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Abstract

Over the last years there is increasing interest in software systems that can cope with the dy-
namics of ever-changing environments. Currently, systems are required to dynamically adapt
themselves to new situations in order to maximize performance and availability. Pervasive sys-
tems run in complex and heterogeneous environments using resource constrained devices where
arising events may compromise the quality of the system. As a result, it is desirable to count
on mechanisms to adapt the system according to problematic events occurring in the running
context.

Recent literatures surveys have shown that dynamic adaptation is typically performed in a
reactive way and therefore software systems are not able to anticipate recurrent problematic
situations. In some situations, this could lead to resource waste and transient unavailability of
the system. In contrast, a proactive approach does not simply act in response to the environment,
but exhibit goal-directed behavior by taking the initiative in an attempt to improve the system
performance or quality of service.

In this thesis we advocate for a proactive approach to dynamic adaptation. The benefits of
combining predictive analysis with self-adaptive approach can be summarized as follows: 1)
avoiding unnecessary adaptation and oscillatory behavior 2) managing allocation of exhaustible
resources, and 3) proactivity in front of seasonal behavior. Focusing on the MAPE-K architec-
ture, in this thesis we propose to enhance dynamic adaptation by integrating a Predict activity
between the Analyze and Plan activities of the MAPE-K loop. We leverage ideas and techniques
from the area of predictive analysis to operationalize the Predict activity.

We advocate for achieving proactive self-adaptation by integrating predictive analysis into
two phases of the software process. At design time, we propose a predictive modeling process,
which includes the following activities: define goals, collect data, select model structure, prepare
data, build candidate predictive models, training, testing and cross-validation of the candidate
models and selection of the “best” models based on a measure of model goodness. At runtime,
we consume the predictions from the selected predictive models using the running system actual
data. Depending on the input data and the time allowed for learning algorithms, we argue that the
software system can foresee future possible input variables of the system and adapt proactively
in order to accomplish middle and long term goals and requirements.

The proposal has been validated with a case study from the environmental monitoring do-
main. Validation through simulation has been done based on real data extracted from public
environmental organizations. The answers to several research questions demonstrated the feasi-
bility of our approach to guide the proactive adaptation of pervasive systems at runtime.
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Résumé en Français

0.1 Introduction

Au cours des dernières années, il ya un intérêt croissant pour les systèmes logiciels capables de
faire face à la dynamique des environnements en constante évolution. Actuellement, les systèmes
auto-adaptatifs sont nécessaires pour l’adaptation dynamique à des situations nouvelles en maxi-
misant performances et disponibilité [97]. Les systèmes ubiquitaires et pervasifs fonctionnent
dans des environnements complexes et hétérogènes et utilisent des dispositifs à ressources li-
mitées où des événements peuvent compromettre la qualité du système [123]. En conséquence,
il est souhaitable de s’appuyer sur des mécanismes d’adaptation du système en fonction des
événements se produisant dans le contexte d’exécution.

En particulier, la communauté du génie logiciel pour les systèmes auto-adaptatif (Software

Engineering for Self-Adaptive Systems - SEAMS) [27, 35] s’efforce d’atteindre un ensemble
de propriétés d’autogestion dans les systèmes informatiques. Ces propriétés d’autogestion com-
prennent les propriétés dites self-configuring, self-healing, self-optimizing et self-protecting [78].
Afin de parvenir à l’autogestion, le système logiciel met en œuvre un mécanisme de boucle de
commande autonome nommé boucle MAPE-K [78]. La boucle MAPE-K est le paradigme de
référence pour concevoir un logiciel auto-adaptatif dans le contexte de l’informatique autonome.
Cet modèle se compose de capteurs et d’effecteurs ainsi que quatre activités clés : Monitor, Ana-

lyze, Plan et Execute, complétées d’une base de connaissance appelée Knowledge, qui permet le
passage des informations entre les autres activités [78].

L’étude de la littérature récente sur le sujet [109, 71] montre que l’adaptation dynamique est
généralement effectuée de manière réactive, et que dans ce cas les systèmes logiciels ne sont pas
en mesure d’anticiper des situations problématiques récurrentes. Dans certaines situations, cela
pourrait conduire à des surcoûts inutiles ou des indisponibilités temporaires de ressources du
système [30]. En revanche, une approche proactive n’est pas simplement agir en réponse à des
événements de l’environnement, mais a un comportement déterminé par un but en prenant par
anticipation des initiatives pour améliorer la performance du système ou la qualité de service.

0.2 Thèse

Dans cette thèse, nous proposons une approche proactive pour l’adaptation dynamique. Pour
améliorer l’adaptation dynamique nous proposons d’intégrer une activité Predict entre les acti-
vités Analyze et Plan de la boucle MAPE-K. Nous nous appuyons sur des idées et des techniques
du domaine de l’analyse prédictive pour réaliser l’activité Predict en charge de prédire. Selon
les données d’entrée et le temps accordé pour les algorithmes d’apprentissage, nous soutenons
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qu’un système logiciel peut prévoir les futures valeurs d’entrée possibles du système et s’adapter
de manière proactive afin d’atteindre les objectifs et les exigences du système à moyen et long
terme.

Nous plaidons pour la réalisation de l’auto-adaptation proactive en intégrant l’analyse pré-
dictive dans deux phases du processus logiciel. Au moment de la conception, nous proposons un
processus de modélisation de prédiction, qui comprend les activités suivantes : définir des objec-
tifs, recueillir des données, sélectionner la structure modèle, préparer les données, construire des
modèles prédictifs candidats, configurer ces modèles par l’apprentissage, réaliser des essais et la
validation croisée des modèles candidats, sélectionner le meilleur modèle en se fondant sur une
mesure de de performances. À l’exécution, nous employons des modèles prédictifs sélectionnés
en utilisant le système des données réelles de fonctionnement. Selon les données d’entrée et
le temps imparti pour les algorithmes d’apprentissage, nous soutenons que le système logiciel
peut prévoir les valeurs futures des variables d’entrée du système et permettre ainsi d’adapter de
manière proactive afin d’atteindre les objectifs de moyen et long terme et exigences.

0.3 Scénario de Motivation

La proposition a été motivée et validée par une étude de cas portant sur la surveillance de l’envi-
ronnement. Supposons qu’une forêt est équipée d’un réseau sans fil de capteurs et de nœuds de
calcul (WSN), qui sont déployés géographiquement à des endroits stratégiques. Chaque nœud
de calcul peut accueillir entre un et trois capteurs physiques (par exemple, les précipitations,
l’humidité et température). Le but du système est de réguler de nouvelles reconfigurations (par
exemple augmenter ou diminuer le débit de transmission de capteurs) selon les prévisions des
futurs paramètres de valeur pour améliorer l’efficacité et d’étendre la durée de vie du système.
La figure 1 illustre notre scénario concret. Les capteurs communiquent avec le système de ges-
tion du réseau de capteurs (WSN) pour obtenir des configurations optimales en fonction des
conditions actuelles.

0.4 Contributions

Les contributions principales de cette thèse sont les suivantes :

C1 : Extension du cadre d’architecture de référence Monitor-Analyze-Plan-Execute et Know-

ledge (MAPE-K) [78]. Nous proposons de renforcer l’adaptation dynamique en intégrant
une phase Predict entre les phases Analyze et Plan.

C2 : Nous proposons une technique pour la mise en œuvre du processus de modélisation pré-
dictive, selon les sept étapes suivantes : (1) définir des objectifs, (2) recueillir des données,
(3) définir la structure du modèle, (4) traiter les données, (5) construire les modèles can-
didats, (6) réaliser l’apprentissage, tester et valider les modèles, et (7) mettre en œuvre les
modèles.

C3 : Démonstration de notre approche avec un exemple concret tiré du domaine des Cyber-

Physical Systems (CPS) (dans notre cas, surveillance de l’environnement).
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FIGURE 1 – L’application de surveillance de l’environnement réseau de capteurs sans fil [98])

0.5 Mise en Œuvre et Validation

Les différentes contributions de cette thèse ont été concrétisées et intégrées dans une architecture
de référence de type MAPE-K [78] (voir la figure 2). Les composants concrétisant notre cadre
prédictif peuvent être divisés en deux phases : la phase de conception et la phase d’exécution.

La phase de conception inclut la configuration hors ligne de l’approche. Dans cette phase,
nous effectuons des activités liées au processus de modélisation prédictive. Cela comprend des
activités telles que la collecte de données, le prétraitement des données, de construire les mo-
dèles candidats, réaliser l’apprentissage, tester et évaluer des modèles prédictifs fondés sur des
observations de données passées.

La phase d’exécution implique les activités mentionnées dans la boucle MAPE-K, en com-
mençant par la surveillance et l’analyse de l’état actuel du système en ligne. Pendant la phase en
ligne, nous évaluons les modèles prédictifs définis au moment de la conception. Cette évalua-
tion est effectuée de deux manières : comparaison des stratégies réactives contre des stratégies
d’adaptation proactives. Ensuite, en prenant en considération les résultats de l’évaluation nous
procédons à la prise de décision de reconfiguration. La phase en ligne porte alors sur les nou-
velles ré-configurations.

Nous avons évalué notre approche avec le système de surveillance de l’environnement pré-
senté comme scénario de motivation. À cette fin, nous avons employé un logiciel d’analyse pré-
dictive open source (KNIME), des standard de modélisation prédictive (p. ex. Predictive Mode-
ling Markup Language (PMML)) et des API et outils deMachine learning APIs (e.g., R, octave,
Weka).

Tout d’abord, nous avons modélisé une wireless sensor network (WSN) pour la détec-
tion précoce des départs de feu, où nous combinons des données de température fournies par
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FIGURE 2 – Extension de le boucle MAPE-K

le National Climatic Data Center (NCDC) et des rapports d’incendie de Moderate Resolution

spectroradiomètre imageur (MODIS). Nous avons évalué plusieurs modèles de classification et
prédit la probabilité d’incendie pour les prochaine N heures. Les résultats confirment que notre
approche proactive surpasse un système réactif typique dans les scénarios avec comportement
saisonnier.

0.6 Organisation de la thèse

La thèse comprend six chapitres, organisés comme suit :

• Chapitre 1 : Introduit le sujet de cette thèse.

• Chapitre 2 : Décrit le contexte et les fondations de l’analyse prédictive et des systèmes
logiciels autonomes, pour comprendre les sujets liés à cette thèse.

• Chapitre 3 : Présente l’état de l’art de l’auto-adaptation proactive dans trois domaine dif-
férents : génie logiciel, intelligence artificielle et théorie et ingénierie du contrôle.

• Chapitre 4 : Présente en détail l’approche que nous proposons et son architecture MAP2E-
K. En outre, nous détaillons la phase de conception et la phase d’exécution de notre ap-
proche.

• Chapitre 5 : Décrit les détails de mise en œuvre et l’évaluation du notre approche en
comparant les stratégies réactives textit vs. proactives.

• Chapitre 6 : Nous résumons notre travail et ses perspectives.



11

Contents

0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.2 Thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.3 Scénario de Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
0.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
0.5 Mise en Œuvre et Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
0.6 Organisation de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Contents 11

1 Introduction 15

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Background 21

2.1 Motivation Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.1 Benefits of Proactive Adaptation . . . . . . . . . . . . . . . . . . . . . 23
2.1.2 Engineering and Adaptation Challenges . . . . . . . . . . . . . . . . . 23

2.2 Predictive Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.1 Data is the New Gold . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Prediction Offers Real Value . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Machine-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.4 Ensemble of Predictive Models . . . . . . . . . . . . . . . . . . . . . 31
2.2.5 Supporting Decision-Making . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Autonomic Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.1 The Self-* Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 The Autonomic Control Loop . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



12 CONTENTS

3 State of the Art 39

3.1 Taxonomy of Self-Adaptive Systems . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.1 Change Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.2 Temporal Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.3 Control Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.4 Realization Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.1 Software Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.2 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.3 Control Theory/Engineering . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Achieving Proactivity Based on Predictive Analysis 63

4.1 Overview of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.1 The Design Phase: The Predictive Modeling Process . . . . . . . . . . 64
4.1.2 Integration Points in the Runtime Phase . . . . . . . . . . . . . . . . . 70
4.1.3 Application Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Implementation of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 Predict Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2.2 Knowledge Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Summary of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Implementation and Evaluation 87

5.1 Requirements of the Forest Monitoring Scenario . . . . . . . . . . . . . . . . . 87
5.2 Design Phase of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.3 Building Predictive Models . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.4 Training and Cross-Validation of Predictive Models . . . . . . . . . . . 92

5.3 Runtime Phase of the Approach . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.1 On-line Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.3 Decision-making and Deploying Reconfigurations . . . . . . . . . . . 101

5.4 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.1 A Brief Introduction to the Goal/Question/Metric (GQM) Paradigm . . 102
5.4.2 Empirical Evaluation of Proactive vs. Reactive Strategies . . . . . . . . 103
5.4.3 Evaluation in Terms of Number of Reconfigurations . . . . . . . . . . 107
5.4.4 Evaluation in Terms of System Lifetime . . . . . . . . . . . . . . . . . 107
5.4.5 Evaluation in Terms of Late Fire Report . . . . . . . . . . . . . . . . . 109

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5.1 Limitations and Threats to Validity . . . . . . . . . . . . . . . . . . . 111



CONTENTS 13

6 Conclusions and Perspectives 113

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3.1 Improving our approach . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3.2 Other possible application scenarios . . . . . . . . . . . . . . . . . . . 117

6.4 Publications and Dissemination Activities . . . . . . . . . . . . . . . . . . . . 119
6.4.1 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Appendix 121

A Implementation Details 121

A.1 Time Series Analysis Background . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 MODIS Active Fire Detections for CONUS (2010) . . . . . . . . . . . . . . . 122
A.3 ISH/ISD Weather Stations in MS, USA . . . . . . . . . . . . . . . . . . . . . 123
A.4 PMML: Predictive Model Markup Language . . . . . . . . . . . . . . . . . . 124
A.5 Fit best ARIMA model to univariate time series . . . . . . . . . . . . . . . . . 128

List of Figures 131

List of Tables 133

Listings 135

Bibliography 137

Index 146



14 CONTENTS



15

Chapter 1

Introduction

In recent years, the expansion of computing infrastructure has caused software systems to be
ubiquitous. Currently, computing environments blend into the background of our lives, basi-
cally everywhere and anywhere [123]. This pervasive characteristic has drastically increased the
dynamicity and complexity of software systems. Usually the burden of managing such hetero-
geneous computing environments (e.g., devices, applications and resources) falls on engineers,
which must manually redesign applications and adjust their settings according to available re-
sources. Today, systems are required to cope with variable resources, system errors and failures,
and changing users priorities, while maintaining the goals and properties envisioned by the en-
gineers and expected by the final users [97].

Since its early beginnings, the software engineering community has envisioned the devel-
opment of flexible software systems in which modules can be changed on the fly [44]. More
recently, this vision has been extended to consider software systems that are able to modify their
own behavior in response to changes in their operating conditions and execution environment
in which they are deployed [70]. This concept is widely known as self-adaptation and it has
been a topic of study in various domain areas, including autonomic computing, robotics, control
systems, programming languages, software architecture, fault-tolerant computing, biological
computing and artificial intelligence [27, 35, 71].

In particular, the Software Engineering for Self-Adaptive Systems (SEAMS)1 community
[27, 35] has been working towards achieving a set of self-management properties in software
systems. These self-management properties include self-configuring, self-healing, self-optimizing

and self-protecting [78]. In order to achieve self-management, the software system implements
an autonomic control loop mechanism known as the MAPE-K loop [78]. The MAPE-K loop is
the de facto paradigm to design self-adaptive software in the context of autonomic computing.
This reference model consists of sensors and effectors as well as four key activities: Monitor,
Analyze, Plan and Execute functions, with the addition of a shared Knowledge base that enables
the passing of information between the other components [78].

Traditionally, the MAPE-K loop is a runtime model where the Monitor activity includes
reading from sensors or probes that collect data from the managed system and environment.
This information reflects the system’s current state and its context environment. The Analyze ac-

1http://www.self-adaptive.org
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tivity involves organizing the data, which is then cleaned, filtered, pruned to portray an accurate
model of the current state of the system. Subsequently, the Plan activity involves building the
execution plans to produce a series of adaptations to be effected on the managed system. Finally,
the Execute activity involves carrying out the changes to the managed elements through the ef-
fectors. The propagated adaptations can be coarse-grained, for example enabling or removing
functionality, or fine-grained for instance changing configuration parameters.

In 2001, P. Horn presented in [70] IBM’s perspective on the state of information technology
and he coined the term Autonomic Computing. The author explained in an illustrative way
the analogy of the autonomic nervous system of the human body compared to an autonomous
software system. Adopting the same analogy, we can consider the human body has two main
“reasoning” capabilities: “reflex” and “thinking”. Reactive techniques can be seen as a kind
of reflex, since they involve a short term response to a particular stimulus. When the system
is in a critical context, these adaptations can quickly reconfigure the system into an acceptable
configuration. On the other hand, proactive techniques based on predictions resembles more the
definition of “thinking”, because they involve learning mechanisms based on historical data that
can analyze middle and long term goals.

