Developmental robotics has begun in the last fifteen years to study robots that have a childhood-crawling before trying to run, playing before being useful-and that are basing their decisions upon a lifelong and embodied experience of the real-world.

In this context, this thesis studies sensorimotor exploration-the discovery of a robot's own body and proximal environment-during the early developmental stages, when no prior experience of the world is available. Specifically, we investigate how to generate a diversity of effects in an unknown environment.

is approach distinguishes itself by its lack of user-defined reward or fitness function, making it especially suited for integration in self-sufficient platforms.

In a first part, we motivate our approach, formalize the exploration problem, define quantitative measures to assess performance, and propose an architectural framework to devise algorithms.

rough the extensive examination of a multi-joint arm example, we explore some of the fundamental challenges that sensorimotor exploration faces, such as high-dimensionality and sensorimotor redundancy, in particular through a comparison between motor and goal babbling exploration strategies. We propose several algorithms and empirically study their behaviour, investigating the interactions with developmental constraints, external demonstrations and biologicallyinspired motor synergies. Furthermore, because even efficient algorithms can provide disastrous performance when their learning abilities do not align with the environment's characteristics, we propose an architecture that can dynamically discriminate among a set of exploration strategies.

Even with good algorithms, sensorimotor exploration is still an expensive propositiona problem since robots inherently face constraints on the amount of data they are able to gather; each observation takes a non-negligible time to collect.

In a second part, we propose the algorithm that allows to exploit the exploration trajectories of a previous environment in another new, unknown one, to improve exploration, with the only constraining assumptions being that the two environments share the same motor space-which is often the case as a robot's body remains similar across tasks. No assumption is made that the sensory modalities of the two tasks remain identical, or that the exploration strategies or the learning algorithms are the same. If the latent dynamics of the two environment share some degree of similarity, we establish that the algorithm provides improvements in exploration. We illustrate this on a real robot setup interacting with different objects in augmented

reality.

We then show that the algorithm can exhibit scaffolding behaviour. is allows to guide skill acquisition through the exclusive manipulation of environments where no reward or fitness function needs to be defined. Additionally, we conduct experiments that show that exploration on real-world robots can benefit from reusing exploration trajectories produced on surrogate, simplified-even purely kinematicsimulations.

roughout this thesis, our core contributions are algorithms description and empirical results. In order to allow unrestricted examination and reproduction of all our results, the entire code is made available.

Sensorimotor exploration is a fundamental developmental mechanism of biological systems. By decoupling it from learning and studying it in its own right in this thesis, we engage in an approach that casts light on important problems facing robots developing on their own.

Abstract en français

La robotique développementale a entrepris, au courant des quinze dernières années, d'étudier les processus dévelopmentaux, similaires à ceux des systèmes biologiques, chez les robots. Le but est de créer des robots qui ont une enfance-qui rampent avant d'essayer de courir, qui jouent avant de travailler-et qui basent leurs décisions sur l'expérience de toute une vie, incarnés dans le monde réel.

Dans ce contexte, cette thèse étudie l'exploration sensorimotrice-la découverte pour un robot de son propre corps et de son environnement proche-pendant les premiers stage du développement, lorsque qu'aucune expérience préalable du monde n' est disponible. Plus spécifiquement, cette thèse se penche sur comment générer une diversité d'effets dans un environnement inconnu. Cette approche se distingue par son absence de fonction de récompense ou de fitness définie par un expert, la rendant particulièrement apte à être intégrée sur des robots auto-suffisants.

Dans une première partie, l'approche est motivée et le problème de l'exploration est formalisé, avec la définition de mesures quantitatives pour évaluer le comportement des algorithmes et d'un cadre architectural pour la création de ces derniers. Via l'examen détaillé de l'exemple d'un bras robot à multiple degrés de liberté, la thèse explore quelques unes des problématiques fondamentales que l'exploration sensorimotrice pose, comme la haute dimensionalité et la redondance sensorimotrice. Cela est fait en particulier via la comparaison entre deux stratégies d'exploration: le babillage moteur et le babillage dirigé par les objectifs. Plusieurs algorithmes sont proposés tour à tour et leur comportement est évalué empiriquement, étudiant les interactions qui naissent avec les contraintes développementales, les démonstrations externes et les synergies motrices. De plus, parce que même des algorithmes efficaces peuvent se révéler terriblement inefficaces lorsque leurs capacités d'apprentissage ne sont pas adaptés aux caractéristiques de leur environnement, une architecture est proposée qui peut dynamiquement choisir la stratégie d'exploration la plus adaptée parmi un ensemble de stratégies.

Mais même avec de bons algorithmes, l'exploration sensorimotrice reste une entreprise coûteuse-un problème important, étant donné que les robots font face à des contraintes fortes sur la quantité de données qu'ils peuvent extraire de leur environnement; chaque observation prenant un temps non-négligeable à récupérer.

Dans une deuxième partie, l'algorithme est proposé. Il permet d'exploiter dans un nouvel environnement inconnu les trajectoires d'explorations établies dans un précédent environnement. L'objectif est d'améliorer l'exploration du nouvel environnement, avec l'unique contrainte que les deux environnements doivent partager le même espace moteur-ce qui est souvent le cas, étant donné que le corps d'un robot a tendance à rester similaire lors du passage d'une environnement à un autre. Aucune supposition contraignante n' est faite sur les espaces sensoriels des deux environnements, qui peuvent différer arbitrairement ; il en va de même pour les stratégies d'exploration et les algorithmes d'apprentissage. Si les dynamiques latentes des deux environnements sont similaires, l'algorithme peut apporter une amélioration de l'exploration. Ceci est illustré sur un robot réel, qui interagit avec différents objets en réalité augmentée.

Une expérience permet ensuite de montrer que l'algorithme peut démontrer une capacité à permettre l'acquisition de savoir-faire complexes, se reposant sur des savoir-faire plus simples. Cela permet de guider l'acquisition de savoir-faire en manipulant exclusivement l'environnement dans lequel le robot est plongé, sans avoir besoin de créer une fonction de récompense ou de fitness. De plus, des expériences sont conduites qui montrent que l'exploration dans le monde réel peut bénéficier de la réutilisation de trajectoires d'exploration obtenues en simulation, même si celles-ci sont simplifiées de manière importante.

À travers cette thèse, les contributions les plus importantes sont les descriptions algorithmiques et les résultats expérimentaux. De manière à permettre la reproduction et la réexamination sans contrainte de tous les résultats, l'ensemble du code est mis à disposition.

L'exploration sensorimotrice est un mécanisme fondamental du développement des systèmes biologiques. La séparer délibérément des mécanismes d'apprentissage et l'étudier pour elle-même dans cette thèse permet d'éclairer des problèmes importants que les robots se développant seuls seront amenés à affronter.
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Open Science

. You can expect a lot of figures and plots in the following pages. Presenting a plot without making the code that generated it available amounts to asking the reader to trust and believe the author to do what he say we does, and to be able to know that he does, in fact, what we say he does. In other words, a naked plot amounts to have to assume that malice or incompetence are absent.

We would rather ask our reader to doubt everything, to examine every detail, to reproduce, to challenge.

is is why we provided the code for . And the code is not far away. No need to send mail or to roam websites. A link overlays the plot picture, and is additionally present in the caption.

e exact piece of code for this figure is exactly one click away. You might sometimes need a cluster or a hardware setup to reproduce the results, but many plots only need a few minutes to be generated. Installing the programs for those plots should not take much more time. We encourage the reader to regenerate some of those plots, and to poke experiments, to tweak the parameters, and try new values. To find, in fact, flaws that our diligent work missed. Don't hesitate to contact us in that case.

Many of our experiments rely on the whims of random number generators which need to be initialized. We might have looked over the problem, and settled for a random initialization at the time of execution. We decided to run our experiments under fixed seeds. at provides the advantage to be able to reproduce some simulation plots exactly 1 . If an experiment is only run once, the seed is 0. For repeated experiments, random seeds have been generated using code that is itself available.

All the code is available under the Open Science License, which include all provisions of the LGPL with the addition of the following statement: e Open Science License ensures that uses and modification of this code throughout the scientific community remain available, reproducible, and verifiable to all.

Directions d'exploration

Les roboticiens sont des démiurges.

Ils inventent les corps, les esprits qui les habitent, et le plus souvent, créent de toute pièces le monde qui entourent ces derniers.

De fait, les roboticiens sont eux-mêmes leur plus formidable obstacle. Le risque, en effet, est que les roboticiens, créateurs à la fois des problèmes et des solutions, adaptent les problèmes aux solutions, et non le contraire. Cela peut mener à inventer et à étudier des problèmes artificiels, qui contribuent peu à l'avancée de la science, tout en évitant systématiquement les problèmes difficiles, en les modifiant en des versions plus simples d'eux-mêmes chaque fois qu'un obstacle un tant soit peu insurmontable est rencontré.

Mais il existe un autre risque, plus pernicieux, et plus fondamental. C'est d'élaborer des robots depuis une perspective humaine, en choisissant des caractéristiques qui font sens pour l'observateur extérieur, mais qui n'en ont aucun pour le robot lui-même et pour son expérience égocentrique du monde. En d'autres termes, le risque est que les caractéristiques qui font que les robots sont faciles à élaborer, à contrôler et à comprendre pour les humains rendent difficile pour le robot lui-même l'interaction avec le monde, et limitent fondamentalement ses capacités.

Une illustration de ce phénomène est trouvée dans la manière de créer des robots : typiquement, le corps, la partie matérielle, est créée et finie avant que la partie logicielle ne commence à être conceptualisée. Cela permet de découpler les deux activités, et de fait, les deux savoir-faire, a priori différents. Et cela permet de se débarrasser de la myriade d'interactions qui seraient à prendre en compte si le corps et l'esprit du robot étaient conceptualisés ensemble. Le logiciel joue ici le rôle du fantôme dans la machine, l'investissant et l'animant après qu'elle ai été créé. Les organismes biologiques ne fonctionnent pas de cette manière. Une telle organisation est certainement adaptée à la programmation des robots des lignes d'assemblage. Mais cette manière de procéder, celle utilisée pour programmer les applications des téléphones portables, est répétée pour des plateforme qui représentent l'état de l'art de la recherche en robotique, telle que l'iCub, le robot PR2 ou Baxter. Les chercheurs utilisant ces plateformes doivent trouver comment programmer des produits matériels achevés et difficilement reconfigurable 2 .

Ce paradigme fonctionne bien pour certaines lignes de recherche, mais est problématique pour d'autres, tel que la locomotion à pattes. L'élaboration de jambes divorcées des algorithmes de marche qui seront utilisés pour les actionner a produit des robots qui requièrent des algorithmes précis, à faible latence et gourmands en puissance de calcul, tout en était peu robustes à la moindre perturbation inattendue de leur environnement.

La robotique évolutionnaire a attaqué ce problème directement, en proposant des algorithmes inspirés de la sélection naturelle pour automatiser la conceptualisation des robots à partir de l'évaluation directe de leur comportement, permettant à la morphologie et aux programmes de contrôle de s'adapter l'un à l'autre.

Cela étant, même en robotique évolutionnaire, un élément humain clé reste présent dans le processus d'élaboration: la fonction de fitness. Elle encode le but du processus évolutionnaire, et est entièrement décidée par l'expérimentateur, avant le début du processus, souvent d'une manière extrêmement spécifique. Elle peut par exemple représenter la distance parcourue par le robot au cours d'un intervalle de temps. La conséquence la plus immédiate est de créer des robots qui ne savent faire qu'une seule chose. Cela est aggravé par la tendance des algorithmes évolutionnaires à souvent se révèler plus malins que l'expérimentateur, en produisant des robots dont le comportement maximise la fonction de fitness tout en étant complètement inacceptable pour l'usage prévu dans l'esprit de l'expérimentateur. Les exemples en ce sens incluent l'exploitation de bugs dans le simulateur physique, et la production de robots qui couvrent la plus grande distance parce qu'ils acceptent de s'autodétruire pour aller plus vite. Ces considérations sont de sérieux problèmes qui s'ajoutent au fait que définir un goal n'est pas nécessairement la meilleure manière d'y parvenir, comme le montrent les travaux de [START_REF] Stanley | Why Greatness Cannot Be Planned[END_REF].

Cependant, le problème le plus fondamental est autrepart : il tient dans le fait même que l'expérimentateur choisit les buts que le robot va poursuivre avec un zèle infaillible. Le problème est qu'il n'est pas clair à quel point l'expérimentateur humain est qualifié, ou même à la bonne place, pour décider des buts d'un robot, une entité possédant une incarnation et des processus cognitifs complètement différents des humains.

C'est sur ce point que certaines lignes de recherche de la robotique développementale cherchent à se démarquer du reste de la robotique. Elles étudient des robots qui doivent créer eux-mêmes les buts qu'ils poursuivent, en utilisant leur propres . La robotique développementale est née de la réalisation que créer des robots "adultes", avec des capacités et des savoirs préformés, fonctionnels dès la sortie de la ligne d'assemblage était trop difficile. La programmation du sens commun, par exemple, a prouvé être remarquablement laborieuse. Observant que les humains acquièrent naturellement leur sens commun pendant l'enfance, il a été proposé de créer des robots "enfants", qui seraient équipés de capacités d'apprentissage leur permettant d'acquérir des savoirs et savoir-faire qui feraient sens pour eux, pour leur propre corps et leur propre environnement.

Les systèmes motivationnels, à leur tour, sont aux objectifs décidés par un expérimentateur ce que les capacités d'apprentissage sont au savoir-faire préformés. Ce sont des fabriques à objectifs, de la même manière que les capacités d'apprentissage sont des fabriques à savoir-faire. Ils permettent aux robots de se créer des buts qui sont adaptés à leur propre corps, leur environnement, et leur niveau d'expérience actuel. Les systèmes motivationnels se couplent aussi naturellement avec les capacités d'apprentissage, parce qu'il y a trop de choses à apprendre dans des environnements même modérément complexes; ils permettent de sélectionner quelles activités poursuivre, et de fait, quoi apprendre et quoi ne pas apprendre.

Tout cela nous amène au sujet de cette thèse : l'exploration. Les robots qui choisissent leur propre buts, qui acquièrent des savoir-faire par eux-même ont besoin d'explorer leur environnement, et ceci pour deux raisons. La première, de manière à acquérir de l'expérience, qui peut à son tour être utilisée pour modifier leur comportement (c'est le processus d'apprentissage). La seconde raison c'est que l'exploration sert à découvrir de nouveaux buts à poursuivre.

Dans cette thèse, nous nous sommes concentrés sur l'exploration des espaces sensorimoteurs, c'est-à-dire les espaces qui permettent d'exprimer la relation entre une action motrice et le retour sensoriel qui lui correspond. De plus, nous avons uniquement considéré l'exploration qui est conduite par le robot lui-même, sans guidage social ou savoir externe. D'où le titre: "L'auto-exploration des espaces sensorimoteurs chez les robots".

La thèse a trois objectifs. Le premier est d'établir l'exploration comme un problème scientifique. Le second est d'étudier certaines stratégies d'explorations simples, et l'impact que différentes variations ont sur elles, de manière à permettre de construire une intuition sur l'exploration et de former une base sur laquelle des stratégies plus élaborées peuvent être construites. Le troisième objectif est de commencer à explorer comment les capacités d'exploration d'un robot peuvent s'améliorer au cours du temps, à l'aide de l'expérience accumulée. Cette thèse remplit ces trois objectifs, même si seulement de manière spécifique.

Pour établir l'exploration en robotique comme un problème scientifique, on commence, dans le chapitre 1, au tout début : la définition d'un robot, l'impact que le fait d'avoir un corps a sur l'expérience que le robot a du monde, et pourquoi tous les problèmes en robotique ne peuvent être résolus par des simulations suffisamment ambitieuses du monde réel dans la tête du robot. La conclusion est que pour être efficace dans la partie non-structurée du monde réel, les robots ont besoin de passer par une longue phase de développement, de sorte à créer pièce par pièce les savoir-faire, les connaissances et le sens commun nécessaire pour faire face aux imprévus des situations dans lesquelles ils se trouveront dans le futur. Pendant cette phase de développement, leur capacité d'exploration sont cruciales.

Ensuite, nous formalisons le problème de l'exploration : explorer est créer accès à différents aspects de l'environnement. L'exploration n' est pas seulement spatiale : un robot peut explorer la réaction d'un objet avec lequel il interagit, comme par exemple les différents sons que l'objet est capable de produire. Cette définition de l'exploration nous permet de mettre en évidence une distinction importante entre l'exploration et l'apprentissage. Apprendre est modifier son comportement grâce à son expérience. Cela fait de l'apprentissage un concept distinct de l'exploration ; on peut apprendre sans explorer : c'est ce qu'un système de prévision météo fait. Et on peut explorer sans apprendre : c'est ce que font les robots aspirateurs, qui arrivent à couvrir une pièce sans jamais en apprendre la forme. Bien sûr, la plupart du temps, on désire combiner l'apprentissage et l'exploration.

Maintenant, pour faire de l'exploration un problème scientifique, il est nécessaire d'avoir un moyen de l'évaluer de manière quantitative. Puisque l'exploration crée accès à différents aspects de l'environnement, une manière de l'évaluer est de mesurer la des réponses sensorielles que le robot est capable de générer. La diversité est une bonne mesure pour nombre de raisons : c'est un concept qui s'adapte à beaucoup de domaines, c'est une mesure intrinsèque; le robot lui-même est capable de la mesurer, sans perturber son comportement-ce qui n' est pas possible de faire si on veut évaluer, par exemple, sa capacité de prédiction. Ceci permet, de manière additionnelle, d'envisager partager des dispositifs expérimentaux avec d'autres domaines dans lesquels inspecter le processus de réflexion de l'explorateur est difficile, tel que les sciences cognitives.

Cela nous amène à un point important et inévitable : l'état de l'art des travaux similaires aux nôtres. La notion d'exploration et de diversité a bénéficié de peu d'attention explicite en robotique, en dehors de l'exploration spatiale3 . Mais beaucoup de domaines proches mènent des travaux qui se rapportent aux nôtres. En robotique développementale, l'étude des motivations intrinsèques est pertinente; la diversité peut être utilisée et est utilisée dans certains algorithmes de cette thèse en tant que motivation intrinsèque. De plus, un intérêt croissant au cours des quinze dernières années a été observé pour la diversité comme mesure et outil algorithmique en informatique, dans des disciplines aussi variées que les ensemble de classification, l'optimisation par essaims particulaires et les systèmes de recommandation. En science cognitives, la diversité comportementale a fait l'objet de nombreux travaux, même si la quasi-totalité des données quantitatives ont été collectées sur des expériences d'exploration spatiale.

Dans le cadre de nos expériences, nous avons introduit une mesure de diversité appelée couverture-. Elle mesure le volume de l'union des balles de rayon centrées autour des points de retour sensoriel observés lors de l'exploration. Si le retour sensor-iel est diversifié, les points sont loin les uns des autres, et la superposition des balles est faible : le volume de leur union est élevé. Si le retour sensoriel est peu diversifié, la superposition est importante et le volume moins important pour le même nombre de points.

Le deuxième but de cette thèse a été d'étudier les algorithmes d'exploration. L'idée ici a été de choisir l'un des algorithmes le plus simple possible, et de l'étudier sous différentes conditions. La simplicité de l'algorithme a été justifiée par deux facteurs. Le premier est que cela permettait de comprendre les résultats dans leur moindre détails sans devoir suspendre l'intuition du lecteur. Le comportement de la régression linéaire locale, ou d'algorithmes plus complexes en espaces à haute dimensions peut se révèler complexe, et c'est pourquoi nous avons opté pour une méthode plus simple, basée sur la perturbation de plus proche voisins. Et deuxièmement, en restant simple, l'espoir est que l'intuition gagnée puisse être réutilisée dans un champs plus large de situations qu'un algorithme plus complexe et plus spécifique.

L'une des premières contributions de l'étude a été de clarifier qu' explorer l'espace moteur était inefficace à cause des contributions de la haute dimensionalité de la distribution hétérogène de la redondance de l'espace sensorimoteur (c'est-àdire, le nombre d'actions motrices différentes qui produisent le même retour sensoriel). La haute dimensionalité seule n'est pas suffisante pour rendre l'exploration de l'espace moteur inefficace.

Ensuite, nous avons analysé de manière systématique les contributions de chaque aspect de l'algorithme. L'impact de la distribution des buts a été étudiée, soulignant le potentiel que les méthodes qui dirigent leur buts représentent (Dans la majorité de cette thèse, les buts sont choisis de manière aléatoire). Les effets d'un mauvais modèle inverse ont été démontrés, et un algorithme pour l'exploration d'espaces sensoriels nonbornés a été introduit.

Les expériences suivantes se sont concentrées à démontrer comment des implémentations même rudimentaires de synergies motrices, de contraintes développementales et de démonstrations externes pouvaient avoir un impact positif sur l'exploration. Une leçon à retenir est qu'améliorer l'incarnation des robots offre potentiellement des gains à la fois plus larges et moins coûteux que d'améliorer les capacités d'apprentissage.

Jusqu'ici, toutes les variations algorithmiques étudiées n' ont pas fait usage explicite de mesures de motivation intrinsèque. La diversité a été utilisée seulement comme un outil d'évaluation. Au chapitre 4, nous introduisons un algorithme qui utilise la diversité pour choisir laquelle des stratégies d'exploration utiliser parmi plusieurs, et nous démontrons que cette méthode permet de s'adapter à différentes situations aussi bien que n'importe quelque mixture fixe de stratégies.

Le troisième but était d'étudier des moyens d'améliorer les capacités d'exploration du robot au cours du temps, à mesure que l'expérience s'accumule.

Pour comprendre l'enjeu sous-jacent, il faut considérer qu'une exploration réussie d'un environnement donné doit donner accès à différents aspects de cet environnement, c'est-à-dire, du point de vue du robot, produire une diversité de retours sensoriels. Pour produire une diversité de retours sensoriels de manière efficace, une connaissance de la dynamique de l'environnement est nécessaire, de manière à éviter sa redondance inhérente, c'est-à-dire, pour éviter d'exécuter des actions qui produisent les mêmes effets. Pousser et tirer sur une porte fermée est un bon exemple : ce sont deux actions différentes qui produisent le même effet-et donc aucune diversité sensorielle-et qui apportent une connaissance nouvelle de la dynamique de l'environnement. Si l'état de la porte avait été connu dès le départ, le robot aurait pu se concentrer sur des actions différentes, plus susceptibles de créer de la diversité. Cela explique la problématique de l'oeuf et de la poule qui touche la production de diversité: les connaissances nécessaires pour conduire une exploration efficaces sont les connaissances que l'exploration est censée produire en premier lieu. Cela signifie que le processus d'exploration peut s'auto-entretenir, mais peu aussi rester bloqué dans l'incapacité de produire des interactions suffisamment informatives, menant à de longues périodes d'exploration pauvre au début du processus dans les environnements difficiles.

C'est ce qui nous a poussé à trouver une solution pour améliorer l'exploration, notamment lors des premières phases de contact avec un nouvel environnement. Pour ce faire, nous avons introduit la méthode , qui réutilise l'expérience acquise dans un environnement précédent pour en explorer un nouveau. Le coeur de l'idée est de sélectionner des commandes motrices qui ont produit une diversité de retours sensoriels dans l'environnement précédent, et de les réexecuter dans le nouveau. Cette méthode a le bénéfice d'être conceptuellement simple, et d'être agnostique aux modalités sensorielles de l'un ou de l'autre environnement, qui peuvent être arbitrairement différentes. La stratégie d'exploration et l'algorithme d'apprentissage utilisés dans l'environnement précédent n' ont pas besoin non plus d'être les mêmes que ceux de l'environnement actuel : la méthode peut réutiliser des données collectées de manière arbitraire. La seule contrainte est que les commandes motrices exécutées dans l'environnement précédent puissent être réexécutés dans le nouveau.

La logique derrière la méthode peut être comprise en considérant comment la redondance fait en sorte que deux commandes motrices différentes produisent le même effet sur l'environnement: soit par redondance du corps, soit par redondance de l'environnement. La redondance du corps fait en sorte que deux commandes motrices différentes produisent les mêmes mouvements: le robot applique donc les mêmes forces sur l'environnement. La redondance environnementale fait en sorte que des forces différentes produisent le même effet, comme illustre l'exemple de la porte fermée. Typiquement, des effets différents parviennent à éviter à la fois la redondance de l'environnement et celle du corps. En changeant d'environnement, la redondance environnementale n'est pas conservée, mais celle du corps l'est, la plupart du temps. De plus, si les environnements sont similaires, une partie de la redondance environnementale est partagée. Ainsi, en réutilisant un ensemble de commandes motrices qui ont généré une diversité d'effets, la méthode capitalise le savoir gagné sur la re-dondance corporelle, et de manière opportuniste sur la redondance environnementale.

Pour valider expérimentalement cette idée, nous avons conduit des expériences qui ont démontré la viabilité de cette approche sur un robot réel manipulant différents objets en réalité augmentée. Les résultats montrent que la méthode est efficace lorsqu' elle réutilise l'expérience gagnée par la manipulation d'un objet (une balle) pour explorer un autre objet possédant un comportement significativement différent (un cube). La méthode est aussi robuste à des environnements non-similaires, lorsque la diversité créée dans un environnement ne se transfère pas bien à un autre. De plus, nous avons établi que choisir les commandes motrices à réutiliser via une mesure de diversité était plus efficace que de le faire de manière aléatoire.

Dans les expériences précédentes, améliore les performances au début de l'exploration. Mais après suffisamment de temps, que soit utilisée ou pas, le processus d'exploration arrive à des résultats similaires. Pour montrer que peut faire plus qu'améliorer les performances pendant une durée limitée, nous avons élaboré une expérience qui montre que peut rendre explorable un environnement qui ne l'est pas à premier abord. Un aspect intéressant de cette expérience est que l'exploration est façonnée non pas par une fonction de récompense externe, mais pas une manipulation de l'environnement et de la saliance des objets qui sont contenus dedans, de la même manière qu'une personne s'occupant d'un enfant pourrait faire.

Enfin, nous nous sommes intéressé à l'application de la méthode à des situations où l'exploration de l'environnement précédent s'est déroulée entièrement en simulation, tandis que l'exploration dans le nouvel environnement se déroule dans le monde réel, sur un vrai robot. Transférer les résultats obtenus en simulation à la réalité a prouvé être une tâche difficile en robotique, un problème connu sous le nom de . Les résultats obtenus, quoique demandant d'être approfondis, sont excellents. Ils laissent entrevoir la possibilité d'utiliser des simulations grossières de la réalité comme des artifices cognitifs efficaces pour une exploration améliorée du monde réel.

Ainsi se termine cette thèse. Où aller, à partir de là ? Il y a trois directions de recherche qui se dégagent: la diversité en robotique, la recherche interdisciplinaire avec les sciences cognitives, et la robotique évolutionnaire et développementale.

Premièrement, la diversité en robotique. En 1255, dans son Commentaire sur les Sentences, omas d'Aquin avança le point suivant: un ange a plus de valeur qu'une pierre. Mais de là, on ne peut pas conclure que deux anges ont plus de valeur qu'un ange et une pierre 4 . Une version modernisée de l'argument de omas d'Aquin est proposé par [START_REF] Nehring | A Theory of Diversity[END_REF] : "Un humain a plus de valeur qu'un chimpanzé. Mais de là, on ne peut pas déduire que 6000130000 humains et aucun chimpanzés ont plus de valeur que 6000000000 humains et 130000 chimpanzés." En d'autre termes, la diversité a de la valeur. Une telle observation peut être faite dans des domaines aussi différents que la biodiversité, l'art, la composition d'équipes, les portefeuilles d'investissement, les résultats des moteurs de recherche, les ensembles de classification, et même, le progrès scientifique. Dans [START_REF] Lehman | An Anarchy of Methods: Current Trends in How Intelligence Is Abstracted in AI[END_REF], Pierre-Yves Oudeyer a remarqué que "parce qu'on ne comprend pas encore suffisamment ce qu' est l'intelligence, ou comment produire une intelligence artificielle générale, plutôt que de couper des directions de recherches, pour vraiment faire des progrès, nous devrions embrasser l'"anarchie de méthodes" de l'intelligence artificielle." En d'autres termes, lorsqu' on tâtonne dans le noir, la diversité est un outil précieux.

Il est tentant ici d'appliquer cette leçon à la robotique développementale, et c'est ce que tente de faire cette thèse: les robots développementaux, plongés dans la complexité du monde réel, et avec aucun autre choix que d'en faire sens à l'aide de leur capacités d'apprentissage et d'exploration, doivent tâtonner dans le noir pendant un moment. La quasi-absence de travaux sur la diversité en robotique développementale n' est pas à la hauteur du potentiel qu'elle promet d'apporter.

Il y a, cependant, de nombreuses façons d'abuser cette leçon. Premièrement, la diversité pour elle-même est difficilement justifiable, quoi que soit sa valeur intrinsèque. In particulier, un système motivationnel seulement dirigé par la recherche de diversité semble être une mauvaise idée. Certains ont avancés l'argument qu' étant donné que le nombre de choses simples est en quantité limitée, une exploration dirigée par la diversité conduira naturellement à découvrir des phénomènes de plus en plus complexes. La rareté de la simplicité, cependant, n'a jamais été justifiée en dehors d'exemples jouets, et les choses simples à découvrir et à apprendre semblent être en quantité suffisante dans le monde réel pour remplir plusieurs vies. Tout cela conspire à suggérer que les systèmes de motivation robotiques devraient favoriser une de motivations, dont la diversité ferait partie. Des motivations en compétition et complémentaires devraient mener à des comportements alternant entre des phases d'exploration, lors desquelles de nouveaux aspects du monde sont découverts, et des phases d'étude concentrée sur un sujet, où des savoir-faire spécifiques seraient acquis.

Deuxièmement, le problème se pose de la manière utiliser l'expérience collectée lors d'une exploration dirigée par la diversité. Dans cette thèse, nous avons montré, via la méthode , que cette expérience est précieuse pour explorer de nouveaux environnements. Mais explorer n'est pas le seul comportement qu'un robot développemental possède. La question de capitaliser et réappliquer l'expérience obtenue grâce à la diversité pour résoudre des problèmes précis reste ouverte, avec la question de savoir si une telle expérience est compétitive avec des approches plus directionnelles.

Enfin, de nombreux problèmes spécifiques à propos de la diversité n' ont pas encore de réponse satisfaisante. L'exploration dirigée par l'exploration diffère de l'exploration dirigée par la nouveauté en cela que les approches dirigées par la nouveauté ne peuvent pas contrôler explicitement la quantité de diversité qu' elles produisent. Maintenir une certaine quantité de diversité comportementale, en particulier lorsque l'environnement change et réduit les options disponibles pour le robot, peut uniquement être obtenu par la perspective globale qu'offre la diversité, et non avec la seule perspective locale de la nouveauté. Toutefois, la diversité requière plus de ressources computationnelles : quand est-elle nécessaire par rapport aux approches plus simples liées à la nouveauté ? Quelles sont de bonnes mesure de diversité ? La diversité a-t-elle un sens en haute dimension, où doit-elle est en permanence supportée par des représentations abstraites de faible dimension ?

Répondre à ces questions n'est pas facile ; une source d'intuition possible est offerte par les sciences cognitives. Comment les enfants utilisent-ils la diversité pendant leur développement ? C'est la deuxième direction de recherche qui semble prometteuse.

Il est notable que parmi toute la littérature disponible sur le jeu, l'exploration et la résolution de problèmes chez les enfants et les animaux, les mesures quantitatives de diversité des interactions qu'ils engagent avec le monde et des solutions qu'ils tentent sont pratiquement absentes. Les études s'arrêtent souvent à de vagues descriptions qualitatives. Des études quantitatives sur l'utilisation de la diversité comportementale dans l'exploration pourraient jeter une lumière précieuse sur les meilleures manières d'élaborer des systèmes motivationnels pour les robots. De plus, cette ligne de recherche, en vertu de sa méthodologie compatible, promet de permettre de conduire des expériences similaires sur des humains et des robots, menant potentiellement à des échanges et une émulation fructueuse entre les deux domaines.

La troisième direction de recherche est la robotique évolutionnaire et développementale, aussi appelée "évo-dévo-robo". La robotique évolutionnaire mimique le processus de sélection naturelle, tandis que la robotique développementale mimique le développement morphologique et cognitif des systèmes biologiques. La quasi-totalité de travaux, aussi similaires qu'ils puissent être, sont restés séparés jusqu'à maintenant. Étant donné l'intérêt porté à la création d'une intelligence artificielle similaire aux capacités humaines, cette séparation est déconcertante; après tout, les seuls exemples connus d'entités possédant une intelligence similaire à l'intelligence humaine ont été créés par une combinaison de ces deux processus.

Combiner la robotique évolutionnaire et la robotique développementale pose un énorme problème: le temps. Les échelles de temps du développement et de l'évolutionles durée de vie et les aeons respectivement-mettent déjà en difficulté leurs disciplines respectives. Combiner les deux semble donc totalement insurmontable. La bonne manière de voir ce problème est de remarquer que la taille de ce problème est telle que les progrès technologiques des, disons, 50 prochaines années ne la feront pas diminuer. En d'autres termes, attendre n'aide pas.

Une autre objection est d'avancer l'argument que les robotiques évolutionnaire et développementale sont deux jeunes disciplines, et ne sont pas encore suffisamment mûres pour être combinées. Bien que majoritaire spéculatif, cet argument pourrait se révéler être vérifié. Mais les difficultés rencontrées dans les tentatives de combinaison pourraient jeter une lumière précieuse sur les limitations de l'un ou l'autre domaine qui pourraient se révéler difficiles à découvrir autrement.

Ajouter une longue phase de développement à la robotique évolutionnaire pourrait voir l'émergence de nouvelles dynamiques, plus complexes, dans le processus évolutionnaire, et une amélioration du processus de sélection. Le travail de [START_REF] Bongard | Morphological change in machines accelerates the evolu on of robust behavior[END_REF] a jeté les premières bases, en montrant que le développement morphologique pouvait agir comme un véritable tamis, filtrant les comportements fragiles dans une expérience de locomototion à pattes. Dans l'autre sens, la robotique développementale pourrait bénéficier du processus évolutionnaire, qui pourrait réduire les décisions arbitraires que les chercheurs doivent faire pour le moment, notamment en terme des capacités de représentation et d'apprentissage qui sont données a priori aux robots.

La robotique évolutionnaire et développementale représente de toute évidence un défi formidable, et il est difficile de contester que les résultats potentiels le sont également. C'est un domaine d'investigation que l'on ne peut simplement pas se permettre de ne pas investir.

Au moins parce qu'il promet de réduire les tendances démiurgiques des roboticiens. Les roboticiens sont des démiurges ; l'évo-dévo-robo fait partie de la solution.

28 Isaac Newton 0 Exploration: A Simple Example Let's consider the following problem: we are given a black-box that takes inputs and produces outputs. We know the values the inputs can take, but we don't know which outputs correspond to which inputs. We don't even know which outputs be produced. We are given the opportunity to sample the black-box for a limited time. How much then, can be produced with the limited access we have? is question defines an . Here, the objective is to discover what effects-what outputs-the black-box is capable to deliver, and produce a representative subset of them. To answer such a problem is to provide an , i.e. a method that selects which inputs to try on the black box.

Let's take the example of a one-meter-long idealized robotic arm on a two-dimensional plane, made up of an open chain of joints linked by segments of equal length. e angles of the joints, which can take values between -150 and 150 degrees, uniquely define the posture of the arm, and therefore, the position of the end-effector.

Assuming the robotic arm is a black-box that accepts joint angles as input, and produces the resulting end-effector position as output, which can we consider to produce as much diverse end-effector positions as possible in a limited time?

A Tale of Two Exploration Strategies e simplest exploration strategy is to try random angle values. For each motor command, the angle of each joint is chosen randomly between 150 degrees. is strategy Another strategy is to explore not the motor space but the sensory space. One approach is a2 strategy: goals-that is, points in the output space-are chosen, and motor commands must be found that produce effects that approach the goals as much as possible.

Of course, transforming goals into motor commands is not without problems: a goal can be impossible to reach-as would be for instance, a goal placed two meters away from our previously described robotic arm-, and, conversely, many different motor commands can satisfy the same goal. In other words, the -the set of effects that can be produced by the environment-might be a comparatively small subset of the considered , and is possibly redundant. In order to transform goals into motor commands, we use an of the environment. An inverse model provides a mapping from the sensory space-and therefore, the goal space-to the motor space. An inverse model is good when the motor commands it provides generates, when executed, effects as close as possible from their corresponding goals. In our black-box context, the inverse model cannot be known beforehand; it has to be learned incrementally, as the exploration progresses.

Let's note right away that the creation of inverse models is the purpose of the work we present in this thesis.

e purpose is the study of behavioural diversity and exploratory behaviour. Whilst we use inverse model in many of the exploration strategies we study, they are considered here as tools, not ends.

For the purposes of our arm example, we employ a simple learning algorithm for the inverse model, since we want to stress that it is not the sophistication of the model but how exploration is conducted that makes the difference between motor and goal babbling.

Given a goal, the inverse model finds amongst previous observations the one with the nearest effect, then retrieves its motor command and adds a small random perturbation drawn within the legal range of the inputs to it, and returns the perturbated motor commands to be executed. Since such a learning algorithm relies on previous observations, the early phase of the exploration features a small number of random motor babbling steps in order to bootstrap the observations.

An Experiment

To compare the and strategies, we consider four different arms, with 2, 7, 20 and 100 segments-the lengths of which are set so that the total length of the arm remains one meter across the configurations.

For the goal babbling strategy, random goals are created by drawing points randomly in the square 3 . is strategy will be called , often abbreviated as when no confusion is possible. e perturbation that the inverse model applies on motor commands is drawn uniformly from of the range on each joint value (

). Finally, the random goal babbling strategy is bootstrapped with 10 interactions of random motor babbling at the beginning of the exploration. For each arm, we run the two exploration strategies over 10000 interactions with the environment (henceforth, or ) each.

Analysis

e results are available Figure 2. We observe a severe degradation of the area covered by the effects produced by the motor babbling strategy4 as the number of joints increases. e 7-joint arm does not produce effects near the edge of the reachable space even after trying 10000 different postures.

e 100-joint arm does not even cover a fourth of the reachable space.

is is easily explained. What random motor babbling is doing is providing an empirical estimation of the density of the redundancy 5 of the arm across the reachable space. For the 100-joint arm , the centre of the reachable space is orders of magnitude more dense than the outer edge, which leads to the distribution pattern of Figure 2. In sensorimotor spaces where the density of the redundancy is uniform, random motor babbling would produce an uniform distribution of effects over the reachable space, regardless of the level of redundancy6 .

is phenomenon is well illustrated by the 2-joint example. In Figure 3, the number of timesteps has been raised to 50000 compared to Figure 1: sensory areas where two solutions exists are twice as dense as the areas where only one does-as it should. In Figure 4, the two set of solutions have been separated, and overlaid with sample arm postures. One set of solution corresponds to arm postures where the second joint angle is positive, and the other where it is negative.

Under the goal babbling strategy, areas with different redundancy levels are explored uniformly. Along the edges of the reachable space in Figure 3 however, an increase of effect density can be observed.

e reason for this is explained Figure 6: 5 For a discussion about the defini on of redundancy see [START_REF] Conkur | Clarifying the defini on of redundancy as used in robo cs[END_REF]. In this thesis, we are interested in the difference between the redundancy of different areas of the sensory space. We define the redundancy of a subset of the sensory space as the probability that an effect belong to , given a random motor command, drawn uniformly from the motor space. [START_REF] Lenarcic | On the quan fica on of robot redundancy[END_REF] provides an algorithm to quan fy the redundancy of rigid, mul joint robo c arms, but the computa on is only tractable for a small number of joints. because goals are chosen uniformly in the hyperrectangle , some goals are outside the reachable space.

e effects resulting from these goals pool along the edges of it, in a pattern specific to the inverse model. Here, the perturbations induced by the inverse model on the motor commands produces a large impact on the position of the end-effector in the inner edge, and a correspondingly small one on the outer edge, as illustrated in Figure 6.

e goal babbling strategy consistently covers more of the reachable space than the motor babbling strategy, and in a more uniform manner. Nevertheless, the area covered by the strategy diminishes with the increase of the number of joints. is is due to the arm looping on itself more and more as the number of joints increases, as shown in Figure 5. ese loops form an attractor for our perturbation-based inverse model. In simple cases, these local minima can sometimes be escaped. An example is given by the goal babbling exploration of the 7-joint arm in Figure 2. In the lower right quadrant, a first set of solutions left a visible pooling of effects, before being replaced Figure 6: Goal babbling produces poolings of effects at the edges of the reachable space. The shape these poolings takes is a direct consequence of the inverse model. Here, if a goal is set near the centre, the nearest neighbour has his second joint angle near the limit, 150°; a perturba on of this angle produces a value in the range [150°, 135°], which produce a large effect on the posi on of the end effector. This leads to a dis nc ve inner ring of increased effect density. A contrario, a goal on the outer edge is associated with a nearest neighbour with a second angle joint near 0°, the perturba on of which (±15°) only results in a minor displacement of the end effector. As a result, we observe thin and dense strips of effects on the outer edges of the reachable space. [source code] by better solutions coming from an adjacent area. e process is visible Figure 7. is problem is linked to the minimal nature of the environment. In a more complex setting, it could be handled in any number of ways, the most reasonable of which would be to prevent the arm self-collisions, or having sensorimotor feedback of the convolutions of the arm, or having a natural rest pose. An unreasonable way would be to try to improve the learning algorithm to avoid this specific problem. As we'll discuss in the next chapters, each time the learning algorithms try to fight the complexity of the world with specific sophistication, there is probably a more ecological, more complication-frugal way to proceed. For instance, the physical world naturally prevents a robotic arm to pass through itself. Handling collisions would prevent loops, removing those local minimum from the sensorimotor space. Because of this problem is largely anecdotal in our context, we won't focus on addressing it in most of our experiments, but we will discuss parsimonious ways to deal with it in sections 3.6 and 3.7.

Despite the loops, the goal babbling strategy is better than the motor babbling strategy. It also benefits from the two-dimensionality of the sensory space, which remains so regardless of the morphology of the arm. Goal babbling separates the decisions about to do from the ones about to do it by making them in two different spaces, the sensory and motor space respectively. is affords goal babbling a direct, explicit way to encourage effect diversity by setting a diversity goals, thus fostering the objectives of an exploration problem.

So far we have shown that if a robot must explore its sensorimotor space without having any prior knowledge of it, several strategies can be conceived, and they produce significantly different results. In the next chapter, we will motivate why sensorimotor exploration is an important problem in robotics.

F

e Plan is thesis is divided in two parts.

e first part pursues two goals: first, it motivates the importance of studying sensorimotor exploration, defines exploration as a scientific problem, proposes an algorithmic framework, discuss the relevant previous work. Second, it systematically investigates variation of a simple exploration algorithm to provide a basis on which to consider more complex approaches. One of those, where a diversity metric is explicitely used as an intrinsic motivation for the exploration, is proposed at the end of the first part. e second part investigates how to improve exploratory behaviour with experience, and to do so introduces an method, , to exploit exploration data from one environment to another.

Part One -Exploration

In chapter 1, we first expose the classic machine learning paradigm and contrast it with the interacting learning scenario of embodied robots. is allows us to make explicit the challenges robots face when learning. We take advantage of the discussion to expose and motivate the current trends in robotic research in which our work is set, in particular in relation with the notion of embodiment, development and evolution. We then propose to study the robots face when discovering their body and their proximal environment, and we contrast it to studying learning problems. We introduce diversity measures to quantify and evaluate exploration, and present the framework, that will express all the exploration architectures we develop throughout the thesis.

In chapter 2, we look at the existing literature on exploratory processes, exploratory behaviour and diversity. We begin with active learning, that proposed the first explicit algorithms for directed exploration. We then brush against the concept of self-organization, that underlies all biological organisms and many natural phenomena, and explicit how these processes create diversity, are challenging to predict, and are a promising venue for parsimonious robotic design.

is also gives us the opportunity to discuss the concept of homeokinesis, a recently proposed method for sensorimotor exploration, and compare it to our approach. After that, we turn our attention to biology, and investigate sensorimotor exploration in fetuses, neonates and infants, and its relation to development. is leads us to the studies of exploratory behaviour in psychology, and in particular, to the theories on intrinsic motivation. We offer there a rapid historical perspective that leads us naturally to today, where computational approaches have joined the scientific dialogue. Amongst intrinsic motivations, novelty-based methods interest us particularly, for their direct relation the production of diversity. We finish our bibliographical review by a brief survey of the recent advances of evolutionary robotics that have advocated diversity as a robust fit-ness function, and highlight the steady rise in the use of diversity measure in computer science.

In chapter 3, we come back to the two-dimensional arm of chapter 0, and revisit many details previously ignored. e impact of goal distribution is investigated, and as a result, we provide exploration algorithms that can build and adapt the goal space during the exploration, removing the previously needed prior on bounds. Next, we modify the quality of the inverse model and study how it affects exploration, and argue than in some case, motor babbling is preferable to goal babbling, even when the heterogeneity of the redundancy is high. We then briefly discuss how motor synergies can improve exploration, and we provide a simple illustrative example. We repeat the same schema for developmental constraints and socially-provided demonstrations. As we discuss the merit of the presented work, we argue that effective exploration needs a multifaceted approach that combines many different phenomena.

In chapter 4, building on the challenge of the adequacy between the learning capability and the environment complexity discussed in the previous chapter, we propose an architecture that can dynamically choose among different exploration strategies by leveraging diversity as an explicit intrisic motivation. We illustrate the effectiveness of the methods on variations in learner quality and in exploration aggressiveness.

Part Two -Reuse

In chapter 5, we present the reuse method, that transfers motor commands from one task to another by enforcing diversity. A simple example of two kinematic planar arms is discussed.

In chapter 6, we discuss the existing literature on transfer learning, and formalize the reuse method. e two kinematic arms example of the previous chapter is analysed quantitatively, and we provide results that show that diversity produces consistently better performances than random reuse.

In chapter 7, an experimental setup with a real robot interacting with a virtual object is described, motivated, analysed, and critiqued.

e feasibility of random motor babbling is discussed, and a series experiments shows that in the specific situation we study, reuse is both sensitive and resilient to task similarity, works even when the modalities are different, and can exploit random motor babbling data.

In chapter 8, we show that through environmental control alone, a diversity-driven agent can be guided towards sophisticated behaviours.

Finally in chapter 9, the reuse method is discussed in relation with the reality gap problem, and we show that even degraded models can be used with reuse to inform and improve exploratory behaviour.

Contribution

Our main contributions are:

• Defining and motivating the study of sensorimotor exploration in robots, as a critical part of developmental robotics.

• A detailed study of a simple example of sensorimotor exploration, that introduces different exploration algorithms under a single framework.

• A diversity-driven method for selecting exploration strategies in Multi-Armed Bandits contexts.

• A non-exhaustive review of the usage diversity in computer science robotics that points out a growing interest in the concept as an active tool rather than a passive measure.

• e reuse method, a diversity-driven transfer exploration algorithm.

• An experimental setup with a real robot and an augmented reality environment.

• An example of environment-driven (reward-free, fitness-free) development of behaviour in chapter 8.

• An new way to bridge the reality gap, that is robust to many innacurracies in the simulation.

K 43 Francis Bacon

Richard Lewontin

e Sensorimotor Exploration Problem

In this chapter, we motivate our interest for sensorimotor exploration in robotics. We briefly expose the classical machine learning paradigm and show that robots present specific learning challenges that prevent us to consider them as just another instance of machine learning. We formulate the exploration problem and articulate its difference with learning, and argue that exploration should be studied in its own right. To that end, diversity measures and an architectural framework are introduced.

Classical Machine Learning

Abstract Classic machine learning is inherently passive, and is geared toward studying and predic ng phenomena that happen outside of the control of the learning algorithm.

Machine learning concerns itself with constructing and studying systems that can learn from experience1 . e circularity of this definition is adequately resolved by [START_REF] Mitchell | The Discipline of Machine Learning[END_REF], who defines machine learning as: is definition is operational. 'Reliably improves' imposes a useful constraint to distinguish learning from stochasticity, while 'following experience' does not require to formally establish a causal relation between the gain in experience and the gain in performance, only to measure it empirically (' improves'). Requiring an improvement in performance does lead to some problems though. e performance during learning might not be monotonically improving. As a result, the machine may find itself not having strictly speaking learned at some point of the learning process2 . In this manuscript, I will use a slightly different definition that, while less practical, encompasses more instances of learning:

Or, in a shorter fashion3 : e change in behaviour-i.e. the change in response of the system to a given contextdoes not need to be noticeable.

ere must only exists a potential situation in the future where the behaviour of the machine would be influenced by the experience it just acquired. e experience, typically, comes from a producing outputs from a set of inputs. If we are studying the weather the inputs are the past weathers conditions, and the outputs the current ones. In the case of a voice recognition task, the recorded sounds are the inputs and the text transcriptions the outputs. An input and its corresponding output is an . e idea behind machine learning it to gather enough observations-the -, and feed them to a learning system, which uses them to create and update an internal model. e learning system can then be used to predict outputs corresponding to new inputs that are not present the training data4 . As such, the goal of machine learning is to construct systems that can from data. is translates in our previous examples, to historical weather data being used to validate models that can then predict tomorrow's weather. And with enough samples of recorded vocalizations with their transcriptions, a computer program can build a voice recognition system that can recognize sentences it never encountered before. e classic machine learning architecture can be summarized as depicted Figure 1.2. is architecture is general and has wide applications, ranging from detecting which edits are vandalism on Wikipedia [START_REF] Adler | Wikipedia Vandalism Detec on: Combining Natural Language, Metadata, and Reputa on Features[END_REF], to helping medical diagnosis [START_REF] Kononenko | Machine learning for medical diagnosis: history, state of the art and perspec ve[END_REF], to classifying DNA sequences [START_REF] Larranaga | Machine learning in bioinforma cs[END_REF], or detecting influences between famous artists of fine art painting [START_REF] Saleh | Toward automated discovery of ar s c influence[END_REF].

is approach thrives when data is abundant and matches the assumptions build into the models. In robotics, things are different.

