction will be applied to the refractive index of Pujol

et al. [13] in order to bring the calculated values into agreement with the

measured ones. This kind of correction cannot be applied on Konstanti-

nova et al.’s refractive indices [21] due to the limited measurement range

which does not allow to determine an evolution of one refractive index.

Using equation 4.1, it is possible to define one refractive index as a func-

tion of the angle V and of the two other refractive indices. This will be

used to recalculate one of the 3 refractive indices with the means of the

measured angle V. The nz refractive index is the one that will be corrected

for two reasons. The first one is that as shown in Figure 2.9 from Pujol et
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al., nx and ny seem to be equal for differently doped KGW matrices. The

second reason is illustrated in Figure 4.7. In fact, looking at the derivatives
dn
dλ of the indices of Pujol show that nz does not follow the same variation

as nx and ny. It is this difference that leads to the variation of the cal-

culated angle V in Figure 4.6. This perturbed derivative evolution could

be linked to the last measurement point of nz near 1500 nm in Pujol et al.

which is not well matched by the Sellmeier fit [13].

In Figure 4.7, the modified nz values with respect to the original ones

from Pujol et al. are shown for comparison. The difference between Pujol

et al. nz refractive indices and the refined ones is about 0.014 and 0.018

for undoped KGW and Nd-doped KGW, respectively. Therefore, a small

correction of the refractive index nz can be derived from our experimental

results. The index is given by equation 2.27.

With this new refractive index the angle V can be recalculated. Indeed,

the angle V calculation is very sensitive to the refractive index, for a vari-

ation of the refractive index of 0.0005, the angle may vary by 0.15˚. With

the Sellmeier fit employed it is not possible to be more precise than this

value.

Figure 4.7 – Derivative of Pujol et al.’s refractive index and the modified one (insert, top

right) and comparison between nz from Pujol et al. and the modified ones (see text).

4.1.5 Dispersion of Holmium-doped KYW

The dispersion of a Holmium-doped KYW sample has also been mea-

sured. The orientation of the sample was known. Thus, the measurement

points in Figure 4.8 are directly given in absolute values.

The measured dispersion is in good agreement with the calculation

performed using the refractive indices provided by Kaminskii et al. [19].
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Figure 4.8 – Optic axis dispersion of Ho3+:KYW.

4.1.6 Conclusion

In order to predict the evolution of the optic axis with wavelength, the

three refractive index values have to be known to better than 10−3. The

variation of the angle V has been measured over the range from 430 nm

to 1580 nm and a correction of the nz refractive index taken from litera-

ture has been performed but should not be taken as "true" value. Over

the measurement range a variation of 2.4˚ has been measured. No sig-

nificant difference of the variation has been observed between doped and

undoped KGW materials. This kind of measurement can be used to check

the precision of the refractive index at the 10−4 level with respect to an

angular accuracy of the optic axis of 0.01˚. A rotation of the ellipsoid

around the b-axis has not been observed here. The measurements of the

refractive index should be performed with a better accuracy as described

in the second chapter. Such measurements could eliminate every doubt

on the measured values. In the case of KYW the refractive index values

given in [19] are in good agreement with the measurements provided at

this end of this section.
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4.2 Absorption measurements near the optic axis of

Ho3+:KYW

In this section, the absorption profile of the Holmium-doped KYW crystal

near the optic axis will be shown. Those measurements are important in

order to understand all different laser curves presented in the following

chapter.

As KYW is a monoclinic crystal, all its properties (refractive indices,

thermal expansion, absorption and emission cross sections...) depend on

the considered crystal orientation [13, 15, 38, 99, 100, 23]. Furthermore,

each property can be optimally described in its own eigen-frame, all these

frames having in common the axis that corresponds to the direction of the

monoclinic axis (b-axis). This is a particularity of low symmetry crystals

as monoclinic crystals. That was recently extended also to the linear spec-

troscopic properties of absorption or emission [32]. For example, the spec-

troscopic properties and the associated angular distributions in polarized

light have already been experimentally and fundamentally characterized

in the YCOB crystal doped with Neodynium ions [101]. Such measure-

ments are not yet available for double tungstate crystals, KYW, KLuW or

KGW. Moreover, in the case of double tungstate crystals, the monoclinic

axis - as discussed in Chapter 2 - is perpendicular to the plane that con-

tains the NmNg plane [31]. Thus, the two optic axes are equivalent with

respect to their spectroscopic properties. We performed measurements of

angular distributions of absorption in polarized light near one optic axis,

as well as characterization of the related laser emission (see Chapter 5),

these remarkable directions showing a very high propagation and polar-

ization sensitivity.

4.2.1 Experimental setup

The measurements of the absorption have been performed using a 16 mm

long Holmium doped KYW crystal (1%at). A polarized home-made

Thulium fiber laser was used both as a probe and pump beam at a wave-

length of 1960 nm. In order to limit the impact of the CR transformation

inside the crystal, a beam radius of 400 µm was used inside the crystal.

With such a big radius the pattern of conical refraction can not be ob-

served, due to the overlapping of the conical refraction from each point

of the laser beam (see Chapter 3). The crystal was cut perpendicularly to

one of the optic axes. The absorption measurements have been carried out
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for several orientations and polarizations in order to obtain the absorption

distribution near this optic axis. The different orientations were measured

by tilting the crystal in the plane corresponding to the Np-Ng plane (θ an-

gle), and perpendicularly (φ angle). θ and φ are the angles in spherical

coordinates, referring to the dielectric frame (X, Y, Z). In agreement with

different denominations in literature, the dielectric axes are equivalently

labelled (X, Y, Z) or (Np, Nm, Ng), respectively. Thus, principal refractive

indices are equivalently labelled (nx, ny, nz) or (np, nm, ng), respectively.

In this case, these indices undergo the following relations nx < ny < nz

and np < nm < ng.

4.2.2 Results

Figure 4.9 depicts the measurements obtained along the optic axis for two

eigen polarization modes, with E‖Nm corresponding to the maximum of

absorption and E⊥Nm the orthogonal polarization with the minimum of

absorption. In Figure 4.10, more incident polarizations are shown in order

to confirm that E‖Nm (E⊥Nm) correspond to polarization eigen modes and

thus to the maximum (minimum) of absorption. The complex absorption

profile clearly shows the orientation of the optic axis (at coordinates ∆θ =

0 and ∆φ = 0, ∆θ and ∆φ being a small variation of angle θ and φ around

the optic axis). The absorption strongly depends on the polarization and

the orientation near this optic axis. The linear absorption coefficient varies

from 0.4 cm−1 up to 1.5 cm−1 by changing the polarization. In similar

matrices for ’classical’ orientation along dielectric axes Np (X) or Ng (Z)

the polarization E‖Nm always exhibits higher absorption [28, 27]. It is in

agreement with the measurement presented here.

Figure 4.9 – Absorption profiles in cm−1 near the optic axis of a 16 mm-long Holmium-

doped KYW (1%at.) crystal with a beam radius of 400 µm. 90˚and 0˚corresponds to

E‖Nm and E⊥Nm, respectively. The angles ∆θ and ∆φ are internal angles (taking into

account the refraction law at the crystal entrance interface) in spherical coordinates, with

respect to the optic axis direction.
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Figure 4.10 – Absorption profiles in cm−1 of Holmium-doped KYW (1%at.) of various

incident polarizations. 90˚and 0˚correspond to E‖Nm and E⊥Nm, respectively.

Figure 4.11 – Absorption profiles in cm−1 with a beam radius of 200 µm in Holmium-

doped KYW (1%at.). In this case the medium absorption transition was saturated, so the

values do not directly reflect the true absorption cross sections. 90˚and 0˚correspond to

E‖Nm and E⊥Nm, respectively.

The different orientations (1), (2), (3), (4) presented in Figure 4.11 cor-

respond to directions where the laser emission has been operated, as de-

scribed in the following Chapter. For positions (1) and (2), the absorption

is three times higher for E‖Nm than for E⊥Nm. So the laser emission

threshold will be much higher for E⊥Nm. In (3) and (4) the behaviour

should be similar for both polarizations, whatever the polarization of the

laser emission. In Figure 4.11, the medium absorption is saturated (with

an incident beam radius of 200 µm). In this case a maximum of absorp-

tion appeared near the optic axis. This is due to the modification of the

beam propagation inside the crystal caused by the conical refraction (CR)

pattern. The total volume of excited region of the crystal is larger in that

case. This results in a lower saturation and so in a higher absorption. This

information is crucial for conical refraction lasers that always exhibit two

times higher thresholds than classical lasers. This might be due to the fact

that the conical mode inside the crystal has a larger area than the classical

Gaussian mode.
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Introduction

In this chapter the laser experiments are presented, laser action along and

near the optic axis. Two different crystals have been used. First, some

experiments with a Neodymium-doped KGW crystal are presented. Those

experiments were performed in order to check the reproductibility of the

publications [77, 78]. In a second part, the case of Holmium-doped KYW

crystal is presented. Finally, some new architectures are presented.

83
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5.1 Neodymium KGW - Uncoated

In this section, the laser experiment performed with Neodymium-doped

KGW crystals are reported. First, the crystal and the set-up are described.

Secondly, the definitions of the system are performed.

5.1.1 Motivation

The motivation of those experiments is to check the results given in the

publications [77, 78]. There, the authors report a Neodymium-doped

KGW (3 at.% and 17 mm long) laser pumped with a fiber coupled diode

at 808 nm with a core diameter of 100 µm. The laser cavity is a plano-

concave with a mirror having a radius of curvature of 75 mm. The cavity

length was between 50 and 80 mm. Their cavity was aligned along the op-

tic axis of the laser. They claim to have 74% slope efficiency with an output

power up to 3 W for a maximum pump power of 5 W. Those impressive

results have to be counterbalanced with their previous publication [79],

where there had only 45% of slope efficiency with a similar set-up (and

curves...). It is necessary to check those results to confirm the efficiency of

such a system. Furthermore, our experiments provided know-how con-

cerning the alignment and the sensitivity of conical refraction lasers. This

know-how has been used to achieve very good performances with the

Holmium-doped KYW laser presented in the next section.

