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Viviane Baladi (Université Pierre et Marie Curie, Paris), examinatrice
Thierry Barbot (Université d’Avignon), rapporteur
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Mikaël, Nathanaël, Ophélia, Pierre, Quentin, Rémi, Timothée et les autres) pour tous ces
mails inutiles dont je ne pourrais pas me passer, pour ces randonnées, laser games, parties
de Sporz, LANs de tetrinet ou concours de xjump. Merci à Martin, Margaret, Guillaume,
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Introduction (français)

Cette thèse est divisée en trois parties qui peuvent être lues indépendamment. Dans
la première, on étudie les théorèmes d’universalité pour les mécanismes (aussi appelés
systèmes articulés) dont l’espace ambiant est une surface homogène. Dans la seconde,
on étudie un lien entre flots géodésiques et billards, ainsi que la dynamique de certains
mécanismes. La troisième porte sur les structures de similitude transverses sur les
feuilletages, ainsi que sur le théorème de décomposition de De Rham. Chacune de ces
parties contient une introduction propre.

Un mécanisme est un ensemble de tiges rigides reliées par des liaisons pivots.
Mathématiquement, on considère un mécanisme comme un graphe muni d’une structure
supplémentaire : on associe une longueur à chaque arête (le graphe est dit métrique), et
certains sommets sont fixés au plan tandis que d’autres évoluent librement. Une réalisation
d’un mécanisme dans le plan est le choix d’une position dans le plan pour chaque sommet,
de sorte que les longueurs associées aux arêtes correspondent aux distances dans le plan
entre les sommets correspondants. En particulier, on autorise les arêtes à se croiser. Enfin,
l’espace de configuration d’un système articulé est l’ensemble de ses réalisations.

Le premier chapitre constitue une introduction à cette notion de mécanisme : on y
donne des éléments historiques, et des exemples fondamentaux, qui sont utiles pour les
chapitres suivants.

La première partie, qui suit cette introduction, est constituée de quatre chapitres
et correspond à la pré-publication [Kou14] : on y étudie des mécanismes dont l’espace
ambiant n’est plus le plan, mais diverses variétés riemanniennes. Le chapitre 2 introduit
la question de l’universalité des mécanismes : cette notion correspond à l’idée que toute
courbe serait tracée par un sommet d’un mécanisme, et que toute variété différentiable
serait l’espace de configuration d’un mécanisme. On y présentera des résultats déjà connus
qui vont dans ce sens pour les mécanismes dans le plan : d’une part, les courbes que
l’on peut tracer sont exactement les courbes semi-algébriques compactes ; et d’autre
part, pour toute variété compacte connexe M , il existe1 un espace de configuration d’un
système articulé dont toutes les composantes connexes sont difféomorphes à M . Ce même
chapitre contient aussi les énoncés de tous les nouveaux résultats essentiels de cette partie,
qui consistent à étendre les théorèmes d’universalité au plan de Minkowski, au plan
hyperbolique et enfin à la sphère. Dans chaque cas, les difficultés rencontrées diffèrent,
ainsi que les techniques pour les résoudre, mais les résultats obtenus sont très similaires,
sauf dans le cas du plan de Minkowski, où l’on s’affranchit de l’exigence de compacité :
l’universalité est alors valable dans un sens encore plus large. Les trois derniers chapitres
contiennent les démonstrations de ces énoncés, alors que les outils généraux sont donnés

1On ne sait toujours pas, cependant, si l’on peut exiger ou non que l’espace de configuration soit
difféomorphe à la variété M elle-même.
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dans le chapitre 2.
La seconde partie est constituée de trois chapitres, dont les deux derniers correspondent

à la pré-publication [Kou15a]. Dans le chapitre 6, on établit un premier lien entre flots
géodésiques sur des variétés à courbure négative et billards dispersifs, en mettant en
parallèle les comportements de ces deux systèmes. La similitude entre ces deux systèmes
est bien connue depuis les travaux de Sinäı dans les années 1960, mais elle est rarement
détaillée dans la littérature. Dans le même ordre d’idée, on donne une condition suffisante
pour qu’un flot géodésique sur une surface fermée soit Anosov : il suffit que toutes les
solutions de l’équation de Ricatti le long des géodésiques, nulles au temps t = 0, soient
supérieures à une même constante m > 0 lorsque t = 1. Ce théorème bien connu a
été utilisé à plusieurs reprises dans la littérature, mais sans qu’aucune preuve écrite ne
semble disponible : nous l’utiliserons à notre tour dans les résultats qui suivent. Dans
le chapitre 7, on présente deux résultats nouveaux concernant le flot géodésique de
surfaces dans R3 euclidien, qui ont subi une forte contraction selon l’un des axes. Toute
surface dans R3 peut être aplatie selon l’axe des z, et la surface aplatie s’approche d’une
table de billard dans R2. On montre que, sous certaines hypothèses, le flot géodésique
de la surface converge localement uniformément vers le flot de billard. De plus, si le
billard est dispersif, les propriétés chaotiques du billard remontent au flot géodésique : on
montre qu’il est alors Anosov. Enfin, dans le chapitre 8, on donne des généralités sur la
dynamique des systèmes articulés, puis on applique le résultat du chapitre 7 à la théorie
des systèmes articulés. Ceci permet d’obtenir un nouvel exemple de mécanisme Anosov,
comportant cinq tiges. C’est la première fois qu’on exhibe un système articulé Anosov
dont les longueurs des arêtes sont données explicitement. Une vidéo de ce mécanisme,
due à Jos Leys, est disponible sur ma page web.

La troisième partie n’a pas de lien direct avec les deux autres, si ce n’est l’étude de
variétés riemanniennes : elle correspond à la pré-publication [Kou15b]. On s’intéresse
d’abord aux variétés munies de connexions localement métriques, c’est-à-dire de connexions
qui sont localement des connexions de Levi-Civita de métriques riemanniennes ; on donne
dans ce cadre un analogue du théorème de décomposition de De Rham, qui s’applique
habituellement aux variétés riemanniennes. Dans le cas où une telle connexion préserve
une structure conforme, on montre que cette décomposition comporte au plus deux
facteurs ; de plus, lorsqu’il y a exactement deux facteurs, l’un des deux est l’espace
euclidien Rq. On répond ainsi à une question posée dans [MN15b]. L’étude des connexions
localement métriques qui préservent une structure conforme est étroitement liée à celle
des “structures de similitude” sur les variétés : ce sont les structures obtenues par quotient
d’une variété riemannienne M par un sous-groupe de son groupe de similitudes Sim(M).
La démonstration des résultats de cette partie passe par l’étude des feuilletages munis
d’une structure de similitude transverse. Sur ces feuilletages, on montre un résultat de
rigidité qui peut être vu indépendamment des autres : ils sont soit transversalement plats,
soit transversalement riemanniens. Remarquons que ces résultats sont valables dans le
cas C∞, alors que de tels problèmes n’avaient été étudiés précédemment que dans le cas
analytique.



Introduction (English)

This thesis is divided into three parts which may be read independently. In the first
one, we study universality theorems for linkages whose ambiant space is a homogeneous
surface. In the second one, we study the link between geodesic flows and billiards, as well
as the dynamics of some linkages. The third one is about transverse similarity structures
on foliations, and De Rham’s decomposition theorem. Each of these parts contains its
own introduction.

A linkage is a set of rigid rods joined together by hinges. Mathematically, one
considers a linkage as a graph with an additional structure: lengths are given to the
edges (the graph is said to be metric), and some vertices are fixed to the plane while the
others move freely. A realization of a linkage in the plane is the choice of a position in
the plane for each vertex, so that the edge lengths match with the distance in the plane
between the corresponding vertices. In particular, one allows the edges to cross. Finally,
the configuration space of a linkage is the set of all its realizations.

The first chapter is an introduction to the notion of linkage: we will present the
historical background, and fundamental examples, which are useful for the next chapters.

The first part, after this introduction, is composed of four chapters and corresponds
to the preprint [Kou14]: we study linkages whose ambiant space is no longer the plane,
but various Riemannian manifolds. Chapter 2 introduces the question of the universality
of linkages: this notion corresponds to the idea that every curve would be traced out by
a vertex of some linkage, and that any differentiable manifold would be the configuration
space of some linkage. We shall present some results in this direction which are already
known for planar linkages: on the one hand, the curves which may be traced out are
exactly compact semi-algebraic curves; on the other hand, for any compact connected
manifold M , there exists2 a configuration space of a linkage whose connected components
are all diffeomorphic to M . The same chapter also contains the statements of all the main
new results of this part, which are extensions of universality theorems to the Minkowski
plane, the hyperbolic plane, and finally the sphere. In each case, one encounters different
difficulties, and makes use of different techniques, but the results which are obtained are
very similar, except in the Minkowski case, where the compacity hypothesis is no longer
necessary: universality then becomes valid in a broader sense. The last three chapters
contain the proofs of these statements, while the general tools are given in Chapter 2.

The second part is composed of three chapters, where the last two correspond to
the preprint [Kou15a]. In Chapter 6, we establish a first link between geodesic flows on
negatively curved manifolds and dispersive billiards, by putting in parallel the behaviors
of these two systems. It is well-known since Sinai’s work in the 1960’s that these two

2It is still unknown, however, whether it is possible to require that the configuration space be
diffeomorphic to the manifold M itself.
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systems are similar, but they are rarely studied together in the literature. In the same
vein, we give a sufficient condition for a geodesic flow on a closed surface to be Anosov:
it suffices that all solutions of the Ricatti equation along the geodesics, which equal zero
at time t = 0, are greater than a single constant m > 0 at time t = 1. This well-known
theorem has been used several times in the literature, but has apparently never been
awarded any written proof: we will use it ourselves in the new results of this part. In
Chapter 7, we present two new results concerning the geodesic flow of surfaces in the
Euclidean R3, which undergo a strong contraction in one direction. Any surface in R3 can
be flattened with respect to the z-axis, and the flattened surface gets close to a billiard
table in R2. We show that, under some hypotheses, the geodesic flow of the surface
converges locally uniformly to the billiard flow. Moreover, if the billiard is dispersing,
the chaotic properties of the billiard also apply to the geodesic flow: we show that it
is Anosov in this case. Finally, in Chapter 8, we give generalities on the dynamics of
linkages, and then apply the result of Chapter 7 to the theory of linkages. This provides
a new example of Anosov linkage, made of 5 rods. It is the first time that one exhibits
an Anosov linkage whose edge lengths are given explicitly. A video of this linkage, by Jos
Leys, is available on my website.

The third part does not have a direct link with the two others, except for the study
of Riemannian manifolds: it corresponds to the preprint [Kou15b]. We first consider
manifolds with locally metric connections, that is, connections which are locally Levi-
Civita connections of Riemannian metrics; we give in this framework an analog of De
Rham’s decomposition theorem, which usually applies to Riemannian manifolds. In
the case such a connection also preserves a conformal structure, we show that this
decomposition has at most two factors; moreover, when there are exactly two factors,
one of them is the Euclidean space Rq. Thus, we answer a question asked in [MN15b].
The study of locally metric connections which preserve a conformal structure is closely
linked to “similarity structures” on manifolds: these are the structures obtained by the
quotient of a Riemannian manifold M by a subgroup of its similarity group Sim(M).
The proofs of the results of this part use foliations with transverse similarity structures.
On these foliations, we give a rigidity theorem of independant interest: they are either
transversally flat, or transversally Riemannian. Notice that these results are valid in the
C∞ case, while such problems had only been studied in the analytic case previously.



Chapter 1

What is a linkage?

A mechanical linkage, or simply linkage, is a graph whose vertices are considered as rigid
rods. Let us state precise mathematical definitions.

Definition 1.1. A planar linkage L is a graph (V,E) together with:

1. A function l : E → R≥0 (which gives the length of each edge);

2. A subset F ⊆ V of fixed vertices (represented by on the figures);

3. A function φ0 : F → R2 which indicates where the vertices of F are fixed.

Definition 1.2. Let L be a planar linkage, and consider the Euclidean distance δ in R2.
A realization of a planar linkage L is a function φ : V → R2 such that:

1. For each edge (v1v2) ∈ E, δ(φ(v1),φ(v2)) = l(v1v2);

2. φ|F = φ0.

The configuration space Conf(L) is the set of all realizations φ of L: it is naturally
a subset of (R2)n, where n is the number of vertices. It inherits the topology of
the ambiant Euclidean space. Finally, the workspace of a vertex v ∈ V is the set
{φ(v) | φ realization of L}.

Figure 1.1 – A wooden realization of the Peaucellier straight-line motion linkage. Design:
Adriane Käıchouh, Mickaël Kourganoff, Thomas Letendre. Construction: Pierre Gallais.
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12 CHAPTER 1. WHAT IS A LINKAGE?

Linkages are one of the simplest physical examples involving manifolds of dimension
3 or more (other than the ambiant space R3): they appear naturally as configuration
spaces. In Section 1.1, we will give simple examples of linkages whose configuration space
is diffeomorphic to Tn or Sn, for any natural number n. Generically, the dimension of the
configuration space of a linkage is 2(|V |− |F |)− |E| (twice the number of free vertices,
minus the number of edges). More precisely:

Proposition 1.3. Choose any graph (V,E), any F ⊆ V and any φ0 : F → R2. Then
there is a set L of full Lebesgue measure in RE such that for all choice of edge lengths
l ∈ L, the configuration space of L = (V,E, l, F,φ0) is a smooth orientable manifold of
dimension 2(|V |− |F |)− |E|.

Proof. Consider the function
F : (R2)V \F → RE

φ �→ fφ

where, for any (vw) ∈ E and any φ ∈ (R2)V \F ,

fφ(vw) = δ(φ(v),φ(w))

(here, the domain of φ is extended to the whole V using φ0).
Then for any l ∈ RE , the configuration space of L = (V,E, l, F,φ0) is F

−1(l).
By Sard’s Theorem, the regular values of F form a set of full Lebesgue measure in

RE . For such a value l, F−1(l) is a smooth manifold of dimension 2(|V | − |F |) − |E|.
Moreover, since RE is orientable, the normal bundle of F−1(l) in (R2)V \F is orientable
as well. But (R2)V \F itself is also orientable: one obtains an orientation of the tangent
bundle of M , thus M is orientable.

Remark. Most of the linkages considered in Part I will not satisfy the assumptions of
Proposition 1.3. In this case, the configuration space may still be a smooth manifold,
but it does not need to be orientable, and it is impossible to compute its dimension from
the number of edges and vertices alone.

There exist many natural problems involving linkages, which cover various fields
of mathematics, such as algebraic geometry, algebraic topology, Riemannian geometry,
dynamical systems, and the theory of computational complexity. Many interesting
problems involving complexity may be found in [DO07]. In this thesis, we focus on two
particular aspects of linkages: universality and dynamics. The examples in the rest of
this chapter are chosen in view of these two problems.

1.1 Fundamental examples

1.1.1 The robotic arm

The robotic arm Rn (Figure 1.2) is a linkage whose underlying graph is a path (all
vertices have degree 2, except the two ends), with one fixed end. It has n edges of lengths
l1, l2, . . . , ln.

The configuration space of Rn is the torus Tn: each of its configurations corresponds
to n angles θ1, . . . , θn formed by each of the n edges with the horizontal axis.
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v0

v1

v2

v3l1
l2

l3θ1

θ2

θ3

Figure 1.2 – The robotic arm R3. Recall that fixed vertices (here v0) are represented by
squares.

1.1.2 Polygons

A polygon is a linkage without fixed vertices, whose underlying graph is a cycle.
It is often convenient to consider a polygon with two fixed adjacent vertices. In fact,

fixing those two vertices amounts to removing the factor SO(2)� R2 which is found in
the configuration space of any linkage without fixed vertices.

After fixing these two vertices at a distance which corresponds to the edge between
them, one may remove this edge which has become useless, without changing the
configuration space. Thus, a polygon may be seen as a robotic arm whose two ends are
fixed.

Example.

a b1 1 1 1 1 1 1 1

Consider the linkage Ln above with n edges. The vertices a and b are fixed at a
distance n− � with a small enough � > 0, and all the edges have length 1.

Proposition 1.4. The configuration space Conf(Ln) is diffeomorphic to Sn−2.

Proof. We may assume that φ0(a) = (0, 0) and φ0(b) = (n− �, 0).
First, consider the robotic arm Rn. For any configuration (θ1, . . . , θn) ∈ Conf(Rn),

write s = (s1, s2) = (
�

cos θi,
�

sin θi) ∈ R2 the position of the last vertex vn. Then
Conf(Ln) = {(θ1, . . . , θn) ∈ Tn | s = (n− �, 0)}: for a small � > 0, Conf(Ln) is contained
in an arbitrarily small neighborhood of C0 = (0, . . . , 0).

Now, consider the subset of all configurations whose last vertex lies on the horizontal

axis: E = {C ∈ Tn | s2 = 0}. Since the gradient of s2 is ∇s2 =



cos θ1

...
cos θn


, E is a

submanifold of Tn in a neighborhood of C0.
Compute the differentials of s1 up to order 1 and 2:

∇s1 = −



sin θ1

...
sin θn


 and D2s1 = −



cos θ1 0

. . .

0 cos θn


 .
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Thus, Ds1(C0) = 0 and D2s1(C0) is non-degenerate. Moreover, s1 reaches its global
maximum n at C0. With Morse’s Lemma, E is equipped with a global coordinate system
(xi)1≤i≤n−1 near C0 such that:

s1 − n = −
�

n−1�

i=1

x2i

�
.

In particular, the level of E defined by s1 = n − � is diffeomorphic to a sphere of
dimension n− 2 for a small enough � > 0.

This proof gives us a glimpse of how Morse theory may be used in view of determining
the topology of some configuration spaces. The first chapter of [Far08] uses this approach
to describe the homology groups of the configuration spaces of polygons.

1.1.3 Spider linkages

Although less famous than polygons, spider linkages (with n legs) provide interesting
examples and were studied by many authors.

A spider is made of a central vertex to which n legs are attached, each of which has
one articulation (each leg is a copy of R2). The end of each leg is fixed somewhere in the
plane. For n = 2, the spider is in fact a pentagonal linkage.

Since a spider has 2n edges and n+1 free vertices, its configuration space is a surface
for a generic choice of the lengths of the edges: one may obtain a wide variety of surfaces
in this way.

Spiders with n = 3. Thurston and Weeks [TW84] detailed a particular case of a spider
with n = 3, which they called triple linkage (Figure 1.3).

a1

a2

a3

x
p1

p2

p3

l1

l2

l1

l2

l1

l2

Figure 1.3 – Thurston and Weeks’ triple linkage. The three fixed vertices are on the unit
circle and form an equilateral triangle, and there are two length parameters l1 and l2.

In this case, each of the 3 legs of the spider restricts the movement of the central
vertex to an annulus centered at ai, with inner radius |l1 − l2| and outer radius l1 + l2.
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Thus, the workspace of the central vertex is the intersection of three annuli. When the
lengths l1 and l2 vary, this intersection may take different shapes (Figure 1.4).

Figure 1.4 – The workspace of the central vertex in Thurston’s triple linkage (in dark
grey), for different choices of the lengths.

Like Thurston and Weeks in their article, let us focus on the case1 on the left of
Figure 1.4: the workspace of the central vertex x is a hexagon. For each position of x in
the interior of the hexagon, there are two possible positions for p1, which are symmetric
with respect to the line through x and a1. There are also two possible positions for
each of the two other vertices, so any point in the interior of the workspace of the
central vertex corresponds to 8 points in the configuration space. The boundary of the
hexagon corresponds to configurations in which at least one of the arms is completely
stretched or folded. Such configurations belong in fact to several hexagons. Thus, the
configuration space of the linkage is made of 8 copies of the hexagon, glued together
along their boundaries. Each edge belongs to two hexagons, and each vertex to four
hexagons, so the polyhedron has 8 faces, 24 edges and 12 vertices. Its Euler characteristic
is 8− 24 + 12 = −4, so2 it is diffeomorphic to a surface of genus 3.

For different choices of the edge lengths and positions of the fixed points, the inter-
section of the three annuli may take many forms: in each case, it is possible to make a
similar computation to determine the genus of the surface (for example, it is possible to
obtain the disjoint union of 6 spheres, or a surface of genus 12). Ten different topologies
for the configuration space of the triple linkage are given in [HM03].

The general case. In general, we have the following [Mou11]:

Theorem 1.5 (Mounoud, 2009). Let g be an natural number and r the biggest integer
such that 2r divides g − 1. A compact orientable surface of genus g is diffeomorphic to a
spider’s configuration space if and only if (1/2r)(g − 1) ≤ 6r + 12.

In particular, it is impossible to realize a surface of genus 14 as a configuration space
of a spider.

In 2006, O’Hara [O’H07] computed all the configuration spaces obtained by a spider
whose arms all have the same length length (l1 = l2 = 1, with the notations of Figure 1.3),
and whose fixed vertices are on the unit circle and form a regular polygon P in R2.

1This case corresponds, for example, to the condition (3/2− |l1 − l2|)2 + 3/4 < (l1 + l2)
2 < (3/2 +

|l1 − l2|)2 + 3/4 and |l1 − l2| <
√
3/2.

2In fact, we should show first that the configuration space is a smooth orientable surface, which is
not so obvious, even for generic lengths l1 and l2. For example, one may compute directly the differential
of the function F of Proposition 1.3.
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Theorem 1.6 (O’Hara, 2006). Let R be the radius of the circumscribed circle to the poly-
gon P. There exists a critical value Rn such that the configuration space is diffeomorphic
to a connected orientable closed surface Σg if R satisfies:

0 < R < 2 and R �= Rn.

The genus g is given by

g =

�
1− 2n−1 + n2n−3 + n2n−1 = 1 + (5n− 4)2n−3 si 0 < R < Rn,

1− 2n−1 + n2n−3 = 1 + (n− 4)2n−3 si Rn < R < 2.

In his proof, O’Hara gives two methods to compute the genus: one of them is purely
topological, while the other one uses Morse Theory. In the same paper, he also describes
the singularities which appear when R does not satisfy the conditions of Theorem 1.6.

1.1.4 Centipedes

A centipede3 with n legs (Figure 1.5) is a linkage whose underlying graph has 2n + 1
vertices, where n+ 1 free vertices form a path, and n fixed vertices are attached to the
1st, 2nd, . . . , (n− 1)th and (n+ 1)th vertex of the path, as in the following figure:

. . .

with any edge lengths, and any positions for the fixed vertices.

Figure 1.5 – A centipede with 5 legs.

As for spiders, the configuration spaces of centipedes are generically surfaces. It is
remarkable that any connected closed oriented surface is the configuration space of some
centipede, as shown in [JS01].

In general, given a connected closed manifold M , it is unknown4 whether there exists
a linkage whose configuration space is diffeomorphic to M . This kind of problem is called
“universality problem”: it is at the heart of Part I.

1.1.5 The pantograph

The pantograph (literally, a device which “writes everything” in Greek), invented by
the astronomer Christoph Scheiner in 1603, was used to reproduce drawings at different

3These linkages seem to have no standard name in the literature.
4Even for connected closed non-orientable surfaces!
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A

G

D

B C

E

l

l l

ll l

Figure 1.6 – The pantograph. There is one rigid bar joining A (resp. C) to G, with a
hinge D (resp. E) at the middle. The vertex A is fixed.

scales (Figure 1.6). The point C is the image of the point B by a homothety of center
A and ratio 2. It is possible to obtain any other ratio by changing the edge lengths.
In practice, a pen was fixed to the vertex C and the vertex B was moved along the
drawing which was to be copied. For this linkage (among others), we will be interested
in the possible positions of the two vertices B and C, rather than the topology of the
configuration space.

Concerning the pantograph, two remarks are in order:

1. Here, we allowed some hinges (D and E) to be at the middle of bars, while our
definition of a linkage as a mathematical graph requires them to be at the end.
We could change the definition to include this situation, but in our setting, it is
more convenient to consider AD and DG as two different edges of length l, as well
as another edge of length 2l between A and G. The three vertices A,D,G form a
flat triangle, so they are aligned for all configurations. With this technique, it is
possible to add a hinge anywhere on a bar.

2. With our definitions, there are in fact many realizations of this linkage such that C
is not the image of B by a homothety of center A. For example, for any position
of A,C,G, there is a realization such that B = G. This is known as the problem
of degenerated configurations : they have to be dealt with carefully when trying to
understand the topology of configuration spaces. The same problem will occur in
Section 1.2.2. For more details, see [KM02] or Chapter 3.

1.2 Straight-line motion

The problem of straight-line motion appeared naturally when Watt designed his double-
action steam engine in 1781. He needed a mechanism able to guide the piston of the
engine along a straight line, and to transmit the energy to other elements of the system
(for example, a wheel). With our definitions, the question was the following:

Question. Does there exist a linkage containing one vertex whose workspace is a line
segment?
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1 2 3 4 5

Figure 1.7 – Newcomen’s steam engine5. The cylinder (on the right) is filled with steam
while the pump (on the left) is pulled down by its own weight (2). Then cold water is
injected into the cylinder (3), which condensates the steam, creates vacuum and lowers
the piston (4): at the other side, the pump goes up and takes the water out from the
mine.

Earlier steam engines did not require such a mechanism. Half a century before
Watt, Newcomen designed another steam engine, which was widely used to pump water
from the coal mines. The steam only pulled the piston to one side (contrary to Watt’s
double-action engine, where steam pulled it alternatively to both sides), and the mass of
the pump on the other side pulled the piston back to its original position (Figure 1.7). In
Newcomen’s engine, it was possible to achieve straight-line motion with a simple flexible
chain. In contrast, Watt needed a rigid linkage to guide the piston.

1.2.1 Watt’s linkage

Watt’s linkage (Figure 1.8) contains one vertex whose workspace is close to a straight
line. It was used in Watt’s famous double-action steam engine, and is still used in the
suspension systems of some cars.

For engineers, the problem of straight-line motion was solved, but for mathematicians,
it was only the beginning.

Elementary computation shows that the workspace of the central vertex is the curve
of equation (in polar coordinates):

r2 = b2 − (a sin θ ±
�
c2 − a2 cos2 θ)2.

It is called Watt’s curve and, with a good choice of parameters, it has the shape of an
eight (like on the figure). Near the center, it has curvature 0, so it is a straight line up to
order 2, which is sufficient for most practical applications.

1.2.2 The Peaucellier inversor

In the 1860’s, Peaucellier and Lipkin discovered simultaneously a linkage which achieved
perfect straight-line motion. First, we introduce the Peaucellier inversor (Figure 1.9).

5 c� User:Emoscopes / Wikimedia Commons / CC-BY-SA-3.0
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Figure 1.8 – Watt’s linkage (obtained with Geogebra), with the workspace of the central
vertex E. It has two fixed vertices A and B, and an additional vertex E at the middle of
the edge CD. It is made of three bars AC,CD and DB: the bar CD has length 2c, while
AC and DB have the same length length b. The distance between the fixed vertices A
and B is 2a.

A
D

B

C

E

l l

ll

r

r

Figure 1.9 – The Peaucellier inversor. We assume that r > l.

Proposition 1.7. For any position of the Peaucellier linkage, the points A, D and E
are aligned, and AD ·AE = r2 − l2. In other words, E is the image of D by an inversion
with respect to the circle with center A and radius

√
r2 − l2.

Proof. Each of the points A, D and E is equidistant to the two points B and C, so A,
D and E are aligned.

Let H be the intersection of the segments BC and DE. Then by the Pythagorean
theorem, BH2 = l2 −DH2 = r2 − AH2. Thus, AH2 −DH2 = r2 − l2, so AD · AE =
r2 − l2.

In Chapters 3 and 4, this linkage will be adapted to other ambiant geometries.
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1.2.3 The Peaucellier straight-line motion linkage.

It is obtained by adding one fixed vertex and one edge to the Peaucellier inversor
(Figure 1.10).

A
G

D

B

C

E

l l

ll

r

r

s

Figure 1.10 – The Peaucellier straight-line motion linkage. The distance between the two
fixed points A and G is equal to s, the length of the edge GD.

The workspace of D is contained in a circle C centered at G, so the workspace of E is
contained in the image of C by the inversion with respect to the circle centered at A, of
radius r2 − l2. If one chooses the position of G and the length of the new edge s so that
A ∈ C, then the image of C by an inversion centered at A is a straight line. Therefore,
the workspace of E is contained in a straight line (more precisely, it is a line segment).

A popular catchphrase is the following: “The Peaucellier linkage transforms linear
motion into circular motion.” Indeed this is true in some sense, since D’s workspace is
contained in a circle, while E’s workspace is a line segment. However, this formulation
might let think that, in a steam engine, D corresponds to a wheel and E to the piston,
which cannot be the case: the vertex D does not follow a whole circle, but only goes
back and forth on a circular arc! In fact, the only important fact in the Peaucellier
linkage is that one vertex follows a straight line. Once this goal is achieved, is it possible
to transmit the energy to a wheel using simply one bar, fixed somewhere on the wheel
(Figure 1.11).

1.2.4 Hart’s linkage

In 1875, Harry Hart discovered a new linkage for inversion, with only four bars (Fig-
ure 1.12). Similarly to the Peaucellier linkage, it is possible to add one fixed vertex and
one edge to obtain Hart’s straight-line motion linkage.

1.2.5 Other straight-line mechanisms

Many other mathematicians discovered linkages which provide approximate or exact
linear motion, including Chebyshev, Kempe and Sylvester (see [Kem77] for a detailed
review of such linkages).

Very recently, the Dutch artist Theo Jansen designed his own approximate straight-line
motion linkage. It allows his large “creatures” made of plastic rods to “walk” smoothly
on the beach.

6 c� User:Panther / Wikimedia Commons / CC-BY-SA-3.0
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Figure 1.11 – A double-action steam engine6. Here, the straight-line motion linkage, used
to guide the piston along a straight line, is not represented. The energy of the piston is
transmitted to the wheel with only one bar.

A C

B D

O
P P �

Figure 1.12 – Hart’s inversor. The bars AB and DC have the same length, as well as the
bars AD and BC. The point O is located on the bar AB, so that AO/AB = µ. Likewise,
P is on the bar AD, P � is on the bar CB, and AP/AD = CP �/CB = µ. It may be
shown that P � is the image of P by inversion with respect to a circle of center O (for a
proof, see [DO07] for example).
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Part I

Universality theorems for linkages
in homogeneous surfaces
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Chapter 2

Introduction and generalities on
universality

Throughout Part I, we shall consider linkages which are not necessarily planar: the
ambiant space may be any manifold M instead of R2.

A realization of a linkage L in a manifold M is a mapping which sends each vertex of
the graph to a point of M, respecting the lengths of the edges. The configuration space
ConfM(L) is the set of all realizations of L in M. This supposes, classically, the ambient
manifold M to have a Riemannian structure: thus the configuration space may be seen
as the space of “isometric immersions” of the metric graph L in M.

Here we will always deal with (non-trivially) marked connected graphs, that is, a non-
empty set of vertices have fixed realizations (in fact, when M is homogeneous, considering
a linkage without fixed vertices only adds a translation factor to the configuration space).
Hence, our configurations spaces will be compact even if M is not compact, but rather
complete.

2.1 Some historical background

Most existing studies deal with the special case where M is the Euclidean plane and
some with the higher dimensional Euclidean case (see for instance [Far08] and [Kin98]).
There are also studies about polygonal linkages in the standard 2-sphere (see [KM+99]),
or in the hyperbolic plane (see [KM96]).

Universality theorems. When M is the Euclidean plane E2, a configuration space is an
algebraic set. This set is smooth for a generic length structure on the underlying graph.

Universality theorems tend to state that, playing with mechanisms, we get any
algebraic set of Rn, and any manifold, as a configuration space! In contrast, it is a
hard task to understand the topology or geometry of the configuration space of a given
mechanism, even for a simple one.

Universality theorems have been announced in the ambient manifold E2 by Thurston
in oral lectures, and then proved by Kapovich and Millson in [KM02]. They have been
proved in En by King [Kin98], and in RP 2 and in the 2-sphere by Mnëv (see [Mnë88]
and [KM02]). It is our aim in Part I to prove them in the cases of: the hyperbolic plane
H2, the sphere S2 and the (Lorentz-)Minkowski plane M. These are simply connected
homogeneous pseudo-Riemannian surfaces (the list of such spaces includes in addition the

25
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Euclidean and the de Sitter planes). Then it becomes natural to ask whether universality
theorems hold in a more general class of manifolds, for instance on Riemannian surfaces
without a homogeneity hypothesis.

In order to be more precise, it will be useful to introduce partial configuration spaces:
for W a subset of the vertices of L, one defines ConfWM(L) as the set of realizations of
the subgraph induced by W that extend to realizations of L. One has in particular a
restriction map: ConfM(L) → ConfWM(L).

If W = {a} is a vertex of L, its partial configuration space is its workspace, i.e. the
set of all its positions in M corresponding to realizations of L.

Euclidean planar linkages. Now regarding the algebraic side of universality, the history
starts (and almost ends) in 1876 with the well-known Kempe’s theorem [Kem76]:

Theorem 2.1. Any algebraic curve of the Euclidean plane E2, intersected with a Eu-
clidean ball, is the workspace of some vertex of some mechanical linkage.

This theorem has the following natural generalization, which we will call the algebraic
universality theorem, proved by Kapovich and Millson (see [KM02]):

Theorem 2.2. Let A be a compact semi-algebraic subset (see Definition 2.12) of (E2)n

(identified with R2n). Then, A is a partial configuration space ConfWE2(L) of some
linkage L in E2. When A is algebraic, one can choose L such that the restriction map
ConfE2(L) → A = ConfWE2(L) is a smooth finite trivial covering.

When ConfE2(L) is not a smooth manifold, as usual, by a smooth map on it, we
mean the restriction of a smooth map defined on the ambient R2n.

From Theorem 2.2, Kapovich and Millson easily derive the differential universality
theorem on the Euclidean plane:

Theorem 2.3. Any compact connected smooth manifold is diffeomorphic to one connected
component of the configuration space of some linkage in the Euclidean plane E2. More
precisely, there is a configuration space whose components are all diffeomorphic to the
given differentiable manifold.

Jordan and Steiner also proved a weaker version of this theorem with more elementary
techniques (see [JS99]).

How to go from the algebraic universality to the differentiable one? The differentiable
universality theorems (Theorems 2.3, 2.5 and 2.7) follow immediately from the algebraic
ones (Theorems 2.2, 2.4 and 2.6) once we know which smooth manifolds are diffeomorphic
to algebraic sets. In 1952, Nash [Nas52] proved that for any smooth connected compact
manifold M , one may find an algebraic set which has one component diffeomorphic
to M . In 1973, Tognoli [Tog73] proved that there is in fact an algebraic set which is
diffeomorphic to M (a proof may be found in [AK92], or in [BCR98]).

In the non-compact case (in which we will be especially interested), Akbulut and
King [AK81] proved that every smooth manifold which is obtained as the interior of
a compact manifold (with boundary) is diffeomorphic to an algebraic set. Note that
conversely, any (non-singular) algebraic set is diffeomorphic to the interior of a compact
manifold with boundary.
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2.2 Results

It is very natural to ask if these algebraic and differential universality theorems can
be formulated and proved for configuration spaces in a general target space M. Our
results suggest this could be true: indeed, we naturally generalize universality theorems
to the cases of M = M, H2 and S2, the Minkowski and hyperbolic planes and the sphere,
respectively. Notice that for a general M, there is no notion of algebraic subset of Mn!
We will however observe that there is a natural one in the cases we are considering here.
In the general case, the question around Kempe’s theorem could be rather formulated as:
“Characterize curves in M that are workspaces of some vertex of a linkage.”

