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Abstract

Developmental robotics has begun in the last fifteen years to study robots that have
a childhood—crawling before trying to run, playing before being useful—and that are
basing their decisions upon a lifelong and embodied experience of the real-world.

In this context, this thesis studies sensorimotor exploration—the discovery of a ro-
bot’s own body and proximal environment—during the early developmental stages,
when no prior experience of the world is available. Specifically, we investigate how
to generate a diversity of effects in an unknown environment. is approach distin-
guishes itself by its lack of user-defined reward or fitness function, making it especially
suited for integration in self-sufficient platforms.

In a first part, we motivate our approach, formalize the exploration problem, define
quantitative measures to assess performance, and propose an architectural framework
to devise algorithms. rough the extensive examination of a multi-joint arm ex-
ample, we explore some of the fundamental challenges that sensorimotor explora-
tion faces, such as high-dimensionality and sensorimotor redundancy, in particular
through a comparison between motor and goal babbling exploration strategies. We
propose several algorithms and empirically study their behaviour, investigating the in-
teractions with developmental constraints, external demonstrations and biologically-
inspired motor synergies. Furthermore, because even efficient algorithms can provide
disastrous performance when their learning abilities do not align with the environ-
ment’s characteristics, we propose an architecture that can dynamically discriminate
among a set of exploration strategies.

Evenwith good algorithms, sensorimotor exploration is still an expensive proposition—
a problem since robots inherently face constraints on the amount of data they are able
to gather; each observation takes a non-negligible time to collect.

In a second part, we propose the algorithm that allows to exploit the explora-
tion trajectories of a previous environment in another new, unknown one, to improve
exploration, with the only constraining assumptions being that the two environments
share the same motor space—which is often the case as a robot’s body remains sim-
ilar across tasks. No assumption is made that the sensory modalities of the two tasks
remain identical, or that the exploration strategies or the learning algorithms are the
same. If the latent dynamics of the two environment share some degree of similar-
ity, we establish that the algorithm provides improvements in exploration. We
illustrate this on a real robot setup interacting with different objects in augmented
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reality.
We then show that the algorithm can exhibit scaffolding behaviour. is

allows to guide skill acquisition through the exclusive manipulation of environments
where no reward or fitness function needs to be defined. Additionally, we conduct
experiments that show that exploration on real-world robots can benefit from reusing
exploration trajectories produced on surrogate, simplified—even purely kinematic—
simulations.

roughout this thesis, our core contributions are algorithms description and em-
pirical results. In order to allow unrestricted examination and reproduction of all our
results, the entire code is made available.

Sensorimotor exploration is a fundamental developmental mechanism of biological
systems. By decoupling it from learning and studying it in its own right in this thesis,
we engage in an approach that casts light on important problems facing robots devel-
oping on their own.
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Abstract en français

La robotique développementale a entrepris, au courant des quinze dernières années,
d’étudier les processus dévelopmentaux, similaires à ceux des systèmes biologiques,
chez les robots. Le but est de créer des robots qui ont une enfance—qui rampent
avant d’essayer de courir, qui jouent avant de travailler—et qui basent leurs décisions
sur l’expérience de toute une vie, incarnés dans le monde réel.

Dans ce contexte, cette thèse étudie l’exploration sensorimotrice—la découverte
pour un robot de son propre corps et de son environnement proche—pendant les
premiers stage du développement, lorsque qu’aucune expérience préalable du monde
n’est disponible. Plus spécifiquement, cette thèse se penche sur comment générer une
diversité d’effets dans un environnement inconnu. Cette approche se distingue par
son absence de fonction de récompense ou de fitness définie par un expert, la rendant
particulièrement apte à être intégrée sur des robots auto-suffisants.

Dans une première partie, l’approche est motivée et le problème de l’exploration
est formalisé, avec la définition de mesures quantitatives pour évaluer le comporte-
ment des algorithmes et d’un cadre architectural pour la création de ces derniers. Via
l’examen détaillé de l’exemple d’un bras robot à multiple degrés de liberté, la thèse
explore quelques unes des problématiques fondamentales que l’exploration sensorimo-
trice pose, comme la haute dimensionalité et la redondance sensorimotrice. Cela est
fait en particulier via la comparaison entre deux stratégies d’exploration: le babillage
moteur et le babillage dirigé par les objectifs. Plusieurs algorithmes sont proposés
tour à tour et leur comportement est évalué empiriquement, étudiant les interactions
qui naissent avec les contraintes développementales, les démonstrations externes et
les synergies motrices. De plus, parce que même des algorithmes efficaces peuvent
se révéler terriblement inefficaces lorsque leurs capacités d’apprentissage ne sont pas
adaptés aux caractéristiques de leur environnement, une architecture est proposée qui
peut dynamiquement choisir la stratégie d’exploration la plus adaptée parmi un en-
semble de stratégies.

Mais même avec de bons algorithmes, l’exploration sensorimotrice reste une entre-
prise coûteuse—un problème important, étant donné que les robots font face à des
contraintes fortes sur la quantité de données qu’ils peuvent extraire de leur environ-
nement; chaque observation prenant un temps non-négligeable à récupérer.

Dans une deuxième partie, l’algorithme est proposé. Il permet d’exploiter
dans un nouvel environnement inconnu les trajectoires d’explorations établies dans
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un précédent environnement. L’objectif est d’améliorer l’exploration du nouvel en-
vironnement, avec l’unique contrainte que les deux environnements doivent partager
le même espace moteur—ce qui est souvent le cas, étant donné que le corps d’un
robot a tendance à rester similaire lors du passage d’une environnement à un autre.
Aucune supposition contraignante n’est faite sur les espaces sensoriels des deux en-
vironnements, qui peuvent différer arbitrairement ; il en va demême pour les stratégies
d’exploration et les algorithmes d’apprentissage. Si les dynamiques latentes des deux
environnements sont similaires, l’algorithme peut apporter une amélioration de
l’exploration. Ceci est illustré sur un robot réel, qui interagit avec différents objets en
réalité augmentée.

Une expérience permet ensuite de montrer que l’algorithme peut démontrer
une capacité à permettre l’acquisition de savoir-faire complexes, se reposant sur des
savoir-faire plus simples. Cela permet de guider l’acquisition de savoir-faire en ma-
nipulant exclusivement l’environnement dans lequel le robot est plongé, sans avoir
besoin de créer une fonction de récompense ou de fitness. De plus, des expériences
sont conduites qui montrent que l’exploration dans le monde réel peut bénéficier de
la réutilisation de trajectoires d’exploration obtenues en simulation, même si celles-ci
sont simplifiées de manière importante.

À travers cette thèse, les contributions les plus importantes sont les descriptions
algorithmiques et les résultats expérimentaux. Demanière à permettre la reproduction
et la réexamination sans contrainte de tous les résultats, l’ensemble du code est mis à
disposition.

L’exploration sensorimotrice est un mécanisme fondamental du développement des
systèmes biologiques. La séparer délibérément des mécanismes d’apprentissage et
l’étudier pour elle-même dans cette thèse permet d’éclairer des problèmes importants
que les robots se développant seuls seront amenés à affronter.
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Open Science

. You can expect a lot of figures and plots in the following pages.
Presenting a plot without making the code that generated it available amounts to
asking the reader to trust and believe the author to do what he say we does, and to be
able to know that he does, in fact, what we say he does. In other words, a naked plot
amounts to have to assume that malice or incompetence are absent.

We would rather ask our reader to doubt everything, to examine every detail, to
reproduce, to challenge. is is why we provided the code for

. And the code is not far away. No need to send mail or to roam
websites. A link overlays the plot picture, and is additionally present in the caption.

e exact piece of code for this figure is exactly one click away. You might sometimes
need a cluster or a hardware setup to reproduce the results, but many plots only need a
few minutes to be generated. Installing the programs for those plots should not take
much more time. We encourage the reader to regenerate some of those plots, and to
poke experiments, to tweak the parameters, and try new values. To find, in fact, flaws
that our diligent work missed. Don’t hesitate to contact us in that case.

Many of our experiments rely on the whims of random number generators which
need to be initialized. We might have looked over the problem, and settled for a ran-
dom initialization at the time of execution. We decided to run our experiments under
fixed seeds. at provides the advantage to be able to reproduce some simulation plots
exactly1. If an experiment is only run once, the seed is 0. For repeated experiments,
random seeds have been generated using code that is itself available.

All the code is available under the Open Science License, which include all provi-
sions of the LGPL with the addition of the following statement:

e Open Science License ensures that uses and modification of this code throughout
the scientific community remain available, reproducible, and verifiable to all.
1Because our programs are in Python, which guarantees that the random sequences for the same seed don’t vary across versions,
anyone should obtain the same plots.
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Directions d’exploration

Les roboticiens sont des démiurges.
Ils inventent les corps, les esprits qui les habitent, et le plus souvent, créent de toute

pièces le monde qui entourent ces derniers.
De fait, les roboticiens sont eux-mêmes leur plus formidable obstacle.
Le risque, en effet, est que les roboticiens, créateurs à la fois des problèmes et des

solutions, adaptent les problèmes aux solutions, et non le contraire. Cela peut mener
à inventer et à étudier des problèmes artificiels, qui contribuent peu à l’avancée de la
science, tout en évitant systématiquement les problèmes difficiles, en les modifiant
en des versions plus simples d’eux-mêmes chaque fois qu’un obstacle un tant soit peu
insurmontable est rencontré.

Mais il existe un autre risque, plus pernicieux, et plus fondamental. C’est d’élaborer
des robots depuis une perspective humaine, en choisissant des caractéristiques qui
font sens pour l’observateur extérieur, mais qui n’en ont aucun pour le robot lui-même
et pour son expérience égocentrique du monde. En d’autres termes, le risque est
que les caractéristiques qui font que les robots sont faciles à élaborer, à contrôler et
à comprendre pour les humains rendent difficile pour le robot lui-même l’interaction
avec le monde, et limitent fondamentalement ses capacités.

Une illustration de ce phénomène est trouvée dans la manière de créer des robots :
typiquement, le corps, la partie matérielle, est créée et finie avant que la partie logici-
elle ne commence à être conceptualisée. Cela permet de découpler les deux activités,
et de fait, les deux savoir-faire, a priori différents. Et cela permet de se débarrasser
de la myriade d’interactions qui seraient à prendre en compte si le corps et l’esprit du
robot étaient conceptualisés ensemble. Le logiciel joue ici le rôle du fantôme dans
la machine, l’investissant et l’animant après qu’elle ai été créé. Les organismes biolo-
giques ne fonctionnent pas de cette manière. Une telle organisation est certainement
adaptée à la programmation des robots des lignes d’assemblage. Mais cette manière de
procéder, celle utilisée pour programmer les applications des téléphones portables, est
répétée pour des plateforme qui représentent l’état de l’art de la recherche en robotique,
telle que l’iCub, le robot PR2 ou Baxter. Les chercheurs utilisant ces plateformes
doivent trouver comment programmer des produits matériels achevés et difficilement
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reconfigurable2.
Ce paradigme fonctionne bien pour certaines lignes de recherche, mais est problématique

pour d’autres, tel que la locomotion à pattes. L’élaboration de jambes divorcées des
algorithmes de marche qui seront utilisés pour les actionner a produit des robots qui
requièrent des algorithmes précis, à faible latence et gourmands en puissance de calcul,
tout en était peu robustes à la moindre perturbation inattendue de leur environnement.

La robotique évolutionnaire a attaqué ce problème directement, en proposant des
algorithmes inspirés de la sélection naturelle pour automatiser la conceptualisation des
robots à partir de l’évaluation directe de leur comportement, permettant à la morpho-
logie et aux programmes de contrôle de s’adapter l’un à l’autre.

Cela étant, même en robotique évolutionnaire, un élément humain clé reste présent
dans le processus d’élaboration: la fonction de fitness. Elle encode le but du proces-
sus évolutionnaire, et est entièrement décidée par l’expérimentateur, avant le début
du processus, souvent d’une manière extrêmement spécifique. Elle peut par exemple
représenter la distance parcourue par le robot au cours d’un intervalle de temps. La
conséquence la plus immédiate est de créer des robots qui ne savent faire qu’une seule
chose. Cela est aggravé par la tendance des algorithmes évolutionnaires à souvent
se révèler plus malins que l’expérimentateur, en produisant des robots dont le com-
portement maximise la fonction de fitness tout en étant complètement inacceptable
pour l’usage prévu dans l’esprit de l’expérimentateur. Les exemples en ce sens inclu-
ent l’exploitation de bugs dans le simulateur physique, et la production de robots qui
couvrent la plus grande distance parce qu’ils acceptent de s’autodétruire pour aller plus
vite. Ces considérations sont de sérieux problèmes qui s’ajoutent au fait que définir un
goal n’est pas nécessairement la meilleure manière d’y parvenir, comme le montrent
les travaux de Stanley and Lehman (2015).

Cependant, le problème le plus fondamental est autrepart : il tient dans le fait
même que l’expérimentateur choisit les buts que le robot va poursuivre avec un zèle
infaillible. Le problème est qu’il n’est pas clair à quel point l’expérimentateur humain
est qualifié, ou même à la bonne place, pour décider des buts d’un robot, une entité
possédant une incarnation et des processus cognitifs complètement différents des hu-
mains.

C’est sur ce point que certaines lignes de recherche de la robotique développe-
mentale cherchent à se démarquer du reste de la robotique. Elles étudient des ro-
bots qui doivent créer eux-mêmes les buts qu’ils poursuivent, en utilisant leur propres

.
La robotique développementale est née de la réalisation que créer des robots “adultes”,

avec des capacités et des savoirs préformés, fonctionnels dès la sortie de la ligne d’assemblage
était trop difficile. La programmation du sens commun, par exemple, a prouvé être

2Un effet notable de ce e approche est que de nombreux travaux en robo que listent comme aspect posi f de leur travail la
capacité de s’adapter à n’importe quel robot, quelque soit son incarna onmatérielle. Bien que semblant désirable, les conséquences
plus larges d’un tel enjeu de recherche en font un but poten ellement dangereux.
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remarquablement laborieuse. Observant que les humains acquièrent naturellement
leur sens commun pendant l’enfance, il a été proposé de créer des robots “enfants”, qui
seraient équipés de capacités d’apprentissage leur permettant d’acquérir des savoirs et
savoir-faire qui feraient sens pour eux, pour leur propre corps et leur propre environ-
nement.

Les systèmes motivationnels, à leur tour, sont aux objectifs décidés par un expéri-
mentateur ce que les capacités d’apprentissage sont au savoir-faire préformés. Ce
sont des fabriques à objectifs, de la même manière que les capacités d’apprentissage
sont des fabriques à savoir-faire. Ils permettent aux robots de se créer des buts qui
sont adaptés à leur propre corps, leur environnement, et leur niveau d’expérience ac-
tuel. Les systèmes motivationnels se couplent aussi naturellement avec les capacités
d’apprentissage, parce qu’il y a trop de choses à apprendre dans des environnements
même modérément complexes; ils permettent de sélectionner quelles activités pour-
suivre, et de fait, quoi apprendre et quoi ne pas apprendre.

Tout cela nous amène au sujet de cette thèse : l’exploration. Les robots qui choisis-
sent leur propre buts, qui acquièrent des savoir-faire par eux-même ont besoin d’explorer
leur environnement, et ceci pour deux raisons. La première, de manière à acquérir de
l’expérience, qui peut à son tour être utilisée pour modifier leur comportement (c’est le
processus d’apprentissage). La seconde raison c’est que l’exploration sert à découvrir
de nouveaux buts à poursuivre.

Dans cette thèse, nous nous sommes concentrés sur l’exploration des espaces sen-
sorimoteurs, c’est-à-dire les espaces qui permettent d’exprimer la relation entre une
action motrice et le retour sensoriel qui lui correspond. De plus, nous avons unique-
ment considéré l’exploration qui est conduite par le robot lui-même, sans guidage
social ou savoir externe. D’où le titre: “L’auto-exploration des espaces sensorimoteurs
chez les robots”.

La thèse a trois objectifs. Le premier est d’établir l’exploration comme un problème
scientifique. Le second est d’étudier certaines stratégies d’explorations simples, et
l’impact que différentes variations ont sur elles, de manière à permettre de constru-
ire une intuition sur l’exploration et de former une base sur laquelle des stratégies
plus élaborées peuvent être construites. Le troisième objectif est de commencer à ex-
plorer comment les capacités d’exploration d’un robot peuvent s’améliorer au cours
du temps, à l’aide de l’expérience accumulée. Cette thèse remplit ces trois objectifs,
même si seulement de manière spécifique.

Pour établir l’exploration en robotique comme un problème scientifique, on com-
mence, dans le chapitre 1, au tout début : la définition d’un robot, l’impact que le
fait d’avoir un corps a sur l’expérience que le robot a du monde, et pourquoi tous les
problèmes en robotique ne peuvent être résolus par des simulations suffisamment am-
bitieuses du monde réel dans la tête du robot. La conclusion est que pour être efficace
dans la partie non-structurée du monde réel, les robots ont besoin de passer par une
longue phase de développement, de sorte à créer pièce par pièce les savoir-faire, les
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connaissances et le sens commun nécessaire pour faire face aux imprévus des situations
dans lesquelles ils se trouveront dans le futur. Pendant cette phase de développement,
leur capacité d’exploration sont cruciales.

Ensuite, nous formalisons le problème de l’exploration : explorer est créer accès à
différents aspects de l’environnement. L’exploration n’est pas seulement spatiale : un
robot peut explorer la réaction d’un objet avec lequel il interagit, comme par exemple
les différents sons que l’objet est capable de produire. Cette définition de l’exploration
nous permet de mettre en évidence une distinction importante entre l’exploration et
l’apprentissage. Apprendre est modifier son comportement grâce à son expérience.
Cela fait de l’apprentissage un concept distinct de l’exploration ; on peut apprendre
sans explorer : c’est ce qu’un système de prévision météo fait. Et on peut explorer sans
apprendre : c’est ce que font les robots aspirateurs, qui arrivent à couvrir une pièce
sans jamais en apprendre la forme. Bien sûr, la plupart du temps, on désire combiner
l’apprentissage et l’exploration.

Maintenant, pour faire de l’exploration un problème scientifique, il est nécessaire
d’avoir un moyen de l’évaluer de manière quantitative. Puisque l’exploration crée ac-
cès à différents aspects de l’environnement, une manière de l’évaluer est de mesurer
la des réponses sensorielles que le robot est capable de générer. La diversité
est une bonne mesure pour nombre de raisons : c’est un concept qui s’adapte à beau-
coup de domaines, c’est une mesure intrinsèque; le robot lui-même est capable de la
mesurer, sans perturber son comportement—ce qui n’est pas possible de faire si on
veut évaluer, par exemple, sa capacité de prédiction. Ceci permet, de manière addi-
tionnelle, d’envisager partager des dispositifs expérimentaux avec d’autres domaines
dans lesquels inspecter le processus de réflexion de l’explorateur est difficile, tel que les
sciences cognitives.

Cela nous amène à un point important et inévitable : l’état de l’art des travaux simil-
aires aux nôtres. La notion d’exploration et de diversité a bénéficié de peu d’attention
explicite en robotique, en dehors de l’exploration spatiale3. Mais beaucoup de do-
maines prochesmènent des travaux qui se rapportent aux nôtres. En robotique dévelop-
pementale, l’étude des motivations intrinsèques est pertinente; la diversité peut être
utilisée et est utilisée dans certains algorithmes de cette thèse en tant que motiva-
tion intrinsèque. De plus, un intérêt croissant au cours des quinze dernières années
a été observé pour la diversité comme mesure et outil algorithmique en informatique,
dans des disciplines aussi variées que les ensemble de classification, l’optimisation par
essaims particulaires et les systèmes de recommandation. En science cognitives, la di-
versité comportementale a fait l’objet de nombreux travaux, même si la quasi-totalité
des données quantitatives ont été collectées sur des expériences d’exploration spatiale.

Dans le cadre de nos expériences, nous avons introduit une mesure de diversité ap-
pelée couverture- . Elle mesure le volume de l’union des balles de rayon centrées
autour des points de retour sensoriel observés lors de l’exploration. Si le retour sensor-

3L’explora on spa ale est un cas spécifique d’explora on, pour lequel le déplacement dans l’espace sensorimoteur est déjà maitrisé.
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iel est diversifié, les points sont loin les uns des autres, et la superposition des balles
est faible : le volume de leur union est élevé. Si le retour sensoriel est peu diversifié,
la superposition est importante et le volume moins important pour le même nombre
de points.

Le deuxième but de cette thèse a été d’étudier les algorithmes d’exploration. L’idée
ici a été de choisir l’un des algorithmes le plus simple possible, et de l’étudier sous
différentes conditions. La simplicité de l’algorithme a été justifiée par deux facteurs.
Le premier est que cela permettait de comprendre les résultats dans leur moindre
détails sans devoir suspendre l’intuition du lecteur. Le comportement de la régression
linéaire locale, ou d’algorithmes plus complexes en espaces à haute dimensions peut
se révèler complexe, et c’est pourquoi nous avons opté pour une méthode plus simple,
basée sur la perturbation de plus proche voisins. Et deuxièmement, en restant simple,
l’espoir est que l’intuition gagnée puisse être réutilisée dans un champs plus large de
situations qu’un algorithme plus complexe et plus spécifique.

L’une des premières contributions de l’étude a été de clarifier qu’explorer l’espace
moteur était inefficace à cause des contributions de la haute dimensionalité

de la distribution hétérogène de la redondance de l’espace sensorimoteur (c’est-à-
dire, le nombre d’actions motrices différentes qui produisent le même retour sensoriel).
La haute dimensionalité seule n’est pas suffisante pour rendre l’exploration de l’espace
moteur inefficace.

Ensuite, nous avons analysé de manière systématique les contributions de chaque
aspect de l’algorithme. L’impact de la distribution des buts a été étudiée, soulignant
le potentiel que les méthodes qui dirigent leur buts représentent (Dans la majorité de
cette thèse, les buts sont choisis de manière aléatoire). Les effets d’un mauvais modèle
inverse ont été démontrés, et un algorithme pour l’exploration d’espaces sensoriels non-
bornés a été introduit.

Les expériences suivantes se sont concentrées à démontrer comment des implé-
mentationsmême rudimentaires de synergiesmotrices, de contraintes développementales
et de démonstrations externes pouvaient avoir un impact positif sur l’exploration. Une
leçon à retenir est qu’améliorer l’incarnation des robots offre potentiellement des gains
à la fois plus larges et moins coûteux que d’améliorer les capacités d’apprentissage.

Jusqu’ici, toutes les variations algorithmiques étudiées n’ont pas fait usage explicite
de mesures de motivation intrinsèque. La diversité a été utilisée seulement comme
un outil d’évaluation. Au chapitre 4, nous introduisons un algorithme qui utilise la
diversité pour choisir laquelle des stratégies d’exploration utiliser parmi plusieurs, et
nous démontrons que cette méthode permet de s’adapter à différentes situations aussi
bien que n’importe quelque mixture fixe de stratégies.

Le troisième but était d’étudier des moyens d’améliorer les capacités d’exploration
du robot au cours du temps, à mesure que l’expérience s’accumule.

Pour comprendre l’enjeu sous-jacent, il faut considérer qu’une exploration réussie
d’un environnement donné doit donner accès à différents aspects de cet environnement,
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c’est-à-dire, du point de vue du robot, produire une diversité de retours sensoriels.
Pour produire une diversité de retours sensoriels de manière efficace, une connaissance
de la dynamique de l’environnement est nécessaire, de manière à éviter sa redondance
inhérente, c’est-à-dire, pour éviter d’exécuter des actions qui produisent les mêmes ef-
fets. Pousser et tirer sur une porte fermée est un bon exemple : ce sont deux actions
différentes qui produisent le même effet—et donc aucune diversité sensorielle—et qui
apportent une connaissance nouvelle de la dynamique de l’environnement. Si l’état de
la porte avait été connu dès le départ, le robot aurait pu se concentrer sur des actions
différentes, plus susceptibles de créer de la diversité. Cela explique la problématique
de l’oeuf et de la poule qui touche la production de diversité: les connaissances néces-
saires pour conduire une exploration efficaces sont les connaissances que l’exploration
est censée produire en premier lieu. Cela signifie que le processus d’exploration peut
s’auto-entretenir, mais peu aussi rester bloqué dans l’incapacité de produire des inter-
actions suffisamment informatives, menant à de longues périodes d’exploration pauvre
au début du processus dans les environnements difficiles.

C’est ce qui nous a poussé à trouver une solution pour améliorer l’exploration, not-
amment lors des premières phases de contact avec un nouvel environnement. Pour ce
faire, nous avons introduit la méthode , qui réutilise l’expérience acquise dans un
environnement précédent pour en explorer un nouveau. Le coeur de l’idée est de sélec-
tionner des commandes motrices qui ont produit une diversité de retours sensoriels
dans l’environnement précédent, et de les réexecuter dans le nouveau. Cette méthode
a le bénéfice d’être conceptuellement simple, et d’être agnostique aux modalités sensor-
ielles de l’un ou de l’autre environnement, qui peuvent être arbitrairement différentes.
La stratégie d’exploration et l’algorithme d’apprentissage utilisés dans l’environnement
précédent n’ont pas besoin non plus d’être les mêmes que ceux de l’environnement ac-
tuel : la méthode peut réutiliser des données collectées de manière arbitraire. La seule
contrainte est que les commandes motrices exécutées dans l’environnement précédent
puissent être réexécutés dans le nouveau.

La logique derrière la méthode peut être comprise en considérant comment
la redondance fait en sorte que deux commandes motrices différentes produisent le
même effet sur l’environnement: soit par redondance du corps, soit par redondance de
l’environnement. La redondance du corps fait en sorte que deux commandes motrices
différentes produisent les mêmes mouvements: le robot applique donc les mêmes
forces sur l’environnement. La redondance environnementale fait en sorte que des
forces différentes produisent le même effet, comme illustre l’exemple de la porte fer-
mée. Typiquement, des effets différents parviennent à éviter à la fois la redondance
de l’environnement et celle du corps. En changeant d’environnement, la redondance
environnementale n’est pas conservée, mais celle du corps l’est, la plupart du temps.
De plus, si les environnements sont similaires, une partie de la redondance environ-
nementale est partagée. Ainsi, en réutilisant un ensemble de commandes motrices qui
ont généré une diversité d’effets, la méthode capitalise le savoir gagné sur la re-
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dondance corporelle, et de manière opportuniste sur la redondance environnementale.
Pour valider expérimentalement cette idée, nous avons conduit des expériences qui

ont démontré la viabilité de cette approche sur un robot réel manipulant différents
objets en réalité augmentée. Les résultats montrent que la méthode est efficace
lorsqu’elle réutilise l’expérience gagnée par la manipulation d’un objet (une balle) pour
explorer un autre objet possédant un comportement significativement différent (un
cube). La méthode est aussi robuste à des environnements non-similaires, lorsque la
diversité créée dans un environnement ne se transfère pas bien à un autre. De plus,
nous avons établi que choisir les commandes motrices à réutiliser via une mesure de
diversité était plus efficace que de le faire de manière aléatoire.

Dans les expériences précédentes, améliore les performances au début de
l’exploration. Mais après suffisamment de temps, que soit utilisée ou pas, le pro-
cessus d’exploration arrive à des résultats similaires. Pour montrer que peut faire
plus qu’améliorer les performances pendant une durée limitée, nous avons élaboré une
expérience qui montre que peut rendre explorable un environnement qui ne l’est
pas à premier abord. Un aspect intéressant de cette expérience est que l’exploration est
façonnée non pas par une fonction de récompense externe, mais pas une manipulation
de l’environnement et de la saliance des objets qui sont contenus dedans, de la même
manière qu’une personne s’occupant d’un enfant pourrait faire.

Enfin, nous nous sommes intéressé à l’application de la méthode à des situ-
ations où l’exploration de l’environnement précédent s’est déroulée entièrement en
simulation, tandis que l’exploration dans le nouvel environnement se déroule dans
le monde réel, sur un vrai robot. Transférer les résultats obtenus en simulation à la
réalité a prouvé être une tâche difficile en robotique, un problème connu sous le nom
de . Les résultats obtenus, quoique demandant d’être approfondis, sont
excellents. Ils laissent entrevoir la possibilité d’utiliser des simulations grossières de
la réalité comme des artifices cognitifs efficaces pour une exploration améliorée du
monde réel.

Ainsi se termine cette thèse. Où aller, à partir de là ? Il y a trois directions de
recherche qui se dégagent: la diversité en robotique, la recherche interdisciplinaire
avec les sciences cognitives, et la robotique évolutionnaire et développementale.

Premièrement, la diversité en robotique. En 1255, dans son Commentaire sur les
Sentences, omas d’Aquin avança le point suivant: un ange a plus de valeur qu’une
pierre. Mais de là, on ne peut pas conclure que deux anges ont plus de valeur qu’un
ange et une pierre4. Une version modernisée de l’argument de omas d’Aquin est
proposé par Nehring et al. (2002) : “Un humain a plus de valeur qu’un chimpanzé.
Mais de là, on ne peut pas déduire que 6000130000 humains et aucun chimpanzés ont
plus de valeur que 6000000000 humains et 130000 chimpanzés.” En d’autre termes,
la diversité a de la valeur. Une telle observation peut être faite dans des domaines

4Pour ceux qui lisent le la n dans le texte: “quod quamvis Angelus absolute sit melior quam lapis, tamen utraque natura est melior quam
altera tantum” (Lib. 1 d. 44 q. 1 a. 2 ad 6)
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aussi différents que la biodiversité, l’art, la composition d’équipes, les portefeuilles
d’investissement, les résultats des moteurs de recherche, les ensembles de classifica-
tion, et même, le progrès scientifique. Dans Lehman, Clune et al. (2014), Pierre-Yves
Oudeyer a remarqué que “parce qu’on ne comprend pas encore suffisamment ce qu’est
l’intelligence, ou comment produire une intelligence artificielle générale, plutôt que
de couper des directions de recherches, pour vraiment faire des progrès, nous devrions
embrasser l’“anarchie de méthodes” de l’intelligence artificielle.” En d’autres termes,
lorsqu’on tâtonne dans le noir, la diversité est un outil précieux.

Il est tentant ici d’appliquer cette leçon à la robotique développementale, et c’est ce
que tente de faire cette thèse: les robots développementaux, plongés dans la complexité
du monde réel, et avec aucun autre choix que d’en faire sens à l’aide de leur capacités
d’apprentissage et d’exploration, doivent tâtonner dans le noir pendant un moment.
La quasi-absence de travaux sur la diversité en robotique développementale n’est pas
à la hauteur du potentiel qu’elle promet d’apporter.

Il y a, cependant, de nombreuses façons d’abuser cette leçon. Premièrement, la di-
versité pour elle-même est difficilement justifiable, quoi que soit sa valeur intrinsèque.
In particulier, un système motivationnel seulement dirigé par la recherche de diversité
semble être une mauvaise idée. Certains ont avancés l’argument qu’étant donné que
le nombre de choses simples est en quantité limitée, une exploration dirigée par la di-
versité conduira naturellement à découvrir des phénomènes de plus en plus complexes.
La rareté de la simplicité, cependant, n’a jamais été justifiée en dehors d’exemples jou-
ets, et les choses simples à découvrir et à apprendre semblent être en quantité suffisante
dans le monde réel pour remplir plusieurs vies. Tout cela conspire à suggérer que les
systèmes de motivation robotiques devraient favoriser une de motivations,
dont la diversité ferait partie. Des motivations en compétition et complémentaires
devraient mener à des comportements alternant entre des phases d’exploration, lors
desquelles de nouveaux aspects du monde sont découverts, et des phases d’étude con-
centrée sur un sujet, où des savoir-faire spécifiques seraient acquis.

Deuxièmement, le problème se pose de la manière utiliser l’expérience collectée lors
d’une exploration dirigée par la diversité. Dans cette thèse, nous avons montré, via la
méthode , que cette expérience est précieuse pour explorer de nouveaux environ-
nements. Mais explorer n’est pas le seul comportement qu’un robot développemental
possède. La question de capitaliser et réappliquer l’expérience obtenue grâce à la di-
versité pour résoudre des problèmes précis reste ouverte, avec la question de savoir si
une telle expérience est compétitive avec des approches plus directionnelles.

Enfin, de nombreux problèmes spécifiques à propos de la diversité n’ont pas encore
de réponse satisfaisante. L’exploration dirigée par l’exploration diffère de l’exploration
dirigée par la nouveauté en cela que les approches dirigées par la nouveauté ne peuvent
pas contrôler explicitement la quantité de diversité qu’elles produisent. Maintenir une
certaine quantité de diversité comportementale, en particulier lorsque l’environnement
change et réduit les options disponibles pour le robot, peut uniquement être obtenu
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par la perspective globale qu’offre la diversité, et non avec la seule perspective locale
de la nouveauté. Toutefois, la diversité requière plus de ressources computationnelles :
quand est-elle nécessaire par rapport aux approches plus simples liées à la nouveauté ?
Quelles sont de bonnes mesure de diversité ? La diversité a-t-elle un sens en haute
dimension, où doit-elle est en permanence supportée par des représentations abstraites
de faible dimension ?

Répondre à ces questions n’est pas facile ; une source d’intuition possible est offerte
par les sciences cognitives. Comment les enfants utilisent-ils la diversité pendant leur
développement ? C’est la deuxième direction de recherche qui semble prometteuse.

Il est notable que parmi toute la littérature disponible sur le jeu, l’exploration et la
résolution de problèmes chez les enfants et les animaux, les mesures quantitatives de
diversité des interactions qu’ils engagent avec le monde et des solutions qu’ils tentent
sont pratiquement absentes. Les études s’arrêtent souvent à de vagues descriptions
qualitatives. Des études quantitatives sur l’utilisation de la diversité comportementale
dans l’exploration pourraient jeter une lumière précieuse sur les meilleures manières
d’élaborer des systèmes motivationnels pour les robots. De plus, cette ligne de recher-
che, en vertu de sa méthodologie compatible, promet de permettre de conduire des
expériences similaires sur des humains et des robots, menant potentiellement à des
échanges et une émulation fructueuse entre les deux domaines.

La troisième direction de recherche est la robotique évolutionnaire et développe-
mentale, aussi appelée “évo-dévo-robo”. La robotique évolutionnaire mimique le pro-
cessus de sélection naturelle, tandis que la robotique développementale mimique le
développement morphologique et cognitif des systèmes biologiques. La quasi-totalité
de travaux, aussi similaires qu’ils puissent être, sont restés séparés jusqu’à maintenant.
Étant donné l’intérêt porté à la création d’une intelligence artificielle similaire aux ca-
pacités humaines, cette séparation est déconcertante; après tout, les seuls exemples
connus d’entités possédant une intelligence similaire à l’intelligence humaine ont été
créés par une combinaison de ces deux processus.

Combiner la robotique évolutionnaire et la robotique développementale pose un
énorme problème: le temps. Les échelles de temps du développement et de l’évolution—
les durée de vie et les aeons respectivement—mettent déjà en difficulté leurs disciplines
respectives. Combiner les deux semble donc totalement insurmontable. La bonne
manière de voir ce problème est de remarquer que la taille de ce problème est telle que
les progrès technologiques des, disons, 50 prochaines années ne la feront pas diminuer.
En d’autres termes, attendre n’aide pas.

Une autre objection est d’avancer l’argument que les robotiques évolutionnaire et
développementale sont deux jeunes disciplines, et ne sont pas encore suffisamment
mûres pour être combinées. Bien que majoritaire spéculatif, cet argument pourrait se
révéler être vérifié. Mais les difficultés rencontrées dans les tentatives de combinaison
pourraient jeter une lumière précieuse sur les limitations de l’un ou l’autre domaine
qui pourraient se révéler difficiles à découvrir autrement.
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Ajouter une longue phase de développement à la robotique évolutionnaire pourrait
voir l’émergence de nouvelles dynamiques, plus complexes, dans le processus évolution-
naire, et une amélioration du processus de sélection. Le travail de Bongard (2011) a
jeté les premières bases, en montrant que le développement morphologique pouvait
agir comme un véritable tamis, filtrant les comportements fragiles dans une expérience
de locomototion à pattes. Dans l’autre sens, la robotique développementale pourrait
bénéficier du processus évolutionnaire, qui pourrait réduire les décisions arbitraires
que les chercheurs doivent faire pour le moment, notamment en terme des capacités
de représentation et d’apprentissage qui sont données a priori aux robots.

La robotique évolutionnaire et développementale représente de toute évidence un
défi formidable, et il est difficile de contester que les résultats potentiels le sont égale-
ment. C’est un domaine d’investigation que l’on ne peut simplement pas se permettre
de ne pas investir.

Au moins parce qu’il promet de réduire les tendances démiurgiques des roboticiens.
Les roboticiens sont des démiurges ; l’évo-dévo-robo fait partie de la solution.
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Isaac Newton

0
Exploration: A Simple Example

Let’s consider the following problem: we are given a black-box that takes inputs and
produces outputs. We know the values the inputs can take, but we don’t know which
outputs correspond to which inputs. We don’t even know which outputs be pro-
duced. We are given the opportunity to sample the black-box for a limited time. How
much then, can be produced with the limited access we have?

is question defines an . Here, the objective is to discover what
effects—what outputs—the black-box is capable to deliver, and produce a represent-
ative subset of them. To answer such a problem is to provide an ,
i.e. a method that selects which inputs to try on the black box.

Let’s take the example of a one-meter-long idealized robotic arm on a two-dimensional
plane, made up of an open chain of joints linked by segments of equal length. e
angles of the joints, which can take values between -150 and 150 degrees, uniquely
define the posture of the arm, and therefore, the position of the end-effector.

Assuming the robotic arm is a black-box that accepts joint angles as input, and
produces the resulting end-effector position as output, which can
we consider to produce as much diverse end-effector positions as possible in a limited
time?

A Tale of Two Exploration Strategies
e simplest exploration strategy is to try random angle values. For each motor com-

mand, the angle of each joint is chosen randomly between 150 degrees. is strategy
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Figure 1: On the le , an illustra on of the angle range for the two-joint arm. On the right, random postures for an
arm with 7 segments, each of length 1/7th of a meter. [source code]

is known as 1.

Another strategy is to explore not the motor space but the sensory space. One
approach is a 2 strategy: goals—that is, points in the output space—are
chosen, and motor commands must be found that produce effects that approach the
goals as much as possible.

Of course, transforming goals into motor commands is not without problems: a
goal can be impossible to reach—as would be for instance, a goal placed two meters
away from our previously described robotic arm—, and, conversely, many different
motor commands can satisfy the same goal. In other words, the —the
set of effects that can be produced by the environment—might be a comparatively
small subset of the considered , and is possibly redundant.

In order to transform goals into motor commands, we use an of the
environment. An inverse model provides a mapping from the sensory space—and
therefore, the goal space—to the motor space. An inverse model is good when the
motor commands it provides generates, when executed, effects as close as possible
from their corresponding goals. In our black-box context, the inverse model cannot
be known beforehand; it has to be learned incrementally, as the exploration progresses.

Let’s note right away that the creation of inverse models is the purpose of

1Random and babbling are not redundant terms here. Babbling was originally used to designate an infant seemingly meaningless
produc on of vocaliza ons a er the sixth week, and, later, to describe repe ve, and seemingly random, infant movements such
as kicking. Those movements have since then proven to be far from random. We use motor babbling to describe the produc on
of motor ac va ons which are produced for their own sake, that is, with the purpose to find out what effect they yield. As such,
babbling both implies that the ac on is not part of a planning strategy, and that its effect is not previously known to a sa sfactory
degree by the actor (i.e. babbling implies informa on seeking).
2In a fashion similar to motor babbling, goal babbling characterizes goals that are produced for their own sake, that is, with the
purpose to find out if they can be reached.
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Figure 2: The goal babbling strategy is more effec ve than the motor babbling one at exploring the reachable space,
especially when the robot arm possess a high number of joints. S ll, the goal babbling strategy fails to explore all the
reachable space when many joints are involved. The blue points represent the posi ons of the end-effector reached
during explora on [source code]
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the work we present in this thesis. e purpose is the study of behavioural diversity
and exploratory behaviour. Whilst we use inverse model in many of the exploration
strategies we study, they are considered here as tools, not ends.

For the purposes of our arm example, we employ a simple learning algorithm for
the inverse model, since we want to stress that it is not the sophistication of the model
but how exploration is conducted that makes the difference between motor and goal
babbling.

Given a goal, the inverse model finds amongst previous observations the one with
the nearest effect, then retrieves its motor command and adds a small random per-
turbation drawn within the legal range of the inputs to it, and returns the perturbated
motor commands to be executed. Since such a learning algorithm relies on previous
observations, the early phase of the exploration features a small number of random
motor babbling steps in order to bootstrap the observations.

An Experiment
To compare the and strategies, we consider four
different arms, with 2, 7, 20 and 100 segments—the lengths of which are set so that
the total length of the arm remains one meter across the configurations.

For the goal babbling strategy, random goals are created by drawing points ran-
domly in the square3. is strategy will be called ,
often abbreviated as when no confusion is possible. e perturbation that
the inverse model applies on motor commands is drawn uniformly from of the
range on each joint value ( ).

Finally, the random goal babbling strategy is bootstrapped with 10 interactions of
random motor babbling at the beginning of the exploration. For each arm, we run the
two exploration strategies over 10000 interactions with the environment (henceforth,

or ) each.

Analysis
e results are available Figure 2. We observe a severe degradation of the area covered

by the effects produced by the motor babbling strategy4 as the number of joints in-
creases. e 7-joint arm does not produce effects near the edge of the reachable space
even after trying 10000 different postures. e 100-joint arm does not even cover a
fourth of the reachable space.

3If you think that the goal space fi ng the reachable space so well is highly spurious and actually straigh orward chea ng, you are
decep vely percep ve. More details on this issue in sec on 3.2.
4The ‘area covered by the effects produced by the motor babbling’ is not yet a precise no on here—it will have to wait chapter 1.
If one nevertheless needs one now, one shall for instance consider the area of the smallest disk containing all the effects.
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is is easily explained. What random motor babbling is doing is providing an
empirical estimation of the density of the redundancy5 of the arm across the reachable
space. For the 100-joint arm , the centre of the reachable space is orders of magnitude
more dense than the outer edge, which leads to the distribution pattern of Figure 2. In
sensorimotor spaces where the density of the redundancy is uniform, random motor
babbling would produce an uniform distribution of effects over the reachable space,
regardless of the level of redundancy6.

is phenomenon is well illustrated by the 2-joint example. In Figure 3, the num-
ber of timesteps has been raised to 50000 compared to Figure 1: sensory areas where
two solutions exists are twice as dense as the areas where only one does—as it should.
In Figure 4, the two set of solutions have been separated, and overlaid with sample
arm postures. One set of solution corresponds to arm postures where the second joint
angle is positive, and the other where it is negative.

Under the goal babbling strategy, areas with different redundancy levels are ex-
plored uniformly. Along the edges of the reachable space in Figure 3 however, an
increase of effect density can be observed. e reason for this is explained Figure 6:

Figure 3: Goal babbling smoothes out the sensorimotor redundancy. The majority of the reachable space of the
2-joint arm is redundant. But due to the ±150° range of the joints, two areas where only one solu on exists exist.
While this difference in redundancy is clearly reflected in the motor babbling explora on, it is not present in the goal
babbling one. Both figures show 50000 mesteps. [source code]

5For a discussion about the defini on of redundancy see Conkur et al. (1997). In this thesis, we are interested in the difference
between the redundancy of different areas of the sensory space. We define the redundancy of a subset of the sensory space
as the probability that an effect belong to , given a random motor command, drawn uniformly from the motor space. Lenarcic
(1999) provides an algorithm to quan fy the redundancy of rigid, mul joint robo c arms, but the computa on is only tractable for
a small number of joints.
6A minor point of detail: here the robo c arm exhibits kinema c redundancy, i.e. there are more joints than necessary to obtain a
given posi on of the end-effector. Musculoskeletal systems usually exhibit both kinema c and kine c redundancy, where there are
more muscles than required to apply the relevant forces on the joints. Typically, robots based on electrical motors do not exhibit
kine c redundancy, but those based on ar ficial muscles do. This thesis overwhelmingly uses examples of the former kind.
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Figure 4: The two set of solu ons are discriminated by the sign of the angle of the second joint. The two reachable
areas are not superposable. Each figure shows 25000 samples. [source code]

because goals are chosen uniformly in the hyperrectangle , some goals are
outside the reachable space. e effects resulting from these goals pool along the
edges of it, in a pattern specific to the inverse model. Here, the perturbations induced
by the inverse model on the motor commands produces a large impact on the position
of the end-effector in the inner edge, and a correspondingly small one on the outer
edge, as illustrated in Figure 6.

e goal babbling strategy consistently covers more of the reachable space than
the motor babbling strategy, and in a more uniform manner. Nevertheless, the area
covered by the strategy diminishes with the increase of the number of joints. is is
due to the arm looping on itself more and more as the number of joints increases, as
shown in Figure 5. ese loops form an attractor for our perturbation-based inverse
model. In simple cases, these local minima can sometimes be escaped. An example is
given by the goal babbling exploration of the 7-joint arm in Figure 2. In the lower right
quadrant, a first set of solutions left a visible pooling of effects, before being replaced

Figure 5: Loops appear on the arm as the number of joints increases, trapping the inverse model in local a ractors.
This is highly dependent on the ini al motor commands produced during the random motor babbling bootstrapping
phase, and reduces the areas covered, as seen in Figure 2. [source code]
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Figure 6: Goal babbling produces poolings of effects at the edges of the reachable space. The shape these poolings
takes is a direct consequence of the inverse model. Here, if a goal is set near the centre, the nearest neighbour has
his second joint angle near the limit, 150°; a perturba on of this angle produces a value in the range [150°, 135°],
which produce a large effect on the posi on of the end effector. This leads to a dis nc ve inner ring of increased
effect density. A contrario, a goal on the outer edge is associated with a nearest neighbour with a second angle joint
near 0°, the perturba on of which (±15°) only results in a minor displacement of the end effector. As a result, we
observe thin and dense strips of effects on the outer edges of the reachable space. [source code]

by better solutions coming from an adjacent area. e process is visible Figure 7.

