
HAL Id: tel-01250690
https://theses.hal.science/tel-01250690v1

Submitted on 5 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of Function Points in Software
Specifications Using Natural Language Processing

Munshi Asadullah

To cite this version:
Munshi Asadullah. Identification of Function Points in Software Specifications Using Natural Lan-
guage Processing. Computation and Language [cs.CL]. Université Paris Sud - Paris XI, 2015. English.
�NNT : 2015PA112228�. �tel-01250690�

https://theses.hal.science/tel-01250690v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS-SUD

ÉCOLE DOCTORALE 427 :
INFORMATIQUE PARIS SUD

Laboratoire : Laboratoire d'Informatique pour la Mécanique et les Sciences de

l'Ingénieur (LIMSI)

THÈSE DE DOCTORAT

INFORMATIQUE

par

Munshi ASADULLAH

Identification of Function Points in Software Specifications
Using Natural Language Processing

Date de soutenance : 28/09/2015

Composition du jury :

Directeur de thèse : Anne VILNAT Professeur (Université Paris Sud)
Co-directeur de thèse : Patrick PAROUBEK Ingénieur de recherche (Équipe ILES, LIMSI - CNRS)

Rapporteurs : Pascalle SÉBILLOT Professeur (INSA de Rennes)

Yannick TOUSSAINT Directeur de recherche (INRIA Nancy Grand-Est et LORIA)

Examinateurs : François MARMIER Maître de conférences (Ecole des Mines d'Albi-Carmaux)
 Sophie ROSSET Directeur de recherche (Équipe TLP, LIMSI - CNRS)

Abstract

Function Point Analysis is a complex task and identifying function points in a early stage
specification document is the most complex part of it. Although it has been in practice for
quite sometime, very little research exists regarding automating Function Point Identification
and to our knowledge, none exist regarding the use of Natural Language Processing (NLP)
for Function Point Analysis. In this day and age, when software development is considered
to be a primary human activity, the necessity of a fully automated Function Point analysis is
not disputed. We are presenting this work with the objective of establishing a platform for
automated Function Point Identification based on Natural Language Processing. In particular,
we have presented the details of the development of a corpus for research for Function Point
Identification in specification documents. We also presented experimental results obtained
using the corpus that can be useful to develop new methods to approach the problem in an
objective and reproducible manner. This research and its contributions are expected to lay the
foundation stone for the elaboration of research on fully automatic Function Point Analysis
from Natural Language specification documents.

Resumé de These

L’entrée dans l’ère de l’intelligence ambiante qui s’accompagne de la nécessité croissante de
disposer de logiciels complexes et de grande taille a eu pour conséquence le développement
du besoin d’estimer la taille des logiciels pour prédire au mieux le coût et l’effort nécessaires
à leur réalisation. Avec la compétitivité qui prévaut dans l’industrie du logiciel, le recours à
une estimation précise de la taille des logiciels dès les premières phases de développement
est devenu pratique courante. Traditionnellement, des mesures spécifiques basées sur le code
source étaient employées. Cependant, avec la prise de conscience par l’industrie du logiciel,
du besoin croissant de pouvoir estimer la taille des logiciels très tôt dans son développement,
cette activité est devenue une préoccupation de premier plan.

Une fois que le code d’un logiciel est écrit, l’estimation de sa taille et son coût fournissent
des informations utiles pour des études comparative ou bien le suivi de productivité. Plus
l’estimation peut être effectuée tôt dans le cycle de développement du logiciel, plus les
bénéfices que l’on peut en tirer sont importants. L’estimation du coût et de l’effort humain
nécessaires pour produire un logiciel produit deux informations essentielles à la gestion du
projet et qui peuvent même être calculées avant que la première ligne de code soit écrite. De
plus, si l’estimation de la taille du logiciel est effectuée périodiquement pendant le cycle
de développement, les gestionnaires du projet vont disposer d’informations précieuses pour
l’allocation des ressources et la prévention des risques.

Les recherches que nous présentons ici concernent l’estimation de la taille fonctionnelle d’un
logiciel, connue sous le nom d’ « analyse en points de fonction » (Function Point Analysis).
Dans ce type d’analyse, on cherche à déterminer la taille d’un logiciel exprimée en termes
des fonctionnalités qu’ils est supposé offrir d’après le point de vue de l’utilisateur.

Actuellement, le frein principal à l’emploi massif de l’analyse en points de fonction réside
dans la nécessité d’avoir recours à des experts humains (les « cotateurs ») qui vont analyser
les spécifications en suivant un ensemble de règles de comptage standards. Le comptage

vi

des points de fonction (« Function Point Counting ») est un processus qui nécessite une part
importante de main–d’œuvre experte ; il est donc nécessairement coûteux, car les cotateurs
doivent lire les spécifications dans leur intégralité avant de pouvoir produire une estimation.
À cela s’ajoute le fait que les règles de comptage sont ouvertes à l’interprétation et produisent
dans beaucoup de cas des décomptes de poinst de fonction dissemblables lorsque l’on répète
une évaluation avec différents cotateurs. C’est pourquoi disposer d’une automatisation,
même partielle, du processus de comptage pourrait révolutionner les pratiques.

L’automatisation du processus d’identification des points de fonction dans un document
de spécification aura pour conséquence une réduction du temps de lecture nécessaires aux
cotateurs pour effectuer leur analyse, accélérant le processus et réduisant ainsi d’autant son
coût. De plus l’automatisation permettra d’augmenter la répétabilité des mesures, permettant
ainsi d’augmenter la cohérence entre les différentes prise de mesures pour un même projet. À
notre connaissance, les travaux présentés dans cette thèse sont la première tentative faite pour
analyser automatiquement des spécifications dès la première phase du développement, en
utilisant une approche générale basée sur des méthodes éprouvées en traitement automatique
des langues naturelles (TALN).

État de l’art

Le champ d’exploration des recherches décrites ici se limite à l’identification des points de
fonction dans les documents de spécification en se basant uniquement sur leur contenu en
langue naturelle et en utilisant des méthodes issues du TALN. Le découpage et l’éventuelle
réécriture du problème nous ont amenés à étudier des méthodes issues de domaines voisins,
comme la Recherche d’Information (RI) et l’Extraction d’Information (EI).

Cependant, nous pensons que l’IE peut apporter une contribution significative pour l’identification
détaillée des points de fonctions, c’est à dire au niveau de la phrase, et à notre avis établir,
même simplement théoriquement, la relation sous-jacente avec ce domaine est important
pour les recherches futures. C’est pourquoi nous avons consacré un chapitre (le chapitre 2) à
l’IE, alors que le TALN ou l’IR on été abodés à différents endroits du document avec des
approches bien établies, dont leurs théories et mises en pratique sont expliquées en détails à
chacune de ces occasions.

Dans le chapitre 3 nous introduisons la notion de mesure, ses différentes déclinaisons ainsi
que ses fondements théoriques. Nous abordons ensuite l’histoire de l’estimation de la

vii

taille des logiciels avec bien sûr une attention particulière pour l’estimation de la taille
fonctionnelle et ses différentes méthodes d’application. Le concept de mesure peut-être vu
comme un moyen de quantifier ou de qualifier les propriétés d’un objet afin de permettre
la comparaison selon un ensemble de règles prédéfinies. Au quotidien, nous comparons
les prix des marchandises, ou la taille des vêtements etc. La science se donne le but de
trouver comment mesurer les propriétés d’un objet de manière à ce que les résultats produits
facilitent la compréhension de l’objet pour en dériver un modèle permettant de le contrôler
ou de prédire son comportement. Et si l’on dispose déjà d’un moyen de mesure établi pour
une propriété donnée, la science va s’intéresser à l’amélioration de la qualité, de la précision,
de la fiabilité, etc. de la mesure.

L’estimation de la taille d’un logiciel va permettre de quantifier sa taille en des termes qui vont
permettre une comparaison détaillée entre les logiciels. Dans le chapitre 3, nous classons les
méthodes d’estimation en deux grands groupes, d’une part les méthodes basées sur l’analyse
du code source et d’autre part les méthodes fonctionnelles. Nous présentons d’abord en
détails les méthodes d’estimation basées sur le code source, puis nous explorons les mesures
fonctionnelles qui sont au centre de nos investigations. L’analyse en points de fonction a
été proposée par Allan Albrecht comme alternative aux méthodes d’estimation basées sur le
code source, lorsqu’il travaillait pour IBM en 1979 (Albrecht, 1979). Sa méthode mesure la
taille d’un logiciel en quantifiant les fonctionalités significatives pour un utilisateur. Conçue
initialement pour mesurer la productivité de l’équipe de développement, la méthode fût par
la suite employée pour estimer la taille des logiciels.

Un des aspects les plus productifs de la méthode est la possibilité de l’appliquer à une très
large palette d’environnements de développement et à n’importe quel stade du cycle de vie
d’un logiciel, depuis l’élaboration des spécifications préliminaires jusqu’au déploiement sur
le terrain. Cependant, l’identification des points de fonction à partir de seuls documents
de spécification s’effectue manuellement, ce qui nous le rappelons est un processus long et
fastidieux, particulièrement pour les projets de grande taille. De plus, les organisation doivent
soit disposer de cotateurs parmi leurs membres, soit avoir recours à des cotateurs extérieurs
dont les services sont onéreux. L’analyse en points de fonction repose sur la construction
d’une représentation subjective du système d’information décrit dans les documents de
spécification, à ce titre elle ne captera que les composents essentiels du système. L’analyse
commence par l’identification des frontières conceptuelles logiques du système, c’est à dire
les limites de l’application qui est l’objet de l’estimation. Une fois la frontière du système
identifiée, les cotateurs vont détailler les fonctionalités décrites dans les spécifications, selon

viii

les cinq types d’entités définies pour l’analyse en points de fonction. Le modèle général
utilisé par l’analyse en points de fonction dispose de deux types de « fichiers » (les points
de fonction correspondent aux blocs logiques de données) et trois types de « transactions
» (les points de fonction correspondent aux mouvements de données). L’automatisation de
l’analyse en points de fonction sur des spécifications en langue naturelle pose des problèmes
particuliers car jusqu’à présent le développement des méthodes d’analyse a surtout eu
pour objectif de restreindre la part de subjectivité inhérente aux cotateurs humains, plutôt
que d’exploiter les informations objectives présentes dans les descriptions de systèmes
d’information. Néanmoins, les recherches sur l’automation de l’analyse en points de fonction
(qu’elle soit partielle ou complète) est relativement ancienne. Les premiers travaux se sont
surtout intéressés à identifier les possibilités d’automation du processus ou bien à définir les
différents niveaux d’automation. Le chapitre 3 présente un revue détaillée de la littérature
sur ce sujet. Par le passé, des tentatives ont été faites pour automatiser l’analyse en points
de fonction à partir du code source ou bien à partir d’environnements de développement
spécifiques (CASE), voire à partir de document de spécification, mais nous n’avons pas
trouvé d’approche basée uniquement sur l’analyse du langage naturel.

Nos Travaux

Les deux contributions principales de nos recherches sont d’une part, le développement
d’un chaîne de traitement automatique du langage naturel pour normaliser les documents de
spécification selon des critères pertinents pour l’analyse en points de fonction et, d’autre part,
la définition d’une méthode d’analyse pour les plus hauts niveaux conceptuels de l’analyse en
point de fonction, c’est à dire l’identification des éléments textuels de plus grande granularité,
comme les page, les paragraphes etc. susceptibles de contenir des points de fonction.

Si l’on prend en considération le fait que le processus d’analyse en points de fonction est
entièrement manuel, simplement identifier automatiquement les pages susceptibles de receler
des points de fonction va déjà constituer un amélioration importante du processus d’analyse,
car non seulement les cotateurs vont gagner du temps lors de la lecture en se focalisant sur
les pages pré–identifiées, mais lorsqu’il y a plusieurs cotateurs, ils vont se focaliser sur les
mêmes pages, ce qui va contribuer à la cohérence des mesures lorsqu’elles sont répétées, en
diminuant la variabilité sur les donnée d’entrée du processus.

ix

Le corpus du projet, PEC ProjEstimate Corpus) par la suite, a été créé au moyen de la chaîne
de traitement linguistique, qui comprend successivement des fonctions : d’extraction de texte,
de normalisation, d’analyse syntaxique et d’agrégation des informations produites.

Le projet ProjEstimate

Cette thèse a été rédigée dans le cadre des recherches effectuées par le projet ProjEstimate
pour automatiser le processus d’estimation de la taille d’un logiciel. Les travaux de recherche
sont financés par ProjEstimate 1 (FUI 13 et labellisation du pôle de compétitivité SYSTEM-
ATIC). C’est un projet collaboratif comprenant des industriels et des académiques dont les
objectifs détaillés sont les suivants:

• contrôler le processus d’estimation tout au long du cycle de vie d’un projet.

• fournir les moyens d’appliquer de multiples méthodes d’estimation, y compris les méth-
odes propres à une organisation.

• réduire de manière significative le coût d’estimation en particulier pour la mesure en points
de fonction.

• offrir un infrastructure.

• proposer des fonctionalités d’archivage des différentes estimations associées à un projet.

• pouvoir exporter les résultats d’une estimation vers des outils de génération automatique
de rapport.

• disposer d’outils de suivi des utilisateur d’une archive de projet afin de mesurer la capacité
d’une organisation à mettres à jour les paramètres d’estimation pour améliorer l’efficacité
et la qualité des estimations.

En sus de ces objectifs principaux, le projet ProjEstimate vise à :

• développer une infrastructure de support pour une communauté construite autour de la
problématique de l’estimation logicielle et ayant pour but le partage de connaissances et
des retours d’expérience ainsi que le développement des collaborations.

• mettre en commun des données anonymes pour servir de référentiel et étalonner les mesures.

• améliorer en continu les logiciels en testant des idées nouvelles visant à simplifier le pro-
cessus d’estimation, améliorer l’exactitude des estimations et réduire les coûts d’estimation.

Les données qui ont servi à la construction du PEC ont été fournies par deux partenaires
industriels du projet, la Banque de France (BdF) et la société PSA Peugeot Citroën Group
(PSA). Les données brut sont des documents de spécifications complètes ou partielles,
de différent types, par exemple des compilation de besoins utilisateurs, des spécifications

x

fonctionnelles, des descriptions de traitement hors-ligne (batch), des schéma directeurs de
bases de données, des spécifications basées sur le langage UML (Unified Modeling Language)
etc. Les formats électroniques sous lesquels se présentent ces données regroupent les formats:
Microsoft Word (à la fois l’ancien « .doc » et le nouveau « .docx »), Rich Text Format (.rtf),
Microsoft Excel (.xls) et Microsoft PowerPoint (.ppt).

La chaîne de traitement linguistique

Elle est constituée de quatre modules principaux respectivement dédiés à ; l’extraction des
contenu indépendamment de la langue (Apache PDFBox), la normalisation du texte, l’analyse
syntaxique statistique en dépendances (BONSAI) et l’alignement et la fusion des annotation.
Lors de cette dernière étape, les annotations linguistiques produites par l’analyseur syntaxique
(les classes morpho-syntaxiques des mots et les paires de dépendances lexicalement ancrées)
sont projetées sur les contenus d’origine. Les fonctionnalités de normalisation des contenus et
d’alignement des annotations ont été développés spécialement pour ces travaux de recherche.
Dans le chapitre 4, nous présenton en détails notre boîte à outils linguistiques (sa conception,
les différents processus, les flux d’information et de contrôle etc.) ainsi que les résultat de
notre à analyse du PEC. Nous pensons que cette boîte à outils que nous avons conçue pour
les besoin du projet ProJestimate constitue une contribution très utile comme base pour de
future travaux de recheche sur l’analyse en points de fonction.

L’extraction de texte à partir de contenus électroniques (par exemple extraction du texte des
pages web) est un domaine de recherche très actif, mais ici notre objectif était l’extraction
d’un quantité de texte et d’information de format suffisante pour nos besoins d’analyse,
sans nécessairement chercher tous les raffinement technologiques qui nous auraient sans
doute permis d’extraire plus de texte ou du texte de meilleur qualité. Cela cependant au
prix d’efforts supplémentaires sans pour autant que le gain ainsi obtenu soit nécessairement
significatif, c’est pouquoi par exemple nous avons ignoré les graphiques et les tables contenus
dans les spécifications. PDF est un format de document électroniques très répandu d’emploi,
sans doute parcqu’il préserve l’apparence originale du document, en effet il conserve dans sa
représentation des objets textuels de très bas niveau comme les groupes de caractères, les
lignes, les courbes, les images ainsi que les attributs de style de ces différents types d’objets
comme la fonte, la couleur, le trait, la forme, la texture etc. Le texte produit par l’extraction
avec Apache PDFBox est très bruité puisque tous les éléments textuels sont extraits. Un
pré-traitement et une étape de normalisation sont donc nécessaires avant de pouvoir utiliser

xi

le texte extrait. La bibliothèque Apache PDFBox est une boîte à outils codée en Java pour
traiter des documents encodés en PDF. Elle est distribuée gratuitement et librement sous la
licence Apache License v2.0. Le texte final au format XML est obtenu après une ultime
étape de vérification et de formatage avec le parser XML « xmllint ».

Comme nous l’avons déjà remarqué précédemment, toutes les informations de format du texte
extraites par PDBBox sont des attributs de forme du texte alors que nous avons plutôt besoin
des attributs de structure logique (paragraphes) ou bien linguistiques (mots, phrases). Nous
présentons maintenant les éléments principaux de la chaîne de traitement qui va analyser
le contenu extraits. Le texte et ses annotations est d’abord transformé en une structure à
base de liste au moyen d’un parser SAX disponible en Python (le module xml.sax). Vient
ensuite une phase d’élimination des éléments redondants, en particulier les entêtes et les
pieds de page. Comme critère de redondance entre deux extraits de texte, nous avons utilise
un coefficient de Dice (Sørensen, 1948) seuillé. Si on le considère comme une mesure de
similiratié textuelle, pour deux chaînes de caractères x et y, le coefficent peut être défini selon
la formule ci-après lorsqu’on l’applique aux bigrammes de caractères,

s =
2nt

nx +ny

La structure à base de liste est ensuite explorée par un module dont la fonction est d’identifier
les élément des structures énumératives présentes dans le contenu, puis d’un autre module
en charge chargé d’identifier les marques typographiques associées aux éléments de listes
(puces, numéros d’item etc.) puisque ceux-ci ne contiennent aucune information utile pour
l’identification des points de fonction.

La normalisation du contenu se fait aussi en deux étapes. Lors de la première va produire la
segmentation en « tokens » et supprimer les marques typographiques identifiant les éléments
de liste. Les tokens sont définis par les deux règles suivantes :

1. Toute séquence de caractères alphanumériques constitue un token individuel.

2. Tous les autres caractères visibles constituent un token par eux-mêmes.

La seconde étape concerne la détection des blocs de texte « improbables », c’est à dire
l’identification des blocs de textes qui ont une probabilité très faible, voire nulle de contenir
des points de fonction. Ils sont identifiés par le biais de leur distribution des classes de
caractères et de quelques motifs filtrants simples.

La construction de la couche initiale d’annotations linguistiques est effectué par le module
suivant de la chaîne de traitement qui va assigner à chaque token ses attributs linguistiques.

xii

Ce sont le lemme, les parties du discours détaillée (avec leurs sous-catégories et attributs
morphologiques, comme le genre et le nombre pour les noms, ou le temps, le mode et la
personne pour les verbes). Nous utilisons aussi un analyseur syntaxique en dépendances
(Dependency Grammar) pour déterminer les relations bi-lexicales entre tokens et les frontières
de phrases. Le contenu original du texte et la segmentation en token n’étant pas toujours
préservés par les outils d’analyse linguistique, loin s’en faut, nous avons implémenté un
module de réalignement pour projeter les annotations linguistique sur la segmentation en
tokens initiale.

Les données expérimentales

Toutes les expériences décrites dans cette thèse ont été effectuées sur un corpus de spécifica-
tions logicielles (18 projets au total) qui ont été fournies par les partenaires industriels du
projet ProjEstimate, c’est-à-dire la société PSA et la Banque de France. Dans le cadre du
projet, un document de spécification a été annoté en points de fonction par quatre annotateurs
membres du projet pour servir de référence.

Les 18 projets du corpus de spécifications ont été analysés par la chaîne de traitement décrite
précédemment. Lorsque l’on compare le nombre de phrases et le nombre de tokens, on
constate un déséquilibre important entre les données expérimentale d’un part avec un total
de 41.937 énoncés et les données de référence avec seulement 901 phrases. Cependant le
nombre de lemmes uniques est l’aspect qui nous intéresse le plus. En effet, notre hypothèse
pose que les lemmes et les relations syntaxiques les reliant constituent les traits principaux
qui vont nous permettre d’identifier les points de fonction. De plus, en comparant la liste des
lemmes du corpus expérimental avec celle du corpus de référence, on remarque que sur les
1.438 lemmes de ce dernier, il y en a 1.057 qui sont partagés avec le corpus expérimental.

Les annotations de référence ont nécessité l’établissement d’un ensemble de consignes
d’annotation établies au début du projet ProjEstimate en collaboration avec les cotateurs du
projet. Les annotations identifies des séquences de mots de quatre types:

1. les « Groupes Fonctionnels » (Functional Groups), qui regroupent plusieurs éléments fonc-
tionnels afin de faciliter le comptage,

2. les « Applications Externes » (External Applications),

3. les « Fonction Transactions » (Transaction Functions)

4. et les « Fonction Données » (Data Functions).

xiii

La consigne était que le cotateur devait marquer la plus longue séquence possible de mots
indiquant un occurrence d’un point de fonction (seulement un occurrence est annotée lorsque
le même point de fonction apparaît dans plusieurs endroits du document, en général la
première). Par rapport au début du projet, la procédure d’annotation a été améliorée récem-
ment par l’adpption du logiciel libre WebAnnotator (Tannier, 2012) en remplacement de la
fonctionalité de surlignage (balises HTML) d’un simple éditeur de pages WEB.

Parmi les annotateurs du corpus de référence, un est originaire d’ACAPI (cabinet d’experts
en points de fonction partenaire du projet) , deux de la Banque de France et un de PSA. Avec
les précautions d’usage concernant des statistiques établies sur très peu de données, si l’on
constate des similarités de pratique de codage parmi les cotateurs d’une même organisation,
on ne peut néanmoins n’être que frappé par la grande divergence dqns la sélections des
séquences de mots par les différents cotateurs pour un même point de fonction (parfois même
lorsqu’ils sont de la même organisation). Nous avons utilisé comme mesure de l’accord
inter-annotaeur, le coefficient Kappa () de Cohen (Cohen, 1960). Le Kappa est une mesure
statistique souvent utilisée pour mesurer l’accord entre annotateurs, chacun classant N items
parmi C catégories mutuellements exclusives. Dans notre cas le modèle est légèrement
différent, puis qu’une entité peut recevoir plusieurs étiquettes de classes, c’est pourquoi nous
avons effectué traduction du problème se ramenant à un cas de classification binaire (annoté /
non-annoté) pour le calcul du Kappa. Bien que les cotateurs aient annotés les mêmes pages,
et étaient d’accord pour au moins un type d’annotation, ils n’étaient pas d’accord entre eux
pour tous les types d’annotation.

Sélection des traits d’apprentissage

Pour le premier groupe d’expériences, nous n’avons utilisé que des traits purement lexicaux,
c’est à dire avec pas ou peu d’information linguistique. Parmi les traits lexicaux couramment
utilisés en Traitement Automatique des Langues, nous trouvons les tokens, les lemmes
ou encore les n-grammes de mots ou de lemmes en conjonction avec des caractéristiques
textuelles plus générales comme la longue moyenne d’un token ou d’un lemme ou encore
leurs nombres d’occurences, ou leurs fréquences relatives. Ensuite, ont été ajoutées les
étiquettes morpho-syntaxiques (Parties du Discours, ou Part of Speech enanglais) à différents
niveaux de granularité d’information, catégorie morpho-syntaxique, sous-catégorie et traits
spécifiques et l’appartenance à une ressource linguistique particulière, par exemple les
listes de verbes identifiés par les cotateurs du projet comme potentiellement indicateurs

xiv

de points de fonction ou bien des lexiques du domaine public. Et pour finir, nous avons
exploré l’apport des dépendances syntaxiques sous la forme de traits construits sur les
dépendances syntaxiques, à savoir les traits bi-lexicaux constitués par les d-grammes (Pak
et Paroubek 2011), c’est à dire des tuples faits de deux mots reliés par une dépendance
syntaxique, potentielement sous-spécifiés pour l’un de ses constituants (mot ou type de
dépendance). Les d-grammes s’apparentent aux skip–grams (Guthrie et al., 2006) mais
portent plus d’information linguistique. Nous avons aussi expérimenté les «sous–arbres
syntaxiques », une extension des d-grammes construite à partir des sous-arbes extraits de
l’arbre de dépendances syntaxiques, mais pouvant couvrir plusieurs niveaux de profondeurs
de l’arbre et donc plus de deux mots.

Pour étudier les corrélations qui existent entre les distributions de ces traits et les occurrences
des points de fonction dans les pages, nous avons générés tous les d-grammes et sous-arbres
syntaxiques possibles en utilisant soit l’un soit les deux attributs : lemme et Partie du Discours.
Il faut noter que même lorsque nous n’utilisons que des sous-arbres de profondeur minimale
et en ne tenant pas compte du type des dépendances, les motifs ainsi construits présentent
des avantages certains par rapports aux modèles bigrammes puisqu’eux peuvent capturer des
dépendances longue distance.

Les traits lexicaux

Les expériences sur les traits lexicaux ont été conçues pour tester l’apport des ressources
lexicales, pour la localisation des points de fonction, par exemple les listes de verbes fournies
par les cotateurs. Nous avons choisi deux ensembles de traits qui ont été utilisés dans
toutes les expériences à savoir le lemme et la catégorie principale de la partie du discours
des mots. Au cours de ces expériences, nous avons aussi étudié l’apport d’informations
complémentaires comme la distribution des fréquences d’occurence des éléments (forme,
lemme, etc.) des listes d’experts à la fois dans les listes fournies par les différents experts
mais aussi dans le corpus, ainsi que le nombre de listes dans lesquelles un élément appraissait.
La fréquence d’occurence de chaque lexeme de liste d’expert a été utilisée pour produire par
combinaison linéaire pondérée une valeur associée à chaque page, quantifiant la probabilité
d’occurence d’un point de fonction dans celle-ci. Dans sa forme la plus simle, la valeur
calculée pour chaque page est un indicateur booléen, dont la valeur est vrai si l’un des termes
au moins d’une liste d’expert est présent dans la page. L’utilisation d’un combinaison linéaire
pondérée a permis d’affiner le classement obtenu en utilisant les fréquence d’occurence des

xv

termes et de définir un seuil minimal pour valider la présence de points de fonction dans
la page. Cependant avec cette seconde expérience, les performances se sont dégradée par
rapport à la classification booléenne, ce qui peut être expliqué par le fait que la plupart des
pages contiennent peu d’occurences et certaines pages ne contiennent que des Fonctions
Données plutôt que des fonctions transaction. Pour la reconnaissance de motifs à base
de combinaison linéaire, la fréquence d’occurence de chaque lexeme dans les différentes
listes d’experts a été utilisée comme poids pour le lexeme et la valeur finale a été filtrée par
seuillage a priori. Dans un autre groupe d’expériences nous avons utilisé comme poids les
fréquences d’occurence des lexemes dans les données de référence. Dans ce cas, les poids
sont le rapport entre la fréquence d’un élément et la fréquence maximale pour les termes de
la liste, puis comme précédemment les valeurs obtenues par combinaison linéaires ont été
seuillées a priori.

Reconnaissance de motifs basée sur les sous-arbres de dépendance ap-
pliquée aux recettes de cuisine

Pour pallier à la petite taille de nos corpus dans le domaine des spécification logicielles
dues au contraintes de confidentialité inhérente aux projets industriels, nous avons décidé
d’expérimenter notre approche utilisant la reconnaissance de motifs basée sur des sous-
arbres de dépendance à des donnée comparable, pour lesquelles des corpus existent. Nous
avons ainsi choisi d’utiliser un corpus de recette de cuisines qui a été utilisé pour une tâche
d’évaluation ouverte de détection d’ingrédients. En effet une recette de cuisine est d’une
certaine manière la spécification des opérations à effectuer pour passer des ingrédients intiaux
au plat final. Elle décrit donc un ensemble de transformation des produits initiaux selon
un nombre d’étapes précis exactement comme un document de spécification va préciser les
différents fonctions de transformation d’information dont l’utilisateur souhaite disposer.

Notre expérience avec les motifs à base de sous-arbres de dépendance décrite précédemment
appliquée aux recettes de cuisine s’est révélée être très positive. La méthode que nous
proposons utilise des dépendances bi-lexicales orientées extraites du texte des recettes
pour en extraire des patrons morpho-syntaxiques. Cest motifs sont ensuite utilisés comme
traits dans différentes approches d’apprentissage automatique pour produire la liste finale
d’ingédients. Il faut noter que cette approche peut facilement être adaptée à d’autres tâches
comparables puisqu’elle consiste à extraire automatiquement des documents des patrons
morpho–syntaxiques généraux. À l’exception de l’emploi d’un analyseur syntaxique pour la

xvi

langue du document, la méthode est entièrement indépendante du langage. La performance
de notre méthode appliquée sur le corpus DEFT2013 (Grouin et al., 2013) a montré de très
bon résultats, puisque nous avons dépassé les meilleures performances observées lors de la
campagne d’évaluation Nous avons obtenu 0.75 avec la mesure « Mean Average Précision
», alors que la meilleure performance observée lors de la campagne a été de 0.66. Dans
toutes les expériences que nous avons réalisées avec des traits associé au document entier
ont montré de meilleures performances que les meilleures performances observées lors de la
campagne DEFT2013.

Apprentissage non–supervisé

L’Apprentissage non supervisé, en particulier pour ce qui concerne le regroupement auto-
corellé est une approche d’emploi courant, surtout pour les problèmes de classification
supervisées avec des jeux de données d’apprentissage de petite taille mais pour lesquels on
dispose de grandes quantités de données non-annotées. L’objectif dans ce cas est d’identifier
la structure cachée présente dans les données qui affiche une forte corrélation avec la solution
cherchée, sans utiliser aucune connaissance a priori sur la solution ni aucune fonction de
valuation ou mécanisme de récompense/punition pour l’apprentissage. Le problème de
l’apprentissage non supervisé est très proche du problème de l’estimation de densité de
probabilité en statistiques (Jordan and Bishop, 2014), dans lequel on essaie de construire à
partir des données observées, une estimation de la fonction de densité de probabilité pour les
données cachées. Pour nos expériences, nous avons utilisé abondamment la méthode des
centroïdes (« K-Means »).

Tout d’abord, nous avons effectué une analyse en composantes principales (ACP) à la
fois sur les donnés brut et les données de référence, en considérent chaque page d’une
spécification comme un document autonome. Nous avons utilisé à la fois des traits lexicaux
et syntaxiques pour cette analyse. Parmi ces traits associés aux formes de surface, nous
trouvons les d–grammes et les dgrammes sous spécifiés qui ont donnés les meilleurs résultats
pour faire apparaître les structures cachées. Les motifs d’aggrégation obtenus avec les
lemmes et la catégorie principale des parties du discours sont semblables à ceux obtenus
avec l’analyse syntaxique qui a cependant fourni les meilleurs résultats. Avec la meilleur
compréhension du problème que nous ont permis d ´établir ces expériences, nous avons
effectué une réduction des traits d’apprentissage. Nous avons trouvé que l’utilisation des
composantes de niveaux supérieurs, voire de tous les niveaux, donne de mauvais résultats, à
la fois sur les données de test et les données de référence pour tous les ensembles de traits.

xvii

Nous avons donc reparamétré nos expériences et réduit le nombre de traits aux composents
principaux identifiés par l’ACP à un très petit nombre de dimensions, de une à quatre, et dans
le même temps augmenté la taille possible pour un groupement de 7 à 11. Les données de
référence nous ont permis d’etiqueter a posteriori les groupes produits par auto-corrélation,
selon les deux classes positive/négative pour la présence de points de fonction. Avec notre
environnement d’évaluation, nous avons trouvé que les formes de surface, avec les sous-arbes
de dépendance syntaxique et uniquement la première composante identifiée par l’ACP avec
un nombre intial de 11 groupements permet d’obtenir les meilleurs résultats. Cependant, ces
résultats sont à considérer avec précaution, eu égard à la taille limité des corpus que nous
avons utilisé ; ils nous ont néanmoins permis de poser une première hypothèse et d’acquérir
une meilleure compréhension du problème de la localisation des points de fonction au niveau
des pages des documents de spécification.

Conclusion

Ces recherches nous ont permis d’établir les premiers résultats pour l’identification des
points de fonctions à partir des document de spécification en langue naturelle en utilisant
une approche uniquement basée sur l’analyse du language naturel. Dans cette première
étude, nous avons focalisé notre attention sur l’identification des pages des documents de
spécification ayant une plus forte probabilité de contenir des points de fonction, eu égard
à la très petite quantité de données disponibles. Ces résultats ouvrent sur un ensemble de
nouvelles questions vers l’automatisation complète de l’identification des points de fonction,
un problème qui est loin d’être résolu. Nous pensons que nos travaux de recherche fournissent
une base utile pour d’autre avancées dans le domaine, en particulier pour ce qui concerne
l’apport de l’analyse syntaxique en dépendance et pour la chaîne de traitement des documents
de spécification, facilement réutilisable et extensible dans d’autres contextes, et à peu de frais
pour d’autres langues.

Table of contents

List of figures xxv

List of tables xxvii

1 Introduction 1

1.1 The Automation Problem . 3

1.2 Research Goals . 6

1.3 Concepts . 7

1.3.1 Specification . 8

1.3.2 Objects, Events and Processes . 8

1.4 ProjEstimate Project . 9

1.5 Organization . 12

2 Classification & Information Extraction 15

2.1 Information Retrieval & Text Classification 16

2.1.1 Pre–Computerized IR . 17

2.1.2 Early Computer Based IR . 18

2.1.3 The Major Developments upto mid-1990 19

2.1.4 State–of–The–Art of IR . 25

2.1.5 Text Classification . 26

xx Table of contents

2.2 What is IE? . 31

2.3 History . 34

2.3.1 Early Works . 35

2.3.2 History of the Evaluation - MUC 39

2.3.3 Other Evaluation Campaigns . 40

2.4 IE Tasks . 42

2.4.1 Named Entity Recognition (NER) 42

2.4.2 Coreference Resolution (CO) . 45

2.4.3 Relation Extraction (RE) . 48

2.4.4 Event Extraction (EE) . 50

3 Estimating Software Size 53

3.1 Measurement . 53

3.1.1 What Is Measurement? . 54

3.1.2 The Science of Measurement . 55

3.1.3 Measurement Scales . 58

3.1.4 Meaningful Measurements . 60

3.1.5 Indirect and Extended Number Measurement 62

3.2 Software Size Estimation . 64

3.2.1 Source Line of Code . 65

3.2.2 The Theory of Software Science 68

3.2.3 ABC Metric . 69

3.3 Functional Size Estimation . 70

3.3.1 Albrecht’s Productivity Measurement 72

3.3.2 IFPUG Function Point Analysis 74

3.4 Automatic Function Point Analysis . 79

Table of contents xxi

3.4.1 IFPUG Software Tool Certification 80

3.4.2 Automation of Functional Measurement 81

3.4.3 FP from Source Code . 82

3.4.4 FP from Other Environments . 83

4 Text Extraction and Analysis 87

4.1 The Source Data . 88

4.1.1 Data Provided by BdF . 89

4.1.2 Data Provided by PSA . 89

4.1.3 Annotated Data . 90

4.2 Corpus Development from Source PDF 93

4.2.1 The PDF Format . 94

4.2.2 Extraction Tools . 95

4.2.3 Text Extraction . 96

4.3 Preprocessing . 97

4.3.1 XML Parsing . 98

4.3.2 Redundancy Removal . 99

4.3.3 List Trigger Removal . 100

4.3.4 Block Merging . 101

4.3.5 Data Normalization . 103

4.3.6 Output Data Generation . 103

4.4 Linguistic Annotation . 103

4.4.1 Dependency Parsing . 104

4.4.2 FTB and The Parsing Tool BONSAI 107

4.4.3 The Data Format . 110

4.4.4 Parsing . 112

xxii Table of contents

4.5 Alignment and The Corpus . 112

4.5.1 Alignment . 112

4.5.2 The ProjEstimate Corpus (PEC) 113

5 Finding Function Points 119

5.1 Evaluation . 120

5.1.1 Recall, Precision and F-Score . 120

5.1.2 Evaluation System . 123

5.2 Features & Resources . 124

5.2.1 Lexical and Morphological Features 125

5.2.2 Syntactic Features . 125

5.2.3 Lexical Resources . 130

5.3 Data Point Generation & Analysis . 131

5.3.1 Vectorization . 133

5.3.2 Principal Component Analysis (PCA) 133

5.3.3 Visual Data Point Analysis . 134

5.4 Experiments . 137

5.4.1 Heuristic Methods . 137

5.4.2 Ingredient Extraction from Cooking Recipes 142

5.4.3 Semi–Supervised Machine Learning 147

6 Final Thoughts & Future Prospects 155

References 159

Appendix A Miscellaneous 183

A.1 Annotation Guideline . 183

A.2 ProjEstimate Corpus DTD . 184

Table of contents xxiii

A.3 Lloyd’s Algorithm . 185

A.4 Complete Feature Types for ML . 186

A.4.1 Feature List . 186

Appendix B Measurement Scales 189

B.1 Nominal Scale . 189

B.2 Ordinal Scale . 190

B.3 Interval Scale . 190

B.4 Ratio Scale . 191

B.5 Absolute Scale . 192

B.6 Statistical Meaningfulness . 192

Appendix C The Theory of Software Science 195

C.1 Proposed Metric . 195

C.1.1 Program Length (N) and Vocabulary Size (n) 195

C.1.2 Volume (V), Program Level (L) and Difficulty (D) 195

C.1.3 Effort to Implement (E) . 196

C.1.4 Length Equation . 196

C.1.5 Potential Volume . 197

C.1.6 Program Level and Difficulty Estimator 197

C.1.7 Programming Time . 197

C.1.8 The Language Level . 198

C.2 Criticism . 199

Appendix D Value Adjustment Factor 203

Appendix E Variations in Methods and Counting Practice 207

E.0.1 MARK II (MkII) Function Point 207

xxiv Table of contents

E.0.2 COSMIC Function Points . 210

E.0.3 The NESMA Function Points . 212

E.0.4 Other Variations . 213

Appendix F Results: Semi–Supervised Learning 215

F.1 Surface Form (surface) . 215

F.2 Lemma (lemma) . 218

F.3 General POS (gpos) . 220

F.4 Specific POS (spos) . 222

F.5 Lemma & General POS Together (lemma_gpos) 224

Appendix G The History of MUCs 227

G.1 MUC–1 . 227

G.2 MUC–2 . 227

G.3 MUC–3 . 228

G.4 MUC–4 . 228

G.5 MUC–5 . 229

G.6 MUC–6 . 230

G.7 MUC–7 . 232

List of figures

1.1 ProjEstimate Overview . 10

3.1 Quality Relation . 63

3.2 Functional Perspective . 71

3.3 FP: Complexity Parameters . 76

4.1 Contribution Outline . 87

4.2 Corpus Generation Outline . 94

4.3 Preprocessing Work–Flow . 98

4.4 List Detection Pattern . 101

4.5 Constituent Example . 104

4.6 Dependency Example . 105

5.1 Evaluation Venn Diagram . 123

5.2 Dependency Parser Output: As An Example for D–Gram Generation 126

5.3 Dependency Parser Output: As An Example for Dependency Sub–Tree

Generation . 128

5.4 List Appearance Frequency of Expert Listed Verbs 131

5.5 2D Scatter for surface form : uni�gram | bi�gram 135

5.6 2D Scatter for lemma : uni�gram | bi�gram 135

5.7 2D Scatter for surface form : d�gram | d�gram∗ 136

xxvi List of figures

5.8 2D Scatter for lemma : d�gram | d�gram∗ 136

5.9 2D Scatter for surface form | lemma : dependency sub�tree 136

5.10 Generic Verb–Noun Interaction Pattern . 142

5.11 General Description of the IR task (Task 4) form DEFT 2013 144

E.1 COSMIC Counting Process . 210

E.2 COSMIC Measurement Process . 211

List of tables

1.1 Work Packages for The ProjEstimate Project 11

2.1 MUC–3 Template Example . 36

2.2 Task Definition Development in The Course of The MUCs 40

2.3 Inflicted forms of “Vygintas” in Lithuanian 43

2.4 Best F-Scores from CoNLL evaluation 2002 and 2003 45

2.5 Possible Mentions of Université Paris-Sud in Text 45

2.6 Switch in Research Direction from Pairwise Resolution 47

2.7 ACE Evaluation 2004 Relation Task Summary 49

2.8 ACE Evaluation 2005 Event Extraction Task Summary 51

3.1 Scales of Measurement Summary . 60

3.2 Transportation Quality Assessment . 62

3.3 SLOC Counts of Large Files From Open Source Products 67

3.4 Dataset (Albrecht, 1979) . 72

3.5 Primary Adjustment Multipliers (Albrecht, 1979) 74

3.6 Individual File Complexity . 77

3.7 File Weight Multiplier . 77

3.8 Individual EI Complexity . 78

3.9 Individual EO & EQ Complexity . 78

xxviii List of tables

3.10 Transaction Function Weight Multiplier 78

3.11 IFPUG Software Certification Status . 81

4.1 BdF Provided Data Description . 89

4.2 PSA Provided Data Description . 90

4.3 Primary Annotation Statistics: 000.ref . 91

4.4 Inter–Annotator Agreement: 000.ref . 91

4.5 Extracted File Summary . 97

4.6 The String Merging Features . 102

4.7 Definition of CoNLL Format Token Fields 111

4.8 General Statistics of PEC and The Reference Files (000.ref) 114

4.9 Common Lemma Statistics for PEC and 000.ref 115

4.10 The Distribution of Relations in PEC and the Reference (000.ref) 116

5.1 Frequency Map for Precision, Recall and F-Measure Calculation 121

5.2 Evaluation Output Format . 124

5.3 General Statistics of the Expert Lists . 130

5.4 General Representation of The Document Matrix 132

5.5 String Matching (list = �PSA�, threshold = 0.05) 138

5.6 Linear Combination (threshold = 0.6) 139

5.7 Linear Combination (Learned Weight) . 141

5.8 DEFT Corpus . 143

5.9 DEFT Challenge Result (MAP Score) . 145

5.10 Experimental Results: Ingredient Extraction from Recipes 146

5.11 Cluster Set Distribution for Evaluation . 150

5.12 Semi–Supervised Training Performance: Best 151

5.13 Experimental Parameters: Best Performance 152

List of tables xxix

5.14 Semi–Supervised Training Performance: surface_dep_subtree 152

A.1 Annotation Elements . 183

B.1 Math Problem Complexity Scale Maps . 193

B.2 Mean and Median Summary for The Datasets 193

B.3 Summary of Statistical Analysis and Their Meaningfulness to Scale Type . 194

D.1 DI Level Definition . 204

F.1 Semi–Supervised Training Performance: surfaceunigram 215

F.2 Semi–Supervised Training Performance: surface_bigram 215

F.3 Semi–Supervised Training Performance: surface_trigram 216

F.4 Semi–Supervised Training Performance: surface_quardgram 216

F.5 Semi–Supervised Training Performance: surface_dgram 216

F.6 Semi–Supervised Training Performance: surface_dgram_wild 216

F.7 Semi–Supervised Training Performance: surface_extended_dgram . . . 216

F.8 Semi–Supervised Training Performance: surface_dep_subtree 217

F.9 Semi–Supervised Training Performance: lemma_unigram 218

F.10 Semi–Supervised Training Performance: lemma_bigram 218

F.11 Semi–Supervised Training Performance: lemma_trigram 218

F.12 Semi–Supervised Training Performance: lemma_quardgram 219

F.13 Semi–Supervised Training Performance: lemma_dgram 219

F.14 Semi–Supervised Training Performance: lemma_dgram_wild 219

F.15 Semi–Supervised Training Performance: lemma_extended_dgram 219

F.16 Semi–Supervised Training Performance: lemma_dep_subtree 219

F.17 Semi–Supervised Training Performance: gpos_unigram 220

F.18 Semi–Supervised Training Performance: gpos_bigram 220

xxx List of tables

F.19 Semi–Supervised Training Performance: gpos_trigram 220

F.20 Semi–Supervised Training Performance: gpos_quardgram 221

F.21 Semi–Supervised Training Performance: gpos_dgram 221

F.22 Semi–Supervised Training Performance: gpos_dgram_wild 221

F.23 Semi–Supervised Training Performance: gpos_extended_dgram 221

F.24 Semi–Supervised Training Performance: gpos_dep_subtree 221

F.25 Semi–Supervised Training Performance: spos_unigram 222

F.26 Semi–Supervised Training Performance: spos_bigram 222

F.27 Semi–Supervised Training Performance: spos_trigram 222

F.28 Semi–Supervised Training Performance: spos_quardgram 223

F.29 Semi–Supervised Training Performance: spos_dgram 223

F.30 Semi–Supervised Training Performance: spos_dgram_wild 223

F.31 Semi–Supervised Training Performance: spos_extended_dgram 223

F.32 Semi–Supervised Training Performance: spos_dep_subtree 223

F.33 Semi–Supervised Training Performance: lemma_gpos_unigram 224

F.34 Semi–Supervised Training Performance: lemma_gpos_bigram 224

F.35 Semi–Supervised Training Performance: lemma_gpos_trigram 224

F.36 Semi–Supervised Training Performance: lemma_gpos_quardgram 225

F.37 Semi–Supervised Training Performance: lemma_gpos_dgram 225

F.38 Semi–Supervised Training Performance: lemma_gpos_dgram_wild 225

F.39 Semi–Supervised Training Performance: lemma_gpos_extended_dgram . 225

F.40 Semi–Supervised Training Performance: lemma_gpos_dep_subtree . . . 225

Chapter 1

Introduction

Today, it is fairly safe to state that almost the whole spectrum of conceivable entities, human
made or otherwise, have an associated Information System (IS) component, in one way or
another. I am not arguing for individual entities (e.g. the rock in my garden) rather the
concepts of things. For an extreme example at one end of this spectrum it can be the New

Horizon1 mission by NASA. The free web service provided by NASA allows people from all
over the world, to follow the mission progress, enjoy the photos taken during the journey,
discuss different aspects of the mission and much more. The extreme aspect is that all
this is about a man–made space vehicle (also called New Horizon) that is currently (as of
09 July, 2015) approaching Pluto2. On the other extreme end of this spectrum is virtually
everything one can put their eyes on, i.e. day to day communication (e.g. from snail mail
to cell phones and communication satellites to fibre–optic back bone), or food (e.g. from
automated processing plants to online shopping), or anything else on that matter.

Furthermore, ISs always have a software component associated to them and in the last couple
of decades, software and software development have become more structured and evermore
complex. Today, software development can be considered to be one of the most significant
human activity and thus, the financial component of it gives rise to the necessity of estimating
the cost at an early stage of the development for obvious reasons. Cost, however, can only be
associated with the unit size of a software. One crucial and absolutely necessary distinction is
whether to use the term “Measuring” or “Estimating” when quantifying the size of a software.
Whether it is even possible to measure the size of a software objectively, in our opinion, is a
discussion at best philosophical in nature. Of the two concepts, however, Estimation is far less

1https://www.nasa.gov/mission_pages/newhorizons/main/index.html
2≈ 7.5 billion Kilometres from earth and New Horizon shall be the closest on 14 July, 2015.

2 Introduction

controversial and thus we shall refer to the core objective of this research to be “Estimating

Software Size”. Estimating the size of a software has been somewhat an established practice
since the early days of software development, although the emergence of the practice was
primarily for making comparison with other pieces of software and evaluating productivity
of the development teams. The practice however, becomes an essential component of modern
(especially commercial) software development.

Estimating the size of a software and its eventual application in cost estimation is not
necessarily a mere financial support tool any more. Overtime it became one of the most
important project management tool as well. Often the practice determines the success or
failure of contract negotiation and project execution. The deliverables of cost estimation in
terms of both financial and management, e.g. effort, schedule, and staff requirements etc.,
are valuable pieces of information for project formation, management and execution. These
factors are used as key inputs for the project bidding and proposal development, estimating
budget, staff allocation, project planning, progress monitoring and development control, etc.
Inaccurate and unreasonable estimates have been reported to be a major cause of project
failure in the Computerworld3 article “Survey: Poor communication causes most Information

Technology (IT) project failures”4. They reported the CompTIA5 survey of 1,000 IT experts
respondents in 2007, finding that two of the three most-cited causes of IT project failure are
related with unrealistic resource estimation.

Traditionally, estimation of software was performed from the resultant source code and
several metrics were in practice for the task. However, along with the understanding of the
importance of code size estimation in the software engineering community, the realization
of early stage software size estimation, became a mainstream concern. Once the code has
been written, size and cost estimation primarily provides contrastive study and possibly
productivity monitoring. On the other hand, if size estimation can be performed at an
early development stage (the earlier the better), the benefits are virtually endless. The most
important goals of the financial and management aspect of software development namely
development cost and effort estimation can be performed even before the first line of code is
being conceived. Furthermore, if size estimation can be performed periodically as the design
and development progresses, it can provide valuable information to project managers in terms
of progress, resource allocation and expectation management. The first such possibility was

3http://www.computerworld.com/
4http://www.computerworld.com/article/2543770/it-management/survey–poor-communication-causes-

most-it-project-failures.html
5http://www.comptia.org/

1.1 The Automation Problem 3

presented by Allan J. Albrecht (Albrecht, 1979), originally for productivity measurement
and then as as general sizing metric. This new metric, aptly named Function Point Analysis

(FPA), estimates the size of a software as a function of the number of functionalities it is
expected to deliver from the point of view of the user. Over the last 35 years the metric has
evolved substantially but, core idea and the process remain almost the same as in the original
presentation.

One significant problem with FPA is the requirement of human counters, who need to
follow a set of standard counting rules, making the process labour and cost intensive (the
process is called Function Point Counting and the professional, either analysts or counters).
Moreover, these rules, in many occasion, are open to interpretation, thus they often produce
inconsistent counts. Furthermore, the process is entirely manual and requires Function

Point (FP) counters to read large specification documents, making it a rather slow process.
Some level of automation in the process can make a significant difference in the current
counting practice. In this chapter we shall present the problem domain in terms of the task of
automation FP identification, our research objectives, important concepts for the proposed
solution and the general structure of this thesis.

1.1 The Automation Problem

Traditionally, FPA is performed on software specification documents of different level (e.g.
user requirement, functional specification etc.) and at different stages of the Software

Development Life Cycle (SDLC) (e.g. requirement analysis, design, implementation etc.)
usually written in natural language by expert users (i.e. having some level of technical
competency in software engineering) with different levels of competencies. The availability
of different integrated design and development environment (a tool that can be used to
design software using numerous design paradigm such as Unified Modelling Language

(UML) and develop the software in parallel e.g. NetBeans6), has influenced a significant
shift in the overall practice of software engineering and thus the practice of FPA. However,
a large number of organizations and software developers still use the traditional methods
(i.e. writing specification documents) and use the service of FP counters for FPA. There
are three fundamental problems with these scenario, first of all, it takes a lot of time for
the counters to go through the documents; secondly, the act of isolating the FPs (regardless
of the guidelines being followed), makes is quite difficult to keep the count consistent at

6https://netbeans.org/

4 Introduction

different stages of the the same project even when using the same document and finally, it is
very expensive. Automation of the process of identifying the FPs in a document accurately,
will at least reduce the reading requirement of the counters, making the process faster and
thus shall significantly reduce the cost. Moreover, consistent identification of FPs will allow
the production of consistent raw function point counts. To the best of our knowledge, the
work presented in this thesis is an unique attempt to analyse specification documents from
early stages of the SDLC, using a generic approach adapted from well established Natural

Language Processing (NLP) practices.

A survey presented by Mendes et al. (1996) listed almost all the commercially available
tools for different stages of the FPA process that were available at the time (52 tools). The
authors classified the tools into 10 categories and some tools were assigned in multiple
categories. The distribution showed that 8 out of 52 products claim to be able to provide
some level of automatic FP counting, but the authors reported that only 4 products (mere 3%
for the redundant list) of the tools focus primarily on the problem of reliable automatic FP
counting. All of them unsurprisingly, were bound to some specific system platform or used
some sort of Computer Aided Software Engineering (CASE) tool with specialized design
and development paradigm and often performed the count from the source code. Moreover,
the 18 steps automation that the literature adopted (Mendes et al., 1996), all the systems
were reported to have required some level of human intervention, for at least one of the steps
(especially to identify the target system) and none of them were capable of using specification
documents written in Natural Language (NL).

In our research we could not find any recent survey, however, there is the Automated

Function Points (AFP) specification7 published by the Object Management Group (OMG) in
January 2014 that provides clear guidelines for the automation of FP counting following the
International Function Point Users Group (IFPUG) counting practice. The current version
(version 1.0) is primarily specified FP counting from source code and database components
rather than being applicable to early specification. The commercial attempts to use the OMG
specification are already in progress, e.g. The Consortium for IT Software Quality (CISQ) is
leading The Automated Enhancement Function Point Specification (AEFP) project8 since
2015 and CAST AFP tool9. The observation here is that although, there is a clear necessity
for automated FP counting from specification texts, and to our knowledge the research on the

7http://www.omg.org/spec/AFP/1.0/
8http://it-cisq.org/cisq-to-start-work-on-automated-enhancement-function-point-specification/
9http://www.castsoftware.com/products/automated-function-points

1.1 The Automation Problem 5

subject is virtually non-existent. Automation of FP identification poses significant amount of
difficulties and the key problems that we have identified ate the followings,

• The most significant problem is the absence of clear and unambiguous counting guidelines
that can allow the development of knowledge based automated tool for FP counting.

• In the ever more cautious industrial practices of our time, most specifications are often
considered to be classified contents, thus availability of large amount of documents espe-
cially from a single organization (in fact we are focusing on large organizations) that can
provide coherent documentation and clear pattern is hard to come by.

• Existing counting practices often do not give any significance to the documentation of the
counting process itself i.e. counters do not document the source of the FPs as they record
the results thus identifying the correlation between text and FP is very difficult.

• Due to organizational culture and the inherent ambiguity that exists in the FP identification
process, the confidence in any annotated data is quite low for this specific task. Thus
defining an objective and consistent annotation guideline is a concern before establishing
an automated system since the evaluation for such a system can only be performed in a
subjective manner.

• Specification documents often contain important information such as database design in
tabular form or as diagrams. This type of information is quite difficult to process within the
NLP paradigm and are often subjects of detail research itself. Moreover, list elements in a
document often contains list of actions that are quite important in FP detection (especially
in the detection of transaction functions), are again found to be rather difficult to process.

• Most specification documents are not directly machine readable, thus extraction and seg-
mentation often introduce large amount of noise in the original data and text extraction
and segmentation have been heavily reviewed in the NLP research community for the seer
complexity of these problems.

• Human readers identify FPs by understanding the text, the tables and the graphics together.
However, automated systems dealing with these diverse types of information sources are
scarce if not absent and the state–of–the–art performance of such systems are anything but
satisfactory.

• Text understanding is very important in FP counting, but, automating the process requires
multiple levels of preprocessing e.g. tokenizing, parsing, word sense disambiguation etc.
These tasks themselves are active fields of research and each of these sub–tasks depends
of some other lower level task, thus, every stage of the pre–processing is expected to
introduce additional noise in the data.

• Finally, the lack of labelled data also makes it virtually impossible to use well established
supervised Machine Learning (ML) methods and perform objective evaluation of any AFP
identification system.

6 Introduction

An automated system for the task of FP identification is more likely to be put under scrutiny
for one other important issue: performance. NLP tasks are often designed to be a process
chain, rather than a single process performing all the tasks. This practice significantly
reduces the performance since it is rather hard to perform parallel processing of different
sub–tasks due to their dependencies on other tasks. This research will attempt to provide
an overview of the problems and possible directions towards an automated FP identification
from specification documents.

1.2 Research Goals

The difficulties associated with the automation of FP identification are non–trivial because
a single research initiative is not enough to address the difficulties associated with each of
the intrinsic sub–components of FPA. The best course of option is to recognize a reasonable
framework and use state–of–the–art resources for each of the cogs of the proposed solution.
We have proposed three hypotheses that, in our opinion, summarize the general features of
the proposed framework,

Hypothesis 1: FP identification, from a higher order textual group perspective (i.e. page or
paragraph level), is a specialized Information Retrieval (IR), more specifically, document

classification task.

Hypothesis 2: Individual function identification however, is a specialized Information

Extraction (IE) task, more specifically a slot–filling IE task where slot values need to be
filled with FP core elements (namely data functions and transaction functions).

Hypothesis 3: Some level of linguistic knowledge engineering is necessary to approach
this problem however, deep linguistic analysis may not be necessary, even perhaps counter
productive.

The objectives of this research is to find potential methods for identifying FP component in
written text within the limitations of the NLP tools available for performing the sub–tasks of
FPA. The solution is expected to have the following two prime objectives,

• Minimizing the amount of reading content and thus reading time for the human counters.

• Maximizing the consistency of the FP count through systematic identification.

These two features are loosely interdependent, thus making improvements on one of them
is expected to influence the other upto a certain degree. Our research goals thus can be
summarized as follows

1.3 Concepts 7

• Extraction of software specification documents in electronic format (e.g. .pdf or .doc
format documents) into a machine readable format (e.g. Extensible Markup Language
(XML)). The extraction process is expected to be accompanied by a post–processing tool
to clear some of the noise from the data.

• Applying a basic linguistic analysis process chain on the extracted data to incorporate
multiple layers of linguistic knowledge and labels on the original text. NLP techniques
will be used at this stage performing tasks such as tokenization, Part-of-Speech (POS)
tagging, parsing with dependency relation extraction etc.