In this thesis we propose to enhance dynamic adaptation by integrating a Predict activity
between the Analyze and Plan activities of the MAPE-K loop. We leverage ideas and techniques
from the area of predictive analysis [126] to operationalize the Predict activity. Depending
on the input data and the time allowed to the learning algorithms, we argue that a software
system can foresee future possible input variables of the system and adapt proactively in order
to accomplish middle or long term goals and requirements.

1.1 Motivation

During the last couple of years there is a growing interest into self-adaptive systems [27, 35].
Recent literature surveys [37, 71, 109] present that most of the existing self-adaptive systems
have a reactive nature. A reactive adaptation strategy is triggered when a problem occurs and
then the system addresses it. This capability of reactiveness is not generally a disadvantage.
However, for some specific domains (e.g., environmental monitoring, safety critical systems), it
is required to have proactiveness in order to decrease the aftereffects of changes and to block
change propagation. Accordingly, S. W. Cheng et al. [30] demonstrate that a reactive strategy
of adaptation might optimize instantaneous utility. However, it may often be suboptimal over
a long period of time when compared with a predictive strategy. This means there is a great
demand for proactive decision-making strategies.

A common scenario where the proactive strategy has the potential to outperform the reac-
tive strategy regards applications that experiment cyclical behaviors. For instance, a personal
laptop running on battery has several scheduled background tasks (e.g., backup, virus scan, up-
dates) that can run periodically (e.g., daily, weekly). Often the execution of these administrative
tasks cannot be interrupted or suspended once they have started, but the time and length of the
execution is known beforehand. The resource utilization imposed by such tasks has a known
behavior and it can certainly be predictable. Failure to recognize this behavior and not estimate
its resource consumption in advance may lead to the system’s halt in the middle of a critical
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update.
Although certainly not a new technology, predictive analysis ( a.k.a. predictive analytics) is

a statistical or data analysis solution consisting of algorithms and techniques that can be used on
both structured and unstructured data to determine possible outcomes [126]. Predictive analytics
in software engineering has been widely used and has many application fields, thereby becoming
a mainstream technology. The application fields include medical diagnostics, fraud detection,
recommendation systems, and social networks. It is also being used for bank companies to
perform credit risk assessment [112].

In general, predictive analysis can be used to solve many kinds of problem. In this thesis we
argue that it can be applied to solve self-optimizing, self-protecting and self-configuring prob-
lems. For instance, a software system self-optimizes its use of resources when it may decide to
initiate a change to the system proactively, as opposed to adapting reactively, in an attempt to
improve performance or quality of service [71]. In contrast to that, from our own perspective,
the implementation of the self-healing property can be seen as a reactive adaptation strategy due
to the fact that by its definition it aims at solving a problem that has previously occured.

1.2 Research Questions

The overall goal of this thesis can be formulated as follows:

How should predictive analysis be performed when the main purpose of prediction

is to support proactive self-adaptation in pervasive systems?

Two important points here are purpose and context. The purpose of our study is predictive
modeling as means to support proactive self-adaptation. The context is self-adaptive systems
that implement the autonomic control loop. More in particular, we deal with pervasive sys-
tems deployed in heterogeneous and dynamic environments. In order to narrow the aspects of
integrating predictive modeling with self-adaptive systems that are investigated, three partial
research questions are formulated:

RQ1: How do several measurements observed in the monitoring component correlate over a
certain period of time?

RQ2: How to build a machine-learning predictive model based on the temporal behavior of
many measurements correlated to externally known facts?

RQ3: What measurements might indicate the cause of some event, for example, do similar
patterns of measurements preceded events that lead to a critical situation such as a failure,
and how to diagnosis this causal relationship?

1.3 Research Objectives

The major goal of this thesis is to propose a predictive analysis based approach using ma-

chine learning techniques and integrate it into the autonomic control loop in order to en-
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able proactive adaptation in self-adaptive systems. Therefore, this thesis targets the following
objectives:

RO1: Explore proactive adaptation approaches that leverages on existing context and environ-
ment streams of data in order to anticipate erroneous behavior of the system by predicting
conflicting situations.

RO2: Study the activeness (e.g., reactive vs. proactive) of self-adaptive systems, analyze the
potentials and limitations of system’s parameters predictability (e.g., prediction horizon,
prediction granularity), and investigate solutions to deal with parameter’s future value
uncertainty (e.g., prediction confidence level).

RO3: Develop a methodological framework of predictive modeling using machine learning
techniques to enhance the effectiveness of proactive adaptation in self-adaptive software
systems.

1.4 Contributions

The study and analysis of the aforementioned research objectives has generated the following
contributions:

C1: Extension of the Monitor-Analyze-Plan-Execute and Knowledge (MAPE-K) reference ar-
chitecture [78]. We propose to enhance dynamic adaptation by integrating a Predict phase
between the Analyze and Plan phases.

C2: We propose a stepwise technique for the operationalization of the predictive modeling pro-
cess divided in seven steps, namely: (1) define goals, (2) collect data, (3) define model
structure, (4) data processing, (5) build candidate models, (6) train, test and validate mod-
els, and (7) models implementation.

C3: The demonstration of our approach with a concrete example taken from the Cyber-Physical

Systems (CPS) domain (e.g., environmental monitoring). This implementation is de-
scribed in more detail in Chapter 5.

1.5 Evaluation

We evaluated our approach in the environmental monitoring system presented on the motivation
scenario. For this purpose, we implemented the proposed approach using an open source predic-
tive analysis framework (i.e. KNIME), predictive modeling standards (e.g., Predictive Modeling
Markup Language (PMML)) and machine learning libraries/tools (e.g., R, Octave, Weka).

Firstly, we modeled a wireless sensor network (WSN) for early detection of fire conditions,
where we combined hourly temperature readings provided by National Climatic Data Center

(NCDC) with fire reports from Moderate Resolution Imaging Spectroradiometer (MODIS) and
simulated the behavior of multiple systems. We evaluated several classification models and
predicted the fire potential value for the next N hours. The results confirmed that our proactive
approach outperforms a typical reactive system in scenarios with seasonal behavior [98].
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1.6 Organization

The rest of this thesis is organized as follows:

• Chapter 2 describes the background and the foundations in predictive analytics and auto-
nomic computing to understand the subjects related to this dissertation.

• Chapter 3 overviews the state of the art in proactive self-adaptation approaches coming
from three different domain areas: software engineering, artificial intelligence and control
theory/engineering.

• Chapter 4 describes our proposed MAP2E-K loop in detail. Additionally, we elaborate
the design phase and runtime phase of our approach. These phases include the following
activities: data collection, prepare data, build predictive models, training, testings and
cross-validation of models, implementation of predictive models and implementation of
the models.

• Chapter 5 describes the implementation details and the evaluation of the proposed proac-
tive framework comparing the reactive vs. proactive strategies.

• Chapter 6 presents the conclusions and describes the future research lines of this thesis.
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Chapter 2

Background

This chapter presents the foundations to understand the subjects related to this thesis. Firstly,
in Section 2.1 we present a motivation scenario extracted from the environmental monitoring
domain to illustrate the research problem we are tackling on. Secondly, in Section 2.2 we present
Predictive Analysis [126], which is one of the building blocks for proactive self-adaptation.
Thirdly, in Section 2.3 we present in details the area of Autonomic Computing [70], which is
another domain area that enables our research approach. Finally, in Section 2.4 we discuss some
similarities and potential conflicting issues in the previously described disciplines and give some
conclusions.

2.1 Motivation Scenario

In this section we describe our motivation scenario that is at the heart of the problem we are
focusing on. Let us assume that a forest is equipped with a wireless sensor network (WSN),
where sensor-nodes are deployed geographically at strategic locations. Each sensor-node can
host between one and three physical sensors (e.g., precipitation, humidity and temperature).

The goal of the system is to regulate new reconfigurations (e.g., increase or decrease

sensor’s transmission rate) according to predictions of future value parameters to improve

the effectiveness and extend the life span of the system. Figure 2.1 illustrates our motivation
scenario. Sensors communicate with the environment wireless sensor network (WSN) manage-
ment system to obtain optimal configurations according to current conditions.

Each sensor node component is functioning at a standard sampling rate. However, the trans-
mission of data can be controlled using three different levels of transmission rate: LOW (e.g.,
1 transmission every 24 hours), MEDIUM (e.g., 1 transmission every 8 hours) and HIGH (e.g.,
1 transmission every hour). Sensor nodes are equipped with 6lowPan radio for inter-node com-
munication. Data-collector nodes are in charge of receiving raw data from the sensor-nodes and
perform as gateway of the system.

The environmental WSN monitoring system has a global entity, which has access to all avail-
able information from sensors and maintains a global model of the current state of the system. In
this context, the environmental manager has access to weather forecast and historical informa-
tion of actual fires in similar locations. Combining both data sources, we can relate individual
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Figure 2.1 – Environmental monitoring wireless sensor network [98])

fires to weather conditions in space and time. The environmental WSN can be considered as a
cloud-based dedicated service that decides the reconfiguration of each sensor-node, taking into
account the following relevant parameters: (i) position, (ii) battery life and (iii) current environ-
mental condition expressed as a cost function of precipitation, temperature and humidity.

A stochastic model predicts the forest behavior based on historical data. The model’s accu-
racy is a function of the transmission rate, number and distribution of sensor-nodes contributing
raw data through the data-collectors. Therefore, there is an implicit need to evolve the initial
configuration over time because of system constrains or environmental changes (e.g., batteries
are running low, or because a seasonal drought requires a more frequent and accurate transmis-
sion of current conditions).

To sum up, the main requirements of the environment monitoring motivation scenario are:

1. The system should provide feedback on potential fire risks to its users (e.g., environmental
guards, fire department) allowing them to act proactively and anticipate and avoid possible
critical situations.

2. The system should support the coordinated reconfiguration of sensor nodes, in order to
avoid service failure due to battery exhaustion, with the goal of extending the life time of
the system as much as possible.

The approach we propose assumes that the following information technologies are available:

1. The forest is equipped with a wireless sensor network, where each node has several sens-
ing capabilities (e.g., temperature, humidity, smoke). Sensor nodes can communicate
among themselves (i.e. intra-node communication) and with external data collector de-
vices (i.e., extra node communication) to transmit the raw data.
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2. Nodes can be reconfigured via wireless. Reconfigurations represent changes by increasing
or decreasing the transmitting frequency (e.g., every 1 hr, 4 hrs, 8 hr). Other kind of adap-
tation may involves enabling or disabling sensor capabilities (e.g., enabling temperature)
or changing the sleeping and wake up cycle in the sensor nodes.

2.1.1 Benefits of Proactive Adaptation

Proactive adaptation offers the benefit of anticipating events in order to optimize system behavior
with respect to its changing environment. By analyzing the limitations of the reactive strategy,
we have identified three potential benefits under which the proactive approach is likely to be
better than the reactive strategy:

1. Avoiding unnecessary adaptation: This happens when the conditions that trigger an adap-
tation may be more short-lived than the duration for propagating the adaptation changes.

2. Managing allocation of exhaustible resources: by managing allocation of perishable re-
sources (e.g., battery) with proactive adaptation enable us to make provision for future
time when the resource is scarce.

3. Proactivity in front of seasonal behavior: proactive adaptation in front of seasonal behav-
ior requires detecting seasonal patterns, which can be provided by predictors like time-
series analysis.

2.1.2 Engineering and Adaptation Challenges

Engineering self-adaptive system deployed in dynamic and ever-changing environments poses
both engineering and adaptation challenges. These challenges can be briefly described in terms
of the following quality of services (QoS) properties:

Proactivity: Proactivity captures the anticipatory aspect in self-adaptive system. It can be
broadly defined as the ability of the system to anticipate and predict when a change or
problem is going to occur, and to take action about it [109]. On the contrary, in a reac-
tive mode the system responds when a change or problem has already happened. When
dealing with dynamically adaptive systems, as in our previously described motivation sce-
nario, reactiveness has some limitations: (i) information used for decision making does
not extend into the future, and (ii) the planning horizon of the strategy is short-lived and
does not consider the effect of current decisions on future utility [30].

Predictability: Predictability can be described in two ways: predictability associated with the
environment, which is concerned with whether the source of change can be predicted
ahead of time, and predictability associated with the running system, which deals with
whether the consequences of self-adaptation can be predictable both in value and time [4].
In the context of this thesis we are concerned with predictability associated to the envi-
ronment and the different techniques need it depending on the degree of anticipation.
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Reliability: Reliability can be broadly defined as the probability of successfully accomplishing
an assigned task when it is required [46]. In particular, the meaning of success is domain
dependent, for instance, that the execution of the task satisfies convenient properties (e.g.,
it has been completed without exceptions, within an acceptable timeout, occupying less
than a certain amount of memory, etc).

Attaining the previously described QoS properties poses a great challenge and illustrates the
opportunity of improvement in the existing adaptation approaches. Currently, there is an over-
abundance of public data (e.g., sensors, mobiles, pervasive systems). Thus, there is great demand
for solutions to make sense of this data, particularly using predictive mechanisms regarding the
specific domain and its operational environment. In the following section we explore in detail
the enablers of proactivity, predictability and reliability in the context of self-adaptive systems.

2.2 Predictive Analysis

This section presents predictive analysis as an enabler of our proactive self-adaptation approach.
Predictive analysis (PA) encompasses a variety of statistical techniques ranging from modeling,
machine learning, and data mining techniques that analyze current and historical facts to make
predictions about future, or otherwise unknown, events [95].

Currently, there is an explosion of data being collected everywhere around ever increasing
and ubiquitous monitoring processes. Data continues to grow and hardware is struggling to keep
up, both in processing power and large volume data repositories [126]. Data can be broadly
categorized as either structured or unstructured. Structured data has well-defined and delimited
fields, and this is the usual type of data used in statistical modeling. Unstructured data includes
time series, free text, speech, sound, pictures and video. Statistical modeling can also be divided
into two broad categories: search and prediction. For search problems we try to identify cate-
gories of data and then match search requests with the appropriate data records. In prediction
problems we try to estimate a functional relationship, so we can provide an output to a set of
inputs. These prediction statistical models are in general the types of modeling problems that
are considered in this thesis.

E. Siegel, in his book Predictive Analytics: The power to predict who will click, buy, lie

or die [112] presented 147 examples of different application domains for predictive analytics.
Applications can be found in a wide range of different domains including: stock prices, risk,
accidents, sales, donations, clicks, health problems, hospital admissions, fraud detection, tax
evasion, crime, malfunctions, oil flow, electricity outages, opinions, lies, grades, dropouts, ro-
mance, pregnancy, divorce, jobs, quitting, wins, votes, and much more.

The predictive analysis process is generally divided in two parts: off-line and on-line. The
off-line phase involves collecting the data from the environment and applying the machine-
learning techniques to the datasets to build predictive models. The on-line phase include the
activities of characterization of an individual, next the individual is evaluated with predictive
models in order to generate the results that will drive the decision-making process. Figure 2.2
illustrates the general predictive analysis process and the relationships between its main compo-
nents.
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Figure 2.2 – General overview of the predictive analysis process (based on [112])

Namely, the basic elements that make feasible the predictive analysis process are: data,
predictions, machine-learning, ensemble of models and the action of decision-making [112,
126]. The following subsections explain in more detail each element and their relationships in
the predictive analysis process.

2.2.1 Data is the New Gold

Following the agricultural and industrial revolutions from previous centuries, in the last decades
we have experienced the information revolution [103]. Forbes, the American business magazine
stated that we are entering a new era, the era of data where data is the new gold1. Several other
authors have coined data as “the new oil” or “data is the new currency of the digital world” [103].

Day by day, each on-line and off-line bank transaction is recorded, websites visited, movies
watched, links clicked, friends called, opinions posted, dental procedures endured, sports games
won, traffic cameras passed and flights taken. Countless sensors are deployed daily. Mobile de-
vices, drones, robots, and shipping containers record movement, interactions, inventory counts,
and radiation levels, just to mention a few devices that generate and consume data. Now imag-
ine all those deployed devices interconnected at an unprecedented scale and pace, this is what is
known as the Internet of Things (IoT), a term first coined by Kevin Ashton in 1999 in the con-
text of supply chain management [7]. The next revolution will be the interconnection between
objects to create a smart environment. Only in 2011 did the number of interconnected devices
on the planet overtake the actual number of people. Currently there are 9 billions interconnected
devices and it is expected to reach 24 billions devices by 2020 [62].

Further more, free public data is overflowing and waiting at our fingertips. Following the
open data movement, often embracing a not-for-profit organization, many data sets are available
on-line from different fields like biodiversity, business, cartography, chemistry, genomics, and

1http://www.forbes.com/sites/bradpeters/2012/06/21/the-big-data-gold-rush/



26 CHAPTER 2. BACKGROUND

medicine. For example KDnuggets2 is one of the top resource since 1997 for data mining and
analytics. Another example is the United States official website Data.gov, whose goal is “to
increase public access to high value, machine readable datasets generated by the Government
of USA.” Data.gov3 contains over 390,000 data sets, including data about marine casualties,
pollution, active mines, earthquakes, and commercial flights [103].