Minkowski planar linkages. These linkages are studied in Chapter 3. Classically, the
structure of M needed to define realizations of a linkage is that of a Riemannian manifold.
Observe however that a distance, not necessarily of Riemannian type, on M would also
suffice for this task. But our idea here is instead to relax positiveness of the metric.
Instead of a Riemannian metric, we will assume M has a pseudo-Riemannian one. We
will actually restrict ourselves to the simple flat case where M is a linear space endowed
with a non-degenerate quadratic form, and more specially to the 2-dimensional case, that
is the Minkowski plane M. On the graph side, weights of edges are no longer assumed
to be positive numbers. This framework extension is mathematically natural, and may
be related to the problem of the embedding of causal sets in physics, but the most
important (as well as exciting) fact for us is that configuration spaces are (a priori) no
longer compact, and we want to see what new spaces we get in this new setting.

The Lorentz-Minkowski plane M is R2 endowed with a non-degenerate indefinite
quadratic form. We denote the “space coordinate” by x and the “time coordinate” by t.

The configuration space ConfM(L) is an algebraic subset (defined by polynomials
of degree 2) of Mn = R2n (n is the number of vertices of L), and similarly a partial
configuration space ConfWM (L) is semi-algebraic (see Definiton 2.12). In contrast to the
Euclidean case, these sets may be non-compact (even if L has some fixed vertices in M).
We will prove:

Theorem 2.4. Let A be a semi-algebraic subset of Mn (identified with R2n). Then, A
is a partial configuration space ConfWM (L) of some linkage L in M. When A is algebraic,
one can choose L such that the restriction map ConfM(L) → A is a smooth finite trivial
covering.

Somehow, considering Minkowskian linkages is the exact way of realizing non-compact
algebraic sets! In particular, Kempe’s theorem extends (globally, i.e. without taking the
intersection with balls) to the Minkowski plane: any algebraic curve is the workspace of
one vertex of some linkage.

Remark. If the restriction map is injective, then it is a bijective algebraic morphism
from ConfM(L) to A, but not necessarily an algebraic isomorphism. In fact, it is true for
non-singular complex algebraic sets that bijective morphisms are isomorphisms, but this
is no longer true in the real algebraic case (see for instance [Mum95], Chapter 3).

We also have a differential version of the universality theorem in the Minkowski plane
(which follows directly from Theorem 2.4, as explained at the end of Section 2.1):

Theorem 2.5. For any differentiable manifold M with finite topology, i.e. diffeomorphic
to the interior of a compact manifold with boundary, there is a linkage in the Minkowski
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plane with a configuration space whose components are all diffeomorphic to M . More
precisely, there is a partial configuration space ConfWM (L) which is diffeomorphic to M
and such that the restriction map ConfM(L) → ConfWM (L) is a smooth finite trivial
covering.

Hyperbolic planar linkages. In Chapter 4, we prove that both algebraic and differential
universality theorems hold in the hyperbolic plane. The problem is that the notion of
algebraic set has no intrinsic definition in the hyperbolic plane. However, it is possible

to define an algebraic set in the Poincaré half-plane model

��
x
y

�
∈ R2

 y > 0

�
(and

hence in H2) as an algebraic set of R2 which is contained in the half-plane. In fact, it
turns out that the analogous definitions in the other usual models (the Poincaré disc
model, the hyperboloid model, or the Beltrami-Klein model) are all equivalent. With
this definition, we obtain the same results as in the Euclidean case:

Theorem 2.6. Let A be a compact semi-algebraic subset of (H2)n (identified with a
subset of R2n using the Poincaré half-plane model). Then, A is a partial configuration
space of some linkage L in H2. When A is algebraic, one can choose L such that the
restriction map ConfH2(L) → A is a smooth finite trivial covering.

Conversely, any partial configuration space of any linkage with at least one fixed vertex
is a compact semi-algebraic subset of (H2)n, so this theorem characterizes the sets which
are partial configuration spaces (see Definiton 2.12 for the notion of “semi-algebraic”).

In particular, Kempe’s theorem holds in the hyperbolic plane.

And here follows the differential version:

Theorem 2.7. For any compact differentiable manifold M , there is a linkage in the
hyperbolic plane with a configuration space whose components are all diffeomorphic to M .
More precisely, there is a partial configuration space ConfWH2(L) which is diffeomorphic to
M and such that the restriction map ConfH2(L) → ConfWH2(L) is a smooth finite trivial
covering.

Spherical linkages. These linkages are the subject of Chapter 5. In 1988, Mnëv [Mnë88]
proved that the algebraic and differential universality theorems hold true in the real
projective plane RP 2 endowed with its usual metric as a quotient of the standard 2-sphere.
Even better, he showed that the number of copies in the differential universality for RP 2

can be reduced to 1, i.e. any manifold is the configuration space of some linkage. As
Kapovich and Millson pointed out [KM02], a direct consequence of Mnëv’s theorem is
the differential universality theorem for the 2-sphere (but, this time, we get several copies
of the desired manifold):

Theorem 2.8 (Mnëv-Kapovich-Millson). For any compact differentiable manifold M ,
there is a linkage in the sphere with a configuration space whose components are all
diffeomorphic to M .

However, it seems impossible to use Mnëv’s techniques to prove the algebraic univer-
sality for spherical linkages: for example, all the configuration spaces of his linkages are
symmetric with respect to the origin of R3. In order to obtain any semi-algebraic set as
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a partial configuration space, we need to start again from scratch and construct linkages
specifically for the sphere.

Contrary to the Minkowski and hyperbolic cases, the generalization of the theorems to
higher dimensional spheres is straightforward. Thus, we are able to prove the following:

Theorem 2.9. Let d ≥ 2 and let A be a compact semi-algebraic subset of (Sd)n (identified
with a subset of R(d+1)n). Then, A is a partial configuration space of some linkage L in
Sd.

In particular, Kempe’s theorem holds in the sphere.
Conversely, any partial configuration space of any linkage is a compact semi-algebraic

subset of (Sd)n (see Section 2.4), so this theorem characterizes the sets which are partial
configuration spaces.

Let us note that even when A is algebraic, our construction does not provide a linkage
L such that the restriction map ConfSd(L) → A is a smooth finite trivial covering. We
do not know whether such a linkage exists.

Some questions. Our results suggest naturally – among many questions – the following:

1. Besides the 2-dimensional case, are the results in the Minkowski plane true for
any (finite-dimensional) linear space endowed with a non-degenerate quadratic
form? And what about higher-dimensional hyperbolic spaces? It is likely that the
adaptation of the 2-dimensional proof hides no surprise, like in the Euclidean case,
but it would probably require tedious work to prove it.

2. In our definition of linkages in the Minkowski plane, we allow some edges to have
imaginary lengths (they are “timelike”). Is it possible to require the graphs of
Theorems 2.4 and 2.5 to be spacelike, i.e. require all their edges to have real
lengths?

3. In all the universality theorems that we prove, we obtain a linkage whose configu-
ration space is diffeomorphic to the sum of a finite number of copies of the given
manifold M . Is it possible to choose this sum trivial, that is, with exactly one copy
of M? (This question is also open in the Euclidean plane.)

4. Is the differential universality theorem true on any Riemannian manifold?

Linkages on Riemannian manifolds. Let us give a partial answer to the last question
using the following idea: just as the surface of the earth looks flat to us, any Riemannian
manifold will almost behave as the Euclidean space if one considers a linkage which
is small enough. However, our linkage has to be robust to small perturbations of the
lengths, which is not the case for many of the linkages described in Part I (consider for
example the rigidified square linkage).

Theorem 2.10. Consider a linkage L in the Euclidean space En, with at least one
fixed vertex, such that for any small perturbation of the length vector l ∈ (R≥0)

E, the
configuration space ConfEn(L) remains the same up to diffeomorphism. Then for any
Riemannian manifold M, there exists a linkage LM in M whose configuration space is
diffeomorphic to ConfEn(L).
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In particular, Theorem 2.10 combined with the work of Jordan and Steiner [JS01]
yields directly

Corollary 2.11. In any Riemannian surface M, the differentiable universality theorem
is true for compact orientable surfaces. In other words, any compact orientable surface is
diffeomorphic to the configuration space ConfM(L) of some linkage L.

This leads to the following

Question. Which manifolds can be obtained as the configuration space of some linkage in
Rn which is robust to small perturbations (in the sense of Theorem 2.10) ?

This question is probably very difficult, but it is clear that there are restrictions on
such manifolds: for example, they have to be orientable (because of Proposition 1.3).

2.3 Ingredients of the proofs

There are essentially three technical as well as conceptual tools: functional linkages,
combination of elementary linkages, and regular inputs. The main idea is always the
same as in all the known proofs of Universality theorems (see the proofs of Thurston,
Mnëv [Mnë88], King [Kin98] or Kapovich and Millson [KM02]): one combines elementary
linkages to construct a “polynomial linkage”.

Functional linkages. One major ingredient in the proofs is the notion of functional
linkages. Here we enrich the graph structure by marking two new vertex subsets P and
Q playing the role of inputs and outputs, respectively. If the partial realization of Q is
determined by the partial realization of P , by means of a function f : ConfPM(L) → MQ

(called the input-output function), then we say that we have a functional linkage for f
(for us, M will be the Minkowski plane M, the hyperbolic plane H2 or the sphere Sd).
The Peaucellier linkage is a famous historical example: it is functional for an inversion
with respect to a circle. With the notations of Figure 1.9, the input is D and the output
is E.

Combination. Another major step in the proofs consists in proving the existence of
functional linkages associated to any given polynomial f . This will be done by “combining”
elementary functional linkages. We define combination so that combining two functional
linkages for the functions f1 and f2 provides a functional linkage for f1 ◦ f2.

Elementary linkages. All the work then concentrates in proving the existence of linkages
for suitable elementary functions (observe that even for elementary linkages one uses a
combination of more elementary ones). As an example, we give the list of the elementary
linkages needed to prove Theorem 2.4 (in the Minkowski case):

1. The linkages for geometric operations:

(a) The robotic arm linkage (Section 3.2.1): one of the most basic linkages, used
everywhere in our proofs and in robotics in general.

(b) The rigidified square (Section 3.2.2): a way of getting rid of degenerate
configurations of the square using a well-known construction.
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(c) The Peaucellier inversor (Section 3.2.3): this famous linkage of the 1860’s has
a slightly different behavior in the Minkowski plane but achieves basically the
same goal.

(d) The partial t0-line linkage (Section 3.2.4): it is obtained using a Peaucellier
linkage, but does not trace out the whole line.

(e) The t0-integer linkage (Section 3.2.5): it is a linkage with a discrete configura-
tion space.

(f) The t0-line linkage (Section 3.2.6): it draws the whole line, and is obtained by
combining the two previous linkages.

(g) The horizontal parallelizer (Section 3.2.7): it forces two vertices to have the
same ordinate, and it is obtained by combining several line linkages.

(h) The diagonal parallelizer (Section 3.2.8): its role is similar to the horizontal
parallelizer but its construction is totally different.

2. The linkages for algebraic operations, which realize computations on the t = 0 line:

(a) The average function linkage (Section 3.3.1): it computes the average of two
numbers, and is obtained by combining several of the previous linkages.

(b) The adder (Section 3.3.2): it is functional for addition on the t = 0 line, and
is obtained from several average function linkages.

(c) The square function linkage (Section 3.3.3): it is functional for the square
function and is obtained by combining the Peaucellier linkage (which is func-
tional for inversion) with adders. This linkage is somewhat difficult to obtain
because we want the inputs to be able to move everywhere in the line, while
the inversion is of course not defined at x = 0.

(d) The multiplier (Section 3.3.4): it is functional for multiplication and is obtained
from square function linkages.

(e) The polynomial linkage (Section 3.3.5): obtained by combining adders and
multipliers, it is functional for a given polynomial function f . This linkage
is used to prove the universality theorems: if the outputs are fixed to 0, the
inputs are allowed to move exactly in f−1(0).

Regular inputs. In our theorems, we need the restriction map ConfM(L) → ConfPM(L)
to be a smooth finite trivial covering. In the differential universality Theorem, it ensures
in particular that the whole configuration space consists in several copies of the given
manifold M . The set of regular inputs RegPM(L) is the set of all realizations of the inputs
which admit a neighborhood onto which the restriction map is a smooth finite covering.
We have to be very careful, because even for quite simple linkages such as the robotic
arm, the restriction map is not a smooth covering everywhere! There are mainly two
possible reasons for the restriction map not to be a smooth covering:

1. One realization of the inputs may correspond to infinitely many realizations of the
whole linkage (for example, when the robotic arm in Section 3.2.1 has two inputs
fixed at the same location, the workspace of the third vertex is a whole circle).
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2. Even if it corresponds only to a finite number of realizations, these realizations
may not depend smoothly on the inputs (for example, when the robotic arm in
Section 3.2.1 is stretched).

New difficulties in each case. While the idea is always the same in all known proofs of
universality theorems for linkages, i.e. combine elementary linkages to form a functional
linkage for polynomials, each case has its own new difficulties due to different geometric
properties, and the elementary linkages always require major changes to work correctly.
Here follow examples of such differences with the Euclidean case:

The Minkowski case

1. The Minkowski plane M is not isotropic: its directions are not all equivalent. Indeed,
these directions have a causal character in the sense that they may be spacelike,
lightlike or timelike. For example, one needs different linkages in order to draw
spacelike, timelike and lightlike lines.

2. In the Euclidean plane, two circles C(x, r) and C(x�, r�) intersect if and only if
|r−r�| ≤ �x−x�� ≤ r+r�, but in the Minkowski plane, the condition of intersection
is much more complicated to state (see Section 3.1.2).

3. In the Euclidean plane, one only has to consider compact algebraic sets. Applying
a homothety, one may assume such a set to be inside a small neighborhood of zero,
which makes the proof easier. Here, the algebraic sets are no longer compact, so
we have to work with mechanisms which are able to deal with the whole plane.

The hyperbolic case

1. The rigidified square linkage, used extensively in all known proofs in the flat case,
does not work anymore in its usual form, and does not have a simple analogue.

2. There is no natural notion of homothety: in particular, the pantograph does not
compute the middle of a hyperbolic segment, contrary to the flat cases.

3. The notion of algebraic set is less natural than in the flat case.

4. In every standard model of the hyperbolic plane (such as the Poincaré half-plane),
the expression of the distance between two points is much more complicated than
in the flat case.

The spherical case

1. Just as in the hyperbolic case, the curvature prevents the rigidified square linkage
from working correctly.

2. There is no natural notion of homothety.
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3. In the Euclidean or hyperbolic planes, we only need to prove algebraic universality
for bounded algebraic sets, which means that our functional linkages do not need to
work on the whole surface. In the sphere, all the distances are uniformly bounded
(even the lengths of the edges of our linkages), so we need to take into account the
whole sphere when constructing linkages.

4. The compactness of the sphere also makes it difficult to construct linkages which
deal with algebraic operations (addition, multiplication, division) since there is no
proper embedding of R in the sphere.

2.4 Algebraic and semi-algebraic sets

In this section, we recall the standard definitions of algebraic and semi-algebraic sets.
We adapt them to the Minkowski plane, the hyperbolic plane and the sphere in a natural
way and state some of their properties.

Definition 2.12. An algebraic subset of Rn is a set A ⊆ Rn such that there exist m ∈ N
and f : Rn → Rm a polynomial such that A = f−1(0).

We define a semi-algebraic subset of Rn (see [BCR98]) as the projection of an algebraic
set1. More precisely, it is a set B such that there exists N ≥ n and an algebraic set A of
RN such that B = π(A), where π is the projection onto the first coordinates

π : RN = Rn × RN−n → Rn

(x, y) �−→ x.

We define the (semi-)algebraic subsets of Mn by identifying Mn with (R2)n = R2n.
We also define the (semi-)algebraic subsets of (H2)n, using the Poincaré half-plane

model (see Definition 4.1), as the (semi-)algebraic subsets of R2n which are contained in��
x
y

�
∈ R2

y > 0

�n

.

Finally, a (semi-)algebraic subset of (Sd)n (for d ≥ 2) is a semi-algebraic subset of
Rd+1 which is contained in the unit sphere of Rd+1.

Proposition 2.13. For any compact semi-algebraic subset B of Rn, there exists N ≥ n
and a compact algebraic subset A of RN such that B = π(A), where π is the projection
onto the first coordinates: RN → Rn.

Proof. First case. Assume for the moment that there exist polynomials f1, . . . , fm :
Rn → R such that

B = {x ∈ Rn | ∀i ∈ {1, . . . ,m} fi(x) ≥ 0} .

Let
h : Rn+m = Rn × Rm → Rm


x,




y1
...
ym





 �−→




f1(x)− y21
...

fm(x)− y2m




1Our definition of semi-algebraic sets is not the standard one, but we know from the Tarski–Seidenberg
theorem that the two definitions are equivalent (see [BCR98]).
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and A = h−1(0). Then the projection of A onto the first n coordinates is obviously B.
Moreover, A is compact since it is the image of B by the continuous function

g : B → Rn+m = Rn × Rm

x �−→


x,




�
f1(x)
...�

fm(x)






.

General case. The finiteness theorem for semi-algebraic sets (see [BCR98], 2.7.2)
states that any closed algebraic set can be described as the union of a finite number of
sets B1, . . . , Bk which satisfy the assumption of the first case: apply the first case to each
of the Bi’s to end the proof.

We end this section with two analogous propositions for the hyperbolic plane and the
sphere.

Proposition 2.14. For any compact semi-algebraic subset B of (H2)n, there exists N ≥ n
and a compact algebraic subset A of (H2)N (with some N ≥ n) such that B = π(A),
where π is the projection onto the first coordinates: (H2)N → (H2)n.

Proof. Let A� be a compact algebraic set of RN �
(with someN � ≥ 2n) such that B = π(A�),

where π is the projection onto the first coordinates: RN � → R2n. Then the projection of
the compact algebraic set

A :=

���
x1

y1

�
, . . . ,

�
xn

yn

�
,

�
xn+1

1

�
, . . . ,

�
xN�−n

1

��  (x1, y1, . . . , xn, yn, xn+1, . . . , xN�−n) ∈ A�
�

(where A ⊆ (H2)N
�−n) is exactly B.

Proposition 2.15. For any compact semi-algebraic subset B of (S2)n, there exists N ≥ n
and a (compact) algebraic subset A of (S2)N (with some N ≥ n) such that B = π(A),
where π is the projection onto the first coordinates: (S2)N → (S2)n.

Proof. Let A� be a compact algebraic set of RN �
(with someN � ≥ 3n) such that B = π(A�),

where π is the projection onto the first coordinates: RN � → R3n. Since A� is compact,
there is a λ such that π2(A

�) ∈ [−λ,λ]N
�−3n, where π2 is the projection onto the last

coordinates: RN � → RN �−3n. Then the projection of the compact algebraic set

A :=











x1
y1
z1


 , . . . ,




xn
yn
zn


 ,




xn+1
yn+1

0


 , . . . ,




xN�−2n
yN�−2n

0









�
x1, y1, z1, . . . , xn, yn, zn,λxn+1, . . . ,λxN�−2n

�
∈ A

�

x
2
n+1 + y

2
n+1 = 1, . . . , x

2
N�−2n + y

2
N�−2n = 1





(where A ⊆ (S2)N �−2n) is exactly B.

Of course, Proposition 2.15 extends to Sd with any d ≥ 2.

2.5 Generalities on linkages

In the present section, we develop generalities on linkages which apply to the Minkowski
plane, the hyperbolic plane and the sphere. Thus, we consider a smooth manifold M
endowed with a distance function

δ : M×M → R≥0 ∪ iR≥0.
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In the case of a Riemannian manifold (in particular, for the hyperbolic plane and the
sphere), the metric determines a real-valued distance on M.

In the case of the Minkowski plane, M is the plane R2. Here, we argue by a naive
algebraic analogy and define a distance as

δ

��
x1
t1

�
,

�
x2
t2

��
=
�
(x2 − x1)2 − (t2 − t1)2 ∈ R≥0 ∪ iR≥0.

Accordingly, the length structure of the linkage will be generalized by taking values
in R≥0 ∪ iR≥0 (instead of R≥0) as follows:

Definition 2.16. A linkage L in M is a graph (V,E) together with:

1. A function l : E → R≥0 ∪ iR≥0 (which gives the length of each edge2);

2. A subset F ⊆ V of fixed vertices (represented by on the figures);

3. A function φ0 : F → M which indicates where the vertices of F are fixed;

When the linkage is named L1, we usually write L1 = (V1, E1, l1, . . . ) and name its
vertices a1, b1, c1, . . . . If the linkage L1 is a copy of the linkage L, the vertex a1 ∈ V1

corresponds to the vertex a ∈ V , and so on.

Definition 2.17. Let L be a linkage in M. A realization of a linkage L in M is a
function φ : V → M such that:

1. For each edge v1v2 ∈ E, δ(φ(v1),φ(v2)) = l(v1v2);

2. φ|F = φ0.

Remark. On the figures of Part I, linkages are represented by abstract graphs. The edges
are not necessarily represented by straight segments, and the positions of the vertices on
the figures do not necessarily correspond to a realization (unless otherwise stated).

Definition 2.18. Let L be a linkage in M. Let W ⊆ V . The partial configuration space
of L in M with respect to W is

ConfWM(L) = {φ|W | φ realization of L} .

In other words, ConfWM(L) is the set of all the maps φ : W → M which extend to
realizations of L. In particular, the configuration space ConfM(L) = ConfVM(L) is the
set of all realizations of L.

Definition 2.19. A marked linkage is a tuple (L, P,Q), where P and Q are subsets of
V : P is called the “input set” and its elements, called the “inputs”, are represented
by on the figures, whereas Q is called the “output set” and its elements, called the
“outputs”, are represented by on the figures.

The input map p : ConfM(L) → MP is the map induced by the projection MV →
MP (the restriction map). In other words, for all φ ∈ ConfM(L), we have p(φ) = φ|P .

Likewise, we define the output map q : ConfM(L) → MQ by q(φ) = φ|Q.

2Of course, when M is a Riemannian manifold, we may choose all the lengths in R≥0!
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The notion of marked linkage is not necessary to study configuration spaces. However,
in the linkages we use in our proofs, some vertices play an important role (the inputs
and the outputs) while others do not: this is why we always consider marked linkages.
The following notion3 accounts for the names “inputs” and “outputs”:

Definition 2.20. We say that L is a functional linkage for the input-output function
f : ConfPM(L) → MQ if

∀φ ∈ ConfM(L) f(p(φ)) = q(φ).

2.6 Regularity

Definition 2.21. Let L be a linkage. Let W ⊆ V and ψ ∈ ConfPM(L). Let πW be the
restriction map

πW : ConfW∪P
M (L) → ConfPM(L).

We say that ψ is a regular input for W if there exists an open neighborhood U ⊆ ConfPM(L)
of ψ such that πW |π−1

W (U) is a finite smooth covering4.

We write RegPM(L,W ) ⊆ ConfPM(L) the set of regular inputs for W . When W is the
set V of all vertices, we simply write RegPM(L).

Roughly speaking, ψ is a regular input for W if it determines a finite number of
realizations φ of W , and if these configurations are determined smoothly with respect to
ψ (in other words, π−1

W is a smooth multivalued function in a neighborhood of ψ).

The following fact is simple but essential:

Fact 2.22. For any W1,W2 ⊆ V , we have

RegPM(L,W1) ∩ RegPM(L,W2) ⊆ RegPM(L,W1 ∪W2).

Therefore, in practice, in order to prove that RegPM(L) = ConfPM(L), we only have
to prove that RegPM(L, {v}) = ConfPM(L) for all v ∈ V .

2.7 Changing the input set

In this proposition, we take a linkage, then consider the same linkage with a different set
of inputs P and analyse the impact on RegPM(L).
Fact 2.23. Let L1 = (V1, E1, l1, F1,φ01, P1, Q1), P2 ⊆ V1 and define

L2 = (V1, E1, l1, F1,φ01, P2, Q1).

Recall that p1 : ConfM(L1) → MP1 and p2 : ConfM(L2) → MP2 are the respective input
maps of L1 and L2. Then RegP2

M(L2) contains
�
ψ ∈ ConfP2

M(L2)
 ∀φ ∈ p−1

2 (ψ) p1(φ) ∈ RegP1
M(L1)

�
∩ RegP2

M(L2, P1).

Proof. This is a simple consequence of the fact that the composition of two smooth
functions is a smooth function.

3already defined informally at the beginning of Section 2.3
4We do not require U or π−1

W (U) to be smooth manifolds: recall that a smooth map on π−1
W (U) is, by

definition, the restriction of a smooth map defined on the ambient MW∪P .
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2.8 Combining linkages

This notion is essential to construct complex linkages from elementary ones. The proofs
in this section are straightforward and left to the reader.

Let L1 = (V1, E1, l1, F1,φ01, P1, Q1) and L2 = (V2, E2, l2, F2,φ02, P2, Q2) be two
linkages, W1 ⊆ V1, and β : W1 → V2.

The idea is to construct a new linkage L3 = L1 ∪β L2 as follows:

Step 1 Consider L1 ∪L2, the disjoint union of the two graphs (V1, E1) and (V2, E2).

Step 2 Identify some vertices of V1 with some vertices of V2 via β, without removing
any edge.

Since linkages are graphs which come with an additional structure, we need to clarify
what happens to the other elements (l, F , φ0, P , Q). In particular, note that the inputs
of L2 which are in β(W1) are not considered as inputs in the new linkage L3.

Definition 2.24 (Combining two linkages). We define

L3 = L1 ∪β L2 = (V3, E3, l3, F3,φ03, P3, Q3)

in the following way:

1. V3 = (V1 \W1) ∪ V2;

2. E3 = (E1 ∩ (V1 \W1)
2) ∪ (E2 ∩ V 2

2 ) ∪ {vβ(v�) | v ∈ V1 \W1, v
� ∈ W1, vv

� ∈ E1}
∪ {β(v)β(v�) | v, v� ∈ W1, vv

� ∈ E1};

3. For all v1, v
�
1 ∈ V1 \W1, w1, w

�
1 ∈ W1, v2, v

�
2 ∈ V2, define

l3(v1v
�
1) = l1(v1v

�
1), l3(v1β(w1)) = l1(v1w1),

l3(v2v
�
2) = l2(v2v

�
2), l3(β(w1)β(w

�
1)) = l1(w1w

�
1);

4. F3 = (F1 \W1) ∪ β(F1 ∩W1) ∪ F2;

5. φ03|F1\W1
= φ01|F1\W1

, φ03 ◦ β = φ01|W1 , φ03|F2\β(W1) = φ02|F2\β(W1);

6. P3 = (P1 \W1) ∪ β(P1 ∩W1) ∪ (P2 \ β(W1));

7. Q3 = (Q1 \W1) ∪Q2.

The combination of two linkages is prohibited in the following cases:

1. There exist a1, b1 ∈ F1 ∩W1 such that β(a1) = β(b1) and φ01(a1) �= φ01(b1) (two
vertices are fixed at different places but should be attached to the same other
vertex).

2. There exist a1, b1 ∈ W1 such that a1b1 ∈ E1, β(a1)β(b1) ∈ E2, and l1(a1b1) �=
l2(β(a1)β(b1)) (two edges of different lengths should join one couple of vertices).



38 CHAPTER 2. INTRODUCTION AND GENERALITIES ON UNIVERSALITY

3. There exist a1 ∈ V1 and b1, c1 ∈ W1, such that a1b1 ∈ E1, a1c1 ∈ E1, β(b1) = β(c1),
and l1(a1b1) �= l1(a1c1) (again, two edges of different lengths should join one couple
of vertices).

Example 2.25. Consider the two identical linkages L1 and L2:

a1 b1

c1

l2 l1

a2 b2

c2

l2 l1

The inputs of Li are ai, bi and the output is ci.
To combine the two linkages, let W1 = {c1} and β(c1) = a2. Then L3 := L1 ∪β L2 is

the following linkage:

a1 b1

a2 b2

c2

l2 l1

l2 l1

The inputs of L3 are a1, b1, b2 and the output is c2.

We end this section with three facts whose proofs are straightforward. The first
describes ConfM(L) when L is obtained as the combination of two linkages, the second
one describes RegM(L), while the third one establishes a link between the combination
of functional linkages and the composition of functions.

Fact 2.26. Let L1, L2 be two linkages, W1 ⊆ V1, β : W1 → V2, and L3 = L1 ∪β L2 be
defined as in Definition 2.24. Then

ConfM(L3) =
�
φ3 ∈ MV3

 ∃(φ1,φ2) ∈ ConfM(L1)× ConfM(L2)

φ1|V1\W1
= φ3|V1\W1

, φ1|W1 = φ3|β(W1) ◦ β, φ2 = φ3|V2

�
.

Fact 2.27. Let L1, L2 be two linkages, W1 ⊆ V1, β : W1 → P2, and L3 = L1 ∪β L2.

Suppose that ψ3 ∈ ConfP3
M(L3) satisfies both of the following properties:

1. ∃ψ1 ∈ RegP1
M(L1) ψ1|P1\W1

= ψ3|P1\W1
,ψ1|P1∩W1 = ψ3|β(P1∩W1) ◦ β;

2. ∀φ ∈ p−1
3 (ψ3) φ|P2 ∈ RegP2

M(L2).

Then ψ3 ∈ RegP3
M(L3).
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Fact 2.28. Let L1, L2 be two linkages with card(Q1) = card(P2).
Assume that L1 is a functional linkage for f1 : ConfP1

M(L1) → MQ1 and that L2 is a

functional linkage for f2 : Conf
P2
M(L2) → MQ2. Let W1 = Q1, β : W1 → P2 a bijection,

and L3 = L1 ∪β L2. The bijection β induces a bijection β̂ between MQ1 and MP2.

Then L3 is functional for f2 ◦ β̂ ◦ f1|Conf
P3
M(L3)

.

2.9 Appendix: Linkages on any Riemannian manifold

The aim of this section is to prove Theorem 2.10.
Consider a linkage L = (V,E, F, l,φ0, P,Q) in the Euclidean space En as in the

statement of the theorem: we may assume without loss of generality that L is a connected
graph, that the sum of the lengths of the edges is smaller than 1, and that one of the
vertices is fixed to 0, so that the configuration space of L is a subset of BV , where B
is the unit ball of En. We introduce C the set of all mappings φ : V → B such that
φ|F = φ0 (namely, those which map the fixed points to their assigned locations), and
define the mapping

Φ : C → (R≥0)
E

φ �−→
�
(v, v�) �→ �φ(v�)− φ(v�)�2

�
.

Then the configuration space of L in En is Φ−1(l2). Making a small perturbation of l,
we may assume by the Lemma of Sard that l2 is a regular value of Φ. By assumption,
this perturbation does not change ConfEn(L), up to diffeomorphism.

Let U be an open neighborhood of 0 in En, equipped with a metric g, such that
(U, g) is isometric to an open subset of the Riemannian manifold M, and denote by δ
the associated distance on U . Applying a linear transformation to U , we may assume
that g0 (the metric g at 0) coincides with the canonical Euclidean scalar product on Rn.

For a small enough r > 0, the mapping

Ψ : C × ((−r, r) \ {0}) → RE × R
�
φ
λ

�
�−→

�
ψ : (v, v�) �→ 1

λ2 δ
2(λφ(v),λφ(v�))
λ

�

is well-defined, smooth, and may be extended smoothly to C × (−r, r) (apply Taylor’s
formula).

Then for all small enough λ ∈ R,

Ψ−1

�
l2

λ

�
=

1

λ
Conf(U,g)(Lλ)× {λ},

where Lλ = (V,E, F,λl,λφ0, P,Q). Notice that Conf(U,g)(Lλ) is diffeomorphic to the
configuration space of some linkage in M, since (U, g) is isometric to an open set of M.

The key to the proof is the following fact:

Fact 2.29. For all φ ∈ C, Ψ

�
C
0

�
=

�
Φ(C)
0

�
.

Proof. In this proof, for any open set W ∈ Rn, we will write C1([0, 1],W ) the set of C1

paths which take their values in W .
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Let φ ∈ C. For any small enough λ ∈ R, we have:

Ψ1

�
φ
λ

�
· (v, v�) = 1

λ2
inf

γ∈C1([0,1],U)
γ(0)=λφ(v), γ(1)=λφ(v�)

�� 1

0

�
gγ(t)(γ�(t), γ�(t))dt

�2

= inf
γ∈C1([0,1], 1

λ
U)

γ(0)=φ(v), γ(1)=φ(v�)

�� 1

0

�
gλγ(t)(γ�(t), γ�(t))dt

�2

.

Any C1 path from [0, 1] to Rn takes it values in 1
λU for some λ > 0. Thus, taking

the limit as λ → 0, we obtain:

Ψ1

�
φ
0

�
· (v, v�) = inf

γ∈C1([0,1],Rn)
γ(0)=φ(v), γ(1)=φ(v�)

�� 1

0

�
g0(γ�(t), γ�(t))dt

�2

= �φ(v�)− φ(v)�2,

since g0 is the canonical Euclidean scalar product.

Fact 2.29 shows that

�
l2

0

�
is a regular value of Ψ, and that Ψ−1

�
l2

0

�
= ConfEn(L).

Hence, for any small enough λ ∈ R, Conf(U,g)(Lλ) is diffeomorphic to ConfEn(L),
which ends the proof.



Chapter 3

Linkages in the Minkowski plane

The aim of this chapter is to prove Theorem 2.4.

3.1 Generalities on the Minkowski plane

3.1.1 Notation

The Minkowski plane M is R2 equipped with the bilinear form ϕ

��
x
t

�
,

�
x�

t�

��
= xx�−tt�.

The pseudo-norm �·� is defined by �α�2 = ϕ(α,α), and �α� ∈ R≥0∪iR≥0. The “distance”
between α1 and α2 is defined by δ(α1,α2) = �α1 − α2�.

For α ∈ M, we write xα and tα the usual coordinates in R2, so that �α�2 = x2α − t2α.
Sometimes, it will be more convenient to use lightlike coordinates, defined by yα =

xα + tα and zα = xα − tα, so that �α�2 = yαzα.

We write I =

��
x
t

�
∈ M

 t = 0

�
.

3.1.2 Intersection of two hyperbolae

In the Minkowski plane, hyperbolae play a central role (instead of circles in the Euclidean
plane): for any α ∈ M and r2 ∈ R, the hyperbola H(α, r) is the set of all γ ∈ M such
that δ(α, γ)2 = r2.

Let α0,α1 ∈ M and r20, r
2
1 ∈ R, and write d = �α0 − α1�. Our aim in this section is

to determine the cardinality of I = H(α0, r0) ∩H(α1, r1).

Proposition 3.1. If α0 �= α1 and r20r
2
1 �= 0, we have card(I) ≤ 2.

Proof. We write y0 = yα0 and z0 = zα0 . We may assume α1 = 0 and y0 �= 0. Then, I is
the set of the solutions of the system with unknown (y, z):

�
yz = r21

(y − y0)(z − z0) = r20

which is equivalent to
�

yz = r21

y0z
2 − (y0z0 + r21 − r20)z + r21z0 = 0

41
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Thus, z is one of the roots of a polynomial of degree 2 and y is fully determined by z,
so there are at most two solutions to the system.