• Reducing the number of pages a human counter has to go through to identify all existing
FPs in a given document.

• Accommodate the identification of text segments (e.g. words, or sentences or pages) con-
taining FPs in a given text.

We shall demonstrate the possible means of achieving the research goals and test our hy-
potheses, presented earlier, in the process. Some fundamental concepts that we consider to
be an integral part of this research will be addressed in the next section.

1.3 Concepts

Our problem domain can be defined as the analysis of software specification documents and
FP identification in an automated manner. Software specifications are special cases of the
general specification documents. Since, such documents are expected to contain the process

description to perform a task and by definition, FPs are counts of the functionalities provided
by a software, we can infer that at the top level at least, it is a process identification task. We
shall primarily investigate the possibility to use basic textual features e.g. token length, token
n-grams etc. and very fundamental linguistic features such as lemmas and POS. However for
advanced analysis syntactic patterns shall also be introduced. Following Faure and Nédellec
(1999), we have assumed that verbs play a fundamental role in process detection and extract
objects that are connected to them as subjects or direct objects, in particular for verbs that are
in imperative mood. From a syntactic and semantic point of view, we are looking for common
structures involving a verb and its arguments, among which we are interested in the subject,
patient and recipient arguments of a verb. To establish the “object” and “process” we used
the bi–lexical dependency relations using a framework adopted from d–gram representation

(Pak and Paroubek, 2011). In this section we shall give an overview of these terms.

8 Introduction

1.3.1 Specification

Specification
noun | spec·i·fi·ca·tion
A detailed description of work to be done or materials to be used in a

project : an instruction that says exactly how to do or make something.

– Merriam–Webster Online dictionary

A large number of domains can crawl under this umbrella definition (e.g. cooking recipes,
software specification, description of experiments, instruction manuals etc.). We are not
suggesting that specification is a category of sentences, a taxonomical class (specification
sentences), coined by Higgins (1973). We are in fact in total agreement with Heycock (2012)
in this aspect that a “specification” as a class for sentences is rather unnecessary. However, it
is reasonable to assume that the type of text to be found in a specification document uses
a finite number of sentence patterns to express the desired action descriptions. We thus
hypothesize that a finite variation of morpho-syntactic pattern must exist to express process-
object interaction. First, we need to establish the theoretical basis of events, processes and
their interaction with objects.

1.3.2 Objects, Events and Processes

In this section we shall not try to provide the philosophical or ontological basis for these
concepts, rather present the extent of these concepts that have been used in our research. A
detailed study on objects and events and process was presented by Galton and Mizoguchi
(2009), and we shall present most of the definition according to this work. However, the
granularity of details for these concepts required for our research is much coarse and it shall
be reflected in the following discussion. These concepts have already been explained by
Asadullah et al. (2014a) to identify ingredients from cooking recipes. There is an uncanny
similarity between the tasks since by definition FPs are expressed in terms of verbs (since
having a functionality either implies having a state defining or action defining verb present
almost without exception). Many of the examples thus, are derived from the cooking recipe
domain and are expected to represent a concrete picture of these concepts. We shall present
the work (Asadullah et al., 2014a) in details later (see § 5.4.2). Furthermore, understanding
these concepts and establishing their scope is crucial for this research.

Objects are spatial elements i.e. something that occupies physical space, that can change
over time (e.g. from egg to boiled egg), but do not have any temporal part (e.g. an egg

1.4 ProjEstimate Project 9

after one hour is still an egg). According to Galton and Mizoguchi (2009) objects can have
spatial parts, but those parts are not the same object, rather matters or different objects (e.g.
half of an egg is not an egg). However, This relation has little impact in our work (e.g. one
may need only egg white for a recipe but the ingredient may still be an egg). Therefore, we
restrict our focus to normalized concrete objects and their interaction in a process or an event.
Events and processes are difficult concepts to put one’s fingers on precisely. Both events and
processes has been described in (Galton and Mizoguchi, 2009) as an action over time, where
processes describe an action without defined temporal boundary and events, with defined
temporal boundaries i.e. start and end. From the cooking recipe a definitive example can
be “boiling an egg for 15 minutes”. By definition, this is an event i.e. start boiling an egg
and finished after 15 minutes. Any intervals in between, by definition are not events, thus
are processes. Another property of the events and processes is that they can have spatial
components i.e. involvement of objects in the action. In the cooking recipes all the processes
and events are thus expected to be informative. For our research these stringent definitions
have little importance, thus events and processes have been used as interchangeable through
out the whole thesis. However, these definitions can be useful in the adaptation of the method
for some other tasks.

1.4 ProjEstimate Project

This thesis is produced as a part of the ongoing research for finding an automated means of
analyzing specification text to automatically estimate the size of a software. The research
is conducted and funded by the ProjEstimate Project10 (FUI 13) currently running under
SYSTEMATIC11, the Paris Region System and ICT cluster. The project comprises of an orga-
nization body and several partners from both academic and industry domains. Estimancy12 is
the current project leader and the partners of ProjEstimate are,

• Two large companies,

∗ Banque de France (BdF)13

∗ PSA Peugeot Citroën14

• Three small and medium enterprises,

10http://www.systematic-paris-region.org/en/projets/projestimate
11http://www.systematic-paris-region.org/en
12http://estimancy.com/
13https://www.banque-france.fr/
14http://www.psa-peugeot-citroen.com/

10 Introduction

∗ Estimancy

∗ ACAPI15

∗ Sparkom16

• One public research laboratory – LIMSI17

• One research institute – ARMINES18

The primary objective of the project is to develop a complete system that will provide it’s
customers a solution to better control software engineering projects and software systems
through reliable software development estimators i.e. size estimator, cost estimator, produc-
tivity monitoring etc. The challenge is to improve estimation practices to reduce cost and the
implementation of estimation methods and tools in a single platform. The research presented
in this thesis is part of the responsibilities of LIMSI as a partner of the project. Figure 1.1
presents a general overview of the project.

Fig. 1.1. ProjEstimate Project Overview

Community

Estimation
Models

Estimation
Methods

Benchmark

Repository Analysis

Estimation
Hypothesis

Constraints

COSTCOST

EFFORTEFFORT

TIMETIME

PLANNINGPLANNING

RISKRISK

ERRORERROR

REQUIREMENTREQUIREMENT

TESTINGTESTING

The specified goals of the project in terms of the solutions expected to be provided to an
organization developing information systems are summarized below,

• Providing control over the estimation process throughout the life–cycle of a project.

15http://www.acapi.fr/
16http://www.sparkom.com/
17http://www.limsi.fr/
18http://www.mines-albi.fr/

1.4 ProjEstimate Project 11

• The provision to apply multiple estimation method including the specific methods adopted
to comply with the practices of an organization.

• Significant reduction in the estimation cost, especially for functional measurement.

• Infrastructure for peer–based support system.

• Repository infrastructure to store various estimates of a project.

• Export estimation results to report generation tools.

• Analysis tools to analyze repository entities to effectively measure the performance of an
organization to update estimation parameter to improve efficiency and quality.

In addition to these primary goals, ProjEstimate project has a set of complementary goals,

• Infrastructure development for a community to ensure mutual support and knowledge, ex-
perience, ideas, training etc. sharing,

• The provision for anonymous data sharing for benchmarking.

• Continuous improvement of the software by stimulating areas of research to explore the
possibilities to simplify estimation process, improve accuracy and reduce costs.

Table 1.1. Work Packages for The ProjEstimate Project

WP1 Preliminary selection and data collection for the project – includes preparatory tasks
and data collection to accumulate the information necessary to initiate the project

WP2
Data analysis models – bringing together the theoretical research necessary for the
data analysis for ProjEstimate. This work should provide methods and algorithms
for data management services.

WP3 Tool: Specification – includes the tool development for the ProjEstimate platform.

WP4 Tool: Framework – includes the tool development for the ProjEstimate framework.

WP5 Tool: Module – includes the development of the different module for ProjEstimate
project.

WP6 Deployment and Testing – includes the deployment and testing of the ProjEstimate
platform.

WP7a Community – the creation and maintenance of the ProjEstimate community.

WP7b Services – deployment of the online services for the ProjEstimate project.

WP8 Project management – The administrative aspects of the ProjEstimate project.

The top level Work Packages (WP) distribution among the partners of the project (which
also provides the overview of the general work flow of the project) is presented in Table 1.1.
Among the WPs, LIMSI contributes significantly in WP2, WP5 and WP6. This research is
strongly associated with WP2, i.e. data analysis for the project and WP5, i.e. component
module development. We have significantly contributed in developing the prototype for the
modules needed for requirement document analysis, identifying FPs in text written in natural

12 Introduction

language and generate data for the task and provide suitable representation of the data. The
following section will provide the organizational overview of this document thus, shading
some light on how our contribution shall be presented (maintaining the parallel to the goals
of the ProjEstimate project).

1.5 Organization

The scope of this research is limited to the identification of FPs in the specification documents
within the NLP framework. The breakdown and eventual reconstruction of the problem
domain led us to explore other methodologies commonly practised in domains such as IR
and IE. However, in our opinion, IE is a significant theoretical possibility for detailed FP
identification (i.e. at sentence level) and to establish that underlying relationship, theoretically
at least, was important for further advancement of the research. Thus a detailed chapter
is dedicated to IE, whereas, general NLP or IE was used at specific parts of the research
and usually already established methods were used, thus the methodologies and the related
theories were addressed locally and with necessary details. The structure of the chapters can
be summarized as follows,

• In Chapter 2 we present the state–of–the art of IE research. Although, IE concepts have
not been used extensively during the experimentation, in our opinion, the problem domain
is best explained within the boundary of NLP and both IE and IR can play an important
role in finding a solution. IE has been a rather independent research field in terms of
having generic methods and well established concepts. However, IE tasks have always
been problem specific with limited generic methodology and in our opinion, less clearly
established concepts. This chapter will try to provide an overview of the history, practice
and task definitions for IE and its relation to the problem domain.

• In Chapter 3 we introduce the general concept of measurement, types of measurement
etc. i.e. the theoretical basis for the concept. We then present the problem domain by
introducing the concepts necessary to understand the domain, i.e. software size estimation,
history and the progression of the size estimation theories and practices. Functional size
measurement and different practices will also be presented. We have concluded the chapter
introducing our contribution in improving the state–of–the–art of the problem domain.

• In Chapter 4 we introduce our primary contribution by introducing the dataset and the tools
and the process of corpus generation from the specification documents. We also present
a detailed analysis of the corpus in terms of lexical, morphological and syntactic relation
(dependency relations) distribution. We also present the available expert annotated data
from our experts.

1.5 Organization 13

• Using the aforementioned corpus and annotated data, in Chapter 5 we present the exper-
iments that we ran to understand the underlying pattern in the corpus and its correlation
to expert annotations. We also demonstrated how different features correspond to exist-
ing patterns in the data by using Principal Component Analysis (PCA) and unsupervised
learning algorithms.

• Finally, in Chapter 6 we present a brief summary of our experience with the whole re-
search and our interpretation of the experimental results and possible future directions for
perusing this research.

Chapter 2

Classification & Information Extraction

The availability of large amount of digital data during the last couple of decades opens a whole
world of opportunities for the computational Information Retrieval (IR) and Information

Extraction (IE) research. A lot of the information need in practical situations (e.g. online
news, business reports, legal documents, medical records etc.) requires automatic processing
of text to both identify relevant documents and extract the important information from
those documents. As a matter of fact, one can argue that the emergence of IR and IE as
independent disciplines is the direct outcome of ever growing information need complimented
by mass digitization of printed content and mass production of digital text. Natural Language

Processing (NLP) techniques have also been excelled in terms of performance and diversities
for somewhat the same reasons. Over the years IR and IE have become disciplined and well
structured fields of research. Along with different Machine Learning (ML) methods NLP
based methods have been used extensively in these researches.

Our research will explore the utilization of both these discipline but with more emphasis
on IR. One of our research objectives is to identify pages that contain Function Point (FP)

description. Using ML algorithms we shall effectively establish an IR method for text
classification. In our case, it would be page classification since pages are the logical blocks
of text being our object of interest. We are also interested in expanding our method to smaller
logical text blocks such as, paragraphs (or fixed size window if actual paragraph segmentation
is not possible) and sentence. However, we recognize that the identification of sentences with
FP description will be beyond the scope of IR applications and it can be better handled with
IE methods. Although, we did not perform any experiments for sentence identification or
explicitly used any IE method, it is the most probable future direction of this research and

16 Classification & Information Extraction

thus we briefly present the state–of–the–art of IE research. We also presented the rationale
for not adopting IE as the primary focus of the research presented in this thesis.

2.1 Information Retrieval & Text Classification

Information Retrieval encompasses the broad classes of tasks and methods with the objective
of identifying text blocks that meet a given search objective. Technically, when one is looking
for the phone number of a friend and find it in a phone book, it is a form of IR. The example
is very simple and gives the impression of the processes used in any standard database search.
However, IR research as an independent discipline, historically distance itself from the notion
of database search (i.e. query) since databases are considered structured representation of
data and retrieval primarily depends on forming the right search query. To give the proper
notion of IR for us, we are inclined to adopt the definition given by Manning et al. (2008),

Information Retrieval (IR) is finding material (usually documents) of an unstruc-
tured nature (usually text) that satisfies an information need from within large
collections (usually stored on computers). – Manning et al. (2008)

IR tasks often deal with sources of different structural levels e.g. unstructured (free flowing
text), semi–structured (XML), fully structured (relational database) or even hyper–linked
(web content). Furthermore, the source media can be of many different types e.g. text, 2D/3D
graphics, audio, video etc. even combination of two or more types (Doyle and Becker, 1975).
The primary information access methods often utilized can be short–listed: ad-hoc retrieval
(i.e. one time query such as web search), filtering (usually by maintaining a constant search
profile for applications such as spam filtering), classification (grouping information into
predefined classes) and topic detection and tracking (e.g. clustering news in a stream). There
are many more aspects of IR that can be crucial for different applications e.g. context for
application such as Question Answering (Q&A) or time dependence (when dealing with
continuous stream of information source such as news feeds). However, for this research
we are interested in ad–hoc binary classification type information access for text source.
Our objective is to classify a set of sources (e.g. documents or blocks of text) based on the
information requirements (i.e. query).

The computational retrieval of information began in the late 1940’s (Manning et al., 2008)
but the term Information Retrieval was coined much later by Mooers (1950). The necessity

2.1 Information Retrieval & Text Classification 17

arise from the advancement of computer technology1 and the availability of large amount of
digital data2. Furthermore, the availability and extensive usage of web search engines on a
regular basis puts IE in the center of many information intensive researches. Many of the
pre–computerized management of large amount of information evolved from the discipline
of librarianship (Sanderson and Croft, 2012), usually for items like books or articles and in
the form of indexing using cataloguing schemas. However, this approach can be traced back
to thousands of years3 (Eliot and Rose, 2009, pp. 90). There has always been the need of IR
and over the course of history many different methods have been proposed. In the following
sections we shall explore the chronological progression in IR along with a general overview
of the IR methods with our interests in focus.

2.1.1 Pre–Computerized IR

The early requirements of IR were rather primitive, primarily concerned about indexing
and categorizing documents (books, articles etc.) and find them when necessary and cross–
referencing items on the basis of two or more categories. One of the earliest example can be
the 1920 patent (Edward, 1920), where catalogue card with holes (each related to categories)
that can be aligned in front of each other to find if any entry in a collection related to the
search categories. Beyond the crude methods, mechanical devices that can search a catalogue
for a particular entry had also been devised. One of the earliest example can be the patent
filed by Emanuel Goldberg back in the early 30’s (Goldberg, 1931). The device can search
for a pattern of dots or letters across catalogue entries stored on a roll of microfilm. Other
devices based on the same principal were developed, such as the searching with microfilm
by Davis and Draeger in 1935 described by Mooers (1959) and later the Memex system,
a film–based searching machine proposed by Vannevar Bush in 1945 (Bush, 1945). Shaw
(1949) also proposed a device to search through a 2,000 foot reel of film. Each half of the
film’s frames had a different purpose: one half for frames of material and the other half for
index entries. He reported that the selector was able to search at the rate of 78,000 entries per
minute. Other methods were also explored such as, punch card, lights and photocell based
system by Luhn (C&EN, 1954) that could match a consecutive sequence of characters within
a larger string. As a matter of fact, the system presented in Mooers (1950) was also a punch
card based system and according to Jahoda (1961) the mechanical systems continued to be

1“The number of bits of information packed into a square inch of hard drive surface grew from 2,000 bits in
1956 to 100 billion bits in 2005” (Walter, 2005)

2One can see the historic growth of text in http://userwww.sfsu.edu/fielden/hist.htm
3Callimachus, a 3rd century BC Greek poet to be the first person known to create a library catalogue

18 Classification & Information Extraction

developed until the computer based systems surpassed the effectiveness of any mechanical
system for IR.

2.1.2 Early Computer Based IR

One of the earliest example of computer based IR was presented by Holmstrom (1948)
describing a machine called the UnivAC that is capable of searching for text references
associated with a subject code. The code and text were stored on a magnetic steel tape and
it was reported to be able to process 120 words per minute. Mitchell (1953) also described
project using UnivAC to search one million records indexed by upto six subject codes and
the estimated time for a search was reported to be about 15 hours. One can find a detail study
of the IR systems developed during the 1950’s in an article by Nanus (1960). Another review
by Brownson (1960) also summarized IR implementations in the 1950’s including the work
done in the former Soviet Union. The two significant development at this stage allowed IR

became the specialized discipline it is today: indexing the documents in a collection and
systematically retrieving them.

The traditional approach of indexing was to group documents based on the topic(s) assigned
to it using hierarchical subject classification scheme, such as the Dewey Decimal system
(Dewey, 1876). Alternative to this indexing was also proposed, for example, the Uniterm

system (Taube et al., 1952) proposed to index items by a list of keywords. Cleverdon (1959)
conducted a detailed comparison of retrieval effectiveness using Uniterms and the more
classic indexing techniques. After extensive scrutiny (Cleverdon, 1991) the results of the
original study was found to be accurate and many aspects of the “test collection” approach to
evaluation proposed by Cleverdon are still in use for both academic research and commercial
search testing today (Sanderson and Croft, 2012).

On the other hand, the primary approach adopted for retrieval (used both in electro–
mechanical and computer–based IR systems) is called boolean retrieval. In boolean retrieval,
a logical combination of terms (commonly referred to words in IR literature), which results
in a set of documents that exactly match a given query. The alternative approach is to assign
a score to each document in a collection reflecting the relevance with respect to a given query.
After sorting the documents based on the score the pre–defined number of top documents are
the result of a query. Luhn (1957) proposed this method commonly known as ranked retrieval.
It was tested by Maron et al. (1959) where They used a collection of 200 documents with

2.1 Information Retrieval & Text Classification 19

manually–assigned keywords and 39 queries demonstrating that it outperformed Boolean

search. Later Luhn (1958) proposed that,

The frequency of word occurrence in an article furnishes a useful measurement
of word significance. – Luhn (1958)

This approach later became known as term frequency weighting. The ranked retrieval

approach has been modified over the following decades by the IR researchers in terms of
the means by which documents were sorted in relation to a query. The advantages of this
method over the Boolean search has been presented in the book by (Spärck Jones, 1981, pp.
237). These early developments (mostly in the 1950’s) allows the consolidation of IR as an
increasingly significant research area.

2.1.3 The Major Developments upto mid-1990

At the early stages (during the 1960’s) there has been more questions asked than answered.
Gerard Salton 4 was one of the influential people leading a large IR group, first at Harvard

University and later at Cornell University. The group produced many technical reports (the
ISR reports), establishing ideas and concepts that are still major areas of research today. One
of the important concept was formalization of algorithms to rank documents for a given
query and one notable solution was to view each document as a N–Dimensional vector5. It
was originally proposed by Switzer (1963) and later (Salton, 1968, pp. 236) suggested the
cosine of the angle between two vectors using the cosine coefficient to measure the similarity
between a document and a query vector. Relevance Feedback (Rocchio, 1965), a process to
support iterative search, where documents previously retrieved could be marked as relevant,
is another significant innovation of this period. A modification of this concept is used in
modern search engines (e.g. Related Article links in Google Scholar), where the user query
is modified automatically using the information extracted from the relevant documents.

One of the primary focus of our research, Document Clustering is also an innovation came
into practice during this era. a detailed review of document classification is presented in §
2.1.5. This also includes the pioneering of the use of semantic similarity of documents using
semantic variation of the query terms. The books by Salton (1968), van Rijsbergen (1979)
and Stevens (1965) can be consulted for the past researches on this topic. The description

4https://en.wikipedia.org/wiki/GerardSalton
5N being the number of unique terms (words) in the collection

20 Classification & Information Extraction

of one of the earliest commercial systems, also started emerging during this period, can be
found in the article by Dennis et al. (1962). According to Bjørner and Ardito (2003), one
of the the first data search companies was Dialog formed in 1966 due to the creation of an
IR system for NASA. One striking aspect of this period was the extensive use of Boolean

search especially in the commercial systems, regardless of the consistent demonstration of
the superiority of Ranked Retrieval by the researchers. It most probably can be contributed
to the low level of interaction between researchers and commercial entities (Sanderson and
Croft, 2012). Mooers (1961) also criticized this practice by stating that,

It is a common fallacy, underwritten at this date by the investment of several
million dollars in a variety of retrieval hardware, that the algebra of George
Boole (1847) is the appropriate formalism for retrieval system design. This view
is as widely and uncritically accepted as it is wrong.. – Mooers (1961)

One important innovation and very significant for our research developed during the 1970’s,
was the use of term frequency (tf) weights i.e. term occurrence within a document. It was
complemented by the inverse document frequency (idf) i.e. the inversely proportional relation
of a term across a collection in terms of retrieval significance (Jones, 1988). Salton and Yang
(1973) presented an early investigation on combining the two concepts together (i.e. tf–idf),
which is now widely used in IR research. We have used tf–idf extensively in our research,
especially in our ML experiments thus, more details is presented below.

TF–IDF

The Term Frequency – Inverse Document Frequency (TF–IDF) metric is very popular in the IR and
IE community, especially for Topic Modelling and Text Summarizing tasks. The origin of this metric
is widely attributed to Jones (1988), originally published in 1972. The proposed term specificity
metric became Inverse Document Frequency (IDF). It is the heuristic representation of the intuition
that if a term occurs in many documents, it is an indication of lack of information content to represent
the specificity of any document. The intuition proved to be of significant importance in the growing
IR research at that time and continues to be so. Term Frequency (TF) on the other hand measures
the frequency of a term in a given document and intuitively in this case higher is a better indicator
of the importance of the term in relation to the document. Coupled together TF–IDF is the basis
for many if not most term weighting schema (e.g. BM25) (Robertson and Zaragoza, 2009). The
metric has been proven to be extremely robust and often outperforms many carefully designed and
knowledge rich models. It is also been in used beyond text based retrieval (i.e. for other media) and
general NLP (Harman, 2005).

2.1 Information Retrieval & Text Classification 21

The original literature (Jones, 1988) claimed very little theoretical basis for the intuition other than a
reference to some versions of the Zipf’s Law (Zipf, 1949) concerning term frequencies. It is neither
a strong argument nor an accurate one since, the definition of term frequency used in Zipf’s Law is
quite far from the definition in use for IDF i.e. frequency of a term in a continuous body of text for
Zipf’s Law in contrast to that of IDF: how many document contains at least one occurrence of a term
(frequency of a term in individual document is irrelevant). Formally, if there are N documents in a
collection and term ti occurs in ni documentsa and the total frequency of the term ti in a document
dn is f n

i then the general formula for TF–IDF is defined as follows,

t f (ti, dn) =

 f n
i

log(1+ f n
i), log normalized version

id f (ti) = log
N
ni

t f .id f (ti, dn) = t f (ti,dn)× id f (ti)

A high TF–IDF is produced by high frequency of a term in the document dn while having a low
document frequency i.e. the term ti can be found in a lower number of documents. Since, the N

ni

always produces a value higher than or equal to 1, IDF (and in turn TF–IDF) always have a value
higher than or equal to 0. As a term ti occurs in more and more documents, IDF approaches 0, thus
if ti is found in all documents, the IDF becomes 0. The probabilistic model for IDF tries to estimate
the negative logarithm for the probability of relative document frequency i.e. for a given document
d in the document set D of size N, the probability of the presence of the term t in d is,

P(t | d) =
|{d ∈ D : t ∈ d}|

N
and thus

id f =− log P(t | d)

Robertson (2004) argued that the probabilistic interpretation is in turn equivalent to that of the self–
informationb and such Information Theoretic notions are nevertheless problematic since to satisfy
such a notion, the appropriate event spaces for the documents are needed for the required probability
distribution.

awhat can be construed as a term is not a concern in the calculation and should be defined based on
the implementation and the task.

bself–information is a measure of information content associated with an event in the probability
space or the value of a discrete random variable. Although, sometimes entropy is synonymous with
self–information, however, entropy is the expected self–information except for some specific condition
where they can be the same.

Later, Salton et al. (1975) presented the vector space model, another innovation of this era, a
synthesis of the work done on document vectors by his research group. The algorithm is rarely
used nowadays, however, the vector representation of documents is a still a common practice

22 Classification & Information Extraction

(Sanderson and Croft, 2012). Another alternative to model IR system that emerged during
this period was the use of Probability Theory. Robertson (1977) defined the principals for
the probabilistic ranked retrieval which was presented in the article by Robertson and Spärck
Jones (1976). van Rijsbergen (1979) also presented a derivation of the probabilistic model
which also made the unrealistic assumption that the occurrence of the terms in a document
are independent of each other. However, these developments led to wide range of researches
in later years. Based on the earlier development, during the 1980’s and early 1990’s several
significant innovations were introduced into main stream IR research. Different variations
of the tf–idf weighting schema that was developed during this period has been extensively
discussed by Salton and Buckley (1988).

Furthermore, the original probabilistic retrieval models did not include the tf weighing
and in an attempt to do so the research led to the development of BM25 ranking function
(better known as Okapi BM25) as part of the Okapi experimental system (Robertson, 1997).
Advancement in the basic vector model was also made in this era, the more well–known is
the Latent Semantic Indexing (LSI) where, the effective dimension of the vector space of
a collection can be reduced using Singular Value Decomposition (SVD) (Deerwester et al.,
1990). It was claimed that the reduction merges the terms with common semantic meaning
thus allows any query to match wider range of documents. It is a purely mathematical
approach to the retrieval problem and we have used it in our research extensively. The general
class of dimension reduction techniques are commonly known as Principal Component

Analysis (PCA). However, there are significant advantage of using SVD over the classic PCA

from both mathematical and implementation point of views.

Principal Component Analysis (PCA)

PCA is a statistical procedure to convert a set of observations of probably correlated variables into
a set of values of linearly uncorrelated variables called Principal Components using an Orthogonal
Transformation. The number of Principal Components are less than or equal to the original num-
ber of variables. It was originally developed by Pearson (1901), the method is primarily used for
exploratory data analysis and for developing predictive models. PCA has been considered to be one
of the most important results from the field of applied linear algebra (Shlens, 2014). Jolliffe (1986)
defined PCA as,

“an orthogonal linear transformation that transforms the data to a new coordinate
system such that the greatest variance by some projection of the data comes to lie on
the first coordinate (called the first principal component), the second greatest vari-
ance on the second coordinate, and so on.”

2.1 Information Retrieval & Text Classification 23

The principal is to decompose a document matrix (D) into the Eigenvector (V) and Eigenvalue (λ)
matrix, then the corresponding Eigenvector for the highest Eigenvalue will be the first Principal
Component, the next highest be the second Principal Component and so on. the PCA viewpoint
requires the computation of the eigenvalues and eigenvectors of the covariance matrix, which is
the product DDT . Since the covariance matrix is symmetric, the matrix is diagonalizable, and the
eigenvectors can be normalized such that they are orthonormala.

DDT =V λ V T

Another feature, which is very useful for both data analysis and learning algorithms is Dimension
Reduction. Since the higher ranked Principal Components represent higher variance the first two
components already allow researchers to look at a multidimensional data in two dimensional repre-
sentation and observe useful patterns. Furthermore, reduced dimension representation allows learn-
ing algorithms to learn from a more compact search space assuming the claim that PCA preserves
most of the information even after dimension reduction, is true. However that assumption is made
on the basis of another assumption that in the underlying data model (m) actual data (d) and noise
(n) are independent i.e. m = d + n. Linsker (1988) showed that if the data is Gaussian with a co-
variance matrix proportional to the identity matrix, PCA actually maximizes the mutual information
between the original data and the dimensionality reduced output. In our research we have used a
different variant of PCA i.e. SDV for practical reasons and the following subsection will present the
theoretical principals of SVD.

Singular Value Decomposition (SVD)

Fundamentally, SVD is another way of performing PCA and usually used for achieving similar
conclusion as with PCA. It is based on a theorem from liner algebra which suggests that a rectangular
matrix e.g. the document matrix D (let us consider the dimension to be m×n) can be decomposed
into the product of three matrices: an orthogonal matrix U , a diagonal matrix S, and the transpose
of an orthogonal matrix V i.e. V T . The formal representation can be,

Dmn =Umm Smn V T
nn; where UTU = I and V TV = I

The columns of U and V are orthonormal Eigenvectors of DDT and S is a diagonal matrix containing
the square roots of eigenvalues from U or V in descending order. If we try to construct the covariance
matrix from this decomposition (as in the equation for PCA) we have,

DDT = (USV T)(USV T)T

DDT = (USV T)(V SUT)

24 Classification & Information Extraction

Since V is a orthogonal matrix, VV T = I thus,

DDT =US2V T

So, the square roots of the eigenvalues of DDT in PCA are the actual values of D in SVD, thus, using
the SVD to perform PCA is more convenient numerically than forming the covariance matrix for
the original PCA, since the formation of the covariance matrix can cause loss of precision (Jobson
and Korkie, 1980).

ain linear algebra, two vectors in an inner product space are orthonormal if they are orthogonal and
unit vectors. (see, https://en.wikipedia.org/wiki/Orthonormality)

Unlike LSI, many linguistic approaches have been attempted in this era with little or no
improvement over the existing approaches (Sanderson and Croft, 2012). One approach that
showed promise was Stemming. Regardless of the existence of stemming algorithms since
the 1960’s, the stemming rules developed by Porter (1980) continues to shape the stemming
development even today. Another change in the perception of IR especially in the academic
community during the this period was the recognition and eventual development of large scale
collection for testing performance to parallel the already a commonplace phenomenon in the
industrial practice. Text REtrieval Conference (TREC) is one of the earliest such attempt
for an annual exercise where a large number of international research groups collaborated to
build test collections several orders of magnitude larger than had been in existence before
(Deerwester et al., 1990). The experience showed that the existing weighting and ranking
methods are not equally suitable for all types of dataset which eventually was confirmed
when web search engines started to get popular in the late 1990’s.

During this period the use of Machine Learning (ML) started to be more common as a
substitute for the earlier practice of manually devised and tuned by hand IR methods. Fuhr
(1989) was one of the earliest to adopt such approach, proposing the retrieval function to be
learned based on relevant documents identified for an existing set of queries. In contrast to
the popular Rocchio’s relevance feedback based algorithm (Rocchio, 1971) where a query is
tuned for a particular search, Fuhr (1989) attempted to make an adaptive ranking function
that can be tuned for a given search space (collection). The idea quickly followed by further
research (e.g. Cooper et al., 1992; Fuhr and Buckley, 1991) but, only became effective when
large amount of training data became available (e.g. web data) and by using improved
learning algorithms and of course hardware those were capable of handling large feature sets.

2.1 Information Retrieval & Text Classification 25

2.1.4 State–of–The–Art of IR

The real break through in IR research (at least in our opinion) came due to the availability of
large amount of digitized data, especially web data. Although, until 1993 the number of web
pages were quite limited. According to Gray’s survey6,7 the growth since 1993 quadrupled
roughly in every six months. Web search engines started to appear around the same time
and thus, the study of a new set problems in IR began. This period also marks the era in
which strong interaction was formed between commercial entities and academic groups. The
growth of web also pushed forward the development and improvement of web search engines.
The early web crawlers traverse the links found in a page and links found by following the
first set of links as so on, gathering large amount of web content. However, the first full
text search engine using a crawler was WebCrawler released in 1994, thus the age of related
content search was borne. By analyzing the content the ranking of a web page can be altered
thus relevant search results can be produced. The work by McBryan (1994) presented the
one of the necessary concepts: anchor text (almost always a brief summary of a web page)
recognizing it as a valuable resource for the task. Anchor Text for example has been a key
feature of the Google search engine from the very beginning (Brin and Page, 1998). The other
significant development was link analysis methods such as PageRank, developed around
the same time (Kleinberg, 1999). One significant drawback of applying link analysis and
multiple text representations to the existing ranking functions was highly complex algorithms
and increasing difficulty in setting accurate parameters for all these features. However, using
the logs of user interaction (although quite noisy) from search engines were proposed to
revisit the old idea by Fuhr (1989) but with a large training data, e.g. Joachims (2002) used
these logs to train a rank function.

Automated exploitation of information extracted from the logs of search engines was also
examined in this time. Although not entirely a novel endeavour (e.g. Meister and Sullivan,
1967), the primary use of these logs until this point in time has been exclusively to inform
subsequent manual adjustment of a searching system (Robertson and Hancock Beaulieu,
1992). As web user increased, the examination of large amount user query, click pattern and
query reformulation extracted from the logs allowed researchers to understand the intention
of the user better. The following research directions among many others were somewhat the
product of the web boom,

• Automated spell correction (e.g. Cucerzan and Brill, 2004)

6credit to “Matthew Gray of the Massachusetts Institute of Technology”
7http://www.mit.edu/ mkgray/net/web-growth-summary.html

26 Classification & Information Extraction

• Automated query expansion (e.g. Radlinski and Joachims, 2005)

• Accurate stemming (e.g. Peng et al., 2007)

Similar to the web query logs, it was recognized by the researchers that the same query can
mean very different information need for different users (Verhoeff et al., 1961). IR systems
only started to address this realization (aptly named differently relevant documents) only
during the late 1990’s. There has been attempts to solve this issue before that and one of
the prominent example could be the Maximal Marginal Relevance (MMR) based system
put forth by Carbonell and Goldstein (1998). Another related development was the use of
probabilistic models based on language modelling (e.g. Hiemstra, 1998; Ponte and Croft,
1998). The language modelling made it possible for the researchers to look at many IR

processes (e.g. relevance feedback, forming clusters of documents, and term dependence) in
a new light. For example, the use of term dependence as a proximity operator in a ranking
function by Metzler and Croft (2005), demonstrated to outperform term dependence free
models. As technology evolves IR became almost synonymous to search as it attempts to
deal with new problems, e.g. the rapid progression of social media pushed IR research to
work on social search. An early work by Dumais et al. (2003) on desktop search has a lot of
characteristics common to the social media oriented search research, such as, user tagging,
conversation retrieval, filtering and recommendation, and collaborative search. Just like social
media search, the necessity of complex question answering based search diverted IR research
from its core of simple user query with little or no linguistic structure, to its current state
started with the Q&A track in TREC (Voorhees, 2001). The state of IR research thus can be a
benchmark not only of the state of knowledge retrieval but also the information requirement
of a particular time period. One significant aspect of IR is document classification and due
to the importance of this aspect in our research, a detail overview is presented in the next
sub–section.

2.1.5 Text Classification

Classification or the task of grouping a set of elements (text, document etc.) into pre–defined
groups or classes thus the task is known as classification task. It has been studied extensively
in the fields such as database, data mining and IR. Formally the problem can be defined as
follows, considering we have a set of training elements or instances D = {X1, X2, . . . XN}
and each instance is labelled with a class value from a set of k different classes {1, 2, . . . k}.
Conventionally the training data is used to develop a classification model identifying the

2.1 Information Retrieval & Text Classification 27

features that allow each instance to be linked with the associated label. The model then
can be used to predict the labels of instances for which the label is previously unknown,
commonly known as the test instances. On the basis of labelling, classification tasks can be
of a hard variant, where labels are explicitly assigned to each instance, or of the soft variant,
where, ranking of different class choices for the a test instance is predicted, or the assignment
of multiple labels is allowed (Gopal and Yang, 2010).

The problem of text classification, a specific class of the general classification problem tuned
towards classifying blocks of text (can be a text blocks or set of documents) is closely related
to that of classification of records with set–valued features (Cohen, 1996). However, this
model assumes that the presence or the absence of words used in a document convey all the
information, reflecting the view posed by the binary model in IR. In reality the frequency
of words plays a significant role in text classification models and the typical domain–size
of text data (the entire lexicon size) is much greater than a typical set-valued classification
problem. A detailed survey of classification methods can be found in the book by James
(1985) and Duda et al. (2000). A survey specific to the text domain can be found in the
article by Sebastiani (2002). Furthermore, a relative evaluation of different text classification
methods can be found in the article by Yang and Liu (1999).

Many of the text classification methods have software implementation in the form of publicly avail-
able toolkits such as,

• BOW toolkit (McCallum, 1996)

• Mallot (McCallum, 2002)

• WEKA (Hall et al., 2009)

• LingPipe (Alias-i, 2008)

The text classification has been used in a wide variety of domains in IR. For example,
News Filtering and Organization, the process of categorizing news items (e.g. Lang, 1995),
Document Organization and Retrieval, a similar task but extended to incorporate text sources
beyond news sources, especially useful for full text search in web search engines (e.g.
Armano, 2015), Opinion Mining, the task of identifying the opinion being expressed in a
text (e.g. Serrano Guerrero et al., 2015), Email Classification and Spam Filtering, the task
of classifying e–mails (e.g. Alberts and Forest, 2012) and identifying junk e–mails (e.g.
Bajaj and Pieprzyk, 2014) etc. A wide variety of methods can also be employed to model
the classifier. the set of methods that are generally used also exist for other data domains
(e.g. quantitative and categorical data) and applying them for text using frequencies of

28 Classification & Information Extraction

word attributes allows most of the methods for quantitative data directly on text. However,
the particularity of text data being sparse, often high dimensional and low frequency of
many words requires classification models to explicitly consider and account for these
characteristics. Some of the commonly used classes of methods are,

• Pattern (Rule) based Classifiers: A class of classifiers that uses the word patterns which
are most likely to be related to the different classes to model the classifier. A set of rules
are usually constructed, in which the left hand side corresponds to a word pattern, and the
right hand side corresponds to a class label. These rules are then used for the purposes of
classification.

• Decision Trees: Decision trees are designed with the use of a hierarchical division of the
underlying data space with the use of different text features. The hierarchical division of
the data space is designed in order to create class partitions which are more skewed in
terms of their class distribution.

• Bayesian (Generative) Classifiers: Bayesian classifiers attempt to build a probabilistic
classifier based on modelling the underlying word features in different classes. The idea
is to classify text based on the posterior probability of the documents belonging to the
different classes on the basis of the word presence in the documents.

• SVM Classifiers: SVM Classifiers attempt to partition the data space with the use of
linear or non–linear delineations between the different classes and determine the optimal
boundaries between different classes.

• Neural Network Classifiers: Artificial Neural Network based classifiers are related to
SVM classifiers (fall in the category of discriminative classifiers) and are in contrast with
the generative (Bayesian) classifiers (see, Jebara, 2003)

• Nearest Neighbour Classifiers: The vicinity of the instances based on the features is the
basis for this type of classifiers. We have used k–means algorithm in our research that fall
into this category of classifiers.

The general development life–cycle of any classifier starts with two very significant sub–tasks,
namely, document representation and feature selection or feature transformation. Text can
be represented in two separate ways. The first is as a bag of words, in which a document is
represented as a set of words, together with their associated frequency in the document. Such
a representation is essentially independent of the sequence of words in the collection. The
second method is to represent text directly as strings, in which each document is a sequence of
words. Like most text classification methods we also used the bag–of–words representation
in our research because of its simplicity for classification purposes. Feature selection on the
other hand, is especially important in text classification due to the high dimensionality of
text features and the existence of irrelevant (noisy) features. While Feature selection is the
process of identifying relevant features from a very large feature set, feature transformation

2.1 Information Retrieval & Text Classification 29

reduces the dimensionality of the feature set by creating a new lower dimension as a function
of the original set of features.

Generally Used Feature Selection Methods

Gini Index:

Let p1(w) . . . pk(w) be the fraction of class–label presence of the k different classes for the word w.
In other words, pi(w) is the conditional probability that a document belongs to class i, given the fact
that it contains the word w. Then, the gini–index for the word w, denoted by G(w) is defined as,

G(w) =
k

∑
i=1

pi(w)2

The value of the gini–index G(w) always lies in the range (f rac1k,1). Higher values of the G(w)
represent a greater discriminative power of the word w. For example, when all documents which
contain word w belong to a particular class, the value of G(w) is 1. On the other hand, when
documents containing word w are evenly distributed among the k different classes, the value of
G(w) is f rac1k. For a document set containing n documents, d words, and k classes, the complexity
of the information gain computation is O(n ·d ·k). This is because the computation of the term pi(w)
for all the different words and the classes requires O(n ·d · k) time.

Information Gain:

A commonly used related measure for text feature selection is information gain or entropy. Let Pi

be the global probability of class i, and pi(w) be the probability of class i, given that the document
contains the word w. Let F(w) be the fraction of the documents containing the word w. The
information gain measure I(w) for a given word w is defined as,

I(w) =
k

∑
i=1

Pi · log(Pi)+F(w) ·
k

∑
i=1

pi(w) · log(pi(w))+(1−F(w)) ·
k

∑
i=1

(1− pi(w)) · log(1− pi(w))

The greater the value of the information gain I(w), the greater the discriminatory power of the word
w. For a document set containing n documents and d words, the complexity of the information gain
computation is also O(n ·d · k).

Mutual Information:

The mutual information measure is derived from information theory (Cover and Thomas, 1991, see,),
and provides a formal way to model the mutual information between the features and the classes.
The point wise mutual information Mi(w) between the word w and the class i is defined on the basis
of the level of co–occurrence between the class i and word w. The expected co–occurrence of class
i and word w on the basis of mutual independence is given by F(w) ·Pi and the true co–occurrence

30 Classification & Information Extraction

is given by F(w) · pi(w). The mutual information is defined in terms of the ratio between these two
values.

Mi(w) = log(
F(w) · pi(w)

F(w) ·Pi
) = log(

pi(w)
Pi

)

The word w is positively correlated to the class i, when Mi(w)> 0, and negatively correlated, when
Mi(w) < 0. We can also compute the overall mutual information as a function of the mutual infor-
mation of the word w with the different classes. These are defined with the use of the average and
maximum values of Mi(w) over the different classes.

Mavg(w) =
k

∑
i=1

Pi ·Mi(w)

Mmax(w) = maxi{Mi(w)}

Either of these measures may be used in order to determine the relevance of the word w. The
second measure is particularly useful, when it is more important to determine high levels of positive
correlation of the word w with any of the classes.

χ2–Statistic:

It is a different way to compute the lack of independence between the word w and a particular class
i. Let n be the total number of documents in the collection, pi(w) be the conditional probability of
class i for documents which contain w, Pi be the global fraction of documents containing the class
i, and F(w) be the global fraction of documents which contain the word w. The χ2–statistic of w
between the word w and class i is defined as,

χ
2
i (w) =

n ·F(w)2 · (pi(w)−Pi)
2

F(w) · (1−F(w)) ·Pi · (1−Pi)

Just like the mutual information, we can compute a global χ2–statistic from the class–specific values.
We can use either the average or maximum values in order to create the composite value.

χ
2
avg(w) =

k

∑
i=1

Pi ·χ
2
i (w)

χ
2
max(w) = maxi{χ

2
i (w)}

The χ2–statistic and mutual information are different ways of measuring the the correlation between
terms and categories. One major advantage of the χ2–statistic over the mutual information measure
is that it is a normalized value, and therefore these values are more comparable across terms in the
same category.

The feature transformation methods are primarily the PCA based approach presented in §
2.1.3. For our research we used transformation rather then selection methods. Two interesting

2.2 What is IE? 31

research questions arose from the standard classification process, since the feature generation
and classification modelling are independent tasks.

• Can the feature-specific insights obtained from the intermediate results of some of the
classification algorithms be used for creating feature selection methods that can be used
more generally by other classification algorithms?

• Do the different feature selection methods work better or worse with different kinds of
classifiers?

A detail study on both the questions can be found in the article by Mladenić et al. (2004).
They demonstrated, in regard to the first query, that the feature selection derived from linear

classification provide very effective results. In regard to the second query, they presented
that the sophistication of the feature selection process itself was more important than the
specific pairing between the feature selection process and the classifier. Text classification is
a significant part of our research and this section attempted to provide a general overview of
the topic with an introduction to the general practices. We however, used a limited part of the
available methods primarily due to the specificity of our data. The next section will give an
overview of another significant research topic in the field of data science, IE.

2.2 Information Extraction

Traditionally IE is the process of identifying structured information from seemingly free
flowing unstructured text written in Natural Language (NL). Digital contents often contain
information necessary that is too hard to search directly. However, once the information is
extracted in structured (often predefined) classes, information searching becomes as simple as
running a query to search data from a database. Piskorski and Yangarber (2013) presented a
concise yet insightful definition of IE stating that “IE is an area of natural language processing
that deals with finding factual information in free text”. Factual information in this context
are structured information such as database records. The objective is to capture real–world
entity, events concerning the entities, temporal properties, locative properties etc. embedded
in digital text. They (Piskorski and Yangarber, 2013) also argued that searching for specific,
targeted factual information constitutes a large proportion of all searching activity on the part
of information consumers.

However, IE has not receive as much attention as Information Retrival (IR), even sometimes
confused with the latter, most probably due to IR’s immediate application possibilities in
e–commerce and web search applications. IR is the task to identify a set of documents from

32 Classification & Information Extraction

a collection of documents, for the relevance of it to a given query and associate a score for
the level of relevance using key–words search and other linguistic measures. The scores are
then used to rank the documents. Thus, IR systems usually return a ranked list of documents
and usually without any further information on the actual content of those documents. IE
systems are not designed to rank, rather extract the meaningful information within the text
such as events, entities or relationships to satisfy some predefined knowledge structure. The
output then can be used as it is or to infer more complex relationships (e.g. possible trend of
an event) by facilitating easier search and retrieval of structured information. In principal
IE systems are more knowledge–intensive and harder to develop than IR systems but in
practice they can be seen as complementary to each other (Piskorski and Yangarber, 2013).
IR systems often use IE systems to extract structure in a document for intelligent ranking
whereas, IE systems often use IR systems as pre-filter for a very large document set to reduce
the search space by discarding irrelevant documents.

In most cases an IE task is to identify objects of predefined classes in a specific domain
ignoring all the irrelevant text and record them in a data structure often referred to as
templates. For example, if we are interested in extracting information about company
mergers or ownership changes, we need to identify entities such as company names and
events such as merger, purchase etc. However the process begins with identifying lower
level groups in the free–text such as, tokens, words, etc. and then progressively larger
groups such as phrases (e.g. noun phrases) and sentences. The levels of complexity of
the structures increases as larger groups (e.g. syntactic dependency relations) are formed.
IE application also displays somewhat task independent and properly defined hierarchical
processing structure upto a certain level. However, it is rather common to have task–specific
components in most IE applications. Any IE system can be viewed from the light of the level
complexity its intended output contains, i.e. IE represents a set of somewhat similar and
interconnected tasks with varying level of complexity e.g. Named Entity Recognition (NER)

is far less complex a problem than Event Extraction (EE) considering EE requires some level
of NER in the first place. All these tasks together are considered the IE task family and some
of the significant tasks, relevant to this research has been explored later (see §2.4).

According to Appelt (1999) the task of any IE system, from a very generic perspective of
course, can be defined in two different forms,

• A description of the types of information the system is looking for, or

• The description of a template

2.2 What is IE? 33

The template description is basically a tabular representation of the extracted information
which consist of attribute–slots that are to be filled. The IE system will fill each instantiated
template with extracted values thus produces attribute–value pairs. The value could either
be a string directly extracted from the source text or some predefined values inferred by the
source text. However, IE is not Natural Language Understanding (NLU), since the distinct
characteristics of IE separate it from NLU or other NLP tasks (Appelt, 1999). He listed the
generic characteristics of any IE systems as follows,

• Fixed and often limited domain

• Well established and precise metrics of success

• Fixed and limited representational format

As for the first point, IE tasks are often defined for specific domains. Let us take the task
of identifying ingredients from cooking recipes. The objects of interest (i.e. ingredients)
thus are restricted to a fairly limited set of lexical items and more restricted in terms of
grammatical group in which they belong. Furthermore, the task is clearly defined for a
general and again quite restricted domain (i.e. cooking recipes8). As a result the events
described in the recipe text and the types of relations of interest available thus also be rather
limited. Finally, IE tasks have well defined, precise and objective evaluation metric, which is
an significant outcome of the historical development of the field and it will be addressed in
details later (see §2.3).

Furthermore, most IE tasks are designed to process a large amount of free–running texts,
thus the input is expected to be quite noisy (e.g. lexical and syntactic errors are expected to
be commonplace). These aspects of the source data increase the processing complexity and
processing error significantly. Consequently , IE systems are traditionally implemented with
simple finite–state methods for greater processing speed and the use of robust algorithms
to increase error–tolerance. Appelt (1999) thus justly described IE as “compromise natural
language processing”. The domain specific characteristic of IE also implies that it often
requires domain specific knowledge and it is usually provided in the form of hand–crafted
rules or by using learning algorithms in domain–relevant corpus. Before digging more into
design and practices associated with IE systems, some technical terms are needed to be
introduced and we are using the definitions provided by the National Institute of Standards

(NIST)9 at the Message Understanding Conference (MUC) IE tasks’ introduction page.

8It is worth mentioning that this particular domain do have an intriguing parallel to the specification
description domain and thus one of the test bed for the methods developed for this research

9http://www.itl.nist.gov/iaui/894.02/related_projects/muc/

34 Classification & Information Extraction

▶ Entity is an object of interest such as a person or organization

▶ Attribute is a property of an entity such as its name, alias, descriptor, or type

▶ Fact is a relationship held between two or more entities

▶ Event is an activity or occurrence of interest such as “a terrorist act”

▶ Evaluation is the assessment of performance according to agreed upon measures

IE research has been at full pace with strong application potential since 1980’s and some of
the original IE tasks (e.g. NER, Coreference Resolution (CO) etc.) even became a part of the
standard IE system architecture. However, resonating with Huttunen et al. (2002), we believe
that extracting information from free–text written in NL is and has always been a non-trivial
task due to the inherent complexity and ambiguity NLs can pose even on a limited domain.
Furthermore, a significant portion of the information might even be implicit and thus the
requirement of domain–knowledge shall be greater, even off–domain world knowledge may
be needed. Then there is the sparse nature of the information distribution, i.e. some search
spaces may not contain any information at all, some might contain very few information
and some might be saturated with the desired information. However, due to the narrower
scope of IE with respect to other NLP tasks that require deeper understanding of text, less
sophisticated linguistic analysis tools might be enough to extract relevant information thus
implies lower knowledge engineering requirement (Piskorski and Yangarber, 2013).

Piskorski and Yangarber (2013) also argued that due to the advancement of NLP specially
the development of efficient, fast, robust and high coverage shallow text processing methods
and tools allows IE systems to evade using deep linguistic analysis. It allows the emergence
of practical IE methods to be used in in real–world application, capable of analysing large
amount of data with reasonable processing time. Furthermore, many of the IE tasks are
considered to be core components of other NLP applications such as Machine Translation

(MT), Question Answering (Q&A), Text Summarization, Opinion Mining, etc. Most of the
progress can be contributed to the well defined IE task definitions, objective evaluation and
the emergence of a well established IE system architecture. An historical development of IE
is a good start towards proper understanding of this very interesting research field.

2.3 History of Information Extraction

IE has been and is a part of NLP research domain and the problems it has originally been
emerged to solve in one way or another primarily from the need for structured information

2.3 History 35

which is manageable and easily organizable than the original text that the information are
extracted from. Computational IE may be a new technology but it is far from a new idea and
one of the earliest linguistic solution for extracting information from free–flowing text was
envisioned by Zellig S. Harris (Harris, 1958). He suggested that the co-occurrence based
syntactic patterns can be used for such tasks. Although, he hypothesized that the usefulness of
this approach can be exploited on a limited number of domains10. He presented the concept
of syntactic patterns containing similar meaning i.e. “Transformations” and key information
holders i.e. “Kernels” and how they can be extracted. Thus, the kernel can be used for
direct information search. One can find works with titles like “Text searching with templates”
(Wilks, 1987) but those were new ideas and not being backed by significant computational
power to execute them (Wilks, 1997). However, what Zellig S. Harris envisioned more
than 50 years ago, is yet to be a reality regardless of the recent advances in computational
capability, IE methods and NLP technologies. The following sub–sections will attempt
provide a concise history of IE research.

2.3.1 Early Works

The generic characteristics of early IE systems were undoubtedly the use of templates as
slot–fillers and linguistically motivated rules to extract information. Some of the earlier
work has been summarized by Cowie and Lehnert (1996) and he described an IE system
presented in Sager (1981), which has been applied to highly domain–specific radiology
reports and hospital discharge summary to extract information into traditional Conference

on Data Systems Languages (CODASYL) database management system (Taylor and Frank,
1976). The system used a parsing program to obtain the syntactic relations among sentence
words (the fundamental structure of language–borne information) first described in (Sager,
1960). The system was developed under the Linguistic String Project (LSP)11 at New York
University that continued between 1960 and 2005, directed by Naomi Sager. The original
research focused primarily on the development of a large–scale computational grammar
of English (Sager, 1960), the potential application was deriving (more in the direction of
inducing) what Sager called information formats a structured table–like format which was
essentially templates. Table 2.1 is an example of a modern template.

The vision was to driving away from the abstractions of NL forms and produce a database to
extract facts and one can easily identify the IE written all over the idea. One important aspect

10The focus was scientific articles since they use a rather limited number of syntactic patterns
11Sponsored by the American Medical Association

36 Classification & Information Extraction

Table 2.1. A filled template from MUC-3 for terrorist domain (Grishman and Sundheim, 1995)

0. MESSAGE ID TST1�MUC3�0080

1. TEMPLATE ID 1

2. DATE OF INCIDENT 03 APR 90

3. TYPE OF INCIDENT KIDNAPPING

4. CATEGORY OF INCIDENT TERRORIST ACT

5. PERPETRATOR: ID OF INDIV(S) �THREE HEAVILY ARMED MEN�

6. PERPETRATOR: ID OF ORG(S) �THE EXTRADITABLES�

7. PERPETRATOR: CONFIDENCE CLAIMED OR ADMITTED: �THE EXTRADITABLES�

8. PHYSICAL TARGET: ID(S) ∗
9. PHYSICAL TARGET: TOTAL NUM ∗
10. PHYSICAL TARGET: TYPE(S) ∗
11. HUMAN TARGET: ID(S) �FEDERICO ESTRADA VELEZ� (�LIBERAL SENATOR�)

12. HUMAN TARGET: TOTAL NUM 1

13. HUMAN TARGET: TYPE(S) GOVERNMENT OFFICIAL: �FEDERICO ESTRADA VELEZ�

14. TARGET: FOREIGN NATION(S) �

15. INSTRUMENT: TYPE(S) ∗
16. LOCATION OF INCIDENT COLOMBIA: MEDELLIN (CITY)

17. EFFECT ON PHYSICAL TARGET(S) ∗
18. EFFECT ON HUMAN TARGET(S) �

of this work is that the information formats (i.e. templates) in contrast to modern idea of IE
were not predefined a priori by experts in the field. The methodology instead, given a set of
text in a sub–language domain, induces the information format by performing distributional
analysis to identify the word classes in the domain. Gaizauskas and Wilks (1997) presented
as an example that, film shows clouding, x-rays indicate metastasis, etc. allow the system to
define the following format,

[TEST | SHOW | MEDICAL FINDING]

Evaluation upto a limited capacity was also carried out by contrasting the program’s behaviour
with the results of human experts to fill in a comparable information format only from the
information in the discharge summary. However, inducing templates was abandoned through
the 1980’s and early 90’s due to the complexity and difficulty, and the use of predefined,
domain expert tailored templates had been adopted instead (Gaizauskas and Wilks, 1997).

Another long term project with the primary focus in language understanding, in particular on
story comprehension, by Roger Schank and his colleagues (Schank, 1975; Schank and Colby,
1973; Schank and Abelson, 1977) at Yale University. The work was based around the idea
that stories follow a limited set of stereotypical patterns which was referred to as script by

2.3 History 37

Schank. He proposed that knowing the scripts, not only for just stories but also for different
domains (e.g. a corporate merger, or a management succession event, or a doctor–patient
examination session all have predictable role-players and sub-events Gaizauskas and Wilks
(1997)), will allow one to make sense of a text describing an instance of such events. The
first attempt to build a computational IE system based on the idea was FRUMP, implemented
by Gerald deJong (DeJong, 1979, 1982). What Cowie and Lehnert (1996) called an attempt
to build an explicit IE system, was in fact, a general NLP system to analyze news stories
from a UPI12 news–wire feed to generate summary for the users of the system. The system is
a strong reminiscent of the modern IE systems (Patwardhan, 2010) because of its functional
structure to generate summaries is fundamentally a sort of event template filler that outputs a
single sentence summary of an event. The system was reported to identify role–fillers for
60 types of situations (Gaizauskas and Wilks, 1997). Hand–coded rules were used to fill a
data structure that deJong called sketchy script (a simplified variation of script (Cullingford,
1978; Schank and Abelson, 1977)), was used to represent events or real-world situations.
The system relied on an alternation of prediction and substantiation modules which used,
respectively, top-down, expectation-driven processing relying on predictions from the script
and bottom-up, data-driven processing based on input from the text. The work is also notable
for carrying out a reasonably extensive evaluation: six days of previously unseen news stories
were fed in real–time through FRUMP and the results classified as to whether the stories
were processed correctly, nearly correctly, wrongly, or were missed (Gaizauskas and Wilks,
1997).