F

e Trouble with Interaction

Abstract We mo vate why learning is important for robots, then describe the intrinsically interac ve nature of robots, and discuss the unique challenges it entails.

In other words, robots are synthetic systems that are -they perceive the world, and -they can act in the world, and they are able to decide how to act contextually.

Learning Robots

Abstract Learning in robots has several roles: increasing robustness to change, finding empirical solu ons where theore cal models fall short, escaping task-specificity, gran ng selfsufficiency, allowing social exchanges, and providing insights into the learning mechanisms of biological systems. Not all robots learn, i.e. not all robots change their behaviour with experience. Many robots used in industrial contexts repeatedly produce motions that have been programmed beforehand, and they do not improve them as they repeat them. For instance, picker robot on an assembly grab items on a treadmill and place them somewhere else5 . Such a picker robot is able to its behaviour to the position of the items that arrive on the treadmill, but it is not able to , as its performance will not change as it picks more and more items. is difference between adaptation and learning is a crucial one. Another example is a robot walking in a 2D maze. Assuming that the maze is simply-connected, that is, that all the walls are connected to the outer boundary, the robot, by following the left wall all the time-a method known as the -, will successfully be able to find the exit. Yet, even if the robot is presented repeatedly with the same maze, its performance at finding the exit will not improve. e robot successfully adapts without learning.

Adapting without learning has its limits; in many contexts, learning is a mandatory part of successful behaviour. We discuss some of the most important roles of learning in robots.

Robustness to Change

Robots that do not learn are inherently brittle to changes that are orthogonal to their adaptation capabilities6 . For instance, the picker robot is perfectly able to handle changes in the position of items, but might not be able to handle those that involve changes in height, size, or weight, even if they are within the range the hardware would be able to handle.

If a robot does not learn, then the way it must behave for all the situations it can encounters must be pre-programmed into the robot. is makes programming robots an expensive task in complex environments. As a results, the tendency is to make robot environments simpler, and robot task-specific, so that programming the robots remains reasonably simple-this is typically the case in industrial settings.

Box 1.1: The What of a Robot

Robots are mechanical systems, but not all mechanical systems are robots: A bicycle can't self-produce mo on, hence it is not a robot. A system that can self-produce mo on is an automa c system. A clock self-produces mo on, but it is not a robot as it has no sensors and does not process informa on. But a washing machine that can measure and control how fast it is tumbling is a robot-robots don't have to be mobile or exhibit their mo on in plain sight. A speaker connected to a microphone through a com-puter is technically a robot, as the membrane vibrates, but it is a degenerated case to which few robo cs techniques apply. In contrast, a system producing and perceiving its vocaliza on through a motorized trachea is a robot, and such systems are ac ve venues of research [START_REF] Sasamoto | Towards understanding the origin of infant directed speech: A vocal robot with infant-like ar cula on[END_REF]). Let's remark here that, were we to remove 'synthe c' from the defini on, animals-humans-would be a subset of robots.

Robots that do not learn have the success of their behaviour tightly constrained by the set of assumptions that were made during their conception. If the environment evolves and violates any of those assumptions, the robot's behaviour may not be successful anymore.

Because in many real-world situations changes cannot be satisfactorily anticipated during the conception phase, robots that do not learn are restricted to controlled environments, where the range of situations they can encounter has been enumerated. Learning abilities allow robots to evolve in environments that were not in their designer's minds. To tackle more complex environments, robots need to learn.

Empirical Solu ons

When sophisticated behaviour in a complex environment is required of the robot, preprogramming a successful behavioural strategy may be difficult. It requires to accurately modelize the phenomenon, and the robot, and then use sophisticated deductive reasoning to derive an appropriate plan for the robot actions.

A model of the robot or the environment may be difficult for any number of reasons. e poor build quality of the robot may induce unpredictable hardware variations that make any modelization inaccurate. Wear and tear may make any model quickly imprecise 7 .

e robot structural architecture may be too complex: robots equipped with pneumatic muscle or soft limbs are notoriously difficult to simulate to any useful precision [START_REF] Daerden | Pneuma c Ar ficial Muscles: Actuators for Robo cs and Automa on[END_REF][START_REF] Trivedi | So robo cs: Biological inspira on, state of the art, and future research[END_REF]). e minute physical details of the surface of the robotic hand and object to be manipulated (friction coefficient, surface deformation, compliance) may be difficult to measure, and their impact difficult to anticipate even with state-of-the-art physics theory. Preprogramming walking into human-size humanoids has proven challenging, requiring sophisticated techniques using detailed models [START_REF] Hirai | The development of Honda humanoid robot[END_REF][START_REF] Kaneko | Cyberne c human HRP-4C[END_REF]. And even then, the behaviour is limited to stringent assumptions: Kaneko et al. (2009, p. 12) In those situations, pre-computing a good and robust controller for the robot is expensive or impossible.

Preprogramming a complex behaviour into a robot is akin to ask a child to look at a bike, and to think really hard to figure out how the bike works, and how he should position himself on it, and how he should coordinate its legs precisely to push the pedal while balancing himself to go forward without falling. Preprogramming the strategy into the robot is similar to hoping that after this period of intense reflection, the child will be able to walk up to the bike, and ride it successfully on the first try.

Clearly, the child does not need to understand how the bike works, nor does he needs a working knowledge of Newtonian physics to ride a bike. And even if it did, that is, if you took a mechanical engineer that never learned how to ride a bike, gave him as much observational time he desired, he would still not be able to proceed this way.

e child does not even need to keep good representation of the behaviour once a successful solution is found. An interesting study in this regards looked at the explicit knowledge of skilled typists of the computer keyboard [START_REF] Snyder | What skilled typists don't know about the QWERTY keyboard[END_REF]. ey gave the typists 80 seconds to fill the 26 letters of a blank printout of the keyboard (all the other keys being represented). e subjects identified 57% of the keyboard correctly, got 22% wrong, and were unable to remember the rest. Successful behaviour does not need a good representation, nor a good understanding of reality.

Instead, for robots, a simple empirical trial-and-error strategy until the success is detected may suffice: using the real-world is a computationally frugal-and remarkably precise-way to simulate the real-world. And it bypasses the necessity for expensive and practically inaccurate models. e robot does not necessarily need to understand exactly why a motor command produces a specific behaviour to acquire successful behaviour: learning abilities allow to figure out complex behaviour without using sophisticated deductive reasoning.

Escaping Task-Specificity

Another role of learning that has emerged recently as an acknowledged research ambition, is for robots to escape . In an industrial context, it makes sense to specialize each robot to its task. It increases productivity and efficiency, and is a cornerstone of assembly-line design.

Out of controlled environments, robots may be able to accomplish more than one task. Honda's ASIMO robot is able to detect movement, faces, sound, to recognize when a handshake is offered, to walk, to run, to detect obstacles, to shoot into a football. And many other abilities. But ASIMO is not able to acquire new behaviour. It cannot learn how to ride a bike. It is . To be useful in social contexts or evolving environments where new tasks are created contextually, robots must be able to acquire new behaviour and master new skills on their own so that they can remain useful.

Self-sufficiency

ose three objectives of robotic learning all participate to a fourth and broader one: granting robots self-sufficiency. Self-sufficiency is the ability to carry out one's objective without the intervention of an another entity not intrinsically necessary for the task 8 .

Many learning systems are not self-sufficient. For instance, predicting the weather is a demanding endeavour. Historical weather data must be aggregated and encoded; the current conditions must be continuously updated. Simulation of the weather across the globe must be run on supercomputers. Because faster simulations afford better resolutions, which in turn affords better accuracy, the programs are continuously optimized, and the hardware regularly updated.

e simulations themselves exploit state-of-the-art science, and teams of meteorologists and engineers are constantly improving the prediction models. If the prediction is unusually bad in a particular instance, the roots of the problem are investigated and possibly addressed. Unless you include the humans running the weather predicting system into the weather predicting system itself, it cannot be considered as self-sufficient.

In the case of robots, we can distinguish two types of self-sufficiency: from experts, and from others.

is hindered each time an open-skull intervention is performed, that is, any intervention where an expert is needed to modify, repair or upgrade the robot software or hardware.

is is related to the concept of that separates a living entity from the rest of the world, in the context of [START_REF] Maturana | Autopoiesis and Cogni on: The Realiza on of the Living (Maturana & Varela[END_REF]. A robot is self-sufficient from experts if its hardware or software envelope-its operational closure-does not have to be breached. e weather prediction system's envelope is breached every time an upgrade is made to the system. Essentially, self-sufficiency from experts precludes any of the robot once it has started functioning. Self-sufficiency from experts in an important precondition in order to deploy robots outside industrial settings. In that context, learning capabilities grants self-sufficient robots some measure of self-redesign, since redesign cannot come from an outside entity anymore.

relates to the robot requesting or needing help from a human or another entity who has no direct access to the robot's mind. A robot that requests demonstrations is not self-sufficient. A vacuum robot is self-sufficient from experts, but its self-sufficiency from peers is as great as its capacity to not get trapped in a corner, and as how rarely it needs to be emptied.

Self-sufficiency is a continuum. A robot is self-sufficient from experts insofar as it never needs repairing. As a consequence, avoiding dramatic damage is part of selfsufficiency. But damage cannot always be avoided: robots are never perfectly selfsufficient. Some robots are more adept at avoiding damage than others: they are more self-sufficient. Likewise, better learning capabilities may reduce the number of human demonstrations needed before a skill is acquired, thus improving the robot self-sufficiency from others, without achieving it completely.

A helpful parallel can be made with humans: humans are self-sufficient from ex-Box 1.2: Self-sufficiency versus Autonomy

Self-sufficiency means that one can carry its mission while only relying on its own. In contrast, the meaning of autonomy, as [START_REF] Smithers | Autonomy in Robots and Other Agents[END_REF] (see also [START_REF] Paolo | How (not) to model autonomous behaviour[END_REF]) argues, has been diluted in the robo cs community and is rarely employed to make 'clear and useful dis nc ons'; the term has been employed in senses as diverse as mobile, self-sufficient, intelligent, or able to make decisions. Autonomy is rarely employed in robo cs in the sense in which it is overwhelmingly used in philosophy, medicine, poli cs, biology, or law: an autonomous en ty is an en ty capable of self-determina on and able to make its own laws or principles. In this sense, autonomy is a property that is internal to the system, and bears li le rela on with competence or capacity. Self-sufficiency, in contrast, is defined en rely in the rela on the system can entertain with its environment. By way of illustra on, a territory can be declared autonomous-able to make its own lawswithout possessing the economical capability to not rely on foreign aid (be self-sufficient), or the poli cal competence to govern itself efficiently.

In this thesis, we refrain from using the words autonomy and autonomous altogether.

perts insofar as they do not need medical care. And humans' self-sufficiency from peers is low in infancy (that does not mean that they are not -see Box 1.2), and increases throughout development.

Social Interac ons

Most social interactions amongst humans assume that learning takes place. Even if only to remember someone face or name, learning must happen. Previously discussed information and expressed preferences are expected to be remembered, if only approximatively. And when didactic exchanges happens, individuals are expected to be able to acquire simple skills.

e ability to learn is therefore crucial if robots are to have normal social interactions with humans.

Insights into Biological Learning

Finally, some of the research studying learning in robots is motivated by gaining insights into how biological systems learn. Robotic instantiations of mechanisms and structures found in biology provide important scientific tools to study them in repeatable, reproducible, and bias-controlled settings, that are difficult or impossible to achieve with biological systems [START_REF] Webb | What does robo cs offer animal behaviour?[END_REF][START_REF] Webb | Can robots make good models of biological behaviour?[END_REF][START_REF] Webb | Robots in invertebrate neuroscience[END_REF]Ijspeert, Crespi et al. 2005, pp. 190-193;Ijspeert 2008, pp. 647-648). One crucial advantage of robots for learning research is that they can be tested with learning deactivated, and they can be made to forget at will. We'll go back to this in section 1.3.

In other instances, the learning situations require specific conditions. For example, [START_REF] Blumberg | Twitching in Sensorimotor Development from Sleeping Rats to Robots[END_REF] proposes a robot model to study the functional value of muscle atonia (lack of tone) for sensorimotor learning during sleep; such a study would be cumbersome in animals.

In many ways, the communication between biology, psychology and neuroscience on one side, and robotics on the other is still in its infancy. But because robotics offers unique and operational experimental opportunities, the dialogue is poised to strengthen as research advances. is a pivotal ambition of the developmental robotics [START_REF] Weng | Ar ficial Intelligence: Autonomous Mental Development by Robots and Animals[END_REF][START_REF] Lungarella | Developmental robo cs: a survey[END_REF][START_REF] Asada | Cogni ve Developmental Robo cs: A Survey[END_REF], the evolutionary robotics [START_REF] Nolfi | Evolu onary robo cs : the biology, intelligence, and technology of self-organizing machines[END_REF][START_REF] Lipson | Evolu onary Robo cs and Open-Ended Design Automa on[END_REF][START_REF] Doncieux | Evolu onary Robo cs: Exploring New Horizons[END_REF][START_REF] Bongard | Evolved Machines Shed Light on Robustness and Resilience[END_REF]) and the biomimetic [START_REF] Beer | Biorobo c approaches to the study of motor systems[END_REF][START_REF] Vincent | Biomime cs: its prac ce and theory[END_REF][START_REF] Ijspeert | Simula on and Robo cs Studies of Salamander Locomo on: Applying Neurobiological Principles to the Control of Locomo on in Robots[END_REF][START_REF] Ijspeert | Central pa ern generators for locomo on control in animals and robots: A review[END_REF][START_REF] Pfeifer | Self-Organiza on, Embodiment, and Biologically Inspired Robo cs[END_REF]) research fields, which we'll talk more about in sections 1.2.4 and 1.2.5.

So far we have discussed the role that a learning ability has for robots, essentially answering the question 'why should we want robot to learn?'. We have distinguished six different roles: robustness to change, finding empirical solution to complex problems, tackling new tasks, self-sufficiency, engaging in normal social interactions, and providing insights into biology and neurosciences. ese roles are often overlapping, and this list should not be considered as exhaustive. In the next section, we tackle the implications that being a robot has on learning. F

Acting, Learning Robots

Abstract Robots are agents, not pure learners from the classical machine learning paradigm. They are immersed in the real-world, and can exert control on their data sources. As a consequence, they face specific challenges and opportuni es when learning.

Robots learn from experience collected through interaction with their environment. e environment fits nicely as a phenomenon: inputs are -the actions the robot executes-, and outputs are , i.e. what the robot perceives through its sensors. Yet, the necessity of interacting with the real world to collect data has a profound impact on many aspects of learning that precludes us from considering a robot as just another instance of a classical machine learning problem. e most immediate consequence of the inherently interacting nature of robotic learning is that robots are never only passive learners, they are actors--, and they must . Because of this, predicting the environment is not the only point of learning anymore: is a desirable goal too. ere are two main reasons why the robot has to act to learn. First, because while the real-world may be full of diverse events unfolding all the time, the current environment of the robot may not exhibit information pertinent for the robot's motivations. Acting introduces directed variability towards specific elements of the environment. And second, because acting allows the robot to learn the consequence of its own actions on the environment.

is active role in the environment introduces a new issue that is not present in the classical machine paradigm: if a robot must act to learn, then what should it do? e production of a motion with a motor is not a neutral act: it supposes that a decision was made at some point. A decision reduces all potential actions the robot could produce into just one, acted out. In comparison, the weather system never makes a decision, never acts; it receives the data and only to the best of its ability. Interacting with the real-world creates many challenges: observations are expensive to acquire while action possibilities far exceed the interaction opportunities. No reasonable assumption can be made about the homogeneity of the space with regards to stochasticity, redundancy or noise, and observable phenomena are not always learnable or controllable, which leads to high variability in the value of an observation. Moreover, many phenomena are not observable, and the interaction possibilities offered by the environment are unknown. We detail each of these points below.

Interac ng Is Expensive

Since a robot is interacting with the physical world, each interaction requires time and energy. Time, in particular, intrinsically limits the number of interactions the robot Box 1.3: Forward and Inverse Models Typically, predic ng the environment is done using an forward model: given some hypothe cal ac on and an environmental context, the forward model makes a predic on about the consequence of the ac on on the sensory receptors of the robot. In order to produce a specific desired effect in the environment, an inverse model is used. Given a specific desired effect, i.e., a goal, the inverse model infers ac ons to produce it. In a learning robot, models are dynamically learned as the robot interacts with the environment. In industrial se ngs, forwards and inverse models rely on a precise representa on of the robot, from which kinema c and dynamic models are derived. But this is a specific case. Forward and inverse model do not imply a repres-enta on of the world: they encode the rela onship between ac ons and effects. In our bike example, a forward model might establish a rela on between the pedalling rate and the speed of the bike, without the need to represent the mechanical processes involved in that rela on. And the corresponding inverse model will indicate that to go faster, the pedalling rate must increase. Forwards and inverse models are the product of an engineering approach, and finds their origins in control theory. Their presence in biological systems, and the form this presence takes is s ll debated [START_REF] Ito | Neural design of the cerebellar motor control system[END_REF][START_REF] Partridge | The good enough calculi of evolving control systems: evolu on is not engineering[END_REF][START_REF] Miall | Forward Models for Physiological Motor Control[END_REF][START_REF] Wolpert | Mul ple paired forward and inverse models for motor control[END_REF][START_REF] Kawato | Internal models for motor control and trajectory planning[END_REF][START_REF] Johnson | Thinking ahead: the case for motor imagery in prospec ve judgements of prehension[END_REF][START_REF] Loeb | Op mal isn't good enough[END_REF][START_REF] Oztop | Mirror neurons: Func ons, mechanisms and models[END_REF].

Box 1.4: The Separa on Between an Agent and its Environment

It should be stressed that the separa on between the agent and its environment is not the same as the robot/rest-of-the-world one, or the hardware/so ware one [START_REF] Bertschinger | Autonomy: An informa on theore c perspec ve[END_REF]. The agent usually consists of a subset of the so ware of the robot; everything else cons tutes the environment, as Figure 1.4 illustrates, including any so ware component that helps process and carry the motor signals to the effectors, or processes and transmits the sensory signals from the sensors. In par cular, the environment includes the body of the robot, which, for our purpose, is only qualita vely different from the rest of the environment insofar as it provides the in-terface to it. Engaging with an analogue world, impac ul choices must be made to decide at which level of abstrac on to interface the agent. It can be high-level, giving abstract orders and receiving seman c feedback ('move toward the door'/'door is open'), or low-level, sending torque commands s and receiving raw sensors data such as pixel matrices from a camera every 10 milliseconds.

In this manuscript, we will generally choose approaches where motor commands are low-level while sensory feedback is high-level (this is not innocent). From a computa onal, open-skull perspec ve, the separa on between an agent and its environment is not the same as the separa on between the robot and the world. But for an external observer situated in the environment, they are the same, as the agent is iden fied by its opera onal closure [START_REF] Maturana | Autopoiesis and Cogni on: The Realiza on of the Living (Maturana & Varela[END_REF]. Note that the automa c behaviour component might include any number of subsystems, including other agents.

The agent is discriminated from the rest of the so ware as an arbitrary perspec ve. In par cular the agent is not necessarily omniscient or omnipotent over the so ware. See [START_REF] Pfeifer | Self-Organiza on, Embodiment, and Biologically Inspired Robo cs[END_REF] for a similar diagram for biological systems.

is able to undertake.

is holds regardless of the span of time considered: minutes, hours, days or lifetimes. In the same way the experience a single human has of the world is limited, so shall be the experience of any agent situated in the world. Time is a fundamental limitation because it won't go away with more computing power or cleverer algorithms, which are the two usual ways computer science tackles problems.

Besides time, interaction opportunities may be limited by other resources. For instance, in the case of a robot learning to engage socially with humans, individuals willing to interact with the robot may be few in a given context, and the robot might for instance be able to achieve only a few dozen of interactions per day9 .

Interac on Possibili es Are Many

e time cost of an interaction is made acute by the magnitude of the number of actions that are possible. A simple robotic arm with seven motors, each capable of 100 different positions (several orders of magnitude less than most servomotors can achieve) can exhibit different arm postures. At a rate of one posture per second, that translate into 6 million years.

In any moderately complex situations, the number of distinctive interactions with the environment far exceeds the available time resources. It precludes any exhaustive exploration of the motor space, or any coverage of it to a useful resolution.

If the mapping between the robot's action and their consequences is simple enough, the robot may be able to generalize from a few interactions, i.e., a good forward model may be derived (Box 1.3). In most cases though, the mapping is too complex, unobservable or cannot be learned due to the limitations of the robot learning abilities. In that case, uncertainty over the consequence of the majority of the robot's possible motor commands is unavoidable.

Heterogeneity of Stochas city, Noise and Redundancy

Many machine learning algorithms assume that noise and stochasticity is homogeneously distributed over the learning space [START_REF] Loeb | Op mal isn't good enough[END_REF][START_REF] Oudeyer | Intrinsically Mo vated Learning of Real World Sensorimotor Skills with Developmental Constraints[END_REF]. With robots, the noise and stochasticity is usually heterogeneously distributed. For instance, a robot bumping violently into a wall will experience high sensory stochasticity, while turning before the wall will elicit predictable environmental feedback.

Likewise, the amount of noise a camera is experiencing depends on the luminosity, and the same goes for the human vision system; in an unevenly lit room, the changes in sensory noise can be sharp. Motor noise might also be a concern. e noise around the position of a joint is usually not negligible, and impacts motion especially if the joint is proximal. Furthermore, over the range of possible values the joint can take, the noise might not be uniform. is typically happens in the neighbourhood of the extremities of the working range, or when part of the motor-for instance a specific cog in the gearbox-is damaged. e noise can also be dependent on the forces being applied to the joint. Which means that the joint's level of expected noise dynamically varies with the posture of the rest of the arm and during physical interactions with the world.

Heterogeneity is also present in the redundancy of the mapping between actions and sensory feedback, as illustrated in chapter 0. In a typical robotic setup, many actions generate the same effect, while some effects are only produced by a handful of actions. is makes random action sampling ineffective.

Observable Is Not Predictable Is Not Controllable Is Not Learnable

A key assumption embedded in learning algorithms is that the entire domain considered can be learned [START_REF] Oudeyer | Intrinsically Mo vated Learning of Real World Sensorimotor Skills with Developmental Constraints[END_REF]).

An observable effect might not be predictable or controllable. For instance, a dice roll might be observed, but cannot be predicted or controlled (under reasonable assumptions). Likewise, I might correctly predict the trajectory of a cloud in the sky, but I have no control over it: predictable is not controllable.

And, a phenomenon might be potentially predictable and controllable by the robot, but not practically learnable: the phenomenon's complexity might outclass the learning abilities of the robot. Or, there might not be enough time to learn it 10 . Or, the phenomenon might require previous knowledge or a skill that the robot can acquire, but did not, yet. For instance, the ability to reach is required to be able to grasp. And running is easier to learn after being able to walk.

All is Not Observable

Let's get the uncertainty principle [START_REF] Heisenberg | Über den anschaulichen Inhalt der quantentheore schen Kinema k und Mechanik[END_REF]) out of the way: even in the best of circumstances, the knowledge one can have of a situation is inherently limited. But that makes no practical difference in most practical robotic settings.

Humans and robots alike are limited in their knowledge of the world in much more important ways. First, they are situated, i.e. they occupy a specific place in the environment, and they get their information about the environment from this perspective only. ey cannot see behind an opaque object, they cannot hear sounds from behind a soundproof glass 11 , they cannot feel an object they are not touching.

Second, there are many unobservable phenomena going on in the environment at any given time. Deductive abilities might be able to estimate unobservable information from observable cues, but in many instances, this is not reliable. For instance, the state of mind of someone else is not directly observable, and their knowledge and skills is not either.

Hence, any representation that a situated agent can form of the world is limited.

10 One might for instance consider a phenomenon corresponding to a linear system of rank n+1 with only n samples allowed. Or, more simply, to enumerate all possible outcomes of a 6-dice roll with only 5 samples allowed. 11 robots might able to see the sound though; [START_REF] Davis | The visual microphone[END_REF] 57 But it gets worse: the set of possible future states of the world is not known either.

Possibili es Are Unknown

Having a clearly defined set of all possible in a given situation outcomes is possible-if the robot is placed in a known, simple, controlled environment, and a description of the set of possibilities is spoon-fed by an engineer.

When the environment grows more elaborate, the task of the engineer becomes more difficult, and the description of possibilities more complicated. Physical phenomena at play are more difficult to grasp, initial conditions are only partially known, the number of interacting entities grows, and the number of interactions grows quadratically. Quickly, describing all possible outcomes is impossible, even with complete knowledge of the situation. In other words, the frontier between what is possible, even if unlikely, and what is definitely not possible gets blurry.

, it is impossible for a self-sufficient robot only able to gain partial knowledge of the situation through situated sensory acquisition, and whose grasp of theoretical physics is arbitrarily bad, to derive all possible outcomes of a given situation.

erefore, the robot must act in a world where what is possible to observe is uncertain.

All Observa ons Are Not Equal

Interactions possibilities are many, but each is expensive, making an exhaustive approach unfeasible. And each observation does not yield the same information gains. erefore, in a robotic context, the value of an interaction for learning a task varies dramatically. is leads to a potentially high opportunity cost for every interaction the robot chooses to undertake: each interaction yielding poor observations decreases the total amount of information the robot can hope to gather over its limited interaction budget. erefore, a good exploration strategy, that efficiently select actions to maximize the information they bring is necessary. It makes the exploration strategy employed to choose to do as important as the performance of the learning abilities the robot is provided with. And the strategy must match the abilities of the agent: actions should yield learnable observations.

And the ineffectiveness of random sampling, the robot's limited knowledge of the situation, and the uncertainty on what the environment offers in terms of possible interactions make finding a good exploration strategy non-trivial.

Learning Before Acting?

So far, we have argued that robots must interact with the world in order to learn. Because it bypassed the need to use complex representations, that were difficult or impossible to acquire in the first place. Historically however, robotics has seen the development of many approaches were learning happens before acting is performed. In this section, we explore the advantages and pitfalls of such approaches.

A seductive proposition is to equip a robot with enough high definition sensors so that it can capture and build an accurate representations of its environment, in which it can then simulate its behaviour and the one of the environment by drawing on huge prepared databases of information about all conceivable objects and entities [START_REF] Suh | Ontology-based mul -layered robot knowledge framework (OMRKF) for robot intelligence[END_REF][START_REF] Lemaignan | ORO, a knowledge management pla orm for cogni ve architectures in robo cs[END_REF]Tenorth et al. 2013), learn from this disembodied experience, and then act by exploiting the knowledge gained, without ever experimenting haphazardly in the real world. e robot would only be executing well-laid plans.

Granted, it seems that, for a child or a mechanical engineer, thinking about riding a bike is not the best way to learn how to actually do it. But neither of them has the ability to run complex physical simulations involving hundreds of moving parts in its head. And besides, interacting with the bike in the real world is slow. e robot, on the other hand, is able to run thousands of simulated tries per second. After all, we build planes and cars from simulations: simulating a bike, then, is easy. And even if the simulations are not perfect, their sheer amount should counterbalance the inaccuracies enough to be able to derive a successful behaviour.

is approach seductive, if only because it promises that most problems can be solved by throwing enough computing resources at it: if the representation is accurate enough and has predictive capabilities, simulations can be run, and simulation's time is only dependent on the processing power available. Future technological progress will take care of any current lack of processing power. And even if simulators are still limited, future advances will make them more and more accurate: at some point, this two-pronged approach will be enough for most practical situations.

is approach extracts the problem from a context-the real-world-where it is time-and energy-consuming to solve into another, the simulated world, where there is no irreversible consequences for one's action, where the action costs are comparatively low, and where all the techniques of computer science can be brought to bear. In other words, as soon as the problem has been adequately transferred into the simulated world, all the difficulties of the real world we exposed in the previous section are discarded, and finding a solution becomes much easier.

Op mal Control

A reason for this approach is historical. Industrial robotics have developed mature, powerful theories that allow to compute controllers. In an industrial setting it is highly useful. Optimizing repeated movements reduces costs. Given the availability of such a powerful toolkit, developed and field-tested over several decades, it seems natural to want to apply it onto new robots.

One of the most important motivation behind the research for optimal control algorithms is that they reduce the design of robots to their hardware: engineers are motivated to build the best possible robot bodies, with the guarantee that optimal control algorithms will exploit them to their fullest. e hardware and software problem are decoupled, with the later only needing a precise description of the hardware to automatically adapt to it. In theory, such an approach would allow unrestrained originality in designing the hardware. In practice, the opposite happens. Optimal control algorithms are only applicable to a narrow range of hardware (typically, rigid body with electrical servomotors), and as such reduce the choices that guarantee that the algorithms will work.

Indeed, those methods require accurate models of the robots. But as robots become more and more underactuated, compliant, flexible, even soft, and engage complex and uncertain environments, such methods impose a set of assumptions that is increasingly at odds with the ecological context of the robots. Optimal control generally requires a known, observable, computable cost function, as well as a precise and computable inverse model of the robot, and a low and homogeneous level of noise. e constraints on the objective function limits the range of tasks that can be handled, the inverse models are difficult-to-impossible to establish and are computationally expensive, and the assumption on the noise, as we have discussed, is unreasonable.

e optimality approach has been criticized by [START_REF] Loeb | Op mal isn't good enough[END_REF]: such assumptions are most often not found in biological organisms12 , who empirically derive behaviours instead by trying random motor activations on a high dimensional motor space where the density of useful solution is high [START_REF] Raphael | Spinal-Like Regulator Facilitates Control of a Two-Degree-of-Freedom Wrist[END_REF]. By trying different random values, and creating perturbations of the most promising ones to approach the nearest local minima, animals are able to quickly evolve and acquire good behaviours. Proceeding this way has the advantage of providing the organism with a repertoire of useful, , solutions that confer robustness to the organism. Simon (1969, pp. 28, 119) similarly advocated for settling for such solutions:

(p. 28) (p. 119) ere are current attempts to explain motor coordination as optimal control, in particular in the context of optimal feedback control (Todorov and Jordan 2002). And although the principle of evolution as an optimization process in often invoked to justify the biological plausibility of optimal control theory, Loeb observes that it is in fact at odds with evolution: Loeb (2012, p. 763) Settling for good-enough solutions not only creates robustness from mutation, but it also confers individual robustness to environmental changes because it brings a diversity of strategies that are not optimal to any specific environment, but rather efficient in many. It also enhances population robustness, because it creates behavioural diversity independently of genetic diversity.

In robotics, even when the theoretical assumptions are met for optimal control, practical considerations come into play: fast gait in legged robots requires high-bandwidth, low-latency sensory feedback for optimal control. Such a strategy is both taxing in energy and computational resources (for instance, a low-latency might require to simulate the immediate consequences of actions before the actual consequences can be perceived, using an internal forward model). Insects have evolved alternative control strategies that do away with centralized control-the legs communicate and synchronize through environmental mechasensory feedback-and allows them to react faster to obstacles on the ground than the speed of their neural pathways would allow [START_REF] Cruse | What mechanisms coordinate leg movement in walking arthropods?[END_REF][START_REF] Espenschied | Leg Coordina on Mechanisms in the S ck Insect Applied to Hexapod Robot Locomo on[END_REF]). e performance of insects remains currently unmatched by robots.

So far, we have characterized the search of optimality as ecologically divorced from self-sufficient robots. But that does not disqualify the use of complex representations yet.

Benefits of a Full-Representa on Approach

Using a full-representation approach, or a representation-based approach does not mean that one has to optimize in it (we will see how that might create a problem in chapter 9). Acknowledging the limitations in time, resources and realism, finding is a possible approach. e representation-based approaches have been extensively used, and, still are today. For instance, self-driving cars must be acutely aware of their surroundings. And they cannot experiment on the road for the sake of learning. A self-driving car should know how to drive safely from day one, and probably having an explicit, provable behaviour. Self-driving cars use Simultaneous Localization and Mapping algorithms (SLAM) ( run 2005, pp. 309-485) and array of sensors, to maintain constant, omnidirectional representation of their surroundings and their location in that representation. ey must be aware of other cars, pedestrians, and correctly identify all the road signs and markings. A self-driving car is a robot. Why then, can't such an approach be used for any other robots?

First, it is important to remark that self-driving cars still face technical challenges, and have not be field-tested in large numbers, but non-engineers. While most of the technology may work, some of the remaining problems may prove very difficult to solve, and require radically different approaches. But let's assume that self-driving cars work.

e reasons why a full representation approach is feasible for self-driving cars are many: the dynamics of a car with a road can be subtle at times, but they are rather wellunderstood and can be computed to a useful degree of precision. A car has no limbs or articulated spine, nor does it grasp or manipulate anything; the set of different entities a car typically interacts with can be enumerated (vehicules, pedestrians, obstacle, etc.); most relevant information communicated through vision; it can sport heavy sensory equipment and carry large power resources. A car has no problem balancing itself at rest. Cars evolve in a road network that does not change rapidly.

is allows to actually map the complete environment before the robot is allowed to roam in it, and that is what is done with self-driving cars: they rely on precise pre-captured maps of all the roads they evolve in, and merge those with their sensory data.

With humanoid robots, none of those assumptions can be made. For humanoids, having a perfect, up-to-date representation of themselves and their immediate surroundings for simulating behaviour is unrealistic.

is leads us to conclude that, while a full-representation approach is tempting because it can easily be , it is impractical, expensive, most of the time unfeasible, always limited, and often unreliable.

Embodiment

One of the most impotant argument against representations was made by Brooks (Brooks 1991c,a), provocatively: Brooks (1991b, p. 1) In rupture with his contemporaries in the artificial intelligence community, Brooks advocated an approach to constructing entities capable of intelligent behaviour without giving them symbolic manipulations abilities or representations, but by rather letting behaviour emerge from the interaction of the entity with the world [START_REF] Brooks | Elephants don't play chess[END_REF](Brooks , 1991b,a),a), using cognitive architectures where there was no centralized control centre to be found.

e main point advanced by Brooks is the one of [START_REF] Brooks | New Approaches to Robo cs[END_REF][START_REF] Varela | The embodied mind : cogni ve science and human experience[END_REF][START_REF] Hutchins | Cogni on in the Wild[END_REF][START_REF] Hendriks-Jansen | Catching ourselves in the act situated ac vity, interac ve emergence, evoluon, and human thought[END_REF][START_REF] Ballard | Differen al novelty detec on in rats selec vely bred for novelty-seeking behavior[END_REF][START_REF] Clark | Being there pu ng brain, body, and world together again[END_REF][START_REF] Arkin | Behavior-based robo cs[END_REF][START_REF] Lakoff | Philosophy in the flesh : the embodied mind and its challenge to Western thought[END_REF]Pfeifer and Scheier 1999;[START_REF] Beer | The Dynamics of Ac ve Categorical Percep on in an Evolved Model Agent[END_REF], that postulates that intelligent behaviour can only emerge from a rich-enough interaction between the brain, the body, and the environment: Brooks (1999, p. 169) As such, an intelligent agent must be firmly embodied in the real world13 , and should not rely on methods that allow him to escape towards simulated representation, for such an approach is inherently fated to fail. In the context of embodiment, the body in an inseparable component of cognition, not just merely a vehicle for it: it generates sensorimotor couplings that create specific regularities in the sensorimotor flow, i.e. the body structures our relation with the world.

More specifically, robots' bodies play the same role as our own: they offer an interface to the world.

is interface is all but neutral: it is specifically situated, i.e. the location of our bodies gives us a specific point of view, it is heavily mediated [START_REF] Taylor | Philosophical Arguments[END_REF], and it is embodied. is mediation influences how we perceive and think about the world [START_REF] Pfeifer | How the Body Shapes the Way We Think: A New View of Intelligence[END_REF]. In particular, we constantly think about the world in relation with the capacities of our bodies [START_REF] Gibson | The Theory of Affordances[END_REF]: I can sit on this chair, this table is too heavy for me to move it by myself, this door can be pushed. We do not perceive the world as it is, but how it relates to us. ompson (1917, p. 24) Because our knowledge of the interactions the world offers changes with learning, our immediate perception of the world is dependent on the knowledge and skill we possess.

e existence of mirror neurons, that fire both when one performs an action or observe someone else perform it [START_REF] Pellegrino | Understanding motor events: a neurophysiological study[END_REF][START_REF] Gallese | Ac on recogni on in the premotor cortex[END_REF][START_REF] Oztop | Mirror neurons: Func ons, mechanisms and models[END_REF]), shows how our morphology impacts our perception: the body is computing the recognition of other's actions [START_REF] Umiltà | I Know What You Are Doing[END_REF]Rizzolatti et al. 2001), removing the need to rely on abstract, deductive and representational cognitive processes.

Embodiment implies that it is equally impossible to comprehend the embodiment induced by a different morphology without experiencing it directly.

is is because our body gives us access to our own embodiment experience directly and constantly, it is never just a cognitive process. By way of example, to understand (some limited form of ) the embodiment of current humanoid robots, which often have no flexible ankle and no articulated spine, one has to strap ski boots, and a medieval armour, and experience the limitation for himself. Before doing so, anticipating accurately how they would affect everyday movements is surprisingly difficult. And, by the way, letting the world do the work of simulating the constraints with actual ski boots and armour is computationally and cognitively frugal, and much more accurate.

is call for an ecological approach to designing robots, where the morphology and cognitive functions are designed together, so that one can efficiently exploit the other. [START_REF] Smithers | On Why Be er Robots Make It Harder[END_REF] illustrates this point by observing that better sensors do not necessarily make the control problem easier: considering a wheeled robot equipped with IR sensors doing laps, he observes that, as the resolution of the sensors is increased, they are more sensitive to small variations-not noise-produced by the slight differences in the laps. is makes the control problem more difficult, because the control algorithms now have to discriminate between the informative and non-informative parts of the data, with respect to the control purposes.

e solution here is not to make the movements of the robots more precise: the previous behaviour was already adequate, and that would make the control algorithm even more sensitive to occasional accidental variations. Rather, the sensory abilities of the robot should be designed to be compatible with its cognitive and motor abilities, with respect to the precision required in the behaviour.

A recent advance on the notion of embodiment is brought by [START_REF] Pfeifer | Morphological computa on: Connec ng body, brain and environment[END_REF], who introduces the concept of [START_REF] Paul | Morphological computa on[END_REF]. Under this principle, part of the computation necessary to accomplish a task can be done implicitly by the morphology of the agent, reducing the amount of explicit control, i.e. cognitive resources, that must be dispensed.

e principle has been exemplified in biped locomotion [START_REF] Paul | Inves ga on of Morphology and Control in Biped Locomo on[END_REF].

are purely mechanical bipedal structures, that, when placed on an inclined plane, transform potential energy into kinetic energy, and stay balanced: they are able to walk. ey demonstrate that a behaviour thought to require complex algorithms and fast communication pathways can be produced without computational control [START_REF] Mcgeer | Passive Dynamic Walking[END_REF][START_REF] Mcgeer | Principles of walking and running[END_REF][START_REF] Wisse | Passive-Based Walking Robot[END_REF]. From there, reintroducing control on the passive walker can be done by acting on few parameters [START_REF] Vaughan | The Evolu on of Control and Adapta on in a 3D Powered Passive Dynamic Walker[END_REF]. is is a direct example of self-organization: the passive walker is creating an attractor of stable bipedal locomotion, and well-placed actuators, rather than modify explicitly the movements, nudge the walker toward a slightly different attractor, where walking is faster for instance.

Morphological computation is everywhere in the musculo-skeletal system. For instance, the soft envelope of our fingertips deforms to simplify grasping. In robotic manipulation, a spectacular example of this, pushed to the extreme, is vacuum grippers [START_REF] Brown | Universal robo c gripper based on the jamming of granular material[END_REF]. Instead of dealing with the complexity of an articulated hand, a gripper that passively adapts its shape to the manipulated object offloads much of the computational cost of grasping to a physical phenomenon. Even when articulated hands are required, equipping them with soft fingertips facilitates greatly manipulation. Morphological computation is also present in all our joints, whose compliance act as dampeners the small variations of the mechanical feedback of the world. Small perturbations are thus handled by the morphology, which acts as a filter that lets through consequential perturbations that warrant a change in motor activation.

is dampening also directly simplifies control by reducing the chaotic behaviour of the environmental response: small changes in motor commands will produce small changes in the produced effects. An example of this is the role of feathers in flapped flying: Shim et al. (2007, p. 757) A step up from passive morphological computation, are typically outside of the agent's control, but play a large part in organizing sensorimotor stimulation in a way that favours learning and control. In birds, flapping strokes during flying induce body oscillations on the order of ten times per seconds [START_REF] Warrick | Bird Maneuvering Flight: Blurred Bodies, Clear Heads[END_REF]). Yet, the head remains largely isolated from these oscillations by the actions of optokinetic and vestibular reflexes [START_REF] Maurice | Eye-neck coupling during optokine c responses in head-fixed pigeons (Columba livia): influence of the flying behaviour[END_REF][START_REF] Dickman | Three-dimensional organiza on of vesbular related eye movements to rota onal mo on in pigeons[END_REF]. ese reflexes are essential to ensure that the vision system and the maculae of the inner ear, which perceives accelerations, are able to function properly.

is example of (reflexive) action supporting perception illustrates well how indissociable one is from the other in embodied agents.

is has been illustrated first by [START_REF] Ballard | Animate vision[END_REF], who introduced the idea that an active vision system, that is, a vision system which could move in the world to examine an object of interest under different perspectives, make vision much simpler from an algorithmic perspective.

In a take similar to Brooks, proponent of active (or ) vision reject the necessity of an explicit representation of the world: Churchland et al. (1994, p. 36) is idea, again, is that abandoning complex representation makes the cognitive and computational problems simpler. Humans keep a overall idea of the visible world, and resample the world as the need arise (O 'Regan 1992).

at ability of the vision/action systems to 'avoid' as much as possible higher cognition has been illustrated recently by a study done by [START_REF] Perfiliev | Reflexive Limb Selec on and Control of Reach Direc on to Moving Targets in Cats, Monkeys, and Humans[END_REF], where objects flying at high velocity are launched at subjects from the side. In all instances, the subjects choose to (try to) grasp the object with the hand closest from the incoming direction (if the object came from the left, the left arm would be used).

e truly remarkable observation is that this arm selection happened at a latency too low to allow for a voluntary decision to be made or planning to happen. [START_REF] Perfiliev | Reflexive Limb Selec on and Control of Reach Direc on to Moving Targets in Cats, Monkeys, and Humans[END_REF] proposes that an innate neuronal mechanism can guide reaching of the arm towards a specific goal.

e experiment was reproduced for humans, monkeys (Rhesus and Japanese macaques) and cats.

In conclusion, the same features that make these systems easier to control and to learn from make them harder to modelize and simulate [START_REF] Anderson | Powered bipeds based on passive dynamic principles[END_REF], especially from an egocentric perspective: not only embodiment, morphological computation and automatic behaviour remove the need for a full-representation approach to compute behaviour, they also defeat its possibility by hiding much of the complexity from the conscious experience of the agent. In such a context, learning cannot happen without acting.

In many ways, the theories of embodiment echoes and parallels the emergence of the dynamical system theory in developmental psychology ( elen 1995;elen et al. 1996;Smith and elen 2003;elen et al. 2007), that emerged from concurrent advances in the comprehension of dynamic systems in physics and mathematics. According to this theory: elen et al. (2007, p. 258) In the next section, we will see how robotics has embraced development.

Acting, Learning, and Developing

Robots must act, should learn, and, to learn, they have to act: that much has been established. It remains to be decided, however, what form should take the robot learning begins. In other words, how much knowledge should the robot have about the task to be learned, and which learning abilities should be bestowed upon the robot in order to learn the task. In short: how should robots be born? For [START_REF] Weng | Ar ficial Intelligence: Autonomous Mental Development by Robots and Animals[END_REF][START_REF] Lungarella | Developmental robo cs: a survey[END_REF][START_REF] Asada | Cogni ve Developmental Robo cs: A Survey[END_REF]), the answer lies in developmental processes. Babies have little knowledge of the world, but in a span of two decades, they become fully functional adults. Developmental robotics proposes to reproduce similar growth and maturational processes in robots.

at is, robots should learn like children do. e motivations are multiple (see also Pfeifer and Bongard (2006, pp. 141-145) for a discussion).

e first one is that creating a robot that can learn as a child provides a single reusable platform that can acquire many different behaviours, skills and knowledge. Or:

. In his seminal article, [START_REF] Turing | Compu ng Machinery and Intelligence[END_REF] alluded to this:

'Our hope is that there is so little mechanism in the child brain that something like it can be easily programmed.'. Decades of research have regrettably proven otherwise. e child's brain is incredibly complex, and reproducing its mechanism into a robot has proven anything but easy. A developmental approach to programming robot is certainly harder than to make a robot learn a specific behaviour.

But doing the latter requires engineers to program into the robot task-specific structures and knowledge that provide an appropriate context for learning. Having engineers designing an adult brain from scratch introduces considerable human bias into the cognitive abilities of the robots. Essentially, the robot is not only told what to do, but also . Even if those robots still learn and adapt, they do so in a limited and fashion: acquiring another behaviour requires new cognitive structure to be spoon-fed by engineers. When complex, adaptive behaviour is needed, the work of engineers becomes the one of demiurges.

is gives us the second motivation for developmental robotics: remove as much from the cognitive abilities of robots as possible. Embodiment has a tremendous impact on the development of cognitive abilities of humans and is crucial for typical human behaviour. To replicate this phenomenon and its beneficial effects in robots, roboticists should try to program only general cognitive mechanisms into robots in the first place, and give them the time and the opportunities to discover and grow into their body by themselves, occasionally nudged by social guidance. An interesting implicit assumption here is that human are not competent to program another entity's mind explicitly. First, because they never did it for themselves -much of our individual cognitive development is implicit and self-organized (see for instance [START_REF] Byrge | Developmental process emerges from extended brain-body-behavior networks[END_REF]). And second, because we are limited by our own embodiment, and cannot effectively think what it fully means and represents to have a different one, as discussed previously.

A significant goal of such an approach is to get robots to acquire common sense. For instance, a system asked to build a tower out of wooden cubes might decide that it is a good idea to start by placing the topmost cube, and then, having it stay suspended in the air, to arrange the other blocks beneath it. Acquiring common sense-that we, as humans, take for granted-is frustratingly difficult for robots. Efforts have been made to amass common sense in symbolic databases (for instance, [START_REF] Kochenderfer | Common Sense Data Acquisi on for Indoor Mobile Robots[END_REF]), and one could argue that the cube tower problem could be fixed by adding the law of gravity to the robot knowledge. But then one would have to also consider reaction and friction forces, that are no less instrumental. To accurately take those into account, the mass and surface characteristics of each cube would have to be measured. We are fast falling into a full-representation trap, while forgetting that children do not need explicit, symbolic knowledge of Newtonian physics to build wooden castles.

Developmental robotics proposes that robots acquire common sense over a lifetime of experience, by engaging with the world in a similar way children do: through play. Robots should not be directed through specific useful tasks early in their development, but discover the world and its properties on their own. is should not only afford robots common sense, it should afford them common sense adapted to their body and cognitive capacities.

is leads us to a third motivation of developmental robotics: solving the symbolgrounding problem for robots. As articulated by [START_REF] Harnad | The symbol grounding problem[END_REF]: 'How can the semantic interpretation of a formal symbol system be made to the system, rather than just parasitic on the meanings in our heads?' (emphasis his), the symbolgrounding problem inquires about the mechanisms that create meaning in humans. For robots, this means discovering their own ontology; the alternative is to have humans put the meanings in the robots' head directly [START_REF] Suh | Ontology-based mul -layered robot knowledge framework (OMRKF) for robot intelligence[END_REF][START_REF] Lemaignan | ORO, a knowledge management pla orm for cogni ve architectures in robo cs[END_REF]Tenorth et al. 2013). e literature and debate around the symbol-grounding problem is extensive, and we do not wish to get into it there. Let's just say that children satisfactorily solve the problem. e hope is that robots, given childlike abilities, will figure it out as well.

An interesting consequence of the symbol-grounding problem is of consequence: if symbols, i.e. language, emerge from our sensorimotor experience, then language is dependent on our embodiment. And language is central to the ideas we can form and express: embodiment has influence on what we can think.

A fourth and transverse motivation of developmental robotics is to use robots as scientific tools for understanding biological processes, structures and behaviour, as it has already been discussed [START_REF] Lungarella | Developmental robo cs: a survey[END_REF].

e example of the symbolgrounding problem is illustrative: if we manage to reproduce the phenomenon in robots, it would provide interesting hypotheses for the underlying psychological and neurological mechanisms in humans. And consequently, avenues of investigation for psychologists and neuroscientists. Developmental roboticists are heavily inspired by studies of biological systems. In return, and as the field progresses, the robots have the potential to inform us how to think about our own cognition and those of animals.

e relation between learning and development is subject to different perspectives. [START_REF] Kuhl | Language, mind, and brain: Experience alters percep on[END_REF] proposes four different ones. at development and learning are distinct and do not interact with each other, that learning happens in the context of development, which is the traditional view (Piaget et al. 1953), or that the relation between learning and develompment is more complex, and involves reciprocal influences is is the point of view defended by [START_REF] Kuhl | Language, mind, and brain: Experience alters percep on[END_REF] and by [START_REF] Oyama | The ontogeny of informa on developmental systems and evolu on[END_REF]. e last perspective is the one that does not recognize any reasonable conceptual differences between learning and development. elen et al. (1996) defend this position: development is a multi-timescale dynamic system, and learning is just one of its facet.

Acting, Learning, Developing and Evolving

Robots must act, should learn; when learning, they have to do so by acting, and they should preferably go through an extensive developmental process that embeds the learning process into a favourable context. Let's briefly take one more step: they should probably evolve too.