Proposition 3.2. 1. If r20r
2
1 < 0 and d2 �= 0, then card(I) = 2. Moreover, if d� is the

distance between the two points of I, then d2d�2 < 0.

2. If r20r
2
1 < 0 and d2 = 0, then card(I) = 1.

3. If r20r
2
1 > 0 and r20d

2 < 0, then card(I) = 2.

Proof. Examine the following figures.

r20r
2
1 < 0 and d2 �= 0. r20r

2
1 < 0 and d2 = 0. r20r

2
1 > 0 and r20d

2 < 0.

3.1.3 The case of equality in the triangle inequality

In the Minkowski plane, the triangle inequality is not always valid, but the equality case
is the same as in the Euclidean plane.

Proposition 3.3. Let α,β ∈ M. If �α�+ �β� = �α+ β�, then α and β are colinear.

Proof. We have
(�α�+ �β�)2 = �α+ β�2

�α�2 + �β�2 + 2�α��β� = �α�2 + �β�2 + 2ϕ(α,β)

ϕ(α,β) = �α��β�.
Therefore, the discriminant of the polynomial function

λ �−→ �β�2λ2 + 2ϕ(α,β)λ+ �α�2

is zero. Thus, �α + λβ�2 is either nonnegative for all λ or nonpositive for all λ. This
means that α and β are not linearly independent.

3.1.4 The dual linkage

Let L1 be a linkage in the Minkowski plane. We define the reflection

s : C → C
a+ ib �−→ b+ ia

and construct L2, the dual linkage of L1, by
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1. V2 = V1

2. E2 = E1

3. F2 = F1

4. P2 = P1

5. Q2 = Q1

6. l2 = s ◦ l1
7. φ02 = s ◦ φ01 (with R2 identified to C with the coordinates (x, t)).

For all W ⊆ V1, this linkage satisfies

ConfWM (L2) =
�
s ◦ φ

 φ ∈ ConfWM (L1)
�
,

RegP2
M (L2) =

�
s ◦ φ

 φ ∈ RegWM (L1)
�
.

3.2 Elementary linkages for geometric operations

3.2.1 The robotic arm linkage

a b

c

l2 l1

We let P = {a, b} and F = ∅. We assume l1 �= 0 and l2 �= 0.
We translate Proposition 3.2 in terms of linkages.

Fact 3.4. 1. If l21 and l22 have different signs,

ConfPM(L) ⊇ RegPM(L) ⊇
�
ψ ∈ MP

 �ψ(a)− ψ(b)� �= 0
�

2. If l21 and l22 have the same sign,

ConfPM(L) ⊇ RegPM(L) ⊇
�
ψ ∈ MP

 �ψ(a)− ψ(b)�2 · l21 < 0
�

3. More generally, let ψ ∈ ConfPM(L). If the intersection H(ψ(a), l2) ∩ H(ψ(b), l1)
contains exactly two elements, then ψ ∈ RegPM(L).

Proof. The fact that the intersection H(ψ(a), l2) ∩ H(ψ(b), l1) contains exactly two
elements implies that these are obtained from simple roots of a polynomial of degree 2
(see the proof of Proposition 3.1). Therefore, locally, the roots depend smoothly on the
coefficients.
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3.2.2 The rigidified square linkage

This linkage is well-known in the Euclidean plane. It is the usual solution to the problem
of degenerate configurations of the square. It is very useful to notice that it does behave
in the same way in the Minkowski plane.

We first explain why we need to rigidify square linkages. If one considers the
ordinary square linkage (see the following figure), there are many realizations φ in which
φ(a)φ(b)φ(c)φ(d) is not a parallelogram (we call these realizations degenerate realizations
of the square).

a

b c

d

l

l

l

l

a

b c

d
l

l

l

l a

b = d c
l

l

The ordinary square
linkage

A realization of the
ordinary square linkage

A degenerate
realization of the

ordinary square linkage

In degenerate realizations, two vertices are sent to the same point of M.
To avoid degenerate realizations, we add two vertices and five edges to the square

abcd. We call this operation “rigidifying the square”.

a

b c

d

e

f

l

l

l

l

l/2 l/2

l/2l/2

l

This linkage is called the rigidified square. The input set is P = {a, c}.
We assume l �= 0.

Proposition 3.5. 1. For all φ ∈ ConfM(L) we have

φ(b)− φ(a) = φ(c)− φ(d)

(φ(a)φ(b)φ(c)φ(d) is an “affine parallelogram”).

2. For all φ ∈ ConfM(L) such that φ(b) �= φ(d) and φ(a) �= φ(c), we have φ|P ∈
RegPM(L). In particular, RegPM(L) contains

�
ψ ∈ M{a,c}

�ψ(a)− ψ(c)� · l2 < 0
�
.

Proof. 1. Let φ ∈ ConfM(L). From the equality case in the triangle inequality, we

have φ(f) = φ(a)+φ(d)
2 and φ(e) = φ(b)+φ(c)

2 .
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Case 1: φ(a) = φ(c). In this case, �φ(f)− φ(c)� = �φ(f)− φ(a)�. Therefore,

�φ(c)− φ(e)�+ �φ(f)− φ(c)� = �φ(f)− φ(e)�,

so φ(e), φ(c) and φ(f) are aligned, so φ(b),φ(c) and φ(d) are aligned and therefore
φ(b)− φ(a) = φ(c)− φ(d).

Case 2: φ(d) = φ(a)+φ(c)
2 . We have

�φ(b)− φ(a)�+ �φ(b)− φ(c)� = �φ(c)− φ(a)� (= 2l),

so φ(a), φ(c) and φ(b) are aligned, thus φ(d) = φ(b). We are taken back to the first
case.

Case 3: φ(d) �= φ(a)+φ(c)
2 and φ(a) �= φ(c). Let I = H(φ(a), l) ∩H(φ(c), l). We

have φ(d) ∈ I, φ(b) ∈ I, and card(I) ≤ 2.

We have φ(a) + φ(c) − φ(d) ∈ I. If φ(a) + φ(c) − φ(d) = φ(d) then we are in
the second case. If not, we have I = {φ(d),φ(a) + φ(c) − φ(d)} and therefore,
either φ(b) = φ(d) (this is again the first case) or φ(b) = φ(a) + φ(c) − φ(d), i.e.
φ(b)− φ(a) = φ(c)− φ(d).

2. This is a consequence of Fact 3.4.

3.2.3 The Peaucellier inversor

a
d

b

c

e

g
R R

RR

ir

ir

l

il

Choose r,R, l > 0 and let F = {a}, φ0(a) =

�
0
0

�
, P = {e}, Q = {d}. The square

bdce is rigidified (see Section 3.2.2), but for convenience, we do not draw on the figure
the vertices which are necessary for the rigidification.

The vertex g and the two edges (bg) and (cg) are not part of the traditional Peaucellier
inversor, but they are here to prevent φ(b) and φ(c) from being equal.

In the Euclidean plane, it is well-known that the Peaucellier linkage is a functional

linkage for the inversion with respect to the circle C
�
0,
�
|R2 − r2|

�
, that is, the function

α �−→ |R2−r2|
�α�2 α. In the Minkowski plane, we will prove that it is essentially functional for

inversion with respect to the hyperbola H
�
0,
√
R2 + r2

�
. More precisely, it is functional

for the function α �−→ −R2+r2

�α�2 α (in the version of the Peaucellier inversor which we

choose, a “-” sign appears).
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b

e

c

d

a

g

b

e

c

d
a g

Figure 3.1 – Two realizations of the same Peaucellier inversor in the Minkowski plane.

Proposition 3.6. For all φ ∈ ConfM(L), we have �φ(e)� �= 0 and φ(d) = − R2+r2

�φ(e)�2φ(e).

Proof. Let φ ∈ ConfM(L). We know that φ(b) �= φ(c) (because the edges (gb) and (gc)
do not have the same lengths) so the intersection of the two hyperbolae H(φ(e), R) and
H(φ(a), ir) is exactly {φ(b),φ(c)}. Moreover, �φ(e)� �= 0 (because the edges (be) and
(ba) do not have the same lengths).

Then, (yφ(b), zφ(b)) and (yφ(c), zφ(c)) are the two solutions of the following system with
unknown (y, z):

�
yz = −r2

(y − yφ(e))(z − zφ(e)) = R2.

This system is equivalent to

�
yz = −r2

−yφ(e)z
2 + (yφ(e)zφ(e) − r2 −R2)z + r2zφ(e) = 0.

We deduce that

zφ(b) + zφ(c) = zφ(e) −
r2 +R2

yφ(e)

and similarly

yφ(b) + yφ(c) = yφ(e) −
r2 +R2

zφ(e)

which gives the desired result, since φ(d) = φ(b) + φ(c)− φ(e).

Fact 3.7. The workspace of the vertex e, ConfPM(L), contains the spacelike cone
�
α ∈ M

 �α�2 > 0
�
.

Proof. Here, we use Proposition 3.2 at each step. Choose any α in the spacelike cone, let
φ(e) = α, and choose φ(b) and φ(c) such that {φ(b),φ(c)} = H(φ0(a), ir)∩H(α, R). Then,
�φ(c)− φ(b)�2 < 0, so it is possible to choose φ(d) such that H(φ(b), R) ∩H(φ(c), R) =
{φ(d),φ(e)}. Finally, choose φ(g) in the intersection H(φ(b), l) ∩H(φ(c), il).
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Proposition 3.8. For this linkage, RegPM(L) = ConfPM(L).

Proof. We give a detailed proof in order to illustrate the use of Fact 2.27. This method
is the key to many proofs concerning RegPM(L).

The Peaucellier inversor may be seen as the combination of the following linkages:
L1: a robotic arm {a1, c1, e1} with one input e1 and one fixed vertex a1, one edge {a1, c1}
of length ir and one edge {c1, e1} of length R;
L2: a robotic arm {a2, b2, e2} with one input e2 and one fixed vertex a2, one edge {a2, b2}
of length ir and one edge {b2, e2} of length R;
L3: a rigidified square {b3, d3, c3, e3} with inputs b3, c3 and four edges of length R;
L4: a robotic arm {b4, g4, c4} with inputs b4, c4, one edge {b4, g4} of length l and one
edge {g4, c4} of length il.

a1

c1

e1

R
ir

a2

b2

e2

R
ir d3

b3

c3

e3
R R

RR

b4

c4

g4

l

il

L1 L2 L3 L4

We combine the linkages in the following way (observe that the name of the vertices
are chosen so that each βi preserves the letters and only changes indices):

1. Let W1 = {c1, e1}. Let β1(c1) = c3, β1(e1) = e3. Let L5 = L1 ∪β1 L3. The input
set of L5 is P5 = {e3, b3}.

2. Let W2 = {b2, e2}. Let β2(b2) = b3, β2(e2) = e3. Let L6 = L2 ∪β2 L5. The input
set of L6 is P6 = {e3}.

3. Let W6 = {b3, c3}. Let β6(b3) = b4, β6(c3) = c4. Let L7 = L6 ∪β6 L4. The input
set of L7 is P7 = {e3}.

The linkage L7 is exactly the Peaucellier linkage.

Let ψ ∈ ConfP1
M (L1) such that the intersection H(0, ir) ∩H(ψ(e1), R) has cardinality

2. Facts 3.4 and 2.23 show that ψ ∈ RegP1
M (L1).

We may naturally identify Conf
{e3,b4}
M (L7) with a subset C of ConfP5

M (L5) (identifying

b4 with b3). Let us show, using Fact 2.27, that C is in fact a subset of RegP5
M (L5). Let ψ ∈

C, and let φ ∈ ConfV7
M (L7) such that φ(e3) = ψ(e3) and φ(b4) = ψ(b3). Let ψ1 ∈ M{e1}

defined by ψ1(e1) = ψ(e3): since φ(b4) �= φ(c3), the intersection H(0, ir) ∩H(ψ1(e1), R)
has cardinality at least 2, but it is in fact exactly 2 from Proposition 3.1. Therefore,
ψ1 ∈ RegP1

M (L1), so the first hypothesis of Fact 2.27 is satisfied. For the second hypothesis,

we need to show that φ|P3 ∈ RegP3
M (L3). We know that φ(b4) �= φ(c4), and from

Proposition 3.6, we also know that φ(e3) �= φ(d3). Therefore, Proposition 3.5 tells us
that φ|P3 ∈ RegP3

M (L3). The two hypotheses of Fact 2.27 are satisfied, so C ⊆ RegP5
M (L5).

In the same way, one may show that Conf
{e3}
M (L7) ⊆ RegP6

M (L6), and finally, that

Conf
{e3}
M (L7) ⊆ RegP7

M (L7), so RegPM(L7) = ConfPM(L7).
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Proposition 3.9. For all φ ∈ ConfM(L) we have the equivalence

φ(d) ∈ H
��

0
−1

�
, i

�
⇐⇒ yφ(e) − zφ(e) = −(R2 + r2).

Proof. Let φ ∈ ConfM(L). The following lines are equivalent:

φ(d) ∈ H
��

0
−1

�
, i

�

(yφ(d) + 1)(zφ(d) − 1) = −1

�
−(R2 + r2)

�φ(e)�2 yφ(e) + 1

��
−(R2 + r2)

�φ(e)�2 zφ(e) − 1

�
= −1

yφ(e) − zφ(e) = −(R2 + r2).

3.2.4 The partial t0-line linkage

a
d

b

c

e

g

f

R R

RR

ir

ir

l

il
i

i

R = r = 1√
2
; l > 0;F = {a, f};φ0(a) =

�
5

t0 + 1/2

�
,φ0(f) =

�
5

t0 − 1/2

�
;P = {e}.

Proposition 3.10. The workspace of e, ConfPM(L), is contained in the line t = t0, but
does not necessarily contain the whole line. More precisely

��
x
t

�
∈ M

 t = t0, |x− 5| > 1/2

�
⊆ RegPM(L) = ConfPM(L) ⊆

��
x
t

�
∈ M

 t = t0

�
.

Proof. We apply Fact 3.7, Propositions 3.8 and 3.9.

For example, this linkage with the choice t0 = 0 will be called the partial (t0 = 0)-line
linkage.

The dual of this linkage (see Section 3.1.4) is called the partial x0-line linkage.
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3.2.5 The t0-integer linkage

This linkage contains four vertices a, b, c, d which are restricted to move on I (the x-axis)
using a partial t0-line linkages. More precisely, the t0-integer linkage is obtained as the
combination of the linkage on the figure below with is combined with four partial t0-line
linkages Li, i = 1 . . . 4, to form the t0-integer linkage. The combination mappings βi send
a, b, c and d respectively to the inputs ei of the linkages Li.

a b c d
0.5 1 2

Take F = {a};φ0(a) =

�
0.5
t0

�
;P = ∅.

We have

Conf
{d}
M (L) =

��
−3
t0

�
,

�
−2
t0

�
, . . . ,

�
3
t0

�
,

�
4
t0

��
.

Moreover, ConfM(L) is a finite set so RegPM(L) = ConfPM(L).
We will use this linkage twice to construct more complex linkages. In Section 3.2.6,

we could have used a simpler linkage with a configuration space of cardinality 2 instead
of 8, but we need it to have cardinality at least 7 in Section 3.3.3.

3.2.6 The t0-line linkage

This linkage traces out the whole horizontal line t = t0: it contains a vertex e, the input,
such that

Conf
{e}
M (L) = {α ∈ M | tα = t0} .

To construct it, the idea is to combine a partial t0-line linkage with a t0-integer linkage,
as follows (to simplify the notations, we only give the construction of the (t0 = 0)-line
linkage). Let:

• L1 be a (t0 =
1
2)-integer linkage;

• L2 a (t0 = −1
2)-integer linkage;

• L3 the combination (disjoint union) of the two linkages L1 and L2;

• L4 a linkage similar to a partial t0-line linkage, with the only difference that F4 = ∅
instead of F4 = {a4, f4};

• W3 = {d1, d2} and β(d1) = a4, β(d2) = f4;

• L5 = L3 ∪β L4. Since for any x ∈ R, we have either |x− 5| > 1/2 or |x− 7| > 1/2,
we obtain as desired

Conf
{e5}
M (L5) = {α ∈ M | tα = t0} .

Using Fact 2.27, we also obtain RegPM(L) = ConfPM(L).
For future reference, we let a := a1, f := f1, e := e4.

The dual of this linkage is called the x0-line linkage.
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3.2.7 The horizontal parallelizer

This linkage has the input set P = {e3, e4}. It satisfies

RegPM(L) = ConfPM(L) =
�
ψ ∈ M{e3,e4}

 tψ(e3) = tψ(e4)

�
.

Let:

• L1 and L2 be two (x0 = 0)-line linkages;

• L3, L4 two linkages similar to (t0 = 0)-line linkages, but with F3, F4 = ∅;

• L5 the combination of L1 and L2;

• W3 = {a3, f3},β(a3) = e1,β(f3) = e2, and L6 = L3 ∪β L5;

• W4 = {a4, f4},β(a4) = e1,β(f4) = e2, and L7 = L4 ∪β L6.

L7 is the desired linkage.
For future reference, we let a := e3 and b := e4.
The dual of this linkage is called the vertical parallelizer.

3.2.8 The diagonal parallelizer

a

b

cde

f

g

0 0 0 0

√
2

0 0 0 0

00

P = {a, b}, F = {g, f},φ0(f) =

�
1
1

�
,φ0(g) =

�
0
0

�
.

In this section, we use the lightlike coordinates y and z (see Section 3.1.1).

Proposition 3.11. We have

RegPM(L) = ConfPM(L) =
�
ψ ∈ MP

 yψ(a) = yψ(b)
�
.

Proof. The point is that for α1,α2 ∈ M such that yα1 = yα2 and α1 �= α2, the intersection
H(α1, 0) ∩H(α2, 0) is a straight line, more precisely:

H(α1, 0) ∩H(α2, 0) = {γ | yγ = yα1} .

First, let us prove the inclusion ConfPM(L) ⊆
�
ψ ∈ MP

 yψ(a) = yψ(b)
�
.

For all φ ∈ ConfM(L), φ(c) ∈ H(φ(g), 0) ∩H(φ(f), 0) and zφ(f) = zφ(g), so zφ(c) = 0.
Likewise, zφ(d) = 0.

Since φ(e) ∈ H(φ(d), 0) and φ(e) �∈ H(φ(c), 0), we have yφ(d) = yφ(e) and φ(d) �= φ(e).
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a

b

e

d

c

f

g

Figure 3.2 – One realization of the diagonal parallelizer.

Therefore, since φ(a) ∈ H(φ(d), 0) ∩ H(φ(e), 0), we have yφ(a) = yφ(d). Likewise,
yφ(b) = yφ(d) and finally, yφ(a) = yφ(b).

Now, let us prove the inclusion ConfPM(L) ⊇
�
ψ ∈ MP

 yψ(a) = yψ(b)
�
. Let ψ ∈

M{a,b} such that yψ(a) = yψ(b). Construct φ ∈ ConfM(L) such that φ|{a,b} = ψ. Let

φ(d) ∈ M such that zφ(d) = 0 and yφ(d) = yψ(a). Let φ(e) = φ(d) +

�
1
−1

�
and

φ(c) = φ(d) +

�
−1
−1

�
(in (x, t) coordinates). Then φ ∈ ConfM(L).

Finally, the coordinates of all vertices vary smoothly with respect to the coordinates
of a and b, so RegPM(L) = ConfPM(L).

3.3 Elementary linkages for algebraic operations

3.3.1 The average function linkage

The average function linkage is a linkage with the input set P = {a, b} and the output
set Q = {c} which is a functional linkage for the function

f : I2 → I

(x1, x2) �−→
x1 + x2

2
,

and such that RegPM(L) = ConfPM(L) = IP .

Recall that by I, we mean the x-axis, and by “L is a functional linkage for f”, we
mean that for all ψ ∈ ConfPM(L)

xψ(c) =
xψ(a) + xψ(b)

2
.
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a b
c

d

e

i i

ii

The vertices a, b, c are restricted to move on the line I using (t0 = 0)-line linkages:
this means that the linkage in the figure above is combined with three (t0 = 0)-line
linkages. Likewise, the points e, d and c are restricted to have the same x coordinate using
a vertical parallelizer. The square adbe is rigidified (thus, the actual average function
linkage has much more than these 5 vertices, but many of them are not represented on
the figure).

To see that this linkage is the desired functional linkage, first notice that φ(c) is the
middle of the segment [φ(a),φ(b)] for all realization φ, because φ(a)φ(d)φ(b)φ(e) is a
parallelogram. Moreover, the expression

tφ(d) = ±

�

1 +

��xφ(b) − xφ(a)
��2

2

shows that the coordinates of φ(d) (and similarly, φ(e)) depend on φ(a) and φ(b) in a
differentiable way, so RegPM(L) = IP .

3.3.2 The adder

The adder is a linkage with the input set P = {a1, b1} and the output set Q = {b2} which
is a functional linkage for the function

f : I2 → I
(x1, x2) �−→ x1 + x2,

with RegPM(L) = ConfPM(L) = IP .
It is constructed as L1 ∪β L2, where L1 and L2 are average function linkages, with

W1 = {c1}, β(c1) = c2, F2 = {a2}, and φ02(a2) =

�
0
0

�
.

Note that we may obtain a functional linkage for substraction by letting P = {b2, b1}
and Q = {a1}. One may also construct (by induction on n) a functional linkage for
x �→ nx, where n is any integer, and (by switching the input and the output) a functional
linkage for x �→ 1

nx.

3.3.3 The square function linkage

The square function linkage is a linkage with the input set P = {a} and the output set
Q = {b}: it is functional for the function

I → I
x �−→ x2,
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with RegPM(L) = ConfPM(L) = IP .
To construct it, recall the algebraic trick described by Kapovich and Millson in [KM02]:

∀x ∈ R \ {−0.5, 0.5} x2 = 0.25 +
1

1
x−0.5 − 1

x+0.5

.

We have to find another trick to obtain a formula which works for every x ∈ R.
To do this, notice that for all x and x� in R we have the identity

x2 = 2(x+ x�)2 + 2(x�)2 − (x+ 2x�)2.

Thus the expression x2 can be rewritten

2

�
0.25 +

1
1

x+x�−0.5
− 1

x+x�+0.5

�
+ 2

�
0.25 +

1
1

x�−0.5
− 1

x�+0.5

�
−

�
0.25 +

1
1

x+2x�−0.5
− 1

x+2x�+0.5

�
.

(3.1)

Moreover, for all x ∈ R there exists an x� ∈ {−3,−2, . . . , 3, 4} such that

{x+ x�, x+ 2x�, x�} ∩ {−0.5, 0.5} = ∅.
Start with a (t0 = 0)-integer linkage L1: think of the vertex d1 as the number x�. Let

L2 be the linkage L1 to which one adds new fixed vertices at

�
0.5
0

�
and

�
0.25
0

�
, and a

new mobile vertex which will represent x and will be the input of the linkage (one does
not add any new edge for now). Since Expression 3.1 is the composition of additions,
subtractions and inversions, one may combine L2 with linkages for addition, subtraction
and inversion (for the inversion, use the Peaucellier inversor), in the spirit of Fact 2.28, so
that the output of the new linkage L corresponds to Expression 3.1. This is the desired
linkage.

3.3.4 The multiplier

The multiplier is a linkage with the input set P = {a, b} and the output set Q = {c}
which is a functional linkage for the function

f : I2 → I
(x1, x2) �−→ x1x2,

such that RegPM(L) = ConfPM(L) = IP .
Simply construct the multiplier by combining square function linkages and adders,

using the identity

∀x1, x2 ∈ R x1x2 =
1

4

�
(x1 + x2)

2 − (x1 − x2)
2
�
.

3.3.5 The polynomial linkage

Let f : Rn → Rm be a polynomial. We identify R with I.
The polynomial linkage is a functional linkage for the function f with card(P ) = n

and
RegPM(L) = ConfPM(L) = IP .

The polynomial linkage is obtained by combining adders and multipliers (use Fact 2.28).
The coefficients are represented by fixed vertices.



54 CHAPTER 3. LINKAGES IN THE MINKOWSKI PLANE

Example To illustrate the general case, we give the following example: n = 2, m = 1,
f(x, y) = 2x3y + π.

To construct a functional linkage for f , start with a linkage L consisting of two fixed

vertices a, b with φ0(a) =

�
2
0

�
and φ0(b) =

�
π
0

�
, but also two vertices c, d which are the

inputs and correspond respectively to the variables x and y.

Combine this linkage with a multiplier: the combination mapping β sends c to one of
the inputs of the multiplier and d to the other one. The linkage (still called L) is now
functional for (x, y) �−→ xy.

Combine the new linkage with another multiplier: the combination mapping β sends c
to one of the inputs and the output of L to the other one. The new linkage L is functional
for (x, y) �−→ x2y.

Repeating this process once, we obtain a functional linkage for x3y, and then for 2x3y
(using the vertex a).

Finally, combine the linkage L with an adder: the combination mapping β sends the
output of L to one of the inputs, and b to the other one.

3.4 End of the proof of Theorem 2.4

Let n ∈ N. We are given A a semi-algebraic subset of (R2)n, but we first assume that A
is in fact an algebraic subset of (R2)n, defined by a polynomial f : R2n → Rm (so that
A = f−1(0)).

Take a polynomial linkage L for f . Name the elements of the input set: P =
{a1, . . . , a2n}. The output set Q has 2m elements.

The linkage L does not yet look like the desired linkage: since L has 2n inputs, the
partial configuration space ConfPM(L) is a subset of (R2)2n (in fact, it is a subset of I2n),
while A is a subset of (R2)n (in particular, we are looking for a linkage with n inputs).
To obtain ConfPM(L) = A ⊆ (R2)n, we have to modify L in the following way.

1. With several (x0 = 0)-line linkages and diagonal parallelizers, extend the linkage L
to a new one with new vertices c2, c4, c6, . . . , c2n such that for all realization φ and
for all k ∈ {1, . . . , n}

xφ(c2k) = 0;

yφ(c2k) = yφ(a2k)
�
i.e. xφ(c2k) + tφ(c2k) = xφ(a2k) + tφ(a2k)

�
.

2. With several vertical and horizontal parallelizers, extend this linkage to a new
one with vertices d2, d4, d6, . . . , d3n such that for all realization φ and for all k ∈
{1, . . . , n}

xφ(d2k) = xφ(a2k−1);

tφ(d2k) = tφ(c2k).

Thus, for all realization φ and all k ∈ {1, . . . , n}, we have xφ(d2k) = xφ(a2k−1) and
tφ(d2k) = xφ(a2k).

Let P = {d2, d4, . . . , d2n}. Note that the input map p is a finite covering onto the
simply connected set (R2)n. Therefore, p is a trivial covering. The output set Q is
unchanged.
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x

t

a1a2

c2

d2

Figure 3.3 – A partial realization of the four vertices a1, a2, c2, d2. We have xφ(d2) = xφ(a1)
and tφ(d2) = xφ(a2).

Fix the outputs to the origin: precisely, replace F by F ∪Q and let

∀a ∈ Q φ0(a) =

�
0
0

�
.

We obtain as desired RegPM(L) = ConfPM(L) = A.
Finally, if A is any semi-algebraic set of (R2)n, then A is the projection of an algebraic

set B of (R2)N for some N ≥ n. Construct the linkage L1 such that ConfP1
M (L1) = B

and remove the unnecessary inputs d2n+2, d2n+4 . . . , d2N . Then

ConfPM(L) = A,

which ends the proof Theorem 2.4.
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Chapter 4

Linkages in the hyperbolic plane

The aim of this chapter is to prove Theorem 2.6.

4.1 Generalities on the hyperbolic plane

Definition 4.1. The Poincaré half-plane model is the half-plane:

��
x
y

�
∈ R2

y > 0

�

endowed with the metric:
(dx)2 + (dy)2

y2
.

This model is the one we will always use in this chapter.
The distance δ on H2 is given by the formula:

δ

��
x1
y1

�
,

�
x2
y2

��
= arcosh

�
1 +

(x2 − x1)
2 + (y2 − y1)

2

2y1y2

�
.

4.1.1 Circles

In the Poincaré half-plane model, a hyperbolic circle with hyperbolic center α and
hyperbolic radius R is in fact a Euclidean circle with center β and radius r, where
yβ = yα coshR, xβ = xα and r = yα sinhR. Also notice that yβ =

�
y2α + r2.

4.1.2 Some compact subsets of H2

Since we work with linkages with compact configuration spaces, whereas H2 is not
compact, we need to introduce some compact subsets on which we will use our linkages.
Fix a real parameter η > 1, and think of it as a very large number (the precise meaning
of “large” will be given later).

Let
I0 :=

�
α ∈ H2

 yα = 2, |xα| ≤ 10η
�
.

J0 :=
�
α ∈ H2

 xα = 0, 2e−10η ≤ yα ≤ 2e10η
�
.

B0 :=
�
α ∈ H2

 |xα| ≤ 10η, 2e−10η ≤ yα ≤ 2e10η
�
.

57
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For any segment of positive length I, we write Î the line containing I. For example:

Î0 :=
�
α ∈ H2

 yα = 2
�
.

y = 0

I0

J0 B0

4.2 Elementary linkages for geometric operations

4.2.1 The circle linkage

a b

l

We let F = {a} and P = {b} (see Section 3.1.1 for the notations).
In this linkage ConfPH2(L) is a hyperbolic circle, which is also a Euclidean circle.

Conversely, if C is a Euclidean circle contained in the half-plane, it is also a hyperbolic
circle, so there is a circle linkage such that ConfPH2(L) = C. Moreover, RegPH2(L) =
ConfPH2(L).

4.2.2 The robotic arm linkage

a b

c

l2 l1

We let P = {a, b}, l1 > 0, l2 > 0. We have:

ConfPH2(L) =
�
ψ ∈ (H2)P

 |l1 − l2| ≤ δ(ψ(a),ψ(b)) ≤ l1 + l2
�

and RegPH2(L) contains:
�
ψ ∈ ConfPH2(L)

 |l1 − l2| < δ(ψ(a),ψ(b)) < l1 + l2
�

(recall that δ is the hyperbolic distance on H2).
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4.2.3 The Peaucellier inversor

a
b

d

e

c

f

g

r r

rr

l

l

t1 t2

t1

t2

We let F = {a}, P = {b}, Q = {c}. We require l �= r, t1 �= t2, t1 > r, t2 > r.

Proposition 4.2. This linkage is functional for the (Euclidean) inversion with respect
to the circle C with hyperbolic center φ0(a) and hyperbolic radius arcosh cosh l

cosh r .

Proof. Let φ ∈ ConfH2(L). Let µ be the middle of the hyperbolic segment [φ(d)φ(e)].

First case. In this case, we assume φ0(a) =

�
0
1

�
, xµ = 0 and yµ ≤ 1.

φ(d) and φ(e) have two possible values each, and φ(d) �= φ(e) because t1 �= t2. By
symmetry, µ is also the middle of the hyperbolic segment [φ(b),φ(c)] and xφ(b) = xφ(c) = 0.
If necessary, we exchange b and c so that yφ(c) ≥ yφ(b).

Let α be the Euclidean center of C. We have

yα = yφ(a) cosh arcosh
cosh l

cosh r
=

cosh l

cosh r
.

From the hyperbolic Pythagorean Theorem applied to the hyperbolic triangles
(µφ(a)φ(d)), (µφ(b)φ(d)) and (µφ(c)φ(d)), letting D = δ(φ(d), µ), we get:

δ(φ(a), µ) = arcosh
cosh l

coshD

δ(φ(c), µ) = δ(φ(b), µ) = arcosh
cosh r

coshD

We may now compute the coordinates of φ(b) and φ(c):

yφ(b) =
exp arcosh cosh r

coshD

exp arcosh cosh l
coshD

yφ(b) =
cosh r +

�
(cosh r)2 − (coshD)2

cosh l +
�
(cosh l)2 − (coshD)2

yφ(c) =
1�

exp arcosh cosh r
coshD

� �
exp arcosh cosh l

coshD

�

yφ(c) =
(coshD)2�

cosh r +
�
(cosh r)2 − (coshD)2

��
cosh l +

�
(cosh l)2 − (coshD)2

� .
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Finally, we obtain as desired:

(yα − yφ(b))(yα − yφ(c)) =
(cosh l)2

(cosh r)2
− 1.

General case. Let Φ : H2 �→ H2 be an isometry such that Φ(φ(a)) =

�
0
1

�
, xΦ(µ) = 0

and yΦ(µ) ≤ 1. Let i be the inversion with respect to the circle with hyperbolic center�
0
1

�
and hyperbolic radius arcosh cosh l

cosh r . Then φ(c) = Φ−1 ◦ i ◦ Φ(φ(b)), and Φ−1 ◦ i ◦ Φ
is the inversion with respect to the circle C.

We now study the workspace of the input b. Obviously, the input cannot be in the
image of the lower half-plane by the inversion, because the output has to remain in the
upper half-plane. Moreover, since the two edges (bf) and (bc) have different lengths, the
input cannot be a fixed point of the inversion.

α

µ

Figure 4.1 – The set K must not intersect the gray disk D or the black circle C.

The following proposition tells us that these two obstructions are essentially the only
ones.

Proposition 4.3. Let C be a circle of hyperbolic center α ∈ H2, hyperbolic radius R > 0,
Euclidean center µ and Euclidean radius r. Let D be the closed disk of hyperbolic center
α and hyperbolic radius Q = δ(α, µ).

Let K be a compact set in H2 \ (C ∪D). Then there exists a choice of φ0(a), l, r, t1, t2
such that the Peaucellier linkage with these lengths is functional for the inversion with
respect to C, and such that K ⊆ RegPH2(L) ⊆ ConfPH2(L).

Proof. Let K � be a compact set in H2 \ (C ∪D) such that K ⊆
◦
K � (the interior of K �).

Let Q�, such that Q < Q� < R and K � ⊆ H2 \ (C ∪ D�), where D� is the closed disk of
hyperbolic center α and hyperbolic radius Q�.
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Let Q�� > 0 such that K � ⊆ D��, where D�� is the open disk of hyperbolic center α and
hyperbolic radius Q��.

Define
Φ : R≥0 → R

u → arcosh((coshu)(coshR))− u.

Since limu→+∞Φ(u) = log(coshR) = Q, there exists u0 ≥ Q�� such that Φ(u0) ≤ Q�.
Let φ0(a) = α, r = u0 and l = Φ(u0) + u0. Then, R = arcosh cosh l

cosh r , l − r ≤ Q� and
l + r ≥ Q��.

Finally, choose t1 and t2 close enough to each other to have K � ⊆ ConfPH2(L). Then
K ⊆

◦
K � ⊆ RegPH2(L).

4.2.4 The Euclidean line linkage

The aim of this linkage is to trace out any given Euclidean segment. More precisely, let
Δ be a straight line and I ⊆ Δ a Euclidean segment: we construct a linkage L with one
input such that I ⊆ RegPH2(L) ⊆ ConfPH2(L) ⊆ Δ.

Let α ∈ R2, k1, k2 > 0 such that:

1. Δ is outside the closed disk with hyperbolic center α and hyperbolic radius k1;

2. I is contained in the open disk with hyperbolic center α and hyperbolic radius k2.

Let l and r such that l+ r = k2. Choosing l and r sufficiently close to k2
2 , we may also

require arcosh cosh l
cosh r ≤ k1. From Proposition 4.3, we deduce that there is a Peaucellier

linkage L1 such that I ⊆ RegPH2(L) ⊆ ConfPH2(L).
Let i be the inversion for which L is functional. Then i(Δ) is a circle contained in

the half-plane (in which one point has been removed). Let L2 be a circle linkage for this
circle. Let W1 = {c1} and β(c1) = b2. Construct the combination L3 = L1 ∪β L2. This
linkage has the desired properties.

