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Spécialité : Mathématiques et Informatique
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Certification of Programs with Computational Effects
Burak Ekici
LJK, University Joseph Fourier
Grenoble, France

Abstract

In this thesis, we aim to formalize the effects of a computation. Indeed, most used program-
ming languages involve different sorts of effects: state change, exceptions, input/output,
non-determinism, etc. They may bring ease and flexibility to the coding process. However,
the problem is to take into account the effects when proving the properties of programs.
The major difficulty in such kind of reasoning is the mismatch between the syntax of op-
erations with effects and their interpretation.

Typically, a piece of program with arguments in X that returns a value in Y is not inter-
preted as a function from X to Y , due to the effects. The best-known algebraic approach
to the problem interprets programs including effects with the use of monads: the interpre-
tation is a function from X to T (Y ) where T is a monad. This approach has been extended
to Lawvere theories and algebraic handlers. Another approach called, the decorated logic,
provides a sort of equational semantics for reasoning about programs with effects.

We specialize the approach of decorated logic to the state and the exceptions effects by
defining the decorated logic for states (Lst) and the decorated logic for exceptions (Lexc),
respectively. This enables us to prove properties of programs involving such effects. Then,
we formalize these logics in Coq and certify the related proofs. These logics are built so
as to be sound. In addition, we introduce a relative notion of syntactic completeness of a
theory in a given logic with respect to a sublogic. We prove that the decorated theory for
the global states as well as two decorated theories for exceptions are syntactically complete
relatively to their pure sublogics. These proofs are certified in Coq as applications of our
generic frameworks.

Keywords: computational effects, states, exceptions, program property proofs, equational
semantics, decorated logic, proof certification, Coq.
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Certification de programmes avec des effets calculatoires
Burak Ekici
LJK, Université Joseph Fourier
Grenoble, France

Résumé

Dans cette thèse, nous visons à formaliser les effets calculatoires. En effet, les langages de
programmation les plus utilisés impliquent différentes sortes d’effets de bord: changement
d’état, exceptions, entrées / sorties, non-déterminisme, etc. Ils peuvent apporter facilité et
flexibilité dans le processus de codage. Cependant, le problème est de prendre en compte
les effets lorsque l’on veut prouver des propriétés de programmes. La principale difficulté
dans ce genre de preuve de programmes est le décalage entre la syntaxe des opérations
avec effets de bord et leur interprétation.

Typiquement, un fragment de programme avec des arguments de type X qui retourne une
valeur de type Y n’est pas interprété comme une fonction de X vers Y , à cause des effets.
L’approche algébrique la plus connue pour ce problème permet une interprétation des pro-
grammes, y compris ceux comportant des effets, en utilisant des monades : l’interprétation
est une fonction de X vers T (Y ) où T est une monade. Cette approche a été étendue aux
théories de Lawvere et aux "gestionnaires algébriques" (algebraic handlers). Une autre
approche, appelée logique décorée, fournit une sémantique équationnelle pour ces pro-
grammes.

Nous spécialisons l’approche de la logique décorée pour les effets liés à l’état de la mémoire
et à la gestion des exceptions en définissant la logique décorée pour les états (Lst) et la
logique décorée pour les exceptions (Lexc), respectivement. Elles nous permettent de prou-
ver des propriétés de programmes impliquant de tels effets. Ensuite, nous formalisons ces
logiques en Coq et certifions les preuves associées. Ces logiques sont construites de manière
à être correctes. En outre, nous introduisons une notion de complétude syntaxique relative
d’une théorie dans une logique donnée par rapport à une sous-logique. Nous montrons
que la théorie décorée pour les états globaux ainsi que deux théories décorées pour les
exceptions sont relativement complets relativement à leur sous-logique pure. Non seule-
ment nous pouvons utiliser le système développé pour prouver des programmes comportant
des effets, mais également nous utilisons cette formalisation pour certifier les résultats de
complétude obtenus.

Mots-clés : effets calculatoires, état, exceptions, preuves de programmes, sémantique équa-
tionnelle, logique décorée, certification de programmes, Coq.
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Online sources

This thesis comes with some Coq sources that are available online:

• The STATES-THESIS library:
https://forge.imag.fr/frs/download.php/695/STATES-THESIS.tar.gz

• The EXCEPTIONS-THESIS library:
https://forge.imag.fr/frs/download.php/694/EXCEPTIONS-THESIS.tar.gz

• The HPC-THESIS library:
https://forge.imag.fr/frs/download.php/696/HPC-THESIS.tar.gz

Notice that the EXCEPTIONS-THESIS library includes the logics both for the core language
and the one for the programmers’ language as well as the translation of the programmers’
language into the core language.

Proof lengths & Benchmarks
library source length length execution time

in Coq in LATEX in Coq
STATES-THESIS Proofs.v 12 KB 20 KB 4.806 sec.
EXCEPTIONS-THESIS Proofs.v 8 KB 24 KB 3.256 sec.

The HPC-THESIS package includes three different libraries:

(1) exc_cl-hp: Hilbert-Post completeness of the base language (core language with no
use of categorical coproducts) of exceptions.

(2) exc_pl-hp: Hilbert-Post completeness of the programmers’ language for exceptions.

(3) st_hp: Hilbert-Post completeness of the base language (core language with no use
of categorical products) of the state.

Proof lengths & Benchmarks
library source length length execution time

in Coq in LATEX in Coq
exc_cl-hp HPCompleteCoq.v 36 KB 28 KB 4.600 sec.
exc_pl-hp HPCompleteCoq.v 8 KB 8 KB 0.988 sec.
st-hp HPCompleteCoq.v 36 KB 32 KB 5.979 sec.

Remark 0.0.1. Above measurements have been performed on a Intel i7-3630QM @2.40GHz
machine running the Coq Proof Assistant, v. 8.4pl3.
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1

Introduction

1.1 Motivation of the thesis

Software may involve mistakes that are difficult to detect. One of the current strategies
to detect possible mistakes in a given software is to run series of tests and hopefully to
figure out the possibly incorrect program behaviors. However, visiting all possible cases
is definitely out of testing scope. Hence, testing seems unsatisfactory especially when the
software in question is critical. For instance, software systems that are used to exchange
secure information, or the ones used in aviation and automotive industries. In order to en-
sure that a software system is error-free, one needs mathematical formalization and proofs.

The choice of mathematical formalization depends on the notions which are used in a
certain software. For instance, if it is implemented in a purely functional manner based
on simply typed λ-calculus, then the formalization can be done using cartesian closed
categories and properties can be proved within that context. If it involves any sort of
outside world interaction (so called computational effect), then it definitely needs a better
care. In this case, the choice of formalization has a range: varying from the use of monads
to decorated logic, that are briefly presented in Section 2.

1.2 The goal

A computational effect is said to be the apparent mismatch between syntax and semantics
of a program. In this dissertation, we separately formalize the global state effect in Chap-
ter 5 and the exceptions effect in Chapter 6 with the decorated logic [DD10]. The latter
is mainly presented in Chapter 4. Then, by using these formalizations, we prove primitive
program properties including mentioned effects. In addition, we implement these formal
treatments in the Coq proof assistant and certify related program property proofs. The
inference systems provided by the formal approaches are designed to be sound and their
base languages (without categorical structures such as products and coproducts) are here
proven to be Hilbert-Post complete.

1.3 Contributions

This thesis comes with the following contributions to state of the art:

(1) the implementations of the decorated logics in the Coq Proof Assistant to verify
computational effects arising from a comonad and a monad: the decorated logic for
a comonad (Lcom) and the decorated logic for a monad (Lmon),

(2) the formalizations of the state and exception effects through the decorated logic:

(2.1) the decorated logic for the state (Lst) as an extension to Lcom;

1



1. Introduction

(2.2) the decorated logic for exceptions (Lexc) and the decorated logic for the pro-
grammers’ language for exceptions (Lexc−pl) as extensions to Lmon;

(2.3) the Coq implementations of these logics as applications to item (1),

(3) the Hilbert-Post completeness proofs of the logics Lst without products, Lexc without
coproducts and Lexc−pl, as well as related proof certifications in Coq as applications
to item (2.3).

1.4 Publications

Below, we list the publications and reports that have been produced during this thesis:

Refereed conference papers
[DDE+15] Relative Hilbert-Post completeness exceptions.
Jean-Guillaume Dumas, Dominique Duval, Burak Ekici, Damien Pous and Jean-Claude
Reynaud. In Siegfried Rump and Chee Yap, editors, MACIS 2015, Sixth International
Conference on Mathematical Aspects of Computer and Information Sciences, 2015.

[DDER14] Certified proofs in programs involving exceptions.
Jean-Guillaume Dumas, Dominique Duval, Burak Ekici and Jean-Claude Reynaud.,
CICM 2014 : Eigth Conference on Intelligent Computer Mathematics, Coimbra, Portugal,
7–11 July 2014, CEUR Workshop Proceedings, no 1186, paper 20.

[DDEP14] Formal verification in Coq of program properties involving the global state ef-
fect. Jean-Guillaume Dumas, Dominique Duval, Burak Ekici and Damien Pous.,
JFLA 2014 : Journées Francophones des Langages Applicatifs, Fréjus, France, 8–11 Jan-
uary 2014.

Research reports
[Eki15] IMP with exceptions over decorated logic.
Burak Ekici.,
Pre-proceedings of TFP 2015: Trends in Functional Programming, Sophia-Antipolis, France,
3–5 June 2015.

1.5 Content of the thesis

In the following, we describe the content of the thesis by highlighting the main contents of
each chapter:

• Chapter 2 is the state of the art chapter where we start in Section 2.1, by introducing
some of the existing approaches to formalize computational effects. This is followed
by the presentation of different software tools, either to handle computational effects
with Haskell and Eff in Section 2.2, or to verify properties of programming languages
with effects with Idris, Coq or Isabelle in Section 2.3. Most references to the related
work will appear in this section.

• In Chapter 3, first we separately study the Kleisli and coKleisli adjunctions associ-
ated to a monad and a comonad in Section 3.1. Then, Section 3.2 starts with the
proof of the comparison theorem for the coKleisli construction [ML71, Ch. VI, §5,
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dual of Theorem 2] and continues with the composition of Kleisli and coKleisli ad-
junctions: such a two-level structure is named the coKleisli-on-Kleisli construction
associated to a monad and studied in detail with an application to the exceptions
monad. In Chapter 6 we will make use of this construction to interpret the decorated
logic for the exception effect. Finally, Section 3.3 dualizes the construction introduced
in Section 3.2. There, we first give the comparison theorem for the Kleisli construc-
tion [ML71, Ch. VI, §5, Theorem 2] and proceed with the composition of coKleisli
and Kleisli adjunctions, yielding the Kleisli-on-coKleisli construction associated to a
comonad. We apply this composition to the states comonad, so as to interpret the
decorated logic for the state effect in Chapter 5. The main result of this chapter is
that the coKleisli-on-Kleisli category of a monad and the Kleisli-on-coKleisli cate-
gory of a comonad are proven to be respectively the full image category of the related
monad and comonad endofunctors (Theorems 3.2.5 and 3.3.4).

• In Chapter 4, Section 4.1 defines the monadic equational logic Lmeq. This logic is
extended into the decorated logic for a monad (Lmon) in Section 4.2, where the
categorical interpretation of Lmon by the coKleisli-on-Kleisli construction associ-
ated to a monad is also given. In Section 4.3, the decorated logic for a comonad
(Lcom) is detailed. There, we use the Kleisli-on-coKleisli construction associated to a
comonad to interpret the logic Lcom. The Coq implementation of both logics is given
in Section 4.4. These logics have been built so as to be sound with respect to their
intended categorical interpretation; but little is known about their completeness.
Therefore, in Section 4.5, we conclude with a completeness notion: relative Hilbert-
Post completeness which is well-suited to a decorated logic. We will show in Sec-
tions 5.4 and 6.9 that one decorated logic for the state effect and two decorated logics
for the exception effect are Hilbert-Post complete with respect to their pure sublog-
ics: we adapt the theorem in [Sta10, Th 5] to our logics to give a decorated proof of
their completeness.

• In Chapter 5, we start, in Section 5.1, with the syntax of the decorated logic for the
state (Lst) with its interpretation given via the Kleisli-on-coKleisli construction asso-
ciated to the states comonad. The Coq implementation of the logic Lst is presented
in Section 5.2. In Section 5.3, we prove some properties of the state effect as in [PP02,
§3], but here in a decorated setting. Lastly, the logic Lst (without products) is proven
to be relatively Hilbert-Post complete in Section 5.4.

• In Chapter 6, we start, in Section 6.1, with the decorated logic for the exception (Lexc)
with its interpretation given through the coKleisli-on-Kleisli construction associated
to the exceptions monad. We present the decorated logic for the programmers’ lan-
guage for exceptions (Lexc−pl) in Section 6.2, with its interpretation via the Kleisli
adjunction associated to the exceptions monad. The translation of the logic Lexc−pl
into the logic Lexc is given in Section 6.3. The Coq implementations of the logics
Lexc and Lexc−pl and the translation of the logic Lexc−pl into the logic Lexc are re-
spectively presented in Sections 6.4, 6.5 and 6.6. We prove some properties of the
exceptions effect in a decorated setting in Section 6.7. The logic Lexc−pl, as well as
the logic Lexc without coproducts, are proven to be relatively Hilbert-Post complete
in Sections 6.8 and 6.9.

• The Chapter 7 is the concluding chapter where we give an overview of the results
obtained in this thesis and highlight some potential future research directions.
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About computational effects

In programming languages theory, a program is said to have computational effects if, be-
sides a return value, it has observable interactions with the outside world. For instance,
using/modifying the program state, raising/recovering exceptions, reading/writing data
from/to some file, etc. In order to formally reason about behaviors of a program with com-
putational effects, one has to take into account these interactions with the outside world.
One difficulty in such a study is the mismatch between the syntax of operations with effects
and their interpretation. Typically, an operation in an effectful language with arguments
in X that returns a value in Y is not interpreted as a function from X to Y , due to the
effects, unless the operation is pure.

In this chapter, we start, in Section 2.1, by introducing some of the existing approaches to
formalize computational effects. This is followed by the presentation of different software
tools, either to handle computational effects with Haskell and Eff in Section 2.2, or to
verify properties of programming languages with effects with Idris, Coq, or Isabelle in
Section 2.3. Finally, in Section 2.4, we compare the formal approach behind this thesis
with the existing ones.

2.1 Formal approaches

The simply typed λ-calculus is a useful mathematical tool to study behaviors of typed
programming languages without computational effects. It can be interpreted in a carte-
sian closed category with types as objects and terms (program pieces) as arrows. In
addition, categorical products and coproducts can be used to cope with n-ary operations
and conditionals (or branching), respectively. This result is known as the Curry-Howard-
Lambek correspondence which relates intuitionistic logic, simply typed lambda calculus
and cartesian closed categories. The algebraic approach for formalizing computational
effects aims to extend this correspondence in a formal way. This has been considered
from several different viewpoints and used to formalize computational effects as detailed
in Sections 2.1.2, 2.1.4 and 2.1.5. Some alternative approaches such as effect systems and
decorated logic are also briefly presented in Sections 2.1.1 and 2.1.6.

2.1.1 Effect systems

In their 1988 paper [LG88], Lucassen and Gifford presented a new approach to program-
ming languages for parallel computers. The key idea was to use an effect system to dis-
cover expression scheduling constraints. In this system, every expression comes with three
components: types to represent the kinds of the return values, effects to summarize the
observable interactions of expressions and regions to highlight the areas of the memory
where expressions may have effects. To this extend, one can simply reason that if two ex-
pressions do not have overlapping effects, then they can obviously be scheduled in parallel.
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2. About computational effects

The reasoning is done by some inference rules for types and effects based on the second
order typed λ-calculus.

2.1.2 Effects as monads

The best known algebraic approach to formalize computational effects was initiated by
Moggi in his seminal paper [Mog91]. There, he showed that the effectful operations of
an impure language can be interpreted as arrows of a Kleisli category for an appropriate
monad (T, η, µ) over a base category C with finite products (see Definition 3.1.2). For in-
stance, in Moggi’s computational metalanguage, an operation in an impure language with
arguments in X that returns a value in Y is now interpreted as an arrow from JXK to T JY K
in C where JXK is the object of values of type X and T JY K is the object of computations
that return values of type Y . The use of monads to formalize effects (such as state, excep-
tions, input/output and non-deterministic choice) was popularized by Wadler in [Wad92]
and implemented in the programming languages Haskell (See Section 2.2.1) and F♯.

With this, through monad transformers [Jas09], it is usually possible to “combine” different
effects formalized by monads. In [GSR14], Goncharov et al. proposed a framework that
combines monad-based computational effects, underdefined or free operations and recursive
definitions.

Example 2.1.1. The exceptions monad (or coproduct monad), on the category of sets, comes
with the endofuctor TX = X + E for each set X and the distinguished set of exceptions
E. Note that we use the exceptions monad in Section 6 to formalize the exception effect.

Example 2.1.2. The state monad, on the category of sets, has the endofunctor TX = S →
(X × S) for each set X and the distinguished set of states S.

Moggi’s computational metalanguage was extended into the basic effect calculus with a no-
tion of computation type as in Filinski’s effect PCF [Fil96] and in Levy’s call-by-push-value
(CBPV) [Lev99]. In their paper [EMS14], Egger at al., defined their effect calculus, named
extended effect calculus as a canonical calculus incorporating the above ideas of Moggi,
Filinski and Levy. Following Moggi, they included a type constructor for computations.
Following Filinski and Levy, they classified types as value types and computation types.

2.1.3 Effects as comonads

Being dual to monads, comonads have been used to formalize context-dependent compu-
tations. Intuitively, an effect which observes features may arise from a comonad, while
an effect which constructs features may arise from a monad [JR11]. Uustalu and Vene
have structured stream computations [UV08], Orchard et al. array computations [OBM10]
and Tzevelekos game semantics [Tze08] via the use of comonads. In [POM], Petricek et
al. proposed a unified calculus for tracking context dependence in functional languages
together with a categorical semantics based on indexed comonads. In his report [Orc12],
Orchard proposed a method for choosing between monads and comonads when formalizing
computational effects.

A computation can be seen as a composition of context-dependence and effectfulness
[UV08]. In [BVS93], Brookes and Van Stone showed that such combinations may cor-
respond to distributive laws of a comonad over a monad. This has been applied to clocked
causal dataflow computation, combining causal dataflow and exceptions by Uustalu and
Vene in [UV05].
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2. About computational effects

Example 2.1.3. The costate comonad, on the category of sets, is given with the endofunctor
DX = S × (S → X) for each set X and the distinguished set of states S.

Example 2.1.4. The state comonad (or product comonad), on the category of sets, is given
with the endofunctor DX = X ×S. Note that, we use the state comonad to formalize the
global state effect (See Section 5) while Moggi uses the state monad (as in Example 2.1.2)
for the same effect [Mog91].

2.1.4 Effects as Lawvere theories

A Lawvere theory is a finite product category in which every object is isomorphic to a finite
cartesian power

An = A×A× . . .×A
︸ ︷︷ ︸

n times

of a distinguised object A known as the generator. A morphism f : An → Am in a Lawvere
theory may be expressed as f : m→ n.

Lawvere theories first appeared in Lawvere’s 1963 PhD dissertation [Law63]. Three years
later, in [Lin66], Linton showed that every Lawvere theory induces a monad on the cate-
gory of sets and on any category which satisfies the local representability condition [Lin69].
Therefore, Moggi’s seminal paper [Mog91], formalizing computational effects by monads,
made it possible for monadic effects to be formalized through Lawvere theories. To this
extend, Plotkin and Power, in [PP02], have shown that effects such as the global and the
local state could be formalized by signatures of effectful terms and an equational theory
explaining the interaction among terms.

A model of a Lawvere theory L in a category C , with finite products, is a finite-product
preserving functor M : L → C . A homomorphism between models M1 and M2 is a nat-
ural transformation h : M1 ⇒ M2. All models of the Lawvere theory L, with the model
homomorphisms, form a category ModL(C ) called the model category of L. The model
category ModL(C ) is equipped with a forgetful functor U : ModL(C ) → C . It can be
proven that U has a left adjoint F : C → ModL(C ), if C is a locally finitely presentable
category [Bor94]. This adjunction F ⊣ U : ModL(C ) → C induces a monad on the base
category C . Now, a computational effect is called algebraic, if it corresponds to a monad
which can be obtained from a Lawvere theory [PP13].

In [HPP06] and [HLPP07], Hyland et al. studied the combination of computational effects
in terms of Lawvere theories.

Example 2.1.5. [HP07] The Lawvere theory LE for exceptions is generated by Card(E)
constant operations (one for each exception e in E) raisee : A0 → A1 with no equa-
tion [PP03]. The monad TX = X+E on the category of sets is induced by the theory LE
as follows: Each model M is characterized by the set B =M(A) and the elements re ∈ B
such that M(raisee) : {⋆} → B maps ⋆ to re, for each e in E. Now, the forgetful functor
U : MLE

(S et) → S et maps the model M = (B, (re)e∈E) to the set B. The left adjoint
F : S et→MLE

(S et) maps each set X to the model (X + E, (e)e∈E) of LE in S et.

Furthermore, it has been shown in [PP03] that the operation handlee, used for recovering
from an exception e, does not satisfy the requirements to be algebraic in the sense of [PP01,
§2, Definition 2.1] while raisee is an algebraic operation in this sense.
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Example 2.1.6. [HP07] Let Loc be a finite set of locations and let Val be countable set
of values. The countable Lawvere theory LS for the state S = ValLoc is generated by
the operations lookup : Loc→ Val and update : Loc× Val→ 1 satisfying seven equalities
stated in [PP02, §3]. Along the same lines, Plotkin and Power have shown that the theory
LS induces the state monad TX = S → (X × S) on the category of sets.

Melliès has shown in [Mel10] that some of these seven equalities can be omitted.

2.1.5 Handlers for algebraic effects

Plotkin and Pretnar [PP09, PP13] gave an account for handling algebraic effects: Moggi’s
classification of terms (values and computations) is extended with a third level called han-
dlers within the framework of Lawvere theories. Here, we focus on exception handlers.

Simple exception handling construct. Let E be the set of exceptions and A be the
set of values returned by the computations. Then:

H(M)
def
= M handled with {raisee 7→Me}e∈E

is the simple handling construct which is itself a computation. The handling construct
H(M) is made of a computation M ∈ A+E and a handler {raisee 7→Me}e∈E where, for
each exception e ∈ E, raisee intercepts M by throwing an exception and Me ∈ A+ E is
the corresponding predefined computation that handling construct proceeds with. There
is no equation in the Lawvere theory of exceptions LE (Example 2.1.5) but the handling
computation is characterized by the following equations:

H
(
returnV

)
= inl(V ),

H
(
raisee′()

)
=Me′ .

where V is any value in A. Obviously, Me′ = raisee′() causes the exception of name e′

not to be handled.

Extended exception handling construct. Simple handling construct is generalized
to the extended handling construct, introduced by Benton and Kennedy [BK01], where
returned values are passed to a user-defined continuation map N : A→ B + E.

H(M)
def
= M handled with {raise()e 7→ Ne}e∈E tox : A.N(x)

Within the handling construct, first the computation M ∈ A+E is evaluated: if it returns
a value V ∈ A, then the return value is bound to the variable x and it remains to evaluate
N(V ) ∈ B + E. Else if M raises the exception e′ ∈ E, then the exception is recovered
and the computation Ne′ ∈ B + E is evaluated. Obviously, Ne′ = raisee′() causes the
exception e′ not to be handled. All these are characterized by the following equalities:

H
(
returnV

)
= N(V ),

H
(
raisee′()

)
= Ne′ .

A

ηA
��

N

))❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘

A+ E
h

// B + E

Figure 2.1: Interpreting the extended handling construct

8



2. About computational effects

As a further step, a calculus extending Levy’s call-by-push-value (CBPV) paradigm [Lev99]
(which is based on the distinction between computation and value types) with operations,
handler definitions and effect handling constructs has been proposed not only to handle
exceptions but also other sort of algebraic effects such as stream redirection, explicit non-
determinism, CCS, parameter passing, timeout and rollback [PP13, §3].

Remark 2.1.7. The issue of exception handling has been circumvented in [SM04] in order
to get a Hoare logic for exceptions and in [Lev06] by using both algebras and coalgebras.
The formalization of exceptions can also be made from a coalgebraic point of view [Jac01].

2.1.6 Decorated Logic

In 2010, Duval and Dominguez [DD10] have proposed yet another paradigm to formalize
computational effects by mixing effect systems and algebraic theories, named the decorated
logic. The key point of this paradigm is that every term comes with a decoration which
exposes its features with respect to a single computational effect or to several ones. In
addition, an equational theory highlights the interactions among terms. There, we have
two sorts of equations: weak equations relate terms with respect only to their results and
strong equations relate terms with respect both to their results and effects.

Here, we prefer not to give details of the decorated logic, since in the following chapters, we
detail them to cover the state and the exception effects. Instead, we give two examples, in
the following, to clarify the use of decorations and equations, mainly the weak equations.

Example 2.1.8. (State effect) [DDFR12a, §1.2] In the object-oriented language C++, we
write a class BankAccount as a toy example to manage simplified bank accounts with the
use of types int and void that are respectively interpreted as the set of integers Z and a
singleton {⋆}. In the BankAccount class, there are two methods namely balance() and
deposit(x). The former returns the balance of the account without modifying it while the
latter modifies the amount. Therefore, balance is an accessor method while deposit(x)

is a modifier. We declare these public methods in C++ syntax within the class BankAccount
as follows:

c l a s s BankAccount {
pub l i c :

i n t balance ( ) const ;
void depos i t ( i n t ) ;

}

This syntax can be translated into a signature Bankapp , called apparent signature, as:

Bankapp :

{

balance : void→ int

deposit : int→ void

with the following interpretation:

{

JbalanceK : {⋆} → Z

JdepositK : Z→ {⋆}

which is obviously not the intended interpretation.
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In order to get the intended interpretation correctly, one needs to consider the state of any
account. Let state be the type of states of a given bank account. So that we can get the
below signature (named explicit signature) as:

Bankexpl :

{

balance : state→ int

deposit : int× state→ state

with the following interpretation:
{

JbalanceK : St→ Z

JdepositK : Z× St→ St

where St is the set of all possible states of an account.

The apparent signature is simple and close to the syntax but its interpretation is not the
intended one. Contrarily, the explicit signature has the intended interpretation but it is
far from the syntax itself. At this point, we define a decorated signature Bankdeco which
is close to the syntax and provides the intended interpretation. The decorated signature
classifies operations by using superscripts: (0) is used to indicate pure operations that have
no interaction with the state of the account, we have (1) for state accessor and (2) for
state modifier operations.

Bankdeco :

{

balance(1) : void→ int

deposit(2) : int→ void

Let us consider the following C++ expressions:

deposit(10); balance() and 10 + balance()

which can be seen in decorated terms as:

balance(1) ◦ deposit(2) ◦ 10(0) and +(0) ◦
〈
10(0), balance(1)

〉

where the operator +: int× int→ int is pure. Obviously, these two terms have different
effects: the former one is a modifier while the latter is only an accessor with respect to
the state of an account. However both return the same integer as a result. Thus, for these
cases where operations have the same result but make different manipulations on the state,
we introduce a weak relation denoted by the symbol ∼:

balance(1) ◦ deposit(2) ◦ 10(0) ∼ +(0) ◦
〈
10(0), balance(1)

〉

Example 2.1.9. (Exceptions effect) Similarly, it is possible to provide a decorated signature
for the exceptions effect: (0) is to indicate pure operations, (1) for exception throwers and
(2) for exception catchers. Weak equations relate terms that agree on ordinary arguments
but maybe not on exceptional ones.

Therefore, the extended handling in Figure 2.1 can be seen as the interpretation of the
following weak equation: h(2) ∼ N (1).

A
N(1)

,,∼

h(2)

22 B

Figure 2.2: Extended handling construct in the decorated logic for exceptions
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Indeed, this equation means that the catcher term h(2) agrees with the propagator term
N (1) on ordinary arguments. However, on exceptional arguments, they may behave differ-
ently: h(2) might recover the computation from the exceptional argument while N (1) must
propagate the exceptional argument.

More precisely, the catcher term h(2) : A→ B is interpreted as a function h : A+E → B+E
while the propagator term N (1) is interpreted as a function N : A → B + E. Then, the
weak equation in Figure 2.2 is interpreted by the following equality: N = h ◦ ηA, which is
the way the extended handling construct in [PP13] is interpreted (Figure 2.1). Actually,
the 3-tier system classifying the terms with respect to their exceptional features (pure,
thrower, catcher) corresponds to the values, computations and handlers in [PP13].

Notice that in Chapters 5 and 6, we will propose decorated formalizations for the global
state and the exceptions effects, respectively.

2.2 Software tools

The formal approaches mentioned in Sections 2.1.2 and 2.1.5 have been implemented in
Haskell and Eff as briefly introduced in Sections 2.2.1 and 2.2.2.

2.2.1 Haskell

Haskell is a purely functional and lazy programming language: an expression would return
exactly the same result when evaluated twice and an expression is evaluated only when it
should return a final result. Haskell proposes a strongly typed system with some sophisti-
cated features like typeclasses and generalized algebraic data types.

Monads are implemented in Haskell to make use of imperative features in a functional
setting. In this context, the first attempt was made to perform input/output operations:
reading/writing from/to a file have been implemented as monadic operations to impose an
order of evaluation. However, the use of monads in Haskell is not limited to input/output.
They also support some other imperative features such as state, exceptions, continua-
tions, non-determinism, parallelization etc.

Definition 2.2.1. Hask is the category with objects as Haskell types, functions as arrows
between these types. The identity arrow for any type A is given as

id = \x −> x .

And the composition of functions f and g is given as

f . g = \x −> f ( g x ) .

Now, we can speak of some category theoretic concepts such as functors and monads in
Haskell. Indeed, both functors and monads are implemented as typeclasses as given in the
following:

c l a s s Functor F where
fmap : : ( a −> b) −> F a −> F b

The fmap method, for each Functor type F, applies a function of the arrow type a -> b

to an instance of type F a so as to return an instance of type F b, for each types a and b

in the category Hask.
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c l a s s Monad m where
j o i n : : m (m a ) −> m a
return : : a −> m a

Similarly, for each monadic type m and each type a in the category Hask:

(1) the method join takes an instance of type m (m a) and returns an instance of type
m a, corresponding to the multiplication of a monad;

(2) the method return takes an instance of type a and returns an instance of type m a,
corresponding to the unit of a monad.

Example 2.2.2. The Maybe type of Haskell can be used to represent computations that
might fail. Let us illustrate it as functor and monad class instances. We start with its def-
inition:

data Maybe a = Just a | Nothing

Indeed, the type Maybe a has two constructors: Just a and Nothing for each type a in Hask.

i n s tance Functor Maybe where
fmap f Nothing = Nothing
fmap f ( Just a ) = Just ( f a )

in s tance Monad Maybe where
return a = Just a
j o i n ( Just ( Nothing ) ) = Nothing
j o i n ( Just ( Just a ) ) = Just a

The method bind, denoted »=, can be defined through fmap and join as follows:

bind = j o i n . fmap f (Maybe a )

for each function f :: a -> Maybe a and type a in Hask.

For any even integer n, a chain of computations to calculate the nth integral root of a given
integer, if it exists, can be implemented with the use of the Maybe monad and the bind

method as follows:

sq roo t : : I n t e g e r −> Maybe In t e g e r
sq root x = sqroot ’ ( 0 , 0 ) where

sqroot ’ ( s , r )
| s > x = Nothing
| s == x = Just r
| o the rw i s e = sqroot ’ x ( s+2∗r+1, r+1)

The above function1 calculates the positive square root of a given integer, if it exists. Now,
calculating the positive 4th root is just binding the handled square root value to the same
function.

4 throot : : I n t e g e r −> Maybe In t e g e r
4 throot x = sqroot x >>= sqroot

Obviously, to calculate the positive 8th root, a further binding is necessary thus for the
positive nth root, one needs n/2 bindings. If the computation fails, then it returns Nothing.

1the source has been taken from the post “Understanding Haskell Monads” by Mr. Ertuğrul Söylemez.
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8 throot : : I n t e g e r −> Maybe In t e g e r
8 throot x = sqroot x >>= sqroot >>= sqroot

Therefore, error management is purely handled via the Maybe monad.

2.2.2 Eff

Eff, developed by Bauer and Pretnar [BP15, BP14, Pre14], is a programming language im-
plementing the approach of effects as Lawvere theories with handlers. Below, we summarize
the constructions specific to Eff detailing neither the syntax (expressions and computa-
tions), nor the issues related to type checking and denotational semantics.

Instances and operations. We prefer to skip the technicalities of Eff types, expressions
and computations. However, it is crucial to note that Eff has effect types E, describing
several related effectful operations, and handler types A⇒ B indicating that an instance of
such handler acts on computations of standard type A and returns computations of stan-
dard type B. For instance, given an effect instance e of type E and an operation symbol
op : A→ B ∈ E (contained in E), there is an operation e#op : A→ B which is known as a
generic effect and which is effect free as it is. However, it becomes an effectful operation
when applied to an expression exp. This is supposed to be handled by a handler of type
A⇒ B. Besides, there is a crucial computation new which generates an effect instance of
effect type E.

Handlers. A handler

h = val x 7→ cv | handler(ei#opi x k 7→ ci)i | finally 7→ cf

can be applied to a computation c via the below handling construct:

with h handle c.

If the computation c evaluates into val v, then the handling construct binds v to x and
evaluates into cv . Else if c meets an effectful operation ei#opi exp during the evaluation,
the handling construct binds exp to x and the provided continuation to k thus evaluates
into a computation ci which may still be handled by outer handling constructs, since
continuation is delimited. The finally clause can be seen as an additional transformation
which converts the handling construct into:

let x = (with h handle c) in cf .

Obviously, if the c encounters a computation ei#opi e which is not considered by the han-
dler h, then the effect gets propagated and might be handled by outer handling constructs.

Now, let us consider a simple example which shows the way to handle exceptions in Eff:

Example 2.2.3. An exception is an effect with a single operation named raise (no charac-
terizing operation, see Example 2.1.5) which takes a parameter of type ‘a and returns an
instance of empty type:

type ‘ a except ion = e f f e c t
ope ra t i on r a i s e : ‘ a −> empty

end

13
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The input parameter ‘a can be used by the exception handler while the return instance
of the empty type indicates that a raised exception does not give the control back to the
continuation.

l e t o p t i o n a l i z e e = handler
| e#r a i s e v _ −> pr in t v
| va l x −> pr in t x ; ;

The handler optionalize e either prints the non-exceptional value x or first handles an
exception instance e with parameter v and then prints it out. Notice that in the above
implementation, there is no provided continuation: this is ensured by the use of (_).

In order to make use of this handler, we first create an instance of the exception effect:

l e t e = new except ion ; ;

Now, we handle the computation raise e (3 * 100) with optionalize e which prints
the associated parameter to the screen:

with op t i o n a l i z e e handle
r a i s e e (3 ∗ 100) (∗ Raise e with argument 300 . ∗)

To provide a continuation, say by a user-defined function, one needs to replace the under-
score with the function in question.

Lastly, Eff enables programmers to implement handlers of several other effects and it also
supports effect combination. For detailed examples, see [BP15, §6].

2.3 Proof assistants

It is crucial to note that neither Haskell nor Eff (to our knowledge) include a verification
process. Rather, within their formal context, any syntactically well-typed code is supposed
to be correct (aka certified) provided that the underlying logic is. Conversely, platforms
like Idris, Coq and Isabelle are designed either to be verification oriented or supported.
Thus, in the following, we give some pointers about such tools.

2.3.1 Idris

Idris is a purely functional programming language using an eager evaluation strategy and
dependent types. It involves a library to manage computational effects named Effects.
In [Bra13], Edwin C. Brady describes how to use the Effects library: how to create new
computational effects, how they are implemented as well as how to handle them via an
approach based on algebraic handlers as in [BP15]. Idris also supports interactive theorem
proving with tactics. For all further information, check out the below link:

http://www.idris-lang.org/

2.3.2 Coq

Coq is a proof assistant which implements a higher order mathematical language named
Gallina. The underlying formal language of Gallina is the Calculus of Constructions (CoC)
developed by Thierry Coquand and Gérard Huet [CH88] which extends the simply typed
λ-calculus with polymorphism, dependent types and type operators: when considered the
of Barendregt’s lambda cube [BDS13], it locates on the right-top. In time, CoC has been
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enriched with the use of inductive, coinductive types and hierarchical Universes so as to
evolve in Calculus of (co)Inductive Constructions (CIC). For all further information, check
out the below link:

https://coq.inria.fr/

In this thesis, on the one hand, we use Coq as a platform to formalize Duval’s decorated
logic for the treatments of computational effects: the state and the exceptions. To do
so, we mainly exploit inductive and dependent types. On the other hand, we use Coq
as a proof development system by benefiting its interactive proof methods and the tactic
language when certifying properties of programs formalized with a decorated logic.

2.3.3 Isabelle

Isabelle [NPW02] is an interactive prover which embeds a formal mathematical language
named ISAR. It has mainly been developed at University of Cambridge and Technische
Universität München. It involves tools for proving mathematical formulae in a logical
calculus. Nowadays Isabelle/HOL is the mostly used and spread instance: apart from
proving theorems based on a higher-order logic, it also enables the use of structures such
as (co)datatypes, (co)inductive definitions and recursive functions with pattern matching.
For all further information, check out the below link:

https://isabelle.in.tum.de/

2.4 Concluding remarks: where is this thesis located?

Provided the aforementioned state-of-the-art, in this section, we clarify the point where
this thesis is located.

Decorated logic

implementation
❙❙❙

❙❙❙
❙❙

))❙❙❙
❙❙❙❙

❙❙❙❙

Coq

Program properties

proof

OO

certified proof❦❦❦❦❦❦❦❦❦

55❦❦❦❦❦❦❦❦❦❦❦

Figure 2.3: Thesis approach

We chose the decorated logic to formalize computational effects of a program and prove
its properties. As depicted in Figure 2.3, certifying property proofs of programs with effects
in a decorated setting is about using Coq as a proof development system after implementing
the related decorated logic in Coq.

On the choice of decorated logic. In this thesis, we choose the decorated logic paradigm
to formalize computational effects, mainly due to following arguments:

(1) since effects of terms are hidden by the decorations, it is possible to preserve the
syntax of term signatures. Thereafter, the provided equational reasoning would be
valid for different algebraic models of the same effect.
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(2) the equational theory is based on decorated equivalence relations proposing different
reasoning capabilities: one on effects and returned results and the other one only
on returned results.

On the choice of Coq. To our knowledge, apart from Coq, Isabelle and Idris, other
mentioned tools, Haskell and Eff, do not embody platforms which could be used both to
program formal logic and develop certified proofs.

We could have used Idris as a platform both to implement the decorated logic and to
interactively prove theorems. We do not have any apparent argument to prefer Coq against
Idris apart from their focuses: Idris supports an interactive theorem proving based on
general-purpose-programming while Coq originally motivates theorem proving.

The choice between Isabelle and Coq does not strongly stand by neither side for our im-
plementation except for the following argument: using inductive predicates of Coq might
be comparatively harder when implementing but easier when using induction as a reason-
ing strategy.

Using separate platforms for programming formal logic and developing certified proofs is
an option where a verified translator (from the platform to program formal logic to the
platform to develop certified proofs) would be necessary. However, using Coq for both issues
seems to be more homogenous and trustworthy. Notice also that we will not formalize in
Coq the categorical interpretation of the logics we propose. For a Coq formalization of
category theoretic structures, see [Ahr15].
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Categorical background

In this chapter, first we separately study the Kleisli and coKleisli adjunctions associated
to a monad and a comonad in Section 3.1. Then, Section 3.2 starts with the proof of the
comparison theorem for the coKleisli construction [ML71, Ch. VI, §5, dual of Theorem 2]
and continues with the composition of Kleisli and coKleisli adjunctions: such a two-level
structure is named the coKleisli-on-Kleisli construction associated to a monad and studied
in detail with an application to the exceptions monad. In Chapter 6 we will make use of this
construction to interpret the decorated logic for the exception effect. Finally, Section 3.3
dualizes the construction introduced in Section 3.2. There, we first give the comparison
theorem for the Kleisli construction [ML71, Ch. VI, §5, Theorem 2] and proceed with the
composition of coKleisli and Kleisli adjunctions, yielding the Kleisli-on-coKleisli construc-
tion associated to a comonad. We apply this composition to the states comonad, so as to
interpret the decorated logic for the state effect in Chapter 5.

The main result of this chapter is that the coKleisli-on-Kleisli category of a monad and
the Kleisli-on-coKleisli category of a comonad are proven to be respectively the full image
category of the related monad and comonad endofunctors (Theorems 3.2.5 and 3.3.4).

3.1 Adjunctions, monads and comonads

This section aims to study the Kleisli adjunction associated to a monad and its dual. We
start with some preliminary notions that might be helpful: all related details can be found
in [ML71, Ch. IV, Ch. VI].

3.1.1 Preliminaries

Definition 3.1.1. Let C and D be two categories. An adjunction F ⊣ G : D → C is a
triple 〈F,G,ϕ〉 such that F : C → D , G : D → C are functors and ϕ = (ϕX,A)X,A is a
family of bijections, natural in X and A, where X is an object of C and A is an object of D :

ϕX,A : HomD (FX, A)
∼=
−→ HomC (X, GA) (3.1)

Definition 3.1.2. A monad T = (T, η, µ) in a category C consists of an endofunctor
T : C → C with two natural transformations

η : IdC ⇒ T µ : T 2 ⇒ T (3.2)

such that the following diagrams commute:

T 3 µT //

Tµ
��

=

T 2

µ

��
T 2

µ
// T

T
ηT //

Tη
��

idT
◆◆◆

◆◆◆

&&◆◆
◆◆◆

◆

T 2

=
µ

��
T 2

=

µ
// T
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3. Categorical background

Definition 3.1.3. A comonad D = (T, ε, δ) in a category C consists of an endofunctor
D : C → C with two natural transformations

ε : D ⇒ IdC δ : D ⇒ D2 (3.3)

such that the following diagrams commute:

D3

=

D2δDoo

D2

Dδ

OO

D
δ

oo

δ

OO D D2εDoo

=

D2

Dε

OO

=

D

idD◆◆◆◆◆◆

gg◆◆◆◆◆◆

δ
oo

δ

OO

Let us consider an adjunction F ⊣ G : D → C . We set A = FX in (3.1) and get ηX : X →
GFX in C which is the image of idFX by ϕX,FX . Symmetrically, by setting X = GA, we
obtain εA : FGA → A in D which is the image of idGA by ϕ−1GA,A. As shown in [ML71,
Ch. IV, §1], η : IdC ⇒ GF and ε : FG ⇒ IdD are natural transformations. Thus, we get
the following proposition by [ML71, Ch. VI, §1] and [ML71, Ch. IV, §1, Theorem 1].

Proposition 3.1.4. An adjunction F ⊣ G : D → C , with associated family of bijections ϕ
as in Definition 3.1.1, determines a monad on C and a comonad on D as follows:

• The monad (T, η, µ) on C has endofunctor T = GF : C → C , unit η : IdC ⇒ T
where ηX = ϕX, FX(idFX) and multiplication µ : T 2 ⇒ T such that µX = G(εFX).

• The comonad (D, ε, δ) on D has endofunctor D = FG : D → D , counit ε : D ⇒ IdD

where εA = ϕ−1GA,A(idGA) and comultiplication δ : D ⇒ D2 such that δA = F (ηGA).

In addition, we have:

ϕX,Af = Gf ◦ ηX : X → GA for each f : FX → A (3.4)

ϕ−1X,Ag = εA ◦ Fg : FX → A for each g : X → GA. (3.5)

3.1.2 The Kleisli adjunction associated to a monad

Each monad (T, η, µ) on a category C determines a Kleisli category CT and an associated
adjunction FT ⊣ GT : CT → C as follows:

C

FT
,,

⊥

T

��
CT

GT

ll

D

��

η : Id ⇒ T FT⊣GT ε : D ⇒ Id

Note that all related details can be found in [ML71, Ch. VI, §5].

• The categories C and CT have the same objects and there is a morphism f ♭ : X → Y
in CT for each morphism f : X → TY in C . So that there is a bijection defined as:

(ϕT )X, Y : HomCT
(X,Y )

∼=
−→ HomC (X,TY ) (3.6)

f ♭ ← [ f (3.7)

• For each object X in CT , the identity arrow is idX = h♭ : X → X in CT where

h = ηX : X → TX in C . (3.8)
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• The composition of a pair of morphisms f ♭ : X → Y and g♭ : Y → Z in CT is given
by the Kleisli composition:

g♭ ◦ f ♭ = h♭ : X → Z where h = µZ ◦ Tg ◦ f : X → TZ in C . (3.9)

• The functor FT : C → CT is the identity on objects. On morphisms,

FT f = (ηY ◦ f)
♭, for each f : X → Y in C . (3.10)

• The functor GT : CT → C maps each object X in CT to TX in C . On morphisms,

GT (g
♭) = µY ◦ Tg, for each g♭ : X → Y in CT . (3.11)

Then, the monad associated to the adjunction FT ⊣ GT is actually the monad (T, η, µ), so
that T = GTFT .

Definition 3.1.5. The monad (T, η, µ) is said to satisfy the mono requirement if ηX is a
monomorphism for each X [Mog89].

Theorem 3.1.6. Let (T, η, µ) be a monad on a category C . Let CT be the Kleisli category
and let FT ⊣ GT : CT → C be the Kleisli adjunction determined by (T, η, µ). Then, ηX is
mono for each object X in C if and only if FT is faithful.

Proof. The proof is dual to the proof given in [ML71, Ch. IV, §3, Theorem 1].

In addition, the associated comonad (D, ε, δ) is defined by the application of Proposi-
tion 3.1.4 as follows:

• On objects, DX = FTGTX = GTX = TX in CT , for each X in CT .

• On morphisms,

D(f ♭) = FTGT (f
♭) = FT (µY ◦ Tf) = (ηTY ◦ µY ◦ Tf)

♭ = h♭ (3.12)

for each f ♭ : X → Y and some h♭ in CT such that h = ηTY ◦µY ◦Tf : TX → T 2Y in C .

• the counit is given by

εY = (idGT Y )
♭, for each Y in CT . (3.13)

• the comultiplication is given by

δY = FT (ηGT Y ) = (ηGTFTGTY ◦ ηGT Y )
♭ in CT where ηGTFTGT Y ◦ ηGT Y : TY → T 3Y in C .

(3.14)

3.1.3 The coKleisli adjunction associated to a comonad

In this section, we dualize of the notions introduced in Section 3.1.2. Now, let (D, ε, δ) be
a comonad on a category C . Let CD be the coKleisli category and let FD ⊣ GD : C → CD

be the adjunction it determines with following settings:

C

GD
,,

⊤

D

��
CD

FD

ll

T

��

ε : D ⇒ Id GD⊢FD η : Id ⇒ T
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• The categories C and CD have the same objects and there is a morphism f ♯ : X → Y
in CD for each morphism f : DX → Y in C . So that there is a bijection defined as:

(ψD)X, Y : HomCD
(X,Y )

∼=
−→ HomC (DX,Y ) (3.15)

f ♯ ← [ f (3.16)

• For each object X in CD, the identity arrow is idX = h♯ : X → X in CD where

h = εX : DX → X in C . (3.17)

• The composition of a pair of morphisms f ♯ : X → Y and g♯ : Y → Z in CD is given
by the coKleisli composition:

g♯ ◦ f ♯ = h♯ where h = g ◦Df ◦ δX : DX → Z in C . (3.18)

• The functor GD : C → CD is the identity on objects. On morphisms,

GDf = (f ◦ εX)
♯, for each f : X → Y in C . (3.19)

• The functor FD : CD → C maps each object X in CD to DX in C . On morphisms,

FD(g
♯) = Dg ◦ δX , for each g♯ : X → Y in CD. (3.20)

Then, the comonad associated to the adjunction FD ⊣ GD is actually the comonad (D, ε, δ),
so that D = FDGD.

Definition 3.1.7. The comonad (D, ε, δ) is said to satisfy the epi requirement if εX is epi
for each X.