Evolutionary algorithms [START_REF] Rechenberg | Ingo Rechenberg Evolu onsstrategie Op mierung technischer Systeme nach Prinzipien der biologishen Evolu on[END_REF][START_REF] Holland | Adapta on in natural and ar ficial systems. an introductory analysis with applicaons to biology, control and ar ficial intelligence[END_REF]) mimic natural selection, variation and hereditary processes. Candidate solutions are described by their genetic code, which is translated into a phenotype, which is evaluated according to a fitness function. e best performing members of the population are selected, and their genetic code undergoes random variations and mating combinations with other successful solutions. e limited assumption on the fitness landscape has made evolutionary algorithms powerful global optimization methods, useful in complex domains.

e application of evolutionary algorithms to robots--has taken off in the last twenty years [START_REF] Cliff | Explora ons in Evolu onary Robo cs[END_REF][START_REF] Meyer | Evolu onary robo cs: A survey of applica ons and problems[END_REF][START_REF] Nolfi | Evolu onary robo cs : the biology, intelligence, and technology of self-organizing machines[END_REF][START_REF] Lipson | Evolu onary Robo cs and Open-Ended Design Automa on[END_REF][START_REF] Floreano | Evolu on of Adap ve Behaviour in Robots by Means of Darwinian Selec on[END_REF][START_REF] Doncieux | Evolu onary Robo cs: What, Why, and Where to[END_REF]. One important aspect of evolutionary robotics is that candidate solutions are evaluated by their behaviour rather than by their phenotype.

e motivation for evolutionary robotics is manifold. First, similarly to the developmental approach, it is the only existing process that produced intelligent entities so far. Second, it further allows to remove [START_REF] Lipson | Automa c design and manufacture of robo c lifeforms[END_REF]. As such, the evolutionary process is not restricted to morphological or hardware considerations, but encompasses morphology, neural architecture, cognitive inborn abilities, and the processes directing and regulating development. Some approaches evolve controllers on a fixed morphology [START_REF] Zykov | Evolving Dynamic Gaits on a Physical Robot[END_REF], while others evolve morphology with fixed (or non-existent) controllers [START_REF] Auerbach | Evolving CPPNs to grow three-dimensional physical structures[END_REF][START_REF] Cheney | Unshackling Evolu on: Evolving So Robots with Mul ple Materials and a Powerful Genera ve Encoding[END_REF], or co-evolve morphology and behaviour [START_REF] Sims | Evolving 3D Morphology and Behavior by Compe on[END_REF][START_REF] Lipson | Automa c design and manufacture of robo c lifeforms[END_REF][START_REF] Lehman | Evolving a diversity of virtual creatures through novelty search and local compe on[END_REF]).

In the last few years, a new domain of inquiry has started to take shape: evolutionary developmental robotics-or [START_REF] Jin | Morphogene c Robo cs: An Emerging New Field in Developmental Robo cs. In: Systems, Man, and Cyberne cs, Part C: Applica ons and Reviews[END_REF][START_REF] Xu | A brief overview of evolu onary developmental robo cs[END_REF]). e work of [START_REF] Bongard | Morphological change in machines accelerates the evolu on of robust behavior[END_REF], for instance, evolves a population of gait controllers, with robots that start with small limbs, and grow them during the experiment.

e morphological changes can be perceived as creating a developmental pathway through which acquiring robust behaviour is easier because controllers are filtered by their success on multiple morphologies. [START_REF] Delarboulas | Open-Ended Evolu onary Robo cs: An Informa on Theore c Approach[END_REF] proposes an approach where a robotic platform evolves controllers on-board. ose controllers are selected by using a self-driven fitness that aims at maximizing the sensorimotor entropy, and thus the behavioural diversity of the robot. e platforms further encourage development by comparing the behaviour of each controller against all of their ancestors, and encouraging diversity.

An evolutionary approach seems necessary because, as much as development re-duced the problem to the creation of a robot child, it effectively leaves us with the task of designing a body, and mind, and the developmental process to make them grow together. Aside from designer bias, it seems that the complexity involved in such an endeavour, in a great part due to the high coupling of those three aspects, is beyond current human direct, explicit ingenuity [START_REF] Harvey | Issues in evolu onary robo cs[END_REF]. Evolutionary processes require a lot of resources and time, but they are a proven way to obtain the result we seek.

F

e Exploration Problem

Abstract Explora on problems are behavioural problems. They make less assump ons about the agent than learning problems, and are suited to analyse developmental processes.

In this thesis, we are concerned with 14 , and we study them as .

Why Exploration? Wolff (1987, p. 240) Exploration is a major mechanism in the production and control of behavioural diversity. Which, according to [START_REF] Pfeifer | How the Body Shapes the Way We Think: A New View of Intelligence[END_REF], is a crucial component of intelligent behaviour: Pfeifer and Bongard (2006, p. 16) 14 We will use interchangeably explora on processes and exploratory behaviour, although they may conjure different images in the reader's mind, and may differ in contexts not considered in this manuscript (namely, a behaviour suppose an agent, while a process does not).

Behavioural diversity is a factor of individual robustness: the individual maintains a repertoire of varied interaction possibilities, some of which which will remain relevant the next time the environment changes. Moreover, behavioural diversity provides variability even in the absence of genetic or phenotypic diversity, and improves on them when they are present.

is point was recently heeded by the evolutionary robotics community, as we will see in detail in section 2.6. It also impacts the dynamics of evolution. Individual exploratory behaviour translates in the spreading of the species, which in turn affects entire ecosystems, in particular when invasive species are introduced (see section 2.4).

Conversely, diversity has a profound impact on the development of behaviour and cognition. For instance perceptual narrowing, the sensitivity specialization observed in the first year in infants, is influenced by the diversity they are exposed to [START_REF] Byers-Heinlein | Perceptual narrowing in the context of increased varia on: Insights from bilingual infants[END_REF].

But actively fostering diversity in the interaction with the environment through exploratory behaviour is equally pivotal. Motor exploration begins , and is the driving force behind the creation of the body map and the acquisition of gross and fine motor skills in infants. Neonates are able of sophisticated goal-directed exploratory behaviour [START_REF] Hofsten | An ac on perspec ve on motor development[END_REF], and goal-directed babbling toward objects has been demonstrated in three-months old infants [START_REF] Sommerville | Ac on experience alters 3month-old infants' percep on of others' ac ons[END_REF].

In active perception, exploration, as (Gottlieb et al. 2013), is necessarily present: 'We don't simply see, we .' (Gibson 1988, p. 6). In fact, humans and animals are intrinsically motivated to explore, and to seek, amongst other, novelty (section 2.4). When learning by trial and error, when playing, when displaying creativity, children are constantly adopting exploratory strategies to figure out what possibilities the world offers (Piaget et al. 1953), while, at the same time, coping with its formidable complexity [START_REF] Keil | Folkscience: coarse interpreta ons of a complex reality[END_REF]. Exploratory behaviour allows to they subject themselves to [START_REF] Kidd | The Goldilocks Effect: Human Infants Allocate A en on to Visual Sequences That Are Neither Too Simple Nor Too Complex[END_REF][START_REF] Kidd | The Goldilocks Effect in Infant Auditory A en on[END_REF].

For learning agents interacting with an environment, exploration is the primary way to obtain learning data. In the reinforcement learning frameworks, the importance of exploration is underscored by the importance of the exploration/exploitation tradeoff.

For self-sufficient robots, directed exploration through intrinsic motivations has been recognized as a crucial component of the development of rich behaviour in a cumulative learning perspective. Stated differently, directed exploration is a fundamental adaptation strategy for handling new, unknown environments. Intrinsic motivation mechanisms allow to establish a functional dependency between the robot's exploratory behaviour and its experience.

is dependency ensures that the robot is directing its exploratory resources towards activities where significant information can be gained.

Moreover, exploratory behaviour enables the robot to create an estimation (even partial, even flawed) of what effects are possible to produce in a given environment, as a result of its own actions. is is important for any number of reasons, but one them is planning.

But perhaps the best motivation for studying exploration in self-sufficient agent is that . Exploratory behaviour allows to discover learnable interactions-i.e. affordances [START_REF] Gibson | The Theory of Affordances[END_REF])-in the environment, they are considered as learning problems. For Eleanor [START_REF] Gibson | Exploratory Behavior in the Development of Perceiving, Ac ng, and the Acquiring of Knowledge[END_REF], babies are not endowed with the abilities to perceive affordances, but must spend their first years discovering affordances in their environment. For instance, understanding mirrors, for a child, entails first to produce variability in the environment that allows to detect that the interaction proposed by the mirror is unlike other objects15 [START_REF] Loveland | Discovering the Affordances of a Reflec ng Surface[END_REF].

en, a comprehensive exploratory behaviour must be carried out to amass enough observations to figure out what the mirror does. One could argue that the exploratory behaviour in front of the mirror is in fact highly structured, and fall in the child-as-a-scientist paradigm [START_REF] Gopnik | Words, thoughts, and theories[END_REF][START_REF] Schulz | Serious fun: Preschoolers engage in more exploratory play when evidence is confounded[END_REF][START_REF] Gweon | Stretching to learn: Ambiguous evidence and variability in preschoolers' exploratory play[END_REF][START_REF] Gopnik | Scien fic Thinking in Young Children: Theore cal Advances, Empirical Research, and Policy Implica ons[END_REF]. But in many instances, random behaviour is just as informative (or not significantly less informative) that carefully crafted interventions [START_REF] Cook | Where science starts: Spontaneous experiments in preschoolers' exploratory play[END_REF]. Similarly, an crawling infant will progressively discover the 'traversability of a surface of support'. But as experiments from [START_REF] Gibson | Detec on of the traversability of surfaces by crawling and walking infants[END_REF] pointed out (and in contrast with a walking child), the surface will be engaged before it has been learned, or even accessed for its traversability. Infants have a lot to learn in their first years. Exploration cannot only be considered as a subroutine of learning behaviour. Exploration creates-provokes-contexts where new learning can happen. In other words, exploration happens at different levels, and is not just responsible for the trial-anderror behaviour that drives learning tasks. Exploration happens also learning tasks, and greatly determine which learning tasks are engaged with by the infants.

Most roboticists have been preoccupied by solving problems, with few works seeking to discover them in vast unstructured environments. Without such an ability, a robotic agent can hardly pretend at exhibiting open-ended development.

In the next chapters, we will review some of these aspects more thoroughly.

Exploration and Learning

Exploration can exist without learning. e random motor babbling exploration strategy presented in the first example does not feature any learning behaviour. Likewise, the robot following the left wall in the maze displays a structured exploratory behaviour that guarantees success. It adapts but does not learn. e same can be said of the vehicles of [START_REF] Braitenberg | Vehicles : experiments in synthe c psychology[END_REF].

Conversely, learning can happen without exploration. As outlined at the beginning of this chapter, a learning system needs not to interact with an environment: the weather system is fed data and predicts outcomes; it does not engage in any exploratory behaviour.

Learning and exploration do not apply to the same classes of entities either. Learning can apply to any system, while exploration, because it necessitates to act in an environment, applies only to agents.

Yet, exploration and learning often depend on one another. Indeed, they are highly complementary. Exploratory behaviour is directly related to information seeking: exploration's aim is to obtain information about the environment.

is distinguishes exploration from actions that are purely motivated by exerting control over the environment (Gottlieb et al. 2013). Learning, on the other hand, is interested by exploiting the information gathered about the environment to inform and modify behaviour.

us, for an agent interacting with an environment, and unless the environment is always providing all the necessary information to the agent without the need to elicit it, exploration is necessary for learning.

And because learning informs behaviour, it can, in particular, inform and improve exploratory behaviour: this is . e interplay between the two, exploration feeding learning, and learning improving exploration, is at the heart of most interactive learning algorithms.

As an illustrative example, one can take an atypical case of learning: evolution. Evolution learns and explores, in directed and undirected fashion. Evolution's memory is the biosphere, and the organisms are candidate solutions. Natural selection is the learning mechanism of evolution; it keeps in memory only good solutions. Genetic mutation is undirected exploration, while mating is hybrid. While in its simplest form it is undirected, it holds the potential of directed exploration: sexual selection, i.e. when some members reproduce more when they are better at finding mates.

A Behavioural Approach

One may take exception of the examples of pure exploration-the random explorer and the robot in the maze. If exploration's purpose is to gain information, where is the information gain in those instances?

In response, we could consider another question: how can we distinguish between the robot 'mindlessly' solving the maze, and the one that explore the maze 'mindfully', conscious of the effectiveness of the left-hand-rule, and whose goal is to explicitly discover and remember the path to the exit? What about another exploration strategy, that uses a different decision mechanism to choose which direction to go at each turn, but which happens to always choose left on this specific maze? All exhibit the same behaviour. Making the distinction requires to look into the robot's head. All three robots, in fact, create access to the same information. Whether they capture, retain or exploit the information or not is a learning issue, not an exploration issue.

In this thesis, we take a behavioural approach at studying exploration. An exploratory process is considered with regards the information it creates access to-not how the information is used, or if it is remembered at all. Exploration, in other words, is evaluated from behaviour alone. ere are several motivations for such an approach.

e first one is that it does not introduce assumptions about the agent's internal mechanisms of exploration into the evaluation. It does not assume that a specific learning mechanism is behind exploratory behaviour, and it does not try to evaluate learning as a proxy for evaluating exploration.

e three maze robots have the same performance, the random motor babbling explorer can be compared to the goal babbling explorer, and a Braitenberg vehicle [START_REF] Braitenberg | Vehicles : experiments in synthe c psychology[END_REF]) can be compared to a SLAM robot [START_REF] Smith | On the Representa on and Es ma on of Spa al Uncertainty[END_REF].

Interestingly, when not having an open-skull access to the subject, discriminating learning from other mechanisms of behaviour is not necessarily trivial. For instance, motor babbling in babies, in particular repetitive kicking motions, have long been thought to be the result of hard-wired pattern generators [START_REF] Hilgard | The Neuromuscular Matura on of the Human Infant[END_REF]. But evidences of learning have been found, by observing an improvement the uniformity of the repetition throughout the first year [START_REF] Kahrs | Rhythmical stereotypies in infancy[END_REF]. Similarly, discriminating intentional exploration from noise is not necessarily trivial, or possible. [START_REF] Loeb | Op mal isn't good enough[END_REF] argues that the variability observed in human movements, even when subjects repeat the same movement, cannot be trivially attributed to the inherent noise of the musculo-skeletal structure, but can be interpreted as intentional exploration that can be interpreted, under a Bayesian paradigm, as generating enough relevant information to update the prior efficiently: Loeb (2012, p. 762) e second motivation is methodological. Evaluating learning means taking a performance metric, evaluating the learning system, providing the system with experience or letting it acquire some on its own, and then evaluating the system again. e evaluation is quantified by the difference between the two performance values.

Computational learning architectures, and robots, are exceptionally suited for such an evaluation.

e learning behaviour can be switched off during evaluation, using only exploitation mechanisms.

is allows the learning behaviour to remain unaffected by the evaluation. Humans, on the other hand, do not have the capacity to stop learning.

is makes any evaluation of learning a perturbation of the learning behaviour, which has to be accounted for.

Evaluating exploration through behaviour alone allows to use the same methodo-logy on humans and robots. Gottlieb et al. (2013, p. 2) advocated more dialogue and integration between active learning in robotics, and the study of curiosity in psychology and robotics. Using measures than can seamlessly be used across fields is a step in that direction.

Being able to share the same methodology occasionally means being able to more easily create comparable experiments across fields.

Another assumption made when evaluating learning that the robotics and machine learning community often overlooks but that psychologists are acutely aware of, is that to evaluate learning on an agent, one has to have the means to compel the agent to submit to a controlled evaluation. is supposes several things. First, that the agent is able to submit to an evaluation, which means, in machine learning, that the agent can demonstrate either predictive or control abilities. Our random learner has neither of those. Second, that the system is able to understand and is willing to undertake an evaluation. Given the nature of robots, this is usually not a problem. When evaluating learning in infants or animals however, this is one of the main obstacles to the evaluation: (Bornstein 2014, p. 123) ird, that the system is available at all. Learning evaluations monopolize the system, which has a significant cost in time and resources in machine learning, robotics and natural studies alike. If a robotic system is operating in real-time in a dynamic environment, the only way to evaluate its learning performance in the middle of the experiment without perturbations is to freeze the robot and environment, to perform the evaluation, and to resume the behaviour of the robot and the dynamics of the environment. For many environments, stopping time or resetting the environment to an earlier state is impossible. e experimenter must decide between more performance data or fewer perturbations.

And fourth, that a controlled evaluation of the specific learning abilities under investigation can be carried out and separated from other phenomena. Again, robots do not usually represent a problem in this regards, but this is a big problem in natural studies.

While all these suppositions seem easily handled by machine learning and robotic experiments, there is the danger that they influence the type of artificial cognitive architectures that will be created and studied by scientists. In other words, roboticists may tend to avoid cognitive architectures that do not have a clear and explicit switch somewhere that deactivate learning. Or robots that are difficult or impossible to reset to initial conditions-because, for instance, their bodies are irreversibly modified by the interaction with the environment.

Using behaviour to evaluate exploration avoids or reduce the importance of most of these problems. Exploratory behaviour still has to be elicited, usually in a controlled environment. But because the experimenter does not have to engage with the subject of study to conduct the evaluation, he can opportunistically rely on observations in the wild, or on the recorded behaviour of past experiments, or of since disappeared agents.

e behavioural approach avoids bias about the agents internal operation, and does not create nearly as much methodological difficulties than a learning evaluation entails.

And it has the added benefits to be easily applied in different disciplines.

e third and final motivation for the behavioural approach is that is that learning performances are too limited to fully evaluate developmental processes.

is problem is particularly acute in the case of open-ended development. One ambition of developmental robotics is to create robots that do not stop learning, that explore their environments on their own and build solid foundations of knowledge and skills that make them capable. Evaluating open-ended development leads to challenges: On which problem should the robots be tested? Should it be the same for all robots or should it depends on their developmental trajectories? Even then, how can a meaningful set of learning tests be created when the set of skills that can be learned in the environment is difficult or impossible for the experimenter to establish? e problem is analogous to a pair of twins, raised identically, which are one day given only one instruction: to learn what they want, and to do their best. One decides to learn the piano, the other opts for the rugby team. How then can their performance in these two tasks be compared? e problem does not go away with additional constraints: if one chooses tennis and the other rugby, the developmental trajectories are perhaps more similar, but not necessarily any more comparable from a learning standpoint.

Faced with developmental processes exhibiting self-organizing behaviours, current research, in particular on intrinsic motivation, regularly relies on behavioural measures to qualify and quantify the results alongside learning performances [START_REF] Merrick | Mo vated Learning from Interes ng Events: Adap ve, Mul task Learning Agents for Complex Environments[END_REF]. For instance, in a multiobjective setting, [START_REF] Oudeyer | Intrinsic Mo va on Systems for Autonomous Mental Development[END_REF], [START_REF] Merrick | Mo vated Learning from Interes ng Events: Adap ve, Mul task Learning Agents for Complex Environments[END_REF] and Moulin-Frier, [START_REF] Moulin-Frier | Self-organiza on of early vocal development in infants and machines: the role of intrinsic mo va on[END_REF] analyse the respective time the agent spends at each task. [START_REF] Stulp | Adap ve explora on through covariance matrix adapta on enables developmental motor learning[END_REF] also devoted a study to the self-organization of the behaviour elicited by a learning algorithm, . [START_REF] Delarboulas | Open-Ended Evolu onary Robo cs: An Informa on Theore c Approach[END_REF] evaluate the agent by the number of different locations it was able to visit over a continuous map, and Rolf (2013) uses a workspace coverage measure. In other words, the behaviour of a developmental process is as much worthy of scientific study as is the learning performance it produces.

To be clear, we are not advocating-at all-a strict closed-skull approach to the study of behaviour in computational agents.

at would be ridiculous. But it is not because offline, open-skull measurements can be made that we should not avoid correlating them with the behaviour displayed learning.

Formalization

We restrict the class of exploration problems we study in important ways: we consider one-step episodic environments, where one input corresponds to one output. And the environment has no memory or context, and does not change.

Environment and Tasks

An is formally defined as a function from to .

is the motor space, and it represents a parametrization of the movements the robot can execute. It is a bounded hyperrectangle of , with the dimension of the motor space. is the sensory space; it is a subset of , with the dimension of the sensory space. and (desired effects) are elements of16 . A is defined as a pair with the environment and the maximum number of samples of allowed, i.e. the number of actions the robot can make in the environment.

Defining the environment as a function implies determinism. As no other assumption is made on , non-determinism can be approximated by with a chaotic environmental feedback function, coupled with noisy motor communication pathways. We adopt a functional formulation here to avoid unnecessary burden17 .

Explora on e objective of the exploration problem is to estimate what elements of can be produced by , i.e. to estimate the image of , , designated as the . An exploration strategy evaluates the function , times, providing a sequence of elements of , , , ...,

. Each is evaluated as , and is observed by the exploration strategy before is chosen. Each observation provides information on . Yet estimating , a possibly continuous, infinite subset of , from a finite set of points is not a welldefined problem. For this, we rely on a , that is not necessarily known by the exploration strategy.

is last point is important. We do not assume that the agent has knowledge of the diversity measures that are used as evaluation. It certainly makes our work more difficult. Agents might explore with different goals in mind, and evaluate their own behaviour according to metrics we don't have access to. e choice of a diversity measure or the other can therefore be seen as arbitrary. is problem is not present, for instance, in reinforcement learning, where the cumulative reward defines an objective motivation for the agent, and an objective evaluation for the experimenter.

Yet, to allow comparing agents with different motivations, one cannot establish a measure as better than all the others. In the context of the exploration problem, any exploratory measure, as a behavioural measure, is arbitrary. It is the responsibility of the experimenter to justify its interest.

Agents are, of course, free to use diversity measures to self-evaluate their exploration, and will we see such an agent chapter 4.

ere is just no guarantees that the experimenter will use the same one.

Discussion

One particularity of our approach is that we do not evaluate the value of the diversity produced with respect to a specific objective. In rich environments, there are many ways to produce diversity easily which has little objective value without much effort.

We can, of course, define the evaluation measure so has to encode the achievement of a specific goal in it. But we do not do that here. In the example of the first chapter, we solved this issue by considering a sensory space that only encodes valuable diversity.

is is certainly not a good way to proceed in a more general setting.

But this allows to focus on the production of diversity independently of other interests. e production of diversity is overwhelmingly studied in relation to its value for learning performance. is thesis does not focus on that.

Before moving on defining diversity measures, let's clarify the relationship between diversity and novelty. Novelty is a property of a newly acquired observation, in relation with observations already present in memory. Diversity targets the whole population of acquired observations.

An agent driven by diversity may either be motivated by maintaining a certain level of behavioural diversity toward a certain aspect of its behaviour, or be motivated to estimate the range of diversity a phenomenon offers. e first one, as we pointed out, can be motivated by a higher survival robustness and fitness: it keeps options open. In a specific situation, only one learned behaviour might be successful. Successful behavioural diversity can decrease with changes in the environment or the agent, and thus maintaining it may require ongoing exploratory behaviour. Moreover, as new skills, new affordances are regularly discovered by children, each of them may require to develop its own amount of diversity. is differs from simple novelty-seeking, as it allows to predict that agents will stop exploratory behaviour once cumulative novelty has reached a certain threshold on a task or phenomenon, regardless of the novel interactions available to them at the time.

is type of diversity is the one found in biological populations: there is a motivation to avoid inbreeding, and maintain genetic and phenotypic diversity. is is also precisely the purpose behind the diversity-driven evolutionary robotics methods we'll review in section 2.6. e second motivation for diversity, sampling the whole range of a phenomenon, deals with understanding the possibilities the environment offers.

is, in turns, allows for better exploitation. is is the purpose of the exploration of a Multi-Armed Bandits scenario, where the agent must sample different sources of rewards to find the one that is the highest (we discuss Multi-Armed Bandits scenario in chapter 4). Baranes, Oudeyer and Gottlieb (2014) proposed an experiment where adults were able to sample a set of different tasks, and found that they would sample the whole range of tasks, even as some were impossible. Yet, this experiment does not allow to discriminate between simple novelty-seeking and diversity-seeking.

A possible experimental framework would be to provide an unbounded set of tasks, that could not be sampled meaningfully during the allowed sampling period. e tasks would vary across several identified dimensions, some of which offering bounded variation. A simple novelty-seeking agent would sample tasks in no particular direction, amassing a set of diverse observations. A diversity-driven agent would preferentially explore along dimensions of bounded variations, aiming at understanding globally the possibilities offered by the task set on specific aspects. Note that the second strategy is also better in the long run: it tries to exploit the combinatorial nature of the task set by decomposing the diversity along dimensions. If the relationship between dimension is not too non-linear, this results in an estimation of the diversity exponentially faster than the novelty-seeking approach.

We are not aware of any work aimed at discriminating in children between a motivation over novelty and the two-type of motivation for diversity we have identified.

F

Diversity Measures

Diversity measures quantify exploration and allow to compare exploration algorithms. In the following, we consider different general-purpose diversity measures. Each of them expresses different assumptions about the explored space. An overarching assumption lies on the locality of the explored space: an area of the sensory space is considered explored if the nearest observed effects are not too far.

Two classes of diversity measures can be distinguished. , that evaluate the exploration with respects to the possibilities offered by the environment. And , that quantify the diversity of a distribution of effects without regards for the reachable space.

Global Diversity Measures

In this section, we assume that the reachable space, , is known by the diversity measure. As we only target sensory diversity, no measure is sensitive to the motor commands -they only take the effects into account.

Maximum Distance Measure

An overarching assumption we make in all the diversity measures we expose here is that a given area of the reachable space is qualified as explored depending on how far it is from a produced effect-that is, from a point of . As such, the provides a global quantification of the exploration of the reachable space. e maximum distance measure does not discriminate between situations that represent qualitatively significantly different explorations. In Figure 1.5, the two explorations have the same maximal distance value, but one manages to produce effects distributed over more than half the reachable space, while the other only produces one effect. To mitigate this, we now introduce averaged distance measures. 

Average Distance Measure

To avoid the pitfalls of the maximum distance measure, we can compute the average, rather than the maximum, of the distance between the produced effects and the reachable space.

If the set of reachable effects is finite, of cardinal , then, the average distance is defined as:

Usually however, we will consider continuous reachable spaces. In this case, we need to integrate. For this, we are constrained to reachable spaces whose volumes are defined and non-null. Using Lebesgue integration, the volume is defined as:

is the Lebesgue measure of -often noted in the literature.

average coverage error 18

Computing the average distance is usually intractable, and perfect knowledge of is a limiting requirement. Moreover, the average distance also does not consider isolated points of , as they receive a weight of zero during the integration, which may not be desirable. As such, the average distance is not a practical diversity measure. To solve those problems, we discretize the reachable space.

Testset-based Average Distance e testset-based average distance allows to evaluate how well the observed effects cover a manually defined set of goals of particular interest.

We can also define a squared variant: e squared variant can be understood as a mean square error (MSE) estimator for the nearest neighbour inverse model. e nearest neighbour inverse model returns the motor commands corresponding to the closest observed effect from the goal. As such, it can be understood as providing a baseline for learning performance against which any more complex inverse models can be measured. Consequently, a squared testsetbased average distance is compatible with evaluating both exploration and learning.

We now present two methods to create a testset that approximates the average distance measure: one applicable when no isolated points are present in , and another that takes into account isolated points.

La ce Restric on

e idea behind lattice-based testsets is to be able to select a finite set of points in with an arbitrary low maximum Hausdorff distance between and . We restrict our discussion to the case where is bounded. Given a point lattice over , if we consider the restriction of to we obtain a finite testset. If we further constraint so that for every point of , there is an open neighbourhood of that point included in (thus ignoring isolated points), then we can approximate the average distance measure by reducing the coarseness of the lattice 19 . Furthermore, because is a subset of , the measure lower bound is zero. The restric on of the la ce to the reachable space provides and adequate testset for the coverage measure, but misses the small region because of the high coarseness of the point la ce. The isolated point is not considered.

Such a testset provides a tractable method for evaluating exploration. By modifying the coarseness of the lattice (i.e., the norm of the vector of the basis of from which is generated), we can balance the precision and the computational cost of the measure.

La ce Adapta on

In order to take isolated points into account in a robust way, we adapt the lattice using a two-pass nearest neighbour algorithm. We define the of the lattice as the set of points in that are nearest neighbours of a point in . Formally, for each point of , we consider the minimal distance from to .

e points of that are at minimal distance of are its nearest neighbours. is the union of the nearest neighbours for all points over . Since is bounded, is finite.

point lattice lattice-based testset proximal subset

Figure 1.7: Considering a reachable space, here in blue, and a la ce, the proximal subset of the is first selected, and then projected onto . The testset correctly takes the isolated point and the small region into account, even when the la ce is rela vely coarse.

For each point of , we now consider the set of its nearest neighbours in , and choose one at random if more than one exists. e is the union of these nearest neighbours 20 over . Figure 1.7 illustrates the process. e testset does correctly take into account isolated points in , even if the lattice is coarse. So far, the measures presented make the assumption that each part of the reach-20 If no point of has more that one nearest neighbour in , can be understood as the projec on of onto .

Heterogeneous Evalua on

able space has the same exploration value. An experimenter might want to give more weight to some areas of the reachable space. is can be easily done by considering different lattices with varying level of coarseness for different areas of the reachable space, or by manually defining the testset so that its local density matches the exploration weight of the area. Another option is to manually define the weight of each point of the testset. We will not consider such measures in this manuscript.

Moreover, the measures have been evaluating the exploration with respect to the entire reachable space. ese measures were aimed at discovering the whole range of effects that were possible to create in the environment. As we discussed previously, diversity can also be aimed at producing enough cumulative novelty. e next measure we introduce estimate this type of diversity.

Estimating exploration over the entire reachable space requires both knowledge of , and bounded. Although in simple cases, those requirements are reasonable, they are not in complex environments. is leads to undesirable side-effects. In Figure 1.8, the same exploration pattern is evaluated differently with regards to its overall location in . Moreover, in large reachable spaces, with a very limited number of interactions, it rewards explorations where the observations are far from one another. While this may be desirable, a less aggressive diversity measure might better suit other situations. For instance, a representative sample of diversity over a local area of the sensory space might be easier to exploit or to learn from.

Intrinsic Diversity Measures

We introduce now a diversity measure that does not require to be known or bounded, avoids the pitfalls of Figure 1.8, and is only sensitive to the distance between effects up to a defined threshold.

Threshold Coverage

reshold coverage considers the volume of the union of the set of hyperballs of radius -the threshold-that have for centres the observed effects. Figure 1.9 illustrates this for the two-dimensional arm. e -coverage measure is particularly useful when the reachable space is not known. For this reason, it is an measure: the agent is able to compute it on its own without knowledge of the environment. We discuss an exploration strategy making use of it in chapter 4. e -coverage is insensitive to how spread the effects produced are, if they are farther apart than the threshold. In Figure 1.10, the threshold coverage is the same, but the effects produced are very different. e -coverage is problematic in high dimension, because it turns out to be difficult to compute, even if we simplify the hyperballs to axis-aligned hyperrectangles (see appendix A on this issue).

erefore, we introduced an approximation of it, in the context of the chapter 4, that is available in appendix B. [START_REF] Lehman | Exploi ng Open-Endedness to Solve Problems Through the Search for Novelty[END_REF] and [START_REF] Ollion | Why and how to measure explora on in behavioral space[END_REF] have proposed a diversity measure based on nearest neighbours.

Sparseness

e -of an effect is the average distance from its nearest neighbours:

with the th nearest neighbour of in the observed effects. e sparseness measure of the exploration is then defined as e higher the -sparseness measure is, the better the exploration.

e measure is robust when only one cluster is present. However, if multiples distant clusters of effects are discovered during exploration, this creates high fluctuations in the sparseness value. e sparseness value increases abruptly when the new cluster is discovered, and decrease equally abruptly when the cluster contains effects.

is is illustrated Figure 1.11.

t"="7 t"=8 t"="6 t"="5 t"="4 high" 3-sparseness ("""3/5""""0.60) _ _ low" 3-sparseness ("""0/4""""0.00) _ _ ~high" 3-sparseness ("""4/6""""0.66) _ _ ~high" 3-sparseness ("""3/7""""0.43) _ _ ~low" 3-sparseness ("""0/8""""0.00) _ _ Figure 1.11: Sparseness can fluctuate abruptly because of clustering effects. Here, with k = 3, the ini al 4-point cluster has low 3-sparseness. When a point is found in a new, distant cluster, the sparseness increases sharply. It stays high as a second and third point are added to the new cluster because each point of the new cluster must find part of their neighbours in the other cluster. When an addi onal point is added to the cluster, all neighbours are local, and the sparseness value decreases significantly. The sparseness is numerically es mated in this example by considering the intra-cluster distances negligible (note however that all the intra-cluster distances considered null here are involved twice in the sparseness value), and the inter-cluster distance equal to 1.0.

is can be avoided if , but as [START_REF] Doncieux | Behavioral diversity measures for Evolu onary Robo cs[END_REF] remarks that implies making distances computations (but also avoids having to compute the nearest neighbours). is is hardly feasible for high values of .

A possible solution to the high number of distance computation is to take a page out of the book of particle physic engines. Faced with simulating a quadratic number of gravitational or electromagnetic interactions to compute between high numbers of particles, particle physic engines sometimes resort to a quadtree approximation. For instance, for mass interactions, the interaction between a particle and a distant cluster of particles is approximated to the interaction with the particle and a body whose mass is the same as the one of the distant cluster, and whose centre is the averaged centre of the cluster.

is approximation is constrained by the similarity measure used. Here, we only consider the euclidean distance as a similarity measure, which is particularly adapted to the quadtree approximation proposed. See [START_REF] Doncieux | Behavioral diversity measures for Evolu onary Robo cs[END_REF] for a discussion of the similarity measures considered in evolutionary robotics.

Alternatively, diversity measures such as sparseness that are brittle to cluster structure (see [START_REF] Olorunda | Measuring explora on/exploita on in par cle swarms using swarm diversity[END_REF] for other examples) can be supplemented by clustering algorithms, that decompose the diversity computation to a cluster basis. is has the added benefit to sharply reduce the number of similarity computation needed if many clusters are present. An additional diversity estimation-for instance, using sparseness-can be done between clusters.

Entropy [START_REF] Delarboulas | Open-Ended Evolu onary Robo cs: An Informa on Theore c Approach[END_REF] have used the entropy of the sensorimotor stream to quantify behavioural diversity. From a set of discrete observations, computing entropy can be done by grouping observations into classes. [START_REF] Delarboulas | Open-Ended Evolu onary Robo cs: An Informa on Theore c Approach[END_REF] uses -means and -means [START_REF] Duda | Pa ern Classifica on[END_REF]) to create classes. One could also use a non-parametric clustering method (see for instance [START_REF] Gershman | A tutorial on Bayesian nonparametric models[END_REF]) to avoid imposing a specific number of classes.

Given classes, with respectively members in each class, the entropy [START_REF] Shannon | A Mathema cal Theory of Communica on[END_REF]) is defined as: Note that [START_REF] Delarboulas | Open-Ended Evolu onary Robo cs: An Informa on Theore c Approach[END_REF] clusters over the whole sensorimotor observations (sensors motor) whereas we are just interested by a sensory clustering. e entropy is a robust measure that benefits from a solid theoretical background, but it is sensible to the number of classes. It also does not take into account the relation between the classes: two observations can be arbitrarily close, but belong to different classes, and considered completely differently by the entropy measure.

Measures of Biodiversity

Diversity measures have a long tradition of usage in ecology to quantify species diversity. As species form natural classes, entropy measures are often used in those domains [START_REF] Pianka | La tudinal Gradients in Species Diversity: A Review of Concepts[END_REF][START_REF] Hurlbert | The Nonconcept of Species Diversity: A Cri que and Alterna ve Parameters[END_REF]Whittaker 1972;[START_REF] Peet | The measurement of species diversity[END_REF][START_REF] Cousins | Species diversity measurement: Choosing the right index[END_REF][START_REF] Lande | Sta s cs and Par oning of Species Diversity, and Similarity among Mul ple Communi es[END_REF][START_REF] Purvis | Ge ng the measure of biodiversity[END_REF][START_REF] Davies | Quan fying Biodiversity: Does It Ma er What We Measure? In: Biodiversity Hotspots[END_REF]).

e three most used measures are species richness (the number of different species, regardless of their abundance), Shannon information (as presented previously, [START_REF] Shannon | A Mathema cal Theory of Communica on[END_REF]), and the [START_REF] Gini | Variabilità e Mutuabilità. Contributo allo Studio delle Distribuzioni e delle Relazioni Sta s che[END_REF] 21 , that represents the probability that two individuals chosen randomly are from different species (also used as the [START_REF] Simpson | Measurement of Diversity[END_REF], that expresses the opposite probability: that two individuals chosen randomly are from the same species). [START_REF] Page | Diversity and complexity[END_REF] distinguishes between three types of diversity. Diversity of types which defines diversity amongst classes of entities, such as biological species. Diversity within a type, which quantifies the variations of entities of the same class. And compositional diversity, which describe the diversity that arise from the arrangement of different entities, such as genes. Of course, defining classes can be arbitrary, and a variation can become a diversity of type depending on the perspective.

is list of measures hardly exhaustive. e use of diversity in machine learning is further discussed in section 2.7.

F

e Explorers Framework

To express and compare the algorithms investigated in this manuscript, we introduce the framework. e framework is largely strategy-agnostic, and can naturally express motor babbling, goal babbling and intrinsically-motivated exploration algorithms.

e framework is designed around small, simple and well-understood modules that do not incorporate too much sophistication. Modules can be arranged in many ways to obtain diverse algorithms. is also makes the exploration algorithms easily reusable in a larger cognitive architecture. At the centre of the framework is the concept. e explorer is the module communicating with the environment: it provides motor commands for the environment to execute and receives observations (Figure 1.12, the feedback signal and update component is subsequently assumed for all explorers and not pictured). But an explorer can also be integrated in a larger architecture where it does not have access to the environment directly. is makes hierarchical (or organized around a more general graph) architectures natural.

We can easily express a goal babbling architecture (Figure 1.13) in the framework. e explorer interacting with the environment allows to filter motor commands that are proposed by the inverse model, and eventually to select another goal if the motor command is not satisfactory or possible to execute.

In the interest model architecture, the interest model provides goals, and leaves the selection of the order to the learner (Figure 1.14).

is is the architecture proposed by other architectural frameworks for goal-directed intrinsic-motivation [START_REF] Hervouet | FIMO: Framework for Intrinsic Mo va on[END_REF][START_REF] Moulin-Frier | Explauto: an open-source Python library to study autonomous explora on in developmental robo cs[END_REF]; the intrinsic-motivation component is considered as an add-on destined to guide a learning architecture.

is leads to potential problems, where the learner is given the responsibility to act appropriately given an intention it did not originate, and may for instance produce orders that have already been tried without success. e explorer in our architecture is responsible for both originating the goal and ensuring that a suitable motor command is found for it. is allows to flexibly change goal or reject motor commands before execution for any reason. In other words, our architecture does not explicitly divorce decision from execution.

e loop between the explorer and the learner can be exploited to create architectures where one explorer has more than one learner. One goal can be dispatched to the inverse models of all the learners, and the explorer can filter the results to decide which order to execute. Heuristic about filtering orders can for instance be based on the confidence the learner expressed in their inference, if such a signal is available.

If some learners are accurate but slow and expensive while others are fast but imprecise, the explorer can exploit the choice they offer by selecting which learners to poll given the situation and the resources (time, power) available. is type of architecture also allows the explorer to handle a set of heterogeneous goals which require different learners. e aim of this chapter is to give a broad overview of some of the research related to exploratory behaviour and behavioural diversity.

EXPLORER

We first discuss active learning, that introduced some of the first methods of directed exploration. en, a brief exposition is done of self-organization, which permits to position some recent works in sensorimotor exploration. From there, we expose how exploration processes are involved in the early development of infants and review some of the history of the research on human and animal exploratory behaviour and motivation. Integrating both the ideas of active learning and the theories of motivation from psychology and neuroscience, we survey then the computational approach to intrinsic motivations, with an accent on novelty-based motivations. Finally, evolutionary approaches are discussed, in particular in how they use diversity as selective pressure.

Active Learning

In the context of classical machine learning, the idea behind [START_REF] Hasenjäger | Ac ve Learning in Neural Networks[END_REF][START_REF] Lopes | Guest Editorial Ac ve Learning and Intrinsically Mo vated Explora on in Robots: Advances and Challenges[END_REF][START_REF] Lopes | Ac ve Learning for Autonomous Intelligent Agents: Explora on, Curiosity, and Interac on[END_REF][START_REF] Dasgupta | Two faces of ac ve learning[END_REF]Settles 2012) is that learning performance can be improved if the learning algorithm is able to choose the observations it want to make on the phenomenon (i.e., the inputs it wants to try). Of course, this is not always possible. Our weather predictor can't apply meteorological conditions across the planet just because it would dissipate some ambiguity in the models.

An easy, somewhat simplistic, analogy between classical 'passive' learning and active learning would be searching for the presence of a particular element in a sorted sequence. Passive learning would go through all the elements at random or in sequence, while active learning would employ a binary search, accessing the middle of the sequence and recursing on half of it, thus testing exponentially fewer elements than passive learning. Active learning not only takes advantage of the underlying structure of the data to select inputs that yield observations that are relevant to the problem at hand, but also takes into account previous observations to decide the next actions. Active learning is the computer playing 'twenty questions' on a given problem with the environment.

e majority of the active learning literature deals with classification tasks. Typically, large amounts of unlabelled data are available for the classifier, but obtaining a label has a cost. For instance, to train a classifier on sentiment analysis in social networks, there are huge numbers of posts available. But for each of them, a team of human must describe the sentiment expressed, in a consistent manner1 . An active learning algorithm can dramatically decrease the cost of learning by only asking labels for data that significantly improve its classifying performance. For example, by only asking about users' posts that are near the decision boundaries, i.e, user posts the algorithms is not confident about. In fact, this approach is known as [START_REF] Lewis | Heterogeneous Uncertainty Sampling for Supervised Learning[END_REF]. Other methods are guided by prediction errors ( run and Mitchell 1995), variance [START_REF] Cohn | Ac ve Learning with Sta s cal Models[END_REF], disagreement between hypotheses [START_REF] Cohn | Improving generaliza on with ac ve learning[END_REF], disagreement among a comity [START_REF] Seung | Query by commi ee[END_REF]Breiman 1996;[START_REF] Freund | [END_REF], or expected improvement [START_REF] Jones | Efficient Global Op miza on of Expensive Black-Box Func ons[END_REF].

Active learning is relevant to our discussion because it augments learning with directed exploration. e exploration is aimed at finding information in the environment that can best improve the knowledge of the agent. It is not surprising then that most methods drive exploration with concepts directly linked to the learning performance.

Settles (2012) distinguishes between three flavours of active learning:

, where a large, finite, set of unlabelled examples is available; approaches where unlabelled samples are observed sequentially, and the algorithm can decide whether to label or discard each one; and approaches, where examples are parametrized by features with given ranges, and the algorithms can ask for any combination of feature values it wants.

Query-based approaches are closely related to the problem in statistics [START_REF] Fedorov | Theory of op mal experiments[END_REF][START_REF] Chaloner | Bayesian Experimental Design: A Review[END_REF][START_REF] Pukelsheim | Op mal Design of Experiments[END_REF], where, for a given hypothesis, a minimal number of experiments must be designed to refute or prove the hypothesis. While traditional active learning focuses on classification, optimal experimental design generally deals with regression problems, and the two fields generally do not use the same techniques. An example of a regression problem is the modelization of the underground in geostatistics: core samples are collected over an area, and a model of the underground must be created2 . Evidently, core samples are costly to collect, and the monetary incentives to get accurate models of mineral resources are sometimes high. Optimal experimental design fits the robotic agent problem nicely: an experiment is a motor command, costing time and energy, and its result is the sensory feedback.

Optimal experimental design has been applied to robotic learning to discover body schemas (Martinez-Cantin et al. 2010) or to learn forward kinematics [START_REF] Cohn | Improving generaliza on with ac ve learning[END_REF][START_REF] Cohn | Ac ve Learning with Sta s cal Models[END_REF]. [START_REF] Bongard | Nonlinear System Iden fica on Using Coevolu on of Models and Tests[END_REF] use an evolutionary algorithm to synthesize a model of the robot from empirical data by coevolving a population of candidate models and a population candidate . While the models attempt to explain the internal systems of the robot, the tests are aimed at extracting observations from the real robot to provide better information to the models: they are a set of experiments that are improved throughout the evolution process.

Aside from specific robotic applications such as these, active learning and optimal experimental design approaches typically make assumptions that make the methods they propose unfit to be directly applied to robotic setups. Two of them are particularly disastrous: the assumption that the model is completely learnable, and that the noise is homogeneous [START_REF] Oudeyer | Intrinsically Mo vated Learning of Real World Sensorimotor Skills with Developmental Constraints[END_REF], see also section 1.2.2). For instance, [START_REF] Freund | [END_REF] proved that active learning could result in an exponential decrease in sampling to reach a given precision in some setting, but did so under the assumption of noiseless, deterministic environments.

Related to active learning, and more specifically, to optimal experimental design, an new paradigm has recently had a major influence in theories of child cognitive development. e paradigm [START_REF] Gopnik | Words, thoughts, and theories[END_REF][START_REF] Schulz | Serious fun: Preschoolers engage in more exploratory play when evidence is confounded[END_REF][START_REF] Gweon | Stretching to learn: Ambiguous evidence and variability in preschoolers' exploratory play[END_REF][START_REF] Cook | Where science starts: Spontaneous experiments in preschoolers' exploratory play[END_REF][START_REF] Gopnik | Scien fic Thinking in Young Children: Theore cal Advances, Empirical Research, and Policy Implica ons[END_REF]) considers the hypothesis, that, rather than acting randomly in the world, children act as rational thinkers, creating experiments and testing hypotheses through their interaction with the world in a manner structurally similar to scientific inquiry. Convincing experiments have indeed showed that preschoolers understand causality, can distinguish it from spurious associations, and construct interventions to do so [START_REF] Gopnik | Causal learning mechanisms in very young children: Two-, three-, and four-year-olds infer causal rela ons from pa erns of varia on and covaria on[END_REF][START_REF] Schulz | Preschool children learn about causal structure from condi onal interven ons[END_REF]).

Yet, even if constructing and carrying informative interactions, i.e. interactions that afford maximal information gain, can decrease the number of interactions necessary to understand a phenomenon and disambiguate confounding evidence, in many situations, random interactions are only slightly suboptimal. In that context, rational experimentation, requiring high cognitive resources, is not a particularly ecological behaviour. As [START_REF] Cook | Where science starts: Spontaneous experiments in preschoolers' exploratory play[END_REF] points out (emphasis ours): Cook et al. (2011, p. 352) Here we find a major motivation for our work: behaviour that produces diversity is a key investigating tool in infants. [START_REF] Gweon | Stretching to learn: Ambiguous evidence and variability in preschoolers' exploratory play[END_REF] provided a study where infants presented with confounding evidence increased the variability of their exploration, even if that represented a physical effort. [START_REF] Schulz | Serious fun: Preschoolers engage in more exploratory play when evidence is confounded[END_REF] and [START_REF] Bonawitz | Children balance theories and evidence in explora on, explana on, and learning[END_REF] reported similar results, where children preferentially engaged with a confounding toy, rather than to play with a new one.

Children seem to occupy an intermediary ground between random behaviour and rational experimentation, one or the other being favoured in function of the task, the difficulty, and the environmental and social conditions [START_REF] Cook | Where science starts: Spontaneous experiments in preschoolers' exploratory play[END_REF]).

Self-organization

Self-organization is the property some systems have to self-organize, that is, to organize in such a way that the source of the organization is not found outside the system: (Dempster 1998, p. 41) (Wolf et al. 2005, p. 7) Let's take just one step away from the tautology with the definition of proposed by [START_REF] Ashby | Design for a Brain[END_REF][START_REF] Ashby | Principles of the Self-Organizing System[END_REF]. Given a system represented by a number of states , and submitted to inputs , the organization of the system is defined as the mapping from to that describes the evolution of the state of the system in reaction to inputs. Under such a formalism, a self-organizing system does not change its organization, but specific inputs might move into a different area of the state space where its behaviour is significantly different. is formalization is interesting, as it can be extended to express self-organization in learning systems, where the organization changes to a new organization with each new input.

I will avoid the rabbit hole that a formal definition of self-organization entails-the question is not yet settled3 -, and redirect the interested reader towards the contributions of [START_REF] Shalizi | Causal Architecture, Complexity and Self-Organiza on in Time Series and Cellular Automata[END_REF], [START_REF] Wolf | Emergence Versus Self-Organisa on: Different Concepts but Promising When Combined[END_REF] 4 and [START_REF] Polani | Founda ons and Formaliza ons of Self-organiza on[END_REF] on this topic.