As an eventuality, the first commercial IE system was developed during the 1980’s. The first
such system was deployed (to the best of our knowledge) was an automatic system to process
money transfer messages between banks, called ATRANS (Lytinen and Gershman, 1986).
ATRANS adopted Schank’s script style approach to process the input text. The script–driven
prediction was used to identify actors (e.g. originating customer, originating bank, receiving
bank, etc.) in order to fill in a pre–designed template (after human verification) to initiate
automatic money transfer. Later, the Carnegie Group developed and deployed, what they then
called fact extraction system for Reuter13 named JASPER (Andersen et al., 1992). JASPER
was designed to process company press releases from PR Newswire14 and fill in a template
designed for information about company earnings and dividends. The instantiated templates
then were used to produce potential news stories that was then validated or post–edited by

12http://www.upi.com/
13http://www.reuters.com/
14http://www.prnewswire.com/

38 Classification & Information Extraction

journalists, reducing story preparation time significantly. It extracted information from small
sentence fragments using robust NLP methods (Piskorski and Yangarber, 2013). Another
commercial system developed by GE15 during the late 1980’s was the SCISOR system
(Jacobs and Rau, 1990) which has been used in their financial decision making system called
MARS (Bonissone and Dutta, 1990) for the analysis and extract information on corporate
merger and acquisition from online news.

There are at least two significant Prolog–based IE systems were developed during this
period. The first one was developed by Silva and Dwiggins (1980) that extracts information
about satellite–flights from text. The primary object as the authors presented was to update
data with the extracted information from natural text. The other system was developed
by James Cowie (1983) to extract regularised descriptions of plants (i.e. templates) from
field–guide descriptions of plants and animals. The system segments input text into small
chunks according to focal points (e.g. pronouns, conjunction, punctuation etc.), thus evades
the necessity and consequently the complexity of parsing the text. The approach relied on a
hand–crafted domain–specific lexicon of keywords that allowed segments of source text to be
compared to the sections of the target templates. Hand-crafted rules associated to slots in the
template (properties of a plants) were then connected to the selected text and the extracted
property value.

Another significant academic project was the work by Gian Piero Zarri (1983) from the
same time period, who described a system that identifies information about relationships
and meetings of French historical personalities and extract them in the ReSeDA16 semantic
metalanguage. He describes the attempt to translate automatically French texts dealing with
biographies of historical figures of the late Middle Ages in France into the metalanguage

which captured certain semantic relations. He described that the most important characteristic
of the ReSeDA system (that encompasses the metalanguage architecture) lies in the possibility
of using inference procedures to question the database about causal relationships which may
exist between the different recorded facts, and which are not explicitly declared at the time
of data entry (Léon et al., 1982). The metalanguage itself was organized round case frames
for predicates, which can be viewed as small-scale templates: what was to be extracted were
the roles in particular historical events, such as the naming to a position of an historical
figure by a given body on a particular date at some location (Gaizauskas and Wilks, 1997).
The approach starts with syntactic analysis of the text and then performs a semantic parsing
during which lexical triggers (i.e. keywords in the domain) cause one or more case frames

15http://www.ge.com/
16http://w3.avignon.inra.fr/reseda/presentation/index.html

2.3 History 39

for the primary predicator to be invoked and instantiated using associated text using rules
associated to the case frame.

All the above systems and other early IE systems were developed using the Knowledge

Engineering (KE) (Appelt, 1999). The creation of domain knowledge in this approach is
often in the form of rules or patterns to detect and extract the target information and usually
done by a human domain experts. The patterns or the rules are usually learned by through
analysis of test corpus and up to a certain extant intuition. It is an iterative process, i.e.
starting with a small set of extraction rules which are tested on the available corpora and
extended until a desired trade-off between precision and recall is reached (Gaizauskas and
Wilks, 1997). The main difference between IE research in 1990’s and the previous decades is
the large amount of time and energy that has been spent in the later case, to collect relevant
documents, analyse them to produce templates and test corpus. However, most early IE had
serious shortcomings: they exhibited a non-modular black-box character, were mono-lingual,
were not easily adaptable to new scenarios (Piskorski and Yangarber, 2013) and often had
limited and less objective evaluation possibilities specially in terms of comparing one system
to another. They however, also demonstrate that relatively simple NLP techniques may be
sufficient enough to deal with many real world IE problems. The emergence of proper task
definition through influential evaluation campaigns shaped what has been the modern IE
research.

2.3.2 History of the Evaluation - MUC

One notable characteristic of IE research is the degree to which its research has been driven
by a series of US government–sponsored evaluations. During the mid–1980’s several projects
sponsored by the US Navy were working on IE from naval communication messages and
they felt the need to understand and compare the systems developed under these projects.
A number of these Message Understanding (MU) projects decided to work on a set of
common message and compare the performance of their respective systems by checking
the performance on previously unseen messages. This collaborative attempt was the first
of what has turned into a series of key events that modernize and shaped the field of IE
that we came to know today. Supported by Defense Advanced Research Projects Agency

(DARPA), MUCs were organized by the Naval Ocean Systems Center (NOSC). Because of
the origin the subject domain of these conferences was defence–oriented such as analysing
military messages, searching newspapers for terrorist activities etc. There has been 7 MUCs,

40 Classification & Information Extraction

between 1987 and 1998 and except for MUC–1, all provided prepared training–corpus and
templates and a structured task definition. Each participant then adapt their system to the
given scenario by using the training corpus. Shortly before the conference, participants
received a test–corpus and used their systems to fill the provided templates. The results
then were sent to the MUC organizer, which had created templates with right answer–keys
manually and used them to evaluate the performance. Grishman and Sundheim (1996)
provided a detailed summary and findings of the MUC assemblies presented in Appendix
G. The MUCs in a way forced and shaped IE technology to the modern notion of the field.
Through the process IE tasks and their goals have been defined and objective evaluation of
the tasks took shape. It specifically defines each of the subtasks that now defines IE as a
discipline, Table 2.2 summarizes the introduction of task definitions in the MUCs,

Table 2.2. Task Definition Development in The Course of The MUCs

Scenario
Template

Named
Entity

Template
Element

Co-
reference

Template
Relation

Multilingual
Entity

MUC–2 YES

MUC–3 YES

MUC–4 YES

MUC–5 YES

MUC–6 YES YES YES YES

MUC–7 YES YES YES YES YES YES

2.3.3 Other Evaluation Campaigns

The Automatic Content Extraction (ACE) Program17 (Doddington et al., 2004), organized
annually between 1999 and 2008 (except for 2006) was the next significant evaluation
campaign and in some sense an effort to further advance the MUC objectives. LDC developed
annotation guidelines, corpora and other linguistic resources for the evaluation and somewhat
in the same manner as in the late MUCs. Additional efforts were put into preparing data
for languages other than English (e.g. Chinese, Spanish, Arabic etc.). In later edition, they
also prepared data for advance tasks such as, global entity detection and recognition that
requires cross–document co-reference resolution. The ACE programme primarily defined
newer and harder tasks focusing on extracting entities, relations and events throughout the

17http://www.itl.nist.gov/iad/mig/tests/ace/

2.3 History 41

campaign. They achieved this by, including various information sources (e.g., news, web–
logs, newsgroups), using high quality input data from sources like telephone conversation
transcripts, introducing more fine-grained entity types (e.g., facilities, geo–political entities,
etc. instead of simple location), template structures and relation types, and widening the
scope of the core IE tasks. Throughout the ACE campaign 3 tasks in IE were focused on,

1. Entity Recognition: Renamed to Entity Detection and Tracking (EDT), the task not only
deals with names but also all possible mentions (e.g. nominal, pronominal etc.), thus
effectively required co-reference resolution. (see § 2.4.1 & 2.4.2)

2. Relation Recognition: Named as Relation Detection and Characterization (RDC), the
task was defined to identify and classify relations between entities. There were five general
types of relations (e.g. role, part, at, near and social), some of which had been farther
divided into subtypes thus totalling 24 types/subtypes of relations. (see § 2.4.3)

3. Event Extraction: The task was defined to extract events from a given text and only in-
cluded in the ACE since 2005 and the 2005 edition had 8 types of events with 33 subtypes.
(see § 2.4.4)

Under DARPA led Translingual Information Detection Extraction and Summarization

(TIDES)18 Programs, the LDC at the University of Pennsylvania developed annotation
guidelines, corpora and other linguistic resources for the ACE. LDC’s ACE annotators
tag broadcast transcripts, news–wire and newspaper data in English, Chinese and Arabic,
producing both training and test data for common research task evaluations. Both MUC and
ACE initiatives are of central importance to IE research, since they provided a set of corpora
that are available to the research community for the evaluation of IE systems and approaches.

Both MUC and ACE however, focused on extracting information from a single document,
and this aspect of the evaluation has been shifted with the later series of evaluation. Following
the new focus, for the classic task of NER, given a name, the extraction system is expected to
identify all the mentions and name variations in a large collection of documents. A prime
example is the Knowledge Base Population (KBP), started as a part of the Department of

Defence (DoD) supported NIST Text Analysis Conferences (TAC) from 2009. The primary
objective was to bridge the gap between IE and Q&A communities and to promote research
in discovering facts about entities and expanding a knowledge base with these facts. KBP
has been done through two separate subtasks, Entity Linking and Slot Filling: in 2010, 23
teams submitted results for one or both subtasks.

IE systems and approaches are evaluated in other evaluation campaigns with somewhat
broader target research areas. The Conference on Computational Natural Language Learning

18http://metadata.sims.berkeley.edu/GrantSupported/tides.html

42 Classification & Information Extraction

(CoNLL) has organized some shared tasks on language-independent NER. Some IE-related
tasks have been evaluated in the context of the Senseval initiative, with the original focus
of evaluating semantic analysis systems. For instance, the Web People Search (WPS) task
focused on grouping web pages referring to the same person, and extracting important
attributes for each of the persons sharing the same name.

2.4 Information Extraction Tasks

Early IE research often took the objectives of a specific problem head on, thus, the signs of
the lack of systematic and tasks independent approaches were prominent. One of the earlier
Prolog based system was developed by Silva and Dwiggins (1980) and it was found to be
rather limited in its application since the system was restricted to single sentences processing
and lacked a methodology for extracting complete event description19. However, in the
late 80’s and 90’s especially due to the MUC’s, IE sub–components are well defined and
a standard in most modern IE application. These tasks in their own rights are significantly
complex and well defined problems. This section will try to shade some light on some of the
significant tasks.

2.4.1 Named Entity Recognition (NER)

NER addresses the problem of identifying a class of predefined entities, namely person
(e.g. Mr. Crowley, John Smith, Tom etc.), place names (e.g. The Loire Valley, Paris, The
Baltic Sea etc.), Organizations (LIMSI, European Parliament etc.), temporal expressions
(e.g. 4th of July, June 22nd, 2015 etc.) and many more. Most of these classes can have
sub–classes depending on the level of granularity one sought for a specific application. It has
been introduced as a separate evaluation task during the 6th MUC (Grishman and Sundheim,
1996). Some of the sub–tasks e.g. temporal expressions has been found to be very complex a
task in itself, thus, since the ACE 2004 (Doddington et al., 2004), there has been a separate
task identified and called Temporal Expression Recognition and Normalisation (TERN).
Also known as Timex, the evaluation for this task is now evaluated in two major temporal
annotation challenges: TempEval, now TempEval–220 and i2b2.

19Multi–sentential processing is absolutely necessary for complete event extraction
20http://timeml.org/tempeval2/

2.4 IE Tasks 43

NER systems may also extract additional descriptor to fill a small–scale template for the
original class element e.g. along with extracting a name the system may also find the title,
sex, nationality etc. NER systems may also normalize the entities, especially for highly
inflective languages. For example, the name “Vygintas” has a number of possible inflected
forms in Lithuanian as listed in Table 2.3,

Table 2.3. Inflicted forms of “Vygintas” in Lithuanian

Form Case Example (LT) Translation (EN)

Vygintas Nominative Vygintas yra mano tėtis. Vygintas is my father.

Vyginto Genitive Aš esu Vyginto dukra. I am daughter of Vygintas.

Vygintui Dative Nupirkau dovanų Vygintui. I bought gifts for Vygintas.

Vygintą Accusative Aš mačiau Vygintą vakar. I saw Vygintas yesterday.

Vygintu Instrumental Aš nepasitikiu Vygintu. I do not trust Vygintas.

Vyginte Locative Vyginte yra daug blogio. There is a lot of evil in Vygintas.

Vyginte Vocative Vyginte, ateik čia! Come here, Vygintas.

It was during the development of the systems for the early MUC’s (3, 4 and 5), researchers
started to understand the significance of identifying and classifying names in text. Names
are very common in text especially in some domains such as “news” text. Originally three
classes were selected for evaluation, person, organization and location. It has since been a
rather popular task and evolved in many dimensions. One such dimension was multi-lingual
NER, originally at Multilingual Entity Task Conference (MET)21 22 23, as a part of DARPA
led TIPSTER Text Program and later in Conference on Natural Language Learning (CoNLL)

evaluation tasks (Tjong Kim Sang, 2002; Tjong Kim Sang and De Meulder, 2003). Another
important dimension being the general recognition of NER as a necessary pre–processing
step not only in IE but also in other NLP applications such as Machine Translation (MT)

and Question Answering (QA). The use of NER in Q&A also motivated the development
of fine grain NE categories and thus the NE set (Sekine and Nobata, 2004), a hierarchical
arrangement of between 100 and 200 named entity categories, came to be. Usually the
NE sets are designed for generic use (often for news domain), but many specific sets exist
for very specific domains such as biomedical domain, namely for genes and protein name
extraction tasks.

21MET-1 in 1995 for Chinese, Japanese, and Spanish
22MET-2 in 1998 for Chinese and Japanese
23http://www.itl.nist.gov/iaui/894.02/related_projects/tipster/met.htm

44 Classification & Information Extraction

NER evaluation has also been standardised due to extensive research and evaluation tasks. It
was rather complicated at the beginning since the clearest guideline can fall short considering
the complexity in NE in free-running text. Even with the three base categories ambiguous
situation such as is “Pluto” a place or is “Peter Pan” a person, can arise. Moreover, name
polysemy, names that are also places (e.g. “I’ll meet you in front of MacDonald’s”) or
places that also represent the governments (e.g. “France and Germany signed a treaty”) are
rather problematic situations. To deal with the second case the ACE 2008 Evaluation Plan
(ACE08)24 introduces a new category GPE (Geo-Political Entity) for cases like “’France” or
“Germany” and reserved location for landmarks such as “Mount Kilimanjaro”.

There is also the consideration of selecting and balancing the test and training corpora. If
these two are too similar, it gives an unfair advantage to the supervised learning systems. It
is also important to put careful consideration about the source of the text and the topic. If the
annotators are not familiar with the topic annotation will suffer as a consequence. On the
other hand it would be tough for a system to match the performance of an annotator with
strong familiarity with the topic. Nevertheless, the following schema is usually used for the
evaluation process,

Recall =
correct

correct +missing

Precision =
correct

correct + spurious

F =
2× precision× recall

precision+ recall

correct is the tags that agree in extent and type
missing is a tag in the reference corpus with no matching tag in the system output
spurious is a tag in the system output with no matching tag in the reference corpus

The original MUC evaluation had a relaxed scoring method giving partial score if the extent
is matched, even though the type is a mismatch. The CoNLL schema does not give any
partial score and considered to be the standard for modern NER evaluation scoring. The best
F-scores for four languages from the CoNLL multi–site evaluation (Tjong Kim Sang, 2002;
Tjong Kim Sang and De Meulder, 2003) is summarized in Table 2.4,

These performances have been demonstrated to plummet sharply if there is a difference in
the training and test corpus (Ciaramita and Altun, 2005). They showed that systems trained

24http://www.itl.nist.gov/iad/mig/tests/ace/2008/doc/ace08-evalplan.v1.2d.pdf

2.4 IE Tasks 45

Table 2.4. Best F-Scores from CoNLL evaluation 2002 and 2003

Languages

English Spanish Dutch German

Best F-Score 88% 81% 77% 72%

with a subset of CoNLL 200325 Reuters dataset, managed F-score upto 91% on a test corpus
from the same dataset. The score went down to 64% when tested on a Wall Street Journal
dataset.

2.4.2 Coreference Resolution (CO)

Among various definition put forward over time I found myself agreeing with Mitkov (1999)
that the classical definition by Halliday and Hasan (1976) perhaps is a fundamental yet
very solid definition of coreference. The definition is based on the notion of cohesion;
anaphora is a cohesion that points back to some previous item. The idea of pointing back
is called anaphora and the entity it refers to is called antecedent. NER is just the first step
in identifying Noun Phrases (NPs) over the span of one or more documents. In free–text
NPs can be representative of real world entities (also known as mentions or anaphoric noun
phrases) and these entities can be referred in the text as name mention or nominal mention
or pronominal mention (Luo, 2007). An example is presented in Table 2.5.

Table 2.5. Possible Mentions of Université Paris-Sud in Text

Type Examples

Name Mention
Université Paris-Sud

Université Paris XI

Nominal Mention
The university in Orsay

The university next to LIMSI

Pronominal Mention
it

that

The goal of Anaphora Resolution (AR) or, as it is also been known since the MUC initiatives,
Coreference Resolution26 (Poesio et al., 2011), is to identify all the mentions of a real world

25http://www.cnts.ua.ac.be/conll2003/ner/
26see van Deemter and Kibble (2000) for more on the difference between AR and CO

46 Classification & Information Extraction

entity in a given text (Ng, 2008). CO thus can be defined as the the task of identifying which
parts of a text refer to the same discourse entity (Poesio et al., 2011). It is rather simple in
most cases for a human given the necessary world knowledge. It however, is a rather difficult
task for a computer to do so, primarily because of the complexity associated to encode the
world knowledge and the nature of complexity this task can pose. Poesio et al. (2011) put
together a detail analysis of linguistic and psycholinguistic analysis of the anaphora and
anaphora resolution in natural language. They also put an impressive summary of early
knowledge based and later data driven computational models for CO.

Annotated corpus became abundant since the MUC conferences and ACE evaluations and
prompted the development of supervised ML approaches (Ng, 2010). Early methods, however,
similar to many NLP applications were built with hand-crafted rules and oriented towards
inference based methods 27. One of the earliest attempts to resolve anaphora by a computer
program is presented in STUDENT (Bobrow, 1964), a high-school algebra word problem
answering system. The SHRDLU system (Winograd, 1972) and the CO subsystem of the
English to French translation system by Wilks (1973) were based on similar methods. These
systems heavily relied on inference and lexical clues for the identification of coreferences.

Syntax–based methods are often used to filter unacceptable candidates rather than finding
antecedents and plays important role in knowledge–oriented CO systems. Hobbs (1976)
presented a syntax–based algorithm, now known as the “Hobbs’ Naïve Algorithm”, that
is by far the best such algorithm (Mitkov, 1999). Hobbs algorithm is based on various
syntactic constraints on pronominal constructions, which are used to search the parse–tree.
The optimal search usually ends on a probable antecedent NP for the pronoun from which
the search started. He reported that the algorithm works 88% of the time and goes upto 92%
when augmented with simple selectional constraints. He tested the algorithm on texts from
an archaeology book, an Arthur Hailey28 novel and a copy of Newsweek. Moreover, Hobbs
argued that his algorithm is computationally cheap compared to any semantic method for
pronoun resolution.

Denis and Baldridge (2007) presented that early data driven learning algorithms based on sta-
tistical approaches considered CO as a binary–classification problem, i.e. two mentions from
a text x and y have coreferential outcome can be calculated by estimating, Pc(COREF |⟨x,y⟩).
If x and y are ordered pairs, i.e. x is an antecedent preceding in the text for the anaphora
y, which is an asymmetric interpretation of the problem (Nguyen and Kim, 2008). This

27see Hirst (1981) for a detail summary of early coreference resolution systems
28http://en.wikipedia.org/wiki/Arthur_Hailey

2.4 IE Tasks 47

interpretation of CO is very similar to AR, where one tries to find the antecedent x of a
pronominal y (Clark and González Brenes, 2008). Many of the reviewed articles called it a
pairwise model (Ng, 2008; Ng and Cardie, 2002; Soon et al., 2001; Yang et al., 2003), and
furthermore, Ng (2008) summarized the later shifting of the focus in terms of methods from
pairwise models towards other directions as presented in Table 2.6,

Table 2.6. Switch in Research Direction from Pairwise Resolution

Method Reference

Rich Linguistic Features (Ji et al., 2005; Ponzetto and Strube, 2006)

Joint Learning (Daumé III and Marcu, 2005)

Joint Inference (Denis and Baldridge, 2007)

However, Ng (2008) also argued that the use of rich feature oriented methods along with
complex models for CO made these approaches heavily depend on data and thus rather
difficult even impossible to use for languages with little or no annotated data. The growing
need of multi–lingual CO leads to the development of weakly supervised approaches for
automatic processing of low–resource languages. Some of such algorithms are self–training
and co–training (Blum and Mitchell, 1998) and Expectation Maximization (EM) (Dempster
et al., 1977) that has been applied to CO (Ng and Cardie, 2003). These methods use a small
amount of annotated data with a large amount of unlabelled data and usually incrementally
augment labelled data by iteratively training a classifier to label the unlabelled data.

The other aspect of the research on CO, just like any other NLP application research is
the objective evaluation of the CO systems. Early systems were often evaluated on small
evaluation corpses and until the MUC initiative, organized large–scale evaluation with proper
task definition, were rare if not totally absent. The ACE also focused on CO evaluation
upto certain extent i.e. the participants only had to extract certain types of relations between
predefined set of entities. In contrast to MUC and ACE, the Anaphora Resolution Exercise

(ARE) (Orǎsan et al., 2008), in terms of long term goals, focuses on identifying linguistically
motivated large set of relation between many types of entities in multiple languages. There
are four separate tasks in ARE, namely,

▶ Task 1: Pronominal anaphora resolution on pre-annotated texts

▶ Task 2: Co–referential chains resolution on pre-annotated texts

▶ Task 3: Pronominal anaphora resolution on raw texts

▶ Task 4: Co–referential chains resolution on raw texts

48 Classification & Information Extraction

Tasks 1 and 2 evaluate the resolution algorithms on an almost perfect input (i.e. input in
which the entities to be resolved are known). On the other hand Tasks 3 and 4 simulate
application oriented situations where there is no guarantee that the entities to be resolved can
be correctly identified. Tasks 1 and 3 focus on pronominal anaphora resolution and require
that for each referential pronoun an antecedent is determined, whilst Tasks 2 and 4 address
the problem of coreference resolution where entities that refer to the same thing in real world
need to be clustered together.

2.4.3 Relation Extraction (RE)

The objective of the task of Relation Extraction is to recognize the assertion of a particular
relationship between two or more entities in text (Banko and Etzioni, 2008). The task is to
predict a relation from a set of predefined relations usually between a pair of entities (defined
as a binary relation). The following sentences can be examples of potential relation extraction
scenario,

Example 2.1 Munshi works at LIMSI

Example 2.2 Munshi lives in France

Example 2.3 Munshi is from Bangladesh

These are rather simple examples and each sentence is representing one binary relation, in
these cases between the entity “Munshi” and some other entity in each sentence 29. However,
there are also research in the direction of beyond binary relations i.e. more than two entities
representing a relation, also known as n–ary relations. An instance in a n–ary relation is a
list of entities {e1,e2,e3, ...en} where ei is entity type. Bach and Badaskar (2007) presented
the following example to illustrate the scenario,

“If we are interested in the ternary relation (organizer, conference, location) that relates an orga-
nizer to a conference at a particular location. For the sentence [ACL-2010 will be hosted by
CMU in Pittsburgh], the system should extract (CMU, ACL-2010, Pittsburgh).”

McDonald et al. (2005) proposed a framework for extracting 4–ary relations from biomedical
abstract text. The system uses the existing methods and systems to extract all the instances of
binary relations in the first pass. Those instances were then used to cluster the desired, more
complex relations. n-ary predictions are more complicated and considered to be a different

29In Example 2.1 the relation can be “employment-related” and between “Munshi” and “LIMSI”

2.4 IE Tasks 49

IE task all together, namely event detection is generally considered to be a n-ary RE task.
Relation detection and extraction has been introduced as separate task in MUC-730 and the
relations task covered three relations involving organizations,

▶ location_of

▶ employee_of

▶ product_of

Relation extraction was a significant part of the ACE31 evaluation, which has been described
as Relation Detection and Characterization, introduced in 2002 and revised repeatedly to
create a set of relations that can be annotated consistently. Many of the research has been
done using the task definitions from 2003, 2004 and to a lesser extent 2005. Each task
defined a set of relation types and subtypes, for example, the ACE 2004 relation task has the
following tasks and subtasks32 presented in Table 2.7,

Table 2.7. ACE Evaluation 2004 Relation Task Summary

Relation Type Subtypes

physical located, near, part–whole

personal–social business, family, other

employment/membership/subsidiary employ–executive, employ–staff, employ–undetermined,
member–of–group, partner, subsidiary, other

agent–artifact user–or–owner, inventor–or–manufacturer, other

person–org affiliation ethnic, ideology, other

GPE affiliation citizen–or–resident, based–in, other

Discourse –

However, ACE guidelines explicitly distinguish between reference and reference mention,
maintaining the distinction between entity and entity mentions (§2.4.2). Consider the sentence
“His brother came over.”, so the relation mention will record “His” and “His brother” having a
“family–type” relation. One has to look at a lookup table to extract the actual entities and will
require anaphora resolution. Moreover, ACE relation task guidelines require both arguments
of a relation to appear explicitly in a sentence, a constraint shared by many systems that has
been developed for the task. Thus, following the guidelines a relation (e.g. employ–staff
between “Munshi” and “LIMSI”) cannot be extracted from the sentence,

30http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_proceedings/overview.html
31https://www.ldc.upenn.edu/collaborations/past-projects/ace
32https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-rdc-v4.3.2.PDF

50 Classification & Information Extraction

There are 60 PhD students working at LIMSI. Munshi joined about 3 years ago.

The Text Analysis Conference – Knowledge Base Population (TAC-KBP)33 evaluations have
a sort of RE task called Entity Linking. The task is to extract a set of attributes for a named
person or organization. These attributes often have values that themselves are entities. Unlike
ACE however, the entities for a relations are not required to be explicitly mentioned in
the same sentence. Ji and Grishman (2011) reported that for about 15% of the attributes,
cross-sentence analysis is required.

The evaluation of relation extraction is rather straight forward and similar to NER (§2.4.1)
considering of course the scores depend on the corpus and the set of relation types. There
are other factors such as, entities may be hand crafted or automatically extracted. In the
case of the later, rate of error is much higher. There is also the fact that, many research
reports their results on just the type of relation extracted and not on the specific subtypes.
Specially in ACE evaluation relation and relation mention affect the result considering the
annotation of the reference data. The best system in ACE achieved f-measure of 75% using
hand–identified entities and classifying to relation type level only. performance goes down to
40% if system–produced entities are used.

2.4.4 Event Extraction (EE)

Event extraction as mentioned earlier (§2.4.3) can be considered to be a more general problem
of prediction involving arbitrary number of argument i.e. n-ary relation extraction. However,
we are not considering event extraction involving documents containing a single event (e.g.
seminar announcements) that are known to describe a known event34. There is a whole
spectrum of complexity of information structure that can be extracted from text. At one end
of this spectrum are elementary events which may take 2 or 3 primary arguments and some
optional modifiers (e.g. time, place etc.). ACE 2005 event extraction task includes 33 such
event types as listed in Table 2.8,

On the other end of that spectrum is extracting events from a document where the information
is sparsely distributed. For example, extracting information about a disease outbreak from
news article is fundamentally very different from extracting information about a conference
from the call for paper announcement. First of all in the later case it is usually one set of

33http://www.nist.gov/tac/2013/KBP/index.html
34Such an event sometimes refers to as Implicit Relation Extraction (IRE)

2.4 IE Tasks 51

Table 2.8. ACE Evaluation 2005 Event Extraction Task Summary

Event Type Subtypes

Life Be–Born, Marry, Divorce, Injure, Die

Movement Transport

Transaction Transfer–Ownership, Transfer–Money

Business Start–Org, Merge–Org, Declare–Bankruptcy, End–Org

Conflict Attack, Demonstrate

Personnel Start–Position, End–Position, Nominate, Elect

Justice Arrest–Jail, Release–Parole, Trial–Hearing, Charge–Indict, Sue, Convict, Sentence,
Fine, Execute, Extradite, Acquit, Appeal, Pardon

information par document with respect to the fact that news articles are not entirely focused
on a single event. Moreover, news articles may not contain any formal structure that can be
used to associate the information a system is trying to extract.

Summary

IE as a discipline comprise of its subtasks and these subtasks have a hierarchical dependency
structure, i.e. for coreference resolution, NER is rather important if not absolutely necessary.
Furthermore, generic IE practice adopts many of the IR and NLP methods and practices.
In the next chapter we shall present the theory of measurement, the basis for the software
size estimation theories and the state–of–the–art of automated software size estimation. We
would specifically focus on the functional size measurement and we would like to argue that
the conceptual model of functional size i.e. the data elements and their involvement in the
transaction functions can be modelled using IE framework. Data elements are essentially
files containing logical data grouping and often expressed in the requirement documents as
named entities, i.e. field names and record names. The repeated use of these elements in a
descriptive document is also a logical assumption, thus coreference resolution is not a far
fetched idea in terms of modelling necessity. Finally transaction functions are by definition
descriptions of the possible movements of the data elements, thus both relation extraction
and event extraction seem logical possibility to model transaction functions. However we are
addressing the automation problem of FPA from a higher level, i.e. identifying pages that
can be selected for their FP contents and eventually reducing reading time for FP counters.

52 Classification & Information Extraction

Like many complete IE systems we shall address the automation problem using IE and NLP
methods that are most appropriate at this level. Our objective is to address the possible
solutions for the problem from a level specific approach. Thus this chapter shall act as the
groundwork for the farther advancement and possible direction of the research. We shall
address this issue as a part of the future prospect of our research. We did not address either
IE or NLP in details, primarily because of our limited use of these disciplines. We thus
presented specific concepts and practices in brief and locally as we used them. We would
present the possible use of custom designed IE subtasks such as the template development
and Template Element extraction from a theoretical point of view not to stray too far from the
core objectives of our research. These tasks will heavily depend on the concepts that shall
be presented in the next chapter, especially the generic model of functional size estimation
model.

Chapter 3

Estimating Software Size

Measurement, especially precise and accurate measurement is a necessary requirement for
human activities and to a greater extent, in the scientific methods. For example, knowing
the approximate volume of a room can be a useful for a financial query such as, ‘‘what is

the cost of heating the room” but more precision for the same measurement is absolutely
necessary for a scientific query such as, “how many oxygen molecules are there in that

room”. Scientific study of Software Development is not an exception in this aspect, thus
accurate measurement of software size is an intriguing problem for both researchers and
software development companies. One can even argue that the ability to measure software
size in advance (i.e. estimating the size before development) can be the most valuable
resource for large software development companies in terms of controlling resources for
a large project. The following sections will provide an overview of the general principals
of measurement, available measurements for software, functional size measurement and
the state–of–the–art of automatic software size measurement. For the clarity from now on
software size measurement will be referred to as software size estimation or simply size
estimation, considering the fact that unlike the concept of measurement of most physical
object, software size is a conceptual estimation rather than a hard physically measurable
quantity.

3.1 Measurement

Measurement is a key component in most if not all systems that govern our lives. For
example, the ability to measure the passage of time allows us to wakeup on time (using an

54 Estimating Software Size

alarm perhaps) and the ability to measure distance along with time kipping allow us to drive
our vehicles safely (e.g. knowing the velocity at any point of time and thus we can maintain
speed limit), and on the same note, the ability to measure numerous properties of nature
is a prerequisite to have that engine running in the first place. Every aspect of our lives is
influenced by the concept of measurement in one way or another. Measurement is not only
for the professionals in the field of science and technology, everyone uses it everyday, e,g,
price is just one measurement assigned to goods that is being sold which, also allows the
shopkeeper to keep track of sales and more importantly state of ones business in terms of
profit and loss. Looking closely at it one may argue that the concept of measurement allows
us to understand our world, interact with it and improve our lives.

3.1.1 What Is Measurement?

The concept of measurement can be seen as a means of quantify or qualify attributes of things
that allows us to compare and contrast by the means of some predefined rule. We compare
prices of items in a store, contrast the size of cloths (e.g. size Large, Medium, or Small) etc.
An informal definition of measurement can be,

Measurement is the process by which numbers or symbols are assigned to
attributes of entities in the real world in such a way as to describe them according
to clearly defined rules. – Fenton and Pfleeger (1997)

Measurements provide us information about attributes of entities. Entities can be a real world
object (e.g. a table, a car, a human being etc.) or an event (e.g. a journey, coding phase of a
software etc.). We identify entities by their characteristics that help us identify the similarity
or difference with other entities. These characteristics can be called the attributes. such as
length of a table, or the colour of a car, or duration of a journey. The conventional usage of an
entity and its attributes are often interchangeable. Temperature for example, is an attribute of
a physical body or a large geographical region at a specific moment in time, on the other hand
hot or cold are qualitative values assigned to infer contrast about temperature. However, it is
more often than not that we use phrases like “It is rather hot today”, which actually implies
that the temperature of the geographic region where the utterance occurred is higher than
average human body temperature. These somewhat relaxed use of the terminologies does
not effect our day to day activities, nevertheless, is an incorrect use of the notion. Especially
from the scientific point of view the improper use of such notions are actually unacceptable.

3.1 Measurement 55

Another way of looking at measurement is that, it is the process of assigning numbers or
symbols to a real world entity that provide information, useful for comparison and/or contrast.
However, this is a rather subjective notion of measurement by employing layers of abstraction
that reflects our world view. These assignments of numbers and symbols are not random,
we assign them to reflect some comparative and/or contrastive relationships as we perceive
them. For example, we use measurements like tall or, medium or, short to express the height
of a person. It allows us to make contrast among the height of different people. Lets say a
person who has been described to be 7 feet tall, allows us to somewhat perceive that person’s
physical appearance by comparing his height with respect to our own, even without seeing
him. Unfortunately, we may have a very similar if not the same perception about a person
who has been described to be 7 feet 3 inches tall. Thus, measurement is far from an objective
and clearly defined concept, so, the most basic measures such as length can easily be debated
over and throughout our history it actually has been. The solution is to better understand the
science of measurement, just as measurement itself is a reflection of our understanding of the
attributes of an entity.

3.1.2 The Science of Measurement

Measurement is the first step that leads to control and eventually to improvement.
If you can’t measure something, you can’t understand it. If you can’t understand
it, you can’t control it. If you can’t control it, you can’t improve it.

– H.James Harrington, in CIO – Sep 1999

Science as a discipline attempts to find ways to measure attributes that are significant to
our needs and allow us to make the associated concepts more understandable and thus
controllable. If we have a way to measure an attribute already, the objective of science is
to improve the measurement in terms of quality, accuracy etc. Measurements have been an
important focus in all fields of science and technology and over time we have learned to
measure things that have been previously unmeasurable. For example, air quality, or human
intelligence, or in our case the size of a software. Although these measurements are not
as precise as we would like them to be. At this point, we would like to establish a clear
distinction between measurement and calculation, measurement is a direct quantification of
an attribute e.g. the length of a table or the weight of a box, whereas calculation is inferred
from the measurement we can take, e.g. energy cost for a room is calculated from the volume
and estimated cost of heating per volume etc. Furthermore, some complex calculations may

56 Estimating Software Size

require some other calculation first, for example, calculating energy rating for a house or an
apartment requires the calculation of the surface area, volume, energy loss etc. first.

We measure attributes of entities on a daily basis, we use tools and principals that we take for
granted without any concern for the scientific principals behind these measurements. For
example, we measure temperature and with passing time ever so precisely, but the principals
were understood and refined slowly in many steps over time. As our understanding improves
we have developed the frameworks to describe temperature and tools to perform the actual
measurement. People had the notion of hotter or colder long time ago, long before our
understanding of the concept of temperature. However, only in 1593, Galileo Galilei started
the modern development process of measurement of temperature (Middleton, 1966) and it
is only in 1854 the modern notion of Absolute Scale of temperature was developed. Thus
measurement seems to evolve over time, with a strong co–relation to our understanding of
the attribute of the entity it is associated with. Weight and distance are most probably the
two basic measurements humans developed at a very early stage in our history. It started
with the most obvious means, body parts and our natural surroundings; early Babylonian and
Egyptian records indicate that length was first measured with the forearm, hand, or finger and
time was measured by the periods of the sun, moon, and other observable heavenly bodies
(National Institute of Standards and Technology, 1991). As our scientific understanding
evolved, in particular, development of number systems and understanding of mathematics,
the measurements become more complex and allow us to develop measurement units suited
for various needs. Only in 1790, the French Academy of Sciences, on request of the National
Assembly of France started developing the metric system as we know it today. They assign
the name meter for decimal based length measurement unit. However, it evolved towards
more universal standard for this measurement, since 1983, it has been defined as “the length
of the path travelled by light in vacuum during a time interval of 1

/
299,792,458 of a

second”. (MacKay and Oldford, 2000).

Formal measurement theory was developed as a discipline from the physical science to
answer questions like, how much knowledge about an attribute is needed before measuring
it or what meaningful statements can be made about an attribute and the entity through
the measurement etc. We shall be discussing the representative theory of measurement in
this section, i.e. choosing a set of rules to measure consistently and establishing a basis to
interpret the data that is representative of our observations in the real world. The measurement
data is expected to reflect our world view in a way that the manipulation of the data should
be able to preserve the observed relationship among entities. We perceive real world by

3.1 Measurement 57

comparison and contrast rather than assigning numbers to things, i.e. through empirical

relations that allow us to compare and contrast. For example, longer than is an empirical
relation, given that for the entity pair {x, y} we can observe in real world either x is longer

than y or y is longer than x. Although it qualifies our previous analysis that, a relation
as such cannot clearly compare two entities that are very close in length. Furthermore, a
relation does not need to be binary, it can be unary as in x is long, although, it is far less
informative than the longer than relation. Thus we can think of the process of measurement
as a mapping process between the empirically observable relations to formal mathematical
notations e.g. assign a numerical value to the length of different entities. The mapping is
done in a manner so that the set of entities mapped to a set of assigned values maintain the
empirical relations existed before the mapping process. Thus, in the case of x is longer than

y, x will be assigned a value that be greater than the value assigned to y. This behaviour is
called the representation condition, formally it states that for the empirical relation longer

than mapped into mathematical relation “>”, the measurement mapping M must map entities
to numbers in such a way that empirical relations are preserved by the numerical relation so
that x is longer than y if and only if M(x)> M(y). Now we can resonate with Fenton and
Pfleeger (1997) to formally define measurement as,

Measurement is a mapping from empirical world to the formal relational world.
Consequently, a measure is a number or value assigned to an entity by this
mapping in order to characterize an attribute. – Fenton and Pfleeger (1997)

However, sometimes it is difficult to have consent on empirical relations, especially if
personal preference is a part of the empirical reasoning, e.g. ratings of wine. This is a
part of human nature when it comes to establish clear cut empirical relation (John Locke

in his An Essay Concerning Human Understanding emphasized this exact issue in 1690).
Nevertheless, in terms of measurement theory, these types of subjective assessments are not
necessarily measures rather they establish the basis for empirical reasoning and property
characterization so that formal measurement can be possible in the future. In formal terms,
real world is the domain and the mathematical world is the range in the mapping scenario ,
thus a mapping must define the domain, the range and the rules of the mapping. The process
also involves developing a model to formulate measurements. Models are abstractions of
reality, that allows us to strip details from an entity and assess it from the desired perspective.
For example, to measure the height of a person, one must specify, if shoes are allowed for the
measurement, or should we measure the height of the hair, thus we are defining the model

58 Estimating Software Size

of a person rather then the person as the entity being measured. The model also need to
supplement the mapping domain, i.e. how the model relates to its attributes.

In most of our earlier examples the measurements were direct measurements, i.e. when the
measurement does not involve any other attribute or entity e.g. length, height etc. In contrast
indirect measurement can only be performed in terms of other attributes e.g. speed of a
moving object can be measures only in terms of the time and distance measure. Many of
the obvious direct measurements are in fact indirect measurements, e.g. when we measure
temperature using a thermometer, we basically measure the height of the bar of mercury in
the thermometer and get the associate temperature. The model oriented measurement process
helps us understand what happened in the past and what exists now, however, it also allows
us to predict what might happen in the future, thus these models are also considered to be
predictive models. In many occasions the model of empirical relations between entities can
be used to establish the possible measure for a set of given parameter and can be very useful
for our understanding. The distinction between measurement for assessment and prediction
is not clear all the time, if we use a globe to measure the distance between two points, it is a
model based assessment of the distance. Nevertheless, this indirect measure can be used to
predict the cost for a future travel.

Measurement for prediction requires some mathematical model that bridges the prediction to
attributes that can already measure. As in the previous example, sometimes we can use the
assessment model somewhat directly for prediction, although, usually the prediction model
also depends on other model parameters. Predictions are based on some other assessment
and the accuracy of the assessment often dictates the outcome of the prediction. It is also
rather common to use a probabilistic model with the assessments as the model parameters
or prediction map’s domain thus introduces risk or level of confidence in the prediction
process. The downside of probabilistic model is that, often these modes are data driven and
based on some underlying distribution (e.g. Gaussian, or Poisson etc.) in the data, thus if
that distribution is altered during the usage of the model, the prediction will less likely be
accurate.

3.1.3 Measurement Scales

The primary purpose of performing a mapping between empirical relations and numerical
domain is to ease the manipulation of data in a manner that is well established (i.e. math-
ematical principals) and well understood and use the results to draw conclusions about

3.1 Measurement 59

attributes in the empirical system. For example, we measure the air temperature for a day
and conclude whether it is a hotter day than the day before, thus the numbers tell us about
the characteristic of air maintaining the parallel with the empirical observation. However,
there can be different possible valid mappings and they pose different levels of restrictions
on the kind of analysis we can perform. These differences can be well understood through
the notion of a measurement scale, then we can use scales to determine the appropriate
analysis. Measurement scale thus can be the combination of the mapping and the empirical
and numerical relation systems, although, when the relation system (i.e. the domain and
the range) is obvious we can refer to the scale by the mapping alone. (Fenton and Pfleeger,
1997) argued that an established representation and scales should try to answer the following
questions,

1. How we determine that one numerical system is preferable over another?

2. How we understand if a particular empirical relation system has a representation in a given
numerical relation system?

3. What to do when we have several possible representation (i.e. many possible scales) in the
same numerical relation system?

Relation systems need not be numerical, symbolic representation can be valuable as well.
Thus, answering the first question, numerical representations (especially real numbers)
are preferable primarily because of the ease in manipulation and our understanding of the
manipulation techniques. The second question is rather theoretical and in this section we
are more interested in the third question, i.e. determining the most suitable representation
for measuring an attribute of interest. Number of relation in a system and the number of
possible representations are inversely related and this notion can be understood through a
formal characterization of the types of scales.

Moreover, one relation system is richer than the other if all the empirical relations in the
second are contained within the first, and the richer the empirical relation system, the more
restrictive the representation system will be. Length measurement is a perfect example, we
can measure length in inch scale (British imperial system) and there are equally acceptable
measure in feet, meters, miles etc. The mapping between acceptable relations are known as
admissible transformations and the restrictive the set of admissible transformations, the more
sophisticated the measurement scale is considered to be. In the case of length measurement,
the set of admissible transformations are very limited, as a matter of fact there is only one
possible transformation, M′ = aM, where a is a constant thus, the length measurement is
rather sophisticated measurement scale. We have listed the types of scales ordered by the
level increased richness below,

60 Estimating Software Size

1. Nominal Scale

2. Ordinal Scale

3. Interval Scale

4. Ratio Scale

5. Absolute Scale

The detail description of these scale types can be found in Appendix B along with the notion
of meaningfullness associated with each of the scale types. Scale types are defined with
respect to the set of admissible transformation, however, it is misleading to give an example
of an attribute without specifying the empirical relation system. Table 3.1 presented the basis
on which each of the the empirical relation systems is refined to be categorized to be an
example of a scale type.

Table 3.1. Scales of Measurement Summary

Type Admissible Transformation Examples

Nominal One–to–one mapping from M to M′ Entity classes

Ordinal Monotonic increasing function i.e.
M(x)≥M(y) implies M′(x)≥M′(y) Preference, air quality, intelligence tests

Interval M′ = aM+b(a > 0) Relative time, temperature (Fahrenheit and
Celsius)

Ratio M′ = aM(a > 0) Time interval, length, temperature (Kelvin)

Absolute M′ = M Counting entities

3.1.4 Meaningful Measurements

Establishing scale types allows us to determine the meaningfulness of different statement
that can be made about the measurement of an attribute of an entity. It has already been
established that computing ratio with nominal, ordinal or interval scales, although the use of
real numbers often seem tempting to manipulate them in a familiar manner i.e. averaging,
addition or even statistical analysis. The knowledge and understanding of the scale type
allow us to perform the proper analysis and deduce meaningful statements about the attribute
of the entity that has been measured. It is important to understand that the meaningfulness
of a statement involving measurement is quite distinct from the notion of the statements
truth, For example, the statement “My father is 500 years old” is nevertheless a meaningful

3.1 Measurement 61

statement about the measurement of age however from a factual point of view it is clearly
untrue. Thus formally the meaningfulness can be described as, a statement is meaningful if
the truth value is invariant of transformations of allowable scales. the following examples
will try to shade some light on the meaningfulness,

“x” is twice as tall as “y”

This statement implies that the measures are at least on a ratio scale, since scaler multiplication

is required for an admissible transformation. This statement is meaningful because all possible

measures of height (e.g. inch, feet, centimetre etc.) have no effect on the truthfulness of the

statement. Formally, if M amd M′ are two different measures of length, both M(x) = 2×M(y)

and M′(x) = 2×M′(y) are either true or false and this consistency is due to the relationship

M = aM′ for a > 0.

Temperature of Paris is twice as that of Oslo today

This statement also implies ratio scale but not meaningful in Celsius or Fahrenheit scale, however,

it will make clear sense in Kelvin scale. Thus the meaningfulness of this statement depends on

the scale being used and how much information we originally intended to convey.

The temperature difference between Paris and Oslo today is twice as that of yesterday

This statement implies that the difference between temperature for two different days are mean-

ingful and a part of the conditions for interval scale or any other scale of higher information

content. Let us consider, yesterday’s temperature of Paris and Oslo was respectively 15°C and

10°C so the difference is 5°C. In accordance to the statement let us assume today’s temperature

was 20°C and 5°C respectively i.e. the difference is now 10°C, just twice as yesterday. It is

meaningful for any interval scale for temperature e.g. Fahrenheit scale. However, the statement

is not true for the same temperature in Kelvin scale, although the information content is higher.

Meaning lies within the interpretation of the total scenario i.e. measurement scale, its level
of information content and nevertheless intention for measurement. Meaningfulness is often
clear when the measure is familiar, however, if we have to define a new measurement it is not
always clear. For example, carbon–dating technique to measure the age of fossils may not
seem an obvious way to do so, or practical, or even easy, but the measures are certainly valid
and meaningful. Meaningfulness thus, should be viewed as one of the attribute of a measure.

There is also the perception of measurement that affects the meaningfulness namely sub-
jective and objective measurement. It is commonly accepted and understandable, the need

62 Estimating Software Size

of objective measurement, however, subjective measurement is sometimes informative es-
pecially when objective measurement is not a practical possibility. For example, if one
wants to establish a measurement for the quality of wine, the objective measures based on
perhaps multiple attributes of a wine can understandably equal if not less informative than
the subjective measure of quality ranking made by wine experts. It is a common practice
to ask the experts to comment or assign ranks to different properties of the wine, although
subjective, they are capable of providing valuable information about a wine. As long as we
treat a subjective measure with the consideration of its subjective nature, many complex
measurement can be made with a certain degree of confidence with them.

3.1.5 Indirect and Extended Number Measurement

In many situations it is not possible to measure an attribute directly (software size estimation
can be a good example), thus many of our very common measurements are either indirect
or force us to use extended number based measurement. Let us consider an optimization
problem (Fenton and Pfleeger, 1997) presented in Table 3.2,

Table 3.2. Transportation Quality Assessment

Transportation Journey Time
(Hours) Cost Per KM (Euros)

Car 3 1.5

Train 5 2.0

Aeroplane 3.5 3.5

Executive Coach 7 4.0

Let us try to assess the quality of transportation from the data to travel from one city to
another. In the given scenario quality has two sub–attributes, journey time and cost per KM.
The question we are trying to answer is, given two transportations A and B, how to rank A is
of higher quality than B. We can establish a simple rule to make the statement “A is better

than B” when,

journey_time(A)< journey_time(B) AND cost_per_km(A)< cost_per_km(B)

We can depict the quality relations between different transportations using the aforementioned
rule as presented in Figure 3.1. Each outgoing arrow from entity B to entity A represents

3.1 Measurement 63

the higher quality of A over B. For example, in Figure 3.1 all the other transportation is
better that coach and car is better that all the other transportation. However, train and plane

are not comparable with this rule. We need more information, under the condition some
subjective measure, such as, whether we prefer speed over cost or the other way round to
make conclusive analysis.

Fig. 3.1. The Quality relation Between Different Transportation

Car

Train

Coach

Plane

We can easily prove that we cannot convert this measurement into a single–valued real
number measure. If we want to map the quality of plane and train into real number through
the maps m(plane) and m(train) respectively, it must satisfy one of the followings,

1. m(plane)< m(train)

2. m(plane)> m(train)

3. m(plane) = m(train)

The first statement proves that cost is the decisive factor, and time is for statement two.
However there is no way to establish statement three. The reason we cannot find a measure
because for a real incompatibility we have partial order thus we cannot map the relation to a
set of real numbers ℜ. What we need instead is a mapping into a pair of real numbers, i.e.
in a set of ℜ×ℜ. We can define the mapping, m(transport) = (journy_time,cost_per_km)

e.g. m(car) = (3,1.5) or m(train) = (5,2). The relation now can be defined as follows and
this numerical relation preserves the empirical relation and it is a partial ordered value in
ℜ×ℜ, since it contains incomparable pairs.

(x,y) superior to (x′,y′) if x < x′ and y < y′

On the other hand, indirect measurements establish a single valued outcome using multiple
directly measurable components i.e. sub–attributes, which can eventually be used for other
indirect measurements. Indirect measurement must also abide by the same basic principles
of measurement theory that we use for direct measurements. Thus, indirect measurements

64 Estimating Software Size

are bound by the restrictions of scale types i.e the admissible transformations. For indirect
measurement let us define admissible transformation as a rescaling. Formally, for the indirect
measure M we measure n sub–attributes M1,M2, . . . ,Mn i.e. M = f (M1,M2, . . . ,Mn) for
some function f . We can call M′ a rescaling of M if there are rescaling of M′

1,M
′
2, . . . ,M

′
n for

M1,M2, . . . ,Mn respectively, so that M′ = f (M′
1,M

′
2, . . . ,M

′
n). For example,

The measure for density d is an indirect measure of mass m and volume V , the relation is expressed
in the form,

d = m
/

V

So, every rescaling of d is in the form d′ = αd for α > 0. We have to demonstrate two things:
function of this form is rescaling, and all the rescaling are of this form. For the first part, we have to
find rescaling m′ and V ′ for m and V , respectively such that αd = m′/V ′. Since, both m and V are
in ratio scale, so αm and V are acceptable rescaling of m and V respectively since,

αd = α

(m
V

)
=

αm
V

Thus, we have rescaling. For the second point, since m and V are ratio scale measures, every
rescaling of m and V must be in the form of α1m for some α1 and α2V for some α2. Therefore, the
rescaling of d has the form,

α1m
α2V

=
α1

α2

(m
V

)
=

α1

α2
d = αd . . .(where α =

α1

α2
)

The scale type for indirect measure is defined exactly the same way for direct scale. In case
of the mixed scale type present in the sub–attributes’ scale types, the indirect measure will
generally not be stronger than the weakest scale in the mix, e.g. if a mix contains ratio,
interval and nominal type, the resultant scale will be at best nominal. In the next section we
focus on different measurement possibilities for software size that is intrinsically related to
the notions of measurement presented above.

3.2 Software Size Estimation

Estimating the software size before and during the development process is becoming a
fundamental requirement in the ever–growing modern software development industry. It
has been used as a valuable tool to keep track of development cost, effort distribution and
productivity, especially for large scale development projects. Furthermore, measuring the
size of a software at different stages, starting from the earliest possible specification can

3.2 Software Size Estimation 65

provides a comparative benchmark of the projects progress and evolution. Thus reasoning
dictates that the earlier a stage the size measure is taken the more valuable it can be to the
overall development planning. We would like to establish the scope of this work that it
is pertaining software size estimation and not cost or effort estimation. The cost or effort
calculation is the subject to a whole separate brunch of research on their own rights and use
the estimated software size as primary input (independent of the origin of the size in terms of
the type of metric being used to obtain it).

We would like to further extend that the scope of the research that it is our objective to
investigate metrics, regarding the size of a software, often classified to be a subset of Product

Metrics. Product metrics relate directly to the result of a software development process.
Important features of the product that are often measured include (although not exclusively):
size, quality, user requirements, product growth, and user comfort (Bundschuh and Dekkers,
2008, pp. 208). Many of the software measurement related literature considered McCabe’s

Cyclomatic Complexity (McCabe, 1976) to be coherent to the topic of size measurement.
However, in our humble opinion although complexity measure is considered to be a product
metric, it is rather loosely related to estimating the size. The metric is better known for
complexity analysis of a system and further detail can be found in the work of Madi et al.
(2013).

Among the different metrics presented in the following subsections, the more implicative
metrics are the source line and functional size based metrics. In relation to the previous
theoretical discussion about the different measurement scales, both these metrics were
developed with the goal of conveying maximum amount of information, i.e. absolute scale.
At the size estimation level at least, they are often used to justify statistical meaningfulness
of the measures. Thus, it is logical to assume that there exit a linear relation between a source
based estimation (S) and functional estimation (F) in the form S = aF , Albrecht and Gaffney
(1983) and later Gencel and Demirors (2008) addressed this issue in details. In the following
subsections, different types of software size metrics will be presented in details.

3.2.1 Source Line of Code

Source Line of Code (SLOC) most probably is the oldest and rather obvious means to measure
the size of a software since, all software eventually end up being lines of code. During the
early days of computer programming, while using punch cards to provide the codes to a
computer system, it was the intuitive way to measure the size of a software. In the early

66 Estimating Software Size

days it was also the most reasonable since, most of the effort and cost used to be spent on
programming since the dominant programming language was Assembly. However, once the
higher level languages (e.g. FORTRAN, ALGOL 58, COBOL, PL/1 etc. during the 60’s)
started to emerge and becoming the dominant development environment, the primary effort
started to shift towards specification and algorithm design. Although, it seems obvious how
the size estimation with SLOC works, it actually is more complicated. There are many ways
to measure the SLOC, e.g. one can measure all the lines with blanks, comments etc. or one
may count only the significant lines i.e. no comment or blank lines. The later is often referred
to as Effective Source Line of Code (ESLOC). Regardless of the inherent weaknesses (see
(Jones, 1978)), it is widely used in many cost estimation models e.g. Boehm et al. (2000)
adapted this framework to use in the popular COCOMO model. The primary reason for this
is that SLOC has been shown to have strong correlation with the software cost; thus, they are
relevant inputs for software size estimation models Boehm (1981); Boehm et al. (2000).

The most significant shortcoming of SLOC being lack of standardized counting guideline.
Over the year researchers attempted to establish guidelines for the ESLOC, since raw SLOC
is well established and less useful. (Boehm et al., 2000) in his COCOMO book presented
a definition of Delivered Source Instructions (DSI) or Delivered Source Lines of Code

(DSLOC) to be used as the size parameter for COCOMO model. The IEEE standard for Soft-

ware Productivity Metrics1 also provided definitions and attributes for SLOC sizing metrics.
(Park, 1992) along with the Size Subgroup of the Software Metrics Definition Working Group

and the Software Process Measurement Project Team of the Software Engineering Institute

(SEI) at Carnegie Mellon University extended the SLOC metrics into a counting framework
known as the SEI framework. It contains a set of counting definitions and a check–list to
use the guideline so that there could be a well defined, consistent and repeatable SLOC
measurement. Although, due to the focus on what to count rather than when and how many,
it caused multiple interpretation and ambiguity in the counting tools development from this
framework.

Nguyen et al. (2007) presented Table 3.3 in argument of the necessity of proper definition
and guideline for counting SLOC. Jones (2004) listed that there were at least 75 commercial
software cost estimating tools exist on the market at the time of his research and at least
20 SLOC counting application. As demonstrated in Table 3.3, they tend to produce quite
different logical SLOC counts especially if the project is long. Nguyen et al. (2007) also made
the observation that the ratio also varies due to the programming practices and programming

11045–1992: IEEE Standard for Software Productivity Metrics

3.2 Software Size Estimation 67

Table 3.3. SLOC Counts of Large Files From Open Source Products

Products Physical
CodeCount™a RSMb LocMetrics

Logical Ratio Logical Ratio Logical Ratio

OpenWBEM 14,000 7,100 1.97 4,700 2.98 6,600 2.12

FlightGear 14,000 10,800 1.30 7,600 1.84 9,900 1.41

wxWidgets 50,300 30,700 1.64 21,300 2.36 27,300 1.84

aCenter for Systems and Software Engineering, University of Southern California
bM Squared TechnologiesLLC

style. However, SLOC is not without its merits, First and foremost as mentioned earlier,
since it can be very organized given a standard counting method, SLOC based metrics can be
easily and consistently measured using software tools. The basic model definition presented
in Putnam (1978a) is as follows,

Based on the Putnam (1978b) model, the SLOC count is made for each part of a software
system after breaking it down to smaller and more manageable sections or pieces. Putnam
(1978a) presented that there are three distinct estimate for each part, a (Smallest possible
SLOC), m (Most likely SLOC), and b (Largest possible SLOC). The estimated SLOC count
for each part Ei is calculated using the following formula,

Ei =
a+4m+b

6

The expected SLOC for the whole system with n parts thus be,

E =
n

∑
i=1

Ei

The estimate of the Standard Deviation of each of the estimates Ei can be obtained by getting
the range in which 99% of the estimated values are likely to occur, i.e.