Theorem 3.1.8. Let (D, ε, δ) be a comonad on a category C . Let CD be the coKleisli
category and FD ⊣ GD : C → CD be coKleisli adjunction determined by (D, ε, δ). Then,
εX is epi for each object X in C , if and only if GD is faithful.

Proof. The proof is given in [ML71, Ch. IV, §3, Theorem 1].

In addition, the associated monad (T, η, µ) is defined by the application of Proposition 3.1.4
as follows:

• On objects, TX = GDFDX = FDX = DX, for each X in CD.

• On morphisms,

Tf ♯ = GDFD(f
♯) = GD(Df ◦ δX) = (Df ◦ δX ◦ εDX)

♯ = h♯ (3.21)

for each f ♯ : X → Y and some h♯ in CD such that h = Df ◦ δX ◦ εDX : D2X →
DY in C .

• the unit is given by

ηX = (idFDX)
♯, for each X in CD. (3.22)

• the multiplication is given by

µX = GD(εFDX) = (εFDX ◦ εFDGDFDX)
♯ in CD (3.23)

where εFDX ◦ εFDGDFDX : D3X → DX in C . (3.24)
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3.1.4 Summary

In summary, an adjunction F ⊣ G : D → C [Kan58] determines a monad (T, η, µ) on the
category C and dually a comonad (D, ε, δ) on the category D .

C

F
++

⊥ D

G

kk =⇒ C

F
++

⊥

T

��
D

G

kk

D

��

Conversely, a monad (T, η, µ) on a category C may determine several adjunctions, includ-
ing: FT ⊣ GT : CT → C where CT is the Kleisli category of (T, η, µ). The associated
adjunction FT ⊣ GT determines back the monad (T, µ, η).

C

T

��
=⇒ C

FT
,,

⊥ CT
GT

kk =⇒ C

T

��

Dually, a comonad (D, ε, δ) on a category C may determine several adjunctions, includ-
ing: FD ⊣ GD : C → CD where CD is the coKleisli category of (D, ε, δ). The associated
adjunction FD ⊣ GD determines back the comonad (D, ε, δ).

C

D

��
=⇒ C

GD
,,

⊤ CD
FD

kk =⇒ C

D

��

3.2 The coKleisli-on-Kleisli construction associated to a monad

The adjunction, given in Sections 3.1.2, FT ⊣ GT : CT → C determines a comonad
(D, ε, δ) on CT . This comonad further determines several adjunctions, including: FT,D ⊣
GT,D : CT → CT,D where CT,D is the coKleisli category of (D, ε, δ). The associated ad-
junction FT,D ⊣ GT,D determines back the comonad (D, ε, δ).

CT

D

��
=⇒ CT

GT,D
,,

⊤ CT,D
FT,D

ll =⇒ CT

D

��

Besides, we show in Theorem 3.2.5 that the category CT,D is the full image category of
the endofunctor T .

Therefore, in this section, we study the composition of the Kleisli construction FT ⊣
GT : CT → C associated to a monad T , as detailed in Section 3.1.2, with the coKleisli
adjunction FT,D ⊣ GT,D : CT → CT,D associated to a comonad D as given in Section 3.1.3,
when the comonad D is determined by FT ⊣ GT . As a result of this composition, we
obtain the coKleisli-on-Kleisli construction associated to a monad T . The generic settings
provided by such an approach are applied to the exceptions monad in Section 3.2.3. The
main aim of which will become explicit in Section 6.1 where we interpret the decorated logic
for the exception effect. This logic proposes a formalism to prove properties of programs
with exceptional features.
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3.2.1 The comparison theorem for the coKleisli construction

Let us start with the proof of the comparison theorem for the coKleisli construction.
A specialization of this result will be used in Proposition 3.2.5, which is important for
highlighting the relation among the categories defined in Section 3.2.2.

Theorem 3.2.1. (The comparison theorem for the coKleisli construction) Let F ⊣ G : C →
D be an adjunction and let (D, ε, δ) be the associated comonad on C . Then, there is a
unique functor L : CD → D such that LGD = G and FL = FD, where CD is the coKleisli
category of (D, ε, δ), with the associated adjunction FD ⊣ GD : C → CD.

C

GD
,,

G

!!

⊤

D

��

⊣

CD
FD

ll

=

L

��
D

F

aa

Proof. We give the proof since it is left as an exercice in [ML71, Ch. VI, §5, Theorem 2].
Let us first assume that L : CD → D is a functor satisfying LGD = G and FL = FD.

C
GD //

idC

��
=

CD

L

��

FD //

=

C

idC

��
C

G
// D

F
// C

Let θX, Y : HomCD
(X,GDY )

∼=
−→ HomC (FDX,Y ) be the bijection associated to the adjunc-

tion FD ⊣ GD. Similarly, let ψX,Y : HomD(X, GY )
∼=
−→ HomC (FX, Y ) be the bijection

associated to the adjunction F ⊣ G. Since both the counit of the adjunction FD ⊣ GD and
the counit of the adjunction F ⊣ G are the counit ε of the comonad (D, ε, δ), by [ML71,
Ch. IV, §7, Proposition 1], we obtain the commutative diagram below:

HomCD
(X,GDY )

=

θX,Y //

LX,GDY

��

HomC (FDX,Y )

idFDX,Y

��
HomD (LX,LGDY ) HomC (FDX,Y )

= =

HomD (LX,GY )
ψLX,Y // HomC (FLX,Y )

Therefore, LX,GDY = ψ−1LX, Y ◦ θX,Y . This formula ensures that the functor is L is unique.
Let us simplify it: by Equation (3.5) in Proposition 3.1.4, we have:

θX, Y f
♯ = εY ◦ FDf

♯ : FDX → Y, for each f ♯ : X → GDY = Y in CD.

Since, FDf ♯ = Df ◦ δX in C , for each f ♯ : X → Y by Equation (3.20), we get

θX,Y f
♯ = εY ◦Df ◦ δX : FDGDX = FDX → Y.
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Thanks to the naturality of ε, we get θX, Y f ♯ = f ◦ εDX ◦ δX . The comonadic axiom
ensuring εDX ◦ δX = idDX yields θX, Y f ♯ = f : FDX → Y . Presumed that FD = FL and
since GD is the identity on objects, we have

θX,Y f
♯ = f : FLX → Y and LGDX = LX = GX.

Now, by Equation (3.4) in Proposition 3.1.4, we obtain

ψ−1LX, Y f = Gf ◦ ηLX = Gf ◦ ηGX = ψ−1GX,Y f for each f : FGX → Y in C .

Hence,

ψ−1LX, Y (θX, Y f
♯) = ψ−1GX,Y f = Gf ◦ ηGX .

In other words: given a functor L satisfying GL = GT and LFT = F , then it must be such
that LX = GX for each object X in CD and

Lf ♯ = Gf ◦ ηGX in D for each f ♯ : X → Y in CD. (3.25)

We additionally need to prove that the mapping L : CD → D , characterized by LX = X
and Lf ♯ = Gf ◦ ηGX , is a functor satisfying LGD = G and FL = FD:

1. For each object X in CD, due to the fact that idX = (εX)
♯ in CD, we have L(idX ) =

L((εX)
♯) = GεX ◦ ηGX . By [ML71, Ch. IV, §1, Theorem 1], we have

GεX ◦ ηGX = idGX = idLX .

For each pair of morphisms f ♯ : X → Y and g♯ : Y → Z in CD, by coKleisli compo-
sition, we get

L(g♯ ◦ f ♯) = Gg ◦GFGf ◦GFηGX ◦ ηGX .

Since η is natural, we obtain L(g♯ ◦ f ♯) = Gg ◦ ηGY ◦Gf ◦ ηGX which is L(g♯) ◦L(f ♯)
in D . Hence, L : CD → D is a functor.

2. For each object X in C , GDX = X in CD and LGDX = GX in D . For each
morphism f : X → Y in C , GDf = (f ◦ εX)

♯ by Equation (3.19). Hence,

LGDf = L((f ◦ εX)
♯) = Gf ◦GεX ◦ ηGX .

Due to ε and η are natural, we have GεX ◦ηGX = idGX yielding LGDf = Gf . Thus,

LGD = G.

3. Now, for each object X in CD, LX = GX in D . So that FLX = FGX in C .
Similarly, FDX = FGX in C by definition. Hence, FLX = FDX on objects. For
each morphism f ♯ : X → Y in CD, Lf ♯ = Gf ◦ ηGX , by definition. Hence,

FLf ♯ = FGf ◦ FηGX .

Similarly, Equation (3.20) gives:

FDf
♯ = FGf ◦ FηGX .

We get FLf = FDf for each mapping f , therefore, FL = FD.
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3.2.2 The coKleisli-on-Kleisli construction

Let (T, η, µ) be a monad defined on a category C . It determines a Kleisli category CT along
with the associated adjunction FT ⊣ GT : CT → C . Let (D = FTGT , ε, δ) be the comonad
that the adjunction FT ⊣ GT : CT → C determines on CT . Refer back to Section 3.1.2, for
the related details.

Remark 3.2.2. Note that the details of below items, from 1 to 4, are depicted in Figure 3.1.

Now, let CT,D be the coKleisli category determined by (D, ε, δ) and let FT,D ⊣ GT,D : CT →
CT,D be the associated adjunction with the following settings:

C

FT
,,

⊥

T

��
CT

GT

ll
GT,D

--
⊤

D

��
CT,D

FT,D

ll

η : Id ⇒ T ε : T ⇒ Id

1. The categories C and CT have the same objects and there is a morphism f ♭ : X → Y
in CT for each morphism f : X → TY in C .

2. The categories CT and CT,D have the same objects and there is a morphism h♯ : X →
Y in CT,D for each h : TX → Y in CT .

3. The functor GT,D : CT → CT,D is the identity on objects. On morphisms,

GT,D(g
♭) = (g♭ ◦ εX)

♯ = h♯ for each g♭ : X → Y in CT . (3.26)

Let h = g♭ ◦ εX : TX → Y in CT . Since εX = (idTX)
♭ in CT , we get h = g♭ ◦

(idTX)
♭ = k♭ for some k♭ in CT . By Kleisli composition, we end up with

GT,D(g
♭) = h♯ such that h = k♭ and k = µY ◦ Tg : TX → TY in C . (3.27)

4. The functor FT,D : CT,D → CT maps each X in CT,D to TX in CT . On morphisms,
FT,D(h

♭♯) = D(h♭) ◦ δX for each h♭♯ : X → Y in CT,D. Let us introduce mappings
g♭, a♭ and b♭ in CT and set

g♭ = FT,D(h
♭♯), a♭ = δX and b♭ = D(h♭)

Thus, we have g♭ = b♭ ◦ a♭ and by Kleisli composition, we get:

g = µTY ◦ Tb ◦ a : TX → T 2Y in C .

(a) We have δX = FT (ηGTX) by definition. We also have GTX = GTFTX = TX
due to FT being identity on objects. So that δX = FT (ηTX). Since a♭ = δX , we
have a♭ = FT (ηTX). Using the fact that FT f = (ηY ◦ f)

♭ for each f : X → Y in
C (see Equation (3.10)), we derive:

a♭ = (ηT 2X ◦ ηTX)
♭ hence a = (ηT 2X ◦ ηTX) in C .

(b) We also have b♭ = Dh♭ = FTGTh
♭ such that h : TX → TY in C . Provided

by Equation (3.11) that GT (h♭) = µY ◦ Th. Therefore, we have FT (µY ◦ Th) =
(ηTY ◦ µY ◦ Th)

♭ = b♭. So that b = (ηTY ◦ µY ◦ Th) in C . By rewriting a and b
in g, we obtain:

g = µTY ◦ TηTY ◦ TµY ◦ T
2h ◦ ηT 2X ◦ ηTX .
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Thanks to the monadic axiom stating µTY ◦ TηTY = idT 2Y we have g = TµY ◦
T 2h◦ ηT 2X ◦ ηTX . Since η is natural, used three times, we get g = TµY ◦ ηT 2Y ◦
Th ◦ ηTX = TµY ◦ ηT 2Y ◦ ηTY ◦ h = ηTY ◦ µY ◦ ηTY ◦ h. Due to the monadic
axiom ensuring µY ◦ ηTY = idTY , we write

FT,D(h
♭♯) = g♭ where g = ηTY ◦ h. (3.28)

Then, the associated comonad to the adjunction FT,D ⊣ GT,D is actually the comonad
(D, ε, δ) where D = FT,DGT,D.

5. The composition GT,D ◦ FT : C → CT,D is the identity on objects. On morphisms,
due to Equation (3.10), we have:

GT,DFT (f) = GT,D((ηY ◦ f)
♭) for each f : X → Y in C .

We further have:

GT,D((ηY ◦ f)
♭) = ((ηY ◦ f)

♭ ◦ εX)
♯ in CT,D by Equation (3.26).

Provided that εX = (idTX )♭ in CT , we get GT,DFT (f) = ((ηY ◦ f)
♭ ◦ (idTX)

♭)♯ and
GT,DFT (f) = (µY ◦ TηY ◦ Tf)

♭♯ by Kleisli composition. Due to the the monadic
axiom stating µY ◦ TηY = idTY , it simplifies into

GT,DFT (f) = (Tf)♭♯ = h♭♯ such that h = Tf : TX → TY in C . (3.29)

Proposition 3.2.3. 1. The categories C and CT,D have the same objects and there is
a morphism k♭♯ : X → Y in CT,D for each k : TX → TY in C .

2. For each object X in CT,D, the identity arrow is idX = k♭♯ : X → X in CT,D where
k = idTX : TX → TX in C .

3. The composition of a pair of morphisms f ♭♯ : X → Y and g♭♯ : Y → Z in CT,D is
given by g♭♯ ◦ f ♭♯ = k♭♯ where k = g ◦ f : TX → TZ in C .

Proof. 1. It is the consequence of items 1 and 2 of Section 3.2.2.

2. For each object X, we have k♭♯ = idX : X → X in CT,D, where k♭ = εX : DX → X
in CT , due to Equation (3.17). Since εX = (idGTX)

♭ in CT , by Equation (3.13), we
obtain k = idGTX in C . Now, GTX = TX yields k = idTX : TX → TX in C .

3. For each g♭♯ : Y → Z and f ♭♯ : X → Y in CT,D, due to coKleisli composition, we
get g♭ ◦ f ♭ = g♭ ◦ D(f ♭) ◦ δX = k♭ in CT . Since D(f ♭) = (ηTY ◦ µY ◦ Tf)

♭ and
δX = (ηT 2X ◦ ηTX)

♭ respectively given by Equations (3.12) and (3.14), we have
k♭ = g♭ ◦(ηTY ◦µY ◦Tf)

♭ ◦(ηT 2X ◦ηTX)
♭. Thanks to associativity of composition and

Kleisli composition we obtain k♭ = (µZ ◦Tg ◦ ηTY ◦µY ◦Tf)
♭ ◦ (ηT 2X ◦ ηTX)

♭. Using
Kleisli composition again, we get k = µZ ◦TµZ ◦T

2g ◦TηTY ◦TµY ◦T
2f ◦ηT 2X ◦ηTX

in C . Now, we use naturality of η twice and obtain k = µZ ◦TµZ ◦TηTZ ◦Tg ◦TµY ◦
TηTY ◦ Tf ◦ ηTX . This simplifies into k = µZ ◦ Tg ◦ Tf ◦ ηTX , thanks to monadic
axiom ensuring µX ◦ ηTX = idTX for each object X. Lastly, naturality of η gives
k = µZ ◦ηTZ ◦g◦f , by the same monadic axiom, we end up with k = g◦f : TX → TZ
in C .
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3. Categorical background

Definition 3.2.4. Let H : C → D be a functor. Then, the full image of H is a category
imH composed of objects X for each object X in C and morphisms g⋆ : X → Y for each
morphism g : HX → HY in D . Let E : C → imH and K : imH → D be the functors
defined as follows :

{

E(X) = X

E(f) = (Hf)⋆
and

{

K(X) = HX

K(g⋆) = g

Then, the full image factorization (or decomposition) of H is the pair (E, K). Note that
H = K ◦E.

C
E //

H
%%❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑ imH

K

��

=

D

Theorem 3.2.5. Let (T, η, µ) be a monad on a category C and let CT be the Kleisli
category of (T, η, µ) with the associated the adjunction FT ⊣ GT : CT → C . Let (D, ε, δ) be
the comonad on CT determined by the adjunction FT ⊣ GT . And let CT,D be the coKleisli
category of (D, ε, δ) with the associated adjunction FT,D ⊣ GT,D : CT → CT,D. Then,

1. there is a unique functor K : CT,D → C such that FTK = FT,D and KGT,D = GT .

2. the full image factorization of T is given by T = KE where E = GT,DFT .

CT

GT,D

--

GT

""

⊤

D

��

⊣

CT,D
FT,D

ll

=

K

��
C

FT

bb

T

YY

C
FT //

E
= ++

T

++

CT
GT,D //

GT

''

=

CT,D

K

��

=

C

3. for each X in CT , εX is split-epi thus GT,D is faithful.

Proof. 1. We specialize Theorem 3.2.1 by instantiating FD ⊣ GD with FT,D ⊣ GT,D
and F ⊣ G with FT ⊣ GT . Thus, we obtain the unique functor K : CT,D → CT such
that KGT,D = GT and FTK = FT,D.

2. The category CT,D is the full image category of T , since it is made of objects X
for each X in C and arrows f ♭♯ : X → Y for each f : TX → TY in C . Recall that
T = GTFT by definition and GT = KGT,D by point 1, T = KGT,DFT = KE. On
the one hand, E(X) = GT,DFT (X) = X and E(f) = GT,DFT (f) = (Tf)♭♯ : TX →
TY thanks to Equation (3.29). On the other hand, K(X) = TX for each object
X and K(g♭♯) = GT (g

♭) ◦ ηTX for each g♭♯ : X → Y in CT,D by Equation (3.25).
Thanks to Equation (3.11), we obtain K(g♭♯) = µY ◦ Tg ◦ ηTX . Since η is natural,
we have K(g♭♯) = µY ◦ ηTY ◦ g. The monadic axiom ensuring µY ◦ ηTY = idTY gives
K(g♭♯) = g : TX → TY . Obviously, KE(f) = K(Tf ♭♯) = Tf : TX → TY for each
morphism f : X → Y and KE(X) = K(X) = TX for each object X. Therefore, the
full image factorization of T is given by the pair (K, E).
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3. It is necessary to show the existence of a mapping f ♭ in CT such that εX ◦ f ♭ = idX .
Since εX = (idTX )♭ and idX = (ηX)

♭ in CT , we get (idTX)
♭ ◦ f ♭ = (ηX)

♭ in CT , and
equivalently, ηX = µX ◦T (idTX )◦f in C by Kleisli composition. It is trivial to show,
by the monadic property idTX = µX ◦ ηTX , that this equation is satisfied when f is
chosen to be ηTX ◦ ηX . So that εX is split-epi, for each X. Notice also that split-epi
implies epi. Now, due to the point (i) of [ML71, Ch. IV, §3, Theorem 1], we conclude
that GT,D is faithful.

We will use the coKleisli-on-Kleisli construction in Section 6.1 where we interpret the dec-
orated logic for the exception effect. This logic proposes a formalism to prove properties of
programs with features to handle exceptions.

3.2.3 Application to the exceptions monad on sets

In this section, we apply the coKleisli-on-Kleisli construction associated to a monad to
the exceptions monad. This means that we start with the exception monad defined on the
category of sets C and then construct its Kleisli category CT with the associated adjunc-
tion FT ⊣ GT . This adjunction determines a comonad on CT which further determines the
coKleisli category CT,D with the associated adjunction FT,D ⊣ GT,D.

Let C be the category of sets. It is closed under the categorical coproduct or disjoint union,
denoted ‘+’. The left and right inclusions associated to ‘+’ are denoted inlX, Y : X →
X + Y and inrX, Y : Y → X + Y , for each set X,Y . We consider a distinguished set E
called the set of exceptions.

In the following, the objects denoted Ei represent the same set (the set of exceptions); su-
perscript i is used to indicate which copy of the set E is considered. Similarly, the notation
ei refers to an element e in Ei.

We now consider the exceptions monad (or coproduct monad) (T, η, µ) on C composed of:

• the endofunctor T : C → C :

– on objects, for each X in C , TX = X + E in C .

– on arrows, Tf = f + idE : X + E → Y + E in C for each f : X → Y in C .

• the unit η : IdC ⇒ T :

– ηX = inlX,E : X → X + E in C , for each X in C .

X
ηX // X + E1

x ✤ // x

• the multiplication µ : T 2 ⇒ T :

– µX =
[
idX+E | inrX,E

]
: X + E + E → X + E in C , for each X in C .

X + E1 + E2 µX // X + E3

x ✤ // x
e1 ✤ // e3

e2 ✤ // e3
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C
FT // CT ❴❴❴❴❴❴ (C )

X FTX = X

X

f

��

X

FT f

=g♭
��

X
f��

g

��

Y
ηY��

Y Y TY

C CT
GToo ❴❴❴❴❴❴ (C )

GTX = TX X

TX

Tg��
GT (g♭)

��

X

g♭

��

X

g

��

T 2Y
µY��

TY Y TY

(C ) ❴❴❴❴❴❴❴ CT
GT,D // CT,D ❴❴❴❴❴❴ (CT ) ❴❴❴❴ (C )

X GT,DX = X

X

g

��

X

g♭

��

X

GT,D(g♭)

=h♯
��

TX
εX��

h

=k♭ ��

TX

Tg��
k

��

X

g♭��

T 2Y
µY��

TY Y Y Y TY

(C ) ❴❴❴❴❴❴❴ CT CT,D
FT,Doo ❴❴❴❴❴❴ (CT ) ❴❴❴❴ (C )

FT,DX = TX X

TX

g

!!

h��

TX
δX��

FT,D(h♭♯)

=g♭ ��

X

h♭♯

��

TX

h♭

��

TX

h

��

TY
ηTY��

TY

D(h♭)��
T 2Y TY Y Y TY

Figure 3.1: Description of the coKleisli-on-Kleisli construction associated to a monad
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As in Section 3.1.2, the monad (T, η, µ) determines a Kleisli category CT and an associated
adjunction FT ⊣ GT : CT → C with the following settings:

C

FT
,,

⊥

T
def
= −+E

��
CT

GT

ll

η : Id ⇒ T FT⊣GT ε : T ⇒ Id

• The categories C and CT have the same objects and there is a morphism f ♭ : X → Y
in CT for each morphism f : X → Y +E in C . So that there is a bijection defined as:

(ϕT )X, Y : HomCT
(X,Y )

∼=
−→ HomC (X,Y + E) (3.30)

f ♭ ← [ f. (3.31)

• For each object X in CT , the identity arrow is idX = h♭ : X → X in CT where
h = ηX : X → X + E in C .

• The composition of a pair of morphisms f ♭ : X → Y and g♭ : Y → Z in CT is given
by the Kleisli composition, g♭ ◦ f ♭ = h♭ where h = µZ ◦ Tg ◦ f : X → Z+E in C .

X
f // Y +E1 Tg // Z+E2+E3 µZ // Z+E4

x ✤ //
✌

&&▼▼
▼▼▼

▼▼▼
▼ y ✤ //✙

,,❨❨❨❨❨
❨❨❨❨❨❨

❨ z ✤ // z

e2 ✤ // e4

e1 ✤ // e3 ✤ // e4

• The functor FT : C → CT is the identity on objects. On morphisms, FT f = (ηY ◦
f)♭ = h♭ in CT for each f : X → Y in C and some h♭ in CT such that h = ηY ◦f in C .

X
f // Y

ηY // Y +E1

x ✤ // y ✤ // y

• The functor GT : CT → C maps each X ∈ CT to X + E in C . On morphisms,
GT (g

♭) = µY ◦ Tg for each g♭ : X → Y in CT .

X+E1 Tg // Y +E2+E3 µY // Y +E4

x ✤ //✙
,,❨❨❨❨❨

❨❨❨❨❨❨
❨ y ✤ // y

e2 ✤ // e4

e1 ✤ // e3 ✤ // e4

The adjunction FT ⊣ GT : CT → C determines a comonad (D, ε, δ) on CT with

• the endofunctor D : CT → CT :

– on objects, for each X in CT , DX = X +E in CT .

– on arrows, thanks to Equation (3.12), D(g♭) = (ηY+E ◦ µY ◦ Tg)
♭ = h♭, for

each g♭ : X → Y and some h♭ in CD such that h = ηY+E ◦ µY ◦ Tg : X + E →
Y + E +E in C .
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X+E1 Tg // Y +E2+E3 µY // Y +E4 ηY +E// Y +E5+E6

x ✤ //✙
,,❨❨❨❨❨

❨❨❨❨❨❨
❨ y ✤ // y ✤ // y

e2 ✤ // e4 ✤ // e5

e1 ✤ // e3 ✤ // e4 ✤ // e5

• the counit ε : D ⇒ IdCT
:

– εX = (idX+E)
♭ : X + E → X in CT , for each X in CT .

• the comultiplication δ : D ⇒ D2:

– δX = FT (ηGX) = FT (ηX+E) = (ηX+E+E ◦ ηX+E)
♭ : X +E → X+E+E in CT ,

for each X in CT .

X+E1 ηX+E// X+E2+E3 ηX+E+E// X+E4+E5+E6

x ✤ // x ✤ // x
e1 ✤ // e2 ✤ // e4

e3 ✤ // e5

Let CT,D be the coKleisli category of the comonad (D, ε, δ) and let FT,D ⊣ GT,D : CT →
CT,D be the associated adjunction, defined as follows:

C

FT

,,
⊥

T
def
= −+E

��
CT

GT

ll
GT,D

--
⊤

D
def
= −+E

��
CT,D

FT,D

ll

η : Id ⇒ T FT⊣GT ε : T ⇒ Id

1. The categories C and CT have the same objects and there is a morphism f ♭ : X → Y
in CT for each morphism f : X → Y + E in C .

2. The categories CT and CT,D have the same objects and there is a morphism h♯ : X →
Y in CT,D for each, g : X + E → Y in CT .

3. As a trivial consequence of above items 1 and 2, the categories C and CT,D also have
the same objects and there is a morphism k♭♯ : X → Y in CT,D for each k : X +E →
Y + E in C . So that CT,D is the full image category of the functor (− + E).

4. Due to Point 2 in Proposition 4.5.7, for each object X in CT,D, the arrow is idX =
k♭♯ : X → X in CT,D where k = idX+E : X + E → X + E in C .

5. Due to the Point 3 in Proposition 4.5.7, the composition of a pair of morphisms
f ♭♯ : X → Y and g♭♯ : Y → Z in CT,D is given by g ◦ f : X + E → Z + E in C .

6. The functor GT,D : CT → CT,D is the identity on objects. On morphisms, thanks to
Equation (3.27), we have GT,D(g♭) = h♯ such that h = k♭ and k = µY ◦Tg : X+E →
Y + E in C , for each g♭ : X → Y in CT .

X+E1 Tg // Y +E2+E3 µY // Y +E4

x ✤ //✙
,,❨❨❨❨❨

❨❨❨❨❨❨
❨ y ✤ // y

e2 ✤ // e4

e1 ✤ // e3 ✤ // e4
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7. The composition GT,D ◦ FT is identity on objects. On morphisms, due to Equa-
tion (3.29), we have:

GT,DFT (f) = (Tf)♭♯ = h♭♯ such that h = Tf : X + E → Y + E in C . (3.32)

Thus, the composition GT,D ◦ FT is the functor E in Theorem 3.2.5.

8. The functor FT,D : CT,D → CT maps each X in CT,D toX+E in CT . On morphisms,
due to Equation (3.28), we obtain FT,D(h

♭♯) = g♭ such that g = ηY+E ◦ h in C , for
each h♭♯ : X → Y in CT,D.

X+E1 h // Y +E2 ηY +E// Y +E3+E4

x ✤ //✘
++❳❳❳❳

❳❳❳❳❳
❳ y ✤ // y

e2 ✤ // e3

e1 ✤ //✗
++❲❲❲❲

❲❲❲❲❲
❲ y ✤ // y

e2 ✤ // e3

3.3 The Kleisli-on-coKleisli construction associated to a comonad

The adjunction, given in Sections 3.1.3, FD ⊣ GD : CD → C determines a monad (T, η, µ)
on CT . This monad further determines several adjunctions, including: FD,T ⊣ GD, T : CD →
CD,T where CD,T is the Kleisli category of (T, η, µ). The associated adjunction FD, T ⊣
GD,T determines back the monad (T, η, µ).

CD

T

��
=⇒ CD

FD,T
,,

⊥ CD,T
GD,T

ll =⇒ CD

T

��

Besides, we show in Theorem 3.3.4 that the category CD,T is the full image category of
the endofunctor D.

This section studies the composition of the coKleisli adjunction FD ⊣ GD : C → CD

associated to a comonad D, as detailed in Section 3.1.3, with the Kleisli adjunction FD, T ⊣
GD,T : CD,T → CD associated to a monad T as given in Section 3.1.2. Note also that T
is determined by FD ⊣ GD. As a result of this composition, we obtain the Kleisli-on-
coKleisli adjuntion construction to a comonad D. The generic settings provided by such
an approach will be applied to the states monad in Section 3.3.3. The main aim of which
will become explicit in Section 5.1 when we interpret the decorated logic for the state.
This logic proposes a formalism to prove properties of programs with the state effect.

3.3.1 The comparison theorem for the Kleisli construction

Let us start with the proof of comparison theorem for the Kleisli construction. A special-
ization of this result will be used in Proposition 3.3.4, which is important for highlighting
the relation among the categories defined in Section 3.3.2.

Theorem 3.3.1. (The comparison theorem for the Kleisli construction) Let F ⊣ G : D →
C be an adjunction and let (T, η, µ) be the associated monad on C . Then, there is a unique
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functor L : CT → D such that GL = GT and LFT = F , where CT is the Kleisli category of
(T, η, µ), with the associated adjunction FT ⊣ GT : CT → C .

C

FT
,,

F

!!

⊥

T

��

⊢

CT
GT

ll

=

L

��
D

G

aa

Proof. Let us first assume that L : CT → D is a functor satisfying GL = GT and LFT = F .

C
FT //

idC

��
=

CT

L

��

GT //

=

C

idC

��
C

F
// D

G
// C

Let θX,Y : HomCT
(FTX,Y )

∼=
−→ HomC (X,GT Y ) be a bijection associated to the adjunc-

tion FT ⊣ GT . Similarly, let ψX, Y : HomD (FX, Y )
∼=
−→ HomC (X,GY ) be a bijection

associated to the adjunction F ⊣ G. Since both the unit of the adjunction FT ⊣ GT and
the unit of the adjunction F ⊣ G are the unit η of the monad (T, η, µ) by [ML71, Ch. IV,
§7, Proposition 1], we obtain the commutative diagram below:

HomCT
(FTX,Y )

=

θX,Y //

LFT X,Y

��

HomC (X,GT Y )

idX,GT Y

��
HomD (LFTX,LY ) HomC (X,GT Y )

= =

HomD (FX,LY )
ψX,LY // HomC (X,GLY )

Therefore, LFTX,Y = ψ−1X,LY ◦θX,Y . This formula ensures that the functor L is unique. Let
us simplify it: by Equation (3.4) in Proposition 3.1.4, we have:

θX,Y f
♭ = GT f

♭ ◦ ηX : X → GTY, for each f ♭ : FTX = X → Y in CT .

Since GT f ♭ = µY ◦ Tf in C , for each f ♭ : X → Y in CT , by Equation (3.11), we have

θX,Y f
♭ = µY ◦ Tf ◦ ηX : X → GTFTY = GTY.

Thanks to the naturality of η, we get θX,Y f ♭ = µY ◦ ηTY ◦ f . The monadic axiom ensuring
µY ◦ ηTY = idTY yields θX,Y f ♭ = f : X → GTY . Presumed that GT = GL and since FT
is the identity on objects, we have

θX,Y f
♭ = f : X → GLY and LFTY = LY = FY.

Now, by Equation (3.5) in Proposition 3.1.4, we obtain

ψ−1X,LY f = εLY ◦ Ff = εFY ◦ Ff = ψ−1X,FY f for each f : X → GFY in C .
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3. Categorical background

Hence,

ψ−1X,LY (θX,Y f
♭) = ψ−1X,FY f = εFY ◦ Ff.

In other words: given a functor L satisfying GL = GT and LFT = F , then it must be such
that LX = FX for each object X in CT and

Lf ♭ = εFY ◦ Ff in D for each f ♭ : X → Y in CT . (3.33)

We additionally need to prove that the mapping L : CT → D , characterized by LX = X
and Lf ♭ = εY ◦ Ff , is a functor satisfying GL = GT and LFT = F :

1. For each X in CT , due to the fact that idX = (ηX)
♭ in CT , we have L(idX ) =

L((ηX)
♭) = εFX ◦ FηX . By [ML71, Ch. IV, §1, Theorem 1], we have

εFX ◦ FηX = idFX = idLX .

For each pair of morphisms f ♭ : X → Y and g♭ : Y → Z in CT , by Kleisli composition,
we get

L(g♭ ◦ f ♭) = εFZ ◦ FGεFZ ◦ FGFg ◦ Ff.

Since ε is natural, we obtain εFZ ◦Fg ◦ εFY ◦Ff which is L(g♭) ◦L(f ♭) in D . Hence,
L : CT → D is a functor.

2. For each object X in CT , LX = FX in D and GLX = GFX = TX = GTX in C .
For each morphism f ♭ : X → Y in CT , Lf ♭ = εFY ◦ Ff in D by definition. Hence,

GLf ♭ = GεFY ◦GFf.

Similarly, Equation (3.11) gives:

GT f
♭ = GεFY ◦GFf.

We get GLf ♭ = GT f
♭ for each mapping f ♭, therefore,

GL = GT .

3. FT is the identity on objects, thus LFTX = LX = FX. For each morphism f : X →
Y in C , we have FT f = (ηY ◦ f)

♭ in CT , by definition. So that

LFT f = L(ηY ◦ f)
♭ = εFY ◦ FηY ◦ Ff.

Due to ε and η being natural, we have εFY ◦ FηY = idFY yielding LFT f = Ff for
each mapping f , thus, LFT = F .

3.3.2 The Kleisli-on-coKleisli construction

Let (D, ε, δ) be a comonad defined on a category C . It determines a coKleisli category
CD along with the associated adjunction FD ⊣ GD : C → CD. Let (T = GDFD, η, µ)
be the monad that the adjunction FD ⊣ GD : C → CD determines on CD. Refer back
to Section 3.1.3, for the related details.

Remark 3.3.2. Note that the details of below items, from 1 to 4, are depicted in Figure 3.2.
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3. Categorical background

Now, let CD,T be the Kleisli category determined by (T, η, µ) and let FD, T ⊣ GD,T : CD,T →
CD be the associated adjunction with the following settings:

C

GD
--

⊤

D

��
CD

FD

ll
FD,T

--
⊥

T

��
CD,T

GD,T

ll

ε : D ⇒ Id FD⊣GD η : Id ⇒ T

1. The categories C and CD have the same objects and there is a morphism f ♯ : X → Y
in CD, for each f : DX → Y in C .

2. The categories CD and CD,T have the same objects and there is a morphism h♭ : X →
Y in CD,T , for each h : X → DY in CD.

3. The functor FD,T : CD → CD,T is the identity on objects. On morphisms,

FD, T (g
♯) = (ηY ◦ g

♯)♭ = h♭ for each g♯ : X → Y in CD. (3.34)

Let h = (ηY ◦ g
♯) : X → DY in CD. Since ηY = (idDY )

♯ in CD, we get h =
(idDY )

♯ ◦ g♯ = k♯ for some k♯ in CD. By coKleisli composition, we end up with

FD, T (g
♯) = h♭ such that h = k♯ and k = Dg ◦ δX : DX → DY in C . (3.35)

4. The functor GD, T : CD,T → CD maps each X in CD,T to DX in CD. On morphisms,
GD, T (h

♯♭) = µY ◦ Th
♯ for each h♯♭ : X → Y in CD,T . Let us introduce mappings

g♯, a♯ and b♯ in CD and set

g♯ = GD, T (h
♯♭), a♯ = µY and b♯ = Th♯.

Thus, we have g♯ = a♯ ◦ b♯ and by coKleisli composition, we get:

g = a ◦Db ◦ δDX : D2X → DY in C .

(a) We have µY = GD(εFDY ) by definition. We also have FDY = FDGDY = DY
due to GD being identity on objects. So that µY = GD(εDY ). Since a♯ = µY ,
we have a♯ = GD(εDY ). Using the fact that GDf = (f ◦εX)

♯ for each f : X → Y
in C (see Equation (3.19)), we derive:

a♯ = (εDY ◦ εD2Y )
♯ hence a = (εDY ◦ εD2Y ) in C .

(b) We also have b♯ = Th♯ = GDFDh
♯ such that h : DX → DY in C . Provided

by Equation (3.20) that FD(h♯) = Dh◦ δX . Therefore, we have GD(Dh◦ δX ) =
(Dh ◦ δX ◦ εDX)

♯ = b♯. So that b = (Dh ◦ δX ◦ εDX) in C . By rewriting a and
b in g, we obtain

g = εDY ◦ εD2Y ◦D
2h ◦DδX ◦DεDX ◦ δDX .

Thanks to the comonadic axiom stating DεDX ◦ δDX = idD2X we have g =
εDY ◦ εD2Y ◦ D

2h ◦ DδX . Since ε is natural, used three times, we get g =
εDY ◦Dh ◦ εD2X ◦DδX = h ◦ εDX ◦ εD2X ◦DδX = h ◦ εDX ◦ δX ◦ εDX . Due to
the comonadic axiom ensuring εDX ◦ δX = idDx, we write

GD, T (h
♯♭) = g♯ where g = h ◦ εDX (3.36)
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3. Categorical background

Then, the associated monad to the adjunction FD,T ⊣ GD, T is actually the monad (T, µ, η)
where T = GD,TFD,T .

5. The composition FD, T ◦ GD is identity on objects. On morphisms, due to Equa-
tion (3.19), we have:

FD, TGD(f) = FD,T ((f ◦ εX)
♯) for each f : X → Y in C .

We further have:

FD, T ((f ◦ εX)
♯) = (ηY ◦ (f ◦ εX)

♯)♭ in CD,T by Equation (3.35).

Provided that ηX = (idDX)
♯ in CD, we get FD,TGD(f) = ((idDX )♯ ◦ (f ◦ εX)

♯)♭ and
FD, TGD(f) = (Df ◦ DεX ◦ δX)

♯♭ by coKleisli composition. Due to the comonadic
axiom stating DεX ◦ δX = idDX , it simplifies into

FD,TGD(f) = (Df)♯♭ = h♯♭ such that h = Df : DX → DY in C . (3.37)

Proposition 3.3.3. 1. The categories C and CD,T have the same objects and there is
a morphism k♯♭ : X → Y in CD,T for each k : DX → DY in C .

2. For each object X in CD,T , the identity arrow is idX = k♯♭ : X → X in CD,T where
k = idDX : DX → DX in C .

3. The composition of a pair of morphisms f ♯♭ : X → Y and g♯♭ : Y → Z in CD,T is
given by g♯♭ ◦ f ♯♭ = k♯♭ where k = g ◦ f : DX → DZ in C .

Proof. 1. It is the trivial consequence of items 1 and 2 of Section 3.3.2.

2. For each object X, we have k♯♭ = idX : X → X in CD,T , where k♯ = ηX : X → TX
in CD, due to Equation (3.8). Since ηX = (idFDX)

♯ in CD, by Equation (3.22), we
obtain k = idFDX in C . Now, FDX = DX yields k = idDX : DX → DX in C .

3. For each g♯♭ : Y → Z and f ♯♭ : X → Y in CD,T , due to the Kleisli composition,
we get g♯ ◦ f ♯ = µZ ◦ T (g

♯) ◦ f ♯ = k♯ in CD. Since T (g♯) = (Dg ◦ δY ◦ εDY )
♯

and µZ = (εDZ ◦ εD2Z)
♯ respectively given by Equations (3.21) and (3.23), we have

k♯ = (εDZ ◦εD2Z)
♯ ◦(Dg ◦δY ◦εDY )

♯ ◦f ♯. Thanks to associativity of composition and
coKleisli composition, we obtain k♯ = (εDZ ◦εD2Z)

♯◦(Dg◦δY ◦εDY ◦Df ◦δX)
♯. Using

coKleisli composition again, we get k = εDZ◦εD2Z◦D
2g◦DδY ◦DεDY ◦D

2f◦DδX◦δX
in C . Now, we use naturality of ε twice and obtain k = εDZ ◦Dg ◦DεDY ◦DδY ◦
Df ◦ DεDX ◦ DδX ◦ δX . This simplifies into k = εDZ ◦ Dg ◦ Df ◦ δX , thanks to
comonadic axiom ensuring εDX ◦ δX = idDX for each object X. Lastly, naturality
of ε gives k = g ◦ f ◦ εDX ◦ δX , by the same comonadic axiom, we end up with
k = g ◦ f : DX → DZ in C .

Theorem 3.3.4. Let (D, δ, ε) be a comonad on a category C and let CD be the coKleisli
category of (D, δ, ε) with the associated adjunction FD ⊣ GD : C → CD. Let (T, µ, η) be
the monad on CD determined by the adjunction FD ⊣ GD. And let CD,T be the Kleisli
category of (T, µ, η) with the associated adjunction FD,T ⊣ GD, T : CD,T → CD. Then;

1. there is a unique functor K : CD,T → C such that KFD,T = FD and GDK = GD,T .
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3. Categorical background

2. the full image factorization of D is given by D = KE where E = FD,TGD.

CD

FD,T

--

FD

!!

⊥

T

��

⊢

CD,T
GD,T

ll

=

K

��
C

GD

aa

D

YY

C
GD //

E
= ++

D

**

CD
FD,T //

FD

%%

=

CD,T

K

��

=

C

3. for each X in CD, ηX is split-mono thus FD, T is faithful.

Proof. 1. We specialize the Theorem 3.3.1 by instantiating FT ⊣ GT with FT,D ⊣ GT,D
and F ⊣ G with FT ⊣ GT . Thus, we obtain the unique functor K : CD,T → CD such
that KFD,T = FD and GDK = GD, T .

2. The category CD,T is the full image category of D, since it is made of objects X for
each X in C and arrows f ♯♭ : X → Y for each f : DX → DY in C . Recall that D =
FDGD by definition and FD = KFD, T by point 1, so thatD = KFD,TGD = KE. On
the one hand, E(X) = FD, TGD(X) = X and E(f) = FD,TGD(f) = (Df)♯♭ : DX →
DY thanks to Equation (3.37). On the other hand, K(X) = DX for each object
X and K(g♯♭) = εDY ◦ FD(g

♯) for each g♯♭ : X → Y in CD,T by Equation (3.33).
Thanks to Equation (3.20), we obtain K(g♯♭) = εDY ◦Dg ◦ δX . Since ε is natural, we
have K(g♯♭) = εDY ◦ δY ◦ g. The comonadic axiom ensuring εDY ◦ δY = idDY gives
K(g♯♭) = g : DX → DY . Obviously, KE(f) = K(Df ♯♭) = Df : DX → DY for each
morphism f : X → Y and KE(X) = K(X) = DX for each object X. Therefore, the
full image factorization of D is given by the pair (K, E).

3. It is necessary to show the existence of a mapping f ♯ in CD such that f ♯ ◦ ηX = idX .
Since ηX = (idDX )♯ and idX = (εX)

♯, we get f ♯ ◦ (idDX )♯ = (εX)
♯ in CT and

equivalently εX = f ◦D(idFX=DX) ◦ δX in C by coKleisli composition. It is trivial
to show, by the comonadic property idDX = εDX ◦ δX , that this equation is satisfied
when f is chosen to be εX ◦ εDX . So that ηX is split-mono, for each X in C1. Notice
also that split-mono implies mono. Now, due to the point (i) of the dual of [ML71,
Ch. IV, §3, Theorem 1], we conclude that FD, T is faithful.

We will use Kleisli-on-coKleisli construction in Section 5.1 where we interpret the deco-
rated logic for the state. This logic proposes a formalism to prove properties of programs
with the state effect.

3.3.3 Application to the state comonad on sets

In this section, we apply the Kleisli-on-coKleisli construction associated to a comonad to
the state comonad. This means that we start with the state comonad defined on the cate-
gory of sets C and then construct its coKleisli category CD with the associated adjunction
FD ⊣ GD. This adjunction determines a monad on CD which further determines the Kleisli
category CD,T with the associated adjunction FD, T ⊣ GD, T .
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3. Categorical background

C
GD // CD ❴❴❴❴❴❴ (C )

X GDX = X

X

f

��

X

GDf

=g♯
��

DX
εX��

g

��

X
f��

Y Y Y

C CD
FDoo ❴❴❴❴❴❴ (C )

FDX = DX X

DX

δX��
FD(g♯)

��

X

g♯

��

DX

g

��

D2X

Dg��
DY Y Y

(C ) ❴❴❴❴❴❴❴ CD
FD,T // CD,T ❴❴❴❴❴ (CD) ❴❴❴❴ (C )

X FD, TX = X

DX

g

��

X

g♯

��

X

FD,T (g♯)

=h♭
��

X

g♯��
h

=k♯ ��

DX

δX��
k

��

Y
ηY��

D2X

Dg��
Y Y Y DY DY

(C ) ❴❴❴❴❴❴❴ CD CD,T
GD,Too ❴❴❴❴❴ (CD) ❴❴❴❴ (C )

GD,TX = DX X

D2X

g

!!

εDX��

DX

Th��
GD,T (h♯♭)

=g♯ ��

X

h♯♭

��

X

h♯

��

DX

h

��

DX

h��

D2Y
µY��

DY DY Y DY DY

Figure 3.2: Description of the Kelisli-on-coKleisli construction associated to a comonad
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3. Categorical background

Let C be the category of sets. It is closed under the categorical product (or carte-
sian product) denoted ‘×’. The left and right projections associated to ‘×’ are denoted
fstX, Y : X × Y → X and sndX,Y : X × Y → Y , for each sets X,Y . In C , we consider a
distinguished set of states denoted S.

Now, let (D, ε, δ) be the states comonad (or product comonad) defined on C as:

• the endofunctor D : C → C :

– on objects, for each X in C , DX = X × S in C .

– on arrows, Df = f × idS : X × S → Y × S in C , for each f : X → Y in C .

• the counit ε : D ⇒ IdC :

– εX = fstX, S : X × S → X in C for each X in C .

X × S
εX // X

(x, s) ✤ // x

• the comultiplication δ : D ⇒ D2:

– δX =
〈
idX×S , sndX, S

〉
: X × S → X × S × S for each X in C .

X × S

X × S

idX×S

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

snd

**❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱
〈
idX×S ,snd

〉
// X × S × S

fst

OO

snd

��
S

(x, s)

(x, s)
✯

idX×S

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥
✕

snd

**❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯❯
✤ 〈

idX×S ,snd
〉

// (x, s, s)
❴
fst

OO

❴

snd

��
s

The comonad (D, ε, η) determines a coKleisli category CD and an adjunction FD ⊣ GD : C →
CD with the following settings:

C

GD
,,

⊤

D
def
= −×S

��
CD

FD

ll

ε : D ⇒ Id GD⊢FD η : Id ⇒ D

• The categories C and CD have the same objects and there is a morphism f ♯ : X → Y
in CD for each morphism f : X × S → Y in C .

• For each object X in CD, the identity arrow is idX = h♯ : X → X in CD where
h = εX : X × S → X in C .

• The composition of a pair of morphisms f ♯ : X → Y and g♯ : Y → Z in CD is given
by the coKleisli composition, g♯ ◦ f ♯ = h♯ where h = g ◦Df ◦ δX : X × S → Z in C .

X × S
δX // X × S × S

f×idS // Y × S
g // Z

(x, s) ✤ // (x, s, s) ✤ // (y, s) ✤ // z

where y = f(x, s) and z = g(y, s).
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• The functor GD : C → CD is the identity on objects. On morphisms, GDf = (f ◦
εX)

♯ = h♯, for each f : X → Y in C and some h♯ in CD such that h = f ◦ εX in C .