5.1.2 Description of the experimental setup

The hemispheric cavity of the laser (see Figure 5.1) was used with several

designs described in Table 5.1. These different configurations were used

to modify the mode size of the laser cavity. In all those experiments,

the fiber coupled pump diode was aligned with an Helium-Neon (HeNe)

laser. Then the first mirror was aligned using the HeNe laser. The crystal

is then aligned with the face perpendicular to the HeNe beam. Finally,

the cavity was closed by aligning the back reflection of the HeNe laser. In

order to obtain the laser emission, the pump power was increased and the

end cavity mirror slightly adjusted. Small adjustments of the two mirrors

were then performed to increase the output power. The fiber diameter

of the laser pump was 400 µm with a numerical aperture of 0.22 and the

wavelength was 805 nm.

With such a method the pump beam and the laser beam are not per-
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element/distance(mm) d1 L1 d2 L2 d3 M1 d4 d5 M2

Configuration 1 30 F=30 55 F=60 20 RC=75 35 1 R=95%; RC=∞

Configuration 1b 30 F=30 55 F=60 20 RC=75 35 6 R=95%; RC=∞

Configuration 2 30 F=30 40 F=75 40 RC=1500 25 65 R=95%; RC=∞

Configuration 2b 30 F=30 40 F=75 40 RC=1500 25 165 R=95%; RC=∞

Table 5.1 – List of the different configurations used. RC=Radius of Curvature (mm), R

= reflectivity, F=focal lens (mm), d = distance, L = lens and M= mirror.

fectly aligned for conical refraction. However, it was the only way to

achieve laser emission with uncoated crystals.

Figure 5.1 – Scheme showing the different distances within the laser setup.

Crystals used

Two identical crystals were used for the experiments. The Neodymium-

doped KGW crystals had the dimension of 4x3x11 mm. The doping con-

centration is unknown but we assume that it is at least 3at.% considering

the absorption of the crystals. In those first experiments, the crystals did

not have any anti-reflection coating. They were cut perpendicular to the

optic axis for a wavelength of 633 nm with an uncertainty of 1.25 mrad.

The absorption peak for the pump wavelength is at 811 nm. This corre-

sponds to the transition 4I9/2 →4F5/2+ 2H9/2. The maximum absorption is

obtained for the polarization E‖Nm [102, 8]. The unpolarized absorption

measurement of the crystal has been carried out using a Cary 5E spec-

trometer given in Figure 5.2. The strong absorption and the length of the

samples forced to use a wide spectral aperture (5 nm) in order to collect

enough light for the measurement.

The maximum emission peak of the Neodymium inside the KGW crys-

tal is at 1067 nm. The emission cross section at this wavelength can reach

34x10−20 cm2 [102, 8] for E‖Nm polarization.
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Figure 5.2 – Unpolarized linear absorption of Neodymium-doped KGW near the optic

axis.

5.1.3 Result

The laser experiments were performed with a maximum incident pump

power of 5 W. This limit has been chosen in order to avoid the fracture of

the crystal. In the following section the fracture limit of this material is

discussed.

The threshold and the slope efficiency for all the different configura-

tions are given in Table 5.2. They do not exert specific behavior (higher

efficiency) as published in [77] compared to classical Neodymium doped

lasers using crystals cut perpendicularly to the dielectric axes.

Configuration Threshold (W) Slope efficiency (%)

1 1 28,0

1b 1 19,9

2 1,5 24,6

2b 1,8 16,5

Table 5.2 – Summary of the laser results for the uncoated Neodymium-doped KGW

crystal. The slope efficiency is calculated with the launched pump power, which one is

totally absorbed.

The low efficiency of those first experiments are due to the high loss

inside the cavity since there is no anti-reflection coating on the crystals.

However, it could be sufficient to check the parameters of these crystals.

The beam quality of the output beams in those different configurations
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were not further investigated. They were elliptical, and so strongly multi-

mode beams.

5.1.4 Simulation

In order to estimate the different parameters of this material, the fitting of

the laser curve has been realized using the software LASCAD. The values

given with such a simulation are just an order of magnitude. This soft-

ware also provides a finite elements analysis (FEA) function that allows to

estimate the thermal lens parameters.

It is important to insist on the fact that those parameters are an estima-

tion. It has been demonstrated in the previous section that most of them

are not known accurately and strongly depend on the crystal orientation.

Furthermore, some parameters as the pump and heating efficiency can not

be measured. Those parameters can then compensate other ones.

Parameters used

The parameters used for those simulations are given in Table 5.3. The

x, y, z, coordinates correspond here to the frame of the crystal cut with

4(y)x3(x)x11(z) mm.

Simulations

The configuration 1 is simulated on Figure 5.3, experimental points are

represented with triangles and the calculated ones with black circles. Two

cases have been simulated. One with 20% of intra-cavity losses and the

other one with the value set at 3.5%. The first one corresponds to the losses

created by the reflection at the crystal face and the second one has been

performed in order to fit the experimental results. The alignment method

reduces the intra-cavity losses. If it is not possible to obtain laser action

along the optic axis, it is just because the reflective losses are too high

when the crystal is tilted inside the laser cavity (with refractive index of 2,

it is almost 10% per interface). However, when the crystal is tilted for con-

ical refraction no laser output was obtained even for 5 W of incident pump

power. This can result either from wrong parameters or from the fact that

the threshold of the CR laser is higher than for a classical laser [77]. In

both cases, multi-modal outputs have been taken in consideration.

For the calculation of the configuration 1b presented on Figure 5.4, the

intra-cavity losses have been fixed to 5%. With this calculation the com-

parison of the maximal possible output considering a monomode output
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Pump beam

Parameter Value (x ; y ; z) unity

Wavelength 805 nm

Waist radius 280 µm

Divergence 100 mrad

Super-Gaussian exponent 3 -

Cooling

Side temperature 300 ˚K

Initial temperature 300 ˚K

Nd:KGW crystal CR-cut

Thermal conductivity 2.8 ; 2.7 ; 2.9 x10−3 W.mm−1.K−1

Expansion coefficient 5 ; 4 ; 6 x10−6K−1

Elasticity module 300000 N.mm−2

Refractive index 2.000 ; 1.986 ; 1.985 -
dn
dT

0.4 ; 0.4 ; 0.4 x10−6K−1

Absorption coefficient 0.35 mm−1

Heating efficiency 0.1 -

Emission cross section 3.4 x10−17mm2

Fluorescence lifetime 120 µs

Pump efficiency 0.8 -

Table 5.3 – Parameters used for the simulation of Neodymium-doped KGW.

Figure 5.3 – Output power vs incident pump power, triangles are experimental points

and circles calculated ones with 3.5% and 20% (for the one with the red dot) intra-cavity

losses.
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and a multi-modal case is performed. The multi-modal case corresponds

to the measured laser output.

Figure 5.4 – Output power vs incident pump power, triangles are experimental points

and circles calculated ones with 5% intra-cavity losses for the monomode and multimode

(for the one with the red dot) cases.

In the case of the configurations 2 and 2b, the laser was very unsta-

ble. This is probably due to the strong thermal lens occurring inside the

material.

Figure 5.5 – Output power vs incident pump power in case of the configuration 2 (on the

left) and 2b (on the right) : triangles are experimental results. Calculations are performed

with 5% of intra-cavity losses in the monomode regime.

Crystal fracture

The crystal fracture limit was reached by increasing the pump power. The

fracture happens for an incident pump power around 8 W. The damage

observed consists in a curved line of around 1.5 mm length starting from
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the middle of the crystal. In order to estimate the stress inside the crystal

FEA analysis was performed using LASCAD. Those simulations are car-

ried out using the parameters present in Table 5.3. Using the FEA analysis,

one can estimate the mechanical stress present inside the crystal. In this

simulation the maximum mechanical stress is around 18 MPa. This is be-

low the minimal fracture limit of around ∼ 50 MPa found in the literature.

This can be explained by the mechanical stress added by the mounting of

the crystal. The crystal is wrapped with an indium foil an then mounted

inside a screwed copper mount. This way of mounting adds some me-

chanical stress, even if the indium is a very soft material.

5.1.5 Conclusion

Those first experiments provided interesting information about this ma-

terial and the way of aligning the system. The really high doping con-

centration of those samples creates a very strong thermal effect. As those

thermal effects are not homogeneously distributed along the crystal, it is

difficult to estimate their impact on the laser resonator. In fact, the ab-

sorption of all the pump power occurs within few millimeters inside the

crystal.

5.2 Neodymium KGW - Coated

5.2.1 Motivation

In the previous experiments performed with uncoated crystals, the las-

ing action exactly along the optic axis was not possible. So, the crystals

have been coated with an anti-reflection coating for both lasing and pump

wavelength in order to reduce the intra-cavity losses. The lasing action

along the optic axis should be easier. However, those experiments were

still not successful. Only laser action close to the optic axis was possible.

5.2.2 Experimental setup

Crystal used

The crystal used was the same than in the previous experiment with a

shorter length (4x3x8 mm) and an anti-reflection coating reducing the re-

flection below 0.2% for wavelengths between 800-810 nm and at 1067 nm.
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element/distance(mm) d1 L1 d2 L2 d3 M1 d4 d5 M2

Configuration 3 45 F=45 55 F=55 10 RC=75 50 - R=95%; RC=∞

Table 5.4 – Description of the configuration used with AR-coated crystal. RC=Radius

of Curvature (mm), R = reflectivity, F=focal lens (mm). d = distance, L = lens and M=

mirror.

Cavity and pump

The configuration used was similar to the configuration 1. However, in

order to reduce the pump mode size which was too big compared to the

laser cavity in the previous experiment, a fiber with 200 µm core diameter

has been used. The configuration 3 of this cavity is described Table 5.4.

5.2.3 Result

The output of the laser was not impressive. Two of the laser curves are

shown on Figure 5.6. Only an efficiency of 47% was reached. However,

when the cavity is close to the stability limit one could see on the red

curve that the thermal lens inside the crystal reduces drastically the output

power.
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Figure 5.6 – Output power vs incident pump power using AR-coated Neodymium-doped

KGW crystal.