Rename the input: b := b1, and the fixed vertices: a := a1, c := a2.

We also add an edge between the two fixed vertices a and c, of length δ(φ03(a),φ03(c)).
This new edge will be useful for Sections 4.2.5 and 4.2.6.

4.2.5 The vertical parallelizer

The aim of this linkage is to force two vertices to have the same x coordinate. More
precisely, it has two inputs a and b with:

�
ψ ∈ (H2)P

 xψ(a) = xψ(b)

�
∩ (B0)

P ⊆ RegPH2(L) ⊆ ConfPH2(L) ⊆
�
ψ ∈ (H2)P

 xψ(a) = xψ(b)

�

(see the notations of Section 4.1.2).

To construct it, the idea is to allow two vertical Euclidean line linkages to move
together horizontally.

Let L1 and L2 be two identical line linkages for the segment J0. Construct their
disjoint union L3 = L1 ∪ L2.

Let I be a horizontal segment of Euclidean length 20η centered at φ01(a1), and I � a
horizontal segment of Euclidean length 20η centered at φ01(c1). Let L4 and L5 be line
linkages for I and I � respectively, and construct their disjoint union L6 = L4 ∪ L5.
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Change F3 to ∅, let W3 = {a1, c1, a2, c2}, β(a1) = β(a2) = b4, β(c1) = β(c2) = b5 and
L7 = L3 ∪β L6.

Rename the inputs: a := b1, b := b2.

This linkage has the desired properties.

4.2.6 The hyperbolic alignment linkage

The hyperbolic alignment linkage and the equidistance linkage are not needed to prove
the differential universality (Theorem 2.7), but we will use them to prove the algebraic
universality (Theorem 2.6).

The hyperbolic alignment linkage forces its three inputs a, b, c to be on the same
hyperbolic line. Fix a real constant l > 0, then define

A =
�
ψ ∈ (H2)P

 ψ(a),ψ(b),ψ(c) are on the same hyperbolic line
�

and

B =
�
ψ ∈ (H2)P

 0 < max(δ(ψ(a),ψ(b)), δ(ψ(b),ψ(c)), δ(ψ(a),ψ(c))) ≤ l
�
.

We want to construct a linkage such that

A ∩B ⊆ RegPH2(L) ⊆ ConfPH2(L) ⊆ A.

Take a vertical hyperbolic segment J of hyperbolic length l. Note that J is also a
Euclidean segment, and that any hyperbolic segment of length l is the image of J by a
global isometry of H2.

Take three identical Euclidean line linkages L1, L2, L3 for J , with no fixed vertices
(F1 = F2 = F3 = ∅), and glue these three linkages together: let W1 = {a1, c1}, β(a1) =
a2,β(c1) = c2, and L4 = L1 ∪β L2. Next, let W4 = {a2, c2}, β(a2) = a3,β(c2) = c3, and
L5 = L4 ∪β L3. Rename the inputs: a := b1, b := b2, c := b3. Since the isometries of H2

send the vertical line to other hyperbolic lines, the vertices a, b and c are always on the
same hyperbolic line and L5 is the desired linkage.

4.2.7 The equidistance linkage

The equidistance linkage forces an input a to be equidistant from the two other inputs d
and e.

Fix two real constants k1 > 0, k2 > 0 and define

A =
�
ψ ∈ (H2)P

 δ(ψ(a),ψ(d)) = δ(ψ(a),ψ(e))
�

and

B =
�
ψ ∈ (H2)P

 δ(ψ(d),ψ(e)) ≥ k1, δ(ψ(a),ψ(d)) ≤ k2
�
.

We want to construct a linkage L such that

A ∩B ⊆ RegPH2(L) ⊆ ConfPH2(L) ⊆ A.

Start with the following linkage:
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a
b

d

e

c

f

g

r r

rr

t1 t2

t1

t2

Let P = {a, d, e}, F = ∅ and r > k2.
Using a hyperbolic alignement linkage with parameter l = k2 + 2r, force the three

vertices a, b and c to move on the same hyperbolic line. In other words, combine the
linkage on the figure above with a hyperbolic alignment linkage (the combination mapping
sends a, b, c to the inputs of the hyperbolic alignment linkage).

Finally, choose t1, t2 > r with t1 �= t2 and |t1 − t2| sufficiently small.

4.3 Elementary linkages for algebraic operations

In this section, we describe linkages which are functional for algebraic operations such
as addition or multiplication on real numbers. The real line is identified with Î0 =�
α ∈ H2

 yα = 2
�
, which means that we will write simply x instead of (x, 2).

4.3.1 The symmetrizer

First version

The symmetrizer is a functional linkage for:

f : ConfPH2(L)(⊆ Î0
P
) → Î0

(x1, x2) �−→
x1 + x2

2
.

b

d

c

f

a

r r

t1 t2

Let P = {b, c}, Q = {a}, t1 > r, t2 > r, |t1 − t2| = 1, r = 8η. The vertices b and c
are restricted to move on I0 using two line linkages: this means that the linkage on the



64 CHAPTER 4. LINKAGES IN THE HYPERBOLIC PLANE

figure above is combined with two line linkages, which are not represented on the figure,
with a combination map β such that β(b) and β(c) are the two inputs of the line linkages.
The vertices a and d are restricted to move on the same vertical line using a vertical
parallelizer.

For this linkage,

ConfPH2(L) =
�
ψ ∈ Î0

P
 1 ≤ |ψ(b)− ψ(c)| ≤ 16η

�

and RegPH2(L) contains
�
ψ ∈ Î0

P
 1 < |ψ(b)− ψ(c)| < 16η

�
.

Modifying ConfPH2(L)
Since we want the symmetrizer to handle input vertices b and c which are close to each
other, or even equal, the first version is not suitable for our purpose. Notice that

x1 + x2
2

=
x1+8η

2 + x2+(−8η)
2

2
.

Following this formula and the idea of Fact 2.28, take one symmetrizer L1, but add

one input to the set of fixed vertices and set it to the coordinate

�
8η
2

�
. Next, take a

second symmetrizer L2, add one input to the set of fixed vertices and set it to

�
−8η
2

�
.

Finally, take a third symmetrizer L3 and combine it with L1 and L2, using a combination
mapping β which sends the outputs of L1, L2 to the inputs of L3.

Thus, by combining three symmetrizers we get a new version of the symmetrizer
L, which is functional for the same function, but such that RegPH2(L) (⊆ ConfPH2(L))
contains: �

ψ ∈ Î0
P
 |ψ(b)| < 7η, |ψ(c)| < 7η

�
.

4.3.2 The adder

Take a symmetrizer L. Fix the vertex b to 0, let P = {a} and Q = {c}. We obtain a
functional linkage for x �−→ 2x, for which RegPH2(L) contains:

�
ψ ∈ Î0

P
 |ψ(a)| < 3η

�
.

Combining this linkage with the symmetrizer, we get a functional linkage for

(x1, x2) �−→ 2
x1 + x2

2
= x1 + x2.

For this linkage, RegPH2(L) contains:
�
ψ ∈ Î0

P
 |ψ(a)| < 3η, |ψ(b)| < 3η

�
.

This linkage is called the adder.
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4.3.3 The opposite value linkage

Take a symmetrizer L. Fix the vertex a to 0, let P = {c} and Q = {b}. We obtain a
functional linkage for x �−→ −x, for which RegPH2(L) contains:

�
ψ ∈ Î0

P
 |ψ(c)| < 7η

�
.

4.3.4 The rational homothety linkage

Let n be an integer. Using n− 1 adders, we get a functional linkage for x �−→ nx, for
which RegPH2(L) contains �

ψ ∈ Î0
P
 |ψ(c)| < 3

n
η

�
.

Switching the input and the output, we get a functional linkage for x �−→ x
n , for

which RegPH2(L) contains �
ψ ∈ Î0

P
 |ψ(c)| < 3η

�
.

4.3.5 The square function linkage

With the input set P = {a} and the output set Q = {b}, it is a functional linkage for the
function:

f : ConfPH2(L)(⊆ Î0) → Î0
x �−→ x2,

so that ConfPH2(L) ⊆ Î0
P
and RegPH2(L) contains a neighborhood of

�
0
2

�
in Î0.

To construct it, let C be the circle of Euclidean center

�
0
2

�
and radius 1, K a compact

set like in Proposition 4.3 such that

�
±0.5
2

�
∈

◦
K and

�
−4
2

�
∈

◦
K, and L a Peaucellier

linkage such that K ⊆ RegPH2(L). Then L is functional for

f : ConfPH2(L)(⊆ Î0) → Î0
x �−→ 1

x
.

Now, as in the Minkowski case, we use the algebraic trick first described by Kapovich
and Millson [KM02]:

∀x ∈ R \ {−0.5, 0.5} x2 = 0.25 +
1

1
x−0.5 − 1

x+0.5

,

Thus, the desired linkage is obtained by composition of the previous linkages.
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4.3.6 The multiplier

A first version

The multiplier is a linkage with P = {a, b} and Q = {c}, which is a functional linkage for
the function:

f : ConfPH2(L)(⊆ Î0
P
) → Î0

(x1, x2) �−→ x1x2

such that ConfPH2(L) ⊆ Î0
P
and RegPH2(L) contains a neighborhood U of

�
0
2

�
in Î0

P
.

We simply construct it by combining square function linkages and adders, using the
identity:

∀x1, x2 ∈ R x1x2 =
1

4
((x1 + x2)

2 − (x1 − x2)
2).

Modifying ConfPH2(L)

We are now going to construct a multiplier such that ConfPH2(L) ⊆ Î0
P
and RegPH2(L)

contains

��
x
2

�  x ∈ [−η, η]

�P

.

Let n be an integer such that

��
x
2

�  x ∈ [− η
n ,

η
n ]

�P

⊆ U (where U is defined in

Section 4.3.6). Using two rational homothety linkages and one multiplier (first version),
and the formula:

∀x1, x2 ∈ R x1x2 = n2
�x1
n

��x2
n

�

we obtain the desired linkage.

4.3.7 The polynomial linkage

Let f : Rn → Rm be a polynomial of degree d ≥ 1 and coefficients in [−K,K] with
1 ≤ K ≤ η. We still identify R with Î0. Our aim is to construct a functional

linkage for f |ConfPH2 (L) , with ConfPH2(L) ⊆ Î0
P

and RegPH2(L) containing UK,d,n :=

[−MK,d,n,MK,d,n]
P , where MK,d,n = 1

K(d+1)n η
1/d.

It is obtained by combining adders and multipliers. The coefficients are represented
by fixed vertices.

Remark. At this stage, it would be possible to fix the outputs of the polynomial linkage

to

�
0
2

�
to prove directly Theorem 2.7. However, the proof of Theorem 2.6 is more

complicated, since we need the input vertices to move outside the line Î0, as it will be
explained in the next section.

4.4 End of the proof of Theorem 2.6

Let A be a compact semi-algebraic subset of (H2)n. First, we assume that A is a compact
algebraic subset of (H2)n.
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We want to construct a linkage with P = {d2, d4, . . . , d2n} such that ConfPH2(L) = A.
The idea is to identify each point α of the Poincaré half-plane with three coordinates
X1

α, X
2
α, X

3
α, defined by:

∀i ∈ {1, 2, 3} Xi
α = δ

��
i
2

�
,α

�
.

Since

�
1
2

�
,

�
2
2

�
,

�
3
2

�
are not aligned, these three coordinates characterize the point

α.
Let f : (R2)n = R2n → Rm be a polynomial function (of degree d) with coefficients in

[−1, 1] such that A = f−1(0).
We may assume that A is contained in the set

V := ((−M1,d,2n,M1,d,2n)× (3,M1,d,2n))
n

(see Section 4.3.7 for the definition of M1,d,2n). If it is not, choose an isometry Φ of H2

such that Φ(A) is contained in this set (for a large enough η), construct the desired
linkage, and then replace φ0 by Φ−1 ◦ φ0.

If necessary, increase η (but do not change the definition of V by doing so) so that

M100,2,2 ≥ max



|x|


x ∈ R, i ∈ {1, 2, 3}, δ

��
x
2

�
,

�
i
2

��
≤ max

(α1,...,αn)∈V
k∈{1,...,n}

δ

�
αk,

�
i
2

��
 .

We are now ready to construct our linkage. Start with a linkage L with the input set
P = {d2, d4, . . . , d2n} and no edge. Add other vertices

a1, a2, . . . , a2n, b
1
2, b

2
2, b

3
2, b

1
4, b

2
4, b

3
4, . . . , b

1
2n, b

2
2n, b

3
2n, c

1
2, c

2
2, c

3
2, c

1
4, c

2
4, c

3
4, . . . , c

1
2n, c

2
2n, c

3
2n

which are restricted to move on Î0 using line linkages.
Combine the linkage with equidistance linkages (with parameters k1 = 1 and k2 =

M1,d,2n + 4) so that for all φ ∈ ConfH2(L), all k ∈ {1, . . . , n} and all i ∈ {1, 2, 3}:

Xi
φ(bi2k)

= Xi
φ(d2k)

.

Then, use polynomial linkages so that for all φ ∈ ConfH2(L), all k ∈ {1, . . . , n} and all
i ∈ {1, 2, 3}:

xφ(ci2k)
= xφ(a2k) · (xφ(bi2k) − i)2

and
xφ(ci2k)

= 2 · ((xφ(a2k−1) − i)2 + (xφ(a2k) − 2)2).

Thus we have for all i and k:

xφ(a2k) · (xφ(bi2k) − i)2 = 2 · ((xφ(a2k−1) − i)2 + (xφ(a2k) − 2)2)

arcosh

�
1 +

(xφ(bi2k)
− i)2

2 · 2

�
= arcosh

�
1 +

(xφ(a2k−1) − i)2 + (xφ(a2k) − 2)2

2 · xφ(a2k)

�

δ

�
φ(bi2k),

�
i
2

��
= δ

��
xφ(a2k−1)

xφ(a2k)

�
,

�
i
2

��
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Xi
φ(bi2k)

= Xi�
xφ(a2k−1)

xφ(a2k)

�

Xi
φ(d2k)

= Xi�
xφ(a2k−1)

xφ(a2k)

�.

Thus:

φ(d2k) =

�
xφ(a2k−1)

xφ(a2k)

�
.

Add vertices e1, . . . , em and use a polynomial linkage so that for all φ ∈ ConfH2(L):

f(xφ(a1), . . . , xφ(a2n)) = (xφ(e1), . . . , xφ(em)).

Now, notice that p|π−1(V) is a smooth finite covering onto V, which is necessarily
trivial since V is simply connected.

To finish the construction, fix the vertices e1, . . . , em to the point

�
0
2

�
.

Thus,

Reg
{a1,...,a2n}
H2 (L) = Conf

{a1,...,a2n}
H2 (L) = A ⊆ R2n = Î0,

and finally:
RegPH2(L) = ConfPH2(L) = A ⊆ (H2)n ⊆ (R2)n.

Moreover, the restriction map ConfH2(L) → ConfPH2(L) is a smooth finite covering,
which is trivial as the restriction of a trivial covering.

If A is only a compact semi-algebraic subset of (H2)n, we know from Proposition 2.14
that A is the projection onto the first coordinates of a compact algebraic set B. Apply
the above construction to B and remove some vertices from the input set to obtain
ConfPH2(L) = A, which ends the proof of Theorem 2.6.



Chapter 5

Linkages in the sphere

The aim of this chapter is to prove Theorem 2.9. In the first three sections, we focus on
the two-dimensional sphere, while higher dimensions are studied in the last section.

The sphere S2 will be considered as the unit sphere of R3. Thus, a point α ∈ S2 is
denoted by three coordinates xα, yα, zα.

5.1 Elementary linkages for geometric operations

5.1.1 The articulated arm linkage

a b

c

l2 l1

P = {a, b}, Q = ∅, F = ∅. The lengths of the edges l1 and l2 satisfy 0 < l1, l2 ≤ π.

A standard computation gives:

ConfPS2(L) =
�
ψ ∈ (S2)P

 |l1 − l2| ≤ δ(ψ(a),ψ(b)) ≤ min(l1 + l2, 2π − (l1 + l2))
�
.

5.1.2 The great circle linkage

One vertex a is linked to k other vertices v1, . . . , vk, by edges of length π/2.

69
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vk· · ·v3v2v1

a

π/2
π/2

π/2

π/2

P = {v1, . . . , vk}, Q = ∅, F = ∅.
This linkage forces v1, . . . , vk to be on the same great circle of the sphere:

ConfPS2(L) =
�
ψ ∈ (S2)P

 ∃f ∈ (R3)∗ ∀i ∈ {1, . . . , k} f(ψ(vk)) = 0
�
.

The fixed great circle linkage is a variant in which a ∈ F . Then

ConfPS2(L) = (S2 ∩ a⊥)P .

5.1.3 The symmetrizer

The symmetrizer is a functional linkage for symmetry with respect to a great circle (i.e.
orthogonal symmetry with respect to a plane P in R3). It is the key to the construction
of several other linkages, but it is also the most difficult to obtain.

First version

Here is a first attempt, which we shall call L1.

a

b

c

d g

i

j

k

l

m

π/3

π/3

2π/3

π/6
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All the edges have length π/2, except when another length is indicated.

Let P = {a, b}, Q = {c}, and F = ∅. We want a to be the unit normal vector to
the (linear) plane P of symmetry, and b to be the point to which we want to apply the
symmetry. The result of the symmetry is c.

Proposition 5.1. Fix some ψ ∈ (S2)P . Let α ∈ S2 be symmetric to ψ(b) with respect to
ψ(a)⊥. Then:

�
φ(c)

 φ ∈ p−1(ψ)
�
= {α,−α}.

Proof. Assume that φ ∈ ConfPS2(L1) is such that φ|P = ψ. Applying a rotation to
the sphere if necessary, we may assume that ψ(a) = (0, 0, 1) and yψ(b) = 0. Let
φ ∈ ConfS2(L1). If xψ(b) = 0, we may also assume up to rotation that yφ(d) = 0.

If xψ(b) �= 0, then φ(g)⊥ contains the two distinct points ψ(a) and ψ(b), so φ(g) ∈
{±(0, 1, 0)}. Applying a symmetry with respect to φ(g)⊥ if necessary, we may assume
that φ(g) = (0, 1, 0). But φ(d) ∈ φ(g)⊥ ∩ φ(a)⊥, so that φ(d) ∈ {±(1, 0, 0)}. Therefore,
whether or not xψ(b) = 0, we may assume φ(d) ∈ {±(1, 0, 0)} and φ(g) = (0, 1, 0). Hence,

φ(i) = (0, 1/2,
√
3/2) and φ(j) = (0, 1/2,−

√
3/2).

Since φ(k) is on the line φ(i)⊥ ∩ φ(b)⊥, it has two possible (opposite) values.

φ(k) �∈ Rφ(a) because φ(k) ∈ φ(i)⊥ and φ(a) �∈ φ(i)⊥.

Since m is on the line φ(k)⊥ ∩ φ(a)⊥, it has two possible opposite values.

φ(j) �∈ Rφ(m) because φ(m) ∈ φ(a)⊥ and φ(j) �∈ φ(a)⊥.

Since l is on the line φ(j)⊥ ∩ φ(m)⊥, φ(l) has two possible opposite values.

φ(l) �∈ Rφ(g) because φ(l) ∈ φ(j)⊥ and φ(g) �∈ φ(j)⊥.

Since c is on the line φ(l)⊥ ∩ φ(g)⊥, φ(c) has two possible opposite values.

Note that the construction of φ described above really provides a realization of the
linkage, which proves that ConfPS2(L1) is the whole (S2)P .

To see that one of the possible values of φ(c) is symmetric to φ(b) with respect to

φ(a)⊥, use the symmetries of the abstract linkage: take φ ∈ Conf
{a,b,d,g,i,k,m}
S2 (L1), and

extend φ to V (the set of all vertices) by letting φ(c) be symmetric to φ(b) with respect
to φ(a)⊥, φ(l) symmetric to φ(k) with respect to φ(a)⊥, and φ(j) symmetric to φ(i) with
respect to φ(a)⊥. Then it is clear that φ ∈ ConfS2(L1).

In order to avoid the configurations in which φ(c) is not symmetric to φ(b) with
respect to φ(a)⊥, we introduce a second version of the symmetrizer.

Second version

Here is a different version of the symmetrizer, L2:
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a

b

c

d g

e

f

π/4

π/4

π/4

π/4

All the edges have length π/2, except when another length is indicated; P =
{a, b}, Q = {c}, and F = ∅. As before, we want c to be symmetric to b with respect to
a⊥.

Proposition 5.2. 1. For all ψ ∈ (S2)P , there exists φ ∈ p−1(ψ) such that φ(c) is
symmetric to φ(b) with respect to φ(a)⊥.

2. There does not exist φ ∈ ConfS2(L2) such that −φ(c) is symmetric to φ(b) with
respect to φ(a)⊥.

Proof. Let us prove the first assertion. Let ψ ∈ (S2)P , choose φ(g) anywhere in ψ(a)⊥ ∩
ψ(b)⊥, and a point α ∈ φ(g)⊥ ∩ φ(a)⊥. If δ(α,φ(b)) ≤ π/2, let φ(d) = α, else let
φ(d) = −α. In any case we have δ(φ(d),φ(b)) ≤ π/2 so we can choose φ(e) on the
intersection of the circles C(φ(b),π/4) and C(φ(d),π/4). Let φ(c) be symmetric to φ(b)
with respect to φ(a)⊥, and let φ(f) be the image of φ(e) by a half turn of axis Rφ(d).
Then, φ is a realization of the linkage.

We now prove the second assertion. Let φ ∈ ConfS2(L2). If δ(φ(c),φ(d)) < π/2 then
δ(−φ(c),φ(d)) > π/2 whereas δ(φ(b),φ(d)) ≤ π/2, so −φ(c) is not symmetric to φ(b)
with respect to φ(a)⊥. If δ(φ(c),φ(d)) = π/2 then φ(c) = ±φ(a), which means that
φ(c), φ(f), φ(d), φ(e) are on the same geodesic and δ(φ(c),φ(e)) = 3π/4. Therefore
φ(c) �= φ(b), so −φ(c) is not symmetric to φ(b) with respect to φ(a)⊥.

L2 is not a functional linkage for symmetry. There is a possible degenerate configura-
tion which seems difficult to avoid: for any position of the inputs ψ ∈ ConfPS2(L2), there
is a φ ∈ ConfS2(L2) such that φ(b) = φ(d). This problem is very related to the problem
of the degenerate configurations of the parallelogram, which Kempe did not see when he
wrote his original proof. The solution to this problem in the plane is the rigidification of
the parallelogram, but the usual rigidification does not work in the sphere.

Gluing the two versions

We now have two linkages, L1 and L2, which are almost functional linkages for symmetry,
and have different degenerate configurations.
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We glue them together: let W1 = {a1, b1, c1} and β(a1) = a2, β(b1) = b2, β(c1) = c2,
and L = L1 ∪β L2.

We rename some vertices for future reference: a := a2, b := b2, c := c2, d := d2,
g := g2.

Proposition 5.3. 1. ConfPS2(L) = (S2)P .

2. L is a functional linkage for symmetry: for all φ ∈ ConfS2(L), φ(c) is symmetric
to φ(b) with respect to φ(a)⊥.

Proof. This is an immediate consequence of propositions 5.1 and 5.2.

5.1.4 The parallelizer

The parallelizer has three inputs b, c, h, such that

ConfPS2(L) =
�
ψ ∈ (S2)P

 δ(ψ(h),ψ(b)) = δ(ψ(h),ψ(c))
�
.

Notice that the equality δ(ψ(h),ψ(b)) = δ(ψ(h),ψ(c)) is equivalent to (ψ(a)|φ(h)) =
(ψ(b)|ψ(h)), where (·|·) denotes the scalar product in R3. Therefore, for any linear form
f : R3 → R, there exists α ∈ S2 such that any realization φ of the parallelizer with the
vertex h fixed at α satisfies:

f(φ(a)) = f(φ(b)).

To construct the parallelizer, we use the following characterization: δ(ψ(h),ψ(b)) =
δ(ψ(h),ψ(c)) if and only if there exists a linear plane P containing ψ(h) such that ψ(b)
is the reflection of ψ(c) with respect to P.

Start with a symmetrizer L1 and consider the following linkage L2:

a2h2
π/2

P2 = {a2, h2}, Q2 = ∅, F2 = ∅.
Then let W1 = {a1}, β(a1) = a2, and L = L1 ∪β L2. Change the input set of L so

that P = {b1, c1, h2}, and rename the inputs: b = b1, c = c1, h = h2, which ends the
construction.

5.2 Elementary linkages for algebraic operations

5.2.1 The homothety linkage

Let λ ∈ (0, 1). Our aim is to construct a linkage which takes one point φ(a) =
(xφ(a), yφ(a), 0) and, when possible, forces another point φ(b) = (xφ(b), yφ(b), 0) to satisfy

yφ(b) = λyφ(a).

Start with the following linkage L1:
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a1
b1

c1

arccosλ arcsinλ

π/2

P1 = {a1}, Q1 = {b1}, F1 = {c1}, φ01(c1) = (0, 0, 1).
This linkage is functional for a homothety from the equator to the (smaller) circle of

latitude arccosλ: thus for all φ ∈ ConfS2(L1), yφ(b1) = λyφ(a1), and

ConfP1

S2 (L1) = S2 ∩ (Oxy)

However, zφ(b1) �= 0 so we need to improve the construction. Let L2 be a parallelizer
for the linear form f(x, y, z) = y and L3 a parallelizer for g(x, y, z) = z. Let W1 = {b1},
β1(b1) = b2, and L4 = L1 ∪β1 L2. Let W4 = {a1, c2}, β4(a1) = b3, β4(c2) = c3, and
L5 = L4 ∪β4 L3.

We get:
ConfP1

S2 (L1) = S2 ∩ (Oxy),

and for all φ ∈ ConfS2(L), yφ(c3) = λyφ(a1), zφ(c3) = 0.
Finally, rename the two vertices: a = a1 and b = c3.

5.2.2 The adder

Our aim is to construct a linkage which takes two points φ(a) = (xφ(a), yφ(a), 0), φ(b) =
(xφ(b), yφ(b), 0) and, when possible, forces a third point φ(c) = (xφ(c), yφ(c), 0) to satisfy

yφ(c) = yφ(a) + yφ(b).

There are several steps to construct such a linkage L.
1. Restrict the two points a, b to move in the Oxy plane by using the fixed great circle

linkage for k = 2.

2. Using a symmetrizer, extend this linkage to a new one having a vertex d such that d
is symmetric to b with respect to the plane {y− z = 0}. Then for all φ ∈ ConfS2(L)
we have yφ(b) = zφ(d).

3. With two parallelizers, extend this linkage to a new one having a vertex e such that
for all φ ∈ ConfS2(L):
(a) yφ(e) = yφ(a);

(b) zφ(e) = zφ(d).

4. With two parallelizers, extend this linkage to a new one with a vertex c such that
for all φ ∈ ConfS2(L):
(a) yφ(c) + zφ(c) = yφ(e) + zφ(e);

(b) zφ(c) = 0.

Then for all φ ∈ ConfS2(L) we have yφ(c) = yφ(a) + yφ(b), as desired. Let P = {a, b}
and Q = {c}.

We have

ConfPS2(L) =
�
ψ ∈ (S2 ∩ (Oxy))P

 yφ(a) + yφ(b) ∈ [−1, 1]
�
.
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5.2.3 The multiplier

Identify the plane (Oxy) with the complex plane: to a point (x, y, 0) ∈ R3, associate the
complex number ζ(x,y,0) = x+ iy. We want to construct a functional linkage which takes
two complex numbers and returns their product.

Since we work in the sphere, we only need to multiply complex numbers α1 and α2

in the unit circle. This corresponds to adding the arguments. We split this operation
into two steps:

1. Compute arg(α1)+arg(α2)
2 mod π;

2. Double the argument.

The following linkage L1 will be the basis of the construction:

h1

g1

d1

a1

b1

π/2

π/2

π/2

π/2

π/2

P1 = {a1, b1}, Q = ∅, F1 = {g1, h1}, φ01(g1) = (1, 0, 0), φ01(h1) = (0, 0, 1).

We have ConfP1

S2 (L1) = (S2)P1 .

Take two copies L2 and L3 of the symmetrizer. Let W1 = {a1, b1}, β1(a1) = a2,
β1(b1) = b2, and L5 = L1 ∪β1 L2. Then let W5 = {a2, g1}, β5(a2) = a3, β5(g1) = b3,
L4 = L5 ∪β5 L3. We write a4 := a3, b4 := b2, c4 := c2, d4 := d1, f4 := c3, g4 := b3.

Now for all φ ∈ ConfS2(L4), φ(c4) is symmetric to φ(b4) with respect to φ(a4)
⊥, and

φ(f4) is symmetric to φ(g4) with respect to φ(a4)
⊥. In other words,

arg ζφ(d4) =
arg(ζφ(b4)) + arg(ζφ(c4))

2
mod π

and

arg ζφ(f4) = 2arg ζφ(d4) mod 2π.

Let L6 be the linkage L4 with the input set P6 = {b4, c4}. We have ConfP6

S2 (L6) =
(S2)P6 .

Taking Q6 = {f4}, L6 becomes a functional linkage for multiplication.
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5.2.4 The polynomial linkage

Let f : Rn → Rm be a polynomial. Our aim is now to construct a linkage with n inputs
a1, . . . , an, such that:

ConfPS2(L) =
�
ψ ∈ (S2 ∩ (Oxy))P

 f(yψ(a1), . . . , yψ(an)) = 0
�
.

Let us assume first that m = 1.
Recall that we write ζψ(ak) = xψ(ak) + iyψ(ak). We can also write:

yψ(ak) =
ζψ(ak) − ζψ(ak)

2i

.
Thus, there exists a polynomial g : C2n → C such that for all ψ ∈ (S2 ∩ (Oxy))P :

g(ζψ(a1), ζψ(a1), . . . , ζψ(an), ζψ(an)) = f(yψ(a1), . . . , yψ(an)).

We write

g =
r�

j=1

gj

where each gj is a monomial:

gj(ζψ(a1), ζψ(a1), . . . , ζψ(an), ζψ(an)) = λj�j(ζψ(a1))
γj,1(ζψ(a1))

γj,2 · · · (ζψ(an))
γj,2n−1(ζψ(an))

γj,2n

with �j ∈ {1, i,−1,−i} and λj a positive real number.
Observe that without changing the locus

�
ψ ∈ (S2 ∩ (Oxy))P

 f(yψ(a1), . . . , yψ(an)) = 0
�
,

one may assume λj < λ0 for all j, where λ0 is arbitrary in (0, 1) (if necessary, multiply f
by a small constant).

We are now ready to construct the linkage. Start with a fixed great circle linkage L
which forces all the ak to move in the plane (Oxy). Use symmetrizers to extend L to a
new linkage with vertices a�k such that for all k ∈ {1, . . . , n},

ζφ(a�k) = ζφ(ak).

For each j ∈ {1, . . . , r}:

1. Use multipliers to extend L to a new linkage with a vertex cj such that for all
φ ∈ ConfS2(L),

ζφ(cj) = (ζψ(a1))
γj,1(ζψ(a1))

γj,2 · · · (ζψ(an))γj,2n−1(ζψ(an))
γj,2n .

2. Use a multiplier to extend the linkage to a new one with a vertex dj such that:

ζφ(dj) = i�jζφ(cj).

3. Use a homothety linkage to extend the linkage to a new one with a vertex bj such
that:

yφ(bj) = λjyφ(dj).
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Thus we have for all φ ∈ ConfS2(L):
yφ(bj) = �(igj(ζψ(a1), ζψ(a1), . . . , ζψ(an), ζψ(an))).

Then, use several adders to extend the linkage to a new one, still called L, with a
vertex c such that for all φ ∈ ConfS2(L):

yφ(c) =
r�

j=1

yφ(bj).

Thus
yφ(c) = Im(ig(ζψ(a1), ζψ(a1), . . . , ζψ(an), ζψ(an))),

which means that
yφ(c) = f(yψ(a1), . . . , yψ(an)).

Choose λ0 so small that all the steps of the computation remain in [−1, 1]. Then:

ConfPS2(L) = (S2 ∩ (Oxy))P .

Finally, if m ≥ 2, just write f = (f1, . . . , fm) and use m linkages like above.

5.3 End of the proof of Theorem 2.9 for d = 2

In this section, we prove the algebraic universality in S2.
First, we assume that A is an algebraic subset of (S2)n. Let f : (R3)n = R3n → Rm

be a polynomial function such that A = f−1(0).

1. Take a polynomial linkage L with inputs a1, . . . , a3n such that:

ConfPS2(L) =
�
ψ ∈ (S2 ∩ (Oxy))P

 f(yψ(a1), . . . , yψ(a3n)) = 0
�
.

2. With several symmetrizers, extend this linkage to a new one with vertices b1, b4,
b7, . . . , b3n−2 such that for all φ ∈ ConfS2(L) and for all k ∈ {1, . . . , n}:

xφ(b3k−2) = yφ(a3k−2).

3. With several symmetrizers, extend this linkage to a new one with vertices c3, c6,
c9, . . . , c3n such that for all φ ∈ ConfS2(L) and for all k ∈ {1, . . . , n}:

zφ(c3k) = yφ(a3k).

4. With several parallelizers, extend this linkage to a new one with vertices d3, d6, d9,
. . . , d3n such that for all φ ∈ ConfS2(L) and for all k ∈ {1, . . . , n}:

xφ(d3k) = xφ(b3k−2);

yφ(d3k) = yφ(a3k−1);

zφ(d3k) = zφ(c3k).

Now, let P = {d3, d6, . . . , d3n}. We have:

ConfPS2(L) = f−1(0) = A.

If A is only a compact semi-algebraic subset of (S2)n, we know from Proposition 2.15
that A is the projection onto the first coordinates of an algebraic subset B of the sphere:
apply the above construction to B and remove some vertices from the input set to obtain
ConfPS2(L) = A; thus, Theorem 2.9 is proved.
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5.4 Higher dimensions

In this section, we fix a number d ≥ 2 and consider realizations in the sphere Sd.

5.4.1 The 3-plane linkage

This linkage forces several points to move in the same (linear) 3-plane. It is to be
compared with the “great circle linkage” described in section 5.1.2, which forces several
points to move in the same (linear) 2-plane.

There are k inputs v1, . . . , vk, and d − 2 other vertices a1, . . . , ad−2. For all i, j ∈
{1, . . . , d − 2}, there is an edge aiaj of length π/2. For all i ∈ {1, . . . , d − 2} and
l ∈ {1, . . . , k}, there is an edge aivl of length π/2.

Here is an example with d = 5 and k = 3.

a1

a2

a3

v1

v2

v3

Proposition 5.4. We have ConfPSd(L) = E, where

E =
�
ψ ∈ (Sd)P

 ∃F subspace of Rd+1, dimF = 3, ∀i ∈ {1, . . . , k} ψ(vk) ∈ F
�
.

Proof. First, we prove that ConfPSd(L) ⊆ E. Let ψ ∈ ConfPSd(L) and φ ∈ p−1(ψ). Let

F =
�

1≤i≤d−2

φ(ai)
⊥.