SDi =
|b−a|

6

Once SLOC is estimated, it can be used in a cost model to estimate the possible cost of the
software. (Putnam, 1978a) presented that along with the SLOC count in thousand SLOC’s or

http://sunset.usc.edu/ucc_wp/
http://msquaredtechnologies.com/
http://www.locmetrics.com/
http://openwbem.sourceforge.net/
http://www.flightgear.org/
https://www.wxwidgets.org/

68 Estimating Software Size

KLOC, three other variables are needed, α (the marginal cost per KLOC), β (an exponent
of the KLOC), and γ (the additional fixed cost of the project). Thus, the estimated cost is
calculated by the following formula,

CostEsitmate = α ×KLOCβ + γ

This is just the fundamental overview of the SLOC based size and cost estimation. Each
model uses its own rational and formulas to estimate these and other possible measurements.
Nevertheless, the downside to the metrics based on SLOC for large projects is that it is only
viable once the coding is completed, although, for cost estimation, effort estimation and
other project management tasks, estimating the size at earlier stages of development is more
valuable. Moreover, programming style and programming language may not have much
effect on the raw SLOC count but as shown in Table 3.3, it heavily affects the logical SLOC
count which is the basis for most SLOC based estimation metrics. SLOC is still effectively
being used in many of the popular software measurement metrics and the tools based on
them.

3.2.2 The Theory of Software Science

Maurice Howard Halstead in his 1977 monograph Elements of Software Science (Halstead,
1977) attempted to describe the empirical science of software development. According to
his theory a computer program is considered in Software Science to be a series of tokens
which can be classified as either operators or operands and he attempted to establish a metric
to quantify complexity directly from them. The metric is considers to be one of the oldest
metric that measure software size from the source code i.e. complexity was defined as a
function of the operators and operands. The metric is based on four absolute scale measures,

1. n1 : number of unique operators

2. n2 : number of unique operands

3. N1 : number of total operators

4. N2 : number of total operands

Using these basic elements, the metric is defined to calculate a set of measures relevant to
software size and complexity estimation process. Resonating with Shen et al. (1983), we

3.2 Software Size Estimation 69

believe that Halstead (although he had never stated explicitly) conceptualized his mode of
software as the collection of a programmer’s thought process to manipulate an unique set
of operators and operands. These basic assumptions later led Halstead to hypothesize a
complete metric. In Appendix C we presented the metric in details along with the criticism
faced by it from the scientific community.

3.2.3 ABC Metric

Jerry Fitzpatrick (1997) introduces this metric in an attempt to overcome the shortcomings of
SLOC and other similar metrics. He theorized that high level languages (e.g. C, PASCAL
etc.) have three fundamental operations, storage or Assignments for explicit transfer of data
to a storage location i.e. variables, Branching for forwarding program branches out of current
scope and Conditions for a logical test. These ABC values are represented as ordered triplet
of integers i.e. ABC = ⟨a,b,c⟩, where a, b and c are assignment, branching and condition
counts respectively for a given code segment. He provided the following formula to calculate
the single valued representation of the software size,

|ABC|=
√

a2 +b2 + c2

The generic condition and reflections of the resulting value has been explained by Fitzpatrick
(1997) as, it is the best when for a single module the value is less than or equal to 10 and
upto 20 it is acceptable. If however, the value is between 21 and 60 some re–factoring is
required and it become unacceptable when it is greater than 61. The metric is very easy to
calculate in a automatic manner and since it uses the logical structure of a program, it is
virtually independent of the programming style of a programmer. Moreover, it can easily be
applied at different segmentation level of a program i.e. it can be applied for a subroutine, or
a package, or a class definition etc.

On the downside, the metric reflects the working size of a program rather than the actual
length of a program i.e. equal size programs in terms of ABC metric may vary in actual size
depending on the expressiveness of the programming language used to code. Moreover, it
may give a zero value for a program not performing any of the A, B or C operations regardless
of the fact that it is performing something e.g. if a piece of code is just printing some
messages on the screen. ABC metric is not very widely adopted for size measurement in the
software development community.The other significant attempt to overcome the weaknesses

70 Estimating Software Size

of the SLOC based metrics is the functional size measurement and we shall present it in the
following subsection.

3.3 Functional Size Estimation

Function Point Analysis (FPA) was proposed by Allan Albrecht of IBM in 1979 (Albrecht,
1979) for functional size estimation as an alternative to the SLOC based methods. This
method measures the size of a software by quantifying the functionality of a software that are
meaningful to the software users. Originally, investigated as a means to measure software
development productivity, it eventually became an effective means for software size estimator.
The most lucrative aspect is the possibility of applying this method across a wide range of
development environments and at any stage of the life-cycle of a development project, from
early requirements definition to full operational use. However, even today, identification
of Function Points (FP) from early stage specification documents, is still almost entirely
a manual effort, slow, and time consuming, especially for large projects. Moreover, large
organizations either have to maintain experienced personnel dedicated for the function point
counting or acquire the expensive services of the organizations dedicated to the task. The
counting accuracy also depends on the size of project base maintained by the counting body
(Kemerer, 1993). In summary, the manual counting process suffers significantly from speed
and consistency due to the lack of automation.

The metric was originally developed as an alternative to SLOC as the entry point to measure
productivity at the later stage of the software development life–cycle. Albrecht (1979)
argued that it can also be a powerful tool to estimate the size and thus cost of a software
project at an early stage (as early as user requirement analysis stage) of the development life–
cycle. Furthermore, due to the objective nature of the functionality identification approach,
anyone with the working understanding of the software functionality and development, can
perform the estimation task without the explicit knowledge of the design and development
consideration for a specific project (Kemerer, 1987). Another significant advantage is the
programming language and programming style independent nature of the method. For
example, to estimate the size accurately using SLOC the programming language is an
important consideration since if a program is written in a high level language e.g. Java will
undoubtedly differ significantly in size if instead is written Assembly language (Kemerer,
1987). A Proper understanding can however, only be possible by exploring the process of
Function Point Analysis (FPA) i.e. the raw FP counting, adjustments performed, how the

3.3 Functional Size Estimation 71

final FP count is calculated and most importantly how the final FP count is interpreted. We
would like to make the distinction that FP count is a relative measure of the software size
based on many factors such as, programming practice of an organization or type of project
(e.g. new development or maintenance) etc.

Fig. 3.2. Functional Perspective of an Application

XML

System User

External
Application

Application
Component

(A)

Application
Component

(B)

Internal Logic File (ILF)

Application Boundary

External
Input (EI)

External
Input (EI)

External
Output/Query

(EO/EQ)

External Interface
File (EIF)

External
Interface

Print or Display

External
Output/Query

(EO/EQ)

FPA is in a way intuitive (see Figure 3.2) since we humans are accustomed to solve problems
by breaking them down to smaller, meaningful and useful pieces and we then classify them
into categories that group those pieces using some features of those pieces. It is a familiar
process and used in every day situations, e.g. librarians organize books based on different
features as long as they are meaningful, books here represent the minimum meaningful units
and the categories they are put into are the classes. The process allows some feature(s) to
be used to establish meaningfulness in the classification process and give rise to rules that
to be followed to obtain consistent results. To parallel it to the concept of FPA, we would
like to argue that software by definition is intangible thus SLOC or other metric like that
can only capture the possible indirect tangibility of the design and implementation decision
choices made during the software development but not the software itself. Whereas, FPs
are the intangible equivalent to unit parts of a piece of tangible object (the unit being the
minimal measurable unit for a specific scale2) i.e. FPs represent the minimum meaningful

2we can measure length with any ratio scale that we can reasonably construct. Thus, any measurement can
only be meaningful for the purpose of compare and contrast, upon the agreement on the scale itself. In case of
intangible concepts the options are often limited, e.g. it might turn into a purely philosophical discussion if we
want to list all possible scales to measure the size of a intangible piece of software.

72 Estimating Software Size

units of a software from the point of view that eventually each software is a collection of
functionality that it is capable of performing. Thus, Albrecht (1979) presented the process of
classifying each functionality of a software into a specific group on the basis of features of
the functionality, effectively using common sense to perform a rather complicated task.

3.3.1 Albrecht’s Productivity Measurement

Before becoming a dominating software size metric, FPA was Albrecht’s (Albrecht, 1979)
solution to measure productivity in IBM®’s Data Processing (DP) services organization.
SLOC was the preferred metric at that time for different estimation metrics and researchers
were aware of the obvious shortcomings of SLOC. IBM was using multiple programming
languages (e.g. PL/1, DMS/VS, COBOL etc.) for its development projects already and
a programming language independent and accurate productivity estimation metric was a
desperate necessity for a organization of that size3. In this classic article (Albrecht, 1979),
Albrecht described the state of operation of the DP services organization having around 450
people dealing with 150 – 170 projects at any given time. He also mentioned his observation
that design phase was about 20% of the total effort whereas 80% of the effort was for
implementation. Thus, one must measure the process including the design phase. Table 3.4
summarize the dataset used for the research,

Table 3.4. Dataset (Albrecht, 1979)

Language Projects

COBOL 16

PL/1 4

DMS/VS 2

Total 22

All these projects were complete projects through all the phases, from the requirement
analysis to the final system test and demonstration. They were also been completed under
DP project’s management with consistent task definition and management procedure. The
work hours invested on these projects were all accounted for and the functional factors were
known. He summarized that “the application function was consistently proportional to a

3in 1979 during Albrecht’s work. IBM had a net income of 3.01 billions with 337,119 employees and
696,918 stockholders (see “IBM HIGHLIGHTS, 1970 – 1984” for the history and significant events in IBM
between 1970 & 1984).

http://www.ibm.com/
https://www-03.ibm.com/ibm/history/documents/pdf/1970-1984.pdf

3.3 Functional Size Estimation 73

weight count of the number of external user inputs, outputs, inquiries and master file”. The
notable fact is there were originally four functional elements defined by Albrecht (1979)
rather than the modern five class FPA (see § 3.3.2). He also explained the method to count
each class of functionality delivered by a development project. These factors, as he argued,
are the perceivable manifestation of any piece of software. The counting process for the
classes were explained as follows,

◦ Input Count: Input provides business function communication from the user to the
computer system, i.e. data forms, terminal screen, keyed transactions etc. He proposed
not to count an input more than once and count all unique inputs. The uniqueness of an
input implies that inputs for every different processing logic are unique. Furthermore, if an
input does not provide any functionality and used rather for transitional purpose, it should
not be counted. Finally, regardless of the input like nature, inquiries and files should be
distinguished and counted separately.

◦ Output Count: Output provides business function communication from the computer
system to the user, i.e. printed reports, terminal outputs etc. Like inputs, he argued for the
counting of all unique external outputs, i.e. either an output having a different format than
others or requires unique processing logic to be generated. He however, proposed not to
count simple error messages or the acknowledgement of an entry i.e. outputs that does not
require any distinct processing i.e. enquires.

◦ Inquiry Count: Inquiries were defined to be the input & output pairs where the inputs are
for control purpose only and and the generated outputs do not require any explicit processing.
Each enquiry with uniquely formatted or uniquely processed output from a file search should
be counted.

◦ File Count: Each machine readable logical file or logical grouping of data from the user’s
perspective that is used or maintained by the system, e.g. files stored in any media should
be counted. Major data groups within a database should be counted, however only logical
files are to be counted but not the physical manifestation for the files i.e. if there is an
indexing file for faster access it should not be counted since it is a part of the same logical
file. Furthermore, all machine readable interfaces to other systems should be counted as files.

Once the initial count is completed, each count value is weighted on the basis of the signif-
icance of a function type to a user and over debate and trial. The multipliers presented by
Albrecht (1979) have been summarized in Table 3.5. The results are then further adjusted
for other factors, e.g. complex input, output and files were adjusted by adding 5% extra or

74 Estimating Software Size

Table 3.5. Primary Adjustment Multipliers (Albrecht, 1979)

Function Type Multiplier

Input 4

Output 5

Inquiry 4

Files 10

complex internal processing being adjusted by adding another 5% etc. However, maximum
allowed adjustment was upto ±25% thus, producing a dimensionless value representing the
effective relative measure for the functional value to be delivered to the customers or users.

The evaluation was designed to establish the relation between development cost in terms of
work–hours used for each function point for a project with some other variable. He effectively
showed that between 1974 and 1980, the trend (linear least square fit trend line) is a negative
slope thus, indicated increase in productivity (about 200%). He also showed that project
size is proportional to the par FP work–hour requirement thus claimed that project size is a
component of the FP counting process. The final take can be the following,

1. Disciplined software development effectively influence the development process thus, the
co–relation with FP count.

2. Functional measurement can be done cross–languages with strong co–relation to the actual
implementation effort.

3. Inclusion of project effort at every level of the development process is absolutely necessary
to acquire realistic functional measurement.

4. Functional measurement allows comparing projects without the dependencies such as pro-
gramming language and programming style thus provides a means to perform objective
fact analysis.

This work however presents the findings of the analysis of 22 projects and further research
and standardization was suggested for more generic and independent analysis of project of
different size nature thus pushes the eventual standardization of the method.

3.3.2 IFPUG Function Point Analysis

The formal restructuring of what eventually became the modern form of FP counting was
presented in Albrecht and Gaffney (1983) and the next year Albrecht compiled the first

3.3 Functional Size Estimation 75

counting guideline4. The US based, user govern, non-profit International Function Point

Users Group (IFPUG) was formed shortly after that in 19865 to standardize and maintain the
method itself, explore its application and documenting counting practices. IFPUG method
has two components, first component deals with the measurement of the functional size based
on the original work of Albrecht (1979) and the other component measures the contribution
to overall size of 14 technical and quality factors. There has been several variations of the
original idea, nevertheless, IFPUG Functional Size Measurement (FSM) is arguably the
most popular method. IFPUG periodically released the Counting Practice Manual (CPM),
the guideline for all IFPUG counting professionals and the latest version is IFPUG CPM
4.3.1 and it was released in January, 2010. The fundamental layout of the counting process
remained somewhat unaltered throughout different versions, however, these alternations will
also be addressed in this section.

FPA is predominantly an intuitive perception of a software system thus captures very funda-
mental components of a piece of software. FP counting begins with the identification of the
conceptual logical boundary i.e. application boundary that represents the actual entity to be
measured. Furthermore, there are five major components defined for a software system and
counting professionals attempt to count each of these five types of function points. There are
two file types (functions correspond to logical blocks of data) and three transaction types
(functions correspond to data movement) and they are as follows,

1. Internal Logic File (ILF)

2. External Interface File (EIF)

3. External Inputs (EI)

4. External Outputs (EO)

5. External Inquiry (EQ)

Furthermore, during the counting process a complexity measure is also associated with each
function point type derived from the three following parameters,

1. Data Element Type (DET)

2. Record Element Type (RET)

3. File Type Referenced (FTR)

Each DET is a unique user–recognized non–recursive data field i.e. information that is
dynamic but associated with the single data field. In case of a recursive DTE only the first

4IBM CIS & A Guideline 313, AD/M Productivity Measurement and Estimate Validation, dated November
1, 1984 (Smith, 1997)

5http://www.ifpug.org/

76 Estimating Software Size

occurrence is considered. DETs can be viewed as a column of a table (see Figure 3.3), thus
represents the minimum class representation of data. The counting guideline suggests caution
in counting each user–recognized unique DET just once, preferably the first occurrence.
Screen elements that are static like system time or page counters are not counted as DETs,
however, any single–action link to submit the content of a form is counted as a DET. Each
data input field, error messages, and calculated values are also counted as a DET for a input
transaction (EI and EQ). Each Data Field on a report, calculated values, error messages, and
column headings that are read from a file are considered DET for a output transaction (EO
and EQ).

Fig. 3.3. Function Point: Complexity Parameters

RET(s)RET(s) RET(s)

internal
storage

internal
storage

external
storage

DET_1 DET_2 DET_n
xxxx xxxx xxxx

xxxx xxxx xxxx

xxxx xxxx xxxx

Each RET is a user–recognized logical sub–group of DETs that may exist in a file e.g. tables
in a database (see Figure 3.3). The counting guideline suggests that, if a set of tables are
closely related e.g. composite relation, they should be counted as a single RET. However,
other tables in a relational database being related by a common key should be counted as
individual RETs. If a parent child relation exist, each sub–group in a parent group is counted
to be a different RET.

FTR is the files (either ILF or EIF) that have been referenced by a transaction function. It is
the logical grouping of RETs exist in a local storage or accessible via remote interface in the
form of a file. For each reference to a ILF or EIF one FTR is counted.

ILF is an expansion on the original file count (Albrecht, 1979) characterized by all logically
related data that is kept and maintained within the application boundary. Table 3.6 shows
how the complexity of each recognized file is estimated,

3.3 Functional Size Estimation 77

Table 3.6. Individual File Complexity

RET(s)
DET(s)

1–19 20–50 50+

1 Low Low Avg

2–5 Low Avg High

5+ Avg High High

EIF, the other expansion, in contrast are user definable group of logically related data that are
completely outside of the application boundary. EIF’s are used by the measured application
but purely for reference purposes i.e. these data are maintained by some other application.
Thus, EIF’s are ILF’s for some other applications. The complexity is estimated using Table
3.6 just as for ILFs. Once all the files are identified the individual complexity is then used to
identify the weight multiplier for each file type to be multiplied by the raw frequency of each
type–complexity pair (see Table 3.7).

Table 3.7. File Weight Multiplier

Complexity
Values

ILF EIF

Low 7 5

Avg 10 7

High 15 10

EI is counted when a functionality implies to an elementary process in which data crosses
the boundary from outside to inside. This data may come from a data input screen or
another application and it may also be used to maintain ILFs. The data can be either control
information or business information. If the data is control information it does not have to
update an internal logical file. The complexity of each EI is then determined by a predefined
complexity metric (e.g. see Table 3.8).

EO type is counted when a functionality implies to an elementary process in which derived
data passes across the boundary from inside to outside. Moreover, an EO can update an ILF
and uses ILFs and/or EIFs to generate outputs for the user or to send to other applications.
The process involved is expected to explicitly derive the output rather than just extract the
information from some file. The complexity of each EI is then determined by a predefined
complexity metric shared by both EI and EQ (e.g. see Table 3.9).

78 Estimating Software Size

Table 3.8. Individual EI Complexity

FTR(s)
DET(s)

1–4 5–15 15+

0–1 Low Low Avg

2 Low Avg High

2+ Avg High High

Table 3.9. Individual EO & EQ Complexity

FTR(s)
DET(s)

1–5 6–19 19+

0–1 Low Low Avg

2–3 Low Avg High

3+ Avg High High

EQ is counted as a pair of input and output that perform the function of extracting some
data from the storage (both ILF and EIF) and send it outside of the application boundary.
The input part does not update any ILFs and the output does not contain any derived data.
Once all the transactions are identified, the individual complexity is then used to identify the
weight multiplier for each transaction type to be multiplied by the raw frequency of each
type–complexity pair (e.g. see Table 3.10).

Table 3.10. Transaction Function Weight Multiplier

Complexity
Values

EI EO EQ

Low 3 3 4

Avg 4 4 5

High 6 6 7

Once all the counts are accounted for and each multiplied by the corresponding weight
multiplier, summing them up gives a dimension less integer known as the Unadjusted

Function Point (UFP). This concludes the first part of the FSM–IFPUG counting process.
In the IFPUG–CPM, the next step has been presented as determining the Value Adjustment

Factor (VAF). However, it has also being presented as an optional part of the FP counting
process in the most recent IFPUG–CPM. We described the idea in details in Appendix D.

3.4 Automatic Function Point Analysis 79

At this point, FP counting may seem very structured and well defined, but the truth cannot
be far enough. Identifying Basic Functional Component (BFCs) can be tricky even when
following a well defined and extensive guide line such as IFPUG–CPM. The process tends
to be very subjective at both individual counters and organization level. Due to the highly
subjective nature, the identification is often imperfect and varies upto 10.78% (Kemerer, 1993)
from one counting professional to another when counting FPs for the same application. Other
researches showed that this variation exists among the counters from the same organization
following the same operational procedure (Kitchenham, 1997) and the variation can be upto
30% and it is even higher between counters from different organizations (Low and Jeffery,
1990). The data provided by IFPUG showed that certified counters vary upto 12% for the
same application (Buglione, 2008). Furthermore, a significant amount of effort is invested
to analyse several heterogeneous requirement documents in order to identify BFCs that are
often not documented properly.Thus, in case of a discrepancy, it is hard to trace back to the
BFCs presence in the original document set (del Bianco et al., 2008) making any modification
nevertheless a painstakingly difficult process. The complexity of the process give rise to
various different practices of the original idea that has been briefly presented in Appendix E.
We however, used the IFPUG methodology as the standard methodology for this research.
The next section is dedicated to the stat–of–art of the automation in FPA and our observation
regarding the presented works.

3.4 Automatic Function Point Analysis

Defining the automation of Function Point Analysis poses an unique problem since the
development of the FP counting process has been targeted to restrict subjectivity rather than
explore objectivity in the description of a software. Furthermore, the documents traditionally
used for the task are different levels of software requirement and description documents
written in NL by people with different levels of technical competence, who are working in
organizations with a whole range of development practices. Thus, a single functionality of the
a software can be documented in many different ways and can also be interpreted in different
manner. FPA provides a layer of abstraction to the possible variations and allows a human
FP counter to identify a specific type of functionality in all the different representations. An
automatic FP identifier will then face the problem of the limitation of understanding the
language of the document, which often can be tricky even for humans. Very little research has
been done in total automation of FPA, especially in FP recognition. One of the key reason for

80 Estimating Software Size

that is the stringent requirements (although not unfair) of the existing certification standards
and nevertheless the complex nature of the task. This section will provide an overview of the
problem, available standards and the little research we manage to find that has been done.

3.4.1 IFPUG Software Tool Certification

IFPUG Software Tool Certification is somewhat the only available standard that is acceptable
in the FPA community (al least in the IFPUG community) and frequently used to classify a
software that performs in part or the whole process of the FPA. This standard nevertheless
provides a definition of the automation standards and it is called the IFPUG Software Tool

Certification types. Currently there are three types of certification available,

◦ Type 1 – Function Point Data Collection/Calculation: The software provides Function
Point data collection and calculation functionality, where the user performs the Function
Point count manually and the software acts as a repository of the data and performs the
appropriate FP calculations.
◦ Type 2 – Expert System That Aids Counting of Function Points: The software provides
Function Point data collection and calculation functionality, where the user and the system/-
software determine the Function Point count interactively. The user answers the questions
presented by the system/software and the system/software makes decisions about the count,
records it and performs the appropriate calculations.
◦ Type 3 – Automatic Counting of Function Points: The software carries out an automatic
Function Point count of an application using multiple sources of information such as the
application software, database management system and stored descriptions from software de-
sign and development tools. The user may enter some data interactively, but the involvement
during the count is minimal. Furthermore, the software and its associated documentation
must conform to the Counting Practices Manual. Software Type 3 instructions and criteria
are currently under review by the IFPUG Board of Directors.

Furthermore, consulting the IFPUG Software Certification page6 one can notice that there
are only three software ever to receive a type one certification, only one software (which
also have a type one certification) have type two certification and no software ever received a
type three certification. Table 3.11 summarizes the status of software certification by IFPUG
during the writing of this document (May 3rd 2015).

6http://www.ifpug.org/certification/software-certification/

3.4 Automatic Function Point Analysis 81

Table 3.11. IFPUG Software Certification Status

Type Software Developer Certification Date

Type 1
Function Point Workbench Charismatek Software Metrics July 1998

PQMPlus Q/P Management Group November 2001

Software Metrics Manager Softmet.com April 2004

Type 2 PQMPlus Q/P Management Group November 2001

3.4.2 Automation of Functional Measurement

The research for automating the process of FP counting (both partial and complete) is quite
old. Initial studies focused on either the automation possibilities or defining the levels of
possible automation. MacDonell (1994) studied nine functional size measurement methods
and estimation models and reported that all of the FSM methods were assessed against six
criteria including the automation criteria. The automation criteria rated, on average, one of
the lowest for all the FSM methods. He concluded that automation of FSM methods required
further research. Mendes (1997) actually suggested 10 levels of automation instead of 3
currently in practice by the IFPUG. He studied 8 Computer Aided Software Engineering

(CASE) systems, for all the vendors claimed to support FP as a part of their system (Jones,
1996). Mendes (1997) found that only one vendor had a feature to calculate automatic FP
counts from source code (COBOL). The survey revealed that no vendor claimed that they
could automatically count the steps of the FPA without external intervention.

April et al. (1997) summarize the aforementioned patterns along with the observation made at
that time that, there are several work published describing some automatic FP implementation
details. Some of them were from the IFPUG conferences, e.g. works of Brown (1990),
Mazzucco (1990, 1992) etc. and some from industry publications, e.g. Banker et al. (1994),
Sample and Hill (1993) etc. They (April et al., 1997) also reported that at that time there
was no known literature that describes reliability, validity or precision of the results of those
implementations. They thus, concluded that invalidated automation tools with undocumented
results implies only the unreliability of those tools, at least slowed down the possible
deployment and usage of such tools in the real world. They (April et al., 1997) however,
presented a method to formalize and evaluate IFPUG counting rules to perform automatic FP
count from source code. The next subsection will focus on other works on FP counting from
source code (many of them used the work of April et al. (1997) as the launching platform).

82 Estimating Software Size

3.4.3 FP from Source Code

There has been some effort to automate the FP counting from the source code, especially for
enhancement projects. One of the earlier literature was the work of Ho and Abran (1999),
proposing a framework that can be used to build a model of automatic FP counting from
the COBOL source code, in compliance with the IFPUG–CPM. They presented a code
slicing technique to develop a tool to perform the task. Klusener (2003) on the other hand
presented a method to model the FP counting rules instantiated for COBOL and Job Control

Language (JCL) with the suggestion that using the data flow analysis to improve the counting
of transaction functions. Once again it was suggested by the authors that the method needed
to be validated by running through real project environment.

Ellafi and Meli (2006) presented an improvement over Ho and Abran (1999) method in terms
of the architecture driven FP extraction and pairing it with the Early & Quick (E&Q) FP
counting method. This hybrid method, relying heavily on code analysis, was proposed to be
logic driven and the integration of the E&Q FP counting was presented to be an improvement
over existing method by accelerating the counting process, and ensures consistency and
significance of the functional measurements. However, the authors presented it to be a
semi–automatic framework that empowers the FP measurer by giving control of the counting
process via a semi–automatic mode that leveraged the information retrieved from the source
code analysis. Although, possible supporting tools were proposed, there was neither any
mention of an actual implementation nor any experimental results were presented.

Some methods were developed for other languages as well, for example, Sneed (2000)
presented a critical analysis of the FPA principals, especially, IFPUG–FPA (even compared
the practice to “religion”) and a methodology specifically designed to count FP from source
code written in C++ or Java following object oriented design. However, the details at which
the method has been presented, no evaluation has been presented thus left us at best sceptical
about the method. Later, Kusumoto et al. (2002) also presented a method to extract FP count
from Java code. There method was designed to agree with the IFPUG counting rules and
mapped the object method interaction hierarchy to each of the function point type. Although
a case study was presented in the literature, the method was reported to have never been
tested.

Kusumoto et al. (2008) later presented a method to identify FPs for web applications fo-
cusing on the screen transitions and database access using Structured Query Language

(SQL). They propose to use screen transitions and SQL access to identify transition func-

3.4 Automatic Function Point Analysis 83

tions whereas, proposing to use SQL calls to form “SQL tree” and map database tables to
extract data functions. Although the authors claimed to developed a tool for identifying FPs
from application codes writen in Java and using Apache Struts7, no experimental data has
been presented. Moreover, they presented their doubt about the methods applicability for
applications developed outside of the Struts framework.

3.4.4 FP from Other Environments

There has been some research on estimating the FPs from other environments of the software
development life–cycle. Banker et al. (1994) for example, presented a methodology to
estimate the functional size from a integrated CASE based development environment. It
is imperative to understand that regardless of the objective of achieving automation for
the FP counting process, all these methods relies on the use of a specific practice (often
accompanies the requirement of using specific development environment and tools) for the
whole development process. The methodology adopted by Banker et al. (1994) used the
features from the CASE environment to achieve the automation. They used a repository
object–base with indexing integrated with the CASE environment tool that represents the
organization of a software into objects and thus facilitates the FP counting process with
clearly defined object interaction without analysing any code at all. They also presented
a software reuse analyser measure that can complement the final FP count, however, they
did not present any large scale evaluation of the system only to left the readers with the
optimistic prediction of a possible 80% cost cut through the use of the tool and development
environment.

Uemura et al. (1999) presented a somewhat generic method, by proposing the use of UML
design specification. They developed a tool for the task that used the UML specification
version 1.1, IFPUG–CPM version 4.0 and Rational Rose8 version 4.0. They primarily used
the class diagrams and the sequence diagrams with FP determination rules for the task.
They presented a method to determine the data functions by a 3 step strategy: selection of
candidates, determining function types (ILF or EIF) and finally determining the complexity.
On the other hand, transaction functions were counted using a similar strategy with the
exception of of the use of 5 predefined patterns for determining the function types. Although
they presented a case study of 3 simple systems the results were inconclusive at best. The

7https://struts.apache.org/
8http://www-03.ibm.com/software/products/en/ratirosefami

http://www-03.ibm.com/software/products/en/ratirosefami

84 Estimating Software Size

authors themselves proposed more larger scale experimentation to determine the validity of
the tool and the method.

Lamma et al. (2004) presented a rather similar approach to the problem and attempted
partial automation of the FP counting process using Entity Realtion – Data Flow Diagram

(ER–DFD). They proposed to automatically identify data and transaction function and the
complexity to determined the unadjusted FP count where the FP count type and application
boundary is already known. They used a modified form of the IFPUG counting rules (they
claimed to have ignored the ambiguities in the IFPUG counting rules) to be expressed in terms
of the properties of ER–DFD and formulate the rules. They then used the rules translated
in Prolog for their tool. From the authors claims it is unclear how the system performs in
real world situation regardless of their rather bold claim of the tool (called FUN) being a
type 3 IFPUG tool (it has never been certified to the best of our knowledge). They presented
a case study of using the tool in 5 partially overlapping projects (projects from a single
portfolio). However the only project (they claimed it to be a large project: 257 FPs counted
by a professional) the tool has been used to be validated by human counter reported to have
performed exceptionally well. They however, express the necessity to validate the tool with
more projects and proper evaluation.

A progression of the work by Lamma et al. (2004) in many ways presented by Fraternali
et al. (2006) using the WebML development environment (Ceri et al., 2000) and for web
application size measurement. WebML is a Model Driven Development (MDD) environment
and defines a development project as a conceptual model using many of the frameworks
available for example, Entity Relation (ER) model is commonly used for data representation.
The described method is fundamentally re–visits the method presented by Lamma et al.
(2004) while using different set of tools and a redesigned rule–set. The presentation of the
experimental results were not conclusive since only 4 application (144, 300, 513 and 680
FP respectively counted by a professional) was tested upon and showed near impeccable
performance. They also claimed that their method counts more accurately than the human
counters especially when a duplicate pruning algorithm was used. The systems results varied
a maximum of 11.11% with that of the human counters.

A more recent work by Batista et al. (2011) presented a system called Requirement Model

Function Point (ReMoFP) that uses a process designated “Problem Modelling”, a UML based
requirement modelling from the users point of view. This particular perspective coincide
with the original philosophy of the functional measurement more closely. Their system used
user specification defined by Object Constraint Language (OCL) for constraint definition and

3.4 Automatic Function Point Analysis 85

UML extensively. They evaluated the system by closely monitoring the development of one
project (2245 FPs) and monitoring the change in FP counting productivity. They reported
107% productivity improvement over standard IFPUG count by the professionals. However,
they did not present any results concerning the counting accuracy. The system heavily relies
on the UML definition of a project and concerned mostly with the FP identification (just as
the other systems). They emphasized on larger scale experimentation and evaluation as well.

Choi et al. (2006, 2012) proposed a goal–scenario based approach to the automation of FP
counting from requirement documents in natural language. The presented method however,
was conceptual and never been experimented other than of course the case study that was
presented and no tools were developed to automate the process. The goal–scenario modelling
form the requirement was based on the work of Kim et al. (2006) and the resultant goal–
scenario tree was used along with the FP extraction rules for acquire the final UFP count.
They evaluated the approach with 4 rather generic and small projects (the projects had
between 53 and 78 FPs) and reported to have worked very well with an average accuracy of
94% with respect to that of the professional counters. The important aspect of this work is
the use of NLP and IE techniques such as, the use of syntactic pattern based templates to
model the goal–scenario tree of a project. Although the authors expressed the possibility of
the development of tools to automate the process, further literature did not show up during
our research.

Summary

We have presented our understanding of the problem domain and the state–of–the–are for
FPA and automated FPA in this chapter. We shall proceed to present our contribution which
has been spread over the next two chapters. We have produced the only data resource that can
be used for automated FPA using both linguistic and data engineering approach within the
scope of the Projestimate project. We have seen the general concept of measurement been
applied to establish the foundation for different estimation metrics. Functional estimation is
not only the practical approach in our case but also the only metric that we can use to calculate
FP at the early stages of the development life–cycle. Since significant amount of literature is
unavailable addressing the problem of identification of FPs from specification documents,
we are assuming our contribution to be novel and significant in terms of continuing research.

Chapter 4

Text Extraction and Analysis

The two primary contributions of this research are proposing suitable methodologies for
the task, e.g. identifying higher level textual groups such as pages, paragraphs etc. that
contain FP descriptions and developing a processing chain to extract, normalize and annotate
(morphology & syntax) a corpus automatically for Function Point (FP) identification research.
The general overview of our contributions is illustrated in Figure 4.1. Since automation is

Fig. 4.1. General Overview of Our Contributions

ProjEstimate
NLP Chain

Function Point
Identification
Experiments

Data Analysis

Specification
Documents

Experimental
Data

quite uncommon in the current practice of FP counting, identifying pages with FP descriptions
for example, will facilitate the task (making it easier) in terms of reducing reading effort for
the FP counters. It will also improve consistency in redundant count of the same specification
by the same counter (or different counters) since each time the counter will read the same set
of pages. In this chapter we shall describe the methodology and the tools developed to extract

88 Text Extraction and Analysis

the corpus from the source documents, the design decisions made during the development
of the chain and a general presentation of the generated data. The source documents are
early stage software specifications, primarily user requirements and functional specifications.
We would like to emphasize the fact that, the corpus we have produced is the basis for this
research and the future research on FP identification within the scope of the ProjEstimate

project.

4.1 The Source Data

The data used in this research is collected under the ProjEstimate project (§ 1.4), provided by
two of the project partners Banque de France (BdF) and PSA Peugeot Citroën Group (PSA).
The raw data is comprised of complete or partial project documentation of different types e.g.
user requirements, functional specification, batch processing description, database design
(Entity Relation & Data Flow Diagrams (ER–DFD)) and Unified Modeling Language (UML)

based design specification etc. The digital contents consist of documents in Microsoft Word

format (both old .doc and the newer .docx format), Rich Text Format (.rtf), Microsoft Excel

Format (.xls) and Microsoft PowerPoint Format (.ppt). The scope of this research is to process
Natural Language (NL) text that contain FP descriptions in a single document exclusively,
thus, the preliminary selection of the data was based on the following considerations,

• The document types having less text concerning FP descriptions e.g. .ppt files or files
presented in a structured format e.g. .xls files were discarded.

• Documents heavy on graphics and diagrams e.g. conceptual specifications and UML dia-
grams, were discarded as well.

• In case of the presence of multiple documents for a single project, each document was
processed as individual data units.

• Database specifications containing relational database specifications were discarded since
these documents are often graphic “heavy” and they are primarily useful if used in a multi–
document setting for establishing document interrelations.

We did not make any distinction between development and enhancement projects because
we found that in large organizations such as BdF and PSA, even many new projects often
rely on existing software infrastructure and old projects. Although, this distinction between
development and enhancement projects however has significant implication in the traditional
FP counting process. Our justification for the choice is that we are interested in the identifi-
cation of FP descriptions rather than the counting specifics. Regardless of the counting type,

4.1 The Source Data 89

the existence of the FPs is identical for both types of projects. The data that has been used
in the research, being from two different organizations also ensures data diversity and thus,
demands additional robustness for all the tools being used in the analysis stage. A general
overview of the datasets will be presented in the following subsections. Unfortunately, due
to to confidentiality restrictions we are unable to mention the specifics or the names of the
projects and we shall address them by the assigned designation for this research.

4.1.1 Data Provided by BdF

BdF provided 4 project specification documentation for 2 enhancement and 2 development
projects. We also have the detail FP count worksheets for these projects and we found that
there is one large project with 4000+ FPs, two medium projects having FP count between
700− 800 FPs and one smaller project with 300+ FPs. The FP counting for all of these
projects were performed by the same counting professionals. Table 4.1 summarizes the
general overview of the data.

Table 4.1. BdF Provided Data Description

File Designation Specification Type Project Type Pages FP Count

001.bdf Functional Specification Enhancement 158 4,291

002.bdf Functional Specification Development 31 319

003.bdf Functional Specification Enhancement 39 739

004.bdf Functional Specification Development 65 785

4.1.2 Data Provided by PSA

PSA provided 13 project specification documents, but unlike the BdF dataset we have no
information regarding the FP counts for these projects. Among the 13 projects we have
used only 9 project documentations and a total of 14 files. We have found multiple files
are useful in some projects and many of them are related specification from some other old
project. Many files were rejected primarily because they are either too short in terms of
pages (anything below 15 pages was rejected) or they contain mostly graphics and tables.
One can make the observation that PSA dataset is a rather mixed bunch whose page size
ranges from as small as 19 to over 300 pages and comprises both functional specification

90 Text Extraction and Analysis

and user requirements. We have found that the presence of graphics and tabular elements
are the primary contributor to the size of the larger files. In Table 4.2 we present the general
overview of the data.

Table 4.2. PSA Provided Data Description

File Designation Specification Type Pages

005.psa Functional Specification 195

006.psa Functional Specification 25

007.psa Functional Specification 312

008.psa Functional Specification 107

009.psa User Requirement 34

010.psa Functional Specification 79

011.psa User Requirement 33

012.psa User Requirement 19

013.psa Functional Specification 69

014.psa Functional Specification 94

015.psa Functional Specification 55

016.psa Functional Specification 57

017.psa User Requirement 241

018.psa Functional Specification 105

4.1.3 Annotated Data

We also have one document, designated 000.ref, where the texts that contains FP descrip-
tions have been annotated by four different professional FP counters. It is a functional

specification for a project from PSA which is 37 pages long and contains a moderate amount
of graphics and tabular contents. On first inspection we found that it contains many tables
which include descriptive texts and all the annotators highlighted at least some part of these
texts to have FP descriptions. The annotation was performed using the guidelines developed
during the early stages of the ProjEstimate project (§ 1.4) in collaboration with the FP count-
ing professionals from the partner organizations. Annotations were made by highlighting
different types of relevant pieces of texts with different colours. A detail of the annotation
guideline can be found in Appendix A (§ A.1).

4.1 The Source Data 91

Among the four annotators, one is from ACAPI, a member organizations of the ProjEstimate

project,(designated Acapi_JNV), two from BDF (designated BdF_BD and BdF_MG) and one

from PSA (designated PSA). The primary statistics of the annotation has been summarized in
Table 4.3. Although not conclusive, it is hard to miss the resemblance in the pattern of FP

Table 4.3. Primary Annotation Statistics: 000.ref

Annotator
Annotation Count

FUN_GRP APP FUN DATA_GRP Total

Acapi_JNV 2 4 14 8 28

BdF_BD 0 0 69 9 78

BdF_MG 0 0 49 50 99

PSA 8 2 32 22 64

annotation among the counter from the same organization (BDF_DB and BDF_MG). Another
observation is the large amount of inconsistency among the counters (even when they are
from the same organization) while comparing the types of annotation found in the same
block of text. Once we had the basic linguistic analysis done we performed inter–annotator
agreement analysis at page (Pg), sentence (Sent) and token (Tok) level with three rigidity
levels (L0, L1, and L2) of agreement. The complete analysis has been summarized below.

Table 4.4. Inter–Annotator Agreement: 000.ref

Annotator

Annotator

Acapi_JNV BdF_BD BdF_MG

Level Pg Sent Tok Pg Sent Tok Pg Sent Tok

BdF_BD
L0 0.69 0.07 0.05 - - - - - -

L1 0.53 0.04 0.02 - - - - - -

L2 0.23 0.02 0.02 - - - - - -

BdF_MG
L0 0.86 0.04 0.03 0.69 0.66 0.71 - - -

L1 0.73 0.04 0.03 0.69 0.63 0.67 - - -

L2 0.34 0.04 0.03 0.53 0.52 0.63 - - -

PSA
L0 0.69 0.14 0.08 1.0 0.52 0.49 0.69 0.47 0.57

L1 0.69 0.07 0.03 1.0 0.35 0.31 0.69 0.35 0.38

L2 -0.07 0.07 0.03 0.03 0.33 0.30 -0.07 0.34 0.37

The rigidity levels for the agreement count is defined on the basis of matched elements and
the number of annotation type associated with a single block (i.e. page, sentence or token)
that is being matched. Although, an agreement does not require identical annotations in an

92 Text Extraction and Analysis

annotation pair, a matching annotation within a block is the basis for a potential match and
each match is then filtered according to the rigidity level. The different rigidity levels are
defined as follows,

• Level 0 (L0): It is the most flexible level and any match regardless of type or number of
types is considered an agreement. In a unit element i.e. page, sentence or token, if an anno-
tation exists for both annotators within a block regardless if there is a partial intersection
of types or disjoint types, a match is counted. We would like to call it agreement due to
vicinity.

• Level 1 (L1): It is a moderate flexibility level accepting matches of the same type for at
least one pair of annotations within the block. Since one element may contain more that
one type of annotation, this level allows agreement on minimum matching.

• Level 2 (L2): It is the most strict level. If an annotation is found in a block by both
annotators, the algorithm compares all the types of annotation made by both and only if
there is a complete agreement (i.e. both annotators annotated exactly the same types of
FP) then a positive match is counted.

We have used Cohen’s Kappa Coefficient (κ)(Cohen, 1960) to measure the inter–annotator
agreement. We overlay the rigidity levels during the calculation as a filter. Kappa is a
statistical measure commonly used to find the agreement between two annotators, each
classifying N items into C mutually exclusive categories. Our case had a little difference
with the original definition since one entity can be annotated for more that one class, thus the
rigidity transformation is used to converts the annotations into a binary classification case, i.e.
each entity can either be classified as “annotated” or “not–annotated” which in turn depends
on the rigidity level. The general formula to calculate κ is,

κ =
P(a)−P(e)

1−P(e)

where, P(a) is the relative observed agreement among annotators and P(e) is the hypothetical
probability of agreement by sheer chance (if the annotators assign classes randomly). If there
is a complete agreement κ = 1 and if there is no agreement among the annotators other than
chance, κ = 0. κ can also be negative if the relative agreement is less than the agreement by
random chance.

An important observation (although not conclusive) can be made from Table 4.4 that an
overall high agreement has been observed among the annotators from the same organization
(e.g. the annotators from BdF, marked in “blue”) and the poorest agreement has been
observed among Acapi_JNV and the other annotators. Using Table A.1 we can argue that the
agreements correlate with the number of total annotation that exist in the first place for the

4.2 Corpus Development from Source PDF 93

annotators. Another interesting observation is that the agreement between PSA and BdF_BD

seem to be perfect at page level for rigidity level L0 and L1 but it is very poor at L2. This
implies that even though the annotators made annotations on the same pages and agreed on at
least one type of annotation, they disagreed on the finer details, i.e. they did not agree on the
existence of all the types of annotation with each other. Furthermore, the agreement between
PSA and BdF_MG at page level for rigidity level L2 is negative i.e. their agreement, on FP
types at least, is even less than chance could have produced. On the other hand the annotator
pair from BdF has been demonstrated strong agreement even at token level and at every
rigidity level. We would like to acknowledge that the data were not collected in a controlled
environment, thus, we cannot objectively comment on the level of collusion during the actual
annotation process, especially among the annotators from the same organization, that may
have compromised the independence of the annotation among annotators. However, we are
assigning relative confidence and importance in the data considering this data represents the
whole evaluation scope for our research and as of today, an unique resource of its kind to the
best of our knowledge.

4.2 Corpus Development from Source PDF

Text extraction from different digital content is an active field of research but our focus was
to extract text and significant formatting information from PDF files rather than advanced
technological aspects of the process. PDF is a common document format for electronic
documents primarily because it preserves the original look and feel, i.e. it maintains low level
objects such as group of characters, lines, curves and images and associated style attributes
such as font, color, stroke, fill, and shapes, etc. However, PDF documents were originally
designed for the final presentation of a document, thus, usually do not contain the higher level
logical structures such as words, text lines, paragraph, figure illustration etc. There has been
significant amount of research on content understanding and extraction, block segmentation
and identifying logical structures in PDF files (Chao and Fan, 2004). However, for this
research we have used already established, freely available text extraction tools.

The first components of corpus development is extracting the texts from documents in digital
format (our raw data was in the popular .doc, or .rtf format) and the second component is the
preprocessing (normalize) the extracted text and performing basic linguistic processing. The
resultant data is machine readable text in a custom XML format defined for the convenience
of information representation for the research. For the text extraction, we have used the

94 Text Extraction and Analysis

Portable Document Format (PDF) as a standard input due to the simplicity of converting
the raw data (in different formats) into PDF format and the popularity of the format as the
de–facto standard for the exchange of print–oriented documents (Hassan and Baumgartner,
2005). The target language for this research is French and all our source data is software
specifications written in the target language. Furthermore, all the tools that has been used in
this research were specific for the target language (unless a tool is language independent).
Figure 4.2 shall provide the general outline of the corpus generation process. A language

Fig. 4.2. General Outline for The Corpus Generation Process

PDFBox Toolkit

Our ContributionOpen-Source Tool

Source Documents
Software Spec.

(PDF)

PDFBox
(XML)

Pre-Processing

Raw Text

Token List

BONSAI v3.2

Aligner

Parsed Text
(CoNLL)

Experimental Data
(Custom XML)

independent text extraction framework has been used for the initial extraction from PDF
documents (Apache PDFBox). The extracted text is quite noisy since all the text elements,
regardless of their relevance, are extracted thus, some pre–processing is required. The text is
then run through a parsing chain to acquire basic linguistic knowledge. The parsing chain
also provides multiple levels of textual segmentations e.g. tokens, sentences etc. from the
extracted text. The final output then can be formatted to produce the Function Point Analysis

(FPA) corpus in a custom XML format, with all the generated information. In this section
we shall provide an overview of corpus development and general statistics at the extraction
stage.

4.2.1 The PDF Format

A PDF file is a binary file format made up of a sequence of bytes. These bytes, grouped
into tokens, make up the basic objects upon which higher level objects and structures are
built (see ISO-32000–7.3). The organization of these objects, how to read and write them
is defined in the file structure of the PDF and in addition, a file can be encrypted to protect

4.2 Corpus Development from Source PDF 95

the document’s content (see ISO-32000–7.5). Within the file structure, basic objects are
used to create a document structure through building higher level objects such as pages,
bookmarks, annotations (see ISO-32000 7.7). There are two widely used low level PDF
object models: Structured Document Format (SDF) and Carousel Object System (COS)1.
SDF is the acronym used in PDFNet�SDK2, whereas COS is used in Adobe Acrobat SDK.

The SDF/COS object system provides the low–level object types and file structures used
in PDF documents i.e. PDF documents at the lowest level are graphs of SDF/COS objects.
These objects can represent document components such as bookmarks, pages, fonts, and
annotations. However, using such low level data structure is often tedious and error prone
since the programmer must remember all of the names of the parameters and helper methods
are not usually available. So, many PDF manipulation libraries (e.g. PDFBox) provide
higher level models (e.g. the PDF Document (PD) model for PDFBox) that allows different
SDF/COS objects (e.g. page, font, image etc.) to have predefined set of attributes that is
available in an object dictionary. Moreover, for each class, strongly typed methods are
available to access the attributes, thus, reducing the programming complexity. For example,
each class of the PD model in the PDFBox library often represents a single COS object
providing methods to read and write both content and attributes (meta–data).

4.2.2 Extraction Tools

We have explored the possibility of using two content extraction tools, both are open–source
libraries from The Apache Software Foundation, namely Apache Tika and Apache PDFBox.
There are many text extraction tools for the PDF format available (e.g. PDFlib Text Extraction
Toolkit, PDFNet SDK, LEADTOOLS PDF SDK etc.) that can perform the task of extraction
with varying levels of details and accuracy. However, we were interested in a open–source
library that will allow us to extract unlimited amount of text with some generic context
information e.g. font formatting, paragraph boundaries etc. Each of these two tools were
experimented with our processing chain but eventually, we decided to incorporate Apache

PDFBox in the processing chain for some significant advantages in extracting formatting
information, which is specially useful during the preprocessing stage. Moreover, Apache

Tika is fundamentally a common detection and parsing wrapper for many formats that uses
Apache PDFBox for parsing and extraction of PDF files.

1Carousel was the codename for Acrobat 1.0
2https://www.pdftron.com/

96 Text Extraction and Analysis

Apache Tika is a content analysis toolkit that allows analysis and content extraction from
1000+ different file formats and outputs in several formats including, text, HTML, XML etc.
It is a Java library that also have a stand alone command line tool that can be used for text
extraction.There are two primary interfaces for this toolkit: Detector, the basis for most of
the content type detection and Parser, accommodating different file format information and
parsing subroutines to parse different types of file. Tika is widely used in search engines,
especially in the crawler modules to extract text and meta–data from digital contents. Apache

Tika, however, provides a common interface to parse all the different file formats. We used
the command line wrapper for the extraction experiments.

Apache PDFBox library is also an open–source Java library for working with PDF doc-
uments. Apache PDFBox is published under the Apache License v2.0 and has several
features in addition to extracting (e.g. Splitting, Printing etc.). According to OpenHUB3, the
development summary of Apache PDFBox (as of May, 2015) was:

• The project has had 3,998 commits by 17 contributors representing 120,668 lines of code.

• It is written in Java with an average number of source code comments (68,418 lines).

• It took an estimated 31 man years of effort (counted using COCOMO model) starting with
its first commit in February, 2008.

Along with the Java library Apache PDFBox also comes with a series of command line
utilities that can be used for the aforementioned tasks. Apache PDFBox command line tool
for text extraction outputs in either text or HTML format.

4.2.3 Text Extraction

The first experiments on text extraction was conducted using the Apache Tika command line
tool to extract text in the XML format. The tool is also capable of producing HTML content
which can preserve more format information, especially table structures for some tables. On
the other hand we used the Apache PDFBox command line tool to produce the HTML content
from the PDF documents. Since the tool cannot produce XML output directly, we then
used the “xmllint” parser to produce the XML output. Both types of Apache Tika produced
outputs (XML & HTML) contains a lot more meta–information than the Apache PDFBox.
Furthermore, both tools produce the physical line boundaries rather than logical boundaries
such as sentences or paragraphs. However, except for some minor formatting details the
text content is outputted quite in the same manner. However, Apache PDFBox is more

3https://www.openhub.net/p/pdfbox/

4.3 Preprocessing 97

specific, lighter and less resource intensive among the two tools. The general statistics for the
extracted files is listed in Table 4.5. The green row represents the largest file and the light red
row represents the smallest file (for details of the files see § 4.1). It is to be noted that the

Table 4.5. Extracted File Summary

File Lines Words Characters

001.bdf.html 14,918 65,968 481,651

002.bdf.html 1,972 8,734 67,150

003.bdf.html 3,321 12,311 94,750

004.bdf.html 5,831 25,255 198,192

005.psa.html 19,963 65,876 496,029

006.psa.html 2,129 6,054 48,539

007.psa.html 30,647 118,047 854,149

008.psa.html 7,786 27,584 213,332

009.psa.html 2,595 9,872 78,012

010.psa.html 5,740 20,942 161,702

011.psa.html 2,468 11,890 86,428

012.psa.html 1,518 5,650 45,921

013.psa.html 6,166 20,673 158,731

014.psa.html 11,402 55,855 401,857

015.psa.html 4,216 15,731 127,208

016.psa.html 3,356 12,825 103,898

017.psa.html 14,209 85,622 589,872

018.psa.html 25,130 106,511 757,736

Total 163,367 675,400 4,965,157

extracted files contain large amount of HTML tags produced by the extraction utility, thus,
the size is not representative of the actual text content of each file. The extraction utility also
removes all graphic content thus, many large files eventually yields disproportional amount
of text.

4.3 Preprocessing

Once the text is extracted from the source documents, the first tool we developed is the
preprocessing utility. The extracted text was found to be far from clean since all the formatting
information extracted by Apache PDFBox is pertaining to the physical structure of the

98 Text Extraction and Analysis

document rather than the linguistic frames (i.e. paragraph, sentence, words etc.). So, we
developed a preprocessing tool, written in Python4. The tool has been tested on Python 2.7
on Ubuntu 14.04 LTS (Trusty Tahr) and developed as an executable script expected to be
executed in a command line environment. Most of the components are heavily parametrized
and can be used to control the behaviour of the program and to accommodate parsing and
annotation mapping (if any) in the later stage. Two types of output (i.e. raw text for parsing
and token map with annotation) were produced by the pre–processing tool. The process
flow is depicted in Figure 4.3. The text preprocessing stage is a single script containing all

Fig. 4.3. Overview of The Preprocessing Tool

PDFBox XML

XML Parsing

Header Footer Removal

List Trigger Removal (e.g. bullets)

Merging Blocks

Remove Improbable Blocks

Generate Output

Raw Text

Token List

the modules. The output generation module can be modified for any future requirement
to produce other types of outputs. Each Module has explicit dependency on the previous
module except for the XML parser of course, and they are executed in the exact sequence
presented in Figure 4.3. These components will be addressed (in details) in the following
subsections.

4.3.1 XML Parsing

The input data for the tool are the extracted text in XML format described in § 4.2.3 and
found to have varying types of XML tags. We used the Python SAX library (xml.sax) to
parse the input text. SAX is a de–facto standard, rather than a formal standard, based on an

4in agreement with Python 2.x definition

4.3 Preprocessing 99

original Java implementation5. The Simple Application Program Interface (API) for SAX

parsing in Python is a callback based system for parsing XML documents. In SAX parsing,
the XML document is traversed and calls are made into a known API to report the occurrence
of XML constructs (e.g. elements, text etc.) as they are encountered. This particular approach
is quite popular to parse large files since SAX is event driven (memory efficient) as oppose
to the Document Object Model (DOM) parsing model that converts an XML document into a
parse tree and loads the whole tree in memory.

The extracted text contains large number of different tags (mostly from the HTML origin
of the original extraction by PDFBox) and meta–tags. We used only a handful of those
tags to normalize the text. These tags (e.g. <div>, <p>, etc.) provided the higher
level document structures (i.e. pages and paragraphs). We also used some of the basic
text formatting information (i.e. bold, italic and underlined) to identify text continuity6.
Furthermore, the files having expert annotations have a pair of special tags (e.g. <wa_start>
and <wa_end>), and those were also recorded. The text content is extracted and mapped with
the formatting using the character position and put into a list like data structure. Within
every paragraph boundary, the text is further broken down into blocks by splitting at every
newline character. At this stage the data structure contains the page boundaries, block
boundaries and all the formatting information.

4.3.2 Redundancy Removal

The general practice in manual document generation produce some redundant text elements
usually in the header and footer section of the document. These text segments often contain
very little information pertaining to FP descriptions. Thus, we identified those text blocks
and removed them from the data pool. We used Dice Coefficient (Sørensen, 1948) to quantify
the similarity between two strings found in multiple pages and if the similarity is higher than
a pre–defined threshold, it is considered as a candidate. There are also two parameters that
can be changed to control the behaviour of the redundancy detection process.

Window Size (Ws) defines how many pages we search for a string Sx to be repeated. If a
second occurrence of Sx is not found within Ws pages since the first occurrence, Sx will be
removed from the possible candidate list. The value Ws = 8 was found to perform very well
for our data.

5http://www.saxproject.org
6having the same format implies continuity even though the text may have been split into different blocks

100 Text Extraction and Analysis

Also known as the Sørensen–Dice Coefficient, Dice Coefficient is a statistic used for comparing
the similarity between two sets. Like the Jaccard Similarity Coefficient (Jaccard, 1901), the Dice
coefficient also measures set similarity but assigns twice the weight to the intersection. The original
formula was,

QS =
2C

A+B
=

2|A∩B|
|A|+ |B|

where A and B are the number of elements in two sets, and C is the number of elements shared by
the sets. QS is the quotient of similarity and its range is [0,1]. A value of 0 indicates no overlap,
whereas, a value of 1 indicates perfect similarity and higher numbers indicate redundancy. When
taken as a string similarity measure, the coefficient may be calculated for two strings, x and y using
bi–grams as follows,

s =
2nt

nx +ny

where nt is the number of character bi–grams found in both strings, nx is the number of bi–grams in
string x and ny is the number of bi–grams in string y.

Dice Coefficient Threshold (QST) defines the minimum Dice Coefficient (QS) two strings
must score to be considered very similar, i.e. inferred to be the same. Originally the default
value was set to be QST = 0.8 but it failed to detect some headers and footers (e.g. “page
37/56” and “page 58/256” results QS = 0.777, however, we want these to be considered as
very similar), eventually, we found that QST = 0.7 performs the best for our data.