Self-organization can be found in many complex systems, at any scale: crystal formation (e.g. snowflakes, or ice in graphene nanocapillaries (Algara-Siller et al. 2015)), convection patterns, morphogenesis, ant foraging [START_REF] Deneubourg | Collec ve pa erns and decision-making[END_REF], cerebral activity, school of fishes and flocks of birds, crowd [START_REF] Helbing | Self-Organized Pedestrian Crowd Dynamics: Experiments, Simula ons, and Design Solu ons[END_REF], sand dunes, financial markets, ecosystems [START_REF] Arthur | The green machine : ecology and the balance of nature[END_REF]), weather, planet rings, galaxy formations [START_REF] Cen | Temporal Self-Organiza on in Galaxy Forma on[END_REF]. Some characteristics are regularly found in self-organizing systems: they produce symmetry-breaking changes, self-amplification of-and resilience to-small disturbances, and dimensionally-reducing macroscopic effects (at least in the eye of the macroscopic observer) [START_REF] Der | Behavior as broken symmetry in embodied self-organizing robots[END_REF][START_REF] Der | On the Role of Embodiment for Self-Organizing Robots: Behavior As Broken Symmetry[END_REF]. Many self-organizing systems are composed of many repeated elements interacting locally with one another, and subject to environmental pressure. In many of those systems, and in contrast with human engineering, no explicit design or intent can be found anywhere. [START_REF] Der | The Playful Machine[END_REF] propose the example of a uniform gas. Heated from the bottom, so that a sufficient gradient of temperature is created, it will display regular and stable convection patterns known as Bénard cells [START_REF] Bénard | Les tourbillons cellulaires dans une nappe liquide. -Méthodes op ques d'observa on et d'enregistrement[END_REF]. ose cells break the symmetry that existed originally in the gas by amplifying small perturbations to create macroscopic patterns. At the same time, after an external, occasional, perturbation of an established Bénard cell pattern, the system will restabilize, possibly to different Bénard cells (i.e. the Bénard cell number can be different, or their location can change). Individual particles still obey the same laws of physics, but the organization of the system has moved to a different part of its state space, where its behaviour is significantly different. Still, no central organizational control is present, and the physical particles themselves are an integral part of the mechanism of organization.

A key-informal-insight to understand what self-organizing systems do is to consider that they tend to reduce the number of states the system can be found in. Whatever the initial state of the gas, if submitted to a gradient of temperature, it will eventually collapse into a convection pattern in the future: the system converges to a very specific region of the state-space, smaller than the set of state possible under current conditions. e same can be said about the snowflakes. Every snowflake is different5 . But the set of possible states that ice can be found not being a snowflake is much larger; the self-organizing system of an icy cloud guarantees that out of random icy droplets flying around, snowflakes will be produced.

Another way to formulate this is to say that many self-organizing systems create . Take the example of a ball dropped into a bowl. After a given time, as assuming that the friction of the ball rolling in the bowl in not null, the ball will end up at rest at the bottom of the bowl. However the ball is dropped, the future state of the ball is at the bottom of the bowl, at rest. is may not seem an example of selforganization. But the same gravitational force which is at play in the bowl example is responsible in much the same way for the creation of planets, planet rings and galaxies [START_REF] Cen | Temporal Self-Organiza on in Galaxy Forma on[END_REF], which are highly regular structures evolved out of the amorphous quarkgluon plasma of the early universe.

is gives self-organizing systems both an important sensitivity to environmental conditions and a resilience to them; the temperature and humidity conditions and their fluctuation during snowflake formation will greatly impact the geometry of the snowflake, but the final shape be hexagonal and symmetrical regardless. Likewise, the sand dunes will erase the traces of the caravan's passage, and the school of fishes will re-form after being traversed by a predator. As [START_REF] Wolf | Emergence Versus Self-Organisa on: Different Concepts but Promising When Combined[END_REF]'s definition stresses, a self-organizing system maintains its structure.

Biology is a heavy user of self-organization [START_REF] Camazine | Self-organiza on in biological systems[END_REF], in particular in the case of morphogenesis: the genetic code, when expressed, coordinates the execution of self-organization processes into biological organisms. In other words, evolution is weaving organisms with self-organization processes (see for instance Eggenberger [START_REF] Hotz | Genome-physics interac on as a new concept to reduce the number of gene c parameters in ar ficial evolu on[END_REF]). Evolution navigates the fitness landscape (or , [START_REF] Wright | The Roles of Muta on, Inbreeding, Crossbreeding, and Selec on in Evolu on[END_REF]) by trying combinations (sexual reproduction) of ever-so-slightly modified (random mutation) self-organization processes, encoded in the genetic code. is is hardly surprising: rather than having to explicitly specify in the genetic code where every brain cells should be placed, evolution only has to pick a self-organizing process whose characteristic is to converge towards producing a specific type of structural those water molecules, 1 out of 3210 will have a deuterium atom-an isotope of hydrogen, 2 H, that occurs in a propor on of 1 for each 6420 hydrogen atoms-instead of a pro um atom (the much more common 1 H isotope), thereby forming a semiheavy water molecule 2 H 1 H 16 O. Following the same logic, 1 in 41216400 water molecules will have both, forming a heavy water molecule 2 H 2 16 O. Conversely, oxygen-18 and oxygen-17 are present in propor ons of 1 in 500 and 1 in 2638 water molecules respec vely.

Which means that out of 10 18 water molecules, there are 3.11 10 14 , 2.43 10 10 , 3.79 10 14 , and 2.00 10 15 molecules of for the same snowflake geometry to 10 2.06 10 16 . This is considerably higher than the es mated number of snowflakes that fall on Earth each year (6.6 10 28 , see [START_REF] Pilipski | A Trea se on the Preponderance of Designs Over Historic and Measured Snowfalls, or No Two Snowflakes Are Alike: Considera ons About the Forma on of Snowflakes and the Possible Numbers and Shapes of Snowflakes[END_REF]), or since its crea on, 4.5 billion years ago (4.3 10 39 ). We'll leave a more precise calcula on that takes into account tri ated water and the diverse combina ons of hydrogen and oxygen isotopes and diverse isotopic frac ona on phenomena (see for instance [START_REF] Jouzel | Deuterium and oxygen 18 in precipita on: Modeling of the isotopic effects during snow forma on[END_REF]) and all the other planets where it snows in the universe as an exercise. Of course, the reader may ques on the relevance of dis nguishing snowflakes by their isotope distribu on. For geometrical differences, [START_REF] Pilipski | A Trea se on the Preponderance of Designs Over Historic and Measured Snowfalls, or No Two Snowflakes Are Alike: Considera ons About the Forma on of Snowflakes and the Possible Numbers and Shapes of Snowflakes[END_REF] provide an analysis. And for the reader that ques ons the u lity of the whole exercise regardless, I would point out that it provides the background for one of the only examples of composi onal diversity (diversity by composi on of common parts, here, isotopes) of this thesis. Earth isotope abundance data from the Commission on Isotopic Abundances and Atomic Weights, [START_REF] Berglund | Isotopic composi ons of the elements 2009 (IUPAC Technical Report)[END_REF].

organization.

at is, the specific location of each and every neuron in a group of neurons is not specified in the genetic code, but the structure that the group must respect is, in a constructivist way, through a self-organizing process. Using selforganization, evolution benefits from self-organization's resilience to perturbationsthe brain structure will form reliably under a vast number of conditions-, while taking advantage of its sensitivity to external conditions, which preserves variability into the final structure, and thus maintains phenotypic diversity.

Self-organization is an underlying notion of much of the concepts of development ( elen et al. 2007), and this would motivate by itself the exposition that it is given here. But self-organization pertains to our point in this thesis because, as just underscored, it creates constrained-or rather -diversity, without intent. Selforganization create contexts where a set of structural constraints are enforced, which allows the produced structure to play a predictable role in a larger system. But within the constraints, self-organization processes produce variability tied to environmental conditions.

Because of this variability, self-organization systems are also difficult to predict [START_REF] Orrell | The future of everything : the science of predic on : from wealth and weather to chaos and complexity[END_REF]). Earth's weather system or the financial markets present important prediction challenges that still escape us in great part. And because of their complexity, they are difficult to simulate. As such, self-organization process present important challenges to any representation and predictive model of the environment.

Self-organization is also relevant to the discussion of a parsimonious approach to designing robots. Self-organizing processes related to morphogenesis offload much of the information necessary for the formation of an organism into the characteristics of the environment: the genetic code is not in itself a complete specification6 . Biological organisms develop from a interaction between the genetic code and the environment; the genetic code is meaningless without the environment.

e interested reader can advantageously consult the wonderful work of [START_REF] Oyama | The ontogeny of informa on developmental systems and evolu on[END_REF] on this topic.

Self-organization is present in behaviour [START_REF] Kelso | Dynamic Pa erns: The Self-Organiza on of Brain and Behavior (Complex Adap ve Systems)[END_REF]. It has been proposed as one of the fundamental mechanism involved in the acquisition of speech [START_REF] Oudeyer | Self-Organiza on in the Evolu on of Speech[END_REF](Oudeyer , 2013;;[START_REF] Moulin-Frier | Self-organiza on of early vocal development in infants and machines: the role of intrinsic mo va on[END_REF], or, at a different scale, the cultural evolution of language (Steels 2012). Self-organization of behaviour emerged as a domain of investigation with the concept of homeostasis introduced by [START_REF] Cannon | The wisdom of the body[END_REF]. In order to survive and eventually reproduce, a biological system needs to keep its physiological properties to acceptable levels.

e first synthetic experiments on homeostasis were done by [START_REF] Ashby | Adap veness and Equilibrium[END_REF], who later introduced the term 'self-organization' [START_REF] Ashby | Principles of the Self-Organizing Dynamic System[END_REF].

Recently [START_REF] Der | The Playful Machine[END_REF] introduced the concept of , that essentially turns homeostasis on its head. A system's behaviour driven by homeostatic principle will try to compensate for deviation from its equilibrium state. is leads to the system falling inert as soon as all needs are met. Homeokinesis, instead, directs behaviour by trying to investigate and reproduce deviations: such a behaviour is self-amplifying. A small perturbation can be magnified by a feedback loop that tries to reproduce it. is allows the system to escape local attractors and investigate different behaviours. Martius et al. (2013) showed that the behaviours created could be resistant to external perturbations.

e aims of homeokinesis are very close to ours concerning self-exploration. e goal is to propose mechanisms that can allow robots to discover their abilities and the possibilities offered by the environment themselves. Two important differences exist between homeokinesis and our work. First, they do not operate on the same systems: homeokinesis is primarily designed for low-level, high frequency sensorimotor loops while our algorithms-as presented here-target single-step, atomic, higher-level interactions with the environment. And second, one of the feature of homeokinesis is the high neural plasticity of its controllers; essentially, the discovery of a new behaviour erases the old one. e platform does not capitalize on its discoveries7 , and can be subject to behavioural loops. Our methods have a global view on explored behaviour, and strategies can compare newly discovered effects with all the previous ones, thus explicitly estimating and fostering .

Sensorimotor Exploration in Fetal and Neonatal Development 8

Neuronal activity influences neuronal development, in particular synapse formation and neuronal survival [START_REF] Mennerick | Neural ac vity and survival in the developing nervous system[END_REF][START_REF] Zito | Ac vity-Dependent Synaptogenesis in the Adult Mammalian Cortex[END_REF][START_REF] Goda | Mechanisms of Synapse Assembly and Disassembly[END_REF]Vanhoutte et al. 2003), even at a very early stage, before synapse formation. Decrease in activity translates into decreased neuronal proliferation, generally slower neuronal migration, and affect neuronal differentiation, driving in particular the proportion of excitatory versus inhibitory neurons [START_REF] Spitzer | Electrical ac vity in early neuronal development[END_REF]). As such, the importance of motor activations during the prenatal phase is fundamental for neural development.

In human infants, motor activity starts in the fetus at 9 weeks [START_REF] Humphrey | Primi ve neurons in the embryonic human central nervous system[END_REF]), and at 10 weeks, translates into various arm and leg movements [START_REF] Adolph | Motor Skills. In: Handbook of Cultural Developmental Science[END_REF]). Some of those movements are coordinated between limbs, and some others are isolated, moving limbs or digits while the rest of the body remains still [START_REF] Prechtl | Ultrasound studies of human fetal behaviour[END_REF][START_REF] Prechtl | Developmental transforma ons of spontaneous movements in early infancy[END_REF]: this may allow a faster differentiation of the different Box 2.1: The Price of Not Moving While the reason why fetuses move is not yet fully understood, there is no ques on, however, that moon is a cri cal component of a normal morphological development. [START_REF] Moessinger | Fetal akinesia deforma on sequence: an animal model[END_REF] performed an experiments on rats, where the fetuses were injected with curare during the last 3 days (out of 21) of gesta on, ar ficially inducing fetal akinesia, a loss of voluntary movement. The curarized rats fetuses were born with underdeveloped lungs (pulmonary hypoplasia), shorter muscles leading to contracted joints (arthogryposis), undersized jaw (micrognathia), short umbilical cords, and an excess of amnio c fluid (polyhydramnios, possibly explained by reduced fetal swallowing), and generally reduced body, muscle and bone mass. A study by [START_REF] Rodríguez | Morphological changes in long bone development in fetal akinesia deforma on sequence: An experimental study in curarized rat fetuses[END_REF] confirmed those results, and further analysed the perturba on of the skeletal development. [START_REF] Moessinger | Fetal akinesia deforma on sequence: an animal model[END_REF] re-marks that, whereas curarized rats presented excess of amnio c fluid (polyhydramnios), lack of sufficient amnio c fluid (oligohydramnios) exhibits similar symptoms. This explana on is the same: lack of amnio c fluid leads to reduced opportunity of movements for the fetus. The Fetal Akinesia Deforma on Sequence, as it is referred to by the literature, is a striking example of the irreducibility of the organisms to the gene c code, as discussed in the previous sec on. Here, normal morphological growth is indissociable from behaviour: if the fetus does not move, it won't have a normal body. Interes ngly, how much the mother moves is also a factor. Recent research in mice has suggested that increased exercise in mothers could reduce the risk of congenital heart defects in the fetus [START_REF] Schulkey | The maternalage-associated risk of congenital heart disease is modifiable[END_REF].

body parts in the brain.

ose movements are not random. By the 14th week, twothird of hand motions are directed towards salient objects in the uterus: the fetus body, the umbilical cord, and the wall of the uterus [START_REF] Sparling | Fetal and Neonatal Hand Movement[END_REF]).

e specific reasons why fetuses move are still investigated. Some motions are provoked by external stimulation, others stem from self-simulation, while some appear to be just spontaneous. As [START_REF] Adolph | Motor Skills. In: Handbook of Cultural Developmental Science[END_REF] puts it, 'A primary reason why fetuses move is that they can' (see also Box 2.1).

At birth, the newborn undergoes a drastic environmental change. No longer supported by the amniotic fluid, the same movements require more strength. e dampening properties of the amniotic fluid are not present anymore, and stopping a movement becomes non-trivial.

ese two new environmental conditions taken together and combined with underpowered muscles ensure that neonates are restricted in their capacity to perform violent movements they could not control, and that could lead to injury.

e spontaneous movements of the fetus continue after birth, through short bursts of activity ( elen 1979, 1981a,b), that extend throughout the first year. At one year old, it is estimated that infants have undergone more than 100 000 bouts of activity, commonly referred as , each of them involving repetitive movements. One of those activities is the kicking of the legs, that seems to prepare stepping motions.

As a clear evidence that those motions involve learning, the uniformity of the repetition of the kicking motion improves throughout the first year [START_REF] Kahrs | Rhythmical stereotypies in infancy[END_REF]). e original proposed explanation, involving hard-wired pattern generators [START_REF] Hilgard | The Neuromuscular Matura on of the Human Infant[END_REF][START_REF] Mcgraw | The neuromuscular matura on of the human infant[END_REF], is further weakened when one observes that movements adapt to the fetus rapid morphological changes during development [START_REF] Robison | Learning to Move Before Birth[END_REF].

Furthermore, recent studies have shown that those movements play an important role in the organization of the body map of the spinal cord and the somatosensory cortex [START_REF] Braun | Dynamic organiza on of the somatosensory cortex induced by motor ac vity[END_REF][START_REF] Milh | Rapid Cor cal Oscilla ons and Early Motor Ac vity in Premature Human Neonate[END_REF][START_REF] Granmo | Ac on-Based Body Maps in the Spinal Cord Emerge from a Transitory Floa ng Organiza on[END_REF].

Efforts have been made to construct models and simulations of those mechanisms. Simulation of the self-organization emerging from spontaneous movements have been conducted (Marques, Imtiaz et al. 2012;[START_REF] Marques | Self-organiza on of Spinal Reflexes Involving Homonymous, Antagonist and Synergis c Interac ons[END_REF]. [START_REF] Yamada | Impacts of Environment, Nervous System and Movements of Preterms on Body Map Development: Fetus Simula on with Spiking Neural Network[END_REF] and [START_REF] Sasaki | Tac le s muli from amnio c fluid guides the development of somatosensory cortex with hierarchical structure using human fetus simula on[END_REF] have used a simulation of a human fetus, along with its amniotic fluid and uterine wall to study the development of a spiking neural network and the establishment of the body map of the simulated fetus, driven by self-stimuli and stimuli from the environment. [START_REF] Lee | Intrinsic Ac vi ty: from motor babbling to play[END_REF] has proposed a conceptual framework that attempts to explain how infants can switch from simple motor babbling to gradually more complex actions, and exhibit sophisticated play activity later in their development. [START_REF] Blumberg | Twitching in Sensorimotor Development from Sleeping Rats to Robots[END_REF] argues for the value of twiching during sleep for sensorimotor development: the general muscle atonia of sleep would generate highly discriminable proprioceptive feedback, and propose a robotic model to study it.

e self-organization of the body map in infants is still the object of intense investigation. Our study of exploratory processes is in part motivated by this phenomenon, and how it could be effectively reproduced in robots: exploratory processes generate information that can fuel the self-organizing process, that could effectively bootstrap body and proximal environment discovery.

e work presented in this thesis, however, does not investigate this problem directly, and does not claim to bring any contribution to it either. e exploration process we investigate are considered in ecological contexts that have no resemblance to the developing body of a child.

Goal Babbling

In chapter 0, we compared two strategies, motor and goal babbling for a reaching task. Even as goal babbling has been shown to be superior, one can wonder about the ecology of a goal babbling strategy: it needs a coordination between motor action and sensory perception, needs for the consequences of actions to be observable, and observed, and needs the causal link between motor and sensation to be established. ese abilities will no doubt be present in young infants, but they seem sophisticated for neonates? Since we advocated goal babbling to learn from scratch, without any previous information9 , if such a strategy cannot be carried by a neonate, the biological justification of our model, even as simplified and contrived as it is, cannot be made.

Neonates, it turns out, are able to sophisticated goal-directed actions [START_REF] Hofsten | An ac on perspec ve on motor development[END_REF]. ey are able to direct their attention towards salient features and others' eyes [START_REF] Haith | Rules that babies look by : the organiza on of newborn visual ac vity[END_REF][START_REF] Farroni | Eye contact detec on in humans from birth[END_REF], and are able to extend their arm towards their gaze [START_REF] Hofsten | Eye-hand coordina on in the newborn[END_REF]. Moreover, infants will tend to create sources of coordinated sensorimotor observations by putting their moving hand in their field of vision [START_REF] Meer | The func onal significance of arm movements in neonates[END_REF], placing them specifically at the location of a spotlight when the rest of the field of view is dark [START_REF] Meer | Keeping the arm in the limelight: Advanced visual control of arm movements in neonates[END_REF]. At 3 months, infants are capable to form goalbased representation about the manipulation of object [START_REF] Sommerville | Ac on experience alters 3month-old infants' percep on of others' ac ons[END_REF]). e representation of actions, in infants and adult, seems to be goal directed: an action is perceived as the same if the goal remains identical, even if the method differs [START_REF] Hofsten | An ac on perspec ve on motor development[END_REF].

In computational settings, the works of [START_REF] Baranes | Intrinsically mo vated goal explora on for ac ve motor learning in robots: A case study[END_REF], [START_REF] Rolf | Mastering Growth while Bootstrapping Sensorimotor Coordina on[END_REF], [START_REF] Jamone | Learning task space control through goal directed explora on[END_REF] and [START_REF] Hervouet | FIMO: Framework for Intrinsic Mo va on[END_REF] have demonstrated the benefits of goal-directed exploration over motor babbling in several contexts. And although [START_REF] Lee | Intrinsic Ac vi ty: from motor babbling to play[END_REF] has termed his approach 'goal-free motor babbling', it in fact mixes goal babbling and motor babbling.

Psychological Studies of Exploratory Behaviour

e earliest studies of exploratory behaviour were done on the novelty-seeking behaviour of rats at the beginning of the 20th century [START_REF] Small | Notes on the Psychic Development of the Young White Rat[END_REF][START_REF] Slonaker | The normal ac vity of the albino rat from birth to natural death, its rate of growth and the dura on of life[END_REF][START_REF] Nissen | A Study of Exploratory Behavior in the White Rat by Means of the Obstruc on Method[END_REF].

In 1937, Skinner, inspired by the works of [START_REF] Morgan | An introduc on to compara ve psychology[END_REF], orndike (1911) and [START_REF] Pavlov | О психической секреции слюнных желез. In: Поли. собр. соч 3[END_REF][START_REF] Pavlov | Condi oned Reflexes[END_REF] [START_REF] Watson | Psychology as the behaviorist views it[END_REF]), develops the theory of , which insists that all behaviour can be shaped by external rewards [START_REF] Skinner | The behavior of organisms: an experimental analysis[END_REF][START_REF] Skinner | Verbal behavior[END_REF].

By 1943, the Hullian [START_REF] Hull | Principles of Behavior: An Introduc on to Behavior Theory[END_REF], building on the homeostatic concept of [START_REF] Cannon | The wisdom of the body[END_REF], is established. According to it, behaviour can be explained by the need to reduce the tension of . Drives can be distinguished between primary drives such as thirst, hunger, reproduction, sleep, fear, pain, and secondary drives that are not physiological, but learned from conditioning, such as money or citation counts. Drive can compete for control of behaviour: hunger can override sleep, or the opposite depending on the situation.

is would account for the behavioural diversity displayed by animals.

A seductive aspect of the drive reduction theory is its mathematical formulation [START_REF] Spence | Mathema cal formula ons of learning phenomena[END_REF]. It offered for the first time a way for psychologists to compute behaviour, and it made the theory a prime target for experiments. However, the drive reduction theory (and the operant conditioning theory) fails to adequately explain exploratory behaviour. Exploration increases drives' tension without reducing the tension of any. In 1950, [START_REF] Harlow | Learning Mo vated by a Manipula on Drive[END_REF] observes that monkeys would play with mechanical puzzles for extended periods even when no reward was provided. Harlow argues that this playful behaviour could not be satisfactorily explained by any primary or secondary drive. He proposes a drive to manipulate, that belongs to another type of drive, drives. His idea did not receive wide acceptance: the drive reduction theory was able to explain much of behaviour exhibited by animals and humans, with a mathematical formalism that Harlow's third drive was compromising. Harlow abandons his idea. At the same time, Montegomery starts a series of experiment on the exploratory behaviour of rats (Montgomery 1951a(Montgomery ,b, 1952a,b),b), and propose an exploratory drive [START_REF] Montgomery | The role of the exploratory drive in learning[END_REF][START_REF] Montgomery | Discrimina on learning based upon the exploratory drive[END_REF].

Since its publication in the 1930's, Piaget's research is slowly making its way over the Atlantic. Piaget insistence on exploratory behaviour driving cognitive development (Piaget et al. 1953) will have a profound impact on the study of exploratory behaviour. [START_REF] Berlyne | Novelty and Curiosity as Determinants of Exploratory Behavior[END_REF][START_REF] Berlyne | Conflict, arousal, and curiosity[END_REF][START_REF] Berlyne | Curiosity and Explora on[END_REF] starts conducting experiments to explore the impact of novelty on behaviour in animals and humans, and postulates that: Berlyne (1950, p. 73) Berlyne proposes a curiosity drive, externally excited by stimulus conflicts, with a typical U-shape response to novelty: stimulus that are neither too novel nor too familiar arouse a maximal motivational response. Contemporary to Berlyne, Fowler attacks Berlyne's account of curiosity, noting that the stimulus producing behaviour is supposed to both evoke and satisfy the curiosity drive [START_REF] Fowler | Curiosity and Exploratory Behavior[END_REF]. Fowler proposes instead a boredom-based drive, which explains why investigative behaviour may be initiated before any relevant stimulus. Recent experiments have shown that boredom certainly plays a role in motivation: humans sometimes prefer negative outcomes (such as electric shocks) rather than doing nothing [START_REF] Wilson | Just think: The challenges of the disengaged mind[END_REF] 10 .

e same period sees other theories of motivation emerge. Festinger (1957) proposes a drive based on the reduction of cognitive dissonance: when presented with information that is not coherent with an individual's beliefs, he would experience discomfort and be motivated to reduce it. [START_REF] Kagan | Mo ves and development[END_REF] offers a similar view, building upon the work of Festinger, that formulated motivations as reduction of uncertainty, and recasts the work of Berlyne, Dember (1965), White, Hunt, (McClelland et al. 1953) and other in that perspective. e theory of Kagan and Festinger have been criticized for failing to explain why humans engage in activity that increase uncertainty; for Kagan, it is explained by a more cognitive form of uncertainty: (Kagan 1972, p. 60) Dember and Earl (1957), [START_REF] Dember | The new look in mo va on[END_REF], [START_REF] Walker | Psychological complexity as a basis for a theory of mo va on and choice[END_REF] and [START_REF] Hunt | Intrinsic mo va on and its role in psychological development[END_REF] propose an alternative approach where humans do not strive to reduce uncertainty entirely, but rather to maintain an intermediate level of it, dubbed . Amusingly, Kagan suggested that if one read the work of [START_REF] Walker | Psychological complexity as a basis for a theory of mo va on and choice[END_REF] and [START_REF] Dember | The new look in mo va on[END_REF] while replacing every instance of 'optimal incongruity' by 'uncertainty', they would be great additions to his work 11 .

More recently, [START_REF] Loewenstein | The psychology of curiosity: A review and reinterpreta on[END_REF] proposed an iteration on these ideas: curiosity as a 'form of cognitively induced deprivation that arises from the perception of a gap in knowledge or understanding'. In other words curiosity is created by the difference between what the subject knowns and what it would like to know.

Contemporary of Berlyne, White (1959) attacks the Hullian theory of behaviour, and propose the concept of competence as a fundamental part of motivation. Similar ideas were formulated a decade before by [START_REF] Woodworth | Reenforcement of percep on[END_REF][START_REF] Woodworth | Dynamics of behavior[END_REF]. According to White, mastering a task would be motivating in itself, and not necessarily need external rewards-nor it would necessarily need for the task to be useful at reducing the drives' tension. deCharms (1968) proposes similar ideas, insisting on an , i.e., that the success at a task comes with the perception, from the subject, that the success is due to internal causes-that he, not an external event, is responsible for the success.

Twenty years after Harlow's experiments on monkeys, Edward Deci conducts similar ones on humans [START_REF] Deci | Intrinsic Mo va on[END_REF][START_REF] Deci | Intrinsic Mo va on and Self-Determina on in Human Behavior[END_REF]. He uses a Soma puzzle, and ensures that participants are left innocently alone with it for several minutes. Not only participants play with the puzzle even where there was no objective reason too, but additional rewards manage to decrease the length of engagement in some cases. Not only the behaviour is not explained by the Hullian theory, but intrinsic motivation can decrease when the behaviour is also reinforced by a conventional reward. Intrinsic motivation do not necessarily entertain additive relation with primitive or secondary drives, hereby defeating attempts at claiming competence or novelty as just another drive 12 13 .

Csikszentmihalyi introduced and documented the concept of (Csikszentmihalyi 1990; [START_REF] Csikszentmihalyi | Flow. In: Handbook of Competence and Mo va on[END_REF]): human engagement is maximal when the task at hand is neither too complex or too easy, but matches the level of competence of the individual optimally. When in , subjects exhibit attention span far longer than the one observed in other situations. Csikszentmihalyi's work resonates strongly with White concept of competence [START_REF] White | Mo va on Reconsidered: The Concept of Competence[END_REF]. A similar concept in social learning is the of Vygotsky (1978): the activities that are just hard enough that a learner cannot learn them on its own, but can if helped by a peer 'If one subs tutes uncertainty for op mal complexity in the wri ngs of [START_REF] Walker | Psychological complexity as a basis for a theory of mo va on and choice[END_REF] and [START_REF] Dember | The new look in mo va on[END_REF], these posi ons become complementary to the one presented here.' (Kagan 1972, p. 57).

Interes ngly, an experiment by Fes nger and Carlsmith (1959) on cogni ve dissonance also showed that external rewards entertain complex, non-intui ve rela ons with mo va on.

One thing remains undisputed: (primary) drive tensions generally override exploratory behaviour [START_REF] Cohen | Effect of depriva on level on exploratory behavior in the albino rat[END_REF]). (usually a parent or teacher). Recently, some work has been proposed to use both concepts together [START_REF] Basawapatna | The zones of proximal flow[END_REF].

One of the most interesting aspect of intrinsic motivations is that they are highly dependent on the individual's experience and competence: they the acquisition of knowledge and skills by guiding the learning process towards learnable and/or new areas of the learning space. As such, they are an indispensable actor in the development of a self-sufficient agent.

Recent research corroborates intrinsic motivation theories. [START_REF] Kidd | The Goldilocks Effect: Human Infants Allocate A en on to Visual Sequences That Are Neither Too Simple Nor Too Complex[END_REF] has shown that children allocate their visual attention in order to maintain an intermediate level of complexity, avoiding sequence that are too simple (not enough information gain), or too complex (no possible or energy-expensive information gain). e results were reproduced in [START_REF] Kidd | The Goldilocks Effect in Infant Auditory A en on[END_REF] for sequences of sounds: attention was contingent on intermediate complexity. [START_REF] Gerken | Infants avoid 'labouring in vain' by a ending more to learnable than unlearnable linguis c pa erns[END_REF] reported a similar result concerning learnability on 17-month old children. Two similar linguistic patterns were presented to the children, one learnable and the other not learnable (the result of a previous study, see [START_REF] Gerken | Infants can use distribu onal cues to form syntac c categories[END_REF]). Children were shown to engage more with the learnable pattern; they avoided 'labouring in vain'. ese studies confirm the theory that even from a young age, learning abilities influence exploration and attention.

In a recent study done on adults Baranes, Oudeyer and Gottlieb (2014) shows that when able to choose freely amongst an array of tasks (short video games), adults seek novelty and challenge. e concurrent presence of a motivation to increase competence and one to see new games shows that behaviour is the result of the interplay between . Moreover, even as the task set featured unlearnable tasks, the range of tasks was sampled.

is can be understood as a simple novelty seeking behaviour, or as a global diversity-seeking behaviour. Novelty-seeking is only interested in being presented with something not experienced before. Diversityseeking implies a motivation to understand the range of variations that the task set offers.

e experimental setup proposed by Baranes, Oudeyer and Gottlieb (2014) does not allow to disambiguate the two motivations.

Intrinsic Mo va on in Animals

Recent studies of the motivations of animals have established interesting results. [START_REF] Wood-Gush | The significance of mo va on and environment in the development of explora on in pigs[END_REF] and [START_REF] Wood-Gush | The seeking of novelty and its rela on to play[END_REF] provide experiments that indicate that piglets seek novelty in their exploratory behaviour. e first experiment (Wood-Gush, Vestergaard and Petersen 1990) showed that after being confined in a bare pen, piglets spend more time examining a novel object introduced in their environment, than piglet confined in pens featuring straw, branches, logs, stone and creep feed, and therefore that offered richer interactions. In a second experiment (Wood-Gush and Vestergaard 1991), when offered the choice between entering two pens, one with a novel object and one with a familiar one, the piglet showed a strong preference for the pen with the novel object. Moreover, the novel object was linked with a significant increase in playful behaviour.

Interestingly, both experiments where criticized by [START_REF] Rushen | Explora on in the pig may not be endogenously mo vated[END_REF], arguing that methodological error did not allow to distinguish between an intrinsic exploratory motivation14 and classical conditioned behaviour. Wood-Gush and Vestergaard (1993) offered a rebuttal, observing that even if environmental cue trigger the exploration, it does not explain the behaviour itself. Moreover, piglets, even if kept in pens where food is provided show exploratory tendencies (similar observations were done on food-deprivation in rats not altering novelty-seeking behaviour, [START_REF] Hughes | Food depriva on and locomotor explora on in the white rat[END_REF]). And if the pens are bare and featureless-even when all physiological needs are satisfied-, abnormal behaviour is observed. Exploration seems to be not only intrinsic, but necessary, in a rich-enough environment. Although the Rushen response stays mainly technical, it also illustrates the confrontation of two schools of thoughts, where Rushen defends that all exploration is due to external stimuli.

Fear of novelty has often been invoked to argue that exploration could only be motivated by external stimuli: how to explain that animals would voluntarily engage in an activity that elevated stress levels while not providing any obvious reward? Experiments conducted by [START_REF] Misslin | Does neophobia necessarily imply fear or anxiety?[END_REF] measured the levels of corticosterone, a steroid hormone involved in stress response, in mice that were allowed to roam in familiar and novel environment.

e results showed no physiological or behavioural indication of stress during the exploration of the novel environment. Stress was present, however, if the mice were prevented to return to the familiar environment, or were manually placed in the novel environment. [START_REF] Misslin | Does neophobia necessarily imply fear or anxiety?[END_REF] concludes that the ability to regulate one's own exploration is critical.

is suggests that personal causation and control, which can be considered as motivations with the of deCharms (1968) and the competence drive of [START_REF] White | Mo va on Reconsidered: The Concept of Competence[END_REF], also play important roles in emotional regulation during exploratory behaviour. is has led some psychologists [START_REF] Duncan | Behavior and behavioral needs[END_REF][START_REF] Poole | Mee ng a mammal's psychological needs: Basic principles[END_REF] to define exploratory behaviour, and more generally, the expression of intrinsic motivations, as a or

need. e study of novelty-seeking behaviour is not the prerogative of vertebrates: it has been reported in cockroaches [START_REF] Darchen | Sur l'ac vité exploratrice de Bla ella germanica[END_REF]) and bees [START_REF] Lindauer | Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat[END_REF][START_REF] Liang | Molecular Determinants of Scou ng Behavior in Honey Bees[END_REF].

is underscores the need for a systematic study of how cognitive abilities across species influence the diversity and complexity of intrinsic motivations. A recent study by [START_REF] Edwards | Do Capuchin Monkeys (Cebus apella) Diagnose Causal Rela ons in the Absence of a Direct Reward?[END_REF] highlighted that capuchin monkeys did not engage with a learning task in the absence of an immediate reward: they were not intrinsically motivated by discovering causal knowledge. Moreover, capuchins learned better when the reward was present. Evidence in humans has shown opposite results [START_REF] Kang | The Wick in the Candle of Learning: Epistemic Curiosity Ac vates Reward Circuitry and Enhances Memory[END_REF]: memory is increased when driven by intrinsic motivation. is suggests interesting venues of investigations for the developmental causes of the cognitive differences between humans and capuchins. As [START_REF] Edwards | Do Capuchin Monkeys (Cebus apella) Diagnose Causal Rela ons in the Absence of a Direct Reward?[END_REF] points out (emphasis them): Edwards et al. (2014, p. 11) Let's note that [START_REF] Watson | Can puzzle feeders be used as cogni ve screening instruments? Differen al performance of young and aged female monkeys on a puzzle feeder task[END_REF] have observed instances of reward discarding in cynomulus monkeys, on a task with staged difficulty. [START_REF] Watson | Can puzzle feeders be used as cogni ve screening instruments? Differen al performance of young and aged female monkeys on a puzzle feeder task[END_REF] conclude that in some instances, going to a higher difficulty seems more motivating than the food pellet resulting from finish the current level of difficulty.

ese two studies are insufficient to draw any definitive conclusions, but it points to two salient taxonomic units for further comparative studies: the catarrhines (Old World monkeys, to which cynomulus monkeys belong, and apes) and platyrrhines (New World monkeys, that include capuchins). Finally, [START_REF] Clark | Effect of a Cogni ve Challenge Device Containing Food and Non-Food Rewards on Chimpanzee Well-Being[END_REF] provide a study where chimpanzees would engage more with a cognitive task when food rewards were absent, highlighting a complex relation between reward and motivation.

A systematic study of animal capacity for intrinsic motivation is currently made difficult by the methodological difficulties of studying motivations in animals. Indeed, how to measure and discriminate between extrinsic and intrinsic motivations from animal behaviour remains an active challenge: (Brown and Nemes 2008, p. 442).

And the terms designating different motivations are often not precisely used: [START_REF] Meagher | Environmental Enrichment Reduces Signs of Boredom in Caged Mink[END_REF] Others have stressed the current situation as well, and attempted to provide answers [START_REF] Hughes | Intrinsic explora on in animals: mo ves and measurement[END_REF][START_REF] Carter | Animal personality: what are behavioural ecologists measuring?[END_REF].

Another problem is that most studies will study behavioural traits for which there is a priori evidence of their presence. As [START_REF] Gosling | Personality Dimensions in Nonhuman Animals: A Cross-Species Review[END_REF] points out: Gosling et al. (1999, p. 74) 

Evolu onary Perspec ve

Another perspective that has seen a recent uptick is the evolutionary one. In the computational intrinsic motivation domain Singh, [START_REF] Singh | Where Do Rewards Come From?[END_REF] and [START_REF] Singh | Intrinsically Mo vated Reinforcement Learning: An Evolu onary Perspec ve[END_REF] have brought forward very interesting ideas, suggesting mechanisms that could explain how intrinsic motivations originated from evolutionary processes-because, one way or another, they did (I go back in details about this in section 2.5). In biology, recent studies of animal behaviour have shown the heritability of exploratory behaviour [START_REF] Dingemanse | Repeatability and heritability of exploratory behaviour in great ts from the wild[END_REF], which has led studies to use rats selectively bred for novelty seeking behaviour [START_REF] Stead | Selec ve Breeding for Divergence in Noveltyseeking Traits: Heritability and Enrichment in Spontaneous Anxiety-related Behaviors[END_REF][START_REF] Ballard | Differen al novelty detec on in rats selec vely bred for novelty-seeking behavior[END_REF]. [START_REF] Russell | Exploratory behaviour of colonizing rats in novel environments[END_REF] performed a study of five males (normally bred) white rats individually introduced in the mammal-free, 9.5-hectare Motuhoropapa island in New Zealand, and tracked their position using GPS. eir conclusion was that the rats movements were apparently random, only mediated by a central place of foraging behaviour.

ese studies stress the need to look at the relevance of intrinsic motivations in biological organisms beyond the individual level, at the species level. Intrinsic motivations generate exploratory behaviour. And exploratory behaviour directly contributes to the geographical dissemination of a species, which in turn, improves species survival.

e argument can be made then that, even if intrinsic motivations can be detrimental for the survival of the individual, because it pushes it into unknown and uncertain-thus potential dangerous-situations15 , it can still be explained in a evolutionary perspective, because it increase the species geographical robustness [START_REF] Russell | Psychological Studies of Explora on in Animals: A Reappraisal[END_REF][START_REF] Holway | Animal behavior: an essen al component of invasion biology[END_REF]Martin 2005;Taylor and Hastings 2005;[START_REF] Wright | Behavioral flexibility and species invasions: the adap ve flexibility hypothesis[END_REF][START_REF] Cote | Personality traits and dispersal tendency in the invasive mosquitofish (Gambusia affinis)[END_REF][START_REF] Russell | Exploratory behaviour of colonizing rats in novel environments[END_REF][START_REF] Chapple | Know when to run, know when to hide: can behavioral differences explain the divergent invasion success of two sympatric lizards? In[END_REF][START_REF] Chapple | Can behavioral and personality traits influence the success of uninten onal species introduc ons? In[END_REF][START_REF] Liebl | Exploratory behaviour and stressor hyper-responsiveness facilitate range expansion of an introduced songbird[END_REF][START_REF] Overveld | Seasonal-and sexspecific correla ons between dispersal and exploratory behaviour in the great t[END_REF]) and reduces inbreeding.

Interestingly, exploratory behaviour has been studied experimental in large majority on rats.

at can be explained by its convenient and heavy use across biological studies. But one also has to acknowledge that its capacity to disseminate and invade new ecosystems, matched by few, makes it a particularly favourable subject for those studies.

Of course, robots are not generally subject to these issues of species survival. Yet, as Merrick (2012, p. 231) remarked, current agents and robots have few types of motivation (see section 2.5), and few behaviours. But the trend is towards an increase in both, in the context of social exchanges with peers, and in particular in the context of populations of agents [START_REF] Sequeira | Socio-Emo onal Reward Design for Intrinsically Mo vated Learning Agents[END_REF]) and swarm robotics. For those domains of investigation, the impact of intrinsic motivations on the population overall behaviour has potentially substantial consequences.

e consequences for individual robots are reversed, but are nonetheless important to consider: intrinsic motivations based on psychological accounts of behaviour in humans and animals do not necessarily lead to behaviour that is best at the individual level. Consequently, their transcription onto robots, where individual efficacy is sought most of the time, must be done with appropriate awareness of those factors.

Computational Intrinsic Motivation

e field of computational intrinsic motivation is situated at the confluence of psychology, active learning, and the design of embodied and disembodied agents.

Reinforcement learning (Sutton 1998) is a learning framework where the goal of an agent is to maximize a reward signal. Reinforcement learning has been successful in robotics, in particular because it offers a naturally incremental, online learning framework. However creating reward functions for complex tasks has proven to be difficult and frustrating, often relying on manual tuning from experts. Exhaustive analysis of small problems has shown that the best reward functions can be counterintuitive [START_REF] Singh | Where Do Rewards Come From?[END_REF][START_REF] Singh | Intrinsically Mo vated Reinforcement Learning: An Evolu onary Perspec ve[END_REF]. Moreover, static rewards signals and stable environments extinguish the acquisition of new knowledge and skills over time: once the task is learned, learning stops.

Spurred by the advances of the psychological models, intrinsic motivation systems were proposed as environment-agnostic motivational systems conductive of open-ended learning. Intrinsic motivation allows the agent to structure its learning trajectory by itself while complying with the environmental constraints, and prevents the extinction of learning. Intrinsic motivation drives are now recognized as a fundamental component of any self-sufficient robotic and biological system learning and exploring in an uncertain environment (Gottlieb et al. 2013).

Many different artificial curiosity drives have been proposed. Schmidhuber proposed the compression driven progress measure [START_REF] Schmidhuber | Curious Model-Building Control Systems[END_REF][START_REF] Schmidhuber | A Possibility for Implemen ng Curiosity and Boredom in Model-building Neural Controllers[END_REF][START_REF] Schmidhuber | Driven by Compression Progress: A Simple Principle Explains Essen al Aspects of Subjec ve Beauty, Novelty, Surprise, Interes ngness, A en on, Curiosity, Crea vity, Art, Science, Music, Jokes[END_REF][START_REF] Schmidhuber | Formal Theory of Crea vity, Fun, and Intrinsic Mo va on (1990-2010)[END_REF], basing the drive on how well a prediction module could compress the sensorimotor data the agent receives. In 2004, [START_REF] Barto | Intrinsically mo vated learning of hierarchical collec ons of skills[END_REF][START_REF] Singh | Intrinsically Mo vated Reinforcement Learning[END_REF][START_REF] Stout | Intrinsically Mo vated Reinforcement Learning: A Promising Framework for Developmental Robot Learning[END_REF]) was introduced, that computes the reward inside the agent, using objective feedback from the environment, with novelty as a possible drive. At the same time, in the context of developmental robotics, [START_REF] Oudeyer | Intelligent Adap ve Curiosity: a source of Self-Development[END_REF] and [START_REF] Oudeyer | Intrinsic Mo va on Systems for Autonomous Mental Development[END_REF] propose the (IAC) algorithm, that partitions the sensorimotor space and seeks regions where the derivative the performance in prediction is maximal. Robustness improvements are later made by [START_REF] Baranes | R-IAC: Robust Intrinsically Mo vated Explora on and Ac ve Learning[END_REF]. [START_REF] Lee | Category-based Intrinsic Mo va on[END_REF] propose a variant of IAC, called that creates regions using [START_REF] Fritzke | A Growing Neural Gas Network Learns Topologies[END_REF] to create regions.

IAC is limited to low-dimensional problems, because the partition is done over the whole sensorimotor space. [START_REF] Baranes | Intrinsically mo vated goal explora on for ac ve motor learning in robots: A case study[END_REF] proposed an new algorithm, SAGG-RIAC, that only partitions the sensory space and guides learning by choosing interesting areas of the sensory space: SAGG-RIAC is a goal babbling strategy, and was demonstrated on an 30-dimension motor space. [START_REF] Hervouet | Improvement proposals to intrinsically mo va onal robo cs[END_REF] later proposed improvements on SAGG-RIAC. e idea of using learning progress to drive exploration was adapted to model-based reinforcement learning by [START_REF] Lopes | Explora on in Modelbased Reinforcement Learning by Empirically Es ma ng Learning Progress[END_REF], using cross-validation error to measure the evolution of model accuracy.

Other approaches include (Klyubin et al. 2005a(Klyubin et al. ,b, 2008;;Salge et al. 2014b,a), where the agent is motivated to maximize its control over the environment. It is based on information theory; the agent maximized the channel capacity from the motors to the sensors. Another information theoretic approach is offered by [START_REF] Ay | Predic ve informa on and explora ve behavior of autonomous robots[END_REF]Martius et al. 2013), where the agent is motivated by maximizing . Maximizing predictive information encourages the robot to diversify his behaviour as much as possible, while keeping it predictable: this is the production of diversity constrained by the learning capabilities of the agent. [START_REF] Friston | Ac on and behavior: a freeenergy formula on[END_REF] argues that organisms are motivated by the minimization of the free energy, and that it elicits active sampling. Let's remark here that the free energy, also called , is linked to the notion of self-organization (see Polani (2008, p. 28)). is review is far from exhaustive, see [START_REF] Oudeyer | Intrinsic Mo va on Systems for Autonomous Mental Development[END_REF]Baldassarre and Mirolli 2013) for detailed surveys.

Extrinsic versus Intrinsic Mo va ons

e precise definition of intrinsic motivation, and its difference from motivations has been the subject of debate [START_REF] Baldassarre | What are intrinsic mo va ons? A biological perspec ve[END_REF]).

e internal/external dichotomy has been rejected. While there is consensus that intrinsic motivations originate in the agent, typical extrinsic motivations such as hunger generate stimulations that are expressed through proxies in the brain: all motivational signals are created by the brain (Baldassarre 2011, p. 2). Singh, Lewis, [START_REF] Singh | Intrinsically Mo vated Reinforcement Learning: An Evolu onary Perspec ve[END_REF] and Barto (2012, pp. 36-40) argue that extrinsic and intrinsic motivation form a continuum in biological systems, since they were created through a gradual evolutionary process. A computational account of this hypothesis is given by Singh, [START_REF] Singh | Where Do Rewards Come From?[END_REF] and [START_REF] Singh | Intrinsically Mo vated Reinforcement Learning: An Evolu onary Perspec ve[END_REF], who proposed the notion of an . Given a fitness function and the distribution of environments, a reward function is evaluated in function of the expected fitness it generates across the distribution of environments. e optimal reward function is the one generating the highest expected fitness. It is a method that creates good rewards signals, robust to environmental variation, and that produces behaviours generating high fitness. Singh, Lewis, Barto and Sorg (2010, p. 12) argue that this framework provides a plausible explanation for the formation of both intrinsic and extrinsic motivations:

, [START_REF] Oudeyer | How can we define intrinsic mo va on? In: proceedings of the 8th interna onal conference on epigene c robo cs: modeling cogni ve development in robo c systems[END_REF] propose an explicit definition: Oudeyer and Kaplan (2008, p. 3) While we will refrain from weighting in (too much) in the debate, it is important to understand the properties that are largely shared by intrinsic motivations: they tend to generates tensions that are , while this is not the usual case for extrinsic motivations.

Let's take the example of hunger, an extrinsic motivation. Hunger does not depend on the experience of the subject. It depends on his recent past-how long ago and how much did he eat. But it does not depend on the knowledge of the agent. Or on his skills. Without food, the subject will experience hunger and then starvation the same way.

On the other hand, curiosity is driven by the relationship between the environment and the agent's knowledge and skills (Ryan et al. (2000, p. 56): 'intrinsic motivation exists in the relation between individuals and activities'). And because those two are dependent on experience, it makes curiosity dependent on experience. As (Baldassarre 2011, p. 4) remarks, intrinsic motivation signals are characteristically transient in humans: they disappear and decrease as soon as the skill has been learned or the knowledge acquired.

It is important to note that we discriminate the motivation by the they create. One could argue that hunger generates experience-specific tensions. For instance, Given one's preferences, one may be hungry for a salad but not for a steak. While this is true, eating one or the other, however displeasing, will relieve hunger. More generally, whatever substance has relieved hunger in the past will do so in the present, even if preferences can change, in particular because of habituation mechanisms. e same cannot be said of curiosity: telling someone something he already knows will not satisfy his curiosity, even if it did in the past, when he had not had knowledge of it yet. Intrinsic motivations' are usually dependent on experiences. Yet, not all are. [START_REF] Oudeyer | Intrinsic Mo va on Systems for Autonomous Mental Development[END_REF] propose, for instance, several morphological intrinsic motivations that are not dependent on experience.

A point that we must address is the one of secondary drives, which are learned from conditioning from primary drives. As such, they seem to make non-intrinsic tensions dependent on experience. However, this is the drive that is dependent on experience, not the tension. e way to relieve the tension of those secondary drive is still a change of state of the agent, not a change of experience. A child can have internalized social pressure from his parents to have good grades, and this is the only thing motivating him to study.

is is an extrinsic motivation. e way to relieve the social pressure is to consistently do his homework, listen in class, and obtain a good grade report he can present to its parents. Moral pressure and risk-taking notwithstanding, the child could find that not studying and cheating his way to exams or forging the report card would be an equally good solution to the pressure. e situation is solved by a change of state. A child that is intrinsically motivated to study might still feel social pressure, and cheat or forge his report card, but he will study nonetheless, because his motivation can only be satisfied by an acquisition of knowledge.

e distinction does not depend on the agent behavioural success. It does not depend either on the biological mechanisms underlying the motivations. It applies to humans, robots, as well as artificial agents.

In that context, it is easy to see why intrinsic motivations are suited for cumulative learning: they adapt to the accumulation of experiences, and lead the agent towards continuously acquiring novel information and avoiding stationary or repetitive behaviour. Intrinsic motivations produce structured exploratory behaviour.

Finally, let's remark that distinguishing motivations by how experience is involved is probably interesting and useful, regardless of how well it separates extrinsic and intrinsic motivations. Its applicability to computational intrinsic motivation in particular make it useful in the analysis of the contribution of different motivations to behaviour in heterogeneous motivational architectures.