Figure 7: The progression of the goal babbling explora on of the 7-joint arm sees be er solu ons progressively
replace solu ons trapped in a local extrema because the first joint in locked at -150°. [source code]

is problem is linked to the minimal nature of the environment. In a more com-
plex setting, it could be handled in any number of ways, the most reasonable of which
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would be to prevent the arm self-collisions, or having sensorimotor feedback of the
convolutions of the arm, or having a natural rest pose. An unreasonable way would
be to try to improve the learning algorithm to avoid this specific problem. As we’ll
discuss in the next chapters, each time the learning algorithms try to fight the com-
plexity of the world with specific sophistication, there is probably a more ecological,
more complication-frugal way to proceed. For instance, the physical world naturally
prevents a robotic arm to pass through itself. Handling collisions would prevent loops,
removing those local minimum from the sensorimotor space. Because of this prob-
lem is largely anecdotal in our context, we won’t focus on addressing it in most of our
experiments, but we will discuss parsimonious ways to deal with it in sections 3.6 and
3.7.

Despite the loops, the goal babbling strategy is better than the motor babbling
strategy. It also benefits from the two-dimensionality of the sensory space, which
remains so regardless of the morphology of the arm. Goal babbling separates the
decisions about to do from the ones about to do it by making them in two
different spaces, the sensory and motor space respectively. is affords goal babbling
a direct, explicit way to encourage effect diversity by setting a diversity goals, thus
fostering the objectives of an exploration problem.

So far we have shown that if a robot must explore its sensorimotor space without
having any prior knowledge of it, several strategies can be conceived, and they produce
significantly different results. In the next chapter, we will motivate why sensorimotor
exploration is an important problem in robotics.

F
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e Plan
is thesis is divided in two parts. e first part pursues two goals: first, it mo-

tivates the importance of studying sensorimotor exploration, defines exploration as
a scientific problem, proposes an algorithmic framework, discuss the relevant pre-
vious work. Second, it systematically investigates variation of a simple exploration
algorithm to provide a basis on which to consider more complex approaches. One
of those, where a diversity metric is explicitely used as an intrinsic motivation for the
exploration, is proposed at the end of the first part. e second part investigates how
to improve exploratory behaviour with experience, and to do so introduces an method,

, to exploit exploration data from one environment to another.

Part One - Exploration
In chapter 1, we first expose the classic machine learning paradigm and contrast it with
the interacting learning scenario of embodied robots. is allows us to make explicit
the challenges robots face when learning. We take advantage of the discussion to
expose and motivate the current trends in robotic research in which our work is set, in
particular in relation with the notion of embodiment, development and evolution. We
then propose to study the robots face when discovering their body
and their proximal environment, and we contrast it to studying learning problems.
We introduce diversity measures to quantify and evaluate exploration, and present
the framework, that will express all the exploration architectures we develop
throughout the thesis.

In chapter 2, we look at the existing literature on exploratory processes, explorat-
ory behaviour and diversity. We begin with active learning, that proposed the first
explicit algorithms for directed exploration. We then brush against the concept of
self-organization, that underlies all biological organisms and many natural phenom-
ena, and explicit how these processes create diversity, are challenging to predict, and
are a promising venue for parsimonious robotic design. is also gives us the op-
portunity to discuss the concept of homeokinesis, a recently proposed method for
sensorimotor exploration, and compare it to our approach. After that, we turn our at-
tention to biology, and investigate sensorimotor exploration in fetuses, neonates and
infants, and its relation to development. is leads us to the studies of exploratory
behaviour in psychology, and in particular, to the theories on intrinsic motivation.
We offer there a rapid historical perspective that leads us naturally to today, where
computational approaches have joined the scientific dialogue. Amongst intrinsic mo-
tivations, novelty-based methods interest us particularly, for their direct relation the
production of diversity. We finish our bibliographical review by a brief survey of the
recent advances of evolutionary robotics that have advocated diversity as a robust fit-
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ness function, and highlight the steady rise in the use of diversity measure in computer
science.

In chapter 3, we come back to the two-dimensional arm of chapter 0, and revisit
many details previously ignored. e impact of goal distribution is investigated, and
as a result, we provide exploration algorithms that can build and adapt the goal space
during the exploration, removing the previously needed prior on bounds. Next, we
modify the quality of the inverse model and study how it affects exploration, and
argue than in some case, motor babbling is preferable to goal babbling, even when the
heterogeneity of the redundancy is high. We then briefly discuss how motor synergies
can improve exploration, and we provide a simple illustrative example. We repeat the
same schema for developmental constraints and socially-provided demonstrations. As
we discuss the merit of the presented work, we argue that effective exploration needs
a multifaceted approach that combines many different phenomena.

In chapter 4, building on the challenge of the adequacy between the learning cap-
ability and the environment complexity discussed in the previous chapter, we propose
an architecture that can dynamically choose among different exploration strategies by
leveraging diversity as an explicit intrisic motivation. We illustrate the effectiveness
of the methods on variations in learner quality and in exploration aggressiveness.

Part Two - Reuse
In chapter 5, we present the reuse method, that transfers motor commands from one
task to another by enforcing diversity. A simple example of two kinematic planar arms
is discussed.

In chapter 6, we discuss the existing literature on transfer learning, and formalize
the reusemethod. e two kinematic arms example of the previous chapter is analysed
quantitatively, and we provide results that show that diversity produces consistently
better performances than random reuse.

In chapter 7, an experimental setupwith a real robot interactingwith a virtual object
is described, motivated, analysed, and critiqued. e feasibility of random motor
babbling is discussed, and a series experiments shows that in the specific situation
we study, reuse is both sensitive and resilient to task similarity, works even when the
modalities are different, and can exploit random motor babbling data.

In chapter 8, we show that through environmental control alone, a diversity-driven
agent can be guided towards sophisticated behaviours.

Finally in chapter 9, the reuse method is discussed in relation with the reality gap
problem, and we show that even degraded models can be used with reuse to inform
and improve exploratory behaviour.
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Contribution
Our main contributions are:

• Defining and motivating the study of sensorimotor exploration in robots, as a
critical part of developmental robotics.

• A detailed study of a simple example of sensorimotor exploration, that intro-
duces different exploration algorithms under a single framework.

• A diversity-driven method for selecting exploration strategies in Multi-Armed
Bandits contexts.

• A non-exhaustive review of the usage diversity in computer science robotics
that points out a growing interest in the concept as an active tool rather than a
passive measure.

• e reuse method, a diversity-driven transfer exploration algorithm.

• An experimental setup with a real robot and an augmented reality environment.

• An example of environment-driven (reward-free, fitness-free) development of
behaviour in chapter 8.

• An new way to bridge the reality gap, that is robust to many innacurracies in
the simulation.

K
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1
e Sensorimotor Exploration Problem

In this chapter, we motivate our interest for sensorimotor exploration in robotics. We
briefly expose the classical machine learning paradigm and show that robots present
specific learning challenges that prevent us to consider them as just another instance of
machine learning. We formulate the exploration problem and articulate its difference
with learning, and argue that exploration should be studied in its own right. To that
end, diversity measures and an architectural framework are introduced.

1.1 Classical Machine Learning

Abstract Classic machine learning is inherently passive, and is geared toward studying and
predic ng phenomena that happen outside of the control of the learning algorithm.

Machine learning concerns itself with constructing and studying systems that can
learn from experience1. e circularity of this definition is adequately resolved by
Mitchell (2006), who defines machine learning as:

1Many authors use the term ‘data’ rather than ‘experience’. While data, i.e., numerically encoded informa on, seems to act as good
catch-all for what systems are experiencing, we would refrain from considering this point se led.
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is definition is operational. ‘Reliably improves’ imposes a useful constraint to dis-
tinguish learning from stochasticity, while ‘following experience’ does not require to
formally establish a causal relation between the gain in experience and the gain in
performance, only to measure it empirically (‘ improves’).

Requiring an improvement in performance does lead to some problems though.
e performance during learning might not be monotonically improving. As a result,

the machine may find itself not having strictly speaking learned at some point of the
learning process2. In this manuscript, I will use a slightly different definition that,
while less practical, encompasses more instances of learning:

Or, in a shorter fashion3:

e change in behaviour—i.e. the change in response of the system to a given context—
does not need to be noticeable. ere must only exists a potential situation in the
future where the behaviour of the machine would be influenced by the experience it
just acquired.

e experience, typically, comes from a producing outputs from a set
of inputs. If we are studying the weather the inputs are the past weathers conditions,
and the outputs the current ones. In the case of a voice recognition task, the recorded
sounds are the inputs and the text transcriptions the outputs.

PHENOMENON outputinput

Figure 1.1: A phenomenon receives inputs and produce outputs.

An input and its corresponding output is an . e idea behind machine
learning it to gather enough observations—the —, and feed them to
a learning system, which uses them to create and update an internal model. e
learning system can then be used to predict outputs corresponding to new inputs that
are not present the training data4. As such, the goal ofmachine learning is to construct
systems that can from data.

is translates in our previous examples, to historical weather data being used to
validate models that can then predict tomorrow’s weather. And with enough samples
2One could of course choose a posteriori, so that effec vely improves. This is unsa sfactory though, as in prac ce, is most
of the me given and cannot be modified.
3The role of the task , the performance metric and the experience in the previous defini on is to narrow the specific aspect
of learning studied. Each is op onal. Without them, any organism possessing a nervous system with non-null synap c plas city is
constantly learning (Hebb 1949).
4We are restric ng the discussion to supervised learning here, that is, a situa on where the desired outputs are given by the envir-
onment.
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Figure 1.2: The canonical machine learning architecture.

of recorded vocalizations with their transcriptions, a computer program can build a
voice recognition system that can recognize sentences it never encountered before.

e classic machine learning architecture can be summarized as depicted Figure 1.2.
is architecture is general and has wide applications, ranging from detecting which

edits are vandalism on Wikipedia (Adler et al. 2011), to helping medical diagnosis
(Kononenko 2001), to classifying DNA sequences (Larranaga 2006), or detecting
influences between famous artists of fine art painting (Saleh et al. 2014).

is approach thrives when data is abundant and matches the assumptions build
into the models. In robotics, things are different.

F

1.2 e Trouble with Interaction

Abstract We mo vate why learning is important for robots, then describe the intrinsically in-
terac ve nature of robots, and discuss the unique challenges it entails.

In other words, robots are synthetic systems that are —they perceive
the world, and —they can act in the world, and they are able to decide how
to act contextually.

1.2.1 Learning Robots

Abstract Learning in robots has several roles: increasing robustness to change, finding em-
pirical solu ons where theore cal models fall short, escaping task-specificity, gran ng self-
sufficiency, allowing social exchanges, and providing insights into the learning mechanisms of
biological systems.
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Not all robots learn, i.e. not all robots change their behaviour with experience.
Many robots used in industrial contexts repeatedly produce motions that have been
programmed beforehand, and they do not improve them as they repeat them. For
instance, picker robot on an assembly grab items on a treadmill and place them some-
where else5. Such a picker robot is able to its behaviour to the position of the
items that arrive on the treadmill, but it is not able to , as its performance will
not change as it picks more and more items. is difference between adaptation and
learning is a crucial one. Another example is a robot walking in a 2D maze. Assum-
ing that the maze is simply-connected, that is, that all the walls are connected to the
outer boundary, the robot, by following the left wall all the time—a method known
as the —, will successfully be able to find the exit. Yet, even if the robot
is presented repeatedly with the same maze, its performance at finding the exit will
not improve. e robot successfully adapts without learning.

Adapting without learning has its limits; in many contexts, learning is a mandatory
part of successful behaviour. We discuss some of the most important roles of learning
in robots.

Robustness to Change

Robots that do not learn are inherently brittle to changes that are orthogonal to their
adaptation capabilities6. For instance, the picker robot is perfectly able to handle
changes in the position of items, but might not be able to handle those that involve
changes in height, size, or weight, even if they are within the range the hardware
would be able to handle.

If a robot does not learn, then the way it must behave for all the situations it can
encounters must be pre-programmed into the robot. is makes programming robots
an expensive task in complex environments. As a results, the tendency is to make
robot environments simpler, and robot task-specific, so that programming the robots
remains reasonably simple—this is typically the case in industrial settings.

Box 1.1: TheWhat of a Robot
Robots are mechanical systems, but not all mechan-
ical systems are robots: A bicycle can’t self-produce
mo on, hence it is not a robot. A system that can
self-produce mo on is an automa c system. A clock
self-produces mo on, but it is not a robot as it has no
sensors and does not process informa on.
But a washing machine that can measure and control
how fast it is tumbling is a robot—robots don’t have
to be mobile or exhibit their mo on in plain sight. A
speaker connected to a microphone through a com-

puter is technically a robot, as the membrane vibrates,
but it is a degenerated case towhich few robo cs tech-
niques apply. In contrast, a system producing and per-
ceiving its vocaliza on through a motorized trachea
is a robot, and such systems are ac ve venues of re-
search (Sasamoto et al. 2013).
Let’s remark here that, were we to remove ‘synthe c’
from the defini on, animals—humans—would be a sub-
set of robots.

5See for instance this video for an illustra on.
6By defini on, all robots have some adapta on capabili es—even if they are just used to correct mo on errors—because their
sensory inputs informs their ac ons.
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Robots that do not learn have the success of their behaviour tightly constrained
by the set of assumptions that were made during their conception. If the environ-
ment evolves and violates any of those assumptions, the robot’s behaviour may not be
successful anymore.

Because in many real-world situations changes cannot be satisfactorily anticipated
during the conception phase, robots that do not learn are restricted to controlled en-
vironments, where the range of situations they can encounter has been enumerated.
Learning abilities allow robots to evolve in environments that were not in their de-
signer’s minds. To tackle more complex environments, robots need to learn.

Empirical Solu ons

When sophisticated behaviour in a complex environment is required of the robot, pre-
programming a successful behavioural strategy may be difficult. It requires to accur-
ately modelize the phenomenon, and the robot, and then use sophisticated deductive
reasoning to derive an appropriate plan for the robot actions.

A model of the robot or the environment may be difficult for any number of reasons.
e poor build quality of the robot may induce unpredictable hardware variations

that make any modelization inaccurate. Wear and tear may make any model quickly
imprecise7. e robot structural architecture may be too complex: robots equipped
with pneumatic muscle or soft limbs are notoriously difficult to simulate to any useful
precision (Daerden et al. 2002; Trivedi et al. 2008). e minute physical details of the
surface of the robotic hand and object to be manipulated (friction coefficient, surface
deformation, compliance) may be difficult to measure, and their impact difficult to
anticipate even with state-of-the-art physics theory. Preprogramming walking into
human-size humanoids has proven challenging, requiring sophisticated techniques
using detailed models (Hirai et al. 1998; Kaneko et al. 2009). And even then, the
behaviour is limited to stringent assumptions:

Kaneko et al. (2009, p. 12)

In those situations, pre-computing a good and robust controller for the robot is
expensive or impossible.

Preprogramming a complex behaviour into a robot is akin to ask a child to look at
a bike, and to think really hard to figure out how the bike works, and how he should
position himself on it, and how he should coordinate its legs precisely to push the
pedal while balancing himself to go forward without falling. Preprogramming the
7Which is not to say that wear cannot be handled: many methods have been developed to detect damage and wear in industrial
se ngs, see Chandola et al. (2009, p. 17).
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strategy into the robot is similar to hoping that after this period of intense reflection,
the child will be able to walk up to the bike, and ride it successfully on the first try.

Clearly, the child does not need to understand how the bike works, nor does he
needs a working knowledge of Newtonian physics to ride a bike. And even if it did,
that is, if you took a mechanical engineer that never learned how to ride a bike, gave
him as much observational time he desired, he would still not be able to proceed this
way.

e child does not even need to keep good representation of the behaviour once a
successful solution is found. An interesting study in this regards looked at the explicit
knowledge of skilled typists of the computer keyboard (Snyder et al. 2013). ey gave
the typists 80 seconds to fill the 26 letters of a blank printout of the keyboard (all the
other keys being represented). e subjects identified 57% of the keyboard correctly,
got 22% wrong, and were unable to remember the rest. Successful behaviour does not
need a good representation, nor a good understanding of reality.

Instead, for robots, a simple empirical trial-and-error strategy until the success is
detected may suffice: using the real-world is a computationally frugal—and remark-
ably precise—way to simulate the real-world. And it bypasses the necessity for ex-
pensive and practically inaccurate models. e robot does not necessarily need to
understand exactly why a motor command produces a specific behaviour to acquire
successful behaviour: learning abilities allow to figure out complex behaviour without
using sophisticated deductive reasoning.

Escaping Task-Specificity

Another role of learning that has emerged recently as an acknowledged research am-
bition, is for robots to escape . In an industrial context, it makes sense
to specialize each robot to its task. It increases productivity and efficiency, and is a
cornerstone of assembly-line design.

Out of controlled environments, robots may be able to accomplish more than one
task. Honda’s ASIMO robot is able to detect movement, faces, sound, to recognize
when a handshake is offered, to walk, to run, to detect obstacles, to shoot into a
football. And many other abilities. But ASIMO is not able to acquire new behaviour.
It cannot learn how to ride a bike. It is .

To be useful in social contexts or evolving environments where new tasks are created
contextually, robots must be able to acquire new behaviour and master new skills on
their own so that they can remain useful.

Self-sufficiency

ose three objectives of robotic learning all participate to a fourth and broader one:
granting robots self-sufficiency. Self-sufficiency is the ability to carry out one’s object-
ive without the intervention of an another entity not intrinsically necessary for the
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task8.
Many learning systems are not self-sufficient. For instance, predicting the weather

is a demanding endeavour. Historical weather data must be aggregated and encoded;
the current conditions must be continuously updated. Simulation of the weather
across the globe must be run on supercomputers. Because faster simulations afford
better resolutions, which in turn affords better accuracy, the programs are continu-
ously optimized, and the hardware regularly updated. e simulations themselves
exploit state-of-the-art science, and teams of meteorologists and engineers are con-
stantly improving the prediction models. If the prediction is unusually bad in a partic-
ular instance, the roots of the problem are investigated and possibly addressed. Unless
you include the humans running the weather predicting system into the weather pre-
dicting system itself, it cannot be considered as self-sufficient.

In the case of robots, we can distinguish two types of self-sufficiency: from experts,
and from others. is hindered each time an open-skull in-
tervention is performed, that is, any intervention where an expert is needed to modify,
repair or upgrade the robot software or hardware.

is is related to the concept of that separates a living entity from
the rest of the world, in the context of (Maturana andVarela 1973). A robot
is self-sufficient from experts if its hardware or software envelope—its operational
closure—does not have to be breached. e weather prediction system’s envelope is
breached every time an upgrade is made to the system. Essentially, self-sufficiency
from experts precludes any of the robot once it has started functioning.

Self-sufficiency from experts in an important precondition in order to deploy robots
outside industrial settings. In that context, learning capabilities grants self-sufficient
robots some measure of self-redesign, since redesign cannot come from an outside
entity anymore.

relates to the robot requesting or needing help from a
human or another entity who has no direct access to the robot’s mind. A robot that
requests demonstrations is not self-sufficient. A vacuum robot is self-sufficient from
experts, but its self-sufficiency from peers is as great as its capacity to not get trapped
in a corner, and as how rarely it needs to be emptied.

Self-sufficiency is a continuum. A robot is self-sufficient from experts insofar as
it never needs repairing. As a consequence, avoiding dramatic damage is part of self-
sufficiency. But damage cannot always be avoided: robots are never perfectly self-
sufficient. Some robots are more adept at avoiding damage than others: they are
more self-sufficient. Likewise, better learning capabilities may reduce the number of
human demonstrations needed before a skill is acquired, thus improving the robot
self-sufficiency from others, without achieving it completely.

A helpful parallel can be made with humans: humans are self-sufficient from ex-

8The task determines if another en ty is needed, not the abili es of the agent. Gree ng people in a museum intrinsically needs
those people to achieve the task. Moving a reasonably weighted box does not need an outside en ty.
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Box 1.2: Self-sufficiency versus Autonomy
Self-sufficiency means that one can carry its mission
while only relying on its own. In contrast, the meaning
of autonomy, as Smithers (1997) (see also Paolo et al.
(2008)) argues, has been diluted in the robo cs com-
munity and is rarely employed to make ‘clear and use-
ful dis nc ons’; the term has been employed in senses
as diverse as mobile, self-sufficient, intelligent, or able
to make decisions.
Autonomy is rarely employed in robo cs in the sense
inwhich it is overwhelmingly used in philosophy, medi-
cine, poli cs, biology, or law: an autonomous en ty
is an en ty capable of self-determina on and able

to make its own laws or principles. In this sense,
autonomy is a property that is internal to the sys-
tem, and bears li le rela on with competence or ca-
pacity. Self-sufficiency, in contrast, is defined en rely
in the rela on the system can entertain with its en-
vironment. By way of illustra on, a territory can be
declared autonomous—able to make its own laws—
without possessing the economical capability to not
rely on foreign aid (be self-sufficient), or the poli cal
competence to govern itself efficiently.
In this thesis, we refrain from using the words
autonomy and autonomous altogether.

perts insofar as they do not need medical care. And humans’ self-sufficiency from
peers is low in infancy (that does not mean that they are not —see Box 1.2),
and increases throughout development.

Social Interac ons

Most social interactions amongst humans assume that learning takes place. Even if
only to remember someone face or name, learning must happen. Previously discussed
information and expressed preferences are expected to be remembered, if only approx-
imatively. And when didactic exchanges happens, individuals are expected to be able
to acquire simple skills. e ability to learn is therefore crucial if robots are to have
normal social interactions with humans.

Insights into Biological Learning

Finally, some of the research studying learning in robots is motivated by gaining in-
sights into how biological systems learn. Robotic instantiations of mechanisms and
structures found in biology provide important scientific tools to study them in re-
peatable, reproducible, and bias-controlled settings, that are difficult or impossible to
achieve with biological systems (Webb 2000, 2001, 2002; Ijspeert, Crespi et al. 2005,
pp. 190–193; Ijspeert 2008, pp. 647–648). One crucial advantage of robots for learn-
ing research is that they can be tested with learning deactivated, and they can be made
to forget at will. We’ll go back to this in section 1.3.

In other instances, the learning situations require specific conditions. For example,
Blumberg et al. (2013) proposes a robot model to study the functional value of muscle
atonia (lack of tone) for sensorimotor learning during sleep; such a study would be
cumbersome in animals.

In many ways, the communication between biology, psychology and neuroscience
on one side, and robotics on the other is still in its infancy. But because robotics
offers unique and operational experimental opportunities, the dialogue is poised to
strengthen as research advances.
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is a pivotal ambition of the developmental robotics (Weng 2001; Lungarella
et al. 2003; Asada et al. 2009), the evolutionary robotics (Nolfi 2000; Lipson 2005;
Doncieux, Mouret et al. 2011; Bongard and Lipson 2014) and the biomimetic (Beer
et al. 1998; Vincent et al. 2006; Ijspeert, Crespi et al. 2005; Ijspeert 2008; Pfeifer,
Lungarella et al. 2007) research fields, which we’ll talk more about in sections 1.2.4
and 1.2.5.

So far we have discussed the role that a learning ability has for robots, essentially
answering the question ‘why should we want robot to learn?’. We have distinguished
six different roles: robustness to change, finding empirical solution to complex prob-
lems, tackling new tasks, self-sufficiency, engaging in normal social interactions, and
providing insights into biology and neurosciences. ese roles are often overlapping,
and this list should not be considered as exhaustive. In the next section, we tackle the
implications that being a robot has on learning.

F

1.2.2 Acting, Learning Robots

Abstract Robots are agents, not pure learners from the classical machine learning paradigm.
They are immersed in the real-world, and can exert control on their data sources. As a con-
sequence, they face specific challenges and opportuni es when learning.

Robots learn from experience collected through interaction with their environment.
e environment fits nicely as a phenomenon: inputs are —the ac-

tions the robot executes—, and outputs are , i.e. what the robot
perceives through its sensors. Yet, the necessity of interacting with the real world to
collect data has a profound impact on many aspects of learning that precludes us from
considering a robot as just another instance of a classical machine learning problem.

AGENT

ENVIRONMENT

Sorder feedback

M

make 
decision learn

Figure 1.3: An agent makes decisions that affect the environment.
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e most immediate consequence of the inherently interacting nature of robotic
learning is that robots are never only passive learners, they are actors— —, and
they must . Because of this, predicting the environment is not the only
point of learning anymore: is a desirable goal too.

ere are two main reasons why the robot has to act to learn. First, because while
the real-world may be full of diverse events unfolding all the time, the current environ-
ment of the robot may not exhibit information pertinent for the robot’s motivations.
Acting introduces directed variability towards specific elements of the environment.
And second, because acting allows the robot to learn the consequence of its own ac-
tions on the environment.

is active role in the environment introduces a new issue that is not present in the
classical machine paradigm: if a robot must act to learn, then what should it do? e
production of a motion with a motor is not a neutral act: it supposes that a decision
was made at some point. A decision reduces all potential actions the robot could
produce into just one, acted out. In comparison, the weather system never makes a
decision, never acts; it receives the data and only to the best of its ability.

Interacting with the real-world creates many challenges: observations are expens-
ive to acquire while action possibilities far exceed the interaction opportunities. No
reasonable assumption can be made about the homogeneity of the space with re-
gards to stochasticity, redundancy or noise, and observable phenomena are not always
learnable or controllable, which leads to high variability in the value of an observa-
tion. Moreover, many phenomena are not observable, and the interaction possibilities
offered by the environment are unknown. We detail each of these points below.

Interac ng Is Expensive

Since a robot is interacting with the physical world, each interaction requires time and
energy. Time, in particular, intrinsically limits the number of interactions the robot

Box 1.3: Forward and Inverse Models
Typically, predic ng the environment is done using an
forward model: given some hypothe cal ac on and an
environmental context, the forward model makes a
predic on about the consequence of the ac on on the
sensory receptors of the robot. In order to produce a
specific desired effect in the environment, an inverse
model is used. Given a specific desired effect, i.e., a
goal, the inverse model infers ac ons to produce it. In
a learning robot, models are dynamically learned as the
robot interacts with the environment.
In industrial se ngs, forwards and inverse models rely
on a precise representa on of the robot, from which
kinema c and dynamic models are derived. But this is
a specific case.
Forward and inverse model do not imply a repres-

enta on of the world: they encode the rela onship
between ac ons and effects. In our bike example, a
forward model might establish a rela on between the
pedalling rate and the speed of the bike, without the
need to represent the mechanical processes involved
in that rela on. And the corresponding inverse model
will indicate that to go faster, the pedalling rate must
increase.
Forwards and inverse models are the product of an
engineering approach, and finds their origins in con-
trol theory. Their presence in biological systems, and
the form this presence takes is s ll debated (Ito 1972;
Partridge 1982; Miall et al. 1996; Wolpert et al. 1998;
Kawato 1999; Johnson 2000; Loeb 2012; Oztop et al.
2013).
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Box 1.4: The Separa on Between an Agent and its Environment
It should be stressed that the separa on between
the agent and its environment is not the same
as the robot/rest-of-the-world one, or the hard-
ware/so ware one (Bertschinger et al. 2008). The
agent usually consists of a subset of the so ware of
the robot; everything else cons tutes the environ-
ment, as Figure 1.4 illustrates, including any so ware
component that helps process and carry the motor sig-
nals to the effectors, or processes and transmits the
sensory signals from the sensors. In par cular, the en-
vironment includes the body of the robot, which, for
our purpose, is only qualita vely different from the
rest of the environment insofar as it provides the in-

terface to it.
Engaging with an analogue world, impac ul choices
must be made to decide at which level of abstrac on
to interface the agent. It can be high-level, giving ab-
stract orders and receiving seman c feedback (‘move
toward the door’/‘door is open’), or low-level, sending
torque commands s and receiving raw sensors data
such as pixel matrices from a camera every 10 milli-
seconds.
In this manuscript, we will generally choose ap-
proaches where motor commands are low-level while
sensory feedback is high-level (this is not innocent).
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Figure 1.4: From a computa onal, open-skull perspec ve, the separa on between an agent and its environment
is not the same as the separa on between the robot and the world. But for an external observer situated in the
environment, they are the same, as the agent is iden fied by its opera onal closure (Maturana and Varela 1973).
Note that the automa c behaviour component might include any number of subsystems, including other agents.
The agent is discriminated from the rest of the so ware as an arbitrary perspec ve. In par cular the agent is not
necessarily omniscient or omnipotent over the so ware. See Pfeifer, Lungarella et al. (2007) for a similar diagram for
biological systems.
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is able to undertake. is holds regardless of the span of time considered: minutes,
hours, days or lifetimes. In the same way the experience a single human has of the
world is limited, so shall be the experience of any agent situated in the world. Time
is a fundamental limitation because it won’t go away with more computing power or
cleverer algorithms, which are the two usual ways computer science tackles problems.

Besides time, interaction opportunities may be limited by other resources. For
instance, in the case of a robot learning to engage socially with humans, individuals
willing to interact with the robot may be few in a given context, and the robot might
for instance be able to achieve only a few dozen of interactions per day9.

Interac on Possibili es Are Many

e time cost of an interaction is made acute by the magnitude of the number of
actions that are possible. A simple robotic arm with seven motors, each capable of
100 different positions (several orders of magnitude less than most servomotors can
achieve) can exhibit different arm postures. At a rate of one posture per second,
that translate into 6 million years.

In any moderately complex situations, the number of distinctive interactions with
the environment far exceeds the available time resources. It precludes any exhaustive
exploration of the motor space, or any coverage of it to a useful resolution.

If the mapping between the robot’s action and their consequences is simple enough,
the robot may be able to generalize from a few interactions, i.e., a good forward model
may be derived (Box 1.3). In most cases though, the mapping is too complex, unob-
servable or cannot be learned due to the limitations of the robot learning abilities.
In that case, uncertainty over the consequence of the majority of the robot’s possible
motor commands is unavoidable.

Heterogeneity of Stochas city, Noise and Redundancy

Many machine learning algorithms assume that noise and stochasticity is homogen-
eously distributed over the learning space (Loeb 2012; Oudeyer, Baranes et al. 2013).
With robots, the noise and stochasticity is usually heterogeneously distributed. For
instance, a robot bumping violently into a wall will experience high sensory stochasti-
city, while turning before the wall will elicit predictable environmental feedback.

Likewise, the amount of noise a camera is experiencing depends on the luminosity,
and the same goes for the human vision system; in an unevenly lit room, the changes
in sensory noise can be sharp. Motor noise might also be a concern. e noise around
the position of a joint is usually not negligible, and impacts motion especially if the
joint is proximal. Furthermore, over the range of possible values the joint can take,
the noise might not be uniform. is typically happens in the neighbourhood of the
extremities of the working range, or when part of the motor—for instance a specific

9A robot engaging in five-minute interac ons with ever-willing humans, 24 hours a day, can only hope to collect 24 60/5 = 288
interac on experiences per day.
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cog in the gearbox—is damaged. e noise can also be dependent on the forces being
applied to the joint. Which means that the joint’s level of expected noise dynamically
varies with the posture of the rest of the arm and during physical interactions with
the world.

Heterogeneity is also present in the redundancy of the mapping between actions
and sensory feedback, as illustrated in chapter 0. In a typical robotic setup, many
actions generate the same effect, while some effects are only produced by a handful of
actions. is makes random action sampling ineffective.

Observable Is Not Predictable Is Not Controllable Is Not Learnable

A key assumption embedded in learning algorithms is that the entire domain con-
sidered can be learned (Oudeyer, Baranes et al. 2013).

An observable effect might not be predictable or controllable. For instance, a dice
roll might be observed, but cannot be predicted or controlled (under reasonable as-
sumptions). Likewise, I might correctly predict the trajectory of a cloud in the sky,
but I have no control over it: predictable is not controllable.

And, a phenomenon might be potentially predictable and controllable by the robot,
but not practically learnable: the phenomenon’s complexity might outclass the learn-
ing abilities of the robot. Or, there might not be enough time to learn it10. Or, the
phenomenon might require previous knowledge or a skill that the robot can acquire,
but did not, yet. For instance, the ability to reach is required to be able to grasp. And
running is easier to learn after being able to walk.

All is Not Observable

Let’s get the uncertainty principle (Heisenberg 1927) out of the way: even in the best
of circumstances, the knowledge one can have of a situation is inherently limited. But
that makes no practical difference in most practical robotic settings.

Humans and robots alike are limited in their knowledge of the world in much
more important ways. First, they are situated, i.e. they occupy a specific place in
the environment, and they get their information about the environment from this
perspective only. ey cannot see behind an opaque object, they cannot hear sounds
from behind a soundproof glass11, they cannot feel an object they are not touching.

Second, there are many unobservable phenomena going on in the environment at
any given time. Deductive abilities might be able to estimate unobservable inform-
ation from observable cues, but in many instances, this is not reliable. For instance,
the state of mind of someone else is not directly observable, and their knowledge and
skills is not either.

Hence, any representation that a situated agent can form of the world is limited.

10One might for instance consider a phenomenon corresponding to a linear system of rank n+1 with only n samples allowed. Or,
more simply, to enumerate all possible outcomes of a 6-dice roll with only 5 samples allowed.

11robots might able to see the sound though; Davis et al. (2014)
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But it gets worse: the set of possible future states of the world is not known either.

Possibili es Are Unknown

Having a clearly defined set of all possible in a given situation outcomes is possible—if
the robot is placed in a known, simple, controlled environment, and a description of
the set of possibilities is spoon-fed by an engineer.

When the environment grows more elaborate, the task of the engineer becomes
more difficult, and the description of possibilities more complicated. Physical phe-
nomena at play are more difficult to grasp, initial conditions are only partially known,
the number of interacting entities grows, and the number of interactions grows quad-
ratically. Quickly, describing all possible outcomes is impossible, even with complete
knowledge of the situation. In other words, the frontier between what is possible,
even if unlikely, and what is definitely not possible gets blurry.

, it is impossible for a self-sufficient robot only able to gain partial know-
ledge of the situation through situated sensory acquisition, and whose grasp of the-
oretical physics is arbitrarily bad, to derive all possible outcomes of a given situation.

erefore, the robot must act in a world where what is possible to observe is uncertain.

All Observa ons Are Not Equal

Interactions possibilities are many, but each is expensive, making an exhaustive ap-
proach unfeasible. And each observation does not yield the same information gains.

erefore, in a robotic context, the value of an interaction for learning a task varies
dramatically. is leads to a potentially high opportunity cost for every interaction the
robot chooses to undertake: each interaction yielding poor observations decreases the
total amount of information the robot can hope to gather over its limited interaction
budget.

erefore, a good exploration strategy, that efficiently select actions to maximize
the information they bring is necessary. It makes the exploration strategy employed to
choose to do as important as the performance of the learning abilities the robot
is provided with. And the strategy must match the abilities of the agent: actions
should yield learnable observations.

And the ineffectiveness of random sampling, the robot’s limited knowledge of the
situation, and the uncertainty on what the environment offers in terms of possible
interactions make finding a good exploration strategy non-trivial.

1.2.3 Learning Before Acting?
So far, we have argued that robots must interact with the world in order to learn.
Because it bypassed the need to use complex representations, that were difficult or
impossible to acquire in the first place. Historically however, robotics has seen the
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development of many approaches were learning happens before acting is performed.
In this section, we explore the advantages and pitfalls of such approaches.

A seductive proposition is to equip a robot with enough high definition sensors so
that it can capture and build an accurate representations of its environment, in which
it can then simulate its behaviour and the one of the environment by drawing on huge
prepared databases of information about all conceivable objects and entities (Suh et al.
2007; Lemaignan et al. 2010; Tenorth et al. 2013), learn from this disembodied exper-
ience, and then act by exploiting the knowledge gained, without ever experimenting
haphazardly in the real world. e robot would only be executing well-laid plans.

Granted, it seems that, for a child or a mechanical engineer, thinking about riding
a bike is not the best way to learn how to actually do it. But neither of them has
the ability to run complex physical simulations involving hundreds of moving parts
in its head. And besides, interacting with the bike in the real world is slow. e
robot, on the other hand, is able to run thousands of simulated tries per second. After
all, we build planes and cars from simulations: simulating a bike, then, is easy. And
even if the simulations are not perfect, their sheer amount should counterbalance the
inaccuracies enough to be able to derive a successful behaviour.

is approach seductive, if only because it promises that most problems can be
solved by throwing enough computing resources at it: if the representation is accurate
enough and has predictive capabilities, simulations can be run, and simulation’s time
is only dependent on the processing power available. Future technological progress
will take care of any current lack of processing power. And even if simulators are still
limited, future advances will make them more and more accurate: at some point, this
two-pronged approach will be enough for most practical situations.

is approach extracts the problem from a context—the real-world—where it is
time- and energy-consuming to solve into another, the simulated world, where there is
no irreversible consequences for one’s action, where the action costs are comparatively
low, and where all the techniques of computer science can be brought to bear. In other
words, as soon as the problem has been adequately transferred into the simulated
world, all the difficulties of the real world we exposed in the previous section are
discarded, and finding a solution becomes much easier.

Op mal Control

A reason for this approach is historical. Industrial robotics have developed mature,
powerful theories that allow to compute controllers. In an industrial setting it
is highly useful. Optimizing repeatedmovements reduces costs. Given the availability
of such a powerful toolkit, developed and field-tested over several decades, it seems
natural to want to apply it onto new robots.

One of the most important motivation behind the research for optimal control al-
gorithms is that they reduce the design of robots to their hardware: engineers are
motivated to build the best possible robot bodies, with the guarantee that optimal
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control algorithms will exploit them to their fullest. e hardware and software prob-
lem are decoupled, with the later only needing a precise description of the hardware
to automatically adapt to it. In theory, such an approach would allow unrestrained
originality in designing the hardware. In practice, the opposite happens. Optimal
control algorithms are only applicable to a narrow range of hardware (typically, rigid
body with electrical servomotors), and as such reduce the choices that guarantee that
the algorithms will work.

Indeed, those methods require accurate models of the robots. But as robots become
more and more underactuated, compliant, flexible, even soft, and engage complex and
uncertain environments, suchmethods impose a set of assumptions that is increasingly
at odds with the ecological context of the robots. Optimal control generally requires
a known, observable, computable cost function, as well as a precise and computable
inverse model of the robot, and a low and homogeneous level of noise. e constraints
on the objective function limits the range of tasks that can be handled, the inverse
models are difficult-to-impossible to establish and are computationally expensive, and
the assumption on the noise, as we have discussed, is unreasonable.

e optimality approach has been criticized by Loeb (2012): such assumptions are
most often not found in biological organisms12, who empirically derive
behaviours instead by trying random motor activations on a high dimensional motor
space where the density of useful solution is high (Raphael et al. 2010). By trying
different random values, and creating perturbations of the most promising ones to
approach the nearest local minima, animals are able to quickly evolve and acquire
good behaviours. Proceeding this way has the advantage of providing the organism
with a repertoire of useful, , solutions that confer robustness to the organism.

Simon (1969, pp. 28, 119) similarly advocated for settling for such solu-
tions:

(p. 28)

(p. 119)

ere are current attempts to explain motor coordination as optimal control, in
particular in the context of optimal feedback control (Todorov and Jordan 2002). And
although the principle of evolution as an optimization process in often invoked to
justify the biological plausibility of optimal control theory, Loeb observes that it is in
fact at odds with evolution:

12A small experiment illustra ng how incomplete are our own conscious models of our limbs: close your hand into a fist without
ghtening your muscles, and then bend your wrist inwards as much as possible. What happens? If you are not flexible enough,
your hand opens. You possibly did not an cipate this, illustra ng blindspots in the explicit knowledge of the forward model of your
hand, something you use all the me, every day, with remarkable efficiency and dexterity.
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Loeb (2012, p. 763)

Settling for good-enough solutions not only creates robustness from mutation, but
it also confers individual robustness to environmental changes because it brings a di-
versity of strategies that are not optimal to any specific environment, but rather effi-
cient in many. It also enhances population robustness, because it creates behavioural
diversity independently of genetic diversity.

In robotics, even when the theoretical assumptions are met for optimal control,
practical considerations come into play: fast gait in legged robots requires high-bandwidth,
low-latency sensory feedback for optimal control. Such a strategy is both taxing in
energy and computational resources (for instance, a low-latency might require to sim-
ulate the immediate consequences of actions before the actual consequences can be
perceived, using an internal forward model). Insects have evolved alternative con-
trol strategies that do away with centralized control—the legs communicate and syn-
chronize through environmental mechasensory feedback—and allows them to react
faster to obstacles on the ground than the speed of their neural pathways would allow
(Cruse 1990; Espenschied et al. 1993). e performance of insects remains currently
unmatched by robots.

So far, we have characterized the search of optimality as ecologically divorced from
self-sufficient robots. But that does not disqualify the use of complex representations
yet.

Benefits of a Full-Representa on Approach

Using a full-representation approach, or a representation-based approach does not
mean that one has to optimize in it (we will see how that might create a problem
in chapter 9). Acknowledging the limitations in time, resources and realism, finding

is a possible approach.
e representation-based approaches have been extensively used, and, still are today.

For instance, self-driving cars must be acutely aware of their surroundings. And they
cannot experiment on the road for the sake of learning. A self-driving car should know
how to drive safely from day one, and probably having an explicit, provable behaviour.
Self-driving cars use Simultaneous Localization and Mapping algorithms (SLAM)
( run 2005, pp. 309-485) and array of sensors, tomaintain constant, omnidirectional
representation of their surroundings and their location in that representation. ey
must be aware of other cars, pedestrians, and correctly identify all the road signs and
markings. A self-driving car is a robot. Why then, can’t such an approach be used for
any other robots?

First, it is important to remark that self-driving cars still face technical challenges,
and have not be field-tested in large numbers, but non-engineers. While most of the
technology may work, some of the remaining problems may prove very difficult to
solve, and require radically different approaches. But let’s assume that self-driving
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cars work.
e reasons why a full representation approach is feasible for self-driving cars are

many: the dynamics of a car with a road can be subtle at times, but they are rather well-
understood and can be computed to a useful degree of precision. A car has no limbs or
articulated spine, nor does it grasp or manipulate anything; the set of different entities
a car typically interacts with can be enumerated (vehicules, pedestrians, obstacle, etc.);
most relevant information communicated through vision; it can sport heavy sensory
equipment and carry large power resources. A car has no problem balancing itself
at rest. Cars evolve in a road network that does not change rapidly. is allows to
actually map the complete environment before the robot is allowed to roam in it, and
that is what is done with self-driving cars: they rely on precise pre-captured maps of
all the roads they evolve in, and merge those with their sensory data.

With humanoid robots, none of those assumptions can be made. For humanoids,
having a perfect, up-to-date representation of themselves and their immediate sur-
roundings for simulating behaviour is unrealistic.

is leads us to conclude that, while a full-representation approach is tempting be-
cause it can easily be , it is impractical, expensive, most of the time unfeasible,
always limited, and often unreliable.

Embodiment

One of the most impotant argument against representations was made by Brooks
(Brooks 1991c,a), provocatively:

Brooks (1991b, p. 1)

In rupture with his contemporaries in the artificial intelligence community, Brooks ad-
vocated an approach to constructing entities capable of intelligent behaviour without
giving them symbolic manipulations abilities or representations, but by rather letting
behaviour emerge from the interaction of the entity with the world (Brooks 1990,
1991b,a), using cognitive architectures where there was no centralized control centre
to be found.

e main point advanced by Brooks is the one of (Brooks 1991c; Varela
1991; Hutchins 1995; Hendriks-Jansen 1996; Ballard et al. 1997; Clark 1997; Arkin
1998; Lakoff 1999; Pfeifer and Scheier 1999; Beer 2003), that postulates that intel-
ligent behaviour can only emerge from a rich-enough interaction between the brain,
the body, and the environment:
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Brooks (1999, p. 169)

As such, an intelligent agent must be firmly embodied in the real world13, and should
not rely on methods that allow him to escape towards simulated representation, for
such an approach is inherently fated to fail. In the context of embodiment, the body
in an inseparable component of cognition, not just merely a vehicle for it: it generates
sensorimotor couplings that create specific regularities in the sensorimotor flow, i.e.
the body structures our relation with the world.

More specifically, robots’ bodies play the same role as our own: they offer an inter-
face to the world. is interface is all but neutral: it is specifically situated, i.e. the
location of our bodies gives us a specific point of view, it is heavily mediated (Taylor
1995), and it is embodied. is mediation influences how we perceive and think about
the world (Pfeifer and Bongard 2006). In particular, we constantly think about the
world in relation with the capacities of our bodies (Gibson 1977): I can sit on this
chair, this table is too heavy for me to move it by myself, this door can be pushed. We
do not perceive the world as it is, but how it relates to us.

ompson (1917, p. 24)

Because our knowledge of the interactions the world offers changes with learning,
our immediate perception of the world is dependent on the knowledge and skill we
possess.

e existence of mirror neurons, that fire both when one performs an action or
observe someone else perform it (Pellegrino et al. 1992; Gallese et al. 1996; Oztop et
al. 2013), shows how our morphology impacts our perception: the body is computing
the recognition of other’s actions (Umiltà et al. 2001; Rizzolatti et al. 2001), removing
the need to rely on abstract, deductive and representational cognitive processes.

Embodiment implies that it is equally impossible to comprehend the embodiment
induced by a different morphology without experiencing it directly. is is because
our body gives us access to our own embodiment experience directly and constantly,
it is never just a cognitive process. By way of example, to understand (some limited
form of ) the embodiment of current humanoid robots, which often have no flexible
ankle and no articulated spine, one has to strap ski boots, and a medieval armour,
and experience the limitation for himself. Before doing so, anticipating accurately

13Embodiment postulates that intelligent behaviour can only emerge from interac on with a rich-enough environment. While envir-
onments different than the real world are not ruled out by the argument, proponents of embodiment generally argue that no such
other rich-enough environment exists today, in par cular not in simula on.
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how they would affect everyday movements is surprisingly difficult. And, by the way,
letting the world do the work of simulating the constraints with actual ski boots and
armour is computationally and cognitively frugal, and much more accurate.

is call for an ecological approach to designing robots, where the morphology and
cognitive functions are designed together, so that one can efficiently exploit the other.
Smithers (1994) illustrates this point by observing that better sensors do not neces-
sarily make the control problem easier: considering a wheeled robot equipped with
IR sensors doing laps, he observes that, as the resolution of the sensors is increased,
they are more sensitive to small variations—not noise—produced by the slight differ-
ences in the laps. is makes the control problem more difficult, because the control
algorithms now have to discriminate between the informative and non-informative
parts of the data, with respect to the control purposes. e solution here is not to
make the movements of the robots more precise: the previous behaviour was already
adequate, and that would make the control algorithm even more sensitive to occa-
sional accidental variations. Rather, the sensory abilities of the robot should be de-
signed to be compatible with its cognitive and motor abilities, with respect to the
precision required in the behaviour.