4.3.3 List Trigger Removal

There are two modules that process the list like structures in the extracted text with two

objectives: systematically identify list elements and remove the unwanted components, e.g.
bullets or numbers used for list elements that do not contain any information regarding FP
description. The detection of list triggers was achieved using a pre–defined and language
specific set of Regular Expressions (RE). We also found that just defining the patterns was
not enough for the task, thus we proposed a custom data structure to encompass all the
necessary information. This data structure has the following features,

• There are two types of patterns: fixed patterns (e.g. “–”, “« »” etc.) and sequence type
patterns (e.g. “1.”, “12.3.”, “a)” etc.).

• each pattern can be defined to look for either unicode characters or unicode categories7.
The difference being that a pattern looking for unicode categories requires a translation of
each character sequence to its equivalent unicode category sequence before matching.

7http://www.fileformat.info/info/unicode/category/index.htm

4.3 Preprocessing 101

• Each pattern definition also contains the number of characters at the end of each recognised
string that are not a part of the required recognition pattern (if any) rather than defining the
pattern boundary.

• There are three priority levels of pattern (1, 2 and 3) and in the case of multiple patterns
being found in the same character sequence, only the pattern of the highest level will be
recognized.

• For the fixed string pattern (e.g. “« »”), pattern definition contains a special flag.

Fig. 4.4. Example of User Definable List Detection Pattern

('the_double_grater_and_less', 'P', 1, ur'^\s*\u00AB\s.+\s\u00BB\s*$', 0, '«»', 3)

Pattern Name

Pattern Type = Pattern (P) or Sequence (S)

Pattern Format = Unicode Category (0) or Unicode Character (1)

The Pattern

Off Pattern Characters Count

Pattern String (“None” for Variable Strings)

Priority Level (0/1/2/3)

The patterns can be defined according to the need, especially for the adaptation of the tool
to other languages. We compiled the current set of patterns for French by analysing our
data. We are not claiming that these patterns are in anyway a complete representation of the
possible list markers in a document, rather we found that except for some minor failures8,
these patterns performed exceptionally well. A significant reason for removing the list trigger
patterns is to facilitate cleaner and successful parsing. We found that without these two
modules, linguistic parsers have had a hard time parsing all the sentences. Furthermore, we
are also recognizing the possibility of improvement on the patterns for French, for better
performance.

4.3.4 Block Merging

There are three levels of merging performed by three modules in a sequential manner. The
first module is the Block Merging module that selects eligible candidates of two subsequent
blocks using a range of features (usually found at the end of the first string and the beginning
of the second string), both as individual features and in conjunction with other features. The

8usually triggered by a human error e.g. a list starting with “1) 2)” is an unrecognised pattern

102 Text Extraction and Analysis

common features are listed in Table 4.6. For every pair of strings these features are extracted
and then the merging algorithm uses them to make the decision whether to merge them or
not. The string merging module uses an algorithm that is tuned to maximize merging since
the text extractor originally extracted them as a single unit.

Table 4.6. The String Merging Features

ID Reasoning

R0
The final true character (not a white space character) of the first string contains a text format (i.e. bold,
italic or underlined) also present in first true character of the second String.

R1 The second string starts with a list marker.

R2 The final true character of the first string is a termination character.

R3 All the letters in the first string are title case characters.

R4 All the letters in the second string are title case characters.

R5 There are white spaces at the end of the first string or at the beginning of the second string.

R6 The final true character of the first string is a lower case letter.

R7 The first true character of the second string is a lower case letter.

R8 The first true character of the second string is a termination character.

The second module is for Paragraph Merging, and it determines whether the last string of a
paragraph block can be merged with the first string of the immediate next paragraph block.
This module uses the same sets of features but a different algorithm that is tuned to minimize
merging, maintaining our confidence on the original grouping produced by the text extraction
tool. This module is also responsible for merging the last string at the end of a page and the
first string at the beginning of the immediate next page. Since the tokens are mapped with the
information of their origin i.e. page, sentence etc., this merging only accommodates better
segmentation for the parser.

The final module is the Bracket Merging that uses the available pairs of opening and closing
brackets to merge disjoint string segments. The strings within a bracket pair are expected
to belong at least to the same paragraph. A stack based matching algorithm is used that
also ignores unmatched brackets. There are three highly customizable and user defined
parameters,

Termination Character List allows the user to define possible termination characters. The
default list contains the most common termination characters (e.g. “.”, “?” etc.).

Bracket Pairs allows the user to define which pair of characters shall be considered to be
bracket pairs (e.g. “(” & “)”).

4.4 Linguistic Annotation 103

Bracket Distance Threshold (BDT) defines the number of consecutive string blocks the
algorithm will search for a closing bracket (Cx

B) after encountering an opening bracket (Ox
B).

The default value used for our experiments was BDT = 5 and if a Cx
B is not found for Ox

B

within the range, Ox
B is considered to be an anomaly and removed from the search stack.

4.3.5 Data Normalization

The normalization of the data is achieved by removing all character sequences that are less
probable to contain any information regarding FP description (e.g. bullets & numberings).
We also removed entire blocks based on character features and simple patterns to identify
improbable strings. Some of the features considered by the algorithm are listed below,

• The non alpha–numeric to alpha–numeric characters ratio should be greater than 0.2

• The number type to alphabet type characters ratio should be less than 1.0

• The string is not a Table of Content segment determined by a predefined pattern.

• The string is not a “fragment” i.e. a single word where none of the characters are upper
case or title case characters.

• For multi word string the average word length should be greater than 2

4.3.6 Output Data Generation

The normalized text is used to generate the preprocessed data that contains two types of
information: the raw text and the token list. The token list contains explicit information
about the origin of a token and associated annotation information (if any). The raw text is
generated using token definition that contains textual representation information for each
token (e.g whether there should be a space before the token or not), producing seamless text
blocks. The raw text output is targeted for the parser used for linguistic annotation and the
token definition is targeted for the alignment module to combine the linguistic annotation
with any pre–existing annotation in the original source (e.g. FP annotation by experts).

4.4 Linguistic Annotation

Linguistic annotation is a significant part of the corpus generation. The primary layer of
linguistic information for each token of the extracted text was generated by performing

104 Text Extraction and Analysis

syntactic parsing of the raw text. The basic lexical annotations are lemma, detailed and
fine grained Parts–of–Speech (POS) and thus POS specific morphological features9. We
decided to use dependency parsing that uses the principles of Dependency Grammar (DG), to
annotate the bi–lexical dependency relation between the tokens. We used the Bonsai v3.210,
a freely available parsing tools for dependency parsing of French text. The output of the
parsing tool is in the format specified for the multi–lingual dependency parsing shared task
of CoNLL–X (Buchholz and Marsi, 2006) that has been adapted for the French Tree-Bank

(FTB) (Candito et al., 2010) to accommodate the specificities of French. Furthermore, the
tool provides in–built tokenization and sentence segmentation modules that has been used for
consistent sentence definition for the corpus. In this section we shall present the theoretical
aspect of the parsing, the parsing tool and parsing output statistics along with the rationales
behind different choices that have been made along the way.

4.4.1 Dependency Parsing

In the modern linguistic tradition, there are two major syntactic representations for sentences.
The more commonly used is the constituent based parsing that groups the words of a sentence
into the possible constituent (i.e. phrase structures) and establishes the relations between
the constituents in a recursive manner. Eventually, this process produces a hierarchical tree
like structure where, the constituent groups build up to the sentence (see Figure 4.5). The

Fig. 4.5. Example of Constituent Structure for English Sentence from The Penn Treebank

Economic news had little effect on financial markets

JJ NN VBD JJ NN IN JJ NNS

NP NP NP

PP

NP

VP

S

9for nouns: number, gender etc. or for verbs: tense, mood etc.
10http://alpage.inria.fr/statgram/frdep/fr_stat_dep_parsing.html

4.4 Linguistic Annotation 105

Modern form of constituent based grammar is known as the Phrase Structure Grammar

(PSG) and its origin is often attributed to the work of Noam Chomsky (1957). On the other
hand, dependency parsing establishes relations between each word (can also be word groups
without establishing a phrasal group definition) called dependencies and it is often binary i.e.
between two words, without establishing any phrasal nodes (see Figure 4.611). The seminal

Fig. 4.6. Example of Dependency Structure for English Sentence from The Penn Treebank

Economic news had little effect on financial markets

JJ NN VBD JJ NN IN JJ NNS

NMOD NMODSUJ NMOD

OBJ

NMOD

PMOD

work of Tesnière (1959) is usually taken as the starting point of the modern theoretical
tradition of Dependency Grammar (DG). The elementary notion of dependency is based
on the idea that the syntactic structure of a sentence is a collection of binary asymmetrical
relations between the words of the sentence. The terminology used by Tesnière (1959) defined
dependency as a relation that is held between a head and a dependent. The alternative terms
for head in the literatures are governor or regent for head i.e. régissant in (Tesnière, 1959)
and modifier for dependent i.e. subordonné in (Tesnière, 1959). Historically however, DG
can be traced back to the grammar of Sanskrit documented by Pāņini, several centuries before
the Common Era as, Joakim Nivre (2005) presented in the overview of DG and dependency
parsing. Covington (1984) suggested that DG also has its roots in the medieval theories
of grammar. However, modern dependency grammar is largely developed as a syntactic
representation used by traditional grammarians, especially in Europe, and particularly in
Classical and Slavic domains (Mel’čuk, 1988).

Formally, dependency parsing is based on the assumption that syntactic structure consists of
lexical elements linked by binary asymmetrical relations called dependencies. DG, is the
theoretical framework for dependency parsing; it is a tradition that comprises a large and a
diverse family of grammatical theories and formalisms that share certain basic assumptions
about syntactic structure. The set of criteria for establishing dependency relations and for
distinguishing the head and the dependent in such relations, are of foremost importance in
DG. Robinson (1970) presented four basic axioms for DG that govern the proper form of
dependency structures,

11The English sentence for the examples (Figure 4.5 & 4.6) are taken from the Wall Street Journal section of
the Penn Treebank (Marcus et al., 1994, 1993).

106 Text Extraction and Analysis

• One and only one element is independent.12

• All the other nodes depend directly on some other node.

• Each node can only depends directly on exactly one element.

• If A depends directly on B and some element C intervenes between them (i.e. in the linear
order of the string), then C depends directly on A or B or some other intervening element.

The criteria for dependency relations are also of interest for any syntactic framework that puts
some importance in the notion of syntactic head e.g. all the constituency–based frameworks
that subscribe to some version of X Theory (Chomsky, 1968; Jackendoff, 1977). Below
we give some of the criteria that have been proposed in the literatures (Hudson, 1990;
Zwicky, 1985) for identifying a syntactic relation between a head H and a dependent D in a
construction C as described in (Nivre, 2005):

• H determines the syntactic category of C and can often replace C.

• H determines the semantic category of C; D gives semantic specification.

• H is obligatory; D may be optional.

• H selects D and determines whether D is obligatory or optional.

• The form of D depends on H (agreement or government).

• The linear position of D is specified with reference to H.

The list however, is a mix of different levels of criteria: some syntactic and some semantic,
that raises the question of the existence of a single coherent notion of dependency grammar.
There has been some theories e.g. the concept of head having a prototype structure that satisfy
all or most of the criteria while some peripheral instances satisfy fewer criteria (Hudson,
1990). Mel’čuk (1988), on the other hand emphasized on the idea that the word forms of a
sentence can be linked by three types of dependencies: morphological, syntactic and semantic.
Nikula (1986) however, argued that it is very important to distinguish between syntactic
dependency in endocentric and exocentric constructions (Bloomfield, 1933). In endocentric

construction the head in a dependency relation can replace the whole construction without
disrupting the syntactic structure, e.g. in Figure 4.6 the NMOD relation holding between the
noun markets and the adjective financial is an endocentric construction. In contrast, each
component in a exocentric construction is equally important, i.e. the head cannot replace
the whole construction, e.g. the PMOD relation holding between the preposition on and
the noun markets is an exocentric construction. Endocentric constructions may satisfy all

12For example in Figure 4.6 the token (or node) “had” has no incoming dependency thus, it is the independent
element. In many formal representation this node is called the root element and often encoded with a virtual
head for the independent element with a root relation.

4.4 Linguistic Annotation 107

the aforementioned criteria but, exocentric constructions, by their definition, fail on the first
criterion, but they may satisfy the remaining criteria.

The theoretical tradition of DG is united by the assumption that an essential part of the
syntactic structure of sentences resides in binary asymmetrical relations holding between
lexical elements. Moreover, there is a core of syntactic constructions for which the analyses
given by different frameworks agree in all important respects. However, there are also
important differences with respect to whether dependency analysis is assumed to exhaust
syntactic analysis, and with respect to the analysis of certain types of syntactic constructions
(Nivre, 2005). Our focus though is in the computational implementation of syntactic analysis
based on dependency representations, i.e. representations involving lexical nodes, connected
by dependency arcs, possibly labelled with dependency types. Computational implimations
are often tied to a particular theory13. Regardless, Nivre (2005) argued that he connections
between theoretical frameworks and computational systems are often indirect for dependency-
based analysis, more so than for theories and parsers based on constituency analysis. He also
argued that, this may be due to the relatively lower degree of formalization of dependency
grammar theories in general.

Carroll (2000) distinguished two broad types of strategy for dependency parser development:
grammar–driven approach and the data–driven approach, although these approaches are not
mutually exclusive. For this research though, we have used a parsing system that primarily
used data–driven approach. As in natural language parsing in general, the attempts to data–
driven dependency parsing were grammar–driven as well, because of the use of a pre–existing
corpus (usually developed using grammar–driven method) to induce the probabilistic model
for disambiguation. For example, Carroll and Charniak (1992) actually used a Probabilistic

Context–Free Grammar (PCFG) model where the Context–Free Grammar (CFG) is re-
stricted to the type of DG presented by Hays (1964) and Gaifman (1965). Significant amount
of research has been conducted in the field of data–driven dependency parser development
and a comprehensive study is presented in (Nivre, 2005, see §3.2).

4.4.2 FTB and The Parsing Tool BONSAI

BONSAI is a set of tools and resources for the statistical dependency parsing of French.
These tools and resources include, preprocessing code and pre–learnt models and grammars

13For example, the PLAIN system (Hellwig, 1986, 2003) which is based on Dependency Unification
Grammar (DUG) or Functional Generative Description (FGD) (Sgall et al., 1986) based parsing systems
(Järvinen and Tapanainen, 1998; Tapanainen and Järvinen, 1997) etc.

108 Text Extraction and Analysis

for three parsers: MaltParser14 (Nivre et al., 2007), Minimum–Spanning Tree Parser (MST-

Parser)15 (McDonald et al., 2005), Berkeley Parser16 (Petrov et al., 2006), and a constituent
to dependencies conversion tool for French. BONSAI was developed under the Project SE-

QUOIA17 (ANR–08–EMER–013), a three–year project (2009–2011) funded by the Agence

Nationale de la Recherche (ANR)18. The official objective is listed as “Large coverage proba-
bilistic syntactic parsing of French” thus, provides statistical parsers for French and the tools
to be used for free.

Candito et al. (2010) presented the training data generation for the BONSAI parsers. They
used the French Tree–Bank (FTB) (Abeillé and Barrier, 2004), a constituency–based tree–
bank made up of 12,531 sentences from the Le Monde19 newspaper, for training and testing
the statistical parsers. They argued that the lack of annotated data made the French statistical
dependency parser development, a virtual impossibility. The EASY Project (Paroubek et al.,
2008) has released an annotated corpus for French, containing approximately 400,000 words
of texts from various domains, such as newspaper, but also literary, medical and transcribed
texts. But the annotation scheme (called PASSAGE formalism) mixes chunks and relations,
that cannot be converted easily into full surface dependency trees usable for the training a
statistical dependency parser, because it was originally developed to provide a minimum
common foundation for evaluating all types of parsed output. There has been attempts to
make a bi–directional converter for Passage and FTB–DEP formalism with limited success,
see (Asadullah et al., 2014b). In the FTB on the other hand, each sentence is annotated with
a constituent structure and words bear the following features: gender, number, mood, tense,
person, definiteness, wh–feature etc., the association of a feature depends on the POS of
course.

Candito et al. (2010) also described the two tree–banks automatically generated from the
FTB tree–bank: FTB–UC and FTB–UC–DEP. FTB–UC is a modified version of the original
constituency–based tree–bank, where the morphological annotation has been mapped to a
simpler tag set (28 POS tags) , and compound structures with regular syntax are broken
down into phrases containing several simple words while the rest of the sequences that were
annotated as compounds in FTB, are merged into single tokens. In contrast, FTB–UC–DEP

is a dependency tree–bank derived from FTB–UC using the classic head propagation rules,

14http://www.maltparser.org/
15http://www.seas.upenn.edu/∼strctlrn/MSTParser/MSTParser.html
16http://nlp.cs.berkeley.edu/
17https://sites.google.com/site/anrsequoia/home
18http://www.agence–nationale–recherche.fr/
19http://www.lemonde.fr/

4.4 Linguistic Annotation 109

similar to what has been proposed for English by Magerman (1995). Function labels present
in the original tree–bank serve to label the corresponding dependencies. The remaining
unresolved dependencies are labelled using heuristics (for dependants of non–verbal heads).
Candito et al. (2010) also claimed that with this conversion technique, output dependency
trees are necessarily projective20 (see Nivre and Nilsson, 2005), and extracted dependencies
are necessarily local to a phrase, i.e. the automatically converted trees can be regarded as
pseudo–projective approximations to the correct dependency trees (Kahane et al., 1998).
Although not conclusive, they evaluated the converted trees for 120 sentences, and report a
98% label attachment score when comparing the automatically converted dependency trees
to the manually corrected ones.

Candito et al. (2010) presented the details of the development of the BONSAI tool and the
experimental results using the three parsers. Although all the parsers are statistical, they are
based on rather different parsing methodologies,

• Berkeley Parser, a latent–variable PCFG parser, is a freely available implementation of
the statistical training and parsing algorithms introduced in (Petrov et al., 2006; Petrov and
Klein, 2007). The Berkeley learning algorithm uses Expectation Maximization (EM) to
estimate probabilities on symbols that are automatically augmented with latent annotations,
a process that can be viewed as symbol splitting, as proposed by Matsuzaki et al. (2005).

• MSTParser is a freely available implementation of the parsing models described in (Mc-
Donald, 2006). These types of models are often described as graph–based primarily be-
cause the parsing problem is defined as searching a directed maximum spanning tree in
a dense graph representation of the sentence. Graph–based parsers typically use global
training algorithms, where the goal is to learn to score correct trees higher than incorrect
trees.

• MaltParser is a freely available transition–based dependency parser implementation de-
scribed in (Nivre, 2006, 2008). These types of models are classified as transition–based
because, the strategy is to reduce the problem of parsing a sentence to the problem of
finding an optimal path through an abstract transition system, or state machine.

Candito et al. (2010) argued that the choice of selecting one constituency-based parser and
two different dependency parsers is based on the the work of Seddah et al. (2009). In this
work, a number of constituency–based statistical parsers were evaluated on French, and the
evaluation showed that the Berkeley Parser had significantly better performance for French
than the other parsers. Berkeley parser has been reported to have the advantage of a strict
separation of parsing model and linguistic constraints i.e. linguistic information is encoded

20Projectivity is a principle of tree structures by which discontinuities are identified and defined. A tree
structure is said to be projective if there are no crossing dependency edges and/or projection lines (Groß, 1994).

110 Text Extraction and Analysis

in the treebank only, except for a language–dependent suffix list used for handling unknown
words. They also reported the evaluation of the parsers (for both labelled and unlabelled
dependency accuracy) along with a performance breakdown as summarized below,

• MSTParser showed the best labelled accuracy, whereas, Berkeley Parser had the best un-
labelled accuracy.

• In terms of parsing runtime, MaltParser runs approximately 9 times faster than the Berke-
ley system, and 10 times faster than MSTParser, since, MaltParser uses a linear–time
parsing algorithm, while the other two parsers have cubic time complexity.

• For nouns, Berkeley has the best unlabelled attachment, followed by MSTParser and then
MaltParser, while for labelled attachment Berkeley and MSTParser are quite similar with
MaltParser a bit behind.

• For prepositions, MSTParser is by far the best for both labelled and unlabelled attach-
ment, with Berkeley and MaltParser performing equally well on unlabelled attachment
and MaltParser performing better than Berkeley on labelled attachment.

• For verbs, Berkeley has the best performance on both labelled and unlabelled attachment,
with MSTParser and MaltParser performing about equally well.

• For errors in attachment as a function of word distance, the precision and recall on de-
pendencies of length > 2 tend to degrade faster for MaltParser than for MSTParser and
Berkeley. Berkeley has been reported to be the most robust for dependencies of length > 6.

• Berkeley is also best at finding the correct root of sentences, while MaltParser often pre-
dicts more than one root for a given sentence.

For this research we choose to use the best model of the Berkeley available with BONSAI

v3.2 with labelled dependency output. The decision is based on the performance of the
Berkeley system for dependency attachment of verbs and nouns, since these are the two

most significant POS associated with FP identification (see Chapter 3 § 3.3.2). Moreover,
the ability of the Berkeley system to find correct root element and resolving long distance
dependencies are particularly interesting for us since we shall be parsing noisy text which
can be quite long in many instances.

4.4.3 The Data Format

BONSAI outputs the parsed text in a format defined for the CoNLL–X shared task for
dependency parsing (Buchholz and Marsi, 2006), commonly known as CoNLL Format,
which is an open format with the following features:

• Each sentences is separated by a blank line.

4.4 Linguistic Annotation 111

• Each sentence consists of one or more tokens, each starting on a new line.

• Each token consists of ten fields described in the Table 4.7 below.

• Fields are separated by a single tab character.

• White space or blank characters are not allowed within fields.

Table 4.7. Definition of CoNLL Format Token Fields

Column Name Description

1 ID Token counter, starting at 1 for each new sentence (0 is reserved for the virtual root).

2 FORM Surface form or a punctuation symbol representing the token.

3 LEMMA Lemma of the surface word form, or an underscore if not available.

4 CPOSTAG Coarse grained POS tag, where tag set depends on the language and the formalism.

5 POSTAG
Fine–grained POS tag, where the tag set depends on the language and the formalism. Can be
identical to the coarse–grained POS tag (if not available).

6 FEATS
Unordered set of syntactic and/or morphological features (depending on the language and the
formalism), separated by a vertical bar (an underscore if not available).

7 HEAD
Head of the current token, which is either a value of existing ID (always available for labelled
outputs).

8 DEPREL
Name of the dependency relation to the HEAD. The set of dependency relations depends on
the language and the formalism.

9 PHEAD
Projective head of current token, which is either a value of ID or zero, or an underscore if
not available. The dependency structure resulting from the PHEAD column is guaranteed to
be projective (may not be applicable for all languages and it is optional).

10 PDEPREL
Dependency relation to the PHEAD (an underscore if not available). The set of dependency
relations depends on the language and the formalism.

CoNLL Format is an open format thus the features and values to be encoded can be defined
to accommodate different languages and formalisms. BONSAI produces the output, repre-
sentative of the FTB schema developed for the tree–bank and defines both morphological
and syntactic information classes for French. The schema 21 was the product of the work by
(Candito et al., 2010; Candito et al., 2009). One static feature is the total absence of PHEAD

and PDEPREL in the output of the parsers. The schema maintained the original 13 FTB

POS categories in the CPOSTAG column, whereas, used a fine–grained 28 categories for the
POSTAG column. Distinctions such as between common and proper noun or between subor-
dinate and coordinate conjunction has been encoded through the fine–grained categorization.
There were also, 12 dependency relation defined to express the relations of verb governors,
8 relations for non–verbal governors and 8 special relations for manual annotation i.e. the
systems do not produce this relations and they are only used for manual annotation.

21http://alpage.inria.fr/statgram/frdep/Publications/FTB-DescriptionDepSurface.pdf

112 Text Extraction and Analysis

4.4.4 Parsing

The BONSAI v3.2 contains a set of tools to parse plain text using any of the three parsers. We
have used the Berkeley Parser implementation for this research. There is a simple command
line script that allows the user to control the parsing behaviour using few parameters. One
of the parameters is whether to use the inbuilt tokenization and sentence segmentation
or not and by default, the tool set this parameter on. The other parameter is the control
over the use of labelled or unlabelled dependencies, and we uses the labelled dependencies.
Regardless, of the accuracy of the labels for the labelled dependency output (see Candito et al.,
2010), we make use of the information that dependencies exist between two tokens and the
dependency type. We also noticed that occasionally the parser fails to parse some sentences,
primarily because of improper segmentation in the source text. During the preprocessing
some paragraphs are segmented improperly e.g one sentence is split between two paragraphs.
Berkeley Parser is a PCFG based parser and the dependencies are generated through a
conversion process. Thus, if a set of token fails to translate into a proper constituent tree that
set of tokens is ignored. In order to maintain robustness for our NLP chain, the unparsed
tokens were grouped together and tagged as unparsed.

4.5 Alignment and The Corpus

Alignment and corpus generation is the last module in our NLP chain. At this stage two
operations are performed: finding the alignment between the pre–tokenized output that also
may contain expert annotations and the parsed output that contains lexical, morphological
and syntactic annotation. Once the alignment is performed the corpus can be generated
incorporating both these information. In the following subsection we shall give an overview
of the alignment and corpus generation process and present our observations regarding the
corpus.

4.5.1 Alignment

The alignment tool takes the parsed output and the token definition as input and produces the
corpus file in a predefined custom XML format. The token definition file contains tokens that
are minimum possible character groups from any text. To achieve this objective we accept
only contiguous alphanumerical character span as tokens and any other type of character are

4.5 Alignment and The Corpus 113

considered to be a separate token by themselves and white space characters provide context
for seamless text generation. On the other hand the parser tokenizes by putting logical blocks
of characters that represent linguistic unit such as, word or phrases thus, one or more tokens
from the token definition (TD) correspond to a single parser token (TP). This relation is tested
during the alignment and all the annotations associated with any TD become associated with
the corresponding TP. formally if the tokens T a

D ⇒{A1
a,A

2
a, . . .A

m
a } and T b

D ⇒{A1
b,A

2
b, . . .A

n
b}

found to align with T x
P then, T x

P ⇒{A1
a,A

2
a, . . .A

m
a ,A

1
b,A

2
b, . . .A

n
b}. The output corpus contains

the sentence structures and token definition generated by the parsed text but incorporate the
expert annotation information.

The general strategy for the alignment is a basic string matching algorithm that match one
character at a time from each token sequence. The tokens from each lists (i.e. TD and TP) is
loaded in separate queues and the top elements are being matched until both or TD queue
is empty. If both queues are empty the next token from both lists are loaded but if only the
TD queue is empty, the next TD token is loaded and the process is repeated until the end of
file is reached. One significant consideration was the special characters of French (e.g. è, ö
etc.) are normalized before the comparison since the parser tends to modify them, primarily
to find correspondence in the existing dictionary i.e. for spelling agreement. The aligner
also generates the corpus documents in a custom XML format thus concludes the NLP chain.
The complete Document Type Definition (DTD) of the output XML files can be found in
Appendix A.

4.5.2 The ProjEstimate Corpus (PEC)

The ProjEstimate Corpus (PEC) is a resource produced as a part of this research. It has been
automatically generated and it is far from being a gold standard resource, but to the best of
our knowledge it is the only such resource for FP description identification. In this section we
shall provide the general statistics and significant features of the corpus. The statistics that
we are interested in, are pertaining to sentences, tokens and lemmas. We are also interested
in knowing how representative is the reference data (000.ref), primarily for associating
significance to any evaluation performed using this reference. Table 4.8 listed the general
statistics of the corpus with results from individual document and the combined values22. It
also contains similar statistics extract from the reference document. One can see that in terms
of number of sentences and tokens the corpus and the reference seem to be rather imbalanced

22The lemma column in the total row (in blue) is the total number of unique lemmas found in all the
documents together and not the arithmetic sum of the lemmas found in different documents.

114 Text Extraction and Analysis

(41,937 to only 901 sentences). However, the number of unique lemmas is the aspect we are
more interested in. Our hypothesis dictates that lemma and inter–lemma syntactic relation

Table 4.8. General Statistics of PEC and The Reference Files (000.ref)

File Sentences
Tokens Lemma

Count Max. Min. Avg. norm. norm. + pos

000.ref.xml 901 9,219 74 1 10.23 1,438 1,677

001.bdf.xml 5,092 60,419 85 1 11.87 3,201 4,367

002.bdf.xml 454 7,593 72 1 16.72 1,413 1,594

003.bdf.xml 796 9,446 68 1 11.87 1,371 1,602

004.bdf.xml 1,314 21,404 71 1 16.29 1,903 2,230

005.psa.xml 5,370 51,700 76 1 9.63 2,135 3,053

006.psa.xml 408 4,450 59 1 10.91 843 984

007.psa.xml 9,805 105,553 83 1 10.77 2,208 3,246

008.psa.xml 2,021 21,752 63 1 10.76 1,179 1,504

009. psa.xml 786 7,271 117 1 9.25 1,099 1,375

010.psa.xml 1,594 15,149 87 1 9.5 1,342 1,801

011.psa.xml 663 10,217 70 1 15.41 1,029 1,344

012.psa.xml 391 3,928 68 1 10.05 681 803

013.psa.xml 1,859 15,127 52 1 8.14 1,362 1,707

014.psa.xml 3,248 50,995 99 1 15.7 1,791 2,269

015.psa.xml 1,211 11,880 53 1 9.81 722 912

016.psa.xml 753 11,283 89 1 14.98 718 913

017.psa.xml 5,296 73,303 88 1 13.84 3,315 4,489

018.psa.xml 876 11,696 84 1 13.35 1,254 1,546

Total 41,937 493,166 – – 11.76 11,250 16,787

are the primary features that can be used in the search for FPs. Moreover, in close inspection
we found that out of the 1,438 lemmas in the reference file 1,057 are in common with the
lemmas in PEC. We also observed that many lemmas only appeared once or twice in both
datasets, so we decided to remove them from the calculation process. Once removed there
were 5,125 lemmas in PEC that appears more than twice and the number of lemmas found,
for the same criterion, in the reference file was only 496 and of them 432 can be found in the
PEC as well. Reasoning dictates that, since the reference is just a single file, many lemma
may only appear once or twice regardless of the significance i.e. some specific verbs may
appear just once or twice in a small file to define an action, but they might have strong tie
to FPs (it has been observed, see the values in “red” in Table 4.9). So, when we change the

4.5 Alignment and The Corpus 115

condition of the experiment to any lemma that appears in the reference and present in the
PEC with a frequency higher than 2, we found that 1,021 lemmas met the criterion and now

Table 4.9. Common Lemma Statistics for PEC and 000.ref

Feature Condition PEC 000.ref Common Annotated Common

lemma

Unrestricted 11,250 1,438 1,057

115

102

fx > 3
5,125

496 432 91

fPEC > 3 1,021 957 99

lemma + POS

Unrestricted 16,787 1,677 1,175

126

108

fx > 3
6,833

500 425 91

fPEC > 3 1,118 1,043 104

957 of them were common with the corpus. Table 4.9 summarize these findings along with
the results obtained by defining the lemma in conjecture with its POS i.e. the uniqueness
of the lemma in this case would be based on both the lemma and its POS (e.g. the lemma
“reference” can be for both a “noun” and a “verb”). The three pruning conditions we used
can be defined as follows,

• Unrestricted: all the lemmas are part of the statistics as long as they appear in PEC or the
reference.

• fx > 3: only the lemmas that appear 3 times or more in PEC and the reference respectively.

• fPEC > 3: all the lemmas that appear 3 times or more in PEC even though they may
appear less times in the reference. This criterion allows to establish a contrast of how
representative the lemmas are between PEC and the reference.

We also filtered the lemmas that have been found in the annotated tokens to observe the effect
of pruning the lemma list (based on both criteria i.e. fx > 3 and fPEC > 3. We found that in
the normalized form (i.e. only the normalized lemma string defines an unique lemma) there
were 115 lemmas and in contrast there were 126 unique lemmas when lemma and POS were
used together. From Table 4.9 one can see that some annotated lemmas were missing from
the PEC. So, after analyzing the data we found that there was only one annotated verb that
was not present in the PEC and the error seem to be in the POS tagging performed by the
parser (the token “URL” was tagged as a verb).

The other aspect of the corpus that is of interest to us is the dependency relations produced
by the parser. We looked at the similarities in terms of distribution of the relations between
the PEC and the reference file. The findings has been listed in Table 4.10. The relations are
grouped on the basis of the interest of this research. Although p_obj, de_obj and a_obj are

116 Text Extraction and Analysis

not necessarily distinguished by most parsers we kept them in the loop for having additional
information about the indirect object relations. Some of the relations e.g ponct and det (in
“red” in the table) are of very little significance although they comprise of more than 20% of
the all relations. On the other hand, the relation “dep” is by definition undefined and we kept
it under consideration for the uncertainty involved in discarding them.

Table 4.10. The Distribution of Relations in PEC and the Reference (000.ref)

Relation
PEC Reference

% Difference
Annotation

Count Percentile Count Percentile One Both

suj 21,753 4.41 325 3.53 19.95 2 10

obj 104,076 21.1 1,906 20.67 2.04 11 88

root 41,930 8.5 901 9.77 -14.94 53 –

p_obj 2,113 0.43 54 0.59 -37.21 – 1

de_obj 1,706 0.35 31 0.34 2.86 – 1

a_obj 1,204 0.24 22 0.24 0 - –

mod 109,769 22.26 2,003 21.73 2.38 8 119

ponct 63,269 12.83 1,103 11.96 6.78 8 121

dep 55,897 11.33 1,112 12.06 -6.44 2 57

det 55,378 11.23 1,009 10.94 2.58 11 65

dep_coord 11,818 2.4 264 2.86 -19.17 – 19

coord 11,181 2.27 261 2.83 -24.67 – 19

mod_rel 1,795 0.36 66 0.72 -100 – 2

aux_pass 5,829 1.18 80 0.87 26.27 – –

ats 2,928 0.59 50 0.54 8.47 – –

aux_tps 989 0.2 8 0.09 55 – –

aff 774 0.16 11 0.12 25 – –

arg 371 0.08 5 0.05 37.5 – –

ato 228 0.05 4 0.04 20 – –

aux_caus 67 0.01 2 0.02 -100 – –

comp 62 0.01 2 0.02 -100 - -

Total 493,137 – 9,219 – – 42 502

We also explored the relation distribution in the annotated sentences and the results are
interesting. Each relation contains reference to 2 tokens i.e. source and a Target and the first
column list the number of relations having one of the tokens being annotated and the other
column list the number of relations having both tokens annotated. One special relation is the
“root” relation, which is in the case of this parser always equal to the number of sentences i.e.

4.5 Alignment and The Corpus 117

each sentence must have one and only one root relation. Thus, for the annotated relations they
always have just one token being annotated since the other token is a virtual root element.
One interesting aspect was that, even though we considered the indirect relations to have
significance in identifying FPs, at least in principle, the evidence showed otherwise. In
conclusion, this statistics not only provide an overview of the corpus but also shapes the
experimental focus and potentials of our research. The next chapter will provide the most
significant aspects of our research, the experimentations performed using the corpus.

Chapter 5

Finding Function Points

This chapter is dedicated to present our contributions in terms of experiments performed
for the purpose of Function Points (FP) identification. We shall also present the data
analysis results and additional experiments to establish the significance of syntactic features,
namely Dependency Sub–Tree, using a corpus from DEFT 2013 (Grouin et al., 2013), the
French text mining evaluation workshop. There are two broad categories of experiments
for FP identification that is presented here: heuristic based (using additional resources) and
Semi–Supervised Machine Learning (SSML) based. We shall begin with the generic text
analysis to understand the distribution of the data, followed by demonstrating the use of
lexical semantics to accommodate FP identification and establish a baseline. Finally, we
used syntactic patterns with SSML to improve the baseline performance. Each experimental
analysis shall be presented with a brief introduction of the approach and then the experimental
setup, and then the methodology and finally, the results and a brief discussion. Initially, FP
identification from two levels were considered for this research, e.g. identification of pages
and identification of sentences that contain FPs. However, we decided to evaluate only for
pages containing FP descriptions due to the poor inter–annotator agreement at the sentence
level in our reference data (the best was 0.66 in comparison to 1.0 for pages, see Table
4.4). Furthermore, every experimental system we have developed can be seen as a binary
classification system that effectively classifies each page as FP Positive or FP negative. Thus
out evaluation is parallel to the evaluation at rigidity level L0 (introduced in § 4.1.3).

120 Finding Function Points

5.1 Evaluation

In this section we shall present the evaluation schema used for all the FP identification
experiments. The evaluation data was a single Functional Specification annotated by four
annotators. Following the annotation guidelines (see Appendix A § A.1), the annotation of a
contiguous character span was considered to be a single annotation. However, by processing
the reference file with our Natural Language Processing (NLP) chain (described in § 4.3),
we produced evaluation data by translating this character level annotation into page and
sentence level annotation (evaluation data) that could be used for further experimentation.
Detailed annotation information (i.e. types of annotation e.g. Transaction function, Data

Function etc.) associated with each page or sentence, is also preserved in the evaluation data.
Nevertheless, to maintain accordance to the experimental setup we interpreted the existence
of any annotation as FP Positive and the lack of any as FP Negative, thus evaluating the
aforementioned binary classification. The Recall, Precision and F–Measure metric, often
used in the Information Retrieval (IR) and Information Extraction (IE) community, has been
used for all the evaluation. In the following sub–sections a general overview of the metric
and the evaluation system is presented.

5.1.1 Recall, Precision and F-Score

Empirical and objective evaluation plays a significant role in estimating the performance of
any experimental system. When the performance of two systems or results of two experiment
are compared on the same resources, usually standard statistical tests are performed, e.g.
paired t-test1, the Wilcoxon signed–rank test (Wilcoxon, 1945) or the sign test (Hull, 1993),
or variants of them (Evert, 2004; Yeh, 2000). However, in the case of a binary classification
problem, defined by the possible results which can be only one out of two possibilities, either
of the two most popular tests (i.e. t–test and Wilcoxon signed–rank test) cannot be applied
directly (Goutte and Gaussier, 2005). In contrast, binary classification evaluation is the basis
for Precision, Recall (i.e. Sensitivity) and F-Measure and consequently this is a widely used
metric, especially in the IR community for evaluating unranked retrieval sets. This metric
can be seen as a synthetic uni–dimensional measurement that also accommodates the gen-
eration of multi–dimensional measures e.g. precision–recall curve and Receiver Operating

Characteristic (ROC) curve see (Davis and Goadrich, 2006) for further information.

1originally introduced by William Sealy Gosset in 1908, see the book by Mankiewicz (2004) for the
fascinating story behind the development

5.1 Evaluation 121

Precision, recall and F–measure are single valued performance measures derived from four
more fundamental classes of evaluation events, e.g. True Positive (TP), False Positive (FP)2,
True Negative (TN) and False Negative (FN)3. These elements can be explained the best
in a binary classification scenario. The other set of concepts are Reference and Hypothesis

i.e. Reference is the set of data points that has been considered to be ideal or desired result
produced by a system or experiment, and Hypothesis is the set of data points produced by a
system or experiment that is under scrutiny. In a binary reference set of data points there can
be only one label out of two possible labels i.e. Positive or Negative (the value set can be
diverse e.g. Yes or No, or True or False etc.) associated with a data point. Let us consider
that the Reference set R that contains n data points i.e. R = {d1

R, d2
R ... dn

R} with the label
set l = {P, N}. The Hypothesis set H thus, must have the same number of data points i.e.
H = {d1

H , d2
H ... dn

H} using the same label set l. Now, we can associate each data point pair
(dx

R, dx
H) : where, 1 ≤ x ≤ n to one of the cells in Table 5.1 according to the pair of labels

associated with them.

Table 5.1. Frequency Map for Precision, Recall and F-Measure Calculation

Reference

P N

Hypothesis
P TP FP

N FN TN

Now we can count the frequency of data point pairs associated with each cell of Table 5.1
and use them to calculate Recall (r) and Precision (p) using the following formulas,

r =
T P

T P+FN

p =
T P

T P+FP

Recall (r) thus, is the ratio of the number of correctly hypothesized Positive data points i.e.
TPs to the total number of actual Positive data points in the Reference dataset i.e. TPs and
FNs together. In contrast Precision is the ratio of the number of correctly hypothesized
Positive data points i.e. TPs to the total number of data points hypothesized to be Positive

i.e TPs and FPs together. A recall of 0 implies that not a single Positive data point has

2also known as Type I error
3also known as Type II error

122 Finding Function Points

been correctly hypothesized and a recall of 1 implies all the Positive data points are in the
set of hypothesized Positive data points. A precision of 1 implies that all the hypothesized
Positive data points are actual Positive data points in the Reference dataset and a precision
of zero implies the same as zero recall. However, in real–world scenario, especially in IR
applications, precision and recall are inversely related, i.e. as recall increases, in general
precision decreases and vice versa.

The F-Measure, also known as F1 or balanced F-Score, is a combination of precision and
recall, more specifically, it is the harmonic mean of precision and recall and expressed using
the following formula,

F = 2× p× r
p+ r

it is called F1 because it assigns equal weight to both precision and recall. If recall is
weighted higher than that of the precision it is called F2, whereas, if precision is weighted
higher it is referred to as F0.5. These all are special cases of the generic Fβ measure (e.g. for
F1 and F2 the value of β is 1 and 2 respectively) which is based on the effectiveness measure

by van Rijsbergen (1979), which attributes β times as much importance to recall as precision
and it is defined as,

Fβ = (1+β
2)× p× r

r+β 2 × p
for, β > 0

One significant aspect of this measures is the focus on the Positive data points only, and since,
in this research we are equally interested in the performance measure in terms of Negative

data points for each experiment. Thus, three other measures e.g. True Negative Rate (TNR),
also known as the Specificity, Negative Predictive Value (NPV) and Accuracy (ACC) were
also used in the evaluation. TNR is the Negative counterpart of Recall, where NPV is the
Negative counterpart of Precision, and Accuracy expresses fraction of classification that is
correct (for both Positive and Negative data points). These measures are calculated using the
same frequency map (see Table 5.1) and defined as follows,

T NR =
T N

T N +FP

T NR =
T N

T N +FN

ACC =
T P+T N

T P+FP+T N +FN

The performance goal of our methods is focused towards achieving a higher recall, because if
all the positive pages are identified, we can construct experiments to extract specific FPs only
from those pages that can accommodate detail size estimation with significant amount of

5.1 Evaluation 123

confidence in the future research. Figure 5.1 provides a visual representation of the solution
space where, the ellipses represent the true data points either actual or identified by the
system. The ellipse on the left represents T P+FP, i.e. correctly and wrongly identified

Fig. 5.1. Venn Diagram of The Solution Space

TPFP

TN

FN

positive data points by the system. Whereas, the ellipse on the right represents data points
that are actually all positive data points. The FN area represents the incorrectly identified
positive data points. Higher recall reduces the area marked FN thus at least ensures that all
the positive data points are correctly identified. It is a common objective at an early stage of
the development of IR and IE systems as well as ours. We are trying to provide significant
segmentation in the data with high confidence, although, the lack of large amount of reference
data may cause drops in our systems confidence. We have acknowledged the shortcomings
already, yet a very high F1 and F2 score will be welcome in terms of our understanding of
the distribution of data over the PEC corpus.

5.1.2 Evaluation System

The evaluation system is designed to evaluate each experimental system on multiple sets of
reference data where, each set may contain multiple annotations. For example, in our case
there is only one reference document that is annotated by four annotators. The evaluation
data is generated by assigning labels to each uniquely identified element e.g. pages using
page numbers or sentences using unique identifier. each evaluation dataset can have multiple
evaluation references (one for each annotator) and can be associated to a single reference
data. For sentence level evaluation data extraction, we aligned the sentences extracted from
each annotated version of the reference document with the reference document since, more
often then not, annotators add comments along with annotation and these comments get
extracted as well. Each experiment outputs in the same format as the references and thus the

124 Finding Function Points

evaluation tool can compare the results. While testing is performed using the reference data,
the evaluation system outputs the performance of the system as a set of values for different
measurement in the format presented in Table 5.2

Table 5.2. Evaluation Output Format

Measurements

True
Neg.

False
Neg.

False
Pos.

True
Pos.

Recall Precision F1 Score F2 Score TNR NPV Accuracy

TN FN FP TP R P F1 F2 SPC NPV ACC

On the other hand if testing has to be performed on unlabelled data, the output only provide
the number of FP Positive and FP Negative unique elements. In case of comparison between
two experimental results the preference was given to the result having higher average F2–
score. We chose F2 for the FP identification for pages primarily because higher recall is
preferable at this stage since this stage of processing will eventually be used to complement
the detail FP identification. Thus, the more positive pages we can identify will benefit the
overall FP identification performance regardless of the presence of some negative pages.

5.2 Features & Resources

Feature selection is an important part of this research, especially for the Machine Learning

(ML) experiments. The solution space of any ML experiment is fundamentally made of a set
of features that can effectively map the input to the output using different learning algorithms.
Thus, identifying an effective set of features can tellingly determines the success or failure of
a research. For our research we have explored two sets of features,

1. Lexical and Morphological Features (Surface Form, Lemma, Part of Speech (POS) etc.)

2. Syntactic Features (D–Grams and Dependency Sub–Trees)

We also used a set of verb lists to accommodate lexical semantic in some of the experiments,
of which four were provided by industry experts and the rest were extracted from “Les

Verbes Français (LVF)” by Jean Dubois and Françoise Dubois-Charlier (Version LVF+1)4

(Sabatier and Pesant, 2013). In the following sub–sections we shall provide details regarding
the feature sets and the general description of the lexical resources.

4http://rali.iro.umontreal.ca/rali/?q=fr/lvf

5.2 Features & Resources 125

5.2.1 Lexical and Morphological Features

The lexical and morphological features we have used are some of the commonly used
features in Natural Language Processing (NLP) practice. One can often find the use of the
linguistically meaningful character groups e.g. tokens (e.g. characters dimmed to belong
together by a parsing system or by a set of rules) and lemmas (canonical form of a token),
character group sequences e.g. n-grams using either tokens or lemmas, for variable length of
n and various textual clues e.g. average token length, token or lemma frequency etc. For this
research we have used the following lexical and morphological features,

1. The raw tokens defined by the parsing system

2. Lemma for each token

3. The general POS using the tag set presented in the FTB Surface Dependency Annotation
Guideline5 (e.g. noun, verb etc.)

4. The Specific POS i.e. POS tags that also accommodate additional morphological informa-
tion as described in the FTB Surface Dependency Annotation Guideline (e.g. proper noun,
common noun for nouns)

5. The lemma and the general POS together.

Each of these features were used in a n-gram configuration, where n is between 1 and 4. All
of these features were used for the ML experiments, although only the lemma–uni–gram

was used for the heuristic based experiments. These features were also used to generate the
syntactic features, which shall be described next.

5.2.2 Syntactic Features

Dependency relations (see § 4.4.1) extracted from the parser output are the basis for our
syntactic features, namely d-gram and dependency sub–tree. D-grams or dependency sub–

trees, once extracted. serves as features to learn the underlying distribution of those patterns
in relation to the existence of FP descriptions. Even when the minimum tree description
is used i.e. only using the dependants and ignoring the dependency type, these pattern has
significant advantage over a simple bi-gram model since it can capture distant relations
between the dependants. Our patterns are obtained by extracting d–grams and dependency

sub–trees in combination with all of the lexical and morphological feature types (e.g. lemma
d–grams, specific POS dependency sub–tree etc.). Next we shall discuss the syntactic features
in details.

5http://alpage.inria.fr/statgram/frdep/Publications/FTB-DescriptionDepSurface.pdf

126 Finding Function Points

D–Gram

D–grams are representations of individual dependency relations, originally intended to
improve the bi–gram features by allowing distant tokens to form bi–grams, considering
such dependency exists. D–grams are formed from the dependency tree generated by the
dependency parsers. The use of d–grams for text representation that was used for Sentiment

Analysis task, has already been demonstrated by Pak and Paroubek (2011). They defined
d–grams, a concept loosely related to skip–gram (Guthrie et al., 2006), as a tuple of one
dependency relation and two dependants i.e. the source and the target of the relation.
Formally, a d–gram is as follows,

d −gram = (esrc, erel, etarget)

d–grams are generated at sentence level, thus one set of d–grams is generated for each
sentence. Given a sentence S having k dependency relations, the d–gram set is as follows,

d −gram(Si) = {(es
1,e

d
1,e

t
1),(e

s
2,e

d
2,e

t
2), . . .(e

s
k,e

d
k ,e

t
k)}

For an example, let us consider the following sentence,

Fig. 5.2. Dependency Parser Output: As An Example for D–Gram Generation

We really like syntax

sub
mod

obj

Thus, the resulting d–grams from this sentence are as follows,

(like, sub, We) (like, mod, really) (like, ob j, syntax)

Furthermore, to achieve more generalization in the features, Pak and Paroubek (2011) also
introduced the notion of using wildcards in the tuple that would substitute any token or
relation for the given wildcard position. With the introduction of one wildcard (denoted as
d–gram∗) the following patterns can be generated for each original d–gram,

d −gram∗=

(esrc, erel, ∗)

(∗, erel, etarget)

(esrc, ∗, etarget)

5.2 Features & Resources 127

From the previous example (Figure 5.2), the following d–gram∗ patterns shall be produced,

(∗, sub, We) (like, ∗, We) (like, sub, ∗)

(∗, mod, really) (like, ∗, really) (like, mod, ∗)

(∗, ob j, syntax) (like, ∗, syntax) (like, ob j, ∗)

Pak and Paroubek (2011) also presented a variation of the aforementioned pattern by replacing
two elements in a d–gram with wildcards. They aptly named them extended d–gram (xd–

gram) and the following patterns can be generated from the original d–gram pattern,

xd −gram =

(esrc, ∗, ∗)

(∗, ∗, etarget)

Pak and Paroubek (2011) however, refrained from removing both source and target since it
does not make much sense and in agreement with them, we are operating under the assump-
tion that tokens carry the information and dependency relation type augment that information
to generate information rich patterns.They also reported an interesting observation that the
first of these patterns is effectively a uni–gram representation of the source, whereas the
second pattern also represents the instances where dtarget is the head of a relation. Using the
same example (Figure 5.2), the following unique xd–gram patterns shall be produced,

(∗, ∗, We) (like, ∗, ∗)

(∗, ∗, really) (∗, ∗, syntax)

We adopted the d–gram representation and generated features for our ML based experiments.
The fundamental difference between our use of the d–gram patterns with that of the applica-
tion by Pak and Paroubek (2011) are twofold. Firstly, instead of just using tokens or lemmas
to generate d–grams we used all of the five lexical and morphological features presented in
§ 5.2.1 to generate a total of 15 feature spaces. And finally, they used a method described
as “fusing and pruning of triples”, where, fusing is the combination of a target and a source

if the type of dependency convey more information relevant to a specific task. Afterwards,
the fused node is used for any other relation that may refer to any of original nodes that has
been fused. As an example, the authors (Pak and Paroubek, 2011) reported that the negation

relations were fused since, the relation is more relevant to the sentiment analysis task. We did
not perform any fusing at this stage of our research. Pruning on the other hand is the removal

128 Finding Function Points

of relations that are less relevant, e.g. the authors reported to remove any noun modifiers

since thy deemed them less informative to their model. We however, used pruning a little
differently, e.g. we removed all the patterns having any stop words for French.

Dependency Sub–Tree

Dependency sub–tree patterns can be seen as an extension of the d–gram patterns. These
patterns use the interconnected tokens (by some dependency relation) from a dependency tree
and each pattern is a sub–tree of a branch of that tree. Sub–tree patterns are also extracted
at sentence level, thus each sentence produces a set of sub–trees. Furthermore, for each
sub–tree of length greater than 2 (i.e. more than one dependency relation) there will also be
sub–trees of all possible intermediate integer lengths. Formally, if there exist a sub–tree of
length k where k > 2, there will be (k−1) sub–trees of length {2,3,4, . . .(k−1),k}. Let us
consider the following example,

Fig. 5.3. Dependency Parser Output: As An Example for Dependency Sub–Tree Generation

had/VBD

news/NN

suj

Economic/JJ

effect/NN

little/JJ

on\IN

markets\NNS

financial/JJ

nmod

obj

nmod
nmod

pmod

nmod

Each token in the example (e.g. had/VBD) is a node of the tree and traversal of this tree to
extract sub–tree patterns can be performed in either direction. For out experiments however,
we traverse each tree on the directed path output by the parser (i.e. source to target). Some

5.2 Features & Resources 129

of the patterns that shall be extracted are as follows,

had → news

news → Economic

had → news → Economic

had → e f f ect

e f f ect → little

had → e f f ect → on → market → f inance

had/V BD → e f f ect/NN → little/JJ

e f f ect/NN → on/IN

had/V BD → e f f ect/NN → on/IN

on/IN → market/NNS → f inance/JJ

These patterns were extracted automatically as in (Nouvel et al., 2014). Although in the
above example we only presented either the token or the token and its POS together as a node,
all the lexical and morphological features found in § 5.2.1 have been used for experiments.
Furthermore, patterns of length 2 are equivalent to the d–gram∗ pattern, (esrc, ∗, etarget),
e.g. had → news. The general characteristics of the patterns we extracted can be summarized
as follows,

1. Each element is a sequence of tokens and/or their morphological features

2. The dependency relations are discarded in the pattern but used for pruning less useful
dependency relations.

3. All possible tree depth can be explored, but patterns longer then 5 were pruned out.

4. Elements of a pattern can represent all the lexical and morphological features (see § 5.2.1).

5. Each element of a given pattern is concrete i.e. unlike d–gram∗ or xd–gram, variable
elements do not exist.

One interesting observation was that since our focus was primarily with verbs and specific
set of relations (e.g. subject, direct object etc.), we have patterns where one of the source or
the target is a verb (more often than not it is the target). We have effectively, implemented
a pruning algorithm to extract only those patterns, however, we did not use them in our
experiments since satisfactory results were obtained without using pruning. We used the
sub–tree patterns in the ML experiments for FP identification and on a separate experiment

130 Finding Function Points

with cooking recipes, where several supervised learning methods were used. We found that
sub–tree patterns are powerful features to be used in supervised learning setup, so we used
them in our semi–supervised learning experiments as well. In the cooking recipe experiment,
we normalized the coordination relations but without any significant gain in performance (see
§ 5.4.2), so we decided not to normalize the coordination relations for the FP identification
task.

5.2.3 Lexical Resources

We have used a set of verb list provided by the FP counting professionals, to accommodate
lexical semantic as a part of our Heuristics based experiments. They listed the verbs on
the premise that they are specific to FP descriptions or have domain specific semantics6.
Furthermore, some lists also provided the association of each verb with the broader FP
groups (i.e. Transaction Function and Data Function). We had four lists from the experts as
described in Table 5.3,

Table 5.3. General Statistics of the Expert Lists

Designation Transaction
Function

Data
Function Undefined Total

ACAPI 49 – – 49

BdF 34 – – 34

OPI 35 1 – 36

PSA 15 – 40 55

Each verb was presented in the infinitive form and the lists have been manually treated
to improve consistency in terms of proper spelling, accents etc. Some of the elements
were multi–token constructions rather than unit lemmas and we decided to discard them
for the initial set of experiments. We have also constructed a combined verb list using the
four expert lists, where instead of associating each verb with possible FP type (since the
association is inconsistent across the lists and except for one verb they are either associated
with Transaction Functions or left without any association), we counted the frequency of
appearance in terms of the number of lists they were found. There were, 112 verbs in the
combined list and their list appearance frequency is presented in the following illustration,

6e.g. créer (to create) often found in the context of a Transaction Function, more specifically, in the context
of an External Input.

5.3 Data Point Generation & Analysis 131

Fig. 5.4. List Appearance Frequency of Expert Listed Verbs

Fr
e

q
u

e
n

cy
 o

f
A

p
p

e
ar

an
ce

 in
 L

is
ts

Count

We have used this frequencies to associate significance of a verb (from the lists) in the
domain and used them as weighting factor in the linear combination experiments. The
exact conditions under which these lists were compiled were not provided by the partner
organizations. We do not know whether the authors have shared their lists with each other or
if they have used the same set of source documents nor whether the source documents are
also included in our dataset. The presence of organizational bias is also considered and thus,
we have relative confidence on the quality and representativeness of these lists. However, the
performance of these lists in the Heuristic based experiments was a contributing factor, for
us to include them in our research.

We have also extracted few lists from the “Les Verbes Français (LVF)” by Jean Dubois

and Françoise Dubois-Charlier (Version LVF+1) (Sabatier and Pesant, 2013). It is a freely
available French lexical resource that provides classifications based on domain, schema and
syntactic and semantic classes for French verbs. We have developed lists for the Informatics

domain (INF) and sub–classes of the verbs associated with movement (to maintain a parallel
to the FP concept). In the following section we shall present the other aspect regarding the
experimental prerequisite, especially for ML experiments: generation of data points.

5.3 Data Point Generation & Analysis

Data point generation and primary analysis is a part of the experimental setup for the Semi–

Supervised ML method applied in our research. Data point definition and generation is

132 Finding Function Points

necessary for defining the search space where the ML algorithm may be applied. Data points
were generated for each feature set described in § 5.2 and there are two aspects of data point
analysis, Vectorization i.e. representation of each data point as a multidimensional vector
and Principal Component Analysis (PCA) i.e. analysis of the data points at more significant
but lower dimension for learning and visualization. To adapt to the classification methods we
applied in our research, the task definition was developed as follows,

1. We want each page to be classified as FP Positive or FP Negative.

2. Each page is considered to be a document.

3. Each page has a unique identifier and all the features given a feature type found in a page
are used as raw input.

4. The page matrix (equivalent to Document Matrix in document classification task) repre-
sents each page as a row and all possible unique features as columns (see Table 5.4).

5. The intersection of each row and column contains a value calculated based on the vector-
ization method being used.

6. The page matrix is the search space where the ML algorithms shall be applied.

Table 5.4. General Representation of The Document Matrix

“go”, “have”, “system” etc. for lemma

f1 f2 . . . fn

P1 v(1,1) v(1,2) . . . v(1,n)

P2 v(2,1) v(2,2) . . . v(2,n)
... ...