X × S
εX // X

f // Y

(x, s) ✤ // x ✤ // y

where y = f(x)

• The functor FD : CD → C maps each X in CD to X × S in C . On morphisms,
FD(g

♯) = Dg ◦ δX for each g♯ : X → Y in CD.

X × S
δX // X × S × S

Dg // Y × S

(x, s) ✤ // (x, s, s) ✤ // (y, s)

where y = g(x, s)

The adjunction FD ⊣ GD : C → CD determines a monad (T, η, µ) on CD defined as follows:

• the endofunctor T : CD → CD:

– on objects, for each X in CD, TX = X × S in CD.

– on arrows, thanks to Equation (3.21), T (g♯) = (Dg ◦ δX ◦ εX×S)
♯ = h♯, for each

g♯ : X → Y and some h♯ in CD such that h = Dg ◦ δX ◦ εX×S : X × S × S →
Y × S in C .

X × S × S
εX×S // X × S

δX // X × S × S
Dg // Y × S

(x, s1, s2)
✤ // (x, s1)

✤ // (x, s1, s1)
✤ // (y, s1)

where y = g(x, s1).

• the unit η : IdCD
⇒ T :

– ηX = (idX×S)
♭ : X → X × S in CD for each X in CD.

X × S
idX×S // X × S

(x, s) ✤ // (x, s)

• the multiplication µ : T 2 ⇒ T :

– µX = GD(εFDX) = GD(εX×S) = (εX×S ◦ εX×S×S)
♯ : X × S × S → X × S for

each X in CD.

X × S × S × S
εX×S×S // X × S × S

εX×S // X × S

(x, s1, s2, s3)
✤ // (x, s1, s2)

✤ // (x, s1)

Let CD,T be the Kleisli category of the monad (T, µ, ε) and let FD, T ⊣ GD,T : CD,T → CD

be the associated adjunction, we have them defined as follows:

C

GD
--

⊤

D
def
= −×S

��
CD

FD

ll
FD,T

--
⊥

T
def
= −×S

��
CD,T

GD,T

ll

ε : D ⇒ Id FD⊣GD η : Id ⇒ T
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1. The categories C and CD have the same objects and there is a morphism h♯ : X → Y
in CD, for each h : X × S → Y in CD.

2. The categories CD and CD,T have the same objects and there is a morphism h♭ : X →
Y in CD,T , for each h : X → Y × S in CD.

3. As a trivial consequence of above points 1 and 2, the categories CD,T and C have
the same objects and there is a morphism h♯♭ : X → Y ∈ CD,T , for each h : X×S →
Y × S in C . So that CD,T is the full image category of the functor (−× S).

4. Due to Point 2 in Proposition 3.3.3, for each object X ∈ CD,T , the identity arrow is
idX = h♯♭ : X → X ∈ CD,T where h = idX×S : X × S → X × S in CD.

5. Due to Point 3 in Proposition 3.3.3, the composition of a pair of morphisms f ♯♭ : X →
Y and g♯♭ : Y → Z ∈ CD,T is given by g ◦ f : X × S → Z × S in C .

6. The functor FD, T : CD → CD,T is the identity on objects. On morphisms, thanks
to Equation (3.34), we have FD,T (g♯) = h♭ such that h = k♯ and k = Dg ◦ δX : X ×
S → Y × S in C .

X × S
δX // X × S × S

Dg // Y × S

(x, s) ✤ // (x, s, s) ✤ // (y, s)

7. The composition FD,T ◦GD is the identity on objects. On morphisms, due to Equa-
tion (3.37), we have:

FD, TGD(f) = (Df)♯♭ = h♯♭ such that h = Df : X × S → Y × S in C .

Thus, the composition FD, T ◦GD is the functor E in Theorem 3.3.4.

8. The functorGD, T : CD,T → CD maps eachX in CD,T toX×S in CD. On morphisms,
due to Equation (3.36), we have GD, T (h♯♭) = g♯ such that g = h ◦ εX×S in C for
each h♯♭ : X → Y in CD,T .

X × S × S
εX×S // X × S

h // Y × S

(x, s1, s2)
✤ // (x, s1)

✤ //✤ // (y, s3)

such that (y, s3) = h(x, s1).
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4

Decorated logics

We present two equational-based logics with categorical interpretations, in order to prove
properties of programming languages with effects. We start with the monadic equational
logic as in [Mog91], which can be interpreted in any category. Then, we extend it by adding
decorations to its terms and equations. In fact, we propose two dual inference systems that
can be instantiated using monads or comonads, respectively, so as to cope with different
computational effects. The first inference system is interpreted in the Kleisli category of a
monad and the coKleisli category of the associated comonad as in Section 3.2.2. Dually,
the second one is interpreted in the coKleisli category of a comonad and the Kleisli cate-
gory of the associated monad as in Section 3.3.2. Both logics combine a 3-tier effect system
for terms, with a 2-tier system for equations made of “up-to-effects” and “strong” equations.

Section 4.1 defines the monadic equational logic Lmeq. This logic is extended into the deco-
rated logic for a monad (Lmon) in Section 4.2, where the categorical interpretation of Lmon
by the coKleisli-on-Kleisli construction associated to a monad is also given. In Section 4.3,
the decorated logic for a comonad (Lcom) is detailed. There, we use the Kleisli-on-coKleisli
construction associated to a comonad to interpret the logic Lcom. The Coq implementa-
tion of both logics is given in Section 4.4. These logics have been built so as to be sound
with respect to their intended categorical interpretation; but little is known about their
completeness. Therefore, in Section 4.5, we conclude with a completeness notion: relative
Hilbert-Post completeness which is well-suited to a decorated logic. We will show in Sec-
tions 5.4 and 6.9 that one decorated logic for the state effect and two decorated logics for the
exception effect are Hilbert-Post complete with respect to their pure sublogics: we adapt
the theorem in [Sta10, Th 5] to our logics to give a decorated proof of their completeness.

4.1 The monadic equational logic

The monadic equational logic (Lmeq) is interpreted in a category with objects as types,
arrows as terms and equalities as equations. The reason we choose to start with such
a logic is that it can be extended into a decorated logic with the use of decorations on
terms and equations. Notice that the keyword “monadic” has little to do with monads. It
indicates that the operations of the logic are unary (or mono-adic). We remind the monadic
equational logic [Mog91] with its grammar and inference rules given in Figures 4.1 and 4.2:

Grammar for the monadic equational logic:

Types: t ::= X | Y | . . .

Terms: f, g ::= idt | a | b | · · · | g ◦ f

Equations: e ::= f ∼= g

Figure 4.1: Syntax for Lmeq
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Every term has a source and a target type, e.g., f : X → Y . Every equation is formed by
terms with the same source and target types, e.g., e : f ∼= g where f, g : X → Y .

The logic Lmeq can be interpreted in a category: each type as an object, each term as an
arrow and each equation as an equality between arrows with the same source and target.

categorical rules

(id)
X

idX : X → X
(comp)

f : X → Y g : Y → Z

(g ◦ f) : X → Z

(id-source)
f : X → Y

f ◦ idX ∼= f
(id-target)

f : X → Y

idY ◦ f ∼= f

(assoc)
f : X → Y g : Y → Z h : Z → U

h ◦ (g ◦ f) ∼= (h ◦ g) ◦ f

congruence rules

(refl)
f

f ∼= f
(sym)

f ∼= g

g ∼= f
(trans)

f ∼= g g ∼= h

f ∼= h

(replsubs)
f1 ∼= f2 : X → Y g1 ∼= g2 : Y → Z

g1 ◦ f1 ∼= g2 ◦ f2

Figure 4.2: Inference rules for Lmeq

The congruence rules indicate that the relation ‘∼=’ is a congruence which means, an equiv-
alence relation (reflexive, symmetric and transitive) which obeys replacement and substi-
tution of compatible terms with respect to the composition. The basic categorical rules
indicate that there is an identity morphism idX : X → X for each type X, that composi-
tion is an associative operation and that composing any term f with id is f , up to ∼=, no
matter the composition order.

4.2 The decorated logic for a monad

The decorated logic for a monad (Lmon) [DDR14] extends the monadic equational logic
(Lmeq) with the use of decorations on terms and equations. We give the syntax and the
inference rules of Lmon in Figures 4.3 and 4.5, respectively.

Grammar for the decorated logic for a monad:

Types: t ::= X | Y | . . .

Terms: f, g ::= idt | a | b | · · · | g ◦ f

Decoration for terms: (d) ::= (0) | (1) | (2)

Equations: e ::= f ≡ g | f ∼ g

Figure 4.3: Syntax for Lmon

Each term has a source and a target type as well as a decoration which is denoted as a
superscript (0), (1) or (2): a pure term has the decoration (0), a constructor has (1) and
a modifier term comes with the decoration (2). Similarly, each equation is formed by two
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4. Decorated logics

terms with the same source and target as well as a decoration, denoted by “∼” if it is weak
or by “≡” if it is strong.

Remark 4.2.1. Note that within the scope of any decorated logic in this thesis, when stating
the rules, the decorations are not explicitly given, if the rule in question is valid for all
decorations. However, the decorations appear in the related interpretations.

Let (T, η, µ) be a monad satisfying the mono requirement which means that its unit η is
a monomorphism. See Definition 3.1.5. In order to express the meaning (interpretation)
of the logic Lmon, we use the coKleisli-on-Kleisli construction associated to the monad
(T, η, µ) as detailed in Section 3.2. There, we have introduced the adjunctions FT ⊣ GT
and FT,D ⊣ GT,D with faithful functors FT : C → CT and GT,D : CT → CT,D. This gives
raise to a hierarchy among morphisms in CT,D. This hierarchy is useful for interpreting
decorations: pure terms are in C , constructors are in CT and modifiers are in CT,D.

Definition 4.2.2. Let CT be the interpretation of the syntax for the logic Lmon with the
following details:

C

FT

,,
⊥

T

��
CT

GT

ll
GT,D

--
⊤

D

��
CT,D

FT,D

ll

η : Id ⇒ T FT⊣GT ε : T ⇒ Id

(1) The types are interpreted as the objects of C .

(2) The terms are interpreted as morphisms as follows:

(2.1) a pure term f (0) : X → Y in C as f : X → Y in C

(2.2) a constructor term f (1) : X → Y in CT as f : X → TY in C

(2.3) a modifier term f (2) : X → Y in CT,D as f : TX → TY in C

(3) A strong equation between modifiers f (2) ≡ g(2) : X → Y in CT,D is interpreted by an
equality f = g : TX → TY in C . Similarly, a strong equation between constructors
f (1) ≡ g(1) : X → Y in CT is interpreted by an equality f = g : X → TY in C . And
a strong equation between pure terms f (0) ≡ g(0) : X → Y in C is interpreted by an
equality f = g : X → Y in C .

(4) A weak equation between terms f (2) ∼ g(2) : X → Y is interpreted by an equality
f ◦ ηX = g ◦ ηX : X → TY in C . Similarly, a weak equation between constructors
f (1) ∼ g(1) : X → Y in CT is interpreted by an equality f = g : X → TY in C . And
a weak equation between pure terms f (0) ∼ g(0) : X → Y in C is interpreted by an
equality f = g : X → Y in C .

Lmon // Interpretation of Lmon

modifier f (2) : X → Y f : TX → TY

constructor f (1) : X → Y f : X → TY

pure term f (0) : X → Y f : X → Y

strong equation f (2) ≡ g(2) : X → Y f = g : TX → TY

weak equation f (2) ∼ g(2) : X → Y f ◦ ηX = g ◦ ηX : X → TY

Figure 4.4: Summary of Definition 4.2.2
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Example 4.2.3. Let T = −+E be the monad of exceptions defined over the category of sets
as in Section 3.2.3. We will use this specialization in Section 6.1 to interpret the decorated
logic for the exception (Lexc) which is an extension to Lmon used to formalize the excep-
tion effect.

In Figure 4.5, we propose an inference system associated to the syntax in Figure 4.3.
The rules in question are obtained by decorating the rules in Figure 4.2. In addition, we
introduce the hierarchies (or conversions) among decorations.

hierarchy rules

f (0)

f (1)
f (1)

f (2)

(stow)
f ≡ g

f ∼ g
(wtos)

f (d) ∼ g(d
′)

f ≡ g
for all d, d′ ≤ 1

congruence rules

(refl)
f

f ≡ f
(sym)

f ≡ g

g ≡ f

(trans)
f ≡ g g ≡ h

f ≡ h

(replsubs)
f1 ≡ f2 : X → Y g1 ≡ g2 : Y → Z

g1 ◦ f1 ≡ g2 ◦ f2

(wsym)
f ∼ g

g ∼ f
(wtrans)

f ∼ g g ∼ h

f ∼ h

(wrepl)
f1 ∼ f2 : X → Y g : Y → Z

g ◦ f1 ∼ g ◦ f2

(pwsubs)
f (0) : X → Y g1 ∼ g2 : Y → Z

g1 ◦ f ∼ g2 ◦ f

categorical rules

(id)
X

id
(0)
X : X → X

(comp)
f (d) : X → Y g(d

′) : Y → Z

(g ◦ f)(max(d,d′)) : X → Z
for all d, d′

(ids)
f : X → Y

f ◦ idX ≡ f
(idt)

f : X → Y

idY ◦ f ≡ f

(assoc)
f : X → Y g : Y → Z h : Z → U

h ◦ (g ◦ f) ≡ (h ◦ g) ◦ f

Figure 4.5: Inference rules for the logic Lmon.

Proposition 4.2.4. The logic Lmon is sound with respect to the interpretation CT given
in Definition 4.2.2. Moreover, the hierarchy rules are interpreted by faithful functors (in-
formally conversions are “safe”).

Proof. (1) The conversion from pure terms to constructors is interpreted by the functor
FT . For each f : X → Y in C , FT (f) = h♭ in CT where h = ηY ◦ f : X → TY in C

(See Equation 3.10). We assume that η is a monomorphism. This implies, thanks
to the point (i) of the dual of [ML71, Ch. IV, §3, Theorem 1], that FT is faithful.
Therefore, this conversion is safe.
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(2) The conversion from constructors to modifiers is interpreted by the functor GT,D.
For each f ♭ : X → Y in CT , GT,D(f ♭) = k♭♯ in CT,D where k = µY ◦ Tf : TX → TY
in C (See Equation 3.27). Due to Proposition 3.2.5, the functor GT,D is faithful. So
that this conversion is safe.

(3) Now, the conversion from pure terms to modifiers is interpreted by the composi-
tion GT,D ◦ FT . Thanks to Equation 3.29, we have GT,D ◦ FT (f) = (Tf)♭♯ =
k♭♯ in CD,T , for each f : X → Y in C and some k♭♯ in CD,T such that k =
Tf : TX → TY in C . The functors, GT,D and FT are faithful so is GT,D ◦ FT .
Therefore, this conversion is safe.

(4) When a term has several decorations (due to being pure or constructor), it has
different interpretations. I.e., f (0) : X → Y can be interpreted either as f : X → Y ,
f : X → TY or f : TX → TY . Similarly, f (1) : X → Y can be interpreted either as
f : X → TY or as f : TX → TY : the choice should be clear from the context. In any
case, they will end up with the same result up to conversions. Therefore, the rules are
given in such a way that terms are decorated with the largest possible decorations.
Note also that when a term appears with no decoration, this means that it has the
decoration (2).

(5) (stow) For each pair of mappings f, g : TX → TY in C , if f = g holds, then
obviously f ◦ ηX = g ◦ ηX : X → TY . Recalling the items (3) and (4), we say that
the interpretation of a strong equation f (2) ≡ g(2) implies the interpretation of weak
equation f (2) ∼ g(2). So that the conversion from strong to weak is freely allowed.

(6) (wtos) Moreover, it is possible to infer from items (3) and (4) that the interpretation
of a weak equation f ∼ g coincides with the one for f ≡ g in case f and g are not
modifier terms. So that f (1) ∼ g(1) can be converted into f (1) ≡ g(1).

(7) (wrepl) Given f (2)1 ∼ f
(2)
2 : X → Y with interpretation f1◦ηX = f2 ◦ηX : X → TY in

C and g(2) : Y → Z with interpretation g : TY → TZ, we get g(2) ◦ f (2)1 ∼ g(2) ◦ f
(2)
2

in CT,D with the following interpretation: g ◦ f1 ◦ ηX = g ◦ f2 ◦ ηX : X → TZ
in C . That informally means that weak equations obey the replacement rule with
no precondition.

(8) (pwsubs) Given g
(2)
1 ∼ g

(2)
2 : Y → Z with interpretation g1 ◦ ηY = g2 ◦ ηY : Y → TZ

in C and f (0) : X → Y which can be seen as f (2) : X → Y and interpreted as
Tf : TX → TY in C , thanks to above point (3). We get g(2)1 ◦ f

(0) ∼ g
(2)
2 ◦ f

(0) with
the following interpretation: g1◦Tf ◦ηX = g2◦Tf ◦ηX : X → TZ in C . It is simple to
check that this equality holds: due to the naturality of η, we get g1◦ηY ◦f = g1◦ηY ◦f
which is true considering the given interpretation g1 ◦ ηY = g2 ◦ ηY . This informally
means that weak equations obey the substitution rule only when the substituted
term is pure.

(9) The identity term id
(0)
X : X → X is interpreted as idX : X → X in C . The com-

position of two modifiers f (2) : X → Y and g(2) : Y → Z has the interpretation
g ◦ f = TX → TZ in C . Given these, the interpretations for the rules (ids), (idt)
and (assoc) can trivially be deduced.
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4.3 The decorated logic for a comonad

The decorated logic for a comonad (Lcom) [DDR14] extends the monadic equational logic
Lmeq with the use of decorations on terms and equations. The syntax of Lcom is similar
to that of Lmon and given in Figure 4.3. Each term has a source and a target type as
well as a decoration which is denoted as a superscript (0), (1) or (2): a pure term has the
decoration (0), an observer has (1) and a modifier term comes with the decoration (2).
Similarly, each equation is formed by two terms with the same source and target as well
as a decoration, denoted by “∼” if it is weak or by “≡” if it is strong.

The logic Lcom is dually interpreted with Lmon. Let (D, ε, δ) be a comonad satisfying the
epi requirement which means that its counit ε is an epimorphism. See Definition 3.1.7. In
order to interpret Lcom, we this time, use the Kleisli-on-coKleisli construction associated to
the comonad (D, ε, δ) as detailed in Section 3.3. There, we have introduced the adjunctions
FD ⊣ GD and FD, T ⊣ GD, T with the faithful functors GD : C → CD and FD, T : CD →
CD,T . This gives raise to a hierarchy among morphisms in CD,T . We use this hierarchy
to interpret the decorations: pure terms are in C , observers are in CD and modifiers
are in CD,T .

Definition 4.3.1. Let CD be interpretation of the syntax for the logic Lcom with following
details:

C

GD
--

⊤

D

��
CD

FD

ll
FD,T

--
⊥

T

��
CD,T

GD,T

ll

ε : D ⇒ Id GD⊢FD η : Id ⇒ T

(1) The types are interpreted as the objects of C .

(2) The terms are interpreted as the morphisms as follows:

(2.1) a pure term f (0) : X → Y in C as f : X → Y in C

(2.2) an observer term f (1) : X → Y in CD as f : DX → Y in C

(2.3) a modifier term f (2) : X → Y in CD,T as f : DX → DY in C

(3) A strong equation between modifiers f (2) ≡ g(2) : X → Y in CD,T is interpreted by
an equality f = g : DX → DY in C . Similarly, a strong equation between accessors
f (1) ≡ g(1) : X → Y in CD is interpreted by an equality f = g : DX → Y in C . And
a strong equation between pure terms f (0) ≡ g(0) : X → Y in C is interpreted by an
equality f = g : X → Y in C .

(4) A weak equation between modifiers f (2) ∼ g(2) : X → Y in CD,T is interpreted by
an equality εY ◦ f = εY ◦ g : DX → Y in C . Similarly, a weak equation between
accessors f (1) ∼ g(1) : X → Y in CD is interpreted by an equality f = g : DX → Y in
C . And a weak equation between pure terms f (0) ∼ g(0) : X → Y in C is interpreted
by an equality f = g : X → Y in C .

46



4. Decorated logics

Lmon // Interpretation of Lmon
modifier f (2) : X → Y f : DX → DY

observer f (1) : X → Y f : X → DY

pure term f (0) : X → Y f : X → Y

strong equation f (2) ≡ g(2) : X → Y f = g : DX → DY

weak equation f (2) ∼ g(2) : X → Y εY ◦ f = εY ◦ g : DX → Y

Figure 4.6: Summary of Definition 4.3.1

Example 4.3.2. Let D = − × S be the comonad of states defined over the category of set
where S is the distinguished set of states and ‘×’ is the cartesian product operator. We
will use this specialization in Section 5.1 to interpret the decorated logic for the state (Lst)
which is an extension to Lcom used to formalize the state effect.

In Figure 4.7, we propose an inference system associated to the syntax given in Figure 4.3.

hierarchy rules : See Figure 4.5

congruence rules: the single difference only - see Figure 4.5 for the rest

(pwrepl)
f (0) : Y → Z g1 ∼ g2 : X → Y

f ◦ g1 ∼ f ◦ g2
(wsubs)

f1 ∼ f2 : Y → Z g : X → Y

f1 ◦ g ∼ f2 ◦ g

categorical rules : See Figure 4.5

Figure 4.7: Inference rules for the logic Lcom.

Proposition 4.3.3. The logic Lcom is sound with respect to the interpretation CD given
in Definition 4.3.1. Moreover, the hierarchy rules are interpreted by faithful functors (in-
formally conversions are “safe”).

Proof. (1) The conversion from pure terms to observers is interpreted by the functor
GD. For each f : X → Y , GD(f) = h♯ in CD where h = f ◦ εX : DX → Y in C

(See Equation 3.19). We assume that ε is an epimorphism. This implies, thanks to
the point (i) of [ML71, Ch. IV, §3, Theorem 1], that GD is faithful. Therefore, this
conversion is safe.

(2) The conversion from observers to modifiers is interpreted by a the functor FD, T .
For each f ♯ : X → Y , FD, T (f ♯) = k♯♭ in CD,T where k = Df ◦ δX : DX → DY
in C (See Equation 3.35). Due to Proposition 3.3.4, FT,D is faithful. So that this
conversion is safe.

(3) Now, the conversion from pure terms to modifiers is interpreted by the composi-
tion FD, T ◦ GD. Thanks to Equation 3.37, we have FD,T ◦ GD(f) = (Df)♯♭ =
k♯♭ in CD,T , for each f : X → Y in C and some k♯♭ in CD,T such that k =
Df : DX → DY in C . The functors FD,T and GD are faithful, so is FD,T ◦ GD.
Therefore, this conversion is safe.

(4) When a term has several decorations (due to being pure or observer) then it has
different interpretations. I.e., f (0) : X → Y can be interpreted either as f : X → Y ,
f : DX → Y or f : DX → DY . Similarly, f (1) : X → Y can be interpreted either as
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f : DX → Y or as f : DX → DY : the choice should be clear from the context. In any
case, they will end up with the same result up to conversions. Therefore, the rules are
given in such a way that terms are decorated with the largest possible decorations.
Similar to the decorated logic for a monad, when a term appears with no decoration,
this means that it has the decoration (2).

(5) For each pair of mappings f, g : DX → DY in C , if f = g holds, then obviously
εY ◦ f = εY ◦ g : DX → Y . Recalling the items (3) and (4), we say that the
interpretation of a strong equation f (2) ≡ g(2) implies the interpretation of weak
equation f (2) ∼ g(2). So that the conversion from strong to weak is freely allowed.

(6) Moreover, it is possible to infer from items (3) and (4) that the interpretation of a
weak equation f ∼ g coincides with the one for f ≡ g in case f and g are not modifier
terms. So that f (1) ∼ g(1) can be converted into f (1) ≡ g(1).

(7) (wsubs) Given f
(2)
1 ∼ f

(2)
2 : Y → Z with interpretation εZ ◦ f1 = εZ ◦ f2 : DY → Z

in C and g(2) : X → Y with interpretation g : DX → DY in C , we get f (2)1 ◦ g(2) ∼

f
(2)
2 ◦g

(2) in CT,D with the following interpretation: εZ ◦f1 ◦g = εZ ◦f2 ◦g : DX → Z
in C . That informally means that weak equations obey the substitution rule with no
precondition.

(8) (pwrepl) Given g(2)1 ∼ g
(2)
2 : X → Y with interpretation εY ◦g1 = εY ◦g2 : DX → Y in

C and f (0) : Y → Z which can be seen as f (2) : Y → Z and interpreted as Df : DY →
DZ in C , thanks to above point (3). We get f (0) ◦g(2)1 ∼ f (0) ◦g

(2)
2 with the following

interpretation: εZ ◦Df ◦g1 = εZ ◦Df ◦g2 : DX → Z in C . It is simple to check that
this equality holds: due to the naturality of η, we get f ◦ εY ◦ g1 = f ◦ εY ◦ g2 which
is true considering the given interpretation εY ◦ g1 = εY ◦ g2. This informally means
that weak equations obey the replacement rule only when the replaced term is pure.

(9) The identity term id
(0)
X : X → X is interpreted as idX : X → X in C . The composi-

tion of modifiers f (2) : X → Y and g(2) : Y → Z has the interpretation g◦f = DX →
DZ in C . Given these, the interpretations of the rules (ids), (idt) and (assoc) can
trivially be deduced.

4.4 Decorated logic in Coq

The decorated logics for a monad and comonad are implemented as separate frameworks
in the Coq Proof Assistant. In order to construct these frameworks, we need to define data
structures, terms, decorations and basic rules as axioms. This organization is reflected
with corresponding Coq modules as follows:

BASES: Terms Decorations Axioms

Remark 4.4.1. This organization will be extended into Coq libraries, when we formalize
the decorated logics for the state in Section 5.2 and for the exception in Section 6.4.

First, we give the definitions of non-decorated terms: they constitute the main part of the
design with the introduction of the basic operations. The next step is to decorate these
functions. For instance, the id function is defined as pure and this status is represented
by a pure label in the library. All the rules related to decorated functions are stated in the
module called Axioms. Considering the entire design, we benefit from an important aspect
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provided by Coq environment, namely dependent types. They provide a unified formalism
in the creation of new data types and allow us to deal in a simple manner with most of
the typing issues. More precisely, the new Coq Type term defined in Section 4.4.1 is not
a Type, but rather a Type→ Type→ Type. The domain/codomain information of term is
embedded into the Coq type system, so that we do not need to talk about ill-typed terms

and their compositions. For instance, given X Y: Type, we have term Y X which is also a
Type instance representing the type of terms with domain X and codomain Y , in Ldec:
the reason for this exchange is just to get an ease in term compositions. Now, let us go
through the Coq implementation details of the logic Lcom. Along the way, the differences
with the logic Lmon will be pinpointed.

4.4.1 Terms

We define the terms of the decorated logic for a monad Lcom by using an inductive predicate
called term. It mainly establishes a new Coq Type out of two input Types.

Inductive term: Type → Type → Type :=
| tpure: forall {X Y: Type}, (X → Y) → term Y X

| comp: forall {X Y Z: Type}, term X Y → term Y Z → term X Z.
Infix "o" := comp (at level 70).

The type term Y X is dependent. It depends on the Type instances X and Y and represents
the arrow type: X→ Y in the decorated framework. The constructor tpure takes a Coq
side (pure) function and translates it into the decorated environment. So that pure terms,
as id, such are built by applying the tpure constructor to Coq functions. The comp

constructor deals with the composition of two compatible terms. I.e., given a pair of terms
f : term X Y and g : term Y Z, then the composition f ◦ g would be an instance of the type
term X Z. For the sake of conciseness, infix ‘o’ is used to denote the term composition.
Notice that together with the associativity of composition (see Section 4.4.3), this defines
a category with objects as Coq Types and morphisms as tpure f: term Y X, for each pure
Coq function f : X→ Y.

Definition id {X: Type} : term X X := tpure id.

Since the identity function is natively embedded in Coq, we use tpure constructor to have
it within the decorated scope. We have an abuse of notation here: the id applied to the
tpure constructor is the one already involved in the Coq system (aka Datatypes.id) while
the id we define is an instance of type term X X, representing the type of mappings from X

to X. In such a setting, we also have constant terms:

Definition constant {X: Type} (v: X): term X unit := tpure (fun tt ⇒ v).

Any Coq side pure function of type 1→ X for each Type instance X, is translated into
the decorated settings via the tpure constructor: fun tt ⇒ v corresponds to the lambda
term λtt : unit.v where unit is the singleton type and tt is the unique instance of it.
Therefore, for any constant value v : X, the pure term constant v is of type term X unit.
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4.4.2 Decorations

The decorations are first enumerated and then assigned to the terms by using an inductive
predicate named is. It forms a proposition (a Prop instance in Coq) out of a term and a
kind which is the name of the enumerated Type for decorations. Within the context of a
decorated proof, is is used to check whether the given term is properly decorated or not.
We respectively use keywords pure, ro and rw instead of (0), (1) and (2): pure for pure, ro
for observer and rw for modifier terms. Below, is the association of decorations on terms:

Inductive kind := pure | ro | rw.
Inductive is : kind → forall X Y, term X Y → Prop :=
| is_tpure : forall X Y (f: X → Y), is pure (@tpure X Y f)
| is_comp : forall k X Y Z (f: term X Y) (g: term Y Z), is k f → is k g → is k (f o g)
| is_pure_ro : forall X Y (f: term X Y), is pure f → is ro f

| is_ro_rw : forall X Y (f: term X Y), is ro f → is rw f.

Any term constructed through the tpure constructor is pure. The decoration of composed
terms depends on the decorations of the components: indeed, it takes the larger decoration.
The hierarchy rules among terms are also given here: the constructor is_pure_ro ensures
that a pure term can be seen as an observer and similarly is_ro_rw is to indicate that an
observer term can be taken as a modifier, on demand. See the non-equational hierarchy
and categorical rules in Figure 4.5. It is trivial to infer now that id is a pure term:

Lemma is_id X: is pure (@id X).
Proof. unfold id. apply is_tpure. Qed.

After unfolding id, one needs to show that is pure (tpure Datatypes.id) holds. Now,
it suffices to apply the constructor is_tpure to close the goal. It would also be sufficient
to skip the unfolding: directly applying the constructor is_tpure. The tactic unfold

provides information on how the term in question has been defined. To stay pedagogical
(for these example), we prefer using unfold.

1 subgoals

X : Type

_____________________________(1/1)
is pure id

unfold id.

1 subgoals

X : Type

_____________________________(1/1)
is pure (tpure id)

apply is_tpure.

4.4.3 Axioms: decorated logic for a comonad

We can now detail the Coq implementation of the axioms. The idea here is to decorate also
the equations. On the one hand, the weak equation between parallel morphisms models
the fact that they have the same result but may perform differently with respect to an
associated effect. On the other hand, if both have result and effect equivalence, then the
equation becomes strong. We hereby state the rules with respect to weak and strong
equations by defining them in a mutually inductive way: mutuality is used here to enable
the rules including strong and weak equations at the same time. In Coq, both strong and
weak equations are defined to be the instances of the relation class. We respectively
use the symbols ‘==’ and ‘∼’ to denote strong and weak equations within Coq. See the
equational rules in Figure 4.7.
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Reserved Notation "x == y" (at level 80). Reserved Notation "x ∼ y" (at level 80).
Definition idem X Y (x y: term X Y) := x = y.
Inductive strong: forall X Y, relation (term X Y) :=

(*congruence rules*)

| refl X Y: Reflexive (@strong X Y)
| sym: forall X Y, Symmetric (@strong X Y)
| trans: forall X Y, Transitive (@strong X Y)
| replsubs: forall X Y Z, Proper (@strong X Y ==> @strong Y Z ==> @strong X Z) comp

(*categorical rules*)

| ids: forall X Y (f: term X Y), f o id == f

| idt: forall X Y (f: term X Y), id o f == f

| assoc: forall X Y Z T (f: term X Y) (g: term Y Z) (h: term Z T), f o (g o h) == (f o g) o h

(*the hierarchy rule*)

| wtos: forall X Y (f g: term X Y), is ro f → is ro g → f ∼ g → f == g

(*tpure preserves the pure composition*)

| tcomp: forall X Y Z (f: Z → Y) (g: Y → X), tpure (compose g f) == tpure g o tpure f

with weak: forall X Y, relation (term X Y) :=
(*congruence rules*)

| wsym: forall X Y, Symmetric (@weak X Y)
| wtrans: forall X Y, Transitive (@weak X Y)
| pwrepl: forall X Y Z (g: term X Y), is pure g → Proper (@weak Y Z ==> @weak X Z) (comp g)
| wsubs: forall X Y Z, Proper (@weak X Y ==> @idem Y Z ==> @weak X Z) comp

(*the hierarchy rule*)

| stow: forall X Y (f g: term X Y), f == g → f ∼ g

where "x == y" := (strong x y) and "x ∼ y" := (weak x y).

(1) More precisely, strong equation is an equivalence relation so that reflexivity, symme-
try and transitivity properties are assumed: it is defined to be an instance of the
Reflexive, Symmetric and Transitive relation classes of Coq.

(2) The replacement and substitution properties with respect to strong equation are as-
sumed by stating the composition as a proper element of the relation (@strong X Y
==> @strong Y Z ==> @strong X Z) for each X Y Z: Type. Due to Sozeau [Soz10],
‘==>’ is the right-associative notation used to indicate the respectfulness property
among relations. I.e., respectful (R: (@strong Y Z)) (R′: (@strong X Z)) re-
turns an instance R′′ of type relation (term Y Z -> term X Z). So that composi-
tion is now a proper instance of type relation (term X Y -> term Y Z -> term

X Z) with respect to the strong equation.

(2.1) Let us now suppose that f: (term X Y) and g == g′: (term Y Z) are given
and we intend to show that f ◦ g == f ◦ g′ holds, for each X Y Z: Type.
It is trivial to reduce it to f ◦ g == f ◦ g through the use of the tactic
setoid_rewrite, developed by Coen [Coe04], since replacement with respect
to strong equation has already been enabled with no precondition.

1 subgoals

X : Type

Y : Type

Z : Type

f : term X Y

g : term Y Z

g’ : term Y Z

H0 : g == g’
____________________(1/1)
f o g == f o g’

setoid_rewrite ←H0.

1 subgoals

X : Type

Y : Type

Z : Type

f : term X Y

g : term Y Z

g’ : term Y Z

H0 : g == g’
_____________________(1/1)
f o g == f o g

apply refl.

2.2 Similarly, let us suppose that f ≡ f′: (term X Y) and g: (term Y Z) are given
and we intend to show that f ◦ g ≡ f′ ◦ g holds. One can trivially reduce it
to f ◦ g ≡ f ◦ g, since strong substitution comes with no precondition.
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1 subgoals

X : Type

Y : Type

Z : Type

f : term X Y

f’ : term X Y

g : term Y Z

H0 : f == f’
____________________(1/1)
f’ o g == f o g

setoid_rewrite ←H0.

1 subgoals

X : Type

Y : Type

Z : Type

f : term X Y

f’ : term X Y

g : term Y Z

H0 : f == f’
_____________________(1/1)
f o g == f o g

apply refl.

(3) By ids and idt, we get that the composition of id with any term f is strongly equal
to f no matter the composition order.

(4) The property associativity is attached to the composition.

(5) Converting any instance of weak equation into strong is not pricelessly ensured by
wtos: one has to make sure that both hand sides are at most observers or ro in Coq
implementation.

(6) The rule tcomp states that the tpure constructor preserves the composition of pure
terms up to the strong equation.

(7) Weak equality is also an equivalence relation: it is assumed to be an instance of
Symmetric and Transitive relation classes. It is trivial to prove that weak equation
is an instance of Reflexive class:

Instance wrefl X Y: Reflexive (@weak X Y).
Proof. intros X Y f. apply stow. apply refl. Qed.

First, the goal-side weak equation f ∼ f is reduced to f == f via the rule (stow).
Then, it suffices to apply the reflexivity property of strong equation (refl) to close
the goal.

1 subgoals

X : Type

Y : Type

f : term Y X

_______________(1/1)
f ∼ f

apply stow

1 subgoals

X : Type

Y : Type

f : term Y X

_______________(1/1)
f == f

apply refl.

(8) The replacement with respect to weak equation is enabled only when the replaced
term is pure. Thus, (comp g) is an instance of the type (@weak Y Z ==> @weak X

Z) for each X Y Z: Type and pure term g: term X Y. Suppose that we are given f ∼
f′: (term Y Z) and g(0): (term X Y) so to show that g ◦ f ∼ g ◦ f′ holds. Since
g is pure, one simply handles g ◦ f ∼ g ◦ f.

1 subgoals

X : Type

Y : Type

Z : Type

f : term Y Z

f’ : term Y Z

g : term X Y

H0: is pure g

H1 : f ∼ f’
____________________(1/1)
g o f’ ∼ g o f

setoid_rewrite ←H1.

1 subgoals

X : Type

Y : Type

Z : Type

f : term Y Z

f’ : term Y Z

g : term X Y

H0: is pure g

H1 : f ∼ f’
_____________________(1/1)
g o f ∼ g o f

apply wrefl.
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(9) The substitution with respect to weak equation is given by assuming that composition
is a proper instance of the relation (@weak X Y ==> @idem Y Z ==> @weak X Z)

for each X Y Z: Type where idem takes two instances say x and y of the type term X Y

and checks whether x equals to y. Let us suppose that f ∼ f′: (term X Y) and
g: (term Y Z) are given and we intend to show that f ◦ g ∼ f′ ◦ g holds, for each
X Y Z: Type. It is trivial to obtain f ◦ g ∼ f ◦ g, since weak substitution can be
done with no precondition.

1 subgoals

X : Type

Y : Type

Z : Type

f : term X Y

f’ : term X Y

g : term Y Z

H0 : f ∼ f’
____________________(1/1)
f’ o g ∼ f o g

setoid_rewrite ←H0.

1 subgoals

X : Type

Y : Type

Z : Type

f : term X Y

f’ : term X Y

g : term Y Z

H0 : f ∼ f’
_____________________(1/1)
f o g ∼ f o g

apply wrefl.

(10) Lastly, strong equation freely converts into weak equation via stow.

4.4.4 Axioms: decorated logic for a monad

In this section, we consider the implementation of decorated logic for a monad Lmon. This
follows the same approach for terms and decorations with the implementation of the logic
Lcom. The single difference appears within the context of rules: dual to the implementation
of the logic Lcom, weak substitution is enabled only when the substituted term is pure while
weak replacement comes with no precondition. See congruence rules in Figure 4.7.

Definition pure_id X Y (x y: term X Y) := (is pure x) ∧ x = y.
Definition idem X Y (x y: term X Y) := x = y.

Inductive strong: forall X Y, relation (term X Y) :=
...

with weak: forall X Y, relation (term X Y) :=
...

| wrepl : forall X Y Z, Proper (@idem Z Y ==> @weak Y X ==> @weak Z X) comp

| pwsubs : forall X Y Z, Proper (@weak Z Y ==> @pure_id Y X ==> @weak Z X) comp

where "x == y" := (strong x y) and "x ∼ y" := (weak x y).

(1) The replacement with respect to weak equation is given by assuming that composition
is a proper instance of the relation (@idem Z Y ==> @weak Y X ==> @weak Z X),
for each X Y Z: Type where idem takes two instances say x and y of the type term X Y

and checks whether x equals to y. Let us suppose that f ∼ f′: (term Y X) and
g: (term Z Y) are given and we intend to show that g ◦ f ∼ g ◦ f′ holds, for each
X Y Z: Type. It is trivial to obtain g ◦ f ∼ g ◦ f, since weak replacement can be
done with no precondition.

1 subgoals

X : Type

Y : Type

Z : Type

f : term Y X

f’ : term Y X

g : term Z Y

H0 : f ∼ f’
____________________(1/1)
g o f ∼ g o f’

setoid_rewrite ←H0.

1 subgoals

X : Type

Y : Type

Z : Type

f : term Y X

f’ : term Y X

g : term Y Z

H0 : f ∼ f’
_____________________(1/1)
g o f ∼ g o f

apply wrefl.
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(2) The substitution with respect to weak equation is enabled only when the substituted
term is pure. Thus, (comp) is an instance of the relation (@weak Z Y ==> @pure_id

Y X ==> @weak Z X), for each X Y Z: Type where pure_id takes two instances say
x and y of the type term X Y and checks whether x is pure and equals to y. Suppose
that we are given f ∼ f′: (term Z Y) and g(0): (term Y X) so as to show that f ◦
g ∼ f′ ◦ g holds. Since g is pure, one simply handles that f ◦ g ∼ f ◦ g as:

1 subgoals

X : Type

Y : Type

Z : Type

f : term Z Y

f’ : term Z Y

g : term Y X

H0 : f ∼ f’
H1 : is pure g

________________(1/1)
f o g ∼ f’ o g

apply pwsubs.

2 subgoal

X : Type

Y : Type

Z : Type

f : term Z Y

f’ : term Z Y

g : term Y X

H0 : f ∼ f’
H1 : is pure g

________________(1/2)
f ∼ f’
________________(2/2)
pure_id g g

exact H0.
split.

2 subgoal

X : Type

Y : Type

Z : Type

f : term Z Y

f’ : term Z Y

g : term Y X

H0 : f ∼ f’
H1 : is pure g

________________(1/2)
is pure g

________________(2/2)
g = g

exact H1.
reflexivity.

Applying pwsubs (See Figure 4.5) results in two subgoals: f ∼ f’ and pure_id g

g. The former is already an assumption so that we remain with the latter which can
be split into two further subgoals when unfolded: is pure g and g = g. Now, the
former is an assumption and the latter is trivial given that the relation ‘=’ is reflexive.

Let us conclude with the notion called Hilbert-Post Completeness which is well-suited with
a decorated theory. We will make use of this notion to show in Section 5.4 and Section 6.9
that the base languages (with no use of categorical pairs and copairs) of the decorated
logic for the state (which is an extension to Lcom) and the decorated logic for the excep-
tion (extending Lmon) with the programmers’ language for exceptions are Hilbert-Post
complete.

4.5 Hilbert-Post completeness

Each logic in this thesis comes with a language, which is a set of formulae (equations),
and with deduction rules. Deduction rules are used for deriving (or generating) theorems,
which are some formulae, from some chosen formulae called axioms. A theory T is a set of
theorems which is deductively closed, in the sense that every theorem which can be derived
from T using the rules of the logic is already in T . We describe a categorical intended
model for each logic we introduce; the rules of the logic are designed so as to be sound with
respect to this intended model. Given a logic L, the theories of L are partially ordered by
inclusion. There is a maximal theory Tmax , where all formulae are theorems. There is a
minimal theory Tmin , which is generated by the empty set of axioms. For all theories T
and T ′, we denote by T + T ′ the theory generated from T and T ′.

Example 4.5.1. With this point of view there are many different equational logics, with the
same deduction rules but with different languages, depending on the definition of terms. In
an equational logic, formulae are pairs of parallel terms (f, g) : X → Y and theorems are
equations f ≡ g : X → Y . Typically, the language of an equational logic may be defined
from a signature (made of sorts and operations). The deduction rules are such that the
equations in a theory form a congruence, i.e., an equivalence relation compatible with the
structure of the terms. For instance, we may consider the logic “of naturals” Lnat , with
its language generated from the signature made of a sort N , a constant 0 : 1 → N and
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an operation s : N → N . For this logic, the minimal theory is the theory “of naturals”
Tnat , the maximal theory is such that sk ≡ sℓ and sk ◦ 0 ≡ sℓ ◦ 0 for all natural numbers
k and ℓ, and (for instance) the theory “of naturals modulo 6” Tmod6 can be generated
from the equation s6 ≡ idN . We consider models of equational logics in sets: each type
X is interpreted as a set (still denoted X), which is a singleton when X is 1, each term
f : X → Y as a function from X to Y (still denoted f : X → Y ), and each equation as an
equality of functions.

Definition 4.5.2. Given a logic L and its maximal theory Tmax , a theory T is consistent
if T 6= Tmax , and it is Hilbert-Post complete if it is consistent and if any theory which
contains T coincides with Tmax or with T .

Example 4.5.3. In Example 4.5.1 we considered two theories for the logic Lnat : the theory
“of naturals” Tnat and the theory “of naturals modulo 6” Tmod6. Since both are consistent
and Tmod6 contains Tnat , the theory Tnat is not Hilbert-Post complete. The unique Hilbert-
Post complete theory for Lnat is made of all equations but s ≡ idN , it can be generated
from the axioms s◦0≡0 and s◦s≡s.

If a logic L is an extension of a sublogic L0, each theory T0 of L0 generates a theory
F (T0) of L. Conversely, each theory T of L determines a theory G(T ) of L0, made of
the theorems of T which are formulae of L0, so that G(Tmax ) = Tmax ,0. The functions F
and G are monotone and they form a Galois connection [Smi10, Definition 2.1.1], denoted
F ⊣ G: for each theory T of L and each theory T0 of L0 we have F (T0) ⊆ T if and only if
T0 ⊆ G(T ). It follows that T0 ⊆ G(F (T0)) and F (G(T )) ⊆ T .

Definition 4.5.4. (Duval et al., [DDE+15]) Given a logic L0, an extension L of L0 and
the associated Galois connection F ⊣ G, a theory T ′ of L is L0-derivable from a theory T
of L if T ′ = T +F (T ′0 ) for some theory T ′0 of L0. And a theory T is relatively Hilbert-Post
complete with respect to L0 if it is consistent and if any theory of L which contains T is
L0-derivable from T .

Each theory T is L0-derivable from itself, because T = T +F (Tmin ,0), where Tmin ,0 is the
minimal theory of L0. In addition, Theorem 4.5.6 shows that relative completeness lifts
the usual “absolute” completeness from L0 to L.

Lemma 4.5.5. Let us consider a logic L0, an extension L of L0 and the associated Galois
connection F ⊣ G. For each theory T of L, a theory T ′ of L is L0-derivable from T if and
only if T ′ = T + F (G(T ′)). As a special case, Tmax is L0-derivable from T if and only if
Tmax = T + F (Tmax ,0). A theory T of L is relatively Hilbert-Post complete with respect to
L0 if and only if it is consistent and every theory T ′ of L which contains T is such that
T ′ = T + F (G(T ′)).

Proof. Clearly, if T ′ = T +F (G(T ′)) then T ′ is L0-derivable from T . Conversely, let T ′0 be
a theory of L0 such that T ′ = T +F (T ′0 ), and let us prove that T ′ = T +F (G(T ′)). For each
theory T ′ we know that F (G(T ′)) ⊆ T ′; since here T ⊆ T ′ we get T +F (G(T ′)) ⊆ T ′. For
each theory T ′0 we know that T ′0 ⊆ G(F (T ′0 )) and that G(F (T ′0 )) ⊆ G(T ) + G(F (T ′0 )) ⊆
G(T + F (T ′0 )), so that T ′0 ⊆ G(T + F (T ′0 )); since here T ′ = T + F (T ′0 ) we get first
T ′0 ⊆ G(T ′) and then T ′ ⊆ T + F (G(T ′)). Then, the result for Tmax comes from the fact
that G(Tmax ) = Tmax ,0. The last point follows immediately.

Theorem 4.5.6. Let us consider a logic L0, an extension L of L0 and the associated
Galois connection F ⊣ G. Let T0 be a theory of L0 and T = F (T0). If T0 is Hilbert-Post
complete (in L0) and T is relatively Hilbert-Post complete with respect to L0, then T is
Hilbert-Post complete (in L).

55



4. Decorated logics

Proof. Since T is relatively complete with respect to L0, it is consistent. Since T = F (T0)
we have T0 ⊆ G(T ). Let T ′ be a theory such that T ⊆ T ′. Since T is relatively complete
with respect to L0, by Lemma 4.5.5 we have T ′ = T + F (T ′0 ) where T ′0 = G(T ′). Since
T ⊆ T ′, T0 ⊆ G(T ) and T ′0 = G(T ′), we get T0 ⊆ T ′0 . Thus, since T0 is complete, either
T ′0 = T0 or T ′0 = Tmax ,0; let us check that then either T ′ = T or T ′ = Tmax . If T ′0 = T0 then
F (T ′0 ) = F (T0) = T , so that T ′ = T +F (T ′0 ) = T . If T ′0 = Tmax ,0 then F (T ′0 ) = F (Tmax ,0);
since T is relatively complete with respect to L0, the theory Tmax is L0-derivable from T ,
which implies (by Lemma 4.5.5) that Tmax = T + F (Tmax ,0) = T

′.