A recent advance on the notion of embodiment is brought by Pfeifer and Iida
(2005), who introduces the concept of (Paul 2006). Un-
der this principle, part of the computation necessary to accomplish a task can be done
implicitly by the morphology of the agent, reducing the amount of explicit control,
i.e. cognitive resources, that must be dispensed. e principle has been exemplified
in biped locomotion (Paul 2004). are purely mechanical bipedal struc-
tures, that, when placed on an inclined plane, transform potential energy into kinetic
energy, and stay balanced: they are able to walk. ey demonstrate that a behaviour
thought to require complex algorithms and fast communication pathways can be pro-
duced without computational control (McGeer 1990, 1992; Wisse et al. 2007). From
there, reintroducing control on the passive walker can be done by acting on few para-
meters (Vaughan et al. 2004). is is a direct example of self-organization: the passive
walker is creating an attractor of stable bipedal locomotion, and well-placed actuat-
ors, rather than modify explicitly the movements, nudge the walker toward a slightly
different attractor, where walking is faster for instance.

Morphological computation is everywhere in the musculo-skeletal system. For in-
stance, the soft envelope of our fingertips deforms to simplify grasping. In robotic
manipulation, a spectacular example of this, pushed to the extreme, is vacuum grip-
pers (Brown, Rodenberg et al. 2010). Instead of dealing with the complexity of an
articulated hand, a gripper that passively adapts its shape to the manipulated object of-
floads much of the computational cost of grasping to a physical phenomenon. Even
when articulated hands are required, equipping them with soft fingertips facilitates
greatly manipulation. Morphological computation is also present in all our joints,
whose compliance act as dampeners the small variations of the mechanical feedback
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of the world. Small perturbations are thus handled by the morphology, which acts as
a filter that lets through consequential perturbations that warrant a change in motor
activation.

is dampening also directly simplifies control by reducing the chaotic behaviour
of the environmental response: small changes in motor commands will produce small
changes in the produced effects. An example of this is the role of feathers in flapped
flying:

Shim et al. (2007, p. 757)

A step up from passive morphological computation, are typ-
ically outside of the agent’s control, but play a large part in organizing sensorimotor
stimulation in a way that favours learning and control. In birds, flapping strokes dur-
ing flying induce body oscillations on the order of ten times per seconds (Warrick
2002). Yet, the head remains largely isolated from these oscillations by the actions of
optokinetic and vestibular reflexes (Maurice et al. 2004; Dickman et al. 2000). ese
reflexes are essential to ensure that the vision system and the maculae of the inner ear,
which perceives accelerations, are able to function properly.

is example of (reflexive) action supporting perception illustrates well how indis-
sociable one is from the other in embodied agents. is has been illustrated first by
Ballard (1991), who introduced the idea that an active vision system, that is, a vision
system which could move in the world to examine an object of interest under different
perspectives, make vision much simpler from an algorithmic perspective.

In a take similar to Brooks, proponent of active (or ) vision reject the
necessity of an explicit representation of the world:

Churchland et al. (1994, p. 36)

is idea, again, is that abandoning complex representation makes the cognitive
and computational problems simpler. Humans keep a overall idea of the visible world,
and resample the world as the need arise (O’Regan 1992). at ability of the vis-
ion/action systems to ‘avoid’ as much as possible higher cognition has been illustrated
recently by a study done by Perfiliev et al. (2010), where objects flying at high velocity
are launched at subjects from the side. In all instances, the subjects choose to (try to)
grasp the object with the hand closest from the incoming direction (if the object came
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from the left, the left arm would be used). e truly remarkable observation is that
this arm selection happened at a latency too low to allow for a voluntary decision to be
made or planning to happen. Perfiliev et al. (2010) proposes that an innate neuronal
mechanism can guide reaching of the arm towards a specific goal. e experiment
was reproduced for humans, monkeys (Rhesus and Japanese macaques) and cats.

In conclusion, the same features that make these systems easier to control and to
learn from make them harder to modelize and simulate (Anderson et al. 2005), espe-
cially from an egocentric perspective: not only embodiment, morphological compu-
tation and automatic behaviour remove the need for a full-representation approach to
compute behaviour, they also defeat its possibility by hiding much of the complexity
from the conscious experience of the agent. In such a context, learning cannot happen
without acting.

In many ways, the theories of embodiment echoes and parallels the emergence of
the dynamical system theory in developmental psychology ( elen 1995; elen et
al. 1996; Smith and elen 2003; elen et al. 2007), that emerged from concur-
rent advances in the comprehension of dynamic systems in physics and mathematics.
According to this theory:

elen et al. (2007, p. 258)

In the next section, we will see how robotics has embraced development.

1.2.4 Acting, Learning, and Developing
Robots must act, should learn, and, to learn, they have to act: that much has been
established. It remains to be decided, however, what form should take the robot
learning begins. In other words, how much knowledge should the robot have about
the task to be learned, and which learning abilities should be bestowed upon the robot
in order to learn the task. In short: how should robots be born?

For (Weng 2001; Lungarella et al. 2003; Asada et al. 2009),
the answer lies in developmental processes. Babies have little knowledge of the world,
but in a span of two decades, they become fully functional adults. Developmental
robotics proposes to reproduce similar growth and maturational processes in robots.

at is, robots should learn like children do. e motivations are multiple (see also
Pfeifer and Bongard (2006, pp. 141–145) for a discussion).

e first one is that creating a robot that can learn as a child provides a single
reusable platform that can acquire many different behaviours, skills and knowledge.
Or: . In his seminal article, Turing (1950) alluded to this:
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‘Our hope is that there is so little mechanism in the child brain that something like
it can be easily programmed.’. Decades of research have regrettably proven otherwise.

e child’s brain is incredibly complex, and reproducing its mechanism into a robot
has proven anything but easy. A developmental approach to programming robot is
certainly harder than to make a robot learn a specific behaviour.

But doing the latter requires engineers to program into the robot task-specific struc-
tures and knowledge that provide an appropriate context for learning. Having engin-
eers designing an adult brain from scratch introduces considerable human bias into
the cognitive abilities of the robots. Essentially, the robot is not only told what to
do, but also . Even if those robots still learn and adapt, they do so in a
limited and fashion: acquiring another behaviour requires new cognitive
structure to be spoon-fed by engineers. When complex, adaptive behaviour is needed,
the work of engineers becomes the one of demiurges.

is gives us the second motivation for developmental robotics: remove as much
from the cognitive abilities of robots as possible. Embodiment has a

tremendous impact on the development of cognitive abilities of humans and is crucial
for typical human behaviour. To replicate this phenomenon and its beneficial effects
in robots, roboticists should try to program only general cognitive mechanisms into
robots in the first place, and give them the time and the opportunities to discover
and grow into their body by themselves, occasionally nudged by social guidance. An
interesting implicit assumption here is that human are not competent to program
another entity’s mind explicitly. First, because they never did it for themselves - much
of our individual cognitive development is implicit and self-organized (see for instance
Byrge et al. (2014)). And second, because we are limited by our own embodiment,
and cannot effectively think what it fully means and represents to have a different one,
as discussed previously.

A significant goal of such an approach is to get robots to acquire common sense.
For instance, a system asked to build a tower out of wooden cubes might decide that it
is a good idea to start by placing the topmost cube, and then, having it stay suspended
in the air, to arrange the other blocks beneath it. Acquiring common sense—that we,
as humans, take for granted—is frustratingly difficult for robots. Efforts have been
made to amass common sense in symbolic databases (for instance, Kochenderfer et al.
(2003)), and one could argue that the cube tower problem could be fixed by adding
the law of gravity to the robot knowledge. But then one would have to also consider
reaction and friction forces, that are no less instrumental. To accurately take those into
account, the mass and surface characteristics of each cube would have to be measured.
We are fast falling into a full-representation trap, while forgetting that children do
not need explicit, symbolic knowledge of Newtonian physics to build wooden castles.

Developmental robotics proposes that robots acquire common sense over a lifetime
of experience, by engaging with the world in a similar way children do: through play.
Robots should not be directed through specific useful tasks early in their development,
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but discover the world and its properties on their own. is should not only afford
robots common sense, it should afford them common sense adapted to their body and
cognitive capacities.

is leads us to a third motivation of developmental robotics: solving the symbol-
grounding problem for robots. As articulated by Harnad (1990): ‘How can the se-
mantic interpretation of a formal symbol system be made to the system,
rather than just parasitic on the meanings in our heads?’ (emphasis his), the symbol-
grounding problem inquires about the mechanisms that create meaning in humans.
For robots, this means discovering their own ontology; the alternative is to have hu-
mans put the meanings in the robots’ head directly (Suh et al. 2007; Lemaignan et al.
2010; Tenorth et al. 2013). e literature and debate around the symbol-grounding
problem is extensive, and we do not wish to get into it there. Let’s just say that chil-
dren satisfactorily solve the problem. e hope is that robots, given childlike abilities,
will figure it out as well.

An interesting consequence of the symbol-grounding problem is of consequence:
if symbols, i.e. language, emerge from our sensorimotor experience, then language is
dependent on our embodiment. And language is central to the ideas we can form and
express: embodiment has influence on what we can think.

A fourth and transverse motivation of developmental robotics is to use robots as
scientific tools for understanding biological processes, structures and behaviour, as
it has already been discussed (Lungarella et al. 2003). e example of the symbol-
grounding problem is illustrative: if we manage to reproduce the phenomenon in
robots, it would provide interesting hypotheses for the underlying psychological and
neurological mechanisms in humans. And consequently, avenues of investigation for
psychologists and neuroscientists. Developmental roboticists are heavily inspired by
studies of biological systems. In return, and as the field progresses, the robots have the
potential to inform us how to think about our own cognition and those of animals.

e relation between learning and development is subject to different perspectives.
Kuhl (2000) proposes four different ones. at development and learning are distinct
and do not interact with each other, that learning happens in the context of develop-
ment, which is the traditional view (Piaget et al. 1953), or that the relation between
learning and develompment is more complex, and involves reciprocal influences is
is the point of view defended by Kuhl (2000) and by Oyama (2000). e last perspect-
ive is the one that does not recognize any reasonable conceptual differences between
learning and development. elen et al. (1996) defend this position: development is
a multi-timescale dynamic system, and learning is just one of its facet.
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1.2.5 Acting, Learning, Developing and Evolving
Robots must act, should learn; when learning, they have to do so by acting, and they
should preferably go through an extensive developmental process that embeds the
learning process into a favourable context. Let’s briefly take one more step: they
should probably evolve too.

Evolutionary algorithms (Rechenberg 1973; Holland 1975) mimic natural selec-
tion, variation and hereditary processes. Candidate solutions are described by their
genetic code, which is translated into a phenotype, which is evaluated according to
a fitness function. e best performing members of the population are selected, and
their genetic code undergoes random variations and mating combinations with other
successful solutions. e limited assumption on the fitness landscape has made evolu-
tionary algorithms powerful global optimization methods, useful in complex domains.

e application of evolutionary algorithms to robots— —has
taken off in the last twenty years (Cliff et al. 1993; Meyer et al. 1998; Nolfi 2000;
Lipson 2005; Floreano and Keller 2010; Doncieux, Bredeche et al. 2015). One im-
portant aspect of evolutionary robotics is that candidate solutions are evaluated by
their behaviour rather than by their phenotype.

e motivation for evolutionary robotics is manifold. First, similarly to the devel-
opmental approach, it is the only existing process that produced intelligent entities so
far. Second, it further allows to remove (Lipson and Pollack 2000). As
such, the evolutionary process is not restricted to morphological or hardware consid-
erations, but encompasses morphology, neural architecture, cognitive inborn abilities,
and the processes directing and regulating development. Some approaches evolve con-
trollers on a fixed morphology (Zykov et al. 2004), while others evolve morphology
with fixed (or non-existent) controllers (Auerbach et al. 2010; Cheney et al. 2013), or
co-evolve morphology and behaviour (Sims 1994; Lipson and Pollack 2000; Lehman
and Stanley 2011b).

In the last few years, a new domain of inquiry has started to take shape: evolution-
ary developmental robotics—or (Jin et al. 2011; Xu et al. 2014). e
work of Bongard (2011), for instance, evolves a population of gait controllers, with
robots that start with small limbs, and grow them during the experiment. e mor-
phological changes can be perceived as creating a developmental pathway through
which acquiring robust behaviour is easier because controllers are filtered by their suc-
cess on multiple morphologies. Delarboulas et al. (2010) proposes an approach where
a robotic platform evolves controllers on-board. ose controllers are selected by us-
ing a self-driven fitness that aims at maximizing the sensorimotor entropy, and thus
the behavioural diversity of the robot. e platforms further encourage development
by comparing the behaviour of each controller against all of their ancestors, and en-
couraging diversity.

An evolutionary approach seems necessary because, as much as development re-
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duced the problem to the creation of a robot child, it effectively leaves us with the
task of designing a body, and mind, and the developmental process to make them
grow together. Aside from designer bias, it seems that the complexity involved in
such an endeavour, in a great part due to the high coupling of those three aspects, is
beyond current human direct, explicit ingenuity (Harvey et al. 1992). Evolutionary
processes require a lot of resources and time, but they are a proven way to obtain the
result we seek.

F

1.3 e Exploration Problem

Abstract Explora on problems are behavioural problems. They make less assump ons about
the agent than learning problems, and are suited to analyse developmental processes.

In this thesis, we are concerned with 14, and we study them as
.

Why Exploration?

Wolff (1987, p. 240)

Exploration is a major mechanism in the production and control of behavioural
diversity. Which, according to Pfeifer and Bongard (2006), is a crucial component of
intelligent behaviour:

Pfeifer and Bongard (2006, p. 16)

14We will use interchangeably explora on processes and exploratory behaviour, although they may conjure different images in the
reader’s mind, and may differ in contexts not considered in this manuscript (namely, a behaviour suppose an agent, while a process
does not).

70



Behavioural diversity is a factor of individual robustness: the individual maintains a
repertoire of varied interaction possibilities, some of which which will remain relev-
ant the next time the environment changes. Moreover, behavioural diversity provides
variability even in the absence of genetic or phenotypic diversity, and improves on
them when they are present. is point was recently heeded by the evolutionary ro-
botics community, as we will see in detail in section 2.6. It also impacts the dynamics
of evolution. Individual exploratory behaviour translates in the spreading of the spe-
cies, which in turn affects entire ecosystems, in particular when invasive species are
introduced (see section 2.4).

Conversely, diversity has a profound impact on the development of behaviour and
cognition. For instance perceptual narrowing, the sensitivity specialization observed
in the first year in infants, is influenced by the diversity they are exposed to (Byers-
Heinlein et al. 2013).

But actively fostering diversity in the interaction with the environment through
exploratory behaviour is equally pivotal. Motor exploration begins , and is the
driving force behind the creation of the body map and the acquisition of gross and
fine motor skills in infants. Neonates are able of sophisticated goal-directed explor-
atory behaviour (Hofsten 2004), and goal-directed babbling toward objects has been
demonstrated in three-months old infants (Sommerville et al. 2005).

In active perception, exploration, as (Gottlieb et al.
2013), is necessarily present: ‘We don’t simply see, we .’ (Gibson 1988, p. 6).

In fact, humans and animals are intrinsically motivated to explore, and to seek,
amongst other, novelty (section 2.4). When learning by trial and error, when playing,
when displaying creativity, children are constantly adopting exploratory strategies to
figure out what possibilities the world offers (Piaget et al. 1953), while, at the same
time, coping with its formidable complexity (Keil 2003). Exploratory behaviour al-
lows to they subject themselves to (Kidd
et al. 2012, 2014).

For learning agents interactingwith an environment, exploration is the primary way
to obtain learning data. In the reinforcement learning frameworks, the importance
of exploration is underscored by the importance of the exploration/exploitation trade-
off.

For self-sufficient robots, directed exploration through intrinsic motivations has
been recognized as a crucial component of the development of rich behaviour in a
cumulative learning perspective. Stated differently, directed exploration is a funda-
mental adaptation strategy for handling new, unknown environments. Intrinsic mo-
tivation mechanisms allow to establish a functional dependency between the robot’s
exploratory behaviour and its experience. is dependency ensures that the robot is
directing its exploratory resources towards activities where significant information can
be gained.

Moreover, exploratory behaviour enables the robot to create an estimation (even
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partial, even flawed) of what effects are possible to produce in a given environment,
as a result of its own actions. is is important for any number of reasons, but one
them is planning.

But perhaps the best motivation for studying exploration in self-sufficient agent
is that . Exploratory behaviour allows to discover
learnable interactions—i.e. affordances (Gibson 1977)—in the environment,
they are considered as learning problems. For Eleanor Gibson (Gibson 1988), babies
are not endowed with the abilities to perceive affordances, but must spend their first
years discovering affordances in their environment. For instance, understanding mir-
rors, for a child, entails first to produce variability in the environment that allows to
detect that the interaction proposed by the mirror is unlike other objects15 (Loveland
1986). en, a comprehensive exploratory behaviour must be carried out to amass
enough observations to figure out what the mirror does. One could argue that the
exploratory behaviour in front of the mirror is in fact highly structured, and fall in the
child-as-a-scientist paradigm (Gopnik 1997; Schulz and Bonawitz 2007; Gweon et al.
2008; Gopnik 2012). But in many instances, random behaviour is just as informative
(or not significantly less informative) that carefully crafted interventions (Cook et al.
2011). Similarly, an crawling infant will progressively discover the ‘traversability of a
surface of support’. But as experiments from Gibson et al. (1987) pointed out (and in
contrast with a walking child), the surface will be engaged before it has been learned,
or even accessed for its traversability. Infants have a lot to learn in their first years.
Exploration cannot only be considered as a subroutine of learning behaviour. Explor-
ation creates—provokes—contexts where new learning can happen. In other words,
exploration happens at different levels, and is not just responsible for the trial-and-
error behaviour that drives learning tasks. Exploration happens also learning
tasks, and greatly determine which learning tasks are engaged with by the infants.

Most roboticists have been preoccupied by solving problems, with few works seek-
ing to discover them in vast unstructured environments. Without such an ability, a
robotic agent can hardly pretend at exhibiting open-ended development.

In the next chapters, we will review some of these aspects more thoroughly.

Exploration and Learning
Exploration can exist without learning. e random motor babbling exploration
strategy presented in the first example does not feature any learning behaviour. Like-
wise, the robot following the left wall in the maze displays a structured exploratory
behaviour that guarantees success. It adapts but does not learn. e same can be said
of the vehicles of Braitenberg (1986).

15Note here that we are not discussing the issue of self-recogni on, for which the mirror has been a common experimental paradigm
throughout psychological studies. The mirror here is only considered as an object crea ng singular sensory feedback (Loveland
1986).
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Conversely, learning can happen without exploration. As outlined at the beginning
of this chapter, a learning system needs not to interact with an environment: the
weather system is fed data and predicts outcomes; it does not engage in any exploratory
behaviour.

Learning and exploration do not apply to the same classes of entities either. Learn-
ing can apply to any system, while exploration, because it necessitates to act in an
environment, applies only to agents.

Yet, exploration and learning often depend on one another. Indeed, they are highly
complementary. Exploratory behaviour is directly related to information seeking: ex-
ploration’s aim is to obtain information about the environment. is distinguishes
exploration from actions that are purely motivated by exerting control over the envir-
onment (Gottlieb et al. 2013). Learning, on the other hand, is interested by exploit-
ing the information gathered about the environment to inform and modify behaviour.

us, for an agent interacting with an environment, and unless the environment is
always providing all the necessary information to the agent without the need to elicit
it, exploration is necessary for learning.

And because learning informs behaviour, it can, in particular, inform and improve
exploratory behaviour: this is . e interplay between the two,
exploration feeding learning, and learning improving exploration, is at the heart of
most interactive learning algorithms.

As an illustrative example, one can take an atypical case of learning: evolution.
Evolution learns and explores, in directed and undirected fashion. Evolution’smemory
is the biosphere, and the organisms are candidate solutions. Natural selection is the
learning mechanism of evolution; it keeps in memory only good solutions. Genetic
mutation is undirected exploration, while mating is hybrid. While in its simplest
form it is undirected, it holds the potential of directed exploration: sexual selection,
i.e. when some members reproduce more when they are better at finding mates.

A Behavioural Approach
One may take exception of the examples of pure exploration—the random explorer
and the robot in the maze. If exploration’s purpose is to gain information, where is
the information gain in those instances?

In response, we could consider another question: how can we distinguish between
the robot ‘mindlessly’ solving the maze, and the one that explore the maze ‘mindfully’,
conscious of the effectiveness of the left-hand-rule, and whose goal is to explicitly
discover and remember the path to the exit? What about another exploration strategy,
that uses a different decision mechanism to choose which direction to go at each turn,
but which happens to always choose left on this specific maze? All exhibit the same
behaviour. Making the distinction requires to look into the robot’s head. All three
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robots, in fact, create access to the same information. Whether they capture, retain
or exploit the information or not is a learning issue, not an exploration issue.

In this thesis, we take a behavioural approach at studying exploration. An explor-
atory process is considered with regards the information it creates access to—not how
the information is used, or if it is remembered at all. Exploration, in other words, is
evaluated from behaviour alone. ere are several motivations for such an approach.

e first one is that it does not introduce assumptions about the agent’s internal
mechanisms of exploration into the evaluation. It does not assume that a specific
learning mechanism is behind exploratory behaviour, and it does not try to evaluate
learning as a proxy for evaluating exploration. e three maze robots have the same
performance, the random motor babbling explorer can be compared to the goal bab-
bling explorer, and a Braitenberg vehicle (Braitenberg 1986) can be compared to a
SLAM robot (Smith and Cheeseman 1986).

Interestingly, when not having an open-skull access to the subject, discriminating
learning from other mechanisms of behaviour is not necessarily trivial. For instance,
motor babbling in babies, in particular repetitive kicking motions, have long been
thought to be the result of hard-wired pattern generators (Hilgard et al. 1945). But
evidences of learning have been found, by observing an improvement the uniform-
ity of the repetition throughout the first year (Kahrs 2012). Similarly, discriminat-
ing intentional exploration from noise is not necessarily trivial, or possible. Loeb
(2012) argues that the variability observed in human movements, even when subjects
repeat the same movement, cannot be trivially attributed to the inherent noise of the
musculo-skeletal structure, but can be interpreted as intentional exploration that can
be interpreted, under a Bayesian paradigm, as generating enough relevant information
to update the prior efficiently:

Loeb (2012, p. 762)

e second motivation is methodological. Evaluating learning means taking a per-
formance metric, evaluating the learning system, providing the system with experi-
ence or letting it acquire some on its own, and then evaluating the system again. e
evaluation is quantified by the difference between the two performance values.

Computational learning architectures, and robots, are exceptionally suited for such
an evaluation. e learning behaviour can be switched off during evaluation, using
only exploitation mechanisms. is allows the learning behaviour to remain unaf-
fected by the evaluation. Humans, on the other hand, do not have the capacity to
stop learning. is makes any evaluation of learning a perturbation of the learning
behaviour, which has to be accounted for.

Evaluating exploration through behaviour alone allows to use the same methodo-
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logy on humans and robots. Gottlieb et al. (2013, p. 2) advocated more dialogue and
integration between active learning in robotics, and the study of curiosity in psycho-
logy and robotics. Using measures than can seamlessly be used across fields is a step
in that direction.

Being able to share the same methodology occasionally means being able to more
easily create comparable experiments across fields.

Another assumption made when evaluating learning that the robotics and machine
learning community often overlooks but that psychologists are acutely aware of, is that
to evaluate learning on an agent, one has to have the means to compel the agent to
submit to a controlled evaluation. is supposes several things. First, that the agent
is able to submit to an evaluation, which means, in machine learning, that the agent
can demonstrate either predictive or control abilities. Our random learner has neither
of those. Second, that the system is able to understand and is willing to undertake
an evaluation. Given the nature of robots, this is usually not a problem. When evalu-
ating learning in infants or animals however, this is one of the main obstacles to the
evaluation:

(Bornstein 2014, p. 123)

ird, that the system is available at all. Learning evaluations monopolize the sys-
tem, which has a significant cost in time and resources in machine learning, robotics
and natural studies alike. If a robotic system is operating in real-time in a dynamic
environment, the only way to evaluate its learning performance in the middle of the
experiment without perturbations is to freeze the robot and environment, to perform
the evaluation, and to resume the behaviour of the robot and the dynamics of the en-
vironment. For many environments, stopping time or resetting the environment to an
earlier state is impossible. e experimenter must decide between more performance
data or fewer perturbations.

And fourth, that a controlled evaluation of the specific learning abilities under in-
vestigation can be carried out and separated from other phenomena. Again, robots
do not usually represent a problem in this regards, but this is a big problem in natural
studies.

While all these suppositions seem easily handled by machine learning and robotic
experiments, there is the danger that they influence the type of artificial cognitive
architectures that will be created and studied by scientists. In other words, roboticists
may tend to avoid cognitive architectures that do not have a clear and explicit switch
somewhere that deactivate learning. Or robots that are difficult or impossible to reset
to initial conditions—because, for instance, their bodies are irreversibly modified by
the interaction with the environment.
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Using behaviour to evaluate exploration avoids or reduce the importance of most of
these problems. Exploratory behaviour still has to be elicited, usually in a controlled
environment. But because the experimenter does not have to engage with the subject
of study to conduct the evaluation, he can opportunistically rely on observations in
the wild, or on the recorded behaviour of past experiments, or of since disappeared
agents.

e behavioural approach avoids bias about the agents internal operation, and does
not create nearly as muchmethodological difficulties than a learning evaluation entails.
And it has the added benefits to be easily applied in different disciplines.

e third and final motivation for the behavioural approach is that is that learning
performances are too limited to fully evaluate developmental processes.

is problem is particularly acute in the case of open-ended development. One
ambition of developmental robotics is to create robots that do not stop learning, that
explore their environments on their own and build solid foundations of knowledge
and skills that make them capable. Evaluating open-ended development leads to
challenges: On which problem should the robots be tested? Should it be the same
for all robots or should it depends on their developmental trajectories? Even then,
how can a meaningful set of learning tests be created when the set of skills that can be
learned in the environment is difficult or impossible for the experimenter to establish?

e problem is analogous to a pair of twins, raised identically, which are one day
given only one instruction: to learn what they want, and to do their best. One decides
to learn the piano, the other opts for the rugby team. How then can their perform-
ance in these two tasks be compared? e problem does not go away with additional
constraints: if one chooses tennis and the other rugby, the developmental trajectories
are perhaps more similar, but not necessarily any more comparable from a learning
standpoint.

Faced with developmental processes exhibiting self-organizing behaviours, current
research, in particular on intrinsic motivation, regularly relies on behavioural meas-
ures to qualify and quantify the results alongside learning performances (Merrick and
Maher 2009). For instance, in a multiobjective setting, Oudeyer, Kaplan and Hafner
(2007), Merrick and Maher (2009) and Moulin-Frier, Nguyen et al. (2014) analyse
the respective time the agent spends at each task. Stulp and Oudeyer (2012) also de-
voted a study to the self-organization of the behaviour elicited by a learning algorithm,

. Delarboulas et al. (2010) evaluate the agent by the number of different loc-
ations it was able to visit over a continuous map, and Rolf (2013) uses a workspace
coverage measure. In other words, the behaviour of a developmental process is as
much worthy of scientific study as is the learning performance it produces.

To be clear, we are not advocating—at all—a strict closed-skull approach to the
study of behaviour in computational agents. at would be ridiculous. But it is not
because offline, open-skull measurements can be made that we should not avoid cor-
relating them with the behaviour displayed learning.
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Formalization
We restrict the class of exploration problems we study in important ways: we consider
one-step episodic environments, where one input corresponds to one output. And
the environment has no memory or context, and does not change.

Environment and Tasks

An is formally defined as a function from to . is the motor
space, and it represents a parametrization of the movements the robot can execute. It
is a bounded hyperrectangle of , with the dimension of the motor space.
is the sensory space; it is a subset of , with the dimension of the sensory space.

and (desired effects) are elements of 16.
A is defined as a pair with the environment and the

maximum number of samples of allowed, i.e. the number of actions the robot can
make in the environment.

Defining the environment as a function implies determinism. As no other assump-
tion is made on , non-determinism can be approximated by with a chaotic environ-
mental feedback function, coupled with noisy motor communication pathways. We
adopt a functional formulation here to avoid unnecessary burden17.

Explora on

e objective of the exploration problem is to estimate what elements of can be
produced by , i.e. to estimate the image of , , designated as the

.
An exploration strategy evaluates the function , times, providing a sequence of

elements of , , , ..., . Each is evaluated as , and is
observed by the exploration strategy before is chosen.

Each observation provides information on . Yet estimating ,
a possibly continuous, infinite subset of , from a finite set of points is not a well-
defined problem. For this, we rely on a , that is not necessarily known
by the exploration strategy.

is last point is important. We do not assume that the agent has knowledge
of the diversity measures that are used as evaluation. It certainly makes our work
more difficult. Agents might explore with different goals in mind, and evaluate their
own behaviour according to metrics we don’t have access to. e choice of a diversity
measure or the other can therefore be seen as arbitrary. is problem is not present, for
instance, in reinforcement learning, where the cumulative reward defines an objective
motivation for the agent, and an objective evaluation for the experimenter.

Yet, to allow comparing agents with different motivations, one cannot establish a

16We assume that is known by the explora on strategy, but nothing prevents to be set equal to
17For coincidental technical reasons, the simula on setup we will present in chapter 7 is not determinis c, as it turns out.
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measure as better than all the others. In the context of the exploration problem, any
exploratory measure, as a behavioural measure, is arbitrary. It is the responsibility of
the experimenter to justify its interest.

Agents are, of course, free to use diversity measures to self-evaluate their explor-
ation, and will we see such an agent chapter 4. ere is just no guarantees that the
experimenter will use the same one.

Discussion
One particularity of our approach is that we do not evaluate the value of the
diversity produced with respect to a specific objective. In rich environments, there are
many ways to produce diversity easily which has little objective value without much
effort.

We can, of course, define the evaluation measure so has to encode the achievement
of a specific goal in it. But we do not do that here. In the example of the first chapter,
we solved this issue by considering a sensory space that only encodes valuable diversity.

is is certainly not a good way to proceed in a more general setting.
But this allows to focus on the production of diversity independently of other in-

terests. e production of diversity is overwhelmingly studied in relation to its value
for learning performance. is thesis does not focus on that.

Before moving on defining diversity measures, let’s clarify the relationship between
diversity and novelty. Novelty is a property of a newly acquired observation, in relation
with observations already present in memory. Diversity targets the whole population
of acquired observations.

An agent driven by diversity may either be motivated by maintaining a certain level
of behavioural diversity toward a certain aspect of its behaviour, or be motivated to
estimate the range of diversity a phenomenon offers. e first one, as we pointed out,
can be motivated by a higher survival robustness and fitness: it keeps options open.
In a specific situation, only one learned behaviour might be successful. Successful
behavioural diversity can decrease with changes in the environment or the agent, and
thus maintaining it may require ongoing exploratory behaviour. Moreover, as new
skills, new affordances are regularly discovered by children, each of them may require
to develop its own amount of diversity. is differs from simple novelty-seeking, as it
allows to predict that agents will stop exploratory behaviour once cumulative novelty
has reached a certain threshold on a task or phenomenon, regardless of the novel
interactions available to them at the time.

is type of diversity is the one found in biological populations: there is a motiva-
tion to avoid inbreeding, and maintain genetic and phenotypic diversity. is is also
precisely the purpose behind the diversity-driven evolutionary robotics methods we’ll
review in section 2.6.
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e second motivation for diversity, sampling the whole range of a phenomenon,
deals with understanding the possibilities the environment offers. is, in turns, al-
lows for better exploitation. is is the purpose of the exploration of a Multi-Armed
Bandits scenario, where the agent must sample different sources of rewards to find
the one that is the highest (we discuss Multi-Armed Bandits scenario in chapter 4).
Baranes, Oudeyer and Gottlieb (2014) proposed an experiment where adults were
able to sample a set of different tasks, and found that they would sample the whole
range of tasks, even as some were impossible. Yet, this experiment does not allow to
discriminate between simple novelty-seeking and diversity-seeking.

A possible experimental framework would be to provide an unbounded set of tasks,
that could not be sampledmeaningfully during the allowed sampling period. e tasks
would vary across several identified dimensions, some of which offering bounded vari-
ation. A simple novelty-seeking agent would sample tasks in no particular direction,
amassing a set of diverse observations. A diversity-driven agent would preferentially
explore along dimensions of bounded variations, aiming at understanding globally the
possibilities offered by the task set on specific aspects. Note that the second strategy is
also better in the long run: it tries to exploit the combinatorial nature of the task set by
decomposing the diversity along dimensions. If the relationship between dimension
is not too non-linear, this results in an estimation of the diversity exponentially faster
than the novelty-seeking approach.

We are not aware of any work aimed at discriminating in children between a mo-
tivation over novelty and the two-type of motivation for diversity we have identified.

F

1.4 Diversity Measures
Diversity measures quantify exploration and allow to compare exploration algorithms.
In the following, we consider different general-purpose diversity measures. Each of
them expresses different assumptions about the explored space. An overarching as-
sumption lies on the locality of the explored space: an area of the sensory space is
considered explored if the nearest observed effects are not too far.

Two classes of diversity measures can be distinguished. ,
that evaluate the exploration with respects to the possibilities offered by the environ-
ment. And , that quantify the diversity of a distribution of
effects without regards for the reachable space.
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Global Diversity Measures
In this section, we assume that the reachable space, , is known by the diversity
measure. As we only target sensory diversity, no measure is sensitive to the motor
commands —they only take the effects
into account.

Maximum Distance Measure

An overarching assumption we make in all the diversity measures we expose here
is that a given area of the reachable space is qualified as explored depending
on how far it is from a produced effect—that is, from a point of . As such, the

provides a global quantification of the exploration of the
reachable space.

e maximum distance measure does not discriminate between situations that rep-
resent qualitatively significantly different explorations. In Figure 1.5, the two explor-
ations have the same maximal distance value, but one manages to produce effects
distributed over more than half the reachable space, while the other only produces
one effect. To mitigate this, we now introduce averaged distance measures.

explora(on*A* explora(on*B

maximum*
distance

maximum*
distance

reachable*
space

produced*
effects

Figure 1.5: While explora on A produces more diverse effects than explora on B, they have the same maximal
distance measure.
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Average Distance Measure

To avoid the pitfalls of the maximum distance measure, we can compute the aver-
age, rather than the maximum, of the distance between the produced effects and the
reachable space.

If the set of reachable effects is finite, of cardinal , then, the average distance is
defined as:

Usually however, we will consider continuous reachable spaces. In this case, we
need to integrate. For this, we are constrained to reachable spaces whose
volumes are defined and non-null. Using Lebesgue integration, the volume is defined
as:

is the Lebesgue measure of —often noted in the lit-
erature.

average coverage error 18

Computing the average distance is usually intractable, and perfect knowledge of
is a limiting requirement. Moreover, the average distance also does not consider

isolated points of , as they receive a weight of zero during the integration, which
may not be desirable. As such, the average distance is not a practical diversity measure.
To solve those problems, we discretize the reachable space.

Testset-based Average Distance

e testset-based average distance allows to evaluate how well the observed effects
cover a manually defined set of goals of particular interest.

18This is similar to the Hausdorff distance (Hausdorff 1914), but averaged to avoid giving too much importance to outliers. See
Schütze et al. (2010) for a formal defini on in the discrete case.
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We can also define a squared variant:

e squared variant can be understood as a mean square error (MSE) estimator for
the nearest neighbour inverse model. e nearest neighbour inverse model returns the
motor commands corresponding to the closest observed effect from the goal. As such,
it can be understood as providing a baseline for learning performance against which
any more complex inverse models can be measured. Consequently, a squared testset-
based average distance is compatible with evaluating both exploration and learning.

We now present two methods to create a testset that approximates the average
distance measure: one applicable when no isolated points are present in , and
another that takes into account isolated points.

La ce Restric on

e idea behind lattice-based testsets is to be able to select a finite set of points in
with an arbitrary low maximum Hausdorff distance between and . We

restrict our discussion to the case where is bounded.
Given a point lattice over , if we consider the restriction of to we

obtain a finite testset. If we further constraint so that for every point of , there is an
open neighbourhood of that point included in (thus ignoring isolated points),
then we can approximate the average distance measure by reducing the coarseness of
the lattice19. Furthermore, because is a subset of , the measure lower bound
is zero.

point lattice restricted subset

Figure 1.6: The restric on of the la ce to the reachable space provides and adequate testset for the coverage
measure, but misses the small region because of the high coarseness of the point la ce. The isolated point is not
considered.

Such a testset provides a tractable method for evaluating exploration. Bymodifying
the coarseness of the lattice (i.e., the norm of the vector of the basis of from

19We do not claim that the limit is equal to the average distance measure when the coarseness goes to zero. For prac cal purposes,
and on the reachable space we consider, the approxima on is sufficiently precise.
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which is generated), we can balance the precision and the computational cost of
the measure.

La ce Adapta on

In order to take isolated points into account in a robust way, we adapt the lattice using
a two-pass nearest neighbour algorithm.

We define the of the lattice as the set of points in that are
nearest neighbours of a point in . Formally, for each point of , we
consider the minimal distance from to . e points of that are at minimal
distance of are its nearest neighbours. is the union of the nearest neighbours for
all points over . Since is bounded, is finite.

point lattice lattice-based testsetproximal subset

Figure 1.7: Considering a reachable space, here in blue, and a la ce, the proximal subset of the is first selected,
and then projected onto . The testset correctly takes the isolated point and the small region into account,
even when the la ce is rela vely coarse.

For each point of , we now consider the set of its nearest neighbours in ,
and choose one at random if more than one exists. e is the union of
these nearest neighbours20 over . Figure 1.7 illustrates the process. e testset does
correctly take into account isolated points in , even if the lattice is coarse.

Heterogeneous Evalua on

exploration A exploration B

Figure 1.8: Same explora on pa ern, but different testset-based distance measure.

So far, the measures presented make the assumption that each part of the reach-
20If no point of has more that one nearest neighbour in , can be understood as the projec on of onto .
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able space has the same exploration value. An experimenter might want to give more
weight to some areas of the reachable space. is can be easily done by considering
different lattices with varying level of coarseness for different areas of the reachable
space, or by manually defining the testset so that its local density matches the explor-
ation weight of the area. Another option is to manually define the weight of each
point of the testset. We will not consider such measures in this manuscript.

Moreover, the measures have been evaluating the exploration with respect to the
entire reachable space. ese measures were aimed at discovering the whole range of
effects that were possible to create in the environment. As we discussed previously,
diversity can also be aimed at producing enough cumulative novelty. e next measure
we introduce estimate this type of diversity.

Estimating exploration over the entire reachable space requires both knowledge of
, and bounded. Although in simple cases, those requirements are reas-

onable, they are not in complex environments. is leads to undesirable side-effects.
In Figure 1.8, the same exploration pattern is evaluated differently with regards to its
overall location in . Moreover, in large reachable spaces, with a very limited
number of interactions, it rewards explorations where the observations are far from
one another. While this may be desirable, a less aggressive diversity measure might
better suit other situations. For instance, a representative sample of diversity over a
local area of the sensory space might be easier to exploit or to learn from.

Intrinsic Diversity Measures
We introduce now a diversity measure that does not require to be known or
bounded, avoids the pitfalls of Figure 1.8, and is only sensitive to the distance between
effects up to a defined threshold.

Threshold Coverage

reshold coverage considers the volume of the union of the set of hyperballs of radius
—the threshold—that have for centres the observed effects. Figure 1.9 illustrates this

for the two-dimensional arm.

e -coveragemeasure is particularly useful when the reachable space is not known.
For this reason, it is an measure: the agent is able to compute it on its own
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Figure 1.9: Threshold coverage quan fies the area of the space that has been reached at a given precision. The graphs
show the coverage of random motor babbling and random goal babbling strategies from chapter 0 on a 20-joint arm
over 500 mesteps. [source code]

without knowledge of the environment. We discuss an exploration strategy making
use of it in chapter 4.

e -coverage is insensitive to how spread the effects produced are, if they are
farther apart than the threshold. In Figure 1.10, the threshold coverage is the same,
but the effects produced are very different.

explora(on*A* explora(on*B

Figure 1.10: Threshold coverage is insensi ve to effect spread over the threshold. The two explora ons have the
same threshold coverage.

e -coverage is problematic in high dimension, because it turns out to be difficult
to compute, even if we simplify the hyperballs to axis-aligned hyperrectangles (see
appendix A on this issue). erefore, we introduced an approximation of it, in the
context of the chapter 4, that is available in appendix B.

Sparseness

Lehman and Stanley (2008) andOllion et al. (2011) have proposed a diversitymeasure
based on nearest neighbours. e - of an effect is the average
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distance from its nearest neighbours:

with the th nearest neighbour of in the observed effects.
e sparseness measure of the exploration is then defined as

e higher the -sparseness measure is, the better the exploration. e measure
is robust when only one cluster is present. However, if multiples distant clusters of
effects are discovered during exploration, this creates high fluctuations in the sparse-
ness value. e sparseness value increases abruptly when the new cluster is discovered,
and decrease equally abruptly when the cluster contains effects. is is illustrated
Figure 1.11.

t"="7 t"=8t"="6t"="5t"="4

high"
3-sparseness
("""3/5""""0.60)_~_~

low"
3-sparseness
("""0/4""""0.00)_~_~

high"
3-sparseness
("""4/6""""0.66)_~_~

high"
3-sparseness
("""3/7""""0.43)_~_~

low"
3-sparseness
("""0/8""""0.00)_~_~

Figure 1.11: Sparseness can fluctuate abruptly because of clustering effects. Here, with k = 3, the ini al 4-point
cluster has low 3-sparseness. When a point is found in a new, distant cluster, the sparseness increases sharply. It
stays high as a second and third point are added to the new cluster because each point of the new cluster must find
part of their neighbours in the other cluster. When an addi onal point is added to the cluster, all neighbours are
local, and the sparseness value decreases significantly. The sparseness is numerically es mated in this example by
considering the intra-cluster distances negligible (note however that all the intra-cluster distances considered null
here are involved twice in the sparseness value), and the inter-cluster distance equal to 1.0.

is can be avoided if , but as Doncieux and Mouret (2010) remarks that
implies making distances computations (but also avoids having to compute
the nearest neighbours). is is hardly feasible for high values of .

A possible solution to the high number of distance computation is to take a page
out of the book of particle physic engines. Faced with simulating a quadratic number
of gravitational or electromagnetic interactions to compute between high numbers of
particles, particle physic engines sometimes resort to a quadtree approximation. For
instance, for mass interactions, the interaction between a particle and a distant cluster
of particles is approximated to the interaction with the particle and a body whose mass
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is the same as the one of the distant cluster, and whose centre is the averaged centre
of the cluster.

is approximation is constrained by the similarity measure used. Here, we only
consider the euclidean distance as a similarity measure, which is particularly adapted
to the quadtree approximation proposed. See Doncieux and Mouret (2010) for a
discussion of the similarity measures considered in evolutionary robotics.

Alternatively, diversity measures such as sparseness that are brittle to cluster struc-
ture (see Olorunda et al. (2008) for other examples) can be supplemented by clus-
tering algorithms, that decompose the diversity computation to a cluster basis. is
has the added benefit to sharply reduce the number of similarity computation needed
if many clusters are present. An additional diversity estimation—for instance, using
sparseness—can be done between clusters.

Entropy

Delarboulas et al. (2010) have used the entropy of the sensorimotor stream to quantify
behavioural diversity. From a set of discrete observations, computing entropy can be
done by grouping observations into classes. Delarboulas et al. (2010) uses -means
and -means (Duda et al. 2001) to create classes. One could also use a non-parametric
clustering method (see for instance Gershman et al. (2012)) to avoid imposing a spe-
cific number of classes.

Given classes, with respectively members in each class, the entropy
(Shannon 1948) is defined as:

Note that Delarboulas et al. (2010) clusters over the whole sensorimotor observations
(sensors motor) whereas we are just interested by a sensory clustering. e entropy
is a robust measure that benefits from a solid theoretical background, but it is sensible
to the number of classes. It also does not take into account the relation between the
classes: two observations can be arbitrarily close, but belong to different classes, and
considered completely differently by the entropy measure.

Measures of Biodiversity

Diversity measures have a long tradition of usage in ecology to quantify species di-
versity. As species form natural classes, entropy measures are often used in those
domains (Pianka 1966; Hurlbert 1971; Whittaker 1972; Peet 1974; Cousins 1991;
Lande 1996; Purvis et al. 2000; Davies et al. 2011). e three most used measures
are species richness (the number of different species, regardless of their abundance),
Shannon information (as presented previously, Shannon (1948)), and the
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(Gini 1912)21, that represents the probability that two individuals chosen randomly
are from different species (also used as the (Simpson 1949), that
expresses the opposite probability: that two individuals chosen randomly are from the
same species).

Page (2011) distinguishes between three types of diversity. Diversity of types which
defines diversity amongst classes of entities, such as biological species. Diversity
within a type, which quantifies the variations of entities of the same class. And com-
positional diversity, which describe the diversity that arise from the arrangement of
different entities, such as genes. Of course, defining classes can be arbitrary, and a
variation can become a diversity of type depending on the perspective.

is list of measures hardly exhaustive. e use of diversity in machine learning is
further discussed in section 2.7.