Big data is defined as data too large and complex to capture, process and analyze using
current computer infrastructure. It is now popularly characterized by five V’s (initially it was
described as having three, but two have since then been added to emphasize the need for data
authenticity and business value) [63]:

• Volume: data measurements in tera (1012) are now the norm, or even peta (1015), and is
rapidly heading towards exa (1018);

• Velocity: data production occurs at very high rates, and because of this sheer volume some
applications require near real-time data processing to determine whether to store a piece
of data;

• Variety: data is heterogeneous and can be highly structured, semi-structured, or totally
unstructured;

• Veracity: due to intermediary processing, diversity among data sources and in data evo-
lution raises concerns about security, privacy, trust, and accountability, creating a need to
verify secure data provenance; and

• Value: through predictive models that answer what-if queries, analysis of this data can
yield counterintuitive in sights and actionable intelligence.

With such an overflow of free public data, there is a need for new mechanisms to analyze,
process, and take advantage of its great potential. Thus, the goal is to apply predictive analysis
techniques to process this abundance of public data. This involves a variety of statistical tech-
niques such as modeling, machine learning, and data mining that analyze current and historical
facts in order to make predictions about future or unknown events [95]. New data repository
structures have evolved, for example the MapReduce/Hadoop4 paradigm. Cloud data storage
and computing is growing, particularly in problems that can be parallelized using distributed
processing [63].

2.2.2 Prediction Offers Real Value

J. A. Paulos, professor of mathematics at Temple University in Philadelphia defined “Predic-
tion is a very difficult task and uncertainty is the only certainty there is. Knowing how to live
with insecurity is the only security”. Thus, uncertainty is the reason why accurate prediction
is generally not possible. In other words, predicting is better than pure guessing, even if is not

2http://www.kdnuggets.com/datasets/index.html
3http://www.data.gov/
4http://hadoop.apache.org/
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100 percent accurate, predictions deliver real value. A vague view of what is coming outper-
forms complete darkness [112]. Therefore analyzing errors is critical. Learning how to replicate
past successes by examining only the positive cases does not work and induces over-fitting to
the training data [89]. Thus, negative examples are our friends and should be taken into account.

From Figure 2.2 that illustrates the predictive analysis process we see that before using a
predictive model we have to build it using machine learning techniques. By definition a predic-

tive model is a mechanisms that predicts a behavior of a system. It takes characteristics of the
system as input (e.g. internal, external), and provides a predictive score as output. The higher
the score, the more likely it is that the system will exhibit the predicted behavior [112].

From the predictive analysis process we can clearly identify two phases. In the off-line
phase data must be collected and processed. This means identifying the predictor variables,
which are the parameters that better describe the behavior of the system. This part also involves
cleaning the data, which can be done by re-dimensional analysis and removing out-layers from
the training dataset. Alternatively, surrogate variables can be used to handle missing values
of predictor variables. Next, the machine learning algorithms crunches the data to build the
predictive model.

In general, the statistical modeling approaches can be categorized in many ways [15], for
instance: (1) classification, i.e. predicting the outcome from a set of finite possible values,
(2) regression, i.e. predicting a numerical value, (3) clustering or segmentation, i.e. summa-
rizing data and identifying groups of similar data points, (4) association analysis, i.e. finding
relationships between attributes, and (5) deviation analysis, i.e. finding exceptions in major
trends or structures. Other authors, such as [126], categorize the prediction approaches from a
different perspective: (1) linear modeling and regression, (2) non-linear modeling, and (3) time
series analysis.

In our case, we focused on classification and regression methods in the scope of time series
analysis. Classification, because we focused on finding a model that, when applied on a certain
time series (e.g. hourly temperature readings), is able to classify current weather conditions as
having significant fire potential or not. Regression models are applied in the forecasting scope
to make precise predictions for the next N hours in the time series.

Linear Modeling and Regression

The most common data modeling methods are regressions, both linear and logistic. According
to [126], it is likely that 90% or more of real world applications of data mining end up with
a relatively simple regression as the final model, typically after very careful data preparation,
encoding, and creation of variables.

In statistics, linear regression is an approach for modeling the relationship between a scalar
dependent variable y and one or more explanatory (or independent) variable denoted X . The
case of one explanatory variable is called simple linear regression, whereas for more than one
explanatory variable the process is called multiple linear regression.

There are several reasons why regressions are so commonly used. First, they are generally
straightforward both to understand and compute. The mean square error (MSE) objective func-
tion has a closed-form linear solution obtained by differentiating the MSE with respect to the
unknown parameter and setting the derivatives to zero.
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Non-linear Modeling

Previously, we discussed many of the important and popular linear modeling techniques. Mov-
ing one step towards complexity we can find the nonlinear models. These classes of models
can be understood as fitting linear models into local segmented regions of the input space. Ad-
ditionally, fully nonlinear models beyond local linear ones include: clustering, support vector
machine (SVM), fuzzy systems, neural networks, and others. Formally defined, the goal of non-
linear modeling is to find the best-fit hyper plane in the space of the input variables that gives
the closest fit to the distribution of the output variable [126].

In particular, in Section 5.2.4 we choose from existing classification models and evalu-
ate 8 non-linear models in the implementation of the motivation scenario. These models are:
(1) Multi Layer Perceptron [107], (2) Fuzzy Rules [14], (3) Probabilistic Neural Network [16],
(4) Logistic Regression [126], (5) Support Vector Machine [104], (6) Naive Bayes [126], (7) Ran-
dom Forest [23], and (8) Functional Trees [55]. In general, the more nonlinear the modeling
paradigm, the more powerful the model. However, at the same time, the easier it is to overfit.

Time Series Analysis

One major distinction in modeling problems as time series analysis is that the next value of the
series is highly related to the most recent values, with a time-decaying importance in this rela-
tionship to previous values. Before looking more closely at the particular statistical methods, it is
appropriate to mention that the concept of time series is not quite new. In fact its beginnings date
back to mid-19th century, when ship’s captains and officers had long been in the habit of keep-
ing detailed logbooks during their voyages (e.g., knots, latitude, longitude, wildlife, weather,
etc.). Then they carried out analysis in the collected data that would enable them to recommend
optimal shipping routes based on prevailing winds and currents [39].

Moreover, the time series forecasting problem has been studied during the last 25 years [34],
developing a wide theoretical background. Nevertheless, looking back 10 years, the amount of
data that was once collected in 10 minutes for some very active systems is now generated every
second [39]. Thus, the current overabundance of data poses new challenges that need different
tools and the development of new approaches.

The goal of modeling a problem in terms of time series analysis is to simplify it as much as
possible regarding the time and frequency of generated data. R. H. Shumway and D. S. Stoffer
categorized the time series analysis from two different approaches: time domain approach and
frequency domain approach [111], see Figure 2.3.

The time domain approach is generally motivated by the presumption that correlation be-
tween adjacent points in time is best explained in terms of a dependence of the current value
on past values. Conversely, the frequency domain approach assumes the primary characteristics
of interest in time series analyses relate to periodic or systematic sinusoidal variations found
naturally in most data. The best way to analyzing many data sets is to use the two approaches in
a complementary way.

• Time domain approach. The time domain approach focuses on modeling some future
value of a time series as a parametric function of the current and past values. Formally, a
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Figure 2.3 – Time series approaches (based on [111])

time series X is a discrete function that represents real-valued measurements over time as
represented in Formula 2.1.

X = {x1,x2...xn} : X = {xt : t ∈ T} : T = {t1, t2...tn} (2.1)

The n time points are equidistant, as in [90]. The elapsed time between two points in the
time series is defined by a value and a time unit. For example, we may consider a time
series as a sequence of random variables, x1; x2; x3; ... , where the random variable x1

denotes the value taken by the series at the first time point t1, the variable x2 denotes the
value for the second time period t2, x3 denotes the value for the third time period t3, and
so on. In general, a collection of random variables, xt , indexed by t is referred to as a
stochastic process. In this analysis, t will typically be discrete and vary over the integers
t = 0; ± 1; ± 2; or some subset of the integers [111]. This time series generated from
uncorrelated variables is used as a model for noise in engineering applications and it is
called white noise [111].

If the stochastic behavior of all time series could be explained in terms of the white noise
model, classical statistical methods would suffice. Two ways of introducing serial corre-
lation and more smoothness into time series models are moving averages and autoregres-

sions.

To smooth a time series we might substitute the white noise with a moving average by
replacing every value by the average of its current value and its immediate neighbors in
the past and future. For instance, the following Formula 2.2 represents a 3-point moving
average.

vt =
1
3
(wt−1 +wt +wt+1) (2.2)
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Classical regression is often insufficient for explaining all of the interesting dynamics
of a time series. Instead, the introduction of correlation as a phenomenon that may be
generated through lagged linear relations leads to proposing the autoregressive (AR) and
autoregressive moving average (ARMA) models. The popular Box and Jenkins [21] Au-

toregressive integrated moving average (ARIMA) create models to handle time-correlated
modeling and forecasting. The approach includes a provision for treating more than one
input series through multivariate ARIMA or through transfer function modeling [22, 20].

• Frequency domain analysis. Seasonality can be identified and removed as follows.
First we need to identify the natural periodicity of data. This can be done in a variety
of ways, such as (a) through expert understanding of the dynamics, (b) through statis-
tical analysis using different window lengths, or (c) through frequency analysis look-
ing for the fundamental frequencies. Formally defined, a time series Xt with values
(xt−k,xt−k−1, ...,xt−2,xt−1) (where t is the current time) can be represented as the addi-
tion of four different time series:

Xt = Tt +St +Rt (2.3)

where Tt , St and Rt are the trend, seasonality and random components of the time series.
The trend Tt describes the long term movement of the time series. The seasonality com-
ponent St describes cyclic behaviors with a constant level in the long term, it consists of
patterns with fixed length influenced by seasonal factors (e.g., monthly, weekly, daily).
Finally, the random component Rt is an irregular component to be described in terms of
random noise. Therefore, modeling Xt can be described as the addition of its components.
Figure 2.4 illustrates a time series decomposition analysis of a temperature variable over
30 days.

– The trend component can be described as a monotonically increasing or decreasing
function, in most cases a linear function, that can be approximated using common
regression techniques. It is possible to estimate the likelihood of a change in the
trend component by analyzing the duration of historic trends.

– The seasonal component captures recurring patterns that are composed of at least on
or more frequencies (e.g daily, weekly, monthly) patterns. These frequencies can be
identified by using a Discrete Fourier Transformation (DFT) or by auto-correlation
technique [111].

– The random component is an unpredictable overlay or various frequencies with dif-
ferent amplitudes changing quickly due to random influences on the time series.

2.2.3 Machine-Learning

Machine Learning aims at finding patterns that appear not only in the data at hand, but in general,
so that what is learned will hold true in new situations never yet encountered. By definition, “a
computer program is said to learn from experience E with respect to some class of tasks T
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Figure 2.4 – A time series decomposition analysis example

and performance measure P, if its performance at tasks in T, as measured by P, improves with
experience E”, which has become the formal definition of Machine Learning [88]. Training data
sets are use by machine learning algorithms to generate a predictive model. Testing data sets are
used to evaluate the accuracy of the predictive models to the real data.

Table 2.1 shows a classification of datasets and a selection of candidate predictive models
that can be applied to such datasets. Data sets can be organized by three characteristics: default
task, data type and attribute type. This classification is based in the Machine Learning Repository
(MLR)5 from the University of California, School of Information and Computer Science [9].

For each considered model there are myriads of variations proposed in the literature, and it
would be a hopeless task to consider all existing varieties. Our strategy is therefore to consider
the basic version of each model and categorize them by the purpose of their task, data type and
attribute type. The rationale is that most users will more likely prefer to consider the basic form
at least in their first attempt to understand its functionality.

2.2.4 Ensemble of Predictive Models

An ensemble of predictive models consists of a set of individually trained classifiers (e.g. neural
networks, decision trees) whose results are combined to improve the prediction accuracy of a
machine learning algorithm [126]. Previous research has shown that a collection of statistical
classifiers, or ensembles, is often more accurate than a single classifier [95].

A random forest model is the typical example for predictive models ensemble used for clas-
sification and regression problems. It operates by constructing a multitude of decision trees at
training time and by outputting the class that is the mode of the classes output by individual
trees [95]. The general abstraction is collecting models and having them vote. When joined as

5http://archive.ics.uci.edu/ml/datasets.html
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Property Types Definition

Default task

Classification Is a supervised problem where inputs are divided
into two or more classes known beforehand (e.g.,
Bayes, function, fuzzy, meta-classifiers, rule-based,
trees, Support vector machines)

Regression Also a supervised problem, the outputs are contin-
uous rather than discrete (e.g. linear regression, lo-
gistic regression, SVM)

Clustering A set of inputs is to be divided into groups. Unlike in
classification, the groups are not known beforehand,
making this typically an unsupervised task (e.g.
centroid-based clustering, K-nearest, distribution-
based clustering)

Recommendation Is an information filtering system that seek to predict
the “rating” or “preference” that users would give to
an item (e.g., collaborative filtering, content-based
filtering, hybrid recommender).

Forecast Estimates a future event or trend as a result of
study and analysis of available pertinent data (e.g.,
Times series analysis, autoregressive moving aver-
age (ARMA), autoregressive integrated moving av-
erage (ARIMA), Holt-Winters (HW))

Data type

Univariate Considers only one factor, or predictor variable,
about the system under study

Multivariate Considers multiple factors or predictor variables at
a time of the system under study

Sequential Considers sequence of data values, usually ordinal
or categorical data (e.g. months of the year, days of
the week)

Time Series Considers a set of values of a quantity obtained at
successive times, often with equal intervals between
them (e.g. hourly temperature readings)

Tex Considers text collections that belongs to a vocabu-
lary or specific language (e.g. used for spam filter-
ing)

Attribute type
Categorical Considers qualitative attributes
Numerical Considers quantitative attributes
Mixed Support both qualitative and quantitative attributes

Table 2.1 – Classification of datasets, based on [9]
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ensembles, predictive models compensate for their limitations, so the ensemble as a whole is
more likely to have higher accuracy rather than its individual predictive models.

Another example of model ensembles is boosting algorithms, which is an approach to ma-
chine learning based on the idea of creating a highly accurate predictor by combining many weak
and inaccurate learners. Some popular algorithms in this category are AdaBoost, LPBoost, To-
talBoost, BrownBoost, MadaBoost, among others [110].

2.2.5 Supporting Decision-Making

Once the predictive model or the ensembles of predictive models is trained and tuned, the next
step is to deploy it on-line. The key part is to integrate it with a decision-making mechanism.
In a previous paper we integrated our prediction based proactive approach with a ruled-based
mechanism to take decisions whether to adapt or not the software system [98].

Prediction does not offer a real value by itself unless it feeds a reasoning engine to support
the decision-making process. Therefore, prediction implies action. Particularly, in the imple-
mentation of our approach we observed that predictions offer three kinds of improvement when
compared to existing reactive adaptation approaches:

1. Prediction prevents unnecessary self-adaptation: At times the conditions that triggers
an adaptation may be more short-lived that the duration for propagating the adaptation
changes, resulting in unnecessary adaptation that incur potential resource cost and service
disruption [30].

2. Prediction to manage the allocation of exhaustible resources: In [93], the author proposed
a taxonomy that classifies each computing resources into one of three categories: time-
shared, space-shared and exhaustible. For instance, CPU and bandwidth are time-shared
resources, while battery is an exhaustible resource. A proactive strategy offers the advan-
tage to make provision of exhaustible resources (e.g., battery) for future time when the
resource is scarce [98].

3. Proactivity in front of seasonal behavior: If a similar shift in system conditions occurs
seasonally, this means once every period of time such as every day at 10 AM, the same
pattern of adaptations would repeat every period. One workaround is to learn the seasonal
pattern from historical data and predict adaptations on time [30].

2.3 Autonomic Computing

Autonomic Computing is the other enabler of our approach. Autonomic computing is an IBMś
initiative presented P. Horn [70] in 2001. It describes computing systems that are said to be
self-managing. The term “autonomic” comes from a biology background and is inspired by the
human body’s autonomic nervous system. Similarly, a self-adaptive system (SAS) modifies its
own behavior in response to changes in its operating environment, which is anything observable
by the software system, such as end-user inputs, external hardware devices and sensors, or pro-
gram instrumentation [97]. The concepts of autonomic computing and self-adaptive systems are
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strongly related and share similar goals, thus within the scope of this thesis both terms are used
interchangeably.