Proposition 4.5.7. Let L1 be an intermediate logic between L0 and L, let F1 ⊣ G1 and
F2 ⊣ G2 be the Galois connections associated to the extensions L1 of L0 and L of L1,
respectively. Let T1 = F1(T0) and let T = F2(T1). If T1 is relatively Hilbert-Post complete
with respect to L0 and T is relatively Hilbert-Post complete with respect to L1, then T is
relatively Hilbert-Post complete with respect to L0.

Proof. This is an easy consequence of the fact that F = F2 ◦ F1.

Corollary 4.5.10 provides a characterization of relative Hilbert-Post completeness which is
used in Sections 5.4 and 6.9 and in the Coq implementation.

Definition 4.5.8. For each set E of formulae, let Th(E) be the theory generated by E; and
when E = {e}, let Th(e) = Th({e}). Then, two sets E1, E2 of formulae are T -equivalent
if T + Th(E1) = T + Th(E2); and a formula e of L is L0-derivable from a theory T of L
if {e} is T -equivalent to E0 for some set E0 of formulae of L0.

Proposition 4.5.9 provides a characterization of relative Hilbert-Post completeness which
will be used in the next Sections.

Proposition 4.5.9. Let T be a theory of L. Each theory T ′ of L containing T is L0-
derivable from T if and only if each formula e in L is L0-derivable from T .

Proof. Let us assume that each theory T ′ of L containing T is L0-derivable from T .
Let e be a formula in L, let T ′ = T + Th(e), and let T ′0 be a theory of L0 such that
T ′ = T + F (T ′0). The definition of Th(−) is such that Th(T ′0) = F (T ′0), so that we
get T + Th(e) = T + Th(E0) where E0 = T ′0. Conversely, let us assume that each
formula e in L is L0-derivable from T . Let T ′ be a theory containing T . Let T ′′ =
T +F (G(T ′)), so that T ⊆ T ′′ ⊆ T ′ (because F (G(T ′)) ⊆ T ′ for any T ′). Let us consider
an arbitrary formula e in T ′, by Definition 4.5.8 there is a set E0 of formulae of L0 such that
T + Th(e) = T + Th(E0). Since e is in T ′ and T ⊆ T ′, we have T + Th(e) ⊆ T ′, so that
T +Th(E0) ⊆ T

′. It follows that E0 is a set of theorems T ′ which are formulae of L0 which
means that E0 ⊆ G(T

′), and consequently Th(E0) ⊆ F (G(T
′)), so that T +Th(E0) ⊆ T

′′.
Since T + Th(e) = T + Th(E0), we get e ∈ T ′′. We have proved that T ′ = T ′′, so that T ′

is L0-derivable from T .

Corollary 4.5.10. A theory T of L is Hilbert-Post complete with respect to L0 if and only
if it is consistent and for each formula e of L, there is a set E0 of formulae of L0 such that
{e} is T -equivalent to E0.

Two interesting aspects of a relatively Hilbert-Post complete theory are given in Theo-
rem 4.5.6 and Proposition 4.5.7. The former shows that relative the Hilbert-Post com-
pleteness lifts the (absolute) Hilbert-Post completeness from the sub-logic to the extended
logic. The latter reveals the fact that the relative Hilbert-Post completeness is compatible
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with the composition of logics.

Note again that the base languages of the decorated theory for states and exceptions (in
the absence of categorical products and coproducts, respectively) will be proved in Sec-
tions 5.4 and 6.9 as Hilbert-Post complete with respect to their pure sublogics.
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5

The state effect

The use and modification of the memory state is the fundamental feature of imperative
languages. For instance, a C function may observe the value of a variable or modify it. In
order to prove correctness of programs with such features, one has to take into account
the use and manipulation of the state. In this chapter, any access to the state is treated
as a computational effect: a syntactic term f : X → Y is not interpreted as f : X → Y
unless it is pure. Indeed, a term which reads the memory state has the interpretation
f : X×S → Y , while a term which updates the state is interpreted as f : X×S → Y ×S,
where “×” is the product operator and S is the set of states. In this chapter, we introduce
the decorated logic for the state (Lst), as an extension to the decorated logic for a comonad
(Lcom) which has been introduced in Section 4.3. This logic is used to prove equivalence of
programs involving the state effect, while keeping the memory accesses and manipulations
implicit, as described in [DDEP14]. We obtain the decorations of the logic Lst, for terms
and equations, from the logic Lcom. In addition, we introduce the interface functions
lookup and update for state access and manipulation, respectively. Since, in the presence
of the state effect, the result of evaluating the arguments may depend on the order in which
they are evaluated, we use a decorated version of categorical products as in [DDR11] to
impose an order in evaluating the arguments of multivariate operations. In Figure 5.1 we
instantiate the comonad D in Figure 4.6 with the comonad of states:

Lst // Interpretation of Lst

modifier f (2) : X → Y f : X × S → Y × S

accessor f (1) : X → Y f : X × S → Y

pure term f (0) : X → Y f : X → Y

strong equation f (2) ≡ g(2) : X → Y f = g : X × S → Y × S

weak equation f (2) ∼ g(2) : X → Y π1 ◦ f = π1 ◦ g : X × S → Y

where π1 : X × S → X is the first projection

Figure 5.1: The decorated logic Lst and its interpretation: an overview.

We start, in Section 5.1, with the syntax of the decorated logic for the state (Lst) with
its interpretation given via the Kleisli-on-coKleisli construction associated to the states
comonad. The Coq implementation of the logic Lst is presented in Section 5.2. In Sec-
tion 5.3, we prove some properties of the state effect as in [PP02, §3], but here in a decorated
setting. Lastly, the logic Lst (without products) is proven to be relatively Hilbert-Post com-
plete in Section 5.4.

5.1 The decorated logic for the state

The decorated logic for the state (Lst) extends the decorated logic for a comonad (Lcom)
with the product types (sorts), the singleton type 1 and the type Vi of values that can be
stored in any location i ∈ Loc where Loc is a finite set. Similar to the terms (operations) of
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the logic Lcom, each term has a source and a target type. Additionally, there is a (left) pair
term 〈f, g〉l : X → Y1 × Y2 for each couple of terms f : X → Y1 and g : X → Y2. For each
product type X×Y , there are canonical projections π1 : X×Y → X and π2 : X×Y → Y .
The symbol 〈 〉X denotes the unique term from X to the singleton type 1 for each type X.
The term lookupi : 1 → Vi stands to observe the content of a given location i while the
term updatei : Vi → 1 is used to modify it. We give the syntax of Lst in Figure 5.2 and
its inference rules in Figures 5.3, 5.4 and 5.5 in addition to the ones stated in Figure 4.7.

Grammar of the decorated logic for the state: (i ∈ Loc)

Types: t, s ::= X | Y | · · · | t× s | 1 | Vi

Terms: f, g ::= idt | a | b | · · · | g ◦ f | 〈f, g〉l | π1 | π2 | 〈 〉t |

lookupi | updatei
Decoration for terms: (d) ::= (0) | (1) | (2)

Equations: e ::= f ≡ g | f ∼ g

Figure 5.2: Lst: syntax

Each term has a decoration which is denoted as a superscript (0), (1) or (2): a pure term
has the decoration (0), an observer (or accessor) has (1) and a modifier term comes with
the decoration (2). Similarly, each equation is formed by two terms with the same source
and target as well as a decoration, denoted by “∼” if it is weak or by “≡” if it is strong.

Let C be a category with finite products and a distinguished object of states S. Let
(D = − × S, ε, δ) be the states comonad defined over C . Let us assume that S is given
such that the the epi-requirement is satisfied (Definition 3.1.7). For instance, when C is
the category of sets, then S cannot be the empty set.

The interpretation of Lst is given via the Kleisli-on-coKleisli construction associated to
a comonad, detailed in Section 3.3, applied to the states comonad. Recall that in Sec-
tion 3.3.2, we have introduced the adjunctions FD ⊣ GD and FD,T ⊣ GD, T with the
faithful functors GD : C → CD and FD, T : CD → CD,T . This gives raise to a hierarchy
among terms in CD,T . We use this hierarchy to interpret the decorations: pure terms are
in C , accessors are in CD and modifiers are in CD,T .

Definition 5.1.1. Let CST the interpretation of the syntax for the logic Lst with the
following details:

C

GD
--

⊤

D
def
= −×S

��
CD

FD

ll
FD,T

--
⊥

T
def
= −×S

��
CD,T

GD,T

ll

ε : D ⇒ Id FD⊣GD η : Id ⇒ T

(1) The types are interpreted as the objects of C .

(1.1) the unit type 1 is interpreted by the final object of the category C .

(1.2) for each i in Loc, the type Vi is interpreted as an object Vali .
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(1.3) for each pair of types X and Y , the product types X ×Y are interpreted as the
binary products in C .

Now, we can define the object of states as S = Πi∈LocVali . The projections are
denoted πi : S → Vali , for each location i. The object S in C is not the interpretation
of a “type of states”. Indeed, the use of decorations in the logic Lst provides a
signature without any occurrence of such a “type of states”. So that signature is kept
close to the syntax. Besides, for each object X in C , the first projection π1,X,S : X×
S → X is εX and the second projection π2,X,S : X × S → S, up to the isomorphism
between of S and 1× S, is D(〈 〉X).

(2) The terms are interpreted as the morphisms as follows:

(2.1) a pure term f (0) : X → Y in C as f : X → Y in C

(2.2) an accessor term f (1) : X → Y in CD as f : X × S → Y in C

(2.3) a modifier term f (2) : X → Y in CD,T as f : X × S → Y × S in C

(3) The terms f (1)1 : X → Y1 and f
(2)
2 : X → Y2 are interpreted as f1 : X × S → Y1 and

f2 : X × S → Y2 × S in C . Thus, 〈f1, f2〉
(2)
l : X → Y1 × Y2 is interpreted as the

categorical pair
〈
f1, f2

〉
: X × S → Y1 × Y2 × S in C . It is called the left pair of f

and g.

(4) The pure projections π(0)1 : X × Y → X and π(0)2 : X × Y → Y are interpreted as the
canonical projections π1 : X × Y → X and π2 : X × Y → Y associated to pairs.

(5) The pure term 〈 〉(0)X : X → 1 is interpreted as the unique mapping from X to the
final object 1 in C .

(6) For each i in Loc, the term lookup
(1)
i : 1 → Vi is an accessor in CD and interpreted

as lookupi = πi : S → Vali in C (up to the isomorphism between 1× S and S).

(7) For each i, the term update
(2)
i : Vi → 1 is a modifier in CD,T and its interpretation

is characterized by the following equalities: for each j in Loc such that i 6= j, πj ◦
updatei = πj◦π2,Vali ,S : Vali×S → Valj and πi◦updatei = π1,Vali ,S : Vali×S → Vali .

(8) A strong equation between modifiers f (2) ≡ g(2) : X → Y in CD,T is interpreted by an
equality f = g : X×S → Y ×S in C . Similarly, a strong equation between accessors
f (1) ≡ g(1) : X → Y in CD is interpreted by an equality f = g : X × S → Y in C .
And a strong equation between pure terms f (0) ≡ g(0) : X → Y in C is interpreted
by an equality f = g : X → Y in C . Intuitively, two terms are strongly equal if they
have equivalences on returned results and effects on the state.

(9) A weak equation between modifiers f (2) ∼ g(2) : X → Y in CD,T is interpreted by
an equality εY ◦ f = εY ◦ g : X × S → Y in C . Similarly, a weak equation between
accessors f (1) ∼ g(1) : X → Y in CD is interpreted by an equality f = g : X × S →
Y in C . And a weak equation between pure terms f (0) ∼ g(0) : X → Y in C is
interpreted by an equality f = g : X → Y in C . Intuitively, two terms are weakly
equal if they return the same result with maybe different effects on the state.

The rules of the logic Lcom, as stated in Figure 4.7, are rules of the logic Lst. Now, we
introduce the additional rules of the logic Lst in several steps, with some comments.
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5.1.1 The effect rule

the effect rule

(effect)
f1, f2 : X → Y f1 ∼ f2 〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2

f1 ≡ f2

Figure 5.3: Lst : the effect rule

(effect) This rule states that weak and strong equations are related with the property
that f1 ≡ f2 if and only if f1 ∼ f2 and 〈 〉Y ◦f1 ≡ 〈 〉Y ◦f2. In other words, two terms
f1 and f2 are strongly equal if and only if they have the “same result” (f1 ∼ f2) and
“the same effect” (〈 〉Y ◦ f1 ≡ 〈 〉Y ◦ f2).

5.1.2 The pair rules

rules for the left pairs

(unit)
X

〈 〉
(0)
X : X → 1

(w-unit)
f : X → 1

f ∼ 〈 〉X

(lpair)
f
(d)
1 : X → Y1 f2 : X → Y2
〈f1, f2〉l : X → Y1 × Y2

(for all d ≤ 1) (proj)
i ∈ {1, 2} Y1 Y2

π
(0)
i : Y1 × Y2 → Yi

(s-lpair-eq)
f
(d)
1 : X → Y1 f2 : X → Y2

π2 ◦ 〈f1, f2〉l ≡ f2
(for all d ≤ 1)

(w-lpair-eq)
f
(d)
1 : X → Y1 f2 : X → Y2

π1 ◦ 〈f1, f2〉l ∼ f1
(for all d ≤ 1)

(lpair-ueq)
f1, f2:X→Y1×Y2 π1 ◦ f1 ∼ π1 ◦ f2 π2 ◦ f1 ∼ π2 ◦ f2

f1 ∼ f2

Figure 5.4: Lst : rules for left pairs

(w-unit) This rule intuitively means that for each modifier term f : X → 1, there is an
obvious result equivalence between f and the unique mapping 〈 〉X , since both return
void. The unique instance of type 1 can be used to interpret the result void.

(lpair) This rule states that the left pair 〈f1, f2〉l is defined only when f1 is pure or
accessor. Indeed, when both f1 and f2 are modifiers, such a construction would
lead to a conflict on the returned result. When f1 is an accessor, with (w-lpair-eq),
we ensure that 〈f1, f2〉l returns “the same” result with f1 and with (s-lpair-eq) that
〈f1, f2〉l returns “the same” result with f2 along with “the same” manipulation on
the state.

(lpair-ueq) This rule ensures that a left pair is unique up to the weak equation.

5.1.3 Some properties of pairs

In this section, we start with a property of the “empty pair” and then prove the unicity of
left pairs up to the strong equation. Afterwards, we build the symmetric (or right) pairs
by using the left pairs and prove some of their properties. Lastly, we construct the left and
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right products, by respectively using left and right pairs, and similarly prove some related
properties.

Proposition 5.1.2. (s-unit) For all d, d′ ≤ 1, given two terms of the form f
(d)
1 , f

(d′)
2 : X →

1 for each X, then f1 ≡ f2.

Proof. Obviously, f1 ∼ f2 thanks to (w-unit). Since none of them is a modifier, then
f1 ≡ f2 due to (wtos).

Proposition 5.1.3. (lpair-u) For each f1 , f2 : X → Y1 × Y2, if π1 ◦ f1 ∼ π1 ◦ f2 and
π2 ◦ f1 ≡ π2 ◦ f2, then f1 ≡ f2.

Proof. 1. Starting from π2 ◦ f1 ≡ π2 ◦ f2, we obtain 〈 〉Y2 ◦ π2 ◦ f1 ≡ 〈 〉Y2 ◦ π2 ◦ f2 due
to (replsubs). Besides, we have 〈 〉Y2 ◦ π2 ≡ 〈 〉Y1×Y2 thanks to (s-unit). Therefore,
we get 〈 〉Y1×Y2 ◦ f1 ≡ 〈 〉Y1×Y2 ◦ f2.

2. Since we have π2 ◦ f1 ≡ π2 ◦ f2, by converting the strong equation into a weak
equation, we get π2 ◦ f1 ∼ π2 ◦ f2. In addition, π1 ◦ f1 ∼ π1 ◦ f2 is also assumed so
that we end up with f1 ∼ f2 thanks to (lpair-ueq).

Now, the above items 1 and 2 suffice to ensure f (2)1 ≡ f
(2)
2 due to (effect) rule introduced

in Figure 5.3.

Definition 5.1.4. For all d ≤ 1, given f1 : X → Y1 and f
(d)
2 : X → Y2, the right pair

〈f1, f2〉r = permut ◦ 〈f2, f1〉l where permut = 〈π2, π1〉l.

Y2

X

f1 **❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚❚

❚

f2
44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

〈f2,f1〉r // Y2 × Y1

π1

OO

π2��

permut // Y1 × Y2

Y1

Proposition 5.1.5. For all d ≤ 1, given f1 : X → Y1 and f
(d)
2 : X → Y2, we have:

• π1 ◦ 〈f1, f2〉r ≡ f1 (s-rpair-eq)

• π2 ◦ 〈f1, f2〉r ∼ f
(d)
2 (w-rpair-eq)

Proof. • Due to (w-lpair-eq), we have π1 ◦ 〈π2, π1〉l ∼ π2. Since terms are all pure, the
weak equation converts into the strong one: π1 ◦ 〈π2, π1〉l ≡ π2. Through (replsubs),
we obtain π1◦〈π2, π1〉l ◦〈f2, f1〉l ≡ π2◦〈f2, f1〉l. Now, (s-lpair-eq) gives π1◦〈π2, π1〉l ◦
〈f2, f1〉l ≡ f1 which folds into π1 ◦ 〈f1, f2〉r ≡ f1.

• Thanks to (s-lpair-eq) and (stow), we get π2 ◦ 〈π2, π1〉l ∼ π1. The rule (wsubs) gives
π2 ◦〈π2, π1〉l ◦〈f2, f1〉l ∼ π1 ◦〈f2, f1〉l. By using (w-lpair-eq), we obtain π2 ◦〈π2, π1〉l ◦

〈f2, f1〉l ∼ f
(d)
2 which is actually π2 ◦ 〈f1, f2〉r ∼ f

(d)
2 .

Proposition 5.1.6. (rpair-u) For each f1 , f2 : X → Y1 × Y2, if π1 ◦ f1 ≡ π1 ◦ f2 and
π2 ◦ f1 ∼ π2 ◦ f2, then f1 ≡ f2.

Proof. 1. Starting from π1 ◦ f1 ≡ π1 ◦ f2, we obtain 〈 〉Y1 ◦ π1 ◦ f1 ≡ 〈 〉Y1 ◦ π1 ◦ f2 due
to (replsubs). Besides, we have 〈 〉Y1 ◦ π1 ≡ 〈 〉Y1×Y2 thanks to (s-unit). Therefore,
we get 〈 〉Y1×Y2 ◦ f1 ≡ 〈 〉Y1×Y2 ◦ f2.
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2. Since we have π1 ◦ f1 ≡ π1 ◦ f2, by converting the strong equation into a weak
equation, we get π1 ◦ f1 ∼ π1 ◦ f2. In addition, π2 ◦ f1 ∼ π2 ◦ f2 is also assumed so
that we end up with f1 ∼ f2 thanks to (lpair-ueq).

Now, the above items 1 and 2 suffice to ensure f1 ≡ f2 due to (effect) rule introduced in
Figure 5.3.

One can define the left and right products of terms respectively using left and right pairs.

Definition 5.1.7. • For all d ≤ 1, given f
(d)
1 : X1 → Y1 and f2 : X2 → Y2, we obtain

a left product (f1 ×l f2) = 〈f1 ◦ π1, f2 ◦ π2〉l : X1 ×X2 → Y1 × Y2.

• For all d ≤ 1, given f1 : X1 → Y1 and f
(d)
2 : X2 → Y2, we obtain a right product

(f1×r f2) = 〈f1 ◦π1, f2 ◦ π2〉r = permut ◦ 〈f2 ◦π2, f1 ◦π1〉l : X1×X2 → Y1×Y2 such
that permut = 〈π2, π1〉l.

X1
f1 // Y1

X1 ×X2 (f1⋉f2) //
π1

OO

π2 ��

Y1 × Y2

π1
OO

π2��
X2

f2
// Y2

X2
f2 // Y2

X1 ×X2 (f2×lf1) //
π2

OO

π1 ��

Y2 × Y1

π1
OO

π2��

permut // Y1 × Y2

π1tt✐✐✐✐
✐✐✐✐

✐✐✐✐
✐

π2
jj❯❯❯❯❯❯❯❯❯❯❯❯❯

X1
f1

// Y1

Proposition 5.1.8. For all d ≤ 1, given f
(d)
1 : X1 → Y1 and f2 : X2 → Y2, we have:

• π1 ◦ (f1 ×l f2) ∼ f
(d)
1 ◦ π1 (w-lprod-eq)

• π2 ◦ (f1 ×l f2) ≡ f2 ◦ π2 (s-lprod-eq)

Proof. • By setting f1 := f1 ◦ π1 and f2 := f2 ◦ π2 within (w-lpair-eq), one gets

π1 ◦ 〈f1 ◦ π1, f2 ◦ π2〉l ∼ f
(d)
1 ◦ π1 which folds into π1 ◦ (f1 ×l f2) ∼ f

(d)
1 ◦ π1.

• Similarly, we set f1 := f1 ◦π1 and f2 := f2 ◦π2 within (s-lpair-eq), one gets π2 ◦ 〈f1 ◦
π1, f2 ◦ π2〉l ≡ π2 ◦ f2 which folds into π2 ◦ (f1 ×l f2) ≡ f2 ◦ π2.

Proposition 5.1.9. (lprod-u) For each f1 , f2 : X1 × X2 → Y1 × Y2, if π1 ◦ f1 ∼ π1 ◦ f2
and π2 ◦ f1 ≡ π2 ◦ f2, then f1 ≡ f2.

Proof. It suffices to apply (lpair-u).

Proposition 5.1.10. For all d ≤ 1, given f1 : X1 → Y1 and f
(d)
2 : X2 → Y2, we have:

• π1 ◦ (f1 ×r f2) ≡ f1 ◦ π1 (s-rprod-eq)

• π2 ◦ (f1 ×r f2) ∼ f
(d)
2 ◦ π2 (w-rprod-eq)

Proof. • By setting f1 := f1 ◦ π1 and f2 := f2 ◦ π2 within (s-rpair-eq), one gets π(0)1 ◦
〈f1 ◦ π1, f2 ◦ π2〉r ≡ π1 ◦ f1 which folds into π1 ◦ (f1 ×r f2) ≡ π1 ◦ f1.

• Similarly, we set f1 := π1 ◦ f1 and f2 := π2 ◦ f2 within (w-rpair-eq), one gets π2 ◦

〈f1 ◦ π1, f2 ◦ π2〉r ∼ π2 ◦ f
(d)
2 which folds into π2 ◦ (f1 ×r f2) ∼ π2 ◦ f

(d)
2 .

Proposition 5.1.11. (rprod-u) For each f1 , f2 : X1 ×X2 → Y1 × Y2, if π2 ◦ f1 ∼ π2 ◦ f2
and π1 ◦ f1 ≡ π1 ◦ f2, then f1 ≡ f2.
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Proof. It suffices to apply (rpair-u).

Remark 5.1.12. The product of two modifier terms f1 : X1 → Y1 and f2 : X2 → Y2 is
modeled by their sequential products, as introduced in [DDR11], which impose some order of
evaluation of the arguments: a sequential product is obtained as the sequential composition
of two semi-pure products. A semi-pure product, as far as we are concerned in this thesis,
is a kind of product of an identity function (which is pure) with a modifier function.

Notice that we use some of these properties when proving the properties of programs with
the state effect, in Section 5.3.

5.1.4 The interface rules

interface rules

(lookup)
i ∈ Loc

lookup
(1)
i : 1→ Vi

(update)
i ∈ Loc

update
(2)
i : Vi → 1

(ax1)
i ∈ Loc

lookupi ◦ updatei ∼ idVi
(ax2)

i, j ∈ Loc i 6= j

lookupj ◦ updatei ∼ lookupj ◦ 〈 〉Vi

(local-global)
g1, g2 : X → 1 for all i ∈ Loc lookupi ◦ g1 ∼ lookupi ◦ g2

g1 ≡ g2

Figure 5.5: Lst : the interface rules

(ax1) This rule states that one obtains the value v after both of the following cases:

(a) first storing v into a location i, then observing the same location,

(b) feeding v to the identity term.

Clearly, the equation between operations in (a) and (b) is weak since they have
different manipulations on the state.

(ax2) This rule states for each couple of different locations i and j that after below cases
(c) and (d), one obtains the same result but different manipulations on the state:

(c) first storing a value v into a location j and then observing a different location i

(d) first forgetting the value v then observing the location i.

Notice that the operation in (c) is a modifier while the one in (d) is an accessor.

(local-global) This rule means that for each location i, the statement of the (effect) rule
can be expressed as a pair of weak equations for g1 = 〈 〉Y ◦ f1 and g2 = 〈 〉Y ◦ f2:
g1 ∼ g2 and lookupi ◦ g1 ∼ lookupi ◦ g2. Since g1, g2 : X → 1 return the same result
(void), there is no explicit need to check whether g1 ∼ g2 or not. It suffices to check
if lookupi ◦ g1 ∼ lookupi ◦ g2 holds, in order to reason whether g1 ≡ g2 or not. Note
that this rule needs to be reformulated when we formalize the local state effect (or
dynamic allocation) which is beyond the scope of this thesis.

Now, the following result is easily obtained:

Theorem 5.1.13. The logic Lst is sound with respect to the interpretation CST given in
Definition 5.1.1.
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5.2 Coq implementation: Lst

The main scope of this section is to formalize the decorated logic for the state (Lst) in
Coq [DDEP14]. To do so, we aim to enrich the implementation of the logic Lcom that
is already detailed in Sections 4.4.1 4.4.2 4.4.3: we will reuse the code blocks in order to
preserve the integrity of the formalization with no repeated explanation. The organization
of the modules is reflected in the Coq library STATES-THESIS as follows:

BASES: Memory Terms Decorations Axioms

DERIVED: D.Pairs D.Products

PROOFS: Proofs

Remark 5.2.1. The complete STATES-THESIS library can be found on https://forge.

imag.fr/frs/download.php/695/STATES-THESIS.tar.gz.

5.2.1 Memory

In order to enrich the terms of the logic Lcom (or Lmon), we first need to speak about some
preliminaries: the set of memory locations is implemented by a Coq parameter, Loc: Type.
Provided that each location may contain different type of values, we also implement an
arrow type V : Loc→ Type that is the type of values stored in any location.

Parameter Loc: Type. Parameter V: Loc → Type.

5.2.2 Terms

We can implement the additional terms, as new constructors to the dependent type term

that has been given in Section 4.4.1, as follows:

(1)
〈
f, g

〉
: X → Y × Z for each pair of terms f : X → Y and g : X → Z, together with

the canonical projections π1 : Y × Z → Y and π2 : Y × Z → Z,

(2) 〈 〉X : X → 1 for each type X„

(3) lookupi : 1→ Vi for each location i,

(4) updatei : Vi → 1 for each location i.

Thus, the implementation of terms in Coq looks like:

Inductive term: Type → Type → Type :=
| comp: forall {X Y Z: Type}, term X Y → term Y Z → term X Z

| tpure: forall {X Y: Type}, (X → Y) → term Y X

| pair: forall {X Y Z: Type}, term X Z → term Y Z → term (X∗Y) Z

| lookup: forall i:Loc, term (V i) unit

| update: forall i:Loc, term unit (V i).
Infix "o" := comp (at level 70).

Instead of the symbol
〈 〉

, we use the keyword pair in the implementation. The terms
such as the identity, the pair projections, the empty pair and the constant function can be
derived from the native Coq functions, with the use of tpure constructor, as follows:
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Definition id {X: Type} : term X X := tpure id.
Definition pi1 {X Y: Type} : term X (X∗Y) := tpure fst.
Definition pi2 {X Y: Type} : term Y (X∗Y) := tpure snd.
Definition forget {X} : term unit X := tpure (fun _ ⇒ tt).
Definition constant {X: Type} (v: X): term X unit := tpure (fun tt ⇒ v).

Remark also that the pair projections are named pi1 and pi2 while the unique mapping
〈 〉X from any type X to 1 is called forget in the implementation.

Remark 5.2.2. See the source Terms.v for related implementation details.

5.2.3 Decorations

Thereby, the decorations’ implementation follows:

Inductive kind := pure | ro | rw.
Inductive is: kind → forall X Y, term X Y → Prop :=
| is_tpure: forall X Y (f: X → Y), is pure (@tpure X Y f)
| is_comp: forall k X Y Z (f: term X Y) (g: term Y Z), is ro f → is k f → is k g → is k (f o g)
| is_pair: forall k X Y Z (f: term X Z) (g: term Y Z), is k f → is k g → is k (pair f g)
| is_lookup: forall i, is ro (lookup i)
| is_update: forall i, is rw (update i)
| is_pure_ro: forall X Y (f: term X Y), is pure f → is ro f

| is_ro_rw: forall X Y (f: term X Y), is ro f → is rw f.
Hint Constructors is.

Notice that instead of the decorations of the form (0), (1) and (2), we respectively use
the keywords pure, ro and rw in the implementation. The decoration of any composed
or paired off term depends on its components and always takes the upper decoration
(pure < ro < rw). E.g., given a modifier term and a read-only term, their composition
will be a modifier, as well. The decoration of a pair construction depends on its second
component, since the first one should at most be a read-only term. Hence, we cannot form
pairs of two modifier terms. The pair construction always takes the upper decoration. For
instance, given a pure term and a read-only term, their pair will be a read-only, as well. We
declare the term lookup as an accessor. On the contrary, update is a modifier. It is trivial
to derive that the pair projections are pure. For the sake of conciseness, we demonstrate
only the first one:

Lemma is_pi1 X Y: is pure (@pi1 X Y).
Proof. apply is_tpure. Qed.

Since pi1 is constructed through tpure and since any argument of tpure is by definition
pure, it suffices to apply the constructor is_tpure. The process of decoration checking
is crucial and troublesome in a decorated setting: the use of rules is determined after
ensuring that the related terms have the intended decorations. It is possible to automate
the verification of decorations. To do so, we create a new tactic named decorate, by using
Delahaye’s Ltac language [Del00]:

Ltac decorate := solve[
repeat (apply is_comp || apply is_pair)

||
(is_tpure || apply is_lookup || apply is_update || assumption)

||
(apply is_pure_ro)

||
(apply is_ro_rw) ].

The tactic decorate repeatedly checks if the goal term is a composition or a pair, if not,
it tries to decide whether the term is pure constructed by tpure or one of the following
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terms: lookup and update or else a local assumption. If it is still not the case, it applies
the hierarchy rules. All that are performed in the given sequence. Since these checks are
all done inside the solve tactical, decorate fails in the absence of match.

Class PURE {X Y: Type} (f: term X Y) := isp : is pure f.
Hint Extern 0 (PURE _) ⇒ decorate : typeclass_instances.

Class RO {X Y: Type} (f: term X Y) := isro : is ro f.
Hint Extern 0 (RO _) ⇒ decorate : typeclass_instances.

Class RW {X Y: Type} (f: term X Y) := isrw : is rw f.
Hint Extern 0 (RW _) ⇒ decorate : typeclass_instances.

The assignment of decorations over terms is declared as constructors of Coq type classes
parametrized by a term. Then, we extend the scope of the tactic auto with the optional
patterns (PURE _), (RO _) and (RW _), the tactic decorate at cost zero. This is provided
by the vernacular command Extern (num) pattern => tactic. The zero cost means
that the tactic auto would non-recursively try the hints upon the usage.

Remark 5.2.3. See the source Decorations.v for related implementation details.

5.2.4 Axioms

Here we give the formalization of the rules/axioms in Coq.

Reserved Notation "x == y" (at level 80). Reserved Notation "x ∼ y" (at level 80).
Definition idem X Y (x y: term X Y) := x = y.
Inductive strong: forall X Y, relation (term X Y) :=

(*congruence rules*)

| refl X Y: Reflexive (@strong X Y)
| sym: forall X Y, Symmetric (@strong X Y)
| trans: forall X Y, Transitive (@strong X Y)
| replsubs: forall X Y Z, Proper (@strong X Y ==> @strong Y Z ==> @strong X Z) comp

(*categorical rules*)

| ids: forall X Y (f: term X Y), f o id == f

| idt: forall X Y (f: term X Y), id o f == f

| assoc: forall X Y Z T (f: term X Y) (g: term Y Z) (h: term Z T), f o (g o h) == (f o g) o h

(*the hierarchy rule*)

| wtos: forall X Y (f g: term X Y), RO f → RO g → f ∼ g → f == g

(*strong pair rules*)

| s_lpair_eq: forall X Y’ Y (f1: term Y X) (f2: term Y’ X), RO f1 → pi2 o pair f1 f2 == f2

(*the effect rule*)

| effect: forall X Y (f g: term Y X), forget o f == forget o g → f ∼ g → f == g

(*the strong interface rule*)

| local_global: forall X (f g: term unit X), (forall i: Loc, lookup i o f ∼ lookup i o g) → f == g

(*tpure preserves the pure composition*)

| tcomp: forall X Y Z (f: Z → Y) (g: Y → X), tpure (compose g f) == tpure g o tpure f

with weak: forall X Y, relation (term X Y) :=
(*congruence rules*)

| wsym: forall X Y, Symmetric (@weak X Y)
| wtrans: forall X Y, Transitive (@weak X Y)
| pwrepl: forall X Y Z (g: term X Y), is pure g → Proper (@weak Y Z ==> @weak X Z) (comp g)
| wsubs: forall X Y Z, Proper (@weak X Y ==> @idem Y Z ==> @weak X Z) comp

(*the hierarchy rule*)

| stow: forall X Y (f g: term X Y), f == g → f ∼ g

(*the weak pair rule*)

| w_lpair_eq: forall X Y’ Y (f1: term Y X) (f2: term Y’ X), RO f1 → pi1 o pair f1 f2 ∼ f1

| w_unit: forall X (f g: term unit X), f ∼ g

(*weak interface rules*)

| ax1: forall i, lookup i o update i ∼ id

| ax2: forall i j, i<>j → lookup j o update i ∼ lookup j o forget

(*the weak unicity rule*)

| lpair_ueq: forall X Y Y’( f g: term (Y∗Y’) X), pi1 o f ∼ pi1 o g → pi2 o f ∼ pi2 o g → f ∼ g

where "x == y" := (strong x y) and "x ∼ y" := (weak x y).

68



5. The state effect

On the details of additional rules. For w_unit, s_lpair_eq, w_lpair_eq and lpair_ueq,
see Figure 5.4. The rule effect is given in Figure 5.3. Lastly, for ax1, ax2 and local_global,
refer back to Figure 5.5.

The derived rule (s-unit), given in Proposition 5.1.2, specializes (w-unit) in the absence
of modifiers so that the weak equation converts into the strong one. Below is the Coq
certified statement and its proof:

Lemma s_unit: forall X (f: term unit X), (RO f) → f == forget.
Proof. intros X f H. apply wtos; [exact H| decorate| apply w_unit]. Qed.

Remark 5.2.4. See the source Axioms.v for related implementation details.

5.2.5 Derived pairs and products

In order to speak about symmetric or (right) pairs as well as left and right products, we
define the permutation term, denoted permut. It inputs two Coq Type instances X and Y

and outputs an instance of type: term (Y*X) (X*Y).

Definition permut {X Y}: term (X∗Y) (Y∗X) := pair pi2 pi1.

Clearly, permut is a pure term, since it is a left pair made of pure projections. Now, the
right pair structure looks like:

Definition rpair {X Y Z} (f1: term Y X) (f2: term Z X): term (Y∗Z) X := permut o pair f2 f1.

The decoration of a given right pair depends on its components:

Lemma is_rpair: forall k X Y Z (f1: term Y X) (f2: term Z X), RO f2 → is k f1 → is k f2

→ is k (rpair f1 f2).
Proof. intros k X Y Z f1 f2 H1 H2 H3. induction k; decorate. Qed.

After introducing the necessary instances, we induce on the kind k. Then, it suffices to
decorate each goal: is pure (rpair f1 f2), is ro (rpair f1 f2) and is rw (rpair

f1 f2) locally provided: H0: is pure f1, H1: is pure f2; H0: is ro f1, H1: is ro f2

and H0: is rw f1, H1: is rw f2.

The projection rules attached to right pairs, that are stated and proven in Proposition 5.1.5,
are certified in Coq along with their proofs:

right pair: first projection

Lemma s_rpair_eq: forall X Y’ Y (f1: term Y X) (f2: term Y’ X), RO f2 → pi1 o rpair f1 f2 == f1.
Proof.

intros X Y’ Y f1 f2 H0. unfold rpair. unfold permut. rewrite assoc.
cut (pi1 o pair pi2 pi1 == (@pi2 Y’ Y)).
intro H1. rewrite H1.
apply s_lpair_eq. exact H0.

apply wtos; try decorate. apply w_lpair_eq; decorate.
Qed.

After forming the environment for the assumptions, the proof continues with unfolding
rpair and permut followed by rewriting associativity which shifts parentheses to the left.
At this point, the goal looks like: (pi1 o pair pi2 pi1) o pair f2 f1 == f1. Here,

69



5. The state effect

we cut the Prop instance, (pi1 o pair pi2 pi1 == (@pi2 Y’ Y)) and introduce an in-
stance of it named H1. We apply H1 inside the goal and obtain pi2 o pair f2 f1 == f1.
Now, it suffices to apply the rule s_lpair_eq and prove that RO f2 which is exactly H0.
It remains to prove the strong equation that we have already cut. There, we first convert
the goal side strong equation into the weak equation provided that pi1 o pair pi2 pi1

and (@pi2 Y’ Y) are both accessors. So that the goal turns into (pi1 o pair pi2 pi1

∼ (@pi2 Y’ Y)). It suffices to apply w_lpair_eq and prove that RO pi2 which is done by
the use of tactic decorate.

right pair: second projection

Lemma w_rpair_eq: forall X Y’ Y (f1: term Y X) (f2: term Y’ X), RO f2 → pi2 o rpair f1 f2 ∼ f2.
Proof.

intros X Y’ Y f1 f2 H0. unfold rpair. unfold permut. rewrite assoc.
rewrite s_lpair_eq; [apply w_lpair_eq; decorate| decorate].

Qed.

After some preliminary modifications on the goal (by following the first line in the proof),
we obtain (pi2 o pair pi2 pi1) o pair f2 f1 ∼ f2. Here, we rewrite s_lpair_eq

which results in two subgoals: pi1 o pair f2 f1 ∼ f2 and RO pi2. The application of
the rule w_lpair_eq followed by the decorate solves the first subgoal and decorate alone
closes the second.

We also certify the proofs of Propositions 5.1.3 and 5.1.6 ensuring that left and right pairs
are unique with respect to the strong equation:

left pair: unicity

Lemma lpair_u: forall X Y Y’(f1 f2: term (Y’∗Y) X),
(pi1 o f1 ∼ pi1 o f2) ∧ (pi2 o f1 == pi2 o f2) → f1 == f2.

Proof.
intros X Y Y’ f1 f2 (H0&H1). apply effect.
(* 〈 〉 ◦ f1 ≡ 〈 〉 ◦ f2 *)

cut(forget o (@pi2 Y’ Y) == forget).
intro H2. rewrite ←H2.
setoid_rewrite ←assoc. apply replsubs; [reflexivity| exact H1].

(* 1st cut *)

setoid_rewrite s_unit;[reflexivity| decorate].
(* f1 ∼ f2 *)

apply lpair_ueq. exact H0. apply stow. exact H1.
Qed.

right pair: unicity

Lemma rpair_u: forall X Y Y’(f1 f2: term (Y’∗Y) X),
(pi1 o f1 == pi1 o f2) ∧ (pi2 o f1 ∼ pi2 o f2) → f1 == f2.

Proof.
intros X Y Y’ f1 f2 (H0&H1). apply effect.
(* 〈 〉 ◦ f1 ≡ 〈 〉 ◦ f2 *)

cut(forget o (@pi1 Y’ Y) == forget).
intro H2. rewrite ←H2.
setoid_rewrite ←assoc. apply replsubs; [reflexivity| exact H0].

(* 1st cut *)

setoid_rewrite s_unit;[reflexivity| decorate].
(* f1 ∼ f2 *)

apply lpair_ueq. apply stow. exact H0. exact H1.
Qed.

Both proofs follow the same approach: first the (effect) rule is applied to the goal. This gen-
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erates two subgoals to prove: forget ◦ f1 ≡ forget ◦ f2 and f1 ∼ f2. Then, depending
on the assumed context, we use either forget ◦ pi1 ≡ forget or forget ◦ pi2 ≡ forget

(ensured by the rule (s-unit)) to close the first subgoals. For instance, considering the
unicity of the right pairs, by rewriting forget ◦ pi1 ≡ forget inside the goal, we obtain
forget ◦ pi1 ◦ f1 ≡ forget ◦ pi1 ◦ f2. By applying (replsubs), we get pi1 ◦ f1 ≡ pi1 ◦ f2
which is a local assumption. For the second subgoals, we use (lpair-ueq) rule. For in-
stance, for the unicity of the right pairs, applying (lpair-ueq) yields following subgoals:
pi1 ◦ f1 ∼ pi1 ◦ f2 and pi2 ◦ f1 ≡ pi2 ◦ f2. The former is an assumption after the free
conversion of the weak equation into the strong one provided by the application of rule
(stow). The latter is an assumption.

In addition, left and right product structures, that are detailed in Definition 5.1.7, are
implemented in Coq as follows:

Definition lprod {X Y X’ Y’} (f: term X X’) (g: term Y Y’) := pair (f o pi1) (g o pi2).
Definition rprod {X Y X’ Y’} (f: term X X’) (g: term Y Y’) := permut o pair (g o pi2) (f o pi1).

One can simply prove that the decoration of a pair product depends on its components:

Lemma is_lprod: forall k X’ X Y’ Y (f1: term X X’) (f2: term Y Y’), RO f1 → is k f1 → is k f2

→ is k (lprod f1 f2).
Proof. intros k X’ X Y’ Y f1 f2 H1 H2 H3. induction k; decorate. Qed.

After introducing the necessary instances, we induce on the kind k then it suffices to
decorate each goal: is pure (prod f1 f2), is ro (prod f1 f2) and is rw (prod f1

f2) locally provided: H0: is pure f1, H1: is pure f2; H0: is ro f1, H1: is ro f2 and
H0: is rw f1, H1: is rw f2. The similar idea applies to the case of right products:

Lemma is_rprod: forall k X’ X Y’ Y (f1: term X X’) (f2: term Y Y’), RO f2→ is k f1 → is k f2

→ is k (rprod f1 f2).
Proof. intros k X’ X Y’ Y f1 f2 H1 H2 H3. induction k; decorate. Qed.

The projection rules attached to left and right products, that are stated and proved in
Propositions 5.1.8 and 5.1.10, are certified in Coq along with their proofs:

left and right products: first and second projection

Lemma w_lprod: forall X’ X Y’ Y (f: term X’ X) (g: term Y’ Y), RO f → pi1 o (prod f g) ∼ f o pi1.
Proof. intros X’ X Y’ Y f g H. apply w_lpair; decorate. Qed.

Lemma s_lprod: forall X’ X Y’ Y (f: term X’ X) (g: term Y’ Y), RO f → pi2 o (prod f g) == g o pi2.
Proof. intros X’ X Y’ Y f g H. apply s_lpair; decorate. Qed.

Lemma w_rprod: forall X’ X Y’ Y (f: term X’ X) (g: term Y’ Y), RO g → pi2 o (prod f g) ∼ g o pi2.
Proof. intros X’ X Y’ Y f g H. apply w_rpair; decorate. Qed.

Lemma s_rprod: forall X’ X Y’ Y (f: term X’ X) (g: term Y’ Y), RO g → pi1 o (prod f g) == f o pi1.
Proof. intros X’ X Y’ Y f g H. apply s_rpair; decorate. Qed.

They are nothing but specialized (w-lpair-eq), (s-lpair-eq), (w-rpair-eq) and (s-rpair-eq).

We lastly have the unicity properties of left and right products with respect to the strong
equation, that are stated and proven in Propositions 5.1.9 and 5.1.11, certified in Coq:

left and right products: unicity
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Lemma lprod_u: forall X X’ Y Y’( f1 f2: term (Y∗Y’) (X∗X’)),
(pi1 o f1 ∼ pi1 o f2) ∧ (pi2 o f1 == pi2 o f2) → f1 == f2.

Proof. intros X X’ Y Y’ f1 f2 (H0&H1). apply lpair_u. split; [exact H0| exact H1]. Qed.

Lemma rprod_u: forall X X’ Y Y’( f1 f2: term (Y∗Y’) (X∗X’)),
(pi1 o f1 == pi1 o f2) ∧ (pi2 o f1 ∼ pi2 o f2) → f1 == f2.

Proof. intros X X’ Y Y’ f1 f2 (H0&H1). apply rpair_u. split; [exact H0| exact H1]. Qed.

It suffices to respectively apply (lpair_u) and (rpair_u) to close the goals.

Remark 5.2.5. See the sources Derived_Pairs.v and Derived_Products.v for related
implementation details.

5.3 Proving properties of the state

In [PP02, §3], Plotkin and Power have introduced seven properties of the global state. In
addition, we introduce an eighth property which will become useful when we apply this
idea of reasoning to a programming language such as IMP (or while). Here, as an example
of use, we provide the decorated versions of these properties together with their proofs in
a decorated setting and with the related formalizations in Coq.

(1)d Annihilation lookup-update. Reading the value of a location i and then updating the

location i with the obtained value is just like doing nothing. ∀ i ∈ Loc, update
(2)
i ◦

lookup
(1)
i ≡ id

(0)
1

: 1→ 1.

(2)d Interaction lookup-lookup. Reading twice the same location i is the same as reading

it once. ∀ i ∈ Loc, lookup
(1)
i ◦ 〈 〉

(0)
Vi
◦ lookup

(1)
i ≡ lookup

(1)
i : 1→ Vi.

(3)d Interaction update-update. Storing a value x and then a value x′ at the same loca-

tion i is just like storing the value x′ in the location. ∀ i ∈ Loc, update
(2)
i ◦ π

(0)
2 ◦

(update
(2)
i ×r id

(0)
i ) ≡ update

(2)
i ◦ π

(0)
2 : Vi × Vi → 1.

(4)d Interaction update-lookup. When one stores a value x in a location i and then reads

the location i, one gets the value x. ∀ i ∈ Loc, lookup
(1)
i ◦update

(2)
i ∼ id

(0)
Vi

: Vi → Vi.

(5)d Commutation lookup-lookup. The order of reading two different locations i and j

does not matter. ∀ i 6= j ∈ Loc, (id
(0)
Vi
×r lookup

(1)
j )◦π

−1(0)
1 ◦lookup

(1)
i ≡ permut

(0)
j,i ◦

(id
(0)
Vj
×r lookup

(1)
i ) ◦ π

−1(0)
1 ◦ lookup

(1)
j : 1→ Vi × Vj where π−1(0)1 := 〈id, 〈 〉〉

(0)
l .

(6)d Commutation update-update. The order of storing in two different locations i and j

does not matter. ∀ i 6= j ∈ Loc, update
(2)
j ◦ π

(0)
2 ◦ (update

(2)
i ×r id

(0)
Vj

) ≡ update
(2)
i ◦

π
(0)
1 ◦ (id

(0)
Vi
×l update

(2)
j ) : Vi × Vj → 1.

(7)d Commutation update-lookup. The order of storing in a location i and reading another

location j does not matter. ∀ i 6= j ∈ Loc, lookup
(1)
j ◦ update

(2)
i ≡

π
(0)
2 ◦ (update

(2)
i ×r id

(0)
Vj

) ◦ (id
(0)
Vi
×l lookup

(1)
j ) ◦ π

−1(0)
1 : Vi → Vj.