F

1.5 e Explorers Framework
To express and compare the algorithms investigated in this manuscript, we introduce
the framework. e framework is largely strategy-agnostic, and can nat-
urally express motor babbling, goal babbling and intrinsically-motivated exploration
algorithms. e framework is designed around small, simple and well-understood
modules that do not incorporate too much sophistication. Modules can be arranged
inmany ways to obtain diverse algorithms. is also makes the exploration algorithms
easily reusable in a larger cognitive architecture.

EXPLORER

…

ENVIRONMENT

Sorder feedbackM M

choose 
order update

Figure 1.12: The only requirement for an explorer is to provide orders to be executed by the environment (which
includes actuators).

21Interes ngly, despite its influence, Gini’s original work has never been translated from Italian (Ceriani et al. 2012, p. 421).
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At the centre of the framework is the concept. e explorer is the module
communicating with the environment: it provides motor commands for the envir-
onment to execute and receives observations (Figure 1.12, the feedback signal and
update component is subsequently assumed for all explorers and not pictured). But
an explorer can also be integrated in a larger architecture where it does not have ac-
cess to the environment directly. is makes hierarchical (or organized around a more
general graph) architectures natural.

We can easily express a goal babbling architecture (Figure 1.13) in the
framework. e explorer interacting with the environment allows to filter motor com-
mands that are proposed by the inverse model, and eventually to select another goal
if the motor command is not satisfactory or possible to execute.

In the interest model architecture, the interest model provides goals, and leaves the
selection of the order to the learner (Figure 1.14). is is the architecture proposed
by other architectural frameworks for goal-directed intrinsic-motivation (Hervouet
et al. 2013; Moulin-Frier, Rouanet et al. 2014); the intrinsic-motivation component
is considered as an add-on destined to guide a learning architecture. is leads to
potential problems, where the learner is given the responsibility to act appropriately
given an intention it did not originate, and may for instance produce orders that have
already been tried without success. e explorer in our architecture is responsible for
both originating the goal and ensuring that a suitable motor command is found for
it. is allows to flexibly change goal or reject motor commands before execution for
any reason. In other words, our architecture does not explicitly divorce decision from
execution.

e loop between the explorer and the learner can be exploited to create architec-
tures where one explorer has more than one learner. One goal can be dispatched to
the inverse models of all the learners, and the explorer can filter the results to decide

EXPLORER
LEARNER

ENVIRONMENT

goal
Schoose goal

order

inverse
filter orders

M

M

order

Figure 1.13: In this goal-directed algorithm, the learner does not interact with the environment. It is used by the
explorer to create orders that correspond to goals expressed by the explorer. Orders can be rejected by the explorer
for any reason, in which case another goal is chosen (grey arrow). The feedback is not shown here.
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EXPLORER

ENVIRONMENT

goalS

choose goal

inverse

M order

LEARNER

Figure 1.14: In the interest model architecture, the learner is the interface between the agent and the environment.

which order to execute. Heuristic about filtering orders can for instance be based on
the confidence the learner expressed in their inference, if such a signal is available.
If some learners are accurate but slow and expensive while others are fast but impre-
cise, the explorer can exploit the choice they offer by selecting which learners to poll
given the situation and the resources (time, power) available. is type of architecture
also allows the explorer to handle a set of heterogeneous goals which require different
learners.

EXPLORER

ENVIRONMENT

goal
choose goal

order

filter orders

M

M

orders

M

inverse

LEARNER A

inverse

LEARNER B
S

Figure 1.15: The explorer decides which of the two orders to execute once they have been generated by the learners
as its disposal. Alterna vely, it can preemp vely choose to only ask one of the two learners.
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EXPLORER A

ENVIRONMENT

order

filter orders

M

choose order

EXPLORER B

choose order

EXPLORER C

choose order

EXPLORER

Figure 1.16: Hierarchical explorers are straigh orward. In the experiments we are presen ng, mul ple explorers are
ac ve.

e framework handles straightforwardly hierarchical architectures where different
exploration strategies are unified into a global explorer. Instances of such an architec-
tures are investigated in chapters 3 and 4.

K
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Charles H. Townes

2
Bibliographical Remarks

Exploration processes intertwine with a wide range of research strands. e aim of
this chapter is to give a broad overview of some of the research related to exploratory
behaviour and behavioural diversity.

We first discuss active learning, that introduced some of the first methods of direc-
ted exploration. en, a brief exposition is done of self-organization, which permits
to position some recent works in sensorimotor exploration. From there, we expose
how exploration processes are involved in the early development of infants and review
some of the history of the research on human and animal exploratory behaviour and
motivation. Integrating both the ideas of active learning and the theories of motiva-
tion from psychology and neuroscience, we survey then the computational approach
to intrinsic motivations, with an accent on novelty-based motivations. Finally, evol-
utionary approaches are discussed, in particular in how they use diversity as selective
pressure.

2.1 Active Learning
In the context of classical machine learning, the idea behind (Hasen-
jäger et al. 2002; Lopes and Oudeyer 2010; Lopes and Montesano 2014; Dasgupta
2011; Settles 2012) is that learning performance can be improved if the learning al-
gorithm is able to choose the observations it want to make on the phenomenon (i.e.,
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the inputs it wants to try). Of course, this is not always possible. Our weather pre-
dictor can’t apply meteorological conditions across the planet just because it would
dissipate some ambiguity in the models.

An easy, somewhat simplistic, analogy between classical ‘passive’ learning and act-
ive learning would be searching for the presence of a particular element in a sorted
sequence. Passive learning would go through all the elements at random or in se-
quence, while active learning would employ a binary search, accessing the middle of
the sequence and recursing on half of it, thus testing exponentially fewer elements
than passive learning. Active learning not only takes advantage of the underlying
structure of the data to select inputs that yield observations that are relevant to the
problem at hand, but also takes into account previous observations to decide the next
actions. Active learning is the computer playing ‘twenty questions’ on a given problem
with the environment.

e majority of the active learning literature deals with classification tasks. Typ-
ically, large amounts of unlabelled data are available for the classifier, but obtaining
a label has a cost. For instance, to train a classifier on sentiment analysis in social
networks, there are huge numbers of posts available. But for each of them, a team
of human must describe the sentiment expressed, in a consistent manner1. An act-
ive learning algorithm can dramatically decrease the cost of learning by only asking
labels for data that significantly improve its classifying performance. For example, by
only asking about users’ posts that are near the decision boundaries, i.e, user posts
the algorithms is not confident about. In fact, this approach is known as

(Lewis et al. 1994). Other methods are guided by prediction errors
( run and Mitchell 1995), variance (Cohn, Ghahramani et al. 1996), disagreement
between hypotheses (Cohn, Atlas et al. 1994), disagreement among a comity (Seung
et al. 1992; Breiman 1996; Freund et al. 1997), or expected improvement (Jones et al.
1998).

Active learning is relevant to our discussion because it augments learning with dir-
ected exploration. e exploration is aimed at finding information in the environment
that can best improve the knowledge of the agent. It is not surprising then that most
methods drive exploration with concepts directly linked to the learning performance.

Settles (2012) distinguishes between three flavours of active learning:
, where a large, finite, set of unlabelled examples is available;

approaches where unlabelled samples are observed sequentially, and the algorithm
can decide whether to label or discard each one; and approaches, where
examples are parametrized by features with given ranges, and the algorithms can ask
for any combination of feature values it wants.

Query-based approaches are closely related to the prob-
lem in statistics (Fedorov 1972; Chaloner et al. 1995; Pukelsheim 2006), where, for

1Consistency is hard, and to detect it, more than one individual are some mes employed to label the same data, which increases
costs.
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a given hypothesis, a minimal number of experiments must be designed to refute or
prove the hypothesis. While traditional active learning focuses on classification, op-
timal experimental design generally deals with regression problems, and the two fields
generally do not use the same techniques. An example of a regression problem is the
modelization of the underground in geostatistics: core samples are collected over an
area, and a model of the underground must be created2. Evidently, core samples
are costly to collect, and the monetary incentives to get accurate models of mineral
resources are sometimes high. Optimal experimental design fits the robotic agent
problem nicely: an experiment is a motor command, costing time and energy, and its
result is the sensory feedback.

Optimal experimental design has been applied to robotic learning to discover body
schemas (Martinez-Cantin et al. 2010) or to learn forward kinematics (Cohn, Atlas
et al. 1994; Cohn, Ghahramani et al. 1996). Bongard and Lipson (2005) use an
evolutionary algorithm to synthesize a model of the robot from empirical data by co-
evolving a population of candidate models and a population candidate . While
the models attempt to explain the internal systems of the robot, the tests are aimed
at extracting observations from the real robot to provide better information to the
models: they are a set of experiments that are improved throughout the evolution
process.

Aside from specific robotic applications such as these, active learning and optimal
experimental design approaches typically make assumptions that make the methods
they propose unfit to be directly applied to robotic setups. Two of them are particularly
disastrous: the assumption that the model is completely learnable, and that the noise
is homogeneous (Oudeyer, Baranes et al. (2013), see also section 1.2.2). For instance,
Freund et al. (1997) proved that active learning could result in an exponential decrease
in sampling to reach a given precision in some setting, but did so under the assumption
of noiseless, deterministic environments.

Related to active learning, and more specifically, to optimal experimental design,
an new paradigm has recently had a major influence in theories of child cognitive
development. e paradigm (Gopnik 1997; Schulz and Bonawitz
2007; Gweon et al. 2008; Cook et al. 2011; Gopnik 2012) considers the hypothesis,
that, rather than acting randomly in the world, children act as rational thinkers, creat-
ing experiments and testing hypotheses through their interaction with the world in a
manner structurally similar to scientific inquiry. Convincing experiments have indeed
showed that preschoolers understand causality, can distinguish it from spurious asso-
ciations, and construct interventions to do so (Gopnik et al. 2001; Schulz, Gopnik
et al. 2007).

Yet, even if constructing and carrying informative interactions, i.e. interactions

2Geosta s cs was actually also the historical mo va on behind the development of Gaussian process regression methods, also
known as krigging from the name of Daniel Krig, who used it to evaluate the gold resources in mines in South Africa (Krig 1951).
His method was later formalized by Matheron (1962).
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that afford maximal information gain, can decrease the number of interactions neces-
sary to understand a phenomenon and disambiguate confounding evidence, in many
situations, random interactions are only slightly suboptimal. In that context, rational
experimentation, requiring high cognitive resources, is not a particularly eco-
logical behaviour. As Cook et al. (2011) points out (emphasis ours):

Cook et al. (2011, p. 352)

Here we find a major motivation for our work: behaviour that produces diversity is a
key investigating tool in infants. Gweon et al. (2008) provided a study where infants
presented with confounding evidence increased the variability of their exploration,
even if that represented a physical effort. Schulz and Bonawitz (2007) and Bonawitz
et al. (2012) reported similar results, where children preferentially engaged with a
confounding toy, rather than to play with a new one.

Children seem to occupy an intermediary ground between random behaviour and
rational experimentation, one or the other being favoured in function of the task, the
difficulty, and the environmental and social conditions (Cook et al. 2011).

2.2 Self-organization
Self-organization is the property some systems have to self-organize, that is, to organ-
ize in such a way that the source of the organization is not found outside the system:

(Dempster 1998, p. 41)

(Wolf et al. 2005, p. 7)

Let’s take just one step away from the tautology with the definition of
proposed by Ashby (1960, 1962). Given a system represented by a number of states ,
and submitted to inputs , the organization of the system is defined as the mapping
from to that describes the evolution of the state of the system in reaction to
inputs. Under such a formalism, a self-organizing system does not change its organ-
ization, but specific inputs might move into a different area of the state space where
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its behaviour is significantly different. is formalization is interesting, as it can be
extended to express self-organization in learning systems, where the organization
changes to a new organization with each new input.

I will avoid the rabbit hole that a formal definition of self-organization entails—the
question is not yet settled3—, and redirect the interested reader towards the contribu-
tions of Shalizi (2001), Wolf et al. (2005)4 and Polani (2008) on this topic.

Self-organization can be found inmany complex systems, at any scale: crystal form-
ation (e.g. snowflakes, or ice in graphene nanocapillaries (Algara-Siller et al. 2015)),
convection patterns, morphogenesis, ant foraging (Deneubourg et al. 1989), cerebral
activity, school of fishes and flocks of birds, crowd (Helbing et al. 2005), sand dunes,
financial markets, ecosystems (Arthur 1990), weather, planet rings, galaxy formations
(Cen 2014).

Some characteristics are regularly found in self-organizing systems: they produce
symmetry-breaking changes, self-amplification of—and resilience to—small disturb-
ances, and dimensionally-reducing macroscopic effects (at least in the eye of the mac-
roscopic observer) (Der et al. 2013; Der 2014). Many self-organizing systems are
composed of many repeated elements interacting locally with one another, and sub-
ject to environmental pressure. In many of those systems, and in contrast with human
engineering, no explicit design or intent can be found anywhere.

Der et al. (2012) propose the example of a uniform gas. Heated from the bottom,
so that a sufficient gradient of temperature is created, it will display regular and stable
convection patterns known as Bénard cells (Bénard 1901). ose cells break the sym-
metry that existed originally in the gas by amplifying small perturbations to create
macroscopic patterns. At the same time, after an external, occasional, perturbation
of an established Bénard cell pattern, the system will restabilize, possibly to differ-
ent Bénard cells (i.e. the Bénard cell number can be different, or their location can
change). Individual particles still obey the same laws of physics, but the organization
of the system has moved to a different part of its state space, where its behaviour is sig-
nificantly different. Still, no central organizational control is present, and the physical
particles themselves are an integral part of the mechanism of organization.

A key—informal—insight to understand what self-organizing systems do is to
consider that they tend to reduce the number of states the system can be found in.
Whatever the initial state of the gas, if submitted to a gradient of temperature, it will
eventually collapse into a convection pattern in the future: the system converges to
a very specific region of the state-space, smaller than the set of state possible under
current conditions. e same can be said about the snowflakes. Every snowflake is

3The controversy surrounding self-organiza on is such that Maturana, the father of autopoiesis, decided against using ‘self-
organiza on’ en rely: ‘I do not think that I should ever use the no on of self-organiza on [...]. Opera onally it is impossible. That is,
if the organiza on of a thing changes, the thing changes’ (Maturana 1987, p. 71). Incidentally, Ashby’s defini on provides a solu on
to his point.
4Of interest to the reader, Shalizi (2001) andWolf et al. (2005) provide compelling arguments for a dis nc on between emergence
and self-organiza on.
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different5. But the set of possible states that ice can be found not being a snowflake is
much larger; the self-organizing system of an icy cloud guarantees that out of random
icy droplets flying around, snowflakes will be produced.

Another way to formulate this is to say that many self-organizing systems create
. Take the example of a ball dropped into a bowl. After a given time, as

assuming that the friction of the ball rolling in the bowl in not null, the ball will end
up at rest at the bottom of the bowl. However the ball is dropped, the future state of
the ball is at the bottom of the bowl, at rest. is may not seem an example of self-
organization. But the same gravitational force which is at play in the bowl example is
responsible in much the same way for the creation of planets, planet rings and galaxies
(Cen 2014), which are highly regular structures evolved out of the amorphous quark-
gluon plasma of the early universe.

is gives self-organizing systems both an important sensitivity to environmental
conditions and a resilience to them; the temperature and humidity conditions and
their fluctuation during snowflake formation will greatly impact the geometry of the
snowflake, but the final shape be hexagonal and symmetrical regardless. Likewise, the
sand dunes will erase the traces of the caravan’s passage, and the school of fishes will
re-form after being traversed by a predator. As Wolf et al. (2005)’s definition stresses,
a self-organizing system maintains its structure.

Biology is a heavy user of self-organization (Camazine 2003), in particular in the
case of morphogenesis: the genetic code, when expressed, coordinates the execution
of self-organization processes into biological organisms. In other words, evolution
is weaving organisms with self-organization processes (see for instance Eggenber-
ger Hotz (2003)). Evolution navigates the fitness landscape (or ,
Wright (1932)) by trying combinations (sexual reproduction) of ever-so-slightlymodi-
fied (random mutation) self-organization processes, encoded in the genetic code. is
is hardly surprising: rather than having to explicitly specify in the genetic code where
every brain cells should be placed, evolution only has to pick a self-organizing pro-
cess whose characteristic is to converge towards producing a specific type of structural

5Some colleagues have ques oned the use of the cliché. So. There are of the order of 1018 molecules of water in a snowflake. In
those water molecules, 1 out of 3210 will have a deuterium atom—an isotope of hydrogen, 2H, that occurs in a propor on of 1 for
each 6420 hydrogen atoms—instead of a pro um atom (the much more common 1H isotope), thereby forming a semiheavy water
molecule 2H1H16O. Following the same logic, 1 in 41216400 water molecules will have both, forming a heavy water molecule
2H2

16O. Conversely, oxygen-18 and oxygen-17 are present in propor ons of 1 in 500 and 1 in 2638 water molecules respec vely.
Which means that out of 1018 water molecules, there are 3.11 1014, 2.43 1010, 3.79 1014, and 2.00 1015 molecules of
2H1H16O, 2H2

16O, 1H2
17O, and 1H2

18O respec vely. By compu ng the binomial coefficients (using DeMoivre’s approxima on of
the factorial (DeMoivre 1733; Pearson 1924, p. 403)), we can es mate the number of different possibili es of isotope distribu ons
for the same snowflake geometry to 102.06 1016 . This is considerably higher than the es mated number of snowflakes that fall
on Earth each year (6.6 1028, see Pilipski et al. (2006)), or since its crea on, 4.5 billion years ago (4.3 1039). We’ll leave a
more precise calcula on that takes into account tri ated water and the diverse combina ons of hydrogen and oxygen isotopes
and diverse isotopic frac ona on phenomena (see for instance Jouzel et al. (1984)) and all the other planets where it snows in the
universe as an exercise. Of course, the reader may ques on the relevance of dis nguishing snowflakes by their isotope distribu on.
For geometrical differences, Pilipski et al. (2006) provide an analysis. And for the reader that ques ons the u lity of the whole
exercise regardless, I would point out that it provides the background for one of the only examples of composi onal diversity (diversity
by composi on of common parts, here, isotopes) of this thesis. Earth isotope abundance data from the Commission on Isotopic
Abundances and Atomic Weights, Berglund et al. (2011).
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organization. at is, the specific location of each and every neuron in a group of
neurons is not specified in the genetic code, but the structure that the group must
respect is, in a constructivist way, through a self-organizing process. Using self-
organization, evolution benefits from self-organization’s resilience to perturbations—
the brain structure will form reliably under a vast number of conditions—, while tak-
ing advantage of its sensitivity to external conditions, which preserves variability into
the final structure, and thus maintains phenotypic diversity.

Self-organization is an underlying notion of much of the concepts of development
( elen et al. 2007), and this would motivate by itself the exposition that it is given
here. But self-organization pertains to our point in this thesis because, as just under-
scored, it creates constrained—or rather —diversity, without intent. Self-
organization create contexts where a set of structural constraints are enforced, which
allows the produced structure to play a predictable role in a larger system. But within
the constraints, self-organization processes produce variability tied to environmental
conditions.

Because of this variability, self-organization systems are also difficult to predict
(Orrell 2007). Earth’s weather system or the financial markets present important pre-
diction challenges that still escape us in great part. And because of their complexity,
they are difficult to simulate. As such, self-organization process present important
challenges to any representation and predictive model of the environment.

Self-organization is also relevant to the discussion of a parsimonious approach to
designing robots. Self-organizing processes related to morphogenesis offload much of
the information necessary for the formation of an organism into the characteristics of
the environment: the genetic code is not in itself a complete specification6. Biological
organisms develop from a interaction between the genetic code and the environment;
the genetic code is meaningless without the environment. e interested reader can
advantageously consult the wonderful work of Oyama (2000) on this topic.

Self-organization is present in behaviour (Kelso 1995). It has been proposed as one
of the fundamental mechanism involved in the acquisition of speech (Oudeyer 2006,
2013; Moulin-Frier, Nguyen et al. 2014), or, at a different scale, the cultural evolution
of language (Steels 2012). Self-organization of behaviour emerged as a domain of in-
vestigation with the concept of homeostasis introduced by (Cannon 1932). In order
to survive and eventually reproduce, a biological system needs to keep its physiolo-
gical properties to acceptable levels. e first synthetic experiments on homeostasis
were done by (Ashby 1940), who later introduced the term ‘self-organization’ (Ashby
1947).

Recently Der et al. (2012) introduced the concept of , that essentially
turns homeostasis on its head. A system’s behaviour driven by homeostatic principle

6Moreover, the gene c code would be nothing without the comprehensive cell machinery that caters to it, and that is transmi ed
to the offspring as much as the DNA strands: the cell machinery encodes also an important part of the informa on necessary for
the morphogenesis.
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will try to compensate for deviation from its equilibrium state. is leads to the system
falling inert as soon as all needs are met. Homeokinesis, instead, directs behaviour
by trying to investigate and reproduce deviations: such a behaviour is self-amplifying.
A small perturbation can be magnified by a feedback loop that tries to reproduce it.

is allows the system to escape local attractors and investigate different behaviours.
Martius et al. (2013) showed that the behaviours created could be resistant to external
perturbations.

e aims of homeokinesis are very close to ours concerning self-exploration. e
goal is to propose mechanisms that can allow robots to discover their abilities and the
possibilities offered by the environment themselves. Two important differences exist
between homeokinesis and our work. First, they do not operate on the same systems:
homeokinesis is primarily designed for low-level, high frequency sensorimotor loops
while our algorithms—as presented here—target single-step, atomic, higher-level in-
teractions with the environment. And second, one of the feature of homeokinesis is
the high neural plasticity of its controllers; essentially, the discovery of a new beha-
viour erases the old one. e platform does not capitalize on its discoveries7, and can
be subject to behavioural loops. Our methods have a global view on explored beha-
viour, and strategies can compare newly discovered effects with all the previous ones,
thus explicitly estimating and fostering .

2.3 Sensorimotor Exploration in Fetal and Neonatal
Development8

Neuronal activity influences neuronal development, in particular synapse formation
and neuronal survival (Mennerick et al. 2000; Zito et al. 2002; Goda et al. 2003;
Vanhoutte et al. 2003), even at a very early stage, before synapse formation. Decrease
in activity translates into decreased neuronal proliferation, generally slower neuronal
migration, and affect neuronal differentiation, driving in particular the proportion of
excitatory versus inhibitory neurons (Spitzer 2006). As such, the importance of motor
activations during the prenatal phase is fundamental for neural development.

In human infants, motor activity starts in the fetus at 9 weeks (Humphrey 1944),
and at 10 weeks, translates into various arm and leg movements (Adolph et al. 2010).
Some of those movements are coordinated between limbs, and some others are isol-
ated, moving limbs or digits while the rest of the body remains still (Prechtl 1985;
Prechtl and Hopkins 1986): this may allow a faster differentiation of the different

7The lack of long-term memory in homeokinesis is not inherent though, and could be added in any number of ways.
8This sec on is largely based on Adolph et al. (2010)’s and Hofsten (2004)’s account of prenatal and postnatal motor and perceptual
development.
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Box 2.1: The Price of Not Moving
While the reason why fetuses move is not yet fully
understood, there is no ques on, however, that mo-
on is a cri cal component of a normal morpholo-
gical development. Moessinger (1983) performed an
experiments on rats, where the fetuses were injec-
ted with curare during the last 3 days (out of 21)
of gesta on, ar ficially inducing fetal akinesia, a loss
of voluntary movement. The curarized rats fetuses
were born with underdeveloped lungs (pulmonary hy-
poplasia), shorter muscles leading to contracted joints
(arthogryposis), undersized jaw (micrognathia), short
umbilical cords, and an excess of amnio c fluid (poly-
hydramnios, possibly explained by reduced fetal swal-
lowing), and generally reduced body, muscle and bone
mass. A study by Rodríguez et al. (1992) confirmed
those results, and further analysed the perturba on
of the skeletal development. Moessinger (1983) re-

marks that, whereas curarized rats presented excess
of amnio c fluid (polyhydramnios), lack of sufficient
amnio c fluid (oligohydramnios) exhibits similar symp-
toms. This explana on is the same: lack of amnio c
fluid leads to reduced opportunity of movements for
the fetus.
The Fetal Akinesia Deforma on Sequence, as it is re-
ferred to by the literature, is a striking example of the
irreducibility of the organisms to the gene c code, as
discussed in the previous sec on. Here, normal mor-
phological growth is indissociable from behaviour: if
the fetus does not move, it won’t have a normal body.
Interes ngly, how much the mother moves is also a
factor. Recent research in mice has suggested that in-
creased exercise in mothers could reduce the risk of
congenital heart defects in the fetus (Schulkey et al.
2015).

body parts in the brain. ose movements are not random. By the 14th week, two-
third of hand motions are directed towards salient objects in the uterus: the fetus
body, the umbilical cord, and the wall of the uterus (Sparling et al. 1999).

e specific reasons why fetuses move are still investigated. Some motions are pro-
voked by external stimulation, others stem from self-simulation, while some appear
to be just spontaneous. As Adolph et al. (2010) puts it, ‘A primary reason why fetuses
move is that they can’ (see also Box 2.1).

At birth, the newborn undergoes a drastic environmental change. No longer sup-
ported by the amniotic fluid, the samemovements requiremore strength. e dampen-
ing properties of the amniotic fluid are not present anymore, and stopping a move-
ment becomes non-trivial. ese two new environmental conditions taken together
and combined with underpowered muscles ensure that neonates are restricted in their
capacity to perform violent movements they could not control, and that could lead to
injury.

e spontaneous movements of the fetus continue after birth, through short bursts
of activity ( elen 1979, 1981a,b), that extend throughout the first year. At one year
old, it is estimated that infants have undergone more than 100 000 bouts of activity,
commonly referred as , each of them involving repetitive movements.
One of those activities is the kicking of the legs, that seems to prepare stepping mo-
tions.

As a clear evidence that those motions involve learning, the uniformity of the re-
petition of the kicking motion improves throughout the first year (Kahrs 2012). e
original proposed explanation, involving hard-wired pattern generators (Hilgard et al.
1945; McGraw 1945), is further weakened when one observes that movements adapt
to the fetus rapid morphological changes during development (Robison et al. 2005).

Furthermore, recent studies have shown that those movements play an important
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role in the organization of the body map of the spinal cord and the somatosensory
cortex (Braun et al. 2001; Milh et al. 2006; Granmo et al. 2008).

Efforts have been made to construct models and simulations of those mechan-
isms. Simulation of the self-organization emerging from spontaneous movements
have been conducted (Marques, Imtiaz et al. 2012; Marques, Völk et al. 2012). Ya-
mada et al. (2013) and Sasaki et al. (2013) have used a simulation of a human fetus,
along with its amniotic fluid and uterine wall to study the development of a spiking
neural network and the establishment of the body map of the simulated fetus, driven
by self-stimuli and stimuli from the environment. Lee (2011) has proposed a concep-
tual framework that attempts to explain how infants can switch from simple motor
babbling to gradually more complex actions, and exhibit sophisticated play activity
later in their development. Blumberg et al. (2013) argues for the value of twiching
during sleep for sensorimotor development: the general muscle atonia of sleep would
generate highly discriminable proprioceptive feedback, and propose a robotic model
to study it.

e self-organization of the body map in infants is still the object of intense invest-
igation. Our study of exploratory processes is in part motivated by this phenomenon,
and how it could be effectively reproduced in robots: exploratory processes generate
information that can fuel the self-organizing process, that could effectively bootstrap
body and proximal environment discovery.

e work presented in this thesis, however, does not investigate this problem dir-
ectly, and does not claim to bring any contribution to it either. e exploration process
we investigate are considered in ecological contexts that have no resemblance to the
developing body of a child.

Goal Babbling

In chapter 0, we compared two strategies, motor and goal babbling for a reaching
task. Even as goal babbling has been shown to be superior, one can wonder about
the ecology of a goal babbling strategy: it needs a coordination between motor action
and sensory perception, needs for the consequences of actions to be observable, and
observed, and needs the causal link between motor and sensation to be established.

ese abilities will no doubt be present in young infants, but they seem sophisticated
for neonates? Since we advocated goal babbling to learn from scratch, without any
previous information9, if such a strategy cannot be carried by a neonate, the biological
justification of our model, even as simplified and contrived as it is, cannot be made.

Neonates, it turns out, are able to sophisticated goal-directed actions (Hofsten
2004). ey are able to direct their attention towards salient features and others’ eyes
(Haith 1980; Farroni et al. 2002), and are able to extend their arm towards their gaze
(Hofsten 1982). Moreover, infants will tend to create sources of coordinated sensor-
imotor observations by putting their moving hand in their field of vision (Meer et al.

9A premise that is unreasonable anyway. The neonate does benefit from all its fetal sensorimotor experience.
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1995), placing them specifically at the location of a spotlight when the rest of the
field of view is dark (Meer 1997). At 3 months, infants are capable to form goal-
based representation about the manipulation of object (Sommerville et al. 2005). e
representation of actions, in infants and adult, seems to be goal directed: an action is
perceived as the same if the goal remains identical, even if the method differs (Hofsten
2004).

In computational settings, the works of Baranes and Oudeyer (2010), Rolf et al.
(2010), Jamone et al. (2011) and Hervouet et al. (2013) have demonstrated the be-
nefits of goal-directed exploration over motor babbling in several contexts. And al-
though Lee (2011) has termed his approach ‘goal-freemotor babbling’, it in fact mixes
goal babbling and motor babbling.

2.4 Psychological Studies of Exploratory Behaviour
e earliest studies of exploratory behaviour were done on the novelty-seeking beha-

viour of rats at the beginning of the 20th century (Small 1899; Slonaker 1912; Nissen
1930).

In 1937, Skinner, inspired by the works of Morgan (1894), orndike (1911) and
Pavlov (1904, 1927) (and Watson (1913)), develops the theory of ,
which insists that all behaviour can be shaped by external rewards (Skinner 1938,
1957).

By 1943, the Hullian (Hull 1943), building on the homeo-
static concept of (Cannon 1932), is established. According to it, behaviour can be
explained by the need to reduce the tension of . Drives can be dis-
tinguished between primary drives such as thirst, hunger, reproduction, sleep, fear,
pain, and secondary drives that are not physiological, but learned from conditioning,
such as money or citation counts. Drive can compete for control of behaviour: hunger
can override sleep, or the opposite depending on the situation. is would account
for the behavioural diversity displayed by animals.

A seductive aspect of the drive reduction theory is its mathematical formulation
(Spence 1952). It offered for the first time a way for psychologists to compute beha-
viour, and it made the theory a prime target for experiments.

However, the drive reduction theory (and the operant conditioning theory) fails
to adequately explain exploratory behaviour. Exploration increases drives’ tension
without reducing the tension of any. In 1950, Harlow et al. (1950) observes that mon-
keys would play with mechanical puzzles for extended periods even when no reward
was provided. Harlow argues that this playful behaviour could not be satisfactorily
explained by any primary or secondary drive. He proposes a drive to manipulate, that
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belongs to another type of drive, drives. His idea did not receive wide accept-
ance: the drive reduction theory was able to explain much of behaviour exhibited by
animals and humans, with a mathematical formalism that Harlow’s third drive was
compromising. Harlow abandons his idea. At the same time, Montegomery starts
a series of experiment on the exploratory behaviour of rats (Montgomery 1951a,b,
1952a,b), and propose an exploratory drive (Montgomery 1954; Montgomery and
Segall 1955).

Since its publication in the 1930’s, Piaget’s research is slowly making its way over
the Atlantic. Piaget insistence on exploratory behaviour driving cognitive develop-
ment (Piaget et al. 1953) will have a profound impact on the study of exploratory
behaviour.

Berlyne (1950, 1960, 1966) starts conducting experiments to explore the impact of
novelty on behaviour in animals and humans, and postulates that:

Berlyne (1950, p. 73)

Berlyne proposes a curiosity drive, externally excited by stimulus conflicts, with a typ-
ical U-shape response to novelty: stimulus that are neither too novel nor too familiar
arouse a maximal motivational response. Contemporary to Berlyne, Fowler attacks
Berlyne’s account of curiosity, noting that the stimulus producing behaviour is sup-
posed to both evoke and satisfy the curiosity drive (Fowler 1965). Fowler proposes
instead a boredom-based drive, which explains why investigative behaviour may be
initiated before any relevant stimulus. Recent experiments have shown that bore-
dom certainly plays a role in motivation: humans sometimes prefer negative outcomes
(such as electric shocks) rather than doing nothing (Wilson et al. 2014)10.

e same period sees other theories of motivation emerge. Festinger (1957) pro-
poses a drive based on the reduction of cognitive dissonance: when presented with
information that is not coherent with an individual’s beliefs, he would experience dis-
comfort and be motivated to reduce it. Kagan (1972) offers a similar view, building
upon the work of Festinger, that formulated motivations as reduction of uncertainty,
and recasts the work of Berlyne, Dember (1965), White, Hunt, (McClelland et al.
1953) and other in that perspective. e theory of Kagan and Festinger have been cri-
ticized for failing to explain why humans engage in activity that increase uncertainty;
for Kagan, it is explained by a more cognitive form of uncertainty:

(Kagan 1972, p. 60)
10Pascal called this one in 1662: ‘j’ai dit souvent que tout le malheur des hommes vient d’une seule chose, qui est de ne savoir pas
demeurer en repos dans une chambre.’, which translates to: ‘I have o en said that all the sorrow of men came from one thing only,
their inability to remain quietly at rest in a bedroom.’ (Pascal 1662, Diver ssement 186)

104



Dember andEarl (1957), Dember (1965), Walker (1964) andHunt (1965) propose
an alternative approach where humans do not strive to reduce uncertainty entirely, but
rather to maintain an intermediate level of it, dubbed . Amusingly,
Kagan suggested that if one read the work of Walker (1964) and Dember (1965) while
replacing every instance of ‘optimal incongruity’ by ‘uncertainty’, they would be great
additions to his work11.

More recently, Loewenstein (1994) proposed an iteration on these ideas: curiosity
as a ‘form of cognitively induced deprivation that arises from the perception of a gap
in knowledge or understanding’. In other words curiosity is created by the difference
between what the subject knowns and what it would like to know.

Contemporary of Berlyne, White (1959) attacks the Hullian theory of behaviour,
and propose the concept of competence as a fundamental part of motivation. Sim-
ilar ideas were formulated a decade before by Woodworth (1947, 1958). According
to White, mastering a task would be motivating in itself, and not necessarily need
external rewards—nor it would necessarily need for the task to be useful at reducing
the drives’ tension. deCharms (1968) proposes similar ideas, insisting on an

, i.e., that the success at a task comes with the perception,
from the subject, that the success is due to internal causes—that he, not an external
event, is responsible for the success.

Twenty years after Harlow’s experiments on monkeys, Edward Deci conducts sim-
ilar ones on humans (Deci 1975; Deci and Ryan 1985). He uses a Soma puzzle, and
ensures that participants are left innocently alone with it for several minutes. Not
only participants play with the puzzle even where there was no objective reason too,
but additional rewards manage to decrease the length of engagement in some cases.
Not only the behaviour is not explained by the Hullian theory, but intrinsic motiv-
ation can decrease when the behaviour is also reinforced by a conventional reward.
Intrinsic motivation do not necessarily entertain additive relation with primitive or
secondary drives, hereby defeating attempts at claiming competence or novelty as just
another drive12 13.

Csikszentmihalyi introduced and documented the concept of (Csikszentmi-
halyi 1990; Csikszentmihalyi et al. 2005): human engagement is maximal when the
task at hand is neither too complex or too easy, but matches the level of competence
of the individual optimally. When in , subjects exhibit attention span far longer
than the one observed in other situations. Csikszentmihalyi’s work resonates strongly
with White concept of competence White (1959). A similar concept in social learn-
ing is the of Vygotsky (1978): the activities that are just
hard enough that a learner cannot learn them on its own, but can if helped by a peer

11 ‘If one subs tutes uncertainty for op mal complexity in the wri ngs ofWalker (1964) and Dember (1965), these posi ons become
complementary to the one presented here.’ (Kagan 1972, p. 57).

12Interes ngly, an experiment by Fes nger and Carlsmith (1959) on cogni ve dissonance also showed that external rewards enter-
tain complex, non-intui ve rela ons with mo va on.

13One thing remains undisputed: (primary) drive tensions generally override exploratory behaviour (Cohen et al. 1968).
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Figure 2.1: A way to assemble the pieces of the soma puzzle to form a cube. Many iden fiable pa erns can be
produced. (figures by Dmitry Fomin, CC0 and fdecomite (modified), CC BY 2.0)

(usually a parent or teacher). Recently, some work has been proposed to use both
concepts together (Basawapatna et al. 2013).

One of the most interesting aspect of intrinsic motivations is that they are highly
dependent on the individual’s experience and competence: they the acquisition
of knowledge and skills by guiding the learning process towards learnable and/or new
areas of the learning space. As such, they are an indispensable actor in the develop-
ment of a self-sufficient agent.

Recent research corroborates intrinsic motivation theories. Kidd et al. (2012) has
shown that children allocate their visual attention in order tomaintain an intermediate
level of complexity, avoiding sequence that are too simple (not enough information
gain), or too complex (no possible or energy-expensive information gain). e results
were reproduced in Kidd et al. (2014) for sequences of sounds: attention was contin-
gent on intermediate complexity. Gerken, Balcomb et al. (2011) reported a similar
result concerning learnability on 17-month old children. Two similar linguistic pat-
terns were presented to the children, one learnable and the other not learnable (the
result of a previous study, see Gerken, Wilson et al. (2005)). Children were shown
to engage more with the learnable pattern; they avoided ‘labouring in vain’. ese
studies confirm the theory that even from a young age, learning abilities influence
exploration and attention.

In a recent study done on adults Baranes, Oudeyer and Gottlieb (2014) shows
that when able to choose freely amongst an array of tasks (short video games), adults
seek novelty and challenge. e concurrent presence of a motivation to increase com-
petence and one to see new games shows that behaviour is the result of the interplay
between . Moreover, even as the task set featured unlearn-
able tasks, the range of tasks was sampled. is can be understood as a simple nov-
elty seeking behaviour, or as a global diversity-seeking behaviour. Novelty-seeking is
only interested in being presented with something not experienced before. Diversity-
seeking implies a motivation to understand the range of variations that the task set
offers. e experimental setup proposed by Baranes, Oudeyer and Gottlieb (2014)
does not allow to disambiguate the two motivations.
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Intrinsic Mo va on in Animals

Recent studies of themotivations of animals have established interesting results. Wood-
Gush, Vestergaard and Petersen (1990) and Wood-Gush and Vestergaard (1991)
provide experiments that indicate that piglets seek novelty in their exploratory be-
haviour. e first experiment (Wood-Gush, Vestergaard and Petersen 1990) showed
that after being confined in a bare pen, piglets spend more time examining a novel
object introduced in their environment, than piglet confined in pens featuring straw,
branches, logs, stone and creep feed, and therefore that offered richer interactions. In
a second experiment (Wood-Gush and Vestergaard 1991), when offered the choice
between entering two pens, one with a novel object and one with a familiar one, the
piglet showed a strong preference for the pen with the novel object. Moreover, the
novel object was linked with a significant increase in playful behaviour.

Interestingly, both experiments where criticized by Rushen (1993), arguing that
methodological error did not allow to distinguish between an intrinsic exploratorymo-
tivation14 and classical conditioned behaviour. Wood-Gush and Vestergaard (1993)
offered a rebuttal, observing that even if environmental cue trigger the exploration, it
does not explain the behaviour itself. Moreover, piglets, even if kept in pens where
food is provided show exploratory tendencies (similar observations were
done on food-deprivation in rats not altering novelty-seeking behaviour, Hughes
(1965)). And if the pens are bare and featureless—even when all physiological needs
are satisfied—, abnormal behaviour is observed. Exploration seems to be not only in-
trinsic, but necessary, in a rich-enough environment. Although the Rushen response
stays mainly technical, it also illustrates the confrontation of two schools of thoughts,
where Rushen defends that all exploration is due to external stimuli.

Fear of novelty has often been invoked to argue that exploration could only be mo-
tivated by external stimuli: how to explain that animals would voluntarily engage in
an activity that elevated stress levels while not providing any obvious reward? Ex-
periments conducted by Misslin et al. (1986) measured the levels of corticosterone,
a steroid hormone involved in stress response, in mice that were allowed to roam
in familiar and novel environment. e results showed no physiological or behavi-
oural indication of stress during the exploration of the novel environment. Stress was
present, however, if the mice were prevented to return to the familiar environment, or
were manually placed in the novel environment. Misslin et al. (1986) concludes that
the ability to regulate one’s own exploration is critical. is suggests that personal
causation and control, which can be considered as motivations with the

of deCharms (1968) and the competence drive of White (1959),
also play important roles in emotional regulation during exploratory behaviour. is
has led some psychologists (Duncan 1998; Poole 1998) to define exploratory beha-
viour, and more generally, the expression of intrinsic motivations, as a or

14Wood-Gush uses ‘endogenous’, instead of ‘intrinsic’, using a external/internal dis nc on rather than an extrinsic/intrinsic one. We
will discuss the difference in the next sec on.
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need.
e study of novelty-seeking behaviour is not the prerogative of vertebrates: it

has been reported in cockroaches (Darchen 1952) and bees (Lindauer 1952; Liang
et al. 2012). is underscores the need for a systematic study of how cognitive abil-
ities across species influence the diversity and complexity of intrinsic motivations. A
recent study by Edwards et al. (2014) highlighted that capuchin monkeys did not
engage with a learning task in the absence of an immediate reward: they were not in-
trinsically motivated by discovering causal knowledge. Moreover, capuchins learned
better when the reward was present. Evidence in humans has shown opposite results
(Kang et al. 2009): memory is increased when driven by intrinsic motivation. is
suggests interesting venues of investigations for the developmental causes of the cog-
nitive differences between humans and capuchins. As Edwards et al. (2014) points
out (emphasis them):

Edwards et al. (2014, p. 11)

Let’s note that Watson et al. (1999) have observed instances of reward discarding in
cynomulus monkeys, on a task with staged difficulty. Watson et al. (1999) conclude
that in some instances, going to a higher difficulty seems more motivating than the
food pellet resulting from finish the current level of difficulty. ese two studies are
insufficient to draw any definitive conclusions, but it points to two salient taxonomic
units for further comparative studies: the catarrhines (Old World monkeys, to which
cynomulus monkeys belong, and apes) and platyrrhines (New World monkeys, that
include capuchins). Finally, Clark and Smith (2013) provide a study where chim-
panzees would engage more with a cognitive task when food rewards were absent,
highlighting a complex relation between reward and motivation.

A systematic study of animal capacity for intrinsic motivation is currently made
difficult by the methodological difficulties of studying motivations in animals. Indeed,
how to measure and discriminate between extrinsic and intrinsic motivations from
animal behaviour remains an active challenge:

(Brown and Nemes 2008, p. 442).

And the terms designating different motivations are often not precisely used:

(Meagher et al. 2012)

Others have stressed the current situation as well, and attempted to provide answers
(Hughes 1997; Carter et al. 2012).
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Another problem is that most studies will study behavioural traits for which there
is a priori evidence of their presence. As Gosling et al. (1999) points out:

Gosling et al. (1999, p. 74)

Evolu onary Perspec ve

Another perspective that has seen a recent uptick is the evolutionary one. In the com-
putational intrinsic motivation domain Singh, Lewis and Barto (2009) and Singh,
Lewis, Barto and Sorg (2010) have brought forward very interesting ideas, suggesting
mechanisms that could explain how intrinsic motivations originated from evolution-
ary processes—because, one way or another, they did (I go back in details about this
in section 2.5). In biology, recent studies of animal behaviour have shown the herit-
ability of exploratory behaviour (Dingemanse 2002), which has led studies to use rats
selectively bred for novelty seeking behaviour (Stead et al. 2006; Ballaz 2009). Russell
et al. (2010) performed a study of five males (normally bred) white rats individually
introduced in the mammal-free, 9.5-hectare Motuhoropapa island in New Zealand,
and tracked their position using GPS. eir conclusion was that the rats movements
were apparently random, only mediated by a central place of foraging behaviour.

ese studies stress the need to look at the relevance of intrinsic motivations in
biological organisms beyond the individual level, at the species level. Intrinsic mo-
tivations generate exploratory behaviour. And exploratory behaviour directly contrib-
utes to the geographical dissemination of a species, which in turn, improves species
survival. e argument can be made then that, even if intrinsic motivations can be
detrimental for the survival of the individual, because it pushes it into unknown and
uncertain—thus potential dangerous—situations15, it can still be explained in a evol-
utionary perspective, because it increase the species geographical robustness (Russell
1983; Holway et al. 1999; Martin 2005; Taylor and Hastings 2005; Wright et al.
2010; Cote et al. 2010; Russell et al. 2010; Chapple et al. 2011, 2012; Liebl et al.
2012; Overveld et al. 2013) and reduces inbreeding.

Interestingly, exploratory behaviour has been studied experimental in large major-
ity on rats. at can be explained by its convenient and heavy use across biological
studies. But one also has to acknowledge that its capacity to disseminate and invade
new ecosystems, matched by few, makes it a particularly favourable subject for those
studies.

15In par cular, explora on might push an individual in areas where few conspecifics are present. The reproduc on rate of species in
areas of low conspecific density is complex, and can be nega ve. This phenomenon has been dubbed the Allee effect (Allee 1931;
Stephens et al. 1999; Taylor and Has ngs 2005).
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Of course, robots are not generally subject to these issues of species survival. Yet,
as Merrick (2012, p. 231) remarked, current agents and robots have few types of
motivation (see section 2.5), and few behaviours. But the trend is towards an increase
in both, in the context of social exchanges with peers, and in particular in the context
of populations of agents (Sequeira 2013) and swarm robotics. For those domains of
investigation, the impact of intrinsic motivations on the population overall behaviour
has potentially substantial consequences.

e consequences for individual robots are reversed, but are nonetheless import-
ant to consider: intrinsic motivations based on psychological accounts of behaviour
in humans and animals do not necessarily lead to behaviour that is best at the indi-
vidual level. Consequently, their transcription onto robots, where individual efficacy
is sought most of the time, must be done with appropriate awareness of those factors.