...
...

...

Pm v(m,1) v(m,2) . . . v(m,n)

In recent years, an advanced form vectorization has been used in document and topic mod-
elling extensively that is often referred to as Lexical Embedding (Wang et al., 2015). However,
we used the traditional vectorization techniques (e.g. frequency, TF–IDF etc.), keeping the
future prospect of using other vectorization methods open. We have also used Principal

Component Analysis (PCA) to reduce the dimension of the search space as low as just 1.
The Original rationale was to find a balance between the reduction of the search space (i.e.
faster processing) and preserving maximum information content (i.e. significant separation
of data) for the ML algorithms. However during initial experimentation, we observed that
the performance was significantly better at lower dimensions. The following subsections will
introduce the vectorization techniques and PCA methods used in our research.

5.3 Data Point Generation & Analysis 133

5.3.1 Vectorization

We have used three types of vectorization for experiments: Frequency, Hash Value and
TF-IDF. Frequency is the raw count of each feature found for a given element in the target
domain. Hash value on the other hand converts each feature into a integer using hashing
techniques. This particular vectorization is highly memory efficient and only produce hash
values that can cause Collision problem i.e. assignment of the same value to two different
features for a feature size of 218 or higher which is sufficient enough for our experiments.
One significant problem with this vectorization is that once hashed it is not possible to revert
back to the original feature string. Thus this vectorization has been used to cover all the
basics rather than a decisive method. TF–IDF. TF–IDF is a significant metric often used
to generate the search space and to identify the underlying distribution in that search space.
We would apply it for visual data analysis and ML experiments. The fundamentals and
necessary background has been addressed in § 2.1.3. We however, used the metric in a
different manner, i.e. instead of calculating TF–IDF for all the pages of multiple documents
together, we calculated the TF–IDF page matrix for each document separately and then
mapped it to the complete feature set generated from all the documents together. We are
calling it “Localized TF–IDF” and once all the TF–IDF page matrix are generated, they are
concatenated to produce a single search space. Since, we have designed our experiments
to focus on common elements in the descriptions of FPs, distribution of search terms were
necessary to be calculated on a local basis. The premise of our hypothesis dictates that local
distribution of features associated with FPs remain within an acceptable standard deviation
of the mean for all specification documents. Thus, using a general TF–IDF page matrix
is contradictory to our original assumptions. Furthermore, in real world situations, the
prediction model will eventually be used for each specification separately, thus the model
will fail to achieve equivalent range on a single document if general TF–IDF page matrix is
used for the training of such models.

5.3.2 Principal Component Analysis (PCA)

PCA is a traditional family of methods to reduce the dimension of the data, analyse and
visualize them for the identification of existing patterns and selecting parameters. In standard
PCA the multidimensional data is reduced to its n principal components to easily visualize
the hidden patterns with the expectation that the same patterns remain prominent in the higher
order data representations. The Python implementation of PCA used in our experiments are

134 Finding Function Points

the classic PCA and Singular Value Decomposition (SVD), however we finally, decided to
use only SVD because of the inability of the classic PCA implementation (in scikit–learn7)
to handle sparse data since our data points are highly sparse. Both the classic PCA and SVD
have been discussed in § 2.1.3 for a clearer picture of our decision making process. We
shall investigate the distribution of our data and as the search space for the semi–supervised
learning using SVD as the primary PCA method.

5.3.3 Visual Data Point Analysis

Visual inspection of the distribution of the data was performed using the first two primary
components of the document matrix produced from the data. In this section we shall discuss
some of the interesting observations regarding the two–dimensional distribution of the data.
The experimental setup that has been used, is the same as the one we used for the ML
experiments. There are two groups of data presented in each graph, the training data which
is the page matrix generated from the 18 specifications from project partners and the page
matrix of the reference data (ref000, see §) where, the positive and negative examples are
plotted distinguishably. The objective is to observe range of the distribution and possible
pre–existing cluster configurations.

The data for the experiment has been grouped as datasets, e.g. the 18 specifications comprises
the training dataset and 1 reference specification is the reference dataset. Each dataset is
then used to produce the page matrix using local TF–IDF vectorization (see § 5.3.1). PCA
(SVD in our case) is then applied to each page matrix to reduce the dimension to two
primary components. The training dataset is then plotted in a two dimensional Euclidean

space, plotting the first principal component on the horizontal axis and the second principal
component on the vertical axis. The training dataset is plotted in grey and using small dots
for each data point. The reference data set is then plotted using larger dots and in blue for the
positive data points and in red for negative data points. Some of the generated plots for the
surface form and lemma in lexical and syntactic feature configurations are presented next.

The evaluation data used for the plotting is from the annotator designated BdF_MG. this
particular annotator annotated the maximum number of pages as positive (11) and all the
other annotators assigned positive values to some subset of those 11 pages. One important
observation is that six of those pages were marked by all the annotators as positive. Thus, the
plots are representative of all the annotations for the reference dataset. We actually attempted

7http://scikit-learn.org/stable/

5.3 Data Point Generation & Analysis 135

Semi–Supervised learning with complete page matrix and only the first primary component
and found better performance from the later, thus instigated the visual analysis of the data to
identify pre–existing and prominent separation in the data at lower dimensions. We were
also interested to identify a reasonable cluster number, to have a balance between increasing
training efficiency (i.e. time complexity reduction) and reducing possible over-fitting. Visual
observation helps to identify a range of values with which we can use to find the best cluster
count.

Fig. 5.5. 2D Scatter for surface form : uni�gram | bi�gram

Fig. 5.6. 2D Scatter for lemma : uni�gram | bi�gram

In our analysis we found that in the feature space (both lexical and syntactic) generated using
the lexical features (surface form and lemma), some positive examples (between 3 and 5 data
points) are out of the range in contrast to the training data points. Furthermore, the pages that
were out of range were the pages that has been annotated by all the annotators. This pattern
however, was not observed in the feature sets using morphological features. We conclude
that, the reason for such pattern to occur, may contribute to the nature of the specification
(at least those pages) being different from the specification used for training. We decided to

136 Finding Function Points

Fig. 5.7. 2D Scatter for surface form : d�gram | d�gram∗

Fig. 5.8. 2D Scatter for lemma : d�gram | d�gram∗

Fig. 5.9. 2D Scatter for surface form | lemma : dependency sub�tree

5.4 Experiments 137

run the ML algorithms in lower dimension ranges (between 1 and 5) to test the performance
and conclusively determine the best dimension. We were also unable to observe pre–existing
cluster or distinct separation in the data at 2 dimensions. It was clear though, that we need a
large number of clusters to segregate the data properly. Thus we decided to use large cluster
range (between 7 and 15) for the ML experiments. In the next section we shall present the
different experiments performed in our research.

5.4 Experiments

There are three sets of experiments that are presented in the next subsections. The first
set is the Heuristic Based experiments, where we used string matching to identify FP

Positive pages and also two variations of liner combination based methods. Next is a
separate set of experiments to identify ingredients from cooking recipes, where we tried to
evaluate the performance of syntactic features, especially Dependency Sub–Tree Patterns

using a large labelled dataset, objectively. The final set of experiments used k–means

Unsupervised Clustering to design a Semi–Supervised learning method using all feature sets
for FP identification. Each set of experiments shall be presented in the next sub–sections
and we shall provide any theoretical basis necessary for the experiments, followed by the
experimental setup that has been used , the data and the features and finally the results with a
brief discussion on our findings.

5.4.1 Heuristic Methods

The Heuristic Methods were applied in the reference data and evaluated against the labels
associated for each page. There are two experimental setups that have been used, String

Matching and Linear Combination. All of these experiments were performed using the
expert verb lists (see § 5.2.3), although in different capacities. Both types of experiments
also used the lexical resources (described in § 5.2.3) and classify each page as FP Positive

or FP Negative. Furthermore, among the feature sets only the lemma was used for these
experiments. Next subsections will describe these experiments in detail.

138 Finding Function Points

String Matching

This is the simplest form of the lexical experiments. It used the lemma feature space, which
represents each page as a sequence of lemmas. The algorithm takes one expert list and count
the frequency of any verb from the list in a page. A threshold value is then used to determine
the class (FP Positive or FP Negative) for each page. The frequency has been normalized to
remain within the range of 0 and 1 using the following formula,

zi =
fi −minimum(f)+α

maximum(f)−minimum(f)

The formula is representative of the calculation of z–score in statistics and α is the normaliz-
ing factor to eliminate the possibility of having 0 as numerator. However, it may produce
values grater than 1.0, thus, we capped the maximum possible normalized value to 1.0. For
evaluation we tested thresholds between 0.0 and 1.0 with an interval of 0.01. Although
we evaluated the performance based on average F2 for all the annotators, we were also
interested in low numbers for both False Positives and False Negatives. Among the lists
“PSA” produced the best overall result in that respect. The complete result is presented below.

Table 5.5. String Matching (list = �PSA�, threshold = 0.05)

ANNOT TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 10 6 20 0 1.000 0.625 0.769 0.893 0.769 1.00 0.833

BdF_DB 6 10 20 0 1.000 0.375 0.545 0.750 0.667 1.00 0.722

BdF_MG 10 6 19 1 0.909 0.625 0.741 0.833 0.760 0.95 0.806

PSA 6 10 20 0 1.000 0.375 0.545 0.750 0.667 1.00 0.722

The evaluation was performed considering the total pages to be 30 since the other 6 pages
were ignored during feature generation and the criterion used for selecting pages was having
more than 5 sentences. The best performing list is impressive in terms of reducing the search
space from 37 pages to 16 pages thus reducing reading time. Although we cannot claim the
performance to be conclusive considering the limited evaluation data, it is at least promising.
The high performance at a low threshold can be attributed to the fact that some of the positive
pages contain very few occurrences of the lexicons from the lists and some of them only
contain functional group or external application annotation.

5.4 Experiments 139

Linear Combination

Liner combination in mathematics, is an expression constructed from a set of terms by
multiplying each term by a constant and adding the results, e.g. a linear combination of x

and y would be any expression of the form ax+by, where a and b are constants (Lay et al.,
2015). The definition has been adopted for our experiment where F = { f1, f2, f3, . . . fn} is the
frequency vector for a set of n lemmas (form a list of lexicons) and W = {w1,w2,w3, . . .wn}
is the corresponding weight vector. Thus, the liner combination has been defined as,

n

∑
i=1

fi ×wi

The dataset used for this experiment is again the lemma feature set, where each page is
defined as a set of lemmas. For the lexical resource we used, the combined lexicon list
produced from the four expert list. This list contains non-redundant set of lemmas and the
number of lists where they were found. The weight vector was generated by normalizing
(described for string matching) the frequency of each lemma in terms of appearance in the
expert lists. For each page the frequency vector is generated based on the frequency of each
lemma from the combined lexicon list. Finally the linear combination is used to generate a
single real number that is then normalized (z–score) to calculate the final score for each page.
Based on a pre–defined threshold, each page is classified as FP Positive or FP Negative. We
have found that threshold 0.6 performed the best. The complete result is presented in Table
5.6.

Table 5.6. Linear Combination (threshold = 0.6)

ANNOT TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 10 7 19 0 1.000 0.588 0.741 0.877 0.731 1 0.806

BdF_DB 6 11 19 0 1.000 0.353 0.522 0.732 0.633 1 0.694

BdF_MG 11 6 19 0 1.000 0.647 0.786 0.902 0.760 1 0.833

PSA 6 11 19 0 1.000 0.353 0.522 0.732 0.633 1 0.694

This method effectively used direct string matching as in the previous experiment to construct
the frequency vector. An important observation was the lack of the significant presence of
the lexicon from the list in many of the positive pages that results in better performance
for low threshold. Although, This system failed to outperform even the baseline system, in

140 Finding Function Points

terms of number of False Positives we can consider the performance to coincide with our
experimental goals. Next we shall present a variant of this experiment.

Linear Combination with Learned Weight

This experimental setup is equivalent to the previous setup with two significant differences.
First of all, we are using each of the expert lists and the combined list, and we are now
learning the weight of each lemma for a given list from the training dataset. The frequency
of each lemma is counted from the training data then normalized (z–score) to generate the
weight matrix. Then the frequency matrix is generated for each page, using the weight matrix
and the liner combination from the previous experiment, a single real number is assigned.
Again using a pre–defined threshold each page is classified as FP Positive or FP Negative.

In our experiment the performance improvement was observed for three lists: PSA, OPI

and BdF with different yet rather close thresholds (0.11, 0.14 and 0.12 respectively). We
would like to acknowledge that we accept the significant bias the lists pose and their effect in
the baseline performance. We have relative confidence in the results considering the small
amount of evaluation data we have, however, under the circumstances these performance is a
promising methodology to adopt given improved resources can be developed. The complete
result is presented in the Table 5.7.

One can see that in terms of recall the PSA and OPI are exactly the same, however, the
precision is better for PSA and it is an improvement in terms of our research goals since it is
effectively and correctly reducing the total pages to read down to 14. The performance is
also an improvement over the baseline system by reducing FP Positive pages by 2 on the
other hand the system that used the BdF list produced a perfect recall. Although, with respect
to the baseline system the total FP Positive pages are higher by 2 pages. The research goals
i.e. identification of pages with FP certainly best fit the results obtained with the BdF list.
Again, the low threshold can be contributed to some of the FP Positive pages having very
few lemmas from the lists. Our next experiments will attempt to reduce total positive pages
further without compromising recall too much using syntactic features and ML methods.
We are inclined towards the syntactic features to established our hypothesis and to remove
the bias posed by the expert lists. But first the next experiment will try to establish the
effectiveness of the syntactic features, especially Dependency Sub–Tree, objectively.

5.4 Experiments 141

Table 5.7. Linear Combination (Learned Weight)

ANNOT TP FP TN FN R P F1 F2 SPC NPV ACC

list = �PSA�, threshold = 0.11

Acapi_JNV 10 4 21 1 0.909 0.714 0.800 0.862 0.840 0.955 0.861

BdF_DB 6 8 22 0 1.000 0.429 0.600 0.789 0.733 1.000 0.778

BdF_MG 10 4 22 0 1.000 0.714 0.833 0.926 0.846 1.000 0.889

PSA 6 8 22 0 1.000 0.429 0.600 0.789 0.733 1.000 0.778

list = �OPI�, threshold = 0.14

Acapi_JNV 10 5 20 1 0.909 0.667 0.769 0.847 0.800 0.952 0.833

BdF_DB 6 9 21 0 1.000 0.400 0.571 0.769 0.700 1.000 0.750

BdF_MG 10 5 21 0 1.000 0.667 0.800 0.909 0.808 1.000 0.861

PSA 6 9 21 0 1.000 0.400 0.571 0.769 0.700 1.000 0.750

list = �BdF�, threshold = 0.12

Acapi_JNV 11 7 18 0 1.000 0.611 0.759 0.887 0.720 1.000 0.806

BdF_DB 6 12 18 0 1.000 0.333 0.500 0.714 0.600 1.000 0.667

BdF_MG 10 8 18 0 1.000 0.556 0.714 0.862 0.692 1.000 0.778

PSA 6 12 18 0 1.000 0.333 0.500 0.714 0.600 1.000 0.667

142 Finding Function Points

5.4.2 Ingredient Extraction from Cooking Recipes

The Heuristic experiments demonstrated the ability to identify FPs in a page using lexical
feature, namely lemmas. Our original hypothesis however, was that syntactic features can
outperform lexical features. Furthermore, the lemmas used in the Heuristic experiments as
lexical resource can have possible bias towards the annotation in the reference data due to our
lack of knowledge of the origin of these resources and the possible a priori knowledge of the
reference data by the resource developers. Syntactic features, on the other hand are intended
to be used for Semi–Supervised ML algorithms, thus effectively remove the possibility of
biased lexical resources to effect the research objectives with subjectivity. We are specially
interested to use Dependency Sub–Tree as a feature but due to the lack of large FP evaluation
data it was difficult to establish its effectiveness objectively.

We decided to use Dependency Sub–Tree as a feature with large amount of data, especially
evaluation data from a domain that is not too dissimilar to that of software specifications. We
had a large amount of data in the form of Cooking Recipes form a text mining evaluation
campaign (DEFT 2013) including large amount of gold standard evaluation data. We are
also interested in the generic Verb–Noun interaction in specification documents as we found
that it has already been used successfully by Faure and Nédellec (1999) to extract Sub–

Categorization Frames of verbs and ontologies from the syntactic parsing of technical texts
in natural language. Cooking recipes are very mush within the ontological definition of
specifications and we have found the existence of the Verb–Noun interaction patterns expected
in a specification documents as illustrated in Figure 5.10.

Fig. 5.10. Generic Verb–Noun Interaction Pattern

Process
(Verb)

e.g. Update
e.g. Boil

Subject
(Agent)

e.g. User
e.g. Chef

Direct Object
(Patient)

e.g. Home Address
e.g. egg

Indirect Object
(Instrument)

e.g. Web Service
e.g. Saucepan

In Figure 5.10 we presented a generic frame with semantic descriptions, however, we are
analysing all the data from the syntactic dependency representation only. The DEFT task
was to identify ingredient from a given cooking recipe, which is different from our FP

5.4 Experiments 143

identification task. From the generic model (Figure 5.10), for the ingredient extraction task
the object of interest is the direct object relations whereas, for the FP identification task,
the whole Verb–Noun pattern frame is useful. We are interested to use the Dependency

Sub–Tree patterns that can capture the information in the patterns and use ML algorithms to
identify patterns related to a given task objective. For the ingredient extraction task we have
used Supervised ML methods, motivated by the availability of a large training corpus. We
designed our method to work with cooking recipes written in French, although, the adaptation
of the method for other domain or languages depends only on the use of a language specific
(if necessary, also domain specific) dependency parser. The performance of our method
on the DEFT2013 data set (Grouin et al., 2013) is quite satisfactory since it significantly
outperforms the best performing system from the original challenge (0.75 vs 0.66 MAP).

The DEFT Challenge: 2013

The DEFT Challenge is an annual French text mining evaluation workshop. Inspired by the
Computer Cooking Contest8, the 9th edition of this challenge, titled DEFT 2013 (Grouin
et al., 2013), was focused on the analysis of recipes written in French. The challenge a large
set of cooking recipes in French for the participants to develop their systems with. The details
of the DEFT corpus is presented in table 5.8.

Table 5.8. DEFT Corpus

Corpus Recipes Sentences Words Ingredients

Training 13,866 141,613 2,013,934 101,563

Test 9,230 93,338 1,311,802 74,796

The challenge was designed with 4 tasks from 2 main categories,

1. Document Classification (Task 1–3)

2. Information Retrieval (Task 4)

For the first category, participants had to discover for a given recipe: the level of difficulty (4
levels), the type of dish (starter, main dish or desert) and the best title from a list of possible
titles. For the Information Retrieval (IR)task, participants had to identify the ingredients for
each recipe from a normalized list of possible ingredients. In our research we developed

8http://computercookingcontest.net

144 Finding Function Points

Fig. 5.11. General Description of the IR task (Task 4) form DEFT 2013

Training Recipes Test RecipesIdentification
System

Ingredient Pool

several systems for the IR task (Task 4) because of the possibility of using our syntactic
features (dependency sub–tree). The description of the task is illustrated in Figure 5.11.

It is important to note that the normalized list of possible ingredients (i.e. ingredient pool),
contains at least all the ingredients to be found in the recipes of the corpus. However, there is
the possibility that the actual ingredient name is not explicitly in the recipe (e.g. “Olive Oil”
in the recipe may be listed as just “Oil” or even “Fry the eggs”, which implies the presence of
“Oil”). Moreover, there might also be the ingredients that are not even present in the training
corpus (Dini et al., 2013). This issues have been observed to effect the developed systems
both by the participants on the original challenge and ours especially when lexical features
were used. We also notice that in terms of algorithms the original contestants used rule based,
ML and hybrid systems that have rule based components as well as ML components. Most
participants including the best performing team used ML to classify ingredients on the basis
of different features extracted form the recipes. Next, we shall present the evaluation metric
used in the challenge and the results of the original participants.

Evaluation and Results of The Challenge

We used the evaluation platform designed specifically for the challenge, to evaluate our
system’s performance. The evaluation metric used for the task was Mean Average Precision

(MAP). Let us consider that there are N recipes and for any recipe Ri there are ni ingredients
{I1

i . . . I j
i . . . Ini

i } and P be the precision, then the MAP metric is,

MAP =
1
N

N

∑
i=1

1
ni

ni

∑
j=1

P
(

I j
i

)
There were 6 teams which participated in the challenge, of which 2 industrial participants
and the rest from the academic arena. Celi France performed the best with a MAP of 0.6622.

5.4 Experiments 145

They presented a system that uses a hybrid approach to solve the given problem (Dini et al.,
2013). They used a rule-based system to identify the potential ingredient and then filter them
using a classifier on the basis of the type of the recipe (from task 2) and their system relied
strongly on the lexical features (mostly lemma). The final MAP score of the top 5 teams are
listed in table 5.9.

Table 5.9. DEFT Challenge Result (MAP Score)

Team LIM&Bio GREYC LIA Celi Fr. Wikimeta

Run #1 0.4115 0.4881 0.6287 0.6662 0.5675

Run #2 0.4170 0.5074 0.6218 — 0.6428

Run #3 0.4649 0.5556 0.6191 — —

Rank 5 4 3 1 2

Experiment Setup and Results

For our systems, the recipes were parsed using the same statistical dependency parser for
French presented in § 4.4.2. We used the Berkeley parser for the preprocessing that establishes
the dependencies between tokens. Among all the relations only coordination required some
normalization. In the parser output the coordination dependencies are represented as a
chain rather than a single relation (to maintain bi–lexical relations), i.e. N coordinated
tokens are represented using a combination of two dependencies, COORD, connects the first
conjunct with the first coordinator and DEP-COORD connect the next coordinator. Furthermore,
multiple conjuncts are connected as a chain using the COORD with each other and the first
element is connected to the head by a DEP-COORD relation. We resolved the COORD to a flat
representation for some of the experiments to observe the effect on the performance. All the
parsers output was in the same adapted CoNLL9 data format described in § 4.4.2.

We automatically extracted the patterns using a script from the parsed output 10 then used
them in our systems as features along with other features. We experimented primarily
with two machine learning methods: Logistic Regression (Cramer, 2002) and Perceptron

(Minsky and Papert, 1969). While training a system with the patterns, we mapped all the
patterns extracted from each document to all the ingredients associated with that document.
Formally, in the training set if we have n documents D = {d1,d2 · · ·dn} and m ingredients

9http://nextens.uvt.nl/depparse-wiki/DataFormat
10script available at https://github.com/eldams/ConLL-SimpleReader

146 Finding Function Points

I = {i1, i2 · · · im} then we can have the ingredient ix given, 1 < x < m in D
′⊂D. All the

features for the machine learning methods were calculated from this subset D
′
. The detailed

performance measured for our experimental systems are listed in Table 5.10.

Table 5.10. Experimental Results: Ingredient Extraction from Recipes

System & Features MAP P(5) P(10) P(100) R(5) R(10) R(100)

identify-tokens 0.3564 0.4960 0.3556 0.0375 0.3607 0.4930 0.5114

identify-lemmas 0.4355 0.5402 0.4193 0.0456 0.4000 0.5893 0.6262

identify-tokens+lemmas 0.4430 0.5375 0.4249 0.0469 0.3990 0.5986 0.6428

learn-lemmas 0.7196 0.7409 0.5306 0.0695 0.5420 0.7446 0.9493

learn-lemmas+mine 0.7362 0.7565 0.5432 0.0695 0.5538 0.7615 0.9487

learn-lemmas+mine+coord 0.7364 0.7555 0.5431 0.0695 0.5532 0.7610 0.9490

learn-lemma+pos 0.7182 0.7414 0.5305 0.0695 0.5423 0.7446 0.9495

learn-percept 0.7500 0.7588 0.5547 0.0706 0.5545 0.7779 0.9648

In Table 5.10 all the systems with the prefix identify used string matching and represent
the baselines for the task and all the system with the prefix learn are ML systems. Except
for the learn-percept all the ML systems used logistic regression as the learning algorithm.
The suffix of a system name states the features used (e.g. tokens, lemma etc.). the suffix
element mine implies that the Dependency Sub�Tree patterns have been used as features.
Although it is not explicitly mentioned, the Perceptron based system uses the patterns as
features as well. The suffix element coord refers to the fact that the data has been normalized,
following the discussion at the beginning of this sub–section and then used in the extraction
process. The systems predicted a score for each ingredient associated with the pattern set
extracted for a given recipe during the testing phase thus, outputs a ranked list of ingredients
for the recipe. The columns titled P(x) represent precision for a prediction when the first
x elements are selected and the columns titled R(x) are the equivalent recall values. The
evaluation metric (i.e. MAP) however, puts more emphasis on precision and the comparison
of our systems were performed based on the MAP score. One obvious observation is that
as the number of top ingredients (x) increases the recall increases along and the precision
decreases.

During performance analysis we found that for example, if fry is mentioned in a recipe
that implicitly considers oil as an ingredient. Then if oil never appears in the recipe, there
shall be no lexical map between oil and fry. But if Dependency Sub–Tree patterns are used
for the training, any pattern that appearers in a recipe would potentially be linked to all the
ingredient e.g. the verb fry will be linked to oil, regardless of its actual presence in the

5.4 Experiments 147

recipe. It can be observed clearly that even the logistic regression produces higher scores
when patterns are used in conjunction with lexical features. Although the performance of the
Perceptron algorithm was the best, the first significant improvement can be already observed
when feature to ingredient was mapped for each recipe (e.g. learn-lemmas shows about 30%
improvement over the baseline). The use of the syntactic patterns improves the MAP between
2% and 4%. All the results using document level mapping showed better performance than
the top system from the original challenge. We have used the syntactic features used in this
experiment for the Semi–Supervised learning experiments that is presented next.

5.4.3 Semi–Supervised Machine Learning

Learning algorithms fall under the umbrella term of Machine Learning (ML), are a great
way to deal with problems where the mapping between the input and the output is unknown
and complex. These methods are data driven and have a strong tie to the field of Statistics,
especially Computational Statistics. Given the circumstances pertaining our research, i.e.
lack of evaluation data and the subjective nature of the problem itself, it seemed reasonable
to investigate the possibility of using ML methods in the problem domain. The nature of the
data i.e. lack of large amount of annotated data leaves us with the option of Semi–Supervised

Learning using Unsupervised Clustering. In this section we shall introduce the general field
of ML, Semi–Supervised learning and Unsupervised clustering. We shall also present the
experimental setup and results obtained from the Semi–Supervised Learning experiments.

Machine Learning

ML is an umbrella term used to represent the field in Computer Science that encompasses
several somewhat interrelated fields: the most prominent of them are Pattern Recognition

and Computational Learning Theory. The primary objective of ML is to develop algorithms
and methods capable of learning the underlying model for a given set of data and later
use the model to predict the nature of previously unseen data. ML, especially theory of
learning shows strong similarity (even overlaps) with computational statistics and many of
the algorithms have strong mathematical basis. A detail overview of the research questions
pertaining to ML can be found in (Mitchell, 2006). Let us Consider a set of input X =

{x1, x2, x3 ... xn} and a set of output Y = {y1, y2, y3 ... ym}, thus, the broader goal of ML
is to map, f : X → Y, where, y = f (x). There are some learning paradigm that evolved
mostly to tackle specific types of problems, e.g. Classification, Clustering and Regression.

148 Finding Function Points

Classification methods are designed to map the inputs into a discrete output space, i.e.
each input can be mapped into a set of discrete set of possible outputs. A special case of
classification is the Binary Classification where the output space has only two elements. On
the other hand, Clustering, is a spacial case of classification where not only the mapping
function is unknown but also the output map is unknown, i.e. the number of classes is not
known. Finally, Regression methods tries to map the input into a continuous output space
instead of a discrete output space.

Furthermore, there are several learning setups used in conventional ML practice. Supervised

Learning is most probably the most widely used among these setups. In supervised learning
the learning algorithm attempts to learns the underlying map between the input and the
output from a set of labelled example i.e. data points with the associated class or value.
In contrast, Unsupervised Learning attempts to learn the underlying relation between the
input and output from unlabelled examples, i.e. only the data points, thus, not only the
algorithm has to find the mapping but also to group them to satisfy the problems original goal
of producing a specific number of classes from the mapping. Unsupervised classification
is often called Clustering. Semi-Supervised Learning is somewhat a middle ground, where
a small number of labelled example with a lot of unlabelled example is used to identify
the overall distribution features in a data to classify or estimate the value for the unlabelled
examples. There are other setups e.g. Reinforced Learning that are less relevant to our
research. We have used Semi–Supervised Learning using Unsupervised Clustering for our
experiments due to empirical restrictions (lack of labelled data) and we shall provide further
details in the next section.

Unsupervised Clustering

Unsupervised Clustering is a widely used method for classification problems with low
supervised resources, i.e. where very little supervised data is available but some or large
amount of unsupervised data is available. The objective is to identify hidden distributions
in the data that can correlate to the target solution domain without any prior knowledge of
the solution domain and having any reward or punishment system associated to the learning
process. Unsupervised clustering is closely related to the problem of Density Estimation in
statistics (Jordan and Bishop, 2014), which expresses the concept of the construction of an
estimate, based on observed distribution of data, of an unobservable underlying probability
density function. The most commonly used methods include, K–Means, Mixture Models and

5.4 Experiments 149

Latent Variable Models (which interestingly uses blind signal separation techniques such as
PCA and SVD). However, we have used K–Means clustering extensively for our experiments.

K-Means clustering is a method of vector quantization, originated from Signal Processing,
that is popular for cluster analysis. K-Means clustering aims to partition n observations into
k clusters in which each observation belongs to the cluster with the nearest mean. Given
a set of observations X = {x1, x2 . . . xn}, where each observation is a d-dimensional real
vector, K-Means algorithm attempts to partition them into k (≤ n) sets S = {s1, s2 . . . sk}
by identifying the means of each cluster. The cluster means also known as centroids are
represented as a set of k elements: {µ1, µ2 ... µk} (one for each cluster). The objective of
the algorithm can be seen as,

argmin
S

k

∑
i=1

∑
x j∈Si

||x j − µi||2

Although the principal of K-Means has strong ties to the work of Steinhaus (1956), the
original idea was proposed by Stuart Lloyd and as early as 1957 as a technique for Pulse-

Code Modulation, although it was never published outside of Bell Labs until 1982 (Lloyd,
1982). The most common algorithm that uses an iterative refinement technique is called
the Lloyd’s Algorithm. A general form of the algorithm is presented in Appendix A §
A.3. The algorithm has two distinct steps: the first is the assignment stage where each
observation is assigned to the cluster whose mean yields the least Within-Cluster Sum of

Squares (WCSS). Since the sum of squares uses the squared Euclidean Distance and the
square root is a monotone function, this also is the minimum Euclidean Distance assignment
i.e. the “nearest” mean. It implies partitioning the observations according to the Voronoi

diagram (see the article by Aurenhammer (1991) for details) generated by the means. The
algorithm has converged when the assignments no longer change and both steps optimize the
WCSS objective. Since there only exists a finite number of such partitioning, the algorithm
must converge at least to a local optimum. However, there is no guarantee that the global
optimum will be found using this algorithm. The other step is the update step where, the
algorithm calculates the new means to be the centroids of the observations in the new clusters.

The complexity of the algorithm in a general Euclidean space d even for 2 clusters has
been reported to be NP-Hard (Aloise et al., 2009). If clusters (k) and the dimension (d)
are fixed, the problem can be solved in time O(ndk+1 logn) , where n is the number of
entities to be clustered (Inaba et al., 1994). The primary criticism of the method is the
random generation and selection of centroids i.e. very little control over the original cluster

150 Finding Function Points

generation. Furthermore, the tendency to converge to a local optimum often leads to wrong
clustering. However the iterative implementation with multiple centroid selection allows to
overcome the first issue, but the fact remains that K-Means is an optimal method for a well
clustered data. Selection of k can make significant difference in the outcome and is has been
suggested to observe the behaviour of the data after dimension reduction to identify optimal
value for k (Jardino, 2004). We shall demonstrate our experience with this clustering next.

Semi–Supervised Leaning Using K–Means

For the task of FP identification we chose the K–Means algorithm to develop our Semi–

Supervised learning method. We used our small annotated reference data to evaluate the
accuracy of the assigned labels of the clusters (as FP Positive or FP Negative) generated
by the K–Means clustering from the unlabelled training dataset thus, adopting the notion of
Semi–Supervised learning. For this experiment we used the K–Means algorithm to generate
high number of clusters (odd numbers of clusters between 7 and 15) to identify the separations
in the training data. The research objective is to separate the data into two groups, thus we
generated all possible combination of two sets for the clusters form the original clusters and
assigned the labels (FP+ and FP-) systemically. Each pair represents a possible solution
space and each solution space is evaluated for the accuracy in terms of predicting the labels
for the labelled data. For example, if we have three clusters {1, 2, 3}, the possible sets are
presented in Table 5.11,

Table 5.11. Cluster Set Distribution for Evaluation

Solution Space FP Positive FP Negative

1 [1] [2, 3]

2 [1, 2] [3]

3 [1, 3] [2]

4 [2, 3] [1]

5 [3] [1, 2]

6 [2] [1, 3]

Among the solution spaces produced the space with the best average F2–Score was considered
to be the expected solution space for the feature space and for the given cluster size. We
also used SVD to reduce the feature space for both the training and evaluation data to their
respective lower dimensions (we applied the clustering algorithm for the dimensions 1
through 5). Thus for each feature space the number of solution space (Ss) is based on two

5.4 Experiments 151

parameters, the cluster size (k) being used and the number of principal components (d) being
used, i.e. (k×d). Thus if we are using n different cluster sizes K = {k1,k2,k3, . . .kn} and
m principal components, D = {1,2,3, . . .m}, for the feature space f x then the total number
solution spaces shall be,

Sx
s = ∑

1≤i≤n
1≤ j≤m

ki × j

Eventually, the training performance on a feature space is the best performing solution space
based on the aforementioned criterion (best average F2–Score). We however gave preference
to a solution space with lower number of clusters and dimensions, in case of two solution
spaces have the same average F2–Score because we decided to reward any possible reduction
in terms of processing complexity. There were two other parameters for the K–Means

algorithm that we experimented with beforehand and choose the values based on a reasonable
balance between processing complexity and finding the best performing the model for the
reference data. The two parameters to be adjusted were: number of maximum iteration the
algorithm will perform to archive convergence and the number of times the centroid should
be assigned to a random data point. We set the value of iteration to 1500 and the centroid
assignment to 300 and found that in all the feature spaces it was sufficient to achieve the
maximum possible performance. However, we are aware of the fact that K–Means algorithm
is notorious to converge on local maxima11 instead of continue iterating to achieve global
maxima. Thus, the algorithm can fail to achieve the optimal solution for a given scenario
and so, we also fitted our experiments with another level of iteration to run each training
scenario I times. For our experiments we used I = 15 and again we found it adequate to
achieve possible best performance.

Table 5.12. Semi–Supervised Training Performance: Best

Annotator TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 10 0 17 0 1.000 1.0 1.000 1.000 1.00 1.000 1.000

BdF_DB 6 4 17 0 1.000 0.6 0.750 0.882 0.81 1.000 0.852

BdF_MG 10 0 16 1 0.909 1.0 0.952 0.926 1.00 0.941 0.963

PSA 6 4 17 0 1.000 0.6 0.750 0.882 0.81 1.000 0.852

The Semi–Supervised method was applied to all the feature spaces and the performance of
the best solution space was recorded for each of them. We also stores the feature space

11in reality the learning objective is to find the global minima rather than maxima in terms of minimum
squared distance form the centroid, although it is a matter of semantics and the perception of the learning goals
and not some rules carved in stones

152 Finding Function Points

definition, solution space definition, i.e. the label for each cluster and the model for future
use. The best performances that fitted our research objectives are listed in tables below. The
presented results are the training performance and we have relative confidence based on
the available evaluation data. Furthermore, we acknowledge the possibility of over–fitting
the reference data in these models. However, this performance is achieved based on the

Table 5.13. Experimental Parameters: Best Performance

Feature Space Principal
Components (PC) Cluster Number (k)

surface_extended_dgram 3 17

lemma_gpos_unigram 4 15

gpos_trigram 3 13

gpos_dgram_wild 5 15

underlying distribution of the data points for a given features set and most definitely the
bias imposed by the lexical resources have been lifted. The best performance was based on
the achieved best average F2-Score for a given feature space bust also based on extracting
maximum number of positive pages. The aforementioned results (Table 5.12) were obtained
for the setups listed in 5.13.

One obvious observation from these results were that both lexical and syntactic features are
present and there is no significant pattern regarding PC or cluster numbers. Furthermore,
there was one false negative and as we discussed earlier, this page was annotated by only
one annotator (BDF_MG). The results are the possible best clustering for the given reference
data and without additional evaluation we have to assume possible over–fitting nature of the
models. However, we can also conclude that there exist a distribution that fits the reference
data and with more evaluation data we can identify the generalized form of this distribution.
The other hypothesis was the performance of the syntactic features and the best performance
of the Dependency Sub–Tree feature space is presented below.

Table 5.14. Semi–Supervised Training Performance: surface_dep_subtree

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 15 10 2 15 0 1 0.833 0.909 0.962 0.882 1 0.926

BdF_DB 5 15 6 6 15 0 1 0.500 0.667 0.833 0.714 1 0.778

BdF_MG 5 15 11 1 15 0 1 0.917 0.957 0.982 0.938 1 0.963

PSA 5 15 6 6 15 0 1 0.500 0.667 0.833 0.714 1 0.778

5.4 Experiments 153

Given the nature of the reference data set, Table 5.14 is the best possible clustering per-
formance if we want to maximize true positives and minimize false positives. However,
the same performance has been observed for spos_quardgram, which is a morphological
feature space. Furthermore, in case of spos_quardgram the performance can be achieved
with PC = 3 and k = 13, thus, performed a little better than the Sub–Tree feature space.
One notable aspect of all the clustering evaluation data is that the performance is based on
27 pages rather than the original 37 pages. The 10 pages were ignored because of lack of
significant number of features thus reinforcing one of our primary objectives of reducing the
number of pages to read.

Chapter 6

Final Thoughts & Future Prospects

This research has produced some interesting results but also opened up the opportunity to
ask a whole range of new questions. We consider this line of investigation towards total
automation of Function Point (FP) identification far from being concluded. This research
will only server as a launch pad for further questions and prospects of future research. In this
work, we focused on adopting a practical approach towards identifying possible solutions
for a real world problem. Lack of data, especially annotated data made the task even more
difficult, however, we believe that we have established a platform that will allow incorporating
new data with minimum amount of effort. Thus, further research can be possible and benefit
from our findings. Our contributions can be listed as follows,

• We have successfully implemented a complete data processing chain to generate corpus
from software specification document produced at different stages of the software devel-
opment life cycle. The chain can take PDF format files and produce corpus with multiple
layers of annotation including FP annotation. Currently, the processing chain is adapted
for French, however multi–language support can be implemented with minimum effort.

• We have generated a corpus containing approximately 41,000 sentences exclusively for
FP research. To the best of our knowledge, no such resource existed so far. The corpus
contains 11,250 unique lemmas with detailed morphological annotation and dependency
relations, that can be valuable resource for future linguistic and computational analysis.

• We have demonstrated a fine grained inter–annotator agreement analysis for FP identifi-
cation task. We have presented the annotation guidelines and implemented the evaluation
platform dedicated for the task. The adoption of multi–level granularity for the evaluation
provides more information regarding the annotation quality than the standard used by most
researchers in FP research i.e. using final FP count for agreement analysis.

156 Final Thoughts & Future Prospects

• In this thesis we have also presented our analysis of the data and reported observed patterns.
The correlation between different features and FP has been observed in the data. Although
due to the lack of annotated data it is rather difficult to assign high confidence to these
relations. Only farther testing can put the results into perspective.

• Our analysis also provided valuable information about some of the features that showed
stronger correlation to the existence of FP than the others. We would like to mention our
observation that syntactic dependency seem to show stronger correlation than the lexical
features.

• We presented a text representation model (i.e. dependency sub–tree) that has been used
successfully to achieve significant performance gain in the cooking recipes domain where
large amount of supervised data was available (see § 5.2.2). We have also demonstrated
the correlation observed in the FP domain for the same model thus, a significant feature
has been identified.

• We have also presented the significance of first principal component of the feature space
and the use of multi–cluster combinations to achieve better clustering performance. The
clustering results at least demonstrated good training performance for syntactic patterns
over lexical features.

The contributions are not disjoint from future prospects of research. We have assessed several
research possibilities that could not be investigated due to various shortcomings. We would
like to address those issues and ideas in the next section,

• Introducing large amount of data especially, annotated data would significantly change the
overall aspect of the research in terms of detailed data analysis and methods that can be
employed for the task. With more data we can test our current method and establish the
level of confidence of our model. With more annotation the level subjectivity that currently
exists in the evaluation process will be reduced.

• With large amount of annotated data we can experiment with supervised and semi–supervised
learning algorithms in search of better performing models. Semi–supervised methods can
even be used with less annotated data, thus more data whether annotated or not should
improve the current state of the research.

• We have not used any semantic feature or resources so far, however we think it should help
us identifying FPs. Among the frameworks, some level of Word Sense Disambiguation
(WSD) is necessary and resources such as WordNet (Miller, 1995) can be used for these
types of lexical semantic based research. There is a similar resource for French called
WOLF (Sagot and Fišer, 2008a,b) freely available for use.

• For the modelling of detailed and specific function points we also need to explore semantic
possibilities at higher level textual groups e.g. sentences. Making semantic models for
FPs would be the ultimate objective of this research. We have looked into FrameNet
(Baker et al., 1998) for the semantic modelling of FP by correlating frames associated
with potential lexical entities (we are mostly interested in verbs). However, FrameNet

157

development for French was under development at the time of writing this thesis and it is
far from a release. Thus, we would like to propose manual identification of frames from
the English FrameNet and use them after automatic translation. This is not only a rather
tedious process but also each resultant frame is needed to be evaluated by professional FP
analysts in a objective manner before we can use them.

• This research can potentially be adopted for the multi–lingual FP analysis. We recognize
the lack of data in other languages, yet at least for some resource rich languages, it is a
possibility.

References

Abeillé, A. and Barrier, N. (2004). Enriching a French Treebank. In Proceedings of the
Fourth International Conference on Language Resources and Evaluation (LREC).

Alberts, I. and Forest, D. (2012). Email Pragmatics and Automatic Classification: A Study
in the Organizational Context. Journal of the American Society for Information Science
and Technology, 63(5):904–922.

Albrecht, A. J. (1979). Measuring Application Development Productivity. In SHARE/GUIDE
IBM Application Development Symposium, pages 83–92, Monterey, CA, USA.

Albrecht, A. J. and Gaffney, J. E. (1983). Software function, source lines of code, and
development effort prediction: A software science validation. IEEE Transactions on
Software Engineering, SE-9(6):639–648.

Alias-i (2008). LingPipe 4.1.0. http://alias-i.com/lingpipe. accessed: 20 December, 2015.

Aloise, D., Deshpande, A., Hansen, P., and Popat, P. (2009). NP-Hardness of Euclidean
Sum-of-Squares Clustering. Machine Learning, 75(2):245–248.

Andersen, P. M., Hayes, P. J., Huettner, A. K., Schmandt, L. M., Nirenburg, I. B., and
Weinstein, S. P. (1992). Automatic extraction of facts from press releases to generate news
stories. In Proceedings of the Third Conference on Applied Natural Language Process-
ing, ANLC ’92, pages 170–177, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Appelt, D. E. (1999). Introduction to information extraction. AI Commun., 12(3):161–172.

April, A., Merlo, E., and Abran, A. (1997). A reverse engineering approach to evaluate
function point rules. In Reverse Engineering, 1997. Proceedings of the Fourth Working
Conference on, pages 236–245.

Armano, G. (2015). Modelling progressive filtering. Fundamenta Informaticae, 138(3):285–
320.

Asadullah, M., Nouvel, D., and Paroubek, P. (2014a). Using verb–noun patterns to detect
process inputs. In Sojka, P., Horák, A., Kopeček, I., and Pala, K., editors, Text, Speech and
Dialogue, volume 8655 of Lecture Notes in Computer Science, pages 181–188. Springer
International Publishing.

http://alias-i.com/lingpipe

160 References

Asadullah, M., Paroubek Patrick, and Vilnat, A. (2014b). Bidirectionnal Converter Between
Syntactic Annotations: from French Treebank Dependencies to PASSAGE Annotations,
and Back. In Proceedings of the Ninth International Conference on Language Resources
and Evaluation, LREC-2014, pages 2342–2347. European Language Resources Associa-
tion (ELRA).

Aurenhammer, F. (1991). Voronoi Diagrams–A Survey of A Fundamental Geometric Data
Structure. ACM Computing Surveys (CSUR), 23(3):345–405.

Bach, N. and Badaskar, S. (2007). A review of relation extraction. Language Technologies
Institute, Carnegie Mellon University.

Bajaj, K. S. and Pieprzyk, J. (2014). A Case Study of User–level Spam Filtering. In
Proceedings of the Twelfth Australasian Information Security Conference - Volume 149,
AISC ’14, pages 67–75, Darlinghurst, Australia. Australian Computer Society, Inc.

Baker, C. F., Fillmore, C. J., and Lowe, J. B. (1998). The Berkeley FrameNet Project. In
Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics
and 17th International Conference on Computational Linguistics - Volume 1, pages 86–90,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Banker, R. D., Kauffman, R. J., Wright, C., and Zweig, D. (1994). Automating output
size and reuse metrics in a repository-based computer-aided software engineering (case)
environment. Software Engineering, IEEE Transactions on, 20(3):169–187.

Banko, M. and Etzioni, O. (2008). The tradeoffs between open and traditional relation
extraction. In Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics, ACL 2008, pages 28–36, Columbus, Ohio. Association for Computational
Linguistics.

Batista, V. A., Peixoto, D. C. C., Borges, E. P., Pádua, W., Resende, R. F., and Pádua, C.
I. P. S. (2011). ReMoFP: A Tool for Counting Function Points from UML Requirement
Models. Advances in Software Engineerin, 2011:1:1–1:7.

Bjørner, S. and Ardito, S. C. (2003). Online Before the Internet, Part 1: Early Pioneers Tell
Their Stories. Searcher: The Magazine for Database Professionals, 11(6).

Bloomfield, L. (1933). Language. Holt, New York.

Blum, A. and Mitchell, T. (1998). Combining labeled and unlabeled data with co-training.
In Proceedings of the Eleventh Annual Conference on Computational Learning Theory,
COLT’ 98, pages 92–100, New York, NY, USA. ACM.

Bobrow, D. G. (1964). A question-answering system for high school algebra word problems.
In Proceedings of the October 27-29, 1964, Fall Joint Computer Conference, Part I, AFIPS
’64 (Fall, part I), pages 591–614, New York, NY, USA. ACM.

Boehm, B. W. (1981). Software Engineering Economics. Prentice Hall, Englewood Cliffs,
NJ, USA.

References 161

Boehm, B. W., Abts, C., Brown, A. W., Chulani, S., Clark, B. K., and Horowitz, E. (2000).
Software Cost Estimation with COCOMO II. Prentice Hall PTR, Upper Saddle River, NJ,
USA.

Bonissone, P. P. and Dutta, S. (1990). Mars: A mergers and acquisitions reasoning system.
Computer Science in Economics and Management, 3(3):239–268.

Brin, S. and Page, L. (1998). The Anatomy of a Large-scale Hypertextual Web Search
Engine. Computer Networks and ISDN Systems, 30(1–7):107–117.

Brown, D. (1990). Automated Function point Counting - Myth or Reality. In Proceedings of
the IFPUG Fall Conference, pages 168–180.

Brownson, H. L. (1960). Research on Handling Scientific Information. Science, 132:1922–
1931.

Buchholz, S. and Marsi, E. (2006). CoNLL–X Shared Task on Multilingual Dependency
Parsing. In Proceedings of the Tenth Conference on Computational Natural Language
Learning, CoNLL–X ’06, pages 149–164, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Buglione, L. (2008). Misurare il software. Quantità, qualità, standard e miglioramento di
processo nell’Information Technology. Informatica e organizzazioni. Franco Angeli.

Bundschuh, M. and Dekkers, C. (2008). The IT Measurement Compendium: Estimating and
Benchmarking Success with Functional Size Measurement. Springer Publishing Company,
Incorporated, 1 edition.

Bush, V. (1945). As We May Think. Atlantic Monthly, 176(1):641–649.

Candito, M., Crabbé, B., and Denis, P. (2010). Statistical French Dependency Parsing:
Treebank Conversion and First Results. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation, LREC ’10, Valletta, Malta. European
Language Resources Association (ELRA).

Candito, M., Crabbé, B., Denis, P., and Guérin, F. (2009). Analyse syntaxique du français :
des constituants aux dépendances. In 16e Conférence sur le Traitement Automatique des
Langues Naturelles - TALN 2009, Senlis, France.

Candito, M., Nivre, J., Denis, P., and Anguiano, E. H. (2010). Benchmarking of Statistical
Dependency Parsers for French. In Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, COLING ’10, pages 108–116, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Carbonell, J. and Goldstein, J. (1998). The Use of MMR, Diversity-based Reranking for
Reordering Documents and Producing Summaries. In Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’98, pages 335–336, New York, NY, USA. ACM.

Carlson, L., Onyshkevych, B., and Okurowski, M. E. (1993). Corpora and data preparation.
In Fifth Message Understanding Conference (MUC-5): Proceedings of a Conference Held
in Baltimore, Maryland, August 25-27, 1993.

162 References

Carroll, G. and Charniak, E. (1992). Two Experiments on Learning Probabilistic Dependency
Grammars from Corpora. Technical Report CS-92-16, Department of Computer Science,
Brown University, Providence, RI.

Carroll, J. A. (2000). Statistical Parsing. In Handbook of Natural Language Processing,
pages 525–544. Dekker, New York.

C&EN (1954). New tools for the resurrection of knowledge. Chemical & Engineering News
Archive, 32(9):866–869.

Ceri, S., Fraternali, P., and Bongio, A. (2000). Web modeling language (webml): A modeling
language for designing web sites. Computer Networks: The International Journal of
Computer and Telecommunications Networking, 33(1–6):137–157.

Chao, H. and Fan, J. (2004). Layout and Content Extraction for PDF Documents. In Marinai,
S. and Dengel, A., editors, Document Analysis Systems, Lecture Notes in Computer
Science, pages 213–224. Springer.

Choi, S., Park, S., and Sugumaran, V. (2006). Function Point Extraction Method from Goal
and Scenario Based Requirements Text. In Natural Language Processing and Information
Systems, volume 3999 of Lecture Notes in Computer Science, pages 12–24. Springer Berlin
Heidelberg.

Choi, S., Park, S., and Sugumaran, V. (2012). A rule-based approach for estimating software
development cost using function point and goal and scenario based requirements. Expert
Systems with Applications: An International Journal, 39(1):406–418.

Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.

Chomsky, N. (1968). Remarks on Nominalization. Linguistics Club, Indiana University.

Ciaramita, M. and Altun, Y. (2005). Named-entity recognition in novel domains with external
lexical knowledge. Proceedings of the NIPS Workshop on Advances in Structured Learning
for Text and Speech Processing.

Clark, J. H. and González Brenes, J. P. (2008). Coreference resolution: Current trends and
future directions. Language and Statistics II Literature Review, pages 1–14.

Cleverdon, C. W. (1959). The Evaluation of Systems Used in Information Retrieval. In
Proceedings of the International Conference on Scientific Information Washington, D.C.,
Nov. 16-21, 1958 – Volume 1, pages 687–698. National Academy of Sciences, National
Research Council.

Cleverdon, C. W. (1991). The Significance of the Cranfield Tests on Index Languages. In
Proceedings of the 14th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’91, pages 3–12, New York, NY, USA.
ACM.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psycho-
logical Measurement, 20(1):37–46.

References 163

Cohen, W. W. (1996). Learning Trees and Rules with Set-Valued Features. In Clancey, W. J.
and Weld, D. S., editors, Proceedings of the Thirteenth National Conference on Artificial
Intelligence and Eighth Innovative Applications of Artificial Intelligence Conference,
August 4-8, 1996, Volume 1., AAAI ’96, IAAI ’96, pages 709–716. AAAI Press / The MIT
Press.

Cooper, W. S., Gey, F. C., and Dabney, D. P. (1992). Probabilistic Retrieval Based on
Staged Logistic Regression. In Proceedings of the 15th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’92, pages
198–210, New York, NY, USA. ACM.

Cover, T. M. and Thomas, J. A. (1991). Elements of Information Theory. Wiley–Interscience,
New York, NY, USA.

Covington, M. A. (1984). Syntactic Theory in The High Middle Ages. Cambridge University
Press.

Cowie, J. and Lehnert, W. (1996). Information extraction. Commun. ACM, 39(1):80–91.

Cowie, J. R. (1983). Automatic analysis of descriptive texts. In Proceedings of the First Con-
ference on Applied Natural Language Processing, ANLC ’83, pages 117–123, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Cramer, J. (2002). The Origins of Logistic Regression. Tinbergen Institute Discussion Papers
02-119/4, Tinbergen Institute.

Cucerzan, S. and Brill, E. (2004). Spelling Correction as an Iterative Process that Exploits
the Collective Knowledge of Web Users. In Dekang Lin and Dekai Wu, editors, Proceed-
ings of EMNLP 2004, pages 293–300, Barcelona, Spain. Association for Computational
Linguistics.

Cullingford, R. E. (1978). Script Application: Computer Understanding of Newspaper
Stories. PhD thesis, Department of Computer Science, Yale University, New Haven, CT.

Cunningham, H., Gaizauskas, R., and Wilks, Y. (1995). A General Architecture for Text
Engineering (GATE) – a new approach to Language Engineering R&D. Technical Report
CS – 95 – 21, Department of Computer Science, University of Sheffield.

Daumé III, H. and Marcu, D. (2005). A large-scale exploration of effective global features for
a joint entity detection and tracking model. In Proceedings of Human Language Technology
Conference and Conference on Empirical Methods in Natural Language Processing, pages
97–104, Vancouver, British Columbia, Canada. Association for Computational Linguistics.

Davis, J. and Goadrich, M. (2006). The Relationship Between Precision-Recall and ROC
Curves. In Proceedings of the 23rd International Conference on Machine Learning, ICML
’06, pages 233–240, New York, NY, USA. ACM.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990).
Indexing by Latent Semantic Analysis. Journal of the American Society for Information
Science (JASIS), 41(6):391–407.

164 References

DeJong, G. (1979). Prediction and substantiation: A new approach to natural language
processing. Cognitive Science, 3(3):251–273.

DeJong, G. (1982). An Overview of the FRUMP System. In Strategies for Natural Language
Processing, pages 149–176. Lawrence Erlbaum, Hillsdale, NJ.

del Bianco, V., Gentile, C., and Lavazza, L. (2008). An evaluation of function point
counting based on measurement-oriented models. In Proceedings of the 12th International
Conference on Evaluation and Assessment in Software Engineering, EASE’08, pages
11–20, Swinton, UK. British Computer Society.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society, 39(1):1–38.

Denis, P. and Baldridge, J. (2007). Joint determination of anaphoricity and coreference
resolution using integer programming. In Human Language Technologies 2007: The Con-
ference of the North American Chapter of the Association for Computational Linguistics;
Proceedings of the Main Conference, pages 236–243, Rochester, New York. Association
for Computational Linguistics.

Dennis, B. K., Brady, J. J., and Dovel Jr., A. (1962). Index Manipulation and Abstract
Retrieval by Computer. Journal of Chemical Documentation, 2(4):234–242.

Dewey, M. (1876). A Classification and Subject Index, for Cataloguing and Arranging the
Books and Pamphlets of a Library. Cass, Lockwood & Brainard Company.

Dini, L., Bittar, A., and Ruhlmann, M. (2013). Approches hybrides pour l’analyse de recettes
de cuisine DEFT, TALN-RECITAL 2013. In Actes de DEFT 2013 : 9e DÉfi Fouille de
Textes, pages 53–65, Les Sables d’Olonne, France.

Doddington, G., Mitchell, A., Przybocki, M., Ramshaw, L., Strassel, S., and Weischedel,
R. (2004). The automatic content extraction (ace) program, tasks, data, and evaluation.
In Proceedings of the Fourth International Conference on Language Resources and
Evaluation (LREC-2004), Lisbon, Portugal. European Language Resources Association
(ELRA).

Doyle, L. B. and Becker, J. (1975). Information Retrieval and Processing. Melville Publishing
Co., Los Angeles, USA.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification (2nd Edition).
Wiley–Interscience.

Dumais, S., Cutrell, E., Cadiz, J., Jancke, G., Sarin, R., and Robbins, D. C. (2003). Stuff
I’Ve Seen: A System for Personal Information Retrieval and Re-use. In Proceedings of
the 26th Annual International ACM SIGIR Conference on Research and Development in
Informaion Retrieval, SIGIR ’03, pages 72–79, New York, NY, USA. ACM.

Dumke, R. and Abran, A. (2011). COSMIC Function Points: Theory and Advanced Practices.
CRC Press.

Edward, S. H. (1920). Means for Compiling Tabular and Statistical Data. US Patent
1,351,692.

References 165

Eliot, S. and Rose, J. (2009). A Companion to the History of the Book. Blackwell Companions
to Literature and Culture. John Wiley & Sons.

Ellafi, R. and Meli, R. (2006). A Source Code Analysis-Based Function Point Estimation
Method integrated with a Logic Driven Estimation Method. In Proceedings of the Software
Measurement European Forum, SMEF ’06, pages 177–194.

Elshoff, J. L. (1978). An investigation into the effects of the counting method used on
software science measurements. SIGPLAN Notices, 13(2):30–45.

Evert, S. (2004). Significance Tests for The Evaluation of Ranking Methods. In Proceedings
of Coling 2004, Geneva, Switzerland.