(8)d Commutation lookup-constant. Just after storing a constant c in a location i, ob-
serving the content of i is the same as regenerating the constant c. ∀ i ∈ Loc, ∀ c ∈

Vi; lookup
(1)
i ◦ update

(2)
i ◦ constant c

(0) ≡ constant c(0) ◦ update
(2)
i ◦ constant c

(0) :
1→ Vi.
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The decorated logic for the state (Lst) is used to prove above the stated properties. Such
proofs are enriched with Coq certifications. Within the Coq scripts, one can simply relate
the Coq proof to the proof on the paper by observing the comments following crucial steps.
Notice also that the use of associativity of composition in the Coq proofs just balances the
proof tree into an intended shape. This is omitted in the proofs on the paper.

Lemma 5.3.1. Annihilation lookup-update (ALU). Reading the value of a location i and
then updating the location i with the obtained value is just like doing nothing.

∀i ∈ Loc, update
(2)
i ◦ lookup

(1)
i ≡ id

(0)
1

(5.1)

Proof. (1) Due to (ax1), we have lookup
(1)
i ◦ update

(2)
i ∼ id

(0)
Vi

. By (wsubs), we obtain

lookup
(1)
i ◦update

(2)
i ◦lookup

(1)
i ∼ id

(0)
Vi
◦lookup

(1)
i . We first throw the identity out by

the use of (ids), then (idt) gives lookup(1)i ◦update
(2)
i ◦lookup

(1)
i ∼ lookup

(1)
i ◦ id

(0)
1

.

∀ i ∈ Loc
(ax1)

lookup
(1)
i ◦ update

(2)
i ∼ idVi

(wsubs)
lookup

(1)
i ◦ update

(2)
i ◦ lookup

(1)
i ∼ idVi

◦ lookup
(1)
i

(ids)
lookup

(1)
i ◦ update

(2)
i ◦ lookup

(1)
i ∼ lookup

(1)
i

(idt)
lookup

(1)
i ◦ update

(2)
i ◦ lookup

(1)
i ∼ lookup

(1)
i ◦ id

(0)
1

(2) We have lookup
(1)
k ◦ update

(2)
i ∼ lookup

(1)
k ◦ 〈 〉

(0)
Vi

, for each location k such that

k 6= i, due to (ax2). We get lookup
(1)
k ◦ update

(2)
i ◦ lookup

(1)
i ∼ lookup

(1)
k ◦ 〈 〉

(0)
Vi
◦

lookup
(1)
i thanks to (wsubs). Besides, we have 〈 〉(0)Vi ◦lookup

(1)
i ≡ id

(0)
1

using (s-unit).

Therefore, we finally have lookup
(1)
k ◦ update

(2)
i ◦ lookup

(1)
i ∼ lookup

(1)
k ◦ id

(0)
1

.

∀ i k ∈ Loc s.t. i 6= k
(ax2)

lookup
(1)
k ◦ update

(2)
i ∼ lookup

(1)
k ◦ 〈 〉

(0)
Vi

(wsubs)
lookup

(1)
k ◦ update

(2)
i ◦ lookup

(1)
i ∼ lookup

(1)
k ◦ 〈 〉

(0)
Vi
◦ lookup

(1)
i

...
(s-unit)

lookup
(1)
i ◦ 〈 〉

(0)
Vi
≡ id

(0)
1

lookup
(1)
k ◦ update

(2)
i ◦ lookup

(1)
i ∼ lookup

(1)
k ◦ id

(0)
1

From the items (1) and (2), (local-global) yields update
(2)
i ◦ lookup

(1)
i ≡ id

(0)
1

.

In addition, one can start with the goal statement itself, continue with manipulations on
it and finally end up with a truth value. This is actually constructing the proof tree with
a bottom-up strategy. For instance, let us start with applying (local-global) on the above
stated goal and continue as follows:

(1) for any location k, when k = i, the goal looks like lookup(1)i ◦update
(2)
i ◦lookup

(1)
i ∼

lookup
(1)
i ◦ id

(0)
1

.

(1.1) we apply (ids) and (idt) to obtain lookup
(1)
i ◦ update

(2)
i ◦ lookup

(1)
i ∼ id

(0)
Vi
◦

lookup
(1)
i .

(1.2) by applying (wsubs), we get update(2)i ◦ lookup
(1)
i ∼ id

(0)
Vi

. Finally, the applica-
tion of (ax1) resolves the goal.

(2) when k 6= i, the goal becomes lookup
(1)
k ◦ update

(2)
i ◦ lookup

(1)
i ∼ lookup

(1)
k ◦ id

(0)
1

.
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(2.1) thanks to (s-unit), we have lookup(1)i ◦〈 〉
(0)
Vi
≡ id

(0)
1

thus lookup(1)k ◦update
(2)
i ◦

lookup
(1)
i ∼ lookup

(1)
k ◦ 〈 〉

(0)
Vi
◦ lookup

(1)
i .

(2.2) by applying (wsubs), we get lookup(1)k ◦ update
(2)
i ∼ lookup

(1)
k ◦ 〈 〉

(0)
Vi

. Finally,
the application of (ax2) resolves the goal.

We express the formalization of the statement (ALU) along with its certified proof in Coq.
Note that the proof proceeds by manipulations on the goal statement(s) to end up with
some truth value. Therefore, it follows the same lines as the proof given just above. By
using the apparent numbering, one can relate the proof steps in English to the ones in Coq.

Lemma ALU: forall i: Loc, update i o lookup i == id.
Proof.

intro i.
apply eq3. intro k. destruct (Loc_dec i k) as [Ha|Hb]. rewrite Ha.
(* k = i *) (* (1) *)

rewrite ids. setoid_rewrite ←idt at 6. rewrite assoc. (* (1.1) *)

apply wsubs; [apply ax1| reflexivity]. (* (1.2) *)

(* k <> i *)

cut((@forget (V i)) o lookup i == (@id unit))·
[ intro H0| setoid_rewrite s_unit; [reflexivity| decorate| decorate]].

rewrite ←H0. setoid_rewrite assoc. (* (2.1) *)

apply wsubs; [apply ax2; exact Hb| reflexivity]. (* (2.2) *)

Qed.

where Loc_dec is a variant of excluded middle ensuring that two locations i and k are
either the same or different.

Parameter Loc_dec: forall i j: Loc, {i=j}+ {i<>j}.

Lemma 5.3.2. Interaction lookup-lookup (ILL). Reading twice the same location i is the
same as reading it once.

∀ i ∈ Loc, lookup
(1)
i ◦ 〈 〉

(0)
Vi
◦ lookup

(1)
i ≡ lookup

(1)
i : 1→ Vi (5.2)

Proof. By (s-unit), we have 〈 〉(0)Vi ◦ lookup
(1)
i ≡ id

(0)
1

. Then, the use of (replsubs) gives

lookup
(1)
i ◦ 〈 〉

(0)
Vi
◦ lookup

(1)
i ≡ lookup

(1)
i ◦ id

(0)
1

. By (ids), we simply conclude with

lookup
(1)
i ◦ 〈 〉

(0)
Vi
◦ lookup

(1)
i ≡ lookup

(1)
i

.

..
(s-unit)

〈 〉
(0)
Vi
◦ lookup

(1)
i ≡ id

(0)
1

(replsubs)
lookup

(1)
i ◦ 〈 〉

(0)
Vi
◦ lookup

(1)
i ≡ lookup

(1)
i ◦ id

(0)
1

(ids)
lookup

(1)
i ◦ 〈 〉

(0)
Vi
◦ lookup

(1)
i ≡ lookup

(1)
i

Let us continue with another proof the same statement but this time following the bottom-
up strategy: lookup(1)i ◦ 〈 〉

(0)
Vi
◦ lookup

(1)
i ≡ lookup

(1)
i :

(1) by (ids), we obtain lookup
(1)
i ◦ 〈 〉

(0)
Vi
◦ lookup

(1)
i ≡ lookup

(1)
i ◦ id

(0)
1

.

(2) we apply (replsubs) and get 〈 〉(0)Vi ◦ lookup
(1)
i ≡ id

(0)
1

.

(3) finally, the use of (s-unit) closes the goal.
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Below, we give the related formalization of (ILL) in Coq with its certified proof. The proof
follows a the bottom-up strategy:

Lemma ILL: forall i, lookup i o forget o lookup i == lookup i.
Proof.

intro i. rewrite ←assoc.
setoid_rewrite ←ids at 6. (* (1) *)

apply replsubs; [reflexivity| ]. (* (2) *)

setoid_rewrite s_unit; [reflexivity| decorate| decorate]. (* (3) *)

Qed.

The proofs of the remaining properties can be found in Appendix A. By using them, we
can prove program properties with the global state effect.

Remark 5.3.3. See the source Proofs.v for related implementation details.

5.4 Hilbert-Post completeness for the state effect

Now, in order to prove the completeness of the decorated theory for the state effect under
suitable assumptions, we first determine canonical forms and then we study the equations
between terms in such forms [DDE+15].

The logic Lst is precisely introduced and its categorical interpretation is studied in Sec-
tion 5.1. Let the logic Lst−⊗ be the variant of Lst obtained by dropping the categorical
pairs/products. Let the logic Lmeq+1 be an extension to Lmeq with the use of unit (1) type
and the following inference rules: X

〈 〉X : X→1
and f : X→1

f∼=〈 〉X
. Now, the core theory of states

Tst is defined as a theory of the logic Lst−⊗ generated from the fundamental equation
lookup

(1)
i ◦ update

(2)
i ∼ id

(0)
Vi

and from some consistent theory Teq of the logic Lmeq+1;
with the notations of Section 4.5, Tst = F (Teq). In this section, we prove that the theory
Tst of the logic Lst−⊗ is Hilbert-Post complete with respect to the logic Lmeq+1.

Remark 5.4.1. Note that a Coq certification of the whole Hilbert-Post completeness proof,
presented in this section, can be found in the package hp-thesis: https://forge.imag.
fr/frs/download.php/696/HPC-THESIS.tar.gz. Check out the HPCompletenessCoq.v

file inside the st-hp folder. Our main result is Theorem 5.4.9 about the relative Hilbert-
Post completeness of the decorated theory Tst of states under suitable assumptions. It is
assumed that there is only one location i and we write V , lookup and update instead
of Vi, lookup i(1) and update i(2). The study of completeness proof with the signature
including several locations and products is considered as a future goal.

Note also that we do not explicitly have the relative Hilbert-Post completeness (rHPC)
formalization in Coq. Thanks to the second characterization of rHPC given in Corol-
lary 4.5.10, it suffices to show that any formula e in the logic Lst−⊗ is (T -)equivalent to
some set of formulae E0 in the logic Lmeq+1:

Tst + Th(E0) = Tst + Th(e).

This has been checked in Coq.

Lemma 5.4.2. 1. For all pure terms u
(0)
1 , u

(0)
2 : V → Y , one has: u

(0)
1 ≡ u

(0)
2 ⇐⇒

u
(0)
1 ◦ lookup ≡ u

(0)
2 ◦ lookup ⇐⇒ u

(0)
1 ◦ lookup ◦ update ≡ u

(0)
2 ◦ lookup ◦ update.

2. For all pure terms u(0) : V → Y , v(0) : 1 → Y , one has: u(0) ≡ v(0) ◦ 〈 〉
(0)
V ⇐⇒

u(0) ◦ lookup ≡ v(0).
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3. For all modifiers f
(2)
1 , f

(2)
2 : X → V , update ◦ f

(2)
1 ≡ update ◦ f

(2)
2 ⇐⇒ f

(2)
1 ∼ f

(2)
2 .

Proof. 1. Implications from left to right are clear. Conversely, u(0)1 ◦lookup◦update ≡

u
(0)
2 ◦ lookup ◦ update =⇒ u

(0)
1 ≡ u

(0)
2 : after converting the strong equation into a

weak equation, the use of axiom (ax1), since the term u
(0)
1 is pure, gives u(0)1 ∼ u

(0)
2 .

Now, neither of u1 and u2 are modifiers, so that u(0)1 ≡ u
(0)
2 .

2. First, since 〈 〉(0)V ◦lookup : 1→ 1 is an accessor we have 〈 〉(0)V ◦lookup ≡ id
(0)
1

. Now,

if u(0) ≡ v(0) ◦ 〈 〉(0)V then u(0) ◦lookup ≡ v(0) ◦ 〈 〉(0)V ◦lookup, so that u(0) ◦lookup ≡

v(0). Conversely, if u(0) ◦ lookup ≡ v(0) then u(0) ◦ lookup ≡ v(0) ◦ 〈 〉
(0)
V ◦ lookup,

and by Point (1) this means that u(0) ≡ v(0) ◦ 〈 〉(0)V .

3. Assuming update ◦ f
(2)
1 ≡ update ◦ f

(2)
2 , we get lookup ◦ update ◦ f

(2)
1 ≡ lookup ◦

update ◦ f
(2)
2 , thanks to (replsubs). Now, we convert the strong equation into a

weak one and apply (ax1) on both sides so as to obtain f
(2)
1 ∼ f

(2)
2 . Conversely, if

f
(2)
1 ∼ f

(2)
2 , by rewriting (wsubs), we obtain id(0)V ◦ f

(2)
1 ∼ id

(0)
V ◦ f

(2)
2 . We then apply

(ax2) and get lookup ◦ update ◦ f (2)1 ∼ lookup ◦ update ◦ f
(2)
2 . Since we consider a

single location, (local-global) gives update ◦ f (2)1 ≡ update ◦ f
(2)
2 .

Proposition 5.4.3. 1. For each accessor a(1) : X → Y , either a is pure or there is
a pure term u(0) : V → Y and an accessor v(1) : X → 1 such that a(1) ≡ u(0) ◦
lookup(1) ◦ v(1).

2. For each modifier f (2) : X → Y , either f is an accessor or there is an accessor a(1) :
X → V and a pure term u(0) : V → Y such that f (2) ≡ u(0) ◦ lookup ◦ update ◦ a(1).

Proof. 1. The proof proceeds by structural induction. If a is pure, then the result is
obvious. If a = lookup, then it follows that lookup ≡ id(0)V ◦lookup◦id

(1)
1

. Otherwise,

a can be written as a = a
(1)
1 ◦a

(1)
2 such that f1 : Z → Y and a2 : X → Z. By induction,

a1 and a2 are either pure or a1 ≡ u1 ◦ lookup◦ v1 and a2 ≡ u2 ◦ lookup ◦ v2 for some
pure terms u(0)1 : V → Y , u

(0)
2 : V → Z and some accessors v(1)1 : Z → 1 , v

(1)
2 : X → 1.

So, there are four cases to consider.

(1.1) If both a1 and a2 are pure, then a is.

(1.2) If a1 is pure while a2 is an accessor, we get f ≡ (f1 ◦ u2)
(0) ◦ lookup ◦ v

(1)
2 .

(1.3) Symmetrically when a2 is pure while a1 is an accessor, we get f ≡ u(0)1 ◦lookup◦
(v1 ◦ a2)

(1).

(1.4) If both are accessors, then f ≡ u
(0)
1 ◦ lookup ◦ v

(1)
1 ◦ u

(0)
2 ◦ lookup ◦ v

(1)
2 . We

have v(1)1 ◦u
(0)
2 ◦lookup ≡ id

(0)
1

, thanks to (s-unit). The use of (replsubs) yields

u
(0)
1 ◦ lookup

(1) ◦ v
(1)
1 ◦ u

(0)
2 ◦ lookup

(1) ◦ v
(0)
2 ≡ u

(0)
1 ◦ lookup

(1) ◦ v
(0)
2 . Hence,

we obtain f ≡ u(0)1 ◦ lookup
(1) ◦ v

(0)
2 .

2. The proof proceeds by structural induction. If f is an accessor, then the result is
obvious. If f = update, then it follows that update ≡ 〈 〉(0)V ◦ lookup ◦ update ◦ id

(1)
V

(notice that 〈 〉(0)V ◦ lookup ≡ id
(0)
1

due to (s-unit)). Otherwise, f can be written in

a way as f = f
(2)
1 ◦ f

(2)
2 such that f1 : Z → Y and f2 : X → Z. By induction, either
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f1 and f2 are accessors or f1 ≡ u
(0)
1 ◦ lookup ◦ update ◦ a

(1)
1 and f2 ≡ u

(0)
2 ◦ lookup ◦

update◦a
(1)
2 for some pure term u1 , u2 and some accessors a1 , a2. So, there are four

cases to consider.

(2.1) If both f1 and f2 are accessors, then f is also an accessor.

(2.2) if f2 is a modifier whilst f1 is an accessor, we obtain f ≡ f
(1)
1 ◦ u

(0)
2 ◦ lookup ◦

update ◦ a
(1)
2 . Thanks to Point 1, f1 ≡ w

(0)
1 ◦ lookup ◦ v

(1)
1 for some pure term

w
(0)
1 : V → Y and some accessor v(1)1 : Z → 1. Thus, the equation expands

into f ≡ w
(0)
1 ◦ lookup ◦ v

(1)
1 ◦ u

(0)
2 ◦ lookup ◦ update ◦ a

(1)
2 . Due to (s-unit),

we have v
(1)
1 ◦ u

(0)
2 ◦ lookup ≡ id

(0)
1

. Thanks to (replsubs), we end up with

w
(0)
1 ◦lookup◦v

(1)
1 ◦u

(0)
2 ◦lookup◦update◦a

(1)
2 ≡ w

(0)
1 ◦lookup◦update◦a

(1)
2 .

Thus, f ≡ w(0)
1 ◦ lookup ◦ update ◦ a

(1)
2 .

(2.3) Symmetrically when f1 is a modifier while f2 is an accessor, we get f ≡ u
(0)
1 ◦

lookup ◦ update ◦ (a1 ◦ f2)
(1).

(2.4) If both are modifiers, then f ≡ u(0)1 ◦lookup◦update◦a
(1)
1 ◦u

(0)
2 ◦lookup◦update◦

a
(1)
2 , such that u(0)1 : V → Y , a(1)1 : Z → V , u(0)2 : V → Z and a(1)2 : X → V . Here,

the reasoning proceeds on a(1)1 . Therefore, we have two subcases:

(2.4.1) Let us first consider the case where a1 is pure. Since a(0)1 ◦u
(0)
2 is pure, from

(pwrepl), we have a(0)1 ◦ u
(0)
2 ∼ a

(0)
1 ◦u

(0)
2 ◦ lookup ◦ update. Now, we apply

Point 3 in Lemma 5.4.2 and get update(2) ◦ a(0)1 ◦ u
(0)
2 ◦ ≡ update(2) ◦ a

(0)
1 ◦

u
(0)
2 ◦lookup

(1)◦update(2). By (replsubs), we obtain u(0)1 ◦lookup◦update◦

a
(0)
1 ◦u

(0)
2 ◦a

(1)
2 ≡ u

(0)
1 ◦lookup◦update◦a

(0)
1 ◦u

(0)
2 ◦lookup◦update◦a

(1)
2 .

Hence f ≡ u(0)1 ◦ lookup ◦ update ◦ (a1 ◦ u2 ◦ a2)
(1).

(2.4.2) Let us also consider the case where a1 is a non-pure accesor (it has lookup).

Thanks to Point 1, we obtain a(1)1 ≡ w
(0)
1 ◦lookup◦v

(1)
1 such that w(0)

1 : V →

V and v(1)1 : Z → 1. So that f ≡ u(0)1 ◦lookup◦update◦w
(0)
1 ◦lookup◦v

(1)
1 ◦

u
(0)
2 ◦lookup◦update◦a

(1)
2 . Due to (s-unit), v(1)1 ◦u

(0)
2 ≡ 〈 〉V . By (replsubs),

lookup◦v
(1)
1 ◦u

(0)
2 ◦lookup ≡ lookup◦〈 〉V ◦lookup. Thanks to Lemma 5.3.2,

we obtain lookup ◦ v
(1)
1 ◦ u

(0)
2 ◦ lookup ≡ lookup. By (replsubs), w(0)

1 ◦

lookup ◦ v
(1)
1 ◦ u

(0)
2 ◦ lookup ◦ update ≡ w

(0)
1 ◦ lookup ◦ update. Here, we

first convert the strong equation into a weak equation and then make use
of (ax1) on the right (since w1 is pure) which gives w(0)

1 ◦ lookup ◦ v
(1)
1 ◦

u
(0)
2 ◦lookup◦update ∼ w

(0)
1 . Now, applying Point 3 in Lemma 5.4.2 gives

update(2) ◦w
(0)
1 ◦ lookup ◦ v

(1)
1 ◦ u

(0)
2 ◦ lookup ◦ update ≡ update(2) ◦w

(0)
1 .

Thanks to (replsubs), we end up with u(0)1 ◦lookup◦update◦w
(0)
1 ◦lookup◦

v
(1)
1 ◦ u

(0)
2 ◦ lookup ◦ update ◦ a

(1)
2 ≡ u

(0)
1 ◦ lookup ◦ update ◦ w

(0)
1 ◦ a

(1)
2 .

Therefore, f ≡ u(0)1 ◦ lookup ◦ update ◦ (w1 ◦ a2)
(1).

Corollary 5.4.4. For each accessor a(1) : X → Y , either a is pure or there is a pure term

v(0) : V → Y such that a(1) ≡ v(0) ◦ lookup(1) ◦ 〈 〉
(0)
X .

Proof. If the accessor a(1) : X → Y is not pure, then it can be written in a unique way as
a(1) = v(0) ◦lookup◦ b(1) for some pure term v(0) : V → Y and some accessor b(1) : X → 1,
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thanks to the Point 1 in 5.4.3. Due to (s-unit), we have b(1) ≡ 〈 〉
(0)
X , then the result

follows.

Thanks to Propositions 5.4.3, in order to study equations in the logic Lst we may restrict
our study to pure terms, accessors of the form v(0) ◦ lookup ◦ 〈 〉

(0)
X and modifiers of the

form u(0) ◦ lookup ◦ update ◦ a(1).

Now, Proposition 5.4.5 shows that

(1) equations between modifiers can be reduced to some equations between accessors,

(2) equations between accessors can be reduced to some equations between pure terms.

Proposition 5.4.5. 1. For all a
(1)
1 , a

(1)
2 : X → V and u

(0)
1 , u

(0)
2 : V → Y , let f

(2)
1 =

u
(0)
1 ◦lookup◦update◦a

(1)
1 : X → Y and f

(2)
2 = u

(0)
2 ◦lookup◦update◦a

(1)
2 : X → Y .

Then {

f1 ∼ f2 ⇐⇒ u
(0)
1 ◦ a

(1)
1 ≡ u

(0)
2 ◦ a

(1)
2

f1 ≡ f2 ⇐⇒ a
(1)
1 ≡ a

(1)
2 and u

(0)
1 ◦ a

(1)
1 ≡ u

(0)
2 ◦ a

(1)
2

2. For all a
(1)
1 : X → V , u

(0)
1 : V → Y and a

(1)
2 : X → Y , let f

(2)
1 = u

(0)
1 ◦ lookup ◦

update ◦ a
(1)
1 : X → Y . Then

{

f1 ∼ a
(1)
2 ⇐⇒ u

(0)
1 ◦ a

(1)
1 ≡ a

(1)
2

f1 ≡ a
(1)
2 ⇐⇒ u

(0)
1 ◦ a

(1)
1 ≡ a

(1)
2 and a

(1)
1 ≡ lookup ◦ 〈 〉

(0)
X

3. Let us assume that 〈 〉
(0)
X is an epimorphism with respect to accessors. For all

v
(0)
1 , v

(0)
2 : V → Y let a

(1)
1 = v

(0)
1 ◦ lookup ◦ 〈 〉

(0)
X : X → Y and a

(1)
2 = v

(0)
2 ◦

lookup ◦ 〈 〉
(0)
X : X → Y . Then

a
(1)
1 ≡ a

(1)
2 ⇐⇒ v

(0)
1 ≡ v

(0)
2

4. Let us assume that 〈 〉
(0)
V is an epimorphism with respect to accessors and that there

exists a pure term k
(0)
X : 1 → X. For all v

(0)
1 : V → Y and v

(0)
2 : X → Y , let

a
(1)
1 = v

(0)
1 ◦ lookup ◦ 〈 〉

(0)
X : X → Y . Then

a
(1)
1 ≡ v

(0)
2 ⇐⇒ v

(0)
1 ≡ v

(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
V and v

(0)
2 ≡ v

(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
X

Proof. 1. We have four implications to show:

(1.1) u(0)1 ◦ lookup ◦ update ◦ a
(1)
1 ∼ u

(0)
2 ◦ lookup ◦ update ◦ a

(1)
1 =⇒ u

(0)
1 ◦ a

(1)
1 ≡

u
(0)
2 ◦ a

(1)
2 : By (ax1) and (wprepl), since u(0)1 and u(0)2 are both pure, we obtain

u
(0)
1 ◦a

(1)
1 ∼ u

(0)
2 ◦a

(1)
2 . Due to the lack of modifiers, we end up with u(0)1 ◦a

(1)
1 ≡

u
(0)
2 ◦ a

(1)
2 .

(1.2) u(0)1 ◦ a
(1)
1 ≡ u

(0)
2 ◦ a

(1)
2 =⇒ u

(0)
1 ◦ lookup ◦ update ◦ a

(1)
1 ∼ u

(0)
2 ◦ lookup ◦

update◦a
(1)
1 : We first convert the strong equation into a weak equation. Then,

due to (ids) we get u(0)1 ◦ id
(0) ◦ a

(1)
1 ∼ u

(0)
2 ◦ id

(0) ◦ a
(1)
2 . By rewriting (ax1)

on both sides (since u1 is a pure term), we get u(0)1 ◦ lookup ◦ update ◦ a
(1)
1 ∼

u
(0)
2 ◦ lookup ◦ update ◦ a

(1)
2 .
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(1.3) u(0)1 ◦ lookup ◦ update ◦ a
(1)
1 ≡ u

(0)
2 ◦ lookup ◦ update ◦ a

(1)
2 =⇒ a

(1)
1 ≡

a
(1)
2 and u

(0)
1 ◦ a

(1)
1 ≡ u

(0)
2 ◦ a

(1)
2 :

(1.3.1) Given u
(0)
1 ◦ lookup ◦ update ◦ a

(1)
1 ≡ u

(0)
2 ◦ lookup ◦ update ◦ a

(1)
2 , we get

〈 〉
(0)
Y ◦u

(0)
1 ◦lookup◦update◦a

(1)
1 ≡ 〈 〉

(0)
Y ◦u

(0)
2 ◦lookup◦update◦a

(1)
2 thanks

to (replsubs) rule. Thanks to (s-unit), we have 〈 〉(0)Y ◦u
(0)
i ◦lookup ≡ id

(0)
1

,

for each i ∈ {1, 2}. Therefore, we obtain update ◦ a
(1)
1 ≡ update ◦ a

(1)
2 .

Now, by applying Point 3 in Lemma 5.4.2, we have a(1)1 ∼ a
(1)
2 . The lack of

modifiers yields a(1)1 ≡ a
(1)
2 .

(1.3.2) First, we convert the strong equation into a weak equation and apply (ax1)

on both sides so as to obtain u
(0)
1 ◦ a

(1)
1 ∼ u

(0)
2 ◦ a

(1)
2 . Since there is no

modifiers involved, we conclude with u(0)1 ◦ a
(1)
1 ≡ u

(0)
2 ◦ a

(1)
2 .

(1.4) a(1)1 ≡ a
(1)
2 and u

(0)
1 ◦ a

(1)
1 ≡ u

(0)
2 ◦ a

(1)
2 =⇒ u

(0)
1 ◦ lookup ◦ update ◦ a

(1)
1 ≡

u
(0)
2 ◦ lookup ◦ update ◦ a

(1)
2 . We show in below two steps that they have the

same effect and the same result:

(1.4.1) Starting from a
(1)
1 ≡ a

(1)
2 , we get id(0)

1
◦ update ◦ a

(1)
1 ≡ id

(0)
1
◦ update ◦ a

(1)
2

thanks to (replsubs). Due to (s-unit), we have 〈 〉(0)Y ◦u
(0)
i ◦lookup ≡ 〈 〉

(0)
1
≡

id
(0)
1

for each i ∈ {1, 2}. Therefore, we obtain 〈 〉(0)Y ◦u
(0)
1 ◦lookup◦update◦

a
(1)
1 ≡ 〈 〉

(0)
Y ◦ u

(0)
2 ◦ lookup ◦ update ◦ a

(1)
2 .

(1.4.2) Starting from u
(0)
1 ◦a

(1)
1 ≡ u

(0)
2 ◦a

(1)
2 , we have u(0)1 ◦id

(0)
V ◦a

(1)
1 ≡ u

(0)
2 ◦id

(0)
V ◦a

(1)
2

thanks to (ids). Here, we first convert the strong equation into the weak

equation and then apply (ax1) on both sides (provided that u(0)1 and u
(0)
2

are pure) so as to obtain u
(0)
1 ◦ lookup ◦ update ◦ a

(1)
1 ∼ u

(0)
2 ◦ lookup ◦

update ◦ a
(1)
2 .

Now, the (effect) rule yields u(0)1 ◦ lookup ◦ update ◦ a
(1)
1 ≡ u

(0)
2 ◦ lookup ◦

update ◦ a
(1)
2 given above items (1.4.1) and (1.4.2).

2. Here, we again have four cases to prove:

(2.1) u(0)1 ◦ lookup ◦ update ◦ a
(1)
1 ∼ a

(1)
2 =⇒ a

(1)
2 ≡ u

(0)
1 ◦ a

(1)
1 : By (ax1) and the

fact that u1 is a pure term, we get u(0)1 ◦ a
(1)
1 ∼ a

(1)
2 . The lack of modifiers gives

u
(0)
1 ◦ a

(1)
1 ≡ a

(1)
2 .

(2.2) a(1)2 ≡ u
(0)
1 ◦ a

(1)
1 =⇒ u

(0)
1 ◦ lookup ◦ update ◦ a

(1)
1 ∼ a

(1)
2 : We start with

converting the strong equation into a weak equation: a(1)2 ∼ u
(0)
1 ◦ a

(1)
1 . Thanks

to (ids), we get a(1)2 ∼ u
(0)
1 ◦id

(0) ◦a
(1)
1 . By (ax1), we obtain a(1)2 ∼ u

(0)
1 ◦lookup◦

update ◦ a
(1)
1 .

(2.3) u(0)1 ◦lookup◦update◦a
(1)
1 ≡ a

(1)
2 =⇒ lookup◦〈 〉

(0)
X ≡ a

(1)
1 and u(0)1 ◦a

(1)
1 ≡ a

(1)
2 :

(2.3.1) Given u(0)1 ◦lookup◦update◦a
(1)
1 ≡ a

(1)
2 . we can have 〈 〉(0)Y ◦u

(0)
1 ◦lookup◦

update ◦ a
(1)
1 ≡ 〈 〉

(0)
Y ◦ a

(1)
2 thanks to (replsubs). Due to (s-unit), we have

〈 〉
(0)
Y ◦ u

(0)
1 ◦ lookup ≡ id1. Therefore, update ◦ a(1)1 ≡ 〈 〉

(0)
Y ◦ a

(1)
2 . Again

by (s-unit), we have 〈 〉(0)Y ◦ a
(1)
2 ≡ 〈 〉

(0)
X . Hence, update ◦ a(1)1 ≡ 〈 〉

(0)
X . The

(replsubs) gives lookup◦update◦a(1)1 ≡ lookup◦〈 〉
(0)
X . Now, we convert the

strong equation into a weak equation and then apply (ax1) so as to obtain

a
(1)
1 ∼ lookup ◦ 〈 〉

(0)
X . The lack of modifiers yields a(1)1 ≡ lookup ◦ 〈 〉

(0)
X .
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(2.3.2) We get u(0)1 ◦lookup◦update◦a
(1)
1 ∼ a

(1)
2 by converting the strong equation

into a weak equation. On the left, we can apply (ax1), since u1 is a pure

term, and get u(0)1 ◦a
(1)
1 ∼ a

(1)
2 . The lack of modifiers yields u(0)1 ◦a

(1)
1 ≡ a

(1)
2 .

(2.4) lookup◦〈 〉
(0)
X ≡ a

(1)
1 and u(0)1 ◦a

(1)
1 ≡ a

(1)
2 =⇒ u

(0)
1 ◦lookup◦update◦a

(1)
1 ≡ a

(1)
2 :

(2.4.1) Starting from lookup ◦ 〈 〉
(0)
X ≡ a

(1)
1 , due to (replsubs), we obtain 〈 〉(0)Y ◦

u
(0)
1 ◦lookup◦update◦lookup◦〈 〉

(0)
X ≡ 〈 〉

(0)
Y ◦u

(0)
1 ◦lookup◦update◦a

(1)
1 .

Since Lemma 5.3.1 states that update◦lookup ≡ id(0)V , we get 〈 〉(0)Y ◦u
(0)
1 ◦

lookup ◦ 〈 〉
(0)
X ≡ 〈 〉

(0)
Y ◦ u

(0)
1 ◦ lookup ◦ update ◦ a

(1)
1 . Besides, we have

〈 〉
(0)
Y ◦u

(0)
1 ◦lookup ≡ id

(0)
1

, thanks to (s-unit). Thus, 〈 〉(0)X ≡ update◦a
(1)
1 .

(2.4.2) Given u
(0)
1 ◦ a

(1)
1 ≡ a

(1)
2 , we first convert the strong equation into a weak

equation and then apply (ids) so as to get u(0)1 ◦ id
(0)
V ◦a

(1)
1 ∼ a

(1)
2 . Since, u1

is a pure term, we can apply (ax1) and obtain u(0)1 ◦lookup◦update◦a
(1)
1 ∼

a
(1)
2 . The above point (2.4.1) gives u(0)1 ◦ lookup ◦ 〈 〉

(0)
X ∼ a

(1)
2 . Now, the

lack of modifiers yields u(0)1 ◦ lookup ◦ 〈 〉
(0)
X ≡ a

(1)
2 . Again due to the above

point (2.4.1), we end up with u(0)1 ◦ lookup ◦ update ◦ a
(1)
1 ≡ a

(1)
2 .

3. We want to show that a(1)1 ≡ a
(1)
2 ⇐⇒ v

(0)
1 ≡ v

(0)
2 :

(3.1) Let us start with v
(0)
1 ◦ lookup ◦ 〈 〉

(0)
X ≡ v2 ◦ lookup ◦ 〈 〉

(0)
X =⇒ v

(0)
1 ≡ v

(0)
2 .

Since 〈 〉(0)X is an epimorphism with respect to accessors, we get v(0)1 ◦ lookup ≡

v
(0)
2 ◦ lookup. By Point 1 in Lemma 5.4.2, we end up with v(0)1 ≡ v

(0)
2 .

(3.2) Conversely, if v(0)1 ≡ v
(0)
2 then v(0)1 ◦ lookup ◦ 〈 〉

(0)
X ≡ v2 ◦ lookup ◦ 〈 〉

(0)
X due to

(replsubs).

4. Now for a(1)1 ≡ v
(0)
2 ⇐⇒ v

(0)
1 ≡ v

(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
V and v(0)2 ≡ v

(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
X :

(4.1) Let us first consider the left to right implication.

(4.1.1) v
(0)
1 ◦lookup◦ 〈 〉

(0)
X ≡ v

(0)
2 : Since v(0)1 ≡ v

(0)
2 ◦k

(0)
X ◦ 〈 〉

(0)
V , we get v(0)2 ◦k

(0)
X ◦

〈 〉
(0)
V ◦lookup◦〈 〉

(0)
X ≡ v

(0)
2 . Due to (s-unit), we have 〈 〉(0)V ◦lookup◦〈 〉

(0)
X ≡

〈 〉
(0)
X . Therefore, v(0)2 ◦ k

(0)
X ◦ 〈 〉

(0)
X ≡ v

(0)
2 .

(4.1.2) v
(0)
1 ◦lookup◦ 〈 〉

(0)
X ≡ v

(0)
2 : We get v(0)1 ◦lookup◦ 〈 〉

(0)
X ≡ v

(0)
2 ≡ v

(0)
2 ◦k

(0)
X ◦

〈 〉
(0)
X , thanks to above item (4.1.2). Since 〈 〉(0)V is an epimorphism with

respect to accessors, we have v(0)1 ◦ lookup ≡ v
(0)
2 ◦ k

(0)
X . Now, Point 2 in

Lemma 5.4.2 yields v(0)1 ≡ v
(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
V .

(4.2) Conversely, v(0)1 ≡ v
(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
V and v

(0)
2 ≡ v

(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
X =⇒ u

(0)
1 ◦

lookup ◦ 〈 〉
(0)
X ≡ v

(0)
2 :

(4.2.1) Starting from v
(0)
1 ≡ v

(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
V , we get v(0)1 ◦ lookup ◦ 〈 〉

(0)
X ≡

v
(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
V ◦ lookup ◦ 〈 〉

(0)
X . We have 〈 〉(0)V ◦ lookup ◦ 〈 〉

(0)
X ≡ 〈 〉

(0)
X

thanks to (s-unit). Therefore, v(0)1 ◦lookup◦〈 〉
(0)
X ≡ v

(0)
2 ◦k

(0)
X ◦〈 〉

(0)
X . Now,

given v(0)2 ≡ v
(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
X , we end up with v(0)1 ◦ lookup ◦ 〈 〉

(0)
X ≡ v

(0)
2 .
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Definition 5.4.6. A type X is inhabited if there exists a pure term k
(0)
X : 1 → X. A

type 0 is empty if for each type Y there is a pure term [ ]
(0)
Y : 0 → Y , and every term

f (2) : 0→ Y is such that f (2) ≡ [ ]
(0)
Y .

Remark 5.4.7. When X is inhabited then for any k(0)X : 1→ X we have 〈 〉(0)X ◦k
(0)
X ≡ id

(0)
1

,

so that 〈 〉(0)X is a split epimorphism; it follows that 〈 〉(0)X is an epimorphism with respect
to all terms, and especially with respect to accessors.

Now, Corollary 5.4.8 shows that equations between modifiers can be reduced to equations
between pure terms. It also makes the proof in Coq easier to read.

Corollary 5.4.8. Let us assume that 〈 〉
(0)
X is an epimorphism with respect to accessors.

Then:

1. For all f
(1)
1 , f

(1)
2 : X → Y , we have one of the following cases:

(a) ∃a
(0)
1 , a

(0)
2 : V → Y, ∃b

(0)
1 , b

(0)
2 : X → Y,

f
(1)
1 ≡ f

(1)
2 ⇐⇒ a

(0)
1 ≡ a

(0)
2 and b

(0)
1 ≡ b

(0)
2 ,

(b) ∃a
(0)
1 a

(0)
2 : V → Y, f

(1)
1 ≡ f

(1)
2 ⇐⇒ a

(0)
1 ≡ a

(0)
2 ,

(c) ∃a
(0)
1 a

(0)
2 : X → Y, f

(1)
1 ≡ f

(1)
2 ⇐⇒ a

(0)
1 ≡ a

(0)
2

2. For all f
(2)
1 , f

(2)
2 : X → Y , we have one of the following cases:

(a) ∃a
(1)
1 , a

(1)
2 : X → V, ∃b

(1)
1 , b

(1)
2 : X → Y

f
(2)
1 ≡ f

(2)
2 ⇐⇒ a

(1)
1 ≡ a

(1)
2 and b

(1)
1 ≡ b

(1)
2 ,

(b) ∃a
(1)
1 a

(1)
2 : X → Y, f

(2)
1 ≡ f

(2)
2 ⇐⇒ a

(1)
1 ≡ a

(1)
2

Proof. The proof is immediate from Proposition 5.4.5. See full proof in Appendix B.

Theorem 5.4.9. If every non-empty type is inhabited and if V is non-empty, the theory
of states Tst of the logic Lst−⊗ is relatively Hilbert-Post complete with respect to the pure
sublogic Lmeq+1.

Proof. The proof relies upon Corollary 5.4.8. The theory Tst is consistent: it cannot be
proved that update(2) ≡ 〈 〉

(0)
V because the logic Lst is sound with respect to its intended

model and the interpretation of this equation in the intended model is false as soon as V has
at least two elements: indeed, for each state s and each x ∈ V , lookup ◦ update(x, s) = x

because of (ax1) while lookup ◦ 〈 〉
(0)
V (x, s) = lookup(s) does not depend on x. Let us

consider an equation (strong or weak) between terms with domain X in Lst ; we distinguish
two cases, whether X is empty or not. When X is empty, then all terms from X to Y

are strongly equivalent to [ ]
(0)
Y , so that the given equation is equivalent to the empty set

of equations between pure terms. When X is non-empty then it is inhabited. Thanks
to Remark 5.4.7, we have that 〈 〉(0)X is an epimorphism with respect to accessors. Thus,
Corollary 5.4.8 proves that the given equation is equivalent to a finite set of equations
between pure terms. Thus, in both cases, the result follows from Corollary 4.5.10.

The case distinction in Theorem 5.4.9 comes from the fact that the existence of a pure
term k

(0)
X : 1→ X, which is used in Point 4 of Proposition 5.4.5, is incompatible with the

intended model of states if X is interpreted as the empty set.
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5. The state effect

Remark 5.4.10. This can be generalized to an arbitrary number of locations. The logic Lst
and the theory Tst have to be generalized as in [DDFR12a], then Proposition 5.4.3 has to
be adapted using the basic properties of lookup and update, as stated in [PP02]; these
properties can be deduced from the decorated theory for states, as proved in [DDEP14].
The rest of the proof generalizes accordingly, as in [Pre10].

Remark 5.4.11. See the source HPCompleteCoq.v inside st-hp folder for related implemen-
tation details.

5.5 Chapter summary

In this Chapter;

(1) The logic Lst has been built as an extension to the logic Lcom and interpreted via
the Kleisli-on-coKleisli construction applied to the states comonad.

(2) The logic Lst has been formalized in Coq. This formalization has been used to prove
and certify primitive properties of the programs with the state effect.

(3) The base language of the logic Lst (with no use of products) has been proved to be
Hilbert-Post complete (for a single location) and this proof has been checked in Coq.
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6

The exceptions effect

Exception handling is provided by most modern programming languages. It allows to deal
with anomalous or exceptional events which require special processing. This brings a flex-
ibility into the coding but in order to prove the correctness of such programs one has to
take into account the interactions with exceptions. In this chapter, each interaction with
exceptions is treated as a computational effect: a term f : X → Y is not interpreted as a
function f : X → Y unless it is pure. Indeed, a term which may raise an exception has the
interpretation f : X → Y + E, while a term which may catch an exception is interpreted
as f : X + E → Y + E, where “+” is the disjoint union operator and E is the set of
exceptions. In this chapter, we introduce the decorated logic for programmers’ language for
exceptions (Lexc−pl) and the decorated logic for exceptions (Lexc). The logic Lexc−pl aims
to model the treatment of exception handling as in modern programming languages such
as Java [GJSB05, Ch. 14] and C++ [Dra12, §15], in a decorated setting. It uses decora-
tions only on terms to classify according to their behaviors with respect to exceptions: a
term is either pure or a propagator. This logic has two distinguished constructs: throw

to raise exceptions and try/catch to handle them. The logic Lexc is built dually to the
logic Lst formalizing the state effect [DDFR12b]. Thus, we obtain the decorations of the
logic Lexc, for terms and equations, from the logic Lmon and we introduce the interface
functions tag and untag for raising and catching exceptions, respectively. Furthermore, we
use a decorated version of categorical coproducts in order to deal with the case distinction
which is encapsulated in the handling of exceptions. In addition, we provide a translation of
the logic Lexc−pl into the logic Lexc and prove that the rules are correct with respect to Lexc.

In Figure 6.1, we instantiate the monad T in Figure 4.4 with the monad of exceptions:

Lexc // Interpretation of Lexc

catcher f (2) : X → Y f : X + E → Y + E

propagator/thrower f (1) : X → Y f : X → Y + E

pure term f (0) : X → Y f : X → Y

strong equation f (2) ≡ g(2) : X → Y f = g : X + E → Y + E

weak equation f (2) ∼ g(2) : X → Y f ◦ inlX,E = g ◦ inlX,E : X → Y + E

where inlX,E : X → Y + E

is the left coprojection

Figure 6.1: The decorated logic Lexc and its interpretation: an overview.

Note that, in this chapter, the keywords thrower and propagator are interchangeably used.
The former indicates the terms that are allowed to throw exceptions and the latter indicates
the ones that must propagate the already thrown exceptions. Both are interpreted in the
same way (Figure 6.1).
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6. The exceptions effect

In Figure 6.2, we instantiate the monad T in Figure 4.4 with the monad of exceptions but
we exclude catchers and weak equations:

Lexc−pl // Interpretation of Lexc−pl

propagator/thrower f (1) : X → Y f : X → Y + E

pure term f (0) : X → Y f : X → Y

strong equation f (1) ≡ g(1) : X → Y f = g : X → Y + E

Figure 6.2: The decorated logic Lexc−pl and its interpretation: an overview.

We start, in Section 6.1, with the decorated logic for the exception (Lexc) with its in-
terpretation given through the coKleisli-on-Kleisli construction associated to the excep-
tions monad. We present the decorated logic for the programmers’ language for exceptions
(Lexc−pl) in Section 6.2, with its interpretation via the Kleisli adjunction associated to the
exceptions monad. The translation of the logic Lexc−pl into the logic Lexc is given in Sec-
tion 6.3. The Coq implementations of the logics Lexc and Lexc−pl and the translation of
the logic Lexc−pl into the logic Lexc are respectively presented in Sections 6.4, 6.5 and 6.6.
We prove some properties of the exceptions effect in a decorated setting in Section 6.7.
The logic Lexc−pl, as well as the logic Lexc without coproducts, are proven to be relatively
Hilbert-Post complete in Sections 6.8 and 6.9.

6.1 The decorated logic for exceptions

The decorated logic for exceptions (Lexc) extends the decorated logic for a monad (Lmon)
with the sum types (sorts), the empty type 0 and the type EV e of parameters for each
exception name e ∈ EName where EName is a finite set. Similar to the terms (operations)
of the logic Lmon, each term in Lexc has a source and a target type. Additionally, there
is a (left) copair term [f | g]l : X1+X2 → Y for each couple of terms f : X1 → Y and
g : X2 → Y . For each sum type X+Y , there are canonical inclusions inl : X → X+Y and
inr : Y → X+Y . The symbol [ ]X denotes the unique term from the empty type 0 to X for
each type X. The term tage : EVe → 0 stands to encapsulate an ordinary parameter with
an exception of name e while the term untage : 0→ EVe is used to recover the parameter.
The “↓” symbol denotes the downcast term that takes as input a term and prevents it
from catching exceptions (Section 6.1.5). We give the syntax of Lexc in Figure 6.3 and its
inference rules in Figures 6.4, 6.5, 6.6 and 6.7, in addition to the ones stated in Figure 4.5.

Grammar of the decorated logic for the exception: (e ∈ EName)

Types: t, s ::= X | Y | · · · | t+s | 0 | EVe

Terms: f, g ::= idt | a | b | · · · | g ◦ f | [f | g]l | inl | inr | [ ]t |

tage | untage | ↓

Decoration for terms: (d) ::= (0) | (1) | (2)

Equations: e ::= f ≡ g | f ∼ g

Figure 6.3: Lexc: syntax
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Each term has a decoration which is denoted as a superscript (0), (1) or (2): a pure term
has the decoration (0), a propagator (or thrower) has (1) and a catcher term comes with
the decoration (2). Similarly, each equation is formed by two terms with the same source
and target as well as a decoration: denoted by “∼” if it is weak or by “≡” if it is strong.

Let C be a category with finite coproducts and a distinguished object of exceptions E.
Let (T = − + E, η, µ) be the exceptions monad defined over C . Let us assume that E is
such that the mono-requirement is satisfied (Definition 3.1.5). For instance, this property
is always satisfied when C is the category of sets.

The interpretation of Lexc is given via the coKleisli-on-Kleisli construction associated to
a monad (detailed in Section 3.2) applied to the exceptions monad. Recall that in Sec-
tion 3.2.2, we have introduced the adjunctions FT ⊣ GT and FT,D ⊣ GT,D with the faithful
functors FT : C → CT and GT,D : CT → CT,D. This gives raise to a hierarchy among mor-
phisms in CT,D. This hierarchy is useful for interpreting the decorations: pure terms are
in C , propagators are in CT and catchers are in CT,D.

Definition 6.1.1. Let CEXC be the interpretation of the syntax for the logic Lexc with
the following details:

C

FT

,,
⊥

T
def
= −+E

��
CT

GT

ll
GT,D

--
⊤

D
def
= −+E

��
CT,D

FT,D

ll

η : Id ⇒ T FT⊣GT ε : T ⇒ Id

(1) The types are interpreted as the objects of C .