2.5 Computational Intrinsic Motivation
e field of computational intrinsic motivation is situated at the confluence of psy-

chology, active learning, and the design of embodied and disembodied agents.
Reinforcement learning (Sutton 1998) is a learning framework where the goal of an

agent is to maximize a reward signal. Reinforcement learning has been successful in
robotics, in particular because it offers a naturally incremental, online learning frame-
work. However creating reward functions for complex tasks has proven to be difficult
and frustrating, often relying on manual tuning from experts. Exhaustive analysis
of small problems has shown that the best reward functions can be counterintuitive
(Singh, Lewis and Barto 2009; Singh, Lewis, Barto and Sorg 2010). Moreover, static
rewards signals and stable environments extinguish the acquisition of new knowledge
and skills over time: once the task is learned, learning stops.

Spurred by the advances of the psychological models, intrinsic motivation systems
were proposed as environment-agnosticmotivational systems conductive of open-ended
learning. Intrinsic motivation allows the agent to structure its learning trajectory by
itself while complying with the environmental constraints, and prevents the extinc-
tion of learning. Intrinsic motivation drives are now recognized as a fundamental
component of any self-sufficient robotic and biological system learning and exploring
in an uncertain environment (Gottlieb et al. 2013).

Many different artificial curiosity drives have been proposed.
Schmidhuber proposed the compression driven progress measure (Schmidhuber

1991, 1990, 2009, 2010), basing the drive on how well a prediction module could
compress the sensorimotor data the agent receives. In 2004,

(Barto, Singh et al. 2004; Singh, Barto et al. 2005; Stout et
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al. 2005) was introduced, that computes the reward inside the agent, using objective
feedback from the environment, with novelty as a possible drive.

At the same time, in the context of developmental robotics, Oudeyer (2004) and
Oudeyer, Kaplan and Hafner (2007) propose the (IAC) al-
gorithm, that partitions the sensorimotor space and seeks regions where the derivative
the performance in prediction is maximal. Robustness improvements are later made
by Baranes and Oudeyer (2009). Lee, Walker et al. (2009) propose a variant of IAC,
called that creates regions using
(Fritzke 1995) to create regions.

IAC is limited to low-dimensional problems, because the partition is done over the
whole sensorimotor space. Baranes and Oudeyer (2010) proposed an new algorithm,
SAGG-RIAC, that only partitions the sensory space and guides learning by choosing
interesting areas of the sensory space: SAGG-RIAC is a goal babbling strategy, and
was demonstrated on an 30-dimension motor space. Hervouet et al. (2012) later
proposed improvements on SAGG-RIAC.

e idea of using learning progress to drive exploration was adapted tomodel-based
reinforcement learning by Lopes, Lang et al. (2012), using cross-validation error to
measure the evolution of model accuracy.

Other approaches include (Klyubin et al. 2005a,b, 2008; Salge et al.
2014b,a), where the agent is motivated to maximize its control over the environment.
It is based on information theory; the agent maximized the channel capacity from the
motors to the sensors. Another information theoretic approach is offered by (Ay et al.
2008; Martius et al. 2013), where the agent is motivated by maximizing

. Maximizing predictive information encourages the robot to diversify his
behaviour as much as possible, while keeping it predictable: this is the production of
diversity constrained by the learning capabilities of the agent. Friston et al. (2010)
argues that organisms are motivated by the minimization of the free energy, and that
it elicits active sampling. Let’s remark here that the free energy, also called

, is linked to the notion of self-organization (see Polani (2008, p. 28)).
is review is far from exhaustive, see (Oudeyer, Kaplan and Hafner 2007; Bal-

dassarre and Mirolli 2013) for detailed surveys.

Extrinsic versus Intrinsic Mo va ons

e precise definition of intrinsic motivation, and its difference from mo-
tivations has been the subject of debate (Baldassarre 2011). e internal/external
dichotomy has been rejected. While there is consensus that intrinsic motivations ori-
ginate in the agent, typical extrinsic motivations such as hunger generate stimulations
that are expressed through proxies in the brain: all motivational signals are created by
the brain (Baldassarre 2011, p. 2). Singh, Lewis, Barto and Sorg (2010) and Barto
(2012, pp. 36–40) argue that extrinsic and intrinsic motivation form a continuum in
biological systems, since they were created through a gradual evolutionary process. A
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computational account of this hypothesis is given by Singh, Lewis and Barto (2009)
and Singh, Lewis, Barto and Sorg (2010), who proposed the notion of an

. Given a fitness function and the distribution of environments, a re-
ward function is evaluated in function of the expected fitness it generates across the
distribution of environments. e optimal reward function is the one generating the
highest expected fitness. It is a method that creates good rewards signals, robust to
environmental variation, and that produces behaviours generating high fitness. Singh,
Lewis, Barto and Sorg (2010, p. 12) argue that this framework provides a plausible
explanation for the formation of both intrinsic and extrinsic motivations:

, Oudeyer and Kaplan (2008) propose an explicit definition:

Oudeyer and Kaplan (2008, p. 3)

While we will refrain from weighting in (too much) in the debate, it is important
to understand the properties that are largely shared by intrinsic motivations: they tend
to generates tensions that are , while
this is not the usual case for extrinsic motivations.

Let’s take the example of hunger, an extrinsic motivation. Hunger does not depend
on the experience of the subject. It depends on his recent past—how long ago and
how much did he eat. But it does not depend on the knowledge of the agent. Or on
his skills. Without food, the subject will experience hunger and then starvation the
same way.

On the other hand, curiosity is driven by the relationship between the environment
and the agent’s knowledge and skills (Ryan et al. (2000, p. 56): ‘intrinsic motivation
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exists in the relation between individuals and activities’). And because those two are
dependent on experience, it makes curiosity dependent on experience. As (Baldassarre
2011, p. 4) remarks, intrinsic motivation signals are characteristically transient in hu-
mans: they disappear and decrease as soon as the skill has been learned or the know-
ledge acquired.

It is important to note that we discriminate themotivation by the they create.
One could argue that hunger generates experience-specific tensions. For instance,
Given one’s preferences, one may be hungry for a salad but not for a steak. While
this is true, eating one or the other, however displeasing, will relieve hunger. More
generally, whatever substance has relieved hunger in the past will do so in the present,
even if preferences can change, in particular because of habituation mechanisms. e
same cannot be said of curiosity: telling someone something he already knows will
not satisfy his curiosity, even if it did in the past, when he had not had knowledge of it
yet. Intrinsic motivations’ are usually dependent on experiences. Yet, not all
are. Oudeyer, Kaplan and Hafner (2007) propose, for instance, several morphological
intrinsic motivations that are not dependent on experience.

A point that we must address is the one of secondary drives, which are learned from
conditioning from primary drives. As such, they seem to make non-intrinsic tensions
dependent on experience. However, this is the drive that is dependent on experience,
not the tension. e way to relieve the tension of those secondary drive is still a change
of state of the agent, not a change of experience. A child can have internalized social
pressure from his parents to have good grades, and this is the only thing motivating
him to study. is is an extrinsic motivation. e way to relieve the social pressure
is to consistently do his homework, listen in class, and obtain a good grade report
he can present to its parents. Moral pressure and risk-taking notwithstanding, the
child could find that not studying and cheating his way to exams or forging the report
card would be an equally good solution to the pressure. e situation is solved by a
change of state. A child that is intrinsically motivated to study might still feel social
pressure, and cheat or forge his report card, but he will study nonetheless, because his
motivation can only be satisfied by an acquisition of knowledge.

e distinction does not depend on the agent behavioural success. It does not
depend either on the biological mechanisms underlying the motivations. It applies to
humans, robots, as well as artificial agents.

In that context, it is easy to see why intrinsic motivations are suited for cumulative
learning: they adapt to the accumulation of experiences, and lead the agent towards
continuously acquiring novel information and avoiding stationary or repetitive beha-
viour. Intrinsic motivations produce structured exploratory behaviour.

Finally, let’s remark that distinguishing motivations by how experience is involved
is probably interesting and useful, regardless of how well it separates extrinsic and
intrinsic motivations. Its applicability to computational intrinsic motivation in par-
ticular make it useful in the analysis of the contribution of different motivations to
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behaviour in heterogeneous motivational architectures.

Novelty versus Surprise

In our interest for exploration and the production of diversity, using a motivational
drive driven by novelty seems the most straightforward choice. Novelty, here, is
defined as ‘different from anything known before’.

Novelty-based intrinsic motivation directs the agent behaviour to seek out stimulus
that have not been observed before. Novelty is different from surprise: an effect can
be novel without being surprising, because it has been correctly predicted (e.g. there
is a new intern in the lab this morning, but I was told about it.). Conversely, an effect
can be surprising but not novel, because it has not been correctly predicted but is
familiar nonetheless (e.g. I am surprised to see my colleague at work this morning, I
thought he was ill.). Surprise depends on the internal model of the agent, novelty only
depends on its past history. Surprise is related to prediction error, and mediated by the
confidence in the prediction: a wrong prediction with low confidence will generate
less surprise than one made with high confidence. ere are numerous subtleties to
the distinction. e interested reader is encouraged to consult Barto, Mirolli et al.
(2013).

In neurosciences, the difference is still investigated. Novelty requires to compare
current stimuli against long-term memory, and therefore has to involve the hippocam-
pus (Kumaran et al. 2007; Otmakhova et al. 2012). e neural response to surprise
(i.e. the , sometimes called (Ranganath et al. 2003))
in visual stimulus, on the other hand, would originate in the superior colliculus (a mid-
brain region often studied for its involvement in eye movement, but which has a much
larger multisensory role in directed attention) (Redgrave and Gurney 2006; Redgrave,
Gurney et al. 2012). e superior colliculus exhibits strong habituation characteristics
(Rankin et al. 2009): stimulus can receive a maximal response from the colliculus even
if they are not new, if the previous presentation happened far enough ago in the past.
Still Lisman et al. (2005) reports results on the involvement of the hippocampus in
surprise (expected versus unexpected conditioned stimuli) detection.

Many computational approaches have proposed surprise-based (or habituation-
based) drives (Bolado-Gomez et al. 2013; Lee and Meng 2005; Meng et al. 2005;
Huang and Weng 2002, 2004; Marshall et al. 2004), and many use the term
to describe their methods. While novelty and surprise can be perfectly overlapping in
simplified environments—thus justifying using surprise-detectionmethods to identify
novelty—, in most studies, the difference is rarely acknowledged or discussed, in par-
ticular as a limitation of the method’s applicability to more complex environments
where novelty and surprise become distinct16.

Yet, our approach investigates processes that produce diversity. As such, a novelty—
not surprise—intrinsic drive is of higher interest to us (this does not preclude success-

16The methods will remain applicable and useful, but cannot be characterized as novelty-driven mo va on methods.
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ful diversity-producing exploration strategies to use a predictive-based drive, how-
ever).

Computa onal Novelty

e detection of computational novelty is related to two other problems. e first
is anomaly detection (Chandola et al. 2009), where a system is monitored for any
behaviour that deviate from an established norm. e application are numerous in
industrial plants, medical care and automated security monitoring. e assumptions
made in the anomaly detection context are not usually compatible with cumulative
learning found in open-ended robot platform: a training set of exclusively normal be-
haviour is provided, and usually learned in a batch fashion. e second problems is
outlier detection (Hodge et al. 2004; Chandola et al. 2007), which overlaps signific-
antly anomaly detection, with a significantly different starting assumption: outliers
are already present in the data, and no ‘clean’ normal dataset exists.

Let’s note that given a diversity measure, the novelty of a new piece of data can be
quantified by the difference in diversity before and after the data has been acquired. As
such, any diversity measure defined in section 1.4 defines an implicit novelty measure.
We’ll use such a technique in section 4.2

Few implementations of intrinsic motivations rely on novelty. is is due to mul-
tiple reasons. First, many existing learning algorithms can be understood as being
already inherently driven by novelty: R-max (Brafman et al. 2003) is a reinforcement
algorithm where all states are given initial maximal rewards estimations that drive
the exploration optimistically towards states that are not familiar. is illustrates the
second reason: many learning algorithms are considered and tested in environments
where the complete task is learnable, i.e., all states can be visited. In such a context,
novel tasks are explicit: novelty is supervised.

Markou et al. (2003a,b) have proposed an extensive two-part review of novelty
detection, underscoring the two different approaches: statistical methods, and neural
networks.

In neural approaches, Marsland et al. (2002) has introducedGrowing-When-Required
(GWR) neural networks, that create a new node when the activation level of the
nearest node of a new stimulus is below a given threshold. is can adequately com-
pute novelty. Furthermore, the network keeps track of the amount of training that
each node has received, hence allowing a less binary form of novelty for rare stimuli.

is has been used by Neto et al. (2005a, 2007b,a) for visual detection of novelty.
In statistical approaches, most methods modelize the distribution density of the

existing data, and characterize an observation as novel if it belongs to a low density
area. To accurately modelize the distribution density however, large quantity of data
are usually required or assumptions must be made (such as Gaussian distributions),
which reduces their flexibility. Neto et al. (2005b,a, 2007b) have used Incremental
PCA (Artac et al. 2002) for novelty detection in visual attention (and compared it
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to the GWR method). PCA creates a more compact representation of the data. If
the new data cannot be represented precisely enough by the current representation, it
is considered novel. Incremental PCA modifies the representation with each obser-
vation, integrating the new data to represent it accurately (and, hence, memorizing
it).

Computational novelty is currently mostly used for visual tasks. For our own pur-
poses, using the immediate improvement in diversity using a threshold coverage meas-
ure (section 1.4) was sufficient.

2.6 Diversity in Evolutionary Robotics

Abstract Encouraging popula on diversity during the evolu onary process is a recent solu-
on to two major challenges of evolu onary robo cs: the bootstrapping problem and the early

convergence problem.

Evolutionary robotics (Stanley 2011; Doncieux, Bredeche et al. 2015) aims to
design robot morphologies, neural architecture and behaviours using algorithms in-
spired from the natural selection, variation, and hereditary mechanisms of natural
evolution. As a subfield of evolutionary algorithms, evolutionary robotics distinguishes
itself by evaluating the robots’ behaviours rather than directly evaluating their pheno-
type, i.e. their morphology or their controller. As a subfield of robotics, evolutionary
robotics distinguishes itself by having a global approach to the design of robots and
their controller (Mautner et al. 2000), in contrast with the engineering approach that
tries to decompose the design into independent problems to ensure modularity.

Evolutionary robotics regularly faces—amongst others—two specific challenges.
When the fitness of all members of the first generation is identical (typically be-

cause no rewarded behaviour was exhibited), the selection process cannot provide any
progress toward a solution, and the algorithm is stalled. is is the

(Mouret et al. 2009a). e canonical solution is to create a staged fitness function
(Gomez and Miikkulainen 1997; Urzelai et al. 1998; Kodjabachian et al. 1998)—a
proposition akin to a developmental constraint. e fitness function initially rewards
solutions to simple problems and is progressively made more challenging to even-
tually match the real task. A related method, (Dorigo et al. 1994;
Mataric 1994), is used in reinforcement learning. In practice, such approaches re-
quire to design problem-specific fitness functions.

e second challenge is : the evolutionary process becomes trapped
into a local extremum (Goldberg 1987; Bongard and Hornby 2010). is is due in
particular to the fitness function having to play two roles: defining the problem to
solve and guiding the search for a solution. If the fitness function is not carefully
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designed, it may only fill one of those roles properly. Such a fitness function is called
(Mouret et al. 2009b), and is a case of over-exploitation.

To provide a problem-agnostic solution to these two problems, it has been pro-
posed to consider selections processes that encourage behavioural diversity17 in the
population of candidate solutions. is has been proposed first in the classical evolu-
tionary algorithm domain (Goldberg 1987; Sareni et al. 1998), and recently adapted
to evolutionary robotics (Trujillo et al. 2008; Lehman and Stanley 2008, 2011a; Risi
et al. 2009; Gomez 2009; Mouret et al. 2009a; Mouret 2011; Mouret et al. 2012;
Doncieux and Mouret 2010, 2014; Krcah 2010; Delarboulas et al. 2010). ose ap-
proaches modify the fitness function to account for diversity.

e most common modification is (Goldberg 1987; Holland 1992):
solutions close to one another share, i.e. divide amongst themselves the fitness score,
in the same way individuals from the same ecological niche compete for resources.

is method has proven itself empirically and has recently been theoretically proved
as beneficial for simple cases (Friedrich et al. 2008).

Lehman and Stanley (2008, 2011a) proposes to abandon objective completely and
focus on searching for behavioural novelty alone. e method proposed by Lehman
and Stanley (2011a) is a novelty search: new solutions are compared for similarity
against the current population and an archive of notable exemplars. Such an approach
is shown to significantly outperform an objective-based one in a maze walk task. e
authors also argued that it fosters open-ended exploration: because there are only so
many ways to act simply, the candidate population is progressively guided towards
more complex behaviours. Delarboulas et al. (2010) uses a similar approach where
offsprings are compared against their ancestors, instead of their peers. Mouret (2011)
shown that just maintaining the current population behavioural diversity, without
considering past populations was enough to get good results, and avoided a growing
computational cost for fitness.

is strand of evolutionary robotics research reinforces the idea that diversity pro-
ducing processes are crucial for developing complex behaviours.

Developmental and the evolutionary approaches that encourage diversity remain
significantly different. ey happen at different timescales. One is concerned with
the diversity of the individual in a online, incremental way, while the other happens
at the species level and usually operates in batch evaluations of a complete generation.

e work of Delarboulas et al. (2010) recently bridged that gap, by proposing an
architecture where the evolution of controller happens online, and is driven by an
intrinsically-motivated fitness function encouraging diversity at the individual and
historical level (controllers are compared to their ancestors). In the context of that
research, Delarboulas et al. (2010, p. 342) perhaps best expressed one of the greatest
asset of using an intrinsically motivated approach with robots:

17Note that ensuring gene c diversity is different, and quite straigh orward, as it can be controlled explicitly (Nguyen and Wong
2003).
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2.7 Diversity in Machine Learning
Interestingly, a pioneer work on behavioural diversity in robotics has largely gone
unnoticed. Balch (1997) and Balch and Parker (2002) introduced the notion of beha-
vioural diversity in robot teams.

Another domain where diversity measures have been used is swarm optimization
(Kennedy et al. 1995; Shi et al. 1998), a global optimization technique. e diversity
of a swarm of particle is linked to the quality of the optimization, and thus works
studying and proposing diversity measure are numerous (Riget et al. 2002; Krink et
al. 2002; Blackwell 2005; Olorunda et al. 2008; Shi et al. 2008; Wang and Han 2009;
Cheng et al. 2013). Olorunda et al. (2008) in particular reviews the existing diversity
measure used for quantifying swarm diversity, and propose to compute the radius, the
diameter of the swarm, or the average distance around the swarm center, normalized
or not by the swarm diameter. Also proposed is the swarm coherence, that exploits
the velocity of each particle in the swarm. Except the last one, these measure could
be straightforwardly applied to our case.

Interestingly, Yen et al. (2006) proposes a swarm optimization method were mut-
liple swarm are used on a problem with a high number of local minima, and consider
exchanges of particles between the swarms during the optimization based on diversity.

ese ideas share similarity with the methods we will present in the second part.
Diversity is also used to create classifier ensembles (Brown, Wyatt et al. 2005; Tang

et al. 2006; Hadjitodorov et al. 2006; Ulaş et al. 2009; Connolly et al. 2012; Kraw-
czyk and Wozniak 2013; Krawczyk and Woźniak 2014; Özöğür-Akyüz et al. 2014).
A diversity of classifiers, when also avoiding weak classifiers, has been show to im-
prove accuracy. In that case, diversity is based on disagreement between the different
classifiers (Kuncheva 2001; Kuncheva and Whitaker 2003).

Diversity has also been proposed as a regularization metric in the result of search
engines (Agrawal et al. 2009). is is not surprising: if the most relevant results are
all very similar, less relevant but different results, after a few examplars of the most
relevant class are given, are better, since they widen the number of requests that are
answered in response to a given query.

And recommender systems, that are used to propose movies—the Netflix prize
(Bennett et al. 2007) having largely popularized the concept—, restaurants, research
articles, or mates in online dating systems to users, are no exempt either. Research-
ers have learned that diversity in recommendations, while sacrificing some accuracy,
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significantly increased user satisfaction (Ziegler et al. 2005; Zhou et al. 2010; Vargas
and Castells 2011; Vargas 2014; Alexandridis et al. 2015):

Zhou et al. (2010, p. 4511)

Here we find the idea that humans will not necessarily be able to discover by them-
selves information that are relevant and interesting to them in the environment. A
recommander system exists precisely because exploring a computerized database is
not something humans are intuitively good at, and because the database hide most its
information: it does not provide clues to find information incrementally.

In the real world, rational behaviour and deductive reasoning is not sufficient to find
information is the environment that is not revealed by indicative clues that something
is to be found.

is explains why exploratory behaviour is necessarily intrinsic: because
, as significant information is present in the environment but its presence is

not detectable. One cannot deduce that a toy giraffe squeaks when pressed from pass-
ive observation. e water temperature of a river is hardly betrayed by its appearence,
this is why it often contrasts with expectations. us, humans must be optimistic
about finding information in the environment, they cannot wait for an indication it
is there: exploration must be motivated intrinsically.

And because humans have greater capacity to make sense of and use the inform-
ation they discover in the environment through exploration, exploratory behaviour
is more rewarding. It seems then natural that their intrinsic motivational system is
stronger, more developed and more complex that some other animals, for instance
capuchin monkeys (see section 2.4).

2.8 SLAM algorithms
e expression ‘exploration in unknown environments’, when used in the context of

robotic research, usually designate mobile robots mapping their environment. Stach-
niss et al. (2003), for instance, present an approach that uses ‘coverage maps’, and
that even uses ‘optimal information gain’ to decide which areas of the map to explore
next. In first approximation, this research and sensorimotor exploration appear to be
related.

e fundamental difference between sensorimotor exploration and mapping ex-
ploration is that mapping exploration assumes that the agent knows how to move
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about on the map. e challenge, then, is to map the entire space (for instance, if
its an interior environment) as efficiently as possible, with the best possible accuracy.
Another difference is that mapping typically only considers 2 or 3-dimensional envir-
onment, while in sensorimotor exploration the dimensionality of the sensory space
can be arbitrary18

e underlying assumption that how to move in the space is not to be learned
has led to highly specialized and efficient (Simultaneous-Localization-And-
Mapping) algorithms (Smith and Cheeseman 1986; Smith, Self et al. 1990; run
2005, pp. 309-485), which use techniques unfit for sensorimotor exploration.

Discussion

Exploration as a Multidisciplinary Subject, Ripe for Interdiscip-
linary Research

e pervasiveness of exploratory process and exploratory behaviour across a wide range
of scientific field suggests an important potential for interdisciplinary communications
and collaboration, as was noted by Gottlieb et al. (2013).

is review of the studies of exploratory behaviours should not be considered ex-
haustive in any way. e neuroscience account is under-represented (Kang et al. 2009;
Düzel et al. 2010; Shohamy 2011; Jepma et al. 2012), as is the literature taking an
information theoretic perspective. e study of attention has a major research strand
on perceptual exploratory behaviour and information-seeking behaviour, which have
many interactions with the theories of motivation (Gottlieb et al. 2013; Laucht et
al. 2006; Nocera et al. 2014). We barely mentioned the relation to the creation of
diversity through pretend play (Belsky et al. 1981), and only investigated playful be-
haviour from a specific perspective, in the child-as-scientist paradigm. Biological or
artificial creativity (Saunders 2002; Barbot et al. 2012; Mántaras Badia 2013), di-
vergent thinking (Kleibeuker et al. 2012), or even counterfactual thinking were not
discussed in relation to exploratory behaviour, and the exposition to, and the pro-
duction of diversity. We didn’t discuss the exploratory behaviour of populations, for
instance, how ant and termite self-organize exploration, in both sedentary and army
ants types, or how tourists are motivated by novelty (Lee and Crompton 1992). Sim-
ilarly, exploratory behaviour is present in human organizations (March 1991; Gupta
et al. 2006).

18This thesis only features low-dimensional environments though.

120



Nonetheless, a common trend can be observed amongst psychology, intrinsic mo-
tivation and evolutionary approaches: the incentive or reward that encodes explicitly
a specific objective in the environment is not necessarily the best way to induce an
agent to reach that objective, and may even actively prevents it.

e Many Intrinsic Motivations: A Benchmark?
e sheer number of different explanations for intrinsic motivation in psychology, and

the correspondingly numerous and diverse models that have been implemented in
computational intrinsic motivation hints at the complexity of the issue, and, perhaps,
at the relative subjectivity that has accompanied its study so far. Most approaches
to motivation will showcase how they can explain or successfully produce specific
interesting behaviour.

But the overall field lacks a systematic and a comparative approach. Intrinsic mo-
tivation Intrinsic motivations are rarely compared against each other over identical,
controlled environments. Santucci et al. (2013) proposed a detailed comparison of
knowledge-based versus competence-based approaches, but the task considered, a
two dimensional 2-joint arm can hardly be considered complex enough to allow to
extrapolate the results to realistic settings19. e field lacks a benchmark, a set of

environments that implementations can measure against. e work of Singh,
Lewis, Barto and Sorg (2010) has shown that a set of environments could efficiently
filter good motivational drives.

A benchmark would not only allow to compare implementations, but also highlight
the strengths and weaknesses of each one, by comparing the performances of one
implementation across environments. ere are important fundamental and technical
difficulties to testing different implementations on the same environments: different
approaches make different assumptions and have different requirements. But the set
of environments a strategy can be applied to should be considered as one more way
to differentiate and characterize approaches. In evolutionary robotics, Lehman and
Stanley (2008) introduced two environments to test the diversity approach. ose
environments have been reused by Delarboulas et al. (2010) and Mouret (2011).

e goal is not to decide which intrinsic motivation measure is the best—as we
highlighted in chapter 1, we have an evaluation problem. Furthermore, the diversity
of the field is precisely suggesting that one may not be enough to explain the behaviour
of humans (Hughes (1997): ‘no single approach has adequate explanatory or predict-
ive power’). Neuroscience tells us that different brain structures, the colliculus and the
hippocampus amongst them, have been linked to the origin of intrinsic motivation sig-
nals, strongly suggesting that this diversity of intrinsic motivations is inherent—and
probably cannot be escaped by a cleverer take on the issue.

19Moreover, as we illustrated chapter 0, a random motor babbling strategy provides adequate performances on a 2-joint arm.
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Another issue is that as intrinsic motivations help steer the developmental pro-
cess of infants, they are also naturally part of it: children motivations change as they
develop Trevarthen et al. (2003). is can certainly be explained, in part, by the func-
tional dependency of motivations with experiences, but assuming that this is sufficient
is not a trivial assumption.

Of course, as happy as we are to provide advices, we’ll blatantly ignore them in this
thesis, as will be made explicit in the discussion of the next chapter.

Our work on the study of exploration and the production of diversity is not dir-
ected at explaining complex behaviour in humans, or to propose algorithms that can
compete in terms of performance with the state of the art. Rather, it has been to find
some of the most simple mechanisms of exploration, and to modify them every which
ways in order to investigate their dynamics, and the relative impact of the submodules
that compose them. is will be the focus of the next chapter.

K
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Neil deGrasse Tyson

3
Revisiting the Two-Dimensional Arm

In the example of chapter 0, we illustrated that on an idealized two-dimensional arm
setup, a goal babbling strategy was able to discover significantly more of the reachable
space than a motor babbling one. For the sake of brevity, many details were not
investigated. We take a closer look at them now.

3.1 e Exploration Algorithm

Abstract We formalize the motor and goal babbling algorithm discussed in chapter 0, and
provide a quan ta ve analysis of it, using the diversity measures introduced in chapter 1.

We consider an environment , as formalized section 1.3. For each
sampling of , the exploration algorithmdoes either a randommotor babbling action—
picks a random point in the hyperrectangle —, or a random goal babbling action,
i.e. picks a random point in the bounded sensory space as a goal for the inverse
model, and infers an motor command to execute.

In the following sections, we formalize the inverse model and the exploration al-
gorithm.
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3.1.1 Inverse Model
Given a goal, the inverse model we used in chapter 0 finds the nearest neighbour
in the observed effects and applies a small perturbation on its corresponding motor
command.

Formally, is a closed hyperrectangle of , and as such it is the Cartesian
product of closed intervals:

Given amotor command in , a perturbation of is defined
by:

Perturb

with the function drawing a random value in the interval according
to a uniform distribution. is the , and the only parameter of
the inverse model, that we can now express in Algorithm 1.

Inverse
:

• , a perturbation ratio.
• , past observations.
• , a goal.

:
• a motor command.

Find in so that is the nearest neighbour of in
Perturb

e inverse algorithm is simple, but effective. Its only assumption is that a small
perturbation of themotor space produces a comparatively small changes in the sensory
feedback. It does not extrapolate, nor does it interpolate observed data. e model
is not sensitive to the distance of the goal from its nearest neighbour. Consequently,
whole areas of the goal space are strictly equivalent for the inversemodel. Additionally,
the model has difficulties escaping attractors, and is susceptible to local minima, as
illustrated by the arm loops in chapter 0.

Because of this, more powerfulmodels such as Locally LinearWeightedRegression
(LWLR) (Cleveland et al. 1988; Atkeson et al. 1997a,b) might obtain better results,
in particular when goals are far from the observed data. We’ll use such a model in
the second part. Yet, in highly dimensional non-linear motor spaces, such models
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usually need a large amount of observations, concentrated in small neighbourhoods
of the motor space to work well. is creates situations where more complex models
are worse at exploring under a scarcity of data (for instance, newly discovered areas,
or during the beginning of the exploration), and will reward exploring already well
sampled areas, just because they are more effective on them.

In practice, for the experimental context we consider in this chapter, the perform-
ance and robustness of our model is competitive. Additionally, our model generates
precisely the kind of data distribution (concentrated clusters of motor vectors) that
more complex forward and inverse models might take advantage of. Let’s remark
here that this inverse model is not completely unreasonable in biological organisms
(Loeb 2012).

Furthermore this model is intuitive, allowing the reader to run the exploration al-
gorithms in his head without abstracting the learning step. And it is computationally
frugal, allowing to reproduce most of the experiments in minutes or seconds, thus en-
suring that the interested reader can modify and play with the experiments presented
in this chapter with minimal commitment.

3.1.2 Motor and Goal Babbling
e basic exploration strategy we will consider throughout this thesis is composed of

two distinct phases: a motor babbling phase and a goal babbling phase. Although
the implementation we distribute is modular, we present an equivalent monolithic
formalization in Algorithm 2.

More complex exploration algorithms will be proposed in this chapter, but this
strategy is simple and effective. e boot parameter articulates the balance between
undirected exploration and directed exploration. Our objective is to set boot to re-
duce the duration of the random motor babbling phase as much as possible without
significantly compromising performance. Let’s note that this goal babbling strategy
needs to be bounded, and reasonable. We will address this problem in the sec-
tion 3.2.

Henceforth, when referring to a randomgoal babbling strategy—or simply
—, and unless stated otherwise, we will be referring to the Explore algorithm

with boot .

3.1.3 Quantitative Analysis
For the two-dimensional arm environments, we will use, unless otherwise indicated,
a Testset-based Average Distance measure introduced section 1.4, based on a lattice
restriction to the unit disk, as pictured Figure 3.1. In this section however, we compare
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Figure 3.1: The la ce testset for the two dimensional arm can characterize how well the reachable space is covered.
Here we rely on an approxima on of the reachable space as the unity disk, allowing to use this testset for any two-
dimensional arm. [source code]

Explore( , boot)
:

• , environment.
• boot, duration of random motor babbling.

:
• , exploration trajectory.

[]

= MotorBabbling( )

= GoalBabbling( )
// execute the command

add to

MotorBabbling
choose randomly in

GoalBabbling
choose a goal randomly in

Inverse

126

http://fabien.benureau.com/phd/code/fig3_1.html
http://fabien.benureau.com/phd/code/fig3_1.html


Figure 3.2: Comparison of explora on performances. The experiments are the same as Figure 1.9, over 10000
mesteps. For the coverage performance, . [source code]

the Testset-based Average Distance to the reshold Coverage measure (section 1.4),
that will be used in all the second part.

e reason for using a testset-based diversity measure is that the reachable space
is well defined for the two-dimensional arm environments, and that, as mentioned
previously, it is compatible with a learning performance interpretation. In the second
part, the reachable space is more difficult to assess, and we use the reshold Coverage
measure because it is more robust.

e experiments are run in the same conditions as chapter 0, on a 20-joint arm.
boot is set to 10, , and 10000 steps are run. For the threshold coverage

Figure 3.3: Goal babbling is a be er strategy when many joints are involved. Performances are shown at the end
of the explora on (t = 10000), and experiments are repeated 25 mes. Interes ngly, in the case of goal babbling, a
sharp increase in standard devia on can be observed at dimension 10; this is caused by the looping of the arm in
some experiments and not others, genera ng increased variability in performance. [source code]
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measure, . In Figure 3.2, the two diversity measures are compared on a
single experiment1. Both show the benefits of the goal babbling strategy over the
random motor babbling strategy. e testset measure is more sensitive to the slightly
more stochastic performance of the early motor babbling exploration.

In Figure 3.3, the performance of the two strategies are in function of the number
of joints of the arms. Both the ratio between the random goal babbling and motor
babbling coverage areas and the difference of the average distances stabilize after 40-
joint s. Both measures are sensitive to the increase in variability (due to the arm loops,
chapter 0) from one run to another after 10-joint for the goal babbling strategy. As
such, the two measures convey similar information.

F

1In all performance graphs of this thesis, the diversity measure has been computed for mesteps 1, 2, 3, 4, 5, 10, 15, 20, 25, 50,
75, 100, 125, etc.
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3.2 e Distribution of Goals

Abstract We show that the goal distribu on markedly impacts the distribu on of effects,
which create challenges and opportuni es when guiding explora on.

In the setup of chapter 0, the goal space consisted of the axis aligned bounding
box of the reachable space2. If this information was included in the definition of the
problem, that would be fine, because motor babbling makes no use of the information.
Yet, knowing the bounding box of the reachable space is an unreasonable assumption
in the general case.

at would still be fine if the distribution of goals did not significantly impact the
distribution of effects. Alas, this is not the case. To prove this, we consider four dif-
ferent goal distributions besides the 2 meters by 2 meters ( scenario) of chapter 0.

ree are centred at the origin and of dimensions 1 m x 1 m ( scenario), 4 m x
4 m ( scenario), and 10 m x 10 m ( scenario) respectively. An-
other is off-centre ( scenario), and is 0.25 m x 0.25 m. All distributions are
depicted in Figure 3.4, as well as the respective distribution of effects they induce on
the 2-joint and 20-joint arm – over 10000 timesteps, using the goal babbling strategy
of the previous section.

e distribution of goals radically impacts the distribution of effects. In the
scenario, the effects stay concentrated in the centre of the reachable space, and do

not reach its outer edge. Inversely, when the goal space is bigger than the reachable
space, the effects concentrate on the boundary of the reachable space, to an extent
that correlate with how big the goal space is, as the and
scenarios illustrate3.

is phenomenon is also observable, to a lesser extend, in the scenario of the 2-
joint arm as well: the four corners of the goal space do not overlap with the reachable
space, and we see increased effect density on the reachable space boundary in those
corners. is pooling behaviour has been analysed and explained in chapter 0.

If the goals are concentrated in a small part of the reachable space, as in the
scenario, so are the effects.
ese results show that when goals are drawn randomly, a bad estimation of the

goal space can easily lead to a bad distribution of effects. Of course, they also illustrate
the flexibility of goal babbling exploration: it can efficiently guide the exploration of
the sensory space. If an area of the effect space is deemed more interesting than an-
other, we can manipulate the distribution of goals to concentrate exploration in this
area—as the scenario illustrates—without changing the other mechanisms
2Actually, not exactly. Because of the angle constraints, no posture of the arm reaches a posi on where . But the
imprecision is not significant for our argument here.
3A 100 m x 100 m goal space would not have produced a significantly different distribu on than the 10 m x 10 m one, as the quasi-
totality of the goals are outside the reachable space in both cases, and the inverse model, as it projects each goal to the nearest
observed effect, is insensi ve to how far the goal is from the effect.
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Figure 3.4: By manipula ng the goal distribu on, we can manipulate the distribu on of effects. On a 2-joint and 20-
joint arm, we compare five goal distribu ons (first column), some under-dimensioned and some over-dimensioned
compared to the reachable space (grey disk). [source code]
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of the exploration. is is the methods proposed by Oudeyer and Kaplan (2007, p. 8);
Rolf et al. (2011), Jamone et al. (2011), Baranes and Oudeyer (2013) and Hervouet
et al. (2013), where the exploration trajectory is guided by preferences over the goal
space. Pushed to the extreme, i.e. considering only one goal, the exploration strategy
seamlessly collapses into an optimization one. ese characteristics make goal bab-
bling easily interfaceable with an attention mechanism or an interest measure.

With exploration, one objective is to cover the reachable space in a homogeneous
manner, producing exemplars of the possibility it offers, and for this the goal space
must not be too dissimilar from the reachable space. Since we don’t have access to
the geometry of the reachable space, we have to estimate it from current observations.

is is similar to the problem of density estimation (Rosenblatt 1956; Parzen 1962),
where the density of an unknown distribution must be estimated from a discrete num-
ber of samples. Here, we are only interested in the of the distribution, i.e. the
subset of the space where the density is not null4. Furthermore, the sampling avail-
able to the agent is not independently and identically distributed, but function of the
competence of the agent.

A simple approach to estimate the reachable space is to take the bounding box of
the current observations. To make exploration more aggressive, the goal space could
be expanded from the current boundaries of the estimation of the reachable by a factor
superior to 1. e higher the factor, the more aggressive the exploration.

is approach assumes that the ratio of the bounding box volume to the reachable
space volume is low, as is the case for the two-dimensional arm. But it is not efficient
for sparse, non-contiguous reachable spaces. To robustly explore those spaces, we
need a good estimation of the .

F

4In prac ce, we can relax this by only considering the areas of the space where the density is above a small threshold.
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3.3 Exploration on a Grid

Abstract We introduce grid par oning, and an approxima on of the reached space based
on it which will be instrumental for several explora on algorithms. We describe explorers that
define goals inside and outside of the reached space. We show that combining these explorers
allows some independence from the dimensions of the goal space.

Given a partition of the sensory space, we define the during
exploration as the union of the elements of the partition that contain at least one
observed effect. e quality of the exploration depends on how the sensory space
is partitioned. In this thesis, we will use a simple, good-enough, computationally
efficient partitioning scheme: .

Figure 3.5: The size of the cells has a huge impact on the es ma on of the reached space. This figure exhibits
examples of grid par oning that underfit (666 mm), fit (10 and 5 cm) and overfit (2 cm) on the same data. For the
two-dimensional arm, we shall mostly use cell widths of 5 and 10 cm. [source code]
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3.3.1 Grid Partitioning
partitions the sensory space into axis-aligned hyperrectangles of

identical dimensions, hereafter designated as , whose centres form a lattice over
the sensory space.

Grid partitioning is parametrized by two vectors in : , the coordinates of the
centre of the cell which contains the origin of the reference frame—the grid’s origin—
, and , the size of a cell. Given a point in , the coordinate (in ) of the cell
that contains is:

By varying the cell-size5, we can obtain large cells which fit the reachable space
loosely, or small cells which overfit the current observations, as Figure 3.5 illustrates.

e size of the cell effectively sets an implicit threshold for similarity and saliency.

Figure 3.6: The reached space growth slows as explora on progresses. The colour of the cells indicates the me at
which they were added to the reached space. Some regions of the reachable space enclaved in the reached space,
that would have been discovered early by random motor babbling, are s ll not explored a er 2000 mesteps by the
goal babbling strategy. [source code]
5The origin of the grid usually has li le consequence, although, with large cells, its importance increases, as it is apparent in the
le most graph of Figure 3.5.
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Two effects belonging to the same cells are considered identical with regards to what
they tell us about the reachable space. An effect belonging to a new cell is salient,
because it represents discovering a new area of the reachable space. Note that, how
the grid’s origin is defined can have unintended local consequences, since any two
effects can be arbitrarily close, yet belong to two different cells, if the grid’s origin is
chosen appropriately6.

ere are many ways to set the size of the cells of the grid. One could bound the
number of occupied cells, and enlarge the cells when needed. is has the advantage of
offering the possibility to adaptively match the grid topology to the learning abilities
or time resources available to the agent, who may not have the time or the capacity to
handle a large number of cells. In this manuscript, the size of the cells is set arbitrarily,
to avoid complications. For the arm example, we used cells of size 5 and 10 cm
depending on the experiments.

Having now a grid partitioning method, we can estimate the reached space during
exploration, as depicted Figure 3.6.

e idea of partitioning continuous sensory spaces for goal exploration has been
explored in the context of the algorithm (Baranes and Oudeyer 2010),
which was derived from the algorithm proposed byOudeyer (2004) and Oudeyer,
Kaplan and Hafner (2007) and later improved in more robust versions as
(Baranes and Oudeyer 2009) and (Lee, Walker et al. 2009). , and

partition the sensorimotor space into regions. , in contrast, only
partitions the sensory space. It does so adaptively: regions where many effects are ob-
served are split into smaller regions, in a way that optimizes the difference between the
empirically-measured competence progress of the newly created regions. e hope is
that it allows to discriminate efficiently between regions of different level of learnab-
ility. In practice, the regions it creates are sometimes difficult to explain and random
splits would probably work equally well. To avoid unnecessary complexity, we opted
for a simpler grid approach in this thesis.

3.3.2 Goals on a Grid
Having an estimation of the reached space allows us to define more complex explora-
tion strategies.

e exploration strategy only selects goals in the current estimation of the
reached space. More specifically, to choose a random goal, one chooses a random,
non-empty, cell, and then draws a random point inside it.

Inversely, the exploration strategy considers a finite subset of sensory
space chooses a random goal amongst the empty cells belonging to this subset, if any
6There are ways to avoid those borderline effects, such as making the cells par ally overlapping. The added complexity did not
seem worth it in the context of the algorithms presented. And we can run in exponen al trouble in high dimensions if not done
carefully.
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Figure 3.7: Three explorers are combined to form the -reach strategy.

exists7. is exploration strategy drives the exploration towards unexplored regions of
the sensory space. Here, we will usually consider the subset of cells as the set of cells
contained in an hyperrectangle containing the bounding box of the observed effects.

To illustrate how those two strategies can be employed together, let’s consider a

Figure 3.8: The more aggressive the explora on, the be er it will do early on, but pursuing the same strategy will be
detrimental in the long term. Here we see the error rate of a 20-joint arm. Averaged over 50 runs. [source code]

7In our experiments, some cells are always empty because they are unreachable. In our implementa on, the strategy defaults to a
predefined strategy (for instance, random motor babbling, or the reached strategy) if a strategy proves unable to provide a motor
command.
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Figure 3.9: A balance ( ) between the reached and the unreached strategy proves effec ve, and robust to
the goal space dimensions. The percentage of the reached versus the unreached explora on strategy modulates how
aggressive the explora on is. The red dots represent the goals. Done on 10000 samples, with 10 random motor
babbling bootstrap samples, on a 20-joint arm, with a 5 cm cell size. [source code]
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mixed strategy that picks goals according to the strategy percent of the
time, and the strategy percent of the cases. As illustrated in Figure 3.7,
we modify the Explore algorithm of section 3.1.2, and replace the GoalBabbling()
call by a probabilistic call to the reached and unreached strategies. e inverse model
remains the same ( ), as does , set to 10 timesteps. We will refer to
this strategy as the -reach strategy.

e value of in the -reach exploration strategy represents how aggressive the
strategy is at trying to reach unexplored cells of the grid. By setting the value of ,
the amount of exploration that is done inside and outside the reached space can be
explicitly controlled. is makes the goal distribution adaptive to past exploration,
and lessens the impact of the geometry of the goal space. is is illustrated Figure 3.9,
where the effects of the -reach strategy on the distribution of effects is displayed for

taking values and .
While the -reach strategy produces a spread of effects that does not extend to the

limits of the reached space, it does explore the centre exhaustively. As augments, the
numbers of cells located in the centre that are reached late in the exploration (lighter
shades) increases. is creates blindspots in the exploration of aggressive strategies,
that are exacerbated when the goal space overestimates the reachable space. A bal-
anced strategy with however, consistently provides a good exploration and
seems robust to a large goal space.

To verify those results, we perform a quantitative analysis of 21 different -reach
strategies, with varying from to over increments. e results, Figure 3.8,
reveal that at the 10000 steps horizon, a large number of values of (roughly,

) provide a good performance. However, early in the exploration (t = 2000), a
more aggressive strategy is preferable. is suggests that the best exploration strategies
may need to make evolve during exploration. More about that in chapter 4.

3.3.3 e Frontier Strategy
e -reach strategy, for adequate values of , is efficient and robust to the size of the

goal space8. e robustness can partly be attributed to the inverse model used. Indeed,
the inverse model projects the goal to its nearest neighbour—or, differently said, all
the point of the goal space that have the same nearest neighbour in observed effects
are equivalent—, setting a goal far from what is possible does not creates problems.
When using a different inverse model, this may lead to singularities and inefficiencies.

is is particularly problematic when the reachable space is sparse compared to its
axis-aligned bounding box, that we gave as an heuristic (using the space) for
defining the subset of the sensory space the unreached strategy should choose goals
in.

8When the goal space is larger than the reached space, that is. But this is not a difficult condi on to verify.
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Additionally, when is high, the -reach strategy tends to create unexplored areas
in the centre of the reached space.

To solve these issues, we introduce the Frontier strategy. e Frontier strategy
removes the need to explicitly define the boundaries of the goal space: they are con-
sistently updated in function of the reached space.

Figure 3.10: Illustra ng the Fron er strategy.

e Frontier algorithm lays a grid on the goal space. At each timestep, a random
existing effect and a random direction are chosen. e grid is then traversed starting
at the selected effect, and moving in the chosen direction. e goal is randomly drawn
from the first empty cell traversed in this manner. Figure 3.10 illustrates the process.

e idea behind this algorithm is not new. It can be found in the
algorithm of Rolf (2013), and previously, in the algorithm

of Baranes and Oudeyer (2010). A similar idea can also be found much previously
in the of Schaal and Atkeson (1994) (see also Atkeson et
al. (1997a,b)). Contrary to those methods, the Frontier algorithm does not take
multiple steps toward a goal or reevaluate the direction if no sufficient progress is
made towards it. Instead, the Frontier algorithm chooses a goal, does one step of
exploration and then switches to another goal.