Autonomic computing original goal is:

“To help to address complexity by using technology to manage technology. The
term autonomic is derived from human biology. The autonomic nervous system
monitors your heartbeat, checks your blood sugar levels and keeps your body tem-
perature closer to 98.6◦F without any conscious effort on your part. In much the
same way, self-managing autonomic capabilities anticipate and resolve problems
with minimal human intervention. However, there is an important distinction be-
tween autonomic activity in the human body and the autonomic activities in IT
systems. Many of the decisions made by autonomic capabilities in the body are
involuntary. In contrast, self-managing autonomic capabilities in software systems
perform tasks that IT professionals choose to delegate to the technology according
to policies [70].”

As mentioned earlier, Autonomic Computing (AC) and Self-adaptive System (SAS) share the
same goal, which is to improve computing systems with a decreasing human involvement in the
adaptation process. Many researchers use the terms self-adaptive, autonomic computing, and
self-managing interchangeably [32, 37, 71]. Salehie and Tahvildari [109] describe a slightly dif-
ferent point of view, where “the self-adaptive software domain is more limited, while autonomic
computing has emerged in a broader context.” According to the authors [109] “self-adaptive
software has less coverage and falls under the umbrella of autonomic computing.”

2.3.1 The Self-* Properties

Upon launching the AC initiative, IBM defined four general adaptivity properties that a system
should have to be considered self-managing. These properties are also knowns as the self-*

properties and include: self-configuring, self-healing, self-optimizing and self-protecting. These
properties are described as follows.

Self-configuring is the capability of reconfiguring automatically and dynamically in response
to changes by installing, updating, integrating, and composing/decomposing software en-
tities [109].

Self-optimizing is the capability to monitor and tune resources automatically to meet end-users
requirements or business needs [70]. An autonomic computing system optimizes its use
of resources. It may decide to initiate a change to the system proactively, as opposed to a
reactive behavior, in an attempt to improve performance or quality of service [71].

Self-healing is the capability of discovering, diagnosing and reacting to disruptions [78]. The
kinds of problems that are detected can be interpreted broadly: they can be as low-level as
bit errors in a memory chip (hardware failure) or as high-level as an erroneous entry in a
directory service. Fault tolerance is an important aspect of self-healing [71].
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Self-protecting is the capability to anticipate, detect, identify and protect against malicious
attacks but also from end users who inadvertently make software changes, for example
by deleting an important file. The system autonomously tunes itself to achieve security,
privacy and data protection [78].

According to Salehie and Tahvildari [109] the self-* properties can be divided into a three
levels hierarchy, as illustrated in Figure 2.5. The aforementioned core self-properties are cate-
gorized into the Major Level. The [General Level contains global properties of SAS. A subset
of these properties consists of self-managing, self-governing, self-maintenance, self-control and
self-evaluating. Another subset at this level is self-organizing, which emphasizes decentraliza-
tion and emergent functionalities.

The Primitive Level contains the underlying primitive properties. Self-awareness means that
the system is aware of its self states and behaviors. This property is based on self-monitoring,
which reflects what is monitored. Context-awareness means that the system is aware of its own
context, which is its operational environment. This classification serves as the de facto standard
in this domain.

Self-adaptation

Self-configuring

Self-healing

Self-protecting

Self-optimizing

Self-awareness Context-awareness

General Level

Major Level

Primitive 

Level

Figure 2.5 – Hierarchy of the self-* properties [109]

2.3.2 The Autonomic Control Loop

According to Salehie and Tahvildari [109], adaptation approaches can be divided into the follow-
ing two categories with respect to the separation of the adaptation mechanism and application
logic:

- The internal approach interweaves application and adaptation specifications. It is based
on the programming languages features, such as conditional expressions, parametrization
and exceptions [97, 48]. Since application and adaptation specifications are mixed, this
approach can lead to poor maintainability and scalability.

- The external approach considers an external subsystem (or engine) containing adaptation
process to control the adaptation of the software system. Therefore it separates the adap-
tation concerns from other functional concerns of the system. The external subsystem
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implements the adaptation logic, mostly with the aid of a middleware [48] or a policy-
engine [17].

Due to the limitations of the internal approach, we base our solution on the external auto-
nomic control loop proposed by IBM, which is the de facto standard reference model. IBM’s
vision was presented by J. Kephart and D. Chess [78]. In 2003 they introduced the autonomic
control loop, also known as the MAPE-K loop, which involves the activities of Monitoring,
Analyze, Planing and Executing (see Figure 2.6). The Knowledge component binds those activ-
ities together and allows exchange of information between the mentioned activities. The loop is
completed by connecting to the adaptable Managed System through Sensors and Actuators. We
detail each process hereafter.

Sensors Actuators

Autonomic Element

Analyze

Monitor

Plan

Execute
Knowledge

Managed Element

Autonomic Manager

Figure 2.6 – Autonomic computing MAPE-K reference model [78]

- The Monitor process collects and correlates data and converts them to behavioral pat-
terns and symptoms. The software or hardware components used to perform monitoring
are called Sensors. In [109] the authors describe examples of different kinds of sensors
ranging from different techniques: logging, monitoring, and event information models,
management protocols, profiling and signal monitoring.

- The Analyze process detects the symptoms provided by the Monitor process and the sys-
tem’s history to detect when a change needs to be applied. It also helps to identify where
the source of a transition to a new state takes place.

- The Plan process determines what needs to be changed and how to change it to achieve
the best outcome.

- The Execute process applies the adaption actions on the Managed System using Actuators.
In [109] the authors described a different set of actuators that use the following techniques:
design, architectural and autonomic patterns, middleware-based effectors, dynamic aspect
weaving and function pointers.
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2.4 Discussion

In this section we discuss some potential conflicting issues in the areas of Predictive Analytics
and Autonomic Computing.

Regarding some limitations of predictive analysis. In [112] the author uses predictive
analytics for the purpose of predicting the future behavior of individuals in front of future sit-
uations. However, there is an open debate at this point [3], because individuals and people in
general are influenced by their environment in innumerable ways. If one puts the exact person
in the same situation tomorrow, he/she may take a completely different decision.

For that reason, we strongly believe in the potential of predictive analytics for predicting
the behavior of software systems. We claim that there is a set of variable parameters than can
properly describe the behavior of a software system (e.g. internal and external parameters).
If we can find the right metrics then it is feasible to quantify the response of the system in
front of different situations. Another key element is that software systems are not emotionally
vulnerable to weather or personal relationships. For instance, the Network Weather Service
(NWS) [125] is an attempt to provide accurate forecast of dynamically changing performance in
set of distributed computing resources.
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Figure 2.7 – The autonomic control loop (based on [37])

Regarding potential conflicting issues in Autonomic Computing. Dobson et al. [37] pro-
pose a twin vision of an autonomic control loop, illustrated in Figure 2.7. According to [37], the
autonomic control loop is more related to the autonomic communication domain and includes
the Collect, Analyze, Decide and Act processes (CADA). These activities perform similar tasks
to the ones described in the MAPE-K loop earlier.

The feedback cycle starts with the collection of relevant data from environmental sensors
and other sources that reflect the current state of the system. Next, the systems analyzes the
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collected data. There are many approaches to structuring and reasoning about the raw data (e.g.
using models, theories, rules). Next, a decision must be made about how to adapt the system
in order to reach a desirable state. Finally, to implement the decision, the system must act via
available actuators or effectors. It is important to highlight that the flow of control among these
components is unidirectional. Moreover, while the figure shows a single control loop, multiple
separate loops are typically involved in a practical system [24].

Despite their evident similarities with the MAPE-K loop, [37] describes that the autonomic
communication is more oriented towards distributed systems, while autonomic computing is
more directly oriented towards application software and management of computing resources [109].
Accordingly, the twin visions of autonomic communication and computing are aligned in identi-
fying the need for decentralized algorithms and control, context-awareness, novel programming
paradigms, end-to-end privacy management, and comprehensive evaluation in order to deriver
the desired self-* properties [37].
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Chapter 3

State of the Art

In this chapter we present the state-of-the-art of proactive self-adaptive systems. Firstly, in
section 3.1 we present a taxonomy that allow us to categorize the different proactive approaches.
Secondly, in section 3.2, we describe in detail each of the selected approaches coming from
three different domain areas. These related research areas are: Software Engineering, Artificial
Intelligence and Control Theory/Engineering. Other existing areas have greatly contributed to
the development of this research topic, including: cyber-physical systems, robotics or biological
inspired computing. Finally, in section 3.3 we present a summary and discuss about the gap in
the state of the art and position our work with respect to it.

3.1 Taxonomy of Self-Adaptive Systems

In this section we propose a taxonomy to facilitate the analysis of the related work in the selected
research areas. This taxonomy has a set of dimensions that describe several expected facets of a
proactive self-adaptation approach. Some previous research works have addressed the challenge
of characterizing the broad area of self-adaptive systems. Salehie and Tahvildari [109] proposed
a taxonomy and several representative projects were surveyed in terms of a set of adaptation
concerns: how, what, when and where of software self-adaptation.

Similarly, Buckley et al. [25] provide a taxonomy based on the objects of change (where),
system properties (what), temporal properties (when) and change support (how) similar to the
taxonomy presented for Salehie and Tahvildari [109] presented in Figure 3.1. Likewise, Ander-
sson et al. [4] describe an extended and general classification of self-adaptive systems including
the goals, change, mechanisms and effects dimensions. The goal dimension includes the ob-
jectives the system under consideration should achieve. The change dimension deals with the
cause of adaptation. The mechanisms involve what is the reaction of the system towards change.
Finally, the effects represents what is the impact of the adaptation upon the system.

In Table 3.1 we reuse four analysis dimensions: change, temporal, control and realization

dimensions. These four dimensions are subdivided into characteristics allowing us to classify
the related work. As mentioned earlier, some dimensions were adopted from previous tax-
onomies [4, 25, 109] because of their suitability to be applied in our classification. The following
subsections further elaborate on the taxonomy dimensions and their characteristics.
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Characteristic Definition Degrees

Change dimension - What is the cause of adaptation?

Source Where is the source of change?
- External context
- Internal configuration

Type What is the nature of change?
- Functional
- Non-functional

Uncertainty What is the kind of uncertainty?

- Noise
- Context
- Parameters over time
- Lack of knowledge

Temporal dimension - When is the adaptation taking place?

Activeness
Whether changes can be done
reactively or proactively?

- Reactive
- Proactive
- Hybrid

Anticipation
Whether the approach considers
predictions?

- Use predictions
- Do not use predictions

Frequency What is the frequency of change?
- Continuously
- Periodically
- At arbitrary intervals

Control dimension - What is the control structure of adaptation?

Classification
Main research area that supports the
system?

- Architecture-based adap-
tation
- Policy-based adaptation
- Reinforcement learning
adaptation
- Hybrid

Control structure
What is the control structure for
adaptation?

- Fixed control
- Predictive control
- Adaptive control
- Reconfiguring control

Realization dimension - How is the adaptation synthesize?

Decision-making
Is decision process hard-coded or is it
dynamic?

- Static
- Dynamic

Making-vs- achieving
Is engineering self-adaptation done
from scratch or through learning?

- Making
- Achieving

Table 3.1 – Selected dimensions to classify proactive self-adaptation approaches
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Figure 3.1 – An overview of the taxonomy of self-adaptive systems [109]

3.1.1 Change Dimension

This subsection explores what are the sources of change, thus the initial cause of self-adaptation.
The characteristics associated with the change dimension are as follows:

Source: This characteristic identifies the origin of the change, which can be external to the
managed element, for instance in its context (e.g. a dramatic drop in the temperature sensor
readings). The source can be also internal to the managed element, like a change in the operat-
ing environment (e.g. sensors are running low battery) [109].

Type: This characteristic refers to the nature of the change that triggers the adaptations.
It can be functional, which involves predictions done over functional parameters (e.g response
time) or where predictions are done over non-functional parameters of the software system (e.g.
battery life).

Uncertainty: This characteristic identifies the sources of uncertainty. N. Esfahani and
S. Malek [43] declare that the root cause of uncertainty is the loose coupling between the auto-
nomic manager and the other elements of a self-adaptive software (i.e. user, managed element
and environment), see Figure 3.2. Moreover, they classified uncertainties into two categories:
uncertainties due to variability and uncertainties due to a lack of knowledge.

Uncertainties due to variability are those rooted in the fact that the systems’ behavior may
change due to the ever-changing environment and after adaptation decisions are made. Uncer-
tainty due to variability can be subdivided into the following categories:

- Uncertainty due to noise: This source of uncertainty correspond to “Is monitored” in-
terfaces and is due to variation in a phenomenon, such as a monitored system parameter,
which rarely corresponds to a single value, but rather to a set of values obtained over the
observation period. This kind of uncertainty can be either internal and external [43].
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Figure 3.2 – Overview of sources of uncertainty in self-adaptive systems (based on [43])

- Uncertainty of parameters in future operations: This source of uncertainty is also related
to “Is monitored” interfaces in Figure 3.2; it is due to the actual fluctuation in the moni-
tored phenomenon. Without considering the behavior of the system in its future operation,
a self-adaptive software may not be able to achieve reliability [43].

- Uncertainty in the context: Many self-adaptive software systems are intended to be used
in different execution contexts. To that end, the meta-level subsystem is expected to detect
the change in the context and adapt the base level to behave accordingly [43].

The authors [43] further elaborate in the category of uncertainty that is due to a lack of

knowledge.

- Uncertainty due to a lack-of-knowledge: it involves uncertainties related to simplifying
assumptions, model drift, human in the loop, unclear objectives and decentralization, be-
cause of the complexity of the models, loose coupling, ambiguity or distribution. This
kind of uncertainty is mainly derived from the interactions between the user and the man-
aged system.

In the scope of this thesis we focus on the uncertainties due to variability and we do not
focus on the uncertainties due to a lack of knowledge.

3.1.2 Temporal Dimension

This subsection explores the time-related aspects of self-adaptation. The characteristics involved
with the time dimension are as follows:

Activeness: This characteristic identifies whether a self-adaptive approach can be reactive
(changes are driven externally) or proactive (the system autonomously drives changes to itself).
Typically, for a system to be proactive, it must contain some monitors that record external and
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internal state. It must also contain some logic that allows self-change based on the information
received from those monitors [97].

Anticipation: This characteristic considers whether the proactive self-adaptation approach
uses predictions to drive the decision-making mechanism or it is based on instantaneous param-
eter values instead.

Frequency: This characteristic involves the frequency of adaptations on the running system.
The categories that can be found in this dimension are: continuously, periodically, or at arbitrary
intervals.

3.1.3 Control Mechanisms

This subsection explores the categories regarding the control mechanisms of self-adaptation.
The characteristics associated with the control structure dimension are as follows:

Classification: This characteristic identifies the main mechanisms that enable the analysis
in self-adaptive systems, we can find architecture-based adaptation, model-based adaptation, re-
inforcement learning adaptation, policy-based adaptation, probabilistic software analysis.

- Architecture-based adaptation involves a clearer encapsulation of software-adaptation
concerns separating the adaptation logic from the domain logic [97]. Garlan et al. [58, 60]
present Rainbow, an architecture-based framework to support self-adaptation of software
systems. It allows designers to define adaptation policies that are triggered when the
associated invariant is not respected.

J. Kramer and J. Magee in [82] propose a 3-layer architecture model for self-management,
including: the component control layer, the change management layer and the goal man-
agement layer. S.W. Cheng et al. [29] propose another 3-layer view approach for architecture-
based adaptation, including: the model layer, the task layer and the runtime layer. These
proposals clearly identify the importance of monitoring the observed runtime information
and filtering upwards those architecture-relevant observations in order to render a high-
level view of the system.

- Extensive model-based adaptation: it involves the use of analytical models to reason
about the current state of the system, for instance the models@runtime initiative [18] re-
lies in a reflection model of the managed system. Then this model is used to generate new
possible reconfigurations that can be validated and evaluated at runtime before redeploy-
ing it at runtime. This reconfigurations can be deployed at runtime using tools to build,
adapt and synchronize distributed systems (e.g., Kevoree1 [33, 52]).

1http://kevoree.org/
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Dynamic software product lines (DSPL) uses abstraction models to reason about the vari-
ability and adaptability of the system [26, 92]. DSPL represent the commonalities and
variation point of the system using feature models coming from the feature oriented do-
main analysis [76]. This allows to conceptualize each component-based configuration as
a product or variant of the dynamically adaptive system [13].

- In Policy-based adaptation the choice of the actual implementations of the component is
realized via goal policies, expressed as utility functions. Each component implementa-
tion is associated with some reward, which precisely specifies the impact of a particular
implementation on (QoS) properties. Next, a global utility function, which can aggre-
gate intermediate utility functions, computes the overall utility of the application. In this
way, the system can evaluate different configurations and choose the most useful one, us-
ing brute force (i.e. by exploring the space of possible configurations). Some approaches
that falls on this category are MADAM [2] and its follow up MUSIC Project [108]. The
policy-based approach has also been applied to the robotics domain [61].