The mode of this laser was really awful and strongly elliptical. A

picture at maximum output power is shown on Figure 5.7. The ellipticity

of the beam has always the same orientation depending on the crystal

orientation. If the crystal is turned by 90˚ this pattern will follow. We

can conclude that the ellipticity of this beam results from the anisotropy

properties of the crystal.
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Figure 5.7 – Beam profile at the maximum output power of the Neodymium-doped KGW.

Some experiments have been done in collaboration with the IFSW in

Stuttgart, as there was a setup identical to the one presented in the pub-

lication [77] with a coated crystal of 17 mm length. They were not able

to obtain efficient laser action along the optic axis either with their setup.

When propagating along the optic axis, the laser mode was seriously de-

graded and the optical output power very low. A typical mode that was

possible to obtain using their system is shown on Figure 5.8. This out-

put was strongly degraded. This occurs only when the crystal is aligned

along/close the optic axis. In other orientations classical laser action was

observed.

Figure 5.8 – Beam profile along the optic axis of Neodymium-doped KGW obtained at

the IFSW.

5.2.4 Conclusion

Those first experiments using the Neodymium-doped KGW sample cut

perpendicularly to the optic axis were not successful. Too high doping

concentration induced a very strong thermal lensing effect. The elliptical

modes observed tend to demonstrate that the athermal direction predicted

by Biswal [10], near the optic axis does not exist in this crystal. This is in

agreement with the result provided by Loiko et al. [103]. Furthermore,

no efficient laser action along the optic axis was possible. The high effi-

ciency and good beam quality presented in the publication [77] have not

been reached. The efficiency, when lasing close to the optic axis, is rather

similar to the one the same authors published at a conference [79]. The

result presented here being far away from the one published in [77, 78]
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rises some questions about possible systematic measurement errors in the

experimental results presented therein.

However, a lot of knowledge results from those experiments. First of

all, the maximum tensile stress of those crystals once mounted into the

cooling mount is found to be around 18 MPa. The alignment along the

optic axis was critical. So for the next experiments different mounting for

the crystal had to be used.
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5.3 Holmium-doped CR laser

In the following the laser experiments performed with the Holmium-

doped KYW crystal are presented. A description of the homemade pump

laser is given. The crystals used are described. Then the different config-

urations of the Holmium-doped KYW crystals are shown.

5.3.1 Description of the pump laser

The description of the homemade pump laser is done in this section.

A Thulium fiber laser (Figure 5.9) was build up. It consists of a 3 m

long double clad fiber pumped from both sides by two fiber-coupled

diodes (LIMO-HLV20) with 400 µm core diameter fibers and with a lasing

wavelength around 795 nm. Those diodes have a maximum output power

of 20 W each. The numerical aperture of the delivery fiber is 0.22. The

active core diameter of the thulium fiber is around 50 µm, and the second

clad has a core diameter of 600 µm. The numerical aperture of the active

core is 0.08. The lenses used to couple the laser beam into the fiber have

a focal length of 7 mm and have an anti-reflection coating for pump and

lasing wavelength. The dichroic mirrors used to separate the pump and

the laser wavelength were highly-transmitting for the 2 µm radiation, and

highly-reflective for the 795 nm radiation under an incident angle of 45˚.

The output coupler of this laser is simply the end of the fiber cleaved with

an angle of 0˚. The Fresnel losses ensure the feedback. The other side of

the fiber is cleaved with an angle of 8˚ in order to reduce the feedback

from this side.

Figure 5.9 – Schematic of the thulium fiber laser.

The wavelength of this laser can be tuned by tilting the diffraction

grating which is the cavity end mirror. The diffraction grating has a re-

flectivity slightly higher than 70% (data provided by the manufacturer).
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The accordability can be obtained for a wavelength range from 1930 nm

up to 2060 nm. In Figure 5.10, the measurement points are shown for the

maximum output power of the laser (current intensity of the diode, Idiodes

= 30 A, corresponding to 40 W of optical pump). A second measurement

performed with another fiber at a lower output power (Idiodes = 20 A) is

also shown. This second fiber was strongly multimode and has not been

used for pumping the Holmium-doped crystals.
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Figure 5.10 – Accordability of the Thulium fiber laser at maximum pump power (Idiodes

= 30 A). *This measurement has been performed with another fiber not described here but

very similar.

The fiber used was almost monomode. In fact the M2 of this Thulium

fiber laser is around 1.3. In Figure 5.11 is shown the propagation of the

output beam. The beam is circular once the laser is well aligned and

stabilized.
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Figure 5.11 – Beam propagation of the Thulium fiber laser at the output.
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The maximum output power obtained with this laser is 10 W for unpo-

larized output and 6 W for polarized output. This laser has been polarized

by adding a polarizer inside the laser cavity just before the telescope. Best

efficiency can be achieved in case of polarized pump power. This maxi-

mum pump power is strongly dependent on the optic alignment and the

fiber cleaves quality.

5.3.2 Description of the crystal used

For all those experiments Holmium-doped KYW crystals have been used.

The KYW matrix is available from the crystal grower. The doping concen-

tration has been chosen to be 1%. This concentration has been chosen in

order to have a spacing between the doping ions to reduce the effect of

energy transfer between ions occurring at high pump power. This effect

of upconversion is well known to reduce the efficiency of the laser. This

value has been chosen referring to the know-how of the ISL on Holmium-

doped crystals. The concentration is around 6.38× 10−19 cm−3. The linear

absorption at 1960 nm with this concentration varies from 0.4 cm−1 up to

1.5 cm−1 depending on the polarization and the orientation as it has been

deeply discussed in the previous chapters. The crystals have a section of

4x4 mm and a length of 12 mm to 20 mm. Figure 5.12 shows the percent-

age of the pump absorption at 1960 nm in the Holmium-doped crystal

in the case of single pass. The average for both polarizations is around

60-70%. The length of the crystal is long enough to easily observe conical

refraction. The conical refraction-rings radius is 240 µm for the 12 mm

long crystal and 400 µm for the 20 mm long crystal.

One critical point for this experiment is the cutting angles of the crys-

tals. The crystal was cut with angles VNg= 44˚(angle with the dielectric

axis Ng in the plane NgNp) and 18˚ between the crystallographic c-axis

and the Ng axis. With such cutting angles the misalignment at 2 µm with

respect to the optic axis was around 1˚. The cutting accuracy is not known,

however the cutting angle difference observed between several samples

varies up to 12 mrad. Figure 5.13 shows the dispersion of several crystals

of KYW cut with the same angle from the same manufacturer. The orienta-

tion of the crystal is set moving the crystal with two different angles from

the initial orientation of the b-axis. This method is purely mechanical and

does not use any optical method in order to check the orientation before

the cut of the crystals. The dispersion is so high that it is not possible to

get closer to the optic axis with this cutting method. It would have been
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Figure 5.12 – Absorption at 1960 nm of Ho3+:KYW (1at%) for different lengths near the

optic axis. The maximum (red) is for E‖Nm polarization and the other (black for E⊥Nm).

The dashed blue lines correspond to the available crystal lengths.

possible to check the orientation of those crystals using the X-ray as it has

been done in Chapter 3. However, the precision of the setup is not better

than 1˚, and so would not have been a useful measurement. The only way

to obtain a better cut is to introduce an optical system checking the crystal

orientation before the crystal cut.

This small misalignment with respect to the optic axis of the crystal

cut orientation slightly complicates the alignment of the laser cavity along

this optic axis.

5.3.3 Motivation

This laser was build in order to check the possibility of realizing a conical

refraction laser with a quasi-three-level medium. Such a laser has an un-

known resonance condition. Furthermore, in the case of quasi-three-level

systems the reabsorption plays an important role on the laser action. Even

if the previous experiments with Neodymium-doped KGW were not suc-

cessful, it is still interesting to investigate the conical refraction effect using

crystals with lower doping concentration. As it has been shown in previ-

ous chapters the absorption properties strongly vary with the orientation

and the polarization. This has a drastic influence on the laser perfor-

mance. Different laser orientations are tested in the following. However,

a description of several conical refraction lasers is done in the next section

in order to characterize several possible setups.
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Figure 5.13 – Dispersion of several crystal cuts. The old crystals have been cut with

the angle described in the text. New crystals were an unsuccessful tentative to correct

the cutting angles. The coordinate (0,0) corresponds to an incident angle of 90˚. The

measurements are given with an uncertainty of 3 mrad.

5.3.4 CR laser: which configuration ?

The conical refraction has been described in the Chapter 3 of this thesis.

The propagation of the light inside the crystal is not easy to apprehend.

The main question in the case of laser resonators is which kind of mode

can result from a CR resonator? What are the different possible parameters

?

Using a simple scheme as presented in Figures 5.14, 5.15, 5.16, 5.17

different possible modes can be expected. In Figure 5.14 a hemispherical

cavity is represented with a biaxial crystal aligned for conical refraction

inside the cavity. The ideal case would be to have the reflection coating on

one side of the crystal to replace the plane mirror. If the output coupler

is the concave mirror the output beam will be Gaussian. If it is the plane

mirror the output beam will be conically refracted. This case is simple to

understand.

However, if there is a space between the crystal and the plane mir-

ror, as presented in Figure 5.15, the transverse mode will not be easy to

determine since the conical refraction propagation is not invariant as a

Gaussian beam. The mode inside such a cavity is then difficult to predict.

That is why the configuration of the laser described in the next section

will follow the scheme of Figure 5.14.
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In order to choose the cavity parameter such as the length and the

radius of curvature of the mirror we will simply use the classical Gaussian

resonator theory in order to set the waist of the incident beam on the

crystal. Of course the conical refraction pattern will strongly depend on

the size of this Gaussian incident beam.

Why should the conical refraction occur towards the plane mirror ?

In fact, it is possible to obtain the conical refraction towards the concave

mirror like it is represented in Figure 5.16. However, like in the previous

case the conical refraction pattern will propagate through air leading to a

difficult interpretation of the mode.

In the experiment presented in the next section the orientation of the

conical refraction pattern will be set by the pump since the crystal is lon-

gitudinally pumped from one side. The pump is then conically refracted.