We know that {φ(a1), . . . ,φ(ad−2)} is an orthonormal set, so dimF = 3. Moreover, for
all l ∈ {1, . . . , k}, ψ(vl) ∈ F .

Now, we prove that E ⊆ ConfPSd(L). Let ψ ∈ E. Let F be a subspace of Rd+1

with dimF = 3 containing ψ(vl) for l ∈ {1, . . . , k}. Construct φ ∈ (Sd)P by letting
{φ(a1), . . . ,φ(ad−2)} ⊆ F⊥ be an orthonormal set and let φ|P = ψ. Then φ ∈ ConfSd(L)
so ψ ∈ ConfPSd(L).

The fixed 3-plane linkage is a variant in which a1, . . . , ad−2 ∈ F (namely, they are
fixed vertices). Then there exists F a subspace of Rd+1 with dimF = 3 and

ConfPSd(L) =
�
ψ ∈ (S2)P

 ∀i ∈ {1, . . . , k} ψ(vk) ∈ F
�
.
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5.4.2 The d-dimensional symmetrizer

Like in the 2-dimensional case, the d-dimensional symmetrizer has two inputs a and b,
and one output c. It is a functional linkage for symmetry: for all φ ∈ ConfSd(L), φ(c) is
symmetric to φ(b) with respect to φ(a)⊥. The idea is that the symmetry takes place in a
3-plane containing φ(a), φ(b) and φ(c).

Let L1 be a classical symmetrizer and L2 be a 3-plane linkage, with k = card(V1). Let
W1 = V1, β a bijection between V1 and {v1, . . . , vk} (⊆ V2), and L = L1 ∪β L2. Letting
a := β(a1), b := β(b1), c := β(c1), we obtain as desired:

ConfSd(L) =
�
φ ∈ (Sd)V

 φ(c) is symmetric to φ(b) with respect to φ(a)⊥
�
.

5.4.3 The d-dimensional parallelizer

Like in the 2-dimensional case, the d-dimensional parallelizer forces two points to have the
same scalar product with a third one. We restrict the vertices of a classical parallelizer
to move on a 3-plane containing its three inputs.

Let L1 be a classical parallelizer and L2 be a 3-plane linkage, with k = card(V1).
Let W1 = V1, β a bijection between V1 and {v1, . . . , vk} (⊆ V2), and L = L1 ∪β L2. Let
h := β(h1), b := β(b1), c := β(c1). Then we obtain as desired:

ConfPSd(L) =
�
ψ ∈ (Sd)P

 δ(ψ(h),ψ(b)) = δ(ψ(h),ψ(c))
�
.

5.4.4 End of the proof of Theorem 2.9 for d ≥ 2

Here, we prove the algebraic universality in Sd. The proof is similar to the case d = 2.
There are only two differences.

1. The polynomial linkage L is attached to a fixed 3-plane linkage.

2. We use d-dimensional symmetrizers and d-dimensional parallelizers.
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Part II

Anosov geodesic flows, billiards
and linkages
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Chapter 6

Anosov geodesic flows and
dispersing billiards

6.1 Introduction

The aim of this chapter is to highlight the similarities between two uniformly hyperbolic
dynamical systems: geodesic flows on negatively curved manifolds and billiard flows on
negatively curved billiards.

A significant difference between these two dynamical systems is that geodesic flows
are smooth, while billiard flows are not. Although the behaviors of the two systems are
close, the theorems often require different proofs in each case: for example, there is no
known way of deducing the ergodicity of negatively curved billiards from the ergodicity
of geodesic flows on negatively curved surfaces.

A smooth billiard table D in B = T2 or B = R2 is the closure of an open set in B
such that ∂D is a smooth manifold of dimension 1 without boundary: in other words,
each component of ∂D is the image of a smooth embedding Γ : T1 → B. Each curve Γ is
called a wall of D: it has a unit tangent vector T and a unit normal vector N pointing
toward Int D. The curvature of Γ is

�
dT
ds

 N
�
, where s is the arc length parameter. For

example, the walls of a disc are positively curved, while the walls of its complementary
set are negatively curved. A billiard whose walls have negative curvature is said to be
dispersing.

One defines the phase space Ω = T 1(Int D), and the billiard flow φt : Ω → Ω, in the
following way:

1. As long as it does not hit a wall, the particle follows a straight line;

2. When it arrives to the boundary of the billiard, the particle bounces, following
the billiard reflection law: the angle between the particle’s speed vector and the
boundary’s tangent line is preserved (Figure 6.1).

The flow φt is not defined at all times :

1. It is not defined at times when the particle is on the boundary of the billiard. Of
course, one could extend the definition to such t, but the flow obtained in this way
would not be continuous1.

1Many authors change the topology of Ω in order to make the flow continuous, but it cannot be made
differentiable.

83
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2. When the particle makes a grazing collision with a wall at a time t0 > 0, i.e. collides
with the boundary with an angle θ = 0, the flow stops being defined for all times
t ≥ t0. Although one could extend continuously the definition of the trajectory
after such a collision, the differentiability of the flow would be lost.

θθ

Figure 6.1 – The billiard reflection law.

Figure 6.2 – A grazing collision on a dispersing billiard in T2. The flow stops being
defined after this time.

We define Ω̃ as the set of all (x, v) ∈ Ω such that the trajectory starting from (x, v)
does not contain any grazing collision, in the past or the future. Notice that Ω̃ is a
residual set of full measure, stable under the flow φt, and that φt is C

∞ on Ω̃.
We will say that a billiard has finite horizon if every trajectory hits the boundary at

least once.

Uniform hyperbolicity. We are now ready to define the two notions of uniform
hyperbolicity which we will use.

Definition 6.1. A flow φ : R×M → M on a closed manifold is Anosov (or uniformly
hyperbolic) if there exists a decomposition of TM , stable under the flow,

TxM = E0
x ⊕ Eu

x ⊕ Es
x

where E0
x = R d

dt

��
t=0

φt(x), such that

�Dφt|Es
x
� ≤ aλt, �Dφ−t

x |Eu
x
� ≤ aλt
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Figure 6.3 – On the left, a dispersing billiard in T2 with infinite horizon. On the right, a
dispersing billiard in T2 with finite horizon.

(for some a > 0 and λ ∈ (0, 1), which do not depend on x).
This definition does not depend on the choice of the Riemannian metric on M .

Since the billiard flow is only defined on a non-compact set Ω̃ (dense in Ω), we need
another definition for uniform hyperbolicity in the case of billiards. This definition is
given in a more abstract framework in [CM06], but here we adapt it directly to billiard
flows.

Definition 6.2. The billiard flow φt is uniformly hyperbolic if at each point x ∈ Ω̃, there
exists a decomposition of TxΩ, stable under the flow,

TxΩ = E0
x ⊕ Eu

x ⊕ Es
x

where E0
x = R d

dt

��
t=0

φt(x), such that

�Dφt
x|Es

x
� ≤ aλt, �Dφ−t

x |Eu
x
� ≤ aλt

(for some a > 0 and λ ∈ (0, 1), which do not depend on x).

Structure of the chapter. In this chapter, we explain how to show the uniform
hyperbolicity for surfaces of negative curvature and billiards with negatively curved
walls, using the cone criterion introduced by Alekseev [Ale69], and its refinement by
Wojtkowski [Woj85]. The two proofs use exactly the same ideas. The fundamental tool
is the study of Jacobi fields.

All surfaces with negative curvature have an Anosov geodesic flow: according to
Arnold and Avez [AA67], the first proof of this fact goes back to 1898 [Had98]. Later,
it was extended to all manifolds with negative sectional curvature (a modern proof is
available in [KH95]). But the negative curvature assumption is not necessary for a
geodesic flow to be Anosov. To see if a geodesic flow is Anosov, we will need to examine
the solutions of the Ricatti equation

u�(t) = −K(t)− u2(t)

where K is the Gaussian curvature of the surface, and to use the following criterion:

Theorem 6.3. Let M be a closed surface. Assume that there exists m > 0 such that for
all geodesic γ : [0, 1] → M , and all u solution of the Ricatti equation along this geodesic
such that u(0) = 0, u is well-defined on [0, 1] and u(1) ≥ m. Then the geodesic flow
φt : T

1M → T 1M is Anosov.
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Theorem 6.3 was mentioned in [DP03] and [MP13], but as far as we know, no detailed
proof was available.

In this chapter, we prove Theorem 6.3, and then explain how this result applies in
the particular case of closed Riemannian surfaces with negative curvature. We will even
show the following refinement:

Theorem 6.4. Let M be a closed Riemannian surface with nonpositive curvature. As-
sume that every geodesic in M contains a point where the curvature is negative. Then,
the geodesic flow on M is Anosov.

Theorem 6.4 may also be obtained directly, without using Theorem 6.3 or the cone
criterion, from Proposition 3.10 of [Ebe73]. Hunt and MacKay [HM03] used this result
to exhibit the first Anosov linkage (more details will be given in Chapter 8).

For billiards, we will prove the following counterpart of Theorem 6.4:

Theorem 6.5. If D is a smooth dispersing billiard with finite horizon, then the billiard
flow is uniformly hyperbolic in Ω̃.

In Chapter 7, we will apply Theorem 6.3 to give new examples of surfaces whose
geodesic flow is Anosov while their curvature is not negative everywhere.

Consequences of uniform hyperbolicity. It is shown in [PS72] that (smooth) volume-
preserving Anosov flows are ergodic: every invariant subset has either zero or full
measure. It was shown later (see [Dol98] and [Kli74]) that Anosov geodesic flows are
even exponentially mixing.

As for billiard flows, Sinäı proved ergodicity for smooth dispersing billiards with finite
horizon in [Sin70]. It was shown in [BDL15] that such flows are exponentially mixing.

Corners and cusps. In the definition of billiards, it is common to allow the walls to be
only piecewise smooth. If the tangent lines at the singularity make a nonzero angle, it is
called a corner, otherwise it is called a cusp (see Figure 6.4). Corners and cusps give the
possibility for compact billiards in R2 to be dispersing.

Dispersing billiards with corners (and with finite horizon) have uniformly hyperbolic,
mixing flows.

When cusps are introduced, the study of the flow becomes more complicated: the
first proof of ergodicity was published no sooner than 1995 (see [Řeh95]). Such billiards
still have mixing flows, and the mixing rate is greater than polynomial (see [BM08]), but
it is unknown whether it is exponential2.

6.2 The cone criterion

Definition 6.6. Consider a Euclidean space E.
A cone3 in E is a set C such that there exist a decomposition E = F ⊕G and a real

number α ≥ 0 such that

2It is not to be confused with the mixing rate of the billiard map, which we did not define here, and
which is polynomial (see [CM07]) in this case.

3The word “cone” has several different meanings in mathematics: here we take the same definition
as [KH95].
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Figure 6.4 – On the left, a dispersing billiard with corners in R2. On the right, a dispersing
billiard with cusps.

C = {(x, y) ∈ F ⊕G | �x� ≤ α �y�} .
The number arctanα is called the angle of the cone.

Two cones C1, C2 are said to be supplementary if they correspond to decompositions
E = F1 ⊕G1 and E = F2 ⊕G2 such that F1 = G2 and F2 = G1.

Proposition 6.7. Consider a sequence of linear mappings Ak : Rn → Rn, and a sequence
of supplementary cones Ck and Dk, corresponding to the decomposition Rn = Rm×Rn−m.
Assume that there exist a > 0, λ > 1 such that for all k ∈ Z:

1. Ak(Ck) ⊆ Ck+1 (invariance in the future),

2. �Ak−1 ◦ . . . ◦Ak−i(v)� ≥ aλi �v� for all i ≥ 0 and v ∈ Ck−i (expansion in the
future),

3. A−1
k (Dk+1) ⊆ Dk (invariance in the past),

4.
��A−1

k ◦ . . . ◦A−1
k+i−1(v)

�� ≥ aλi �v� for all i ≥ 0 and v ∈ Dk+i (expansion in the
past).

Then

Eu
k =

+∞�

i=0

Ak−1 ◦ . . . ◦Ak−i(Ck−i)

is an m-dimensional subspace contained in Ck, and

Es
k =

+∞�

i=0

A−1
k ◦ . . . ◦A−1

k+i−1(Dk+i)

is an (n−m)-dimensional subspace contained in Dk.

Proof. For all i ≥ 0, Ak−1 ◦ . . . ◦Ak−i(Ck−i) is a cone, which contains a vector space Vi

of dimension m. Thus, the intersection Eu
k contains a vector space V of dimension m (for

example, consider a converging subsequence of orthonormal bases of Vi). Assume that
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there exists w ∈ Eu
k \V . Then there exists v ∈ V and t ∈ R such that v+tw ∈ {0}×Rn−m

(notice also that tw ∈ Eu
k ). Since A−1

k−i ◦ . . . ◦ A−1
k−1(tw) and A−1

k−i ◦ . . . ◦ A−1
k−1(v) lie in

Eu
k−i, Assumption 2 gives us:

��A−1
k−i ◦ . . . ◦A−1

k−1(tw)
�� ≤ 1

aλi
�tw� →

k→+∞
0,

��A−1
k−i ◦ . . . ◦A−1

k−1(v)
�� ≤ 1

aλi
�v� →

k→+∞
0,

but at the same time, since v + tw ∈ Dk, Assumption 4 gives:

��A−1
k−i ◦ . . . ◦A−1

k−1(v + tw)
�� ≥ aλi �v + tw� →

k→+∞
+∞,

which contradicts the triangle inequality.

One obtains the result for Es
k in the same way.

Theorem 6.8. Let Ak =

�
ak bk
ck dk

�
(with k ∈ Z) be a sequence of 2× 2 matrices, with

determinant ±1. Fix � > 0, and consider the cone C� of all vectors

�
x
y

�
∈ R2 such that

�y ≤ x ≤ 1
� y. Assume that for all k, and all v =

�
x
y

�
with xy > 0,

Akv ∈ C�.

Then, there exist a > 0 and λ > 1 such that for all k ∈ Z, for all i ≥ 0 and v ∈ C�,

�Ak−1 ◦ . . . ◦Ak−i(v)� ≥ aλi �v� .

Figure 6.5 – Each Ak maps the cone xy > 0 (in grey) into the smaller cone C� (in dark
grey).
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Proof. On the basis of Wojtkowski’s idea [Woj85], instead of proving expansion directly
for the Euclidean norm, we consider the function

N : C� → R≥0�
x
y

�
�→ √

xy.

Notice that N is equivalent to the Euclidean norm on C�, i.e. there exists M > 0
such that for all v ∈ C�,

1

M
�v� ≤ N(v) ≤ M �v� ,

because �
2(x

2 + y2) ≤ xy ≤ 2
� (x

2 + y2) for all

�
x
y

�
∈ C�.

We are going to show that for all k ∈ Z and v ∈ C�, N(Akv) ≥ 1
1−�2

N(v). With the
equivalence of norms, this will complete the proof.

Let k ∈ Z. We may assume that det(Ak) = 1, by multiplying Ak by

�
0 1
1 0

�
on the

left. Moreover, we may assume that all the coefficients of Ak are positive, by multiplying
Ak by −Id.

Notice that the two vectors Ak

�
1
0

�
=

�
ak
ck

�
and Ak

�
0
1

�
=

�
bk
dk

�
are in the cone C�,

by continuity of Ak.

Then for v =

�
x
y

�
∈ C�:

N(Akv) = (akx+ bky)(ckx+ dky)

≥ (akdk − bkck)xy + 2bkckxy

≥ (1 + 2bkck)N(v)

But akdk − bkck = 1 and ak ≤ 1
� bk, dk ≤ 1

� ck, so that bkck ≥ 1
1−�2

− 1.

Finally, N(Akv) ≥ 1
1−�2

N(v).

6.3 Anosov geodesic flows

6.3.1 Jacobi fields

To show that a geodesic flow is hyperbolic, one has to study how the geodesics move away
from (or closer to) each other. Thus, one considers small variations of a given geodesic.

Definition 6.9. Let (M, g) be a Riemannian manifold and γ : (a, b) → M a geodesic.
Consider a geodesic variation of γ, i.e. a smooth function

f(t, s) : (a, b)× (c, d) → M

such that f(., 0) is the geodesic γ, and for all s ∈ (c, d), f(., s) is a geodesic.

The vector field Y = ∂f
∂s along the curve γ(t) is called an infinitesimal variation of γ.
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Proposition 6.10. Any infinitesimal variation of γ is a solution of the Jacobi equation:

Ÿ = −R(γ̇, Y )γ̇,

where R is the Riemann tensor. The solutions of the Jacobi equation are called Jacobi
fields.

Proof. Let ∇ be the Levi-Civita connection of (M, g). Since
�
∂f
∂t ,

∂f
∂s

�
= 0, one obtains

∇ ∂f
∂t

∂f

∂s
= ∇ ∂f

∂s

∂f

∂t

so that (with s = 0):

Ÿ = ∇ ∂f
∂t
∇ ∂f

∂t

∂f

∂s
= ∇ ∂f

∂t
∇ ∂f

∂s

∂f

∂t
.

On the other hand (still for s = 0),

R(γ̇, Y )γ̇ = R

�
∂f

∂s
,
∂f

∂t

�
∂f

∂t

= ∇ ∂f
∂s
∇ ∂f

∂t

∂f

∂t
−∇ ∂f

∂t
∇ ∂f

∂s

∂f

∂t
−∇[ ∂f∂s ,

∂f
∂t ]

∂f

∂t

= −∇ ∂f
∂t
∇ ∂f

∂s

∂f

∂t

.

Thus, Ÿ = −R(γ̇, Y )γ̇.

Proposition 6.11. Every Jacobi field along a geodesic γ is an infinitesimal variation of
γ.

Proof. Here, we copy the proof of [KN63].
Let t1 ∈ (a, b). For any t2 close enough to t1, any solution of the Jacobi equation is

determined by its values at t1 and t2 (since it is a second-order linear equation).
Let Y be a solution of the Jacobi equation along γ. For i = 1, 2, let hi(s) (s ∈ (−�, �))

be a curve such that (hi(0), h
�
i(0)) = (γ(ti), X(ti)). If necessary, take a smaller �, and

choose t2 even closer to t1, so that there exists for each s a unique geodesic f(., s)
(t ∈ (a, b)), through h1(s) and h2(s), of minimal length between h1(s) and h2(s). Let X
be the Jacobi field ∂f

∂s along γ. Since X and Y are two solutions of the Jacobi equation
which coincide at t1 and t2, they are equal. Thus, Y is an infinitesimal variation of γ.

From now on, assume that M has dimension 2, that γ is a unit speed geodesic, and
that Y is a Jacobi field which is orthogonal to γ̇. Choose an orientation of the normal
bundle of γ in M (which has dimension 1), i.e. a vector e(t) ∈ T 1

γ(t)M orthogonal to

γ�(t), so that Y (t) is identified by one real coordinate, noted y(t) = g(Y (t), e(t)).
The quantity ẏ satisfies

ẏ =
∂f

∂t
· g(Y, e) = g(∇ ∂f

∂t
Y, e) + g(Y,∇ ∂f

∂t
e) = g(∇ ∂f

∂t
Y, e).

Thus:

ẏ = g(∇ ∂f
∂t

∂f

∂s
, e) = g(∇ ∂f

∂s
γ̇, e).
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In other words, ẏ measures the infinitesimal variation of the vector γ̇ with respect to
s. Thus, when y and ẏ have the same sign, the Jacobi field is diverging: the geodesics go
away from each other. When y and ẏ have opposite signs, the Jacobi field is converging.
We will consider the ratio u = ẏ

y , when it is well-defined (i.e. y �= 0), to measure the
convergence rate.

u > 0 u < 0

Proposition 6.12. When it is well-defined, u is a solution of the Ricatti equation:

u̇(t) = −K(γ(t))− u2(t).

where K is the Gaussian curvature.

Proof. In dimension 2, the Riemann tensor may be written

�R(a, b)c | d� = K · (g(a, c)g(d, b)− g(a, d)g(c, b)).

Thus, in the case of a unit speed geodesic and of an orthogonal Jacobi field, the vector
R(γ̇, Y )γ̇ is orthogonal to γ̇, and its coordinate is Ky. The Jacobi equation then becomes:

ÿ = −Ky.

Thus,

u̇ =
d

dt

�
ẏ

y

�
=

ÿy

y2
− (ẏ)2

y2
= K − u2.

The solutions of this equation are not always defined for all times: it may happen
that u(t) explodes to −∞ in positive time (or to +∞ in negative time). This corresponds
to the phenomenon of convergence of the wavefront: up to order 1, all the geodesics of
the infinitesimal variation “gather at one point”. In most cases, the Jacobi field becomes
divergent just after the convergence point (Figure 6.6).

6.3.2 Proof of Theorem 6.3

Let (x, v) ∈ T 1M . The tangent plane T(x,v)(T
1M) is the direct sum of a vertical and

a horizontal subspace H(x,v) ⊕ V(x,v), given by the metric g on M . Each of these two
spaces is naturally endowed with a norm, respectively gH and gV : one equips T 1M with
the norm gT = gH + gV (in particular, one decides that H is orthogonal to V ).

Denote by W(x,v) ⊆ T(x,v)(T
1M) the plane orthogonal to the direction of the flow φt,

and let (w,w�) ∈ W(x,v). There exists Y (t) a Jacobi field such that (Y (0), Ẏ (0)) = (w,w�):
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Figure 6.6 – u is not well-defined at the convergence point.

then the vectors Ẏ (0) and γ̇(0) are orthogonal, and (Y (t), Ẏ (t)) = Dφt(w,w
�). Moreover,

notice that
∂

∂t
g(Ẏ , γ̇) = g(∇ ∂f

∂t
Ẏ , γ̇) + g(Ẏ ,∇ ∂f

∂t
γ̇)

= g(∇ ∂f
∂s
∇ ∂f

∂t
γ̇, γ̇) + 0

= 0.

Thus, Y (t) and Ẏ (t) remain orthogonal to γ̇ for all t. In particular, the family of planes
(W(x,v)) (where (x, v) varies in T 1M) is stable under Dφt.

Let (x, v) ∈ T 1M , and γ the geodesic such that (γ(0), γ̇(0)) = (x, v). Choose an
orientation of H(γ(t),γ̇(t)) ∩W(γ(t),γ̇(t)), i.e. a continuous unit vector e1(t) in H(γ(t),γ̇(t)) ∩
W(γ(t),γ̇(t)). It induces naturally an orientation of V(γ(t),γ̇(t)), given by a continuous unit
vector e2(t) in V(γ(t),γ̇(t)). This orthogonal basis of W(γ(t),γ̇(t)) allows us to identify it to
the Euclidean R2.

For k ∈ Z, set

Ak = D(γ(k),γ̇(k))φ1 : W(γ(k),γ̇(k)) → W(γ(k+1),γ̇(k+1)).

The Ak are linear mappings with determinant ±1, because the flow φt preserves the
Liouville measure.

We are going to show that the sequence Ak : R2 → R2 (with the identification above)
satisfies the assumptions of Theorem 6.8: with the notations of this theorem, one wants
to show that there exists � > 0 such that for all vector v with positive coordinates in
R2, we have Akv ∈ C�, for some �. In other words, we want to show that there exists
� > 0 such that for all geodesics γ : [0, 1] → M and all solutions u of the Ricatti equation
u̇(t) = −K(γ(t))− u2(t) along this geodesic which satisfy u(0) > 0, u is well-defined on
[0, 1] and � ≤ u(1) ≤ �−1.

Let Kmax be the maximum absolute value of the curvature of M , and let � =
min(1/4, 1/Kmax,m). We claim that such an � has the desired property.

The inequality � ≤ u(1) results directly from the main assumption of the theorem,
and from the fact that � ≤ m. To show that u(1) ≤ �−1, we assume that u(1) > �−1

and look for a contradiction. First, notice that for all t ∈ [0, 1] such that u(t) ≥ �−1,
u�(t) ≤ �−1 − u(t)2 < 0. Therefore, u(t) ≥ �−1 for t ∈ [0, 1]. From u� ≤ �−1 − u2, we
obtain

u�

u2
≤ 1

�u2
− 1 ≤ −1

2

1

u(0)
− 1

u(1)
≤ −1

2
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whence u(1) ≤ 2, which contradicts �−1 > 2 and u(1) ≥ �−1. Thus, the assumptions of
Theorem 6.8 are satisfied.

Theorem 6.8 provides us with a family of cones which satisfy invariance and expansion
in the future. Moreover, φt(x, v) = φ−1

t (x,−v), so there also exists a family of cones
satisfying invariance and expansion in the past. By Proposition 6.7, the flow φt has a
stable and an unstable direction: thus, it is Anosov, and Theorem 6.3 is proved.

6.3.3 Proof of Theorem 6.4

In this proof, we will use the lemma:

Lemma 6.13. Under the assumptions of Theorem 6.4, there exist m > 0 and t0 > 0
such that every unit speed geodesic γ : [0, t0] → M satisfies:

� t0

0
K(γ(t)) ≤ −m.

Proof. If the conclusion is false, consider a sequence (γn) of unit speed geodesics defined
on [−n, n], such that for all n,

� n

−n
K(γ(t)) ≥ − 1

n
.

By the Arzelà-Ascoli theorem and a diagonal argument, one may extract a subsequence of
γn which converges uniformly on each [−n, n] to a geodesic defined on R. By dominated
convergence, it satisfies

�
RK(γ(t)) = 0, which contradicts the assumption.

Now, consider the values of m and t0 given by lemma 6.13, and choose a geodesic γ.
We may assume that m < 1 and, by dividing the metric of M by a constant if necessary,
that t0 < 1. Denote by u the solution of the Ricatti equation u�(t) = −K(t)− u2(t) with
u(0) = 0: if this solution is defined on [0, 1], let t1 = 1; if not, write [0, t1) the maximal
interval on which the solution is defined. In particular, t1 ≤ 1.

Set t2 = sup {t ∈ [0, t1] | u(t) ≥ m} (with t2 = 0 if this set is empty). Thus, for all
t ≥ t2,

u�(t) = −K(t)− u2(t) ≥ −m2.

If t2 = 0, then for all t ∈ [0, t1), using the estimate given by Lemma 6.13,

u(t) = u(0)+

� t

0
u�(x)dx =

� t

0
−K(x)−u2(x)dx = −

� t

0
K(x)−

� t

0
u2(x)dx ≥ m−m2.

If t2 �= 0, then for all t ∈ [t2, t1[, using the fact that K(t) ≥ 0,

u(t) = u(t2) +

� t

t2

u�(x)dx ≥ u(t2) +

� t

0
−u2(x)dx ≥ m−m2.

In both cases, one gets u(t) ≥ m−m2 for all t ∈ [t2, t1[. Thus, the solution do not
blow up to −∞, so t1 = 1, and u(1) ≥ m − m2. One may apply Theorem 6.3: the
geodesic flow on M is Anosov and Theorem 6.4 is proved.



94 CHAPTER 6. ANOSOV GEODESIC FLOWS AND DISPERSING BILLIARDS

6.4 Smooth dispersing billiards

6.4.1 Jacobi fields for billiards

Let D be a billiard and γ : (a, b) → M a billiard trajectory (defined for all times t ∈ (a, b),
except for the collision times). Consider a smooth function

f(t, s) : (a, b)× (c, d) → M

such that f(., 0) is the trajectory γ, and for all s ∈ (c, d), f(., s) is a billiard trajectory.
The function f(., s) is not defined at times t1(s), t2(s), . . . , tps(s), which correspond to
the collision times.

By analogy with the case of geodesic flows, we shall call4 “Jacobi field” the vector
field Y = ∂f

∂s along the curve γ. Inside the billiard, Y satisfies the equation Ÿ = 0, since
the curvature is zero. At a collision time, Y undergoes a discontinuity, which we are now
going to study.

Consider a unit speed billiard trajectory variation (i.e. f(., s) is a unit speed billiard
trajectory for all s). Denote by τ(s) the first collision time of f(., s). This collision occurs
on some piece of the boundary Γ: assume that Γ is parametrized by arc length and
define r(s) so that Γ(r(s)) is the point where the collision occurs. The angle between
the horizontal axis and ∂

∂t

��
t=t±0

f(t, s) is written ω±(s). Define θ = 1
2(ω

+ − ω−) and

ψ = 1
2(ω

+ + ω−). The angle θ is the angle of incidence, while ψ is the angle between the
horizontal axis and the tangent vector of the boundary Γ�(r(s)).

ψ

θ

ω+

ω−

To state and prove the next result, it is convenient to identify R2 with C and use
complex notation.

Proposition 6.14. Denoting by Y − the corresponding Jacobi field just before the collision
time, and Y + the Jacobi field just after it,

Y + = −e2iθY −.

Proof. Fix t− < τ and t+ > τ . For all small enough s, and for t− and t+ sufficiently
close to τ :

f(t±, s) = Γ(r(s)) + (t± − τ(s))eiω
±(s).

After derivation with respect to s, evaluating at s = 0:

Y (t±) =
∂r

∂s
eiψ(s) − ∂τ

∂s
eiω

±(s) + i(t± − τ(s))
∂ω±

∂s
eiω

±(s).

4This terminology is common in the literature: see [Don91] or [Woj94].
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Let t+ and t− tend to τ :

Y ± =
∂r

∂s
eiψ − ∂τ

∂s
eiω

±
.

Finally, compute:

Y + + e2iθY − =
∂r

∂s
eiψ(1 + e2iθ)− 2

∂τ

∂s
eiω

+
= 2 cos θ

∂r

∂s
eiω

+ − 2
∂τ

∂r

∂r

∂s
eiω

+
= 0.

In the case of an orthogonal field, Y may be defined by one scalar y (using the usual
orientation of R2). Proposition 6.14 shows in particular that an orthogonal Jacobi field
remains orthogonal after a collision. We will write again u = ẏ

y .

In the interior of the billiard, the trajectories follows the geodesics of B = R2 or T2,
whose curvature is zero: thus, the Ricatti equation is simply u�(t) = −u2(t). However,
when a collision occurs, u undergoes a discontinuity.

Proposition 6.15. Consider f a unit speed geodesic variation corresponding to an
orthogonal Jacobi field.

At a collision,

y+ = −y−

ẏ+ = −ẏ− +
2κ

sin θ

u+ = u− − 2κ

sin θ

where κ is the curvature of the boundary and θ is the angle of incidence.

Proof. The equality y+ = −y− is a reformulation of Proposition 6.14 in the case of
orthogonal Jacobi fields.

On the other hand,

ẏ+ + ẏ− =
∂(ω+ + ω−)

∂s
= 2

∂ψ

∂s
= 2

∂ψ

∂r

∂r

∂s
= 2κ

y−

sin θ

and

u+ − u− =
ẏ+

y+
− ẏ−

y−
= − ẏ+ + ẏ−

y−
= − 2κ

sin θ
.

In particular, positively curved walls decrease the value of u (and tend to make the
Jacobi field converge), just as the positive curvature of a Riemannian manifold. Likewise,
negatively curved walls have the same effect on u as the negative curvature of a manifold.
In particular, notice the following:

Proposition 6.16. If D is a dispersing billiard, any orthogonal Jacobi field with u(0) ≥ 0
satisfies u(t) ≥ 0 for all t ≥ 0.
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Proof. Assume that there is no collision between t = 0 and some time t = t1. Then u is
a solution of the equation u�(t) = −u2(t). If u(0) = 0, then u(t) = 0 for all t ∈ [0, t1]. If
u(0) > 0, then u�

u2 = −1 for all t ∈ [0, t1] such that u(t) �= 0, so

1

u(0)
− 1

u(t)
= −t,

which shows that the solution is well-defined and positive for t ∈ [0, t1].
Moreover, Proposition 6.15 shows that u increases at each collision. Therefore, u

remains positive at all times.

6.4.2 Proof of Theorem 6.5

The ideas of the proof are the same as for Theorem 6.3. We start with the lemma:

Lemma 6.17. Let D be a billiard with finite horizon. Then, there exists t0 such that
every trajectory in D (with unit speed) experiences at least one collision between t = 0
and t = t0.

Proof. Assume that the conclusion is false. Then for all n > 0, there exists a billiard
trajectory without collision γn, defined on [−n, n]. By the Arzelà-Ascoli theorem, one
may extract a subsequence which converges uniformly on each interval [−n, n]. The limit
is still a trajectory without collision, defined on R, which contradicts the assumption.

Notice that for all (x, v) ∈ Ω̃, T(x,v)Ω is naturally identified with R2 × R, which is
endowed with the standard Euclidean norm.

Now, fix (x, v) ∈ Ω̃ and denote by W(x,v) ⊆ T(x,v)(Ω) the orthogonal plane to the
direction of the flow φt. Let (w,w�) ∈ W(x,v). There exists an orthogonal Jacobi field

Y (t) such that (Y (0), Ẏ (0)) = (w,w�), and the family of planes W is stable under Dφt.
Let γ be the geodesic such that (γ(0), γ̇(0)) = (x, v). All planes W(γ(t),γ̇(t)), are identified
to the same Euclidean R2, in the same way as in the proof of Theorem 6.3.

Denote by (tk)k∈Z the sequence of all collision times of the geodesic γ, and t̃k =
(tk + tk+1)/2. For k ∈ Z, set:

Ak = D(γ(t̃k),γ̇(t̃k))
φt̃k+1−t̃k

: W(γ(t̃k),γ̇(t̃k))
→ W(γ(t̃k+1),γ̇(t̃k+1))

.

The Ak are linear mappings with determinant ±1, because the flow φt preserves the
Liouville measure on Ω (it is possible to check this from Proposition 6.15).

On the interval ]tk, t̃k[, u is a solution of the equation u�(t) = −u2(t), so:

u(t̃k+1) =
1

1
u(t+k+1)

+ (t̃k+1 − tk+1)
.

With Propositions 6.15 and 6.16, u(t+k+1) ≥ −κmax, where κmax(< 0) is the minimum
of the curvature of the walls. Moreover, on a smooth billiard, there exist constants δmin

and δmax, independant of k, such that δmin ≤ tk+1− tk ≤ δmax for all k ∈ Z. In particular,
δmin/2 ≤ t̃k+1 − tk+1 ≤ δmax/2, whence:

0 <
1

−1/κmax + δmax/2
≤ u(t̃k+1) ≤

1

δmin/2
< +∞.

Thus, Theorem 6.8 applies to the sequence (Ak), and Proposition 6.7 gives the desired
result: Theorem 6.5 is proved.



Chapter 7

Geodesic flows of flattened
surfaces

7.1 Introduction

In 1927, Birkhoff [Bir27] noticed the following fact: if one of the principal axes of an
ellipsoid tends to zero, then the geodesic flow of this ellipsoid tends, at least heuristically,
to the billiard flow of the limiting ellipse. In 1963, Arnold [Arn63] stated that the billiard
flow in a torus with strictly convex obstacles could be approximated by the geodesic
flow of a flattened surface of negative curvature, which would consist of two copies of
the billiard glued together, and suggested that this might imply that such a billiard
would be chaotic. Later, Sinäı [Sin70] proved the hyperbolicity of the billiard flow in
this case, without using the approximation by geodesic flows. In the general case, the
correspondance between billiards and geodesic flows of shrinked surfaces is well-known,
but it is difficult to use in practice. One of the difficulties is the following: near tangential
trajectories, some geodesics converge to “fake” billiard trajectories, which follow the
boundary of the obstacle for some time and then leave (see Figure 7.1).