- Reinforcement learning adaptation according to Kaelbling et al. [75] is the problem
faced by a software system that must learn behavior through trial-and-error interactions
with a dynamic environment. There are two main strategies for solving reinforcement-
learning problems. The first is to use statistical techniques and dynamic programming
methods to estimate the utility of taking actions in states of the world. The second is
to search in the space of behaviors in order to find one that performs well in the envi-
ronment [75]. This approach has been taken by work on genetic algorithms and genetic
programming, and it is out of the scope of this thesis.

- Hybrid We can also have hybrid mechanism of adaptation than combine more than one
adaptation mechanisms.

Controller structure: This characteristic identifies the options for the controller structure.
According to Patikirikorala et al. [102], in a broad sense there are four possible alternatives to
control schemes that can be implemented in self-adaptive systems, which are: fixed control, pre-
dictive control, adaptive control and reconfiguring control.

- Fixed control: the fixed controllers are a basic type of controllers, where the tuning pa-
rameters are set off-line. Thus, after selecting the tuning parameters they remain fixed
during the operation time (i.e. they cannot be changed at runtime). Consequently, fixed
controllers may be useful for applications whose operations do not have highly divergent
conditions [99]. Fixed controllers are reactive in terms that the future behavior of the
system is not considered in the current time instance when making adaptation decisions.

- Predictive control: In contrast to fixed controllers described above, predictive controllers
uses dynamic models and predict future behavior of the system to come up with the de-
cision to optimize such future behavior. In addition, predictive controllers are considered
attractive for multi-objective scenarios in order to derive close to optimal decisions in the
presence of complex policies and constraints [121].
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- Adaptive control: Adaptive control address some of the limitations of fixed controllers
by adjusting the tunning parameters online. It has the online estimation techniques that
construct the dynamic model of the system in each sampling instance. Then given the
high-level objectives of the user and using estimated model, the adaptive controller tunes
its parameters online [99].

- Reconfiguring control: The reconfiguring controllers are a form of adaptive controllers,
but in contrast to adaptive controllers described above, the controller algorithms can be
changed at runtime depending on the different conditions of the environment. Multi-
Model-Switching and Tuning (MMST) [94] adaptive control is one of the reconfiguring
control techniques proposed in the literature with formal stability proofs [102].

3.1.4 Realization Issues

This subsection explores the engineering part and the realization issues regarding self-adaptation.
The characteristics associated with the realization dimension are as follows:

Decision-making: This characteristic captures whether the decision making mechanism is
static or dynamic. In other words, whether the decision process is hard coded or can be changed
during runtime [109].

Making-vs-achieving: This characteristic captures whether self-adaptivity can be intro-
duced into software systems using a making or achieving approach [70]. The first strategy is
to engineer self-adaptivity into the system at development time. which implies engineering the
adaptivity from scratch into the software systems.

The second strategy is to achieve self-adaptivity through adaptive learning. Achieving im-
plies artificial intelligence and reinforcement learning to achieve adaptive behavior. Both ap-
proaches do not necessarily contradict each other in the sense that their combination can be
utilized as well [109].

3.2 Related Work

In this section we present an overview of the related work in proactive self-adaptation ap-
proaches. It is important to highlight that self-adaptive software is inherently a multidisciplinary
research area. Its success depends on the combination and appropriate synergy between those
disciplines for building a specific self-adaptive software system [109].

In the following subsections we further elaborate on the related work coming from three
main disciplines: Software Engineering, Artificial Intelligence and Control Theory/Engineer-
ing. However, several other disciplines have greatly contributed and could be added to this list,
including: network, distributed computing or optimization theory. But in the scope of this thesis
we will focus on the three previously mentioned ones.
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3.2.1 Software Engineering

Software engineering for self-adaptive systems has recently received considerable attention with
a proliferation of journals, conferences and workshops. For instance, among relevant journals we
can find the ACM Transactions on Autonomous and Adaptive Systems (TASS) and the Interna-

tional Journal of Autonomic Computing (IJAC). Relevant conferences include the International

Conference on Autonomic Computing (ICAC), the Self-Adaptive and Self-Organizing Systems

(SASO) and Self-Organizing Architectures (SOAR).
In particular the Software Engineering for Adaptive and Self-Managing Systems (SEAMS2) [27,

35] community consolidated a number of workshops and it has a leading role in dealing with the
increasing complexity, distribution, and dynamism of many software-intensive systems, such as
cloud-based, cyber-physical and pervasive systems. Solutions to complement software with self-
adaptive capabilities have been proposed by researchers from different areas including software
architecture [97, 59], fault-tolerance [82], operating systems, networking, distributed systems,
embedded systems, and even biologically-inspired computing.

Software Architecture-based Adaptation

Poladian et al. [105, 106] propose an anticipatory approach to self-adaptation that combines the
benefits of resource prediction research into an existing framework for dynamic reconfiguration.
Their approach is based on four concepts: utility function, penalty, time horizon and applica-
tion profiles. We categorize this approach according to our previously selected dimensions as
follows:

1. Change dimension: the cause of adaptation is the malfunctioning of resource availability.
For this reason their goal is to anticipate such issues and improve utility of the resource usage
over the duration of the task. They consider internal and external configuration parameters
(e.g. bandwidth, CPU).

2. Temporal dimension: this approach considers predictions to drive the decision-making pro-
cess. For this purpose they implement an auto-regressive models (AR), moving average (MA)
and auto-regressive moving average (ARMA) models in order to handle the uncertainty of
resources availability (e.g. bandwidth, CPU).

3. Control dimension: The authors based the control scheme of their approach on three types
of predictors: 1) linear recent history that predicts the next value in the series of resource
availability, 2) relative move that predicts step-up or step-down changes in resource avail-
ability, and 3) bounding predictor that specifies the maximum and minimum possible levels
of resource availability for a union of time intervals. This approach has a fixed control struc-
ture because the authors assume that application profiles are static (i.e. they are computed
off-line using off-line profiling and do not change over time and are sufficient accurate) [105].

4. Realization dimension: Poladian et al. [105] implement their approach using an anticipatory
algorithm and then compare a proactive strategy with a reactive one based on certain metrics
(e.g. number of resources, penalty, duration of the task).

2www.self-adaptive.org
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S. W. Cheng et al. [30] built on top of the architecture-based Rainbow [58] framework by
turning it from a reactive nature into a proactive approach reusing the work done by Poladian et
al. [105]. In [30] the authors describe four potential integration points for resource predictions,
namely: monitoring, detection, strategy and effectors. Recently, it was admitted by co-author
D. Garlan in a 10-year perspective on self-adaptive systems, that “in many cases it may be better
to do things before the problem occurs and the need to balance the cost and benefits of a proactive
approach” [57].

1. Change dimension: The source of change in the Rainbow framework is the violation of
architectural constraints previously defined (e.g. request/response latency). In this approach
when the evaluation component determines whether the system is not operating within the ac-
cepted range, it triggers the adaptation manager to initiate the adaptation process and choose
the adequate adaptation strategy.

2. Temporal dimension: Initially the Rainbow framework was conceptually designed to target
the self-healing property of self-adaptive systems. This design decision makes it of a reactive
nature. However with the integration of the resource prediction component done by Pola-
dian et al. [105] it can support forward looking decisions and can handle uncertainty in the
future parameters values. Therefore, we classify this approach as having a hybrid temporal
dimension (i.e. reactive and proactive components).

3. Control dimension: For the control dimension Rainbow uses Event-Condition-Action (ECA)
rules as decision-making mechanism. However, this approach has some limitations, such as a
fixed set of reconfiguration strategies. The Rainbow framework reasons about instantaneous
parameter values, however at times, the conditions that trigger an adaptation may be more
short-lived than the duration for propagating the adaptation change, resulting in an unneces-
sary adaptation. Second, reactive adaptation lags behind current system conditions, and the
degree of that lag depends on the sensitivity of the system sensors to present, versus historical
values of a system condition (e.g. CPU load, bandwidth). If the system conditions undergo
a dramatic and rapid shift, it may take numerous adaptation cycles for sensors to catch up,
resulting in more than one incremental adaptation, while with prediction-based adaptation a
single adaptation might suffice [30].

4. Realization dimension: the implementation of the adaptation is done by predefined adapta-
tion strategies. Strategy selection is done at run time based on their expected utility. However,
a shortcoming is the limited set of adaptation strategies [57], because system’s conditions can
vary during runtime and some strategies can become non applicable.

Extensive Model-based Adaptation

Over the last couple of years several large-scale joint projects have tackle the challenges of dy-
namic adaptive systems. The MUSIC3 European project focused on providing techniques and
tools to reduce the time and effort to develop self-adaptive mobile applications. They rely on

3http://ist-music.eu/



48 CHAPTER 3. STATE OF THE ART

the notion of component-based framework to describe their applications [108]. A component
framework is an assembly of component types (i.e. a template of architecture where component
types will be substituted by actual implementations). Quite similarly to the Rainbow approach,
the choice of the actual implementations of the component types is realized via goal policies, ex-
pressed as utility functions. Each component implementation is associated with some property
predictors, which precisely specify the impact of a particular implementation on (QoS) proper-
ties. For example, the utility function of a given component implementation could be defined as
follows: utility = w_acc*norm(acc) +w_bat*(1-norm(bat)), which assumes that the user always
prefers high accuracy (e.g., acc) and low battery consumption (e.g., bat) [108]. Finally, a global
utility function (which aggregates intermediate utility functions) computes the overall utility of
the application. This way, the system can evaluate different configurations and choose the most
useful one by exploring the space of possible configurations.

Another joint effort was the DiVA4 European project, which comprises a set of solutions
(e.g., toolkits, components, frameworks and methodology) for developing and executing com-
plex self-adaptive systems. The DiVA approach is divided in two stages: design time and run-
time. Design time includes analyzing and modeling the requirements that later drive the devel-
opment of the adaptation model and the architecture models specify relationships between the
variable (i.e. aspect) and static part of the system. At runtime, the adaptation model is processed
to produce the system configuration that should be executed. This is performed by a set of
runtime technologies that includes: the reasoning framework, the model weaver, that validation
component and the causal connection [91].

The use of analytical models to reason about the current state of the system, for example
models@runtime [18], fosters a whole new generation of runtime technologies. For instance,
Kevoree5 is an open-source dynamic component model, which relies on models@runtime to
properly support the dynamic adaptation of distributed systems [52]. Models@runtime basically
pushes the idea of reflection [92] one step further by considering the reflection layer as a real
model that can be uncoupled from the running architecture (e.g., for reasoning, validation, and
simulation purposes) and later automatically resynchronized with its running instance. Kevoree
has been influenced by previous work carried out in the DiVA European project [92] and it is
currently used by the ongoing HEADS6 European project.

In order to provide a proper support for distributed models@runtime paradigm, the Kevoree
Modeling Framework (KMF) [53] is mainly based on the following four concepts:

• Component: the component represents a particular functionality and implements a Pro-
ducer/Consumer relation. Multiple components can be assigned to a node.

• Node: the node concept allows modeling the infrastructure topology of the runtime sys-
tem. A node can host multiple components.

• Channel: The channel concept allows for multiple communication semantics between
remote components deployed on heterogeneous nodes [51].

4https://sites.google.com/site/divawebsite/
5http://kevoree.org/
6http://heads-project.eu/
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• Group: The group concept allows the user to model the semantics of inter-node commu-
nication during synchronization of the reflection model among nodes.

All Kevoree concepts (Component, Node, Channel, Group) obey the object type design
pattern to separate deployment artifacts from running artifacts [52]. Kevoree supports multiple
kinds of execution node technology (e.g., Java, Android, MiniCloud, FreeBSD, Arduino).

Aschoff and Zisman in [6] present ProAdapt a QoS-driven proactive adaptation approach for
service composition. They define proactive adaptation of service composition as the detection
of the need for changes and implementation of changes in a composition, before reaching an
execution point in the composition where a problem may occur.

1. Change dimension: the cause of adaptation in [6] is triggered by four different classes of
problem: 1) a problem that stop the service composition, 2) a problem that reduce the perfor-
mance of the service composition, 3) emergence of a new requirement, and 4) emergence of
a better service.

2. Temporal dimension: From our perspective, the temporal dimension of this approach is not
necessarily proactive, because what triggers the adaptation is a reaction in front of a given
problem/situation. This approach fits more the self-healing property of self-adaptive systems.
For this reason we classified it as a hybrid approach.

3. Control dimension: the control dimension in ProAdapt [6] is unclear. However they describe
a set of steps that allow them to do proactive adaptation of service composition, namely:
i) identification and prediction of problems, ii) analysis of the problems triggered by predic-
tion, iii) decision of actions to be taken due to the problems, and iv) execution of the actions.
Taking into account this structured control flow we classified this approach has fixed control
structure.

4. Realization dimension: ProAdapt implemented the adaptation mechanism using component-
based approach. The main components in their system are: (i) composer, (ii) execution
engine, (iii) adaptor, (iv) service discovery, and (v) monitor. ProAdapt is based on Exponen-
tially Weighted Moving Average (EWMA) that modeled the service operation response time.
A limitation fo this approach is the use a single prediction technique in the adaptation process
because a single prediction technique can converge overtime and overfit the data.

Cooray et al. [31] describe RESIST, which uses information from several sources, such as
monitoring internal and external software properties, changes in the structure of the software,
and contextual properties to continuously provide refined reliability predictions at runtime. Next,
these predictions are used to decide about changing the configuration of the software to improve
its reliability in a proactive fashion.

1. Change dimension: In RESIST the source of change can be either due to component failure

or process failure. Component failure is caused by a fault with in the component’s imple-
mentation. Process failure happens when one of the component running as a thread within a
process exits prematurely, causing all the process to fail [31].
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2. Temporal dimension: In RESIST the temporal dimension is proactive. RESIST mitigates
the uncertainty due to the context and simplifying assumptions through constant learning.
Moreover, slight changes in the reliability are modeled as probability distributions indicating
the noise.

3. Control dimension: In RESIST the adaptation process is clearly organized as a feedback
control loop that continuously monitors, analyzes and adapts the system at runtime. This ap-
proach implements adaptive control mechanism as it has a configuration selector use quality
attributes (e.g. performance) in the selection process of a new reconfiguration.

4. Realization dimension: RESIST [31] relies on dynamic learning techniques, specifically
Hidden Markov Models (HMMs) to provide continuous reliability refinement and Discrete
Time Markov Chains (DTMC) to stochastically estimate the time spent in failures. They
define reliability as the probability that a system performs its required functions under stated
conditions for a specified period of time. According to our classification RESIST has a
dynamic decision-making and learning-based characteristics.

Rule/Policy-Based Adaptation

Rules and Policy based approaches for engineering self-adaptive systems propose one paradigm
to express the adaptation logic. Their reasoning and decision-making process include for-
malisms such as probabilistic reasoning (e.g., Markov decision process, Bayesian networks),
Event-Condition-Action (ECA) rules [58], and Goal-Based Optimization rules [28].

An ECA rule system typically describes for a particular context to select: when event if
condition choose action. A goal-based model typically describes how features impact the quality
of service (QoS) properties and when QoS should be optimized (e.g., for a violation of service
level agreement). Returning to the metaphor of comparing the autonomic system as a autonomic
nervous system [70], ECA rules can be seen as a kind of reflex, since they do not involve major
reasoning capabilities. When the system is in a critical context they can quickly reconfigure
the system into an acceptable configuration. Whereas goal-based decision techniques match
the definition of long-term planning: depending on the resources and the time allocated for
reasoning, the system can evaluate different configurations and find the one that offers the best
trade-offs.

ECA-rules and goal-based rules have complementary benefits and drawbacks. On the one
hand, ECA rules can efficiently be processed at runtime. However, it rapidly becomes difficult
to fully specify a self-adaptive system using ECA rules. On the other hand, goal-based rules al-
lows specifying the adaptation logic at a higher level of abstraction. However, processing these
rules at runtime is often more costly. Ideally , it should be possible to combine several reasoning
algorithms in order to leverage their respective advantage, while limiting their respective draw-
backs [91]. In our approach we combine ECA rules and goal-based optimization to drive the
adaptation logic.

This category of adaptation is triggered by an occurrence of a violation of a service level
agreement (SLA) or service level objective (SLO) in the managed system. Below we discuss
prominent research approaches that use this adaptation mechanism.
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Hielscher et al. [69] present PROSA, an online testing proactive self-adaptation approach for
service-based applications. The authors exploit online testing techniques to detect changes and
deviations in functionality or quality of service before they can lead to undesired consequences.
The authors propose two strategies to determine the test cases: reusing test cases from the design
phase and regression testing. These two strategies have some limitations, test cases from the
design phase do not include all possible services situations that can happen during run-time.
Regression testing only checks whether changes of (parts of) a system negatively affect the
existing functionality of that system and implies re-running previously executed test cases, which
causes overhead. We categorize this approach according to our previously selected dimensions
as follows:

1. Change dimension: In Hielscher et al. [69] the cause of adaptation is a change in the context
or a deviation from the expected functionality or quality of service. This source of change
is detected by executing generated/selected test cases that run in parallel from the actual
software system. Thus, they consider internal configuration and external context of both
functional and non-functional properties of the software system. However, the authors do not
handle uncertainty in terms of probability of future parameter values in time.