It is also possible to use the external conical refraction in order to ob-

tain a CR laser as described in Figure 5.17. In this case, the crystal has to

be aligned along the biradial axis and not along the classic optic axis. This

case is discussed further below.

Figure 5.14 – Schematic of a CR laser with a hemispherical cavity. In this case the CR is

refracting towards the plane mirror.

Figure 5.15 – Schematic of a CR laser with a hemispherical cavity. In this case the CR is

refracting towards the plane mirror with space between the crystal and the mirror.
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Figure 5.16 – Schematic of a CR laser with a hemispherical cavity. In this case the CR is

refracting towards the concave mirror.

Figure 5.17 – Schematic of an ECR laser with a spherical cavity. In this case the CR is

refracting towards the plane mirror with space between the crystal and the mirror.

5.3.5 Almost hemispherical CR laser experiments

In this section, the laser results of Holmium-doped KYW crystals cut per-

pendicularly to the optic axis inside an almost hemispherical cavity are

presented. Different orientations have been tested in order to check the

influence of the spectroscopic properties of the crystal. The cavity is al-

most hemispherical, that means that both mirrors are spherical but one

has a bigger radius. This results in a cavity minimum waist close to this

mirror like in hemispherical cavities. This type of cavity is easier to align

for these experiments than a true hemispherical cavity.

Experimental setup

The pump in these experiments was the same laser as in the previous sec-

tions for the absorption measurements. The maximum output power was

around 6 W after a Glan-Taylor prism in order to obtain a linearly polar-

ized beam. The setup is shown in Figure 5.18. This hemispheric cavity had

a spherical mirror with a radius of curvature of 91 mm. The total length

of the cavity was around 6-8 cm, with the crystal as close as possible from

the almost plane mirror (radius of curvature of 500 mm). The plane mirror

was partially reflective for both lasing and pump wavelengths. When the

entrance mirror was a dichroic mirror.
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Figure 5.18 – Laser setup showing the linear cavity. OC: Output coupler, RC: Radius of

Curvature.

Results

Figure 5.19 shows the results for lasing operation for several orientations

and polarizations with respect to the incident pump power. All the mea-

surements are limited by the available pump source. Three main be-

haviours are clearly visible: Best results were obtained on orientation

(1) and (2) for E‖Nm, and worst ones for E⊥Nm. This difference of las-

ing threshold (more than 2 times higher) is in agreement with the ab-

sorption measurements shown in the previous section. Furthermore, for

E⊥Nm and only in this orientation the lasing wavelength was at 2.056 µm.

For all other orientations and polarizations the lasing wavelength was at

2.074 µm. On orientation (3) and (4) the lasing thresholds are in between

lasing operation obtained for (1) for E‖Nm and E⊥Nm polarizations. This

is still in agreement with the absorption profile. Rotating the polarization

of 45˚along (3) and (4) allows a better efficiency of the laser, simply be-

cause in this polarization, we obtain only one refracted spot. In fact, near

the singularity the pump polarization leads to only one refracted spot

which is rotating like the polarization pattern of conical refraction [104].

This polarization pattern corresponds to the one on Figure 2.15. It also

corresponds to how one should turn the polarization in order to directly

measure the imaginary part of n− plotted on Figure 2.14.

As the absorption is significantly different with respect to the orienta-

tion, we performed other measurements taking into account the real ab-

sorbed pump power. For this purpose we estimated the absorbed pump

power by measuring the 5% of the residual pump power which was pass-

ing through the output coupler. Those measurements are depicted on

Figure 5.20. In that case, all curves give similar thresholds around 0.70 W,
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Figure 5.19 – Output power vs incident pump power along different orientations (see

Figure 4.11). In the legend are written as following: orientation; polarization (s-pol

(p-pol) corresponding to E‖Nm (E⊥Nm)); threshold; slope efficiency; lasing wavelength.

except for the CR orientation were the threshold is around 1.3 W. As the

maximum pump power available was lower than in our previous results,

the maximum output power was also lower. The maximum slope effi-

ciency of 74% has been achieved for the orientation (4). The maximum

output power for the orientations (3) and (4) was obtained for a polariza-

tion state close to 45˚from E‖Nm as expected. Along the optic axis, a slope

efficiency of 52% has been achieved with respect to the absorbed pump

power.

Figure 5.20 – Output power vs absorbed pump power along different orientations (see

Figure 4.11). In the legend are written as following: orientation; polarization (s-pol

(p-pol) corresponding to E‖Nm (E⊥Nm)); threshold; slope efficiency; lasing wavelength.
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The output beam was Gaussian and had an M2 close to 1 for an ori-

entation along (1) at full power. Thermal lensing was not observable, as

the thermal load inside the crystal was too low. For CR-oriented crystal

the M2 can not be measured since the output mode was not Gaussian (see

Figure 5.21).

Figure 5.21 – On the left: far field output of the Gaussian laser. On the right: CR laser

output close to the focal plane of a 300 mm lens.

Discussion

It results from those experiments that the strong variation of the optical

properties near the optic axis of monoclinic crystals lead to important

variations of the laser efficiency. Those different behaviors can be easily

understood when compared with the absorption measurement performed

in the previous chapter.

Concerning the laser action along the optic axis, it will always be with

a lower efficiency than the maximum possible for a classical Gaussian

beam near the optic axis. This is due to the fact that even for one linear

polarization the light is refracted along different orientations and so exert

different spectroscopic parameter values.

So such a laser can not be more efficient than a classical Gaussian laser

using the same crystal cut along the maximum absorption direction.

Furthermore, the alignment of the crystal and the cavity is much more

sensitive than for classical Gaussian lasers. It exists a gap between the

Gaussian regime and the CR regime were there is no laser action possi-

ble. The size of this gap depends on the incident pump power. For this

experiment, it was around 10 mrad around the optic axis orientation.

5.3.6 ECR laser

In this section a new architecture is presented. This laser setup is using

the External Conical Refraction (ECR). The motivation is explained before

the experimental setup description.
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Motivation

In the previous experiments, the conical refraction was happening inside

the crystal for both pump and lasing wavelength. The internal conical

refraction induces different properties for each polarization state as the

beam expands inside the crystal. Both of these effects tend to decrease the

efficiency of the CR laser. In fact, the optical properties for an unpolarized

beam along the optic axis are the mean of the values obtained for the

two eigen-state polarizations. Furthermore, the beam expansion inside

the crystals tends to lower the optical density of the pump. That is why

a conical refraction laser will always have a higher pump threshold and a

lower efficiency than a classical Gaussian laser as it as been proved in the

previous section.

A way to avoid those two effects is to use the External Conical Refrac-

tion. If a conically refracted light is focused at the crystal entrance along

the biradial axis (this axis is separated from the optic axis y by the angle

A), then the light will propagate along this axis.

Description

If the conically refracted light is focused with an angle corresponding to

2A, the propagation inside the crystal should have its original properties

(the same properties it has before being conically refracted). Of course,

the orientation of the crystal is important. In order to obtain the conically

refracted light a biaxial crystal will be used. The second crystal should

have the same orientation or being tilted by 180˚depending on the number

of lenses used to adjust the beam. If the second crystal is not well oriented

the beam will diverge inside the crystal (totally or partially).

The experimental setup tested is presented in Figure 5.22. The pump

beam is refracted by a 20 mm long undoped KYW crystal. For this purpose

two lenses of 75 mm focal length are used. The second lens position is

adjusted to image the CR rings on the third lens used to focus the CR

beam to the 20 mm long Holmium-doped KYW crystal facet. The distance

between the second and the third lens was adjusted to have a ring diameter

of 5 mm at the third lens. The ring is focused with an angle close to 2A

with such an arrangement.

The laser cavity was composed of two concave mirrors. The distances

between the mirror and the crystal were close to their radius of curvature.

This is done in order to ensure that the rings resulting from the ECR are

focused inside the crystal after their reflection. This ensures a resonance
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in the cavity. A plane mirror can not be used unless it is very close to

the crystal. In fact, due to the conical propagation of the light outside the

crystal a plane mirror can not satisfy the resonance condition.

Figure 5.22 – Scheme of the ECR laser experiment.

The maximum pump power available at the crystal was 4 W. The

20 mm long undoped KYW crystal was not coated and therefore addi-

tional looses were created.

This system is really difficult to align. Due to the fact that the undoped

KYW crystal is not perfectly cut for a propagation along the optic axis at

1960 nm, a small deviation occurs. This deviation is compensated by the

45˚mirrors. The doped-crystal can be easily aligned for the ECR by in-

creasing the green light intensity resulting from upconversion. Of course,

this setup needs to use the maximum pump power available. The cavity

pre-alignment was performed using a red Helium-Neon laser. The fine

adjustment simply needs time and perseverance.

Results

Lasing action with such an ECR laser has been achieved. The maximum

output power reached was 800 mW for 4 W of incident pump power. This

laser was very sensitive to any variation of the pump power. Those impor-

tant fluctuations prevented the laser output power from being measured

for various incident pump powers. However, those experiments prove that

such a cavity can be a laser resonator.

The output of this laser had a ring pattern shown in Figure 5.23. As

the conical refraction is occurring in the air, the laser beam is divergent. A

lens has to be used after the output coupler in order to image the beam on

the camera. The lowest order mode is observed. It consists in a crescent-

shaped beam with two dots. By tilting the output, one can obtain higher
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order modes like in classical Gaussian lasers. The crescent shape corre-

sponds to the polarization E‖Nm. The higher order modes have an in-

creasing number of dots.

Figure 5.23 – ECR laser beam profiles. Those modes can be observed using a lens after

the output coupler to image the "rings" on the camera. On the left, the lower order mode

observed. On the right, higher order modes.

Discussion

This experiment is a proof of principle that shows the possibility of hav-

ing laser action using the ECR. Those results are the first experiment per-

formed using the ECR. Of course, the laser efficiency was not important.

This comes from several points, that need to be improved. First of all the

pump beam was diverging inside the Holmium-doped KYW crystal. The

angle of the incident pump beam was not perfect. Secondly, the cavity

mirrors were not on translation stages. The position adjustment of these

mirrors can help to improve the cavity alignment and stability and last

but not least, having a shorter radius of curvature on the concave mirror

could reduce the alignment difficulty.