More precisely, for a given billiard1 D ⊆ T2 or D ⊆ R2, Birkhoff and Arnold’s idea is
to consider a surface Σ in a space E = T2 × R or E = R3, such that D = π(Σ), where π

Figure 7.1 – A “fake” billiard trajectory, which is the limit of a sequence of geodesics in
the flattening surface. The billiard (in grey) is in T2 and there is one circular obstacle
(in white).

1See the beginning of Chapter 6 for the definition of billiards.

97
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is the projection onto the first two coordinates; and then, to consider its image Σ� by a
flattening map for � > 0:

f� : E → E

(x, y, z) �→ (x, y, �z).

The Euclidean metric of R3 induces a metric h� on Σ�. It is convenient to consider
the metric g� = (f�)

∗(h�) on Σ, which tends to a degenerate 2-form g0 on Σ as � decreases
to 0. Thus, (Σ, g0) is not a Riemannian metric, but in many cases (for example, for the
ellipsoid), it remains a metric space2 and every billiard trajectory in D corresponds to a
geodesic in (Σ, g0). The Arzelà-Ascoli theorem guarantees that every sequence of unit
speed geodesics (Γn) in (Σ, g�n), with �n → 0, converges to a geodesic of (Σ, g0), up to a
subsequence. In this chapter, we prove a stronger version of this result.

Thus, from any given billard, Arnold constructs a surface which he flattens, so that
its geodesic flow converges to the billiard flow. In this chapter, we do the reverse: we
prove that, under some natural hypotheses, the geodesic flow of any given compact
surface in R3, or T2 × R, flattening to a smooth billiard, converges locally uniformly to
the billiard flow, away from grazing trajectories (Theorem 7.1). We also prove that, if
the limiting billiard has finite horizon and is dispersive, then the geodesic flow in (Σ, g�)
is Anosov for any small enough � > 0 (Theorem 7.2). In this case, it is well-known that
the limiting billiard is chaotic, but the surface near the limit does not necessarily have
negative curvature everywhere: some small positive curvature may remain in the area
corresponding to the interior of the billiard, while the negative curvature concentrates in
the area near the boundary. Since the limiting billiard has finite horizon, any geodesic
falls eventually in the area of negative curvature, which guarantees that the flow is
Anosov. The precise statements of our results are given in Section 7.2.

Other analogies have been made between billiards and smooth dynamical systems.
In [TRK98], Turaev and Rom-Kedar showed that the billiard flow could be approximated
in the Cr topology by the behavior of a particle in R2 exposed to a potential field which
explodes near the boundary3. In our situation, there is no potential and the particle has
3 coordinates instead of 2, but some of our techniques are similar to theirs.

Our setting has also much in common with the example of Donnay and Pugh [DP03],
who exhibited in 2003 an embedded surface in R3 which has an Anosov flow. This surface
consists of two big concentric spheres of very close radii, glued together by many tubes
of negative curvature in a finite horizon pattern. In this surface, any geodesic eventually
enters a tube and experiences negative curvature, while the positive curvature is small
(because the spheres are big). However, in our situation, we may not choose the shape of
the tubes and we need precise estimates on the curvature to show that the geodesic flow
is Anosov.

7.2 Main results

Let B = R2 or B = T2, and consider a compact surface Σ immersed in E = B×R, whose
canonical basis is written (ex, ey, ez). With the notations of the introduction, we denote
by Φ�

t the geodesic flow on (Σ, g�) and by Ψt the billiard flow on D = π(Σ).

2In [BFK98], Burago, Ferleger and Kononeko used such degenerate spaces (Alexandrov spaces) to
estimate the number of collisions in some billiards.

3These systems are called soft billiards in the literature: see also [BT03] for more details.
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In this chapter, we always assume that D is a smooth billiard: we do not allow corners,
to avoid the problems discussed in the introduction. For the definition of billiards, see
the beginning of Chapter 6.

Recall that π : E → B is the projection onto the first two coordinates, while f� is a
contraction along the z-axis. If Σ is transverse to the fibers of π above Int D, then π
and f� induce mappings on the unit tangent bundles:





π∗ : T 1
�
Σ� ∩ π−1 (Int D)

�
→ T 1D

(q, p) �→
�
π(q),

Dqπ(p)

�Dqπ(p)�

�

and 



(f�)∗ : T 1Σ → T 1Σ�

(q, p) �→
�
f�(q),

Dqf�(p)

�Dqf�(p)�

�
.

Consider also the set A of all (t, q, p) ∈ R× T 1Σ such that π∗(q, p) and Ψt ◦ π∗(q, p)
belong to Int D, and that the billiard trajectory between π∗(q, p) and Ψt ◦ π∗(q, p) does
not have a tangential collision with a wall of the billiard. Notice that A is an open dense
subset of R× T 1Σ.

Theorem 7.1. Assume that

1. the surface π−1(Int D) ∩ Σ is transverse to the fibers of the projection π;

2. for all q ∈ π−1(∂D) ∩ Σ, the curvature of Σ ∩ V is nonzero at q, where V is a
neighborhood of q in the affine plane q +Vect(ez, (TqΣ)

⊥).

Then:
A → T 1(Int D)

(t, q, p) �→ π∗ ◦ Φ�
t(q, p)

converges uniformly on every compact subset of A to

A → T 1(Int D)

(t, q, p) �→ Ψt ◦ π∗(q, p)

as � → 0.

Remark. If Σ is a connected compact surface embedded in R3, with positive curvature
everywhere, then the two assumptions of Theorem 7.1 are automatically satisfied, and
the description of A is simpler.

On the other side, concerning dispersing billiards, we prove:

Theorem 7.2. In addition to the two hypotheses of Theorem 7.1, assume that B = T2

and:

3. the walls of the billiard D have negative curvature;

4. the billiard D has finite horizon: it contains no geodesic of T2 with infinite lifetime
in the past and the future.
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Then for any small enough � > 0, the geodesic flow on (Σ�, h�) is Anosov.

In the proofs of Theorems 7.1 and 7.2, we will assume that Σ is embedded in E, to
simplify the notations, but the same proof works for the immersed case. In the case
B = T2, we will see D as a periodic billiard in the universal cover R2, and Σ as a periodic
surface in R3.

Structure of the proofs. The main tool to study the geodesic flow is the geodesic
equation which involves the position q, the speed p, and the normal vector N to Σ:

ṗ = −N(q) �DN(q) · p | p� . (7.1)

It is simply obtained by taking the derivative of the equation

�p | N� = 0.

Equation 7.1 involves the second fundamental form, which is closely linked to the curvature
of Σ: in Section 7.3, we make precise estimates on the second fundamental form, study
nongrazing collisions with the walls of the billiard (Lemma 7.11) and prove the uniform
convergence of the flow (Theorem 7.1). In Section 7.4, we prove that the geodesic flow is
Anosov (Theorem 7.2): for this, we also need to study grazing trajectories (Lemma 7.13),
and examine the solutions of the Ricatti equation (see Theorem 6.3).

Some questions. For technical reasons, we had to introduce Assumption 2 in the
statements of Theorems 7.1 and 7.2, but is it necessary? One may also wonder whether
these theorems generalize to surfaces immersed in higher-dimensional spaces, or if the
convergence in Theorem 7.1 holds for the Ck topology.

7.3 Proof of Theorem 7.1

In Σ ∩ π−1(Int D), g� converges smoothly to a flat metric, so the geodesic flow converges
smoothly to the billiard flow. Hence, the difficulty of the proof concentrates at the
boundary of the billiard table: there, we have to show that the geodesic flow satisfies
a billiard reflection law at the limit (Proposition 7.11). For this, we will need some
estimates on the second fundamental form of the surface near the boundary.

First, let us fix some notations.

Definition 7.3. Given � > 0, we may choose a normal vector N � on any simply connected
subset of Σ�. We will always assume implicitly that such a choice of orientation has
been made: since we work locally on the surface, it is not necessary to have a global
orientation.

Consider N �
x, N

�
y , N

�
z the three components of N � in R3. Thus for q ∈ Σ:

N �
x(f�(q)) =

N1
x�

(N1
x)

2 + (N1
y )

2 + 1
�2
(N1

z )
2
, N �

y(f�(q)) =
N1

y�
(N1

x)
2 + (N1

y )
2 + 1

�2
(N1

z )
2

and

N �
z(f�(q)) =

1
�N

1
z�

(N1
x)

2 + (N1
y )

2 + 1
�2
(N1

z )
2
.
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We shall often simply write N instead of N �, when there is no possible confusion.

Finally, define

H(f�(q)) = N1
z (q).

The quantity H(f�(q)) has the advantage of being independent of �, contrary to N �(f�(q)).

For all q ∈ Σ�, we know that π(q) ∈ ∂D if and only if Nz(q) = 0, or equivalently,
H(q) = 0. This gives us two notions of “being close to the boundary”: for all �, δ, ν ∈ (0, 1),
we define

V �
ν = {q ∈ Σ� | |N �

z(f�(q))| < 1− ν}
and

Z�
δ := {q ∈ Σ� | |H(q)| ≤ δ} .

To simplify the notations, we will often omit the � and simply write Vν and Zδ. Notice
that for any δ and ν, when � is sufficiently small, we have Vν ⊆ Zδ, because the metric
tends to a flat one outside Zδ.

We now have to deal with three very small values: δ, ν and �. In the whole chapter,
we will assume � � δ: in other words, we will first choose a small δ, and then choose a
small � which depends on the choice of δ. When the value ν will come into play, its choice
will always be made between the choice of δ and the choice of �, that is: � � ν � δ.

Definition 7.4 (Darboux frame). For any unit speed curve Γ : [0, 1] → Σ, we define the
tangent vector T = Γ�(s). The normal vector N is the unit normal to (TΓ(s)Σ). Finally,
the normal geodesic vector G is defined by G = N ∧ T .

In this frame, there exist three quantities γ�N (normal curvature), γ�G (geodesic
curvature) and τ �G (geodesic torsion), also written simply γN , γG and τG, such that

dT

ds
= γGG+ γNN

dG

ds
= γGT + τGN

dN

ds
= γNT + τGG

The (traditional) curvature of Γ considered as a curve in R3 is k =
��dT

ds

��. Thus, if
k �= 0, writing n = dT/ds

�dT/ds� , we obtain:

γN = k �N | n� , (7.2)

and in particular:

|γN | = k

�
1− �N | T ∧ n�2. (7.3)

For example, if Γ is the intersection of Σ with a plane P , T ∧ n has the same direction as
the normal vector of P , so it is convenient to use Equation 7.3.

Notice that the normal curvature at s only depends on Γ(s) and Γ�(s): thus we may
write γN (q, p) for (q, p) ∈ T 1Σ. Moreover, we have the relation:

γN (q, p) = �DN(q) · p | p� .
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For any q ∈ Σ�, γ
�
+(q) and γ�−(q) (sometimes written simply γ+ and γ−) are the

principal curvatures of Σ� at q. They correspond respectively to the maximum and
minimum normal curvatures at f�(q).

K�(q) = γ�+(q)γ
�
−(q) is the Gaussian curvature of Σ� at q.

We can now make a first remark:

Fact 7.5. For any small enough δ > 0, H|Zδ
is a submersion from Zδ to R.

Proof. Let q ∈ π−1(∂D) ∩ Σ and consider a curve γ which parametrizes the section of Σ
by the plane containing the directions (Oy) and (Oz), with γ(0) = q. Assumption 2 of
the theorem implies that γ has nonzero curvature at q, and thus

�
Dγ(t)H(γ�(t))

 γ�(t)
�

is nonzero for any small enough t. Therefore, H is a submersion from Zδ to R.

Lemma 7.6. Let (q, p) ∈ T 1Σ and (q�, p�) = (f�)∗(q, p). If γ�N (q�, p�) �= 0 for some � > 0,
then the sign of γ�N (q�, p�) is the same for all � > 0.

Proof. Let Γ : [−1, 1] → Σ be any curve such that (Γ(0),Γ�(0)) = (q, p), and consider
Γ� = f� ◦ Γ for � > 0. Writing T � its tangent vector, the assumption implies that�
dT �

dt

 N �
�
is nonzero at t = 0 for some �, which means that dT �

dt �∈ TΓ�(0)Σ�. Obviously,
this property does not depend on �, so γ�N (q�, p�) is nonzero for all �. By continuity,
γ�N (q�, p�) does not change sign.

Lemma 7.7. Let α ∈ (0, 1), and q0 ∈ Σ such that π(q0) ∈ ∂D. We assume that N(q0) is
directed towards the exterior of the billiard table D, and (up to a rotation of axis ez) that
N(q0) = −ey. Then there exists r > 0 and �0 such that for all � ≤ �0, all q ∈ B(f�(q0), r),
and all p ∈ T 1

q Σ�: γN (q, p) > 0 whenever |px| ≤ α (where px is the x-coordinate of p).

Proof. By Assumption 2 of Theorem 7.1, we know that γN (q0, ez) > 0. We define
Wη =

�
p ∈ T 1

q0Σ
 |px| ≤ η

�
. By continuity of γN , there exists η > 0 such that, for all

p ∈ Wη, γN (q0, p) > 0.

Write W �
η = (f�)∗(Wη). Notice that for all p ∈ T 1

q0Σ, writing (f�)∗(q0, p) = (f�(q0), p
�):

p�x =
px�

p2x + �2p2z
and p�z =

�pz�
p2x + �2p2z

.

Thus for a small enough �, W �
η contains all p ∈ T 1

q0Σ� for which |px| ≤ α. We denote such
an � by �0. By Lemma 7.6, γN > 0 on W �0

η . Again by continuity, the property γN > 0
extends to a small neighborhood of the form

�
(q, p) ∈ T 1Σ�0

 q ∈ B(q0, r
�), |px| ≤ α

�

for some r� > 0.

Finally, we use Lemma 7.6 once again, which proves that there exists r > 0 such that
for all � ∈ (0, �0), γN > 0 on

�
(q, p) ∈ T 1Σ�

 q ∈ B(q0, r), |px| ≤ α
�
.

Proposition 7.8. Choose q0 ∈ Σ such that π(q0) ∈ ∂D, and assume that N(q0) is
directed towards the exterior of the billiard table D, and (up to a rotation of axis ez) that
N(q0) = −ey. Write q�0 = f�(q0).

Then for all α ∈ (0, 1), there exists r0 > 0 such that for all r ≤ r0 and for all
ν ∈ (0, 1):

inf
q∈Vν∩B(q�0,r)

p∈T 1
q Σ�, |px|≤α

γ�N (q, p) →
�→0

+∞. (7.4)
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Moreover, under the additional assumption that the curvature of ∂D is negative at
π(q0), there exists r0 > 0 such that for all r ≤ r0 and for all ν ∈ (0, 1):

lim sup
�→0

sup
q∈Vν∩B(q�0,r)

γ�−(q) < 0. (7.5)

To prove this proposition, we first prove a 2-dimensional version in a particular case:

Lemma 7.9. For all � > 0 consider the ellipse

E� =
�
(y, z) ∈ R2

 y2 +
z2

�2
= 1

�
.

Define N �(q) as the unit normal vector of the ellipse at q ∈ E�, pointing towards the
interior, and let

Wν = {z ∈ E� | |N �
z | < 1− ν} .

Then for all ν ∈ (0, 1), if K(q) denotes the curvature of E� at q:

inf
q∈Wν

K(q) →
�→0

+∞.

Proof. We parametrize E� by:
t �→

�
cos t
� sin t

�
.

Then the curvature is
K(t) =

�

(�2 cos2 t+ sin2 t)3/2

while the unit normal vector is
�
−� cos t
− sin t

�
1�

�2 cos2 t+ sin2 t
.

If |Nz| < 1− ν, then sin2 t ≥ (1− ν)2(�2 cos2 t+ sin2 t), whence tan2 t ≤ �2(1−ν)2

ν(2−ν) .
Therefore,

K =
�/
��cos3t

��
(�2 + tan2 t)3/2

≥ �
�
�2 + �2(1−ν)2

ν(2−ν)

�3/2 =
(ν(2− ν))3/2

�2

which tends to +∞ as � → 0.

Proof of Proposition 7.8. For each q ∈ B(q0, r), consider the curve Γq resulting from the
intersection of Σ with the affine plane (q, ey, ez) and the normal vector n of Γq.

With the notations of Definition 7.4, let us show that we may choose r small enough
for |�N | T ∧ n�| to remain bounded away from 1 for all small � and all q ∈ B(q0, r).
Since N1

x(q0) = 0, we may choose r such that Nx remains close to 0 for � = 1. We know
that Nx decreases as � decreases to 0, so Nx remains close to 0 when � → 0. Since T ∧ n
is colinear to ex, this implies that |�N | T ∧ n�| remains close to 0.

Now, let C be a circle tangent up to order 2 to Σ1 at q, parallel to e⊥x : the existence
of such a circle is guaranteed, for a small enough r, by Assumption 2 of the theorem.
This circle gives birth to a family E� = f�(C) of ellipses which are tangent to Σ� at f�(q)
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up to order 2. Lemma 7.9 tells us that as � decreases to 0, the curvature of E� at f�(q)
(which is the same as the curvature of f�(Γq) at f�(q)) tends to infinity as long as q ∈ Vν ,
uniformly with respect to q. Together with Equation 7.3, this proves that

inf
q∈Vν∩B(q�0,r)

p∈T 1
q Σ�, px=0

γ�N (q, p) →
�→0

+∞.

To prove (7.4), let α ∈ (0, 1). Lemma 7.7 applied to q0 and α+1
2 gives us some r0 and

�0 such that for all q ∈ B(q0, r0) and all p ∈ T 1
q Σ� such that |px| ≤ α+1

2 , γN (q, p) > 0.
Since γN (q, ·) is a quadratic form on the tangent space TqΣ�, which takes uniformly
large values for p ∈ T 1

q Σ� ∩ (ex)
⊥, we deduce that it also takes uniformly large values for

|px| ≤ α.
Finally, we prove (7.5): consider q ∈ B(q�0, r) ∩ Vν , and Γ a parametrization by arc

length of {q� ∈ B(q0, r) ∩ Vν | H(q�) = H(q)}. Since H|Zδ
is a submersion (for any small

enough δ), the curvature of the curve π ◦ Γ is close to the curvature of ∂D near π(q),
which is bounded away from zero. Moreover, the unit tangent vector of Γ is bounded
away from ez because of Assumption 2, so the speed of π ◦ Γ is bounded away from
zero, which implies that the curvature of Γ itself is bounded away from 0, uniformly
with respect to � and q. Moreover, �ez | T ∧ n� tends uniformly to 1 as � tends to 0, so
�N | T ∧ n� is bounded away from 1 in V �

ν . With Equation 7.3, this completes the proof
of (7.5).

As a direct consequence of Lemma 7.7 and Proposition 7.8, we obtain:

Fact 7.10. If the walls of D are negatively curved, then for any small enough δ, there
exists �0 > 0 such that for � ≤ �0, the Gaussian curvature of Σ� in Zδ is negative.

In the following proposition, which is crucial for both Theorems 7.1 and 7.2, we
examine nongrazing collisions with the walls of the billiards. We will consider geodesics
(q�(t), p�(t))t∈R in Σ� for some � > 0. We will say that such a geodesic is t0-admissible
(for some time t0 > 0) if the billiard trajectory starting from π∗(q�(0), p�(0)) bounces
against a wall of the billiard before the time t0: in this case, we will denote by tc ∈ [0, t0]
the time of the first bounce. For any time t0 > 0, and any t0-admissible geodesic, we will
denote by (q0(t), p0(t)) the (unique) pullback of this billiard trajectory by π in Σ� for
t ∈ [0, tc], and write qc = q0(tc); moreover, we will choose the normal N(qc) so that it is
directed towards the exterior of the billiard table D, and make a rotation of axis ez so
that N(qc) = −ey (see Figure 7.2).

Notice that for any δ > 0, the projection of the geodesic flow outside Zδ is uniformly
close to the billiard flow for small values of �, so there exists �0 > 0, which depends on
δ, but not on the choice of the geodesic, such that for all � ≤ �0, any geodesic as above
enters Zδ at a time t�in close to tc.

Proposition 7.11. For all t0 > 0, m > 0 and α ∈ (0, 1), there exist l < 0 and δ0 > 0,
such that for all δ ≤ δ0, there exists �0 > 0, such that for all � ≤ �0 and each t0-admissible
geodesic (q�, p�) in Σ� such that |p�x(0)| < α:

1. supt∈[0,t�in+
√
δ] |p�x(t)− p�x(0)| ≤ m;

2. the geodesic (q�(t), p�(t)) exits Zδ at a time tout ≤ tin +
√
δ;
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3. if the curvature of ∂D is negative everywhere, and if q�(0) �∈ Zδ, then

� t�out

t�in

K(q�(t))dt ≤ l.

N(qc)

Vν

Zδ

qc

ex

ey

Figure 7.2 – The projection of the geodesic onto the billiard (solid line) is close to the
billiard trajectory (dotted line).

Proof. Fix t0 > 0, m > 0 and α ∈ (0, 1). In the whole proof, δ0 and �0 are assumed to be
as small as necessary. In other words, the reader may add mentally to most mathematical
sentences the following prefix: “there exist l < 0 and δ0 > 0, such that for all δ ≤ δ0,
there exists �0 > 0, such that for all � ≤ �0 and each t0-admissible geodesic (q�, p�) in Σ�

such that |p�x(0)| < α: . . . ”.

Let us prove Statement (1). We shall often write q, p for q�(t), p�(t) to simplify the
notations.

Outside Zδ, the geodesic flow converges uniformly to the billiard flow, so

sup
t∈[0,tin]

|p�x(t)− p�x(0)| ≤ m/2.

Thus, we only need to consider supt∈[tin,tin+
√
δ] |p�x(t)− p�x(tin)|.

Let t1 = inf
�
t ∈ [tin, tin +

√
δ]
 �DN(q) · p | p� ≤ 0

�
(or t1 = tin +

√
δ if this set is

empty), and consider t ∈ [tin, t
1] (thus, �DN(q) · p | p� ≥ 0 at time t).

The geodesics (q(t), p(t)) follow the geodesic equation:

ṗ = −N(q) �DN(q) · p | p� ,
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which gives us the following estimates:

|px(t)− px(tin)| ≤
� t

tin

|ṗx|

≤
� t

tin

����
Nx

Ny

���� |ṗy|

≤
�

sup
B(q(tin),

√
δ)

����
Nx

Ny

����

�� t

tin

|ṗy|

For all sufficiently small δ, the quantity Ny is negative in B(q(tin),
√
δ), thus ṗy =

−Ny(q) �DN(q) · p | p� is nonnegative and:

|px(t)− px(tin)| ≤
�

sup
B(q(tin),

√
δ)

����
Nx

Ny

����

�
|py(t)− py(tin)| .

We know that Nx
Ny

= N1
x

N1
y

does not depend on �. Moreover, q(tin) is close to qc

and N1
x

N1
y
(qc) = 0, so the quantity supB(q(tin),

√
δ)

���Nx
Ny

��� is close to 0. On the other hand,

|py(t)− py(tin)| remains bounded since the geodesic has unit speed, which concludes the
proof of Statement (1) for t ∈ [tin, t

1].
To extend the result to t ∈ [tin, tin +

√
δ], we prove that in fact t1 = tin +

√
δ:

assume that t1 �= tin +
√
δ. Then px(t) remains close to px(tin) for t ∈ [tin, t

1], so it
remains bounded away from 1, but γN (q, p) = �DN(q) · p | p� ≤ 0 at t1. Thus, there is a
contradiction with Lemma 7.7, and Statement (1) is proved.

Now, let us prove Statement (2). We introduce the parameter ν and fix the parameters
in the following way: first fix a small δ, then a small ν, and finally a small �.

Let us show that the boundaries of Zδ and Vν near qc are nearly parallel to the ex axis.
From Fact 7.5, the levels of (H|Zδ

)−1 (a) are smooth curves. Moreover, for a sufficiently
small a ∈ [−1, 1], near qc, the y-coordinates of the unit tangent vectors to H−1(a) remain
small, while the x-coordinates are bounded away from zero. In particular, this applies
to the boundary of Zδ, but also to the boundary of Vν , which is a level of H, since N �

z

depends only on H and � (see Definition 7.3).
Outside Vν , |pz| is bounded by

�
ν(1− ν). Since px is bounded away from 1 and

p2x + p2y + p2z = 1, we deduce that py remains bounded away from zero, uniformly with
respect to δ, ν and �, for all sufficiently small ν. In particular, py does not change sign in
Zδ \ Vν , so it is only possible to enter Vν once with py < 0 and exit once with py > 0.
Thus, the geodesic can enter Vν at most once.

There remains to show that the time spent in each zone is small.
For any q ∈ π−1(Int D) ∩ Σ�, it is natural to define ∂H

∂x as DHq(p), where p is the

(unique) speed vector in TqΣ such that Dqπ(p) = ex. We also define ∂H
∂y in the same way.

Outside Vν (therefore outside π−1(∂D)) we write:

Ḣ =
∂H

∂x
px +

∂H

∂y
py.

Since the levels of the submersion H are nearly parallel to ex,
∂H/∂x
∂H/∂y is close to 0

near qc. Outside Vν , with the fact that py is bounded away from 0, this proves that Ḣ is
bounded away from 0, so the time spent in Zδ \ Vν is O(δ).
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In Vν we have
ṗy = −Ny �DN(q) · p | p� .

Fix δ, ν > 0. Since Nz is bounded away from 1, and Nx
Ny

is close to zero, we deduce that

Ny is bounded away from zero. Moreover, by Proposition 7.8, �DN(q) · p | p� →
�→0

+∞
uniformly in Vν , so ṗy →

�→0
+∞. Since py is bounded, this implies that the time spent in

Vν tends to 0 as � → 0. Thus, the total time spent in each zone is O(δ), so for any small
enough δ, tout ≤ tin +

√
δ (Statement 2).

If the curvature of ∂D is negative everywhere, and q0(0) �∈ Zδ, then the geodesic has
the following behavior: it enters Zδ with py < 0, then enters Vν with py < 0. In Vν , py
changes sign, then the geodesic exits Vν and finally, exits Zδ. Therefore, writing t2 and
t3 the entry and exit times in Vν , since K is negative in Zδ (see Fact 7.10):

� t3

t2

K =

� t3

t2

γ�+γ
�
− ≤

�
sup
Vν

γ�−

�� t3

t2

γ�+ ≤
�
sup
Vν

γ�−

�� t3

t2

−Ny �DN(q) · p | p�

=

�
sup
Vν

γ�−

�
(py(t3)− py(t2)).

With Proposition 7.8, this proves that
� t3
t2

K is bounded away from 0: Statement (3)
is proved.

End of the proof of Theorem 7.1. To prove the local uniform convergence, we intro-
duce a family of elements (t�, q�(0), p�(0)) ∈ f�(A) with parameter �, and assume that�
t�, (f�)

−1
∗ (q�(0), p�(0))

�
has a limit (t0, q0(0), p0(0)) ∈ A as � → 0. The geodesic of Σ�

starting at (q�(0), p�(0)) is written (q�(t), p�(t))t∈R. We want to show that π∗(q�(t�), p�(t�))
tends to Ψt0 ◦ π∗(q0(0), p0(0)). Since the billiard trajectory Ψt ◦ π∗(q0(0), p0(0)) experi-
ences only a finite number of bounces in any finite time interval, we may assume that
the trajectory for t ∈ [0, t0] has only one bounce4, at a time tc. As in Proposition 7.11,
let (q0(t), p0(t)) be the (unique) pullback of this trajectory by π in Σ� for t ∈ [0, tc], and
let qc = q0(tc). Assume that N(qc) is directed towards the exterior of the billiard table
D, and (up to a rotation of axis ez) that N(qc) = −ey. The geodesic (q�(t), p�(t)) enters
Zδ at some time t�in and exits at some time t�out, and the only difficulty to prove the
convergence is located between these two times, since g� converges uniformly to a flat
metric outside Zδ.

Since p0x(0) < 1, Proposition 7.11 shows that

lim
δ→0

lim
�→0

|px(tout)− px(tin)| = 0.

Moreover, for all δ > 0, lim�→0 pz(tin) = lim�→0 pz(tout) = 0, and since the geodesic has
unit speed,

lim
δ→0

lim
�→0

|py(tin)| = lim
δ→0

lim
�→0

|py(tout)| .

We have already seen that the geodesic enters Zδ with py < 0 and exits with py > 0.
Thus:

lim
δ→0

lim
�→0

py(tin) = − lim
δ→0

lim
�→0

py(tout).

4If the billiard trajectory has no bounce at all, then the geodesic remains outside of Zδ and the
convergence is clear.
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Proposition 7.11 also states that limδ→0 lim�→0 |tout − tin| = 0.
Thus, the limiting trajectory satisfies the billiard reflection law and Theorem 7.1 is

proved.

7.4 Proof of Theorem 7.2

In this section, the walls of the billiard are assumed to be concave, and the billiard
has finite horizon. The following lemma gives an important consequence of the second
property.

Lemma 7.12. Let D be a billiard in T2 whose walls are negatively curved. Assume that
D has finite horizon (D contains no geodesic of T2 with infinite lifetime in the past and
the future). Then, there is an η > 0, a time tmax and an angle φ0 such that every curve
of length tmax in T2, which is η-close to a straight line in the C1 metric, hits at least
once the boundary with an angle ≥ φ0.

Proof. Assume that the conclusion of the lemma is false. Then there are curves Γn :
[−n, n] → T2 which do not hit the boundary with an angle greater than 1

n , and which
are 1

n -close to geodesics in the C1 metric. By a diagonal argument, one may extract a
subsequence which converges to a geodesic Γ : R → T2 which does not hit the boundary
with an angle greater than 0, so that Γ remains in D.

As another consequence of the concavity of the walls, we may assume that the
principal curvatures satisfy

��γ�−
�� ≤
��γ�+
�� in Zδ (with Proposition 7.8). We write κ(δ, �) =

maxq �∈Zδ

���γ�+(q)
�� ,
��γ�−(q)

���. Notice that for all δ > 0, κ(δ, �) →
�→0

0. Later we will simply

write κ for κ(δ, �). We also define

Wκ = {q ∈ Σ� | K(q) ≤ −κ} .

Notice that for any fixed δ > 0, there exists �0 > 0 such that for � ≤ �0, Wκ ⊆ Zδ.
In the following proposition, we determine what remains of Proposition 7.11 when

the geodesics are not assumed to be nongrazing, but when instead they are assumed
to undergo little curvature. We will consider geodesics (q�(t), p�(t))t∈R in Σ�, for some
� > 0. For such a geodesic, define t�in as the first time at which the geodesic (q�(t), p�(t))
enters Zδ: here, we will will say that a geodesic is admissible if this time exists with
t�in +

3
√
δ < 1. As before, we will choose the orientation of the normal vector N such that

it points towards the exterior of the billiard table at its boundary near qin, and then
make a rotation of axis ez, such that Nx(qin) = 0 and Ny(qin) < 0.

Proposition 7.13. For all m > 0, there exists δ0 > 0, such that for all δ ≤ δ0, there
exists �0 > 0, such that for all � ≤ �0 and each admissible geodesic (q�, p�) such that� 1
0 |K(q�(t))| ≤ 3κ2:

1. inf
t∈[0,tin+ 3√

δ]
(py(t)− py(0)) ≥ −2

√
κ;

2. sup
t∈[0,tin+ 3√

δ]
|px(t)− px(0)| ≤ m;

3. denoting by Z0
δ the connected component of Zδ containing q(tin), there exists tout ∈

[tin, tin +
3
√
δ], at which the geodesic exits Z0

δ , and does not come back to Z0
δ before

visiting another component of Zδ.
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qx(tin) qx(tout)

O(δ)

O(
√
δ)

Zδ

Figure 7.3 – The geodesic exits Zδ before a time which is O(
√
δ), because py(t)− py(0)

is bounded from below by a small negative number.

Proof. As before, we only need to consider what happens for t ≥ tin, as the metric tends
to a flat metric outside Zδ.

To prove the first statement, writing ṗy = ṗy
+− ṗy

−, with ṗy
+ = max(ṗy, 0) (positive

part) and ṗy
−(t) = −min(ṗy, 0) (negative part), it suffices to show that

� t
tin

ṗy
− is

(uniformly) close to 0. We divide this integral into two parts. In the part where q ∈ Wκ,
the quantity ṗy = −Ny(q) �DN(q) · p | p� is bigger than −

�
K(t) (because

��γ�−
�� ≤
��γ�+
��),

so it is bigger than −K(t) − 1. The time spent in Wκ is smaller than 3κ2/κ, and the
integral of |K(t)| is smaller than 3κ2. In the part where q �∈ Wκ, �DN(q) · p | p� is bigger
than −√

κ. Thus,
� t
tin

ṗy
− ≤ 3κ2 + 3κ+

√
κ(tin +

3
√
δ) ≤ 2

√
κ, and Statement 1 is proved.

For all t ∈ [0, 3
√
δ], we may write, as in the proof of Proposition 7.11:

|px(t)− px(tin)| ≤
�

sup
B(q(tin),

3√
δ)

����
Nx

Ny

����

�� t

tin

|ṗy| .

Since Nx
Ny

does not depend on �,
�
sup

B(q(tin),
3√
δ)

���Nx
Ny

���
�
is close to 0. Moreover,

� t

tin

|ṗy| =
� t

tin

�
ṗy + 2ṗy

−� ≤ |py(t)− py(tin)|+ 2

� t

tin

ṗy
−.

The term |py(t)− py(tin)| is bounded by 2, and
� t
tin

ṗy
− is close to 0, so

� t
tin

|ṗy| is bounded,
which proves Statement 2.

Finally, to prove Statement 3, fix any α ∈ (0, 1). Lemma 7.11 implies that all
trajectories such that |px(0)| < α exit Zδ before t = tin +

√
δ. For the other trajectories,

Statement 2 implies that px remains bounded away from 0. Together with Statement 1
and the uniform concavity of the walls of the billiard table, this implies that the geodesic
must exit Z0

δ definitively before a time which is O(
√
δ) (see Figure 7.3).

Lemma 7.14. For all m > 0, there exists �0 > 0, such that for all � ≤ �0, and all
geodesics (q�(t), p�(t))t∈R such that

� 1
0 |K(q�(t))| ≤ 3κ2,

sup
t∈[ 13 ,

2
3 ]
�p(t)− p(1/3)� ≤ m.

In particular, the choice of �0 does not depend on the choice of the geodesic.
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Proof. Outside Zδ, ṗx vanishes as � → 0. Each time that the geodesic enters or exits Zδ,
Proposition 7.11 implies (with the choice of α ∈ (0, 1) close to 1) that p is nearly tangent
to the boundary of the billiard table (otherwise, the geodesic undergoes strong negative
curvature after the entry or before the exit, which is why we consider only the interval�
1
3 ,

2
3

�
). Moreover, Proposition 7.13 implies that the time spent in Zδ is small. Thus,

the exit point is near the entrance point and, from Statement 2 of Proposition 7.13, the
speed vector p is almost preserved. Then, the geodesic goes to visit another component
of Zδ, so there is an upper bound on the number of times that it enters Zδ. Thus, the
total change in p is uniformly small.

End of the proof of Theorem 7.2. To show that the flow has the Anosov property, we
consider a small δ, a small �, and a geodesic (q�(t), p�(t))t∈R in Σ�, and examine the
Ricatti equation: �

u(0) = 0

u�(t) = −K�(q�(t))− u2(t).