2. Temporal dimension: PROSA is introduced as a proactive approach. However the authors
admit that they reused test cases from the design (i.e. off-line) phase. Moreover, PROSA
is bounded to regression testing, which typical involves to re-run previously executed test
cases, thus PROSA does not use predictions of future parameter values to anticipate unknown
services states at runtime.

3. Control dimension: PROSA approach has a fixed control structure because it involves a
structured four steps process: 1) test initiation, 2) test case generation/selection, 3) test exe-
cution and 4) adaptation triggering. This online testing process is perform in parallel with the
operating applications, the authors admit they have not considered the possible impact that
the execution of test cases on the performance of the application may have [69].

4. Realization dimension: PROSA approach has an specific adaptation requests explicitly as-
signed to individual test cases. Thus is a one-to-one mapping of a test case to an adaptation
request. PROSA does not consider dynamic decision-making at runtime.

Herbst et al. [68] present a Workload Classification and Forecasting (WCF) technique based
on time series analysis to drive resource allocation in a data center environment. The authors
propose a novel self-adaptive approach that selects suitable forecasting methods for a given
context based on a decision tree and direct feedback cycles together with a corresponding im-
plementation. The user needs to provide only his general forecasting objectives. For building
their proactive mechanism the authors rely in a sophisticated spectrum of forecasting methods
based on time series analysis, and demonstrated that the ensembles of these methods achieved
higher accuracy than individual forecasting methods. Even though we share the notion of pre-
diction models ensembles, in our work we consider applying not only forecasting techniques for
times series, but also classification, regression and clustering to a wider extent of data types.
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1. Change dimension: In WCF approach what causes an adaptation is an anticipation of a given
Service Level Agreement (SLA) violations (e.g. average response time) using forecasting
techniques. Therefore this approach is focused on functional and non-functional types of
change. WFC is strongly validated using real data and is focused on evaluating forecasting
methods on internal quantitative parameters (e.g. workload and performance data). However,
WFC does not fully anticipate external sources of change (e.g. strong hourly/daily/weekly
seasonal pattern) or process qualitative parameters.

2. Temporal dimension: WFC anticipates SLA violations using workload intensity behavior
(WIB) predictions based on historic values. In the experimental scenario the forecast results
are provided continuously over the experiment duration. Thus, WFC handles uncertainty and
their decision-making process is dynamic.

3. Control dimension: WCF’s control dimension is reconfiguring control due to the fact that it
proposes a collection of forecasting methods that can be selected at runtime (e.g. naive mov-
ing averages, trend interpolation and decomposition and seasonal patterns). The predictions
are evaluated and forecast accuracy is feedbacked into the selection mechanism.

4. Realization dimension: WFC implements its reconfigurations based on considering the most
common forecasting approaches based on the time series analysis (e.g. ARIMA, ARMA,
ETS, tBATS) [68]. However, it does not mention other reinforcement learning activities such
as clustering or classification for external environmental parameters.

Leitner et al. [84] propose the PREvent framework, which is a system that integrates event-
based monitoring, prediction of SLA violations using machine learning techniques, and auto-
mated runtime prevention of those violations by triggering adaptation actions in service compo-
sitions. In particular, PREvent uses a multilayer perceptron, which is a variant of artificial neural
network for predicting service levels violations. A limitation of this approach is that early pre-
dictions are less accurate. The authors solve this problem by using estimates, that represent data
that is not yet available in a checkpoint, but can in some way be estimated (e.g., the response
time of a service that is to be invoked later in the composition).

1. Change dimension: the source of change in the PREvent framework is service level agree-
ment (SLA) violations that are detected using machine learning techniques (e.g. regression)
from monitored runtime data and then trigger adaptations in the service composition.

2. Temporal dimension: PREvent is a proactive adaptation approach due to the fact that its
decision mechanism is based in predictions and acts before the SLA violations take place.
It also handles uncertainty over time as it manage predictor metrics such as: mean predictor
error, prediction error standard deviation and prediction error thresholds.

3. Control dimension: the control dimension in PREvent is structured in three phases: 1) mon-
itoring of runtime data, 2) prediction of SLA violations, and 3) identification of preventive
actions and application of this actions. According to our classification this is a classic predic-
tive control mechanism. However a limitation is that the prediction of violations is calculated
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only at defined checkpoints, rather than continuously. Another limitation is that this approach
is based on a single predictor model (i.e. multilayer perceptron).

4. Realization dimension: the decision-making process in the PREvent approach is static, due
to the fact that it implements the adaptation actions using an XML dialect that are predefined
at design time. Therefore PRevent engineers self-adaptation from scratch rather than learning
from a running system.

Overall, after going through the literature review we consider that the existing proactive
approaches are fragmented and in their initial stages of development. From our perspective,
some approaches claim to be proactive [69, 6], however they fit more with the description of
a self-healing software system. This is due to the fact that what triggers the adaptation is the
response to a problem or a change in the system itself or its environment. We argue that in a
proactive system, what triggers the adaptation should be the prediction of the system’s parameter
or forecasting of future situations [30, 84].

3.2.2 Artificial Intelligence

Software engineering and artificial intelligence (AI) are two fields of the computer science that
are compared and contrasted in terms of the problems they attempt to solve, the methods they
employ, and the tools and techniques that they use [10]. M. Harman [66] pointed out the relation-
ship between artificial intelligence and software engineering, in particular the author highlighted
three broad areas of AI that address challenges that lie in the development of autonomic com-
puting and self-adaptive systems [66]. Those areas are: Search-based software engineering,
probabilistic methods and machine learning (e.g. classification, learning and prediction). In this
thesis we focus on learning-based mechanisms to achieve proactive self-adaptation, thus below
we briefly describe selected related work from our literature review.

Another important concept that can be used in self-adaptive software is the way software
agents model their domains, goals, and decision making attributes. In particular, Multi-Agent

Systems (MAS) depend on coordinated models and distributed optimization techniques. In such
systems, local and global goals needs to be coordinated [109, 115]. However, as recognized by
N. R. Jennings [73] there are two major drawbacks associated with the very essence of an agent-
based approach: (i) the patterns and the outcomes of the interactions between agents are inher-
ently unpredictable, and (ii) predicting the behavior of the overall system based on its constituent
components is extremely difficult (sometimes impossible) because of the strong possibility of
emergent behavior [73].

Reinforcement-Learning Adaptation

G. Tesauro [114] presents Reinforcement learning (RL) as an approach for developing effective
policies for real-time self-management system. RL aims at learning effective management poli-
cies in the absence of explicit system models with little or no domain-specific initial knowledge.

Figure 3.3 illustrates RL’s normal operation where an agent learns effective decision-making
policies through an online trial-and-error process in which it interacts with an environment. A
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Figure 3.3 – The standard reinforcement learning (RL) interaction loop [114]

typical approach is to represent the environment using Markov decision process (MDP) with
lookup tables used to represent the value function in performing sole action in a state St , then
receiving a reward rt followed by an observed transition to a new state st+1 [114].

Learning-based approaches address the problem of uncertainty by quantifying it over time.
However, from our own perspective, we categorize [41, 42, 83, 77] as having a reactive adapta-
tion nature, due to the fact that they do not leverage the advantage of historical data to predict
future value of parameters in order to avoid conflicting situations. By contrast, other research
work clearly take into account predictions of future value of parameters to drive the decision-
making process [79, 83, 77].

However, a limitation of reinforcement learning acknowledged by G. Tesauro [114], is when
performing training online in a live system, any poor decision RL makes before it has learned a
good policy can result in quite poor rewards, and the cost of this can prohibit an online training
approach. Another issue is that RL methods generally need to include a certain amount of explo-
ration of actions believe to be suboptimal, purely to facilitate better learning of value functions
and policies. These poor initially learned policies and exploratory actions can be too costly in
live systems, specially in the domain of safety critical systems.

Elkhodary et al. [41] describe FeatUre-oriented Self-adaptatION (FUSION), a learning-
based approach to engineering self-adaptive systems. FUSION uses machine learning, namely
Model Trees Learning (MTL) to self-tune the adaptive behavior of the system to unanticipated
changes. This allows FUSION to mitigate the uncertainty associated to changes in the context
of software systems as it gradually learns the right adaptation behavior in the new environment.
The results of learning is a set of relationships between the system’s adaptation actions and the
quality attributes of interest (e.g. response time, availability).

1. Change dimension: the source of change in FUSION is a violation of the system’s goals.
The target of their approach is to reduce interruption by adapting the system only when a goal
is violated.
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2. Temporal dimension: FUSION’s temporal dimension in terms of our classification is con-
sidered reactive, because the authors admit that FUSION adaptation strategy is “if the systems
works (i.e. satisfies the user), do not change it; when it breaks, find the best fix for only the
broken part”. This resembles the implementation of the self-healing property of self-adaptive
systems.

3. Control dimension: the control structure in FUSION is based on two complementary cycles:
learning cycle and adaptation cycle. The learning cycle relates the measurements of quality
attributes to the adaptation actions. The learning cycle constantly monitors the environments
to find possible errors in the learned relations. In terms of our classification this is an adaptive
control strategy.

4. Realization dimension: FUSION implements a learning-based mechanism that enables dy-
namic decision-making. In particular, they implemented the M5 which is a model tree (MT)
algorithm using the WEKA toolkit [64], which provides an open source implementation of a
number of learning algorithms.

Esfahani et al. [42] present POssIbilistic SElf-aDaptation (POISED), which is a quantitative
approach for tackling the complexity of automatically making adaptation decisions under un-
certainty. It builds on possibility theory and fuzzy mathematics to assess both the positive and
negative consequences of uncertainty. The goal of POISED is to improve the quality attributes
of software systems through reconfiguration of its components to achieve a global optimal con-
figuration.

1. Change dimension: the source of change in POISED approach is the violation of resource
constraints. POISED focus on internal uncertainty, which is related to the system’s inter-
nal quality objectives. Therefore they neglect external uncertainty, which is the uncertainty
associated with decisions aimed at satisfying the domain objectives [42].

2. Temporal dimension: POISED’s temporal dimension is hybrid, due to the fact that it is
not clear to determine whether the reconfigurations are triggered before problem happens.
This approach considers an utility function and calculates the resource usage estimates. Then
the system aims at satisfying the worst case (most pessimistic) formulation of the resource
constraint. Next, POISED assigns weight to all objectives and selects solutions that do not
violate the resource constraint (e.g. memory).

3. Control dimension: POISED’s control structure is fixed control. The approach was evalu-
ated in the context of robotic software, testing different predefine configurations and alterna-
tives for components of the robot.

4. Realization dimension: The adaptation logic of POISED was realized on three steps: 1) gen-
erate a probabilistic linear programming (PLP) problem of the system, 2) solve it using con-
ventional linear programing solvers, and 3) change the runtime model using XTEAM [40]
API.
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Kim and Park [79] use reinforcement learning techniques to enact dynamic adaptation plans
at runtime. They propose two planning phases: off-line planning and on-line planning. Off-line
planning has the limitation that it uses fixed relationships between situations and configuration
of adaptation. On the other hand, on-line planning enables the system to autonomously find
better relationships between them in dynamic environments. Finally, they propose an approach
to design architecture-based self-managed systems based on Q-Learning, in which for any given
situation an appropriate adaptation is selected.

1. Change dimension: the source of change in [79] is the detection of environmental changes.
Using monitoring techniques the system observes long-term states of the current architecture
of the system. If an abnormal situation is detected and adaptation is triggered and this data is
passed to the planning phase.

2. Temporal dimension: in [79] temporal dimension is given in terms of reacting to changes in
the environment. This approach considers goals and scenarios discovery process, then assign
conditions (i.e. stimulus) and behavior (i.e. reaction) that can represent a possible state of the
system. Thus, contrary to our approach, the work of [79] has a reactive nature.

3. Control dimension: the control structure in [79] consists of five phases: detection, planning,
execution, evaluation and learning phase. In the detection phase the system monitors the
current state of the environment. In the planning phase the system chooses an action to
adapt itself to the state. In the execution phase the system applies the action which is chosen
(e.g. adding, removing, replacing components). In the evaluation phase the system evaluates
the previous action by observing the reward from the environment. Finally, in the learning
phase the system uses Q-Learning to accumulate the experiences (i.e. the reward values).
Therefore, according to our classification this approach has an adaptive control structure.

4. Realization dimension: Kim and Park [79] implement their approach by repeating the pro-
cess (execution, accumulation, leaning and decision-making). In this way the system can
identify better mappings between conditions (i.e. stimulus) and behavior (i.e. reaction), thus
improving plans by repeated learning.

Tesauro et al. [116, 114] propose a hybrid approach that combines reinforced learning (RL)
(e.g. queueing network) with model-based policies to make resource allocation decisions in data
centers. In particularly, the authors use neural networks, a multi-layer perceptron, and claim that
many other function approximates could also be used for reinforcement learning (e.g. regression
trees, SVMs, regression splines, etc.).

1. Change dimension: the source of change in Tesauro et al. [116] is violations on the model-
based policies of (e.g. hardware upgrades, changes in SLA).

2. Temporal dimension: Tesauro et al. [116] present an approach that involves off-line training
on data collected while an externally predefined policy based model makes management
decisions in the system. This approach has a reactive nature and does not consider uncertainty
or future parameter values.
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3. Control dimension: the control structure in Tesauro et al. [116] is a fixed control because it
considers an external set of fixes policies for managing the system.

4. Realization dimension: Tesauro et al. [116] achieve adaptation by using reinforcement
learning mechanisms. This approach does not require an explicit model (e.g. workload, traf-
fic) of the computing system being managed. For this reasons the decision-making process
is consider dynamic.

Probabilistic Software Analysis

Probabilistic models provide very useful and expressive power to specify uncertain and un-
predictable behavior in a quantitative manner. A common approach for modeling the context
variability is using Markov Decision process (MDP) or Discrete time markov chains (DTMC)
models. These probabilistic models consist of a set of states and transitions between the states
that represents the alternative choices to be made according to certain probability tables [114].

However, a limitation of MDP [114] is that real-world problems might not be strict MDPs
there can exhibit incomplete observability, history dependence, and non-stationary, so there is
great demand for approaches that deals with such non-markovian processes.

PRISM [83] is a probabilistic model checking tool that provides support for building discrete
and continuous-time Markov decision processes, and extensions of these models with rewards.
Markov Reward Model Checker (MRCM) [77] is another tool for verifying properties over prob-
abilistic models. However, the goal of probabilistic model checking tools is not to try to predict
system behavior, rather than that its goal is to formally prove that all possible executions of the
system conform to the requirements. Probabilistic model checking focuses on proving correct-
ness of stochastic systems (i. e. systems where probabilities play a role) [96].

Probabilistic software analysis aims at quantifying the probability of a target event to occur
during a program execution. There is a set of approaches exploiting symbolic execution to com-
pute the constraints on the inputs leading to the occurrence of a target event; the solution space
for such constraints is then quantified given a probabilistic usage profile, which characterizes
each input variable by a probability distribution over its possible values [85].

3.2.3 Control Theory/Engineering

Control theory/engineering similar to self-adaptive software is concerned with systems that re-
peatedly interact with their environment through a sense-plan-act loop [45, 24]. As mentioned
in Section 2.4 a feedback loop typically involves four key activities: collect, analyze, decide and
act [37].

According to [37], sensor or probes collect data from the executing environment system and
its context about its current state in the collect phase. In the analyze activity the accumulated
data are then cleaned, filtered and pruned, and finally stored for future reference to portray an
accurate model of past and current states. The decide phase then diagnoses the data to infer
trends and identify symptoms, and subsequently attempts to plan the future actions to decide
how to act on the executing system and its context through actuators or effectors [24].
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Model-Predictive Control

Model predictive control (MPC) is a specific form of close-loop controller, which is particularly
well suited for multi-input, multi-output (MIMO) control problems, were significant interactions
occurs between manipulated inputs and outputs. However, MPC needs a predefined model of
the system and a standard quadratic programming solver to solve the optimization (or constraint)
problem online [102] as shown in Figure 3.4.
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Figure 3.4 – The Model predictive control process [102]

Zhang et al. ,[127] present a control-theoretic solution for dynamic capacity provision which
minimizes the energy cost while meeting the performance objectives in a data center environ-
ment. This approach uses the Model Predictive Control (MPC) [56] to find the optimal control
policy. MPC enables proactive decisions because it employs predictive models for forecast-
ing the future system behavior. However, there is a limitation in the off-line estimation of the
prediction parameters, this makes MPC inappropriate for highly changing conditions [8].

1. Change dimension: the source of change in [127] is looking forward predictions of usage of
each resource type (e.g. CPU, memory usage). The goal is to compute the future trajectory
of resource variables to optimize the dynamic provisioning of the system [127].

2. Temporal dimension: the temporal dimension in [127] is proactive, which means it is based
on forward looking parameters values to optimize the performances of the software system.
This approach [127] uses a dynamic model and predicts future behavior of the system to
come up with the decisions to optimize.