Furthermore, the conically refracted output of the laser is not a conve-

nient beam to work with.

However, the real interest of this setup is the pump scheme. In fact,

if by using the ECR the divergence of the pump inside the crystal can be

reduced, then longer crystals can be used without using the total inter-

nal refraction. If the dispersion of the optic axis between the pump and

lasing wavelength is important, the lasing wavelength can resonate with

a Gaussian mode while the crystal is pumped using the external conical

refraction. This is the interest of such a setup.
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This thesis is a first step to new innovative laser experiments. The aim

at the beginning of this work was to check the veracity of recent publica-

tions and try to get advantage of the effect of conical refraction in order

to reduce the influence of the thermal lens inside the laser medium. The

historical background of this interesting study lead us to perform different

investigations. The research of an athermal orientation in the monoclinic

double tungstates lead Biswal et al. [10] to propose an orientation close

to the optic axis. This orientation has then been tested by Hellström et

al. [76] using Ytterbium-doped KGW. They were not able to prove that

this orientation was athermal, but they discovered polarization depen-

dency of their laser by moving the output coupler. Few years later two

publications presented impressive laser performances along the optic axis

of Neodymium-doped KGW [79, 78]. This thesis demonstrates that their

work were not reproducible and probably erroneous.

The optical properties of the monoclinic double tungstates have been

deeply investigated. The complex absorption orientation and polarization

dependency of the Holmium-doped KYW have been performed. A simple

model predicting these properties is provided. This investigation on the

absorption properties gives a thorough understanding of the laser behav-

ior. The demonstration of the drastic influence of the crystal orientation

on the laser efficiency using biaxial crystals cut for a propagation along

the optic axis have been performed. Laser action close to the optic axis

with very good beam quality of the Holmium-doped KYW crystal was

achieved. A slope efficiency up to 74% was achieved. No thermal effects

were observed since the pump power available was not sufficient to induce

thermal stress.

New innovative laser architecture has been tested. It results from this

study that the conical refraction can be used to obtain new pumping

schemes. The proof of principle has been provided in this thesis. The

demonstration of the first laser using the external conical refraction has

been performed. An output power of 800 mW was reached with the setup.

The efficiency of the system can still be greatly improved by improving the
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pump injection inside the crystals and using a smaller cavity. The benefit

of such system has still to be proved compared to other laser setups, since

it really needs accurate settings. Furthermore, the external conical refrac-

tion has to be tested with low quality beams provided by classical fiber

coupled diodes. The use of the external conical refraction can be of great

interest if it can help to reduce the divergence inside the pumped crystal.

This investigation needs the use of crystals with larger aperture.

The conical refraction was a really interesting effect to study. I hope

that the work presented in this thesis will be followed and will lead to

new ways of building laser resonators.
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A.1 Résumé en français

Nous nous sommes intéressés durant cette thèse à l’étude des cristaux

monocliniques pour la réalisation de lasers à solides. Ces cristaux biaxes

possèdent des propriétés physiques dépendant de l’orientation et des pro-

priétés optiques dépendant de l’orientation ainsi que de la polarisation.

Les cristaux étudiés sont des cristaux de la famille des doubles tungstates.

Nous nous sommes focalisés sur des cristaux de KGd(WO4)2 (KGW) et

KY(WO4)2 (KYW). Ces derniers sont déjà utilisés en tant que milieu am-

plificateur dans des lasers. Leur principal avantage réside dans de larges

spectres d’émission pour les ions incorporés dans ces matrices. Cette pro-

priété est utile pour l’obtention d’un régime femtoseconde, ce qui est la

principale utilisation actuelle de ces cristaux. Les propriétés thermiques

de ce cristal sont moindres comparées à celles d’un cristal de YAG mais

elles restent cependant correctes. La principale difficulté avec l’utilisation

de ces cristaux réside dans la anisotropie des propriétés physiques suiv-

ant l’orientation du cristal. Ainsi, pour obtenir un rendement laser op-

timal l’orientation du cristal doit être soigneusement étudiée en fonction

des propriétés optiques du matériau. Cependant pour ces orientations

les propriétés thermiques et mécaniques entrainent des effets indésirables

lors de l’échauffement du matériau survenant avec une forte intensité de

pompage. Une lentille thermique asymétrique se crée dégradant ainsi les

performances du laser sans compensation de ces effets. Ainsi plusieurs

travaux ont porté sur la recherche d’une direction dite "athermique" dans

ces cristaux [10]. Dans cette hypothèse, l’orientation du cristal n’est pas

choisie pour ses propriétés optiques mais pour ses propriétés thermiques

et mécaniques afin de réduire l’asymétrie de la lentille thermique. Une

des orientations proposées se situe proche de l’axe optique. Plusieurs

groupes ont ainsi testé cette orientation avec des cristaux de KGW dopés

avec de l’Ytterbium et du Néodyme. Au final, les résultats sont mitigés

quant à l’intérêt de cette orientation pour diminuer l’effet de la lentille

thermique. Les travaux de ces groupes ne permettant pas de comprendre

en profondeur les résultats obtenus, cette présente thèse a pour vocation

d’approfondir ce point. Pour comprendre les différents rendements lasers

obtenus aux alentours de l’axe optique, il faut s’intéresser au lien entre la

polarisation et les propriétés optiques. Pour débuter, il était nécessaire de

connaitre l’orientation de coupe des cristaux. Pour déterminer cette ori-

entation, les indices de réfraction du matériau sont utilisés. Nous avons

découvert que ces indices n’étaient pas connus avec suffisamment de pré-
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cision pour déterminer cette orientation au degré près pour des longueurs

d’onde de 2 µm. Nous avons donc mesuré la dispersion de l’axe optique.

Ces mesurent sont présentes sur la Figure A.1. L’angle V étant l’angle

entre l’axe dielectrique du plus grand indice de réfraction et l’axe optique.

Figure A.1 – Dispersion de l’angle V (Valeurs calculées 1 et 2: avec l’équation de Sell-

meier de Pujol et al. [13] et de Konstantinova et al. [21], respectivement, mesures de la

variation de l’angle V référencé à 43.3˚ et 42.1˚ à 630 nm pour Nd3+:KGW et le KGW

non dopé, respectivement; les courbes vertes et roses sont caculées en utilisant l’indice de

réfraction nz modifié).

Nous constatons ainsi que la dispersion réelle et celle calculée avec

les indices de réfraction sont très différentes. Ces mesures sont à pren-

dre avec précaution étant donnée l’incertitude sur l’angle de coupe orig-

inal des cristaux mesurés par diffraction atomique de plus d’un degré.

Par ailleurs, cette dispersion semble ne pas montrer de rotation autour

de l’axe de symétrie de ces cristaux monocliniques. Or des mesures ef-

fectuées sur d’autres cristaux monocliques mettent en evidence une rota-

tion de l’ellipsoïde des indices autour de cet axe [105]. Par conséquent il

reste possible que la dispersion mesurée ne soit en fait qu’une rotation de

l’ellipsoïde des indices. Cependant, cela est peu probable car cela entrerait

en contradiction avec les mesures de diffraction aux rayon X. Une fois les

cristaux disponibles avec une erreur de coupe d’environ un degré, des

mesures d’absorption aux alentours de l’axe optique ont été réalisées en

fonction de l’orientation ainsi que de la polarisation pour des cristaux de

KYW dopés Holmium. Ces résultats présent sur la Figure A.2, illustrent

parfaitement la complexité des propriétés optiques près de l’axe optique.

Les variations dépendent bien évidement de la polarisation ainsi que de
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l’orientation, ces deux paramètres étant intimement liés à l’approche de

cette singularité.

Figure A.2 – Absorption en cm−1 près de l’axe optique pour un cristal de 16 mm de long

de KYW dopé Holmium (1%at.) pour un faisceau incident de 400 µm de rayon. 90˚et

0˚correspondent to E‖Nm and E⊥Nm, respectivement. Les angles ∆θ et ∆φ sont des

angles internes (prenant en compte la réfraction à l’intérieur du cristal) en coordonnées

sphériques, avec pour origine l’axe optique.

Avec ces mesures, les différentes efficacités du laser avec un régime

de fonctionnement aux alentours de l’axe optique deviennent très com-

préhensibles. On comprend que de part et d’autre de l’axe pour une même

polarisation, l’absorption est identique. Dans notre cas, il existe une polar-

isation où l’absorption est beaucoup plus efficace. Il est à noter que dans

ces mesures, seuls les points compris sur l’axe des abscisses sont issus de

modes propres de propagations, c’est-à-dire que tous les autres points de

mesures correspondent à un mélange des deux modes propres de prop-

agation . Pour obtenir une mesure représentant l’absorption d’un mode

propre en fonction de l’orientation, il faudrait tourner la polarisation du

faisceau incident en fonction de l’orientation. Par ailleurs, il est à noter

que lorsque la direction de propagation d’un faisceau lumineux est par-

faitement alignée avec l’axe optique un effet appelé "réfraction conique"

se produit. La réfraction d’un faisceau lumineux le long de cet axe pro-

duit un anneau en sortie du cristal. Ceci modifie complètement le mode

laser en se propageant dans la cavité et ces effets restent peu étudiés.

L’utilisation de cet effet en cavité laser a déjà été démontrée [79, 78]. Le

but de cette thèse fut dans un premier temps, de confirmer ces résultats.

Ainsi, nous avons utilisé des cristaux de KGd(WO4)2 (KGW) dopés au

Néodyme. Les premiers résultats furent décevants. La stabilité, la qualité

de faisceau ainsi que l’efficacité étaient plus que médiocres. L’efficacité

maximale obtenue fut d’environ 40 % contre 74 % dans la publication de

Abdovland et al. [77]. La Figure A.3 montre mes meilleurs résultats avec

la représentation du mode laser sur la Figure A.4.

Le faisceau de sortie présentait un profil elliptique indiquant la
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Figure A.3 – Puissance de sortie en fonction de la puissance de pompe incidente pour un

cristal de Nd3+:KGW avec traitement anti-reflet.