(1.1) the empty type 0 is interpreted by the initial object of the category C .

(1.2) for each e in EName, the type EVe is interpreted as an object EVale .

(1.3) for each couple of types X and Y , the sum types X + Y are interpreted as the
binary coproducts in C .

Now, we can define the object of exceptions as E = Σe∈EName(EVale). The copro-
jections are denoted ine : EVale → E, for each exception name e. The object E in
C is not the interpretation of a “type of exceptions”. Indeed, the use of decorations
in the logic Lexc provides a signature without any occurrence of such a “type of ex-
ceptions”. So that signature is kept close to the syntax. Besides, for each object
X in C , the left coprojection inlX,E : X → X + E is ηX and the right coprojection
inrX,E : E → X + E, up to the isomorphism between E and 0 + E, is T ([ ]X).

(2) The terms are interpreted as morphisms as follows:

(2.1) a pure term f (0) : X → Y in C as f : X → Y in C

(2.2) a propagator term f (1) : X → Y in CT as f : X → Y +E in C

(2.3) a catcher term f (2) : X → Y in CT,D as f : X +E → Y + E in C

(3) The terms f (1) : X1 → Y and g(2) : X2 → Y are interpreted as f : X1 → Y + E and

g : X2 + E → Y + E in C . Then, [f | g]
(2)
l : X1+X2 → Y is interpreted as the

categorical copair
[
f | g

]
: X1+X2+E → Y+E. It is called the left copair of f and g.
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(4) The pure coprojections (or inclusions) inl (0) : X → X + Y and inr (0) : Y → X + Y
are interpreted as the canonical coprojections inl : X → X+Y and inr : Y → X+Y
associated to copairs.

(5) The pure term [ ]
(0)
X : 0 → X in C is interpreted as the unique mapping from the

initial object 0 to the object X in C .

(6) For each e in EName, the term tag
(1)
e : EVe → 0 is a thrower (or propagator) in CT

and interpreted as tage = ine : EVale → E in C (up to the isomorphism between
0 + E and E).

(7) For each e in EName, the term untag
(2)
e : 0 → EVe is a catcher in CT,D and its

interpretation, untage : E → EVale +E, is characterized by the following equalities:
for each f in EName, such that e 6= f , untage ◦ inf = inrEVale ,E ◦ inf : EValf →
EVale + E and untage ◦ ine = inlEVale ,E : EVale → EVale + E in C .

(8) A strong equation between catchers f (2) ≡ g(2) : X → Y in CT,D is interpreted by
an equality f = g : X + E → Y + E in C . Similarly, a strong equation between
propagators f (1) ≡ g(1) : X → Y in CT is interpreted by an equality f = g : X →
Y +E in C . And a strong equation between pure terms f (0) ≡ g(0) : X → Y in C is
interpreted by an equality f = g : X → Y in C . Intuitively, two terms are strongly
equal if they agree on ordinary and exceptional arguments.

(9) A weak equation between catchers f (2) ∼ g(2) : X → Y is interpreted by an equality
f ◦ ηX = g ◦ ηX : X → Y +E in C . Similarly, a weak equation between propagators
f (1) ∼ g(1) : X → Y in CT is interpreted by an equality f = g : X → Y + E in C .
And a weak equation between pure terms f (0) ∼ g(0) : X → Y in C is interpreted
by an equality f = g : X → Y in C . Intuitively, two terms are weakly equal if they
agree on ordinary arguments, but maybe not on exceptional arguments.

The rules of the logic Lmon, as stated in Figure 4.5, are rules of the logic Lexc. Now, we
introduce the additional rules of the logic Lexc in several steps, with some comments.

6.1.1 The effect rule

the effect rule

(eeffect)
f1, f2 : X → Y f1 ∼ f2 f1 ◦ [ ]X ≡ f2 ◦ [ ]X

f1 ≡ f2

Figure 6.4: Lexc: the effect rule

(eeffect) This rule states that weak and strong equations are related with the property
that f1 ≡ f2 if and only if f1 ∼ f2 and f1 ◦ [ ]X ≡ f2 ◦ [ ]X . In other words, two terms
f1 and f2 are strongly equal if and only if they have the same behavior on ordinary
arguments (f1 ∼ f2) and the same behavior on exceptional ones (f1 ◦ [ ]X ≡ f2 ◦ [ ]X).
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6.1.2 The copair rules

rules for left the copairs

(empty)
X

[ ]
(0)
X : 0→ X

(w-empty)
f : 0→ X

f ∼ [ ]X

(lcopair)
f
(d)
1 : X1 → Y f2 : X2 → Y

[f1 | f2]l : X1+X2 → Y
(for all d ≤ 1)

(coproj)
X1 X2

inl (0) : X1 → X1 +X2 inr (0) : X2 → X1 +X2

(w-lcopair-eq)
f
(d)
1 : X1 → Y f2 : X2 → Y

[f1 | f2]l ◦ inl ∼ f1
(for all d ≤ 1)

(s-lcopair-eq)
f
(d)
1 : X1 → Y f2 : X2 → Y

[f1 | f2]l ◦ inr ≡ f2
(for all d ≤ 1)

(lcopair-ueq)

f1 , f2:X1+X2→Y f1 ◦ inl ∼ f2 ◦ inl f1 ◦ inr ∼ f2 ◦ inr

f1 ∼ f2

Figure 6.5: Lexc: rules for left copairs

(w-empty) This rule intuitively means that any term f : 0 → X with no input parame-
ter is said to have an equivalence on ordinary arguments with the unique mapping
[ ]X : 0→ X.

(lcopair) The rule (lcopair) states that the left copair [f1 | f2]l is defined only when f1 is
pure or is a propagator. Indeed, when both f1 and f2 are catchers, such a construction
would lead to conflicts on exceptional arguments. When f1 is a propagator, with (w-

copair-eq), we ensure that ordinary arguments from X1 are treated by [f1 | f2]
(2)
l as

they would be by f (1)1 and with (s-copair-eq) that ordinary arguments from X2 and

exceptional arguments are treated by [f1 | f2]
(2)
l as they would be by f (2)2 .

(lcopair-ueq) This rule ensures that a left copair structure is unique up to the weak
equations.

6.1.3 Some properties of copairs

In this section, we start with a property of the “empty copair” and then prove the unicity
of left copairs up to the strong equation. Afterwards, we build the symmetric (or right)
copairs by using the left copairs and prove some of their properties. Lastly, we construct
the left and right coproducts, by respectively using left and right copairs, and similarly
prove some related properties.

Proposition 6.1.2. (s-empty) For all d, d′ ≤ 1, given two terms of the form f
(d)
1 , f

(d′)
2 : 0→

X for each X, then f1 ≡ f2.

Proof. Obviously, f1 ∼ f2 thanks to (w-empty). Since none of them is a catcher, then
f1 ≡ f2 due to (wtos).

Proposition 6.1.3. (lcopair-u) For each f1 , f2 : X1 +X2 → Y , if f1 ◦ inl ∼ f2 ◦ inl and
f2 ◦ inr ≡ f2 ◦ inr , then f1 ≡ f2.
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Proof. 1. Starting from f1 ◦ inr ≡ f2 ◦ inr , we obtain f1 ◦ inr ◦ [ ] ≡ f2 ◦ inr ◦ [ ] due to
(replsubs). Besides, we have inr ◦ [ ]X2 ≡ [ ]X1+X2 thanks to (s-empty). Therefore,
we get f1 ◦ [ ]X1+X2 ≡ f2 ◦ [ ]X1+X2 .

2. Since we have f1 ◦ inr ≡ f2 ◦ inr , by converting the strong equation into a weak
equation, we get f1 ◦ inr ∼ f2 ◦ inr . In addition, f1 ◦ inl ∼ f2 ◦ inl is also assumed
so that we end up with f1 ∼ f2 thanks to (lcopair-ueq).

Now, the above items 1 and 2 suffice to ensure f1 ≡ f2 due to (eeffect) rule introduced in
Figure 6.4.

It is possible to build symmetric right copairs as in Definition 6.1.4 and reason about their
properties.

Definition 6.1.4. For all d ≤ 1, given f1 : X1 → Y and f
(d)
2 : X2 → Y , the right copair

[f1 | f2]r = [f2 | f1]l ◦ permut where permut = [inr | inl ]l.

X2

inl ��
f2

**❚❚❚
❚❚❚❚

❚❚❚❚
❚❚❚❚

❚

X1+X2 permut // X2+X1 [f2|f1]l // Y

X1

inr

OO

f1

44❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

Proposition 6.1.5. For all d ≤ 1, given f1 : X1 → Y and f
(d)
2 : X1 → Y , we have:

• [f1 | f2]r ◦ inl ≡ f1 (s-rcopair-eq)

• [f1 | f2]r ◦ inr ∼ f
(d)
2 (w-rcopair-eq).

Proof. • Due to (w-lcopair-eq), we have [inr | inl ]l ◦ inl ∼ inr . Lack of catchers yields

[inr | inl ]l ◦ inl ≡ inr . Through (replsubs), we obtain [f2 | f1]
(2)
l ◦ [inr | inl ]l ◦ inl ≡

[f2 | f1]l ◦ inr . Now, (s-lcopair-eq) gives [f2 | f1]l ◦ [inr | inl ]l ◦ inl ≡ f1 which folds
into [f1 | f2]r ◦ inl ≡ f1.

• Thanks to (s-lcopair-eq) and (stow), we get [inr | inl ]l ◦ inr ∼ inl . The rule (wrepl)
gives

[
f2 | f1

]
◦ [inr | inl ]l ◦ inr ∼

[
f2 | f1

]
◦ inl . By using (w-lcopair-eq), we obtain

[
f2 | f1

]
◦ [inr | inl ]l ◦ inr ∼ f

(d)
2 which is actually [f1 | f2]r ◦ inr ∼ f

(d)
2 .

Proposition 6.1.6. (rcopair-u) For each f1 , f2 : X1 +X2 → Y , if f1 ◦ inl ≡ f2 ◦ inl and
f2 ◦ inr ∼ f2 ◦ inr . Then f1 ≡ f2.

Proof. 1. Starting from f1 ◦ inl ≡ f2 ◦ inl , we obtain f1 ◦ inl ◦ [ ] ≡ f2 ◦ inl ◦ [ ] due to
(replsubs). Besides, we have inl ◦ [ ]X1 ≡ [ ]X1+X2 thanks to (s-empty). Therefore,
we get f1 ◦ [ ]X1+X2 ≡ f2 ◦ [ ]X1+X2 .

2. Since we have f1 ◦ inl ≡ f2 ◦ inl , by converting the strong equation into a weak
equation, we get f1 ◦ inl ∼ f2 ◦ inl . In addition, f1 ◦ inl ∼ f2 ◦ inl is also assumed so
that we end up with f1 ∼ f2 thanks to (lcopair-ueq).

Now, the above items 1 and 2 suffice to ensure f (2)1 ≡ f
(2)
2 due to (eeffect) rule introduced

in Figure 6.4.

One can also define the left-right coproducts of terms respectively using left and right
copairs.
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Definition 6.1.7. • For all d ≤ 1, given f
(d)
1 : X1 → Y1 and f2 : X2 → Y2, we obtain

a left coproduct f1 +l f2 = [inl ◦ f1 | inr ◦ f2]l : X1+X2 → Y1+Y2.

• For all d ≤ 1, given f1 : X1 → Y1 and f
(d)
2 : X2 → Y2, we obtain a right coproduct

f1 +r f2 = [(inl ◦ f1) | (inr ◦ f2)]r = [(inr ◦ f2) | (inl ◦ f1)]l ◦ permut such that
permut = [inr | inr ]l.

X1
f1 //

inl ��

Y1
inl��

X1+X2

[
f1+lf2

]
// Y1+Y2

X2
f2

//
inr

OO

Y2

inr
OO

X2
inr

tt✐✐✐✐
✐✐✐✐

✐✐✐✐
✐

f2 //

inl ��

Y2
inr��

X1+X2 permut // X2+X1

[
f2+lf1

]
// Y1+Y2

X1
inl

jj❱❱❱❱❱❱❱❱❱❱❱❱❱
f1

//
inr

OO

Y1

inl
OO

Proposition 6.1.8. For all d ≤ 1, given f
(d)
1 : X1 → Y1 and f2 : X2 → Y2, we have:

• (f1 +l f2) ◦ inl ∼ inl ◦ f
(d)
1 (w-lcoprod-eq)

• (f1 +l f2) ◦ inr ≡ inr ◦ f2 (s-lcoprod-eq)

Proof. • By setting f1 := inl ◦ f1 and f2 := inr ◦ f2 within (w-lcopair-eq), one gets

[(inl ◦ f1) | (inr ◦ f2)]l ◦ inl ∼ inl ◦ f
(1)
1 which folds into (f1 +l f2) ◦ inl ∼ inl ◦ f

(d)
1 .

• Similarly, we set f1 := inl ◦ f1 and f2 := inr ◦ f2 within (s-lcopair-eq) and get
[(inl ◦ f1) | (inr ◦ f2)]l ◦ inr ≡ inr ◦ f2 which is (f1 +l f2) ◦ inr ≡ inr ◦ f2.

Proposition 6.1.9. (lcoprod-u) For each f1 , f2 : X1+X2 → Y1+Y2, if f1 ◦ inl ∼ ◦f2 ◦ inl
and f2 ◦ inr ≡ ◦f2 ◦ inr , then f1 ≡ f2.

Proof. It suffices to apply (lcopair-u).

Proposition 6.1.10. For all d ≤ 1, given f1 : X1 → Y1 and f
(d)
2 : X2 → Y2. Then;

• (f1 +r f2) ◦ inl ≡ inl ◦ f
(d)
1 (s-rcoprod-eq)

• (f1 +r f2) ◦ inr ∼ inr ◦ f2 (w-rcoprod-eq)

Proof. • By setting f1 := inl ◦ f1 and f2 := inr ◦ f2 within (s-rcopair-eq), one gets

[(inl ◦ f1) | (inr ◦ f2)]r ◦ inl ≡ inl ◦ f
(d)
1 which folds into (f1 +r f2) ◦ inl ≡ inl ◦ f

(d)
1 .

• Similarly, we set f1 := inl ◦ f1 and f2 := inr ◦ f2 within (w-rcopair-eq) and get
[(inl ◦ f1) | (inr ◦ f2)]r ◦ inr ∼ inr ◦ f2 which is (f1 +r f2) ◦ inr ∼ inr ◦ f2.

Proposition 6.1.11. (rcoprod-u) For each f1 , f2 : X1+X2 → Y1+Y2, if f1◦inl ≡ ◦f2◦inl
and f2 ◦ inr ∼ ◦f2 ◦ inr , then f1 ≡ f2.

Proof. It suffices to apply (rcopair-u).

Notice that we use some of these properties when proving the properties of programs with
exceptions, in Section 6.7.
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6.1.4 The interface rules

interface rules

(tag)
e ∈ EName

tag
(1)
e : EVe → 0

(untag)
e ∈ EName

untag
(2)
e : 0→ EVe

(eax1)
untage ◦ tage ∼ idEVe

(eax2)
for each exception names (e, f) such that e 6= f

untage ◦ tagf ∼ [ ]EVe
◦ tagf

(elocal-global)
for each exception name e, g1, g2 : 0→ Y g1 ◦ tage ∼ g2 ◦ tage

g1 ≡ g2

Figure 6.6: Lexc: the interface rules

(eax1) This rule states that encapsulating an argument with an exception of name e fol-
lowed by an immediate recovery is equivalent to “doing nothing” up to weak equation.
This is because, left side of the equation may recover from an exceptional argument
while the right side cannot, due to being pure.

(eax2) Encapsulating an ordinary argument with an exception of name f and then recov-
ering from a different exception of name e would just lead f to be propagated. It is
assumed by the rule (eax2) that this have “the same” behavior with encapsulating an
ordinary argument with an exception of name f with no recovery attempt afterwards.
Notice that this is only an equivalence on ordinary arguments.

(elocal-global) This rule means that for each exception name e, the statement of the
(eeffect) rule can be expressed as a pair of weak equations for g1 := f1 ◦ [ ]Y and
g2 := f2 ◦ [ ]Y : g1 ∼ g2 and g1 ◦ tage ∼ g2 ◦ tag e. Due to g1, g2 : 0→ X, they have
apparently the same behavior on ordinary arguments. So that there is no explicit
need to check whether g1 ∼ g2 is true. It suffices to check if g1 ◦ tag e ∼ g2 ◦ tage
holds, in order to decide whether g1 ≡ g2 or not.

6.1.5 The downcast rule

the downcast rule

(downcast)
f (2) : X → Y

(↓f)(1) : X → Y
(w-downcast)

f : X → Y

↓f ∼ f

Figure 6.7: Lexc: the downcast rule

The left adjoint functor FT,D : CT,D → CT maps each object X to X +E (Section 3.2.2).
There is another “mapping” what we call the downcast, defined from CT,D to CT as follows:

Definition 6.1.12. The “mapping” downcast, denoted “↓” and defined from CT,D to CT ,
is the identity on the objects and it maps each morphism f ♭♯ : X → Y in CT,D to
h♭ = ↓(f ♭♯) : X → Y in CT where h = f ◦ ηX : X → Y +E in C (notation as in
Section 3.2.2).

Notice however that this “mapping” is not a functor: it does preserve identities but for
f ♭♯1 : X → Y and f ♭♯2 : Y → Z in CT,D we have h♭ = ↓(f ♭♯2 ◦ f

♭♯
1 ) : X → Z in CT such

that h = f2 ◦ f1 ◦ ηX : X → Z + E in C , while k♭ = ↓(f ♭♯2 ) ◦ ↓(f ♭♯1 ) : X → Z in CT
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such that k = µZ ◦ Tf2 ◦ TηY ◦ f1 ◦ ηX in C . Whenever Tf2 ◦ TηY = TηZ ◦ f2 then
↓(f2) ◦ ↓(f1) = ↓(f2 ◦ f1). But in general ↓(f2) ◦ ↓(f1) 6= ↓(f2 ◦ f1).

(C ) ❴❴❴❴❴❴ CT CT,D
↓oo ❴❴❴❴❴❴ (CT ) ❴❴❴❴❴❴ (C )

X X

X

h

��

ηX��
X

h♭

=↓f♭♯ ��

X

f♭♯

��

X+E

f♭

��

X+E

f

��
X+E

f��
Y +E Y Y Y Y +E

(downcast) This rule states that the “mapping” downcast exists and it is interpreted by
Definition 6.1.12.

(w-downcast) This rule states that the term ↓f behaves as f , if the argument is ordinary.
If the argument is exceptional, it prevents f from catching the exceptional argument.

Now, the following result is easily obtained:

Theorem 6.1.13. The logic Lexc is sound with respect to the interpretation CEXC given
in Definition 6.1.1.

6.2 Decorated logic for the programmer’s language for ex-

ceptions

Let us call the usual language for exceptions, with throw and try/catch blocks, the pro-
grammers’ language. The documentation on the behavior of exceptions in many languages
(for instance in Java [GJSB05]) makes use of a core language which we have already studied
in Section 6.1. There, the empty type plays an important role together with the funda-
mental operations for dealing with exceptions: tag is used for raising while untag is for
recovering from an exception. However, in the following, we present a logic for the pro-
grammers’ language, with no mention of the core language. We call it the decorated logic
for the programmers’ language for exceptions and denote it by Lexc−pl.

Let L′mon be the sublogic of the logic Lmon obtained by dropping catcher terms and weak
equations. The logic Lexc−pl extends the logic L′mon with the type EV e of parameters for
each exception name e ∈ EName where EName is a finite set. In addition to the terms of
the logic L′mon, the term throwX,e : EVe → X stands to raise an exception of name e while
the fact of catching exceptions (i.e., of name e) is hidden inside the term try(a)catch(e⇒
b) : X → Y for each couple of terms a : X → Y and b : EVe → Y . We give the syntax of
the logic Lexc−pl in Figure 6.8 and its inference rules in Figures 4.5 and 6.9.

Syntax: (e ∈ EName)

Types: t ::= X | Y | · · · | EVe

Terms: f, g ::= idt | a | b | · · · | g ◦ f |

throwX, e | try(a) catch(e⇒ b)

Decoration for terms: (d) ::= (0) | (1)

Equations: e ::= f ≡ g

Figure 6.8: Lexc−pl: syntax
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As in Section 4.2, each term has a source and a target type as well as a decoration which
is denoted as a superscript (0), (1): a pure term has the decoration (0), a thrower has (1).
All terms must propagate exceptions; propagators are allowed to raise exceptions while
pure terms are not.

Let C be the category of sets with finite coproducts and a distinguished object of ex-
ceptions E. Let (T = − + E, η, µ) be the exceptions monad defined over C . Thus, the
mono-requirement is satisfied (Definition 3.1.5). The interpretation of Lexc−pl is given via
the Kleisli adjunction associated to a monad (detailed in Section 3.1.2) applied to the ex-
ceptions monad. Recall that in Section 3.1.2, we have introduced the adjunction FT ⊣ GT
with the faithful functor FT : C → CT . This gives raise to a hierarchy among morphisms in
CT . This hierarchy is used to interpret the decorations: pure terms are in C , propagators
are in CT . Notice that this respectively corresponds to values and computations in Moggi’s
seminal paper [Mog91].

Definition 6.2.1. Let CEXC−PL be the interpretation of the syntax for the logic Lexc−pl
with the following details:

C

FT
,,

⊥

T
def
= −+E

��
CT

GT

ll

η : Id ⇒ T ε : D ⇒ Id

(1) The types are interpreted as the objects of C .

(1.1) for each e in EName, the type EVe is interpreted as an object EVale .

(1.2) for each couple of types X and Y , the sum types X + Y are interpreted as the
binary coproducts in C .

Now, we can define the object of exceptions as E = Σe∈EName(EVale). The inclusions
are denoted ine : EVale → E, for each exception name e. The object E in C is not
the interpretation of a “type of exceptions”. Indeed, the use of decorations in the
logic Lexc provides a signature without any occurrence of such a “type of exceptions”.
So that signature is kept close to the syntax.

(2) The terms are interpreted as morphisms as follows:

(2.1) a pure term f (0) : X → Y in C as f : X → Y in C

(2.2) a thrower term f (1) : X → Y in CT as f : X → Y + E in C

(3) A strong equation between throwers f (1) ≡ g(1) : X → Y in CT is interpreted by
an equality f = g : X → Y + E in C . And a strong equation between pure terms
f (0) ≡ g(0) : X → Y in C is interpreted by an equality f = g : X → Y in C .

(4) The composition of two throwers f (1) : X → Y and g(1) : Y → C in CT is interpreted
by the Kleisli composition g ◦ f = µC ◦ Tg ◦ f : X → C + E in C .

(5) The term throw
(1)
Y, e : EVe → Y in CT is interpreted as throwY, e = inrY,E◦ine : EVale →

Y + E in C .

(6) The behavior of the term try(a)catch(e ⇒ b) corresponds to the Java mechanism
for exceptions [GJSB05, Ch. 14] and [Jac01]: if the first exception occurring in a(1)

is of name e, then the computation continues with b(1). Formally, for each pair of
throwers a(1) : X → Y , b(1) : EVe → Y and for each exception name e;
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– if a(1) = v(1) ◦ throw
(1)
Z,e ◦ u

(0) for some terms v(1) : Z → Y , u(0) : X → EVe ,

then try(a) catch(e ⇒ b)(1) : X → Y in CT has the same interpretation as
b(1) ◦ u(0) : X → Y in CT .

– otherwise try(a) catch(e⇒ b)(1) in CT is interpreted as a : X → Y + E in C .

In addition to the rules of the logic L′mon, we have the following rules related to throw

and try/catch structures:

rules for the programmers’ language

(throw)
Y e ∈ EName

throw
(1)
Y, e : EVe → Y

(try-catch)
a : X → Y b : EVe → Y e ∈ EName

try(a) catch(b⇒ e)(1) : X → Y

(ppt)
a : X → Y

a ◦ throwX, e ≡ throwY, e
(rcv)

u
(0)
1 , u

(0)
2 : X → EVe throwY, e ◦ u1 ≡ throwY, e ◦ u2

u1 ≡ u2

(try)
a1, a2 : X → Y b :EVe → Y a1 ≡ a2

try(a1)catch(e⇒ b) ≡ try(a2)catch(e⇒ b)
(try0)

u(0) :X → Y b :EVe → Y

try(u)catch(e⇒ b) ≡ u

(try1)
u(0) :X → EVe b :EVe → Y

try(throwY, e◦ u)catch(e⇒ b) ≡ b ◦ u

(try2)
for each (e, f) ∈ EName, such that e 6= f u(0) :X → EVf b :EVe → Y

try(throwY, f ◦ u)catch(e⇒ b) ≡ throwY, f ◦ u

Figure 6.9: Lexc−pl: rules for the programmers’ language

(ppt) The rule states that exceptions are always propagated.

(rcv) It ensures that the parameter used for throwing an exception may be recovered.

(try) It states that the strong equation is compatible with the try/catch.

(try0) With this rule we assume that the pure code inside the try part never triggers the
code inside the catch part.

(try1) By this rule, we assume that the code inside the catch part is executed as soon as
an exception is thrown inside the try part.

(try2) This rule states that an exception cannot be handled, if the pattern matching on
exception names is not successful. This means that the exception is propagated.

Now, the following result is easily obtained:

Theorem 6.2.2. The logic Lexc−pl is sound with respect to the interpretation CEXC−PL

given in Definition 6.2.1.

6.3 Translating the logic Lexc−pl into the logic Lexc

The decorated logic for the programmer’s language of exceptions (Lexc−pl) does not include
the private tag and untag operations, but the public throw and try/catch constructs. In
this section, we show that they can be built in terms of tag and untag in the logic Lexc.
The main ingredients for building the logic Lexc−pl from the logic Lexc are the coproducts
X ∼= X + 0 and the downcasting conversion with the downcast rules (See Figure 6.7).
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Remark 6.3.1. Note that, for the sake of conciseness, here we assume that only one excep-
tion name is handled in a try/catch expression: the general case is treated in [DDR13].

Definition 6.3.2. For each type Y and each exception name e, the propagator throw(1)Y,e is:

throw
(1)
Y,e = [ ]

(0)
Y ◦ tag

(1)
e : EVe → Y

This means that raising an exception with name e is first tagging the given ordinary value
as an exception of name e and then converting it to the given type Y .

Definition 6.3.3. For each propagators f (1) : X → Y , g(1) : EVe → Y and each exception
name e, the propagator try(f)catch(e⇒ g)(1) is defined in three steps, as follows:

CATCH(e⇒ g)(2) = [ id
(0)
Y | g

(1) ◦ untag
(2)
e ]l : Y +0→ Y

TRY(f)CATCH(e⇒ g)(2) = CATCH(e⇒ g)(2) ◦ inl
(0)
Y,0 ◦ f

(1) : X → Y

try(f)catch(e⇒ g)(1) = ↓(TRY(f)CATCH(e⇒ g)(2)) : X → Y

To handle an exception, the intermediate expressions CATCH(e⇒ g) and TRY(f)CATCH(e⇒
g) are private catchers and the expression try(f)catch(e⇒ g) is a public propagator: the
downcast operator prevents it from catching exceptions with name e which might have
been raised before the try(f)catch(e ⇒ g) expression is considered. The definition of
try(f)catch(e⇒ g) corresponds to the Java mechanism for exceptions [GJSB05, Ch. 14]
and [Jac01] with the following control flow, where exc? means “is this value an exception? ”,
an abrupt termination returns an uncaught exception and a normal termination returns
an ordinary value.
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♠ N

++❱❱❱❱
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ss❤❤❤❤❤
❤❤❤❤❤

❤ N
++❱❱❱❱
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❱❱

untag
(2)
e

��

normal

exc?Y
vv♠♠♠♠

♠ N

++❱❱❱
❱❱❱❱

❱❱❱❱
❱❱

abrupt g(1)

��

normal or abrupt

Theorem 6.3.4. If the pure term [ ]Y : 0 → Y is a monomorphism with respect to
propagators for each type Y , the above stated translation of the logic Lexc−pl into the logic
Lexc is correct.

Proof. It is shown by Propositions 6.7.3, 6.7.4, 6.7.5, 6.7.6 6.7.7 and 6.7.8 that the images
of (six) basic properties of throw and try/catch are satisfied.

6.4 The logic Lexc in Coq

The main scope of this section is to formalize the decorated logic for exceptions (Lexc) in
Coq [DDER14]. To do so, we aim to enrich the implementation of the logic Lmon that is
already detailed in Sections 4.4.1 4.4.2 and 4.4.4: we will reuse the code blocks in order to
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preserve the integrity of the formalization with no repeated explanation. The organization
of the modules is reflected in the Coq library EXCEPTIONS-THESIS as follows:

BASES: Prerequisites Terms Decorations Axioms

DERIVED: D.coPairs D.coProducts

PROOFS: Proofs

Remark 6.4.1. The complete EXCEPTIONS-THESIS library can be found on https://forge.

imag.fr/frs/download.php/694/EXCEPTIONS-THESIS.tar.gz.

6.4.1 Prerequisites

In order to enrich the terms of the logic Lmon, we first need to speak about some pre-
liminaries: the set of exception names is implemented as a Coq parameter EName: Type.
Provided that there might be several exceptional values of a certain exception name e, we
implement an arrow type EV : EName→ Type that is the type of exceptional values of a
certain exception name. Notice also that the implementation follows the same approach
as the one for states already detailed in Section 5.2.

Parameter EName: Type. Parameter EV: EName → Type.

6.4.2 Terms

We implement the additional terms as new constructors to the dependent type term given
in Section 4.4.1:

(1)
[
f | g

]
: X+Y → Z for each couple of terms f : X → Z and g : Y → Z, together

with the canonical projections inl : X → X+Z and inr : Z → X+Z,

(2) [ ]X : 0→ X for each type X,

(3) ↓ f : X → Y , for each types X, Y and term f : X → Y ,

(4) tage : EVe → 0 for each exception name e,

(5) untage : 0→ EVe for each exception name e.

Thus, the implementation of terms in Coq looks like:

Inductive term: Type → Type → Type :=
| comp: forall {X Y Z: Type}, term X Y → term Y Z → term X Z

| copair: forall {X Y Z: Type}, term Z X → term Z Y → term Z (X+ Y)
| downcast: forall {X Y: Type} (f: term X Y), term X Y

| tpure: forall {X Y: Type}, (X → Y) → term Y X

| tag: forall e:EName, term Empty_set (EV t)
| untag: forall e:EName, term (EV t) Empty_set.
Infix "o" := comp (at level 70).

Instead of the symbols
[
|
]

and ↓, we respectively use the keywords copair and downcast

in the implementation. We derive terms such as the identity, the copair coprojections and
the empty copair from the native Coq functions, with the use of tpure constructor, as
follows:
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Definition id {X: Type} : term X X := tpure id.
Definition coproj1 {X Y} : term (X+ Y) X := tpure inl.
Definition coproj2 {X Y} : term (X+ Y) Y := tpure inr.
Definition emptyfun (X: Type) (e: Empty_set) : X := match e with end.
Definition empty X: term X Empty_set := tpure (emptyfun X).

Remark also that the copair coprojections are named coproj1 and coproj2 while the
empty pair is called empty in the implementation.

Remark 6.4.2. See the source Terms.v for related implementation details.

6.4.3 Decorations

Thereby, the decorations’ implementation follows:

Inductive kind := epure | ppg | ctc.
Inductive is: kind → forall X Y, term X Y → Prop :=
| is_tpure: forall X Y (f: X → Y), is epure (@tpure X Y f)
| is_comp: forall k X Y Z (f: term X Y) (g: term Y Z), is k f → is k g → is k (f o g)
| is_copair: forall k X Y Z (f: term Z X) (g: term Z Y), is ppg f → is k f → is k g → is k (copair f g)
| is_downcast: forall X Y (f: term X Y), is ppg (@downcast X Y f)
| is_tag: forall t, is ppg (tag t)
| is_untag: forall t, is ctc (untag t)
| is_pure_ppg: forall X Y (f: term X Y), is epure f → is ppg f

| is_ppg_ctc: forall X Y (f: term X Y), is ppg f → is ctc f.
Hint Constructors is.

Notice that instead of the decorations of the form (0), (1) and (2), we respectively use the
keywords epure, ppg and ctc in the implementation. The decoration of any composed
and co-paired off term depends on its components and always takes the upper decoration
(epure < ppg < ctc). E.g., given a catcher term and a propagator term, their composition
and copair will be a catcher, as well. We declare the term tag as a propagator by using
the keyword ppg. On the contrary, untag is a catcher with the decoration keyword ctc.
The term downcast f is a propagator, for each catcher term f. It is trivial to derive that
the copair coprojections are pure. For the sake of conciseness, we demonstrate only the
first one:

Lemma is_coproj1 X Y: is pure (@coproj1 X Y). Proof. apply is_tpure. Qed.

Since coproj1 is constructed through tpure and since any argument of tpure is by def-
inition epure, it suffices to apply the constructor is_tpure. Recall that the process of
decoration checking is crucial and troublesome in a decorated setting: to automatize the
verification of the decorations, as in Section 5.2.3, we build a new tactic named edecorate,
by using Delahaye’s Ltac language [Del00]:

Ltac edecorate := solve[
repeat (apply is_comp || apply is_copair)

||
(apply is_tpure || apply is_downcast || apply is_tag || apply is_untag || assumption)

||
(apply is_pure_ppg)

||
(apply is_ppg_ctc) ].

The tactic edecorate repeatedly checks if the goal term is a composition or a copair, if
not so, it tries to decide whether it is a pure term constructed via tpure or one of the
following terms: downcast, tag and untag or else a local assumption. If it is still not the
case, it applies the hierarchy rules. All that are performed in the given sequence. Since
these checks are done inside the solve tactical, edecorate fails in the absence of match.
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Class PURE {X Y: Type} (f: term X Y) := ispure : is pure f.
Hint Extern 0 (PURE _) ⇒ edecorate : typeclass_instances.

Class PPG {X Y: Type} (f: term X Y) := isppg : is ppg f.
Hint Extern 0 (PPG _) ⇒ edecorate : typeclass_instances.

Class CTC {X Y: Type} (f: term X Y) := isctch : is ctc f.
Hint Extern 0 (CTC _) ⇒ edecorate : typeclass_instances.

The assignment of decorations over terms is declared as constructors of Coq type classes
parametrized by a term. Then, we extend the scope of the tactic auto with the optional
patterns (PURE _), (PPG _), (CTC _), the tactic edecorate at cost zero. This is pro-
vided by the vernacular command Extern (num) pattern => tactic. The zero cost
here means that the tactic auto would non-recursively try the hints upon the usage.

Remark 6.4.3. See the source Decorations.v for related implementation details.

6.4.4 Axioms

Here we give to the formalization of the rules/axioms in Coq.

Reserved Notation "x == y" (at level 80). Reserved Notation "x ∼ y" (at level 80).
Definition idem X Y (x y: term X Y) := x = y.
Inductive strong: forall X Y, relation (term X Y) :=

(*congruence rules*)

| refl: forall X Y (f: term X Y), f == f

| sym: forall X Y, Symmetric (@strong X Y)
| trans: forall X Y, Transitive (@strong X Y)
| replsubs: forall X Y Z, Proper (@strong X Y ==> @strong Y Z ==> @strong X Z) comp

(*categorical rules*)

| ids: forall X Y (f: term X Y), f o id == f

| idt: forall X Y (f: term X Y), id o f == f

| assoc: forall X Y Z T (f: term X Y) (g: term Y Z) (h: term Z T), f o (g o h) == (f o g) o h

(*the hierarchy rule*)

| wtos: forall X Y (f g: term X Y), PPG f → PPG g → f ∼ g → f == g

(*strong copair rules*)

| s_lcopair_eq: forall X X’ Y (f1: term Y X) (f2: term Y X’), PPG f1 → (copair f1 f2) o coproj2 == f2

(*the effect rule*)

| eeffect: forall X Y (f g: term Y X), f ∼ g → (f o (@empty X) == g o (@empty X)) → f == g

(*the strong interface rule*)

| elocal_global: forall X (f g: term X Empty_set), (forall t: EName, f o tag t ∼ g o tag t) → f == g

(*tpure preserves the pure composition*)

| tcomp: forall X Y Z (f: Z → Y) (g: Y → X), tpure (compose g f) == tpure g o tpure f

with weak: forall X Y, relation (term X Y) :=
(*congruence rules*)

| wsym: forall X Y, Symmetric (@weak X Y)
| wtrans: forall X Y, Transitive (@weak X Y)
| wrepl : forall X Y C, Proper (@idem C Y ==> @weak Y X ==> @weak C X) comp

| pwsubs : forall X Y C, Proper (@weak C Y ==> @pure_id Y X ==> @weak C X) comp

(*the hierarchy rule*)

| stow: forall X Y (f g: term X Y), f == g → f ∼ g

(*the weak copair rule*)

| w_lcopair_eq: forall X X’ Y (f1: term Y X) (f2: term Y X’), PPG f1 → (copair f1 f2) o coproj1 ∼ f1

| w_empty: forall X (f: term X Empty_set), f ∼ (@empty X)
(*the down-casting rule*)

| w_downcast: forall X Y (f: term X Y), f ∼ (@downcast X Y f)
(*weak interface rules*)

| eax1: forall t: EName, untag t o tag t ∼ (@id (Val t))
| eax2: forall t1 t2: EName, t1 <> t2 → untag t2 o tag t1 ∼ (@empty (Val t2)) o tag t1

(*the weak unicity rule*)

| lcopair_ueq: forall X X’ Y (f g: term Y (X+ X’)), (f o coproj1 ∼ g o coproj1) →
(f o coproj2 ∼ g o coproj2) → f ∼ g

where "x == y" := (strong x y) and "x ∼ y" := (weak x y).

On the details of additional rules. For w_empty, s_lcopair_eq, w_lcopair_eq and
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lcopair_ueq, see Figure 6.5. The rule eeffect is given in Figure 6.4. For eax1, eax2 and
elocal_global, refer back to Figure 6.6. Lastly, w_downcast is detailed in Figure 6.7.

Before detailing properties related to copairs and coproducts, let us hereby give the certified
Coq proof of the derived property (s-empty) as it is given in Proposition 6.1.2. The rule
(s-empty) claims that the equation among parallel terms with domain 0 is strong, provided
that they are pure or propagators.

Lemma s_empty: forall X (f: term X Empty_set), PPG f → f == (@empty X).
Proof. intros X f H. apply wtos; [exact H | edecorate | apply w_empty]. Qed.

The proof converts the goal-side strong equation into weak provided that both f and empty

are non-catchers. Now, it suffices to apply (w-empty) to close the goal.

Remark 6.4.4. See the source Axioms.v for related implementation details.

6.4.5 Derived copairs and coproducts

In order to speak about symmetric or (right) copairs as well as left and right coproducts,
we define the permutation term, denoted permut. It inputs two Coq Type instances X and
Y and outputs an instance of type: term (Y*X) (X*Y).

Definition permut {X Y} : term (X+ Y) (Y+ X) := copair coproj2 coproj1.

Clearly, permut is a pure term since it is a left copair made of pure projections. Now, the
right copair structure looks like:

Definition rcopair {X Y Z} (f1: term X Y) (f2: term X Z) : term X (Y+ Z) := copair f2 f1 o (@permut Z Y).

The decoration of a given right copair depends on its components:

Lemma is_rcopair: forall k X Y Z (f1: term Z X) (f2: term Z Y), PPG f2 → is k f1 → is k f2

→ is k (rcopair f1 f2).
Proof. intros k X Y Z f1 f2 H1 H2 H3. induction k; edecorate. Qed.

After introducing the necessary instances, we induce on the kind k. Then it suffices to
edecorate each goal: is pure (rcopair f1 f2), is ppg (rcopair f1 f2) and is ctc

(rcopair f1 f2) locally provided: H0: is pure f1, H1: is pure f2; H0: is ppg f1, H1:
is ppg f2 and H0: is ctc f1, H1: is ctc f2.

The projection rules attached to right copairs, that are stated and proven in Proposi-
tion 6.1.5, are certified in Coq along with their proofs:

right copair: first coprojection

Lemma s_rcopair_eq: forall X Z Y (f1: term X Y) (f2: term X Z), PPG f2 → rcopair f1 f2 o coproj1 == f1.
Proof.

intros X Y’ Y f1 f2 H0. unfold rcopair, permut. rewrite ←assoc.
cut (copair coproj2 coproj1 o coproj1 == (@coproj2 Y’ Y)).
intro H1. rewrite H1.
apply s_lcopair_eq; exact H0.

(*1st cut*)

apply wtos;[edecorate| edecorate| ]. apply w_lcopair_eq; edecorate.
Qed.
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After forming the environment of the assumptions, the proof continues with unfolding
rcopair and permut followed by rewriting associativity which shifts parentheses to the
right. At this point, the goal looks like: copair f2 f1 o (copair coproj2 coproj1 o

coproj1) == f1. We cut the Prop instance, (copair coproj2 coproj1 o coproj1 ==
(@coproj2 Z Y)) and introduce an instance of it named H1. We rewrite H1 and obtain
copair f2 f1 o coproj2 == f1. Now, it suffices to apply the rule s_lcopair_eq and
prove that PPG f2 which is an assumption. It is necessary to prove the strong equation
that we have already cut. There, we first convert the goal side strong equation into a
weak equation provided that copair coproj2 coproj1 o coproj1 and (@coproj2 Z Y)

are both propagator. So that the goal turns into (copair coproj2 coproj1 o coproj1

∼ coproj2). It suffices to apply w_lpair_eq and prove that PPG coproj2 which is closed
by edecorate.

right copair: second coprojection

Lemma w_rcopair_eq: forall X Z Y (f1: term X Y) (f2: term X Z), PPG f2 → rcopair f1 f2 o coproj2 ∼ f2.
Proof.

intros X Y’ Y f1 f2 H. unfold rcopair, permut. rewrite ←assoc.
rewrite s_lcopair_eq;[| edecorate]. rewrite w_lcopair_eq;[reflexivity| edecorate].

Qed.

After some preliminary modifications on the goal (by following the first line in the proof),
we obtain copair f2 f1 o (copair coproj2 coproj1 o coproj2) ∼ f2. We rewrite
s_lcopair_eq which results in two subgols: copair f2 f1 o coproj1 ∼ f2 and PPG

coproj2. The application of the rule w_lcopair_eq followed by the edecorate solves
the first subgoal and decorate alone closes the second.

We also certify the proofs of Propositions 6.1.3 and 6.1.6 ensuring that left and right co-
pairs are unique with respect to strong equation:

left copair: unicity

Lemma lcopair_u: forall X Y Y’ (f1 f2: term X (Y’ + Y)),
(f1 o coproj1 ∼ f2 o coproj1) ∧ (f1 o coproj2 == f2 o coproj2) → f1 == f2.

Proof.
intros X Y Y’ f1 f2 (H0&H1). apply eeffect.
(* f1 ◦ [ ] ≡ f2 ◦ [ ] *)

cut((@coproj2 Y’ Y) o (@empty Y) == (@empty (Y’+ Y))).
intro H2. rewrite ←H2.
setoid_rewrite assoc. rewrite H1. reflexivity.
(* 1st cut *)

setoid_rewrite s_empty; [reflexivity| edecorate].
(* f1 ∼ f2 *)

apply lcopair_ueq. exact H0. apply stow. exact H1.
Qed.

right copair: unicity

Lemma rcopair_u: forall X Y Y’ (f1 f2: term X (Y’ + Y)),
(f1 o coproj1 == f2 o coproj1) ∧ (f1 o coproj2 ∼ f2 o coproj2) → f1 == f2.

Proof.
intros X Y Y’ f1 f2 (H0&H1). apply eeffect.
(* f1 ◦ [ ] ≡ f2 ◦ [ ] *)

cut((@coproj1 Y’ Y) o (@empty Y’) == (@empty (Y’+ Y))).
intro H2. rewrite ←H2.
setoid_rewrite assoc. rewrite H0. reflexivity.

(* 1st cut *)

setoid_rewrite s_empty; [reflexivity| edecorate].
(* f1 ∼ f2 *)

apply lcopair_ueq. apply stow. exact H0. exact H1.
Qed.
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Both proofs follow the same approach: first the (eeffect) rule is applied to the goal of the
form f1 == f2. This generates two subgoals to prove: f1 o empty == f2 o empty and
f1 ∼ f2. Then, depending on the assumptions, we use the fact coproj1 o empty ==
empty or coproj2 o empty == empty ensured by (s-empty) to close the first subgoal. For
the second subgoals, we use (lcopair-eq) rule to conclude with f1 == f2.

In addition, one can derive the left coproducts out of copairs and coprojections as:

Definition lcoprod {X1 Y1 X2 Y2} (f1: term X1 X2) (f2: term Y1 Y2) : term (X1+ Y1) (X2+ Y2)
:= copair (coproj1 o f1) (coproj2 o f2).

Now, right coproduct structure looks like:

Definition rcoprod {X Y X’ Y’} (f1: term X X’) (f2: term Y Y’) : term (X+ Y) (X’+ Y’)
:= rcopair (coproj1 o f1) (coproj2 o f2).

One can simply prove that the decoration of a term coproduct depends on its components:

Lemma is_lcoprod: forall k X’ X Y’ Y (f1: term X X’) (f2: term Y Y’), PPG f1 → is k f1 → is k f2

→ is k (lcoprod f1 f2).
Proof. intros k X’ X Y’ Y f1 f2 H1 H2 H3. induction k; edecorate. Qed.

After introducing the necessary instances, we induce on the kind k. Then, it suffices
to edecorate each goal: is pure (lcoprod f1 f2), is ppg (lcoprod f1 f2) and is

ctc (lcoprod f1 f2) locally provided: H0: is pure f1, H1: is pure f2; H0: is ppg

f1, H1: is ppg f2 and H0: is ctc f1, H1: is ctc f2. The similar idea applies to the
case of right coproducts:

Lemma is_rcoprod: forall k X’ X Y’ Y (f1: term X X’) (f2: term Y Y’), PPG f2 → is k f1 → is k f2

→ is k (rcoprod f1 f2).
Proof. intros k X’ X Y’ Y f1 f2 H1 H2 H3. induction k; edecorate. Qed.

The coprojection (or inclusion) rules attached to left and right coproducts, that are stated
and proved in Propositions 6.1.8 and 6.1.10, are certified in Coq along with their proofs:

left and right coproducts: first and second coprojections

Lemma s_lcoprod_eq: forall X1 X2 Y1 Y2 (f: term X1 X2) (g: term Y1 Y2),
PPG f → (lcoprod f g) o coproj1 ∼ coproj1 o f.

Proof. intros X1 X2 Y1 Y2 f g H. apply w_lcopair_eq; edecorate. Qed.

Lemma w_lcoprod_eq: forall X1 X2 Y1 Y2 (f: term X1 X2) (g: term Y1 Y2),
PPG f → (lcoprod f g) o coproj2 == coproj2 o g.

Proof. intros X1 X2 Y1 Y2 f g H. apply s_lcopair_eq; edecorate. Qed.

Lemma s_rcoprod_eq: forall X1 X2 Y1 Y2 (f: term X1 X2) (g: term Y1 Y2),
PPG g → (rcoprod f g) o coproj1 == coproj1 o f.

Proof. intros X1 X2 Y1 Y2 f g H. apply s_rcopair_eq; edecorate. Qed.

Lemma w_rcoprod_eq: forall X1 X2 Y1 Y2 (f: term X1 X2) (g: term Y1 Y2),
PPG g → (rcoprod f g) o coproj2 ∼ coproj2 o g.

Proof. intros X1 X2 Y1 Y2 f g H. apply w_rcopair_eq; edecorate. Qed.

They are nothing but the specialized versions of (w-lcopair-eq), (s-lcopair-eq), (w-rcopair-
eq) and (s-rcopair-eq).

We lastly have the unicity properties of left and right coproducts with respect to strong
equation, that are stated and proven in Propositions 5.1.9 and 5.1.11, certified in Coq:
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left and right coproducts: unicity

Lemma lcoprod_u: forall X1 X2 Y1 Y2 (f1 f2: term (Y2 + Y1) (X2 + X1)),
(f1 o coproj1 ∼ f2 o coproj1) ∧ (f1 o coproj2 == f2 o coproj2) → f1 == f2.