3. Control dimension: the control structure in [127] is predictive control mechanism [56].

4. Realization dimension: to implement this approach, the authors use the Auto-Regressive
Integrated Moving Average (ARIMA) model to predict the time series Gr

k of the usage of
resource type r in all the machines at time k [127].

Adaptive/Reconfiguring Control

Y. Brun et al. [24] emphasize that feedback loops should be elevated as first class entities and
that they are essential for understanding all types of adaptations. Feedback loops provide the
generic mechanism for self-adaptation. Positive feedback occurs when an initial change in a
system is reinforced, which leads towards an amplification of the change. In contrast, negative
feedback triggers a response that counteracts a perturbation.
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The control structure proposed in [24] is adaptive control. In control theory adaptive con-
trol involves modifying the model or the control law of the controller to be able to cope with
slowly occurring changes of the controlled process. In [24] there are two main control structures:
the Model Identification Adaptive Control (MIAC) and the Model Reference Adaptive Control
(MRAC), illustrated in Figure 3.5a and Figure 3.5b respectively.
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Figure 3.5 – Two standard schemes for adaptive feedback control loops [24]

“The MIAC strategy builds a dynamical reference model by simply observing the process
without taking reference inputs into account. This MIAC system identification element takes the
control input u and the process output yp to infer the model of the current running process (e.g.,
its unobservable state). Then, the element provides the system characteristics it has identified to
the adjustment mechanism which then adjusts the controller accordingly by setting the controller
parameters. This adaptation scheme has to take also into account that a disturbances d might
affect the process behavior and, thus, usually has to observe the process for multiple control
cycles before initiating an adjustment of the controller. [24].”

“The MRAC strategy relies on a predefined reference model (e.g., equations or simulation
model) which includes reference inputs and is suitable for situations in which the controlled
process has to follow an elaborate prescribed behavior described by the model reference. The
adaptive algorithm compares the outputs of the process yp which results from the control value
u of the Controller to the desired responses from a reference model ym for the goal up, and then
adjusts the controller model by setting controller parameters to improve the fit in the future.
The goal of the scheme is to find controller parameters that cause the combined response of the
controller and process to match the response of the reference model despite present disturbances
d [24].”

Feedback loops are used in many engineered devices to bring about desired behavior despite
undesired disturbances. Below we briefly describe two proactive approaches that use similar
feedback control mechanisms.

Patikirikorala et al. [100, 101] propose a Multi-Model Switching-Tuning (MMST) adaptive
control to resolve resource allocation problems for workloads operating conditions.

1. Change dimension: Patikirikorala et al. [100, 101] consider both internal and external sources
of change. For instance, e-commerce systems may face intensive workloads when promo-
tional offers are running or when referenced by high-traffic sites (the so called slash-dot
effect). Internally, a software system may change due to bugs fixes, component failures or
replacements. The MMST adaptive control is a concept inspired by biological systems. Bi-
ological systems have the ability to select an appropriate action for a specific situation from
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a collection of behaviors. MMST uses the same concept by selecting the most suitable con-
troller for the current environment that the system is in.

2. Temporal dimension: In Patikirikorala et al. [101] the temporal dimension is of reactive
nature because the system focuses on adjusting control inputs under-loaded and overloaded
characteristic in time. This can be seen as a reaction to varying conditions with an intelligent
switching control approach to provide control under these conditions

3. Control dimension: The control dimension of MMST is reconfiguring control. However
MMST has some limitations. One is the need to come up with proper reconfiguration
schemes prior information about the system and environmental conditions. Chattering is
another issue that can occur in reconfiguring control. Chattering occurs when a system fre-
quently changes between controllers or different loop configurations without providing de-
sired control. This could lead to drastic performance degradations [101].

4. Realization dimension: the implementation of the MMST is done in four types of schemes:
1) Type 1: all adaptive models, 2) Type 2: all fixed models, 3) Type 3: one adaptive model
and one fixed model, and 4) Type 4: two adaptive model and two fixed models. However,
the authors [101] admit that MMST should only be chosen when a single fixed or adaptive
controller cannot provide the effective performance in the entire operating time. Since MMST
is a reconfiguring control scheme, it is subject to some limitations such as performance,
overhead and chattering.

3.3 Synthesis

In this chapter we have presented the state-of-the-art of proactive self-adaptive systems. The
chapter was conceptually divided in two parts. In the first part we presented a taxonomy that
allowed us to classify the different self-adaptation approaches. This taxonomy defined a classifi-
cation of modeling dimensions that should be considered when modeling proactive self-adaptive
software systems.

Other similar taxonomies exist, for instance Dobson et al. [37] provide a survey of tech-
niques applied to autonomic communications. Buckley et al. [25] define a taxonomy for soft-
ware change that does not focus on runtime adaptation but focus on the sources of software
change. Salehie and Tahvildari [109] survey on autonomic computing and self-adaptive systems
inspired some of the dimensions and their values considered in our work. Figure 3.1 presents a
taxonomy of the approaches present in the state of the art. In the following chapter we reuse this
taxonomy in order to position our work regarding this well-established taxonomy.

In the second part of this chapter we presented a number of research approaches related to
proactive adaptation. Table 3.2 presents a deeper analysis on the challenges introduced in the
motivation scenario and transforms them into requirements for our approach. These targeted
features are: proactivity, predictability and reliability. We analyze the related state-of-the-art
with respect to this criteria as follows.
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Approach Proactivity Predictability Reliability

Software
architecture-
based adapta-
tion

Adaptation is based on
self-healing property.
A problem occurs and
the system address it

Decision process
based on instant util-
ity. Monitoring instant
values of sensors and
gauges

Fixed set of prede-
fined adaptation strate-
gies [57]

Extensive
model-based
adaptation

No proactivity (if not
used in combination
with a dedicated
approach to self-
adaptation)

Analysis based on re-
flection of the current
running configuration
hindered by model-
drift uncertainty [43]

Good management of
variability and explo-
sion of the number
of possible reconfigu-
rations

Rules/Policy-
based adapta-
tion

Adaptation triggered
for violation of “hard
wired” rules in the
model (e.g., ECA)

No predictability (if
not used in combina-
tion with a specific
forecasting technique
e.g., workload fore-
cast)

A limited management
of the possible re-
configurations usually
predefined at design
time

Reinforcement
learning adapta-
tion

Adaptation triggered
for violation of sys-
tem’s goals (e.g.,
SLAs)

Environment is typi-
cally formulated as a
Markov decision pro-

cess (MDP) decisions
based on reward and
regret criteria

Possible configura-
tions are given in a
set of states; a set of
actions; and rules of
transitioning between
states

Model-
Predictive
control

It is a proactive and
self-optimization tech-
nique

Use prediction of fu-
ture behavior of the
system to optimize de-
cisions

Attractive in multi-
objective scenarios
and to derive close
to optimal deci-
sions [102]

Adaptive and
Reconfiguring
control

Reactive adapta-
tion based on input
parameters

No predictability (if
not used in combi-
nation with an spe-
cific predictive con-
troller e.g., MPC )

The controller can
tune and adjust their
algorithm at runtime
(e.g., MMST) [101]

Table 3.2 – Summary of features in related approaches
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Chapter 4

Achieving Proactivity Based on

Predictive Analysis

In the previous chapters, we have identified the enablers of proactive adaptation for our ap-
proach. In particular, we explored in detail the predictive analysis and autonomic computing
paradigms. Also, we highlighted the gap in the-state-of-the-art and the need for a new approach
that makes use of the overabundance of data in current pervasive systems to derive forward
looking decision-making mechanisms.

This chapter presents the key aspects and the main contribution of our thesis. The remainder
of this chapter is structured as follows. Section 4.1 presents our framework to achieve proactive
self-adaptation. Section 4.2 presents the supporting tools that enable the implementation of our
approach.

4.1 Overview of the Approach

As mentioned earlier, in 2001 IBM releases a manifesto [70] describing the vision of autonomic
computing. The purpose is to control the overgrowing complexity of software systems by mak-
ing systems self-managing. A couple of years later, J. Kephart and D. Chesss [78] presented
the MAPE-K autonomic element architecture, which became the de facto reference model for
autonomic computing.

In this thesis we propose to enhance dynamic adaptation by integrating a Predict phase

between the Analyze and Plan phases of the MAPE-K loop, see Figure 4.1. We leverage ideas
and techniques from the area of predictive analytics [126] to operationalize the Predict phase.
The components that operationalize our predictive framework can be divided into two phases:
the design phase and the runtime phase.

The design phase include the off-line setup of the approach. In this phase we perform activ-
ities related to the predictive modeling process. This includes activities such as: data collection,
data preprocessing, build candidate model, train, test and evaluate predictive models based on
past data observations.

The run time phase involves the activities mentioned in the MAPE-K loop, starting with
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Figure 4.1 – Extension of the MAPE-K autonomic control loop

online monitoring and analysis of the current state of the system. During the on-line phase
we evaluate the predictive models defined at design time. This evaluation is performed in two
ways: reactive vs. proactive adaptation strategies. Next, taking into consideration the evaluation
results we proceed to the decision making process. The on-line phase then carries on the new
reconfigurations.

4.1.1 The Design Phase: The Predictive Modeling Process

The process of building predictive models is a craft. This is no different from other software
engineering activities such as requirements specification [119], software design [120], or test-
ing [74]. In this section we present a stepwise process to build predictive models and give away
some rule of thumb that summarizes our intuition and experience, aiming to guide future prac-
titioners. Figure 4.2 illustrates the predictive modeling process, which is iterative and should
be refined over time. As in [126], our approach implements the following steps for building a
predictive model.

1. Define goals

This step is at the heart of the process. Here, it should be clearly stated what the system is
trying to achieve, the outcome to be predicted. It is also fundamental to have a clear under-
standing of the purpose of the model and to determine what is a good model. There exists
a variety of quantitative objective functions to measure the model goodness. Wu [126],
categorize the prediction approaches in the following categories: (1) linear modeling and
regression, (2) non-linear modeling, and (3) time series analysis. For a system to be
considered linear the objective function has to obey two properties: additivity (see Equa-
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Figure 4.2 – The Predictive Modeling Process

tion 4.1) and homogeneity (see Equation 4.2). Additivity implies homogeneity for any
rational α, and for continuous functions, for any real α. Additivity and homogeneity are
often combined in the superposition principle [126].

f (x+ y) = f (x)+ f (y); (4.1)

f (αx) = α f (x) (4.2)

In a continuous dependent variable, typically, the ultimate goal of predictive modeling is
to develop a finely tuned predictor function h(x) (a.k.a. the hypothesis). The learning part
consists in using mathematical algorithms to optimize this function so that, given an input
data x about a certain domain (e.g., number of users in the network), it will accurately
predict some interesting value h(x) (e.g., predict bandwidth usage).

In practice, x almost always represents multiple free parameters (e.g., number of users is
x1, date x2, time is x3, etc). Assuming a single input value is used, the simple objective
function has this form:

h(x) = θ0 +θ1x (4.3)

where θ0 and θ1 are constants. The goal is to find the perfect values of θ0 and θ1 to make
our predictor work as well as possible.

Nonlinear models implies more complex polynomial equations (e.g. in the equation (x+
2)2 = 6, where x is raised to the power 2). For instance, a binary dependent variable can
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be easily illustrated in the three dimensional space. Let us consider a situation where we
have two free parameters (x and y) and an objective function z-direction rising above an
(x,y) plane. If the objective function is the model error, without loss of generality we can
consider that the goal is to minimize this objective function over the set of all possible
values of these free parameters. The objective function is then a surface that rides above
this x− y plane, and the goal is to find the minimum, thus having the lowest error [126].
This analysis can be extended to higher dimensions.

A common pitfall when finding the objective function is the lack of clarity around the
problem definition. Lack of understanding on how and where the model will be used ends
up in solving a problem different from the specifically targeted one. Sometimes key data
is not available and should be noticed since the beginning of the process.

2. Data Collection

This step involves gathering the data. For this purpose its necessary to answer several
questions: what data is available and in what form, with what quality, how many data
points do we need to perform the task at hand, what is the data type of the records and
how far back in time does the data need to go. Together with this, is important to find out
what kind of data we are dealing with. Data is heterogeneous and can be highly structured,
semi-structured, or totally unstructured.

Structured data is generally specified in a data modeling notation, which is often in a
graphical form (e.g., spreadsheets or a relational data-base). Semi-structured data has
some form of structure but its structure is not helpful for the processing task at hand
(e.g., books, free-text, images, audio, video, files). Techniques such as natural language
processing (NLP) or image processing deal with this kind of data. Totally unstructured
data does not have a predefined data model and is not organized in a predefined manner
(e.g., the CERN’s Large Hadron Collider, where 150 million sensors are capturing data
about nearly 600 million collisions per second [63]).

Machine learning algorithms have the ability to successfully analyze both structured and
semi-structured data. However, totally unstructured data still poses a challenge and re-
quires making several trade offs among desired calculability, availability and performance.
Finally, a rule of thumb is the more information employed in the model generation the bet-
ter, however quality of data is key, many observations does not guarantee a good model
(e.g., garbage-in, garbage-out effect).) [126].

3. Data Pre-processing

In this step the data records should be assembled into the appropriate form to serve as
input for the predictive model. It is important to highlight that we should not expect the
model to do all the difficult work. In practice, it is useful to prepare and encode the inputs
as best as possible using expert knowledge and statistical practices [126]. In general, the
first task to perform is to do simple data quality examination and exploration of univariate
distributions. We can examine each field in the data separately. For continuous fields we
can calculate its distribution, its mean, standard deviation, min, max, etc. For categorical
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variables we can inspect the number of occurrences of the most common and uncommon
values of the field to get an idea of the completeness, coverage, and quality of the data.

Common pitfalls in this step include not cleaning the data or taking the outliers into ac-
count, inefficient encoding of categorical variables, not eliminating fields that have inher-
ent bias, missing values for important categories or records, not properly scaling contin-
uous fields (e.g., computing the mean µi and standard deviation σi). A good practice is
to use filters or wrappers to integrate several variables. The impact of not preparing the
data is that the predictive model receives noisy data. This directly impacts the predictive
model and does not allow it to focus its efforts in the right areas. In general, it reduces the
model potential for useful outcome.

4. Design Model Structure

In this step the decision on the model structure needs to be made. This depends up to a
certain way on the data type of the records. For instance, we can build a classification
tree model for a categorical outcome, whereas a regression tree is designed to handle
continuous variables.

An important aspect in deciding the model structure is the kind of available data and
whether the desired output is known. Next, we can consider applying supervised learning,
unsupervised learning or reinforcement learning. In supervised learning the predictive
model is trained with example inputs and their desired outputs. The goal is to learn a
general rule that maps inputs to outputs. In unsupervised learning no labels are given to
the learning algorithm, leaving it on its own to find structure in its input. Unsupervised
learning can be a goal in itself to discover hidden patterns in data [126]. In reinforcement
learning, the algorithm explores and interacts with a dynamic environment in which it
must perform a certain goal without explicitly telling it whether it has come close to its
goal or not. Therefore, it learns effective decision-making policies through trial-and-error
interactions with its environment based on the concept of reward [114].

Predictive modeling approaches can be categorized in many ways [15], for instance:
(1) classification, i.e. predicting the outcome from a set of finite possible values, (2) re-

gression, i.e. predicting a numerical value, (3) clustering or segmentation, i.e. summa-
rizing data and identifying groups of similar data points, (4) association analysis, i.e.
finding relationships between attributes, and (5) deviation analysis, i.e. finding exceptions
in major trends or structures.

Deciding on a model structure requires experience and knowledge on each technique. Im-
portant characteristics to consider in the choice of predictive modeling techniques include
continuous or categorical (classification) outcomes, number of records, likely dimension-
ality and amount of data noise. A good approach is to build a simple prototype linear
model as a base line and then try various non linear to see the improvement. Common
mistakes on this step include using too simple a model (e.g., univariate) or too complex
one that might over fit the objective function.

5. Build candidate models
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Model building is the process of finding a functional relationship between inputs and out-
puts. The stepwise variable selection method is among the most common in practice [126].
In forward selection we start with no selected variables out of the pool of n possible model
variables. We then build n separate models, each using exactly one of the possible vari-
ables. We select the single variable that alone provides the best model. We then progress
by building n−1 models, each of them using the previously selected variable along with
all the other n− 1 possible variables. We then select the two variables that provide the
best model and proceed to build n−2 models using the already selected two variables and
all the other possible variables individually, and so on.

A good practice is to start this step by modeling a baseline linear model and then try to
improve it using more complex nonlinear models or time series analysis [126]. In previous
Section 2.2.2, we introduced the concept of time series analysis.

In this step it is important to assess the model goodness (see below), keeping in mind the
defined goals. A common mistake in predictive modeling is to go too deep on a single
specialized technique instead of trying a broad spectrum of methods.