In Figure 3.11, five explorations are shown, with the Frontier strategy being used
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Figure 3.11: The Fron er strategy allows different amounts of aggressiveness while exploring the insides of the
reachable space completely. The explora on is driven by a mixed strategy between the Fron er strategy and the
reached strategy, over 20000 steps. Cell size is 5 cm. [source code]

, , , and of the time respectively9. e rest of the time, goals
are chosen randomly inside the reached space (i.e. this is the -reach strategy with
the unreached strategy replaced by the Frontier strategy). e Frontier strategy
displays exploratory aggressiveness, while exploring the inside of the reached space
correctly.

In the case, the last unexplored cells inside of the grid have had a large
number of goals set inside them. is is not necessarily a desired behaviour, and the
Frontier strategy can be further parametrized by setting a maximum number of
goals that can be set per cell, and a minimum number of effects per cells before a cell
is ignored when choosing a goal (in our original description, the minimum is equal to
1). Figure 3.12 exemplifies those parameters, using the Frontier strategy of
the time after the 10 timesteps of motor babbling, and setting the maximum number
of goals at 6 per cell, and the minimum number of effects at 2 per cell.

e Frontier algorithms strikes a balance between conservative and aggressive
exploration. By placing each goal near observed effects, yet in unexplored areas, the

9In our implementa on, we only coded axis-parallels direc ons. This makes the code simpler, and is es mated to have li le impact
on the explora on.
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Figure 3.12: The parametrized Fron er strategy provides a balanced explora on. A few cells in the interior are empty
but not laden with goals, and the goals have spread out. Cell size is 5 cm. [source code]

algorithms ensures that it can rely on reliable (because near) observations while in-
creasing the potential to reach a new area. To make the Frontier more adaptive,
we could consider to set the minimum number of effects per cell as a fraction of the
average number of effects per cell. is would balance the exploration between the
centre of the reachable space, and the pooling of observations on the edges of it.

Discussion
We established that either partially with the -reach strategy, or completely with the
Frontier strategy, the exploration process can free itself from the necessity of ex-
plicit boundaries on the goal space. is is a small yet important step towards self-
sufficiency in exploratory behaviour. It makes these exploration strategies more robust
because no experiment-specific bias on the geometry of the goal space is needed.

e main criticism one can make here, and this will be valuable for most of our
experiments, is that those algorithms were tested one , very simple environment
not even involving simulated physics. is casts doubts on the applicability of those
results to more complex setups, or to real robots.
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We also realize that we did not do a quantitative comparison between the original
goal babbling strategy, the -reach strategy and the Frontier strategy. is will be
rectified.

For chronological reasons, the Frontier strategy will not be employed in other
experiments of this thesis; its usage would probably marginally affect some results.

F
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3.4 e Inverse Model

Abstract We inves gate the impact of inverse model’s quality on the explora on.

Given a goal, the inverse model finds the nearest neighbour in the observed ef-
fects and applies a small perturbation on its corresponding motor command (see sec-
tion 3.1.1).

e only free parameter in Inverse impacts the quality of the model. If
is too low, the perturbation is too small and does not produce enough environmental
changes, hindering the progress of the exploration. It also can become indistinguish-
able from noise in noisy environments. If is too high, then the inverse model ap-
proximates random motor babbling (it is equal to it when ).

In chapter 0, was tuned for good performance. What happens to the exploration
we modify the value of ? e effects of different values of can be seen qualitatively
Figure 3.13 and quantitatively Figure 3.14. We use the vanilla Explore strategy (see
section 3.1.2).

In Figure 3.13, we observe that when the value of is low ( ,
), the exploration degenerates into 10 disconnected clusters, corresponding to

the random motor babbling commands. Higher values of ( , ,
) offer good performances, but the loss in exploration performance is noticeable

in the 7-joint and 20-joint arm. In the case of the 20-joint arm, represents
of random variation for each motor. e possible displacement between an arm

posture and its perturbation is almost unconstrained in terms of end-effector position.
Still, significant performance is displayed. For high values of ( , ), the
behaviour is respectively similar and identical to the behaviour of the random motor
babbling strategy.

An interesting thing to notice is that random motor babbling seems preferable to
random goal babbling when or even for the 7-joint arm. For
the 20-joint arm however, the exploration is definitely better for but not
for . In any case, this illustrates that goal babbling with a bad learner is not
very efficient. In other words, goal babbling is an effective strategy insofar as a good-
enough inverse model allows to move around the sensorimotor space with efficiency.

e quantitative analysis displayed Figure 3.14 validates these qualitative remarks;
the performance follows a U-shape, with bad performance near the extremes, and

is worse than for the 20-joint arm.
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Figure 3.13: The quality of the learner correlates with the quality of the explora on. Yet even with degenerated
learners on the 7-segment arm, the explora on is be er than motor babbling. [source code]
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Figure 3.14: The testset average distance describe a U-shape, and take high values around the extremes. Computed
for a 20-joint arm on a 10000-step random goal babbling strategy, repeated 25 mes. [source code]

F
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3.5 Motor Synergies
From a cursory review of the example of chapter 0, one could conclude that motor
babbling becomes less effective as the dimensionality of the motor space increases10.
As pointed out, this is not the correct interpretation: motor babbling is less effective
in sensorimotor spaces where the heterogeneity of the redundancy is high, precisely
because motor babbling can be understood as a density estimator of the redundancy.

Musculoskeletal systems in biological systems typically exhibit motor synergies
(Holst 1939), i.e. groups of muscles that activate together. An explanation for these
synergies put forward by (Bernshteïn 1967) was that they were reducing the redund-
ancy of the musculoskeletal system, explaining how biological entities were able to
control complex, highly redundant limbs. An alternative explanation is that the spinal
cord interneurons dramatically increase the number of motor dimensions and give ac-
cess to hardwired pattern generators that are responsible for motor synergies (Perfiliev
et al. 2010; McCrea et al. 2008). e dimensionality increase is accompanied by an
important decrease in the heterogeneity of the redundancy(Raphael et al. 2010). In
other words, the cerebellum and the spinal cord provide a control interface for the
muscles where the density of useful solutions is higher than if muscles were wired in-
dependently. is allows to find good behaviour by trying random motor activations,
and improving them towards the nearest local minima by trial-and-error:

Loeb (2012, p. 761)

We illustrate this by showing that we can actually improve the performance of the
random motor babbling strategy by increasing the dimensionality of the motor space.
In our setup, considering an arm with joints, there are motor channels—let’s
call them c c c here—, each sending an angle command to its respective
joint. We add other motor channels syn syn syn , with channel syn
sending amotor command to joints and . erefore, each joint receives 2 angle
commands, except the last one if there is an odd number of joints. e angle command
are averaged according to the channel weight, which is equal, for each channel, to the
inverse of the number of joints they target. at way, no channel exerts more influence
over the final angle configuration that any other. Formally, the value of angle joint
is given by:

angle

10In our example, the dimensionality of the motor space is equal to the degrees of freedom of the arm—i.e. the minimum number
of independent variables required to define the posi on of the arm.
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Figure 3.15: By increasing the motor space dimensionality from 20 to 30 by adding motor synergies between neigh-
bouring joints, we improve random motor babbling. The two pure random motor explora on strategies are run on
two 20-joint arms, one of which is equipped with motor synergies, for 10000 mesteps. [source code]

We run the random motor babbling strategy on a regular arm and on another with
motor synergies, each with 20 joints. e results are available qualitatively Figure 3.15,
and quantitatively Figure 3.16. e increase in the exploration performance of ran-
dom motor babbling is significant.

Figure 3.16: Although the asympto c performance of randommotor explora on is zero, in the context of a reasonable
meframe, adding synergies dras cally improve the final performance of random motor explora on. [source code]

In order to explain the results, we can observe that the synergy channel between two
consecutive joints has a correlation effect: it makes the difference between the value
of the joints smaller11. is in turn make the arm straighter on average, allowing for
greater reach, and better exploration.

We do not claim to have proven any positive results—and certainly our example
of motor synergies is simplistic and contrived. Yet we provided a non trivial counter-
example to the notion that a greater number of motor dimensions would be detri-
mental to motor babbling.

11If the values of regular the motor channels for joint 1 and 2 are and , then whatever the value of the synergy channel of
both , the difference between the angle of the first and second joint is .
The difference is reduced to 2/3th of its value in a setup without synergies.
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3.6 Developmental constraints
Developmental constraints—or —are limitations that are placed
on the agent’smotor, morphological, sensory or cognitive abilities, and that evolve dur-
ing development12. Long thought to be obstacles to children’s development, develop-
mental constraints started to be recognized as an essential component of development
in the early 1980’s:

Turkewitz et al. (1982, p. 358)

In particular, developmental constraints are credited in reducing the size and the
complexity of the sensorimotor space available in infancy (Rutkowska 1994; Ber-
thouze et al. 2004). Developmental constraints can be broadly discriminated into
cognitive and sensory constraints on one side, and motor and morphological on the
other side.

Elman (1993) was among the first to illustrate the importance of constraints in a
synthetic setting: using a recurrent neural network, he showed that a network whose

Figure 3.17: A low joint range makes random motor babbling very effec ve. Here the arm has 100 joints, the
strategies are run over 10000 steps, and repeated 25 mes. [source code]

12Constraints are generally li ed during development in biological systems, but we use evolve because the assump on that they are
always li ed, never ghtened, is too strong to make without jus fica on.
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availablememory was at first low and then expanded later during the training sequence
performed better than the same network with the whole memory made available from
the start.

Many works on cognitive and sensory constraints have targeted vision. French et al.
(2002) and Dominguez et al. (2003) showed that restricting the sensory frequencies
in a vision system improved performance, with fixed and maturational constraints
respectively. More recently, Nagai et al. (2006) pioneered a work on maturational
constraints and shared attention, showing that restricting visual capacities allowed to
learn one aspect of the interaction at a time.

Morphological and motor constraints have received a lot of attention, as they are
easier to implement in their simplest instantiation. Bongard (2011) has shown that
the development of gait controller for hexapod robots was faster if the robot started
with small limbs that grew throughout the experiment. Lee and Meng (2005) and
Lee et al. (2007a,b) propose a framework that lift constraints to create staged and
organized development of motor coordination.

For the two-dimensional arm, an example of a simple morphological constrain is
to reduce the range of available angles during the exploration. Figure 3.17 shows
the effect of different angle ranges on the exploration of the random motor babbling
strategy: reducing the range of the joint to appropriate levels makes the randommotor
babbling strategy able to efficiently explore most of the reachable space of a 100-joint
arm, as is apparent in the and cases: good constraints are more efficient
than goal babbling in this case.

is can be exploited by reducing the range of the joint range during the early phase
of the exploration, and lift the constraint thereafter. We run a goal babbling explora-
tion where during the first 500 steps of the exploration, the joint ranges are limited to

. After the 500 timesteps, the constraints are lifted and the range of the joints
returns to . As can be seen in Figure 3.18, the constrained scenario generates a
better exploration than the one without constraints. Additionally, the loops that were
observed on the arm in chapter 0 are not present13. e early constraints drive the
exploration to good attractors in the sensorimotor space.

Once again, this is merely an illustration of an idea, and is not meant at establishing
any sort of general result.

13This would need a more thorough, quan ta ve analysis to be claimed as a solid result.
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Figure 3.18: Constraints can help explora on. In this scenario with two 40-joint arms, one is constrained to ±80°
during the first 500 steps, while the other is not. This seems to significantly decrease the number of loops that
are present in the explored postures. A comprehensive quan ta ve analysis is needed to verify those observa ons.
[source code]
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3.7 Demonstrations
Learning from demonstration, also called learning by imitation, has been recognized
as an important technique for current robot learning14 (Schaal 1999; Billard et al.
2008; Calinon 2009; Argall et al. 2009; Lopes, Melo et al. 2010).

In this section, we show that providing a good demonstration can have a dramatic
influence on exploration. In Figure 3.19, a single demonstration is provided to the
explorer, the zero-posture, where all joint angles are zero, resulting in the effect

. A normal random goal babbling exploration is then run for 10000 steps on
a 100-joint arm.

Figure 3.19: Demonstra on can have high beneficial influence on explora on. [source code]

e demonstration provided to the robot is not innocent. It places the exploration

14As the robo c learning domain is in infancy, learning algorithms are s ll exceedingly limited. Typically, learning algorithms can
derive a solu on if given a star ng point not too far away from the solu on—or with enough guidance to get to it. Learning by
demonstra on does precisely one or the other. But social learning should not be understood as mandatory for the development
of highly intelligent behaviour. Several species of cephalopods (amongst which, octopi) display highly intelligent behaviour yet live
short, solitary lives (2-3 years).
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is a good attractor where arm loops are absent, from which it can easily explore the
reachable space. e difference in coverage with the regular goal babbling strategy is
dramatic, and is maintained over the long run.

is result, and the one from the previous section on developmental constraints
suggest that simple exploration mechanisms can, in some instances, tackle complex
environments, as long as some mechanism, limitation, prior or external influence help
them discover good areas of the sensorimotor space.

Discussion

Simple Environments

Brooks (1991b, p. 7)

Given our purposeful exposition of the embodiment concept in the previous chapters,
it would behove us to heed Brook’s forewarning. Yet, clearly, our work forgoes it.

Our work fails on many fronts. It employs an oversimplified environment, and it
employs only one environment. We cannot argue that the mechanisms we expose tell
us anything about real robots’ exploratory behaviour, nor can we claim even limited
domain independence.

Moreover, although we advocated the role of embodiment in chapter 1, the two-
dimensional arm is far removed from a context that would allow us to study such
a phenomenon in any realistic fashion. ere is no noise, motor commands operate
over a discretized time; a motor command unambiguously corresponds to one sensory
feedback. e sensory signal itself is highly abstracted, and does not correspond to any
reasonable self-sufficient sensory hardware (considering an adversarial environment).

e environment is perfectly isotropic, and does not feature any events other than
the one created by the robot. Brooks advocated starting simple, but in a realistic
environment.

By studying exploration strategies in a simplified environment, we run the risk
to—or rather, it is certain that we—ignore problems that exist in the real world. In
our view, for this chapter, this is a feature. By ignoring many problems that a real
robot faces, we obtained a controlled situation where the impact of each component
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of the exploration could begin to be well understood, and where comparatively fewer
different hypotheses can be made to explain the results.

In fact, the investigative method we followed to create those experiments was to
simplify them as long as their qualitative illustrative properties remained. Develop-
mental robotics has chosen a difficult path, fraught with theoretical, experimental,
and methodological issues. One of them arise when the investigated systems become
complex: how to study, then, the contribution of each dimension of the system to
the experimental performance? eir sheer number makes a complete experimental
analysis quickly unfeasible. And, even when the variation of only one dimension is
of interest, the non-linearity of its relationship with the rest of the system still makes
the analysis expensive.

is point was perhaps best argued by Richard Lewontin, when criticizing the
experimental approach of genetics:

Oyama (2000, [)

xi] e interesting point of Lewontin arguments that even if an exhaustive study of
all the gene perturbations regarding a particular trait is done, nothing is necessarily
learned about how the trait is produced in the first place: ‘A sufficient explanation of
why two things are different may leave out virtually everything needed to explain their
nature.’ (Oyama 2000, p. ix).

Our situation is different of course. We benefit from knowing the nature of the
phenomenon we are studying. But studying a complex phenomenon, in a realistic
environment, is not only experimentally challenging, it also reduces the tools we can
use to analyse it, and forces us to act like a geneticist, changing one variable at a time to
discover which exploration strategy works best. And in any complex-enough scenario,
many of those variables, or variable ranges would have to be left unstudied.

But what we most crucially loose, proceeding this way, is the explanation behind
the results. We took the deliberate decision in our experimental approach to target a
setup that was not completely adverse to an exhaustive study, and that was not the least
impenetrable to our comprehension. And we made efforts to go beyond the simple

153



perturbation/observation method, and provided explanations of the results as well as
the results themselves. e criticism that one could make is that perhaps we did not
do enough in this regard.

A Critical Analysis of Intrinsic Motivations
e motivation for this research was initially to thoroughly study how intrinsic mo-

tivations were contributing to the behavioural success of agents compared to simpler
goal babbling strategies. Evidently, we only managed to start studying simpler goal
babbling strategies. Yet, this analysis can serve to put some results of the literature in
perspective.

Baranes and Oudeyer (2013) proposed SAGG-RIAC, a goal babbling algorithm
where goals were selected according to a intrinsic motivation measure, based on com-
petence progress. SAGG-RIAC was tested on a setup similar to ours: a 15-joint
two-dimensional arm. It is not pointless to say that this work has had a tremendous
influence on ours. Besides underscoring the better performance of goal babbling over
motor babbling on this task, the main quantitative result was that random goal bab-
bling performs worse than intrinsically motivated goal babbling when the goal space
is larger (in the article ~9 or 100 times larger) than the reachable space. When the
goal space fits the reachable space, no significant difference can be shown.

Our experiments allows to add to these results. First, the choice of the inverse
model understandably affects the performance of goal babbling. Baranes andOudeyer
(2013) used the inverse of the Jacobian estimated from sampled data, which is sensitive
to the goal distance, and therefore is susceptible of behaving badly when asked to find
solutions to impossible goals. Of course, SAGG-RIAC is precisely intended to deal
with this problem, by monitoring competence, hence the performance of the inverse
model. But the experiment does not disambiguate between the loss of performance
due to the inverse model misbehaving faced with impossible objectives, and the loss
of performance due to the distribution of goals driving the exploration towards the
edges of the reachable space rather than being homogeneous over it.

Second, we provided a method to adapt the goal distribution to the reached space
using the Frontier algorithm. Since a correctly sized goal space does not produce any
difference in performance between random goal babbling and intrinsically motivated
babbling in SAGG-RIAC, a Frontier-backed exploration strategy would probably
produce competitive performance even with an oversized goal space. As such, the
performance advantage of intrinsic motivation over a (subjectively) simpler method,
the Frontier algorithm, has not been clearly empirically demonstrated15. Of course,

15Baranes and Oudeyer (2013) proposed another experiment using a quadruped robot, but only considered a larger space that the
reachable space in that case.
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this discussion would have been more substantial if we had actually done the actual
experimental comparison.

But our intention with this discussion is not to say that intrinsic motivation is not
useful. It is evident that an intrinsic motivation measure such as competence progress
used in SAGG-RIAC or others proposed in the literature affords the agent adaptive
capabilities that have the potential to discriminate his performance from other agents
in significant ways in complex environments. Our point is: finding complex environ-
ments where the improvement that intrinsic motivation brings can be unambiguously
established by eliminating all other hypotheses is a still a major research challenge16.

Proving such a point convincingly would further the evolutionary reflection on in-
trinsic motivation. If we assume that intrinsic motivations require significant cognit-
ive resources in organisms (not necessarily a trivial point to make), justifying intrinsic
motivation from an evolutionary standpoint must account for fitness advantages that
simpler cognitive processes cannot provide. e same point can be adapted to the
computational realm.

As a final remark on this subject, let’s note that discriminating between intrinsically-
motivated agents and non-intrinsically motivated agents is not trivial. As most agents
have no clear physiological need (that they are aware of ), most could actually be con-
sidered intrinsically motivated to do their tasks for the task’s sake, and not
an outcome that they may not always observe, much less ‘understand’. More precisely,
we have seen in section 2.5 that R-max could be considered as novelty-driven. In the
same fashion, our Frontier algorithm could be viewed as novelty-driven, because it
chooses goals according to a mechanism that targets unexplored areas. We pitched,
in essence, a competence-driven motivation against a novelty one. is underscores
the need to qualify our use of ‘simpler strategies’. A more systematic approach may
be needed, qualifying exploration strategy’s simplicity by their algorithmic complex-
ity, in time and space, which we may also use to estimate the cognitive cost they may
represent.

Cheap Design
Another danger of using simplified environments is to study problems that do not
exist in the real world. is is a criticism that is difficult to address directly. Yet, in
this chapter, our aims were not to simulate reality, but to show how different phe-
nomena could impact exploration. We studied the impact of goal distribution, of the
inverse model performance, of motor synergies, of developmental constraints and of
demonstrations. Each time, the investigation was rarely comprehensive. Yet, the set
of experiments shows that the solution to efficient exploration processes is a multifa-
ceted approach. Putting the best learning algorithm behind the exploration will im-

16The irony of using a set of experiments on a simplified environment to make that point is not lost to us.
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prove performances, perhaps tremendously, but this is not cheap design (Pfeifer and
Bongard 2006, p. 107), nor does it respect ecological balance (Pfeifer and Bongard
2006, p. 123).

e learning algorithm is probably going to be complex. And learning is not the
best place to solve the challenges that the environment raises. Our experiments
suggest that an equivalent (or possibly superior) performance can be obtained by com-
bining different, loosely coupled (Pfeifer and Bongard 2006, p. 134) approaches.

Breeding Arm Postures
Our environment, and our focus on diversity, lend themselves to an analogy with
evolutionary algorithms. Let’s consider that our objective is to breed a population
of arm postures. Each arm posture represents the genetic code, and when translated
into their phenotype, they produce an end-effector position. We do not have sexual
reproduction in our world, everything is done by random mutation. Starting from an
initial population of random genetic codes—random arm postures—, we evolve, one
a time, their offspring, that produce new end-effector position. Rather than selecting
arm postures over environment-specific fitnesses, they are selected to foster diversity
in the population: nobody dies ever, so the most members are selected to produce
offsprings that can venture into yet-unexplored areas.

Under such an analogy, the similarity between our exploration algorithms and the
evolutionary robotics approaches based on diversity of section 2.6 is evident. Of
course, there are differences, and our analogy works well due to the specific nature
of the inverse model we used. But this suggests that both domains can probably get
insights from the methods of the other.

K
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Antoine de Saint-Exupéry

4
Diversity-Driven Selection

of Exploration Strategies

In the previous chapter, we have been looking at the impact of several variations of
the experiment in chapter 0. While we investigated strategies that were themselves
composed of different strategies, and to use each strategy was always
fixed. In this chapter, we consider situations where several exploration strategies are
available and the agent must choose dynamically at each timestep which one to use
to generate the next motor command.

4.1 How Much Motor Babbling?

Abstract The quality of the learners impacts how much motor babbling should be performed:
when the learner is bad, more motor babbling is preferable.

In section 3.4, we investigated the impact of the quality of the learner on the ef-
fectiveness of the goal babbling strategy. It was noted, in particular, that when the
perturbation parameter of the inverse model—the amount of perturbation that the
motor command corresponding to the observed effect nearest to the goal is subjected
to—is low, the goal babbling strategy performance is hindered in such a way that the
motor babbling strategy becomes preferable.
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Figure 4.1: The number of random motor babbling steps has a significant impact when the inverse model of the
goal babbling strategy is bad ( ), but li le effect when it is good ( ). The results depicts the
explora on trajectories of a 7-joint arm, over 5000 mesteps, with, at the beginning, 1, 10, or 1000 random motor
babbling steps before star ng a pure random goal babbling strategy. [source code]

Yet, because the random motor babbling is unable to take advantage of past obser-
vations, and therefore to reach the edges of the reachable space of the 20-joint arm,
goal babbling, even backed by a poor inverse model, is still useful during the later
phases of the exploration. In Figure 4.1, goal babbling strategies featuring motor bab-
bling phases of 1, 10 and 1000 timesteps are compared, for a good ( ) and bad
( ) learner. When the learner is good, the length of the initial motor bab-
bling phase has no significant impact on the quality of the exploration over the long
term (5000 timesteps). But when the learner is bad, the longer motor babbling phase
allows for a well-explored centre, and a goal-babbling-backed exploration of the edges
of the reached space. , a short motor babbling phase creates degenerated
clusters.

is leads us to investigate which percentages of motor babbling give good perform-
ances for a given learner. We consider three different scenarios: when the learner
is bad, with a small perturbation parameter ( ), the learner is good, with

, and when the learner is bad, this time with a large perturbation parameter
( ).

We use mixed strategies to analyse this. Rather than having an initial phase of
motor babbling, followed by goal babbling, the motor babbling strategy is chosen
with probability at each step, and the goal babbling strategy with probability .
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Figure 4.2: Extreme values of the perturba on parameter of the inverse model have undesirable effects on the
explora on of a 20-joint arm. Run over 10000 mesteps. When , pure goal babbling is the worst
strategy, more than twice as bad as a strategy with 5% of motor babbling. Inversely, when , a strategy
with low—but not null—motor babbling works well. If the inverse model approximates randomness ( ),
the difference is less marked, but percep ble, and goal babbling is always preferred to motor babbling in this case.
Naturally, when random motor babbling is used 100% of the me, the performance of each scenario is iden cal.
Averaged over 25 runs. [source code]

e first step is always motor babbling1. We consider all values of from to
by increments of , and run the exploration strategy for 10000 steps on a 20-joint
arm.

e results Figure 4.2 show that different learning capabilities call for different
exploration strategies2. When the learner does not produce enough diversity (

), performance is best when random motor babbling is used between 35 and 80%
of the time. When the learner is good, performance benefits from a small amount
of motor babbling (15%), but starts being penalized if the proportion is more than
40%. And when the learner behaviour is only slightly better than random ( ),
goal babbling completely dominates the random motor babbling strategy, because the
goal babbling strategy is able to exploit the slight edge that the learner provides while
producing enough variability. If had been equal to , motor and goal babbling
would have been indistinguishable.

Using motor and goal babbling in equal amounts ( ), the average perform-
ance is good in all situations. But it is not the best choice for the case. No
static strategy fits all situations.
1This would be the case anyway, as the implementa on of the inverse model returns a random motor command if no observa on
is available in memory.
2This may seem self-evident here, but it is worthy of considera on for any self-sufficient agent: are the agent learning capabili es
correctly sized-up for its environment? Andwhen an agent is facedwith a situa on too complex to learn, does he have the capability
to adapt its behaviour and learning strategy?
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Since different learning capabilities call for different exploration strategies, and that
the degree to which the learning capabilities match the challenges of the environment
cannot be anticipated in a self-sufficient context, the choice of the strategy must reside
with the actor, not the architect, and should be dynamically decided and refined during
exploration. We introduce an algorithm that produces such an adaptive behaviour.

F
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4.2 An Adaptive Strategy

Abstract We introduce a strategy that dynamically selects other explora on strategies with
respect to the diversity they respec vely produce. Themethod is shown to successfully adapt to
bad learners. We discuss it in the context of theMul -Armed Bandits and the Strategic Student
problems.

In section 2.5, we discussed how intrinsic motivation has been used successfully to
guide exploration and learning over sensorimotor spaces. In the literature, intrinsic
motivations have mainly been used for deciding what to learn, or, in our case, what to
explore. Here we use intrinsic motivations to decide to explore, namely, which
strategy to use during the exploration.

Choosing which strategy to employ at each step of the exploration faces three main
challenges:

1. : an exploration strategy effectiveness may depend on another
strategy; goal babbling relies on motor babbling to bootstrap the exploration.
Given the inversemodel currently used, this is evenmore true, as goal babbling’s
performance depends heavily the sensorimotor attractors in which it expands,
and thus on the location of the observations produced early in exploration by
motor babbling.

2. : the usefulness of a strategy may change rapidly. Motor
babbling is useful in the beginning of the exploration, but its usefulness drops
quickly.

3. : since an explorer algorithm might be arbitrarily complex, and pos-
sibly involve, in turn, other explorers, an adaptive strategy should not rely on
knowledge of the internal workings of the strategies amongst which it must
choose.

Interdependence does not have to be handled directly, but suggests that even strategies
that did poorly in the past must be re-evaluated regularly as the exploration progresses.

e dynamical nature of the contribution of each strategy means that performance
data becomes obsolete quickly, and encourage evaluations over short-term time win-
dows. Agnosticity implies that the contributions of the strategies have to be evalu-
ated only from the observations the strategies produce. We introduce a measure that
matches those constraints now.

4.2.1 Effect Diversity
A strategy that produces effects over areas that have already been explored is of little
use for exploration. We introduce an online that evaluates, each time
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a strategy is used, how much diversity is created, with regards to already observed
effects.

In order to do that, we rely on the diversity measure introduced in section 1.4,
based on the union of disks centred on observed effects, and adapt it to evaluate a
single effect: the diversity of a new observed effect is the increase in diversity, i.e., the
increase in the covered area.

e diversity of a strategy, in turn, is the averaged diversity of the effects it produced,
over a given time window.

4.2.2 Multi-Armed Bandits and Strategic Students
Using the diversity measure, we can now evaluate the contribution of each strategy
to the exploration. Our problem is similar to—although not the same as—the Multi-
Armed Bandit problem (MAB) (Robbins 1952): we have to choose between a finite
number of different strategies with different diversity scores, and after choosing one
we receive a feedback signal from which we compute an updated score.

e classic MAB problem considers only bandits that are independent from one
another (choosing one does not affect the value of the others), and stationary (the
distribution of rewards of the bandit does not change). A variation of the problem, the

(also called or ) MAB, removes the stationary
and interdependence assumptions: an adversary is free to choose arbitrary rewards for
each bandit at each timestep.
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In practice, a significant portion of the published literature on the adversarial MAB
problem only removes the stationary assumption. In other words, the problem takes
place in the opponent model: the actions of the adversary, i.e. the rewards
for each bandit at each timestep, are decided before the game starts. is is the case
in Whittle (1988) and Auer et al. (2002), who investigate rewards that can arbitrar-
ily change. Garivier et al. (2008) presents , where all
bandits’ reward distributions change at specified timesteps. Cesa-Bianchi et al. (2006,
pp. 156–169) provides a treatment of the nonoblivious case.

One shall remark that an arbitrary sequence of rewards generated in the oblivious
opponent model is indistinguishable from one generated in the nonoblivious oppon-
ent model if the game is played once—which is the case in the real world (an agent has
access to only one timeline). As a result, oblivious MAB algorithms usually perform
well in practical nonoblivious scenarios, where the opponent is not (i.e. not
actively trying to minimize rewards by modelling the agent’s behaviour; the nonobli-
vious property only comes from environmental dependencies between tasks.). Still,
the definition of the opponent model has important ramifications for the proofs of
optimality that are established in the previously mentioned studies. One difficulty of
the unconstrained nonoblivious opponent model is that the best strategy is usually
computationally intractable, as all interactions between choices have to be taken into
account.

Recently, Lopes and Oudeyer (2012) introduced the that
tries to capture the issues involved when learning multiple tasks at the same time. A
student has to learn multiple topics (maths, chemistry, history, etc.), and has limited
resources (time) to do so. How should he allocate his study time between topics in or-
der to maximize its mean grade at the end of the semester? A possibility is to consider
the problem as a MAB problem where the bandits are learning tasks. Interestingly,
the works of Baranes and Oudeyer (2010), discussed in section 2.5, can be understood
in this perspective: each region of the goal space is a different topic, whose improve-
ment is empirically measured through competence progress during learning, and the
exploration strategy must decide how to distribute its action given those learning feed-
back signals.

e strategic student problem also considers another related problem: a student
has one topic to learn, but several possible learning strategies. Which one should
he choose? Is a mixture of several strategies better than employing the best one all
the time? is is the problem of learning to learn (Schmidhuber 1994). Baram
et al. (2004) explored such a problem and showed that a dynamically selected mix-
ture of three active learning strategies outperformed any pure strategy. Konidaris et
al. (2008) demonstrated that empirically evaluating and selecting amongst different
small state space representations specific to a task during learning was effective and
avoided a large task space where learning was unfeasible. e work of Nguyen and
Oudeyer (2012) investigates robots dynamically choosing between asking a teacher
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for a demonstration or doing self-exploration on their own. Jauffret et al. (2013)
proposes a method where a robot can self-assess, and has a frustration drive. When
frustrated, the robot can opt to choose social help to improve its performance. In
the context of reinforcement learning, Hester et al. (2013) develops an algorithm that
can evaluate dynamically which exploration strategy brings the most rewards. ese
exploration strategies are driven by extrinsic and intrinsic motivations: maximizing
rewards, reducing variance, seeking novelty, seeking unexplored states (a binary nov-
elty), and seeking or avoiding particular features of the state representation. Clement
et al. (2015) uses the framework of the Strategic Student Problem to create a tutoring
system that actively personalizes the sequence of activities to each student, by tracking
their performance and identifying which exercises and modalities make the student
progress faster. e works of (Baram et al. 2004), (Nguyen and Oudeyer 2012) and
(Hester et al. 2013) are singular because they combine deciding to learn, and de-
ciding to learn, using a hierarchical approach. e learning strategy is selected
first (how), and then it chooses what input to sample (what).

Learning performance typically exhibits . A student can hope
to greatly improve its grade by studying a subject he knowns little about, but can only
hope modest improvement if its expected grade is already near the top. is charac-
teristic of learning should inform the strategy the student employs. For this purpose,
Lopes and Oudeyer (2012) consider (Krause and Golovin 2014).
Submodular functions are set functions3 that are defined around diminishing returns:
improvement that a new observation can bring is always greater early in the observa-
tion. Equivalently, considering a specific unobserved input, additional observations
will not increase the input’s expected improvement in performance. Mathematically:

is submodular iff for every and

is the improvement that brings, having observed . is
correspond exactly to , the effect diversity we have previously defined.

While submodular maximization is NP-hard (Feige 1998; Krause and Guestrin
2005), the greedy strategy is guaranteed to be no worse than times the
optimal solution (Nemhauser et al. 1978), with the base of the natural logarithm, in
the case of non-decreasing submodular functions.

Of course, not all set of learning tasks exhibit a submodular structure. Still, it
suggests that a good-enough performance might be obtained through simple-enough
algorithms in practice. Lopes and Oudeyer (2012) and Hester et al. (2013) advocate
the use of the Exp4 algorithm (Auer et al. 2002) rather than a greedy algorithm, as a
more robust approach.

3A set func on operates on sets. Given a set , the set of all subsets of (some mes called the power set of ) is noted , and
the set func on assigns a value to each subset .
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Compared to these works, our approach distinguishes itself in its objective: we
are selecting exploration strategies to improve exploration, rather than exploration or
learning strategies to improve learning. e resulting strategy is another exploration
strategy, that can be used to replace any other exploration strategy in an exploration
architecture. We provide an algorithm as simple as possible, based on selecting ex-
ploration strategies proportionally to their empirically estimated diversity.

4.2.3 e Adapt Algorithm
e Adapt algorithm chooses strategies proportionally to their diversity. To allow for

constant reevaluation of the strategies, even those with low diversity, the algorithm
chooses a strategy at random percent of the time, with . Algorithm 3 formally
describes this.

Additionally, in order to foster initial experimentation with each strategy, the di-
versity measure is overestimated at the beginning of the exploration. For a given
strategy , instead of considering the set , we consider the
set , with in . e set
is composed of fictitious points only available to the selecting strategy, that generate
hyperballs that do not overlap with the observed effects. at way, the diversity of the
strategy is overestimated during the first times it is selected. is also avoids
having the first strategy selected unfairly preferred because it created the first obser-
vation, thus receiving the diversity of a full hyperball volume. We will use in
all strategies.

Adapt( , )
:

• , strategies.
• , a set of effects.
• , coverage threshold.
• , time window.
• , ratio of random choice.

:
• , chosen strategy

Random()
choose a random strategy.

choose a strategy proportionally to its diversity .
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Figure 4.3: The architecture of the adap ve strategy with two explorers.

4.2.4 Experiment
We create an exploration strategy with the Adapt algorithm having the possibility
to select between the random motor babbling strategy and the random goal babbling
strategy of section 4.1. e explorer architecture is described Figure 4.3.

We run the adaptive strategy on a 20-joint arm, with each of the three learners
studied in section 4.1. is set to , the time window for the diversity evaluation to
50 timesteps and the coverage threshold4 at .

In Figure 4.4, the results of the strategy are displayed. In all three learner con-
figurations, the Adapt algorithm identifies and uses the correct strategies. When

, the goal babbling strategy is inefficient in the beginning, and motor bab-
bling is overwhelmingly used. Motor babbling diversity declines continually during
the exploration, and in the later stage, is comparable to goal babbling. As a result,
after 4000 timesteps, the two strategies are used roughly equally.

When , goal babbling and motor babbling produce the same diversity
at the beginning, but goal babbling declines more slowly than motor babbling. As a
result, goal babbling is used more and more as the exploration progresses, as it should
be.

When , motor and goal babbling behave similarly—if had been equal to
, they would be the same strategy. During the early phase of the exploration, the

4It is both unsurprising and ironic that the adap ve strategy, whose purpose is to remove one parameter, the ra o of usage of motor
babbling over goal babbling, in turns needs three parameters. However, those parameters are slightly easier to set at reasonable
values.
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Figure 4.4: The Adapt algorithm correctly selects the best strategy in all three contexts. For each learner, three graphs
are shown: the spread graph with the coverage area ( ), the diversity graph giving the diversity measure
of each strategy in func on of the mesteps, and the usage graph, showing how the strategies are effec vely used.
For the usage graph, the data at me shows the percentage of use averaged over the surrounding 100 mesteps
(50 before, 50 a er). [source code]

Adapt algorithm does not distinguish between the two strategies. But in the later
phase, goal babbling is able to provide an edge, however small, that is detectable by
the Adapt algorithm. Goal babbling usage dominate after 1500 timesteps, and is
used 80% of the time after 4000 timesteps.
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Figure 4.5: The Adapt algorithm performs well when strategies behave dis nctly, and be er than randomwith similar
strategies. Each graph displays the performances showed Figure 4.2, with the performance of the adap ve strategy
added as a do ed line (its standard devia ons in displayed in light colour as well). Experiments were repeated 25
mes. Note that not all the y-axis of the graphs begin at zero.

While the algorithm works qualitatively, it remains to be seen if this translates
quantitatively. Figure 4.5 compares the error of the Adapt algorithm with the error
of the fixed mixed strategies of section 4.1.

When goal babbling is much worse than motor babbling ( ) or when it
is much better ( ), the Adapt algorithm manages performance on par with
the best fixed mixture of strategies. When goal and motor strategy behave similarly,
the adapt strategy is more conservative than the best case. is stems from the early
stage of the exploration, when the motor babbling and goal babbling strategy are both
effective, and hence both significantly used.
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4.2.5 A Power Variation
A possible solution would be to increase the impact of the differences in diversity, by
considering, for instance, the square of the diversity of a strategy instead. When

, this approach does not work well, and only increases the usage instability of the
strategies, as shown in Figure 4.6, where the strategies where chosen proportionally
to their diversity, the square of the diversity, and the diversity to the fourth power.

Figure 4.6: The modest decrease in motor babbling usage is accompanied by an increase in instability - strategy
usage shi s suddenly, in a context where the explora on has mostly stabilized. The graphs represent the usage of
the motor and goal babbling strategy (with ), when they are chosen propor onally to their diversity value,
the square of the diversity, and the diversity to the fourth power respec vely. [source code]

As the proportionality of the selection shows weaknesses, a better method would
probably be to use a simple soft-max selection rule, or using the more version offered
by the Exp algorithm from Auer et al. (2002). Still, the performance is good-enough
for now.

4.2.6 Grid Diversity
Computing the area of the union of hyperballs is not trivial ( in dimension
2, see appendix A for details), and computing the diversity requires to do it times,
with the number of timesteps. We developed an alternative effect diversity measure
based on a grid, computed in , that produces similar results. Details and graphs
are available in appendix B.
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4.3 Adapting Reach

Abstract Wepresent a slightlymore complex explora on architecturewere somepart are fixed
and other adaptable. We show that the Adapt algorithm can balance different explora on
strategies beyond motor and goal babbling.
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Figure 4.7: The architecture of the -unreach strategy run by an adap ve strategy is an example of the hierarchical
expressiveness of the explorers framework.

In section 3.3.2, we investigated the -unreach strategy, and how a combination
of goal set outside and inside the goal space can allow to balance the aggressiveness
of the exploration. We now use the Adapt strategy to adjust the balance dynamically.

e resulting architecture is described Figure 4.7. We force 10 initial random motor
babbling steps, after which the Adapt strategy can choose between the unreach and
the reached strategy. e learner is configured with a perturbation parameter

.
We study this time the impact of considering different coverage threshold for the

adapt strategy. Specifically, we consider , as we did in section 4.2, and
and . All the other parameters of the adapt strategy remains as
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they were set in section 4.2: and . e width of the cells the grid of
both grid strategies is set to along both dimensions.

Figure 4.8: The coverage threshold parameter has a huge impact on the diversity measure, and, consequently, on the
usage of the strategies. [source code]

In the results presented Figure 4.8, the impact of the coverage threshold parameter
is clear: when it is high, coverage of the centre is quickly complete; the only sources of
diversity then are found on the edges of the reached space, which favours the unreach
strategy. Observations are clustered along the edges of the reachable space. When
the threshold is low, the coverage of the centre takes much more timesteps, and the
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perturbations induced by the inverse model make the reached strategy competitive,
yielding a much more balanced usage of the two strategies.

In other words, a high threshold favours aggressive exploration but yield poor di-
versity of observation, and a low threshold provides high diversity of observations, and
favours a less aggressive exploration.

One could possibly obtain the best of both, a high diversity and an aggressive
exploration—by implementing a developmental constraint that makes the threshold
begin with a high value and lowers it during exploration.

Discussion
e Adapt algorithm we presented, and the corresponding adaptive strategies we im-

plemented demonstrate the reusability of simple exploration strategies to make better,
more flexible ones. e diversity measure is, in many ways, rather crude, but it shows
that discriminating between exploration strategy is definitely possible, and, advant-
ageous. is work is related to previous works, and the general idea is not particularly
new. It’s application to exploration problem, and to a diversity measure, is, however.

In the experiments, wemodified the exploration strategy of the agent. It would sug-
gest that a same strategy, then, can adapt to different environments, with different
complexities. is is the more important point, but this is not what the experiments
established—further work is needed to establish environment independence directly
and empirically. e algorithms could also benefit from being tried in different do-
mains. As we argued in last chapter’s discussion, our simplified two-dimensional work
is hardly convincing of anything else than itself.

Additionally, From the experiments we conducted, it is unclear how the Adapt
algorithm will scale with the number of strategies. As more strategies are available,
either more time will have to be devoted to exploratory sampling of bad strategies, or
strategies will be less accurately evaluated overall. is is the classic exploration/exploitation
trade-off.

We imposed a constraint of agnosticity over the internal working of the selected
strategies. However, the usefulness of some strategies typically decreases with time,
such as motor babbling. Taking into account on how well each exploration strategy
usually performs—perhaps from a prior derived from the experience gathered from
exploring similar environments—could improve the performances of the Adapt al-
gorithm, and avoid to rediscover everything all the time. Coincidentally, we will be
attacking that very subject in the next chapter.
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Konard Lorenz

5
Reuse: e Basic Idea

To illustrate this, let’s consider a pair of two-dimensional arms with the same number
of joints. e first arm has same-length links totalling onemeter, and the environment
returns the Cartesian position of the end-effector, as in chapter 0. e second arm has
links such that, going from the base to the end-effector, each link is 0.9 times smaller
than the previous one, while the total length of the arm remains one meter; this arm
also returns the position of the end-effector, but using coordinates.

Figure 5.1: When execu ng the same command on both arms, the posi on of the end-effector is significantly dif-
ferent most of the me. Here depicted are 50 pairs of execu ons of the same motor command on the two 20-joint
arms, five of which that are highlighted. [source code]
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e two arms share the same number of joints with the same available ranges
( ): they have the same motor space. However, because the lengths of the links
are different, most motor commands will results in a different position for the end-
effector, as shown in Figure 5.1. And because the positions are expressed in two dif-
ferent coordinate systems, the inverse model of one arm is difficult to exploit on the
other arm, without having, or learning, a mapping between the coordinate systems.

As in the first part, the agent views the two arms as black-boxes, and has no in-
formation about the relation between them. In fact, because the sensory feedback
channels are not labelled, the two arms are indistinguishable from one another before
any interaction is performed.

e Basic Idea
Let’s assume that the first arm has been explored. e idea behind the reuse method
is to bootstrap the exploration of the second arm using the exploration history of the
first arm.

In all the exploration strategies that we have considered so far, the initial observa-
tions were generated through random motor babbling. When using the reuse method,
instead of generating the initial motor commands randomly, we instead choose motor
commands that were executed during the exploration of the first arm. is is possible
since both arms share the same motor space: the motor commands are compatible.

Since the reused commands are executed on the second arm early in exploration,
during the motor babbling phase, we cannot rely on acquired knowledge about the
second arm in order to choose which motor commands to reuse. Instead, we rely—
unsurprisingly—on an intrinsic characteristic of the exploration history of the first
arm, one that occupied us already during much of the first part of this thesis: its

.
We choose a set ofmotor commands from the first arm that produced a set of effects

that has a high diversity, and execute them on the second arm. Because the internal
dynamic of the two systems are not too dissimilar, this is likely to create a diversity
of effects early in the exploration of the second arm. In other words, the second arm
leverages the structure of the exploration of the first arm. In particular, it increases
the probability to produce observations in low-redundancy area of the sensorimotor
space, that required extensive exploration to be discovered during the exploration of
the first arm.

e main condition for the reuse method to be applicable is that the two environ-
ments share the same motor space—or at least that the intersection of their motor
spaces is not empty. e reuse method does not impose any other condition on the
relation between the two tasks. In particular, it is not constrained by differences in
sensory modalities, or differences in learning algorithms. And because the number
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of random motor babbling step that are replaced by reuse steps is configurable, the
impact reuse has on the exploration of the second arm can be regulated as necessary.

e condition on the motor spaces is not particularly hindering either. It is already
verified in many platforms at the lowest level: the actuation interface is usually as
stable as the body and wiring of the robot (an the same goes for biological organisms).
When considering higher level of abstraction for motor commands, a higher discrep-
ancy can be expected between tasks’s action space. Even in those cases, whether the
overlap between the action spaces of the tasks is total, high, low or null, detecting
the applicability of reuse is immediate, and reuse can be used opportunistically in
conjunction with other exploration strategies.