It suffices to show that u(1) is positive and bounded away from 0, uniformly with
respect to the choice of the geodesic (see Theorem 6.3). In the following, we write
K(t) := K�(q�(t)).

Applying a homothety to Σ if necessary, we may assume that tmax given by Lemma 7.12
is less than 1

3 . If
� 1
0 |K(t)| dt ≤ 3κ2, then Lemma 7.14 tells us that, for any small enough

�, (π∗(q(t), p(t)))t∈[ 13 ,
2
3 ]

is C1-close to a straight line in T2, which contradicts Lemma 7.12.

Thus, there exists �0 > 0 such that for all � ≤ �0,
� 1
0 |K(t)| dt ≥ 3κ2. Since K ≤ 0 in

Zδ and |K| ≤ κ2 outside Zδ, we deduce that K ≤ κ2 in Σ�. Therefore, considering the
positive and negative parts of K,

� 1

0
K =

� 1

0
(K+ −K−) = −

� 1

0
|K|+ 2

� 1

0
K+ ≤ −3κ2 + 2κ2 ≤ −κ2.

Now, let us show that u(1) ≥ κ2/2, which will end the proof. To do this, we
assume that u(1) < κ2/2 and show that for all t ∈ [0, 1], |u(t)| ≤ 2κ2. Let t1 =
sup
�
t ∈ [0, 1]

 u(t) ≥ 2κ2
�
(or t1 = 0 if this set is empty). For t ∈ [t1, 1], u�(t) =

−K(t)− u2(t) ≥ −K(t)− 4κ4, so u(1)− u(t1) ≥ −
� 1
t1 K(t)dt− 4κ4, whence

u(t1) ≤ u(1) +

� 1

t1
K(t)dt+ 4κ4 ≤ κ2/2 + κ2 + 4κ4 < 2κ2.

This implies, with the definition of t1, that t1 = 0 and u(t) ≤ 2κ2 for all t ∈ [0, 1]. Thus,

u(1) ≥ u(0)−
� 1

0
K(t)− 4κ4 ≥ κ2 − 4κ4 ≥ κ2/2,

a contradiction. This ends the proof of Theorem 7.2.



Chapter 8

Dynamics of linkages

8.1 Introduction

In this chapter, we consider the physical behavior of linkages when they are given an
initial speed, without any external force and without friction. We will only consider
linkages such that Conf(L) is a smooth manifold in (R2)n. It is the case for a generic
choice of the edge lengths (see Proposition 1.3). Of course, the dynamics depend on the
distribution of the masses in the system: to simplify the problem, we will assume that the
masses are all concentrated at the vertices of the graph. If one denotes the speed of each
vertex by vi, and the masses by mi, the principle of least action (see [Arn78]) states that
the trajectory between two times t0 and t1 will be a critical point of the kinetic energy

K =
1

2

� t1

t0

n�

i=1

miv
2
i (t)dt,

which is also a characterization of the geodesics in the manifold Conf(L) endowed with a
suitable metric:

Fact 8.1. The physical behavior of the linkage L, when it is isolated and given an initial
speed, is the geodesic flow on Conf(L) ⊆ (R2)n = R2n, endowed with the metric:

g =

n�

i=1

mi(dx
2
2i−1 + dx22i),

provided that the metric g is nondegenerate. In particular, if all the masses are equal to
1, g is the metric induced by the Euclidean R2n.

Anosov behavior. We ask the following:

Question. Do there exist linkages with Anosov behavior?

The following theorem gives a theoretical answer to this question.

Theorem 8.2. Let (M, g) be any connected compact Riemannian manifold and 1 ≤ k <
+∞. Then there exists a linkage L, a choice of masses, and a Riemannian metric h on
M , such that h is Ck-close to g and every connected component of Conf(L) is isometric
to (M,h).

111
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Proof. Embed (M, g) isometrically in some R2n: this is possible by a famous theorem of
Nash [Nas56]. With another theorem of Nash and Tognoli (see [Tog73], and also [Iva82],
page 6, Theorem 1), this surface is Ck-approximated by a smooth algebraic set A in
R2n, which is naturally equipped with the metric induced by R2n. The manifold A is
diffeomorphic to M , and even isometric to (M,h) where the metric h is Ck-close to g.
We may now use Theorem 2.2: any compact algebraic set B ⊆ R2n is exactly the partial
configuration space of some linkage, that is, the set of the possible positions of a subset of
the vertices; moreover, if B is a smooth submanifold of R2n, each connected component
of the whole configuration space may be required to be smooth and diffeomorphic to B.
Thus, there is a linkage and a subset of the vertices W such that the partial configuration
space of W is A: each component of the configuration space of this linkage, with masses
1 for the vertices in W and 0 for the others, is isometric to the algebraic set A endowed
with the metric induced by R2n, which is itself isometric to (M,h).

In particular, there exist configuration spaces with negative sectional curvature, and
thus with Anosov behavior. This answer is somewhat frustrating, as it is difficult to
construct such a linkage with this method in practice, and it would have a high number
of vertices anyway, at least several hundreds.

In the 1980’s, Thurston and Weeks [TW84] pointed out that the configuration spaces
of quite simple linkages could have an interesting topology, by introducing the famous
triple linkage (see Section 1.1.3 for more details): they showed that, for some choice of
the lengths, its configuration space could be a compact orientable surface of genus 3.
Later, Hunt and MacKay [HM03] found out that this particular linkage also had quite
interesting dynamics.

Asymptotic configuration spaces. The computation of the curvature of a given
configuration space is impossible in practice, most of the time. Thus, the idea of Hunt
and MacKay was to give a small length � to some edges1, while the masses are fixed (0
for the vertex at the center and 1 for the others), and to consider the limit of Conf(L�)
as � → 0. At the limit, the surface is not the configuration space of a physical system
anymore (it is called an asymptotic configuration space), but it is easier to study because
the equations are simpler. In the case of the triple linkage, the miracle is that the limit
surface is Schwarz’s well-known “P surface” in T3, defined by

�3
i=1 cosxi = 0, which

has negative curvature except at a finite number of points, and thus an Anosov geodesic
flow (with Theorem 6.4). The structural stability of Anosov flows allows the authors to
conclude that the configuration space of L� for a small enough � has an Anosov geodesic
flow. In particular, one does not know how small � has to be for L� to be an Anosov
linkage.

This technique may be applied to other linkages. For example, in 2013, Pollicott and
Magalhães [MP13] tried to see what happened with the asymptotic “double linkage”,
an equivalent of the triple linkage but with only two articulated arms (also called
“pentagon”). But the asymptotic configuration space in that case has both positive and
negative curvature and it is impossible to conclude that the geodesic flow is Anosov,
although their computer simulation suggests that it should be the case. In fact, since
Hunt and MacKay’s example, no other linkage has been proved mathematically to be
Anosov.

1with the notations of Figure 1.3, l1 = � and l2 = 1
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Linkages and billiards. To understand the link between linkages and billiards, consider
Thurston’s triple linkage, where all vertices have mass 0 except the central vertex which
has mass 1. The workspace of the central vertex is a hexagon (see Figure 1.4), and
its trajectories are obviously straight lines in the interior of the workspace, but what
happens physically when the vertex hits the boundary of the workspace? It turns out
that it reflects by a billiard law. In fact, when the masses of the non-central vertices are
small, the configuration space is equipped with the metric of a flattened surface Σ� with
a small � > 0, in the spirit of Chapter 7.

However, it may happen that the workspace of some vertex is a dispersive billiard,
while the geodesic flow in the configuration space (with a small parameter �) is not
Anosov. For example, consider Thurston’s triple linkage in the case on the right of
Figure 1.4. Then the workspace of the central vertex x is a non-smooth dispersive billiard
– a triangle with negatively curved walls – but the configuration space is topologically
a sphere, so its geodesic flow cannot be Anosov. In fact, the corners of the billiard
concentrate the positive curvature of the configuration space when it flattens.

A new Anosov linkage. In the rest of this chapter, our aim is to give a new example
of an Anosov linkage (see Figures 8.1 and 8.2) by applying Theorem 7.2. In this example,
the billiard is not the workspace of a single vertex: it is the partial configuration space of
four vertices, that is, the set of the possible positions of these vertices. It is a priori a
subset of (R2)4, but in this particular case, it turns out that it may be seen as a subset
of T2. The configuration space Conf(L), in turn, may be seen as an immersed surface in
T2 × R which flattens to the billiard table as one of the masses tends to 0 (Figure 8.3).

Figure 8.1 – A physical realization of our Anosov linkage.

Notice that this example is not an asymptotic linkage, in the following sense: there
is a whole explicit range of values for the edge lengths such that the linkage has an
Anosov behavior. This is the first time that a linkage with explicit lengths is proved to
be Anosov.

However, one mass has to be close to 0 and our theorem does not say explicitly how
close it has to be. Maybe this linkage is, in fact, Anosov even when the mass is equal
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x = −2 x = 2x = 0

y = 0
(a, 0)

(−2, f)

(b, 0)

(2, g)

(d, e)

(0, c)

1

l l

1

r

Figure 8.2 – Mathematical description of our Anosov linkage.

Figure 8.3 – On the left, the configuration space of our linkage in T2 × R, where T2 is
horizontal and R vertical. It is a surface of genus 7, with a self-intersection (at the center
of the picture). On the right, the flattened configuration space, which is close to a billiard
table with finite horizon (see also Figure 8.5).

to 1. Notice that the masses in Hunt and MacKay’s example are also unexplicit.

In our example, no vertex is fixed, but all the vertices (except one) have only one
degree of freedom and move on a straight line. This may be realized physically by
prismatic joints – or, if one wants to stick to the traditional definition of linkages, it is
possible to use Peaucellier’s straight line linkage, or to approximate the straight lines by
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portions of arcs of large radius.
Precisely, we prove the following:

Theorem 8.3. In the linkage of Figure 8.2, choose the lengths of the rods such that
l + r > 3, l < 3, (l − 2)2 + r2 < 1 and r < 1/2. The mass at (a, 0), (−2, f), (b, 0) and
(2, g) is 1, the mass at (0, c) is �2, while the mass at (d, e) is 0. Then for any sufficiently
small � > 0, the geodesic flow on the configuration space of the linkage is Anosov.

Figure 8.4 – The projection of the geodesics of the configuration space onto the billiard
table. Theorem 7.1 states that the nongrazing geodesics are close to billiard trajectories.
The behavior of grazing trajectories, described by Figure 7.1, is clearly visible here.

A realistic physical system. Similarly to Hunt and MacKay [HM03], we insist on the
fact that our linkage is realistic from a physical point of view. For example, it is possible
to add small masses to the rods and to the central vertex without losing the Anosov
property (using the structural stability of Anosov flows). See Hunt and MacKay’s article
for more details about this aspect.

8.2 Proof of Theorem 8.3

The aim of this section is to prove that the configuration space of the linkage described
in Theorem 8.3 is isometric to an immersed surface in T2 × R which satisfies the 4
assumptions of Theorem 7.2.

The configuration space Conf(L) is the set of all (a, b, c, d, e, f, g) ∈ R7 such that:

(a+ 2)2 + f2 = (b− 2)2 + g2 = 1;

(a− d)2 + e2 = (b− d)2 + e2 = l2;

d2 + (c− e)2 = r2.

Notice that (a+ 2, f) and (b− 2, g) lie in the unit circle T ⊆ R2. Thus, Conf(L) is in
fact a subset of T2 × R3 and any of its elements may be written (θ,φ, c, d, e), with the
identification a = − cos θ − 2, f = sin θ, b = cosφ+ 2, g = sinφ.
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Fact 8.4. For all C0 ∈ Conf(L) such that e �= 0 and e �= c, Conf(L) is locally a smooth
graph above θ and φ near C0. More precisely, there exists a neighborhood U of C0 in
Conf(L), an open set V of T2 and a smooth function F : V → R3 such that

U = {(D, F (D)) | D ∈ V } .

Proof. The function F is given by the following formulae:

d =
− cos θ + cosφ

2
;

e = ±
�
l2 −

�
cos θ + cosφ

2
+ 2

�2

= ±
�
l2 −

�
cos θ + cosφ+ 4

2

�2

;

c = e±
�
r2 −

�
cos θ − cosφ

2

�2

= ±
�

l2 −
�
cos θ + cosφ+ 4

2

�2

±
�
r2 −

�
cos θ − cosφ

2

�2

where the choices of the signs are made according to C0.

Fact 8.5. a) For all C0 ∈ Conf(L) such that (− cos θ − 2, 0), (d, e) and (0, c) are not
aligned, and such that φ �= 0 mod π, Conf(L) is locally a smooth graph above θ and c
near C0.

b) For all C0 ∈ Conf(L) such that (cosφ + 2, 0), (d, e) and (0, c) are not aligned, and
such that θ �= 0 mod π, Conf(L) is locally a smooth graph above φ and c near C0.

Proof. By symmetry, we only need to prove the first statement. The idea of the proof
is the same as for Fact 8.4: on the one hand, the numbers d and e are obtained as the
simple roots of a polynomial of degree 2, so they vary smoothly with respect to θ and
c; on the other hand, φ = ± arccos(2d + cos θ) where the choice of the sign is made
according to C0.

Fact 8.6. For all C0 ∈ Conf(L), Conf(L) is locally a smooth graph near C0:

1. either above θ and φ,

2. or above θ and c,

3. or above φ and c.

Proof. Assume the opposite. Then the hypotheses of Fact 8.5 are not satisfied. If
φ = θ = 0 mod π, then φ = θ mod 2π because r < 1/2; then φ = θ = π mod 2π
because l < 3, but this implies that e �= 0 and e �= c, so Fact 8.4 applies, which is
impossible. Therefore, by symmetry, we may assume that (− cos θ − 2, 0), (d, e) and
(0, c) are aligned. Now, with Fact 8.4, we have either e = 0 or e = c. In both cases,
(− cos θ − 2, 0), (d, e) and (0, c) are all on the line y = 0, which contradicts the fact that
l + r > 3.

Fact 8.6 implies in particular that Conf(L) is a smooth submanifold of T2 × R3.
As explained in the introduction of the chapter, Conf(L) is endowed with the metric

which corresponds to its kinetic energy (recall that the masses of the vertices are �2 at
(0, c), 0 at (d, e), and 1 everywhere else):

g� = da2 + df2 + db2 + dg2 + �2dc2 = dθ2 + dφ2 + �2dc2.
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Fact 8.6 shows that the metric g� is nondegenerate (although it is induced by a
degenerate metric of T2 × R3!), so with Fact 8.1 the physical behavior of the linkage
is the geodesic flow on (Conf(L), g�). Our aim is to show that it is an Anosov flow by
applying Theorem 7.2.

Consider the projection onto the first coordinates:

p : T2 × R3 → T2 × R
(θ,φ, c, d, e) �→ (θ,φ, c).

Again with Fact 8.6, p|Conf(L) is an immersion: Conf(L) is isometric to a smooth
surface Σ immersed in T2 × R, endowed with the metric g� = dθ2 + dφ2 + �2dc2. We
shall now call z the third coordinate instead of c, to be consistent with the notations of
Theorem 7.2.

Denote by π : T2 × R → T2 the projection onto the first coordinates. The surface Σ
projects to a smooth billiard table:

D = π(Conf(L)) =
�
(θ,φ) ∈ T2

 |cos θ − cosφ| ≤ 2r, cos θ + cosφ ≤ 2l − 4
�

Its boundary has three connected components in T2: {cos θ − cosφ = 2r}, {− cos θ +
cosφ = 2r}, and {cos θ + cosφ = 2l − 4}.

θ = 0 θ = 2π
φ = 0

φ = 2π

Figure 8.5 – The billiard table D (in grey) for r = 0.4 and l = 2.8. The billiard has
negatively curved walls, which means that the obstacles are strictly convex.

There remains to show that the immersed surface Σ satisfies the 4 assumptions of
Theorem 7.2. Assumption 1 is satisfied as a direct consequence of Fact 8.4. The following
proposition proves Assumption 2.

Proposition 8.7. For all q ∈ π−1(∂D) ∩ Σ, the curvature of Σ ∩ V is nonzero at q,
where V is a neighborhood of q in the affine plane q +Vect(ez, (TqΣ)

⊥).
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Proof. Here we will assume that π(q) ∈
�
(θ,φ) ∈ T2

 cosφ+ cos θ = 2l − 4
�
, but the

proof is identical for the other components of ∂D. Let F (θ,φ) =
�
cos θ+cosφ+4

2

�2
. For

any small t ≥ 0, let θ(t) = qθ +Nθ(q)t, φ(t) = qφ +Nφ(q)t, and choose z(t) of the form:

z(t) = ±
�

l2 −
�
cos θ(t) + cosφ(t) + 4

2

�2

±
�
r2 −

�
cos θ(t)− cosφ(t)

2

�2

with a choice of the ± signs so that (θ(0),φ(0), z(0)) = q. Then for all small t ≥ 0,
(θ(t),φ(t), z(t)) ∈ Σ.

As t tends to 0, we may estimate:

z(t) = ±
��

d

dt

����
t=0

F (θ(t),φ(t))

�
t+O(t2)±

�
r2 −

�
cos θ(0)− cosφ(0)

2

�2

+O(t)

(z(t)− z(0))2 = ±
�

d

dt

����
t=0

F (θ(t),φ(t))

�
t+ o(t).

Notice that ∇F (θ(0),φ(0)) = −
�
sin θ(0)
sinφ(0)

��
cos θ+cosφ+4

2

�
is nonzero (because 2 < l < 3).

Moreover,

�
θ�(0)
φ�(0)

�
is

�
Nθ(q)
Nφ(q)

�
, which is colinear to ∇F (θ(0),φ(0)), so

d

dt

����
t=0

F (θ(t),φ(t)) =

�
θ�(0)
φ�(0)

�
·∇F (θ(0),φ(0)) �= 0.

This gives us:

t = ± 1
d
dt

��
t=0

F (θ(t),φ(t))
(z(t)− z(0))2 + o((z(t)− z(0))2).

Hence, t �→ z(t) has an inverse function z �→ t(z) which has a nonzero second
derivative at t = 0. Since (z, t) are the coordinates in an affine (orthonormal) basis of
q +Vect(ez, (TqΣ)

⊥), this implies that Σ ∩ V has nonzero curvature at q.

The following proposition proves Assumption 3.

Proposition 8.8. The walls of the billiard D have negative curvature.

Proof. In general, the curvature of the boundary of a set defined by the inequality
F (q) ≤ C, where C ∈ R is a constant, with the normal vector pointing inwards, is the
divergence of the normalized gradient of F , namely:

∇ · ∇F

�∇F� .

First consider the boundary of the set {cosφ + cos θ ≤ 2l − 4}. Here F (φ, θ) =
cosφ+ cos θ. Thus:

∇F

�∇F� =
−1�

sin2 θ + sin2 φ

�
sin θ
sinφ

�
.
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Hence, the divergence of the normalized gradient has the same sign as:

− sin2 φ cos θ − sin2 θ cosφ

which can be rewritten:

−(2l − 4) cos2 θ + (2l − 4)2 cos θ − (2l − 4).

This is a second order polynomial in cos θ with discriminant (2l − 4)2((2l − 4)2 − 4) < 0
(here we use the assumption l < 3). Since (2l − 4) > 0 (because l > 2), the polynomial is
everywhere negative.

Now, consider the boundary of the set {cosφ− cos θ ≤ 2r}. This time, the divergence
of the normalized gradient has the same sign as

sin2 φ cos θ − sin2 θ cosφ

which can be rewritten
−2r cos2 θ − 4r2 cos θ − 2r.

This time, the discriminant is 16r2(r2 − 1), which is negative since r < 1.
The third wall is the boundary of the set {cos θ − cosφ ≤ 2r}. The divergence of the

normalized gradient has the same sign as

− sin2 φ cos θ + sin2 θ cosφ

which can be rewritten
−2r cos2 θ + 4r2 cos θ − 2r.

Again, the discriminant is 16r2(r2 − 1), which is negative.

Finally, we prove Assumption 4, which will end the proof of Theorem 8.3.

Proposition 8.9. If (l − 2)2 + r2 < 1 and r < 1/2, then D has finite horizon.

Proof. Assume that there exists a geodesic (θ(t),φ(t)) with infinite lifetime in the past
and in the future.

First, we prove that the slope of the geodesic is ±1. We may assume that the slope
is in [−1, 1] (if not, exchange the roles θ and φ): thus there is a time t0 for which
θ(t0) = 0 mod 2π. Then the set G = {φ(t)− φ(t0) mod 2π | t ∈ R, θ(t) = 0 mod 2π}
is a subgroup of R/2πZ. Moreover, for all t ∈ G, we have |cos θ(t)− cosφ(t)| ≤ 2r so
cosφ(t) ≥ 1 − 2r > 0, so G ⊆

�
−π

2 ,
π
2

�
mod 2π, which means that G is reduced to

a single point: the slope is either 0 or ±1 (since we assumed it is in [−1, 1]). If the
slope is 0, then |cos θ(t)− cosφ(t)| ≤ 2r applied to a t such that cos θ(t) = −1 gives us
cosφ(t) ≤ −1 + 2r, which is not compatible with cosφ(t) ≥ 1− 2r > 0 since r < 1/2, so
the slope is in fact ±1.

Changing θ into −θ if necessary, we may assume that the slope is 1. Thus, there
exist t1 and t2 such that φ(t1) + θ(t1) = π mod 2π and φ(t2) + θ(t2) = 0 mod 2π. We
have θ(t2)− θ(t1) = φ(t2)− φ(t1) mod 2π (because the slope is 1), so φ(t2)− φ(t1) =

π
2

mod π, so cosφ(t2) cosφ(t1) = − sinφ(t2) sinφ(t1). By taking the squares of both sides
of this equality we obtain:

cos2 φ(t1) + cos2 φ(t2) = 1. (8.1)
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We have − cos θ(t1) + cosφ(t1) ≤ 2r and cosφ(t2) + cos θ(t2) ≤ 2l− 4, which implies that
− cos θ(t1) = cosφ(t1) ≤ r and cos θ(t2) = cosφ(t2) ≤ l − 2. Injecting this in (8.1), we
obtain:

r2 + (l − 2)2 ≥ 1,

which contradicts r2 + (l − 2)2 < 1.
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Chapter 9

Transverse similarity structures
on foliations

9.1 Some background and vocabulary

In this section, we consider a connected manifold M endowed with an affine connection
∇ and recall some basic vocabulary. See [KN63] (for example) for more details about
these notions.

Holonomy group. For x ∈ M , any continuous, piecewise C1, closed curve γ with base
point x defines a linear map from the tangent space TxM to itself, given by parallel
transport along γ. The set of all linear maps obtained in this way has a natural group
structure: it is called the holonomy group at x, and written Holx(∇).

For two base points x, y ∈ M , it is easy to see that the holonomy groups Holx(∇)
and Holy(∇) are conjugated: thus, for most purposes, we may omit the base point and
write simply Hol(∇).

The restricted holonomy group Hol0(∇) is the subgroup of Hol(∇) given by the
contractible curves.

Irreducibility. We say that ∇ has irreducible holonomy (or simply, M is irreducible) if,
for x ∈ M , the only subspaces of TxM stable under Holx(∇) are TxM and {0}. Otherwise,
we say that ∇ is reducible. If the property holds for Hol0x(∇) instead of Holx(∇), we say
that (M,∇) is locally irreducible or locally reducible.

Connections preserving structures. Given a Riemannian metric g on M , we say
that ∇ preserves g if for any curve γ joining x ∈ M to y ∈ M , the parallel transport
Pγ : TxM → TyM is an isometry for the metric g.

Likewise, for a conformal structure c on M , we say that ∇ preserves c if for any curve
γ joining x ∈ M to y ∈ M , the parallel transport Pγ : TxM → TyM is a conformal map.

9.2 Introduction

9.2.1 Decomposition of locally metric connections

We recall the famous decomposition theorem of De Rham [dR52]:

123



124 CHAPTER 9. TRANSVERSE SIMILARITY STRUCTURES ON FOLIATIONS

Theorem 9.1 (De Rham, 1952). Consider a complete connected Riemannian manifold
(M, g). Then the universal cover (M̃, g̃) of (M, g) admits the following decomposition:

(M̃, g̃) = (M0, g0)× (M1, g1)× . . .× (Mk, gk),

where k ≥ 0, M0 is the Euclidean space Rq (for some q ≥ 0), and M1, . . . ,Mk are non-flat,
locally irreducible manifolds. Moreover, π1(M) acts on M̃ as a subgroup of

Isom(M0, g0)× Isom(M1, g1)× . . .× Isom(Mk, gk).

This decomposition is unique up to the order of the factors.

One of the aims of this chapter is to extend this theorem to the case of a manifold
endowed with a locally metric connection, i.e. a connection whose restricted holonomy
group Hol0(∇) is a relatively compact subgroup of GLn(R). Such a connection is locally
the Levi-Civita connection of a Riemannian metric. Moreover, its pullback ∇̃ to the
universal cover M̃ of M has a relatively compact holonomy group, so ∇̃ is globally the
Levi-Civita connection of some Riemannian metric g̃ on M̃ .

Example 9.2. Consider N = Rn \ {0} with the Levi-Civita connection ∇N of the
Euclidean metric, and the subgroup G of Diffeo(N) spanned by the homothety ϕ : x �→ 2x.
Since ϕ preserves ∇N , M = N/G is naturally endowed with a connection ∇, which is
locally metric, but not globally.

Locally metric connections behave well with respect to the product structure: if
(M1,∇1) and (M2,∇2) are two manifolds with locally metric connections, then the
product connection (∇1,∇2) is again a locally metric connection on M1 ×M2. In this
framework, we will prove the following theorem, which is an analogue of Theorem 9.1:

Theorem 9.3. Consider a compact connected manifold (M,∇), where ∇ is a locally
metric connection. Then its universal cover (M̃, ∇̃) admits the following decomposition:

(M̃, ∇̃) = (M0,∇0)× (M1,∇1)× . . .× (Mk,∇k)

where k ≥ 0, M0 is flat, and M1, . . . ,Mk are non-flat, locally irreducible manifolds.
Moreover, π1(M) acts on M̃ as a subgroup of

Aff(M0,∇0)×Aff(M1,∇1)× . . .×Aff(Mk,∇k).

This decomposition is unique up to the order of the factors.

Here, Aff(M,∇) is the group of affine transformations of M , i.e. diffeomorphisms
which preserve the connection ∇.

Notice the two main differences between the statements of Theorems 9.1 and 9.3:

1. In Theorem 9.3, M is assumed to be compact instead of complete. In fact, a
manifold with a locally metric connection is almost never geodesically complete.

2. In Theorem 9.3, the flat manifold M0 is not necessarily a Euclidean space. In
Example 9.2, the manifold M is flat, but its universal cover is a covering of the
Riemannian manifold Rn \ {0} which is not complete, so M0 cannot be a Euclidean
space. By contrast, in the setting of Theorem 9.1, the universal cover is always
complete.
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We prove Theorem 9.3 in Section 9.4. The difficulty lies in the fact that, although
there always exists a global metric on M̃ which is preserved by ∇̃, it is (most of the time)
not complete, so that Theorem 9.1 does not apply. Instead, we will use the following
generalization of De Rham’s theorem:

Theorem 9.4 (Ponge-Reckziegel, 1993). Let M be a simply connected Riemannian
manifold, whose Levi-Civita connection ∇ is reducible: thus, the tangent bundle TM
admits two complementary orthogonal distributions E� and E�� invariant by parallel
transport, which induce foliations F � and F ��. Assume that the leaves of F � are all
complete. Then, M is globally isometric to a product of Riemannian manifolds M � ×M ��.

Theorem 9.4 is a consequence of the main result of [PR93], but we will give a direct
proof in Appendix A, based on the ideas of the proof of the classical De Rham theorem
in [KN63].

9.2.2 Conformal structures

Next, we focus on a particular case of locally metric connections: those which preserve a
conformal structure.

Such a connection appears naturally on the quotient of a Riemannian manifold by a
group of similarities, like in Example 9.2. It is essential to notice that these connections
do not behave well with the product structure: the product of two such connections does
not preserve a conformal structure in general. There is no natural notion of product for
conformal structures: thus, it is much more complicated to construct examples of such
connections which are reducible.

In this case, the De Rham decomposition takes a very particular form. In fact, it was
conjectured recently (see [BM14]) that a locally (but not globally) metric connection
which preserves a conformal structure was either flat or irreducible. Indeed, it is the case
for “Riemannian cones”, as proved by Gallot (see Theorem 9.11). Very recently, however,
Matveev and Nikolayevsky gave a counterexample to this conjecture [MN15a], which
corresponds to k = 1 and M0 = R in the setting of Theorem 9.3. Then, they proved the
following [MN15b]:

Theorem 9.5 (Matveev-Nikolayevsky, 2015). Consider a compact connected manifold
(M,∇), where ∇ is an analytic, locally metric connection which preserves a conformal
structure, but is not globally metric.

Then either (M,∇) is flat, or its universal cover (M̃, ∇̃) admits the following decom-
position:

(M̃, ∇̃) = (M0,∇0)× (M1,∇1)

where M0 = Rq (q ≥ 0), and M1 is a non-flat, locally irreducible manifold. In this case,
π1(M) acts on M̃ as a subgroup of

Aff(M0,∇0)×Aff(M1,∇1).

We answer positively, by a new proof, to a question asked in [MN15b]:

Theorem 9.6. Theorem 9.5 remains true without assuming analyticity.

In other words, the De Rham decomposition of a locally metric connection given in
Theorem 9.3 takes a particular form when the connection preserves a conformal structure:
the number k of irreducible factors is always 0 or 1, and if k = 1, then M0 = Rq for some
q ≥ 0.
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9.2.3 Similarity structures

Locally metric connections which preserve a conformal structure have an important
property: they preserve similarity structures.

Definition 9.7. 1. On a differentiable manifold M , a similarity structure is given by
an open cover (Ui)1≤i≤r of M , together with a Riemannian metric gi on each Ui,
such that the transitions are locally similarities, i.e.

gj = λijgi on Ui ∩ Uj , (9.1)

where each λij is locally constant. Of course, any Riemannian structure induces a
similarity structure. Notice also that any similarity structure induces a conformal
structure in a natural way.

2. If (M, g) is a Riemannian manifold, its similarity pseudogroup Simloc(M) consists
of all φ : U → V such that φ∗g = λg, where U and V are open subsets of M , and
λ ∈ R>0 is locally constant on U . For any x ∈ M , the number λ(x) is called the
ratio of φ at x (if M is connected, there is no need to specify the point x). The
similarity group Sim(M) is the set of all φ ∈ Simloc(M) which are bijections from
the whole manifold M to itself.

Here are three fundamental examples:

Example 9.8. Consider a Riemannian manifold (N, gN ), its Levi-Civita connection ∇N ,
and G a subgroup of Sim(N) acting properly discontinuously on N . Then the quotient
M = N/G is naturally endowed with a similarity structure.

Example 9.9. Let (M, g) be a Riemannian manifold, and (M̃, g̃) its universal cover.
Any closed 1-form ω on M lifts to an exact 1-form ω̃ on M̃ . Consider a primitive f of ω̃
and let h̃ = ef g̃. Then the fundamental group of M acts on (M̃, h̃) by similarities, and
thus h̃ induces a similarity structure on M (see Example 9.8).

Example 9.10. Let N be any Riemannian manifold. The cone over N is the manifold
M = N × S1 endowed with the similarity structure given by Example 9.9, where ω is the
canonical form dθ on M .

Levi-Civita connection. Any similarity structure defines canonically a “Levi-Civita”
connection on M : on each Ui, it is obtained by taking the Levi-Civita connection of gi.
Equation 9.1 ensures that this connection is well-defined. From this viewpoint, we may
state Gallot’s result [Gal79], which was mentioned above:

Theorem 9.11 (Gallot, 1979). If (M,∇) is the cone over a Riemannian manifold N
(see Example 9.10), then ∇ is either irreducible or flat.

Moreover, the Levi-Civita connection of a similarity structure is locally metric and
preserves the conformal structure induced by the similarity structure.

Conversely, it turns out that all locally metric connections which preserve a conformal
structure are obtained as Levi-Civita connections of similarity structures. More precisely:
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Fact 9.12. If (M,∇) is a connected manifold endowed with a locally metric connection
which preserves a conformal structure, then (M,∇) is the quotient of a Riemannian
manifold (N, g) (endowed with its Levi-Civita connection) by a subgroup G of Sim(N).
In other words, ∇ is the Levi-Civita connection of a similarity structure on M .

Proof. Consider a conformal structure c on M which is preserved by ∇, a point x ∈ M ,
and a metric g in the conformal class c defined in a neighborhood of x. Since ∇ preserves
c, all the elements of the restricted holonomy group Hol0x(∇) are similarities of the
Euclidean space (TxM, gx). Moreover, since ∇ is locally metric, Hol0x(∇) is relatively
compact, so its elements are in fact isometries.

Now, consider the universal cover (M̃, ∇̃) of (M,∇), x̃ ∈ M̃ an element which projects
to the point x, c̃ the pullback of the conformal class c, and g̃ the pullback of the metric
g in a neighborhood of x̃. The elements of Holx̃(∇̃)(= Hol0x̃(∇̃)) are also isometries of
the Euclidean space (Tx̃M̃, g̃x̃). Thus, by parallel transport of g̃x̃, one obtains a metric h̃
defined on the whole manifold M̃ , and this metric is in the conformal class c̃.

Let α ∈ π1(M). Since α preserves the conformal class of h̃, there exists λ : M → R>0

such that α∗h̃ = λh̃. Moreover, h̃ is invariant under the parallel transport of ∇̃, and ∇̃ is
preserved by π1(M), so λ is constant. Hence, π1(M) acts by similarities on M̃ .

Irreducible Levi-Civita connections have special properties:

Fact 9.13. Consider a Riemannian manifold (M, g) with its Levi-Civita connection ∇.
If ∇ has irreducible restricted holonomy, then:

1. the only metrics whose Levi-Civita connection is ∇ are the metrics hλ = λg, λ > 0;

2. Aff(M, g) = Sim(M, g).

Proof. 1. Let h be a metric with whose Levi-Civita connection is ∇ and let x ∈ M .
Define the linear mapping F : TxM → TxM in the following way: for all u ∈ TxM ,
F (u) is the unique vector such that g(u, ·) = h(F (u), ·). Since Holx(∇) preserves
g and h, all the elements of Holx(∇) commute with F , so the eigenspaces of F
are stable under Holx(∇). Since ∇ is irreducible, the only possible eigenspaces for
F are {0} and TxM ; but F is self-adjoint (for both metrics g and h), so F is a
homothety, and thus g and h are proportional.

2. For all φ ∈ Aff(M, g), the metric φ∗g is preserved by the Levi-Civita connection ∇
of g, so φ∗g is proportional to g and thus φ is a similarity.

Fact 9.13 implies that any irreducible locally metric connection on a manifold M
preserves a conformal structure (indeed, any metric g̃ which is preserved by ∇̃ on the
universal cover (M̃, ∇̃) induces a conformal structure on M which is preserved by ∇).
Moreover, we now have a more precise version of Theorem 9.3:

Theorem 9.14. Consider a compact connected manifold (M,∇), where ∇ is a locally
metric connection. Then its universal cover (M̃, ∇̃) admits a metric g̃ which is preserved
by ∇̃, such that:

(M̃, g̃) = (M0, g0)× (M1, g1)× . . .× (Mk, gk)
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where k ≥ 0, M0 is flat, and M1, . . . ,Mk are non-flat, locally irreducible manifolds.
Moreover, π1(M) acts on M̃ as a subgroup of

Aff(M0, g0)× Sim(M1, g1)× . . .× Sim(Mk, gk).