Faure, D. and Nédellec, C. (1999). Knowledge Acquisition of Predicate Argument Structures
from Technical Texts Using Machine Learning: The System ASIUM. In Proceedings
of the 11th European Workshop on Knowledge Acquisition, Modeling and Management,
EKAW ’99, pages 329–334, London, UK. Springer–Verlag.

Fenichel, R. (1979). Surveyor’s forum: Heads i win, tails you lose. ACM Computing Surveys
(CSUR), 11(3):277.

Fenton, N. and Pfleeger, S. L. (1997). Software Metrics (2Nd Ed.): A Rigorous and Practical
Approach. PWS Publishing Co., Boston, MA, USA, 2nd edition.

Fetcke, T. (1999). The Warehouse Software Portfolio, A Case Study in Functional Size
Measurement. Technical Report 1999–20, Département d’informatique, Université du
Québec à Montréal, Montréal, Canada.

Fitsos, G. P. (1979). Software science counting rules and tuning methodology. Technical
report TR 03.075, IBM Santa Teresa Laboratory, San Jose, CA.

Fitzpatrick, J. (1997). Applying the abc metric to c, c++, and java. C++ Report.

Fraternali, P., Tisi, M., and Bongio, A. (2006). Automating Function Point Analysis with
Model Driven Development. In Proceedings of the 2006 Conference of the Center for
Advanced Studies on Collaborative Research, CASCON ’06, Riverton, NJ, USA. IBM
Corp.

Fuhr, N. (1989). Optimum Polynomial Retrieval Functions Based on the Probability Ranking
Principle. ACM Transactions on Information Systems (TOIS), 7(3):183–204.

Fuhr, N. and Buckley, C. (1991). A Probabilistic Learning Approach for Document Indexing.
ACM Transactions on Information Systems (TOIS), 9(3):223–248.

Gaifman, H. (1965). Dependency Systems and Phrase–Structure Systems. Information and
Control, 8(3):304–337.

Gaizauskas, R. and Wilks, Y. (1997). Information extraction: Beyond document retrieval.
Technical report CS – 97 – 10, Department of Computer Science, University of Sheffield.

Galton, A. and Mizoguchi, R. (2009). The Water Falls but the Waterfall Does Not Fall: New
Perspectives on Objects, Processes and Events. Applied Ontology, 4(2):71–107.

166 References

Gencel, C. and Demirors, O. (2008). Functional Size Measurement Revisited. ACM
Transactions on Software Engineering and Methodology (TOSEM), 17(3):15:1–15:36.

Goldberg, E. (1931). Statistical Machine. US Patent 1,838,389.

Gopal, S. and Yang, Y. (2010). Multilabel Classification with Meta–level Features. In Pro-
ceedings of the 33rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’10, pages 315–322, New York, NY, USA. ACM.

Goutte, C. and Gaussier, É. (2005). A Probabilistic Interpretation of Precision, Recall and
F-Score, with Implication for Evaluation. In ECIR, volume 3408 of Lecture Notes in
Computer Science, pages 345–359. Springer.

Great Britain Treasury, C. C. and Telecommunications Agency (2000). SSADM Foundation.
Business Systems Development with SSADM. Stationery Office.

Grishman, R. and Sundheim, B. (1995). Design of The MUC-6 Evaluation. In Proceedings
of the 6th Conference on Message Understanding, MUC6 ’95, pages 1–11, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Grishman, R. and Sundheim, B. (1996). Message understanding conference–6: A brief
history. In Proceedings of the 16th Conference on Computational Linguistics - Volume
1, COLING ’96, pages 466–471, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Groß, T. M. (1994). Theoretical Foundations of Dependency Syntax. München: iudicium.

Grouin, C., Zweigenbaum, P., and Paroubek, P. (2013). DEFT2013 se met à table : présenta-
tion du défi et résultats. In Actes de DEFT 2013 : 9e DÉfi Fouille de Textes, pages 1–14,
Les Sables d’Olonne, France.

Guthrie, D., Allison, B., Liu, W., Guthrie, L., and Wilks, Y. (2006). A Closer Look at
Skip-gram Modelling. In Proceedings of the Fifth international Conference on Language
Resources and Evaluation, LREC-2006, Genoa, Italy.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. (2009).
The WEKA Data Mining Software: An Update. ACM SIGKDD Explorations Newsletter,
11(1):10–18.

Halliday, M. A. K. and Hasan, R. (1976). Cohesion in English. English Language Series.
Longman, London.

Halstead, M. H. (1977). Elements of Software Science (Operating and Programming Systems
Series). Elsevier Science Inc., New York, NY, USA.

Harman, D. (2005). The History of IDF and Its Influences on IR and Other Fields. In Charting
a New Course: Natural Language Processing and Information Retrieval, volume 16 of The
Kluwer International Series on Information Retrieval, pages 69–79. Springer Netherlands.

Harris, Z. (1958). Linguistic Transformations for Information Retrieval. In Proceedings
of the International Conference on Scientific Information, Washington, D.C. National
Academy of Sciences – National Research Council.

References 167

Hassan, T. and Baumgartner, R. (2005). Intelligent Text Extraction from PDF Documents.
In International Conference on Computational Intelligence for Modelling, Control and
Automation (CIMCA 2005) and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce (IAWTIC 2005), volume 2, pages 2–6, Vienna,
Austria.

Hays, D. G. (1964). Dependency Theory: A Formalism and Some Observations. Language,
40(4):511–525.

Hellwig, P. (1986). Dependency Unification Grammar. In Proceedings of the 11th Interna-
tional Conference on Computational Linguistics, COLING ’86, pages 195–198, Bonn,
Germany. Institut für angewandte Kommunikations- und Sprachforschung e.V. (IKS).

Hellwig, P. (2003). Dependency Unification Grammar. In Dependency and Valency, volume
Part 1 of Handbooks of Linguistics and Communication Science, pages 593–635. Walter
de Gruyter.

Heycock, C. (2012). Specification, Equation, and Agreement in Copular Sentences. The
Canadian Journal of Linguistics / La Revue Canadienne De Linguistique, 57:209–240.

Hiemstra, D. (1998). A Linguistically Motivated Probabilistic Model of Information Retrieval.
In Second European Conference on Research and Advanced Technology for Digital
Libraries, ECDL 1998, volume 1513 of Lecture Notes in Computer Science, pages 569–
584, Berlin, Germany. Springer Verlag.

Higgins, F. R. (1973). The Pseudo–Cleft Construction in English. PhD thesis, Massachusetts
Institute of Technology (MIT), Cambridge, MA, United States.

Hirst, G. (1981). Anaphora in Natural Language Understanding : A Survey. Lecture Notes
in Computer Science. Springer-Verlag, Berlin, New York.

Ho, V. T. and Abran, A. (1999). A Framework for Automatic Function Point Counting from
Source Code. In International Workshop on Software Measurement (IWSM’99).

Hobbs, J. R. (1976). Pronoun Resolution. City College, Department of Computer Sciences.

Holmstrom, J. E. (1948). Section III. Opening Plenary Session. In The Royal Society
Scientific Information Conference, Report and Papers Submitted. Royal Society, London,
U.K.

Hudson, R. (1990). English Word Grammar. Blackwell, Oxford, UK.

Hull, D. (1993). Using Statistical Testing in the Evaluation of Retrieval Experiments. In
Proceedings of the 16th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’93, pages 329–338, New York, NY, USA.
ACM.

Huttunen, S., Yangarber, R., and Grishman, R. (2002). Complexity of event structure in ie
scenarios. In 19th International Conference on Computational Linguistics (COLING),
Taipei, Taiwan.

168 References

Inaba, M., Katoh, N., and Imai, H. (1994). Applications of Weighted Voronoi Diagrams and
Randomization to Variance-based K-clustering: (Extended Abstract). In Proceedings of
the Tenth Annual Symposium on Computational Geometry, SCG ’94, pages 332–339, New
York, NY, USA. ACM.

Jaccard, P. (1901). Distribution de la flore alpine dans le bassin des Dranses et dans quelques
régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles, 37:241–272.

Jackendoff, R. (1977). X Syntax: A Study of Phrase Structure. MIT Press, Cambridge, MA,
USA.

Jacobs, P. S. and Rau, L. F. (1990). Scisor: Extracting information from on-line news.
Commun. ACM, 33(11):88–97.

Jahoda, G. (1961). Electronic Searching. In Shaw, R. R., editor, The State of the Library Art,
pages 139–320. The Graduate School of Library Service, Rutgers–The State University,
New Brunswick, New Jersey, USA.

James, M. (1985). Classification Algorithms. Wiley–Interscience.

Jardino, M. (2004). Recherche de structures latentes dans des partitions de « textes » de 2 à K
classes . In Le Actes des 7èmes Journées internationales d’Analyse statistique des Données
Textuelles, JADT–2004, pages 661–671. Presses Universitaires de Louvain (PUL).

Järvinen, T. and Tapanainen, P. (1998). Towards an Implementable Dependency Grammar.
In Proceedings of the ACL Workshop on Processing of Dependency-Based Grammars,
CoLing–ACL’98, pages 1–10.

Jebara, T. (2003). Machine Learning: Discriminative and Generative (Kluwer International
Series in Engineering and Computer Science). Kluwer Academic Publishers, Norwell,
MA, USA.

Ji, H. and Grishman, R. (2011). Knowledge base population: Successful approaches and
challenges. In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies - Volume 1, HLT ’11, pages 1148–1158,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Ji, H., Westbrook, D., and Grishman, R. (2005). Using semantic relations to refine coreference
decisions. In Proceedings of Human Language Technology Conference and Conference
on Empirical Methods in Natural Language Processing, pages 17–24, Vancouver, British
Columbia, Canada. Association for Computational Linguistics.

Joachims, T. (2002). Optimizing Search Engines Using Clickthrough Data. In Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’02, pages 133–142, New York, NY, USA. ACM.

Jobson, J. D. and Korkie, B. M. (1980). Estimation for Markowitz Efficient Portfolios.
Journal of the American Statistical Association, 75(371):544–554.

Jolliffe, I. T. (1986). Principal Component Analysis. Springer Series in Statistics. Springer–
Verlag, New York, NY.

References 169

Jones, C. (1978). Measuring programming quality and productivity. IBM Systems Journal,
17(1):39–63.

Jones, C. (1991). Applied Software Measurement: Global Analysis of Productivity and
Quality. McGraw Hill Professional. McGraw-Hill, Education, New York, NY, USA.

Jones, C. (1996). Using Function Points to Evaluate CASE Tools, Volume 4. Technical
report, Software Productivity Research Inc.

Jones, C. (2004). Software project management practices: Failure versus success. CrossTalk:
The Journal of Defense Software Engineering, 17.

Jones, C. (2007). Estimating Software Costs : Bringing Realism to Estimating: Bringing
Realism to Estimating. McGraw-Hill’s AccessEngineering. Mcgraw-hill.

Jones, K. S. (1988). A Statistical Interpretation of Term Specificity and Its Application
in Retrieval. In Willett, P., editor, Document Retrieval Systems, pages 132–142. Taylor
Graham Publishing, London, UK.

Jordan, M. I. and Bishop, C. M. (2014). Neural Networks. In Computing Handbook, Third
Edition: Computer Science and Software Engineering, pages 42: 1–24. CRC Press.

Kahane, S., Nasr, A., and Rambow, O. (1998). Pseudo–Projectivity, A Polynomially Parsable
Non–Projective Dependency Grammar. In Proceedings of the 36th Annual Meeting
of the Association for Computational Linguistics and 17th International Conference
on Computational Linguistics, Volume 1, pages 646–652, Montreal, Quebec, Canada.
Association for Computational Linguistics.

Kemerer, C. F. (1987). An empirical validation of software cost estimation models. Commu-
nications of the ACM, 30(5):416–429.

Kemerer, C. F. (1993). Reliability of Function Points Measurement: A Field Experiment.
Communications of the ACM, 36(2):85–97.

Kim, J., Park, S., and Sugumaran, V. (2006). Improving Use Case Driven Analysis Using Goal
and Scenario Authoring: A Linguistics-based Approach. Data & Knowledge Engineering,
58(1):21–46.

Kitchenham, B. (1997). Counterpoint: The problem with function points. Software, IEEE,
14(2):29–31.

Kleinberg, J. M. (1999). Authoritative Sources in a Hyperlinked Environment. Journal of
the ACM (JACM), 46(5):604–632.

Klusener, S. (2003). Source Code Based Function Point Analysis for Enhancement Projects.
In Software Maintenance, 2003. ICSM 2003. Proceedings. International Conference on,
pages 373–376.

Kusumoto, S., Edagawa, T., and Higo, Y. (2008). On an Automatic Function Point Measure-
ment from Source Codes. In 2nd Workshop on Accountability and Traceability in Global
Software Engineering (ATGSE2008), pages 27–28.

170 References

Kusumoto, S., Imagawa, M., Inoue, K., Morimoto, S., Matsusita, K., and Tsuda, M. (2002).
Function Point Measurement from Java Programs. In Proceedings of the 24th International
Conference on Software Engineering, ICSE ’02, pages 576–582, New York, NY, USA.
ACM.

Lamma, E., Mello, P., and Riguzzi, F. (2004). A System for Measuring Function Points from
an ER-DFD Specification. The Computer Journal, 47(3):358–372.

Lang, K. (1995). NewsWeeder: Learning to Filter Netnews. In Proceedings of the 12th
International Conference on Machine Learning, pages 331–339. Morgan Kaufmann
publishers Inc.: San Mateo, CA, USA.

Lassez, J.-L., Knijff, v. d. D., Shepherd, J., and Lassez, C. (1981). A critical examination of
software science. Journal of Systems and Software, 2(2):105 – 112.

Lay, David C., L., Steven R., and McDonald, J. J. (2015). Linear Algebra and Its Applications
(5th Edition). Pearson.

Léon, J., Memmi, D., Ornato, M., Pomian, J., and Zarri, G. P. (1982). Conversion of a french
surface expression into its semantic representation according to the reseda metalanguage.
In Proceedings of the 9th Conference on Computational Linguistics - Volume 1, COLING
’82, pages 183–189, Praha, Czechoslovakia. Academia Praha.

Linsker, R. (1988). Self–organization in a perceptual network. Computer, 21(3):105–117.

Lloyd, S. P. (1982). Least Squares Quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129–137.

Low, G. C. and Jeffery, D. R. (1990). Function points in the estimation and evaluation of the
software process. Software Engineering, IEEE Transactions on, 16(1):64–71.

Luhn, H. P. (1957). A Statistical Approach to Mechanized Encoding and Searching of
Literary Information. IBM Journal of Research and Development, 1(4):309–317.

Luhn, H. P. (1958). The Automatic Creation of Literature Abstracts. IBM Journal of Research
and Development, 2(2):159–165.

Luo, X. (2007). Coreference or not: A twin model for coreference resolution. In HLT-NAACL,
pages 73–80. The Association for Computational Linguistics.

Lytinen, S. L. and Gershman, A. (1986). ATRANS: Automatic processing of money transfer
messages. In Proceedings of the 5th National Conference on Artificial Intelligence. Volume
2: Engineering, AAAI-86, pages 1089–1093, Philadelphia, PA, USA. Morgan Kaufmann.

MacDonell, S. G. (1994). Comparative Review of Functional Complexity Assessment
Methods for Effort Estimation. Software Engineering Journal, 9(3):107–116.

MacKay, R. J. and Oldford, R. W. (2000). Scientific method, statistical method and the speed
of light. Statistical Science, 15(3):254–278.

Madi, A., Zein, O. K., and Kadry, S. (2013). On the improvement of cyclomatic complexity
metric. International Journal of Software Engineering & Its Applications, 7(2).

References 171

Magerman, D. M. (1995). Statistical Decision-tree Models for Parsing. In Proceedings of
the 33rd Annual Meeting on Association for Computational Linguistics, ACL ’95, pages
276–283, Stroudsburg, PA, USA. Association for Computational Linguistics.

Malenge, J.-P. (1980). Critique de la physique du logiciel (critique of software science).
Publication Informatique (Technical report) IMAN-P-23, Universite de Nice. France.

Mankiewicz, R. (2004). The Story of Mathematics. Mathematics (Princeton University
Press). Princeton University Press.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA.

Marcus, M., Kim, G., Marcinkiewicz, M. A., MacIntyre, R., Bies, A., Ferguson, M., Katz,
K., and Schasberger, B. (1994). The Penn Treebank: Annotating Predicate Argument
Structure. In Proceedings of the Workshop on Human Language Technology, HLT ’94,
pages 114–119, Stroudsburg, PA, USA. Association for Computational Linguistics.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a Large Annotated
Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330.

Maron, M. E., Kuhns, J. L., and Ray, L. C. (1959). Probabilistic Indexing. a Statistical
Technique for Document Identification and Retrieval. Technical Report 3, DTIC Document.

Matsuzaki, T., Miyao, Y., and Tsujii, J. (2005). Probabilistic CFG with Latent Annotations.
In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,
ACL ’05, pages 75–82, Stroudsburg, PA, USA. Association for Computational Linguistics.

Mazzucco, F. A. (1990). Automation of Function Point Counting – An Update. In Proceed-
ings of the IFPUG Spring Conference.

Mazzucco, F. A. (1992). IEF - Automatic Function Point Count. In Proceedings of the 1992
IFPUG Conference, pages 2–5, Baltimore, MA, USA.

McBryan, O. A. (1994). GENVL and WWWW: Tools for Taming The Web. In Proceedings
of the first World Wide Web Conference, pages 79–90, Geneva, Switzerland.

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering,
2(4):308–320.

McCallum, A. K. (1996). Bow: A Toolkit for Statistical Language Modeling, Text Retrieval,
Classification and Clustering. http://www.cs.cmu.edu/~mccallum/bow. accessed: 20
December, 2015.

McCallum, A. K. (2002). MALLET: A Machine Learning for Language Toolkit. http:
//www.cs.umass.edu/~mccallum/mallet. accessed: 20 December, 2015.

McDonald, R. (2006). Discriminative Learning and Spanning Tree Algorithms for Depen-
dency Parsing. PhD thesis, University of Pennsylvania.

http://www.cs.cmu.edu/~mccallum/bow
http://www.cs.umass.edu/~mccallum/mallet
http://www.cs.umass.edu/~mccallum/mallet

172 References

McDonald, R., Pereira, F., Kulick, S., Winters, S., Jin, Y., and White, P. (2005). Simple algo-
rithms for complex relation extraction with applications to biomedical ie. In Proceedings
of the 43rd Annual Meeting on Association for Computational Linguistics, ACL ’05, pages
491–498, Stroudsburg, PA, USA. Association for Computational Linguistics.

Meister, D. and Sullivan, D. J. (1967). Evaluation of User Reactions to a Prototype On–line
Information Retrieval System. CR. 918. Clearinghouse for Federal Scientific and Technical
Information.

Mel’čuk, I. (1988). Dependency Syntax: Theory and Practice. State University of New York
Press.

Mendes, O. (1997). Développement d’un protocole d’évaluation pour les outils informatisés
de comptage automatique de points de fonction. Master’s thesis, Université du Québec à
Montréal.

Mendes, O., Abran, A., and Bourque, P. (1996). Function Point Tool Market Survey. Research
report, Software Engineering Management Laboratory, Université du Québec à Montréal.

Metzler, D. and Croft, W. B. (2005). A Markov Random Field Model for Term Dependencies.
In Proceedings of the 28th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’05, pages 472–479, New York, NY, USA.
ACM.

Middleton, W. E. K. (1966). A History of The Thermometer And Its Use in Meteorology.
Johns Hopkins Press.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the
ACM, 38(11):39–41.

Minsky, M. and Papert, S. (1969). Perceptrons : An Introduction to Computational Geometry.
The MIT Press, Cambridge (Mass.), London.

Mitchell, H. F. (1953). The Use of The Univ AC FAC-Tronic System in The Library
Reference Field. American Documentation, 4(1):16–17.

Mitchell, T. (2006). The Discipline of mMchine Learning. Technical Report CMU ML-06
108, Carnegie Mellon ML Department.

Mitkov, R. (1999). Anaphora resolution: The state of the art. Technical report, School of
Languages and European Studies, University of Wolverhampton.

Mladenić, D., Brank, J., Grobelnik, M., and Milic Frayling, N. (2004). Feature Selection
Using Linear Classifier Weights: Interaction with Classification Models. In Proceedings
of the 27th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’04, pages 234–241, New York, NY, USA. ACM.

Mooers, C. (1961). From A Point of View of Mathematical etc. Techniques. In Fairthorne,
R. A., editor, Towards information retrieval, pages xvii–xxiii. Butterworths, London, U.K.

Mooers, C. E. (1950). Coding, Information Retrieval, and the Rapid Selector. American
Documentation, 1(4):225–229.

References 173

Mooers, C. N. (1959). The Next Twenty Years in Information Retrieval: Some Goals and
Predictions. In Papers Presented at the the March 3-5, 1959, Western Joint Computer
Conference, IRE-AIEE-ACM ’59 (Western), pages 81–86, New York, NY, USA. ACM.

Moranda, P. B. (1978). Surveyor’s forum: Is software science hard? ACM Computing
Surveys (CSUR), 10(4):503–504.

Nanus, B. (1960). The Use of Electronic Computers for Information Retrieval. Bulletin of
the Medical Library Association, 48(3):278–291.

National Institute of Standards and Technology (1991). A Brief History of Measurement
Systems, With A Chart of The Modernized Metric System. U.S. Dept. of Commerce,
National Institute of Standards and Technology.

Ng, V. (2008). Unsupervised models for coreference resolution. In Procedings of the
Conference on Empirical Methods in Natural Language Processing, (EMNLP), pages
640–649, Honolulu, Hawaii, USA. ACL.

Ng, V. (2010). Supervised Noun Phrase Coreference Research: The First Fifteen Years. In
Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,
pages 1396–1411.

Ng, V. and Cardie, C. (2002). Improving machine learning approaches to coreference
resolution. In Proceedings of the 40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, pages 104–111, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Ng, V. and Cardie, C. (2003). Weakly supervised natural language learning without redundant
views. In Proceedings of the 2003 Conference of the North American Chapter of the
Association for Computational Linguistics on Human Language Technology - Volume
1, NAACL ’03, pages 94–101, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Nguyen, N. L. T. and Kim, J.-D. (2008). Exploring domain differences for the design of
pronoun resolution systems for biomedical text. In Proceedings of the 22Nd International
Conference on Computational Linguistics - Volume 1, COLING ’08, pages 625–632,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Nguyen, V., Deeds Rubin, S., Tan, T., and Boehm, B. (2007). A sloc counting standard.
COCOMO II Forum, 2007.

Nikula, H. (1986). Dependensgrammatik. Ord och stil. LiberFörlag.

Nivre, J. (2005). Dependency Grammar and Dependency Parsing. Technical report, Växjö
University.

Nivre, J. (2006). Inductive Dependency Parsing (Text, Speech and Language Technology).
Springer–Verlag New York, Inc., Secaucus, NJ, USA.

Nivre, J. (2008). Algorithms for Deterministic Incremental Dependency Parsing. Computa-
tional Linguistics, 34(4):513–553.

174 References

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., Marinov, S., and Marsi,
E. (2007). MaltParser: A Language–Independent System for Data–Driven Dependency
Parsing. Natural Language Engineering, 13:95–135.

Nivre, J. and Nilsson, J. (2005). Pseudo–Projective Dependency Parsing. In Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics, ACL ’05, pages
99–106, Stroudsburg, PA, USA. Association for Computational Linguistics.

Nouvel, D., Antoine, J.-Y., and Friburger, N. (2014). Pattern Mining for Named Entity
Recognition. LNCS/LNAI Series, 8387i (post-proceedings LTC 2011).

Ogden, W. C. and Bernick, P. (1996). Oleada: User-centered tipster technology for language
instruction. In Proceedings of a Workshop on Held at Vienna, Virginia: May 6-8, 1996,
TIPSTER ’96, pages 85–90, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Orǎsan, C., Cristea, D., Mitkov, R., and Branco, A. (2008). Anaphora resolution exercise:
an overview. In Proceedings of the Sixth International Conference on Language Re-
sources and Evaluation (LREC’08), Marrakech, Morocco. European Language Resources
Association (ELRA).

Pak, A. and Paroubek, P. (2011). Text Representation Using Dependency Tree Subgraphs for
Sentiment Analysis. In Proceedings of the 16th International Conference on Database
Systems for Advanced Applications, DASFAA’11, pages 323–332, Berlin, Heidelberg.
Springer–Verlag.

Park, R. E. (1992). Software size measurement: A framework for counting source statements.
Technical Report CMU/SEI-92-TR-020, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA.

Paroubek, P., Robba, I., Vilnat, A., and Ayache, C. (2008). EASY, Evaluation of Parsers of
French: What Are The Results? In Proceedings of the Sixth International Conference
on Language Resources and Evaluation, (LREC ’08), Marrakech, Morocco. European
Language Resources Association (ELRA).

Patwardhan, S. (2010). Widening the Field of View of Information Extraction through
Sentential Event Recognition. PhD thesis, University of Utah.

Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space.
Philosophical Magazine, 2:559–572.

Peng, F., Ahmed, N., Li, X., and Lu, Y. (2007). Context Sensitive Stemming for Web Search.
In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’07, pages 639–646, New York, NY, USA.
ACM.

Petrov, S., Barrett, L., Thibaux, R., and Klein, D. (2006). Learning Accurate, Compact,
and Interpretable Tree Annotation. In Proceedings of the 21st International Conference
on Computational Linguistics and the 44th Annual Meeting of the Association for Com-
putational Linguistics, ACL-44, pages 433–440, Stroudsburg, PA, USA. Association for
Computational Linguistics.

References 175

Petrov, S. and Klein, D. (2007). Improved Inference for Unlexicalized Parsing. In Human
Language Technologies 2007: The Conference of the North American Chapter of the
Association for Computational Linguistics, Proceedings of the Main Conference, pages
404–411.

Piskorski, J. and Yangarber, R. (2013). Information Extraction: Past, Present and Future.
In Poibeau, T., Saggion, H., Piskorski, J., and Yangarber, R., editors, Multi–source,
Multilingual Information Extraction and Summarization, Theory and Applications of
Natural Language Processing, pages 23–49. Springer Berlin Heidelberg.

Poesio, M., Ponzetto, S. P., and Versley, Y. (2011). Computational models of anaphora
resolution: A survey. Linguistic Issues in Language Technology.

Ponte, J. M. and Croft, W. B. (1998). A Language Modeling Approach to Information
Retrieval. In Proceedings of the 21st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’98, pages 275–281, New
York, NY, USA. ACM.

Ponzetto, S. P. and Strube, M. (2006). Exploiting semantic role labeling, wordnet and
wikipedia for coreference resolution. In Proceedings of the Human Language Technology
Conference of the NAACL, Main Conference, pages 192–199, New York City, USA.
Association for Computational Linguistics.

Porter, M. F. (1980). An Algorithm for Suffix Stripping. Program: Electronic Library and
Information Systems, 14(3):130–137.

Putnam, L. H. (1978a). Example of an early sizing, cost and schedule estimate for an
application software system. In The IEEE Computer Society’s Second International
Computer Software and Applications Conference, COMPSAC ’78, pages 827–832. IEEE
Press.

Putnam, L. H. (1978b). A general empirical solution to the macro software sizing and
estimating problem. IEEE Transactions on Software Engineering, SE–4(4):345–361.

Radlinski, F. and Joachims, T. (2005). Query Chains: Learning to Rank from Implicit
Feedback. In Proceedings of the Eleventh ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining, KDD ’05, pages 239–248, New York, NY, USA.
ACM.

Rahman, H. (2010). Cases on Adoption, Diffusion, and Evaluation of Global E-governance
Systems: Impact at the Grass Roots. Premier Reference Source. Information Science
Reference.

Robertson, S. (2004). Understanding Inverse Document Frequency: on Theoretical Argu-
ments for IDF. Journal of Documentation, 60(5):503–520.

Robertson, S. and Zaragoza, H. (2009). The Probabilistic Relevance Framework: BM25 and
Beyond. Foundations and Trends in Information Retrieval, 3(4):333–389.

Robertson, S. E. (1977). The Probability Ranking Principle in IR. Journal of Documentation,
33(4):294–304.

176 References

Robertson, S. E. (1997). Overview of The Okapi Projects. Journal of Documentation,
53(1):3–7.

Robertson, S. E. and Hancock Beaulieu, M. (1992). On the Evaluation of IR Systems.
Information Processing & Management, 28(4):457–466.

Robertson, S. E. and Spärck Jones, K. (1976). Relevance Weighting of Search Terms. Journal
of The American Society for Information Science, 27(3):129–146.

Robinson, J. J. (1970). Dependency Structures and Transformational Rules. Language,
46(2):259–285.

Rocchio, J. J. (1965). Relevance Feedback in Information Retrieval. Technical Report 9,
Harvard University.

Rocchio, J. J. (1971). Relevance Feedback in Information Retrieval. In Salton, G., editor, The
Smart retrieval system – Experiments in Automatic Document Processing, pages 313–323.
Englewood Cliffs, NJ: Prentice-Hall.

Sabatier, P. and Pesant, D. L. (2013). Les Dictionnaires éectroniques de Jean Dubois et
Françoise Dubois-Charlier et Leur Exploitation en TAL. In Gala, N. and Zock, M.,
editors, Ressources Lexicales : Contenu, Construction, Utilisation, Évaluation, volume
Supplementa ; v. 30 of Linguisticae investigationes, pages 153–186. John Benjamins
Publishing Company, Amsterdam, Netherlands.

Sager, N. (1960). A procedure for left to right analysis of sentence structure. Transformations
and Discourse Analysis Papers, 27.

Sager, N. (1981). Natural Language Information Processing: A Computer Grammmar of
English and Its Applications. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

Sagot, B. and Fišer, D. (2008a). Building a free french wordnet from multilingual resources.
In Ontolex 2008, Marrakech, Maroc.

Sagot, B. and Fišer, D. (2008b). Construction d’un Wordnet Libre du Français à Partir de
Ressources Multilingues. In TALN 2008 -Traitement Automatique des Langues Naturelles.

Salton, G. (1968). Automatic Information Organization and Retrieval. McGraw Hill Text.

Salton, G. and Buckley, C. (1988). Term-Weighting Approaches in Automatic Text Retrieval.
Information Processing and Management: An International Journal, 24(5):513–523.

Salton, G., Wong, A., and Yang, C.-S. (1975). A Vector Space Model for Automatic Indexing.
Communications of the ACM, 18(11):613–620.

Salton, G. and Yang, C.-S. (1973). On The Specification of Term Values in Automatic
Indexing. Journal of Documentation, 29(4):351–372.

Sample, T. and Hill, T. (1993). The architecture of a reverse engineering data model discovery
process. EDS Technical Journal, 7(1).

References 177

Sanderson, M. and Croft, W. B. (2012). The History of Information Retrieval Research.
Proceedings of the IEEE, 100(Special Centennial Issue):1444–1451.

Schank, R. C. (1975). The Conceptual Approach to Language Processing. In Conceptual
Information Processing, pages 5–21. North-Holland and Elsevier, Amsterdam and New
York.

Schank, R. C. and Colby, K. M. (1973). Computer Models of Thought and Language. A
Series of Books in Psychology. W. H. Freeman, San Francisco.

Schank, R. R. and Abelson, R. (1977). Scripts, plans, goals and understanding: An inquiry
into human knowledge structures. Lawrence Erlbaum Associates, Hillsdale, NJ.

Sebastiani, F. (2002). Machine Learning in Automated Text Categorization. ACM Computing
Surveys (CSUR), 34(1):1–47.

Seddah, D., Candito, M., and Crabbé, B. (2009). Cross Parser Evaluation and Tagset
Variation: A French Treebank Study. In Proceedings of the 11th International Conference
on Parsing Technologies, IWPT ’09, pages 150–161, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Sekine, S. and Nobata, C. (2004). Definition, dictionaries and tagger for extended named
entity hierarchy. In Proceedings of the Fourth International Conference on Language
Resources and Evaluation (LREC), Lisbon, Portugal. European Language Resources
Association.

Serrano Guerrero, J., Olivas, J. A., Romero, F. P., and Herrera Viedma, E. (2015). Sentiment
Analysis. Information Sciences: An International Journal, 311(C):18–38.

Sgall, P., Hajičová, E., and Panevová, J. (1986). The Meaning of the Sentence in Its Semantic
and Pragmatic Aspects. Springer, Dordrecht, Netherlands.

Shaw, R. R. (1949). The Rapid Selector. Journal of Documentation, 5(3):164–171.

Shen, V. Y., Conte, S. D., and Dunsmore, H. E. (1983). Software science revisited: A critical
analysis of the theory and its empirical support. IEEE Trans. Software Eng., 9(2):155–165.

Shen, V. Y. and Dunsmore, H. E. (1981). Analyzing cobol programs via software science.
Technical report CSD TR-348, Department of Computer Sciences, Purdue University.

Shlens, J. (2014). A Tutorial on Principal Component Analysis. CoRR, abs/1404.1100.

Silva, G. and Dwiggins, D. (1980). Toward a prolog text grammar. ACM Sigart Newsletter,
73:20–25.

Smith, L. (1997). Function Point Analysis and Its Uses. Predicate Logic Inc.

Sneed, H. M. (2000). Extraction of Function-Points from Source-Code. In Proceedings of
the 10th International Workshop on New Approaches in Software Measurement, IWSM
’00, pages 135–146, London, UK. Springer-Verlag.

Soon, W. M., Ng, H. T., and Lim, D. C. Y. (2001). A machine learning approach to
coreference resolution of noun phrases. Computational Linguistics, 27(4):521–544.

178 References

Sørensen, T. (1948). A Method of Establishing Groups of Equal Amplitude in Plant Sociology
Based on Similarity of Species Content and Its Application to Analyses of the Vegetation on
Danish Commons. Biologiske Skrifter – Det Kongelige Danske Videnskabernes Selskab. I
kommission hos E. Munksgaard.

Spärck Jones, K., editor (1981). Information retrieval experiment. Butterworths, London,
Boston.

St Pierre, D., Maya, M., Abran, A., Desharnais, J.-M., and Bourque, P. (1997). Full Function
Points: Counting Practices Manual. Technical Report 1997–04, Université du Québec à
Montréal.

Steinhaus, H. (1956). Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci,
1:801–804.

Stevens, M. E., editor (1965). Statistical Association Methods for Mechanized Documenta-
tion: Symposium Proceedings. U.S. Dep. of Commerce. National Bureau of Standards
miscellaneous Publication. U.S. Government Printing Office.

Stroud, J. M. (1967). The fine structure of psychological time. Annals of the New York
Academy of Sciences, 138(2 Interdiscipli):623–631.

Switzer, P. (1963). Vector Images in Document Retrieval. Technical Report 4, Harvard
University.

Symons, C. R. (1988). Function point analysis: difficulties and improvements. Software
Engineering, IEEE Transactions on, 14(1):2–11.

Tannier, X. (2012). WebAnnotator, an Annotation Tool for Web Pages. In Proceedings of
the 8th International Conference on Language Resources and Evaluation (LREC 2012),
Istanbul, Turkey.

Tapanainen, P. and Järvinen, T. (1997). A Non-projective Dependency Parser. In Proceedings
of the Fifth Conference on Applied Natural Language Processing, ANLC ’97, pages 64–71,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Taube, M., Gull, C. D., and Wachtel, I. S. (1952). Unit Terms in Coordinate Indexing.
American Documentation, 3(4):213–218.

Taylor, R. W. and Frank, R. L. (1976). Codasyl data-base management systems. ACM
Comput. Surv., 8(1):67–103.

Tesnière, L. (1959). Éléments de Syntaxe Structurale. Éditions Klinksieck.

Tjong Kim Sang, E. F. (2002). Introduction to the conll-2002 shared task: Language-
independent named entity recognition. In Proceedings of the 6th Conference on Natural
Language Learning - Volume 20, COLING-02, pages 1–4, Stroudsburg, PA, USA. Associ-
ation for Computational Linguistics.

Tjong Kim Sang, E. F. and De Meulder, F. (2003). Introduction to the conll-2003 shared
task: Language-independent named entity recognition. In Proceedings of the Seventh
Conference on Natural Language Learning at HLT-NAACL 2003, volume 4 of CONLL
’03, pages 142–147, Stroudsburg, PA, USA. Association for Computational Linguistics.

References 179

Uemura, T., Kusumoto, S., and Inoue, K. (1999). Function point measurement tool for
UML design specification. In Proceedings of the Sixth International Software Metrics
Symposium, 1999, pages 62–69.

van Deemter, K. and Kibble, R. (2000). On coreferring: Coreference in muc and related
annotation schemes. Comput. Linguist., 26(4):629–637.

van Rijsbergen, C. J. (1979). Information Retrieval. Butterworth, 2nd edition.

van Rijsbergen, C. J. (1979). Information Retrieval. Butterworth-Heinemann, Newton, MA,
USA, 2nd edition.

Vanni, M. and Zajac, R. (1996). The temple translator’s workstation project. In Proceedings
of a Workshop on Held at Vienna, Virginia: May 6-8, 1996, TIPSTER ’96, pages 101–106,
Stroudsburg, PA, USA. Association for Computational Linguistics.

Verhoeff, J., Goffman, W., and Belzer, J. (1961). Inefficiency of the Use of Boolean Functions
for Information Retrieval Systems. Communications of the ACM (CACM), 4(12):557–558.

Voorhees, E. M. (2001). The TREC Question Answering Track. Natural Language Engi-
neering, 7(4):361–378.

Walter, C. (2005). Kryder’s law. Scientific American, 293(2):32–33.

Wang, T., Viswanath, V., and Chen, P. (2015). Extended Topic Model for Word Depen-
dency. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 506–510, Beijing, China. Association for Computational
Linguistics.

Whitmire, S. A. (1995). An Introduction to 3D Function Points. Software Development,
3(4):43–53.

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics Bulletin,
1(6):80–83.

Wilks, Y. (1987). Text searching with templates. Technical Report Technical Report ML
162, Language Research Unit, Cambridge University.

Wilks, Y. (1997). Information extraction as a core language technology. In International
Summer School on Information Extraction: A Multidisciplinary Approach to an Emerging
Information Technology, SCIE ’97, pages 1–9, London, UK. Springer-Verlag.

Wilks, Y. A. (1973). Preference Semantics. Memo (Stanford Artificial Intelligence Labora-
tory). Computer Science Department, Stanford University.

Winograd, T. (1972). Understanding Natural Language. Academic Press, Inc., Orlando, FL,
USA.

Yang, X., Zhou, G., Su, J., and Tan, C. L. (2003). Coreference resolution using competition
learning approach. In Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, pages 176–183, Sapporo, Japan. Association for Computational
Linguistics.

180 References

Yang, Y. and Liu, X. (1999). A Re–examination of Text Categorization Methods. In
Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’99, pages 42–49, New York, NY, USA.
ACM.

Yeh, A. (2000). More Accurate Tests for the Statistical Significance of Result Differences.
In Proceedings of the 18th Conference on Computational Linguistics - Volume 2, COLING
’00, pages 947–953, Stroudsburg, PA, USA. Association for Computational Linguistics.

Zarri, G. P. (1983). Automatic representation of the semantic relationships corresponding to
a french surface expression. In Proceedings of the First Conference on Applied Natural
Language Processing, ANLC ’83, pages 143–147, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Zipf, G. K. (1949). Human Behavior and the Principle of Least–Effort. Addison–Wesley,
Cambridge, MA.

Zweben, S. H. (1979). Surveyor’s Forum: Heads I Win, Tails You Lose. ACM Computing
Surveys (CSUR), 11(3):277–278.

Zwicky, A. M. (1985). Heads. Journal of Linguistics, 21:1–29.

References 181

Author’s Publications

Munshi Asadullah, Damien Nouvel, and Patrick Paroubek. “Using Verb-Noun Pat-terns to
Detect Process Inputs”. In Proceedings of the Text, Speech and Dialogue – 17th International
Conference, TSD 2014, Brno, Czech Republic, September 8–12,2014. Pp. 181–188. 2014

Munshi Asadullah, Patrick Paroubek, and Anne Vilnat. “Bidirectionnal converterbetween
syntactic annotations : from French Treebank Dependencies to PASSAGE annotations, and
back”. In Proceedings of the 9th International Conference on Language Resources and
Evaluation (LREC-2014), Reykjavik, Iceland, May 26–31, 2014. Pp. 2342–2347.

Munshi Asadullah, Patrick Paroubek, and Anne Vilnat. “Converting from the French
Treebank Dependencies into PASSAGE syntactic annotations”. In Proceedings of the 6th
Language Technology Conference : Human Language Technologies as a Challenge for
Computer Science and Linguistics (LTC 2013), Poznan, Poland, December 7–9, 2013. Pp.
188–182. 2013

Patrick Paroubek, Munshi Asadullah, and Anne Vilnat. “Convertir des analyses syntaxiques
en dépendances vers les relations fonctionnelles PASSAGE”. In Actes dela 20ème Conférence
sur le Traitement Automatique des Langues Naturelles (TALN2013), Les Sables d’Olonne,
France, June 17–21, 2013. Pp. 675–682.

Appendix A

Miscellaneous

A.1 Annotation Guideline

There are four types of elements defined in the guideline for annotation as summarized in
Table A.1,

Table A.1. Annotation Elements

Category Description

FUN_GRP Functional Groups: grouping of functional elements for easier counting.

APP External Applications

FUN Transaction Functions

DATA_GRP Data Functions

The guidelines provide a general framework for annotating any specification document for
FP identification. The important aspects of these guidelines are listed below,

• The use of either MicroSoft Word or OpenOffice Writer.

• Highlight only the part of text “necessary and sufficient” for the identification of FPs.

• The text part containing the information must be highlighted seamlessly i.e. uninterrupted
character span should be present.

• Each highlighted part must at least contain a noun (common or proper) or a verb.

• The text must not be changed (content or format).

• Preserve the original document format for archiving.

184 Miscellaneous

We have made one significant change in the guidelines this year. We have adopted the use of
HTML format and the open–source annotation tool WebAnnotator (Tannier, 2012) instead
of office tools (Microsoft or OpenOffice). WebAnnotator is a tool for annotating Web pages,
implemented as a Firefox extension, allowing annotation of both offline and online HTML

contents. A predefined DTD can be used to define the visualization of the data that can
use different highlighting colours for different types of annotation. Furthermore, the output
HTML content contains all the formatting we are interested to preserve for text extraction.
The annotations do not interfere with the original text since they overlay the annotation
information on top of the original text. The tool has been proven to be easy to learn to use
with minimum training and was integrated in our processing chain easily.

A.2 ProjEstimate Corpus DTD

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xsd:schema version="1.0" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="DOCUMENT" type="DOCUMENTType" />

<xsd:complexType name="DOCUMENTType">

<xsd:sequence>

<xsd:element maxOccurs="unbounded" name="S" type="SType" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SType">

<xsd:sequence>

<xsd:element name="T" type="TType" />

<xsd:element name="DEP" type="DEPType" />

</xsd:sequence>

<xsd:attribute name="id" type="xsd:string" />

<xsd:attribute name="page" type="xsd:int" />

</xsd:complexType>

<xsd:complexType name="DEPType">

<xsd:attribute name="type" type="xsd:string" />

<xsd:attribute name="src" type="xsd:string" />

A.3 Lloyd’s Algorithm 185

<xsd:attribute name="target" type="xsd:string" />

</xsd:complexType>

<xsd:complexType name="TType">

<xsd:sequence>

<xsd:element name="SURF" type="xsd:string" />

<xsd:element name="LEMA" type="xsd:string" />

<xsd:element name="GPOS" type="xsd:string" />

<xsd:element name="SPOS" type="xsd:string" />

<xsd:element name="MORP" type="xsd:string" />

</xsd:sequence>

<xsd:attribute name="id" type="xsd:string" />

<xsd:attribute name="annot" type="xsd:string" />

</xsd:complexType>

</xsd:schema>

A.3 Lloyd’s Algorithm

Consider a set X = {x1, x2 ... xn}, and distance d : X × X → R+ and the output is a set
C = {c1, c2 ... ck} i.e. the set of centroids. This implicitly defines a set of clusters where
φ C(x) = argminc ∈ C d(x, c)

Lloyd’s Algorithm for k-Means Clustering

Choose k points C ⊂ X (arbitrarily*)
repeat

For all x ∈ X find φ C(x) (closest center c ∈ C to x)
For all i ∈ [j] let ci = average{x ∈ X | (x) = ci}

until The set C is unchanged

186 Miscellaneous

A.4 Complete Feature Types for ML

Every unique pattern for each feature type has been used as a feature. The name contains the
clue about the pattern. The prefix contains the lexical entity used as the pattern and the suffix
either expresses the n-gram type or d-gram type used for the pattern. There are 5 lexical
groups that has been used,

1. Surface Form (surface): The actual extracted token (with inflictions and other features)
from the data files.

2. Lemma (lemma): The lemma for each token.

3. General POS (gpos): The general POS group of each token as defined in the FTB Anno-
tation Guideline1.

4. Specific POS (spos): The detailed POS description that includes additional morphological
information also defined in the FTB Annotation Guideline.

5. Lemma and General POS (lemma_gpos): The lemma and the POS put together with a
front slash character (“/”), e.g. book/n is the representation of the noun lemma “book”.

Along with these lexical features 4 different n-gram representations for all the groups have
been used and represented as the suffix unigram, bigram, trigram and quadgram for
the value of n=1, 2, 3 and 4 respectively. There are also 3 d-gram patterns generated
designated as the suffixes dgram, dgram_wild and extended_dgram using the concepts of
d–gram, d–gram with wild card and extended d–gram (see § ??). Many of these features are
expected to show little or no patterns when applied to the data, however, the objective is to
cover all our basics before choosing the right set of features.

A.4.1 Feature List

surface_unigram

surface_bigram

surface_trigram

surface_quardgram

surface_dgram

surface_dgram_wild

surface_extended_dgram

1http://alpage.inria.fr/statgram/frdep/Publications/FTB-DescriptionDepSurface.pdf

A.4 Complete Feature Types for ML 187

lemma_unigram

lemma_bigram

lemma_trigram

lemma_quardgram

lemma_dgram

lemma_dgram_wild

lemma_extended_dgram

gpos_unigram

gpos_bigram

gpos_trigram

gpos_quardgram

gpos_dgram

gpos_dgram_wild

gpos_extended_dgram

spos_unigram

spos_bigram

spos_trigram

spos_quardgram

spos_dgram

spos_dgram_wild

spos_extended_dgram

lemma_gpos_unigram

lemma_gpos_bigram

lemma_gpos_trigram

lemma_gpos_quardgram

lemma_gpos_dgram

lemma_gpos_dgram_wild

lemma_gpos_extended_dgram

Appendix B

Measurement Scales

B.1 Nominal Scale

Nominal scale is a rather primitive form of measurement, where each entity is placed in a
class or category based on the value of the attribute of our interest. The empirical relation
system in this type of scales consist only of discrete classes but there is no notion of ordering
among the classes. Any distinct numbering or symbol assignment for the classes is enough,
without the notion of magnitude thus no implied notion of comparison, rather a contrast
between entities in terms of the desired attribute can be established. For example, a company
produces cars of three colours (e.g. red, black and blue) thus, the following mappings are
equally capable of representing relation,

M1(x) =

7: if x is a “red” car

2 : if x is a “black” car

9 : if x is a “blue” car

M2(x) =

? : if x is a “red” car

! : if x is a “black” car

+: if x is a “blue” car

The scale in the example is establishing the colour for each car being produced and no other
quantification or qualification.. It can easily be seen that it is a simple one–to–one mapping
and any two mapping M and M′ will always be related, i.e. M′ can be obtained from M by a
simple remapping. Since the simplest mathematical manipulation such a ordering can not be
performed, any number or any symbol will suffice. It is also clear that the class of admissible
transformation for a nominal scale measure is the set of all possible one–to–one mapping.

190 Measurement Scales

B.2 Ordinal Scale

Ordinal scale is an augmentation on the nominal scale with the information about some sort
of ordering of the classes or categories in the empirical relation system thus allow us to
perform analysis that is not possible using the nominal scale. The classes are ordered with
respect to the attribute of interest, any mapping that preserves the ordering is accepted and the
numbers only represent the ordering thus any arithmetic operation (i.e. addition, subtraction
etc.) have no meaning. For example, if we are looking to establish a scale for complexity of
math problems with four possible levels, trivial, simple, moderate, complex, impossible. The
complexity is expected to be higher for a level from the previous one and thus the mapping
cannot be done as freely as with nominal scale. Numbers are more appropriate for this
mapping and the only thing we have to make sure is that higher level of complexity need to
be assigned a higher number. All the following mappings are valid,

M1(x) =

1: if x is trivial

2 : if x is simple

3 : if x is moderate

4 : if x is complex

5: if x is impossible

M2(x) =

2: if x is trivial

5 : if x is simple

6 : if x is moderate

7 : if x is complex

9: if x is impossible

M3(x) =

0.001: if x is trivial

0.01 : if x is simple

0.1 : if x is moderate

59.2 : if x is complex

92.73: if x is impossible

Since the principal is to preserve the ordering of the classes, formally it is to map a set
of ordered classes {C1,C2,C3, . . .Cn} into a increasing series of numbers {x1,x2,x3, . . .xn}
where xi > x j when i is grater than j. The admissible transformation is the set of what is
called a monotonic mapping and any increasing series of length n can be substituted for the
value set.

B.3 Interval Scale

Ordinal scale conveys more information about an entity than the nominal scale, interval
scale carries further information, making it a more powerful representation for the empirical
relations. In this scale the values not only represent the order but also the size of the interval
reflects for far each value is from one another.The difference only preserves the distance
between values but not the ratio thus calculating ration for values in such a scale does not
make any sense. Thus, some arithmetic operations namely, addition and subtraction is
accepted but multiplication and division are not acceptable. The temperature scales can be a

B.4 Ratio Scale 191

proper example,

We can measure temperature in several scales such as, Fahrenheit or Celsius scale. The values
maintain order i.e. 20°C is higher than 19°C and also represent the change in temperature between
two values having the same difference at any range i.e. the increase of heat for the increase of
temperature from 20°C to 25°C is the same when the temperature increased from 50°C to 55°C.
However we cannot make inference about the ratio of temperature, i.e. an air temperature of 50°C
is not twice as hot as 25°C.

Formally, if an attribute is measurable on an interval scale, e.g. temperature, and M and
M′ being two possible mappings that satisfy the representation conditions e.g. Celsius and
Fahrenheit, there exist two numbers a and b such that, M = aM′+ b. This type of liner
transformation also known as affine transformation and for the temperature scales for Celsius
and Fahrenheit the transformation function is F = 9

/
5C+32.

B.4 Ratio Scale

If we are looking for more information on the empirical relations, for example if we want
to know if a liquid is twice as hot as another liquid, we have to shift out mapping to a ratio
scale. This is a very important scale in physical science and most common scale in use. This
measurement preserves ordering, size of interval between entities and the ration between
entities. There must be a zero element representing the total lack of an attribute, then increase
in equal intervals (i.e. units). All arithmetic operations are meaningful while applied to the
classes in the ranges of the mapping. Formally, a transformation for a ratio scale between
two mapping is in the form of M = aM′ where a is a positive integer and these type of
transformation is called ration transformation because it preserves the ratio.

From our previous example of interval scale, Celsius and Fahrenheit scales are not ratio
scales because, 0°C or 0°F does not imply the absence of heat whereas the Kelvin(°K) scale
for temperature is a ratio scale because 0°K actually implies total lack of heat. Moreover, the
lack of meaningful ratio in the scales like Celsius, i.e. temperature of 20°C does not imply
twice as much heat present than 10°C, although, converting them to Kelvin scale shows us,
the ratio between 283°K (10°C) and 293°K (20°C) is actually 1.033. Another example is
the length measurement of physical object in any unit, all possible units preserve the ratio
between the length of two entities. Zero length however, only exists in the limit of things
getting smaller and smaller and more at the conceptual realm rather than hard physical reality.

192 Measurement Scales

B.5 Absolute Scale

The more information the scale of measurement carry, the more restrictive the set of ad-
missible transformation become. Absolute scale is the most restrictive form of scale, for
any two measurements M and M′ there is only one admissible transformation, the identity
transformation. The measurement in this scale is made by counting the number of elements
in the entity set, so, the attribute always take the form of number of occurrence of “x”. There
is only one measurement mapping, i.e. the count and all arithmetic analysis of the resulting
count is meaningful.

A simple example could be counting number of tokens, a very common task in text processing.
Let us presume there are n tokens in a text file (f ilen), thus, it allows us to infer statements
such as the size of the file in terms of tokens is n. It also allow us to compare other files, e.g.
if there is another file with m tokens (f ilen) the following statements are all meaningful,

◦ f ilem is bigger than f ilen if m > n

◦ total token is m+n or the difference is m−n

◦ the ratio of tokens is m/n

◦ if n = 2m f ilem is half the size of f ilen

However, the same statements cannot be made about, someone’s age, i.e. measurement of
age is not absolute because it can be measured in year, month, day, hour or seconds thus the
identity transformation argument is not valid, thus it is in ratio scale.

B.6 Statistical Meaningfulness

Association of statistical meaningfulness with respect to different types of scale is an impor-
tant aspect of measurement. Many statistical analyses use basic arithmetic operations (e.g.
+,−,×,÷ etc.) and we are implying basic statistics such as measure of central tendency
i.e. mean, median, mode etc. or measure of dispersion i.e. variance or standard deviation

that gives an indication of the whole dataset and the distribution. These simple analytical
techniques however, are meaningful only within the context of certain scale types. For
example, the computation of mean, variance and standard deviation convey no meaning for
the nominal and ordinal types. On the other hand, median is meaningful for ordinal type
measure, e.g. let us consider the mappings in Table B.1 for our old math complexity problem,

B.6 Statistical Meaningfulness 193

Table B.1. Math Problem Complexity Scale Maps

trivial simple moderate complex impossible

M 1 2 3 4 5

M′ 1 2 3 4 9

M′′ 0.77 3.9 56 114 478

Let us consider 2 sets of math problems, X and Y , defined as,

X =
{

trivial, simple, moderate, simple, impossible
}

Y =
{

moderate, simple, complex, complex, complex, moderate, moderate
}

The mean and median for the sets using the 3 mappings have been summarized in Table B.2.
It can be clearly seen that with the mapping M the mean for X is less than the mean for Y but
with the mapping M′ the relation is no longer true. However, the median values maintain
the relation i.e. Xmedian < Ymedian, throughout, even when we mapped it with a drastically
different mapping M′′, the relation holds. Thus, establish the meaningfulness of median for

Table B.2. Mean and Median Summary for The Datasets

Mean Median

X Y X Y

M 2.6 3.28 2 3

M′ 3.4 3.28 2 3

M′′ 123.76 73.41 3.9 56

measuring central tendency in ordinal scale data and not that of mean. Mean can be used as a
meaningful measure for interval and ration scale data. Formally, if we need to prove that two
datasets x1, . . . ,xn and y1, . . . ,xm measured in a ratio scale having the means xmean and ymean

maintain the relation xmean > ymean is meaningful, we must demonstrate that,

1
n

n
∑

i=1
M (xi)>

1
m

m
∑
j=1

M (x j) if and only if 1
n

n
∑

i=1
M′ (xi)>

1
m

m
∑
j=1

M′ (x j)

The ratio scale gives us the needed information in the form of admissible transformation i.e.
M = aM′ for some a > 0. When we substitute aM′ for M, in the above equation, we get a

194 Measurement Scales

Table B.3. Summary of Statistical Analysis and Their Meaningfulness to Scale Type

Scale Type Defining Relations Appropriate Statistics Appropriate Test

Nominal Equivalence Mode
Frequency Non–Parametric

Ordinal Equivalence
Greater Than

Median
Percentile
Spearman r
Kendall r
Kendall W

Non–Parametric

Interval
Equivalence
Greater Than
Ratio of Two Intervals

Mean
Standard Deviation Non–Parametric

Ratio

Equivalence
Greater Than
Ratio of Two Intervals
Ratio of Two Values

Geometric Mean
Coefficient of Variation

Non–Parametric
Parametric

statement that is clearly valid. The same principle applies for any statistical technique, using
scale and transformation properties to verify that a certain analysis is valid for a given scale
type. Table B.3 presents a summary of meaningful statistics for different scale types, the
statistical analyses is inclusive while reading downward. So, the statistical analysis valid for
ordinal scale is also valid for all the other scale types with higher information content.

Appendix C

The Theory of Software Science

C.1 Proposed Metric

1. n1 : number of unique operators

2. n2 : number of unique operands

3. N1 : number of total operators

4. N2 : number of total operands

C.1.1 Program Length (N) and Vocabulary Size (n)

The length of the program is defined as the total number of operator and operands, whereas,
the size of the vocabulary is defined as the total number of unique operator and operands.
Formally,

N = N1 +N2 and n = n1 +n2

C.1.2 Volume (V), Program Level (L) and Difficulty (D)

Volume is the actual size (measured in bits) of a program in a computer, given that a uniform
binary encoding has been used and defined as,

V = N × log2 n

196 The Theory of Software Science

Since, an algorithm is expected to be implemented in different but equivalent programs, the
program with the minimal size is said to have the Potential Volume (V ∗). Any given program
with volume V is considered to be implemented at the Program Level L defined as,

L =V ∗
/

V

The value of L ranges between zero and one and L = 1 can be interpreted as a program
written in the highest possible level (i.e. with minimum size). The difficulty of a program is
in an inverse relation with the difficulty. Formally,

D = 1
/

L

So, as the volume of an implementation of a program increases, the program level decreases
and thus, the difficulty increases. For example, if the same operands are used many times in
the program, it will increase volume and difficulty, thus make it more prone to errors.

C.1.3 Effort to Implement (E)

The effort is defined to be proportional to the size of the program, i.e. larger program requires
more effort. It also takes more effort if the program is at a lower level (i.e. higher difficulty)
in comparison to an equivalent program at a higher level (i.e. lower difficulty). The unit of
effort measure was defined as number of elementary mental discriminations,

E =V
/

L =V ×D

C.1.4 Length Equation

The first hypothesis of Software Science is that the length of a program is a function of the
number of unique operator and unique operand only. In practice, the metric may not be very
precise for a given program but can be considered valid from a statistical point of view.