Figure A.4 – Mode laser obtenu avec la puissance de sortie maximale.
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présence d’une lentille thermique avec un fort astigmatisme. (Ainsi, cette

orientation qui devrait être proche d’une direction athermal (ne présentant

pas d’astigmatisme) selon Biswal [10] ne l’est pas dans une cavité laser

pour ce cristal (Nd3+:KGW dopé à 3at.%)). De plus ce laser étant très peu

stable et difficile à aligner avec des fluctuations importantes de l’efficacité,

celles-ci ont amené une interrogation quant à la dépendance des propriétés

optiques aux alentours de l’axe optique, thème succinctement présenté au

début de ce résumé. Les résultats de cette étude montrent que ces pro-

priétés varient non seulement suivant la polarisation mais également en

fonction de l’orientation aux alentours de l’axe optique. Les dépendances

en orientation et polarisation sont liées étant donné que l’état de polarisa-

tion autour de l’axe optique varie avec l’orientation. C’est pourquoi une

étude simple de la réfraction est fournie afin de comprendre cette dépen-

dance complexe. La dépendance de l’absorption aux alentours de l’axe

optique a pu être simulée pour la première fois. La Figure A.5 montrent

les rapides variations en fonction de l’orientation du cristal (les angles

correspondent à l’inclinaison du cristal par rapport à l’axe optique.).
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Figure A.5 – Simulation de l’absorption en cm−1 aux alentours de l’axe optique d’un

cristal de KYW dopé avec de l’Holmium (1%at.) avec une résolution de 2 mrad. 90˚et

0˚correspondent à E‖Nm et E⊥Nm, respectivement.

Après les premières expérimentations laser, le cas de cristaux de

KY(WO4)2 (KYW) dopés Holmium pour une émission laser à 2 µm a été

étudié. L’Holmium, ayant un faible « défaut quantique » entre la longueur

d’onde de pompe (1960 nm) et la longueur d’émission (2074 nm), permet

d’avoir une longueur d’onde de pompe et d’émission proches ce qui réduit

ainsi la dispersion potentielle de l’axe optique entre ces deux longueurs

d’onde. Grâce à un montage amélioré par rapport aux premières expéri-

ences effectuées avec les cristaux KGW dopés au Néodyme, la dépendance

de la polarisation ainsi que de l’orientation a pu être mise en évidence.

Différents rendements ont pu être atteints en fonction de l’orientation du
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cristal. La Figure A.6 résume les efficacités obtenues suivant différentes

orientations.

Figure A.6 – Puissance de sortie vs puissance de pompe absorbée suivant différentes

orientations (voir Figure 4.11). La légende donne: l’orientation; la polarisation s-pol

(p-pol) correspond à E‖Nm (E⊥Nm)); le seuil; la pente; longueur d’onde laser.

Une efficacité atteignant jusqu’à 70 % pour une puissance de sortie

d’environs 3 W a pu être obtenue pour une orientation proche de l’axe

optique. Cela représente à l’heure actuelle la meilleure performance pour

cette famille de cristaux. Le taux de dopage des cristaux de KYW dopés

à l’Holmium étant plus approprié au fonctionnement à forte puissance,

l’astigmatisme dû à la lentille thermique n’a pas été observé. Par ailleurs,

l’alignement de la cavité laser avec l’axe optique a pu être réalisé. Ainsi,

nous avons prouvé qu’un mode laser « conique » est possible dans une

cavité conçue pour des faisceaux Gaussiens (Figure A.7).

Figure A.7 – A gauche: champ lointain. A droite: proche du plan focale d’une lentille de

300 mm.

Cependant, la dépendance des propriétés optiques selon l’orientation

entraine de facto une efficacité moindre qu’un mode Gaussien classique.

Des efficacités atteignant presque 50 % ont pu être obtenues suivant cette
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orientation. Aucun problème de lentille thermique n’a pu être observé

avec une puissance de pompe maximale de 6 W. Le taux de dopage faible

ainsi que la longueur de plus de 1 cm des cristaux permettent une bonne

répartition de la charge thermique dans le cristal. Enfin, un montage inno-

vant a été testé afin d’utiliser la réfraction conique. La puissance de sortie

ainsi que l’efficacité de ce montage étaient très faibles, environ 800 mW en

sortie pour 4 W de puissance de pompe. Cette thèse a permis de décrire

en détail les propriétés optiques des cristaux monocliniques avec le cas

particulier des doubles tungstates. Avec ces connaissances, d’excellentes

performances ont pu être obtenues pour une émission laser à 2 µm avec

un cristal de Ho3+:KYW. Par ailleurs, nous avons réussi à faire fonctionner

une cavité sur un mode de réfraction conique avec un rendement honor-

able de 50%. Nous avons ainsi prouvé qu’un mode "conique" pouvait

résonner dans une cavité laser conçu avec des miroirs sphériques.
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[36] Ò. Silvestre, J. Grau, M.C. Pujol, J. Massons, M. Aguiló, F. Díaz,

M.T. Borowiec, A. Szewczyk, M.U. Gutowska, M. Massot, A. Salazar,

and V. Petrov. Thermal properties of monoclinic KLu(WO4)2 as a

promising solid state laser host. Opt. Express, 16(7), 2008. (Cité

page 46.)

[37] V.V. Filippov, N.V. Kuleshovuleshov, and I.T. Bodnar. Negative

thermo-optical coefficients and athermal directions in monoclinic



Bibliography 125

KGd(WO4)2 and KY(WO4)2 laser host crystals in the visible region.

App. Phys. B, 87:611–614, 2007. (Cité page 48.)

[38] P.A. Loiko, K.V. Yumashev, N.V. Kuleshov, and A.A. Pavlyuk.

Thermo-optic coefficients and thermal lensing in Nd-doped

KGd(WO4)2 laser crystals. App. Opt., 49(34):6651–6659, 2010. (Cité

pages 48 et 80.)

[39] V.V. Filippov. Athermal directions in KGd(WO4)2 and KLu(WO4)2

crystals under uniform heating. Applied optics, 52(18):4377–4384,

2013. (Cité page 48.)

[40] P.A. Loiko, K.V. Yumashev, N.V. Kuleshov, G.E. Rachkovskaya, and

A.A. Pavlyuk. Thermo-optic dispersion formulas for monoclinic

double tungstates KRe(WO4)2 where Re= Gd, Y, Lu, Yb. Optical

Materials, 33(11):1688–1694, 2011. (Cité page 48.)

[41] A.M. Belskii and A.P. Khapalyuk. Internal conical refraction of

bounded light beams in biaxial crystals. Optics and Spectroscopy,

44:436–439, 1978. (Cité pages 49, 62 et 64.)

[42] H. Lloyd. On the phenomena presented by light in its passage along

the axes of biaxial crystals. Phil. Mag., 1, 1833. (Cité page 50.)

[43] J.C. Poggendorff. Ueber die konische refraction. Pogg. Ann, 48:461–

462, 1839. (Cité page 50.)

[44] G.S. Sokolovskii, D.J. Carnegie, T.K. Kalkandjiev, and E.U. Rafailov.

Conical refraction: New observations and a dual cone model. Opt.

Express, 21(9):11125–11131, 2013. (Cité page 50.)

[45] C.V. Raman, V.S. Rajagopalan, and T.M.K. Nedungadi. Conical re-

fraction in naphthalene crystals. Proceedings Mathematical Sciences,

14(3):221–227, 1941. (Cité pages 50 et 69.)

[46] D.L. Portigal and E. Burstein. Internal conical refraction. JOSA,

59(12):1567–1573, 1969. (Cité pages 50, 54 et 62.)

[47] N. Bloembergen and H. Shih. Conical refraction in nonlinear optics.

Optics Communications, 1(2):70–72, 1969. (Cité page 50.)

[48] H. Shih and N. Bloembergen. Conical Refraction in Second-

Harmonic Generation. Phys. Rev., 184:895–904, Aug 1969. (Cité

pages 50 et 51.)



126 Bibliography

[49] É. Lalor. An analytical approach to the theory of internal conical

refraction. Journal of Mathematical Physics, 13(4):449–454, 1972. (Cité

pages 50 et 62.)

[50] A.J. Schell and N. Bloembergen. Laser studies of internal conical

diffraction. II. Intensity patterns in an optically active crystal, α-iodic

acid. JOSA, 68(8):1098–1106, 1978. (Cité page 50.)

[51] J.P. Fève, B. Boulanger, and G. Marnier. Experimental study of inter-

nal and external conical refractions in KTP. Optics communications,

105(3):243–252, 1994. (Cité page 50.)

[52] B. Boulanger, J.P. Feve., G. Marnier, G.M. Loiacono, D.N. Loiacono,

and C. Bonnin. SHG and internal conical refraction experiments

in CsTiOAsO4, comparison with KTiOPO4 and KTiOAsO4, for 1.32-

µm type II SHG. Quantum Electronics, IEEE Journal of, 33(6):945–949,

1997. (Cité page 50.)

[53] M.V. Berry and M.R. Jeffrey. Conical diffraction asymptotics: fine

structure of Poggendorff rings and axial spike. J. Opt. A, 6:289–300,

2004. (Cité pages 51, 62, 64 et 65.)

[54] A. Belafhal. Theoretical intensity distribution of the internal con-

ical refraction. Optics communications, 178(4):257–265, 2000. (Cité

page 51.)

[55] A.M. Belsky and M.A. Stepanov. Internal conical refraction of light

beams in biaxial gyrotropic crystals. Optics Communications, 204(1–

6):1–6, 2002. (Cité page 51.)

[56] M.R. Jeffrey. Conical Diffraction: Complexifying Hamilton’s Diabolical

Legacy. PhD thesis, University of Bristol, 2007. (Cité pages 51, 52

et 64.)

[57] R.P. Burns. On the possibility of using conical refraction phenomena

for laser beam steering. Applied Optics, 3(12):1505–1506, 1964. (Cité

page 51.)

[58] Y.P. Mikhailichenko. Conical refraction: Experiments and large-scale

demonstrations. Russian Physics Journal, 50(8):788–795, 2007. (Cité

pages 51 et 57.)