Novelty versus Surprise

In our interest for exploration and the production of diversity, using a motivational drive driven by novelty seems the most straightforward choice. Novelty, here, is defined as 'different from anything known before'.

Novelty-based intrinsic motivation directs the agent behaviour to seek out stimulus that have not been observed before. Novelty is different from surprise: an effect can be novel without being surprising, because it has been correctly predicted (e.g. there is a new intern in the lab this morning, but I was told about it.). Conversely, an effect can be surprising but not novel, because it has not been correctly predicted but is familiar nonetheless (e.g. I am surprised to see my colleague at work this morning, I thought he was ill.). Surprise depends on the internal model of the agent, novelty only depends on its past history. Surprise is related to prediction error, and mediated by the confidence in the prediction: a wrong prediction with low confidence will generate less surprise than one made with high confidence.

ere are numerous subtleties to the distinction.

e interested reader is encouraged to consult [START_REF] Barto | Novelty or Surprise? In[END_REF].

In neurosciences, the difference is still investigated. Novelty requires to compare current stimuli against long-term memory, and therefore has to involve the hippocampus [START_REF] Kumaran | Which computa onal mechanisms operate in the hippocampus during novelty detec on?[END_REF][START_REF] Otmakhova | The Hippocampal-VTA Loop: The Role of Novelty and Mo va on in Controlling the Entry of Informa on into Long-Term Memory[END_REF]).

e neural response to surprise (i.e. the , sometimes called [START_REF] Ranganath | Cogni ve neuroscience: Neural mechanisms for detec ng and remembering novel events[END_REF])) in visual stimulus, on the other hand, would originate in the superior colliculus (a midbrain region often studied for its involvement in eye movement, but which has a much larger multisensory role in directed attention) [START_REF] Redgrave | The short-latency dopamine signal: a role in discovering novel ac ons? In[END_REF][START_REF] Redgrave | The Role of the Basal Ganglia in Discovering Novel Ac ons[END_REF]). e superior colliculus exhibits strong habituation characteristics [START_REF] Rankin | Habitua on revisited: An updated and revised descrip on of the behavioral characteris cs of habitua on[END_REF]): stimulus can receive a maximal response from the colliculus even if they are not new, if the previous presentation happened far enough ago in the past. Still [START_REF] Lisman | The Hippocampal-VTA Loop: Controlling the Entry of Informa on into Long-Term Memory[END_REF] reports results on the involvement of the hippocampus in surprise (expected versus unexpected conditioned stimuli) detection.

Many computational approaches have proposed surprise-based (or habituationbased) drives (Bolado- [START_REF] Bolado-Gomez | A biologically plausible embodied model of ac on discovery[END_REF][START_REF] Lee | Staged development of Robot Motor Coordina on[END_REF][START_REF] Meng | Novelty and Habitua on: The Driving Forces in Early Stage Learning for Developmental Robo cs[END_REF]Huang andWeng 2002, 2004;[START_REF] Marshall | An Emergent Framework for Self-Mo va on in Developmental Robo cs[END_REF], and many use the term to describe their methods. While novelty and surprise can be perfectly overlapping in simplified environments-thus justifying using surprise-detection methods to identify novelty-, in most studies, the difference is rarely acknowledged or discussed, in particular as a limitation of the method's applicability to more complex environments where novelty and surprise become distinct 16 .

Yet, our approach investigates processes that produce diversity. As such, a noveltynot surprise-intrinsic drive is of higher interest to us (this does not preclude success-ful diversity-producing exploration strategies to use a predictive-based drive, however).

Computa onal Novelty

e detection of computational novelty is related to two other problems.

e first is anomaly detection [START_REF] Chandola | Anomaly detec on[END_REF]), where a system is monitored for any behaviour that deviate from an established norm.

e application are numerous in industrial plants, medical care and automated security monitoring. e assumptions made in the anomaly detection context are not usually compatible with cumulative learning found in open-ended robot platform: a training set of exclusively normal behaviour is provided, and usually learned in a batch fashion.

e second problems is outlier detection [START_REF] Hodge | A Survey of Outlier Detec on Methodologies[END_REF][START_REF] Chandola | Outlier detec on: A survey[END_REF]), which overlaps significantly anomaly detection, with a significantly different starting assumption: outliers are already present in the data, and no 'clean' normal dataset exists.

Let's note that given a diversity measure, the novelty of a new piece of data can be quantified by the difference in diversity before and after the data has been acquired. As such, any diversity measure defined in section 1.4 defines an implicit novelty measure. We'll use such a technique in section 4.2 Few implementations of intrinsic motivations rely on novelty. is is due to multiple reasons. First, many existing learning algorithms can be understood as being already inherently driven by novelty: R-max [START_REF] Brafman | R-MAX -a General Polynomial Time Algorithm for Near-op mal Reinforcement Learning[END_REF]) is a reinforcement algorithm where all states are given initial maximal rewards estimations that drive the exploration optimistically towards states that are not familiar. is illustrates the second reason: many learning algorithms are considered and tested in environments where the complete task is learnable, i.e., all states can be visited. In such a context, novel tasks are explicit: novelty is supervised. Markou et al. (2003a,b) have proposed an extensive two-part review of novelty detection, underscoring the two different approaches: statistical methods, and neural networks.

In neural approaches, [START_REF] Marsland | A self-organising network that grows when required[END_REF] has introduced Growing-When-Required (GWR) neural networks, that create a new node when the activation level of the nearest node of a new stimulus is below a given threshold. is can adequately compute novelty. Furthermore, the network keeps track of the amount of training that each node has received, hence allowing a less binary form of novelty for rare stimuli.

is has been used by Neto et al. (2005aNeto et al. ( , 2007b,a) ,a) for visual detection of novelty.

In statistical approaches, most methods modelize the distribution density of the existing data, and characterize an observation as novel if it belongs to a low density area. To accurately modelize the distribution density however, large quantity of data are usually required or assumptions must be made (such as Gaussian distributions), which reduces their flexibility. [START_REF] Neto | Incremental PCA: An alterna ve approach for novelty detec on[END_REF][START_REF] Neto | Visual novelty detec on with automa c scale selec on[END_REF] have used Incremental PCA [START_REF] Artac | Object recogni on supported by user interac on for service robots[END_REF] for novelty detection in visual attention (and compared it to the GWR method). PCA creates a more compact representation of the data. If the new data cannot be represented precisely enough by the current representation, it is considered novel. Incremental PCA modifies the representation with each observation, integrating the new data to represent it accurately (and, hence, memorizing it).

Computational novelty is currently mostly used for visual tasks. For our own purposes, using the immediate improvement in diversity using a threshold coverage measure (section 1.4) was sufficient.

Diversity in Evolutionary Robotics

Abstract Encouraging popula on diversity during the evolu onary process is a recent soluon to two major challenges of evolu onary robo cs: the bootstrapping problem and the early convergence problem.

Evolutionary robotics [START_REF] Stanley | Why Evolu onary Robo cs Will Ma er[END_REF][START_REF] Doncieux | Evolu onary Robo cs: What, Why, and Where to[END_REF] aims to design robot morphologies, neural architecture and behaviours using algorithms inspired from the natural selection, variation, and hereditary mechanisms of natural evolution. As a subfield of evolutionary algorithms, evolutionary robotics distinguishes itself by evaluating the robots' behaviours rather than directly evaluating their phenotype, i.e. their morphology or their controller. As a subfield of robotics, evolutionary robotics distinguishes itself by having a global approach to the design of robots and their controller [START_REF] Mautner | Evolving robot morphology and control[END_REF], in contrast with the engineering approach that tries to decompose the design into independent problems to ensure modularity.

Evolutionary robotics regularly faces-amongst others-two specific challenges.

When the fitness of all members of the first generation is identical (typically because no rewarded behaviour was exhibited), the selection process cannot provide any progress toward a solution, and the algorithm is stalled. is is the (Mouret et al. 2009a). e canonical solution is to create a staged fitness function [START_REF] Gomez | Incremental Evolu on of Complex General Behavior[END_REF][START_REF] Urzelai | Incremental Robot Shaping[END_REF][START_REF] Kodjabachian | Evolu on and development of neural controllers for locomo on, gradient-following, and obstacle-avoidance in ar ficial insects[END_REF])-a proposition akin to a developmental constraint. e fitness function initially rewards solutions to simple problems and is progressively made more challenging to eventually match the real task. A related method, [START_REF] Dorigo | Robot shaping: developing autonomous agents through learning[END_REF][START_REF] Mataric | Reward func ons for accelerated learning[END_REF]), is used in reinforcement learning. In practice, such approaches require to design problem-specific fitness functions.

e second challenge is : the evolutionary process becomes trapped into a local extremum [START_REF] Goldberg | Simple gene c algorithms and the minimal, decep ve problem[END_REF][START_REF] Bongard | Guarding against premature convergence while accelerating evolu onary search[END_REF].

is is due in particular to the fitness function having to play two roles: defining the problem to solve and guiding the search for a solution. If the fitness function is not carefully designed, it may only fill one of those roles properly. Such a fitness function is called [START_REF] Mouret | Using behavioral explora on objec ves to solve decep ve problems in neuro-evolu on[END_REF], and is a case of over-exploitation. To provide a problem-agnostic solution to these two problems, it has been proposed to consider selections processes that encourage behavioural diversity17 in the population of candidate solutions. is has been proposed first in the classical evolutionary algorithm domain [START_REF] Goldberg | Simple gene c algorithms and the minimal, decep ve problem[END_REF][START_REF] Sareni | Fitness sharing and niching methods revisited[END_REF], and recently adapted to evolutionary robotics [START_REF] Trujillo | Discovering Several Robot Behaviors through Specia on[END_REF]Lehman andStanley 2008, 2011a;[START_REF] Risi | How novelty search escapes the decep ve trap of learning to learn[END_REF][START_REF] Gomez | Sustaining Diversity Using Behavioral Informa on Distance[END_REF]Mouret et al. 2009a;Mouret 2011;[START_REF] Mouret | Encouraging Behavioral Diversity in Evolu onary Robo cs: An Empirical Study[END_REF]Doncieux andMouret 2010, 2014;[START_REF] Krcah | Solving decep ve tasks in robot body-brain co-evolu on by searching for behavioral novelty[END_REF][START_REF] Delarboulas | Open-Ended Evolu onary Robo cs: An Informa on Theore c Approach[END_REF].

ose approaches modify the fitness function to account for diversity.

e most common modification is [START_REF] Goldberg | Simple gene c algorithms and the minimal, decep ve problem[END_REF][START_REF] Holland | Adapta on in natural and ar ficial systems. an introductory analysis with applicaons to biology, control and ar ficial intelligence[END_REF]): solutions close to one another share, i.e. divide amongst themselves the fitness score, in the same way individuals from the same ecological niche compete for resources.

is method has proven itself empirically and has recently been theoretically proved as beneficial for simple cases [START_REF] Friedrich | Theore cal analysis of diversity mechanisms for global explora on[END_REF]. Lehman andStanley (2008, 2011a) proposes to abandon objective completely and focus on searching for behavioural novelty alone. e method proposed by Lehman and Stanley (2011a) is a novelty search: new solutions are compared for similarity against the current population and an archive of notable exemplars. Such an approach is shown to significantly outperform an objective-based one in a maze walk task. e authors also argued that it fosters open-ended exploration: because there are only so many ways to act simply, the candidate population is progressively guided towards more complex behaviours. [START_REF] Delarboulas | Open-Ended Evolu onary Robo cs: An Informa on Theore c Approach[END_REF] uses a similar approach where offsprings are compared against their ancestors, instead of their peers. Mouret (2011) shown that just maintaining the current population behavioural diversity, without considering past populations was enough to get good results, and avoided a growing computational cost for fitness.

is strand of evolutionary robotics research reinforces the idea that diversity producing processes are crucial for developing complex behaviours.

Developmental and the evolutionary approaches that encourage diversity remain significantly different. ey happen at different timescales. One is concerned with the diversity of the individual in a online, incremental way, while the other happens at the species level and usually operates in batch evaluations of a complete generation.

e work of [START_REF] Delarboulas | Open-Ended Evolu onary Robo cs: An Informa on Theore c Approach[END_REF] recently bridged that gap, by proposing an architecture where the evolution of controller happens online, and is driven by an intrinsically-motivated fitness function encouraging diversity at the individual and historical level (controllers are compared to their ancestors). In the context of that research, Delarboulas et al. (2010, p. 342) perhaps best expressed one of the greatest asset of using an intrinsically motivated approach with robots:

Diversity in Machine Learning

Interestingly, a pioneer work on behavioural diversity in robotics has largely gone unnoticed. [START_REF] Balch | Learning roles: Behavioral diversity in robot teams[END_REF] and Balch and Parker (2002) introduced the notion of behavioural diversity in robot teams.

Another domain where diversity measures have been used is swarm optimization [START_REF] Kennedy | Par cle swarm op miza on[END_REF][START_REF] Shi | A modified par cle swarm op mizer[END_REF], a global optimization technique. e diversity of a swarm of particle is linked to the quality of the optimization, and thus works studying and proposing diversity measure are numerous [START_REF] Riget | A Diversity-Guided Par cle Swarm Op mizer-the ARPSO[END_REF][START_REF] Krink | Par cle swarm op misa on with spa al par cle extension[END_REF][START_REF] Blackwell | Par cle swarms and popula on diversity[END_REF][START_REF] Olorunda | Measuring explora on/exploita on in par cle swarms using swarm diversity[END_REF][START_REF] Shi | Popula on diversity of par cle swarms[END_REF][START_REF] Wang | Par cle Swarm Op miza on Based on Self-adap ve Accelera on Factors[END_REF][START_REF] Cheng | A Study of Normalized Popula on Diversity in Par cle Swarm Op miza on[END_REF]. [START_REF] Olorunda | Measuring explora on/exploita on in par cle swarms using swarm diversity[END_REF] in particular reviews the existing diversity measure used for quantifying swarm diversity, and propose to compute the radius, the diameter of the swarm, or the average distance around the swarm center, normalized or not by the swarm diameter. Also proposed is the swarm coherence, that exploits the velocity of each particle in the swarm. Except the last one, these measure could be straightforwardly applied to our case.

Interestingly, [START_REF] Yen | Diversity-based Informa on Exchange among Mul ple Swarms in Par cle Swarm Op miza on[END_REF] proposes a swarm optimization method were mutliple swarm are used on a problem with a high number of local minima, and consider exchanges of particles between the swarms during the optimization based on diversity.

ese ideas share similarity with the methods we will present in the second part. Diversity is also used to create classifier ensembles (Brown, Wyatt et al. 2005;[START_REF] Tang | An analysis of diversity measures[END_REF][START_REF] Hadjitodorov | Moderate diversity for be er cluster ensembles[END_REF][START_REF] Ulaş | Incremental construc on of classifier and discriminant ensembles[END_REF][START_REF] Connolly | On the correla on between genotype and classifier diversity[END_REF][START_REF] Krawczyk | Accuracy and diversity in classifier selec on for oneclass classifica on ensembles[END_REF][START_REF] Krawczyk | Diversity measures for one-class classifier ensembles[END_REF][START_REF] Özöğür-Akyüz | Pruning of Error Correc ng Output Codes by op miza on of accuracy-diversity trade off[END_REF]. A diversity of classifiers, when also avoiding weak classifiers, has been show to improve accuracy. In that case, diversity is based on disagreement between the different classifiers [START_REF] Kuncheva | Ten measures of diversity in classifier ensembles: limits for two classifiers[END_REF][START_REF] Kuncheva | [END_REF].

Diversity has also been proposed as a regularization metric in the result of search engines [START_REF] Agrawal | Diversifying search results[END_REF]. is is not surprising: if the most relevant results are all very similar, less relevant but different results, after a few examplars of the most relevant class are given, are better, since they widen the number of requests that are answered in response to a given query.

And recommender systems, that are used to propose movies-the Netflix prize (Bennett et al. 2007) having largely popularized the concept-, restaurants, research articles, or mates in online dating systems to users, are no exempt either. Researchers have learned that diversity in recommendations, while sacrificing some accuracy, significantly increased user satisfaction [START_REF] Ziegler | Improving recommenda on lists through topic diversifica on[END_REF][START_REF] Zhou | Solving the apparent diversity-accuracy dilemma of recommender systems[END_REF][START_REF] Vargas | Rank and relevance in novelty and diversity metrics for recommender systems[END_REF][START_REF] Vargas | Novelty and diversity enhancement and evalua on in recommender systems and informa on retrieval[END_REF][START_REF] Alexandridis | Accuracy Versus Novelty and Diversity in Recommender Systems: A Nonuniform Random Walk Approach[END_REF]: Zhou et al. (2010, p. 4511) Here we find the idea that humans will not necessarily be able to discover by themselves information that are relevant and interesting to them in the environment. A recommander system exists precisely because exploring a computerized database is not something humans are intuitively good at, and because the database hide most its information: it does not provide clues to find information incrementally.

In the real world, rational behaviour and deductive reasoning is not sufficient to find information is the environment that is not revealed by indicative clues that something is to be found.

is explains why exploratory behaviour is necessarily intrinsic: because , as significant information is present in the environment but its presence is not detectable. One cannot deduce that a toy giraffe squeaks when pressed from passive observation. e water temperature of a river is hardly betrayed by its appearence, this is why it often contrasts with expectations.

us, humans must be optimistic about finding information in the environment, they cannot wait for an indication it is there: exploration must be motivated intrinsically.

And because humans have greater capacity to make sense of and use the information they discover in the environment through exploration, exploratory behaviour is more rewarding. It seems then natural that their intrinsic motivational system is stronger, more developed and more complex that some other animals, for instance capuchin monkeys (see section 2.4).

SLAM algorithms

e expression 'exploration in unknown environments', when used in the context of robotic research, usually designate mobile robots mapping their environment. [START_REF] Stachniss | Mapping and explora on with mobile robots using coverage maps[END_REF], for instance, present an approach that uses 'coverage maps', and that even uses 'optimal information gain' to decide which areas of the map to explore next. In first approximation, this research and sensorimotor exploration appear to be related.

e fundamental difference between sensorimotor exploration and mapping exploration is that mapping exploration assumes that the agent knows how to move about on the map. e challenge, then, is to map the entire space (for instance, if its an interior environment) as efficiently as possible, with the best possible accuracy. Another difference is that mapping typically only considers 2 or 3-dimensional environment, while in sensorimotor exploration the dimensionality of the sensory space can be arbitrary 18e underlying assumption that how to move in the space is not to be learned has led to highly specialized and efficient (Simultaneous-Localization-And-Mapping) algorithms [START_REF] Smith | On the Representa on and Es ma on of Spa al Uncertainty[END_REF][START_REF] Smith | Es ma ng Uncertain Spa al Rela onships in Robo cs[END_REF]run 2005, pp. 309-485), which use techniques unfit for sensorimotor exploration.

Discussion

Exploration as a Multidisciplinary Subject, Ripe for Interdisciplinary Research e pervasiveness of exploratory process and exploratory behaviour across a wide range of scientific field suggests an important potential for interdisciplinary communications and collaboration, as was noted by Gottlieb et al. (2013).

is review of the studies of exploratory behaviours should not be considered exhaustive in any way. e neuroscience account is under-represented [START_REF] Kang | The Wick in the Candle of Learning: Epistemic Curiosity Ac vates Reward Circuitry and Enhances Memory[END_REF][START_REF] Düzel | NOvelty-related Mo va on of An cipa on and explora on by Dopamine (NOMAD): Implica ons for healthy aging[END_REF][START_REF] Shohamy | Learning and mo va on in the human striatum[END_REF][START_REF] Jepma | Neural mechanisms underlying the induc on and relief of perceptual curiosity[END_REF], as is the literature taking an information theoretic perspective. e study of attention has a major research strand on perceptual exploratory behaviour and information-seeking behaviour, which have many interactions with the theories of motivation (Gottlieb et al. 2013;[START_REF] Laucht | Visual exploratory behaviour in infancy and novelty seeking in adolescence: two developmentally specific phenotypes of DRD4? In[END_REF][START_REF] Nocera | The role of intrinsic mo vaons in a en on alloca on and shi ing[END_REF]. We barely mentioned the relation to the creation of diversity through pretend play [START_REF] Belsky | From explora on to play: A cross-sec onal study of infant free play behavior[END_REF], and only investigated playful behaviour from a specific perspective, in the child-as-scientist paradigm. Biological or artificial creativity [START_REF] Saunders | Curious Design Agents and Ar ficial Crea vity[END_REF][START_REF] Barbot | Crea ve thinking in music: Its nature and assessment through musical exploratory behaviors[END_REF][START_REF] Badia | Computa onal crea vity[END_REF], divergent thinking [START_REF] Kleibeuker | The development of creative cogni on across adolescence: dis nct trajectories for insight and divergent thinking[END_REF], or even counterfactual thinking were not discussed in relation to exploratory behaviour, and the exposition to, and the production of diversity. We didn't discuss the exploratory behaviour of populations, for instance, how ant and termite self-organize exploration, in both sedentary and army ants types, or how tourists are motivated by novelty [START_REF] Lee | Measuring novelty seeking in tourism[END_REF]. Similarly, exploratory behaviour is present in human organizations [START_REF] March | Explora on and Exploita on in Organiza onal Learning[END_REF][START_REF] Gupta | The Interplay Between Explora on and Exploita on[END_REF]).

Nonetheless, a common trend can be observed amongst psychology, intrinsic motivation and evolutionary approaches: the incentive or reward that encodes explicitly a specific objective in the environment is not necessarily the best way to induce an agent to reach that objective, and may even actively prevents it.

e Many Intrinsic Motivations: A Benchmark? e sheer number of different explanations for intrinsic motivation in psychology, and the correspondingly numerous and diverse models that have been implemented in computational intrinsic motivation hints at the complexity of the issue, and, perhaps, at the relative subjectivity that has accompanied its study so far. Most approaches to motivation will showcase how they can explain or successfully produce specific interesting behaviour.

But the overall field lacks a systematic and a comparative approach. Intrinsic motivation Intrinsic motivations are rarely compared against each other over identical, controlled environments. [START_REF] Santucci | Which is the best intrinsic mova on signal for learning mul ple skills?[END_REF] proposed a detailed comparison of knowledge-based versus competence-based approaches, but the task considered, a two dimensional 2-joint arm can hardly be considered complex enough to allow to extrapolate the results to realistic settings 19 .

e field lacks a benchmark, a set of environments that implementations can measure against. e work of Singh, Lewis, [START_REF] Singh | Intrinsically Mo vated Reinforcement Learning: An Evolu onary Perspec ve[END_REF] has shown that a set of environments could efficiently filter good motivational drives.

A benchmark would not only allow to compare implementations, but also highlight the strengths and weaknesses of each one, by comparing the performances of one implementation across environments. ere are important fundamental and technical difficulties to testing different implementations on the same environments: different approaches make different assumptions and have different requirements. But the set of environments a strategy can be applied to should be considered as one more way to differentiate and characterize approaches. In evolutionary robotics, [START_REF] Lehman | Exploi ng Open-Endedness to Solve Problems Through the Search for Novelty[END_REF] introduced two environments to test the diversity approach. ose environments have been reused by [START_REF] Delarboulas | Open-Ended Evolu onary Robo cs: An Informa on Theore c Approach[END_REF] and Mouret (2011).

e goal is not to decide which intrinsic motivation measure is the best-as we highlighted in chapter 1, we have an evaluation problem. Furthermore, the diversity of the field is precisely suggesting that one may not be enough to explain the behaviour of humans [START_REF] Hughes | Intrinsic explora on in animals: mo ves and measurement[END_REF]: 'no single approach has adequate explanatory or predictive power'). Neuroscience tells us that different brain structures, the colliculus and the hippocampus amongst them, have been linked to the origin of intrinsic motivation signals, strongly suggesting that this diversity of intrinsic motivations is inherent-and probably cannot be escaped by a cleverer take on the issue.

Another issue is that as intrinsic motivations help steer the developmental process of infants, they are also naturally part of it: children motivations change as they develop Trevarthen et al. (2003). is can certainly be explained, in part, by the functional dependency of motivations with experiences, but assuming that this is sufficient is not a trivial assumption.

Of course, as happy as we are to provide advices, we'll blatantly ignore them in this thesis, as will be made explicit in the discussion of the next chapter.

Our work on the study of exploration and the production of diversity is not directed at explaining complex behaviour in humans, or to propose algorithms that can compete in terms of performance with the state of the art. Rather, it has been to find some of the most simple mechanisms of exploration, and to modify them every which ways in order to investigate their dynamics, and the relative impact of the submodules that compose them. is will be the focus of the next chapter.
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Revisiting the Two-Dimensional Arm

In the example of chapter 0, we illustrated that on an idealized two-dimensional arm setup, a goal babbling strategy was able to discover significantly more of the reachable space than a motor babbling one. For the sake of brevity, many details were not investigated. We take a closer look at them now.

e Exploration Algorithm

Abstract We formalize the motor and goal babbling algorithm discussed in chapter 0, and provide a quan ta ve analysis of it, using the diversity measures introduced in chapter 1.

We consider an environment , as formalized section 1.3. For each sampling of , the exploration algorithm does either a random motor babbling actionpicks a random point in the hyperrectangle -, or a random goal babbling action, i.e. picks a random point in the bounded sensory space as a goal for the inverse model, and infers an motor command to execute.

In the following sections, we formalize the inverse model and the exploration algorithm. 123

Inverse Model

Given a goal, the inverse model we used in chapter 0 finds the nearest neighbour in the observed effects and applies a small perturbation on its corresponding motor command.

Formally, is a closed hyperrectangle of , and as such it is the Cartesian product of closed intervals: Given a motor command in , a perturbation of is defined by: Perturb with the function drawing a random value in the interval according to a uniform distribution. is the , and the only parameter of the inverse model, that we can now express in Algorithm 1.

Inverse : •

, a perturbation ratio. • , past observations. • , a goal. : • a motor command.

Find in so that is the nearest neighbour of in Perturb e inverse algorithm is simple, but effective. Its only assumption is that a small perturbation of the motor space produces a comparatively small changes in the sensory feedback. It does not extrapolate, nor does it interpolate observed data.

e model is not sensitive to the distance of the goal from its nearest neighbour. Consequently, whole areas of the goal space are strictly equivalent for the inverse model. Additionally, the model has difficulties escaping attractors, and is susceptible to local minima, as illustrated by the arm loops in chapter 0.

Because of this, more powerful models such as Locally Linear Weighted Regression (LWLR) [START_REF] Cleveland | Locally Weighted Regression: An Approach to Regression Analysis by Local Fi ng[END_REF]Atkeson et al. 1997a,b) might obtain better results, in particular when goals are far from the observed data. We'll use such a model in the second part. Yet, in highly dimensional non-linear motor spaces, such models usually need a large amount of observations, concentrated in small neighbourhoods of the motor space to work well. is creates situations where more complex models are worse at exploring under a scarcity of data (for instance, newly discovered areas, or during the beginning of the exploration), and will reward exploring already well sampled areas, just because they are more effective on them.

In practice, for the experimental context we consider in this chapter, the performance and robustness of our model is competitive. Additionally, our model generates precisely the kind of data distribution (concentrated clusters of motor vectors) that more complex forward and inverse models might take advantage of. Let's remark here that this inverse model is not completely unreasonable in biological organisms [START_REF] Loeb | Op mal isn't good enough[END_REF].

Furthermore this model is intuitive, allowing the reader to run the exploration algorithms in his head without abstracting the learning step. And it is computationally frugal, allowing to reproduce most of the experiments in minutes or seconds, thus ensuring that the interested reader can modify and play with the experiments presented in this chapter with minimal commitment.

Motor and Goal Babbling

e basic exploration strategy we will consider throughout this thesis is composed of two distinct phases: a motor babbling phase and a goal babbling phase. Although the implementation we distribute is modular, we present an equivalent monolithic formalization in Algorithm 2.

More complex exploration algorithms will be proposed in this chapter, but this strategy is simple and effective. e boot parameter articulates the balance between undirected exploration and directed exploration. Our objective is to set boot to reduce the duration of the random motor babbling phase as much as possible without significantly compromising performance. Let's note that this goal babbling strategy needs to be bounded, and reasonable. We will address this problem in the section 3.2.

Henceforth, when referring to a random goal babbling strategy-or simply -, and unless stated otherwise, we will be referring to the Explore algorithm with boot .

Quantitative Analysis

For the two-dimensional arm environments, we will use, unless otherwise indicated, a Testset-based Average Distance measure introduced section 1.4, based on a lattice restriction to the unit disk, as pictured Figure 3.1. In this section however, we compare the Testset-based Average Distance to the reshold Coverage measure (section 1.4), that will be used in all the second part. e reason for using a testset-based diversity measure is that the reachable space is well defined for the two-dimensional arm environments, and that, as mentioned previously, it is compatible with a learning performance interpretation. In the second part, the reachable space is more difficult to assess, and we use the reshold Coverage measure because it is more robust.

e experiments are run in the same conditions as chapter 0, on a 20-joint arm.

boot is set to 10, , and 10000 steps are run. For the threshold coverage measure,

. In Figure 3.2, the two diversity measures are compared on a single experiment 1 . Both show the benefits of the goal babbling strategy over the random motor babbling strategy. e testset measure is more sensitive to the slightly more stochastic performance of the early motor babbling exploration.

In Figure 3.3, the performance of the two strategies are in function of the number of joints of the arms. Both the ratio between the random goal babbling and motor babbling coverage areas and the difference of the average distances stabilize after 40joint s. Both measures are sensitive to the increase in variability (due to the arm loops, chapter 0) from one run to another after 10-joint for the goal babbling strategy. As such, the two measures convey similar information.

F 1 In all performance graphs of this thesis, the diversity measure has been computed for mesteps 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, 100, 125, etc. 128

e Distribution of Goals

Abstract We show that the goal distribu on markedly impacts the distribu on of effects, which create challenges and opportuni es when guiding explora on.

In the setup of chapter 0, the goal space consisted of the axis aligned bounding box of the reachable space2 . If this information was included in the definition of the problem, that would be fine, because motor babbling makes no use of the information. Yet, knowing the bounding box of the reachable space is an unreasonable assumption in the general case.

at would still be fine if the distribution of goals did not significantly impact the distribution of effects. Alas, this is not the case. To prove this, we consider four different goal distributions besides the 2 meters by 2 meters ( scenario) of chapter 0.

ree are centred at the origin and of dimensions 1 m x 1 m ( scenario), 4 m x 4 m ( scenario), and 10 m x 10 m ( scenario) respectively. Another is off-centre ( scenario), and is 0.25 m x 0.25 m. All distributions are depicted in Figure 3.4, as well as the respective distribution of effects they induce on the 2-joint and 20-joint arm -over 10000 timesteps, using the goal babbling strategy of the previous section.

e distribution of goals radically impacts the distribution of effects. In the scenario, the effects stay concentrated in the centre of the reachable space, and do not reach its outer edge. Inversely, when the goal space is bigger than the reachable space, the effects concentrate on the boundary of the reachable space, to an extent that correlate with how big the goal space is, as the and scenarios illustrate3 . is phenomenon is also observable, to a lesser extend, in the scenario of the 2joint arm as well: the four corners of the goal space do not overlap with the reachable space, and we see increased effect density on the reachable space boundary in those corners. is pooling behaviour has been analysed and explained in chapter 0.

If the goals are concentrated in a small part of the reachable space, as in the scenario, so are the effects. ese results show that when goals are drawn randomly, a bad estimation of the goal space can easily lead to a bad distribution of effects. Of course, they also illustrate the flexibility of goal babbling exploration: it can efficiently guide the exploration of the sensory space. If an area of the effect space is deemed more interesting than another, we can manipulate the distribution of goals to concentrate exploration in this area-as the scenario illustrates-without changing the other mechanisms of the exploration. is is the methods proposed by Oudeyer and Kaplan (2007, p. 8); [START_REF] Rolf | Online Goal Babbling for rapid bootstrapping of inverse models in high dimensions[END_REF][START_REF] Jamone | Learning task space control through goal directed explora on[END_REF], [START_REF] Baranes | Ac ve learning of inverse models with intrinsically mo vated goal explora on in robots[END_REF] and [START_REF] Hervouet | FIMO: Framework for Intrinsic Mo va on[END_REF], where the exploration trajectory is guided by preferences over the goal space. Pushed to the extreme, i.e. considering only one goal, the exploration strategy seamlessly collapses into an optimization one. ese characteristics make goal babbling easily interfaceable with an attention mechanism or an interest measure.

With exploration, one objective is to cover the reachable space in a homogeneous manner, producing exemplars of the possibility it offers, and for this the goal space must not be too dissimilar from the reachable space. Since we don't have access to the geometry of the reachable space, we have to estimate it from current observations. is is similar to the problem of density estimation (Rosenblatt 1956;[START_REF] Parzen | On Es ma on of a Probability Density Func on and Mode[END_REF], where the density of an unknown distribution must be estimated from a discrete number of samples. Here, we are only interested in the of the distribution, i.e. the subset of the space where the density is not null 4 . Furthermore, the sampling available to the agent is not independently and identically distributed, but function of the competence of the agent.

A simple approach to estimate the reachable space is to take the bounding box of the current observations. To make exploration more aggressive, the goal space could be expanded from the current boundaries of the estimation of the reachable by a factor superior to 1. e higher the factor, the more aggressive the exploration.

is approach assumes that the ratio of the bounding box volume to the reachable space volume is low, as is the case for the two-dimensional arm. But it is not efficient for sparse, non-contiguous reachable spaces. To robustly explore those spaces, we need a good estimation of the .

F

4 In prac ce, we can relax this by only considering the areas of the space where the density is above a small threshold.
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Exploration on a Grid

Abstract We introduce grid par oning, and an approxima on of the reached space based on it which will be instrumental for several explora on algorithms. We describe explorers that define goals inside and outside of the reached space. We show that combining these explorers allows some independence from the dimensions of the goal space.

Given a partition of the sensory space, we define the during exploration as the union of the elements of the partition that contain at least one observed effect.

e quality of the exploration depends on how the sensory space is partitioned. In this thesis, we will use a simple, good-enough, computationally efficient partitioning scheme: . Grid partitioning is parametrized by two vectors in : , the coordinates of the centre of the cell which contains the origin of the reference frame-the grid's origin-, and , the size of a cell. Given a point in , the coordinate (in ) of the cell that contains is: By varying the cell-size5 , we can obtain large cells which fit the reachable space loosely, or small cells which overfit the current observations, as Figure 3.5 illustrates.

e size of the cell effectively sets an implicit threshold for similarity and saliency. Two effects belonging to the same cells are considered identical with regards to what they tell us about the reachable space. An effect belonging to a new cell is salient, because it represents discovering a new area of the reachable space. Note that, how the grid's origin is defined can have unintended local consequences, since any two effects can be arbitrarily close, yet belong to two different cells, if the grid's origin is chosen appropriately6 . ere are many ways to set the size of the cells of the grid. One could bound the number of occupied cells, and enlarge the cells when needed. is has the advantage of offering the possibility to adaptively match the grid topology to the learning abilities or time resources available to the agent, who may not have the time or the capacity to handle a large number of cells. In this manuscript, the size of the cells is set arbitrarily, to avoid complications. For the arm example, we used cells of size 5 and 10 cm depending on the experiments.

Having now a grid partitioning method, we can estimate the reached space during exploration, as depicted Figure 3.6.

e idea of partitioning continuous sensory spaces for goal exploration has been explored in the context of the algorithm (Baranes and Oudeyer 2010), which was derived from the algorithm proposed by [START_REF] Oudeyer | Intelligent Adap ve Curiosity: a source of Self-Development[END_REF] and [START_REF] Oudeyer | Intrinsic Mo va on Systems for Autonomous Mental Development[END_REF] and later improved in more robust versions as [START_REF] Baranes | R-IAC: Robust Intrinsically Mo vated Explora on and Ac ve Learning[END_REF] and [START_REF] Lee | Category-based Intrinsic Mo va on[END_REF]. , and partition the sensorimotor space into regions.

, in contrast, only partitions the sensory space. It does so adaptively: regions where many effects are observed are split into smaller regions, in a way that optimizes the difference between the empirically-measured competence progress of the newly created regions. e hope is that it allows to discriminate efficiently between regions of different level of learnability. In practice, the regions it creates are sometimes difficult to explain and random splits would probably work equally well. To avoid unnecessary complexity, we opted for a simpler grid approach in this thesis.

Goals on a Grid

Having an estimation of the reached space allows us to define more complex exploration strategies. e exploration strategy only selects goals in the current estimation of the reached space. More specifically, to choose a random goal, one chooses a random, non-empty, cell, and then draws a random point inside it.

Inversely, the exploration strategy considers a finite subset of sensory space chooses a random goal amongst the empty cells belonging to this subset, if any exists7 . is exploration strategy drives the exploration towards unexplored regions of the sensory space. Here, we will usually consider the subset of cells as the set of cells contained in an hyperrectangle containing the bounding box of the observed effects.

To illustrate how those two strategies can be employed together, let's consider a mixed strategy that picks goals according to the strategy percent of the time, and the strategy percent of the cases. As illustrated in Figure 3.7, we modify the Explore algorithm of section 3.1.2, and replace the GoalBabbling() call by a probabilistic call to the reached and unreached strategies. e inverse model remains the same ( ), as does , set to 10 timesteps. We will refer to this strategy as the -reach strategy.

e value of in the -reach exploration strategy represents how aggressive the strategy is at trying to reach unexplored cells of the grid. By setting the value of , the amount of exploration that is done inside and outside the reached space can be explicitly controlled.

is makes the goal distribution adaptive to past exploration, and lessens the impact of the geometry of the goal space. is is illustrated Figure 3.9, where the effects of the -reach strategy on the distribution of effects is displayed for taking values and . While the -reach strategy produces a spread of effects that does not extend to the limits of the reached space, it does explore the centre exhaustively. As augments, the numbers of cells located in the centre that are reached late in the exploration (lighter shades) increases.

is creates blindspots in the exploration of aggressive strategies, that are exacerbated when the goal space overestimates the reachable space. A balanced strategy with however, consistently provides a good exploration and seems robust to a large goal space.

To verify those results, we perform a quantitative analysis of 21 different -reach strategies, with varying from to over increments. e results, Figure 3.8, reveal that at the 10000 steps horizon, a large number of values of (roughly,

) provide a good performance. However, early in the exploration (t = 2000), a more aggressive strategy is preferable. is suggests that the best exploration strategies may need to make evolve during exploration. More about that in chapter 4.

e Frontier Strategy

e -reach strategy, for adequate values of , is efficient and robust to the size of the goal space8 . e robustness can partly be attributed to the inverse model used. Indeed, the inverse model projects the goal to its nearest neighbour-or, differently said, all the point of the goal space that have the same nearest neighbour in observed effects are equivalent-, setting a goal far from what is possible does not creates problems. When using a different inverse model, this may lead to singularities and inefficiencies.

is is particularly problematic when the reachable space is sparse compared to its axis-aligned bounding box, that we gave as an heuristic (using the space) for defining the subset of the sensory space the unreached strategy should choose goals in. e Frontier strategy displays exploratory aggressiveness, while exploring the inside of the reached space correctly.

In the case, the last unexplored cells inside of the grid have had a large number of goals set inside them. is is not necessarily a desired behaviour, and the Frontier strategy can be further parametrized by setting a maximum number of goals that can be set per cell, and a minimum number of effects per cells before a cell is ignored when choosing a goal (in our original description, the minimum is equal to 1). Figure 3.12 exemplifies those parameters, using the Frontier strategy of the time after the 10 timesteps of motor babbling, and setting the maximum number of goals at 6 per cell, and the minimum number of effects at 2 per cell.

e Frontier algorithms strikes a balance between conservative and aggressive exploration. By placing each goal near observed effects, yet in unexplored areas, the algorithms ensures that it can rely on reliable (because near) observations while increasing the potential to reach a new area. To make the Frontier more adaptive, we could consider to set the minimum number of effects per cell as a fraction of the average number of effects per cell.

is would balance the exploration between the centre of the reachable space, and the pooling of observations on the edges of it.

Discussion

We established that either partially with the -reach strategy, or completely with the Frontier strategy, the exploration process can free itself from the necessity of explicit boundaries on the goal space.

is is a small yet important step towards selfsufficiency in exploratory behaviour. It makes these exploration strategies more robust because no experiment-specific bias on the geometry of the goal space is needed.

e main criticism one can make here, and this will be valuable for most of our experiments, is that those algorithms were tested one , very simple environment not even involving simulated physics. is casts doubts on the applicability of those results to more complex setups, or to real robots.

We also realize that we did not do a quantitative comparison between the original goal babbling strategy, the -reach strategy and the Frontier strategy.

is will be rectified.

For chronological reasons, the Frontier strategy will not be employed in other experiments of this thesis; its usage would probably marginally affect some results.

F

e Inverse Model

Abstract We inves gate the impact of inverse model's quality on the explora on.

Given a goal, the inverse model finds the nearest neighbour in the observed effects and applies a small perturbation on its corresponding motor command (see section 3.1.1).

e only free parameter in Inverse impacts the quality of the model. If is too low, the perturbation is too small and does not produce enough environmental changes, hindering the progress of the exploration. It also can become indistinguishable from noise in noisy environments. If is too high, then the inverse model approximates random motor babbling (it is equal to it when

). In chapter 0, was tuned for good performance. What happens to the exploration we modify the value of ? e effects of different values of can be seen qualitatively Figure 3.13 and quantitatively Figure 3.14. We use the vanilla Explore strategy (see section 3.1.2).

In Figure 3.13, we observe that when the value of is low ( , ), the exploration degenerates into 10 disconnected clusters, corresponding to the random motor babbling commands. Higher values of ( , , ) offer good performances, but the loss in exploration performance is noticeable in the 7-joint and 20-joint arm. In the case of the 20-joint arm, represents of random variation for each motor. e possible displacement between an arm posture and its perturbation is almost unconstrained in terms of end-effector position. Still, significant performance is displayed. For high values of ( , ), the behaviour is respectively similar and identical to the behaviour of the random motor babbling strategy.

An interesting thing to notice is that random motor babbling seems preferable to random goal babbling when or even for the 7-joint arm. For the 20-joint arm however, the exploration is definitely better for but not for . In any case, this illustrates that goal babbling with a bad learner is not very efficient. In other words, goal babbling is an effective strategy insofar as a goodenough inverse model allows to move around the sensorimotor space with efficiency.

e quantitative analysis displayed Figure 3.14 validates these qualitative remarks; the performance follows a U-shape, with bad performance near the extremes, and is worse than for the 20-joint arm. 

Motor Synergies

From a cursory review of the example of chapter 0, one could conclude that motor babbling becomes less effective as the dimensionality of the motor space increases10 .

As pointed out, this is not the correct interpretation: motor babbling is less effective in sensorimotor spaces where the heterogeneity of the redundancy is high, precisely because motor babbling can be understood as a density estimator of the redundancy.

Musculoskeletal systems in biological systems typically exhibit motor synergies [START_REF] Holst | Die rela ve Koordina on als Phänomen und als Methode zentralnervöser Funkonsanalyse[END_REF], i.e. groups of muscles that activate together. An explanation for these synergies put forward by [START_REF] Bernshteïn | The Co-ordina on and Regula on of Movements[END_REF]) was that they were reducing the redundancy of the musculoskeletal system, explaining how biological entities were able to control complex, highly redundant limbs. An alternative explanation is that the spinal cord interneurons dramatically increase the number of motor dimensions and give access to hardwired pattern generators that are responsible for motor synergies [START_REF] Perfiliev | Reflexive Limb Selec on and Control of Reach Direc on to Moving Targets in Cats, Monkeys, and Humans[END_REF][START_REF] Mccrea | Organiza on of mammalian locomotor rhythm and pa ern genera on[END_REF]).

e dimensionality increase is accompanied by an important decrease in the heterogeneity of the redundancy [START_REF] Raphael | Spinal-Like Regulator Facilitates Control of a Two-Degree-of-Freedom Wrist[END_REF]. In other words, the cerebellum and the spinal cord provide a control interface for the muscles where the density of useful solutions is higher than if muscles were wired independently. is allows to find good behaviour by trying random motor activations, and improving them towards the nearest local minima by trial-and-error: Loeb (2012, p. 761) We illustrate this by showing that we can actually improve the performance of the random motor babbling strategy by increasing the dimensionality of the motor space. In our setup, considering an arm with joints, there are motor channels-let's call them c c c here-, each sending an angle command to its respective joint. We add other motor channels syn syn syn , with channel syn sending a motor command to joints and . erefore, each joint receives 2 angle commands, except the last one if there is an odd number of joints. e angle command are averaged according to the channel weight, which is equal, for each channel, to the inverse of the number of joints they target. at way, no channel exerts more influence over the final angle configuration that any other. Formally, the value of angle joint is given by: angle We run the random motor babbling strategy on a regular arm and on another with motor synergies, each with 20 joints. e results are available qualitatively Figure 3.15, and quantitatively Figure 3.16.

e increase in the exploration performance of random motor babbling is significant. In order to explain the results, we can observe that the synergy channel between two consecutive joints has a correlation effect: it makes the difference between the value of the joints smaller 11 . is in turn make the arm straighter on average, allowing for greater reach, and better exploration.

We do not claim to have proven any positive results-and certainly our example of motor synergies is simplistic and contrived. Yet we provided a non trivial counterexample to the notion that a greater number of motor dimensions would be detrimental to motor babbling.

11 If the values of regular the motor channels for joint 1 and 2 are and , then whatever the value of the synergy channel of both , the difference between the angle of the first and second joint is . The difference is reduced to 2/3th of its value in a setup without synergies.

Developmental constraints

Developmental constraints-or -are limitations that are placed on the agent's motor, morphological, sensory or cognitive abilities, and that evolve during development 12 . Long thought to be obstacles to children's development, developmental constraints started to be recognized as an essential component of development in the early 1980's: Turkewitz et al. (1982, p. 358) In particular, developmental constraints are credited in reducing the size and the complexity of the sensorimotor space available in infancy [START_REF] Rutkowska | Scaling Up Sensorimotor Systems: Constraints from Human Infancy[END_REF][START_REF] Berthouze | Motor Skill Acquisi on Under Environmental Perturba ons: On the Necessity of Alternate Freezing and Freeing of Degrees of Freedom[END_REF]. Developmental constraints can be broadly discriminated into cognitive and sensory constraints on one side, and motor and morphological on the other side. [START_REF] Elman | Learning and development in neural networks: the importance of star ng small[END_REF] was among the first to illustrate the importance of constraints in a synthetic setting: using a recurrent neural network, he showed that a network whose available memory was at first low and then expanded later during the training sequence performed better than the same network with the whole memory made available from the start.

Many works on cognitive and sensory constraints have targeted vision. [START_REF] French | The importance of star ng blurry: simula ng improved basic-level category learning in infants due to weak visual acuity[END_REF] and [START_REF] Dominguez | Developmental Constraints Aid the Acquisi on of Binocular Disparity Sensi vi es[END_REF] showed that restricting the sensory frequencies in a vision system improved performance, with fixed and maturational constraints respectively. More recently, [START_REF] Nagai | Learning for joint a en on helped by func onal development[END_REF] pioneered a work on maturational constraints and shared attention, showing that restricting visual capacities allowed to learn one aspect of the interaction at a time.

Morphological and motor constraints have received a lot of attention, as they are easier to implement in their simplest instantiation. [START_REF] Bongard | Morphological change in machines accelerates the evolu on of robust behavior[END_REF] has shown that the development of gait controller for hexapod robots was faster if the robot started with small limbs that grew throughout the experiment. [START_REF] Lee | Staged development of Robot Motor Coordina on[END_REF] and Lee et al. (2007a,b) propose a framework that lift constraints to create staged and organized development of motor coordination.

For the two-dimensional arm, an example of a simple morphological constrain is to reduce the range of available angles during the exploration. Figure 3.17 shows the effect of different angle ranges on the exploration of the random motor babbling strategy: reducing the range of the joint to appropriate levels makes the random motor babbling strategy able to efficiently explore most of the reachable space of a 100-joint arm, as is apparent in the and cases: good constraints are more efficient than goal babbling in this case.

is can be exploited by reducing the range of the joint range during the early phase of the exploration, and lift the constraint thereafter. We run a goal babbling exploration where during the first 500 steps of the exploration, the joint ranges are limited to . After the 500 timesteps, the constraints are lifted and the range of the joints returns to . As can be seen in Figure 3.18, the constrained scenario generates a better exploration than the one without constraints. Additionally, the loops that were observed on the arm in chapter 0 are not present13 . e early constraints drive the exploration to good attractors in the sensorimotor space.

Once again, this is merely an illustration of an idea, and is not meant at establishing any sort of general result. uring the first 500 steps, while the other is not. This seems to significantly decrease the number of loops that are present in the explored postures. A comprehensive quan ta ve analysis is needed to verify those observa ons.

[source code] F

Demonstrations

Learning from demonstration, also called learning by imitation, has been recognized as an important technique for current robot learning 14 [START_REF] Schaal | Is Imita on Learning the Route to Humanoid Robots?[END_REF][START_REF] Billard | Robot Programming by Demonstra on[END_REF][START_REF] Calinon | Robot Programming by Demonstra on : a Probabilis c Approach[END_REF][START_REF] Argall | A Survey of Robot Learning From Demonstra on[END_REF][START_REF] Lopes | Abstrac on Levels for Robo c Imita on: Overview and Computa onal Approaches[END_REF].