Proof. intros X1 X2 Y1 Y2 f1 f2 (H0&H1). apply lcopair_u. split; [exact H0| exact H1]. Qed.

Lemma rcoprod_u: forall X1 X2 Y1 Y2 (f1 f2: term (Y2 + Y1) (X2 + X1)),
(f1 o coproj1 == f2 o coproj1) ∧ (f1 o coproj2 ∼ f2 o coproj2) → f1 == f2.

Proof. intros X1 X2 Y1 Y2 f1 f2 (H0&H1). apply rcopair_u. split; [exact H0| exact H1]. Qed.

It suffices to respectively apply (lcopair_u) and (rcopair_u) to close the goals.

Remark 6.4.5. See the sources Derived_coPairs.v and Derived_coProducts.v for related
implementation details.

6.5 The logic Lexc−pl in Coq

The Coq implementation of the logic Lexc−pl follows the same approach with the one of
the logic Lexc, as in Section 6.4, and it can be found in the EXCEPTIONS-THESIS library.

6.5.1 Terms

By using the same preliminaries, the implementation of terms looks like:

Inductive termpl: Type → Type → Type :=
| pl_tpure: forall {X Y: Type}, (X → Y) → termpl Y X

| pl_comp: forall {X Y Z: Type}, termpl X Y → termpl Y Z → termpl X Z

| throw: forall {X} (e: EName), termpl X (Val e)
| try_catch: forall {X Y} (e: EName), termpl Y X → termpl Y (Val e) → termpl Y X.
Notation "a ’O’ b" := (pl_comp a b) (at level 70).

Terms are inductively defined via a dependent type called termpl. In addition to the main
constructors throw and try_catch, via pl_tpure, we introduce Coq side pure functions.
The constructor pl_comp enables to compose compatible terms. Notice that there is neither
tag nor untag involved. Lastly, the keyword ‘O’ is used to notate the composition of
compatible terms. For the ease of further usage, we introduce some basic Coq side functions
inside the decorated environment via the use of the pl_tpure constructor.

Definition pl_id {X: Type} : termpl X X := pl_tpure Datatypes.id.

The term pl_id makes use of the native id function in Coq and constructs the termpl X

X type for each X: Type.

Remark 6.5.1. See the source Terms.v for related implementation details.

6.5.2 Decorations

Since there is no catcher term in the logic Lexc−pl, the enumerated type kindpl implements
decorations with two constructors: pl_pure and pl_ppg.

Inductive kindpl := pl_pure | pl_ppg.
Inductive is_pl: kindpl → forall X Y, termpl X Y → Prop :=
| is_pl_tpure: forall X Y (f: X → Y), is_pl pl_pure (@pl_tpure X Y f)
| is_pl_comp: forall k X Y Z (f: termpl X Y) (g: termpl Y Z), is_pl k f → is_pl k g → is_pl k (f O g)
| is_throw: forall X (e: EName), is_pl pl_ppg (@throw X e)
| is_try_catch: forall X Y (e: EName) (a: termpl Y X) (b: termpl Y (Val e)), is_pl pl_ppg (@try_catch _ _ e a b)
| is_pl_pure_ppg: forall X Y (f: termpl X Y), is_pl pl_pure f → is_pl pl_ppg f.
Hint Constructors is_pl.
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Anything defined over pl_tpure is declared to be pure. The decoration of a composed
term depends on its components. The terms throw and try_catch are defined to be
propagators. The hierarchy among decorations is also there as the last constructor: a pure
term can be seen as propagator.

Class PL_EPURE {X Y: Type} (f: termpl X Y) := isplp : is_pl pl_epure f.
Class PL_PPG {X Y:Type} (f: termpl X Y) := isplppg : is_pl pl_ppg f.

Remark 6.5.2. See the source Decorations.v for related implementation details.

6.5.3 Axioms

There is only one type of equation relating (strong equation, denoted ∗ ==) the terms.

Reserved Notation "x ∗ == y" (at level 80).
Inductive pl_strong: forall X Y, relation (termpl X Y) :=
| pl_refl: forall X Y (f: termpl X Y), f ∗ == f

| pl_sym: forall X Y, Symmetric (@pl_strong X Y)
| pl_trans: forall X Y, Transitive (@pl_strong X Y)
| pl_assoc: forall X Y Z T (f: termpl X Y) (g: termpl Y Z) (h: termpl Z T), f O (g O h) ∗ == (f O g) O h

| pl_ids: forall X Y (f: termpl X Y), f O pl_id ∗ == f

| pl_idt: forall X Y (f: termpl X Y), pl_id O f ∗ == f

| pl_replsubs: forall X Y Z, Proper (@pl_strong X Y ==> @pl_strong Y Z ==> @pl_strong X Z) (pl_comp)
(*for throw and try/catch*)

| ppt : forall X Y e (a: termpl X Y), a O (@throw Y e) ∗ == (@throw X e)
| rcv : forall X Y e (u1 u2: termpl (Val e) Y), (@throw X e) O u1 ∗ == (@throw X e) O u2 → u1 ∗ == u2

| try : forall X Y e (a1 a2: termpl X Y) (b: termpl X (Val e)), a1 ∗ == a2 →
try_catch e a1 b ∗ == try_catch e a2 b

| try0: forall X Y e (u: termpl X Y) (b: termpl X (Val e)), PL_EPURE u → try_catch e u b ∗ == u

| try1: forall X Y e (u: termpl (Val e) Y) (b: termpl X (Val e)), PL_EPURE u →
try_catch e ((@throw X e) O u) b ∗ == b O u

| try2: forall X Y e f (u: termpl (Val f) X) (b: termpl Y (Val e)), e <> f → PL_EPURE u →
try_catch e ((@throw Y f) O u) b ∗ == (@throw Y f) O u

(*pl_tpure preserves the pure composition*)

| pl_tcomp: forall X Y Z (f: Z → Y) (g: Y → X), pl_tpure (compose g f) ∗ == pl_tpure g O pl_tpure f

where "x ∗ == y" := (pl_strong x y).

The only crucial point is about the rules concerning throw and try_catch blocks. For the
related discussion, see Figure 6.9.

6.6 Translating Lexc−pl into Lexc in Coq

The terms of the logic Lexc−pl can simply be translated into the logic Lexc as follows:

Fixpoint translate X Y (t: termpl X Y): (term X Y) :=
match t with

| pl_tpure X Y f ⇒ tpure f

| pl_comp _ _ _ a b ⇒ (@translate _ _ a) o (@translate _ _ b)
| throw Y e ⇒ (@empty Y) o tag e

| try_catch X Y e a b ⇒ downcast(copair (@id Y) ((@translate _ _ b) o untag e) o coproj1 o (@translate _ _ a))
end.

Any pure term in the logic Lexc−pl is still pure in the logic Lexc. The term compositions in
the logic Lexc−pl corresponds to the composition of translated terms in the logic Lexc. We
translate the terms throw and try/catch as they are given in Definitions 6.3.2 and 6.3.3.
This translation is used to prove Theorem 6.3.4.

Remark 6.6.1. See the source Terms.v for related implementation details.
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6.7 Proofs involving the exceptions effect

In this section, we detail some primitive program properties with the exceptions effect
and prove them in a decorated setting (as done in Section 5.3 for programs with the state
effect). We also provide corresponding formalizations in Coq.

(1)d atu. Untagging an exception of name e and then raising it, is just like doing nothing.

∀ e ∈ EName, untag
(2)
e ◦ tag

(1)
e ≡ id

(0)
0

: 0→ 0.

(2)d cuu. Untagging two distinct exception names can be done in any order.

∀ e 6= r ∈ EName, (untage +r idEVr)
(2) ◦ inr (0) ◦ untag

(2)
r ≡

(idEVe +l untagr)
(2) ◦ inl (0) ◦ untag

(2)
e : 0→ EVe + EVr.

(3)d ppt. A propagator term always propagates an exception.

∀ e ∈ EName, a(1) : X → Y, a(1) ◦ [ ]
(0)
X ◦ tag

(1)
e ≡ [ ]

(0)
Y ◦ tag

(1)
e : EVe → Y .

(4)d rcv. The parameter used for throwing an exception may be recovered.
(

∀ f (1), g(1) : X → 0, [ ]
(0)
Y ◦ f

(1) ≡ [ ]
(0)
Y ◦ g

(1) =⇒ f (1) ≡ g(1)
)

=⇒
(

∀ e ∈ EName, u
(0)
1 , u

(0)
2 : X → EVe,

(
[ ]

(0)
Y ◦ tag

(1)
e ◦ u

(0)
1 ≡ [ ]

(0)
Y ◦ tag

(1)
e ◦ u

(0)
2

)
=⇒ u

(0)
1 ≡ u

(0)
2

)

.

(5)d try. The strong equation is compatible with try/catch.

∀ e ∈ EName, a
(1)
1 , a

(1)
2 : X → Y, b(1) : EVe → Y, a

(1)
1 ≡ a

(1)
2 =⇒

(

↓
(
[idY | b ◦ untage]l ◦ inl ◦ [ ]Y ◦ tage ◦ a1

)(1)
≡

↓
(
[idY | b ◦ untage]l ◦ inl ◦ [ ]Y ◦ tage ◦ a2

)(1)
)

.

(6)d try0. Pure code inside try never triggers the code inside catch.
∀ e ∈ EName, u(0) : X → Y, b(1) : EVe → Y,

↓
(
[idY | b ◦ untage]l ◦ inl ◦ u

)(1)
≡ id

(0)
Y ◦ u

(0) : X → Y.

(7)d try1. The code inside catch part is executed as soon as an exception is thrown inside
try.
∀ e ∈ EName, u(0) : X → EVe, b

(1) : EVe → Y,

↓
(
[idY | b ◦ untage]l ◦ inl ◦ [ ]Y ◦ tage ◦ u

)(1)
≡ b(1) ◦ u(0) : X → Y.

(8)d try2. An exception cannot be handled, if the particular exception name is not matched.
The exception is propagated.
∀ (e 6= f) ∈ EName, u(0) : X → EVf , b

(1) : EVe → Y,

↓
(
[idY | b ◦ untage]l ◦ inl ◦ [ ]Y ◦ tagf ◦ u

)(1)
≡ [ ]

(0)
Y ◦ tag

(1)
f ◦ u

(0) : X → Y.

The decorated logic for exceptions (Lexc) is used to prove above the stated properties.
Such proofs are enriched with Coq certifications. Within the Coq scripts, one can simply
relate the Coq proof to the proof in English by following the comments following crucial
steps. The use of associativity of composition in the Coq proofs just balances the proof
tree into an intended shape. This is omitted in the proofs on the paper.

Proposition 6.7.1. Annihilation tag-untag (atu). Untagging an exception of name e and
then raising it, is just like doing nothing.

∀ e ∈ EName, untag(2)e ◦ tag
(1)
e ≡ id

(0)
0

: 0→ 0 (6.1)
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Proof. (1) Due to (eax1), we have untag
(2)
e ◦ tag

(1)
e ∼ id

(0)
Ve

. Thanks to the (wrepl), we

obtain tag
(1)
e ◦ untag

(2)
e ◦ tag

(1)
e ∼ tag

(1)
e ◦ id

(0)
Ve

. This can be written as tag
(1)
e ◦

untag
(2)
e ◦ tag

(1)
e ∼ id

(0)
0
◦ tag

(1)
e by respectively using (ids) and (idt).

∀ e ∈ EName
(eax1)

untag
(2)
e ◦ tag

(1)
e ∼ id

(0)
EVe

(wrepl)
tag

(1)
e ◦ untag

(2)
e ◦ tag

(1)
e ∼ tag

(1)
e ◦ id

(0)
EVe

(ids)
tag

(1)
e ◦ untag

(2)
e ◦ tag

(1)
e ∼ tag

(1)
e

(idt)
tag

(1)
e ◦ untag

(2)
e ◦ tag

(1)
e ∼ id

(0)
0
◦ tag

(1)
e

(2) We have tag
(1)
e ◦ [ ]

(0)
Ve
≡ id

(0)
0

provided by (s-empty). Thanks to (replsubs), we get

tag
(1)
e ◦ [ ]

(0)
Ve
◦ tag

(1)
r ≡ id

(0)
0
◦ tag

(1)
r , for each exception name r such that e 6= r. It

is allowed to switch from the strong equation into a weak equation: tag
(1)
e ◦ [ ]

(0)
Ve
◦

tag
(1)
r ∼ id

(0)
0
◦ tag

(1)
r . The use of (eax2) on the left, enabled by (wrepl), yields

tag
(1)
e ◦ untag

(2)
e ◦ tag

(1)
r ∼ id

(0)
0
◦ tag

(1)
r .

∀ e r ∈ EName s.t. e6= r
(ax2)

untag
(2)
e ◦ tag

(1)
r ∼ [ ]EVe

◦ tag
(1)
r

(wrepl)
tag

(1)
e ◦ untag

(2)
e ◦ tag

(1)
r ∼ tag

(1)
e ◦ [ ]EVe

◦ tag
(1)
r

..

.
(s-empty)

tag
(1)
e ◦ [ ]EVe

≡ id
(0)
0

tag
(1)
e ◦ untag

(2)
e ◦ tag

(1)
r ∼ id

(0)
0
◦ tag

(1)
r

Given items (1), (2) and the rule (elocal-global), we end up with tag
(1)
e ◦ untag

(2)
e ≡ id

(0)
0

.

In addition to the above proof, it is possible to start from the goal statement itself and end
up with some truth value. This is actually constructing the proof tree with a bottom-up
strategy. For instance, let us consider the above statement (atu): we start with applying
the (local-global) rule and proceed as follows:

(1) for any r ∈ EName, when e = r, the goal looks like tag e◦untag e◦tag e ∼ id0◦tag e.

(1.1) we apply (idt) and (ids) to obtain tag
(1)
e ◦ untag

(2)
e ◦ tag

(1)
e ∼ tag

(1)
e ◦ id

(0)
EVe

.

(1.2) by applying (wrepl), we get untag
(2)
e ◦ tag

(1)
e ∼ id

(0)
EVe

. Finally, the application
of (eax1) resolves the goal.

(2) when e 6= r, the goal becomes tag e ◦ untag e ◦ tag r ∼ id0 ◦ tag r.

(2.1) thanks to (s-empty), we have tag e◦[ ]EVe ≡ id0, thus tag(1)e ◦untag
(2)
e ◦tag

(1)
r ∼

tag
(1)
e ◦ [ ]EVe ◦ tag

(1)
r .

(2.1) by applying (wrepl) we get untag
(2)
e ◦ tag

(1)
r ∼ [ ]EVe ◦ tag

(1)
r . Finally, the

application of (eax2) resolves the goal.

Below, we formalize the statement (atu) together with its certified proof in Coq. This
proof proceeds by manipulations on the goal and ends up with “true”. Therefore, it follows
the same lines as the proof given just above. By using the apparent numbering, one can
relate the proof steps in English to the ones in Coq.
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Lemma ATU: forall e: EName, (tag e) o (untag e) == (@id Empty_set).
Proof.

intro e.
apply elocal_global.
intro r. destruct(Exc_dec r e) as [Ha|Hb]. rewrite Ha.
(* case e = r *) (* (1) *)

rewrite idt. setoid_rewrite ←ids at 6. rewrite ←assoc. (* (1.1) *)

apply wrepl; [reflexivity| apply eax1]. (* (1.2) *)

(* case e <> r *) (* (2) *)

cut(tag e o (@empty (Val e)) == (@id (Empty_set)))·
[ intro H0| setoid_rewrite s_empty; [reflexivity| edecorate| edecorate]].

rewrite ←H0. setoid_rewrite ←assoc. (* (2.1) *)

apply wrepl; [reflexivity| apply eax2; exact Hb]. (* (2.2) *)

Qed.

Proposition 6.7.2. Commutation untag-untag (cuu). Untagging two distinct exception
names can be done in any order.

∀ t 6= s ∈ EName, (untagt +r idEVs)
(2) ◦ inr (0) ◦ untag(2)s ≡

(idEVt +l untags)
(2) ◦ inl (0) ◦ untag

(2)
t : 0→ EVt + EVs

(6.2)

Proof. (1) We have (untagt +r idEVs)
(2) ◦ inr (0) ∼ inr (0) ◦ id

(0)
EVs

due to (s-rcoprod-eq).

We can use (ids) to have (untagt+r idEVs)
(2) ◦ inr (0) ◦ id

(0)
EVs
∼ inr (0) ◦ id

(0)
EVs

. Thanks

to (eax1), enabled by (wrepl) on both sides, we get (untagt +r idEVs)
(2) ◦ inr (0) ◦

untag
(2)
s ◦ tag

(1)
s ∼ inr (0) ◦ untag

(2)
s ◦ tag

(1)
s . Thanks to (s-lcoprod-eq), we obtain

(untagt+r idEVs)
(2) ◦ inr (0) ◦untag

(2)
s ◦tag

(1)
s ∼ (idEVt +l untags)

(2) ◦ inr (0) ◦tag
(1)
s .

The use of (s-empty) yields (untagt+r idEVs)
(2) ◦ inr (0) ◦untag

(2)
s ◦tag

(1)
s ∼ (idEVt +l

untags)
(2) ◦ inl (0) ◦ [ ]

(0)
EVt
◦ tag

(1)
s . We now obtain by (eax2), enabled by (wrepl) on

the right, that (untagt+r idEVs)
(2) ◦ inr (0) ◦untag

(2)
s ◦tag

(1)
s ∼ (idEVt +l untags)

(2) ◦

inl (0) ◦ untag
(2)
t ◦ tag

(1)
s .

(2) Symmetrically, there is (idEVt +l untags)
(2) ◦ inl (0) ∼ inl (0) ◦ id

(0)
EVt

due to (w-lcoprod-

eq). We use (ids) to handle (idEVt +l untags)
(2) ◦ inl (0) ◦ id

(0)
EVt
∼ inl(0) ◦ id

(0)
EVt

. Now,

by (eax1), on both sides we get (idEVt +l untags)
(2) ◦ inl (0) ◦ untag

(2)
t ◦ tag

(1)
t ∼

inl(0) ◦ untag
(2)
t ◦ tag

(1)
t . Thanks to (s-rcoprod-eq), we get (idEVt +l untags)

(2) ◦

inl (0) ◦ untag
(2)
t ◦ tag

(1)
t ∼ (untagt +r idEVs)

(2) ◦ inl (0) ◦ tag
(1)
t . It follows the use of

(s-empty) that (idEVt +l untags)
(2) ◦ inl (0) ◦untag

(2)
t ◦tag

(1)
t ∼ (untagt+r idEVs)

(2) ◦

inr (0) ◦ [ ]
(0)
EVs
◦tag

(1)
t . We get by (eax2) on the right that (idEVt +l untags)

(2) ◦ inl (0) ◦

untag
(2)
t ◦ tag

(1)
t ∼ (untagt +r idEVs)

(2) ◦ inr (0) ◦ untag
(2)
s ◦ tag

(1)
t .

(3) In addition, by (s-empty), one has inr (0) ◦ [ ]
(0)
EVs
≡ inl (0) ◦ [ ]

(0)
EVt

. It is possible to get

inr (0) ◦ [ ]
(0)
EVs
◦ tag

(1)
r ≡ inl (0) ◦ [ ]

(0)
EVt
◦ tag

(1)
r , for each exception name r such that

r 6= s and r 6= t. It is free to switch from the strong equation into a weak equation:
inr (0) ◦ [ ]

(0)
EVs
◦tag

(1)
r ∼ inl (0) ◦ [ ]

(0)
EVt
◦tag

(1)
r . Here, we make use of (eax2), allowed by

(wrepl) on both sides, so as to get inr (0) ◦untag(2)s ◦tag
(1)
r ∼ inl (0) ◦untag

(2)
t ◦tag

(1)
r .

Thanks to (s-lcoprod-eq), we obtain (idEVt +l untags)
(2) ◦ inr (0) ◦ tag

(1)
r ∼ inl (0) ◦

untag
(2)
t ◦tag

(1)
r and symmetrically, (s-rcoprod-eq) yields (idEVt+luntags)

(2)◦inr (0)◦

tag
(1)
r ∼ (untagt+r idEVs)

(2)◦inl (0)◦tag
(1)
r . Now, by (s-empty) on both sides, we get

(idEVt+luntags)
(2)◦inl (0)◦[ ]

(0)
EVt
◦tag

(1)
r ∼ (untagt+r idEVs)

(2)◦inr (0)◦[ ]
(0)
EVs
◦tag

(1)
r .
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And by (eax2) on both sides, we end up with (idEVt +l untags)
(2) ◦ inl (0) ◦ untag

(2)
t ◦

tag
(1)
r ∼ (untagt +r idEVs)

(2) ◦ inr (0) ◦ untag
(2)
s ◦ tag

(1)
r .

Now, provided above items (1), (2), (3) and the rule (elocal-global), we conclude that

(untagt +r idEVs)
(2) ◦ inr (0) ◦ untag

(2)
s ≡ (idEVt +l untags)

(2) ◦ inl (0) ◦ untag
(2)
t for each

exception names s and t such that s 6= t.

Proposition 6.7.3. Propagate (ppt). A propagator term always propagates an exception.

∀ e ∈ EName, a(1) : X → Y, a(1) ◦ [ ]
(0)
X ◦ tag

(1)
e ≡ [ ]

(0)
Y ◦ tag

(1)
e : EVe → Y. (6.3)

Proof. For each a(1) : X → Y , (s-empty) implies that a(1) ◦ [ ](0)X ≡ [ ]
(0)
Y , so that a(1) ◦

[ ]
(0)
X ◦ tag

(1)
e ≡ [ ]

(0)
Y ◦ tag

(1)
e by (subs).

Proposition 6.7.4. Recover (rcv). The parameter used for throwing an exception may be
recovered.

(

∀ f (1), g(1) : X → 0, [ ]
(0)
Y ◦ f

(1) ≡ [ ]
(0)
Y ◦ g

(1) =⇒ f (1) ≡ g(1)
)

=⇒
(

∀ e ∈ EName, u
(0)
1 , u

(0)
2 : X → EVe,

[ ]
(0)
Y ◦ tag

(1)
e ◦ u

(0)
1 ≡ [ ]

(0)
Y ◦ tag

(1)
e ◦ u

(0)
2 =⇒ u

(0)
1 ≡ u

(0)
2

)

.

(6.4)

Proof. If [ ](0)Y ◦tag
(1)
e ◦u

(0)
1 ≡ [ ]

(0)
Y ◦tag

(1)
e ◦u

(0)
2 , since [ ]Y is a monomorphism with respect

to propagators, we have tag
(1)
e ◦ u

(0)
1 ≡ tag

(1)
e ◦ u

(0)
2 . Now, (replsubs) gives untag

(2)
e ◦

tag
(1)
e ◦ u

(0)
1 ≡ untag

(2)
e ◦ tag

(1)
e ◦ u

(0)
2 . By (stow), we obtain untag

(2)
e ◦ tag

(1)
e ◦ u

(0)
1 ∼

untag
(2)
e ◦ tag

(1)
e ◦ u

(0)
2 . Since u1 and u2 are pure, we are enabled to use (eax1) on both

sides so as to handle u
(0)
1 ∼ u

(0)
2 . Since there is no modifiers, we simply end up with

u
(0)
1 ≡ u

(0)
2 .

Proposition 6.7.5. try. The strong equation is compatible with try/catch.

∀ e ∈ EName, a
(1)
1 , a

(1)
2 : X → Y, b(1) : EVe → Y,

a
(1)
1 ≡ a

(1)
2 =⇒

(

↓
(
[idY | b ◦ untage]l ◦ inl ◦ [ ]Y ◦ tage ◦ a1

)(1)
≡

↓
(
[idY | b ◦ untage]l ◦ inl ◦ [ ]Y ◦ tage ◦ a2

)(1)
)

.

(6.5)

Proof. Given a(1)1 ≡ a
(1)
2 , we can trivially obtain [idY | b◦untage]

(2)
l ◦ inl

(0) ◦ [ ]
(0)
Y ◦tag

(1)
e ◦

a
(1)
1 ≡ [idY | b ◦ untage]

(2)
l ◦ inl

(0) ◦ [ ]
(0)
Y ◦ tag

(1)
e ◦ a

(1)
2 thanks to (replsubs). After the

free conversion of the strong equation into a weak one, we can use (w-downcast) to get

↓
(
[idY | b◦untage]l ◦ inl ◦ [ ]Y ◦tage ◦a1

)(1)
∼ ↓

(
[idY | b◦untage]l ◦ inl ◦ [ ]Y ◦tage ◦a2

)(1)
.

Since both sides are throwers we convert weak equality back into strong: ↓
(
[idY | b ◦

untage]l ◦ inl ◦ [ ]Y ◦ tage ◦ a1
)(1)
≡ ↓

(
[idY | b ◦ untage]l ◦ inl ◦ [ ]Y ◦ tage ◦ a2

)(1)
.

Proposition 6.7.6. try0. Pure code inside try never triggers the code inside catch.

∀ e ∈ EName, u(0) : X → Y, b(1) : EVe → Y,

↓
(
[idY | b ◦ untage]l ◦ inl ◦ u

)(1)
≡ id

(0)
Y ◦ u

(0) : X → Y.
(6.6)
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Proof. Due to (w-lcopair-eq), we have [idY | b ◦ untage]
(2)
l ◦ inl

(0) ∼ id
(0)
Y . By using

(pwsubs), we obtain [idY | b ◦ untage]
(2)
l ◦ inl

(0) ◦ u(0) ∼ id
(0)
Y ◦ u

(0). Thanks to (w-

downcast) ensuring ↓
(
[idY | b ◦ untage]l ◦ inl ◦ u

)(1)
∼ [idY | u ◦ untage]

(2)
l ◦ inl

(0) ◦ u(0),

we end up with ↓
(
[idY | b ◦ untage]l ◦ inl ◦ u

)(1)
∼ id

(0)
Y ◦ u

(0) by (w-lcopair-eq). Lack of

catchers gives ↓
(
[idY | b ◦ untage]l ◦ inl ◦ u

)(1)
≡ id

(0)
Y ◦ u

(0).

Proposition 6.7.7. try1. The code inside catch is executed as soon as an exception is
thrown inside try.

∀ e ∈ EName, u(0) : X → EVe, b
(1) : EVe → Y,

↓
(
[idY | b ◦ untage]l ◦ inl ◦ [ ]Y ◦ tage ◦ u

)(1)
≡ b(1) ◦ u(0) : X → Y.

(6.7)

Proof. Thanks to (eax1), we have untag
(2)
e ◦ tag

(1)
e ∼ idVe . Due to (pwsubs) and (wrepl),

we get b(1) ◦ untag(2)e ◦ tag
(1)
e ◦ u(0) ∼ b(1) ◦ idVe ◦ u

(0). Besides, (s-lcopair-eq) yields

[idY | b ◦ untage]
(2)
l ◦ inr ≡ b

(1) ◦ untag
(2)
e . So that we obtain [idY | b ◦ untage]

(2)
l ◦ inr

(0) ◦

tag
(1)
e ◦u(0) ∼ b(1) ◦u(0). Alongside these, with (s-empty), we handle inr(0) ≡ inr (0) ◦ [ ]

(0)
Y .

So that we get [idY | b ◦ untage]
(2)
l ◦ inl

(0) ◦ [ ]
(0)
Y ◦ tag

(1)
e ◦ u(0) ∼ b(1) ◦ u(0). Now, (w-

downcast) yields ↓
(
[idY | b ◦ untage]l ◦ inl ◦ [ ]Y ◦ tage ◦ u

)(1)
∼ b(1) ◦ u(0). The lack of

catchers gives ↓
(
[idY | b ◦ untage]l ◦ inl ◦ [ ]Y ◦ tage ◦ u

)(1)
≡ b(1) ◦ u(0).

Proposition 6.7.8. try2. An exception cannot be handled, if the particular exception
name is not matched. The exception is propagated.

∀ (e 6= f) ∈ EName, u(0) : X → EVf , b
(1) : EVe → Y,

↓
(
[idY | b ◦ untage]l ◦ inl ◦ [ ]Y ◦ tagf ◦ u

)(1)
≡ [ ]

(0)
Y ◦ tag

(1)
f ◦ u

(0) : X → Y.
(6.8)

Proof. Due to (s-lcopair-eq), we have [idY | b ◦ untage]
(2)
l ◦ inr

(0)
Y,0 ≡ b(1) ◦ untag

(2)
e . By

using (subs), we get [idY | b ◦ untage]
(2)
l ◦ inr

(0)
Y,0 ◦ tag

(1)
f ◦ u ≡ b

(1) ◦ untag
(2)
e ◦ tag

(1)
f ◦u

(0).
Here, we first convert the strong equation into a weak equation and then use (eax2) on

the right side, since u is pure, so as to obtain [idY | b ◦ untage]
(2)
l ◦ inr

(0)
Y,0 ◦ tag

(1)
f ◦

u(0) ∼ b(1) ◦ [ ]
(0)
EVf
◦ tag

(1)
f ◦ u

(0). Since b(1) ◦ [ ](0)EVf ≡ [ ]
(0)
Y , due to (s-empty), we get

[idY | b◦untage]
(2)
l ◦ inr

(0)
Y,0 ◦tag

(1)
f ◦u

(0) ∼ [ ]
(0)
Y ◦tag

(1)
f ◦u

(0). Now, the rule (w-downcast)

yields ↓
(
[idY | b ◦ untage]l

)(1)
◦ inr

(0)
Y,0 ◦ tag

(1)
f ◦ u

(0) ∼ [ ]
(0)
Y ◦ tag

(1)
f ◦ u

(0). The lack of

catchers gives ↓
(
[idY | b ◦ untage]l

)(1)
◦ inr

(0)
Y,0 ◦ tag

(1)
f ◦u

(0) ≡ [ ]
(0)
Y ◦ tag

(1)
f ◦u

(0). We have

inr
(0)
Y,0 ≡ inl

(0)
Y,0 ◦ [ ]

(0)
Y , thanks to (s-empty). Therefore, ↓

(
[idY | b ◦ untage]l

)(1)
◦ inl

(0)
Y,0 ◦

[ ]
(0)
Y ◦ tag

(1)
f ◦ u

(0) ≡ [ ]
(0)
Y ◦ tag

(1)
f ◦ u

(0).

Remark 6.7.9. See the source Proofs.v for related implementation details.

6.8 Hilbert-Post completeness for the logic Lexc−pl

The pure sublogic L
(0)
exc−pl, for dealing with pure terms, can be seen as any logic extending

a monadic equational logic Lmeq. For instance, L(0)exc−pl may be an equational logic, with
n-ary operations for arbitrary n. However, the rules for Lexc−pl do not allow to form tuples
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of decorated terms, so that the term op(f, g) (where op is a pure operation of arity 2) is
not well-formed, unless f and g are pure. It is well known that there is no “canonical”
interpretation for such terms; however, the interpretation where f is runned before g can
be formalized thanks to strong monads [Mog91] or sequential products [DDR11]. In this
chapter, in order to focus on completeness issues, we avoid such situations.

This pure sublogic L(0)exc−pl is extended to form the corresponding decorated logic for the
programmers’ language for exceptions Lexc−pl by applying the rules in Figure 6.9, followed
by the intended meanings.

The theory of programmers’ language for the exception Texc−pl is the theory of Lexc−pl
generated from some chosen theory T (0) of L(0)exc−pl; with the notations of Section 4.5,

Texc−pl = F (T (0)). The soundness of the intended model follows, see, e.g., [DDEP14,
§5.1] and [DDFR12b], with the description of the handling of exceptions in Java, see
for instance [GJSB05, Ch. 14], or in C++ [Dra12, §15]. Now, in order to prove the
completeness of the decorated theory for exceptions under suitable assumptions, we first
determine canonical forms and then we study the equations between terms in canonical
forms.

Remark 6.8.1. Note also that Coq certifications of Hilbert-Post completeness proof, pre-
sented in this section, can be found in the package hp-thesis: https://forge.imag.fr/
frs/download.php/696/HPC-THESIS.tar.gz. See the HPCompletenessCoq.v source file
inside the exc_pl-hp folder.

Proposition 6.8.2. For each term a(1) : X → Y , either there exists some pure term
u(0) : X → Y such that a ≡ u or there exists some pure term u(0) : X → EV such that
a ≡ throwY ◦ u.

Proof. The proof proceeds by structural induction. If a is pure the result is obvious,
otherwise a can be written in a unique way as a = b ◦ op ◦ v where v is pure, op is either
throwZ for some Z or try(c)catch(d) for some c and d, and b is the remaining part of a.

• If a = b(1) ◦ throwZ ◦ v
(0), then by (propagate) a ≡ throwY ◦ v

(0).

• If a = b(1) ◦ (try(c(1))catch(d(1)))◦v(0), then by induction we consider two subcases.

– If c ≡ w(0) then by (try0) a ≡ b(1) ◦ w(0) ◦ v(0) and by induction we consider
two subcases: if b ≡ t(0) then a ≡ (t ◦ w ◦ v)(0) and if b ≡ throwY ◦ t

(0) then
a ≡ throwY ◦ (t ◦ w ◦ v)

(0).

– If c ≡ throwZ ◦ w
(0) then by (try1) a ≡ b(1) ◦ d(1) ◦ w(0) ◦ v(0) and by induction

we consider two subcases: if b ◦ d ≡ t(0) then a ≡ (t ◦ w ◦ v)(0) and if b ◦ d ≡
throwY ◦ t

(0) then a ≡ throwY ◦ (t ◦ w ◦ v)
(0).

Thanks to Proposition 6.8.2, in order to study equations in the logic Lexc−pl we may restrict
our study to pure terms and to propagators of the form throwY ◦ v where v is pure.

Proposition 6.8.3. For all v
(0)
1 , v

(0)
2 : X → EV let a

(1)
1 = throwY ◦ v1 : X → Y and

a
(1)
2 = throwY ◦ v2 : X → Y . Then a

(1)
1 ≡ a

(1)
2 ⇐⇒ v

(0)
1 ≡ v

(0)
2 .

Proof. Clearly, if v(0)1 ≡ v
(0)
2 then a(1)1 ≡ a

(1)
2 . Conversely, if a1 ≡ a2, i.e., if throwY ◦v

(0)
1 ≡

throwY ◦ v
(0)
2 , then by rule (recover) it follows that v(0)1 ≡ v

(0)
2 .
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Assumption 6.8.4. In the logic Lexc−pl, for all v(0)1 : X → EV , v(0)2 : X → Y , let a(1)1 =

throw
(1)
Y ◦ v

(0)
1 : X → Y . Then, a(1)1 ≡ v

(0)
2 ⇐⇒ for all f (0) , g(0) : X → Y, f (0) ≡ g(0).

Let C be the category of sets. Thanks to item (1) in Proposition 4.2.4 and point (6)

in Definition 6.2.1, throw
(1)
Y ◦ v

(0)
1 ≡ v

(0)
2 : X → Y is interpreted as µY ◦ T (throwY ) ◦

ηEV ◦ v1 = ηY ◦ v2 : X → Y + E in C . It is not possible to have this equality for some
x ∈ X, since the left hand side is in the E summand while the right hand side is in Y
summand of the disjoint union Y + E. This means that these two sides are distinct as
soon as their domain X is interpreted as a non-empty set. If the interpretation of X is
the empty set, then both sides of the assumption are true: ∀f, g : ∅ → Y, f = g. Similarly,
∀a1 : ∅ → Y + E, v2 : ∅ → Y, a1 = ηY ◦ v2. For this reason, Assumption 6.8.4 is sound.

Theorem 6.8.5. Under Assumption 6.8.4, the theory of exceptions Texc−pl of the logic

Lexc−pl is relatively Hilbert-Post complete with respect to the pure sublogic L
(0)
exc−pl.

Proof. Using Corollary 4.5.10, the proof relies upon Propositions 6.8.2, 6.8.3. The theory
Texc−pl is consistent: it cannot be proved that throw(1)EV ≡ id

(0)
EV because the logic Lexc−pl

is sound with respect to its intended model and the interpretation of this equation in the
intended model is false: indeed, throwEV (p) ∈ E for each p ∈ EV , and since EV + E
is a disjoint union we have throwEV (p) 6= p. Propositions 6.8.2 and 6.8.3 together with
Assumption 6.8.4 prove that the given equation is equivalent to a set of pure equations.

6.9 Hilbert-Post completeness for the logic Lexc

The logic Lexc is precisely introduced and its categorical interpretation is studied in Sec-
tion 6.1. Let the logic Lexc−⊕ be a variant of Lexc obtained by dropping the categorical
copairs/coproducts. Let the logic Lmeq+0 be an extension to Lmeq with the use of empty
(0) type and the following inference rules: X

[ ]X : 0→X and f : 0→X
f∼=[ ]X

. Now, the core theory of
exceptions Texc is defined as a theory of the logic Lexc−⊕ generated from the fundamental
equation untag

(2)
e ◦tag

(1)
e ∼ id

(0)
EVe

and from some consistent theory Teq of the logic Lmeq+0;
with the notations of Section 4.5, Texc = F (Teq). In this section, we prove that the theory
Texc of the logic Lexc−⊕ (not of the logic Lexc) is Hilbert-Post complete with respect to the
logic Lmeq+0.

Remark 6.9.1. Note that Coq certifications of the Hilbert-Post completeness proof, pre-
sented in this section, can be found in the package hp-thesis: https://forge.imag.fr/
frs/download.php/696/HPC-THESIS.tar.gz. Check out the HPCompletenessCoq.v file
inside the exc_cl-hp folder. Our main result is Theorem 6.9.9 about the relative Hilbert-
Post completeness of the decorated theory Texc of exceptions under suitable assumptions.
It is assumed that there is only one exception name e and we write EV , tag and untag

instead of EVe, tag
(1)
e and untag

(2)
e .The study of completeness proof with the signature

including several exception names and coproducts is considered as a future goal.

Note also that we do not explicitly have the relative Hilbert-Post completeness (rHPC)
formalization in Coq. Thanks to the second characterization of rHPC given in Corol-
lary 4.5.10, it suffices to show that any formula e in the logic Lexc−⊕ is (T -)equivalent to
some set of formulae E0 in the logic Lmeq+0:

Texc + Th(E0) = Texc + Th(e).
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This has been checked in Coq.

Lemma 6.9.2. 1. The fundamental strong equation for exceptions is tag ◦ untag ≡

id
(0)
0

.

2. For all pure terms u
(0)
1 , u

(0)
2 : X → EV , one has: u

(0)
1 ≡ u

(0)
2 ⇐⇒ tag ◦ u

(0)
1 ≡

tag ◦ u
(0)
2 ⇐⇒ untag ◦ tag ◦ u

(0)
1 ≡ untag ◦ tag ◦ u

(0)
2 .

3. For each pair of catchers f
(2)
1 f

(2)
2 : EV → Y , f

(2)
1 ◦untag ≡ f

(2)
2 ◦untag ⇐⇒ f

(2)
1 ∼

f
(2)
2 .

Proof. 1. By rewriting the axiom (eax1), we get tag ◦ untag ◦ tag ∼ tag; then by rule

(elocal-global) tag ◦ untag ≡ id
(0)
0

.

2. Implications from left to right are clear. Conversely, given untag ◦ tag ◦ u
(0)
1 ≡

untag ◦ tag ◦ u
(0)
2 , we first convert the strong equation into a weak equation, then

use rules (eax1) and (wsubs) so as to get u(0)1 ∼ u
(0)
2 . Since u1 and u2 are pure, we

obtain u(0)1 ≡ u
(0)
2 .

3. Assuming that f (2)1 ◦untag ≡ f
(2)
2 ◦untag, we have f (2)1 ◦untag◦tag ≡ f

(2)
2 ◦untag◦

tag, thanks to (replsubs). We convert the strong equation into a weak equation and

apply (eax1) on both sides to get f (2)1 ∼ f
(2)
2 . Conversely, given f (2)1 ∼ f

(2)
2 , we have

f
(2)
1 ◦ id

(0)
EV ∼ f

(2)
2 ◦ id

(0)
EV , thanks to (pwsubs). Now, by making use of (eax1) on both

sides, we get f (2)1 ◦ untag ◦ tag ∼ f
(2)
2 ◦ untag ◦ tag. Due to (elocal-global), we end

up with f (2)1 ◦ untag ≡ f
(2)
2 ◦ untag.

Proposition 6.9.3. 1. For each propagator a(1) : X → Y , either a is pure or there
is a pure term v(0) : X → EV and an accessor u(1) : 0 → Y such that a(1) ≡
u(1) ◦ tag ◦ v(0).

2. For each catcher f (2) : X → Y , either f is a propagator or there is a propagator a(1) :
EV → Y and a pure term u(0) : X → EV such that f (2) ≡ a(1) ◦ untag ◦ tag ◦ v(0).

Proof. 1. The proof proceeds by structural induction. If a is pure, then the result is
obvious. If a = tag, then it follows that tag ≡ id

(1)
0
◦ tag ◦ id

(0)
EV . Otherwise, a can

be written as a = a
(1)
1 ◦ a

(1)
2 such that a1 : Z → Y and a2 : X → Z. By induction a1

and a2 are either pure or a1 ≡ u
(1)
1 ◦ tag ◦ v

(0)
1 and a2 ≡ u

(1)
2 ◦ tag ◦ v

(0)
2 for some

pure terms v1 : Z → EV and v2 : X → EV and some propagators u1 : 0 → Y and
u2 : 0→ Z. Thus, there are four cases to consider:

(1.1) If both a1 and a2 are pure, then a is.

(1.2) If a1 is pure while a2 is a propagator, we get a ≡ (a1 ◦ u2)
(1) ◦ tag ◦ v

(0)
2 .

(1.3) Symmetrically when a2 is pure while a1 is a propagator, we get a ≡ u(1)1 ◦ tag ◦
(v1 ◦ a2)

(0).

(1.4) If both are propagators, then a ≡ u
(1)
1 ◦ tag ◦ v

(0)
1 ◦ u

(1)
2 ◦ tag ◦ v

(0)
2 . Thanks

to (s-empty), we get tag ◦ v
(0)
1 ◦ u

(1)
2 ≡ id

(0)
0

. The use of (replsubs) yields

u
(1)
1 ◦ tag ◦ v

(0)
1 ◦ u

(1)
2 ◦ tag ◦ v

(0)
2 ≡ u

(1)
1 ◦ tag ◦ v

(0)
2 . Hence, we obtain a ≡

u
(1)
1 ◦ tag ◦ v

(0)
2 .
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2. The proof proceeds by structural induction. If f is a propagator, then the result
is obvious. If f = untag, then it follows that untag ≡ id

(1)
EV ◦ untag ◦ tag ◦ [ ]EV

(notice that tag ◦ [ ]EV ≡ id
(0)
0

due to (s-empty)). Otherwise f can be written as

f = f
(2)
1 ◦f

(2)
2 such that f1 : Z → Y and f2 : X → Z. By induction f1 and f2 are either

propagators or f (2)1 ≡ a
(1)
1 ◦ untag ◦ tag ◦ v

(0)
1 and f (2)2 ≡ a

(1)
2 ◦ untag ◦ tag ◦ v

(0)
2 for

some pure terms v1 : Z → EV and v2 : X → EV and some propagators a1 : EV → Y
and a2 : EV → Z. Thus, there are four cases to consider:

(2.1) If both f1 and f2 are propagators, so is f by (comp).

(2.2) If f1 is a catcher while f2 is a propagator, we obtain f ≡ a(1)1 ◦untag◦tag◦v
(0)
1 ◦

f
(1)
2 . Thanks to Point 1, f2 ≡ u ◦ tag ◦ w for some pure term w(0) : X → EV

and some propagator u(1) : 0→ Z. So that the equation expands into f ≡ a(1)1 ◦

untag◦tag◦v
(0)
1 ◦u

(1)◦tag◦w(0). Thanks to (s-empty), we get tag◦v(0)1 ◦u
(1) ≡

id
(0)
0

. The use of (replsubs) yields a(1)1 ◦ untag ◦ tag ◦ v
(0)
1 ◦ u

(1) ◦ tag ◦ w(0) ≡

a
(1)
1 ◦ untag ◦ tag ◦ w

(0). Thus, we end up with f ≡ a(1)1 ◦ untag ◦ tag ◦ w
(0).

(2.3) Symmetrically when f2 is a catcher while f1 is a propagator, we obtain f ≡

(f1 ◦ a2)
(1) ◦ untag ◦ tag ◦ v

(0)
2 .

(2.4) If both are catchers, then f ≡ a(1)1 ◦ untag ◦ tag ◦ v
(0)
1 ◦ a

(1)
2 ◦ untag ◦ tag ◦ v

(0)
2

such that v(0)1 : Z → EV , v(0)2 : X → EV , a(1)1 : EV → Y and a
(1)
2 : EV → Z.

Now, the reasoning proceeds on a(1)2 . Thus, we have two sub-cases:

(2.4.1) Let us first consider the case where a2 is pure. Since, the composition

v
(0)
1 ◦a

(0)
2 is pure, due to (pwsubs), we have untag◦tag◦v(0)1 ◦a

(0)
2 ∼ v

(0)
1 ◦a

(0)
2 .

Now, we apply Point 3 in Lemma 6.9.2 and obtain untag◦tag ◦ v
(0)
1 ◦a

(0)
2 ◦

untag ≡ v
(0)
1 ◦ a

(0)
2 ◦ untag. Thanks to (replsubs), we write a(1)1 ◦ untag ◦

tag ◦ v
(0)
1 ◦ a

(0)
2 ◦ untag ◦ tag ◦ v

(0)
2 ≡ a

(1)
1 ◦ v

(0)
1 ◦ a

(0)
2 ◦ untag ◦ tag ◦ v

(0)
2 .

Hence, f ≡ (a1 ◦ v1 ◦ a2)
(1) ◦ untag ◦ tag ◦ v

(0)
2 .

(2.4.2) It remains to consider the case where a2 is not pure (it has tag). Thanks

to Point 1, we obtain a
(1)
2 ≡ u(1) ◦ tag ◦ w(0) such that u(1) : 0 → Z and

w(0) : EV → EV . Thus, f ≡ a
(1)
1 ◦ untag ◦ tag ◦ v

(0)
1 ◦ u

(1) ◦ tag ◦ w(0) ◦

untag ◦ tag ◦ v
(0)
2 . Due to (s-empty), we have tag ◦ v

(0)
1 ◦ u

(1) ≡ id
(0)
0

. By

using (replsubs), we get tag ◦ v(0)1 ◦ u
(1) ◦ tag ◦ w(0) ≡ tag ◦ w(0). We first

convert the strong equation into a weak equation and then make use of
(wrepl) to obtain untag ◦ tag ◦ v

(0)
1 ◦ u

(1) ◦ tag ◦w(0) ∼ untag ◦ tag ◦w(0).

Since w is pure, we apply (eax1) on the right to get untag ◦ tag ◦ v
(0)
1 ◦

u(1) ◦ tag ◦w(0) ∼ w(0). Now, we apply Point 3 in Lemma 6.9.2 and obtain
untag ◦ tag ◦ v

(0)
1 ◦ u(1) ◦ tag ◦ w(0) ◦ untag ≡ w(0) ◦ untag. Thanks to

(replsubs), we obtain a
(1)
1 ◦ untag ◦ tag ◦ v

(0)
1 ◦ u

(1) ◦ tag ◦ w(0) ◦ untag ◦

tag ◦ v
(0)
2 ≡ (a1 ◦ w)

(1) ◦ untag ◦ tag ◦ v
(0)
2 .

Corollary 6.9.4. For each propagator a(1) ◦ X → Y , either a is pure or there is a pure

term v(0) : X → EV such that a(1) ≡ [ ]
(0)
Y ◦ tag ◦ v

(0).

Proof. Due to Point 1 in Proposition 6.9.3, a is either pure or it can be written in a unique
way as a = b(1) ◦ tag ◦ v(0) for some pure term v(0) : X → EV and some propagator
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b(1) : 0→ Y . Thanks to (s-empty), we have b(1) ≡ [ ]
(0)
Y , hence the result follows.