[59] C.F. Phelan, D.P. O’dwyer, Y.P. Rakovich, J.F. Donegan, and J.G. Lun-

ney. Conical diffraction and Bessel beam formation with a high op-



Bibliography 127

tical quality biaxial crystal. OPTICS EXPRESS, 17(15):12891–12899,

2009. (Cité pages 51 et 65.)

[60] A. Abdolvand. Conical diffraction from a multi-crystal cascade:

experimental observations. Applied Physics B, 103(2):281–283, 2011.

(Cité pages 51 et 56.)

[61] R.T. Darcy, D. McCloskey, K.E. Ballantine, B.D. Jennings, J.G. Lun-

ney, P.R. Eastham, and J.F. Donegan. White light conical diffraction.

Optics express, 21(17):20394–20403, 2013. (Cité page 51.)

[62] R.T. Darcy, D. McCloskey, K.E. Ballantine, J.G. Lunney, P.R. Eastham,

and J.F. Donegan. Conical diffraction intensity profiles generated

using a top-hat input beam. Optics Express, 22(9):11290–11300, 2014.

(Cité pages 51 et 64.)

[63] A. Turpin, Y.V. Loiko, T.K. Kalkandjiev, H. Tomizawa, and J. Mom-

part. Wave-vector and polarization dependence of conical refraction.

Optics express, 21(4):4503–4511, 2013. (Cité pages 51 et 64.)

[64] A. Turpin, Y.V. Loiko, T.K. Kalkandkiev, H. Tomizawa, and J. Mom-

part. Super-Gaussian conical refraction beam. Optics letters,

39(15):4349–4352, 2014. (Cité pages 51 et 64.)

[65] A. Turpin, Y.V. Loiko, T.K. Kalkandjiev, and J. Mompart. Multiple

rings formation in cascaded conical refraction. Opt. Lett., 38(9):1455–

1457, May 2013. (Cité pages 51, 56 et 64.)

[66] V. Peet. The far-field structure of Gaussian light beams transformed

by internal conical refraction in a biaxial crystal. Optics Communica-

tions, 311:150–155, 2013. (Cité pages 51, 66, 67 et 68.)

[67] V. Peet. Experimental study of internal conical refraction in a bi-

axial crystal with Laguerre–Gauss light beams. Journal of Optics,

16(7):075702, 2014. (Cité pages 51 et 64.)

[68] S.D. Grant and A. Abdolvand. Evolution of conically diffracted

gaussian beams in free space. Optics express, 22(4):3880–3886, 2014.

(Cité page 51.)

[69] C.F. Phelan, K.E. Ballantine, P.R. Eastham, J.F. Donegan, and J.G.

Lunney. Conical diffraction of a Gaussian beam with a two crystal

cascade. Optics express, 20(12):13201–13207, 2012. (Cité pages 51, 56

et 64.)



128 Bibliography

[70] V. Peet. Biaxial crystal as a versatile mode converter. J. Opt.,

12(9):095706, 2010. (Cité page 51.)

[71] V. Peet. Conical refraction and formation of multiring focal image

with Laguerre-Gauss light beams. Opt. Letters, 36:2913–2915, 2011.

(Cité pages 51 et 64.)

[72] N.A. Khilo. Conical diffraction and transformation of Bessel beams

in biaxial crystals. Opt. Communications, 286:1–5, 2013. (Cité

page 51.)

[73] C.F. Phelan, J.F. Donegan, and J.G. Lunney. Generation of a radially

polarized light beam using internal conical diffraction. Opt. Express,

19:21793–21802, 2011. (Cité page 51.)

[74] D.P. O’Dwyer, C.F. Phelan, Y.P. Ralovich, P.R. Eastham, J.G. Lunney,

and J.F. Donegan. The creation and annihilation of optical vortices

using cascade conical diffraction. Opt. Express, 19:2580–2588, 2011.

(Cité page 51.)

[75] Y.V. Loiko, A. Turpin, T.K. Kalkandjiev, E.U. Rafailov, and J. Mom-

part. Generating a three-dimensional dark focus from a single coni-

cally refracted light beam. Optics letters, 38(22):4648–4651, 2013. (Cité

page 51.)

[76] J. Hellström, H. Henricsson, V. Pasiskevicius, U. Bünting, and

D. Haussmann. Polarization-tunable Yb:KGW laser based on in-

ternal conical refraction. Opt. Lett., 32(19):2783–2785, 2007. (Cité

pages 51 et 107.)

[77] A. Abdolvand, K.G. Wilcox, T.K. Kalkandjiev, and E.U. Rafailov.

Conical refraction Nd:KGd(WO4)2 laser. Opt. Express, 18(3):2753–

2759, 2010. (Cité pages 51, 83, 84, 86, 87, 92, 115, 134 et 136.)

[78] K.G. Wilcox, A. Abdolvand, T.K. Kalkandjiev, and E.U. Rafailov.

Laser with simultaneous gaussian and conical refraction outputs.

Applied Physics B, 99:619–622, 2010. (Cité pages 51, 83, 84, 92, 107,

115, 134 et 136.)

[79] Amin Abdolvand, K.G. Wilcox, T.K. Kalkandjiev, and E.U. Rafailov.

Cone-refringent solid-state bulk laser. In Lasers and Electro-Optics

2009 and the European Quantum Electronics Conference. CLEO Europe

- EQEC 2009. European Conference on, pages 1–1, June 2009. (Cité

pages 51, 84, 92, 107, 115, 134 et 136.)



Bibliography 129

[80] S. Rosen, G.Y. Sirat, H. Ilan, and A.J. Agranat. A sub wavelength

localization scheme in optical imaging using conical diffraction. Opt.

Express, 21(8):10133–10138, Apr 2013. (Cité page 51.)

[81] G.Y. Sirat, S. Shorte, L.P.O. Braitbart, L. Moisan, J.Y. Tinevez,

J. Caron, and C. Fallet. Conical Diffraction Based Super-resolution

System for Fluorescence Microscopy: System Description and

Demonstration visualizing Biological Objects. Microscopy and Mi-

croanalysis, 19(S2):1178–1179, 2013. (Cité page 51.)

[82] D.P. O’Dwyer, K.E. Phelan, C.F. Ballantine, P.R. Rakovich, J.G. Lun-

ney, and J.F. DoneganODW10. Conical diffraction of linearly po-

larised light controls the angular position of a microscopic object.

Opt. Express, 18(26):27319–27326, 2010. (Cité page 51.)

[83] A. Turpin, V. Shvedov, C. Hnatovsky, Y.V. Loiko, J. Mompart, and

W. Krolikowski. Optical vault: A reconfigurable bottle beam based

on conical refraction of light. Opt. Express, 21(22):26335–26340, 2013.

(Cité page 51.)

[84] C. McDonald, C. McDougall, E. Rafailov, and D. McGloin.

Characterising conical refraction optical tweezers. arXiv preprint

arXiv:1408.6987, 2014. (Cité page 51.)

[85] A.J. Schell and N. Bloembergen. Laser studies of internal conical

diffraction. III. Second-harmonic conical refraction in α-iodic acid.

Physical Review A, 18(6):2592, 1978. (Cité page 51.)

[86] S.A. Zolotovskaya, A. Abdolvand, T.K. Kalkandjiev, and E.U.

Rafailov. Second-harmonic conical refraction: observation of free

and forced harmonic waves. Applied Physics B, 103(1):9–12, 2011.

(Cité page 51.)

[87] A. Turpin, Y.V. Loiko, T.K. Kalkandjiev, J. Trull, C. Cojocaru, and

J. Mompart. Type I and type II second harmonic generation of con-

ically refracted beams. Optics letters, 38(14):2484–2486, 2013. (Cité

page 51.)

[88] S.D. Grant, S.A. Zolotovskaya, T.K. Kalkandjiev, W.A. Gillespie, and

A. Abdolvand. On the frequency-doubled conically-refracted Gaus-

sian beam. Optics express, 22(18):21347–21353, 2014. (Cité page 51.)



130 Bibliography

[89] D.P. O’Dwyer, C.F. Phelan, Y.P. Rakovich, P.R. Eastham, J.G. Lunney,

and J.F. Donegan. Generation of continuously tunable fractional op-

tical orbital angular momentum using internal conical diffraction.

Optics express, 18(16):16480–16485, 2010. (Cité page 51.)

[90] K.E. Ballantine, J.F. Donegan, and P.R. Eastham. Conical diffraction

and the dispersion surface of hyperbolic metamaterials. Physical

Review A, 90(1):013803, 2014. (Cité page 51.)

[91] M.V. Berry. Conical diffraction from an n-crystal cascade. J. Opt. A,

12:6651–6659, 2010. (Cité pages 56 et 64.)

[92] M. Born, E. Wolf, A.B. Bhatia, D. Gabor, A.R. Stokes, A.M. Taylor,

P.A. Wayman, and W.L. Wilcock. Principles of Optics: Electromagnetic

Theory of Propagation, Interference and Diffraction of Light. Cambridge

University Press, 2000. (Cité pages 58 et 72.)

[93] M. Sluijter. RAY-OPTICS ANALYSIS OF INHOMOGENEOUS OPTI-

CALLY ANISOTROPIC MEDIA. PhD thesis, Technische Universiteit

Delft, 2010. (Cité page 59.)

[94] W.R. Hamilton. Third supplement to an essay on the theory of sys-

tems of rays. Transactions of the Royal Irish Academy, 17(part 1):1–144,

1837. (Cité page 62.)

[95] M.V. Berry, M.R. Jeffrey, and J.G. Lunney. Conical diffraction: ob-

servations and theory. Proc. R. Soc. A, 462:1629–1642, 2006. (Cité

page 63.)

[96] H.P. Christensen, H.P. Jenssen, and D.R. Gabbe. BaY2F8 as a host for

Ln ions, I: Optical properties of the crystal and spectroscopic results

for Pr, Dy, Ho, and Er doping. (Cité page 63.)