Experiment

Figure 5.2: A er the 5000 steps of the explora on on the first arm have been carried out, a grid is applied on the
sensory space. Here, we choose (at random) one effect per cell (in red). Out of those effects, only 50 will be selected
and their motor command reused: this is the rightmost graph. [source code]

e exploration on the first arm is conducted over 5000 steps, using the random
motor babbling strategy for the first 50 steps, and then using random goal babbling.
Both arms have 20 joints.

We implement the reuse method by laying a grid over the sensory space of the first
arm at the end of the exploration. e set of reused motor commands is selected by
repeatedly choosing a non-empty cell at random and drawing without replacement
an effect from that cell; the chosen motor commands are the ones that produced the
selected effects. is process is illustrated Figure 5.2.

As can be seen Figure 5.3, Reuse-backed exploration access low-redundancy areas
of the sensorimotor space early. e exploration of the second arm environment be-
gins by reexecuting 50 motor commands from the first arm exploration trajectory. At
the 400 timesteps mark, the difference between reuse and a classical goal babbling
strategy is significant. In particular, the reuse exploration has spread near the edges
of the reachable space while goal babbling is still far from them. 5000 steps into the
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Figure 5.3: The benefits of the reuse explora on manifest mostly early in the explora on. Here, the top-most row
shows an goal babbling explora on backed by reuse, while the bo om row shows a regular goal babbling explora on.
In red, in the case of reuse, the effects produced by the reused motor commands, and in the case of regular random
goal babbling, the effects produced during the 50-steps random motor babbling ini al phase. [source code]

exploration, the differences vanish—the better final coverage of the reuse strategy on
this specific example is not indicative of a general tendency.

Randomness Or Diversity?
So far, the presentationwe havemade of the reusemethod—although perfectly correct—
has been somewhat disingenuous. Indeed, by focusing the attention on how the se-
lection of motor commands was driven by effect diversity, we have implied that it
played a major role in the performance of the algorithm. What about choosing motor
commands to reuse at random?

In Figure 5.4, the pattern of exploration offers no discernible difference to the one
of the top row of Figure 5.3, where the set of reused motor commands was explicitly
crafted to contain a diversity of produced effects on the first arm.

e explanation, of course, is simple. e goal babbling algorithm used in the ex-
ploration of the first arm already produced a distribution of motor commands that pro-
duced an approximately uniform distribution of effects on the reachable space. is
was how we motivated goal babbling over motor babbling in chapter 0. Explicitly
ensuring diversity is then redundant, and does not provide any advantage. is allows
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Figure 5.4: Reusing random motor commands seems as efficient as using commands selected for their diversity. In
this explora on, the motor commands were chosen randomly from the first explora on, without taking into account
how the effects they produced relate to one another. [source code]

to understand better how the method works, whether the selection of reused
commands in random or not. Reuse leverages the reduction in the heterogeneity of
the sensorimotor redundancy of the set of observations of the first exploration.

What happens, then, if the exploration of the first task does not reduce the het-
erogeneity of the redundancy? What if, for instance, the first exploration is driven by
a pure random motor babbling strategy? Surely, we can’t expect any advantage from
using random reuse then. But what about diversity reuse? , can diversity
reuse still be justified, when the exploration of the first arm is good-enough? All these
questions will be answered in the next chapters.

For now, let’s conclude that the reuse method is simple, requires a condition often
already verified in existing robots, and improve significantly early exploration.

K
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6
e Reuse Framework

In this chapter we review the existing literature on transfer learning, motivate our
approach and formalize the reuse method.

6.1 Transfer Learning
Classical machine learning considers scenarios where a learner is trained to make pre-
dictions from data on a specific problem. Transfer learning ( run and Pratt 1998;
Taylor and Stone 2009; Pan and Yang 2010) considers how the experience gained in
one learning scenario can be used in another scenario to improve performance. e
reuse method is an instance of transfer learning.

6.1.1 A Short Motivational Overview
Transfer learning was originally motivated by the cost of labelling instances for clas-
sification tasks: for instance, a classifier would be created to detect horses in pictures,
and then the need to create a classifier to detect zebras would arise. To train the clas-
sifier, thousands of zebra pictures would have to be gathered and manually labelled.
If somehow the knowledge contained in the horse classifier, or the labelled horse pic-
tures, could be leveraged to create the zebra classifier, given their obvious similarities,
then the number of pictures of zebras that would need to be labelled to achieve a given

183



performance would be reduced. Or rather than a different animal, we may want to
create classifiers for a different medium. Can the horse picture classifier help train a
classifier detecting horse in videos? It may also be that this is not so much the cost of
labels that makes transfer learning desirable, but the scarcity of the data: there might
not be enough pictures of zebras or videos of horses available to create a good-enough
classifier1.

Likewise, robots can benefit from transfer methods. As each interaction is costly,
any interaction that can be avoided by reusing previously acquired experience repres-
ent a significant information gain. Moreover, sometimes the data necessary to solve
a problem is not present in the environment, and must be marshalled from past ex-
periences. In other contexts, there is no time to learn: a useful behaviour is expected
immediately. Additionally, complex tasks often require the acquisition of a number
of subskills before being able to deal with them. ose subskills may be more easily
learned in simpler contexts, from which the acquired behaviour must be transferred
on the complex task.

Finally, current robots suffer from an absence of good priors when they start learn-
ing. Without any knowledge of the world, without any common sense, tasks that
are trivial for humans become frustratingly difficult to implement in robots. Transfer
learning is part of the answer to this, and, in particular, to the question of the origins
of Bayesian priors.

Another important instance of transfer learning is (Quiñonero-Candela
et al. 2008). Dataset shift happens when one cannot assume that the testing data for
a learning algorithm will have the same distribution as the training data. For instance,
after six-months of operation, a bike-sharing operator wants to build a model to pre-
dict how the bikes will be borrowed next month, and where empty and full stations
will be located. But bike usages change with the seasons, and no record exists for
this month last year. And, the new bike lanes opened by the city last week and the
increased popularity of the program have probably to be taken into account to. In this
case, we talk about . e task is the same between the training and the
application, but the training data is sampled from a situation different than the one
we want to apply it to. Another example is an airport trying to build a classifier to
detect smugglers amongst the passengers. Evolution of the value of smuggled goods
or changes in repression will modify the behaviour and distribution of smugglers: an
increase in the value of the smuggled goods accompanied with more lenient laws will
make a portion of the normal population become smugglers. When building a classi-
fier based on historical data, one must take these factors into account.

Online, incremental learning algorithms make robots less affected by dataset shift,
which manifests itself when the learning data is divorced in significant ways from the

1Interes ngly, the sensorimotor loop of a robot can be approximated to the labelling process: motor commands are labelled by the
environment: the labels are the feedback sensory signals (this is assuming that the motor commands and sensory s mula on are
discrete and can be unambiguously matched with one another). Yet, the fundamental differences between the two highlighted in
chapter 1 make most transfer learning methods for classifica on incompa ble with an embodied context.
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current context. Robots should expect continuous dataset shift, and constantly update
their behaviour to changing conditions. Nevertheless, abrupt changes do happen (be-
ing unboxed in someone’s home from the factory for instance). And learning a task
does not necessarily happen continuously. Being able to deal with dataset shift means
being able to resume the learning of a task that was begun in the past, by taking into
account that the observation distribution may have changed.

One has to acknowledge that transfer in humans is not a settled topic (Billing 2007).
orndike and Woodworth (1901) was one of the first to study the phenomenon, and

in a 1923 study ( orndike 1923) famously failed to find a strong causal link between
learning Latin and improving one’s mastery of the English language. Other studies
have reported similar results, for instance on the benefits of learning programming
(Pea et al. 1984; Salomon et al. 1987) (although other studies did find instances of
positive transfer (Lehrer et al. 1988; Clements et al. 1984)), or even learning how to
read and write (Scribner 1981). As Billing (2007) points out, the studies, re-examined
today, are usually regarded as not providing good evidence against transfer. Overall,
unless considering very narrow definitions of transfer, evidence seems in favour of
transfer. In humans, transfer takes multiple forms, but is not systematic; in particular,
it is highly contingent on the environmental conditions of learning.

6.1.2 A Computational Definition
In Pan and Yang (2010), a learning scenario is defined as the combination of a domain

and a learning task . e domain is composed of a
feature space and a marginal probability distribution with . In the
case of our sensorimotor scenario, would be the set of motor features, and
the uniform distribution, since we can choose and execute any motor command we
want. e learning task is composed of a label space and an objective predictive
function . corresponds to the sensory space, and to environmental
feedback. Given these notations, Pan and Yang (2010) defines transfer learning as:

In the example of the previous chapter, the motor spaces, and their uniform mar-
ginal probability distribution are identical. e tasks, however are different; we are in
the but case2.

2In fact, the algorithms we present straigh orwardly extend to more general case where the intersec on of the sets of motor
commands from the two environments in not null (i.e., when the Bha acharyya coefficient of and is non-zero;
Bha acharyya (1943)). S ll, we will assume unless otherwise stated.
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Notice that, while the domain and the task are easily distinguished conceptually,
in practice it is often much less clear, and it may entirely depends on how the problem
is formalized; the concept of domain and task usually depends on the learning frame-
work. In reinforcement learning for instance, Fernández et al. (2006b) distinguishes
the Markov decision process (MDP) as the domain, while the task corresponds to the
reward function. As a result, many transfer learning techniques are specific to a given
learning framework.

More simply, transfer learning happens as soon as
. is does not have to be a direct influence.

If any of the cognitive changes that have been created while learning a task influence
how another task is learned, transfer learning happened. For this reason, transfer
learning is present in human and animal learning not only in conscious and specific
cases, but all the time, as a intrinsic property of neural learning. Furthermore, any
reasonable cognitive architecture for cumulative learning probably implicitly features
transfer learning in one form or another, because not doing so would impose strict
cognitive isolation between tasks.

Of course, and again, transfer learning is only defined insofar as are clearly
defined. While most transfer learning experiments provide tasks, and assume that
they are related, the problem of recognizing and discovering tasks in an environment
is a non-trivial issue for transfer learning that is mostly unaddressed in the literature.

6.1.3 Benefits of Transfer
ere are several expected benefits of transfer on learning performance (Taylor and

Stone 2009), that acts as many ways to evaluate its impact.

• A improved initial performance. If the transfer occurs before learning in the
second task has started, a jumpstart, i.e. a difference in initial performance
might be observed between the target task with and without transfer.

• In practical settings, a behaviourmight become useful if the performance reaches
a specific threshold (for instance, the positional precision of an end effector),
and transfer learning may help reach this threshold faster.

• Closely related, the performance might be evaluated at a given time after learn-
ing started, and transfer learning may improve the evaluated performance.

• e average performance over a time window may also be increased. In a rein-
forcement learning context, if the time window extends to the whole learning
duration, this represents the total cumulated reward.

• Finally, transfer learningmight change the asymptotic performance of the learn-
ing algorithm.
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Figure 6.1: Four poten al benefits of reuse.

ese are some performance-related impacts of reuse, that are mainly valid in the
case of monotonically increasing performance. In complex scenarios, the impact of
transfer learning might be more complex to measure.

Transfer learning is not necessarily beneficial. If the tasks are too dissimilar, the
bias introduced by the source task might decrease performance: this is

. For instance, a source tasks might direct learning toward a familiar region of the
learning space in the target task. is would provide a positive jumpstart in perform-
ance, but might produce a worse asymptotic performance if this region of the learning
space limits the quality of the solutions.

6.1.4 Ways and Means
To conduct transfer from one task to another, one must identify aspects of the source
task that might benefit the learning of the target task, and devise a way to transfer
them between tasks. Additionally, one must consider that transfer is not always be-
neficial, and thus decide, in a specific context, if transfer should be carried out. In a
cumulative learning setting, one can furthermore expect that more than one source
task is available: choosing from which source task to transfer also becomes an issue.

is corresponds to the three questions identified by Pan and Yang (2010): to
transfer, to transfer and to transfer, and we add to transfer.

Different methods of transfer have been proposed. Some share instances of the
dataset across tasks (Shimodaira 2000; Quiñonero-Candela et al. 2008; Fan et al.
2005; Liao et al. 2005; Huang, Gretton et al. 2006; Dai, Yang et al. 2007; Jiang
et al. 2007), in particular in the case of dataset shift. ese methods typically use
importance sampling and instance reweighting to adapt the dataset. Liao et al. (2005)
in particular propose, in the context of logistic regression, an active learning algorithm
that chooses which elements of the target task to label, if no label are provided at the
start. e active choice is driven by reducing the uncertainty (the variance) on the
classifier parameters.
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Others share or create common feature representations (Blitzer et al. 2006; Daumé
2007; Dai, Xue et al. 2007; Xing et al. 2007; Wang, Song et al. 2008; Pan, Kwok
et al. 2008; Zeng et al. 2012). Zeng et al. (2012) uses kernel learning methods on
related tasks, and then applies the low-dimension representations thus created on the
target task, where the scarcity of the data does not allow for such methods to apply.
In contrast, Daumé (2007) augments the target data with the learned source task
features.

Another class ofmethods sharemodel parameters ormodels across tasks (Lawrence
et al. 2004; Raina et al. 2006; Bonilla et al. 2008; Gao et al. 2008; Chai et al. 2009).
As Raina et al. (2006) points out, such methods are in particular employed to set the
priors in a Bayesian setting. Gao et al. (2008) proposes to combine multiple mod-
els into a locally weighted ensemble of model for the target tasks. Even conflicting
models can be combined, the relevance of each of a local area of the target dataset is
evaluated, and the more relevant models receive a greater weight over that area.

Most methods we have discussed so far deal with classification and regression. Our
account is far from exhaustive, and the interested reader can consult run and Pratt
(1998) and Pan and Yang (2010) for reviews, and Quiñonero-Candela et al. (2008)
more specifically for dataset shift. In the next section, we discuss another class of
transfer learning methods: transfer in reinforcement learning.

6.1.5 Transfer in Reinforcement Learning
In the reinforcement learning framework, the Markov Decision Process representa-
tion shared by the different algorithms lays out clear distinctions between the transfer
methods. In particular, we can distinguish between methods that assume that the
state-action space is shared across the source and target tasks, and those that don’t.
Among those two groups, we can usually find distinctions of instance transfer, repres-
entation transfer and parameter transfer to classify their respective methods.

Among the methods that share the state-space between source and target task, a
common technique is to learn and discover (Sutton et al. 1999; Precup 2000)
in the source task, and to transfers those policies to the target task. Options are useful
for navigating the state space. Learning them in the source task provides the agent in
the second task automatized ways to different areas of the state space (Perkins et al.
1999; Bernstein 1999; Şimşek et al. 2005). Asadi et al. (2007) propose to identify
bottleneck states in the state-space, and to construct subgoals (and correspond partial
policies), based on the structure of the task space rather than the reward.

An interesting method comes from Sherstov et al. (2005), that create a set of task
from a source task, and prune the action space from any action that is not optimal in
at least one task of the set. e diversity of the set of tasks creates a filter that is used
to reduce diversity in the set of actions.
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Other methods do not consider the state-space necessarily fixed, but usually require
that an expert mapping between the tasks. For instance, the work of Fernández et al.
(2006b), , which upholds ideas that are very close to the reuse algorithm,
constrains the state and action space to be similar Fernández et al. (2006b), or that
a mapping between the state and action be provided by an expert (Fernández et al.
2006a).

However, the reuse method does too for the action space: it requires that the motor
space remains the same. And because our environment is one-step, episodic, the
constraints that the state space stays the same is always guaranteed.

e idea behind is to reuse policies across tasks, in the context of the
RL framework. e tasks are composed of an MDP and a reward function. When
a task is sufficiently novel, it is stored in a policy library, ready to be reused on new
compatible tasks. When the policy learned from a task is novel compared to existing
policies in the library, it is added to it.

However, policy reuse by itself does not provide a mechanism to generate diversity.
e creation of new tasks is not the prerogative of the algorithm. As with reinforce-

ment learning, policy reuse has only been applied to discrete or discretized spaces.
And the similarity between two strategies is tied to the reward they bring. For all
these reasons, our work is singularly different from Fernández et al. (2006b,a).

Again, our account is illustrative rather than exhaustive. e readers will find de-
tailed surveys in Taylor and Stone (2009) and Lazaric (2012).

6.1.6 Brief Motivation
Many transfer methods try to find the mapping between the source and target task.
Even in simple examples, such as our arm perceiving the world in polar coordinates,
this represent a difficult challenge. One that is probably not often necessary to solve.

Rather than considering the functional mapping between the two tasks, we con-
sider the diversity mapping, which is much more robust and much simpler. We as-
sume that a set of motor commands that produce a diversity of effect in one task has a
higher probability to generate a diversity of effect in another task, than a less diverse
set of effects. Although obviously one can find counterexamples, this assumption is
verified in many practical situations.

An interesting application for the reuse method would be team of identical robots
(Waibel et al. 2011). ose teams of robots are projected to be connected to one
another and share experience data amongst the population. Reusingmotor commands
between robots of a same population is possible since they share the same body, and is
desirable, because it introduces no bias on the target robot: it avoids the representation
trappings, and does not try to force the same ontology on all elements of the team,
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which is both a significant loss of diversity, and can disconnect the knowledge of the
robot from its direct experience.

F
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6.2 e Reuse Algorithm
Our method is organized around three algorithms. e first, Explore(), describes
the learning and exploration of the source task and has been described in section 3.1.

e second, Transfer(), is applied at the end of the learning of the source task, and
produces the motor commands to be transferred to the target task. e third, Reuse(),
controls how the transferred data impacts the exploration algorithm in the target task.

6.2.1 Processing the Trajectory
For each interaction in the second task, the learning algorithm can request reusing a
motor command from the first task rather than doing random motor babbling. Goal
babbling behaviour is unaffected. Our reuse algorithm defines whichmotor command
is transferred when such a request is made.

e whole assumption behind reexecuting a set of motor commands from a pre-
vious task that generated a diverse set of effects in the past task, is that they might
generate a variety of effects in the current task as well, hence bootstrapping the model
with good observations. Of course, this assumption hinges on the fact that the two
tasks are sufficiently similar.

In order to generate a sequence of motor commands that generated a diverse set
of effects, we reuse the grid of the goal babbling algorithm, and assign each cell with
a bin. In this bin, we put the motor command of every effect that belong to the
cell. When a motor command is requested by the exploration algorithm, we choose a
random, non-empty, bin and draw, without replacement, a random motor command
from the bin. is procedure is codified in Algorithm Transfer.

is procedure has a low computational cost, and only transfer structured set of
motor commands. No sensory data is shared across tasks, hence the target task never
tries to use the forward or inverse model of the source task. is particular method
as the added advantage that the structured set of motor command can be computed
before knowing about the second task, and be used even if the first task has been
forgotten.

6.2.2 Target Exploration
We modify Algorithm 2 to replace the call to MotorBabbling() by a probabilistic
call to ReuseBabbling() and MotorBabbling(), according to a probability reuse,
producing the Reuse algorithm. e resulting exploration architecture is illustrated
Figure 6.2.

F
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6.3 Diversity Reuse versus Random Reuse
In chapter 5, we presented a example of utilization of the reuse algorithm on two
two-dimensional arm environments. e source environment was a 20-joint two-
dimensional arm with all segments of the same size, while in the target environment,
the arm had segments of decreasing length in the proximo-distal direction. Although
we observed that using reuse provided an improvement in exploration on an specific
instance, we didn’t provide robust quantitative evidence. More over, that selecting the
motor commands to be reused with diversity or randomly did not provide a qualitative
difference. We address these two points now.

In chapter 5, the explorer on the source and the target task had a bootstrapping
period of 50 timesteps. During this period, pure random motor babbling and pure
reuse were done in the source task and the target task respectively. e rest of the time,
the exploration was done using random goal babbling with a perturbation parameter
equal to 0.05.

Exploiting Random Motor Babbling with Diversity
Figure 6.3 shows the coverage performance of the target task with and without reuse,
using diversity reuse and random reuse. e performance without reuse is not the
performance of the source task (the same-length links task); it is the performance
of the target task (the decreasing-length links task) with the 50 timesteps of reuse
replaced by 50 timesteps of random motor babbling, as we would proceed if a source
task was not available3. Because the differences in performance are sometimes small
in this section, all experiments have been run 100 times.

Figure 6.3: The observa on made in chapter 6.3 is verified, there is no difference between using diversity reuse or
random reuse in this specific example. [source code]

3The presenta on of those results, with the performance target task with and with reuse in pink and blue respec vely will remain
the same throughout all chapters of the second part. Should you have a grayscale version of this document, in this chapter the
performance with reuse is always superior, some mes barely, to the one without, at t = 5000.
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Figure 6.3 confirms the result of the previous chapter: in this particular instance, no
quantitative difference exists between the performance of diversity reuse and random
reuse (the curves almost match perfectly, with diversity non-significantly eking out at
t = 1000).

Figure 6.4: Diversity reuse is able to exploit a set of observa on generated by random motor babbling, but the
improvement in performance is small. [source code]

To show evidence that diversity reuse provides an advantage over random reuse, we
consider a scenario where random reuse cannot bring any performance gain: when the
source task is pure motor babbling. As shown in Figure 6.4, diversity reuse makes a
difference, if a small one. In fact, it illustrates how diversity reuse is able to exploit an
exploration that has no particular beneficial structure.

Increasing the Reuse Duration
One explanation of diversity reuse and random reuse not displaying different perform-
ance in Figure 6.3 is that over 50motor commands, a random selection will generate as
much diversity as an explicit diversity-driven approach. Over a longer period, random
reuse will select similar motor commands from high density areas of the exploration,
while diversity reuse will select motor commands uniformly over the sensory space,
providing a performance improvement.

To test that hypothesis, we extend the reuse period from 50 timesteps to 500
timesteps. Figure 6.5 shows that this does not provide any significant improvement
(the curves almost match perfectly. e standard deviation is slightly better for di-
versity reuse at t = 1000).

Using a longer reuse duration from a motor babbling source yield interesting result
however. In Figure 6.6, diversity reuse is able to yield a significantly better perform-
ance during the first 500 steps of the exploration than random reuse.

195

http://fabien.benureau.com/phd/code/fig6_4.html
http://fabien.benureau.com/phd/code/fig6_4.html


Figure 6.5: Even with an extended reuse period (500 mesteps), no performance difference is exhibited between
diversity and random reuse. [source code]

Figure 6.6: Diversity reuse almost matches the performance of the goal babbling strategy without reuse (and 50
mesteps of motor babbling), during the first 500 mesteps. The early performance of motor babbling is much
worse, even if the performance of both at t = 5000 is no different from the one of Figure 6.4. [source code]

Opportunistic Diversity Exploitation
A particularly disadvantageous setting for random reuse is when few good observa-
tions are mixed with amongst large number of mediocre observations. In that case,
diversity will explicitly select the few good observations, while random reuse will miss
them, and overwhelmingly select mediocre observations. To that end, we consider a
goal babbling source task where motor babbling lasts for 4500 timesteps. Only dur-
ing the last 500 timesteps does goal babbling is run. Figure 6.7 illustrates the three
sources tasks we have considered so far (the performance is shown on the same-length
task, as is appropriate).

In that setting, diversity manages to provide a small improvement over random
reuse (Figure 6.8).

e real difference happens when the reuse period is extended to 500 timesteps
(Figure 6.9). Diversity reuse is able to fully exploit the diversity provided by the source
task, while random reuse performs poorly—it will select 50 observations produced
during the goal babbling phase of the first tasks out of 500, on average—-, only able
to exploit the source task after the 500th timestep, when goal babbling happens. e
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Figure 6.7: Even only over the last 500 mesteps, goal babbling provides a poten al exploitable improvement in
explora on. [source code]

Figure 6.8: Diversity reuse exhibit be er performance over a highly biased source task, but not significantly. [source
code]

final performance between the two reuse strategy is not different, however.

Figure 6.9: Diversity is able to fully exploit the heterogeneously distributed diversity in the observa ons of the source
task, while random reuse performs poorly during all the reuse period. [source code]

Discussion
In these two-dimensional arm experiments, diversity reuse is consistently similar or
better than random reuse, but does not exhibit significant quantitative improvement
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in performance over the long run. Qualitatively however, diversity reuse, at the dif-
ference of random reuse, is shown to be able to exploit a distribution of observations
randomly distributed over the motor space. Additionally, it brings robustness and sig-
nificant quantitative improvement during the early phase of the exploration in specific
scenarios.

In an ecological context, the early period of learning is the most relevant. Animals,
humans, robots do not live at the asymptote. Because time is finite while learnable
skills are virtually unlimited, incentives are for engagement with a learning task to
be limited. Furthermore, as devoting significant resources to a single task brings di-
minishing returns (Lopes and Oudeyer 2012), this behaviour can only be justified
if the task is of some special importance. In a context where the agent is exploring
the environment for new interactions, no interaction is a priori more special than any
other. Settling to learn the first new environmental interaction found, that might
be less useful and more difficult to learn than others nearby is not a good strategy.
Sampling different interactions—for instance estimating their learnability (Baranes
and Oudeyer 2013)—, before committing to learning any of them therefore presents
a fitness advantage.

Moreover, the early phase of learning is important because learning can be inter-
rupted at any moment. By a predator, by a more pressing physiological need, by a
peer, by any sort of environmental perturbation.

Finally, an agent with good early learning performance will be able to amass more
knowledge and skills by engaging over short periods of timewith a diversity of learning
tasks than another agent with bad early learning performance, even if both reach the
same medium-term, long-term or asymptotic performance.

erefore, in robotics, a good early learning performance is better than a good
asymptotic performance. A good early learning performance is better than optimality.

us, diversity reuse represents a significantly better algorithm for the transfer of
exploration in a robotic context where many tasks are available. It increases signific-
antly the knowledge and skills obtained while exploring the environment.

It also favours the interactions that are naturally compatible with the already ac-
quired competences of the agent. As any transfer learning algorithm, it has the tend-
ency to incentivize the agent to learn progressively more complex tasks, the choice of
which are dependent on the agent current competence.

Indeed, an agent whose learning is guided by progress in competence for instance
(Baranes and Oudeyer 2013) will be motivated to engage with tasks that offer max-
imum learning progress, i.e. easy tasks. While learning progress motivates the agent
to stop learning a task as soon as the (diminishing) returns decrease significantly, it can
only direct the agent towards more complex tasks once all the simple tasks are learned.
Which means that the agent will increase the complexity of its behaviour only in situ-
ations where there is a finite, reasonable amount of easy learning tasks. If the agent
uses transfer learning, tasks that were hard at the start of learning can progressively
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become easier—and therefore more desirable for learning—if they are dependent on
simpler, learned tasks. Transfer learning encourages the (self-)scaffolding of increas-
ingly more complex behaviour. We’ll see how reuse can foster scaffolded learning in
chapter 5.

Another way to look at the previous argument is to consider that an additional
or a could be added to the agent

to motivate it not to only learn simple tasks. But, alternatively, transfer learning,
by modifying the patterns of learning of the agent, can produce similar behaviour.
Which is better then? Modify the learning capabilities or modify the motivational
drives? is issue warrants further research.

Let’s remark here that while we advocate reuse for a task-rich environment, the
framework proposed only deals with one source task. In a situation where the agent
has multiple acquired tasks available, choosing from which task to reuse motor com-
mands is not trivial.

e most simple way to deal with this issue is to rely on a similarity measure
between the available source tasks and the target task. Provided with a slightly novel
object, a child will have the tendency to reuse motor commands that provided interest-
ing observations on similar objects. Put differently, the slightly novel objects evoke
affordances (Gibson 1977) in the child that were learned by interacting with other
objects in the past. ese affordances will naturally bias the interactions the child
chooses to engage the object with.

In this thesis, we consider the scenario of a totally novel object, that does not bear
any visible similarity with past experience. is might be because the object is truly
new, or because the agent is unable to accurately recognize the object as similar to
other objects he already engaged with. e latter scenario is reasonable in the current
context of robotic technology4.

To choose from which tasks to select motor commands without a similarity meas-
ure, a possibility is to estimate similarity empirically from the interaction data with
the object. Similar tasks, as we have already stressed, will have a tendency to generate
similar level of diversity for the same motor commands. erefore, a natural way is
to proceed in a similar manner as chapter 4. e exploration strategy being selected
are the reuse strategies from each source tasks: source tasks are preferentially selected
by the diversity they produce during reuse. at is, the creation of diversity acts as
an indicator of the compatibility between tasks for transfer. Note that if the sources
tasks have already been generated by reusing from each other, they share a number of
motor commands, that has to be taken into account when sampling and estimating
the diversity contribution of each source task.

We do not test such an algorithm in this thesis, but it is an interesting future venue

4With human, such a scenario could be ar ficially created by asking subjects to recognize the func on of novel objects in the dark.
Is the hap c explora on random? Ra onal? In between (Cook et al. 2011)? Yet, before going further with these considera ons,
they need to be ar culated with exis ng research (in par cular on blind individuals), which we did not yet do.
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7
A Real Robot and a Virtual Ball

In this chapter, we describe the second experimental setup used to conduct experi-
ments with the reuse method. We constructed a hardware platform equipped with an
articulated arm interacting with a simulated object. We show that reuse is effective
when learning to interact with objects with significantly different response behaviour.

7.1 Experimental Setup
We consider a hardware and simulated experimental setup where a 6-joint robotic arm
interacts with an object, a cube or a ball, and observes the displacement of the object
at the end of the interaction. An interaction task is appropriate to demonstrate the
strengths of the reuse methods, because many motor commands do not connect with
the object, and thus generates little diversity. As shown in the previous chapter, the
diversity reuse method will take advantage of diversity, regardless how little quantity
there is.

An object interaction task is also interesting in a developmental context, as it is
relevant in early exploration of the world.

Interacting with a real object presents many technical difficulties, and exposes the
robot to damage. is was the original motivation for the hybrid approach we chose,
where the (real) robot would interact with a simulated object in a physical engine. In
the following, we first present the setup technically, and then discuss the choices that
were made.
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7.1.1 Hardware & Simulation Setup

Figure 7.1: The hardware and the simula on setup share the same simulated world. However, when using the real
setup, no simula on of the robot is conducted. On the real robot, a reflec ve marker at the p allows its posi on to
be tracked by cameras.

e robot is a serial chain of six servomotors. e three proximal motors are Dyna-
mixel RX-64 and the three distal ones are RX-28. ose servomotors are capable of
delivering respectively 64 and 28 kg/cm of stall torque, with an angular resolution of
0.29 degrees, measured with a mechanical potentiometer, whose precision is variable
(across the angle range between different motors). During the experiments, the
servomotors were operated in position using the embedded PIDs, with a control loop
for the position running at 100Hz.

emovements of the robot are generated using dynamicmovement primitives (DMP).
DMPs are parametrized dynamical systems introduced by Ijspeert, Nakanishi and
Schaal (2002). ey are computed from sets of differential equations, that provides

Figure 7.2: The simulated experiment approximates the real robot. Pictured here, the posi on zero of the robot,
which corresponds to the start and target posi on for each movement.
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guarantees of smoothness, convergence, and robustness to perturbation (Konczak
2005). We chose DMPs, and the specific parameterization we explain below, be-
cause it allowed to express many different arm trajectories with a compact description
(i.e. few motor dimensions). We use the implementation of Stulp (2014), based on
Ijspeert, Nakanishi, Hoffmann et al. (2013) with the sigmoid variation of Kulvicius
et al. (2012).

DMPs are based on damped spring dynamics, perturbed by a forcing term (equa-
tion 7.1). ey allow arbitrary smooth movements between start- and end-points.

e forcing term is an arbitrary linear function, represented as linear combinations of
basis functions. Here Gaussian activation functions are used, with centre
and width , weighted by (equations 7.3 and 7.4). is the phase of the forcing
term, described by an exponential decay term (equation 7.2). ose equations do not
present the more complex case we used, where the sigmoid variation is included, see
(Kulvicius et al. 2012) for more details. In the following equations, is a temporal
scaling factor1, and are constants and is the target state.

(7.1)
(7.2)

(7.3)

(7.4)

In this experimental setup, the start- and end-points are set identical ( )
and correspond to the motor being in the zero position (Figure 7.2). We use 2 basis
functions per motor, with and fixed respectively at and , with = 5s.

and are shared by all motors.
For historical reasons, we don’t directly use the weights for parametrizing the motor

space. Instead, we use the LWLR function approximator provided with the DMP
library (Stulp 2014), and define two linear functions per motor, with slope
and offsets respectively. e function approximator then compute the forcing
term to approximate as much as possible these functions at time and . Although
directly manipulating the weights would be more natural, this method provides a rich
diversity of trajectories, and, because DMPs were not a focus of our work, we didn’t
inquire further about making the system perform better or making the representation
more compact.

Eachmotor has independent parameters, and themotors share ,
while are fixed. With 6 motors, the motion trajectory of the robot is therefore

1The of the DMPs has no rela on with the of -coverage.
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parametrized by a vector of dimension 26. After solving and integrating the dynam-
ical system, we obtain each motor angular position as a function of time.

To avoid the robots removing (rather brutally) their own wires, the range of the
first and fourth motor from the base are restricted to and (Figure 7.2).

ey both generate (potentially unrestricted) rotations around the z axis, when the
rest of the robot is in zero position. All other motors were physically restricted by
their horn to .

e ranges of the DMP parameters are set so that 95% of trajectories of a motor
would fall in between the angles the motors were able to produce (using an empirical
evaluation), and clipped the rest to legal motor values.

Before executing the motion on the robot, we check for self-collisions, and colli-
sions with the armature of the experiment. If present, the trajectory is truncated and
stops just before the collision to avoid damage.

Figure 7.3: The hardware setup consists of four robots, separated so that they cannot interact with each other. The
tracking system is posi oned in front of the setup, and possess three cameras that capture the posi on of the four
markers. The monitor on the right shows the detec on mask of each camera. Most movements of the stems will
keep the marker visible, but some will not. However, those movements will overwhelmingly be far away from the
virtual objects.

e robot has a reflective marker at the tip, which allows to capture its position at
120Hz during the movement using an OptiTrack Trio camera system, that has sub-
millimetre accuracy. A virtual marker then the trajectory in a simulation where
a virtual object has been put. e marker is the only object from the camera that is
transported to the simulation, so it is the only part of the robotic arm that can collide
with the object.

Let’s note that, in order to simplify the setup, the robot executes themovement, and
then, after the motion is finished, the trajectory is encoded and transported into the
simulation to be replayed. is absence of real-time prevents any immediate feedback
to the robot during motion.
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Figure 7.4: The a virtual marker replays the movement captured by the cameras of the real maker at the robot’s p,
and interacts with a virtual ball. The two scenes illustrate the perturba on created by the inverse model introduced
in part one. The parameters of the right motor trajectory are a random perturba on of the one of the le trajectory,
with p = 0.05.

e simulated environment features an object placed in a cubic room. While the ob-
ject cannot fall into the ground, the robot can pass through it, both with the real robot
and the simulated robot. While constraining the robot movement to not traverse the
ground is possible by truncating the movement before collision, it would remove too
much density and diversity of useful movement in the space of parameters.

Figure 7.5: The size of the cubic room does not modify the rela ve posi on of the robot and the object.

We consider two sizes for the cubic room: 600mm width and 2000mm width. e
larger room approximates a unbounded environment, while the interaction between
the object and the walls are frequent in the smaller one.

ree different objects are used—one at a time: a ball and a cube of diameter and
width 45mm respectively, and a cylinder with diameter 40mm and length 80mm. For
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the ball, two different positions are considered, as depicted figure Figure 7.5.
e simulation is conducted using the robot simulator V-REP (Virtual Robot Ex-

periment Platform), with the Open Dynamic Engine (ODE) as a physic engine
backend. At the end of the simulation, the trajectory of the object is processed by
sensory primitives that compute the sensory feedback.

We consider a simple sensory primitive that returns the displacement of the object
projected on the ground at the end of the simulation. e displacement is returned as
a vector of length 3: the displacement in x, in y, and a discrete dimension of saliency,
which has value if no collision happened, and otherwise.

e saliency dimension helps separate observations that create collisions from one
that do not. Admittedly, this is not crucial for the perturbation-based inverse model,
but when using the LWLR model (Appendix C), this makes learning more robust.

7.1.2 Behaviour of the Setup
Before investigating the behaviour of an agent exploring the environment, we study
the general behaviour of the environment itself.

We claimed that the DMPs parameterization creates appropriate movement di-
versity for the robot. is is illustrated Figure 7.7.

Instances of movement reuse are shown Figure 7.8. Reused movements do not
generate necessarily similar effect on the objects, and, in instances, it has a significant
impact on the robot’s motion. Moreover, not all movements that interact with an
object interact with other objects, even when they are the same size and placed at the
same location.

Figure 7.6: The physic engine non-determinis c characteris cs generate a lot of varia ons. In each of these images,
mul ple execu ons of the same motor trajectories are overlaid.
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Finally, the simulation is not deterministic. Repeated executions of the same move-
ment can generate significantly different effects, as shown Figure 7.6. is is not due
to synchronization variability. e motor trajectories are generated to match the sim-
ulator step, and the same motor target are fed to the simulation at the same timestep
every time. e simulation is also reset to a precisely identical initial situation each
time. e source of variability is due to the random seed of ODE not being reset
between interactions2. As ODE uses the current state of the random generator to de-
cide the order with which to resolve the constraints at each steps, small variations are
introduced that are amplified by the chaotic nature of the interaction with the objects.

e other physical backend available in V-REP, Bullet, did not have this character-
istic and generated consistently identical effects. Because the behaviour of ODE is
(slightly) more realistic, we decided to use it rather than Bullet.

We ran experiments on the ball task (because the cube occupies more volume, the
ball gives a lower estimate of the collision probability) to decide which number of mo-
tor babbling timesteps to use during the experiments. e subsequent goal babbling
exploration uses the inverse model introduced in section 3.1.1, with set to 0.05. e

of the coverage measure is 22.5mm, the radius of the ball.
e results, Figure 7.9, show a significant diminution of variance until 200 steps

of motor babbling. rough independent tests on large quantities (10000+) of motor
babbling movements, we estimate the probability to touch the object during a move-
ment at 3.05% for the cube, 1,96% for the ball, and 0.70% for the ball at the alternative
location. To ensure that every motor babbling phase had at least one collision, we set
the bootstrapping phase to 200 steps. In the results, we will use a source and a ref-
erence task using 200 steps. But using a more aggressive reference task with only 50
or 100 steps does improve early learning performance, and this should be taken into
account when interpreting the results.

Discussion

Prac cal Aspects of Random Babbling

A issue not addressed thus far is how practical motor or goal babbling is. Motor
babbling, with its blind creativity, can easily damage the robot or endanger users in
social experiments.

Avoiding damage in on-board learning robotics is a challenging issue (Levi et al.
2010). Avoiding damage means most of the time placing constraints on the robot
actions, such as truncating the trajectories that led up to collisions as we did. ese
constraints, however, may adversely affect performance, and restrict access to good
solutions. A tradeoff must be made between avoiding the robot destructing itself or
the environment, and achieving the best possible performance. Wahby et al. (2015)
2This is an implementa on detail of V-REP, and there was no way to change it the version we used (3.1.2).
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Figure 7.7: The DMP parameteriza on creates many different trajectories for the p of the arm. The trajectories
of the first column are all different, but they are far from the ground, and will not result in any interac on with the
objects. Trajectories [g-i] on the other hand, do approach or even traverse the ground. Let’s note the trajectory g
demonstrates that the robot can interact with an object even if it is not just below the robot. Finally, trajectories j
and k shows how the movement of the robot is stopped before a collision can happen with the environment. And
in trajectory l, the system stops a self-collision from happening. While not represented here, the aluminium beam
that compose the frame of the hardware setup (see Figure 7.3) can easily damage the robot if bumped into violently.
The most prac cally problema c aspect of it is that the reflec ve surface of the marker is vulnerable to abrasion. If
physical collisions are not prevented, the cameras quickly become unable to track the marker.
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Figure 7.8: Reusing motor commands on different object does not produce similar effects. In these simulated ex-
amples, taken from motor commands reused from a cube environment into the ball environment, the two objects
respond very differently to the same commands. The first example shows that the displacement can be diametrically
opposed. In the second example, the arm interacts two mes with the cube (explaining the U-turn in the object tra-
jectory), but does not with the ball, that escapes the reach of the arm quickly a er the interac on. The third example
shows a motor command that has the arm pushing on the cube from above, crea ng high reciprocal forces between
the two objects. When the tension is liberated the arm overshoots its trajectory, and goes for the beam (invisible
here, see Figure 7.3), and therefore the movement get stopped by the an -collision system. In the case of the ball,
none of this happens, as the ball quickly resolves the impulsion from the arm. Finally, the fourth example shows that
not all movements that interact with the cube interact with the ball despite their iden cal size, due to the cube larger
space occupancy. In all these examples, the interac on with the object has significant impact on the arm’s mo on.
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Figure 7.9: The interac on task forces a long bootstrapping phase. Failing that, the overall performance of the
explora on varies significantly. Repeated 100 mes. [source code]

studied this issue in the context of embodied evolutionary robotics, adding penalties to
the fitness function in case of violent interaction with the environment, and effectively
measure a trade-off between performance and protection.

Many works have also studied adapting behaviour after damage, in particular in
the context of the robustness of gaits when the robot loses or damages one of its limbs
(Mahdavi et al. 2003; Bongard and Lipson 2005; Doncieux and Mouret 2010; Cully
et al. 2014).

Avoiding damage during random motor babbling on an arbitrary robot platform is
difficult. A better approach is to design robots so that they can babble safely.

Of course, the most straightforward solution is to make robot less fragile. While
it seems evident that robot deployed in the depths of the ocean must be hardened
against a multitude of conditions, because any problem requires to abort the activity
and pull the robot to the surface, exploring robots in social environments should be
considered as inaccessible to the engineer for repairs as the bottom of the sea. But
structural robustness is not enough.

Biology is a great source of inspiration here. As discussed in section 2.3, human
fetus start to babble in utero, where the amniotic fluid dampens the motion of the
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limbs, and the uterine walls provide an elastic source of collision. At birth, newborn
are subject to gravity without buoyancy, and their movements more limited than be-
fore. Which is just as well, because the muscle have to handle the full inertia of
the movements they create: the child movements are reduced at the precise time they
become more dangerous. e increase in muscle strength leads to the gradual develop-
ment of the mobility of the infants, thereby mitigating any risks linked to wandering
too far. In animals, some species’ have their pups born blind, which also reduces the
risk-taking and wandering activity early after birth. e structure of the bone is also
conductive of babbling: three-year-old bones absorb three times as much impact en-
ergy as ninety-year-old bones (Currey 1979). e small size of children decreases the
consequences of a fall.

Moreover, the environment of infants is not arbitrary. Children are kept in safe en-
vironments, whose constraints are progressively relaxed as autonomy develops. Danger-
prone or injury-prone activities are first experienced safety nets and safety gear: train-
ingwheels on bikes, arm buoys for when swimming, and adult supervision. Safety gear
in children (and adults) increases risk-taking behaviour (Morrongiello et al. 2007). In
other words, children engage in a less restricted repertoire of activities when they feel
protected.

A robot that explores the environment is inherently exposed to a non-zero amount
of risk. erefore, at the inverse of industrial car assemblers put in cages,

. Like infants, they must undergo comprehens-
ive developmental constraints, coupled with environments that match their ability
for control. ey should be initially in padded environments where risks of injury is
minimal, their movement range and torque reigned in. And their body must be com-
pliant, and their behaviour reactive to potential damage: when falling, they should
react to minimize the fall impact, not try to regain a balance they unequivocally lost
Ruiz-del-Solar et al. (2009). eir body must be initially small enough, light enough
or compliant enough to withstand fall (Lapeyre, Ly et al. 2011). All those charac-
teristics also reduce the danger to interact—or just to be standing near—the robot
(Lapeyre, Rouanet et al. 2013).

Not any robot can babble safely. But developmental robots should be designed so
that they can.

e robot arm considered in the experiment displays few qualities conductive of
safe motor or goal babbling. To deal with this, we opted for an augmented-reality
approach to interaction.

An Hybrid, Augmented-Reality Approach

We chose to use a real robot and a simulated environment for several reasons. Placing
an object back into the reach of the robot a few ten of thousands of times after an
interaction requires some form of mechanism, or a bigger robot, which makes the
experimental setup more complicated. Replacing the object takes time, and slows
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down the rate of interactions.
Additionally, the robot never experiences physical collisions, which reduces the risk

of damage when babbling, given the type of robot we had. Measuring the motion of
the object along any conceivable dimension or the force and direction of the collisions
does not require equipment and is computationally free.

A virtual environment approach also affords unlimited flexibility in the creating of
several different learning tasks, even ones that would be physically possible. And this
provides a perfect, transferable and reproducible description of the environment of
the robot.

At the same time, using a virtual environment for an interaction task seems to
remove the main source of interest of the setup: a realistic, difficult to simulate, inter-
action with a real object.

ese types of contacts are difficult to simulate (Ijspeert 2008)[647]; current physic
engines make fundamental simplifying assumptions. ey use impulse-based velocity
stepping methods for contact dynamics (Mirtich et al. 1995; Stewart et al. 1996; An-
itescu and Potra 1997) but solving the methods exactly is NP-hard. Approximations
of the simplifications must be made (Anitescu 2005; Kaufman et al. 2008; Drum-
wright et al. 2010; Todorov 2014), which, as Erez et al. (n.d.) points out, does not
make the question of the physical accuracy any simpler. e simulator we used, the
Open Dynamic Engine (ODE) is notorious for its weaknesses at simulating interac-
tions.

Our approach, beyond simulation realism, presents another problem: the robot
does not receive any kinesthetic feedback, which, as we have seen Figure 7.8, has an
important impact on the interaction. While this kinesthetic interaction was simulated
between the marker and the object, the marker was following the trajectory of the tip
of the robot with a spring constraint, and did not reproduce the precise force generated
by the sum of the torque of the motors in a specific posture.