Thanks to Corollary 6.9.4 and Proposition 6.9.3, in order to study equations in the logic
Lexc, we may restrict our study to pure terms, propagators of the form [ ]

(0)
Y ◦ tag ◦ v

(0)

and catchers of the form a(1) ◦ untag ◦ tag ◦ u(0).

Assumption 6.9.5. For any strict thrower term a(1) : X → Y and pure terms v(0)1 : X →

EV , v(0)2 : X → Y , such that a(1) = [ ]
(0)
Y ◦ tag ◦ v

(0). Then;

[ ]
(0)
Y ◦ tag ◦ v

(0) ≡ v
(0)
2 =⇒ (for all f (0), g(0) : X → Y, f (0) ≡ g(0)).

Let C be the category of sets. Thanks to items (2) and (3) in Proposition 4.2.4, [ ](0)Y ◦

tag(1)◦v(0) ≡ v
(0)
2 : X → Y is interpreted as T ([ ]Y )◦µ0◦T (tag)◦T (v1) = T (v2) : X+E →

Y + E in C . Given any exceptional argument e′ ∈ E, we have T ([ ]Y ) ◦ µ0 ◦ T (tag) ◦
T (v1)(e

′) = e′ = T (v2)(e
′): both sides propagate the exception e′. Besides, given any

ordinary argument x ∈ X, we have T ([ ]Y ) ◦ µ0 ◦ T (tag) ◦ T (v1)(x) = e′, for some e′ ∈ E
and T (v2)(x) = y, for some y ∈ Y . Since, “+” is the disjoint union operator on sets,
T ([ ]Y ) ◦ µ0 ◦ T (tag) ◦ T (v1) = T (v2) : X + E → Y + E cannot hold in C : sides agree on
exceptional arguments but not on ordinary ones. In other words, with this assumption,
we thus mean that if such an equality holds then all pure parallel terms are equal to each
other.

Remark 6.9.6. Notice also that Assumption 6.9.5 is the image of Assumption 6.8.4 by the
translation given in Section 6.3, so that by Theorem 6.3.4, they are equivalent.

Now, Proposition 6.9.7 shows that

(1) equations between catchers can be reduced to some equations between propagators,

(2) equations between propagators can be reduced to some equations between pure terms.

Proposition 6.9.7. 1. For all a
(1)
1 , a

(1)
2 : EV → Y and u

(0)
1 , u

(0)
2 : X → EV , let

f
(2)
1 = a

(1)
1 ◦ untag ◦ tag ◦u

(0)
1 : X → Y and f

(2)
2 = a

(1)
2 ◦ untag ◦ tag ◦u

(0)
2 : X → Y .

Then;

{

f
(2)
1 ∼ f

(2)
2 ⇐⇒ a

(1)
1 ◦ u

(0)
1 ≡ a

(1)
2 ◦ u

(0)
2

f
(2)
1 ≡ f

(2)
2 ⇐⇒ a

(1)
1 ≡ a

(1)
2 and a

(1)
1 ◦ u

(0)
1 ≡ a

(1)
2 ◦ u

(0)
2 .

2. For all a
(1)
1 : EV → Y , u

(0)
1 : X → EV and a

(1)
2 : X → Y , let f

(2)
1 = a

(1)
1 ◦ untag ◦

tag ◦ u
(0)
1 : X → Y . Then;

{

f
(2)
1 ∼ a

(1)
2 ⇐⇒ a

(1)
1 ◦ u

(0)
1 ≡ a

(1)
2

f
(2)
1 ≡ a

(1)
2 ⇐⇒ a

(1)
1 ◦ u

(0)
1 ≡ a

(1)
2 and a

(1)
1 ≡ [ ]

(0)
Y ◦ tag.

3. Let us assume that [ ]
(0)
Y is a monomorphism with respect to propagators. For all

v
(0)
1 , v

(0)
2 : X → EV , let a

(1)
1 = [ ]

(0)
Y ◦ tag ◦ v

(0)
1 : X → Y and a

(1)
2 = [ ]

(0)
Y ◦ tag ◦ v

(0)
2 :

X → Y . Then;

a
(1)
1 ≡ a

(1)
2 ⇐⇒ v

(0)
1 ≡ v

(0)
2 .

Proof. 1. We have four implications to prove:
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(1.1) a(1)1 ◦ untag ◦ tag ◦ u
(0)
1 ∼ a

(1)
2 ◦ untag ◦ tag ◦ u

(0)
2 =⇒ a

(1)
1 ◦ u

(0)
1 ≡ a

(1)
2 ◦ u

(0)
2 .

Since, u1 and u2 are both pure, we apply (eax1) on both sides. So that we get

a
(1)
1 ◦u

(0)
1 ∼ a

(1)
2 ◦u

(0)
2 . Due to the lack of catchers, we end up with a(1)1 ◦u

(0)
1 ≡

a
(1)
2 ◦ u

(0)
2 .

(1.2) a(1)1 ◦ u
(0)
1 ≡ a

(1)
2 ◦ u

(0)
2 =⇒ a

(1)
1 ◦ untag ◦ tag ◦ u

(0)
1 ∼ a

(1)
2 ◦ untag ◦ tag ◦ u

(0)
2 .

We first convert the strong equation into a weak equation and then using (ids),

we get a(1)1 ◦ id
(0)
EV ◦ u

(0)
1 ∼ a

(1)
2 ◦ id

(0)
EV ◦ u

(0)
2 . By rewriting (eax1) on both sides

(since u1 and u2 are both pure), we end up with a
(1)
1 ◦ untag ◦ tag ◦ u

(0)
1 ∼

a
(1)
2 ◦ untag ◦ tag ◦ u

(0)
2 .

(1.3) a(1)1 ◦ untag ◦ tag ◦ u
(0)
1 ≡ a

(1)
2 ◦ untag ◦ tag ◦ u

(0)
2 =⇒ a

(1)
1 ≡ a

(1)
2 and

a
(1)
1 ◦ u

(0)
1 ≡ a

(1)
2 ◦ u

(0)
2 :

(1.3.1) Given a(1)1 ◦untag◦tag◦u
(0)
1 ≡ a

(1)
2 ◦untag◦tag◦u

(0)
2 , we get a(1)1 ◦untag◦

tag◦u
(0)
1 ◦ [ ]

(0)
X ≡ a

(1)
2 ◦untag◦tag◦u

(0)
2 ◦ [ ]

(0)
X thanks to (replsubs). Since

tag ◦ u
(0)
i ◦ [ ]

(0)
X ≡ [ ]

(0)
0
≡ id

(0)
0

due to (s-empty), for each i ∈ {1 , 2}, we

obtain a(1)1 ◦ untag ≡ a
(1)
2 ◦ untag. Now, we apply Point 3 in Lemma 6.9.2

to get a(1)1 ∼ a
(1)
2 . There is no catchers involved, thus we write a(1)1 ≡ a

(1)
2 .

(1.3.2) First, we convert the strong equation into a weak equation and then apply
(eax1) on both sides (provided that u1 and u2 are both pure) so as to get

a
(1)
1 ◦ u

(0)
1 ∼ a

(1)
2 ◦ u

(0)
2 . There is no catchers involved so that we conclude

with a(1)1 ◦ u
(0)
1 ≡ a

(1)
2 ◦ u

(0)
2 .

(1.4) a(1)1 ≡ a
(1)
2 and a

(1)
1 ◦ u

(0)
1 ≡ a

(1)
2 ◦ u

(0)
2 =⇒ a

(1)
1 ◦ untag ◦ tag ◦ u

(0)
1 ≡ a

(1)
2 ◦

untag ◦ tag ◦ u
(0)
2 :

(1.4.1) Starting from a
(1)
1 ≡ a

(1)
2 , thanks to (replsubs), we get a(1)1 ◦ untag ◦ id

(0)
0
≡

a
(1)
2 ◦ untag ◦ id

(0)
0

. Due to (s-empty), we obtain both tag ◦ u
(0)
1 ◦ [ ]

(0)
X ≡

[ ]
(0)
0
≡ id

(0)
0

and tag◦u
(0)
2 ◦ [ ]

(0)
X ≡ [ ]

(0)
0
≡ id

(0)
0

. Hence, a(1)1 ◦untag◦tag ◦

u
(0)
1 ◦ [ ]

(0)
X ≡ a

(1)
2 ◦ untag ◦ tag ◦ u

(0)
2 ◦ [ ]

(0)
X .

(1.4.2) Starting from a
(1)
1 ◦u

(0)
1 ≡ a

(1)
2 ◦u

(0)
2 , thanks to the use of (ids) on both sides,

we get a(1)1 ◦ id
(0)
EV ◦ u

(0)
1 ≡ a

(1)
2 ◦ id

(0)
EV ◦ u

(0)
2 . After converting the strong

equation into a weak equation, we apply (eax1) on both sides, since u1 and

u2 are pure so as to obtain: a(1)1 ◦untag◦tag◦u
(0)
1 ∼ a

(1)
2 ◦untag◦tag◦u

(0)
2 .

Now, the (eeffect) rule yields a(1)1 ◦ untag ◦ tag ◦ u
(0)
1 ≡ a

(1)
2 ◦ untag ◦ tag ◦ u

(0)
2

given both items (1.4.1) and (1.4.2).

2. We again have four cases to prove:

(2.1) a(1)1 ◦ untag ◦ tag ◦ u
(0)
1 ∼ a

(1)
2 =⇒ a

(1)
1 ◦ u

(0)
1 ≡ a

(1)
2 : Since, u1 is pure, we can

apply (eax1) and obtain a
(1)
1 ◦ u

(0)
1 ∼ a

(1)
2 . There is no catchers involved, thus

we end up with a(1)1 ◦ u
(0)
1 ≡ a

(1)
2 .

(2.2) a(1)1 ◦ u
(0)
1 ≡ a

(1)
2 =⇒ a

(1)
1 ◦ untag ◦ tag ◦ u

(0)
1 ∼ a

(1)
2 : Thanks to (ids), we

have a(1)1 ◦ id
(0)
EV ◦ u

(0)
1 ≡ a

(1)
2 . Now, we first convert the strong equation into

a weak equation and then apply (eax1), since the term u1 is pure, so as to get

a
(1)
1 ◦ untag ◦ tag ◦ u

(0)
1 ∼ a

(1)
2 .

(2.3) a(1)1 ◦ untag ◦ tag ◦ u
(0)
1 ≡ a

(1)
2 =⇒ a

(1)
1 ◦ u

(0)
1 ≡ a

(1)
2 and a

(1)
1 ≡ [ ]

(0)
Y ◦ tag:
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(2.3.1) We first convert the strong equation into a weak equation. Since u1 is pure,

we apply (eax1) and obtain a(1)1 ◦u
(0)
1 ∼ a

(1)
2 . There is no catchers involved,

thus we end up with a(1)1 ◦ u
(0)
1 ≡ a

(1)
2 .

(2.3.2) Thanks to (replsubs), we get a(1)1 ◦ untag ◦ tag ◦ u
(0)
1 ◦ [ ]

(0)
X ≡ a

(1)
2 ◦ [ ]

(0)
X .

Due to (s-empty), we have tag ◦u
(0)
1 ◦ [ ]

(0)
X ≡ [ ]

(0)
0
≡ id

(0)
0

and a(1)2 ◦ [ ]
(0)
X ≡

[ ]
(0)
Y . Therefore, a(1)1 ◦ untag ≡ [ ]

(0)
Y . Now, the use of (replsubs) gives

a
(1)
1 ◦ untag ◦ tag ≡ [ ]

(0)
Y ◦ tag. After converting the strong equation into a

weak equation, we apply (eax1) and obtain a
(1)
1 ∼ [ ]

(0)
Y ◦ tag. The lack of

catchers gives a(1)1 ≡ [ ]
(0)
Y ◦ tag.

(2.4) a(1)1 ◦ u
(0)
1 ≡ a

(1)
2 and a

(1)
1 ≡ [ ]

(0)
Y ◦ tag =⇒ a

(1)
1 ◦ untag ◦ tag ◦ u

(0)
1 ≡ a

(1)
2 :

(2.4.1) Starting from a
(1)
1 ◦ u

(0)
1 ≡ a

(1)
2 first, we have the conversion of the strong

equation into a weak equation, then we apply (ids) so as to get a
(1)
1 ◦

id
(0)
EV ◦ u

(0)
1 ∼ a

(1)
2 . Since u1 is pure, we apply (eax1) on the left and obtain

a
(1)
1 ◦ untag ◦ tag ◦ u

(0)
1 ∼ a

(1)
2 .

(2.4.2) Staring from a
(1)
1 ≡ [ ]

(0)
Y ◦ tag, we first obtain a

(1)
1 ≡ a

(1)
2 ◦ [ ]

(0)
X ◦ tag

thanks to (s-empty). By the use of (replsubs), we get a(1)1 ◦ untag ≡ a
(1)
2 ◦

[ ]
(0)
X ◦tag◦untag. By using Point 1 in Lemma 6.9.2 we have a(1)1 ◦untag ≡

a
(1)
2 ◦ [ ]

(0)
X . Due to (s-empty) tag ◦ u

(0)
1 ◦ [ ]

(0)
X ≡ [ ]

(0)
0
≡ id

(0)
0

holds.

Therefore, a(1)1 ◦ untag ◦ tag ◦ u
(0)
1 ◦ [ ]

(0)
X ≡ a

(1)
2 ◦ [ ]

(0)
X .

Now, the (eeffect) rule yields a(1)1 ◦ untag ◦ tag ◦ u
(0)
1 ≡ a

(1)
2 , given above items

(2.4.1) and (2.4.2).

3. Recall the statement [ ]
(0)
Y ◦ tag ◦ v

(0)
1 ≡ [ ]

(0)
Y ◦ tag ◦ v

(0)
1 =⇒ v

(0)
1 ≡ v

(0)
2 :

(3.1) If [ ](0)Y ◦tag◦v
(0)
1 ≡ [ ]

(0)
Y ◦tag◦v

(0)
2 , since [ ]

(0)
Y is a monomorphism with respect

to propagators we get tag ◦ v(0)1 ≡ tag ◦ v
(0)
2 . By Point 2 in Lemma 6.9.2, this

yields in v(0)1 ≡ v
(0)
2 .

(3.2) Conversely, if v(0)1 ≡ v
(0)
2 then thanks to (replsubs), we simply get [ ]

(0)
Y ◦ tag ◦

v
(0)
1 ≡ [ ]

(0)
Y ◦ tag ◦ v

(0)
2 .

Now, Corollary 6.9.8 shows that equations between catchers can be reduced to equations
between pure terms. It also makes the proof in Coq easier to read.

Corollary 6.9.8. Let us assume that [ ]
(0)
Y is a monomorphism with respect to propagators.

Then:

1. For all a
(1)
1 , a

(1)
2 : X → Y , we have either of below cases:

(1.1) when X 6= 0, we have one of below subcases:

(1.1.1) ∃v
(0)
1 , v

(0)
2 : X → EV, a

(1)
1 ≡ a

(1)
2 ⇐⇒ v

(0)
1 ≡ v

(0)
2 ,

(1.1.2) ∃v
(0)
1 , v

(0)
2 : X → Y, a

(1)
1 ≡ a

(1)
2 ⇐⇒ v

(0)
1 ≡ v

(0)
2 ,

(1.1.3) ∃v(0) : X → Y, ∀i ∈ {1, 2}, a
(1)
i ≡ v

(0) ⇐⇒
∀f (0) , g(0) : X → Y f (0) ≡ g(0)
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(1.2) when X = 0, we have:

a
(1)
1 ≡ a

(1)
2 .

2. For all f
(2)
1 , f

(2)
2 : X → Y , we have either of below subcases:

(2.1) ∃a
(1)
1 , a

(1)
2 : EV → Y, ∃b

(1)
1 , b

(1)
2 : X → Y, f

(2)
1 ≡ f

(2)
2 ⇐⇒

a
(1)
1 ≡ a

(1)
2 and b

(1)
1 ≡ b

(1)
2 ,

(2.2) ∃a
(1)
1 , a

(1)
2 : X → Y, f

(2)
1 ≡ f

(2)
2 ⇐⇒ a

(1)
1 ≡ a

(1)
2 .

Proof. The proof is immediate from Proposition 6.9.7. See full proof in Appendix B.

Theorem 6.9.9. Under Assumption 6.9.5, the theory of exceptions Texc of the logic Lexc−⊕
is relatively Hilbert-Post complete with respect to the pure sublogic Lmeq+0.

Proof. Using Corollary 4.5.10, the proof is based upon Corollary 6.9.8. It follows the same
lines as the proof of Theorem 6.8.5, except when X is empty: due to catchers, the proof
here is slightly more subtle. First, the theory Texc is consistent: it cannot be proved that
untag(2) ≡ [ ]

(0)
EV because the logic Lexc is sound with respect to its intended model and

the interpretation of this equation in the intended model is false: indeed, the function
untag : E → EV + E is such that untag(tag(p)) = p ∈ EV for each p ∈ EV while
[ ]EV (e) = e ∈ E for each e ∈ E, which includes e = tag(p); since EV + E is a disjoint
union we have untag(e) 6= [ ]EV (e) when e = tag(p). Now, let us consider an equation
between two terms f1 and f2 with domain X; we distinguish two cases, whether X is empty
or not. When X is non-empty, Corollary 6.9.8 proves that the given equation is equivalent
to a finite set of equations between pure terms. When X is empty, then f1 ∼ [ ]Y and
f2 ∼ [ ]Y , so that if the equation is weak or if both f1 and f2 are propagators, then the given
equation is equivalent to the empty set of equations between pure terms. When X is empty
and the equation is f1 ≡ f2 with at least one of f1 and f2 a catcher, then by Point 2 of
Corollary 6.9.8 the given equation is equivalent to a set of equations between propagators;
but we have seen that each equation between propagators (whether X is empty or not) is
equivalent to a set of equations between pure terms, so that f1 ≡ f2 is equivalent to the
union of the corresponding sets of pure equations.

6.10 Chapter summary

In this Chapter;

(1) The logic Lexc has been built as an extension to the logic Lmon and interpreted
interpreted via the coKleisli-on-Kleisli construction applied to the exceptions monad.

(2) Lexc−pl has been established as an extension to Lmon and interpreted via the Kleisli
adjunction associated to a monad applied to the exceptions monad.

(3) The logics Lexc and Lexc−pl have been formalized in Coq and these formalizations
have been used to prove properties of programs with features to handle exceptions.

(4) The base language of the logic Lexc (with no use of coproducts) and the language of
Lexc−pl have been proven to be Hilbert-Post complete (for a single exception name)
and these proofs have been checked in Coq.
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7

Conclusions

7.1 Summary

In this thesis, as extensions to the monadic equational logic (Lmeq), we have presented
the decorated logic for a comonad (Lcom) and a monad (Lmon). The former has been
extended into the decorated logic for the state (Lst) and the latter into the decorated
logic for exceptions (Lexc). The logics Lst and Lexc have been used to formalize the state
and the exceptions effects, respectively. We have also introduced the decorated logic for
the programmers’ language of exceptions (Lexc−pl). It has been translated into the logic
Lexc and the translation has been proven to be correct. We have also given categorical
interpretations of all these logics. Besides, the logic Lst (without products) and the logic
Lexc (without coproducts) as well as the logic Lexc−pl have been proved to be Hilbert-Post
complete, relatively to their pure sub-logics.

We have separately implemented the logics Lst and Lexc in Coq and used it to certify some
properties of programs involving the state and the exceptions effects. We have also certi-
fied the relative Hilbert-Post completeness proofs of the logics Lst and Lexc. Similarly, the
logic Lexc−pl has also been implemented in Coq to certify the correctness of its translation
into the logic Lexc and its relative Hilbert-Post completeness proof.

7.2 Future directions

Below, we itemize some exciting directions to which this thesis can be extended:

• The relation between Hoare Logic and the logic Lst could be shown.

• We plan to study the combination of the logics Lst and Lexc. This may be used to
build some sort of equational semantics for a toy imperative language with exceptions.
This would enable us to make some equational reasoning between programs involving
both the state and the exceptions effects. In fact, we have made the first attempt
for combining the logics Lst and Lexc in a very restricted setting where the toy
language is chosen as IMP (or “while”) [Mar12] with only one type of exceptions.
Following is the link to its implementation in Coq where a few examples of program
equivalences involving the mentioned effects could be found: https://forge.imag.
fr/frs/download.php/697/IMPEX-STATES-EXCEPTIONS-THESIS.tar.gz

• Other sorts of computational effects such as local state and non-termination can first
be formalized separately in a decorated logic. Then, their composition with the logics
Lst and Lexc could be discussed. This would enhance the decorated treatment of the
effects of a given computation.

117

https://forge.imag.fr/frs/download.php/697/IMPEX-STATES-EXCEPTIONS-THESIS.tar.gz
https://forge.imag.fr/frs/download.php/697/IMPEX-STATES-EXCEPTIONS-THESIS.tar.gz


7. Conclusions

• The logic Lst with products and similarly the logic Lexc with coproducts could be
proven to be Hilbert-Post complete, relative to their sub-logics. To do so, it will be
necessary to figure out the canonical forms of terms with decorations (1) and (2) in
the presence of pairs and copairs.

• The effect composition could be generalized in a way to compose all effects that can
be separately formalized through the decorated logic. This study requires a detailed
work in categorical interpretations of decorated logics.

• We have already stated our first understanding on the relation between effect handlers
and terms with decoration (2) in Example 2.1.9. We could study this relation further
to get a better understanding.

• We will check whether the theories Texc and Tst preserve the Hilbert-Post complete-
ness property when the categorical (co)products are considered (Texc as a theory
of Lexc and Tst as a theory of Lst) for several exception names and locations with
respect to the logics Lmeq+0 and Lmeq+1.
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A

Appendix 1

Decorated proofs of Plotkin&Power properties of the global state (continued
from Section 5.3).

Note that in the following, we respectively use lkp
(1)
i and upd

(2)
i instead of lookup(1)i and

update
(2)
i , for the sake of simplicity.

Lemma A.0.1. Interaction update-update (IUU). Storing a value x and then a value y
at the same location i is just like storing the value y in the location.

∀ i ∈ Loc, upd
(2)
i ◦ π

(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vi

) ≡ upd
(2)
i ◦ π

(0)
2 : Vi × Vi → 1 (A.1)

Proof. (1) the location i stores the same value after executing operations on both sides:

...
(w-lprod-eq)

π
(0)
1 ◦ (upd

(2)
i ×r id

(0)
Vi

) ∼ id
(0)
V2
◦ π

(0)
2

(idt)
π
(0)
1 ◦ (upd

(2)
i ×r id

(0)
Vi

) ∼ π
(0)
2

(s-lpair-eq)
π
(0)
2 ◦

〈
π2, π1

〉(0)
≡ π

(0)
1

π
(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vi

) ∼ π
(0)
2

π
(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vi

) ∼ π
(0)
2

(pwrepl)
id

(0)
Vi
◦ π

(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vi

) ∼ id
(0)
Vi
◦ π

(0)
2

(ax1)
lkp

(1)
i ◦ upd

(2)
i ◦ π

(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vi

) ∼ lkp
(1)
i ◦ upd

(2)
i ◦ π

(0)
2

(2) every location k, such that k 6= i, stores the same value after executing operations
on both sides:

∀ i k ∈ Loc s.t. i 6= k
(ax2)

lkp
(1)
k ◦ upd

(2)
i ∼ lkp

(1)
k ◦ 〈 〉

(0)
Vi

(wsubs)
lkp

(1)
k ◦ upd

(2)
i ◦ π

(0)
2 ∼ lkp

(1)
k ◦ 〈 〉

(0)
Vi
◦ π

(0)
2

..

.
(s-unit)

〈 〉
(0)
Vi
◦ π

(0)
2 ≡ π

(0)
1

lkp
(1)
k ◦ upd

(2)
i ◦ π

(0)
2 ∼ lkp

(1)
k ◦ π

(0)
1

(wsubs)
lkp

(1)
k ◦ upd

(2)
i ◦ π

(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vi

) ∼ lkp
(1)
k ◦ π

(0)
1 ◦ (upd

(2)
i ×r id

(0)
Vi

) [Π1]

lkp
(1)
k ◦ upd

(2)
i ◦ π

(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vi

) ∼ lkp
(1)
k ◦ upd

(2)
i ◦ π

(0)
2

[Π1]

(s-rprod-eq)
π
(0)
1 ◦ (upd

(2)
i ×r id

(0)
Vi

) ≡ upd
(2)
i ◦ π

(0)
2

Given above items (1), (2) and the (local-global) rule, we conclude that upd
(2)
i ◦ π

(0)
2 ◦

(upd
(2)
i ×r id

(0)
Vi

) ≡ upd
(2)
i ◦ π

(0)
2 .
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Lemma A.0.2. Interaction update-lookup (IUL). When one stores a value a in a location
i and then reads the location i, one gets the value a.

∀ i ∈ Loc, lkp
(1)
i ◦ upd

(2)
i ∼ id

(0)
Vi

: Vi → Vi (A.2)

Proof. Applying (ax1) closes the goal.

Lemma A.0.3. Commutation lookup-lookup (CLL). The order of reading two different
locations i and j does not matter.

∀ i 6= j ∈ Loc, (id
(0)
Vi
×l lkp

(1)
j ) ◦ π

−1(0)
1 ◦ lkp

(1)
i ≡

permut
(0)
j,i ◦ (id

(0)
Vj
×l lkp

(1)
i ) ◦ π

−1(0)
1 ◦ lkp

(1)
j : 1→ Vi × Vj

(A.3)

Proof. (1) result agreement on the first argument of the returned pair after executing
operations on both sides:

...
(s-unit)

id
(0)
1
≡ 〈 〉

(0)
Vj
◦ lkp

(1)
j

(replsubs)
lkp

(1)
i ≡ lkp

(1)
i ◦ 〈 〉

(0)
Vj
◦ lkp

(1)
j

(stow)
lkp

(1)
i ∼ lkp

(1)
i ◦ 〈 〉

(0)
Vj
◦ lkp

(1)
j

(s-lpair-eq)
π
(0)
2 ◦

〈
idVj

, 〈 〉Vj

〉(0)

︸ ︷︷ ︸

π
−1(0)
1

≡ 〈 〉
(0)
Vj

lkp
(1)
i ∼ lkp

(1)
i ◦ π

(0)
2 ◦ π

−1(0)
1 ◦ lkp

(1)
j [Π1]

lkp
(1)
i ∼ π

(0)
2 ◦ (id

(0)
Vj
×l lkp

(1)
i ) ◦ π

−1(0)
1 ◦ lkp

(1)
j [Π2]

lkp
(1)
i ∼ π

(0)
1 ◦

〈
π2, π1

〉(0)

︸ ︷︷ ︸
permutj,i

◦(id
(0)
Vj
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(1)
i ) ◦ π

−1(0)
1 ◦ lkp

(1)
j

(idt)
id

(0)
Vi
◦ lkp

(1)
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(0)
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(0)
Vj
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(1)
i ) ◦ π
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(1)
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π
(0)
1 ◦ (id
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(1)
j ) ◦ π

−1(0)
1 ◦ lkp

(1)
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(1)
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π
(0)
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(0)
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1 ◦
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(w-lprod-eq)
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(0)
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(0)
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×l lkp

(1)
j ) ∼ id
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Vi
◦ π

(0)
1
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π
(0)
1 ◦ (id

(0)
Vi
×l lkp

(1)
j ) ◦ π

−1(0)
1 ∼ id

(0)
Vi
◦ π

(0)
1 ◦ π

−1(0)
1

π
(0)
1 ◦ (id

(0)
Vi
×l lkp

(1)
j ) ◦ π

−1(0)
1 ∼ id

(0)
Vi

(wtos)
π
(0)
1 ◦ (id

(0)
Vi
×l lkp

(1)
j ) ◦ π

−1(0)
1 ≡ id

(0)
Vi

(2) result and effect agreement on the second argument of the returned pair after exe-
cuting operations on both sides:
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(w-lprod-eq)
id

(0)
Vj
◦ π
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1 ∼ π

(0)
1 ◦ (id

(0)
Vj
×l lkp

(1)
i )
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π
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1 ◦ π
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×l lkp

(1)
i ) ◦ π
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1
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id

(0)
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1
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π
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∼ π
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(1)
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1 ◦ lkp

(1)
j
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(1)
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j
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(1)
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(1)
j [Π1]

π
(0)
2 ◦ (id

(0)
Vi
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(1)
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(1)
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(0)
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(1)
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−1(0)
1 ◦ lkp

(1)
j
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2
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1

(s-pair-eq)
π
(0)
2 ◦ π
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π
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2 ◦ (id

(0)
Vi
×l lkp

(1)
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Vi
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π
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(s-unit)

〈 〉
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Vi
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1

Given above items (1), (2) and (lpair-u), we conclude that (id(0)Vi ×llkp
(1)
j )◦π

−1(0)
1 ◦lkp

(1)
i ≡

permut
(0)
j,i ◦ (id

(0)
Vj
×l lkp

(1)
i ) ◦ π

−1(0)
1 ◦ lkp

(1)
j .

Lemma A.0.4. Commutation update-update (CUU). The order of storing in two different
locations i and j does not matter.

∀ i 6= j ∈ Loc, upd
(2)
j ◦ π

(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vj

) ≡

upd
(2)
i ◦ π

(0)
1 ◦ (id

(0)
Vi
×l upd

(2)
j ) : Vi × Vj → 1

(A.4)

Proof. (1) the location i stores the same value after executing operations on both sides:

(w-lprod-eq)
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Vi
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Vi
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(2)
j )

(2) the location j stores the same value after executing operations on both sides:
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∀ i ∈ Loc
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id
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j
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2
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(s-unit)
id

(0)
Vj
◦ π

(0)
2 ∼ lkp

(1)
j ◦ 〈 〉Vi

◦ π
(0)
1 ◦ (id

(0)
Vi
×l upd
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j )
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Vi
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(w-rpair-eq)
π
(0)
2 ◦ (upd
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1 ◦ (id

(0)
Vi
×l upd

(2)
j )

(3) every location k, such that k 6= j ∧ k 6= i, stores the same value after executing
operations on both sides:

...
(s-unit)

〈 〉
(0)
Vi
◦ π

(0)
1 ≡ 〈 〉

(0)
Vj
◦ π

(0)
2

(replsubs)
lkp

(1)
k ◦ 〈 〉

(0)
Vi
◦ π

(0)
1 ≡ lkp

(1)
k ◦ 〈 〉

(0)
Vj
◦ π

(0)
2

(stow)
lkp

(1)
k ◦ 〈 〉

(0)
Vi
◦ π

(0)
1 ∼ lkp

(1)
k ◦ 〈 〉

(0)
Vj
◦ π

(0)
2

(ax2)
lkp

(1)
k ◦ upd

(2)
i ◦ π

(0)
1 ∼ lkp

(1)
k ◦ upd

(2)
j ◦ π

(0)
2

(s-lpair-eq)
lkp

(1)
k ◦ upd

(2)
i ◦ π

(0)
1 ∼ lkp

(1)
k ◦ π

(0)
2 ◦ (id

(0)
Vi
×l upd

(2)
j )

(s-rpair-eq)
lkp

(1)
k ◦ π

(0)
1 ◦ (upd

(2)
i ×r id

(0)
Vj

) ∼ lkp
(1)
k ◦ 〈 〉

(0)
Vi
◦ π

(0)
1 ◦ (id

(0)
Vi
×l upd

(2)
j )

(s-unit)
lkp

(1)
k ◦ 〈 〉

(0)
Vj
◦ π

(0)
2 ◦

〈
(idVj

◦ π2), (updi ◦ π1)
〉(2)
∼ lkp

(1)
k ◦ 〈 〉

(0)
Vi
◦ π

(0)
1 ◦ (id

(0)
Vi
×l upd

(2)
j )

(ax2)
lkp

(1)
k ◦ upd

(2)
j ◦ π

(0)
2 ◦ (id

(0)
Vi
×l upd

(2)
j ) ∼ lkp

(1)
k ◦ upd

(2)
i ◦ π

(0)
1 ◦ (id

(0)
Vi
×l upd

(2)
j )

Given above items (1), (2), (3) and the (local-global) rule, we conclude with upd
(2)
j ◦π

(0)
2 ◦

(upd
(2)
i ×r id

(0)
Vj

) ≡ upd
(2)
i ◦ π

(0)
1 ◦ (id

(0)
Vi
×l upd

(2)
j ).

Lemma A.0.5. Commutation update-lookup (CUL). The order of storing in a location i
and reading another location j does not matter.

∀ i 6= j ∈ Loc, lkp
(1)
j ◦ upd

(2)
i ≡

π
(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vj

) ◦ (id
(0)
Vi
×l lkp

(1)
j ) ◦ π

−1(0)
1 : Vi → Vj

(A.5)

Proof. (1) effect agreement after executing operations on both sides:

(w-lpair-eq)
π
(0)
1 ∼ π

(0)
1 ◦

〈
idVi

, 〈 〉Vi

〉(0)

︸ ︷︷ ︸

π
−1(0)
1

(wtos)
π
(0)
1 ≡ π

(0)
1 ◦ π

−1(0)
1

(replsubs)
upd

(2)
i ◦ π

(0)
1 ≡ upd

(2)
i ◦ π

(0)
1 ◦ π

−1(0)
1

(w-lpair-eq)
π
(0)
1 ◦ (id

(0)
Vi
×l lkp

(1)
j ) ∼ id

(0)
Vi
◦ π

(0)
1

(wtos)
π
(0)
1 ◦ (id

(0)
Vi
×l lkp

(1)
j ) ≡ id

(0)
Vi
◦ π

(0)
1

(idt)
π
(0)
1 ◦ (id

(0)
Vi
×l lkp

(1)
j ) ≡ π

(0)
1

upd
(2)
i ≡ upd

(2)
i ◦ π

(0)
1 ◦ (id

(0)
Vi
×l lkp

(1)
j ) ◦ π

−1(0)
1

(s-rpair-eq)
upd

(2)
i ≡ π

(0)
1 ◦ (upd

(2)
i ×r id

(0)
Vj

) ◦ (id
(0)
Vi
×l lkp

(1)
j ) ◦ π

−1(0)
1

(s-unit)
upd

(2)
i ≡ 〈 〉

(0)
Vj
◦ π

(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vj

) ◦ (id
(0)
Vi
×l lkp

(1)
j ) ◦ π

−1(0)
1

(idt)
id

(0)
1
◦ upd

(2)
i ≡ 〈 〉

(0)
Vj
◦ π

(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vj

) ◦ (id
(0)
Vi
×l lkp

(1)
j ) ◦ π

−1(0)
1 [Π1]

〈 〉
(0)
Vj
◦ lkp

(1)
j ◦ upd

(2)
i ≡ 〈 〉Vj

◦ π
(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vj

) ◦ (id
(0)
Vi
×l lkp

(1)
j ) ◦ π

−1(0)
1

IV
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[Π1]
(s-unit)

〈 〉
(0)
Vj
◦ lkp

(1)
j ≡ id

(0)
1

(2) result agreement after executing operations on both sides:

∀ i, j ∈ Loc
(ax2)

lkp
(1)
j ◦ upd

(2)
i ∼ lkp

(1)
j ◦ 〈 〉Vi

(s-lpair-eq)
lkp

(1)
j ◦ upd

(2)
i ∼ lkp

(1)
j ◦ π

(0)
2 ◦ π

−1(0)
1

(s-lpair-eq)
lkp

(1)
j ◦ upd

(2)
i ∼ π

(0)
2 ◦ (idVi

×l lkp
(1)
j ) ◦ π

−1(0)
1

(idt)
lkp

(1)
j ◦ upd

(2)
i ∼ id

(0)
Vj
◦ π

(0)
2 ◦ (idVi

×l lkp
(1)
j ) ◦ π

−1(0)
1

(w-rpair-eq)
lkp

(1)
j ◦ upd

(2)
i ∼ π

(0)
2 ◦ (upd

(2)
i ×r id

(0)
Vj

) ◦ (idVi
×l lkp

(1)
j ) ◦ π

−1(0)
1

Given above items (1), (2) and the (effect) rule, we conclude that lkp(1)j ◦ upd
(2)
i ≡ π

(0)
2 ◦

(upd
(2)
i ×r id

(0)
Vj

) ◦ (id
(0)
Vi
×l lkp

(1)
j ) ◦ π

−1(0)
1 .

Lemma A.0.6. Commutation lookup-constant (CLC). Just after storing a constant c in
a location i, observing the content of i is the same as regenerating the constant c.

∀ i ∈ Loc, ∀ c ∈ Vi; lkp
(1)
i ◦ upd

(2)
i ◦ const c

(0) ≡

const c(0) ◦ upd
(2)
i ◦ const c

(0) : 1→ Vi
(A.6)

Proof. (1) effect agreement after executing operations on both sides:

...
(s-unit)

〈 〉
(0)
Vi
◦ lkp

(1)
i ≡ id

(0)
1

(replsubs)
〈 〉

(0)
Vi
◦ lkp

(1)
i ◦ upd

(2)
i ◦ const c(0) ≡ id

(0)
1
◦ upd

(2)
i ◦ const c(0)

...
(s-unit)

〈 〉
(0)
Vi
◦ const c(0) ≡ id

(0)
1

〈 〉
(0)
Vi
◦ lkp

(1)
i ◦ upd

(2)
i ◦ const c(0) ≡ 〈 〉

(0)
Vi
◦ const c(0) ◦ upd

(2)
i ◦ const c(0)

(2) result agreement after executing operations on both sides:

∀ i ∈ Loc
(ax1)

lkp
(1)
i ◦ upd

(2)
i ∼ id

(0)
Vi

(wsubs)
lkp

(1)
i ◦ upd

(2)
i ◦ const c(0) ∼ const c(0)

(ids)
lkp

(1)
i ◦ upd

(2)
i ◦ const c(0) ∼ const c(0) ◦ id

(0)
1

(w-unit)
upd

(2)
i ◦ const c(0) ∼ id

(0)
1

lkp
(1)
i ◦ upd

(2)
i ◦ const c(0) ∼ const c(0) ◦ upd

(2)
i ◦ const c(0)

Given above items (1), (2) and the (effect) rule, we conclude that lkp(1)i ◦upd
(2)
i ◦const c

(0) ≡

const c(0) ◦ upd
(2)
i ◦ const c

(0).

V
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Appendix 2

Full proof of Corollary 5.4.8:

1. We have four cases to consider:

(1.1) When both f1 and f2 are pure, we set a1 = f
(0)
2 and a2 = f

(0)
2 so as to trivially

obtain f (0)1 ≡ f
(0)
2 ⇐⇒ f

(0)
1 ≡ f

(0)
2 .

(1.2) When f1 is an accessor while f (0)2 is pure, we only get f (1)1 ≡ v
(0)
1 ◦lookup◦〈 〉

(0)
X

for some pure term v
(0)
1 : V → Y . In this case, we set a1 = v

(0)
1 , a2 = f

(0)
2 ◦

k
(0)
X ◦ 〈 〉

(0)
V , b1 = f

(0)
2 and b2 = f

(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
X and get f (1)1 ≡ f

(0)
2 ⇐⇒ v

(0)
1 ≡

f
(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
V and f (0)2 ≡ f

(0)
2 ◦ k

(0)
X ◦ 〈 〉

(0)
X from Point 4 in Proposition 5.4.5.

(1.3) Symmetrically when f2 is an accessor while f1 is pure, we only get f (1)2 ≡

v
(0)
2 ◦ lookup ◦ 〈 〉

(0)
X for some pure term v

(0)
2 : V → Y . In this case, we set

a1 = v
(0)
2 , a2 = f

(0)
1 ◦ k

(0)
X ◦ 〈 〉

(0)
V , b1 = f

(0)
1 and b2 = f

(0)
1 ◦ k

(0)
X ◦ 〈 〉

(0)
X and get

f
(1)
2 ≡ f

(0)
1 ⇐⇒ v

(0)
2 ≡ f

(0)
1 ◦ k

(0)
X ◦ 〈 〉

(0)
V and f (0)1 ≡ f

(0)
1 ◦ k

(0)
X ◦ 〈 〉

(0)
X also from

Point 4 in Proposition 5.4.5 to close the goal.

(1.4) When both f1 and f2 are accessors, thanks to Corollary 5.4.4, we have f (1)1 ≡

v
(0)
1 ◦ lookup ◦ 〈 〉

(0)
X and f2(1) ≡ v

(0)
2 ◦ lookup ◦ 〈 〉

(0)
X for some pure terms

v
(0)
1 , v

(0)
2 : V → Y . Setting a1 = v1 and a2 = v2, we obtain v(0)1 ◦lookup◦〈 〉

(0)
X ≡

v
(0)
2 ◦ lookup ◦ 〈 〉

(0)
X ⇐⇒ v

(0)
1 ≡ v

(0)
2 from Point 3 in Proposition 5.4.5.

2. We again have four cases to show:

(2.1) In the case where both are accessors, we set a1 = f
(1)
1 and a2 = f

(1)
2 so as to

trivially obtain f
(1)
1 ≡ f

(1)
2 ⇐⇒ f

(1)
1 ≡ f

(1)
2 which is trivial.

(2.2) When f1 is a modifier whilst f2 is an accessor, we only get f (2)1 ≡ u
(0)
1 ◦lookup◦

update◦a
(1)
1 . We set a1 = a

(1)
1 , a2 = lookup◦〈 〉

(0)
X , b1 = f

(1)
2 and b2 = u

(0)
1 ◦a

(1)
1 ,

then we get f (2)1 ≡ f
(1)
2 ⇐⇒ lookup ◦ 〈 〉

(0)
X ≡ a

(1)
1 and f

(1)
2 ≡ u

(0)
1 ◦ a

(1)
1 . We

apply Point 2 in Proposition 5.4.5.

(2.3) Symmetrically when f2 is a modifier whilst f1 is an accessor, we only get f (2)2 ≡

u
(0)
2 ◦ lookup ◦ update ◦ a

(1)
2 . We set a1 = lookup ◦ 〈 〉

(0)
X , a2 = a

(1)
2 , b1 = f

(1)
1

and b2 = u
(0)
2 ◦ a

(1)
2 , then we get f (2)2 ≡ f

(1)
1 ⇐⇒ lookup ◦ 〈 〉

(0)
X ≡ a

(1)
2 and

f
(1)
1 ≡ u

(0)
2 ◦ a

(1)
2 . Similarly, we apply Point 2 in Proposition 5.4.5.

(2.4) When both f1 and f2 are modifiers, due to Point 2 in Proposition 5.4.3, we get

f
(2)
1 ≡ u

(0)
1 ◦ lookup ◦ update ◦ a

(1)
1 and f

(2)
2 ≡ u

(0)
2 ◦ lookup ◦ update ◦ a

(1)
2

for some pure terms u(0)1 , u
(0)
2 : V → Y and accessors a(1)1 , a

(1)
2 : X → V . By

setting a1 = a
(1)
1 , a2 = a

(1)
2 , b1 = u

(0)
1 ◦ a

(1)
1 and b2 = u

(0)
2 ◦ a

(1)
2 , we obtain

VII
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f
(2)
1 ≡ f

(2)
2 ⇐⇒ a

(1)
1 ≡ a

(1)
2 and u

(0)
1 ◦ a

(1)
1 ≡ u

(0)
2 ◦ a

(1)
2 . Now, we apply

Point 1 in Proposition 5.4.5 to close the goal.

Full proof of Corollary 6.9.8:

1. The proof proceeds on the distinction whether X is inhabited or not:

(1.1) when X 6= 0, we have four cases to consider:

(1.1.1) In the case where both a1 and a2, we set v1 = a1 and v2 = a2 so as to

trivially obtain a
(0)
1 ≡ a

(0)
2 ⇐⇒ a

(0)
1 ≡ a

(0)
2 .

(1.1.2) When a1 is a propagator while a2 is pure, we can only get a(1)1 ≡ [ ]
(0)
Y ◦tag◦

v
(0)
1 for some pure term v

(0)
1 : X → EV . We set v = a

(0)
2 so that the goal

looks like [ ]
(0)
Y ◦ tag ◦ v

(0)
1 ≡ a

(0)
2 ⇐⇒ ∀f (0) , g(0) : X → Y s.t. f (0) ≡ g(0).

This is solved by applying Assumption 6.9.5.
(1.1.3) Symmetrically when a2 is a propagator while a1 is pure, we can only get

a
(1)
2 ≡ [ ]

(0)
Y ◦ tag ◦ v

(0)
2 for some pure term v

(0)
2 : X → EV . We set v = a

(0)
1

so that the goal looks like a(0)1 ≡ [ ]
(0)
Y ◦ tag ◦ v

(0)
2 ⇐⇒ ∀f (0) , g(0) : X →

Y s.t. f (0) ≡ g(0). This is solved by applying Assumption 6.9.5.

(1.1.4) When both a1 and a2 are propagators, then thanks to Corollary 6.9.4, we

have a(1)1 ≡ [ ]Y ◦ tag ◦ v
(0)
1 and similarly a

(1)
2 ≡ [ ]Y ◦ tag ◦ v

(0)
2 for some

pure terms v(0)1 , v
(0)
2 : X → EV . We set v1 = v

(0)
1 and v2 = v

(0)
2 . So that

the goal looks like [ ]
(0)
Y ◦ tag ◦ v

(0)
1 ≡ [ ]

(0)
Y ◦ tag ◦ v

(0)
2 ⇐⇒ v

(0)
1 ≡ v

(0)
2 .

This is solved by the application of Point 3 in Proposition 6.9.7.

(1.2) Thanks to (s-empty), we have [ ]Y ≡ ai for each i ∈ {1, 2}. Thus a1 ≡ a2.

2. We have four cases to prove:

(2.1) When both f1 and f2 are propagators, we set a1 = f
(1)
1 and a2 = f

(1)
2 so as to

trivially obtain f
(1)
1 ≡ f

(1)
2 ⇐⇒ f

(1)
1 ≡ f

(1)
2 .

(2.2) When f1 is a catcher while f2 is a propagator, we only get f (2)1 ≡ a
(1)
1 ◦ untag ◦

tag◦u
(0)
1 . Here, we set a1 = a

(1)
1 , a2 = [ ]

(0)
Y ◦tag, b1 = f

(1)
2 and b2 = a

(1)
1 ◦u

(0)
1 .

Now, the goal looks like a(1)1 ◦ untag ◦ tag ◦ u
(0)
1 ≡ f

(1)
2 ⇐⇒ a

(1)
1 ≡ [ ]

(0)
Y ◦

tag and f
(1)
2 ≡ a

(1)
1 ◦ u

(0)
1 . This comes from Point 2 in Proposition 6.9.7.

(2.3) Symmetrically when f2 is a catcher while f1 is a propagator, we only get f (2)2 ≡

a
(1)
2 ◦ untag ◦ tag ◦ u

(0)
2 . Here, we set a1 = [ ]

(0)
Y ◦ tag, a2 = a

(1)
2 , b1 = f

(1)
1 and

b2 = a
(1)
2 ◦ u

(0)
2 . Now, the goal looks like f (1)1 ≡ a

(1)
2 ◦ untag ◦ tag ◦ u

(0)
2 ⇐⇒

a
(1)
2 ≡ [ ]

(0)
Y ◦ tag and f

(1)
1 ≡ a

(1)
2 ◦ u

(0)
2 . This comes also from Point 2

in Proposition 6.9.7.

(2.4) When both f1 and f2 are catchers, due to Point 2 in Proposition 6.9.3, we get

f
(2)
1 ≡ a

(1)
1 ◦ untag ◦ tag ◦ u

(0)
1 and f (2)2 ≡ a

(1)
2 ◦ untag ◦ tag ◦ u

(0)
2 for some pure

terms u(0)1 , u
(0)
2 : X → EV and propagators a(1)1 , a

(1)
2 : EV → Y . We can simply

set a1 = a
(1)
1 , a2 = a

(1)
2 , b1 = a

(1)
1 ◦u

(0)
1 and b2 = a

(1)
2 ◦u

(0)
2 . Therefore, we obtain

a goal which looks like a(1)1 ◦ untag ◦ tag ◦ u
(0)
1 ≡ a

(1)
2 ◦ untag ◦ tag ◦ u

(0)
2 ⇐⇒

a
(1)
1 ≡ a

(1)
2 and a

(1)
1 ◦ u

(0)
1 ≡ a

(1)
2 ◦ u

(0)
2 . We apply Point 1 in Proposition 6.9.7

to solve it.
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