N̂ = n1 × log2 n1 +n2 × log2 n2

C.1 Proposed Metric 197

C.1.5 Potential Volume

We discussed earlier that if a program is implemented at its highest possible level i.e. lowest
possible size it will have the potential volume V ∗. A practical scenario is, if a desired operator
is already defined in a library, i.e. dealing with a function call from a library, V ∗ is achieved
by the name of the procedure and the list of input/output parameters. The vocabulary consists
of two operators and n∗2 operands. One operator is the name of the function and the other is
the grouping symbols (e.g. parenthesis). Thus, it will be defined as,

V ∗ =
(

2+n∗2
)
× log2

(
2+n∗2

)
This hypothesis however, is not applicable universally since there are programs that do not
have explicit input/output parameters (e.g. a compiler’s output consist of arbitrary number of
files and massages to the operating system). Halstead (1977), himself made the observation
that, the concept of n∗2 was inadequate for high information content constants and other
implicit variables.

C.1.6 Program Level and Difficulty Estimator

The program level of an implementation depends on the ratio of the potential volume and the
actual volume, but, potential volume is not always available and so an alternate for estimating
the level had be proposed,

L̂ =
1
D̂

=
2
n1

× n2

N2

As it can been seen, in this equation the difficulty increases if either additional operators
are introduces (i.e. the n1

2 term increases) or an operator has been used more times (i.e. the
N2
n2

term increases) or both. It must also be noticed that all the parameter are obtained from
counting just the operators and the operands.

C.1.7 Programming Time

Another important claim of Software Science was to relate the basic metrics with actual
implementation time. John Stroud (Stroud, 1967) claimed that mind is capable of making a
limited number of elementary discriminations per second. He claimed that this number S

(known as the Stroud Number) ranges between 5 and 20. Thus, when the earlier mentioned

198 The Theory of Software Science

Effort (E) being divided by S will give us the programming time in seconds,

T = E
/

S

S is normally set to 18 since that had given Halstead (1977) the best results during his
experiments. He claimed that the equation can be used to estimate programming time
when a given problem is solved by a single, proficient, concentrating programmer writing a
single-module program.

C.1.8 The Language Level

The language level is the metric to express the strength or weakness of a programming
language. Halstead (1977) hypothesized that if the programming language is kept fixed than
as V ∗ increases L decreases in such a way the product L×V ∗ remains constant. This constant
(called the language level λ) thus, can be used to characterize a programming language,

λ = L×V ∗ = L2V

Shen et al. (1983) presented that, analyses were made on a number of programs written on
different languages and the following determination was made on their language level,

◦ 1.53 for PL/l

◦ 1.21 for AlgoL

◦ 1.14 for Fortran, and

◦ 0.88 for CDC assembly language

They also argued that these values also followed most programmers’ intuitive rankings for
these languages, but they have large variances. The observation seems quite reasonable since,
the size of a program or the opinion about a language depends on many factors including
the problem being solved, the programmers skill and nevertheless personal preferences.
However, while comparing different programming languages, λ can be useful if a set of
problems are programmed by the same programmer in different languages. The formula can
also be used to derive the formula for effort E,

E =V ∗3
/

λ

C.2 Criticism 199

According to this formula for a given problem, the Effort and consequently, the resulting
implementation time varies according to the squared inverse of the Language Level.

C.2 Criticism

Regardless of having the appearance of a sound theory, Software Science has been heavily
criticized in contemporary publications (Fenichel, 1979; Lassez et al., 1981; Malenge, 1980;
Moranda, 1978). Some of the criticisms were about the soundness of the theory and others
about the empirical results that failed to support the theory. Shen et al. (1983) presented
that, one of the primary concern was regarding the definition and counting guideline for the
operators and operands. The original theory was developed for analyzing algorithms rather
than programs. Most supporting data was also drawn from algorithms written in Algol and
Fortran. It was quite liner to define an algorithm to be a collection of operator and operands
and classify different tokens for Algol or Fortran into operator and operands. But, it was
found to be more difficult to do so for programs especially, in other languages. Lassez et al.
(1981) argued that it is sometimes impossible to determine whether a token is an operator
or an operand since the classification may only be known at runtime or may depend on
the declaration parameters. Malenge (1980) argued that even Halstead (1977) produced
some inconsistency while counting these elements. The original method ignores all variable
declarations, however, several authors (Elshoff, 1978; Fitsos, 1979; Shen and Dunsmore,
1981) argued that in many languages (e.g. Cobol) variable declaration is a significant part of
the programming effort thus, ignoring them do not seem reasonable.

The other significant complain about the theory was regarding the actual derivation of
the equations. Shen et al. (1983) argued that in many of the derivations, several implied
assumptions were made without providing any theoretical justification. For example, while
deriving the length equation, the author divides a program of length N into N

/
n sub–strings

of length n and considering, there are no duplicate of these sub–strings and operators and
operands alternate, Halstead (1977) concluded that the following inequality must be satisfied,

N < nn1
1 ×nn2

2

However, no explanations were provided for dividing a program into N
/

n sub–strings.
Moreover, the assumption that operators and operands alternate implies that for all program
N1 ≈ N2, but Shen et al. (1983) argued that the general observation suggested otherwise.

200 The Theory of Software Science

Furthermore, the above inequality equation assumes that an operator or an operand will
appear first, but doing so will double the upper limit, thus, the Length equation cannot be
justified on theoretical grounds. Another derivation problem appears while Halstead (1977)
derived the boundary volume V ∗∗ as,

V ∗∗ =
(

2+n∗2 × logn∗2
2

)
× log2

(
2+n∗2

)
and later he sets,

dn
dn1

=
V ∗∗

V ∗

and no justification for the formula was provided and treating the discrete variable n as
continuous and take derivation is at least questionable.

Then again, while deriving the time equation, he relied heavily on the work of Stroud (1967),
but among psychologists there is no general acceptance of the hypothesis thus, as a theoretical
concept, the time equation must therefore be considered pure assumption. The presence
of these unverifiable assumptions make the underlying theoretical foundations of Software

Science rather shaky if not seriously flawed.

One may argue that even though the theoretical foundation of Software Science is weak, yet
it may be useful, at least, for statistical analysis, but the empirical work has been criticized
as well. Zweben (1979) concluded that the validating data reported in (Halstead, 1977) and
in some early papers that followed were not presented in the classical form of hypothesis
testing. Shen et al. (1983) resonating with the observation presented that Halstead frequently
and incorrectly inferred that because two sets of numbers were highly correlated, they can be
substituted for each other.

Moreover, the general practice of the empirical experiments were criticized. First of all,
the sample size used to make inferences were small (less than 10 in contrast to the general
practice of having a sample size of between 20 and 30). Then, the programs involved were
small (all except one were single module and less than 50 statements) so, prediction over
scaled projects with multi-module was nevertheless far fetched. There were also the criticism
about the subjects used for the experiment (most experiments had only a single subject and
even when there were more, most of them are college students), but we would like to express
our appreciation considering a pioneering work done in an university environment. Later
works provided better analysis with better dataset and regardless of the already discussed
flaws the theory found to be quite useful. For example, there is overwhelming evidence using
existing analyzers to suggest the validity of the Length Equation in several languages (Shen

C.2 Criticism 201

et al., 1983).
N̂ = n1 × logn1

2 +n2 × logn2
2 ≈ n log2

n
2

Thus, the Length Equation is a function of the count of the unique basic tokens and miscount-
ing of an operator or an operand has virtually no effect. It may effect significantly though, if
there are many unique tokens that have been used for a small number of times.

Appendix D

Value Adjustment Factor

Value Adjustment Factor (VAF) adjusts the final FP count on the basis of 14 features known
as the General System Characteristics (GSC) and may vary the final count upto ±35%. The
14 GSC definitions1 can be as follows,

1. Data communications represents the degree to which an application communicates for
data. It could be local i.e. batch process based stand alone application mostly communicate
with local resources, or on–line i.e. heavily relay on one or more protocol based remote
communication.

2. Distributed data processing describes the degree to which the application transfers data
among physical components of the application. It is a characteristic of the application
within the application boundary.

3. Performance represents the level of response time or throughput considerations influenced
the application development.

4. Heavily used configuration is the degree to which computer resource restrictions influ-
enced the development of the application e.g. the user may want to run the application on
existing or committed equipment that will be heavily used.

5. Transaction rate describes the degree to which the rate of business transactions influenced
the development of the application. The transaction rate is high, and it influences the
design, development, installation, and support of the application.

6. On–Line data entry represents the portion of data being entered or retrieved through in-
teractive transactions e.g. On-line User Interface for data entry, control functions, reports,
and queries that are provided in the application.

7. End–user efficiency describes the degree of consideration for human factors and ease of
use for the user of the application.

1http://www.functionpointmodeler.com/fpm-infocenter/index.jsp

204 Value Adjustment Factor

8. On–Line update describes the degree to which internal logical files are updated on–line.

9. Complex processing describes the degree to which processing logic influenced the devel-
opment of the application.

10. Re–usability describes the degree to which the application and the code in the application
have been specifically designed, developed, and supported to be usable in other applica-
tions.

11. Installation ease describes the degree to which conversion from previous environments
influenced the development of the application.

12. Operational ease describes the degree to which the application attends to operational as-
pects, such as start–up, back–up, and recovery processes.

13. Multiple sites describes the degree to which the application has been developed for differ-
ent hardware and software environments.

14. Facilitate change describes the degree to which the application has been developed for
easy modification of processing logic or data structure.

Each of these GSC is then associated with a Degree of Influence (DI) having a value between
0 and 5 and it has been often described as presented in Table D.1,

Table D.1. DI Level Definition

Level Definition

0 Not present, or no influence

1 Incidental influence

2 Moderate influence

3 Average influence

4 Significant influence

5 Strong influence throughout

Once these assessments are made the DI of the application and the Technical Complexity

Factor (TCF) is calculated using the following formulas,

DI =
14

∑
i=1

GSC[i]

TCF = 0.65+0.01×DI

205

Thus each DI contributes about 1% to the value of TCF and can range between 0.65 and 1.35.
Finally, the adjusted or reported FPs can be calculated using the following formula.

FP =UFP×TCF

Appendix E

Variations in Methods and Counting
Practice

The original method and the considerations for FP counting (Albrecht, 1979) have been
modified significantly over the last 45 yeas, but the the original idea is still at the core of most
if not all FPA method. Several updates were proposed during this time and some eventually
became International Standardization Organization (ISO) certified methods. Capers Jones
(1991) listed 20 variants of the functional metrics including the ISO recognized variants. In
all practical purposes, the big four variants i.e. IFPUG, COSMIC, MARK II and NESMA
approaches account for 97% of the total usage (Jones, 1991). They all have formal training
and certification programs thus, produce a more homogeneous counting practice. In the
following section we shall highlight the similarities and differences in some of the significant
methods with respect to the general practice suggested by the IFPUG–CPM. Many of the
methods mentioned by Jones (1991) either never gain main stream popularity or proven more
hazardous than useful over the development period.

E.0.1 MARK II (MkII) Function Point

Symons (1988) proposed the MkII Function Point Method, aimed to improve on Albrecht’s
approach by taking into account the internal complexity of data–rich business application
software, which is also one of the 5 ISO recognized methods. The method is heavily based
on Albrecht’s original method, however the software environment model used in MkII is
different. MkII FPA retains the fundamental premise that the function point count obtained

208 Variations in Methods and Counting Practice

by the method is the product of the two components, Information Processing Size (IPS) and
the Technical Complexity Adjustment (TCA). The TCA component (i.e. TCF and DI) is
mostly unchanged from that of Albrecht’s but the most notable difference is the extension of
the list of GSC from fourteen to nineteen or more factors. The functional model used for the
actual counting was also rather different since instead of the 5 distinct types functional unit,
in MkII a system is comprised of only discrete logical transaction. These transactions are as
Symons (1988) presented, are “a unique input/process/output combination triggered by a

unique event of interest to the user, or a need to retrieve information”.

Using this definition, identifying unique transactions is quite simple when a system is devel-
oped using methods such as, Structured Systems Analysis and Design Method (SSADM)1

(Great Britain Treasury and Telecommunications Agency, 2000). Symons (1988) even claims
that once the idea of the logical transaction is completely understood, even sizing a installed
systems is “perfectly straightforward”. Formally put, if t is the unadjusted function point
equivalent and a transaction is comprised of a set of input data element type (I), a set of entity
type referenced (E) and a set of output data element types (O) and a set of three weighting
factors in the same order for the corresponding elements {Wi,We,Wo} and the system is
comprised of n such transactions the UFP can be determined using the following formula,

UFP =
n

∑
i=1

t[i] given,

t =Wi × count(I)+We × count(E)+Wo × count(O)

The weights Wi, We and Wo are not changeable but can be subject to calibration and the
changes to the weights are published, in the first instance, through the United Kingdom

Function Point User Group Limited (UKFPUG)2. MkII guideline thus, suggests calculating
the TCA next and the difference with Albrecht’s approach is that instead of using a fixed 1%
influence of each DI, a coefficient C is used and DI is calculated from nineteen GSC. C is
calculated during calibration and the TCA is calculated using the following formula.

TCA = 0.65+C×DI

The MkII method allows for revision or calibration of the relative weightings of the individual
components of the TCA i.e. C and transaction component weights. According to MkII FPA

1The latest version of SSADM includes the MkII FPA Estimating Method to assist in the production of
reliable project estimates.

2http://www.uksma.co.uk/

209

the purpose of sizing is to help measure productivity, therefore, the relative weights should
reflect the relative average effort needed to analyse, design and develop the software. The
calibration process is a data driven and somewhat subjective process that starts with gath-
ering data on two factors, information processing component (X) and technical complexity
adjustment (Y). People are asked to give a ratio of effort assigned by an individual familiar
with the software development process in terms of work hours (e.g. 70% to 30% or 80% to
20% etc.). The actual TCA value is then deduced using the following formula,

TCAactual = 0.65×
(
1+

Y
X

)
The value 0.65 was used to make it comparable to the derived TCA form the DI. Once a
acceptable number of projects have been examined, the data can be plotted in a graph with
actual TCA on the horizontal axis and the computed TCA on the vertical axis and then C is
computed by the forced best fit between these two sets of data. It was found that the best fit
is 0.005, half that had been used that of Albrecht’s value of 0.01. The intuition behind the
idea is that, since the time of the original FPA, some of the GSC became less relevant (e.g.
data backup which is often an automatic process and a de facto feature in modern systems, or
cross–system communication improved radically in the modern systems thanks to improved
hardware and protocols) i.e. a developer does not have to explicitly take care of them, One
can even envisage that at some point in the future the all GSC may need to be revised since
new complexities are regularly added in the development process.

The weights for each unadjusted function points also use a similar method. Development
people were asked about their effort distribution for the three parts of any transaction for a
project i.e. effort distribution for input, process and Output. This is then used to estimate
the weight for each of the components. Data collected form a single organization gives the
organization average for the weights, and data from multiple organization can be used to
calculate the industry average for the weights. Prior to the release of the MkII counting
guideline in 1990, the average weights were the produced by the work done by Nolan,

Norton and Co. on thirty-two systems covering a wide range of applications, environments
and organisations. The industry average values finally set to Wi = 0.58,, We = 1.66 and
Wo = 0.26. Intuitively, the performance gets better if the values are calibrated for the specific
environment it is to be used. However, there is little incentive to carry out such a task.
First of all, the impact of new technology is decreasing the utility and importance of TCA.
Furthermore, the observed range of sizes of TCA is rather narrow (90% of TCA scores lie
in the range 0.75 to 0.95, a factor of 1.27 in relative size). Thus, the importance of TCA

210 Variations in Methods and Counting Practice

in computing the relative size of individual projects is minor, therefore, there is little to be
gained in refining the TCA factor.

E.0.2 COSMIC Function Points

The Common Software Measurement Consortium (COSMIC) is a later form of functional
metric and after some years of research it was released in 1999. It was first developed
as COSMIC–Full Function Point (COSMIC-FFP)3 in an attempt to meet the mandatory
provisions of ISO/IEC 14141-1. It was also an attempt to bridge, what the people involved
in COSMIC perceived as, the gap in the ability of existing methods to measure the size
of real–time applications. Originally it was published as ISO/IEC 19761 COSMIC-FFP
– A Functional Size Measurement Method. COSMIC has been promoted as a voluntary,
world-wide grouping of software metrics experts in their official page. However, some of the
original developers of the COSMIC function point have had long experience with functional
metrics. Two of the most influential personalities were Alain Abran, who developed the Full

Function Point (FFP) (St Pierre et al., 1997) in Canada, and Charles Symons, who developed
the Mark II (Symons, 1988) function point method in the United Kingdom. Features from
both FFP and Mark II can be traced in the COSMIC method in the form of extended file and
transaction types. COSMIC is a open and free–to–all measurement method and the guideline
is freely available. The current version of the measurement guideline (i.e. Measurement

Manual (MM)) is 4.0.14.

Fig. E.1. COSMIC Function Points Counting Process

Measurement
Strategy

Input from Measurement Sponsor

Software Context Model

FUR

Definition of each piece of
software to be measured and
of the required measurement

Mapping
Phase

FUR

Generic Software Model

FUR in the form of the
Generic Software Mode

Measurement
Phase

Functional size of
the software in

units of CFP

3The COSMIC management body changed the name from COSMIC–FFP to simply COSMIC and the
measurement unit from COSMIC functional sizing unit (Cfsu) to COSMIC Function Point (CFP) in 2007.

4http://www.cosmicon.com/portal/public/MMv4.0.1.pdf

211

Using COSMIC method one can measure the size of a software by defining the purpose,
scope and boundaries of a measure at the beginning known as the Software Context Model.
The Functional User Requirements (FUR) is then collected and all these are used to produce
FUR in the COSMIC generic software model during a phase called the mapping phase.
Finally, all the identified components (i.e. FURs) are measured in terms of CFP and the
result is then aggregated (see Figure E.1 for the visual presentation provided in COSMIC–
MM v4.0.1). COSMIC measures the size of a software by measuring four distinct types
of data movement characterizing the functional flow of data (see Figure E.2 for the visual
presentation provided in COSMIC–MM v4.0.1).

Fig. E.2. COSMIC Function Points Measurement Process

Entry

Functional Process

1 Entering
Data GroupFunctional Users:

● Humans
● Other Software
● Hardware Devices

Boundary

Exit

Functional
Sub-Processes

Read Write

Persistent
Storage

1 Exiting
Data-Group

1 Retrieved
Data-Group

1 Data-Group
To Be Stored

The COSMIC principle suggests that the software gets input from a user and produced output
required by the user. The manipulated information is data–groups and the functional size is
proportional to the number of data movement necessary to perform the functional process. A
data movement is a Base Functional Component (BFC) which moves a single data group
type. There are four types of data movements,

◦ Entry is a data movement that moves data–group from a functional user across the applica-
tion boundary into the functional process where it is required.
◦ Exit is a data movement that moves a data–group from a functional process across the
boundary to the functional user that requires it.
◦ Read is a data movement that moves a data–group from persistent storage into the func-
tional process which requires it.
◦ Write is a data movement that moves a data–group lying inside a functional process to
persistent storage.

212 Variations in Methods and Counting Practice

Single data–group involved in a data movement is a key features of the COSMIC measure-
ment. The COSMIC manual explicitly states that data groups are mainly entities of an ER
model in the third normal form. Thus, if more than one data–group is involved, each should
be counted as a separate data movement element. The functional size in COSMIC solely
depends on the number of data movement i.e. each detected data movement is defined as one
CFP. Unlike IFPUG, there is no explicit measurement of files in the COSMIC method, only
the access to files in terms of reading and writing operations.

Jones (1991) reported some experimental results comparing FP counts in IFPUG method to
that of COSMIC and referred to the results to be somewhat ambiguous. He reported that for
real–time and embedded systems the COSMIC count is often larger (between 15% and 50%)
than that of IFPUG count. For, MIS he reported the results to be close with a variation of
±10%. Other studies indeed show inconclusive results as well, for example, The Fetcke study

(Fetcke, 1999) analysed four software applications of a data storage system and presented the
correlation analysis. The sizes of the four projects were in unadjusted IFPUG FP (uFP) and
COSMIC CFP and showed the relation CFP = 1.1×uFP−7.6. Thus, using the conversion
formula, a deviation of 4% in average (ranging from 0% to 8%) was found (Dumke and
Abran, 2011).

E.0.3 The NESMA Function Points

The Netherlands Software Metrics Association (NESMA5) released its first version of def-
inition counting practice guideline in 1990, it assumed the principals of IFPUG counting
practice (at that time the IFPUG–CPM was version 2.0). NESMA recognize three types of FP
counting practices called, detailed, estimated and indicative. The detailed counting is almost
parallel to the IFPUG method with some minor differences whereas the estimated method is
a quicker version that uses constant values for the complexity ratings. The indicative measure
however, is a very fast method and the most intriguing among the methods. The idea was
to count FPs at a very early stage before all the details of the project is known and only the
logical files are counted to determine an approximate FP count. The ILF count is multiplied
by 35 and the EIF count is multiplied by 15 and the results are often comes within 15% of
the count using the other two methods and also twice as fast as the detailed counting method
(Jones, 1991). A detail description and comparative study between NESMA and IFPUG can
be found in (Bundschuh and Dekkers, 2008, pp.389–393).

5http://nesma.org/

213

E.0.4 Other Variations

Capers Jones (Jones, 1991, pp. 106) presented a set of methods that are considered to
be variants of the IFPUG-FSM method. Among the methods there were, prior versions
of the IFPUG methos from v1.0 (1986) to 4.2 (2004), some well known but obsolete
variations e.g. Feature Points, some fairly unknown and obsolete variant e.g. Australian

Software Metrics Association (ASMA) or Boeing’s 3D Function Points, successful variants
e.g. NESMA and also some methods not necessarily based on IFPUG method e.g. Object

Points (Bundschuh and Dekkers, 2008, pp. 397). Two of the methods classified as IFPUG
variant with significantly interesting approach were Feature Point and 3D Function Points

and they will be addressed in this section due to their presence in relevant literature and
historical significance.

One of the first modifications was proposed in 1986 by Capers Jones of Software Productivity

Research (SPR). He published an experimental method based closely on that of Albrecht
(1979), called Feature Points (Rahman, 2010), with the aim of extending FSM to apply
to system software such as Operating System (OS) or telephone switching systems and
mathematically demanding algorithms. The method has been applied experimentally on OS,
embedded systems, real–time systems, Computer Aided Design (CAD) applications, Artificial

Intelligence (AI) systems and even Management Information System (MIS) applications. He
argued later (Jones, 2007) that it was a viable approach since FPA was originally developed to
solve the measurement problems of classical MIS systems thus implying FPA’s ineffectiveness
in the aforementioned types of software due to their inherent algorithmic complexity. Feature

Point method can been seen as a super set of FPA method and it was developed specifically
to tackle high level of algorithmic and mathematical complexity. It introduces an algorithm

parameter along with the original 5 FP parameters and reduced the average complexity
weight of ILFs and EIFs to 7 from 10, thus implying the reduced significance of the logical
files. However, the method has been largely abandoned due to the intrinsic difficulty of sizing
mathematically rich algorithms.

In 1992 at Boeing Computer Services after 2 years of research, Scott A. Whitmire (1995)
presented the 3D Function Points, primarily to estimate size of real–time applications. The
method made assumptions similar to that of the Feature Point but in contrast rather than
contributing all the functional weight on the data and process, he proposed that control flow
also contributes to the functional size. Thus, the term 3D represents the 3 dimensions of the
method.

214 Variations in Methods and Counting Practice

◦ Data dimension measured using the IFPUG-FSM
◦ Process dimension measured through data transformation i.e. considering the number of
internal operations required to transform input to output data, and
◦ Control dimension measured using states and transitions i.e. counting the number of
transitions between states.

Originally after counting all the dimensions, the values are added together to get the functional
size. However, the details of the method is somewhat an industrial secret and it is also unclear
if the method is still in practice or ever been used outside of Boeing. As we argued earlier,
the presentation of the different counting practice demonstrate the existing diversity in the
practice and gives a general idea of the difficulties involve in the automation process.

Appendix F

Results: Semi–Supervised Learning

F.1 Surface Form (surface)

Table F.1. Semi–Supervised Training Performance: surfaceunigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 4 9 10 0 17 0 1.000 1.0 1.000 1.000 1.00 1.000 1.000

BdF_DB 4 9 6 4 17 0 1.000 0.6 0.750 0.882 0.81 1.000 0.852

BdF_MG 4 9 10 0 16 1 0.909 1.0 0.952 0.926 1.00 0.941 0.963

PSA 4 9 6 4 17 0 1.000 0.6 0.750 0.882 0.81 1.000 0.852

Table F.2. Semi–Supervised Training Performance: surface_bigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 11 9 1 16 1 0.900 0.9 0.900 0.900 0.941 0.941 0.926

BdF_DB 5 11 6 4 17 0 1.000 0.6 0.750 0.882 0.810 1.000 0.852

BdF_MG 5 11 9 1 15 2 0.818 0.9 0.857 0.833 0.938 0.882 0.889

PSA 5 11 6 4 17 0 1.000 0.6 0.750 0.882 0.810 1.000 0.852

216 Results: Semi–Supervised Learning

Table F.3. Semi–Supervised Training Performance: surface_trigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 2 15 9 2 15 1 0.900 0.818 0.857 0.882 0.882 0.938 0.889

BdF_DB 2 15 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

BdF_MG 2 15 10 1 15 1 0.909 0.909 0.909 0.909 0.938 0.938 0.926

PSA 2 15 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

Table F.4. Semi–Supervised Training Performance: surface_quardgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 4 17 10 13 4 0 1 0.435 0.606 0.794 0.235 1 0.519

BdF_DB 4 17 6 17 4 0 1 0.261 0.414 0.638 0.190 1 0.370

BdF_MG 4 17 11 12 4 0 1 0.478 0.647 0.821 0.250 1 0.556

PSA 4 17 6 17 4 0 1 0.261 0.414 0.638 0.190 1 0.370

Table F.5. Semi–Supervised Training Performance: surface_dgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 2 17 9 2 15 1 0.900 0.818 0.857 0.882 0.882 0.938 0.889

BdF_DB 2 17 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

BdF_MG 2 17 9 2 14 2 0.818 0.818 0.818 0.818 0.875 0.875 0.852

PSA 2 17 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

Table F.6. Semi–Supervised Training Performance: surface_dgram_wild

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 11 9 0 17 1 0.900 1.000 0.947 0.918 1.000 0.944 0.963

BdF_DB 5 11 6 3 18 0 1.000 0.667 0.800 0.909 0.857 1.000 0.889

BdF_MG 5 11 9 0 16 2 0.818 1.000 0.900 0.849 1.000 0.889 0.926

PSA 5 11 6 3 18 0 1.000 0.667 0.800 0.909 0.857 1.000 0.889

Table F.7. Semi–Supervised Training Performance: surface_extended_dgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 3 17 10 0 17 0 1.000 1.0 1.000 1.000 1.00 1.000 1.000

BdF_DB 3 17 6 4 17 0 1.000 0.6 0.750 0.882 0.81 1.000 0.852

BdF_MG 3 17 10 0 16 1 0.909 1.0 0.952 0.926 1.00 0.941 0.963

PSA 3 17 6 4 17 0 1.000 0.6 0.750 0.882 0.81 1.000 0.852

F.1 Surface Form (surface) 217

Table F.8. Semi–Supervised Training Performance: surface_dep_subtree

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 15 10 2 15 0 1 0.833 0.909 0.962 0.882 1 0.926

BdF_DB 5 15 6 6 15 0 1 0.500 0.667 0.833 0.714 1 0.778

BdF_MG 5 15 11 1 15 0 1 0.917 0.957 0.982 0.938 1 0.963

PSA 5 15 6 6 15 0 1 0.500 0.667 0.833 0.714 1 0.778

218 Results: Semi–Supervised Learning

F.2 Lemma (lemma)

Table F.9. Semi–Supervised Training Performance: lemma_unigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 3 9 10 1 16 0 1.000 0.909 0.952 0.980 0.941 1.000 0.963

BdF_DB 3 9 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

BdF_MG 3 9 10 1 15 1 0.909 0.909 0.909 0.909 0.938 0.938 0.926

PSA 3 9 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

Table F.10. Semi–Supervised Training Performance: lemma_bigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 4 13 9 1 16 1 0.900 0.9 0.900 0.900 0.941 0.941 0.926

BdF_DB 4 13 6 4 17 0 1.000 0.6 0.750 0.882 0.810 1.000 0.852

BdF_MG 4 13 10 0 16 1 0.909 1.0 0.952 0.926 1.000 0.941 0.963

PSA 4 13 6 4 17 0 1.000 0.6 0.750 0.882 0.810 1.000 0.852

Table F.11. Semi–Supervised Training Performance: lemma_trigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 1 11 8 3 14 2 0.800 0.727 0.762 0.784 0.824 0.875 0.815

BdF_DB 1 11 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

BdF_MG 1 11 9 2 14 2 0.818 0.818 0.818 0.818 0.875 0.875 0.852

PSA 1 11 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

F.2 Lemma (lemma) 219

Table F.12. Semi–Supervised Training Performance: lemma_quardgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 15 7 1 16 3 0.700 0.875 0.778 0.729 0.941 0.842 0.852

BdF_DB 5 15 4 4 17 2 0.667 0.500 0.571 0.625 0.810 0.895 0.778

BdF_MG 5 15 8 0 16 3 0.727 1.000 0.842 0.769 1.000 0.842 0.889

PSA 5 15 4 4 17 2 0.667 0.500 0.571 0.625 0.810 0.895 0.778

Table F.13. Semi–Supervised Training Performance: lemma_dgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 3 17 10 4 13 0 1.000 0.714 0.833 0.926 0.765 1.000 0.852

BdF_DB 3 17 6 8 13 0 1.000 0.429 0.600 0.789 0.619 1.000 0.704

BdF_MG 3 17 10 4 12 1 0.909 0.714 0.800 0.862 0.750 0.923 0.815

PSA 3 17 6 8 13 0 1.000 0.429 0.600 0.789 0.619 1.000 0.704

Table F.14. Semi–Supervised Training Performance: lemma_dgram_wild

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 15 9 3 14 1 0.900 0.750 0.818 0.865 0.824 0.933 0.852

BdF_DB 5 15 6 6 15 0 1.000 0.500 0.667 0.833 0.714 1.000 0.778

BdF_MG 5 15 10 2 14 1 0.909 0.833 0.870 0.893 0.875 0.933 0.889

PSA 5 15 6 6 15 0 1.000 0.500 0.667 0.833 0.714 1.000 0.778

Table F.15. Semi–Supervised Training Performance: lemma_extended_dgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 2 17 10 1 16 0 1.000 0.909 0.952 0.980 0.941 1.000 0.963

BdF_DB 2 17 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

BdF_MG 2 17 10 1 15 1 0.909 0.909 0.909 0.909 0.938 0.938 0.926

PSA 2 17 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

Table F.16. Semi–Supervised Training Performance: lemma_dep_subtree

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 4 11 10 1 16 0 1.000 0.909 0.952 0.980 0.941 1.000 0.963

BdF_DB 4 11 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

BdF_MG 4 11 10 1 15 1 0.909 0.909 0.909 0.909 0.938 0.938 0.926

PSA 4 11 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

220 Results: Semi–Supervised Learning

F.3 General POS (gpos)

Table F.17. Semi–Supervised Training Performance: gpos_unigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 17 10 2 15 0 1 0.833 0.909 0.962 0.882 1 0.926

BdF_DB 5 17 6 6 15 0 1 0.500 0.667 0.833 0.714 1 0.778

BdF_MG 5 17 11 1 15 0 1 0.917 0.957 0.982 0.938 1 0.963

PSA 5 17 6 6 15 0 1 0.500 0.667 0.833 0.714 1 0.778

Table F.18. Semi–Supervised Training Performance: gpos_bigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 2 17 10 3 14 0 1 0.769 0.870 0.943 0.824 1 0.889

BdF_DB 2 17 6 7 14 0 1 0.462 0.632 0.811 0.667 1 0.741

BdF_MG 2 17 11 2 14 0 1 0.846 0.917 0.965 0.875 1 0.926

PSA 2 17 6 7 14 0 1 0.462 0.632 0.811 0.667 1 0.741

Table F.19. Semi–Supervised Training Performance: gpos_trigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 3 13 10 0 17 0 1.000 1.0 1.000 1.000 1.00 1.000 1.000

BdF_DB 3 13 6 4 17 0 1.000 0.6 0.750 0.882 0.81 1.000 0.852

BdF_MG 3 13 10 0 16 1 0.909 1.0 0.952 0.926 1.00 0.941 0.963

PSA 3 13 6 4 17 0 1.000 0.6 0.750 0.882 0.81 1.000 0.852

F.3 General POS (gpos) 221

Table F.20. Semi–Supervised Training Performance: gpos_quardgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 3 11 9 1 16 1 0.900 0.9 0.900 0.900 0.941 0.941 0.926

BdF_DB 3 11 6 4 17 0 1.000 0.6 0.750 0.882 0.810 1.000 0.852

BdF_MG 3 11 10 0 16 1 0.909 1.0 0.952 0.926 1.000 0.941 0.963

PSA 3 11 6 4 17 0 1.000 0.6 0.750 0.882 0.810 1.000 0.852

Table F.21. Semi–Supervised Training Performance: gpos_dgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 17 10 1 16 0 1.000 0.909 0.952 0.980 0.941 1.000 0.963

BdF_DB 5 17 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

BdF_MG 5 17 10 1 15 1 0.909 0.909 0.909 0.909 0.938 0.938 0.926

PSA 5 17 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

Table F.22. Semi–Supervised Training Performance: gpos_dgram_wild

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 15 10 0 17 0 1.000 1.0 1.000 1.000 1.00 1.000 1.000

BdF_DB 5 15 6 4 17 0 1.000 0.6 0.750 0.882 0.81 1.000 0.852

BdF_MG 5 15 10 0 16 1 0.909 1.0 0.952 0.926 1.00 0.941 0.963

PSA 5 15 6 4 17 0 1.000 0.6 0.750 0.882 0.81 1.000 0.852

Table F.23. Semi–Supervised Training Performance: gpos_extended_dgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 2 17 10 4 13 0 1 0.714 0.833 0.926 0.765 1 0.852

BdF_DB 2 17 6 8 13 0 1 0.429 0.600 0.789 0.619 1 0.704

BdF_MG 2 17 11 3 13 0 1 0.786 0.880 0.948 0.813 1 0.889

PSA 2 17 6 8 13 0 1 0.429 0.600 0.789 0.619 1 0.704

Table F.24. Semi–Supervised Training Performance: gpos_dep_subtree

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 4 17 10 4 13 0 1 0.714 0.833 0.926 0.765 1 0.852

BdF_DB 4 17 6 8 13 0 1 0.429 0.600 0.789 0.619 1 0.704

BdF_MG 4 17 11 3 13 0 1 0.786 0.880 0.948 0.813 1 0.889

PSA 4 17 6 8 13 0 1 0.429 0.600 0.789 0.619 1 0.704

222 Results: Semi–Supervised Learning

F.4 Specific POS (spos)

Table F.25. Semi–Supervised Training Performance: spos_unigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 2 13 9 1 16 1 0.900 0.9 0.900 0.900 0.941 0.941 0.926

BdF_DB 2 13 6 4 17 0 1.000 0.6 0.750 0.882 0.810 1.000 0.852

BdF_MG 2 13 10 0 16 1 0.909 1.0 0.952 0.926 1.000 0.941 0.963

PSA 2 13 6 4 17 0 1.000 0.6 0.750 0.882 0.810 1.000 0.852

Table F.26. Semi–Supervised Training Performance: spos_bigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 9 10 2 15 0 1.000 0.833 0.909 0.962 0.882 1.000 0.926

BdF_DB 5 9 6 6 15 0 1.000 0.500 0.667 0.833 0.714 1.000 0.778

BdF_MG 5 9 10 2 14 1 0.909 0.833 0.870 0.893 0.875 0.933 0.889

PSA 5 9 6 6 15 0 1.000 0.500 0.667 0.833 0.714 1.000 0.778

Table F.27. Semi–Supervised Training Performance: spos_trigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 3 17 10 1 16 0 1.000 0.909 0.952 0.980 0.941 1.000 0.963

BdF_DB 3 17 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

BdF_MG 3 17 10 1 15 1 0.909 0.909 0.909 0.909 0.938 0.938 0.926

PSA 3 17 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

F.4 Specific POS (spos) 223

Table F.28. Semi–Supervised Training Performance: spos_quardgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 3 13 10 2 15 0 1 0.833 0.909 0.962 0.882 1 0.926

BdF_DB 3 13 6 6 15 0 1 0.500 0.667 0.833 0.714 1 0.778

BdF_MG 3 13 11 1 15 0 1 0.917 0.957 0.982 0.938 1 0.963

PSA 3 13 6 6 15 0 1 0.500 0.667 0.833 0.714 1 0.778

Table F.29. Semi–Supervised Training Performance: spos_dgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 11 10 1 16 0 1.000 0.909 0.952 0.980 0.941 1.000 0.963

BdF_DB 5 11 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

BdF_MG 5 11 10 1 15 1 0.909 0.909 0.909 0.909 0.938 0.938 0.926

PSA 5 11 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

Table F.30. Semi–Supervised Training Performance: spos_dgram_wild

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 2 17 9 2 15 1 0.900 0.818 0.857 0.882 0.882 0.938 0.889

BdF_DB 2 17 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

BdF_MG 2 17 10 1 15 1 0.909 0.909 0.909 0.909 0.938 0.938 0.926

PSA 2 17 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

Table F.31. Semi–Supervised Training Performance: spos_extended_dgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 17 10 2 15 0 1.000 0.833 0.909 0.962 0.882 1.000 0.926

BdF_DB 5 17 6 6 15 0 1.000 0.500 0.667 0.833 0.714 1.000 0.778

BdF_MG 5 17 10 2 14 1 0.909 0.833 0.870 0.893 0.875 0.933 0.889

PSA 5 17 6 6 15 0 1.000 0.500 0.667 0.833 0.714 1.000 0.778

Table F.32. Semi–Supervised Training Performance: spos_dep_subtree

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 3 17 9 2 15 1 0.900 0.818 0.857 0.882 0.882 0.938 0.889

BdF_DB 3 17 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

BdF_MG 3 17 10 1 15 1 0.909 0.909 0.909 0.909 0.938 0.938 0.926

PSA 3 17 6 5 16 0 1.000 0.545 0.706 0.857 0.762 1.000 0.815

224 Results: Semi–Supervised Learning

F.5 Lemma & General POS Together (lemma_gpos)

Table F.33. Semi–Supervised Training Performance: lemma_gpos_unigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 4 15 10 0 17 0 1.000 1.0 1.000 1.000 1.00 1.000 1.000

BdF_DB 4 15 6 4 17 0 1.000 0.6 0.750 0.882 0.81 1.000 0.852

BdF_MG 4 15 10 0 16 1 0.909 1.0 0.952 0.926 1.00 0.941 0.963

PSA 4 15 6 4 17 0 1.000 0.6 0.750 0.882 0.81 1.000 0.852

Table F.34. Semi–Supervised Training Performance: lemma_gpos_bigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 4 11 10 2 15 0 1 0.833 0.909 0.962 0.882 1 0.926

BdF_DB 4 11 6 6 15 0 1 0.500 0.667 0.833 0.714 1 0.778

BdF_MG 4 11 11 1 15 0 1 0.917 0.957 0.982 0.938 1 0.963

PSA 4 11 6 6 15 0 1 0.500 0.667 0.833 0.714 1 0.778

Table F.35. Semi–Supervised Training Performance: lemma_gpos_trigram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 13 10 7 10 0 1 0.588 0.741 0.877 0.588 1 0.741

BdF_DB 5 13 6 11 10 0 1 0.353 0.522 0.732 0.476 1 0.593

BdF_MG 5 13 11 6 10 0 1 0.647 0.786 0.902 0.625 1 0.778

PSA 5 13 6 11 10 0 1 0.353 0.522 0.732 0.476 1 0.593

F.5 Lemma & General POS Together (lemma_gpos) 225

Table F.36. Semi–Supervised Training Performance: lemma_gpos_quardgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 2 11 10 15 2 0 1 0.40 0.571 0.769 0.118 1 0.444

BdF_DB 2 11 6 19 2 0 1 0.24 0.387 0.612 0.095 1 0.296

BdF_MG 2 11 11 14 2 0 1 0.44 0.611 0.797 0.125 1 0.481

PSA 2 11 6 19 2 0 1 0.24 0.387 0.612 0.095 1 0.296

Table F.37. Semi–Supervised Training Performance: lemma_gpos_dgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 3 17 10 3 14 0 1 0.769 0.870 0.943 0.824 1 0.889

BdF_DB 3 17 6 7 14 0 1 0.462 0.632 0.811 0.667 1 0.741

BdF_MG 3 17 11 2 14 0 1 0.846 0.917 0.965 0.875 1 0.926

PSA 3 17 6 7 14 0 1 0.462 0.632 0.811 0.667 1 0.741

Table F.38. Semi–Supervised Training Performance: lemma_gpos_dgram_wild

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 5 17 9 3 14 1 0.900 0.750 0.818 0.865 0.824 0.933 0.852

BdF_DB 5 17 6 6 15 0 1.000 0.500 0.667 0.833 0.714 1.000 0.778

BdF_MG 5 17 10 2 14 1 0.909 0.833 0.870 0.893 0.875 0.933 0.889

PSA 5 17 6 6 15 0 1.000 0.500 0.667 0.833 0.714 1.000 0.778

Table F.39. Semi–Supervised Training Performance: lemma_gpos_extended_dgram

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 2 15 10 2 15 0 1.000 0.833 0.909 0.962 0.882 1.000 0.926

BdF_DB 2 15 6 6 15 0 1.000 0.500 0.667 0.833 0.714 1.000 0.778

BdF_MG 2 15 10 2 14 1 0.909 0.833 0.870 0.893 0.875 0.933 0.889

PSA 2 15 6 6 15 0 1.000 0.500 0.667 0.833 0.714 1.000 0.778

Table F.40. Semi–Supervised Training Performance: lemma_gpos_dep_subtree

Annotator PC K TP FP TN FN R P F1 F2 SPC NPV ACC

Acapi_JNV 4 13 10 3 14 0 1 0.769 0.870 0.943 0.824 1 0.889

BdF_DB 4 13 6 7 14 0 1 0.462 0.632 0.811 0.667 1 0.741

BdF_MG 4 13 11 2 14 0 1 0.846 0.917 0.965 0.875 1 0.926

PSA 4 13 6 7 14 0 1 0.462 0.632 0.811 0.667 1 0.741

Appendix G

The History of MUCs

G.1 MUC–1

It was held in May, 1987 in San Diego with six systems participated for the task. There was
neither a predefined output format nor a formal evaluation. Therefore, it was not possible to
compare one system with other in terms of performance. The development corpus consisted
of 10 Navy Operational Report (OPREP) messages on ship sightings and engagements, each
of them was just a few sentences long. Each participant proposed a suitable output for each
message and two unseen messages were distributed at the conference for testing.

G.2 MUC–2

It was held in May, 1989 with eight systems participated for the task. The output format
was defined as a template with 10 slots for attributes to fill and the data came from the same
domain as MUC–1. Resources in the form of lists of specialised naval terminology were also
supplied. Having a shared output format allowed the comparison of individual systems. The
participants would receive a description of class of events to be identified in the source text.
The template has slots for information about the event, such as the type of event, the agent,
the time and place, the effect, etc. 105 messages were supplied as training data and there were
two test rounds. The first round with 20 blind messages and then, after system fixes, a second
round of 5 blind messages just before the conference. There was a standardized primary
evaluation metric developed during MUC–2 as well. Evaluation criteria were defined, but by
consensus deemed not to have been adequate (Gaizauskas and Wilks, 1997).

228 The History of MUCs

G.3 MUC–3

It was held in May 1991 in San Diego with 15 systems participated. This time the source
texts were shifted to news articles about terrorist activities in Central and South America. The
stories came from an electronic database, although collected originally from different news
media (e.g. newspaper, television, radio, speech, interviews etc.) . Since most of them were
in Spanish, many of them were translated by the US Foreign Broadcast Information Service.
The development set had 1,300 text and 3 test sets of 100 texts were supplied. Template
complexity was increased by using a template of 18 slots. During MUC–3 formal evaluation
criteria ware established that have been adapted from the notions of formal evaluation of
IR. Although, official scoring was performed by the organizers, a semi–automated scoring
program was developed and made available for use by participants during development.

G.4 MUC–4

The TIPSTER Text Program is a DERPA led initiative towards advancing the state–of–the–art in
text processing, namely IR and IE through the cooperation of the researchers and developers in the
government (US), industry and academia. The real contribution to IE is the creation of common
software architecture and industry standard for multi–component IE system. Some of the influential
systems that followed this architecture are,

◦ Center for Research Libraries (CRL) Temple MT System (Vanni and Zajac, 1996)

◦ OLEADA language training system (Ogden and Bernick, 1996)

◦ Sheffield GATEa system (Cunningham et al., 1995)

ahttp://gate.ac.uk/

MUC–4 was held in June, 1992 in McLean, Virginia with seventeen participants The dataset
domain and the template structure was essentially remained the same as that of MUC–3.
Task definition, corpus, performance metric and test protocol was altered and improved
significantly focusing on generating negative data points to assess the systems’ independence
from the training data. The alterations were focusing on generating negative data points
to assess the systems’ independence from the training data. Thus scoring of MUC–4 is
considered to be more consistent and reliable comparison between system performances.

G.5 MUC–5 229

It was also the beginning of the MUC conferences’ inclusion within the TIPSTER Text

Program1

G.5 MUC–5

It was held in August 1993 in Baltimore, Maryland2 with 17 participants. Of them 14 Ameri-
can, 1 Canadian, 1 British and 1 Japanese participant, thus marking the first international
involvement in the MUC’s. Moreover, evaluation was performed in 2 languages, English
and Japanese, significant amount of additional resources were supplied, test corpora size
was increased, scoring was modified to include new metrics and the scoring program was
enhanced significantly. Similar to MUC–3 and MUC–4 news wire stories were used but
from two different domains, Joint Ventures (abbreviated JV) and Microelectronics (ME).
The domain–language pairs were named EJV, JJV, EME, JME, where the first character
is the language reference (E for English and J for Japanese in a very obvious manner).
Non–TIPSTER–sponsored systems had to choose at lest 1 domain and one language whereas,
TIPSTER–sponsored systems were suppose to operate in all domain–language pairs. How-
ever most end up choosing only one task proving the challenging nature and EJV was the
most popular and by common consent the most difficult.

There were 3 sources for the EJV material: called the Wall Street Journal, LEXUS/NEXUS

and PROMT collected from from ACL/DCI or TIPSTER Detection database CDROMs by
using traditional keyword–based (keywords for EJV included such stems as joint venture,
joint, venture, tie–up, collaborate, cooperate etc.) document retrieval systems. Filled–out
templates for approximately 1000 documents of each training set were provided as keys. In
addition, templates were produced for the initial TIPSTER program test cycles (12 and 18
months) and for the final joint MUC–5/TIPSTER (24 month) test (Carlson et al., 1993).

The MUC–5 template and fill rules are considered to be the most complex to date due to
the presence of nested data structure i.e. a slot was allowed to have a pointer to another slot.
Therefore, the template has a object–oriented feel to it, e.g. a joint–venture was viewed as an
object with slots like name, status (e.g. existing, dissolved etc.) but also had slots for the
participating organizations in the venture, each of which were pointers to an organization
object, containing slots themselves and sometimes may even have pointer to some other

1http://www.itl.nist.gov/iaui/894.02/related_projects/tipster/overv.htm
2coinciding with the TIPSTER–I 24-month evaluation

230 The History of MUCs

object. In all there were 11 object and 49 slots to be filled. As an indication of the level of
detail required to define the extraction task, the fill rules occupied a 45 page document.

During the development of the templates and the fill–rules, several changes had been made
at different stages, thus, every modification implies make an update to all the previously
instantiated templates. As an indication of the extent of the process Gaizauskas and Wilks
(1997) presented that The cost of producing the answer keys alone for MUC-5 and for the
preceding TIPSTER extraction trials was more than $1 million US. They (Gaizauskas and
Wilks, 1997) also pointed an interesting observation that in each domain the Japanese scores
were higher and thus prompted discussion of whether in some sense Japanese is an easier
language from which to extract information. The evaluation metric had some additional raw
measures along with standard precision and recall, namely, error per response fill, under–
generation, over–generation, and substitution. In contrast to precision and recall a lower
score is better for these measures.

G.6 MUC–6

Organized in 1995, MUC–6 is the first MUC, reminiscence of the modern framework of IE.
Instead of a single all–in–one system evaluation like MUC–5, participants were offered a
choice of smaller subtasks, often referred to as mini MUCs. This templates resemble MUC–2
like templates rather than MUC–5 because of the portability reason but the nested architecture
from MUC–5 was kept. The restructuring was the direct result of the interest and intended
focus of different participants for specific tasks and the fact that all–in–one IE system was
getting too large to accommodate the ever growing task list under a single framework. As a
matter of fact the growth was not only a research issue but also accompanying engineering
issues. In MUC–6 there were four task definitions: along with the classic template filling,
three new tasks were introduced,

1. Named Entity Task (NE): Identifying constituents in the text, which represents a person,
an organization, a location name, a date, a currency etc.

Mr. <ENAMEX TYPE=�PERSON�> Dooner </ENAMEX> met with <ENAMEX TYPE = �PERSON�>

Martin Puris </ENAMEX>, president and chief executive officer of <ENAME XTYPE

= �ORGANIZATION�> Ammirati & Puris </ENAMEX>, about <ENAME XTYPE = �ORGANIZA

TION�> McCann </ENAMEX>'s acquiring the agency with billings of <NUME XTYPE =

�MONEY�> $400 million </NUMEX>.

G.6 MUC–6 231

2. Template Element Task (TE): Identifying descriptions of entities i.e. identifying individ-
ual template elements.

<ORGANIZATION-9402240133-5> : _

ORG_NAME : �Coca-Cola�

ORG_ALIAS : �Coke�

ORG_TYPE : COMPANY

ORG_LOCALE : Atlanta CITY

ORG_COUNTRY : United States

3. Co-reference Task (CO): Identifying co-referring constituents, thus all mentions of a
given entity and it used identified constituents from NE and TE tasks.

Maybe <COREF ID=�136� REF=�134�> he </COREF>'ll even leave something from

<COREF ID=�138� REF=�139�><COREF ID=�137`� REF=�136�> his </COREF> office

</COREF> for <COREF ID=�140� REF=�91�> Mr . Dooner </COREF>. Perhaps <COREF

ID=�144�> a framed page from the New York Times, dated Dec. 8, 1987, showing

a year-end chart of the stock market crash earlier that year</COREF>. <COREF

ID=�141� REF=�137�> Mr . James </COREF> says <COREF ID=�142� REF=�141�> he

</COREF> framed <COREF ID=�143� REF=�144� STATUS=�OPT�> it </COREF> and kept

<COREF ID=�145� REF=�144�> it </COREF> by <COREF ID=�146� REF=�142�> his

</COREF> desk as a personal reminder. It can all be gone like that.

All the examples above is taken from (Grishman and Sundheim, 1995). The primary resources
were supplied by the organizer in the form of development and test corpora and scoring
software, for both the dry run and final evaluation. There were 100 annotated texts for each
of the four tasks in the development corpus and there were 30 annotated texts for the NE and
CO tasks and 100 texts for TE and the classic template filling tasks. Texts were from Wall

Street Journal text and new scoring software was developed for NE and CO tasks whereas,
the MUC–5 scoring software was enhanced for the template tasks. The evaluation reverted to
precision and recall from the error–per–response–fill metric used in MUC–5. The template
tasks were scored as in MUC–5 with modifications and new measurement metric had been
developed for the NE and CO tasks in terms of precision and recall. A combined F-Measure
was the decisive ranking for NE but no such measure was possible for the CO task because
of the varying precision and recall measures for the task.

232 The History of MUCs

G.7 MUC–7

It was organized in 1997 with 18 participants and the data came from New York Times News

Service supplied by Linguistic Data Consortium (LDC)3. The target domains were, aircraft
accident and launch events and relevant documents were extracted from approximately
158,000 articles using Managing Gigabytes text retrieval system. There were 2 sets of 100
articles (aircraft accident domain) primarily training, including dry run and 2 sets of 100
articles selected balanced for relevancy, type and source for formal run (launch event domain).
The task definitions for MUC-7 were improved by having authors other than the original
authors revise each of the guidelines for internal consistency and to dovetail into the other
tasks evaluated. The communal effort in polishing the guidelines and the data mark–up
noticeably improved the evaluation. MUC-7 included two new tasks,

1. Multi–lingual Entity Task (MEN): NE task for Chinese and Japanese.

2. Template Relation Task (TR): Identifying relational information between entities (e.g.
employee_of, manufacture_of, and location_of relations).

3http://projects.ldc.upenn.edu

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 The Automation Problem
	1.2 Research Goals
	1.3 Concepts
	1.3.1 Specification
	1.3.2 Objects, Events and Processes

	1.4 ProjEstimate Project
	1.5 Organization

	2 Classification & Information Extraction
	2.1 Information Retrieval & Text Classification
	2.1.1 Pre–Computerized IR
	2.1.2 Early Computer Based IR
	2.1.3 The Major Developments upto mid-1990
	2.1.4 State–of–The–Art of IR
	2.1.5 Text Classification

	2.2 What is IE?
	2.3 History
	2.3.1 Early Works
	2.3.2 History of the Evaluation - MUC
	2.3.3 Other Evaluation Campaigns

	2.4 IE Tasks
	2.4.1 Named Entity Recognition (NER)
	2.4.2 Coreference Resolution (CO)
	2.4.3 Relation Extraction (RE)
	2.4.4 Event Extraction (EE)

	3 Estimating Software Size
	3.1 Measurement
	3.1.1 What Is Measurement?
	3.1.2 The Science of Measurement
	3.1.3 Measurement Scales
	3.1.4 Meaningful Measurements
	3.1.5 Indirect and Extended Number Measurement

	3.2 Software Size Estimation
	3.2.1 Source Line of Code
	3.2.2 The Theory of Software Science
	3.2.3 ABC Metric

	3.3 Functional Size Estimation
	3.3.1 Albrecht's Productivity Measurement
	3.3.2 IFPUG Function Point Analysis

	3.4 Automatic Function Point Analysis
	3.4.1 IFPUG Software Tool Certification
	3.4.2 Automation of Functional Measurement
	3.4.3 FP from Source Code
	3.4.4 FP from Other Environments

	4 Text Extraction and Analysis
	4.1 The Source Data
	4.1.1 Data Provided by BdF
	4.1.2 Data Provided by PSA
	4.1.3 Annotated Data

	4.2 Corpus Development from Source PDF
	4.2.1 The PDF Format
	4.2.2 Extraction Tools
	4.2.3 Text Extraction

	4.3 Preprocessing
	4.3.1 XML Parsing
	4.3.2 Redundancy Removal
	4.3.3 List Trigger Removal
	4.3.4 Block Merging
	4.3.5 Data Normalization
	4.3.6 Output Data Generation

	4.4 Linguistic Annotation
	4.4.1 Dependency Parsing
	4.4.2 FTB and The Parsing Tool BONSAI
	4.4.3 The Data Format
	4.4.4 Parsing

	4.5 Alignment and The Corpus
	4.5.1 Alignment
	4.5.2 The ProjEstimate Corpus (PEC)

	5 Finding Function Points
	5.1 Evaluation
	5.1.1 Recall, Precision and F-Score
	5.1.2 Evaluation System

	5.2 Features & Resources
	5.2.1 Lexical and Morphological Features
	5.2.2 Syntactic Features
	5.2.3 Lexical Resources

	5.3 Data Point Generation & Analysis
	5.3.1 Vectorization
	5.3.2 Principal Component Analysis (PCA)
	5.3.3 Visual Data Point Analysis

	5.4 Experiments
	5.4.1 Heuristic Methods
	5.4.2 Ingredient Extraction from Cooking Recipes
	5.4.3 Semi–Supervised Machine Learning

	6 Final Thoughts & Future Prospects
	References
	Appendix A Miscellaneous
	A.1 Annotation Guideline
	A.2 ProjEstimate Corpus DTD
	A.3 Lloyd's Algorithm
	A.4 Complete Feature Types for ML
	A.4.1 Feature List

	Appendix B Measurement Scales
	B.1 Nominal Scale
	B.2 Ordinal Scale
	B.3 Interval Scale
	B.4 Ratio Scale
	B.5 Absolute Scale
	B.6 Statistical Meaningfulness

	Appendix C The Theory of Software Science
	C.1 Proposed Metric
	C.1.1 Program Length (N) and Vocabulary Size (n)
	C.1.2 Volume (V), Program Level (L) and Difficulty (D)
	C.1.3 Effort to Implement (E)
	C.1.4 Length Equation
	C.1.5 Potential Volume
	C.1.6 Program Level and Difficulty Estimator
	C.1.7 Programming Time
	C.1.8 The Language Level

	C.2 Criticism

	Appendix D Value Adjustment Factor
	Appendix E Variations in Methods and Counting Practice
	E.0.1 MARK II (MkII) Function Point
	E.0.2 COSMIC Function Points
	E.0.3 The NESMA Function Points
	E.0.4 Other Variations

	Appendix F Results: Semi–Supervised Learning
	F.1 Surface Form (surface)
	F.2 Lemma (lemma)
	F.3 General POS (gpos)
	F.4 Specific POS (spos)
	F.5 Lemma & General POS Together (lemma_gpos)

	Appendix G The History of MUCs
	G.1 MUC–1
	G.2 MUC–2
	G.3 MUC–3
	G.4 MUC–4
	G.5 MUC–5
	G.6 MUC–6
	G.7 MUC–7