Moreover, while providing great flexibility, simulations always present a danger: as
Jakobi et al. (1995) puts it: ‘they can lead to both the study of problems that do not
exist in the real world, and the ignoring of problems that do.’.

is is facilitated by the shortcuts the simulations afford when designing an ex-
periment: objects tracked to meaningless precision, and can be created or destroyed
dynamically, scenes can be perfectly reset to initial conditions. While seemingly in-
nocuous, they actually can hide important issues in a real environment cannot avoid.
If the experimenter is oblivious to them, they may affect the whole basis of the exper-
iment or the applicability of the method it develops to real robots.

Specifically for our setup, one of the most problematic behaviour was movements
that push the object towards the ground, resulting in the cube sometimes projected
with great velocity in a chaotic direction. In the context of our diversity-driven ap-
proach, these movements are seen a valuable: they create effects that are often selec-
ted as nearest neighbour during goal babbling, and reused during transfer. In reality,
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those movements might not even be attempted because of the motor damage they
represent. If these interactions were absent, the results of our experiments would be
much different, creating sharper distinctions. e next step of our research is to reuse
motor commands from simulated objects to real objects, and this will provide critical
feedback on the validity of our methods, as well as force us to remove those dangerous
interactions from the exploration one way or another.

Overall, the hardware platform is somewhat disappointing so far. In our experience,
there is no real difference in algorithmic performance between the hardware/simulation
hybrid and the fully simulated platform. For these reason, and because much of the
experimental data with real robots had to be discarded because of unchecked assump-
tions, few results on the real setup are presented. At any rate, our setup is unconvin-
cing about the validity of simulated environments.

However, simulated environments—and augmented-reality environments—might
turn out to be a useful tool for robotic research. ey are a middle ground between
a simulated robot and a real environment: they allow robots whose morphology pre-
cludes a useful simulation of the robot to be easily subjected to a variety of situations
without costs or physical damage. Because they provide full knowledge of the envir-
onment, they are a clear experimental asset. Because they provide full control of the
environment, they allow to disentangle the reasons for a specific behaviour by system-
atically controlling different variables.

Of course, they are severely limited, although not impossible, when interaction is
required. But for a robot learning to avoid obstacles for instance, this is not an issue.

In a developmental perspective, they allow the environment to be reactive to the
development of the robot. First, it allows the environment to actively create specific
situations aimed at estimating the degree of development of the robot. Like Bongard
and Lipson (2005) co-evolving a behaviours and series of informative tests, the en-
vironment can adapt to efficiently estimate the competence of the robot regardless of
which development path it chooses. Second, the environment can provide a progress-
ive increase in complexity to scaffold the behaviour of the robot. In Chapter 8, we
provide examples of how this can be done.

Simulated environment are not an objective, and they represent the same danger
as simulations. Yet, they may be useful during the research process as they represent
one more tool to study complex issues.

F
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7.2 Experiments

7.2.1 e Small Arena
We conducted experiments using the reuse exploration for half of the bootstrapping
phase ( reuse ), set at 200 timesteps ( boot ). e goal babbling explora-
tion is unchanged, and uses the inverse model introduced in section 3.1.1, with set
to 0.05. Each exploration lasted 1000 timesteps. e of the coverage measure is 45
mm.

Figure 7.10 shows the qualitative effect of reuse from the cube task to the ball task.
Reuse provides many examples of interactions during the first 200 steps, while motor
babbling only provides ten. Still, at the end of the exploration, the reachable space is
well covered in both instances.

Figure 7.10: Reuse provides early diversity of effects. [source code]

In Figure 7.11, all combinations of the cube and ball task are presented. e effect-
iveness of reuse is sensitive to the similarity between the tasks: it is better from the
same object (ball to ball, cube to cube), than from a different object. Diversity reuse
also provides significant differences in early performance over random reuse, further
demonstrating the usefulness of diversity as a guiding measure for transfer.

In Figure 7.12, the ball is moved from its central position to create a dissimilar task.
e majority of movements that interact with the central ball will not interact with the

side ball, and vice-versa. Reuse, in this situation, proves to be robust to dissimilarity,
exhibiting no negative transfer.
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Figure 7.11: Although Reuse is sensi ve to the similarity between tasks, it provides significant early explora on
improvement between objects responding differently to interac ons. Repeated 25 mes. [source code]

Figure 7.12: Between two dissimilar tasks, Reuse maintains performance similar to an absence of transfer. Repeated
25 mes. [source code]

In Figure 7.13, the source task explored the environment using random motor
babbling. Naturally, random reuse offers the same the exploration without reuse.
Diversity is able to extract useful motor commands from the source task, but their
quantity is limited, leading to a visible plateau during the first 200 steps.

Figure 7.13: Diversity reuse only can exploit random motor babbling data. Repeated 25 mes. [source code]

215

http://fabien.benureau.com/phd/code/fig7_11.html
http://fabien.benureau.com/phd/code/fig7_11.html
http://fabien.benureau.com/phd/code/fig7_12.html
http://fabien.benureau.com/phd/code/fig7_12.html
http://fabien.benureau.com/phd/code/fig7_13.html
http://fabien.benureau.com/phd/code/fig7_13.html


In Figure 7.14, the source task is the cylinder task, but it is used with a different
sensorymodality. e sensory primitive of the environment capture the rotation of the
cylinder along its axis between each timesteps of the simulation, and sum the absolute
differences between timesteps. Similarly, the who the cylinder spins is measured by
measuring the rotation of the cylinder against the z-axis. e result is a 2D sensory
space that expresses different aspects of the interaction that the displacement of the
cylinder, in different units. Still, the reuse proves effective, and the difference with
the cylinder using the displacement primitive is small. Reuse can be both sensitive
and robust to different modalities.

Figure 7.14: Diversity reuse only can exploit random motor babbling data. Repeated 25 mes. [source code]

7.2.2 e Big Arena
In this section, we consider the 2000 mm arena, instead of the 600 mm one. With
the small arena, the exploration can cover the entire reachable space, as Figure 7.10
illustrates. is is not possible with the larger arena, which is more than 10 times
bigger.

Figure 7.15 present results of reuse on the hardware platform between the ball
and cube task. For this set of experiments, the LWLR-L-BGFS-B inverse model
described in appendix C has been used. e pure goal babbling exploration is also
replaced by a mixed exploration of random motor babbling and random goal babbling.
10% of the interactions after the end of the bootstrapping phase are created using
random motor babbling. e bootstrapping phase is also extended to 300 timesteps.

e use of those parameters, with a complicated inverse model that does not bring
much performance gain, and a long bootstrapping phase, is only justified because they
are the one that were used during the only hardware experiments that were deemed
correct, and not corrupted by bugs, motor failures, or calibration issues.

Figure 7.16 reproduces the results of Figure 7.15 in simulation. We observe similar
patterns as in Figure 7.11: a sensitivity to the task dissimilarity, and diversity reuse
consistently providing similar or better exploration than random reuse.

e final performance pattern, however, is different. With a almost unbounded
space, the probability for an object final position to be similar to the one produced by
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Figure 7.15: The hardware setup provides results very similar to Figure 7.17 and 7.16. However, the low number of
repe ons makes those results only prospec ve. Repeated 4 mes. [source code]

a past interaction is lower. Each colliding interaction thus brings additional coverage,
as the quasi-parallel coverage curves show. e final performance is then function of
the time when goal babbling became efficient. With diversity, useful interactions are
provided right from the start, and the head start is kept until the end of the explora-
tion.

Figure 7.16: Repeated 25 mes. [source code]

Figure 7.17 reproduce the result of Figure 7.16 using the exploration strategy of
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the previous section: a simple perturbation-based inverse model, pure goal babbling
after the bootstrapping phase, which is kept to 300 to allow better comparison with
LWLR-L-BFGS-B results.

Figure 7.17: Repeated 25 mes. [source code]

Discussion
ese results are very preliminary. Although they consistently show how reuse can

bring good early learning performance, they are fragile.
ey seem to rely on the chaotic behaviour of the simulator when the robots pushes

the objects towards the ground. However, even the extend of that influence is not
properly analysed.

Moreover, they are established only for a simple exploration strategy. e consist-
ency of the rapid increase in coverage after the end of the bootstrapping phase in tasks
without reuse indicates that the difference could be reduced by bootstrapping more
parsimoniously, as Figure 7.9 suggest.

K
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Alison Gopnik

8
Shaping Diversity: Learning Pool

In this brief chapter, we show how reuse can be used to direct exploration by manip-
ulating the environment.

8.1 e Pool Experiment
So far, the impact of reuse has been to improve the performance of early exploration.
But after enough time, the exploration without reuse will catch up, and no significant
difference will be observed between an exploration that exploited reuse and one that
did not.

e experiment in this chapter aims at demonstrating that the reuse method can
also make explorable an environment that is not otherwise. To do this, we consider a
pool situation, where the robot can interact with a ball, but receive sensory feedback
from another ball, out of reach. e only solution for the robot, in order to generate
a diversity of effects on the out-of-reach ball is to strike it with the ball it can interact
with.

From scratch, it is very difficult to create diversity, as only a very small area of the
motor space will, and no guiding signal is provided by the environment. We consider
a reuse scenario where the robot first explore how to interact with the ball it can reach,
without the other ball present. en, the out-of-reach ball is introduced, and the
sensory feedback of the first ball is removed from the perception of the robot.
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Figure 8.1: The Pool environment. The blue ball is placed at the same loca on of the ball of the source task, but it is
not tracked by the robot. Only the orange ball is, but it is out of reach. The only possibility of interac on is to launch
the blue ball at the orange ball.

Figure 8.2: From a classic ball task is a 600mm arena, the reuse strategy successfully bootstraps the explora on of
the pool environment, which is then able to produce diverse effects on the orange ball during goal babbling. Here
the physical proper es of the ball and the forces developed by the robot limit the distance the second ball can go.
[source code]

Discussion
Staging the exploration this way is similar to reward shaping in reinforcement learning
(Dorigo et al. 1994; Mataric 1994) and staging the fitness function in evolutionary
robotics (Gomez and Miikkulainen 1997; Urzelai et al. 1998; Kodjabachian et al.
1998).

But there is one important difference here: there is neither a reward nor a fitness
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Figure 8.3: Most of the explora on that do not benefit from reuse never makes the ball move in the pool environment.
Few do by chance, as the devia on shows. Using reuse however, the explora on of the second ball is consistently
done. Naturally, with a task that requires lots of precision, and the stochas c behaviour of the interac on with the
object Figure 7.6, lots of varia on is observed. Repeated 25 mes. [source code]

function. e staging is done through the , and object saliency.
e diversity fostering exploration strategies (implicit diversity motivation) and the

diversity-driven reuse method (explicit diversity motivation) ensure that the robot
takes advantage of the relation between the environment.

is opens the door to environment-driven development in robotics. Objectives
are abandoned, as proposed Lehman and Stanley (2011a), the growth and behaviour
of the robots are dependent on the environments where they are put, and how those
environments evolve as they competences increase.

With this experiment, we highlight that we can drive the robot towards the acquisi-
tion of complex skills in a closed-skull manner, by only manipulating the environment
the robot is exposed to. is is similar to a caregiver manipulating the composition,
disposition and saliency of objects a child is playing with.
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9
Reuse and the Reality Gap

So far we have shown that reuse is effective in situations that involve switching the
object (ball/cube experiment in chapter 7), changes in the morphology of the robot
(different segment lengths in chapter 5), or increased complexity (scaffolding exper-
iments in chapter 8). e purpose of using reuse in these situations is to leverage
past experiences to provide the locations possible good mappings in the sensorimotor
space.

In this chapter we apply reuse algorithms to a surrogate context: a simple, com-
putationally efficient simulation is used as source task for a more expensive and more
realistic simulation, or for a real robot.

9.1 e Reality Gap

Abstract Transferring behaviour learned in simula ons to real robots is difficult: this is the
reality gap. We review the problem and some of its solu ons.

We already discussed some of the pitfalls of a full-representation approach to beha-
viour. Obtaining the representation is difficult or impossible. It needs to simulate the
morphology, and hence bears the costs of simulating morphological computational
processes that the agent does not otherwise need to have explicit knowledge of to
elicit successful behaviour. e simulation itself will be inaccurate, however pain is
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taken to create it1. Moreover, the simulation can be computationally expensive, taking
sometimes more time that the execution on the real robot.

Many experiments learning controllers for legged robots have reported remarkable
performances for simulated robots. But far fewer have been able to transfer those
controllers learned in simulation onto real robots and observe the similar performances
(Lipson, Bongard et al. 2006; Palmer et al. 2009). In other words, the transfer from
simulation to reality is not efficient: this is the problem (Jakobi et al. 1995;
Jakobi 1998).

TheWhy of the Reality Gap

Avoiding the reality gap problem by only learning and exploring on real robots raises
practical issues: it is time-expensive, cannot be parallelized (unless many identical-
enough robots are available, which leads to other issues and high costs), and can
lead to damage or danger—especially if babbling randomly (Wahby et al. 2015). It
severely limits the amount of learning the robots can receive, thus undermining their
performance—such a problem is particularly acute in evolutionary robotics, where
populations of candidates have to be tested over several generations (Floreano and
Mondada 1994; Zykov et al. 2004; Regan et al. 2006; Gongora et al. 2009). And
when exploring morphology changes, it is usually impractical to work with real ro-
bots.

In a scientific context, it may also preclude the opportunity to systematically modify
the experiment to assess the robustness of the results; it may be difficult to decide if
the works provide far-reaching or anecdotal results linked to the idiosyncrasies of the
setup. Furthermore, and this is rarely mentioned or exploited, simulated experiments
are highly conductive of the dissemination and the reproduction of research. us,
simulations make sense for practical and scientific purposes.

One has to acknowledge that, from an embodied perspective, the premise of the
problem—relying on a close-to-reality simulation to optimize the beha-

viour of a real robot—is a methodological error. Still, simulations are required when
actual evaluations are prohibitive, consume limited or unique resources, are too dan-
gerous or are simply impossible (for instance, developing a morphology and a gait for
a lunar rover).

e problem is not limited to robotics, to machine learning, or to a
simulation/reality contrast. It is present every time learning cannot happen in the
environment where the exploitation takes place. e aerodynamics of cars and planes
are tested in simulation before being tested in wind turbines, plane pilots train in sim-
ulators, astronauts train for spacewalks in pools, firefighters create mock emergency
situations, surgeons train on cadavers or animals. In all these instances, a balance must
be found to make the mock environment as close as possible from the real situation

1Jakobi (1997) formulated it nicely: ‘any real-life simula on will differ from a perfect copy of the real world on two counts: It will model
only a finite set of real-world features and processes, and those features and processes that it does model, it will model inaccurately.’
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to ensure transferability while guaranteeing safety and managing costs and resources.

The How of the Reality Gap

In robotics, the is overwhelmingly studied in the context of the optimiza-
tion of controllers in simulation to be transferred on a real robot, in particular in the
context of evolutionary robotics (Nolfi et al. 1994; Koos et al. 2013). is is not al-
ways the case; Gongora et al. (2009) report evolving the behaviour of a real helicopter
that had to be restrained during learning to avoid damage, perturbing the conditions
enough so that the untethered behaviour did not perform as well as the tethered one.

e most straightforward way to deal with the reality gap is to create the most
accurate simulation possible. As we have outlined, this is fraught with problems, and
can lead to very expensive simulations. Jakobi (1997) proposes to identify the minimal
set of features responsible for the behaviour, and to simulate only those. Instead of
building one simulation, he proposes to create many, with random variations, to make
evolved controllers robust to the specificity of one or the other.

Some approaches improve the simulator during learning based on empirical obser-
vations (Zagal et al. 2008; Bongard and Lipson 2005; Bongard, Zykov et al. 2006;
Koos et al. 2009). ese approaches, when creating a simulation from scratch, has
their roots in the domain of models (Sacks et al. 1989; Barton 1998; Jones
et al. 1998). A model of the function to optimize is learned empirically, and the op-
timization takes place on the model rather than in the real environment. Surrogate
models only differ from forward models in their intent: surrogate models aim at being
useful for optimization while being cheap to evaluate, while forward models typically
strive for accurate predictions.

Some methods consider the simulator as fixed, and evaluate the mapping between
the simulator and the reality. is allows to estimate the discrepancy between the
two, and to only perform simulated optimization in areas when the discrepancy is low
(Koos et al. 2013).

In all of those approaches, an underlying assumption is that the simulation can, at
least sometimes, be reasonably physically accurate:

Koos et al. (2013, p. 123)

F
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9.2 Crude Simulations
We take a different perspective. As the complexity of robot’s hardware increases, and
environments become significantly more complex than a perfectly smooth and flat
surface, obtaining physically accurate behaviour in simulation becomes difficult, and
will necessitate important modelizing efforts. e risk is to limit the morphology of
the robots we create to the methods we have available.

Instead of spending ever increasing efforts to create a realistic simulations, we go
in the opposite direction; we search for the most simple, most crude simulation that
still affords us an exploratory advantage through reuse. Our objective is not to find
an optimal behaviour or even a good behaviour, but to efficiently discover diversity in
the environment.

We took the experimental setup of section 7.1 and created a simplified kinematic
simulation of it. e arm has been replaced by the forward kinematic computation
of the position of the centre of the end-effector according to the forward kinematic
model. From this, we compute the trajectory of the end-effector by feeding the kin-
ematic model with the joint trajectories produced by the motor primitives. e object
is approximated to its axis-aligned bounding box. If the trajectory of the end-effector
enters the bounding box, the velocity of the end-effector is averaged from its last 10
positions, and the displacement of the object is a vector of the same direction as the
velocity of the end-effector. e norm of the displacement is proportional to the end-
effector velocity, and inversely proportional to the mass set for the object. ere is no
floor to interact with, the displacement of the object is done in three dimensions, and
then projected to the ground plane.

is model is highly unrealistic in many ways. ere is no way to have objects with
different geometry. No contact is simulated except the one between the object and
the end-effector—and it does not even take into account where the trajectory of the
end effector hit the object with respect to its centre of mass.

e kinematic simulation is run for 1000 timesteps using a normal exploration
strategy ( boot , ). e exploration is then transferred to the full
simulation scenario with a ball placed at the same place as the object in the kinematic
model. e exploration on the full simulation is parametrized normally ( boot ,

, transfer ). e results are available Figure 9.1.

Figure 9.1: Even with a crude model, the reuse transfer is effec ve. Averaged over 25 repe ons for the simula on,
and 4 repe ons for the hardware. [source code]
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Even with a crude simulation devoid of most physical modelizations, the reuse
strategy is able to take significant advantage of the exploration.

A Cruder Simula on

We simplify the previous simulation. Instead of computing the displacement of the
object, the sensory response is only conditioned to the trajectory of the end-effector
entering the bounding box. If that happens, a value between 0 and 1 is re-
turned. If not a random value between -1 and 0 is returned. e sensory signal has
only one dimension.

Learning with such a poor sensory feedback is more difficult. e simulation has
essentially become an indicator for a possible collision. Yet, reuse still provides an
improvement (Figure 9.2). As should be expected, the improvement is less than when
the simulation is more informative.

Figure 9.2: Even with a cruder model, the reuse transfer is s ll effec ve. Averaged over 25 repe ons. [source code]

Crossing The Smaller Reality Gap

, reusing motor commands from the full simulated setup on the hardware
setup should be easy. But we verify nonetheless. e results are available Figure 9.3.
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Figure 9.3: The hardware setup is able to take advantage of the motor commands reused from simulated explora on.
Of course, since the simulated environment is shared, the feat is hardly impressive. Averaged over 4 repe ons.
[source code]

F

Discussion
A weakness of the work presented here is that even a simple forward kinematic model
usually display good performance on a rigid body robotic arm. Although we removed
many aspects of the physical simulation, we retained the essential part. e discrep-
ancy then, between a collision detected in simulation and one produced in reality is
low. is easily explains the results obtained. And while we claimed to not assume
that the simulation needs to be physically accurate, it actually is, but qualitatively.

e way the object displacement is computed in the first crude simulation can also
be criticized. Although it seems that, by not taking into account any geometry of
the object, or not considering the floor we have lost much information, the direction
of the displacement is directly correlated to the direction of the end-effector when a
collision happens. is sensory feedback is probably richer in information that the
final position of the object in the physical simulation. It is also a signal that is easier
to learn. e first crude simulation could be considered as scaffolding, that offers
knowledge of a pivotal aspect of the interaction—the direction and velocity of the
colliding tip of the arm just before the collision—that was hidden before.

Of course, these criticisms can also be considered positively: yes, the crude models
are qualitatively accurate with regards to the presence of a collision, and reuse is able
to take advantage of a merely qualitative, rather than numerical, accuracy. Yes, this is
scaffolding, and reuse is taking advantage of it without the experimenter noticing it:
reuse do not need to be explained how the two environments relate to each other.
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Compared to previous works, the context in which we consider the reality gap
problem is different. We are not trying to transfer controllers while conserving per-
formances; we are looking for an exploratory advantage. While we presented our work
in the context of the reality gap problem, it is not comparable with the other methods
we discussed section 9.1: it addresses a different problem.

Yet, reuse could be of use for learning controllers. One could derive the first popu-
lation of an evolutionary algorithm by reusing the genetic code of a set of candidate
solutions that generated a diversity of behaviour during a cheap, pared-down simu-
lation. is could help mitigate the early convergence and bootstrap problems. In a
single agent optimization scenario, using reuse from a simulation would not provide
the best controller. But using reuse increases the probability the robot is given access
to controllers early in the exploration that are close to good solutions, compared to a
random motor babbling exploration. e simulation that provides those initial solu-
tions does not need to model all aspects of the real robot. Actually, it can be arbitrarily
selective about which features of reality it decides to model. e transfer should stay
robust, as long as a diversity of candidate solutions is transferred.

In a self-sufficient perspective, the crude simulations can be considered as cognit-
ive models. e simplicity and relaxed qualitative nature of the correspondence to
reality that they must provide makes their acquisition by a self-sufficient robot more
reasonable than a full-featured realistic simulation. In that context, the results suggest
another way to engage with the reality gap problem. Instead of reproducing reality,
cognitive simulations can do away with much of the realism, without losing their
power to direct and inform behaviour. ey pose as a reasonable artifice of cognition
that allows agents to think about the world without having to predict or simulate it
accurately. Cheap cognitive simulations can create diversity, and give robots—dare I
say— .

K
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Exploring Ahead

Roboticists are demiurges.
ey create bodies, the minds inside them, and, more often than not, the worlds

around them.
at makes roboticists their own worst foes.
e risk is that roboticists, creating both problems and solutions, may tailor prob-

lems to solutions, and not the other way around. is may lead to inventing and
investigating artificial problems that contribute little to advancing scientific inquiry,
whilst systematically avoiding hard problems, bymodifying them into easier ones each
time seemingly insurmountable obstacles are encountered.

But there is another risk, more pernicious, and, more fundamental. It is to design
robots from a human perspective, choosing features and characteristics that make
sense for the external observer, but none for the robot itself and its egocentric ex-
perience of the world. In other words, the risk is that the features that make robots
easy for humans to design, control and understand make it hard for the robot itself to
interact with the world, and end up fundamentally limiting its capabilities.

An illustration of this is found in how robots are created: the hardware is usually
created before the software. is allows to decouple the two activities, and hence, the
somewhat different skillsets. And it allows to sweep aside the myriad of interactions
that would need to be considered if the body and mind were designed together. e
software here truly plays the part of the ghost in the machine, investing it, animat-
ing it after it was created. is way of proceeding is obviously suited to the robotic
workcells of assembly lines. But this same design pattern, the one essentially used for
smartphone development, is repeated for state-of-the-art robotic research platforms
such as the iCub, the PR2 or the Baxter, where researchers are tasked to find out how
to program finished and hardly reconfigurable hardware products.2

is paradigm works fine for a number of scientific endeavours but is problematic
others, such as legged locomotion. Designing legs divorced from the gait algorithms
that are used to actuate them has produced many robots that not only requires pre-
cise, low-latency, computationally expensive algorithms, but that are also brittle to
unexpected, even if small, perturbations of their environment.

2As a result, manyworks in robo c algorithms list as a posi ve feature the ability to adapt to arbitrary hardware. Although seemingly
desirable, the broader implica ons of such a goal make it a poten ally dangerous one.
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Evolutionary robotics has attacked this problem directly, by proposing algorithms
inspired from natural selection to design robots directly from an evaluation of their
behaviour, removing the human designer from the process, and allowing the morpho-
logy and the controllers to tailor themselves to one another.

Yet, even in evolutionary robotics, one key human element remains in the design
process: the fitness function. It encodes the ultimate goal of the evolutionary process,
and is decided beforehand by the designer, oftentimes in an extremely specific manner:
the distance covered by the robot in a given amount of time in locomotion experiments,
for instance. e most immediate consequence is to create one-trick robotic ponies.

is is made worse by the tendency of evolutionary algorithms to routinely outsmart
the designer by producing robots whose behaviour is unsuitable in ways that are not
encoded in the fitness function. Examples include evolutionary processes exploiting
bugs of the physic engine in simulated experiments, or producing real robots that cover
the most ground by irreversibly damaging themselves. ose are serious concerns
compounded by that setting a goal is not always the most effective way to reach it, as
the work of Stanley and Lehman (2015) shows.

However, the most fundamental problem is elsewhere: the designer gets to choose
the goals that will single-mindedly direct the activity of the robot. Problem is, it is not
clear how qualified or well-positioned a human is for choosing the goals of a robot,
an entity with vastly different embodiment and cognitive processes.

is is where some strands of developmental robotics try to distinguish themeselves
from the rest of the robotics. ey study robots that must create their own goals, using
their own .

Developmental robotics originated around the realisation that creating robot adults
with fully-formed knowledge and skills out of the assembly line was too difficult. Pro-
gramming commonsense, for instance, proved remarkably difficult. Observing that
humans naturally acquire it during their childhood, it was proposed to create child ro-
bots, that would be equipped with learning abilities that would allow them to gather
knowledge and skills that made sense for them, for their particular embodiment and
environment.

Motivational systems, in turn, are to designer-set goals what learning abilities are
to preformed knowledge. ey are goal factories, the same way learning abilities are
knowledge and skills factories. ey allow robots to choose goals that make sense
for their particular embodiment, environment, and current experience. Motivational
systems also naturally compliment learning abilities, because there are toomany things
to learn in any sort of modestly complex environment; they allow to choose what
activities to engage in, and therefore, what to learn and not to learn.

All this brings us to the subject of this thesis: exploration. Robots that choose their
own goals, that acquire skills on their own need to explore the environment for two
reasons. e first so that they can acquire experience, which can be in turn used to
modify their behaviour (i.e. learning). e second, to discover new kind goals they
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can pursue.
In this thesis, we focused on exploration in sensorimotor spaces, that is spaces

where the mapping between a motor action and its corresponding sensory feedback
can be expressed. Also, we considered only exploration that is conducted by the robot
itself, without any social guidance or any externally provided knowledge. Hence the
title: ‘Self-Exploration of Sensorimotor Spaces in Robots’.

e thesis had three goals. First, establish exploration as a scientific problem.
Second, do a study of some simple exploration algorithms, and what impact differ-
ent factors had on them, in order to provide a bedrock on which to think and build
more elaborate exploration strategies. And third, start exploring some ways the ex-
ploration capabilities of an agent could improve over time, as experience accumulates.

is thesis fulfills those goals, if only specifically.
To establish robotic exploration as a scientific problem, we start, in chapter one, at

the very beginning: we define what a robot is, we explain the effect embodiment has
on the robot experience of the world, and why all problems cannot be solved by an
ambitious-enough simulation of the real world in the robot’s head. We conclude that
to be effective in the unstructured part of the real world, robots need to pass through
an extended development phase in order to build up skills, knowledge and the com-
monsense needed to deal with future unexpected situations. During this development
phase, exploration skills are crucial.

We then formalize the exploration problem: exploring is creating access to different
aspects of the environment. Exploration is not solely spatial: you can explore the
responses an object gives to external input, such as the different sounds it can make.

is definition allows us to draw an important distinction between exploring and
learning. Learning is modifying your behaviour as a result of experience. As such,
learning is independent from exploration; you can learn without exploring: this is
what a weather prediction system does. And you can explore without learning: this is
what some robot vacuum cleaner do; they manage to cover and clean a room without
ever learning its shape. Of course, most of the time, we want to combine learning and
exploring.

Now, to make a scientific problem out of exploration, we need to be able to evaluate
it using a quantitative measure. If exploration is creating access to different aspects of
the environment, then one way to evaluate it is measuring the of the sensory
feedback the robot is able to produce. Diversity is a great measure for a number of
reasons: it is a concept that can adapt to almost any setting. It is intrinsic, i.e. it can
be measured by the robot itself, and without disturbing its behaviour in any way—
contrary to, for instance, a measure of the robot’s prediction abilities. is, as a side-
effect, allows to envision sharing common experimental setups with other domains
where peering into the explorer’s thought process is hard, such as cognitive science
experiments on children.

is leads us to an important and inescapable point: the related work. e no-
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tion of exploration and diversity has seen scant explicit attention in robotics, outside
of spatial exploration3. But many neighbouring domains of developmental robotics
feature informative works. In developmental robotics itself, the study of intrinsic
motivation is relevant; diversity can be used and is used in some algorithms of this
thesis as an explicit intrinsic motivation. Moreover, diversity in computer science has
seen a steady rise in interest since 2000 from many different areas such as ensemble
classifiers, swarm optimization and recommender systems. And in cognitive science,
exploratory behaviour has been the subject of important works, even if almost all the
quantitative data comes from spatial exploration experiments.

For our experiments, we introduced a diversity measure called -coverage. It meas-
ures the volume of the union of balls of radius centered around the observed sensory
feedback points in the sensory space. If the sensory feedbacks are diverse, they are far
from each other, and overlap between the balls is low: the volume of the union is high.
If the sensory feedbacks are similar, the overlap is high and the volume lower, for the
same amount of feedback points.

e second goal was to study exploration algorithms. e idea there was to create
one of the simplest algorithm possible, and study it under different conditions. e
simplicity was warranted by two factors: first, it allowed to understand the results
in their every detail without suspending intuition. e behaviour of linear weighted
regression or more complex learning algorithms in high-dimensional spaces can be
complex, which is why we opted for a simpler perturbation-based nearest-neighbor
learning method. And second, it was hoped that being simple, the lessons learned
and the intuition gained could be carried over a wider range of situations than a more
complex, more specific algorithm.

One of the first contributions of the study was to clarify that exploring the motor
space was inefficient because of the contributions the high-dimensionality

the heterogeneous distribution of the redundancy of the sensorimotor space (i.e.,
how many different motor commands produce the same sensory feedback). High-
dimensionality alone does not make exploring the motor space ineffective.

Next, we systematically analysed the contribution of each aspect of the algorithm.
e impact of the distribution of goals was studied, outlining the potential direc-

ted methods represent (in most of the thesis, goals are chosen at random by the al-
gorithms). e effects of a bad inverse model were shown, and an algorithm for
boundless goals space was introduced.

e next experiments focused on showing how even rudimentary implementations
of motor synergies, developmental constraints and external demonstration could pos-
itively affect the exploration. One takeaway is that improving embodiment potentially
offers cheaper and larger gains that improving the learning performance.

So far, all the algorithmic variations studied did not make use of any explicit in-

3Spa al explora on is a highly specific case of explora on, and is mainly dis nguished from general sensorimotor explora on in
that movement in the sensory space is already explicitly mastered.
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trinsic motivation measure. Diversity was only used as an evaluation tool. In chapter
four, we introduce an algorithm that uses diversity to direct which exploration strategy
to use among a set, and doing so can adapt to different situations as well as any fixed
mixture of the strategies.

e third goal was to investigate ways for the exploration capabilities of an agent
to improve over time, as experience accumulates.

To understand the underlying challenge here, one must consider that a successful
exploration of a given environment should give access to different features of said
environment, i.e., from the point of view of the robot, produce a diversity of sens-
ory feedbacks. To produce a diversity of sensory feedbacks efficiently, one would
need knowledge of the dynamics of the environment, in order to avoid its inherent
redundancy, i.e., to avoid executing actions that produce the same effects. Pushing
and pulling on a closed door illustrates this point: two different actions that produce
the same effect—hence producing no diversity in sensory feedback—and afford new
knowledge about the environment. Should the state of the door had been known
beforehand, the robot could have engaged with other actions, more likely to produce
diversity. erefore, producing diversity faces a chicken-and-egg problem: the know-
ledge needed to perform an efficient exploration is the knowledge the exploration is
supposed to produce in the first place. is means that the exploration process can
feed itself, but can also remain stalled if incapable to produce informative interactions,
leading to long early periods of poor exploration in challenging environments.

is what drove us to find a solution to improve early exploration. To this end
we introduced the method, that leverages experience acquired in a past environ-
ment, to explore a new one. e core idea is to select motor commands that produced
a diversity of sensory feedbacks in the past environment, and to reexecute them in
the new one. is method has the benefit of being conceptually simple, and to be
agnostic about the sensory modalities of the past and new environments, which can
be arbitrarily different. e exploration strategy or learning algorithm used in the
past environment need not to be the same in the current one either: the method can
leverage data that has been arbitrarily collected. e only constraint is that motor
commands executed in the past environment can be reexecuted in the new one.

e rationale behind the method can be understood by considering how re-
dundancy makes to different motor commands produce the same effect in the en-
vironment: either by body redundancy, or environmental redundancy. e body re-
dundancy makes different motor commands produce the same movements: the robot
applies the same forces on the environment. Environmental redundancy leads dif-
ferents forces to the same effects, as the closed-door example illustrates. Typically,
different effects both avoid body and environmental redundancy. When changing
from one environment to another, environmental redundancy is not conserved, but
the body redundancy is in most cases. Moreover, if the environments are similar,
some of the environmental redundancy generally overlap. erefore, by reusing a set
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of motor commands that generated a diversity of effects, the method capitalizes
on knowledge gained about body redundancy, and opportunistically on the environ-
mental one.

We conducted experiments to demonstrate the viability of the approach on a real
robot manipulating different objects in augmented reality. e results showed con-
clusively that the method is effective when reusing experience gained from inter-
acting with one object (a ball), to explore another object with a significantly different
behaviour (a cube). e method is also robust to dissimilar environments, where di-
versity from one environment does not transfer well to the other. Moreover, we estab-
lished that choosing which motor commands to reexecute according to the diversity
of the sensory feedbacks they produced is better than random.

In the previous experiments, proved to improve early exploration. But after
enough time, whether using or not, the exploration process produced similar
results. To show that could do more than only improve early exploration, we
designed an experiment to show that it could make explorable an environment that
would not be otherwise. An interesting part of the experiment was that the explor-
ation was shaped not by changing a reward function, but only by manipulating the
environment and the saliency of the objects in it, much like a caretaker would do with
a child.

Finally, we got interested by the applicability of the method to situations where
the exploration of the past environment happened entirely in simulation, while the ex-
ploration of the new one would happen in the real world, on a real robot. Transferring
results from simulation to reality has proven difficult in robotics, a problem known
as the . e results obtained, although warranting more work, are excellent.

ey raise the prospect of using cheap and crude simulations of reality as efficient
cognitive artifacts for self-sufficient robots to explore the real world better.

is is where the thesis end. From there, what is the way forward? ere are three
research directions that stand out: diversity in robotics, interdisciplinary work with
cognitive sciences, and evolutionary developmental robotics.

First, diversity in robotics. In 1255, in his Commentary on Sentences, omas
Aquinas argued that while an angel is better than a stone, it does not follow that two
angels is better than one angel and one stone4. A modernised version of Aquinas’
argument is proposed by Nehring et al. (2002): ‘A human being is more valuable
than a chimpanzee. It does not follow, however, that 6,000,130,000 humans and
no chimpanzee are more valuable than 6,000,000,000 humans and 130,000 chimpan-
zees.’ Diversity has value. Such an observation can be made in domains as differ-
ent as biodiversity, art, hiring practices, investment portfolios, search engines results,
ensemble classifiers, and even, scientific progress. In Lehman, Clune et al. (2014),
Pierre-Yves Oudeyer remarked that ‘because we don’t deeply understand intelligence

4For la n readers out there: ‘quod quamvis Angelus absolute sit melior quam lapis, tamen utraque natura est melior quam altera
tantum’ (Lib. 1 d. 44 q. 1 a. 2 ad 6)
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or know how to produce general AI, rather than cutting off any avenues of explora-
tion, to truly make progress we should embrace AI’s “anarchy of methods”.’ In other
words, when fumbling in the dark, diversity is a powerful tool.

It is tempting there to apply this lesson to developmental robotics, and that is
actually what this thesis tries to do: developmental robots, plunged in the complexity
of the real world, and with no choice but to make sense of it with their learning and
exploration capabilities, must fumble in the dark for a time. e lack of literature
on diversity in developmental robotics pales in comparison to the potential benefits it
could bring.

ere are, however, many ways to abuse the lesson. First, diversity for diversity’s
sake is hardly justified, however intrinsically valuable it may be. In particular, a motiv-
ational system only driven by diversity seems like a poor idea. Some have argued that
since simplicity is in finite supply, diversity-driven development will naturally lead to
discovering ever more complex phenomena. e scarceness of simplicity, however,
has never been justified outside of toy examples, and simple things to discover and
learn in the real-world seem to be plentiful-enough to fill multiple lifespans. All this
conspire to suggest that robotic motivational systems should embrace a of
motivations, with diversity being one of them. Competing and complementary mo-
tivations should lead to behaviour alternating between broad exploration, where new
features of the world are discovered, and more focused study, where specific skills are
mastered.

Second is the issue of how to use the experience collected through diversity-driven
exploration. In this thesis, we have shown, through the method, that this experi-
ence is precious to conductmore exploration of other environments. But exploration is
hardly the only behaviour of a developmental robot. e question of how to marshall
and apply experiences gained by diversity for precise problem-solving, and whether it
is competitive with more directed approaches, remains open.

Finally, many specific issues about diversity are not yet satisfactorily answered. Diversity-
driven exploration differs from novelty-driven exploration in that novelty-driven ap-
proaches cannot explicitly control the amount of diversity they produce. Maintaining
a certain level of behavioural diversity, especially when changing environmental con-
ditions decrease the options available to the robot, can only be obtained from the
global perspective diversity affords, not using the local one offered by novelty-based
approaches. Still, diversity is more computationally expensive: when is it necessary
versus simpler novelty-based motivations? What are good diversity measures? Does
diversity makes any sense in high-dimensional sensory space, or should it always be
supported by low-dimensional abstract representations?

Answering those questions is not easy; a possible source of intuition is to turn to
cognitive science. How do children use diversity during development? is is the
second research direction that seems promising.

It is remarkable that amongst all the literature on play, exploration, and problem-
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solving in children and animals, quantitative measurements of the diversity of the
interactions they engage in and of the solutions they try out, is almost completely
absent. Studies usually stop at vague qualitative descriptions. Quantitative studies on
behavioural diversity in exploration could shed useful light on how to design robotic
motivational systems. Moreover, this line of research, by its compatible methodology
promise to be able to conduct similar experiments on humans and robots, potentially
leading to fruitful exchange and emulation between the two domains.

e third avenue of research is evolutionary developmental robotics, affectionally
called ‘evo-devo-robo’. Evolutionary robotics mimics the natural selection process,
while developmental robotics mimics the morphological and cognitive development
of biological systems. Most of their respective work, however similar, has remained
separated so far. Given the interest of AI for producing human-level intelligence,
this separation is puzzling; after all, the only known examples of entities possessing
human-level intelligence were created by a combination the two processes.

Combining evolutionary and developmental robotics raises a tremendous issue:
time. e typical timescales of development and evolution—lifespans and eons, respectively—
already have their respective discipline struggling. Combining both seems therefore
completely intractable, whether simulations are involved or not. e way to look as
this is to consider that the scale of the problem is so important that it won’t change as
technological progress piles-up in the next, let’s say, 50 years: waiting does not help.

Another objection is to argue that evolutionary and developmental robotics are still
young disciplines, and not yet ripe for being combined. Although mostly speculative,
this argument could end up being true. But the difficulties encountered along the
way could shed precious light on shortcomings in the two disciplines that are hard to
detect otherwise.

Adding a long development phase to evolutionary robotics could give rise to new,
more complex dynamics in the evolutionary process, and a better selection process.
Some ground has already been covered by Bongard (2011), who showed that mor-
phological development could act as a sieve filtering brittle behaviour in legged lo-
comotion. Conversely, developmental robotics could benefit from an overarching
evolutionary process, which could reduce the arbitrary decisions current researchers
have to make about the representation and learning abilities they give to robots.

Evolutionary developmental robotics certainly represents a tremendous challenge,
but the results that are there to reap are equally so. is is a domain that we simply
cannot afford not to investigate.

If only because it promises to chip away at the demiurgic nature of roboticists.
Roboticists are demiurges; evo-devo-robo is part of the solution.
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A
Volume of Union of Geometrical Objects

Computing the union of many disks is expensive. Here we propose a more computa-
tionally efficient way to compute the diversity of an effect, based on grid partitioning.

A.1 Volume of the Union of Hyperballs
Computing the volume of the union of an arbitrary set of hyperballs is not a straight-
forward problem.

A.1.1 e Klee Measure Problem
e Klee’s measure problem (KMP) is an open problem of computational geometry,

introduced in 1977 by Victor Klee (Klee 1977). It is stated as follow:

Given a set of axis-parallel boxes (hyperrectangles) in , compute
the volume of the union of . (Chan 2013)

Under the Euclidean norm, i.e. the norm1, the KMP is the equivalent of the
problem the volume of the union of hyperballs but for hyperrectangles. Under the

1For any real number , the norm of a given vector is . The

norm is thus the familiar Euclidean norm.
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norm, which is defined as , the two problems are
identical.

e KMP has been a continuous subject of study in the computational geometry
community. For , the original algorithm by Victor Klee was proven
optimal in 1978 (Fredman et al. 1978). Bentley (Bentlley 1977) proposed the problem
for and provided a algorithm as well— optimal. In 2013, an
algorithm for , was provided by Chan (2013) with a time complexity of ,
improving on previous works. As the only known lower bound for any dimension is

, the existence, for , of faster algorithms than Chan (2013) remains
an open problem.

Chan (2013) proposed a slightly faster algorithm in for the
special case of unit hypercubes, which applies to our case. is imply for , the
algorithm is subquadratic.

Yet, the KMP, behind an apparent simplicity, proves costly, and makes the use of an
exact coverage performance based on the volume of the union of polygons impractical
for , over long periods.

A.1.2 Union of Hyperballs
For the problem of computing the volume of the union of hyperballs, exact methods
exist using Voronoi Power Diagrams (Cazals et al. 2011), that partition the space into
as many areas as there are balls; in each area, the center of only one ball is present, and
the contribution of this ball to the overall volume can be computed independently of
the others (Kim et al. 2012). ere also are approximate methods based on Monte-
Carlo sampling (Till et al. 2009).
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B
Grid Diversity

Computing the union of many disks is expensive—see appendix A, and is impractical
in dimensions higher than four. To that end, we introduce a more computationally
efficient method for estimating strategy diversity, that may be used in higher dimen-
sions, based on .

B.1 Grid Diversity

is definition of diversity values effects that create new cells, or that belong to
cells with a low number of already observed effects. e total diversity value that each
cell represents is .

Finding the coordinates of the cell where a effect belongs takes steps, and
then finding is in —we only store in memory the size of non-empty cells,
using a hashmap, ensuring a -space complexity, we obtain a -time
complexity for the grid diversity algorithm.
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We use this definition of effect diversity to define in the same way
as in section 4.2, and reruns the same experiments. e width of a cell is set to five
millimetres.

Figure B.1: [source code]
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C
A More Sophisticated Inverse Model

In section 3.1.1, we defined a simple inverse model for the two-dimensional arm. In
some experiments on the interaction setup of the second part, we use a more sophist-
icated inverse model, based on a optimization routine, L-BFGS-B (Byrd et al. 1995;
Zhu et al. 1997), and a predictor, Locally Weighted Linear Regression (LWLR)
(Cleveland et al. 1988; Atkeson et al. 1997a,b). e algorithmic change in the ex-
ploration strategy is a simple replacement of the Inverse() routine.

C.1
To approximate the function from a set of observations, we employ LocallyWeighted
Linear Regression (LWLR) (Cleveland et al. 1988; Atkeson et al. 1997a,b), a incre-
mental machine learning algorithm. Although LWLR is considerably more sophistic-
ated than the inverse model used in the first part, it is still a simple method compared
to the state-of-the-art. Here, again, the absolute performance is of little concern, as
we are interested in comparing different exploration strategies. Still, LWLR is reason-
ably robust (Munzer et al. 2014) for the learning tasks we are considering. e main
differences betweenLWLR and our perturbation-based inversemodel are that LWLR
is able to extrapolate—how far the goal is from the data is taken into account—, and
LWLR uses, and needs, multiple observations to predict the outcome of an hypothet-
ical input.
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Given a set of observations where for each , ,
and a query vector , for which we wish to predict the effect, we compute, for each
point , the euclidean distance to and derive a gaussian weight :

We consider the matrices with , with , and
diag , and compute :

where is a positive definite symmetric matrix, and is its Moore-
Penrose inverse (Penrose et al. 1955).

en:

is the LWLR estimate of , given the observed data . We define the function
PredictLWLR that compute for any given .

In our implementation, , which control the locality of the regression, is dynam-
ically computed. With as the dimension of the motor space, we define a constant

, and compute as the average distance of the closest points of the
query vector . All other points of besides the closest neighbours are given a
weight of zero.

C.2
Given a query point , we want to produce a motor command so that

is minimal.
Since is a hyperrectangle of , we use L-BFGS-B (Limited-memory Broyden–

Fletcher–Goldfarb–Shanno Bound-constrained (Byrd et al. 1995; Zhu et al. 1997);
we used version 3.0 (Morales et al. 2011)), a quasi-Newtonmethod for bound-constrained
optimization, to minimize the error. L-BFGS-B use an approximation of the Hes-
sian matrix to direct the optimization (because the Hessian cannot be directly com-
puted, it is approximated using finite differences). We approximate
with PredictLWLR and L-BFGS-B, in turns, approximates :

argmin PredictLWLR

e optimization process is initialized with the motor command corresponding to
the closest neighbour of in the set of observations.
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InverseLBFGSB-LWLR
:

• , past observations.
• , a goal.

:
• a motor command.

MinimizeLBFGSB PredictLWLR
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