In this section, we show that providing a good demonstration can have a dramatic influence on exploration. In Figure 3.19, a single demonstration is provided to the explorer, the zero-posture, where all joint angles are zero, resulting in the effect . A normal random goal babbling exploration is then run for 10000 steps on a 100-joint arm. e demonstration provided to the robot is not innocent. It places the exploration 14 As the robo c learning domain is in infancy, learning algorithms are s ll exceedingly limited. Typically, learning algorithms can derive a solu on if given a star ng point not too far away from the solu on-or with enough guidance to get to it. Learning by demonstra on does precisely one or the other. But social learning should not be understood as mandatory for the development of highly intelligent behaviour. Several species of cephalopods (amongst which, octopi) display highly intelligent behaviour yet live short, solitary lives (2-3 years).

is a good attractor where arm loops are absent, from which it can easily explore the reachable space. e difference in coverage with the regular goal babbling strategy is dramatic, and is maintained over the long run.

is result, and the one from the previous section on developmental constraints suggest that simple exploration mechanisms can, in some instances, tackle complex environments, as long as some mechanism, limitation, prior or external influence help them discover good areas of the sensorimotor space.

Discussion

Simple Environments Brooks (1991b, p. 7) Given our purposeful exposition of the embodiment concept in the previous chapters, it would behove us to heed Brook's forewarning. Yet, clearly, our work forgoes it.

Our work fails on many fronts. It employs an oversimplified environment, and it employs only one environment. We cannot argue that the mechanisms we expose tell us anything about real robots' exploratory behaviour, nor can we claim even limited domain independence.

Moreover, although we advocated the role of embodiment in chapter 1, the twodimensional arm is far removed from a context that would allow us to study such a phenomenon in any realistic fashion.

ere is no noise, motor commands operate over a discretized time; a motor command unambiguously corresponds to one sensory feedback. e sensory signal itself is highly abstracted, and does not correspond to any reasonable self-sufficient sensory hardware (considering an adversarial environment).

e environment is perfectly isotropic, and does not feature any events other than the one created by the robot. Brooks advocated starting simple, but in a realistic environment.

By studying exploration strategies in a simplified environment, we run the risk to-or rather, it is certain that we-ignore problems that exist in the real world. In our view, for this chapter, this is a feature. By ignoring many problems that a real robot faces, we obtained a controlled situation where the impact of each component of the exploration could begin to be well understood, and where comparatively fewer different hypotheses can be made to explain the results.

In fact, the investigative method we followed to create those experiments was to simplify them as long as their qualitative illustrative properties remained. Developmental robotics has chosen a difficult path, fraught with theoretical, experimental, and methodological issues. One of them arise when the investigated systems become complex: how to study, then, the contribution of each dimension of the system to the experimental performance?

eir sheer number makes a complete experimental analysis quickly unfeasible. And, even when the variation of only one dimension is of interest, the non-linearity of its relationship with the rest of the system still makes the analysis expensive.

is point was perhaps best argued by Richard Lewontin, when criticizing the experimental approach of genetics: [START_REF] Oyama | The ontogeny of informa on developmental systems and evolu on[END_REF] xi] e interesting point of Lewontin arguments that even if an exhaustive study of all the gene perturbations regarding a particular trait is done, nothing is necessarily learned about how the trait is produced in the first place: 'A sufficient explanation of why two things are different may leave out virtually everything needed to explain their nature.' (Oyama 2000, p. ix).

Our situation is different of course. We benefit from knowing the nature of the phenomenon we are studying. But studying a complex phenomenon, in a realistic environment, is not only experimentally challenging, it also reduces the tools we can use to analyse it, and forces us to act like a geneticist, changing one variable at a time to discover which exploration strategy works best. And in any complex-enough scenario, many of those variables, or variable ranges would have to be left unstudied.

But what we most crucially loose, proceeding this way, is the explanation behind the results. We took the deliberate decision in our experimental approach to target a setup that was not completely adverse to an exhaustive study, and that was not the least impenetrable to our comprehension. And we made efforts to go beyond the simple perturbation/observation method, and provided explanations of the results as well as the results themselves. e criticism that one could make is that perhaps we did not do enough in this regard.

A Critical Analysis of Intrinsic Motivations e motivation for this research was initially to thoroughly study how intrinsic motivations were contributing to the behavioural success of agents compared to simpler goal babbling strategies. Evidently, we only managed to start studying simpler goal babbling strategies. Yet, this analysis can serve to put some results of the literature in perspective. [START_REF] Baranes | Ac ve learning of inverse models with intrinsically mo vated goal explora on in robots[END_REF] proposed SAGG-RIAC, a goal babbling algorithm where goals were selected according to a intrinsic motivation measure, based on competence progress. SAGG-RIAC was tested on a setup similar to ours: a 15-joint two-dimensional arm. It is not pointless to say that this work has had a tremendous influence on ours. Besides underscoring the better performance of goal babbling over motor babbling on this task, the main quantitative result was that random goal babbling performs worse than intrinsically motivated goal babbling when the goal space is larger (in the article ~9 or 100 times larger) than the reachable space. When the goal space fits the reachable space, no significant difference can be shown.

Our experiments allows to add to these results. First, the choice of the inverse model understandably affects the performance of goal babbling. [START_REF] Baranes | Ac ve learning of inverse models with intrinsically mo vated goal explora on in robots[END_REF] used the inverse of the Jacobian estimated from sampled data, which is sensitive to the goal distance, and therefore is susceptible of behaving badly when asked to find solutions to impossible goals. Of course, SAGG-RIAC is precisely intended to deal with this problem, by monitoring competence, hence the performance of the inverse model. But the experiment does not disambiguate between the loss of performance due to the inverse model misbehaving faced with impossible objectives, and the loss of performance due to the distribution of goals driving the exploration towards the edges of the reachable space rather than being homogeneous over it.

Second, we provided a method to adapt the goal distribution to the reached space using the Frontier algorithm. Since a correctly sized goal space does not produce any difference in performance between random goal babbling and intrinsically motivated babbling in SAGG-RIAC, a Frontier-backed exploration strategy would probably produce competitive performance even with an oversized goal space. As such, the performance advantage of intrinsic motivation over a (subjectively) simpler method, the Frontier algorithm, has not been clearly empirically demonstrated 15 . Of course, this discussion would have been more substantial if we had actually done the actual experimental comparison.

But our intention with this discussion is not to say that intrinsic motivation is not useful. It is evident that an intrinsic motivation measure such as competence progress used in SAGG-RIAC or others proposed in the literature affords the agent adaptive capabilities that have the potential to discriminate his performance from other agents in significant ways in complex environments. Our point is: finding complex environments where the improvement that intrinsic motivation brings can be unambiguously established by eliminating all other hypotheses is a still a major research challenge 16 .

Proving such a point convincingly would further the evolutionary reflection on intrinsic motivation. If we assume that intrinsic motivations require significant cognitive resources in organisms (not necessarily a trivial point to make), justifying intrinsic motivation from an evolutionary standpoint must account for fitness advantages that simpler cognitive processes cannot provide.

e same point can be adapted to the computational realm.

As a final remark on this subject, let's note that discriminating between intrinsicallymotivated agents and non-intrinsically motivated agents is not trivial. As most agents have no clear physiological need (that they are aware of ), most could actually be considered intrinsically motivated to do their tasks for the task's sake, and not an outcome that they may not always observe, much less 'understand'. More precisely, we have seen in section 2.5 that R-max could be considered as novelty-driven. In the same fashion, our Frontier algorithm could be viewed as novelty-driven, because it chooses goals according to a mechanism that targets unexplored areas. We pitched, in essence, a competence-driven motivation against a novelty one.

is underscores the need to qualify our use of 'simpler strategies'. A more systematic approach may be needed, qualifying exploration strategy's simplicity by their algorithmic complexity, in time and space, which we may also use to estimate the cognitive cost they may represent.

Cheap Design

Another danger of using simplified environments is to study problems that do not exist in the real world.

is is a criticism that is difficult to address directly. Yet, in this chapter, our aims were not to simulate reality, but to show how different phenomena could impact exploration. We studied the impact of goal distribution, of the inverse model performance, of motor synergies, of developmental constraints and of demonstrations. Each time, the investigation was rarely comprehensive. Yet, the set of experiments shows that the solution to efficient exploration processes is a multifaceted approach. Putting the best learning algorithm behind the exploration will im-prove performances, perhaps tremendously, but this is not cheap design (Pfeifer and Bongard 2006, p. 107), nor does it respect ecological balance (Pfeifer and Bongard 2006, p. 123).

e learning algorithm is probably going to be complex. And learning is not the best place to solve the challenges that the environment raises. Our experiments suggest that an equivalent (or possibly superior) performance can be obtained by combining different, loosely coupled (Pfeifer and Bongard 2006, p. 134) approaches.

Breeding Arm Postures

Our environment, and our focus on diversity, lend themselves to an analogy with evolutionary algorithms. Let's consider that our objective is to breed a population of arm postures. Each arm posture represents the genetic code, and when translated into their phenotype, they produce an end-effector position. We do not have sexual reproduction in our world, everything is done by random mutation. Starting from an initial population of random genetic codes-random arm postures-, we evolve, one a time, their offspring, that produce new end-effector position. Rather than selecting arm postures over environment-specific fitnesses, they are selected to foster diversity in the population: nobody dies ever, so the most members are selected to produce offsprings that can venture into yet-unexplored areas.

Under such an analogy, the similarity between our exploration algorithms and the evolutionary robotics approaches based on diversity of section 2.6 is evident. Of course, there are differences, and our analogy works well due to the specific nature of the inverse model we used. But this suggests that both domains can probably get insights from the methods of the other.

K 4

Diversity-Driven Selection of Exploration Strategies

In the previous chapter, we have been looking at the impact of several variations of the experiment in chapter 0. While we investigated strategies that were themselves composed of different strategies, and to use each strategy was always fixed. In this chapter, we consider situations where several exploration strategies are available and the agent must choose dynamically at each timestep which one to use to generate the next motor command.

How Much Motor Babbling?

Abstract The quality of the learners impacts how much motor babbling should be performed: when the learner is bad, more motor babbling is preferable.

In section 3.4, we investigated the impact of the quality of the learner on the effectiveness of the goal babbling strategy. It was noted, in particular, that when the perturbation parameter of the inverse model-the amount of perturbation that the motor command corresponding to the observed effect nearest to the goal is subjected to-is low, the goal babbling strategy performance is hindered in such a way that the motor babbling strategy becomes preferable. ), but li le effect when it is good ( ). The results depicts the explora on trajectories of a 7-joint arm, over 5000 mesteps, with, at the beginning, 1, 10, or 1000 random motor babbling steps before star ng a pure random goal babbling strategy. [source code] Yet, because the random motor babbling is unable to take advantage of past observations, and therefore to reach the edges of the reachable space of the 20-joint arm, goal babbling, even backed by a poor inverse model, is still useful during the later phases of the exploration. In Figure 4.1, goal babbling strategies featuring motor babbling phases of 1, 10 and 1000 timesteps are compared, for a good (

) and bad ( ) learner. When the learner is good, the length of the initial motor babbling phase has no significant impact on the quality of the exploration over the long term (5000 timesteps). But when the learner is bad, the longer motor babbling phase allows for a well-explored centre, and a goal-babbling-backed exploration of the edges of the reached space.

, a short motor babbling phase creates degenerated clusters.

is leads us to investigate which percentages of motor babbling give good performances for a given learner. We consider three different scenarios: when the learner is bad, with a small perturbation parameter (

), the learner is good, with , and when the learner is bad, this time with a large perturbation parameter (

). We use mixed strategies to analyse this. Rather than having an initial phase of motor babbling, followed by goal babbling, the motor babbling strategy is chosen with probability at each step, and the goal babbling strategy with probability . , pure goal babbling is the worst strategy, more than twice as bad as a strategy with 5% of motor babbling. Inversely, when , a strategy with low-but not null-motor babbling works well. If the inverse model approximates randomness (

), the difference is less marked, but percep ble, and goal babbling is always preferred to motor babbling in this case. Naturally, when random motor babbling is used 100% of the me, the performance of each scenario is iden cal. Averaged over 25 runs. [source code] e first step is always motor babbling1 . We consider all values of from to by increments of , and run the exploration strategy for 10000 steps on a 20-joint arm.

e results Figure 4.2 show that different learning capabilities call for different exploration strategies2 . When the learner does not produce enough diversity ( ), performance is best when random motor babbling is used between 35 and 80% of the time. When the learner is good, performance benefits from a small amount of motor babbling (15%), but starts being penalized if the proportion is more than 40%. And when the learner behaviour is only slightly better than random ( ), goal babbling completely dominates the random motor babbling strategy, because the goal babbling strategy is able to exploit the slight edge that the learner provides while producing enough variability. If had been equal to , motor and goal babbling would have been indistinguishable.

Using motor and goal babbling in equal amounts ( ), the average performance is good in all situations. But it is not the best choice for the case. No static strategy fits all situations.

Since different learning capabilities call for different exploration strategies, and that the degree to which the learning capabilities match the challenges of the environment cannot be anticipated in a self-sufficient context, the choice of the strategy must reside with the actor, not the architect, and should be dynamically decided and refined during exploration. We introduce an algorithm that produces such an adaptive behaviour.

F

An Adaptive Strategy

Abstract We introduce a strategy that dynamically selects other explora on strategies with respect to the diversity they respec vely produce. The method is shown to successfully adapt to bad learners. We discuss it in the context of the Mul -Armed Bandits and the Strategic Student problems.

In section 2.5, we discussed how intrinsic motivation has been used successfully to guide exploration and learning over sensorimotor spaces. In the literature, intrinsic motivations have mainly been used for deciding what to learn, or, in our case, what to explore. Here we use intrinsic motivations to decide to explore, namely, which strategy to use during the exploration.

Choosing which strategy to employ at each step of the exploration faces three main challenges:

1.

: an exploration strategy effectiveness may depend on another strategy; goal babbling relies on motor babbling to bootstrap the exploration. Given the inverse model currently used, this is even more true, as goal babbling's performance depends heavily the sensorimotor attractors in which it expands, and thus on the location of the observations produced early in exploration by motor babbling.

2.

: the usefulness of a strategy may change rapidly. Motor babbling is useful in the beginning of the exploration, but its usefulness drops quickly.

3.

: since an explorer algorithm might be arbitrarily complex, and possibly involve, in turn, other explorers, an adaptive strategy should not rely on knowledge of the internal workings of the strategies amongst which it must choose.

Interdependence does not have to be handled directly, but suggests that even strategies that did poorly in the past must be re-evaluated regularly as the exploration progresses.

e dynamical nature of the contribution of each strategy means that performance data becomes obsolete quickly, and encourage evaluations over short-term time windows. Agnosticity implies that the contributions of the strategies have to be evaluated only from the observations the strategies produce. We introduce a measure that matches those constraints now.

Effect Diversity

A strategy that produces effects over areas that have already been explored is of little use for exploration. We introduce an online that evaluates, each time a strategy is used, how much diversity is created, with regards to already observed effects.

In order to do that, we rely on the diversity measure introduced in section 1.4, based on the union of disks centred on observed effects, and adapt it to evaluate a single effect: the diversity of a new observed effect is the increase in diversity, i.e., the increase in the covered area. e diversity of a strategy, in turn, is the averaged diversity of the effects it produced, over a given time window.

Multi-Armed Bandits and Strategic Students

Using the diversity measure, we can now evaluate the contribution of each strategy to the exploration. Our problem is similar to-although not the same as-the Multi-Armed Bandit problem (MAB) [START_REF] Robbins | Some Aspects of the Sequen al Design of Experiments[END_REF]: we have to choose between a finite number of different strategies with different diversity scores, and after choosing one we receive a feedback signal from which we compute an updated score.

e classic MAB problem considers only bandits that are independent from one another (choosing one does not affect the value of the others), and stationary (the distribution of rewards of the bandit does not change). A variation of the problem, the (also called or ) MAB, removes the stationary and interdependence assumptions: an adversary is free to choose arbitrary rewards for each bandit at each timestep.

In practice, a significant portion of the published literature on the adversarial MAB problem only removes the stationary assumption. In other words, the problem takes place in the opponent model: the actions of the adversary, i.e. the rewards for each bandit at each timestep, are decided before the game starts. is is the case in Whittle (1988) and [START_REF] Auer | The Nonstochas c Mularmed Bandit Problem[END_REF], who investigate rewards that can arbitrarily change. [START_REF] Garivier | On Upper-Confidence Bound Policies for Non-Sta onary Bandit Problems[END_REF] presents

, where all bandits' reward distributions change at specified timesteps. Cesa-Bianchi et al. (2006, pp. 156-169) provides a treatment of the nonoblivious case.

One shall remark that an arbitrary sequence of rewards generated in the oblivious opponent model is indistinguishable from one generated in the nonoblivious opponent model if the game is played once-which is the case in the real world (an agent has access to only one timeline). As a result, oblivious MAB algorithms usually perform well in practical nonoblivious scenarios, where the opponent is not (i.e. not actively trying to minimize rewards by modelling the agent's behaviour; the nonoblivious property only comes from environmental dependencies between tasks.). Still, the definition of the opponent model has important ramifications for the proofs of optimality that are established in the previously mentioned studies. One difficulty of the unconstrained nonoblivious opponent model is that the best strategy is usually computationally intractable, as all interactions between choices have to be taken into account.

Recently, Lopes and Oudeyer (2012) introduced the that tries to capture the issues involved when learning multiple tasks at the same time. A student has to learn multiple topics (maths, chemistry, history, etc.), and has limited resources (time) to do so. How should he allocate his study time between topics in order to maximize its mean grade at the end of the semester? A possibility is to consider the problem as a MAB problem where the bandits are learning tasks. Interestingly, the works of [START_REF] Baranes | Intrinsically mo vated goal explora on for ac ve motor learning in robots: A case study[END_REF], discussed in section 2.5, can be understood in this perspective: each region of the goal space is a different topic, whose improvement is empirically measured through competence progress during learning, and the exploration strategy must decide how to distribute its action given those learning feedback signals.

e strategic student problem also considers another related problem: a student has one topic to learn, but several possible learning strategies. Which one should he choose? Is a mixture of several strategies better than employing the best one all the time? is is the problem of learning to learn [START_REF] Schmidhuber | On Learning How to Learn Learning Strategies[END_REF]. [START_REF] Baram | Online Choice of Ac ve Learning Algorithms[END_REF] explored such a problem and showed that a dynamically selected mixture of three active learning strategies outperformed any pure strategy. [START_REF] Konidaris | Sensorimotor abstrac on selec on for efficient, autonomous robot skill acquisi on[END_REF] demonstrated that empirically evaluating and selecting amongst different small state space representations specific to a task during learning was effective and avoided a large task space where learning was unfeasible.

e work of [START_REF] Nguyen | Ac ve choice of teachers, learning strategies and goals for a socially guided intrinsic mo va on learner[END_REF] investigates robots dynamically choosing between asking a teacher for a demonstration or doing self-exploration on their own. [START_REF] Jauffret | From self-assessment to frustra on, a small step toward autonomy in robo c naviga on[END_REF] proposes a method where a robot can self-assess, and has a frustration drive. When frustrated, the robot can opt to choose social help to improve its performance. In the context of reinforcement learning, [START_REF] Hester | Learning Explora on Strategies in Model-based Reinforcement Learning[END_REF] develops an algorithm that can evaluate dynamically which exploration strategy brings the most rewards. ese exploration strategies are driven by extrinsic and intrinsic motivations: maximizing rewards, reducing variance, seeking novelty, seeking unexplored states (a binary novelty), and seeking or avoiding particular features of the state representation. [START_REF] Clement | Mul -Armed Bandits for Intelligent Tutoring Systems[END_REF] uses the framework of the Strategic Student Problem to create a tutoring system that actively personalizes the sequence of activities to each student, by tracking their performance and identifying which exercises and modalities make the student progress faster.

e works of [START_REF] Baram | Online Choice of Ac ve Learning Algorithms[END_REF]), [START_REF] Nguyen | Ac ve choice of teachers, learning strategies and goals for a socially guided intrinsic mo va on learner[END_REF]) and [START_REF] Hester | Learning Explora on Strategies in Model-based Reinforcement Learning[END_REF]) are singular because they combine deciding to learn, and deciding to learn, using a hierarchical approach. e learning strategy is selected first (how), and then it chooses what input to sample (what).

Learning performance typically exhibits . A student can hope to greatly improve its grade by studying a subject he knowns little about, but can only hope modest improvement if its expected grade is already near the top.

is characteristic of learning should inform the strategy the student employs. For this purpose, Lopes and Oudeyer (2012) consider [START_REF] Krause | Submodular Func on Maximiza on[END_REF]. Submodular functions are set functions 3 that are defined around diminishing returns: improvement that a new observation can bring is always greater early in the observation. Equivalently, considering a specific unobserved input, additional observations will not increase the input's expected improvement in performance. Mathematically: is submodular iff for every and is the improvement that brings, having observed . is correspond exactly to , the effect diversity we have previously defined. While submodular maximization is NP-hard [START_REF] Feige | A Threshold of Ln N for Approxima ng Set Cover[END_REF][START_REF] Krause | Near-op mal Value of Informa on in Graphical Models[END_REF], the greedy strategy is guaranteed to be no worse than times the optimal solution [START_REF] Nemhauser | An analysis of approxima ons for maximizing submodular set func ons[END_REF], with the base of the natural logarithm, in the case of non-decreasing submodular functions.

Of course, not all set of learning tasks exhibit a submodular structure. Still, it suggests that a good-enough performance might be obtained through simple-enough algorithms in practice. Lopes and Oudeyer (2012) and [START_REF] Hester | Learning Explora on Strategies in Model-based Reinforcement Learning[END_REF] advocate the use of the Exp4 algorithm [START_REF] Auer | The Nonstochas c Mularmed Bandit Problem[END_REF] rather than a greedy algorithm, as a more robust approach.

3 A set func on operates on sets. Given a set , the set of all subsets of (some mes called the power set of ) is noted , and the set func on assigns a value to each subset .

Compared to these works, our approach distinguishes itself in its objective: we are selecting exploration strategies to improve exploration, rather than exploration or learning strategies to improve learning. e resulting strategy is another exploration strategy, that can be used to replace any other exploration strategy in an exploration architecture. We provide an algorithm as simple as possible, based on selecting exploration strategies proportionally to their empirically estimated diversity.

e Adapt Algorithm

e Adapt algorithm chooses strategies proportionally to their diversity. To allow for constant reevaluation of the strategies, even those with low diversity, the algorithm chooses a strategy at random percent of the time, with . Algorithm 3 formally describes this.

Additionally, in order to foster initial experimentation with each strategy, the diversity measure is overestimated at the beginning of the exploration. For a given strategy , instead of considering the set , we consider the set , with in . e set is composed of fictitious points only available to the selecting strategy, that generate hyperballs that do not overlap with the observed effects. at way, the diversity of the strategy is overestimated during the first times it is selected. is also avoids having the first strategy selected unfairly preferred because it created the first observation, thus receiving the diversity of a full hyperball volume. We will use in all strategies. 

Experiment

We create an exploration strategy with the Adapt algorithm having the possibility to select between the random motor babbling strategy and the random goal babbling strategy of section 4.1. e explorer architecture is described Figure 4.3.

We run the adaptive strategy on a 20-joint arm, with each of the three learners studied in section 4.1. is set to , the time window for the diversity evaluation to 50 timesteps and the coverage threshold4 at . In Figure 4.4, the results of the strategy are displayed. In all three learner configurations, the Adapt algorithm identifies and uses the correct strategies. When , the goal babbling strategy is inefficient in the beginning, and motor babbling is overwhelmingly used. Motor babbling diversity declines continually during the exploration, and in the later stage, is comparable to goal babbling. As a result, after 4000 timesteps, the two strategies are used roughly equally.

When , goal babbling and motor babbling produce the same diversity at the beginning, but goal babbling declines more slowly than motor babbling. As a result, goal babbling is used more and more as the exploration progresses, as it should be.

When , motor and goal babbling behave similarly-if had been equal to , they would be the same strategy. During the early phase of the exploration, the Adapt algorithm does not distinguish between the two strategies. But in the later phase, goal babbling is able to provide an edge, however small, that is detectable by the Adapt algorithm. Goal babbling usage dominate after 1500 timesteps, and is used 80% of the time after 4000 timesteps. The Adapt algorithm performs well when strategies behave dis nctly, and be er than random with similar strategies. Each graph displays the performances showed Figure 4.2, with the performance of the adap ve strategy added as a do ed line (its standard devia ons in displayed in light colour as well). Experiments were repeated 25 mes. Note that not all the y-axis of the graphs begin at zero.

While the algorithm works qualitatively, it remains to be seen if this translates quantitatively. Figure 4.5 compares the error of the Adapt algorithm with the error of the fixed mixed strategies of section 4.1.

When goal babbling is much worse than motor babbling ( ) or when it is much better ( ), the Adapt algorithm manages performance on par with the best fixed mixture of strategies. When goal and motor strategy behave similarly, the adapt strategy is more conservative than the best case. is stems from the early stage of the exploration, when the motor babbling and goal babbling strategy are both effective, and hence both significantly used.

A Power Variation

A possible solution would be to increase the impact of the differences in diversity, by considering, for instance, the square of the diversity of a strategy instead. When , this approach does not work well, and only increases the usage instability of the strategies, as shown in Figure 4.6, where the strategies where chosen proportionally to their diversity, the square of the diversity, and the diversity to the fourth power. As the proportionality of the selection shows weaknesses, a better method would probably be to use a simple soft-max selection rule, or using the more version offered by the Exp algorithm from [START_REF] Auer | The Nonstochas c Mularmed Bandit Problem[END_REF]. Still, the performance is good-enough for now.

Grid Diversity

Computing the area of the union of hyperballs is not trivial ( in dimension 2, see appendix A for details), and computing the diversity requires to do it times, with the number of timesteps. We developed an alternative effect diversity measure based on a grid, computed in , that produces similar results. Details and graphs are available in appendix B.

F

Adapting Reach

Abstract We present a slightly more complex explora on architecture were some part are fixed and other adaptable. We show that the Adapt algorithm can balance different explora on strategies beyond motor and goal babbling. In section 3.3.2, we investigated the -unreach strategy, and how a combination of goal set outside and inside the goal space can allow to balance the aggressiveness of the exploration. We now use the Adapt strategy to adjust the balance dynamically. e resulting architecture is described Figure 4.7. We force 10 initial random motor babbling steps, after which the Adapt strategy can choose between the unreach and the reached strategy.

e learner is configured with a perturbation parameter . We study this time the impact of considering different coverage threshold for the adapt strategy. Specifically, we consider , as we did in section 4.2, and and . All the other parameters of the adapt strategy remains as perturbations induced by the inverse model make the reached strategy competitive, yielding a much more balanced usage of the two strategies.

In other words, a high threshold favours aggressive exploration but yield poor diversity of observation, and a low threshold provides high diversity of observations, and favours a less aggressive exploration.

One could possibly obtain the best of both, a high diversity and an aggressive exploration-by implementing a developmental constraint that makes the threshold begin with a high value and lowers it during exploration.

Discussion

e Adapt algorithm we presented, and the corresponding adaptive strategies we implemented demonstrate the reusability of simple exploration strategies to make better, more flexible ones. e diversity measure is, in many ways, rather crude, but it shows that discriminating between exploration strategy is definitely possible, and, advantageous. is work is related to previous works, and the general idea is not particularly new. It's application to exploration problem, and to a diversity measure, is, however.

In the experiments, we modified the exploration strategy of the agent. It would suggest that a same strategy, then, can adapt to different environments, with different complexities. is is the more important point, but this is not what the experiments established-further work is needed to establish environment independence directly and empirically.

e algorithms could also benefit from being tried in different domains. As we argued in last chapter's discussion, our simplified two-dimensional work is hardly convincing of anything else than itself.

Additionally, From the experiments we conducted, it is unclear how the Adapt algorithm will scale with the number of strategies. As more strategies are available, either more time will have to be devoted to exploratory sampling of bad strategies, or strategies will be less accurately evaluated overall. is is the classic exploration/exploitation trade-off.

We imposed a constraint of agnosticity over the internal working of the selected strategies. However, the usefulness of some strategies typically decreases with time, such as motor babbling. Taking into account on how well each exploration strategy usually performs-perhaps from a prior derived from the experience gathered from exploring similar environments-could improve the performances of the Adapt algorithm, and avoid to rediscover everything all the time. Coincidentally, we will be attacking that very subject in the next chapter.

Reuse: e Basic Idea

To illustrate this, let's consider a pair of two-dimensional arms with the same number of joints. e first arm has same-length links totalling one meter, and the environment returns the Cartesian position of the end-effector, as in chapter 0. e second arm has links such that, going from the base to the end-effector, each link is 0.9 times smaller than the previous one, while the total length of the arm remains one meter; this arm also returns the position of the end-effector, but using coordinates. e two arms share the same number of joints with the same available ranges ( ): they have the same motor space. However, because the lengths of the links are different, most motor commands will results in a different position for the endeffector, as shown in Figure 5.1. And because the positions are expressed in two different coordinate systems, the inverse model of one arm is difficult to exploit on the other arm, without having, or learning, a mapping between the coordinate systems.

As in the first part, the agent views the two arms as black-boxes, and has no information about the relation between them. In fact, because the sensory feedback channels are not labelled, the two arms are indistinguishable from one another before any interaction is performed.

e Basic Idea Let's assume that the first arm has been explored. e idea behind the reuse method is to bootstrap the exploration of the second arm using the exploration history of the first arm.

In all the exploration strategies that we have considered so far, the initial observations were generated through random motor babbling. When using the reuse method, instead of generating the initial motor commands randomly, we instead choose motor commands that were executed during the exploration of the first arm. is is possible since both arms share the same motor space: the motor commands are compatible.

Since the reused commands are executed on the second arm early in exploration, during the motor babbling phase, we cannot rely on acquired knowledge about the second arm in order to choose which motor commands to reuse. Instead, we relyunsurprisingly-on an intrinsic characteristic of the exploration history of the first arm, one that occupied us already during much of the first part of this thesis: its . We choose a set of motor commands from the first arm that produced a set of effects that has a high diversity, and execute them on the second arm. Because the internal dynamic of the two systems are not too dissimilar, this is likely to create a diversity of effects early in the exploration of the second arm. In other words, the second arm leverages the structure of the exploration of the first arm. In particular, it increases the probability to produce observations in low-redundancy area of the sensorimotor space, that required extensive exploration to be discovered during the exploration of the first arm.

e main condition for the reuse method to be applicable is that the two environments share the same motor space-or at least that the intersection of their motor spaces is not empty. e reuse method does not impose any other condition on the relation between the two tasks. In particular, it is not constrained by differences in sensory modalities, or differences in learning algorithms. And because the number of random motor babbling step that are replaced by reuse steps is configurable, the impact reuse has on the exploration of the second arm can be regulated as necessary.

e condition on the motor spaces is not particularly hindering either. It is already verified in many platforms at the lowest level: the actuation interface is usually as stable as the body and wiring of the robot (an the same goes for biological organisms). When considering higher level of abstraction for motor commands, a higher discrepancy can be expected between tasks's action space. Even in those cases, whether the overlap between the action spaces of the tasks is total, high, low or null, detecting the applicability of reuse is immediate, and reuse can be used opportunistically in conjunction with other exploration strategies.

Experiment

Figure 5.2: A er the 5000 steps of the explora on on the first arm have been carried out, a grid is applied on the sensory space. Here, we choose (at random) one effect per cell (in red). Out of those effects, only 50 will be selected and their motor command reused: this is the rightmost graph. [source code] e exploration on the first arm is conducted over 5000 steps, using the random motor babbling strategy for the first 50 steps, and then using random goal babbling. Both arms have 20 joints.

We implement the reuse method by laying a grid over the sensory space of the first arm at the end of the exploration.

e set of reused motor commands is selected by repeatedly choosing a non-empty cell at random and drawing without replacement an effect from that cell; the chosen motor commands are the ones that produced the selected effects. is process is illustrated Figure 5.2.

As can be seen Figure 5.3, Reuse-backed exploration access low-redundancy areas of the sensorimotor space early.

e exploration of the second arm environment begins by reexecuting 50 motor commands from the first arm exploration trajectory. At the 400 timesteps mark, the difference between reuse and a classical goal babbling strategy is significant. In particular, the reuse exploration has spread near the edges of the reachable space while goal babbling is still far from them. 5000 steps into the exploration, the differences vanish-the better final coverage of the reuse strategy on this specific example is not indicative of a general tendency.

Randomness Or Diversity?

So far, the presentation we have made of the reuse method-although perfectly correcthas been somewhat disingenuous. Indeed, by focusing the attention on how the selection of motor commands was driven by effect diversity, we have implied that it played a major role in the performance of the algorithm. What about choosing motor commands to reuse at random?

In Figure 5.4, the pattern of exploration offers no discernible difference to the one of the top row of Figure 5.3, where the set of reused motor commands was explicitly crafted to contain a diversity of produced effects on the first arm.

e explanation, of course, is simple. e goal babbling algorithm used in the exploration of the first arm already produced a distribution of motor commands that produced an approximately uniform distribution of effects on the reachable space. is was how we motivated goal babbling over motor babbling in chapter 0. Explicitly ensuring diversity is then redundant, and does not provide any advantage. is allows Figure 5.4: Reusing random motor commands seems as efficient as using commands selected for their diversity. In this explora on, the motor commands were chosen randomly from the first explora on, without taking into account how the effects they produced relate to one another. [source code] to understand better how the method works, whether the selection of reused commands in random or not. Reuse leverages the reduction in the heterogeneity of the sensorimotor redundancy of the set of observations of the first exploration.

What happens, then, if the exploration of the first task does not reduce the heterogeneity of the redundancy? What if, for instance, the first exploration is driven by a pure random motor babbling strategy? Surely, we can't expect any advantage from using random reuse then. But what about diversity reuse?

, can diversity reuse still be justified, when the exploration of the first arm is good-enough? All these questions will be answered in the next chapters.

For now, let's conclude that the reuse method is simple, requires a condition often already verified in existing robots, and improve significantly early exploration. In this chapter we review the existing literature on transfer learning, motivate our approach and formalize the reuse method.

Transfer Learning

Classical machine learning considers scenarios where a learner is trained to make predictions from data on a specific problem. Transfer learning ( run and Pratt 1998;Taylor and Stone 2009;[START_REF] Pan | A Survey on Transfer Learning[END_REF] considers how the experience gained in one learning scenario can be used in another scenario to improve performance. e reuse method is an instance of transfer learning.

A Short Motivational Overview

Transfer learning was originally motivated by the cost of labelling instances for classification tasks: for instance, a classifier would be created to detect horses in pictures, and then the need to create a classifier to detect zebras would arise. To train the classifier, thousands of zebra pictures would have to be gathered and manually labelled. If somehow the knowledge contained in the horse classifier, or the labelled horse pictures, could be leveraged to create the zebra classifier, given their obvious similarities, then the number of pictures of zebras that would need to be labelled to achieve a given performance would be reduced. Or rather than a different animal, we may want to create classifiers for a different medium. Can the horse picture classifier help train a classifier detecting horse in videos? It may also be that this is not so much the cost of labels that makes transfer learning desirable, but the scarcity of the data: there might not be enough pictures of zebras or videos of horses available to create a good-enough classifier1 .

Likewise, robots can benefit from transfer methods. As each interaction is costly, any interaction that can be avoided by reusing previously acquired experience represent a significant information gain. Moreover, sometimes the data necessary to solve a problem is not present in the environment, and must be marshalled from past experiences. In other contexts, there is no time to learn: a useful behaviour is expected immediately. Additionally, complex tasks often require the acquisition of a number of subskills before being able to deal with them.

ose subskills may be more easily learned in simpler contexts, from which the acquired behaviour must be transferred on the complex task.

Finally, current robots suffer from an absence of good priors when they start learning. Without any knowledge of the world, without any common sense, tasks that are trivial for humans become frustratingly difficult to implement in robots. Transfer learning is part of the answer to this, and, in particular, to the question of the origins of Bayesian priors.

Another important instance of transfer learning is (Quiñonero-Candela et al. 2008). Dataset shift happens when one cannot assume that the testing data for a learning algorithm will have the same distribution as the training data. For instance, after six-months of operation, a bike-sharing operator wants to build a model to predict how the bikes will be borrowed next month, and where empty and full stations will be located. But bike usages change with the seasons, and no record exists for this month last year. And, the new bike lanes opened by the city last week and the increased popularity of the program have probably to be taken into account to. In this case, we talk about . e task is the same between the training and the application, but the training data is sampled from a situation different than the one we want to apply it to. Another example is an airport trying to build a classifier to detect smugglers amongst the passengers. Evolution of the value of smuggled goods or changes in repression will modify the behaviour and distribution of smugglers: an increase in the value of the smuggled goods accompanied with more lenient laws will make a portion of the normal population become smugglers. When building a classifier based on historical data, one must take these factors into account.

Online, incremental learning algorithms make robots less affected by dataset shift, which manifests itself when the learning data is divorced in significant ways from the current context. Robots should expect continuous dataset shift, and constantly update their behaviour to changing conditions. Nevertheless, abrupt changes do happen (being unboxed in someone's home from the factory for instance). And learning a task does not necessarily happen continuously. Being able to deal with dataset shift means being able to resume the learning of a task that was begun in the past, by taking into account that the observation distribution may have changed.

One has to acknowledge that transfer in humans is not a settled topic [START_REF] Billing | Teaching for transfer of core/key skills in higher educa on: Cogni ve skills[END_REF]. orndike and Woodworth (1901) was one of the first to study the phenomenon, and in a 1923 study ( orndike 1923) famously failed to find a strong causal link between learning Latin and improving one's mastery of the English language. Other studies have reported similar results, for instance on the benefits of learning programming [START_REF] Pea | On the cogni ve effects of learning computer programming[END_REF][START_REF] Salomon | Transfer of Cogni ve Skills from Programming: When and How?[END_REF]) (although other studies did find instances of positive transfer [START_REF] Lehrer | Influences of LOGO on children's intellectual development[END_REF][START_REF] Clements | Effects of computer programming on young children's cogni on[END_REF])), or even learning how to read and write (Scribner 1981). As [START_REF] Billing | Teaching for transfer of core/key skills in higher educa on: Cogni ve skills[END_REF] points out, the studies, re-examined today, are usually regarded as not providing good evidence against transfer. Overall, unless considering very narrow definitions of transfer, evidence seems in favour of transfer. In humans, transfer takes multiple forms, but is not systematic; in particular, it is highly contingent on the environmental conditions of learning.

A Computational Definition

In [START_REF] Pan | A Survey on Transfer Learning[END_REF], a learning scenario is defined as the combination of a domain and a learning task . e domain is composed of a feature space and a marginal probability distribution with . In the case of our sensorimotor scenario, would be the set of motor features, and the uniform distribution, since we can choose and execute any motor command we want.

e learning task is composed of a label space and an objective predictive function . corresponds to the sensory space, and to environmental feedback. Given these notations, [START_REF] Pan | A Survey on Transfer Learning[END_REF] defines transfer learning as:

In the example of the previous chapter, the motor spaces, and their uniform marginal probability distribution are identical. e tasks, however are different; we are in the but case2 .

Notice that, while the domain and the task are easily distinguished conceptually, in practice it is often much less clear, and it may entirely depends on how the problem is formalized; the concept of domain and task usually depends on the learning framework. In reinforcement learning for instance, Fernández et al. (2006b) distinguishes the Markov decision process (MDP) as the domain, while the task corresponds to the reward function. As a result, many transfer learning techniques are specific to a given learning framework.

More simply, transfer learning happens as soon as . is does not have to be a direct influence. If any of the cognitive changes that have been created while learning a task influence how another task is learned, transfer learning happened. For this reason, transfer learning is present in human and animal learning not only in conscious and specific cases, but all the time, as a intrinsic property of neural learning. Furthermore, any reasonable cognitive architecture for cumulative learning probably implicitly features transfer learning in one form or another, because not doing so would impose strict cognitive isolation between tasks.

Of course, and again, transfer learning is only defined insofar as are clearly defined. While most transfer learning experiments provide tasks, and assume that they are related, the problem of recognizing and discovering tasks in an environment is a non-trivial issue for transfer learning that is mostly unaddressed in the literature.

Benefits of Transfer

ere are several expected benefits of transfer on learning performance (Taylor and Stone 2009), that acts as many ways to evaluate its impact.

• A improved initial performance. If the transfer occurs before learning in the second task has started, a jumpstart, i.e. a difference in initial performance might be observed between the target task with and without transfer.

• In practical settings, a behaviour might become useful if the performance reaches a specific threshold (for instance, the positional precision of an end effector), and transfer learning may help reach this threshold faster.

• Closely related, the performance might be evaluated at a given time after learning started, and transfer learning may improve the evaluated performance.

• e average performance over a time window may also be increased. In a reinforcement learning context, if the time window extends to the whole learning duration, this represents the total cumulated reward.

• Finally, transfer learning might change the asymptotic performance of the learning algorithm. ese are some performance-related impacts of reuse, that are mainly valid in the case of monotonically increasing performance. In complex scenarios, the impact of transfer learning might be more complex to measure.

Transfer learning is not necessarily beneficial. If the tasks are too dissimilar, the bias introduced by the source task might decrease performance: this is . For instance, a source tasks might direct learning toward a familiar region of the learning space in the target task. is would provide a positive jumpstart in performance, but might produce a worse asymptotic performance if this region of the learning space limits the quality of the solutions.

Ways and Means

To conduct transfer from one task to another, one must identify aspects of the source task that might benefit the learning of the target task, and devise a way to transfer them between tasks. Additionally, one must consider that transfer is not always beneficial, and thus decide, in a specific context, if transfer should be carried out. In a cumulative learning setting, one can furthermore expect that more than one source task is available: choosing from which source task to transfer also becomes an issue. is corresponds to the three questions identified by [START_REF] Pan | A Survey on Transfer Learning[END_REF]: to transfer, to transfer and to transfer, and we add to transfer. Different methods of transfer have been proposed. Some share instances of the dataset across tasks [START_REF] Shimodaira | Improving predic ve inference under covariate shi by weigh ng the loglikelihood func on[END_REF]Quiñonero-Candela et al. 2008;[START_REF] Fan | An Improved Categoriza on of Classifier's Sensi vity on Sample Selec on Bias[END_REF][START_REF] Liao | Logis c Regression with an Auxiliary Data Source[END_REF]Huang, Gretton et al. 2006;Dai, Yang et al. 2007;[START_REF] Jiang | Instance weigh ng for domain adapta on in NLP[END_REF], in particular in the case of dataset shift.

ese methods typically use importance sampling and instance reweighting to adapt the dataset. [START_REF] Liao | Logis c Regression with an Auxiliary Data Source[END_REF] in particular propose, in the context of logistic regression, an active learning algorithm that chooses which elements of the target task to label, if no label are provided at the start.

e active choice is driven by reducing the uncertainty (the variance) on the classifier parameters.

Others share or create common feature representations [START_REF] Blitzer | Domain adapta on with structural correspondence learning[END_REF][START_REF] Daumé | Frustra ngly Easy Domain Adapta on[END_REF]Dai, Xue et al. 2007;[START_REF] Xing | Bridged Refinement for Transfer Learning[END_REF][START_REF] Wang | Transferred Dimensionality Reduc on. In: Machine Learning and Knowledge Discovery in Databases[END_REF][START_REF] Pan | Transfer Learning via Dimensionality Reduc on[END_REF][START_REF] Zeng | Domain Transfer Dimensionality Reduc on via Discriminant Kernel Learning[END_REF]. [START_REF] Zeng | Domain Transfer Dimensionality Reduc on via Discriminant Kernel Learning[END_REF] uses kernel learning methods on related tasks, and then applies the low-dimension representations thus created on the target task, where the scarcity of the data does not allow for such methods to apply. In contrast, [START_REF] Daumé | Frustra ngly Easy Domain Adapta on[END_REF] augments the target data with the learned source task features.

Another class of methods share model parameters or models across tasks [START_REF] Lawrence | Learning to learn with the informa ve vector machine[END_REF][START_REF] Raina | Construc ng informa ve priors using transfer learning[END_REF][START_REF] Bonilla | Mul -task Gaussian process predic on[END_REF][START_REF] Gao | Knowledge transfer via mul ple model local structure mapping[END_REF][START_REF] Chai | Mul -task gaussian process learning of robot inverse dynamics[END_REF]). As [START_REF] Raina | Construc ng informa ve priors using transfer learning[END_REF] points out, such methods are in particular employed to set the priors in a Bayesian setting. [START_REF] Gao | Knowledge transfer via mul ple model local structure mapping[END_REF] proposes to combine multiple models into a locally weighted ensemble of model for the target tasks. Even conflicting models can be combined, the relevance of each of a local area of the target dataset is evaluated, and the more relevant models receive a greater weight over that area.

Most methods we have discussed so far deal with classification and regression. Our account is far from exhaustive, and the interested reader can consult run and Pratt (1998) and [START_REF] Pan | A Survey on Transfer Learning[END_REF] for reviews, and Quiñonero-Candela et al. ( 2008) more specifically for dataset shift. In the next section, we discuss another class of transfer learning methods: transfer in reinforcement learning.

Transfer in Reinforcement Learning

In the reinforcement learning framework, the Markov Decision Process representation shared by the different algorithms lays out clear distinctions between the transfer methods. In particular, we can distinguish between methods that assume that the state-action space is shared across the source and target tasks, and those that don't. Among those two groups, we can usually find distinctions of instance transfer, representation transfer and parameter transfer to classify their respective methods.

Among the methods that share the state-space between source and target task, a common technique is to learn and discover (Sutton et al. 1999;[START_REF] Precup | Temporal Abstrac on in Reinforcement Learning[END_REF]) in the source task, and to transfers those policies to the target task. Options are useful for navigating the state space. Learning them in the source task provides the agent in the second task automatized ways to different areas of the state space [START_REF] Perkins | Using op ons for knowledge transfer in reinforcement learning[END_REF][START_REF] Bernstein | Reusing old policies to accelerate learning on new MDPs[END_REF][START_REF] Şimşek | Iden fying useful subgoals in reinforcement learning by local graph par oning[END_REF]. [START_REF] Asadi | Effec ve Control Knowledge Transfer through Learning Skill and Representa on Hierarchies[END_REF] propose to identify bottleneck states in the state-space, and to construct subgoals (and correspond partial policies), based on the structure of the task space rather than the reward.

An interesting method comes from [START_REF] Sherstov | Improving Ac on Selec on in MDP's via Knowledge Transfer[END_REF], that create a set of task from a source task, and prune the action space from any action that is not optimal in at least one task of the set. e diversity of the set of tasks creates a filter that is used to reduce diversity in the set of actions.

Other methods do not consider the state-space necessarily fixed, but usually require that an expert mapping between the tasks. For instance, the work of Fernández et al. (2006b), , which upholds ideas that are very close to the reuse algorithm, constrains the state and action space to be similar Fernández et al. (2006b), or that a mapping between the state and action be provided by an expert (Fernández et al. 2006a).

However, the reuse method does too for the action space: it requires that the motor space remains the same. And because our environment is one-step, episodic, the constraints that the state space stays the same is always guaranteed.

e idea behind is to reuse policies across tasks, in the context of the RL framework.

e tasks are composed of an MDP and a reward function. When a task is sufficiently novel, it is stored in a policy library, ready to be reused on new compatible tasks. When the policy learned from a task is novel compared to existing policies in the library, it is added to it.

However, policy reuse by itself does not provide a mechanism to generate diversity. e creation of new tasks is not the prerogative of the algorithm. As with reinforcement learning, policy reuse has only been applied to discrete or discretized spaces. And the similarity between two strategies is tied to the reward they bring. For all these reasons, our work is singularly different from Fernández et al. (2006b,a).

Again, our account is illustrative rather than exhaustive. e readers will find detailed surveys in Taylor and Stone (2009) and Lazaric (2012).

Brief Motivation

Many transfer methods try to find the mapping between the source and target task. Even in simple examples, such as our arm perceiving the world in polar coordinates, this represent a difficult challenge. One that is probably not often necessary to solve.

Rather than considering the functional mapping between the two tasks, we consider the diversity mapping, which is much more robust and much simpler. We assume that a set of motor commands that produce a diversity of effect in one task has a higher probability to generate a diversity of effect in another task, than a less diverse set of effects. Although obviously one can find counterexamples, this assumption is verified in many practical situations.

An interesting application for the reuse method would be team of identical robots [START_REF] Waibel | RoboEarth[END_REF].

ose teams of robots are projected to be connected to one another and share experience data amongst the population. Reusing motor commands between robots of a same population is possible since they share the same body, and is desirable, because it introduces no bias on the target robot: it avoids the representation trappings, and does not try to force the same ontology on all elements of the team, which is both a significant loss of diversity, and can disconnect the knowledge of the robot from its direct experience. F

e Reuse Algorithm

Our method is organized around three algorithms.

e first, Explore(), describes the learning and exploration of the source task and has been described in section 3.1.

e second, Transfer(), is applied at the end of the learning of the source task, and produces the motor commands to be transferred to the target task. e third, Reuse(), controls how the transferred data impacts the exploration algorithm in the target task.

Processing the Trajectory

For each interaction in the second task, the learning algorithm can request reusing a motor command from the first task rather than doing random motor babbling. Goal babbling behaviour is unaffected. Our reuse algorithm defines which motor command is transferred when such a request is made.

e whole assumption behind reexecuting a set of motor commands from a previous task that generated a diverse set of effects in the past task, is that they might generate a variety of effects in the current task as well, hence bootstrapping the model with good observations. Of course, this assumption hinges on the fact that the two tasks are sufficiently similar.

In order to generate a sequence of motor commands that generated a diverse set of effects, we reuse the grid of the goal babbling algorithm, and assign each cell with a bin. In this bin, we put the motor command of every effect that belong to the cell. When a motor command is requested by the exploration algorithm, we choose a random, non-empty, bin and draw, without replacement, a random motor command from the bin. is procedure is codified in Algorithm Transfer.

is procedure has a low computational cost, and only transfer structured set of motor commands. No sensory data is shared across tasks, hence the target task never tries to use the forward or inverse model of the source task.

is particular method as the added advantage that the structured set of motor command can be computed before knowing about the second task, and be used even if the first task has been forgotten.