[97] Y.W. Zhao, X.H. Gong, Y.J. Chen, L.X. Huang, Y.F. Lin, G. Zhang,

Q.G. Tan, Z.D. Luo, and Y.D. Huang. Spectroscopic properties of

Er3+ ions in Li6Y(BO3)3 crystal. Appl. Phys. B, 88:51–55, 2007. (Cité

page 63.)

[98] H. Hellwig, J. Liebertz, and L. Bohaty. Linear optical properties of

the monoclinic bismuth borate BiB3O6. J. App. Phys., 88(1):240–244,

2000. (Cité page 63.)

[99] P.A. Loiko, K.V. Yumashev, N.V. Kuleshov, and A.A. Pavlyuk.

Thermo-optical properties of pure and yb-doped monoclinic KY



Bibliography 131

(WO4)2 crystals. Applied Physics B, 106(3):663–668, 2012. (Cité

page 80.)

[100] S. Vatnik, M.C. Pujol, J.J. Carvajal, X. Mateos, M. Aguiló, F. Díaz,

and V. Petrov. Thermo-optic coefficients of monoclinic KLu(WO4)2.

Applied Physics B, 95(4):653–656, 2009. (Cité page 80.)

[101] Y. Petit, S. Joly, P. Segonds, and B. Boulanger. Refined modeling of

angular distributions of linear absorption and fluorescence in biaxial

crystals. Laser Physics, 21(7):1305–1312, 2011. (Cité page 80.)

[102] R. Moncorgé, B. Chambon, J.Y. Rivoire, N. Garnier, E. Descroix,

P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, et al. Nd doped

crystals for medical laser applications. Optical Materials, 8(1):109–

119, 1997. (Cité page 85.)

[103] P.A. Loiko, V.G. Savitski, A. Kemp, A.A. Pavlyuk, N.V. Kuleshov,

and K.V. Yumashev. Anisotropy of the photo-elastic effect in

Nd3+:KGd(WO4 )2 laser crystals. Laser Physics Letters, 11(5):055002,

2014. (Cité page 92.)

[104] M.V. Berry, M.R. Jeffrey, and M. Mansuripur. Orbital and spin an-

gular momentum in conical diffraction. Journal of Optics A: Pure and

Applied Optics, 7(11):685, 2005. (Cité page 101.)

[105] S. Joly, P. Segonds, B. Boulanger, Y. Petit, A.P. Revellez, C. Félix, and

B. Ménaert. Rotation of the absorption frame as a function of the

electronic transition in the Nd3+:YCa4O(BO3)3 monoclinic crystal.

Optics express, 18(18):19169–19174, 2010. (Cité page 114.)







Titre Investigation sur des sources lasers émettant à 2 µm utilisant des

cristaux monocliniques

Résumé Cette thèse est consacrée à l’étude du potentiel des cristaux bi-

axes dans le but de réaliser un laser de puissance. Les cristaux biaxes

possèdent deux axes optiques ce qui donnent lieu à un effet appelé "réfrac-

tion (ou diffraction) conique". Cet effet, connu depuis 1832, est intensé-

ment étudié depuis une décennie. Les progrès en croissance et découpe

cristalline permettent d’obtenir des échantillons de longueurs et de qual-

ités optiques suffisantes pour observer ce phénomène. L’utilisation de

cet effet en cavité laser ayant déjà été réalisée [79, 78], l’objectif de cette

thèse fut dans un premier temps de confirmer ces résultats. Ainsi, un

système utilisant des cristaux de KGd(WO4)2 (KGW) dopés au Néodyme

a été préalablement testé. Ces premiers résultats furent décevants. La

stabilité, la qualité de faisceau ainsi que l’efficacité étaient plus que mé-

diocres. L’efficacité maximale fut d’environ 40 % contre 74 % dans la

publication [77]. Par ailleurs, le faisceau de sortie présentait un profil el-

liptique indiquant la présence d’une lentille thermique avec un fort astig-

matisme. Ainsi, cette orientation, qui devrait être proche d’une direction

athermale (ne présentant pas d’astigmatisme d’origine thermique) selon

Biswal [10], ne l’est pas dans une cavité laser pour ce cristal. De plus

ce laser est très peu stable et difficile à aligner. Les fluctuations impor-

tantes de l’efficacité de celui-ci ont abouti à une interrogation quant à la

dépendance des propriétés optiques aux alentours de l’axe optique. Ainsi,

dans les premiers chapitres de cette thèse, figurent une étude détaillée

des principales propriétés optiques d’absorption et d’émission. Les ré-

sultats de cette étude montrent que ces propriétés varient non seulement

suivant la polarisation mais également suivant l’orientation aux alentours

de l’axe optique. Etant donné que l’état de polarisation autour de l’axe

optique varie avec l’orientation, les dépendances en orientation et po-

larisation sont liées. C’est pourquoi une étude simple de la réfraction

est fournie afin de comprendre cette dépendance complexe. Après ces

premières expérimentations laser, le cas de cristaux de KY(WO4)2 (KYW)

dopés Holmium pour une émission laser à 2 µm a été étudié. Le choix de

l’Holmium comme dopant est lié à son faible "défaut quantique" entre la

longueur d’onde de pompe (1960 nm) et la longueur d’émission (2074 nm).

Avoir un faible "défaut quantique" permet d’avoir une longueur d’onde

de pompe et d’émission proches et réduit ainsi la dispersion potentiel de

l’axe optique entre ces deux longueurs d’onde. Ainsi, lorsque la longueur



d’onde de pompe est alignée, la longueur d’onde d’émission laser l’est

également. Ceci justifie que l’ion Thulium a été négligé, bien qu’il puisse

avoir une bonne efficacité avec une longueur d’onde de pompe de 790 nm

grâce à l’effet de relaxation croisée présent dans cet ion. Grâce à un mon-

tage amélioré par rapport aux premières expériences effectuées avec les

cristaux KGW dopés au Néodyme, la dépendance de la polarisation ainsi

que de l’orientation a pu être mise en évidence. Différents rendements

ont pu être atteints en fonction de l’orientation du cristal. Une efficacité

atteignant jusqu’à 70 % pour une puissance de sortie d’environs 3 W a

pu être obtenue pour une orientation proche de l’axe optique. Le taux

de dopage des cristaux de KYW dopés à l’Holmium étant plus approprié

au fonctionnement à forte puissance, l’astigmatisme dû à la lentille ther-

mique n’a pas été observé. Par ailleurs, l’alignement de la cavité laser

avec l’axe optique a pu être réalisé. Ainsi, nous avons prouvé qu’un mode

laser « conique » est possible dans une cavité conçue pour des faisceaux

Gaussiens. Cependant, la dépendance entre les propriétés optiques et

l’orientation entraine de facto une efficacité moindre qu’un mode Gaussien

classique. Des efficacités honorables atteignant presque 50 % ont pu être

obtenues suivant cette orientation. Aucun problème de lentille thermique

n’a pu être observé avec une puissance de pompe maximale de 6 W. Le

taux de dopage faible ainsi que la longueur de plus de 1 cm des cristaux

permettent une bonne répartition thermique dans le cristal. Une puissance

de pompe supérieur (plusieurs dizaines de watts) est nécessaire pour at-

teindre les limites de fonctionnement de ces cristaux. Enfin, un mon-

tage innovant a été testé afin d’utiliser la réfraction conique. La puissance

de sortie ainsi que l’efficacité de ce montage étaient très faibles, environ

800 mW en sortie pour 4 W de puissance de pompe.

Mots-clés laser, tungstates, réfraction conique, KYW, KGW, Holmium

Title Investigation on 2 µm laser sources based on monoclinic host crys-

tals

Abstract This thesis is devoted to the study on the potential of biaxial

crystals in order to increase laser output power. Biaxial crystals have two

optic axes and an effect called conical refraction (or diffraction) can oc-

cur. This effect is known since 1832, and intensively studied since the last

decade. Thanks to the progress of crystal growth and crystal cutting, it

is possible to have long samples of good optical quality in order to ob-



serve the conical refraction. This effect has already been used in a laser

cavity [79, 78]. The aim of this thesis was to confirm the results previ-

ously obtained. Thus, Neodymium-doped KGd(WO4)2 (KGW) crystals,

cut along the optic axis, have been tested. These first results were disap-

pointing. Stability, beam quality and efficiency were very low. The maxi-

mum efficiency achieved was arount 40% compared to the 74% claimed in

publication [77]. Thus, this orientation which should be an athermal direc-

tion using the calculation of Biswal [10] shows astigmatism when there is a

temperature gradient. Furthermore, this laser being difficult to align with

strong intensity fluctuations, rise interrogations about the optical property

variations around the optic axis. Thus, in the first Chapters of this thesis a

study of those properties around the optic axis is given. It shows a strong

variation of the optical properties depending on the polarization and ori-

entation around the optic axis. The study of the refraction along the optic

axis helps to understand this complex dependency with the orientation.

In a second time, holmium-doped KY(WO4)2 (KYW) crystals have been

tested for laser emission at 2 µm. The choice of this ion has been done

on several criteria. The first one is that the ISL laboratory is used to work

with this wavelength and has a lot of equipment. The second one is that

Holmium ions have a small "quantum defect" (pump wavelength 1960 nm

and lasing wavelength 2074 nm). This low "quantum defect" limits the

dispersion between the pump and lasing wavelengths. This decreases the

separation between the optic axes of both wavelengths. Thus, when the

pump is aligned for conical refraction the lasing wavelength is also aligned

along the optic axis. Thanks to a better setup (with new mechanical parts)

the polarization and orientation dependencies of the laser efficiency have

been investigated. Up to 3 W of output power with a slope efficiency of

70% has been reached near the optic axis. The doping concentration of

the Holmium-doped KY(WO4)2 (KYW) being more appropriated for high

power laser, no thermal lens effect has been observed. Furthermore, the

first conical refraction laser with a quasi-three-level system has been real-

ized. An efficiency of 50% has been achieved with such a conical refraction

laser. Finally, a new innovative setup is proposed using the External Con-

ical Refraction. An output power of 800 mW for 4 W of incident pump

power has been reached.

Keywords laser, tungstates, conical refraction, conical diffraction, KYW,

KGW, Holmium
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