This decomposition is unique up to the order of the factors.

Proof. Choose any metric g̃ preserved by ∇̃. In the decomposition given by Theorem 9.3,
the metric g̃ induces metrics g0, g1, . . . , gk on M0,M1, . . . ,Mk. For i ∈ {1, . . . , k}, since
∇i is irreducible, Fact 9.13 implies that Aff(Mi, gi) = Sim(Mi, gi).

9.2.4 Transverse similarity structures

The main tool in the proofs of Theorems 9.3 and 9.6 is the study of transverse similarity
structures on foliations. Such foliations may be seen as a particular case of (transversally)
conformal foliations, or a generalization of (transversally) Riemannian foliations.

Let (M,F) be a compact foliated manifold, and (Ui)1≤i≤r a covering of M compatible
with the foliation, such that each Ui is diffeomorphic to Vi × Ti, where Vi (the plaque)
is an open ball of Rp and Ti an open ball of Rq. We denote by fi : Ui → Ti the
projections, T = ∪1≤i≤rTi the (global) transversal, and define the transition maps
(γij)i,j : fi(Ui ∩ Uj) → fj(Ui ∩ Uj) so that fj = γij ◦ fi on Ui ∩ Uj . The pseudogroup Γ
spanned by the (γij) is called the holonomy pseudogroup of the foliation.

A transverse similarity structure on the foliation F is a metric g on the transversal T
such that the transition maps γij are local similarities (i.e. belong to Simloc(T )). The
foliation is said to be transversally Riemannian (or simply Riemannian) if it is possible
to choose g such that the γij are isometries.

Our main result on transverse similarity structures is the following:

Theorem 9.15. Let (M,F) be a compact foliated manifold with a transverse similarity
structure. Then one of the following two facts occurs:

1. The transverse similarity structure on the foliation F is flat ( i.e. the metric g on
the transversal T is flat);

2. The foliation F is transversally Riemannian ( i.e. there exists a metric h on the
transversal T such that the transition maps are isometries).

We prove Theorem 9.15 in Section 9.3, and give two alternative proofs in Appendix
B, one of which is valid only in the analytic case.

Notice that Theorem 9.15 does not assume that M is endowed with a locally metric
connection, but only that there is a transverse similarity structure on the foliation: the
setting is more general than for Theorem 9.3.

About the foliated Ferrand-Obata conjecture. For transversally conformal folia-
tions, there is an analogue of Theorem 9.15 (see [Tar04a]):

Theorem 9.16 (Tarquini, 2004). Any transversally analytic conformal foliation of
codimension ≥ 3, on a compact connected manifold, is either transversally Möbius or
Riemannian.



9.3. FOLIATIONS WITH TRANSVERSE SIMILARITY STRUCTURES 129

It is also believed that Theorem 9.16 should be valid without the analyticity as-
sumption: this is the foliated Ferrand-Obata conjecture. Our Theorem 9.15 implies the
following:

Corollary 9.17. The foliated Ferrand-Obata conjecture is true if the transverse conformal
structure on the foliation is induced by a transverse similarity structure.

9.3 Foliations with transverse similarity structures

In this section, we prove Theorem 9.15. We refer to Section 9.2.4 for the basic notations.

A foliation is said to be equicontinuous if its holonomy pseudogroup Γ is equicontinuous.
If the foliation has a transverse similarity structure, equicontinuity is equivalent to the
existence of a constant m > 1 such that the ratio of any γ ∈ Γ at any x ∈ M lies in the
interval [1/m,m].

The following proposition is crucial in the proof of Theorem 9.15:

Proposition 9.18. Any equicontinuous foliation with a transverse similarity structure
is Riemannian.

Proof. This theorem is proved in [Tar04b]: more generally, any foliation with compact
finite type is Riemannian.

Now, our first step in the proof is based on a trick which was described in [FT02].

Proposition 9.19. Let (M, g) be a Riemannian manifold whose Riemann tensor R does
not vanish. Then Simloc(M) preserves a Riemannian metric.

Proof. If R denotes the Riemann tensor, define �R�g (x) as the supremum of the values
of �Rx(u, v)w�g when u, v, w are vectors of TxM which have unit length for g. Then the
metric �R�g g is invariant by Simloc(M).

Thus, if (M,F) is a foliated manifold with a transverse similarity structure, either F
is Riemannian, or the Riemann tensor of (T, g) vanishes somewhere. Our aim is to show
that, in the last case, the Riemann tensor vanishes in fact everywhere.

Another useful tool to prove flatness is the following:

Proposition 9.20. Consider a connected Riemannian manifold (M, g), an open subset
U ⊆ M and a similarity φ ∈ Simloc(M), φ : M → U . Assume that φ has a fixed point
x ∈ M , and that its ratio is rφ < 1. Then:

1. (M, g) is flat;

2. in the case that φ ∈ Sim(M) ( i.e. U = M and φ is a bijection), the manifold M is
isometric to the Euclidean Rq for some q ≥ 0.

Proof. Let us prove the first statement. Choose any y ∈ M and four vectors a, b, c, d in
TyM of unit length for g. The point is that φ preserves R, i.e.

R(φ∗a,φ∗b)φ∗c = φ∗R(a, b)c.
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Thus:
�R(a, b)c | d� = r−2n

φ �φn
∗R(a, b)c | φn

∗d�
= r−2n

φ �R(φn
∗a,φ

n
∗ b)φ

n
∗c | φn

∗d�
≤ r−2n

φ r4nφ �R�g (φn(y)).

Since φn(y) tends to the fixed point x, the quantity �R�g (φn(y)) is bounded. Thus,
�R(a, b)c | d� = 0 and the first statement is proved.

For the second statement, notice that since M is flat, the exponential map expx :
B(0, �) → Bg(x, �) is an isometry for some � > 0 (where B(0, �) is the ball in TxM of
center 0 and radius � for the Euclidean metric gx, while Bg(x, �) is the ball in M of center
x and radius � for the distance induced by g).

Thus, for all n ≥ 0, φ−n ◦ expx ◦Dxφ
n is an isometry from B(0, r−n

φ �) to Bg(x, r
−n
φ �).

Since φn preserves the Levi-Civita connection of g, we have

expx = φ−n ◦ expx ◦Dxφ
n.

Hence, expx is an isometry from B(0, r−n
φ �) to Bg(x, r

−n
φ �) for all n ≥ 0. Since the balls

Bg(x, r
−n
φ �) cover M , expx is an isometry from Rq to M .

Until the end of this section, we consider a compact, connected foliated manifold
(M,F) with a transverse similarity structure. We still denote by g a metric on the
transversal T such that the γij are local similarities. This metric g induces a distance di
on each Ti.

Lemma 9.21. There exists �0 > 0 such that for all x ∈ M , there exists i ∈ {1, . . . , r}
which satisfies x ∈ Ui and di(fi(x), ∂Ti) > �0 (see Section 9.2.4 for the notations).

Proof. Assume the contrary: there exists a sequence (xn)n∈N in M such that for all
i ∈ {1, . . . , r} with xn ∈ Ui, we have di(fi(xn), ∂Ti) ≤ 1/n. Since M is closed, we may
assume that xn converges to some x∞ ∈ M . Then x∞ is in some Ui0 , and for any
large enough n, xn ∈ Ui0 . Hence, di0(fi0(xn), ∂Ti0) → 0, which contradicts the fact that
x∞ ∈ Ui0 .

In the following, we fix this �0.

Lemma 9.22. Let γ ∈ Γ, x ∈ M and i ∈ {1, . . . , r}, such that γ is defined on a
neighborhood of fi(x) in Ti and takes its values in Tj.

Then there exists γ̃ = γip−1ip ◦ · · · ◦ γi1i2 defined on a neighborhood of fi1(x), which
coincides with γjip ◦ γ ◦ γi1i near fi1(x), such that for all l ∈ {1, . . . , p− 1}, dil(γil−1il ◦
· · · ◦ γi1i2(fi1(x)), ∂Uil) > �0, and γilil+1

is defined on Bg(γil−1il ◦ · · · ◦ γi1i2(fi1(x)), �0).

Proof. It results from the general theory of holonomy pseudogroups that γ is obtained by
following some curve c : [0, 1] → M such that c(0) = x, and fj(c(1)) = γ(fi(x)). For each
i ∈ {1, . . . , r}, we define Ei as the set of all open intervals (a, b) such that for all t ∈ (a, b),
c(t) ∈ Ui and di(fi(c(t)), ∂Ti) > �0. Lemma 9.21 implies that ∪1≤i≤rEi is an open cover
of [0, 1]: it has a finite subcover {(a1, b1), . . . , (ap, bp)}, to which corresponds a sequence
i1, . . . , ip of indices. Then, γ coincides with γipj ◦ γ̃ ◦ γii1 , where γ̃ = γip−1ip ◦ · · · ◦ γi1i2 ,
near x.
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Lemma 9.23. Let E be the set of all x ∈ M for which there exists m > 1 such that for
all i ∈ {1, . . . , r} with x ∈ Ui, every γ ∈ Γ defined on fi(x) has ratio ≥ 1/m at fi(x).

1. In the definition of E, it is possible to choose m independently of x.

2. If E is non-empty, then E = M and Γ is equicontinuous.

Proof. We start with the proof of the first statement. Assume that there is no uniform
bound: then, there exist sequences (xn), (in), (jn) and (γn) such that xn ∈ E, γn is
defined on a neighborhood of fin(x

n) in Tin , takes its values in Tjn , and the ratio of γn

is ≤ 1/n at fin(x
n). Let kmax be the maximum ratio of γij for i, j ∈ {1, . . . , r}.

The natural idea is that the points xn accumulate somewhere because M is compact:
if all the terms γn were defined on balls of the same radius �0, then an infinity of them
would be well-defined on the same term xn0 , which would contradict the fact that xn0 ∈ E.
In fact, the domain of γn can be arbitrarily small, so we need to consider another sequence
(yn) instead of (xn).

For each n, Proposition 9.22 gives us a γ̃n = γinpn−1i
n
pn

◦ · · · ◦ γin1 in2 defined on a

neighborhood of fin1 (x
n), which coincides with γjninpn ◦ γn ◦ γin1 in near fin1 (x

n), such that

for all l ∈ {1, . . . , pn−1}, dinl (γinl−1i
n
l
◦ · · ·◦γin1 in2 (fin1 (xn)), ∂Uil) > �0, and γilil+1

is defined

on Bg(γil−1il ◦ · · · ◦ γi1i2(fin1 (x
n)), �0). Notice that γ̃n has ratio ≤ k2max/n at fin1 (x

n)
(because γ̃n coincides with γjninpn ◦ γn ◦ γin1 in near fin1 (x

n), and the ratio of γn is ≤ 1/n

at fin(x
n)).

Choose qn ∈ {1, . . . , pn − 1} which minimizes the ratio of γinpn−1i
n
pn

◦ · · · ◦ γinqn i
n
qn+1

at γinqn−1i
n
qn

◦ · · · ◦ γin1 in2 (fin1 (xn)) (in particular this ratio is ≤ k2max/n), and write ρ̃n =

γinpn−1i
n
pn

◦ · · · ◦ γinqn inqn+1
. Choose yn such that finqn (y

n) = γinqn−1i
n
qn

◦ · · · ◦ γi1i2(fin1 (xn)).
Notice that yn ∈ E.

Thus, ρ̃n is well-defined on Bg(finqn (y
n), �0) and has ratio ≤ k2max/n at finqn (y

n).

Since M is compact, we may assume up to extraction that (yn) converges to a limit
y ∈ M (and y ∈ Ui for some i): There exists n0 > 0 such that for all n ≥ n0, y

n ∈ Ui

and fi(y
n) − fi(y) < �0/(3kmax). Thus, ρ̃n is well-defined on fin0

qn0
(yn0) for all n ≥ n0,

which contradicts the fact that yn0 ∈ E and ends the proof of the first statement.

To prove the second statement, first notice that for all x ∈ E, and all i ∈ {1, . . . , r}
such that x ∈ Ui, every γ ∈ Γ defined on fi(x) (taking values in Tj) has ratio ≤ m at
fi(x): otherwise, γ

−1 would have ratio < 1/m at fj(x), which contradicts the fact that
γ(fi(x)) ∈ fj(E).

Since M is connected, it suffices to show that E is open and closed in M . Thus, Γ
will be equicontinuous on M .

Let us show that E is open. Let x0 ∈ E and i such that di(fi(x0), ∂Ti) > �0. Consider
V a neighborhood of x0 such that V ⊆ Ui and fi(V ) ⊆ Bg(fi(x0), �0/(2kmaxm)). Let us
show that V ⊆ E: let y0 ∈ V , i0 ∈ {1, . . . , r}, and γ ∈ Γ defined on fi0(y0), taking its
values in Tj0 .

With Lemma 9.22, there exists a γ̃ = γip−1ip ◦ · · · ◦ γi1i2 defined on a neighborhood of
fi1(y0), which coincides with γjip ◦ γ ◦ γi1i near fi1(y0), such that for all l ∈ {1, . . . , p−
1}, dil(γil−1il ◦ · · · ◦ γi1i2(fi1(y0)), ∂Uil) > �0, and γilil+1

is defined on Bg(γil−1il ◦ · · · ◦
γi1i2(fi1(y0)), �0).

In particular, by induction on l, γilil+1
is well-defined on a ball centered at γil−1il ◦ · · ·◦

γi1i2(fi1(y0)) and containing γil−1il ◦ · · · ◦ γi1i2(fi1(x0)), so the ratio of γil−1il ◦ · · · ◦ γi1i2
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on this ball is between 1/m and m (because x0 ∈ E). Therefore, γ̃ is well-defined on
fi1(x0), and its ratio is between 1/m and m at fi1(x0). The ratio of γ is ≥ 1/(k2maxm) at
fi(y0), so y0 ∈ E, and E is open.

Now, we show that M \ E is open in M . Let x0 ∈ M \ E, i ∈ {1, . . . , r}, and γ ∈ Γ
defined on fi(x0) with ratio < 1/m. Then γ is defined on a connected open set W ⊆ Ti

containing fi(x0), and f−1
i (W ) is an open set of M , containing x0 and contained in

M \ E, so M \ E is open.

End of the proof of Theorem 9.15. Assume that (T, g) is not flat, and let T � be the
set of all y ∈ T at which the Riemann tensor of g is nonzero. Notice that T � is stable under
the holonomy pseudogroup Γ. Now, Proposition 9.19 gives us a Riemannian metric g� on
T � which is invariant by Simloc(T

�), and thus by the holonomy pseudogroup Γ. Hence,
the set E defined in Lemma 9.23 is non-empty. By Lemma 9.23, Γ is equicontinuous.
Finally, in view of Proposition 9.18, F is a Riemannian foliation, and Theorem 9.15 is
proved.

9.4 End of the proofs of the main results

Let us start this section with the proof of Theorem 9.3. Consider a compact manifold
(M,∇), where ∇ is locally metric, and its universal cover (M̃, ∇̃), on which there is a
metric g̃ preserved by ∇̃. Fix x ∈ M and choose a preimage x̃ ∈ M̃ .

Let E0
x̃ be the maximal linear subspace of the tangent space Tx̃M̃ on which Holx̃(∇̃)

acts trivially. Let E>0
x̃ be the orthogonal complement of E0

x̃. The local theorem of De
Rham (see for example [KN63]) states that there is a unique decomposition of E>0

x̃ (up
to the order of the factors) into mutually orthogonal, invariant irreducible subspaces:

E>0
x̃ = E1

x̃ ⊕ . . .⊕ Ek
x̃ .

This induces a decomposition TxM = E0
x ⊕ E>0

x , where E>0
x = E1

x ⊕ . . .⊕ Ek
x .

Moreover, since π1(M) acts on M̃ by preserving the connection ∇̃, this decomposition
does not depend on the choice of the preimage x̃ of x, up to the order of the factors.
Thus, the holonomy group Holx(∇) acts on E>0

x by permuting the factors: by considering
a finite cover of M , one may assume that Holx(∇) preserves the decomposition of TxM .
Then, one may consider E� the distribution on M̃ obtained by parallel transport of Ek

x ,
and E�� obtained by parallel transport of E0

x ⊕ . . .⊕ Ek−1
x . These distributions induce

transverse foliations F � and F �� on M .
There exists a covering (Ui)1≤i≤r of M compatible with the foliations F � and F ��,

such that each Ui is diffeomorphic to Vi × Ti, where Vi (the plaque of F ��) is an open
ball of Rp and Ti (the plaque of F �) an open ball of Rq. The connection ∇ induces a
connection ∇T on the transversal T = ∪1≤i≤rTi, which is preserved by the holonomy
pseudogroup. Since T is simply connected, ∇T preserves a Riemannian metric gT . The
holonomy pseudogroup of F �� acts by affine transformations on (T,∇T ). But since ∇T is
irreducible, these transformations are in fact local similarities of (T, gT ), which implies
that F �� has a transverse similarity structure.

By construction, the holonomy group of M does not act trivially on E�, so F �� is not
transversally flat. With Theorem 9.15, F �� is transversally Riemannian, so the leaves
of F � are naturally endowed with a Riemannian structure. In particular, the leaves of
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the pullback F̃ � of F � are all complete. Therefore, by Theorem 9.4, M̃ is the product
of two Riemannian manifolds M̃ � and M̃ ��. The existence of the decomposition given in
Theorem 9.3 follows by induction on the dimension of M .

Uniqueness is proved in the same way as for the usual decomposition theorem of De
Rham: the factors are necessarily the maximal integral manifolds of the distributions
given by E0

x̃, E
1
x̃, . . . , E

k
x̃ . Thus, Theorem 9.3 is proved.

For the proof of Theorem 9.6, we will need the following propositions:

Proposition 9.24. Consider a complete connected Riemannian manifold (M, g). If
Sim(M) does not act properly on M , then M is (globally) isometric to Rq for some q ≥ 0.

Proof. In this case, there exist a compact set K ⊆ M and a sequence (Sn) of similarities
such that K ∩ Sn(K) �= ∅ and the ratio of Sn (written rn) tends to +∞ or 0 when
n → +∞. Considering S−1

n instead of Sn if necessary, we may assume that rn → 0.

Let K � = {x ∈ M | d(x,K) ≤ �} for some small � > 0, where d is the distance induced
by g in M . Then Sn(K

�) = {x ∈ M | d(x, Sn(K)) ≤ rn�}: in particular, for some large
enough n0 > 0, Sn0(K

�) ⊆ K �. Thus, Sn0 has a fixed point and M is isometric to Rq by
Proposition 9.20.

Proposition 9.25. Consider the product of two connected Riemannian manifolds, de-
noted by (M,h) = (M1, h1)× (M2, h2), and a subgroup G of Sim(M) which preserves the
product structure ( i.e. which is a subgroup of Sim(M1)× Sim(M2)), and acts on M in a
cocompact way. Also assume that Sim(M) contains elements which are not isometries.
Then, either M1 = Rq or M2 = Rq, for some q ≥ 0.

Proof. Assume that the conclusion is false. In view of Lemma 9.24, Sim(M1) and Sim(M2)
act properly on M1 and M2 respectively.

SinceG acts cocompactly onM , there is a compact setK ⊆ M such that Sim(M)·K =
M . We may assume thatK = K1×K2, where Sim(M1)·K1 = M1 and Sim(M2)·K2 = M2.

Choose x1 ∈ K1. Since Sim(M1) acts properly on M1, there is a constant R > 1 such
that for all γ ∈ Sim(M1) satisfying γ(x1) ∈ K1, the ratio of γ is between R and 1/R.
Likewise, choose x2 ∈ K2. There is a constant, still called R, such that the ratio of any
γ ∈ Sim(M2) satisfying γ(x2) ∈ K2 is between R and 1/R.

We assumed that Sim(M) contains elements which are not isometries, so there exists
γ0 ∈ Sim(M1) whose ratio is greater than R3. And since G · K = M , there exists
γ = (γ1, γ2) ∈ G such that γ(γ0(x1), x2) ∈ K. Then, γ1 ◦ γ0(x1) ∈ K1, so the ratio of
γ1 ◦γ0 is smaller than R, so the ratio of γ1 is smaller than 1/R2. Meanwhile, γ2(x2) ∈ K2,
so the ratio of γ2 is greater than 1/R. But since (γ1, γ2) ∈ Sim(M), γ1 and γ2 should
have the same ratio, which is impossible.

Consider a connected, compact manifold (M,∇), where ∇ is a reducible, locally metric
(but not globally metric) non-flat connection which preserves a conformal structure, and
consider its universal cover M̃ . Then π1(M) is a subgroup of Sim(M̃). Moreover, Sim(M̃)
contains elements which are not isometries. Thus, we may apply Proposition 9.25, which
concludes the proof of Theorem 9.6.
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Appendix A. A direct proof of Theorem 9.4

In this section, we adapt the ideas of the proof of De Rham’s theorem available in [KN63],
to give a direct proof of Theorem 9.4.

Consider a connected, simply connected Riemannian manifold M with reducible
holonomy, and write Tx(M) = E�

x ⊕ E��
x a decomposition into subspaces invariant by

holonomy (of dimension at least 1). Denoting by E� and E�� the corresponding distribu-
tions, define M �(x) and M ��(x) the maximal integral manifolds of E� and E�� through x,
for any x ∈ M .

The local decomposition theorem of De Rham states that such a manifold is locally a
product: there is a neighborhood of x which is isometric to a product of Riemannian
manifolds V � × V ��. But for the global version of the theorem (Theorem 9.1), one has to
assume, classically, that M is complete: here, we do not make this assumption.

Definition 9.26. Let x ∈ M and X(t) a curve in TxM . The development of X(t) into
M , when it exists, is the (unique) curve φ starting from x, such that X(t) is the result of
the parallel displacement of dφ

dt (t) along the curve φ|[0,t] itself.

Proposition 9.27. The development of X(t) into M is always unique. Moreover, if M
is complete, it always exists.

Proof. It is the solution of a differential equation. For more details, see [KN63], Chapter
IV, Theorem 4.1.

Definition 9.28. For two curves φ,ψ : [0, 1] → M with φ(1) = ψ(0), we denote by
ψ · φ : [0, 1] → M the concatenation of the two curves, i.e.

ψ · φ(t) =
�

φ(2t) if t ≤ 1/2
ψ(2t− 1) if t ≥ 1/2

In the same spirit, we define φ−1 so that φ−1(t) = φ(1− t).

Lemma 9.29. In this lemma, we assume that either M �(x) is complete for all x ∈ M ,
or M ��(x) is complete for all x ∈ M .

Let φ : [0, 1] → M be a curve tangent to E� and ψ : [0, 1] → M a curve tangent to E��,
such that φ(0) = ψ(0). Then there exists a unique smooth homotopy f : [0, 1]× [0, 1] → M
such that:

1. f(., 0) = φ;

2. f(0, .) = ψ;

3. For all (t, s) ∈ [0, 1]× [0, 1], ∂f
∂t (t, s) is parallel to

∂f
∂t (t, 0) along the curve f(t, .)|[0,s].

4. For all (t, s) ∈ [0, 1]× [0, 1], ∂f
∂s (t, s) is parallel to

∂f
∂s (0, s) along the curve f(., s)|[0,t].

5. For all (t, s) ∈ [0, 1] × [0, 1], the parallel displacement along the “parallelogram”
f(., 0)|−1

[0,t] · f(t, .)|
−1
[0,s] · f(., s)|[0,t] · f(0, .)|[0,s] is trivial.
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Proof. By symmetry, we may assume that M �(x) is complete for all x ∈ M .

Let s ∈ [0, 1]. For all t, let X(t) be the result of the parallel displacement of dφ
dt (t)

along the curve φ|[0,t] · ψ|−1
[0,s]. From properties 1, 2, 3 and 5, we deduce that f(., s), if it

exists, is necessarily the development of X(t) into M �(ψ(s)), so we have unicity. For the
existence, we must check that f defined in this way (for all s ∈ [0, 1]) satisfies all of the
desired properties.

First, consider t0 and s0 such that [0, t0]× [0, s0] lies in a open set which is isometric
to a product V � × V �� (obtained with the local version of De Rham’s theorem). Then it
is clear that Properties 3, 4 and 5 are satisfied for all (t, s) ∈ [0, t0]× [0, s0].

Cover φ([0, 1]) by a finite number of open sets V1, . . . Vr of the form V �
i × V ��

i . Let s0
such that f([0, 1]× [0, s0]) ⊆ V1 ∪ . . .∪ Vr. Applying Properties 3, 4 and 5 to each Vi one
after another, one proves that these properties are satisfied for (t, s) ∈ [0, 1]× [0, s0].

Let s1 be the upper bound of all s0 such that f satisfies properties 3, 4 and 5 for
all (t, s) ∈ [0, 1] × [0, s0]. Notice that the three properties are satisfied for s1 itself, by
taking the limit when s → s1, s < s1, in each property. Then, if s0 < 1, we may cover
f(., s1) by a finite number of open sets of the form V � × V �� and prove, as above, that
the three properties are satisfied for (t, s) ∈ [0, 1]× [s1 + �] with � > 0, which contradicts
the definition of s1. Thus, s1 = 1 and the lemma is proved.

Definition 9.30. Let φ : [0, 1] → M be any curve, and write x = φ(0). Let X(t) be the
result of the parallel displacement of dφ

dt (t) along the curve φ|[0,t] itself. Let X �(t) and
X ��(t) be the projections of X(t) on E�

x(M) and E��
x(M). We define the projection of φ

onto M �(x) ( resp. M ��(x)) as the development of X �(t) into M �(x) (resp. M ��(x)).

In view of Proposition 9.27, the projection onto M �(x) is always well-defined because
we assumed that M �(x) is complete, but it is not the case for the projection onto M ��(x).

Lemma 9.31. Let x, y ∈ M and φ : [0, 1] → M joining x to y.

1. The projection of φ onto M �(x) and the projection of φ−1 onto M ��(y) are well-
defined. We call them τ � and τ ��.

2. The curves τ � and τ �� have the same endpoint.

3. This endpoint depends only on x and y (but not on the curve φ). It is called the
projection of y onto M �(x). The projection of y onto M ��(x) is defined in the same
way, by exchanging the roles of the distributions E� and E��.

Proof. Write φ = φr · . . . · φ1, where each φi lies in an open set Vi of the form V �
i × V ��

i .
Each curve φi joins two points, which we name xi and xi+1.

Consider φ�
r the projection of φr onto M �(xr), and let φ��

r be projection of φ−1
r onto

M ��(xr+1). Since Vr is a product, it is clear that the projections are well-defined and
have the same endpoint. Let τ �r = φ�

r and τ ��r = φ��
r .

Continue the construction of φ�
k, φ

��
k, τ

�
k and τ ��k by induction for k = r− 1 to 1: define

φ�
k as the projection of φk onto M �(xk), and φ��

k as the projection of φ−1
k onto M ��(xk+1).

Notice that the parallel displacement along φk is the same as the parallel displacement
along (φ��

k)
−1 · φ�

k. Then, construct a homotopy f(t, s) using the curves φ��
k(s) and τ �k+1(t),

and Lemma 9.29. Let τ �k = f(., 1) · φ�
k and τ ��k = f(1, .) · τ ��k+1. Then τ �k is the projection

of φr · . . . · φk onto M �(xk) and τ ��k is the projection of (φr · . . . · φk)
−1 onto M ��(y). By
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construction, τ �k and τ ��k have the same endpoint. Thus, assertions 1 and 2 are proved by
applying this result for k = 1.

Now, we prove that the endpoint of τ � depends only on x and y, i.e. does not
depend on the choice of φ. Consider another curve ψ joining x to y: since M is simply
connected, there is a homotopy between the two curves. Moreover, we may assume that
this homotopy is “small”, i.e. there exists j ∈ {0, . . . , r} and ψj : [0, 1] → Vj joining xj
to xj+1 such that

ψ = φr · . . . · φj+1 · ψj · φj−1 · . . . · φ1.

Make the above construction for ψ. The point is that the parallel transport of E�-vectors
along ψ��

j between xj+1 and ψ��
j (1) is the same as the parallel transport along φ��

j (because
ψ��
j and φ��

j are both E��-curves joining the same points). Thus, for each k, the endpoint
of τ �k does not change if we consider the curve ψ instead of φ.

Lemma 9.32. Let x, y ∈ M . Denote by y� and y�� the projections of y onto M �(x) and
M ��(x). Then y is the projection of y� onto M �(y��), as well as the projection of y�� onto
M ��(y�).

Proof. Consider a curve φ joining x to y, and its projections τ � and τ ��, as in Lemma 9.31.
Also write α�� the projection of φ onto M ��(x), and α� the projection of φ−1 onto M �(y).
Consider the curve τ = (τ ��)−1 · τ � · (α��)−1.

By Lemma 9.31, the projections of τ and (α�)−1 onto M �(y��) have the same endpoint.
Since the projection of (α�)−1 is (α�)−1 itself, this endpoint is y. Thus, the endpoint of
the projection of τ � · (α��)−1 onto M �(y��) is also y. This means exactly that the projection
of y� onto M �(y��) is y.

End of the proof of Theorem 9.4. Let x0 ∈ M , and define Φ : M → M �(x0) ×
M ��(x0), which to a point y ∈ M associates its projections onto M �(x0) and M ��(x0). The
product M �(x0)×M ��(x0) is naturally endowed with the product of the metrics induced
by M . We claim that Φ is an isometry between M and M �(x0)×M ��(x0).

Injectivity is a direct consequence of Lemma 9.32.

For surjectivity, consider any (y�, y��) ∈ M �(x0)×M ��(x0), and let y be the projection
of y� onto M �(y��). Since x0 is the projection of y� onto M ��(y��), it results from Lemma 9.32
that the projection of y onto M �(x0) is y�. Symmetrically, the projection of y onto M ��(x)
is y��, and thus Φ(y) = (y�, y��).

The only thing left to do is to show that Φ is isometric at each point. Consider y ∈ M
and v ∈ TyM , with the decomposition v = v� + v��. Let φ : [0, 1] → M be a curve joining
x0 to y, such that d

dt

��
t=1

φ = v. Let τ be the projection of φ onto M �(x0). By definition

of the projection, d
dt

��
t=1

τ is the parallel displacement of v� along τ · φ−1. Thus, v� has
the same length as d

dt

��
t=1

τ , which has itself the same length as Φ∗(v�). The same result
applies to v��, so Φ is an isometry, and Theorem 9.4 is proved.

Appendix B. Two other proofs of Theorem 9.15

We present two alternative proofs of Theorem 9.15. We keep the notations introduced at
the beginning of Section 9.3.
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B1. A simpler proof in the analytic framework

This proof uses Proposition 9.18 and Lemma 9.22.

Assume that (T, g) is not Riemannian: by Proposition 9.18, it is not equicontinuous,
so for all m > 0, there exists γ = γip−1ip ◦ . . . ◦ γi1i2 ∈ Γ with ratio ≤ m at some fi1(x),
x ∈ M . With Lemma 9.22, we may assume that for all l ∈ {1, . . . , p − 1}, dil(γil−1il ◦
· · · ◦ γi1i2(fi1(x)), ∂Uil) > �0, and γilil+1

is defined on Bg(γil−1il ◦ · · · ◦ γi1i2(fi1(x)), �0).
Choose � ∈ (0, �0) such that the injectivity radius of the exponential map of (T, g) is

at least � at every point x ∈ T satisfying di(x, ∂Ti) ≥ �0.

If m is chosen small enough, there exist s, t with 1 ≤ s ≤ t ≤ p such that:

1. it = is;

2. dis(γis−1is ◦ . . . ◦ γi1i2(fi1(x)), γit−1it ◦ . . . ◦ γi1i2(fi1(x))) < �/2;

3. γit−1it ◦ . . . ◦ γisis+1 has ratio ≤ 1/2 at γis−1is ◦ . . . ◦ γi1i2(fi1(x)).

Let γ0 = γit−1it ◦ . . . ◦ γisis+1 . In the analytic framework, there is a canonical way to
extend the domain of γ0 to the closed ball B = Bg(γil−1il ◦ · · · ◦ γi1i2(fit(x)), �) so that γ0
remains a similarity of ratio ≤ 1/2, using the exponential map of g: the new γ0 maps the
ball B into itself, and thus it has a fixed point. Therefore, the transversal T is flat on B
by Proposition 9.20, and again by analyticity, it is flat everywhere, which concludes the
proof.

B2. Another proof in the C∞ framework

This proof uses Proposition 9.18, Proposition 9.19 and Lemma 9.22.

The equicontinuity domain F is defined as the set of all x ∈ M for which there exists
m > 1 such that for all i ∈ {1, . . . , r} with x ∈ Ui, every γ ∈ Γ defined on fi(x) has ratio
between 1/m and m at fi(x). Assume that the foliation is not transversally flat: then
the set F is non-empty by Proposition 9.19. We want to prove that F = M .

It is possible to show that F is open, by copying the proof that E is open in
Lemma 9.23: we leave this to the reader.

Let (Kn) be an exhaustion of F by compact sets, i.e. an increasing sequence of
compact subsets of F whose union is F . Since F is saturated (i.e. it is a union of leaves),
it is possible to assume that every set Kn is itself saturated (take the closure of the union
of all leaves which intersect Kn: this new set is saturated, since it is the closure of a
saturated set).

Choose n so large that for all i ∈ {1, . . . , r} and all x ∈ Ui∩∂F such that di(x, ∂Ui) ≥
�0, the ball Bg(fi(x), �0) intersects fi(Kn ∩Ui). Then there is also an �1 > 0 such that for
all i ∈ {1, . . . , r} and all x ∈ Ui∩∂F , the ball Bg(fi(x), �1) does not intersect fi(Kn∩Ui).

Assuming that F �= M , we choose x0 on ∂F (the boundary of F ) and look for a
contradiction. Notice that the whole leaf of x0 is contained in ∂F , because F is saturated.
The idea is that, under the action of the holonomy group, the images of a transverse ball
centered at x0 remain small because their center is on ∂F , while they cannot intersect
Kn: thus x0 is in the equicontinuity domain F , which contradicts the fact that F is open.
The details now follow.

Consider i ∈ {1, . . . , r} such that x0 ∈ Ui and γ ∈ Γ defined on a neighborhood of
fi(x0). With Lemma 9.22, there exists a γ̃ = γip−1ip ◦ · · ·◦γi1i2 defined on a neighborhood
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of fi1(x0), which coincides with γjip ◦γ ◦γi1i near fi1(x0), such that for all l ∈ {1, . . . , p−
1}, dil(γil−1il ◦ · · · ◦ γi1i2(fi1(x0)), ∂Uil) > �0, and γilil+1

is defined on Bg(γil−1il ◦ · · · ◦
γi1i2(fi1(x0)), �0).

Since Kn is saturated, the image of Bg(fi1(x0), �1) by γil−1il ◦ · · · ◦ γi1i2 (when it is
defined) does not intersect fil(Uil ∩Kn). Thus, this image is a ball of radius ≤ �0. By
induction, this implies that this image is always well-defined, and thus, the ratio of γ
is smaller than k2max�0/�1 at fi(x0) (where kmax is still the maximum ratio of the γij).
By considering γ−1, we see that the ratio is also bigger than �1/(k

2
max�0). Thus, x0 ∈ F ,

which concludes the proof.
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