Target Exploration

We modify Algorithm 2 to replace the call to MotorBabbling() by a probabilistic call to ReuseBabbling() and MotorBabbling(), according to a probability reuse , producing the Reuse algorithm.

e resulting exploration architecture is illustrated Figure 6 In chapter 5, we presented a example of utilization of the reuse algorithm on two two-dimensional arm environments. e source environment was a 20-joint twodimensional arm with all segments of the same size, while in the target environment, the arm had segments of decreasing length in the proximo-distal direction. Although we observed that using reuse provided an improvement in exploration on an specific instance, we didn't provide robust quantitative evidence. More over, that selecting the motor commands to be reused with diversity or randomly did not provide a qualitative difference. We address these two points now.

In chapter 5, the explorer on the source and the target task had a bootstrapping period of 50 timesteps. During this period, pure random motor babbling and pure reuse were done in the source task and the target task respectively. e rest of the time, the exploration was done using random goal babbling with a perturbation parameter equal to 0.05.

Exploiting Random Motor Babbling with Diversity Figure 6.3 shows the coverage performance of the target task with and without reuse, using diversity reuse and random reuse.

e performance without reuse is not the performance of the source task (the same-length links task); it is the performance of the target task (the decreasing-length links task) with the 50 timesteps of reuse replaced by 50 timesteps of random motor babbling, as we would proceed if a source task was not available3 . Because the differences in performance are sometimes small in this section, all experiments have been run 100 times. To show evidence that diversity reuse provides an advantage over random reuse, we consider a scenario where random reuse cannot bring any performance gain: when the source task is pure motor babbling. As shown in Figure 6.4, diversity reuse makes a difference, if a small one. In fact, it illustrates how diversity reuse is able to exploit an exploration that has no particular beneficial structure.

Increasing the Reuse Duration

One explanation of diversity reuse and random reuse not displaying different performance in Figure 6.3 is that over 50 motor commands, a random selection will generate as much diversity as an explicit diversity-driven approach. Over a longer period, random reuse will select similar motor commands from high density areas of the exploration, while diversity reuse will select motor commands uniformly over the sensory space, providing a performance improvement.

To test that hypothesis, we extend the reuse period from 50 timesteps to 500 timesteps. Figure 6.5 shows that this does not provide any significant improvement (the curves almost match perfectly. e standard deviation is slightly better for diversity reuse at t = 1000).

Using a longer reuse duration from a motor babbling source yield interesting result however. In Figure 6.6, diversity reuse is able to yield a significantly better performance during the first 500 steps of the exploration than random reuse. 

Opportunistic Diversity Exploitation

A particularly disadvantageous setting for random reuse is when few good observations are mixed with amongst large number of mediocre observations. In that case, diversity will explicitly select the few good observations, while random reuse will miss them, and overwhelmingly select mediocre observations. To that end, we consider a goal babbling source task where motor babbling lasts for 4500 timesteps. Only during the last 500 timesteps does goal babbling is run. Figure 6.7 illustrates the three sources tasks we have considered so far (the performance is shown on the same-length task, as is appropriate).

In that setting, diversity manages to provide a small improvement over random reuse (Figure 6.8).

e real difference happens when the reuse period is extended to 500 timesteps (Figure 6.9). Diversity reuse is able to fully exploit the diversity provided by the source task, while random reuse performs poorly-it will select 50 observations produced during the goal babbling phase of the first tasks out of 500, on average--, only able to exploit the source task after the 500th timestep, when goal babbling happens. e final performance between the two reuse strategy is not different, however. 

Discussion

In these two-dimensional arm experiments, diversity reuse is consistently similar or better than random reuse, but does not exhibit significant quantitative improvement in performance over the long run. Qualitatively however, diversity reuse, at the difference of random reuse, is shown to be able to exploit a distribution of observations randomly distributed over the motor space. Additionally, it brings robustness and significant quantitative improvement during the early phase of the exploration in specific scenarios.

In an ecological context, the early period of learning is the most relevant. Animals, humans, robots do not live at the asymptote. Because time is finite while learnable skills are virtually unlimited, incentives are for engagement with a learning task to be limited. Furthermore, as devoting significant resources to a single task brings diminishing returns (Lopes and Oudeyer 2012), this behaviour can only be justified if the task is of some special importance. In a context where the agent is exploring the environment for new interactions, no interaction is a priori more special than any other. Settling to learn the first new environmental interaction found, that might be less useful and more difficult to learn than others nearby is not a good strategy. Sampling different interactions-for instance estimating their learnability [START_REF] Baranes | Ac ve learning of inverse models with intrinsically mo vated goal explora on in robots[END_REF])-, before committing to learning any of them therefore presents a fitness advantage.

Moreover, the early phase of learning is important because learning can be interrupted at any moment. By a predator, by a more pressing physiological need, by a peer, by any sort of environmental perturbation.

Finally, an agent with good early learning performance will be able to amass more knowledge and skills by engaging over short periods of time with a diversity of learning tasks than another agent with bad early learning performance, even if both reach the same medium-term, long-term or asymptotic performance. erefore, in robotics, a good early learning performance is better than a good asymptotic performance. A good early learning performance is better than optimality. us, diversity reuse represents a significantly better algorithm for the transfer of exploration in a robotic context where many tasks are available. It increases significantly the knowledge and skills obtained while exploring the environment.

It also favours the interactions that are naturally compatible with the already acquired competences of the agent. As any transfer learning algorithm, it has the tendency to incentivize the agent to learn progressively more complex tasks, the choice of which are dependent on the agent current competence.

Indeed, an agent whose learning is guided by progress in competence for instance [START_REF] Baranes | Ac ve learning of inverse models with intrinsically mo vated goal explora on in robots[END_REF] will be motivated to engage with tasks that offer maximum learning progress, i.e. easy tasks. While learning progress motivates the agent to stop learning a task as soon as the (diminishing) returns decrease significantly, it can only direct the agent towards more complex tasks once all the simple tasks are learned. Which means that the agent will increase the complexity of its behaviour only in situations where there is a finite, reasonable amount of easy learning tasks. If the agent uses transfer learning, tasks that were hard at the start of learning can progressively become easier-and therefore more desirable for learning-if they are dependent on simpler, learned tasks. Transfer learning encourages the (self-)scaffolding of increasingly more complex behaviour. We'll see how reuse can foster scaffolded learning in chapter 5.

Another way to look at the previous argument is to consider that an additional or a could be added to the agent to motivate it not to only learn simple tasks. But, alternatively, transfer learning, by modifying the patterns of learning of the agent, can produce similar behaviour. Which is better then? Modify the learning capabilities or modify the motivational drives? is issue warrants further research.

Let's remark here that while we advocate reuse for a task-rich environment, the framework proposed only deals with one source task. In a situation where the agent has multiple acquired tasks available, choosing from which task to reuse motor commands is not trivial.

e most simple way to deal with this issue is to rely on a similarity measure between the available source tasks and the target task. Provided with a slightly novel object, a child will have the tendency to reuse motor commands that provided interesting observations on similar objects. Put differently, the slightly novel objects evoke affordances [START_REF] Gibson | The Theory of Affordances[END_REF] in the child that were learned by interacting with other objects in the past. ese affordances will naturally bias the interactions the child chooses to engage the object with.

In this thesis, we consider the scenario of a totally novel object, that does not bear any visible similarity with past experience.

is might be because the object is truly new, or because the agent is unable to accurately recognize the object as similar to other objects he already engaged with. e latter scenario is reasonable in the current context of robotic technology4 .

To choose from which tasks to select motor commands without a similarity measure, a possibility is to estimate similarity empirically from the interaction data with the object. Similar tasks, as we have already stressed, will have a tendency to generate similar level of diversity for the same motor commands.

erefore, a natural way is to proceed in a similar manner as chapter 4.

e exploration strategy being selected are the reuse strategies from each source tasks: source tasks are preferentially selected by the diversity they produce during reuse.

at is, the creation of diversity acts as an indicator of the compatibility between tasks for transfer. Note that if the sources tasks have already been generated by reusing from each other, they share a number of motor commands, that has to be taken into account when sampling and estimating the diversity contribution of each source task.

We do not test such an algorithm in this thesis, but it is an interesting future venue of research.
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A Real Robot and a Virtual Ball

In this chapter, we describe the second experimental setup used to conduct experiments with the reuse method. We constructed a hardware platform equipped with an articulated arm interacting with a simulated object. We show that reuse is effective when learning to interact with objects with significantly different response behaviour.

Experimental Setup

We consider a hardware and simulated experimental setup where a 6-joint robotic arm interacts with an object, a cube or a ball, and observes the displacement of the object at the end of the interaction. An interaction task is appropriate to demonstrate the strengths of the reuse methods, because many motor commands do not connect with the object, and thus generates little diversity. As shown in the previous chapter, the diversity reuse method will take advantage of diversity, regardless how little quantity there is.

An object interaction task is also interesting in a developmental context, as it is relevant in early exploration of the world.

Interacting with a real object presents many technical difficulties, and exposes the robot to damage. is was the original motivation for the hybrid approach we chose, where the (real) robot would interact with a simulated object in a physical engine. In the following, we first present the setup technically, and then discuss the choices that were made. The hardware and the simula on setup share the same simulated world. However, when using the real setup, no simula on of the robot is conducted. On the real robot, a reflec ve marker at the p allows its posi on to be tracked by cameras.

e robot is a serial chain of six servomotors. e three proximal motors are Dynamixel RX-64 and the three distal ones are RX-28. ose servomotors are capable of delivering respectively 64 and 28 kg/cm of stall torque, with an angular resolution of 0.29 degrees, measured with a mechanical potentiometer, whose precision is variable (across the angle range between different motors). During the experiments, the servomotors were operated in position using the embedded PIDs, with a control loop for the position running at 100Hz. e movements of the robot are generated using dynamic movement primitives (DMP). DMPs are parametrized dynamical systems introduced by Ijspeert, Nakanishi and [START_REF] Ijspeert | Movement imita on with nonlinear dynamical systems in humanoid robots[END_REF].

ey are computed from sets of differential equations, that provides guarantees of smoothness, convergence, and robustness to perturbation [START_REF] Konczak | On the no on of motor primi ves in humans and robots[END_REF]. We chose DMPs, and the specific parameterization we explain below, because it allowed to express many different arm trajectories with a compact description (i.e. few motor dimensions). We use the implementation of [START_REF] Stulp | DmpBbo -A C++ library for black-box op miza on of dynamical movement primi ves[END_REF], based on [START_REF] Ijspeert | Dynamical Movement Primi ves: Learning A ractor Models for Motor Behaviors[END_REF] with the sigmoid variation of [START_REF] Kulvicius | Joining Movement Sequences: Modified Dynamic Movement Primi ves for Robo cs Applica ons Exemplified on Handwri ng[END_REF]. DMPs are based on damped spring dynamics, perturbed by a forcing term (equation 7.1).

ey allow arbitrary smooth movements between start-and end-points. e forcing term is an arbitrary linear function, represented as linear combinations of basis functions. Here Gaussian activation functions are used, with centre and width , weighted by (equations 7.3 and 7.4). is the phase of the forcing term, described by an exponential decay term (equation 7.2). ose equations do not present the more complex case we used, where the sigmoid variation is included, see [START_REF] Kulvicius | Joining Movement Sequences: Modified Dynamic Movement Primi ves for Robo cs Applica ons Exemplified on Handwri ng[END_REF]) for more details. In the following equations, is a temporal scaling factor1 , and are constants and is the target state. In this experimental setup, the start-and end-points are set identical ( ) and correspond to the motor being in the zero position (Figure 7.2). We use 2 basis functions per motor, with and fixed respectively at and , with = 5s. and are shared by all motors. For historical reasons, we don't directly use the weights for parametrizing the motor space. Instead, we use the LWLR function approximator provided with the DMP library [START_REF] Stulp | DmpBbo -A C++ library for black-box op miza on of dynamical movement primi ves[END_REF], and define two linear functions per motor, with slope and offsets respectively. e function approximator then compute the forcing term to approximate as much as possible these functions at time and . Although directly manipulating the weights would be more natural, this method provides a rich diversity of trajectories, and, because DMPs were not a focus of our work, we didn't inquire further about making the system perform better or making the representation more compact.

Each motor has independent parameters, and the motors share , while are fixed. With 6 motors, the motion trajectory of the robot is therefore parametrized by a vector of dimension 26. After solving and integrating the dynamical system, we obtain each motor angular position as a function of time.

To avoid the robots removing (rather brutally) their own wires, the range of the first and fourth motor from the base are restricted to and (Figure 7.2). ey both generate (potentially unrestricted) rotations around the z axis, when the rest of the robot is in zero position. All other motors were physically restricted by their horn to . e ranges of the DMP parameters are set so that 95% of trajectories of a motor would fall in between the angles the motors were able to produce (using an empirical evaluation), and clipped the rest to legal motor values.

Before executing the motion on the robot, we check for self-collisions, and collisions with the armature of the experiment. If present, the trajectory is truncated and stops just before the collision to avoid damage. The hardware setup consists of four robots, separated so that they cannot interact with each other. The tracking system is posi oned in front of the setup, and possess three cameras that capture the posi on of the four markers. The monitor on the right shows the detec on mask of each camera. Most movements of the stems will keep the marker visible, but some will not. However, those movements will overwhelmingly be far away from the virtual objects.

e robot has a reflective marker at the tip, which allows to capture its position at 120Hz during the movement using an OptiTrack Trio camera system, that has submillimetre accuracy. A virtual marker then the trajectory in a simulation where a virtual object has been put. e marker is the only object from the camera that is transported to the simulation, so it is the only part of the robotic arm that can collide with the object.

Let's note that, in order to simplify the setup, the robot executes the movement, and then, after the motion is finished, the trajectory is encoded and transported into the simulation to be replayed. is absence of real-time prevents any immediate feedback to the robot during motion. e simulated environment features an object placed in a cubic room. While the object cannot fall into the ground, the robot can pass through it, both with the real robot and the simulated robot. While constraining the robot movement to not traverse the ground is possible by truncating the movement before collision, it would remove too much density and diversity of useful movement in the space of parameters. We consider two sizes for the cubic room: 600mm width and 2000mm width. e larger room approximates a unbounded environment, while the interaction between the object and the walls are frequent in the smaller one.

ree different objects are used-one at a time: a ball and a cube of diameter and width 45mm respectively, and a cylinder with diameter 40mm and length 80mm. For the ball, two different positions are considered, as depicted figure Figure 7.5. e simulation is conducted using the robot simulator V-REP (Virtual Robot Experiment Platform), with the Open Dynamic Engine (ODE) as a physic engine backend. At the end of the simulation, the trajectory of the object is processed by sensory primitives that compute the sensory feedback.

We consider a simple sensory primitive that returns the displacement of the object projected on the ground at the end of the simulation. e displacement is returned as a vector of length 3: the displacement in x, in y, and a discrete dimension of saliency, which has value if no collision happened, and otherwise.

e saliency dimension helps separate observations that create collisions from one that do not. Admittedly, this is not crucial for the perturbation-based inverse model, but when using the LWLR model (Appendix C), this makes learning more robust.

Behaviour of the Setup

Before investigating the behaviour of an agent exploring the environment, we study the general behaviour of the environment itself.

We claimed that the DMPs parameterization creates appropriate movement diversity for the robot. is is illustrated Figure 7.7.

Instances of movement reuse are shown Figure 7.8. Reused movements do not generate necessarily similar effect on the objects, and, in instances, it has a significant impact on the robot's motion. Moreover, not all movements that interact with an object interact with other objects, even when they are the same size and placed at the same location. Finally, the simulation is not deterministic. Repeated executions of the same movement can generate significantly different effects, as shown Figure 7.6. is is not due to synchronization variability. e motor trajectories are generated to match the simulator step, and the same motor target are fed to the simulation at the same timestep every time.

e simulation is also reset to a precisely identical initial situation each time.

e source of variability is due to the random seed of ODE not being reset between interactions2 . As ODE uses the current state of the random generator to decide the order with which to resolve the constraints at each steps, small variations are introduced that are amplified by the chaotic nature of the interaction with the objects.

e other physical backend available in V-REP, Bullet, did not have this characteristic and generated consistently identical effects. Because the behaviour of ODE is (slightly) more realistic, we decided to use it rather than Bullet.

We ran experiments on the ball task (because the cube occupies more volume, the ball gives a lower estimate of the collision probability) to decide which number of motor babbling timesteps to use during the experiments. e subsequent goal babbling exploration uses the inverse model introduced in section 3.1.1, with set to 0.05. e of the coverage measure is 22.5mm, the radius of the ball. e results, Figure 7.9, show a significant diminution of variance until 200 steps of motor babbling. rough independent tests on large quantities (10000+) of motor babbling movements, we estimate the probability to touch the object during a movement at 3.05% for the cube, 1,96% for the ball, and 0.70% for the ball at the alternative location. To ensure that every motor babbling phase had at least one collision, we set the bootstrapping phase to 200 steps. In the results, we will use a source and a reference task using 200 steps. But using a more aggressive reference task with only 50 or 100 steps does improve early learning performance, and this should be taken into account when interpreting the results.

Discussion

Prac cal Aspects of Random Babbling

A issue not addressed thus far is how practical motor or goal babbling is. Motor babbling, with its blind creativity, can easily damage the robot or endanger users in social experiments.

Avoiding damage in on-board learning robotics is a challenging issue [START_REF] Levi | Symbio c Mul -Robot Organisms[END_REF]. Avoiding damage means most of the time placing constraints on the robot actions, such as truncating the trajectories that led up to collisions as we did. ese constraints, however, may adversely affect performance, and restrict access to good solutions. A tradeoff must be made between avoiding the robot destructing itself or the environment, and achieving the best possible performance. [START_REF] Wahby | On the Tradeoff between Hardware Protec on and Op miza on Success: A Case Study in Onboard Evolu onary Robo cs for Autonomous Parallel Parking[END_REF] Figure 7.7: The DMP parameteriza on creates many different trajectories for the p of the arm. The trajectories of the first column are all different, but they are far from the ground, and will not result in any interac on with the objects. Trajectories [g-i] on the other hand, do approach or even traverse the ground. Let's note the trajectory g demonstrates that the robot can interact with an object even if it is not just below the robot. Finally, trajectories j and k shows how the movement of the robot is stopped before a collision can happen with the environment. And in trajectory l, the system stops a self-collision from happening. While not represented here, the aluminium beam that compose the frame of the hardware setup (see Figure 7.3) can easily damage the robot if bumped into violently. The most prac cally problema c aspect of it is that the reflec ve surface of the marker is vulnerable to abrasion. If physical collisions are not prevented, the cameras quickly become unable to track the marker.

Figure 7.8: Reusing motor commands on different object does not produce similar effects. In these simulated examples, taken from motor commands reused from a cube environment into the ball environment, the two objects respond very differently to the same commands. The first example shows that the displacement can be diametrically opposed. In the second example, the arm interacts two mes with the cube (explaining the U-turn in the object trajectory), but does not with the ball, that escapes the reach of the arm quickly a er the interac on. The third example shows a motor command that has the arm pushing on the cube from above, crea ng high reciprocal forces between the two objects. When the tension is liberated the arm overshoots its trajectory, and goes for the beam (invisible here, see Figure 7.3), and therefore the movement get stopped by the an -collision system. In the case of the ball, none of this happens, as the ball quickly resolves the impulsion from the arm. Finally, the fourth example shows that not all movements that interact with the cube interact with the ball despite their iden cal size, due to the cube larger space occupancy. In all these examples, the interac on with the object has significant impact on the arm's mo on. studied this issue in the context of embodied evolutionary robotics, adding penalties to the fitness function in case of violent interaction with the environment, and effectively measure a trade-off between performance and protection.

Many works have also studied adapting behaviour after damage, in particular in the context of the robustness of gaits when the robot loses or damages one of its limbs [START_REF] Mahdavi | An Evolu onary Approach to Damage Recovery of Robot Mo on with Muscles[END_REF][START_REF] Bongard | Nonlinear System Iden fica on Using Coevolu on of Models and Tests[END_REF][START_REF] Doncieux | Behavioral diversity measures for Evolu onary Robo cs[END_REF][START_REF] Cully | Robots that can adapt like natural animals[END_REF].

Avoiding damage during random motor babbling on an arbitrary robot platform is difficult. A better approach is to design robots so that they can babble safely.

Of course, the most straightforward solution is to make robot less fragile. While it seems evident that robot deployed in the depths of the ocean must be hardened against a multitude of conditions, because any problem requires to abort the activity and pull the robot to the surface, exploring robots in social environments should be considered as inaccessible to the engineer for repairs as the bottom of the sea. But structural robustness is not enough.

Biology is a great source of inspiration here. As discussed in section 2.3, human fetus start to babble in utero, where the amniotic fluid dampens the motion of the limbs, and the uterine walls provide an elastic source of collision. At birth, newborn are subject to gravity without buoyancy, and their movements more limited than before. Which is just as well, because the muscle have to handle the full inertia of the movements they create: the child movements are reduced at the precise time they become more dangerous. e increase in muscle strength leads to the gradual development of the mobility of the infants, thereby mitigating any risks linked to wandering too far. In animals, some species' have their pups born blind, which also reduces the risk-taking and wandering activity early after birth. e structure of the bone is also conductive of babbling: three-year-old bones absorb three times as much impact energy as ninety-year-old bones [START_REF] Currey | Changes in the impact energy absorp on of bone with age[END_REF]). e small size of children decreases the consequences of a fall.

Moreover, the environment of infants is not arbitrary. Children are kept in safe environments, whose constraints are progressively relaxed as autonomy develops. Dangerprone or injury-prone activities are first experienced safety nets and safety gear: training wheels on bikes, arm buoys for when swimming, and adult supervision. Safety gear in children (and adults) increases risk-taking behaviour [START_REF] Morrongiello | Understanding children's injuryrisk behavior: Wearing safety gear can lead to increased risk taking[END_REF]). In other words, children engage in a less restricted repertoire of activities when they feel protected.

A robot that explores the environment is inherently exposed to a non-zero amount of risk. erefore, at the inverse of industrial car assemblers put in cages, . Like infants, they must undergo comprehensive developmental constraints, coupled with environments that match their ability for control. ey should be initially in padded environments where risks of injury is minimal, their movement range and torque reigned in. And their body must be compliant, and their behaviour reactive to potential damage: when falling, they should react to minimize the fall impact, not try to regain a balance they unequivocally lost [START_REF] Ruiz-Del-Solar | Learning to fall: Designing low damage fall sequences for humanoid soccer robots[END_REF]. eir body must be initially small enough, light enough or compliant enough to withstand fall [START_REF] Lapeyre | Matura onal constraints for motor learning in high-dimensions: The case of biped walking[END_REF]. All those characteristics also reduce the danger to interact-or just to be standing near-the robot [START_REF] Lapeyre | Poppy: a New Bio-Inspired Humanoid Robot Pla orm for Biped Locomo on and Physical Human-Robot Interac on[END_REF].

Not any robot can babble safely. But developmental robots should be designed so that they can.

e robot arm considered in the experiment displays few qualities conductive of safe motor or goal babbling. To deal with this, we opted for an augmented-reality approach to interaction.

An Hybrid, Augmented-Reality Approach

We chose to use a real robot and a simulated environment for several reasons. Placing an object back into the reach of the robot a few ten of thousands of times after an interaction requires some form of mechanism, or a bigger robot, which makes the experimental setup more complicated. Replacing the object takes time, and slows down the rate of interactions.

Additionally, the robot never experiences physical collisions, which reduces the risk of damage when babbling, given the type of robot we had. Measuring the motion of the object along any conceivable dimension or the force and direction of the collisions does not require equipment and is computationally free.

A virtual environment approach also affords unlimited flexibility in the creating of several different learning tasks, even ones that would be physically possible. And this provides a perfect, transferable and reproducible description of the environment of the robot.

At the same time, using a virtual environment for an interaction task seems to remove the main source of interest of the setup: a realistic, difficult to simulate, interaction with a real object.

ese types of contacts are difficult to simulate (Ijspeert 2008)[647]; current physic engines make fundamental simplifying assumptions. ey use impulse-based velocity stepping methods for contact dynamics (Mirtich et al. 1995;[START_REF] Stewart | An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Coulomb Fric on[END_REF][START_REF] Anitescu | Formula ng Dynamic Mul -Rigid-Body Contact Problems with Fric on as Solvable Linear Complementarity Problems[END_REF] but solving the methods exactly is NP-hard. Approximations of the simplifications must be made [START_REF] Anitescu | Op miza on-based simula on of nonsmooth rigid mul body dynamics[END_REF][START_REF] Kaufman | Staggered projec ons for fric onal contact in mul body systems[END_REF][START_REF] Drumwright | Modeling Contact Fric on and Joint Fric on in Dynamic Robo c Simula on Using the Principle of Maximum Dissipa on[END_REF]Todorov 2014), which, as Erez et al. (n.d.) points out, does not make the question of the physical accuracy any simpler.

e simulator we used, the Open Dynamic Engine (ODE) is notorious for its weaknesses at simulating interactions.

Our approach, beyond simulation realism, presents another problem: the robot does not receive any kinesthetic feedback, which, as we have seen Figure 7.8, has an important impact on the interaction. While this kinesthetic interaction was simulated between the marker and the object, the marker was following the trajectory of the tip of the robot with a spring constraint, and did not reproduce the precise force generated by the sum of the torque of the motors in a specific posture.

Moreover, while providing great flexibility, simulations always present a danger: as [START_REF] Jakobi | Noise and the reality gap: The use of simula on in evolu onary robo cs[END_REF] puts it: 'they can lead to both the study of problems that do not exist in the real world, and the ignoring of problems that do.'.

is is facilitated by the shortcuts the simulations afford when designing an experiment: objects tracked to meaningless precision, and can be created or destroyed dynamically, scenes can be perfectly reset to initial conditions. While seemingly innocuous, they actually can hide important issues in a real environment cannot avoid. If the experimenter is oblivious to them, they may affect the whole basis of the experiment or the applicability of the method it develops to real robots. Specifically for our setup, one of the most problematic behaviour was movements that push the object towards the ground, resulting in the cube sometimes projected with great velocity in a chaotic direction. In the context of our diversity-driven approach, these movements are seen a valuable: they create effects that are often selected as nearest neighbour during goal babbling, and reused during transfer. In reality, those movements might not even be attempted because of the motor damage they represent. If these interactions were absent, the results of our experiments would be much different, creating sharper distinctions. e next step of our research is to reuse motor commands from simulated objects to real objects, and this will provide critical feedback on the validity of our methods, as well as force us to remove those dangerous interactions from the exploration one way or another.

Overall, the hardware platform is somewhat disappointing so far. In our experience, there is no real difference in algorithmic performance between the hardware/simulation hybrid and the fully simulated platform. For these reason, and because much of the experimental data with real robots had to be discarded because of unchecked assumptions, few results on the real setup are presented. At any rate, our setup is unconvincing about the validity of simulated environments.

However, simulated environments-and augmented-reality environments-might turn out to be a useful tool for robotic research.

ey are a middle ground between a simulated robot and a real environment: they allow robots whose morphology precludes a useful simulation of the robot to be easily subjected to a variety of situations without costs or physical damage. Because they provide full knowledge of the environment, they are a clear experimental asset. Because they provide full control of the environment, they allow to disentangle the reasons for a specific behaviour by systematically controlling different variables.

Of course, they are severely limited, although not impossible, when interaction is required. But for a robot learning to avoid obstacles for instance, this is not an issue.

In a developmental perspective, they allow the environment to be reactive to the development of the robot. First, it allows the environment to actively create specific situations aimed at estimating the degree of development of the robot. Like [START_REF] Bongard | Nonlinear System Iden fica on Using Coevolu on of Models and Tests[END_REF] co-evolving a behaviours and series of informative tests, the environment can adapt to efficiently estimate the competence of the robot regardless of which development path it chooses. Second, the environment can provide a progressive increase in complexity to scaffold the behaviour of the robot. In Chapter 8, we provide examples of how this can be done.

Simulated environment are not an objective, and they represent the same danger as simulations. Yet, they may be useful during the research process as they represent one more tool to study complex issues. Figure 7.10 shows the qualitative effect of reuse from the cube task to the ball task. Reuse provides many examples of interactions during the first 200 steps, while motor babbling only provides ten. Still, at the end of the exploration, the reachable space is well covered in both instances. In Figure 7.11, all combinations of the cube and ball task are presented. e effectiveness of reuse is sensitive to the similarity between the tasks: it is better from the same object (ball to ball, cube to cube), than from a different object. Diversity reuse also provides significant differences in early performance over random reuse, further demonstrating the usefulness of diversity as a guiding measure for transfer.

In Figure 7.12, the ball is moved from its central position to create a dissimilar task. e majority of movements that interact with the central ball will not interact with the side ball, and vice-versa. Reuse, in this situation, proves to be robust to dissimilarity, exhibiting no negative transfer. In Figure 7.13, the source task explored the environment using random motor babbling. Naturally, random reuse offers the same the exploration without reuse. Diversity is able to extract useful motor commands from the source task, but their quantity is limited, leading to a visible plateau during the first 200 steps. In Figure 7.14, the source task is the cylinder task, but it is used with a different sensory modality. e sensory primitive of the environment capture the rotation of the cylinder along its axis between each timesteps of the simulation, and sum the absolute differences between timesteps. Similarly, the who the cylinder spins is measured by measuring the rotation of the cylinder against the z-axis.

e result is a 2D sensory space that expresses different aspects of the interaction that the displacement of the cylinder, in different units. Still, the reuse proves effective, and the difference with the cylinder using the displacement primitive is small. Reuse can be both sensitive and robust to different modalities. 

e Big Arena

In this section, we consider the 2000 mm arena, instead of the 600 mm one. With the small arena, the exploration can cover the entire reachable space, as Figure 7.10 illustrates. is is not possible with the larger arena, which is more than 10 times bigger.

Figure 7.15 present results of reuse on the hardware platform between the ball and cube task. For this set of experiments, the LWLR-L-BGFS-B inverse model described in appendix C has been used. e pure goal babbling exploration is also replaced by a mixed exploration of random motor babbling and random goal babbling. 10% of the interactions after the end of the bootstrapping phase are created using random motor babbling. e bootstrapping phase is also extended to 300 timesteps. e use of those parameters, with a complicated inverse model that does not bring much performance gain, and a long bootstrapping phase, is only justified because they are the one that were used during the only hardware experiments that were deemed correct, and not corrupted by bugs, motor failures, or calibration issues.

Figure 7.16 reproduces the results of Figure 7.15 in simulation. We observe similar patterns as in Figure 7.11: a sensitivity to the task dissimilarity, and diversity reuse consistently providing similar or better exploration than random reuse.

e final performance pattern, however, is different. With a almost unbounded space, the probability for an object final position to be similar to the one produced by ey seem to rely on the chaotic behaviour of the simulator when the robots pushes the objects towards the ground. However, even the extend of that influence is not properly analysed.

Moreover, they are established only for a simple exploration strategy. e consistency of the rapid increase in coverage after the end of the bootstrapping phase in tasks without reuse indicates that the difference could be reduced by bootstrapping more parsimoniously, as Figure 7.9 suggest.

K

Shaping Diversity: Learning Pool

In this brief chapter, we show how reuse can be used to direct exploration by manipulating the environment.

e Pool Experiment

So far, the impact of reuse has been to improve the performance of early exploration. But after enough time, the exploration without reuse will catch up, and no significant difference will be observed between an exploration that exploited reuse and one that did not. e experiment in this chapter aims at demonstrating that the reuse method can also make explorable an environment that is not otherwise. To do this, we consider a pool situation, where the robot can interact with a ball, but receive sensory feedback from another ball, out of reach. e only solution for the robot, in order to generate a diversity of effects on the out-of-reach ball is to strike it with the ball it can interact with.

From scratch, it is very difficult to create diversity, as only a very small area of the motor space will, and no guiding signal is provided by the environment. We consider a reuse scenario where the robot first explore how to interact with the ball it can reach, without the other ball present.

en, the out-of-reach ball is introduced, and the sensory feedback of the first ball is removed from the perception of the robot. 

Discussion

Staging the exploration this way is similar to reward shaping in reinforcement learning [START_REF] Dorigo | Robot shaping: developing autonomous agents through learning[END_REF][START_REF] Mataric | Reward func ons for accelerated learning[END_REF]) and staging the fitness function in evolutionary robotics [START_REF] Gomez | Incremental Evolu on of Complex General Behavior[END_REF][START_REF] Urzelai | Incremental Robot Shaping[END_REF][START_REF] Kodjabachian | Evolu on and development of neural controllers for locomo on, gradient-following, and obstacle-avoidance in ar ficial insects[END_REF].

But there is one important difference here: there is neither a reward nor a fitness function. e staging is done through the , and object saliency. e diversity fostering exploration strategies (implicit diversity motivation) and the diversity-driven reuse method (explicit diversity motivation) ensure that the robot takes advantage of the relation between the environment. is opens the door to environment-driven development in robotics. Objectives are abandoned, as proposed Lehman and Stanley (2011a), the growth and behaviour of the robots are dependent on the environments where they are put, and how those environments evolve as they competences increase.

With this experiment, we highlight that we can drive the robot towards the acquisition of complex skills in a closed-skull manner, by only manipulating the environment the robot is exposed to.

is is similar to a caregiver manipulating the composition, disposition and saliency of objects a child is playing with.
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Reuse and the Reality Gap So far we have shown that reuse is effective in situations that involve switching the object (ball/cube experiment in chapter 7), changes in the morphology of the robot (different segment lengths in chapter 5), or increased complexity (scaffolding experiments in chapter 8).

e purpose of using reuse in these situations is to leverage past experiences to provide the locations possible good mappings in the sensorimotor space.

In this chapter we apply reuse algorithms to a surrogate context: a simple, computationally efficient simulation is used as source task for a more expensive and more realistic simulation, or for a real robot.

e Reality Gap

Abstract Transferring behaviour learned in simula ons to real robots is difficult: this is the reality gap. We review the problem and some of its solu ons.

We already discussed some of the pitfalls of a full-representation approach to behaviour. Obtaining the representation is difficult or impossible. It needs to simulate the morphology, and hence bears the costs of simulating morphological computational processes that the agent does not otherwise need to have explicit knowledge of to elicit successful behaviour.

e simulation itself will be inaccurate, however pain is taken to create it1 . Moreover, the simulation can be computationally expensive, taking sometimes more time that the execution on the real robot. Many experiments learning controllers for legged robots have reported remarkable performances for simulated robots. But far fewer have been able to transfer those controllers learned in simulation onto real robots and observe the similar performances [START_REF] Lipson | Evolu onary Robo cs for Legged Machines: From Simula on to Physical Reality[END_REF][START_REF] Palmer | An evolved neural controller for bipedal walking: Transi oning from simulator to hardware[END_REF]. In other words, the transfer from simulation to reality is not efficient: this is the problem [START_REF] Jakobi | Noise and the reality gap: The use of simula on in evolu onary robo cs[END_REF][START_REF] Jakobi | Running across the reality gap: Octopod locomo on evolved in a minimal simula on[END_REF]).

The Why of the Reality Gap

Avoiding the reality gap problem by only learning and exploring on real robots raises practical issues: it is time-expensive, cannot be parallelized (unless many identicalenough robots are available, which leads to other issues and high costs), and can lead to damage or danger-especially if babbling randomly [START_REF] Wahby | On the Tradeoff between Hardware Protec on and Op miza on Success: A Case Study in Onboard Evolu onary Robo cs for Autonomous Parallel Parking[END_REF]. It severely limits the amount of learning the robots can receive, thus undermining their performance-such a problem is particularly acute in evolutionary robotics, where populations of candidates have to be tested over several generations [START_REF] Floreano | Automa c Crea on of an Autonomous Agent: Gene c Evolu on of a Neural-network Driven Robot[END_REF][START_REF] Zykov | Evolving Dynamic Gaits on a Physical Robot[END_REF][START_REF] Regan | Towards Evolvable Hovering Flight on a Physical Ornithopter[END_REF][START_REF] Gongora | Robustness analysis of evolu onary controller tuning using real systems[END_REF]. And when exploring morphology changes, it is usually impractical to work with real robots.

In a scientific context, it may also preclude the opportunity to systematically modify the experiment to assess the robustness of the results; it may be difficult to decide if the works provide far-reaching or anecdotal results linked to the idiosyncrasies of the setup. Furthermore, and this is rarely mentioned or exploited, simulated experiments are highly conductive of the dissemination and the reproduction of research. us, simulations make sense for practical and scientific purposes.

One has to acknowledge that, from an embodied perspective, the premise of the problem-relying on a close-to-reality simulation to optimize the behaviour of a real robot-is a methodological error. Still, simulations are required when actual evaluations are prohibitive, consume limited or unique resources, are too dangerous or are simply impossible (for instance, developing a morphology and a gait for a lunar rover). e problem is not limited to robotics, to machine learning, or to a simulation/reality contrast. It is present every time learning cannot happen in the environment where the exploitation takes place. e aerodynamics of cars and planes are tested in simulation before being tested in wind turbines, plane pilots train in simulators, astronauts train for spacewalks in pools, firefighters create mock emergency situations, surgeons train on cadavers or animals. In all these instances, a balance must be found to make the mock environment as close as possible from the real situation to ensure transferability while guaranteeing safety and managing costs and resources.

The How of the Reality Gap

In robotics, the is overwhelmingly studied in the context of the optimization of controllers in simulation to be transferred on a real robot, in particular in the context of evolutionary robotics [START_REF] Nolfi | How to evolve autonomous robots: Different approaches in evolu onary robo cs[END_REF][START_REF] Koos | The Transferability Approach: Crossing the Reality Gap in Evolu onary Robo cs[END_REF].

is is not always the case; [START_REF] Gongora | Robustness analysis of evolu onary controller tuning using real systems[END_REF] report evolving the behaviour of a real helicopter that had to be restrained during learning to avoid damage, perturbing the conditions enough so that the untethered behaviour did not perform as well as the tethered one.

e most straightforward way to deal with the reality gap is to create the most accurate simulation possible. As we have outlined, this is fraught with problems, and can lead to very expensive simulations. [START_REF] Jakobi | Evolu onary Robo cs and the Radical Envelope-of-Noise Hypothesis[END_REF] proposes to identify the minimal set of features responsible for the behaviour, and to simulate only those. Instead of building one simulation, he proposes to create many, with random variations, to make evolved controllers robust to the specificity of one or the other.

Some approaches improve the simulator during learning based on empirical observations [START_REF] Zagal | Fitness Based Iden fica on of a Robot Structure[END_REF][START_REF] Bongard | Nonlinear System Iden fica on Using Coevolu on of Models and Tests[END_REF][START_REF] Bongard | Resilient Machines Through Con nuous Self-Modeling[END_REF][START_REF] Koos | Automa c system iden fica on based on coevolu on of models and tests[END_REF].

ese approaches, when creating a simulation from scratch, has their roots in the domain of models [START_REF] Sacks | Design and Analysis of Computer Experiments[END_REF][START_REF] Barton | Simula on metamodels[END_REF][START_REF] Jones | Efficient Global Op miza on of Expensive Black-Box Func ons[END_REF]. A model of the function to optimize is learned empirically, and the optimization takes place on the model rather than in the real environment. Surrogate models only differ from forward models in their intent: surrogate models aim at being useful for optimization while being cheap to evaluate, while forward models typically strive for accurate predictions.

Some methods consider the simulator as fixed, and evaluate the mapping between the simulator and the reality.

is allows to estimate the discrepancy between the two, and to only perform simulated optimization in areas when the discrepancy is low [START_REF] Koos | The Transferability Approach: Crossing the Reality Gap in Evolu onary Robo cs[END_REF].

In all of those approaches, an underlying assumption is that the simulation can, at least sometimes, be reasonably physically accurate: Koos et al. (2013, p. 123) F

Crude Simulations

We take a different perspective. As the complexity of robot's hardware increases, and environments become significantly more complex than a perfectly smooth and flat surface, obtaining physically accurate behaviour in simulation becomes difficult, and will necessitate important modelizing efforts. e risk is to limit the morphology of the robots we create to the methods we have available.

Instead of spending ever increasing efforts to create a realistic simulations, we go in the opposite direction; we search for the most simple, most crude simulation that still affords us an exploratory advantage through reuse. Our objective is not to find an optimal behaviour or even a good behaviour, but to efficiently discover diversity in the environment.

We took the experimental setup of section 7.1 and created a simplified kinematic simulation of it.

e arm has been replaced by the forward kinematic computation of the position of the centre of the end-effector according to the forward kinematic model. From this, we compute the trajectory of the end-effector by feeding the kinematic model with the joint trajectories produced by the motor primitives. e object is approximated to its axis-aligned bounding box. If the trajectory of the end-effector enters the bounding box, the velocity of the end-effector is averaged from its last 10 positions, and the displacement of the object is a vector of the same direction as the velocity of the end-effector. e norm of the displacement is proportional to the endeffector velocity, and inversely proportional to the mass set for the object. ere is no floor to interact with, the displacement of the object is done in three dimensions, and then projected to the ground plane.

is model is highly unrealistic in many ways. ere is no way to have objects with different geometry. No contact is simulated except the one between the object and the end-effector-and it does not even take into account where the trajectory of the end effector hit the object with respect to its centre of mass. e kinematic simulation is run for 1000 timesteps using a normal exploration strategy ( boot ,

). e exploration is then transferred to the full simulation scenario with a ball placed at the same place as the object in the kinematic model. e exploration on the full simulation is parametrized normally ( boot , , transfer

). e results are available Figure 9.1. Even with a crude simulation devoid of most physical modelizations, the reuse strategy is able to take significant advantage of the exploration.

A Cruder Simula on

We simplify the previous simulation. Instead of computing the displacement of the object, the sensory response is only conditioned to the trajectory of the end-effector entering the bounding box. If that happens, a value between 0 and 1 is returned. If not a random value between -1 and 0 is returned.

e sensory signal has only one dimension.

Learning with such a poor sensory feedback is more difficult. e simulation has essentially become an indicator for a possible collision. Yet, reuse still provides an improvement (Figure 9.2). As should be expected, the improvement is less than when the simulation is more informative. 

F

Discussion

A weakness of the work presented here is that even a simple forward kinematic model usually display good performance on a rigid body robotic arm. Although we removed many aspects of the physical simulation, we retained the essential part.

e discrepancy then, between a collision detected in simulation and one produced in reality is low.

is easily explains the results obtained. And while we claimed to not assume that the simulation needs to be physically accurate, it actually is, but qualitatively. e way the object displacement is computed in the first crude simulation can also be criticized. Although it seems that, by not taking into account any geometry of the object, or not considering the floor we have lost much information, the direction of the displacement is directly correlated to the direction of the end-effector when a collision happens.

is sensory feedback is probably richer in information that the final position of the object in the physical simulation. It is also a signal that is easier to learn.

e first crude simulation could be considered as scaffolding, that offers knowledge of a pivotal aspect of the interaction-the direction and velocity of the colliding tip of the arm just before the collision-that was hidden before.

Of course, these criticisms can also be considered positively: yes, the crude models are qualitatively accurate with regards to the presence of a collision, and reuse is able to take advantage of a merely qualitative, rather than numerical, accuracy. Yes, this is scaffolding, and reuse is taking advantage of it without the experimenter noticing it: reuse do not need to be explained how the two environments relate to each other.

Compared to previous works, the context in which we consider the reality gap problem is different. We are not trying to transfer controllers while conserving performances; we are looking for an exploratory advantage. While we presented our work in the context of the reality gap problem, it is not comparable with the other methods we discussed section 9.1: it addresses a different problem.

Yet, reuse could be of use for learning controllers. One could derive the first population of an evolutionary algorithm by reusing the genetic code of a set of candidate solutions that generated a diversity of behaviour during a cheap, pared-down simulation.

is could help mitigate the early convergence and bootstrap problems. In a single agent optimization scenario, using reuse from a simulation would not provide the best controller. But using reuse increases the probability the robot is given access to controllers early in the exploration that are close to good solutions, compared to a random motor babbling exploration.

e simulation that provides those initial solutions does not need to model all aspects of the real robot. Actually, it can be arbitrarily selective about which features of reality it decides to model. e transfer should stay robust, as long as a diversity of candidate solutions is transferred.

In a self-sufficient perspective, the crude simulations can be considered as cognitive models.

e simplicity and relaxed qualitative nature of the correspondence to reality that they must provide makes their acquisition by a self-sufficient robot more reasonable than a full-featured realistic simulation. In that context, the results suggest another way to engage with the reality gap problem. Instead of reproducing reality, cognitive simulations can do away with much of the realism, without losing their power to direct and inform behaviour. ey pose as a reasonable artifice of cognition that allows agents to think about the world without having to predict or simulate it accurately. Cheap cognitive simulations can create diversity, and give robots-dare I say-.
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Exploring Ahead

Roboticists are demiurges. ey create bodies, the minds inside them, and, more often than not, the worlds around them.

at makes roboticists their own worst foes. e risk is that roboticists, creating both problems and solutions, may tailor problems to solutions, and not the other way around.

is may lead to inventing and investigating artificial problems that contribute little to advancing scientific inquiry, whilst systematically avoiding hard problems, by modifying them into easier ones each time seemingly insurmountable obstacles are encountered.

But there is another risk, more pernicious, and, more fundamental. It is to design robots from a human perspective, choosing features and characteristics that make sense for the external observer, but none for the robot itself and its egocentric experience of the world. In other words, the risk is that the features that make robots easy for humans to design, control and understand make it hard for the robot itself to interact with the world, and end up fundamentally limiting its capabilities.

An illustration of this is found in how robots are created: the hardware is usually created before the software. is allows to decouple the two activities, and hence, the somewhat different skillsets. And it allows to sweep aside the myriad of interactions that would need to be considered if the body and mind were designed together. e software here truly plays the part of the ghost in the machine, investing it, animating it after it was created.

is way of proceeding is obviously suited to the robotic workcells of assembly lines. But this same design pattern, the one essentially used for smartphone development, is repeated for state-of-the-art robotic research platforms such as the iCub, the PR2 or the Baxter, where researchers are tasked to find out how to program finished and hardly reconfigurable hardware products. 2is paradigm works fine for a number of scientific endeavours but is problematic others, such as legged locomotion. Designing legs divorced from the gait algorithms that are used to actuate them has produced many robots that not only requires precise, low-latency, computationally expensive algorithms, but that are also brittle to unexpected, even if small, perturbations of their environment.

Evolutionary robotics has attacked this problem directly, by proposing algorithms inspired from natural selection to design robots directly from an evaluation of their behaviour, removing the human designer from the process, and allowing the morphology and the controllers to tailor themselves to one another.

Yet, even in evolutionary robotics, one key human element remains in the design process: the fitness function. It encodes the ultimate goal of the evolutionary process, and is decided beforehand by the designer, oftentimes in an extremely specific manner: the distance covered by the robot in a given amount of time in locomotion experiments, for instance.

e most immediate consequence is to create one-trick robotic ponies. is is made worse by the tendency of evolutionary algorithms to routinely outsmart the designer by producing robots whose behaviour is unsuitable in ways that are not encoded in the fitness function. Examples include evolutionary processes exploiting bugs of the physic engine in simulated experiments, or producing real robots that cover the most ground by irreversibly damaging themselves.

ose are serious concerns compounded by that setting a goal is not always the most effective way to reach it, as the work of [START_REF] Stanley | Why Greatness Cannot Be Planned[END_REF] shows.

However, the most fundamental problem is elsewhere: the designer gets to choose the goals that will single-mindedly direct the activity of the robot. Problem is, it is not clear how qualified or well-positioned a human is for choosing the goals of a robot, an entity with vastly different embodiment and cognitive processes.

is is where some strands of developmental robotics try to distinguish themeselves from the rest of the robotics. ey study robots that must create their own goals, using their own . Developmental robotics originated around the realisation that creating robot adults with fully-formed knowledge and skills out of the assembly line was too difficult. Programming commonsense, for instance, proved remarkably difficult. Observing that humans naturally acquire it during their childhood, it was proposed to create child robots, that would be equipped with learning abilities that would allow them to gather knowledge and skills that made sense for them, for their particular embodiment and environment.

Motivational systems, in turn, are to designer-set goals what learning abilities are to preformed knowledge. ey are goal factories, the same way learning abilities are knowledge and skills factories.

ey allow robots to choose goals that make sense for their particular embodiment, environment, and current experience. Motivational systems also naturally compliment learning abilities, because there are too many things to learn in any sort of modestly complex environment; they allow to choose what activities to engage in, and therefore, what to learn and not to learn.

All this brings us to the subject of this thesis: exploration. Robots that choose their own goals, that acquire skills on their own need to explore the environment for two reasons.

e first so that they can acquire experience, which can be in turn used to modify their behaviour (i.e. learning).

e second, to discover new kind goals they can pursue.

In this thesis, we focused on exploration in sensorimotor spaces, that is spaces where the mapping between a motor action and its corresponding sensory feedback can be expressed. Also, we considered only exploration that is conducted by the robot itself, without any social guidance or any externally provided knowledge. Hence the title: 'Self-Exploration of Sensorimotor Spaces in Robots'.

e thesis had three goals. First, establish exploration as a scientific problem. Second, do a study of some simple exploration algorithms, and what impact different factors had on them, in order to provide a bedrock on which to think and build more elaborate exploration strategies. And third, start exploring some ways the exploration capabilities of an agent could improve over time, as experience accumulates.

is thesis fulfills those goals, if only specifically.

To establish robotic exploration as a scientific problem, we start, in chapter one, at the very beginning: we define what a robot is, we explain the effect embodiment has on the robot experience of the world, and why all problems cannot be solved by an ambitious-enough simulation of the real world in the robot's head. We conclude that to be effective in the unstructured part of the real world, robots need to pass through an extended development phase in order to build up skills, knowledge and the commonsense needed to deal with future unexpected situations. During this development phase, exploration skills are crucial.

We then formalize the exploration problem: exploring is creating access to different aspects of the environment. Exploration is not solely spatial: you can explore the responses an object gives to external input, such as the different sounds it can make.

is definition allows us to draw an important distinction between exploring and learning. Learning is modifying your behaviour as a result of experience. As such, learning is independent from exploration; you can learn without exploring: this is what a weather prediction system does. And you can explore without learning: this is what some robot vacuum cleaner do; they manage to cover and clean a room without ever learning its shape. Of course, most of the time, we want to combine learning and exploring. Now, to make a scientific problem out of exploration, we need to be able to evaluate it using a quantitative measure. If exploration is creating access to different aspects of the environment, then one way to evaluate it is measuring the of the sensory feedback the robot is able to produce. Diversity is a great measure for a number of reasons: it is a concept that can adapt to almost any setting. It is intrinsic, i.e. it can be measured by the robot itself, and without disturbing its behaviour in any waycontrary to, for instance, a measure of the robot's prediction abilities. is, as a sideeffect, allows to envision sharing common experimental setups with other domains where peering into the explorer's thought process is hard, such as cognitive science experiments on children.

is leads us to an important and inescapable point: the related work. e no-tion of exploration and diversity has seen scant explicit attention in robotics, outside of spatial exploration3 . But many neighbouring domains of developmental robotics feature informative works. In developmental robotics itself, the study of intrinsic motivation is relevant; diversity can be used and is used in some algorithms of this thesis as an explicit intrinsic motivation. Moreover, diversity in computer science has seen a steady rise in interest since 2000 from many different areas such as ensemble classifiers, swarm optimization and recommender systems. And in cognitive science, exploratory behaviour has been the subject of important works, even if almost all the quantitative data comes from spatial exploration experiments.

For our experiments, we introduced a diversity measure called -coverage. It measures the volume of the union of balls of radius centered around the observed sensory feedback points in the sensory space. If the sensory feedbacks are diverse, they are far from each other, and overlap between the balls is low: the volume of the union is high. If the sensory feedbacks are similar, the overlap is high and the volume lower, for the same amount of feedback points.

e second goal was to study exploration algorithms. e idea there was to create one of the simplest algorithm possible, and study it under different conditions. e simplicity was warranted by two factors: first, it allowed to understand the results in their every detail without suspending intuition. e behaviour of linear weighted regression or more complex learning algorithms in high-dimensional spaces can be complex, which is why we opted for a simpler perturbation-based nearest-neighbor learning method. And second, it was hoped that being simple, the lessons learned and the intuition gained could be carried over a wider range of situations than a more complex, more specific algorithm.

One of the first contributions of the study was to clarify that exploring the motor space was inefficient because of the contributions the high-dimensionality the heterogeneous distribution of the redundancy of the sensorimotor space (i.e., how many different motor commands produce the same sensory feedback). Highdimensionality alone does not make exploring the motor space ineffective.

Next, we systematically analysed the contribution of each aspect of the algorithm. e impact of the distribution of goals was studied, outlining the potential directed methods represent (in most of the thesis, goals are chosen at random by the algorithms).

e effects of a bad inverse model were shown, and an algorithm for boundless goals space was introduced.

e next experiments focused on showing how even rudimentary implementations of motor synergies, developmental constraints and external demonstration could positively affect the exploration. One takeaway is that improving embodiment potentially offers cheaper and larger gains that improving the learning performance.

So far, all the algorithmic variations studied did not make use of any explicit in-trinsic motivation measure. Diversity was only used as an evaluation tool. In chapter four, we introduce an algorithm that uses diversity to direct which exploration strategy to use among a set, and doing so can adapt to different situations as well as any fixed mixture of the strategies. e third goal was to investigate ways for the exploration capabilities of an agent to improve over time, as experience accumulates.

To understand the underlying challenge here, one must consider that a successful exploration of a given environment should give access to different features of said environment, i.e., from the point of view of the robot, produce a diversity of sensory feedbacks. To produce a diversity of sensory feedbacks efficiently, one would need knowledge of the dynamics of the environment, in order to avoid its inherent redundancy, i.e., to avoid executing actions that produce the same effects. Pushing and pulling on a closed door illustrates this point: two different actions that produce the same effect-hence producing no diversity in sensory feedback-and afford new knowledge about the environment. Should the state of the door had been known beforehand, the robot could have engaged with other actions, more likely to produce diversity. erefore, producing diversity faces a chicken-and-egg problem: the knowledge needed to perform an efficient exploration is the knowledge the exploration is supposed to produce in the first place.

is means that the exploration process can feed itself, but can also remain stalled if incapable to produce informative interactions, leading to long early periods of poor exploration in challenging environments.

is what drove us to find a solution to improve early exploration. To this end we introduced the method, that leverages experience acquired in a past environment, to explore a new one. e core idea is to select motor commands that produced a diversity of sensory feedbacks in the past environment, and to reexecute them in the new one.

is method has the benefit of being conceptually simple, and to be agnostic about the sensory modalities of the past and new environments, which can be arbitrarily different.

e exploration strategy or learning algorithm used in the past environment need not to be the same in the current one either: the method can leverage data that has been arbitrarily collected.

e only constraint is that motor commands executed in the past environment can be reexecuted in the new one.

e rationale behind the method can be understood by considering how redundancy makes to different motor commands produce the same effect in the environment: either by body redundancy, or environmental redundancy.

e body redundancy makes different motor commands produce the same movements: the robot applies the same forces on the environment. Environmental redundancy leads differents forces to the same effects, as the closed-door example illustrates. Typically, different effects both avoid body and environmental redundancy. When changing from one environment to another, environmental redundancy is not conserved, but the body redundancy is in most cases. Moreover, if the environments are similar, some of the environmental redundancy generally overlap. erefore, by reusing a set of motor commands that generated a diversity of effects, the method capitalizes on knowledge gained about body redundancy, and opportunistically on the environmental one.

We conducted experiments to demonstrate the viability of the approach on a real robot manipulating different objects in augmented reality.

e results showed conclusively that the method is effective when reusing experience gained from interacting with one object (a ball), to explore another object with a significantly different behaviour (a cube).

e method is also robust to dissimilar environments, where diversity from one environment does not transfer well to the other. Moreover, we established that choosing which motor commands to reexecute according to the diversity of the sensory feedbacks they produced is better than random.

In the previous experiments, proved to improve early exploration. But after enough time, whether using or not, the exploration process produced similar results. To show that could do more than only improve early exploration, we designed an experiment to show that it could make explorable an environment that would not be otherwise. An interesting part of the experiment was that the exploration was shaped not by changing a reward function, but only by manipulating the environment and the saliency of the objects in it, much like a caretaker would do with a child.

Finally, we got interested by the applicability of the method to situations where the exploration of the past environment happened entirely in simulation, while the exploration of the new one would happen in the real world, on a real robot. Transferring results from simulation to reality has proven difficult in robotics, a problem known as the . e results obtained, although warranting more work, are excellent. ey raise the prospect of using cheap and crude simulations of reality as efficient cognitive artifacts for self-sufficient robots to explore the real world better.

is is where the thesis end. From there, what is the way forward? ere are three research directions that stand out: diversity in robotics, interdisciplinary work with cognitive sciences, and evolutionary developmental robotics.

First, diversity in robotics. In 1255, in his Commentary on Sentences, omas Aquinas argued that while an angel is better than a stone, it does not follow that two angels is better than one angel and one stone4 . A modernised version of Aquinas' argument is proposed by [START_REF] Nehring | A Theory of Diversity[END_REF]: 'A human being is more valuable than a chimpanzee. It does not follow, however, that 6,000,130,000 humans and no chimpanzee are more valuable than 6,000,000,000 humans and 130,000 chimpanzees.' Diversity has value. Such an observation can be made in domains as different as biodiversity, art, hiring practices, investment portfolios, search engines results, ensemble classifiers, and even, scientific progress. In [START_REF] Lehman | An Anarchy of Methods: Current Trends in How Intelligence Is Abstracted in AI[END_REF], Pierre-Yves Oudeyer remarked that 'because we don't deeply understand intelligence or know how to produce general AI, rather than cutting off any avenues of exploration, to truly make progress we should embrace AI's "anarchy of methods".' In other words, when fumbling in the dark, diversity is a powerful tool.

It is tempting there to apply this lesson to developmental robotics, and that is actually what this thesis tries to do: developmental robots, plunged in the complexity of the real world, and with no choice but to make sense of it with their learning and exploration capabilities, must fumble in the dark for a time.

e lack of literature on diversity in developmental robotics pales in comparison to the potential benefits it could bring.

ere are, however, many ways to abuse the lesson. First, diversity for diversity's sake is hardly justified, however intrinsically valuable it may be. In particular, a motivational system only driven by diversity seems like a poor idea. Some have argued that since simplicity is in finite supply, diversity-driven development will naturally lead to discovering ever more complex phenomena.

e scarceness of simplicity, however, has never been justified outside of toy examples, and simple things to discover and learn in the real-world seem to be plentiful-enough to fill multiple lifespans. All this conspire to suggest that robotic motivational systems should embrace a of motivations, with diversity being one of them. Competing and complementary motivations should lead to behaviour alternating between broad exploration, where new features of the world are discovered, and more focused study, where specific skills are mastered.

Second is the issue of how to use the experience collected through diversity-driven exploration. In this thesis, we have shown, through the method, that this experience is precious to conduct more exploration of other environments. But exploration is hardly the only behaviour of a developmental robot. e question of how to marshall and apply experiences gained by diversity for precise problem-solving, and whether it is competitive with more directed approaches, remains open.

Finally, many specific issues about diversity are not yet satisfactorily answered. Diversitydriven exploration differs from novelty-driven exploration in that novelty-driven approaches cannot explicitly control the amount of diversity they produce. Maintaining a certain level of behavioural diversity, especially when changing environmental conditions decrease the options available to the robot, can only be obtained from the global perspective diversity affords, not using the local one offered by novelty-based approaches. Still, diversity is more computationally expensive: when is it necessary versus simpler novelty-based motivations? What are good diversity measures? Does diversity makes any sense in high-dimensional sensory space, or should it always be supported by low-dimensional abstract representations?

Answering those questions is not easy; a possible source of intuition is to turn to cognitive science. How do children use diversity during development?

is is the second research direction that seems promising.

It is remarkable that amongst all the literature on play, exploration, and problem-solving in children and animals, quantitative measurements of the diversity of the interactions they engage in and of the solutions they try out, is almost completely absent. Studies usually stop at vague qualitative descriptions. Quantitative studies on behavioural diversity in exploration could shed useful light on how to design robotic motivational systems. Moreover, this line of research, by its compatible methodology promise to be able to conduct similar experiments on humans and robots, potentially leading to fruitful exchange and emulation between the two domains. e third avenue of research is evolutionary developmental robotics, affectionally called 'evo-devo-robo'. Evolutionary robotics mimics the natural selection process, while developmental robotics mimics the morphological and cognitive development of biological systems. Most of their respective work, however similar, has remained separated so far. Given the interest of AI for producing human-level intelligence, this separation is puzzling; after all, the only known examples of entities possessing human-level intelligence were created by a combination the two processes.

Combining evolutionary and developmental robotics raises a tremendous issue: time. e typical timescales of development and evolution-lifespans and eons, respectivelyalready have their respective discipline struggling. Combining both seems therefore completely intractable, whether simulations are involved or not.

e way to look as this is to consider that the scale of the problem is so important that it won't change as technological progress piles-up in the next, let's say, 50 years: waiting does not help.

Another objection is to argue that evolutionary and developmental robotics are still young disciplines, and not yet ripe for being combined. Although mostly speculative, this argument could end up being true. But the difficulties encountered along the way could shed precious light on shortcomings in the two disciplines that are hard to detect otherwise.

Adding a long development phase to evolutionary robotics could give rise to new, more complex dynamics in the evolutionary process, and a better selection process. Some ground has already been covered by [START_REF] Bongard | Morphological change in machines accelerates the evolu on of robust behavior[END_REF], who showed that morphological development could act as a sieve filtering brittle behaviour in legged locomotion. Conversely, developmental robotics could benefit from an overarching evolutionary process, which could reduce the arbitrary decisions current researchers have to make about the representation and learning abilities they give to robots.

Evolutionary developmental robotics certainly represents a tremendous challenge, but the results that are there to reap are equally so.

is is a domain that we simply cannot afford not to investigate.

If only because it promises to chip away at the demiurgic nature of roboticists. Roboticists are demiurges; evo-devo-robo is part of the solution.

B Grid Diversity

Computing the union of many disks is expensive-see appendix A, and is impractical in dimensions higher than four. To that end, we introduce a more computationally efficient method for estimating strategy diversity, that may be used in higher dimensions, based on .

B.1 Grid Diversity is definition of diversity values effects that create new cells, or that belong to cells with a low number of already observed effects. e total diversity value that each cell represents is . Finding the coordinates of the cell where a effect belongs takes steps, and then finding is in -we only store in memory the size of non-empty cells, using a hashmap, ensuring a -space complexity, we obtain a -time complexity for the grid diversity algorithm.

We use this definition of effect diversity to define in the same way as in section 4.2, and reruns the same experiments.

e width of a cell is set to five millimetres. 
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 1 Figure 1: On the le , an illustra on of the angle range for the two-joint arm. On the right, random postures for an arm with 7 segments, each of length 1/7th of a meter. [source code]

Figure 2 :

 2 Figure 2:The goal babbling strategy is more effec ve than the motor babbling one at exploring the reachable space, especially when the robot arm possess a high number of joints. S ll, the goal babbling strategy fails to explore all the reachable space when many joints are involved. The blue points represent the posi ons of the end-effector reached during explora on [source code]
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 3 Figure 3: Goal babbling smoothes out the sensorimotor redundancy. The majority of the reachable space of the 2-joint arm is redundant. But due to the ±150°range of the joints, two areas where only one solu on exists exist. While this difference in redundancy is clearly reflected in the motor babbling explora on, it is not present in the goal babbling one. Both figures show 50000 mesteps. [source code]

Figure 4 :

 4 Figure 4: The two set of solu ons are discriminated by the sign of the angle of the second joint. The two reachable areas are not superposable. Each figure shows 25000 samples. [source code]

Figure 5 :

 5 Figure 5: Loops appear on the arm as the number of joints increases, trapping the inverse model in local a ractors. This is highly dependent on the ini al motor commands produced during the random motor babbling bootstrapping phase, and reduces the areas covered, as seen in Figure 2. [source code]
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 7 Figure 7: The progression of the goal babbling explora on of the 7-joint arm sees be er solu ons progressively replace solu ons trapped in a local extrema because the first joint in locked at -150°. [source code]

  Figure 1.1: A phenomenon receives inputs and produce outputs.

Figure 1 . 2 :

 12 Figure 1.2: The canonical machine learning architecture.
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 13 Figure 1.3: An agent makes decisions that affect the environment.

  Figure1.4: From a computa onal, open-skull perspec ve, the separa on between an agent and its environment is not the same as the separa on between the robot and the world. But for an external observer situated in the environment, they are the same, as the agent is iden fied by its opera onal closure[START_REF] Maturana | Autopoiesis and Cogni on: The Realiza on of the Living (Maturana & Varela[END_REF]. Note that the automa c behaviour component might include any number of subsystems, including other agents. The agent is discriminated from the rest of the so ware as an arbitrary perspec ve. In par cular the agent is not necessarily omniscient or omnipotent over the so ware. See[START_REF] Pfeifer | Self-Organiza on, Embodiment, and Biologically Inspired Robo cs[END_REF] for a similar diagram for biological systems.
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 15 Figure 1.5: While explora on A produces more diverse effects than explora on B, they have the same maximal distance measure.

  Figure1.6: The restric on of the la ce to the reachable space provides and adequate testset for the coverage measure, but misses the small region because of the high coarseness of the point la ce. The isolated point is not considered.
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 18 Figure 1.8: Same explora on pa ern, but different testset-based distance measure.
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 19 Figure 1.9: Threshold coverage quan fies the area of the space that has been reached at a given precision. The graphs show the coverage of random motor babbling and random goal babbling strategies from chapter 0 on a 20-joint arm over 500 mesteps. [source code]

  Figure 1.10: Threshold coverage is insensi ve to effect spread over the threshold. The two explora ons have the same threshold coverage.

Figure 1 . 12 :

 112 Figure1.12: The only requirement for an explorer is to provide orders to be executed by the environment (which includes actuators).

  Figure1.13: In this goal-directed algorithm, the learner does not interact with the environment. It is used by the explorer to create orders that correspond to goals expressed by the explorer. Orders can be rejected by the explorer for any reason, in which case another goal is chosen (grey arrow). The feedback is not shown here.
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 115 Figure 1.15:The explorer decides which of the two orders to execute once they have been generated by the learners as its disposal. Alterna vely, it can preemp vely choose to only ask one of the two learners.
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 21 Figure 2.1: A way to assemble the pieces of the soma puzzle to form a cube. Many iden fiable pa erns can be produced. (figures by Dmitry Fomin, CC0 and fdecomite (modified), CC BY 2.0)
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 31 Figure 3.1: The la ce testset for the two dimensional arm can characterize how well the reachable space is covered.Here we rely on an approxima on of the reachable space as the unity disk, allowing to use this testset for any twodimensional arm. [source code]
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 32 Figure 3.2: Comparison of explora on performances. The experiments are the same as Figure 1.9, over 10000 mesteps. For the coverage performance, . [source code]

Figure 3 . 3 :

 33 Figure 3.3: Goal babbling is a be er strategy when many joints are involved. Performances are shown at the end of the explora on (t = 10000), and experiments are repeated 25 mes. Interes ngly, in the case of goal babbling, a sharp increase in standard devia on can be observed at dimension 10; this is caused by the looping of the arm in some experiments and not others, genera ng increased variability in performance. [source code]
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 34 Figure3.4: By manipula ng the goal distribu on, we can manipulate the distribu on of effects. On a 2-joint and 20joint arm, we compare five goal distribu ons (first column), some under-dimensioned and some over-dimensioned compared to the reachable space (grey disk). [source code]
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 35 Figure 3.5: The size of the cells has a huge impact on the es ma on of the reached space. This figure exhibits examples of grid par oning that underfit (666 mm), fit (10 and 5 cm) and overfit (2 cm) on the same data. For the two-dimensional arm, we shall mostly use cell widths of 5 and 10 cm. [source code]
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 36 Figure 3.6: The reached space growth slows as explora on progresses. The colour of the cells indicates the me at which they were added to the reached space. Some regions of the reachable space enclaved in the reached space, that would have been discovered early by random motor babbling, are s ll not explored a er 2000 mesteps by the goal babbling strategy. [source code]
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 37 Figure 3.7: Three explorers are combined to form the -reach strategy.
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 38 Figure 3.8:The more aggressive the explora on, the be er it will do early on, but pursuing the same strategy will be detrimental in the long term. Here we see the error rate of a 20-joint arm. Averaged over 50 runs. [source code]
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 311 Figure 3.11: The Fron er strategy allows different amounts of aggressiveness while exploring the insides of the reachable space completely. The explora on is driven by a mixed strategy between the Fron er strategy and the reached strategy, over 20000 steps. Cell size is 5 cm. [source code] , , , and of the time respectively 9 . e rest of the time, goals are chosen randomly inside the reached space (i.e. this is the -reach strategy with the unreached strategy replaced by the Frontier strategy).e Frontier strategy displays exploratory aggressiveness, while exploring the inside of the reached space correctly.In the case, the last unexplored cells inside of the grid have had a large number of goals set inside them. is is not necessarily a desired behaviour, and the Frontier strategy can be further parametrized by setting a maximum number of goals that can be set per cell, and a minimum number of effects per cells before a cell is ignored when choosing a goal (in our original description, the minimum is equal to 1). Figure3.12 exemplifies those parameters, using the Frontier strategy of the time after the 10 timesteps of motor babbling, and setting the maximum number of goals at 6 per cell, and the minimum number of effects at 2 per cell.e Frontier algorithms strikes a balance between conservative and aggressive exploration. By placing each goal near observed effects, yet in unexplored areas, the
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 312 Figure 3.12: The parametrized Fron er strategy provides a balanced explora on. A few cells in the interior are empty but not laden with goals, and the goals have spread out. Cell size is 5 cm. [source code]
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 313314 Figure 3.13: The quality of the learner correlates with the quality of the explora on. Yet even with degenerated learners on the 7-segment arm, the explora on is be er than motor babbling. [source code]
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 315 Figure 3.15: By increasing the motor space dimensionality from 20 to 30 by adding motor synergies between neighbouring joints, we improve random motor babbling. The two pure random motor explora on strategies are run on two 20-joint arms, one of which is equipped with motor synergies, for 10000 mesteps. [source code]

Figure 3 . 16 :

 316 Figure 3.16: Although the asympto c performance of random motor explora on is zero, in the context of a reasonable meframe, adding synergies dras cally improve the final performance of random motor explora on. [source code]

Figure 3 .

 3 Figure 3.17: A low joint range makes random motor babbling very effec ve. Here the arm has 100 joints, the strategies are run over 10000 steps, and repeated 25 mes. [source code]

Figure 3 . 18 :

 318 Figure 3.18: Constraints can help explora on. In this scenario with two 40-joint arms, one is constrained to ±80°during the first 500 steps, while the other is not. This seems to significantly decrease the number of loops that are present in the explored postures. A comprehensive quan ta ve analysis is needed to verify those observa ons.[source code]

Figure 3 . 19 :

 319 Figure 3.19: Demonstra on can have high beneficial influence on explora on. [source code]

Figure 4 . 1 :

 41 Figure 4.1: The number of random motor babbling steps has a significant impact when the inverse model of the goal babbling strategy is bad (), but li le effect when it is good ( ). The results depicts the explora on trajectories of a 7-joint arm, over 5000 mesteps, with, at the beginning, 1, 10, or 1000 random motor babbling steps before star ng a pure random goal babbling strategy. [source code]

Figure 4 . 2 :

 42 Figure 4.2: Extreme values of the perturba on parameter of the inverse model have undesirable effects on the explora on of a 20-joint arm. Run over 10000 mesteps. When, pure goal babbling is the worst strategy, more than twice as bad as a strategy with 5% of motor babbling. Inversely, when , a strategy with low-but not null-motor babbling works well. If the inverse model approximates randomness (), the difference is less marked, but percep ble, and goal babbling is always preferred to motor babbling in this case. Naturally, when random motor babbling is used 100% of the me, the performance of each scenario is iden cal. Averaged over 25 runs. [source code]

AdaptFigure 4 . 3 :

 43 Figure 4.3: The architecture of the adap ve strategy with two explorers.

Figure 4 . 4 :

 44 Figure 4.4: The Adapt algorithm correctly selects the best strategy in all three contexts. For each learner, three graphs are shown: the spread graph with the coverage area ( ), the diversity graph giving the diversity measure of each strategy in func on of the mesteps, and the usage graph, showing how the strategies are effec vely used. For the usage graph, the data at me shows the percentage of use averaged over the surrounding 100 mesteps (50 before, 50 a er). [source code]

Figure

  Figure 4.5:The Adapt algorithm performs well when strategies behave dis nctly, and be er than random with similar strategies. Each graph displays the performances showed Figure4.2, with the performance of the adap ve strategy added as a do ed line (its standard devia ons in displayed in light colour as well). Experiments were repeated 25 mes. Note that not all the y-axis of the graphs begin at zero.

Figure 4 . 6 :

 46 Figure 4.6: The modest decrease in motor babbling usage is accompanied by an increase in instability -strategy usage shi s suddenly, in a context where the explora on has mostly stabilized. The graphs represent the usage of the motor and goal babbling strategy (with ), when they are chosen propor onally to their diversity value, the square of the diversity, and the diversity to the fourth power respec vely. [source code]

Figure 4 . 7 :

 47 Figure 4.7: The architecture of the -unreach strategy run by an adap ve strategy is an example of the hierarchical expressiveness of the explorers framework.

Figure 5 . 1 :

 51 Figure 5.1: When execu ng the same command on both arms, the posi on of the end-effector is significantly different most of the me. Here depicted are 50 pairs of execu ons of the same motor command on the two 20-joint arms, five of which that are highlighted. [source code]

Figure 5 . 3 :

 53 Figure 5.3: The benefits of the reuse explora on manifest mostly early in the explora on. Here, the top-most row shows an goal babbling explora on backed by reuse, while the bo om row shows a regular goal babbling explora on. In red, in the case of reuse, the effects produced by the reused motor commands, and in the case of regular random goal babbling, the effects produced during the 50-steps random motor babbling ini al phase. [source code]

Figure 6 . 1 :

 61 Figure 6.1: Four poten al benefits of reuse.

Figure 6 . 3 :

 63 Figure 6.3: The observa on made in chapter 6.3 is verified, there is no difference between using diversity reuse or random reuse in this specific example. [source code]

Figure 6 .

 6 Figure6.3 confirms the result of the previous chapter: in this particular instance, no quantitative difference exists between the performance of diversity reuse and random reuse (the curves almost match perfectly, with diversity non-significantly eking out at t = 1000).

Figure 6 . 4 :

 64 Figure 6.4: Diversity reuse is able to exploit a set of observa on generated by random motor babbling, but the improvement in performance is small. [source code]

Figure 6 . 5 :Figure 6 . 6 :

 6566 Figure 6.5: Even with an extended reuse period (500 mesteps), no performance difference is exhibited between diversity and random reuse. [source code]

Figure 6 . 7 :Figure 6 . 8 :

 6768 Figure 6.7: Even only over the last 500 mesteps, goal babbling provides a poten al exploitable improvement in explora on. [source code]

Figure 6 . 9 :

 69 Figure 6.9: Diversity is able to fully exploit the heterogeneously distributed diversity in the observa ons of the source task, while random reuse performs poorly during all the reuse period. [source code]

Figure

  Figure 7.1:The hardware and the simula on setup share the same simulated world. However, when using the real setup, no simula on of the robot is conducted. On the real robot, a reflec ve marker at the p allows its posi on to be tracked by cameras.

Figure 7 . 2 :

 72 Figure 7.2: The simulated experiment approximates the real robot. Pictured here, the posi on zero of the robot, which corresponds to the start and target posi on for each movement.

Figure

  Figure 7.3:The hardware setup consists of four robots, separated so that they cannot interact with each other. The tracking system is posi oned in front of the setup, and possess three cameras that capture the posi on of the four markers. The monitor on the right shows the detec on mask of each camera. Most movements of the stems will keep the marker visible, but some will not. However, those movements will overwhelmingly be far away from the virtual objects.

Figure 7 . 4 :

 74 Figure 7.4: The a virtual marker replays the movement captured by the cameras of the real maker at the robot's p, and interacts with a virtual ball. The two scenes illustrate the perturba on created by the inverse model introduced in part one. The parameters of the right motor trajectory are a random perturba on of the one of the le trajectory, with p = 0.05.

Figure 7 . 5 :

 75 Figure 7.5: The size of the cubic room does not modify the rela ve posi on of the robot and the object.

Figure 7 . 6 :

 76 Figure 7.6: The physic engine non-determinis c characteris cs generate a lot of varia ons. In each of these images, mul ple execu ons of the same motor trajectories are overlaid.

Figure 7 . 9 :

 79 Figure 7.9: The interac on task forces a long bootstrapping phase. Failing that, the overall performance of the explora on varies significantly. Repeated 100 mes. [source code]

F

  using the reuse exploration for half of the bootstrapping phase (reuse), set at 200 timesteps ( boot ). e goal babbling exploration is unchanged, and uses the inverse model introduced in section 3.1.1, with set to 0.05. Each exploration lasted 1000 timesteps. e of the coverage measure is 45 mm.
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 710 Figure 7.10: Reuse provides early diversity of effects. [source code]

Figure 7 . 11 :

 711 Figure 7.11: Although Reuse is sensi ve to the similarity between tasks, it provides significant early explora on improvement between objects responding differently to interac ons. Repeated 25 mes. [source code]

Figure 7 . 13 :

 713 Figure 7.13: Diversity reuse only can exploit random motor babbling data. Repeated 25 mes. [source code]

Figure 7 . 14 :

 714 Figure 7.14: Diversity reuse only can exploit random motor babbling data. Repeated 25 mes. [source code]

Figure 7 . 15 :

 715 Figure 7.15: The hardware setup provides results very similar to Figure 7.17 and 7.16. However, the low number of repe ons makes those results only prospec ve. Repeated 4 mes. [source code]

Figure 7 . 16 :

 716 Figure 7.16: Repeated 25 mes. [source code]

Figure 7 .

 7 Figure 7.17 reproduce the result of Figure 7.16 using the exploration strategy of

Figure 7 . 17 :

 717 Figure 7.17: Repeated 25 mes. [source code]

Figure 8 . 1 :

 81 Figure 8.1: The Pool environment. The blue ball is placed at the same loca on of the ball of the source task, but it is not tracked by the robot. Only the orange ball is, but it is out of reach. The only possibility of interac on is to launch the blue ball at the orange ball.

Figure 8 . 2 :

 82 Figure 8.2: From a classic ball task is a 600mm arena, the reuse strategy successfully bootstraps the explora on of the pool environment, which is then able to produce diverse effects on the orange ball during goal babbling. Here the physical proper es of the ball and the forces developed by the robot limit the distance the second ball can go. [source code]

Figure 8 . 3 :

 83 Figure 8.3: Most of the explora on that do not benefit from reuse never makes the ball move in the pool environment. Few do by chance, as the devia on shows. Using reuse however, the explora on of the second ball is consistently done. Naturally, with a task that requires lots of precision, and the stochas c behaviour of the interac on with the object Figure 7.6, lots of varia on is observed. Repeated 25 mes. [source code]

Figure 9 . 1 :

 91 Figure 9.1: Even with a crude model, the reuse transfer is effec ve. Averaged over 25 repe ons for the simula on, and 4 repe ons for the hardware. [source code]

Figure 9 . 2 :

 92 Figure 9.2: Even with a cruder model, the reuse transfer is s ll effec ve. Averaged over 25 repe ons. [source code]

Figure 9 . 3 :

 93 Figure 9.3: The hardware setup is able to take advantage of the motor commands reused from simulated explora on. Of course, since the simulated environment is shared, the feat is hardly impressive. Averaged over 4 repe ons. [source code]

Figure B. 1 :

 1 Figure B.1: [source code]

  

  

  

  

  

  

  By compu ng the binomial coefficients (using De Moivre's approxima on of the factorial (De Moivre 1733; Pearson 1924, p. 403)), we can es mate the number of different possibili es of isotope distribu ons

	2 H 1 H 16 O, 2 H 2	16 O, 1 H 2	17 O, and 1 H 2	18 O respec vely.
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Because our programs are in Python, which guarantees that the random sequences for the same seed don't vary across versions, anyone should obtain the same plots.

Un effet notable de ce e approche est que de nombreux travaux en robo que listent comme aspect posi f de leur travail la capacité de s'adapter à n'importe quel robot, quelque soit son incarna on matérielle. Bien que semblant désirable, les conséquences plus larges d'un tel enjeu de recherche en font un but poten ellement dangereux.

L'explora on spa ale est un cas spécifique d'explora on, pour lequel le déplacement dans l'espace sensorimoteur est déjà maitrisé.

Pour ceux qui lisent le la n dans le texte: "quod quamvis Angelus absolute sit melior quam lapis, tamen utraque natura est melior quam altera tantum" (Lib. 1 d. 44 q. 1 a. 2 ad 6)

Random and babbling are not redundant terms here. Babbling was originally used to designate an infant seemingly meaningless produc on of vocaliza ons a er the sixth week, and, later, to describe repe ve, and seemingly random, infant movements such as kicking. Those movements have since then proven to be far from random. We use motor babbling to describe the produc on of motor ac va ons which are produced for their own sake, that is, with the purpose to find out what effect they yield. As such, babbling both implies that the ac on is not part of a planning strategy, and that its effect is not previously known to a sa sfactory degree by the actor (i.e. babbling implies informa on seeking).

In a fashion similar to motor babbling, goal babbling characterizes goals that are produced for their own sake, that is, with the purpose to find out if they can be reached.

If you think that the goal space fi ng the reachable space so well is highly spurious and actually straigh orward chea ng, you are decep vely percep ve. More details on this issue in sec on 3.2.

The 'area covered by the effects produced by the motor babbling' is not yet a precise no on here-it will have to wait chapter 1.If one nevertheless needs one now, one shall for instance consider the area of the smallest disk containing all the effects.

A minor point of detail: here the robo c arm exhibits kinema c redundancy, i.e. there are more joints than necessary to obtain a given posi on of the end-effector. Musculoskeletal systems usually exhibit both kinema c and kine c redundancy, where there are more muscles than required to apply the relevant forces on the joints. Typically, robots based on electrical motors do not exhibit kine c redundancy, but those based on ar ficial muscles do. This thesis overwhelmingly uses examples of the former kind.

Many authors use the term 'data' rather than 'experience'. While data, i.e., numerically encoded informa on, seems to act as good catch-all for what systems are experiencing, we would refrain from considering this point se led.

One could of course choose a posteriori, so that effec vely improves. This is unsa sfactory though, as in prac ce, is most of the me given and cannot be modified.

The role of the task , the performance metric and the experience in the previous defini on is to narrow the specific aspect of learning studied. Each is op onal. Without them, any organism possessing a nervous system with non-null synap c plas city is constantly learning[START_REF] Hebb | The Organiza on of Behavior: A Neuropsychological Theory[END_REF].

We are restric ng the discussion to supervised learning here, that is, a situa on where the desired outputs are given by the environment.

See for instance this video for an illustra on.

By defini on, all robots have some adapta on capabili es-even if they are just used to correct mo on errors-because their sensory inputs informs their ac ons.

Which is not to say that wear cannot be handled: many methods have been developed to detect damage and wear in industrial se ngs, seeChandola et al. (2009, p. 17).

The task determines if another en ty is needed, not the abili es of the agent. Gree ng people in a museum intrinsically needs those people to achieve the task. Moving a reasonably weighted box does not need an outside en ty.

A robot engaging in five-minute interac ons with ever-willing humans, 24 hours a day, can only hope to collect 24 60/5 = 288 interac on experiences per day.

A small experiment illustra ng how incomplete are our own conscious models of our limbs: close your hand into a fist without ghtening your muscles, and then bend your wrist inwards as much as possible. What happens? If you are not flexible enough, your hand opens. You possibly did not an cipate this, illustra ng blindspots in the explicit knowledge of the forward model of your hand, something you use all the me, every day, with remarkable efficiency and dexterity.

Embodiment postulates that intelligent behaviour can only emerge from interac on with a rich-enough environment. While environments different than the real world are not ruled out by the argument, proponents of embodiment generally argue that no such other rich-enough environment exists today, in par cular not in simula on.

Note here that we are not discussing the issue of self-recogni on, for which the mirror has been a common experimental paradigm throughout psychological studies. The mirror here is only considered as an object crea ng singular sensory feedback[START_REF] Loveland | Discovering the Affordances of a Reflec ng Surface[END_REF]).

We assume that is known by the explora on strategy, but nothing prevents to be set equal to

For coincidental technical reasons, the simula on setup we will present in chapter 7 is not determinis c, as it turns out.

This is similar to the Hausdorff distance(Hausdorff 

1914), but averaged to avoid giving too much importance to outliers. See[START_REF] Schütze | Measuring the Averaged Hausdorff Distance to the Pareto Front of a Mul -objec ve Op miza on Problem[END_REF] for a formal defini on in the discrete case.

We do not claim that the limit is equal to the average distance measure when the coarseness goes to zero. For prac cal purposes, and on the reachable space we consider, the approxima on is sufficiently precise.

Interes ngly, despite its influence, Gini's original work has never been translated from Italian(Ceriani et al. 2012, p. 421).

Consistency is hard, and to detect it, more than one individual are some mes employed to label the same data, which increases costs.

Geosta s cs was actually also the historical mo va on behind the development of Gaussian process regression methods, also known as krigging from the name of Daniel Krig, who used it to evaluate the gold resources in mines in South Africa[START_REF] Krig | A Sta s cal Approach to Some Basic Mine Valua on Problems on the Witwatersrand[END_REF]. His method was later formalized by[START_REF] Matheron | Traité de géosta s que appliquée[END_REF].

The controversy surrounding self-organiza on is such that Maturana, the father of autopoiesis, decided against using 'selforganiza on' en rely: 'I do not think that I should ever use the no on of self-organiza on[...]. Opera onally it is impossible. That is, if the organiza on of a thing changes, the thing changes'(Maturana 1987, p. 71). Incidentally, Ashby's defini on provides a solu on to his point

.4 Of interest to the reader,[START_REF] Shalizi | Causal Architecture, Complexity and Self-Organiza on in Time Series and Cellular Automata[END_REF] and[START_REF] Wolf | Emergence Versus Self-Organisa on: Different Concepts but Promising When Combined[END_REF] provide compelling arguments for a dis nc on between emergence and self-organiza on.

Some colleagues have ques oned the use of the cliché. So. There are of the order of 10 18 molecules of water in a snowflake. In

Moreover, the gene c code would be nothing without the comprehensive cell machinery that caters to it, and that is transmi ed to the offspring as much as the DNA strands: the cell machinery encodes also an important part of the informa on necessary for the morphogenesis.

The lack of long-term memory in homeokinesis is not inherent though, and could be added in any number of ways.

This sec on is largely based on Adolph et al. (2010)'s and Hofsten (2004)'s account of prenatal and postnatal motor and perceptual development.

A premise that is unreasonable anyway. The neonate does benefit from all its fetal sensorimotor experience.

Pascal called this one in 1662: 'j'ai dit souvent que tout le malheur des hommes vient d'une seule chose, qui est de ne savoir pas demeurer en repos dans une chambre.', which translates to: 'I have o en said that all the sorrow of men came from one thing only, their inability to remain quietly at rest in a bedroom.'(Pascal 1662, Diver ssement 186) 

Wood-Gush uses 'endogenous', instead of 'intrinsic', using a external/internal dis nc on rather than an extrinsic/intrinsic one. We will discuss the difference in the next sec on.

In par cular, explora on might push an individual in areas where few conspecifics are present. The reproduc on rate of species in areas of low conspecific density is complex, and can be nega ve. This phenomenon has been dubbed the Allee effect[START_REF] Allee | Animal Aggrega ons: A Study in General Sociology[END_REF][START_REF] Stephens | What Is the Allee Effect?[END_REF][START_REF] Taylor | Allee effects in biological invasions[END_REF].

The methods will remain applicable and useful, but cannot be characterized as novelty-driven mo va on methods.

Note that ensuring gene c diversity is different, and quite straigh orward, as it can be controlled explicitly[START_REF] Nguyen | Controlling diversity of evolu onary algorithms[END_REF].

This thesis only features low-dimensional environments though.

Moreover, as we illustrated chapter 0, a random motor babbling strategy provides adequate performances on a 2-joint arm.

Actually, not exactly. Because of the angle constraints, no posture of the arm reaches a posi on where . But the imprecision is not significant for our argument here.

A 100 m x 100 m goal space would not have produced a significantly different distribu on than the 10 m x 10 m one, as the quasitotality of the goals are outside the reachable space in both cases, and the inverse model, as it projects each goal to the nearest observed effect, is insensi ve to how far the goal is from the effect.

The origin of the grid usually has li le consequence, although, with large cells, its importance increases, as it is apparent in the le most graph of Figure3.5.

There are ways to avoid those borderline effects, such as making the cells par ally overlapping. The added complexity did not seem worth it in the context of the algorithms presented. And we can run in exponen al trouble in high dimensions if not done carefully.

In our experiments, some cells are always empty because they are unreachable. In our implementa on, the strategy defaults to a predefined strategy (for instance, random motor babbling, or the reached strategy) if a strategy proves unable to provide a motor command.

When the goal space is larger than the reached space, that is. But this is not a difficult condi on to verify.

In our implementa on, we only coded axis-parallels direc ons. This makes the code simpler, and is es mated to have li le impact on the explora on.

In our example, the dimensionality of the motor space is equal to the degrees of freedom of the arm-i.e. the minimum number of independent variables required to define the posi on of the arm.

Constraints are generally li ed during development in biological systems, but we use evolve because the assump on that they are always li ed, never ghtened, is too strong to make without jus fica on.

This would need a more thorough, quan ta ve analysis to be claimed as a solid result.

[START_REF] Baranes | Ac ve learning of inverse models with intrinsically mo vated goal explora on in robots[END_REF] proposed another experiment using a quadruped robot, but only considered a larger space that the reachable space in that case.

The irony of using a set of experiments on a simplified environment to make that point is not lost to us.

This would be the case anyway, as the implementa on of the inverse model returns a random motor command if no observa on is available in memory.

This may seem self-evident here, but it is worthy of considera on for any self-sufficient agent: are the agent learning capabili es correctly sized-up for its environment? And when an agent is faced with a situa on too complex to learn, does he have the capability to adapt its behaviour and learning strategy?

It is both unsurprising and ironic that the adap ve strategy, whose purpose is to remove one parameter, the ra o of usage of motor babbling over goal babbling, in turns needs three parameters. However, those parameters are slightly easier to set at reasonable values.

Interes ngly, the sensorimotor loop of a robot can be approximated to the labelling process: motor commands are labelled by the environment: the labels are the feedback sensory signals (this is assuming that the motor commands and sensory s mula on are discrete and can be unambiguously matched with one another). Yet, the fundamental differences between the two highlighted in chapter 1 make most transfer learning methods for classifica on incompa ble with an embodied context.

In fact, the algorithms we present straigh orwardly extend to more general case where the intersec on of the sets of motor commands from the two environments in not null (i.e., when the Bha acharyya coefficient of and is non-zero; Bha acharyya (1943)). S ll, we will assume unless otherwise stated.

The presenta on of those results, with the performance target task with and with reuse in pink and blue respec vely will remain the same throughout all chapters of the second part. Should you have a grayscale version of this document, in this chapter the performance with reuse is always superior, some mes barely, to the one without, at t = 5000.

With human, such a scenario could be ar ficially created by asking subjects to recognize the func on of novel objects in the dark.Is the hap c explora on random? Ra onal? In between[START_REF] Cook | Where science starts: Spontaneous experiments in preschoolers' exploratory play[END_REF])? Yet, before going further with these considera ons, they need to be ar culated with exis ng research (in par cular on blind individuals), which we did not yet do.

The of the DMPs has no rela on with the of -coverage.

This is an implementa on detail of V-REP, and there was no way to change it the version we used (3.1.2).

[START_REF] Jakobi | Evolu onary Robo cs and the Radical Envelope-of-Noise Hypothesis[END_REF] formulated it nicely: 'any real-life simula on will differ from a perfect copy of the real world on two counts: It will model only a finite set of real-world features and processes, and those features and processes that it does model, it will model inaccurately.'

As a result, many works in robo c algorithms list as a posi ve feature the ability to adapt to arbitrary hardware. Although seemingly desirable, the broader implica ons of such a goal make it a poten ally dangerous one.

Spa al explora on is a highly specific case of explora on, and is mainly dis nguished from general sensorimotor explora on in that movement in the sensory space is already explicitly mastered.

For la n readers out there: 'quod quamvis Angelus absolute sit melior quam lapis, tamen utraque natura est melior quam altera tantum' (Lib. 1 d. 44 q. 1 a. 2 ad 6)

For any real number , the norm of a given vector is . The norm is thus the familiar Euclidean norm.
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Additionally, when is high, the -reach strategy tends to create unexplored areas in the centre of the reached space.

To solve these issues, we introduce the Frontier strategy. e Frontier strategy removes the need to explicitly define the boundaries of the goal space: they are consistently updated in function of the reached space. e Frontier algorithm lays a grid on the goal space. At each timestep, a random existing effect and a random direction are chosen. e grid is then traversed starting at the selected effect, and moving in the chosen direction. e goal is randomly drawn from the first empty cell traversed in this manner. Figure 3.10 illustrates the process.

e idea behind this algorithm is not new. It can be found in the algorithm of [START_REF] Rolf | Goal Babbling with Unknown Ranges: A Direc on-Sampling Approach[END_REF], and previously, in the algorithm of [START_REF] Baranes | Intrinsically mo vated goal explora on for ac ve motor learning in robots: A case study[END_REF]. A similar idea can also be found much previously in the of [START_REF] Schaal | Robot juggling: implementa on of memory-based learning[END_REF] (see also Atkeson et al. (1997a,b)). Contrary to those methods, the Frontier algorithm does not take multiple steps toward a goal or reevaluate the direction if no sufficient progress is made towards it. Instead, the Frontier algorithm chooses a goal, does one step of exploration and then switches to another goal.

In Figure 3.11, five explorations are shown, with the Frontier strategy being used they were set in section 4.2:

and . e width of the cells the grid of both grid strategies is set to along both dimensions. In the results presented Figure 4.8, the impact of the coverage threshold parameter is clear: when it is high, coverage of the centre is quickly complete; the only sources of diversity then are found on the edges of the reached space, which favours the unreach strategy. Observations are clustered along the edges of the reachable space. When the threshold is low, the coverage of the centre takes much more timesteps, and the

A

Volume of Union of Geometrical Objects

Computing the union of many disks is expensive. Here we propose a more computationally efficient way to compute the diversity of an effect, based on grid partitioning.

A.1 Volume of the Union of Hyperballs

Computing the volume of the union of an arbitrary set of hyperballs is not a straightforward problem. [START_REF] Klee | Can the Measure of be Computed in Less Than Steps?[END_REF]. It is stated as follow:

Given a set of axis-parallel boxes (hyperrectangles) in , compute the volume of the union of . [START_REF] Chan | Klee's Measure Problem Made Easy[END_REF] Under the Euclidean norm, i.e. the norm 1 , the KMP is the equivalent of the problem the volume of the union of hyperballs but for hyperrectangles. Under the norm, which is defined as , the two problems are identical.

e KMP has been a continuous subject of study in the computational geometry community. For , the original algorithm by Victor Klee was proven optimal in 1978 [START_REF] Fredman | On the complexity of compu ng the measure of[END_REF]. Bentley [START_REF] Bentlley | Algorithms for Klee's rectangle problem[END_REF] proposed the problem for and provided a algorithm as well-optimal. In 2013, an algorithm for , was provided by [START_REF] Chan | Klee's Measure Problem Made Easy[END_REF] with a time complexity of , improving on previous works. As the only known lower bound for any dimension is , the existence, for , of faster algorithms than Chan ( 2013) remains an open problem. [START_REF] Chan | Klee's Measure Problem Made Easy[END_REF] proposed a slightly faster algorithm in for the special case of unit hypercubes, which applies to our case. is imply for , the algorithm is subquadratic.

Yet, the KMP, behind an apparent simplicity, proves costly, and makes the use of an exact coverage performance based on the volume of the union of polygons impractical for , over long periods.

A.1.2 Union of Hyperballs

For the problem of computing the volume of the union of hyperballs, exact methods exist using Voronoi Power Diagrams [START_REF] Cazals | Compu ng the volume of a union of balls[END_REF], that partition the space into as many areas as there are balls; in each area, the center of only one ball is present, and the contribution of this ball to the overall volume can be computed independently of the others [START_REF] Kim | Beta-decomposi on for the volume and area of the union of three-dimensional balls and their offsets[END_REF]. ere also are approximate methods based on Monte-Carlo sampling (Till et al. 2009).

C

A More Sophisticated Inverse Model In section 3.1.1, we defined a simple inverse model for the two-dimensional arm. In some experiments on the interaction setup of the second part, we use a more sophisticated inverse model, based on a optimization routine, L-BFGS-B [START_REF] Byrd | A Limited Memory Algorithm for Bound Constrained Op miza on[END_REF][START_REF] Zhu | Algorithm 778: L-BFGS-B: Fortran subrou nes for large-scale bound-constrained op miza on[END_REF], and a predictor, Locally Weighted Linear Regression (LWLR) [START_REF] Cleveland | Locally Weighted Regression: An Approach to Regression Analysis by Local Fi ng[END_REF]Atkeson et al. 1997a,b).

e algorithmic change in the exploration strategy is a simple replacement of the Inverse() routine.

C.1

To approximate the function from a set of observations, we employ Locally Weighted Linear Regression (LWLR) [START_REF] Cleveland | Locally Weighted Regression: An Approach to Regression Analysis by Local Fi ng[END_REF]Atkeson et al. 1997a,b), a incremental machine learning algorithm. Although LWLR is considerably more sophisticated than the inverse model used in the first part, it is still a simple method compared to the state-of-the-art. Here, again, the absolute performance is of little concern, as we are interested in comparing different exploration strategies. Still, LWLR is reasonably robust [START_REF] Munzer | Non-linear regression algorithms for motor skill acquisi on: a comparison[END_REF] for the learning tasks we are considering. e main differences between LWLR and our perturbation-based inverse model are that LWLR is able to extrapolate-how far the goal is from the data is taken into account-, and LWLR uses, and needs, multiple observations to predict the outcome of an hypothetical input.

Given a set of observations where for each , , and a query vector , for which we wish to predict the effect, we compute, for each point , the euclidean distance to and derive a gaussian weight :

We consider the matrices with , with , and diag , and compute :

where is a positive definite symmetric matrix, and is its Moore-Penrose inverse [START_REF] Penrose | A generalized inverse for matrices[END_REF].

en:

is the LWLR estimate of , given the observed data . We define the function PredictLWLR that compute for any given . In our implementation, , which control the locality of the regression, is dynamically computed. With as the dimension of the motor space, we define a constant , and compute as the average distance of the closest points of the query vector . All other points of besides the closest neighbours are given a weight of zero.

C.2

Given a query point , we want to produce a motor command so that is minimal. Since is a hyperrectangle of , we use L-BFGS-B (Limited-memory Broyden-Fletcher-Goldfarb-Shanno Bound-constrained [START_REF] Byrd | A Limited Memory Algorithm for Bound Constrained Op miza on[END_REF][START_REF] Zhu | Algorithm 778: L-BFGS-B: Fortran subrou nes for large-scale bound-constrained op miza on[END_REF]; we used version 3.0 [START_REF] Morales | Remark on "algorithm 778: L-BFGS-B: Fortran subrou nes for large-scale bound constrained op miza on[END_REF])), a quasi-Newton method for bound-constrained optimization, to minimize the error. L-BFGS-B use an approximation of the Hessian matrix to direct the optimization (because the Hessian cannot be directly computed, it is approximated using finite differences). We approximate with PredictLWLR and L-BFGS-B, in turns, approximates :

argmin PredictLWLR e optimization process is initialized with the motor command corresponding to the closest neighbour of in the set of observations.