6. Training, testing and cross-validation

In the construction of models the goal is to find the best fit of a mathematical expression
(e.g., formula, rules, etc) to a set of given data by adjusting free parameters in the model.
In this fitting process the objective is to find this set of best parameters according to two
things: (1) some quantitative measure of goodness of fit to an objective function, and
(2) the need for the model to generalize beyond the particular given data set .

In general, these are competing and somewhat conflicting goals. In practice, we can fit the
model exactly to the given data, but when new data comes, sometimes the fit is not as good
for this new data. Therefore, the standard practice of separating data into training, testing
and validation sets has become obligatory in machine learning process. In this step a rule
of thumbs is to separate the data into two sets: one with 70 percent of the source data, for
training the model, and one with 30 percent of the source data, for testing the model. This
default was chosen because a 70-30 ratio is often used in data mining [87]. Figure 4.3
represents both ways of dividing the data using holdout data split using the 70-30 ratio, or
a 5-folds cross validation data split.

Model goodness measures. The standard approach to evaluate the performance of a clas-
sifier is to construct a confusion matrix (or contingency table) by comparing the answers
from the classifier and manually labeled answers:

correct wrong
predicted TP FP

not predicted FN TN

• True positives (TP) are elements correctly predicted by the classifier;

• False positives (FP) are elements incorrectly predicted by the classifier;
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(a) Holdout data split [50]

(b) 5-Fold cross-validation data split [50]

Figure 4.3 – Training, testing, and cross-validation data splits

• True negatives (TN) are elements correctly not predicted by the classifier;

• False negatives (FN) are elements incorrectly not predicted by the classifier

Based on the four previous metrics, we can compute a variety of useful statistical mea-
sures [126]:

Precision =
T P

T P+FP
(4.4)

Recall =
T P

T P+FN
(4.5)

F1 =
2×Precision×Recall

Precision+Recall
(4.6)

The number Precision represents the probability that the predicted elements are relevant.
Recall represents the probability that all relevant elements were predicted. For our pur-
poses, Recall is more important, because we can manually delete redundant elements from
the predicted domain model. However, in machine learning, the F1-measure (a.k.a. F1-
score) is used because it represents both Precision and Recall in a balanced way. Not doing
proper training and testing as one examines candidate models may end up in selecting a
bad model or overfitting functions.
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7. Model implementation

In this step the model is embedded into the necessary system process, additional steps
should be performed to examine the model’s performance in ongoing use. Errors in this
step include implementation bugs, algorithm mistakes, bad data input streams (e.g., avoid
garbage-in, garbage-out effect). More information regarding the implementation of the
predictive models in the context of the motivation scenario is presented in Section 5.2.4.

Predictive models are usually a representation of more complicated systems and their ob-
jective is to help us understand what is going on, how things interact or to predict what may
happen when things change or evolve over time. In this section we presented some guidelines
on the main steps of the modeling process. As a summary, the following four components are
key in order to build a predictive model [126]: (1) a set of equations or formula with adjustable
parameters, (2) a set of data that represents an example of the system that we are modeling, (3) a
concept of goodness of fit to the data (e.g., objective function), and (4) a set of rules to tell us
how to adjust the parameters to increase the goodness of the model fit.

4.1.2 Integration Points in the Runtime Phase

In order to enable proactive adaptation, there must be integration points of the predictive frame-
work into the autonomic control loop. Figure 4.4 illustrates the potential site for integrating
predictions into the autonomic loop.
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Figure 4.4 – The proactive architecture [98]

1. Input feature extractions: This component is part of the monitoring phase and is in charge
of keep record of internal and external properties. It reads system state variables that
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hold information about the operating environment (e.g., transmission rate, battery level).
Regarding external context information, the monitoring module also observes external
information relevant to the system (e.g., weather forecast). In order to make proactive
adaptation decisions the data is stored in the knowledge repository.

Figure 4.5 – Testbed for data collection phase

As a proof of concept of the feasibility of input feature extraction we developed a testbed
built on top of a MacBookPro with four-core, hyper-threaded i7, SSD, 16GB of DDR3
memory. This host has a XBEE antenna receiving sensors readings every 5 seconds
sent via XBEE from an Arduino Uno, which was instrumented with a temperature sensor
TMP36, as depicted in Figure 4.5. The source code deployed in the Arduino Uno from
our testbed is listed in the following Listing 4.1.

1 #include <SoftwareSerial.h>

2

3 SoftwareSerial mySerial(10, 11); // RX, TX

4

5 //TMP36 Pin Variables

6 int temperaturePin = 0;

7

8 // set up a new serial port

9 //SoftwareSerial mySerial = SoftwareSerial(rxPin , txPin);

10

11 void setup() {

12 // define pin modes for tx, rx, led pins:

13 //pinMode(rxPin , INPUT);

14 //pinMode(txPin , OUTPUT);

15 // pinMode(ledPin , OUTPUT);

16 // set the data rate for the SoftwareSerial port

17 mySerial.begin(9600);

18 mySerial.println("Arduino started sending bytes via XBee"

);

19 }
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20

21 void loop() // run over and over again

22 {

23 //getting the voltage reading from the temperature sensor

24 float temperature = getVoltage(temperaturePin);

25 //converting from 10 mv per degree wit 500 mV offset

26 //to degrees ((volatge - 500mV) times 100)

27 temperature = (temperature - .5) * 10;

28 //converting from F to C degress

29 temperature = ((temperature - 32.0) * (5.0 / 9.0));

30

31 //printing the result

32 mySerial.println(temperature);

33 //waiting 30 seconds

34 delay (30000);

35 }

36

37 float getVoltage(int pin){

38 //converting from a 0 to 1023 digital range

39 // to 0 to 5 volts (each 1 reading equals ~ 5 millivolts

40 return (analogRead(pin) * .004882814);

41 }

Listing 4.1 – Listing of input data from temperature sensor

2. Variable selection: This module is in charge of organizing the collected data according to
their spatial and temporal dimensions. At run time, this module is in charge of processing
the current values that represents the running configuration of the system. It is important
to note that this data should be comparable with the one collected in the design phase. For
this reason it involves cleaning, filtering, pruning of data and replacing missing values with
reasonable estimates (e.g., by interpolation). Re-dimensional analysis can be performed
in case the frequency of measurements is different from the prediction scale.

For instance, Figure 4.6 represents the outdoor temperature during one day, sampled every
30 seconds. As shown in the previous Listing 4.1 we can clearly see in lines 28 and 29
that the temperature measurements are originally given in ◦F, and we convert it to ◦C to
be comparable with our policy rules. However, this test bed was not sufficient for our real
experiments due to the limitations from the lack of historical data. Another constraint was
that the measures where taken in Rennes, which is located in the north-west of France.
The weather conditions are rather rainy and humid, which are not prone to wild fires
breakouts. For these reasons, we need realistic data and this process is further explained
in the section 5.2.1.

3. Predictions: This module receives input data from the current state of the system and from
external context information through the analyze module in a processed way. This step
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Figure 4.6 – A day of temperature readings from the testbed

involves consuming the predictions and realizing a prediction quality assessment model
predictor error. When building prediction models the primary goal should be to make a
model that most accurately predicts the desired target value for new data. Naturally, any
model is highly optimized for the data it was trained on. The expected error that the model
exhibits on new data will always be higher than that it exhibits on the training data [50].

One way to assess the quality of a predictor model is by calculating the mean-squared

error (MSE) of the estimator. The MSE of an estimator measures the average of the
squares of the “errors”, that is the difference between the estimator and what is estimated.
This is formally defined in [111]:

If Ŷ is a vector of n predictions, and Y is the vector of the true values, then the (estimated)
MSE of the predictor is:

MSE =
1
n

n

∑
i=1

(Ŷi −Yi)
2. (4.7)

An MSE of 0 means that the estimator θ̂ predicts observations of the parameter θ with
perfect accuracy, which is an ideal impossible in practice [111].

Next, an important point is the way predictions will be consumed by the adaptive system.
These methods can be on different ways:

• Consume predictions periodically: Predictions are generated and provided continu-
ously to the running system at a fixed rate (e.g., hourly, daily, weekly).

• Consume predictions on demand: Predictions are queried by the running system on
demand (e.g., to estimate the remaining battery life).
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• Consume predictions sporadically: Predictions are triggered every time something
change in the environment (e.g., when the monitored parameter crosses a threshold).

4. Decision-making: The plan module is in charge of defining the adaptation policies that
may drive the reconfiguration of the system. Most of the current self-adaptive approaches
use purely reactive decision techniques. Proactive policies are able to handle uncertainty
by carrying aggregate information of previous historic data plus the foresight into the
prediction horizon. The following ECA rule describes the reasoning behind the triggering
of a new reconfiguration (e.g., increase or decrease in the transmission rate of sensor
nodes) based on 7-observations into the future.

Using the temperature prediction, we have implemented the following ECA rule:
Event: An increase or decrease in temperature.
Condition: If the temperature crosses the following threshold in ascending or descending
manner.

• High (e.g., t >= 25 ˚C),

• Medium (e.g., 15 ˚C >= t < 25 ˚C ) and

• Low (e.g., t < 15 ˚C).

Action: The system will increase or decrease the transmission rate one level up or down
accordingly.

5. Runtime reconfiguration The goal of this component is to deploy the new system con-
figuration decided by the planning module on the running system. As a proof of concept,
it is possible to use Kevoree [52], which is an open source tool that implements the mod-

els@runtime paradigm to provide a reflection model of the running system. Then, it allows
edition of this model and generation of a new target model. Next, the target model can
then be redeployed and synchronized with the running system.

4.1.3 Application Scenarios

The goal of self-adaptive software is to modify its own behavior in response to changes in its
operating environment, such as end-users input, external hardware devices and sensors, or pro-
gram instrumentation [96]. However, one significant challenge lies in the realization issues of
engineering self-adaptive systems. These issues deal with selecting the correct mechanisms for
incorporating adaptivity into such system. Therefore, the paradox is that systems must become
more complex in order to achieve self-management capabilities.

A proactive adaptation strategy provides a number of benefits, but at the same time it raises
several computational challenges. In order to exemplify such benefits and challenges we refer
to the following scenarios:

Scenario 1: Daily observations at a shopping mall that offers free WiFi reveal some curious
patterns. Students from nearby university flood the coffee shops during the class breaks, while
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the professionals working in the area visit the shops early in the morning, during lunch time, and
late at evening. Based on the computer usage in the main lounge area of different groups, the
wireless bandwidth availability at the shopping mall may show repeatable patterns.

Scenario 2: A personal laptop computer running on battery has several scheduled back-
ground tasks (e.g., updates, backups, virus scans, etc.) that run daily, weekly, etc. Often the
execution of these administrative tasks can not be interrupted or suspended by the user once
they have started, but the time and length of the execution is known exactly in advance. The re-
source utilization imposed by such task (e.g., power consumption) certainly has known behavior
and can be predictable.

Scenario 3: World class events usually happen periodically (e.g., monthly, yearly) and at-
tract many fans from all around the globe. Sport events such as the ATP Tennis Tour, the NFL
Super Bowl, and the FIFA World Cup, greatly increase the ISP bandwidth traffic and usually
generates peaks due to the number of followers, even more during the transmission of the fi-
nal event. Studies have been conducted to analyze the workload characterization during such
popular events [5].

Benefits

Some benefits of the proactive strategy might include:

A. Avoiding unnecessary adaptation and oscillatory behavior

The context in which adaptive systems evolve is very dynamic and can potentially change
more rapidly than the adaptive system itself. Resources such as bandwidth can fluctuate and
depend on many external parameters. Similar to the shopping mall scenario many of these
external parameters are out of control, including: number of users in the network, size and
quality of data exchanged, quality of the network, etc. However, those parameters can be
modeled in terms of time series data to extract the pattern in its occurrence.

Now, let us assume a user is browsing an adaptive news website similar to Znn.com1 pro-
posed in the Rainbow approach [58]. In the case where the bandwidth fluctuates around
a predefined threshold, the website triggers a reconfiguration in the news page display for-
mat (e.g., video/photo/text). However, this could make the page to continuously oscillate
between two configurations. Even worse, if the fluctuations of the bandwidth are quicker
than the adaptation process, this could set the news system always in a reconfiguration that
is lagging off and not updated to the current context. In that case, it would be preferable
to switch the bandwidth parameter to a safe mode option. Here, the safe mode would be to
consider that the bandwidth is always low, even if it is sometimes high for short periods of
time.

B. Managing allocation of exhaustible resources:

This benefit is directly related to the second scenario when we are dealing with perishable,
non-renewable resources such as battery. Managing allocation of exhaustible resources (e.g.
battery) with proactive adaptation enable us to make provision for future time when the

1http://rainbow.self-adapt.org/RainbowZnn
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resource is scarce. In the context of wireless sensor network a proactive strategy can outper-
form a reactive strategy in terms of power consumption due to a lower number of triggered
reconfigurations [98].

C. Proactivity in front of seasonal behavior

Identifying a known pattern component is challenging and might require domain-specific
knowledge. Scenario three presents a real example of recurrent events. In the case we have
to predict the number of attendants to the next Roland-Garros tennis tournament, we could
simple collect historical data from last thirty years and make a linear regression. A more
complex study might include correlations between this variable and economic indicators.

For particular cases more suitable for our purpose, we can tackle the detection of seasonal
components using a time series decomposition analysis. This analysis extract three main
components from the observed data: trend, season and noise. Proactive adaptation to sea-
sonal behavior offers the benefit of adapting the systems before a significant change in the
environment (e.g., increase in client requests), thus avoiding potential disruption by adapting
the system, when the system is already under heavy load.

Challenges

However, a proactive system needs to compute and communicate predictions at runtime. Which
means, there are operational challenges and an increase in computational complexity associated
with providing these functionalities. In particular, the provider and the consumer of predictions
need to coordinate on the syntax and semantics of the predictions. Both parties need to agree
on a small number of important parameters that can help fully and adequately describe predic-
tions [106].

A. Prediction horizon

The prediction horizon involves the future interval of time units over which predictions are
desired. For instance, if we are interested in a 7-day forecast of weather, then the prediction
horizon is 7 days. It is important that the provider of the predictions and the consumer of
predictions agree on the value of this parameter in order to ensure that the predictions are
useful to the consumer. Indeed, if a prediction consumer needs a prediction of the bandwidth
for the next 10 minutes, then providing a prediction for the next 5 seconds will not be useful
for the consumer.

B. Prediction scale

Prediction scale or granularity is the time window of a single prediction in a sequence of
predictions. A tourist on a week-long holiday trip might need a daily weather forecast with a
7-day horizon, while a rock climber might need an hourly forecast with a 36 hours horizon.
In the first case, the scale of prediction is 24 hours, while in the second case it is 1 hour. A
prediction at a daily scale will not be acceptable for the climber.

C. Prediction detail
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Prediction detail refers to the amount of information used to describe the probability dis-
tributions of the predictive uncertainty at runtime. On paper, predictors can be described
analytically, (e.g. using mathematical functions). At run time, it may be more appropriate
to use discrete data structure representations to express and communicate predictions. When
converting predictions expressions using continuous functions into a discrete representation,
the system providing predictions needs to make approximations, resulting in loss of detail.
It is important for the prediction communication mechanism to define parameters that con-
trol the detail of approximation so that the consumers and the providers of predictions can
synchronize.

Supporting these three parameters in a prediction API helps narrow the space of useful pre-
dictions from the perspective of the consumer. It is likely that the prediction provider can only
support a limited range of these parameters; therefore, the API must allow for a negotiation be-
tween the consumer and the provider to agree on the acceptable values of these parameters. In
Section 5.2 we describe the implementation of the API, and demonstrate how it addresses the
operational issues in the context of the environmental monitoring motivation scenario.

4.2 Implementation of the Approach

In order to implement our approach we used several open source technologies, including a graph-
ical predictive analytics platform (KNIME), a standard XML language for predictive modeling
(PMML) and various open source machine learning libraries/tools (R, Weka, Octave, jpmml).
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Figure 4.7 – A general implementation of our approach
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4.2.1 Predict Module

Classification and Forecast

Currently, there are two existing, but not necessarily mutually exclusive approaches to forecast
using time series analysis [111]. These two approaches are commonly identified as: time domain

approach and frequency domain approach.
The time domain approach is generally motivated by the presumption that correlation be-

tween adjacent points in time is best explained in terms of a dependence of the current value
on past values. Conversely, the frequency domain approach assumes the primary characteris-
tics of interest in time series analyses are related to periodic or systematic sinusoidal variations
found naturally in most data [111]. Thus, the best way to analyze a data set is often to use both
approaches in a complementary way. For that reason we performed both analysis.

On the one hand, Figure 4.8 illustrates the time domain approach analyzing the temperature
variable. The models and predictions are generated with the R statistical suite of tools [113],
using the Forecast [124] and FitAR [1] packages. These packages offer a suite of methods that
permit to automatically generate ARIMA, Holt-Winters and AR2 models.

For instance, Figure 4.8 (a) presents the forecast for the next 48 hours using a basic Autore-

gressive Integrated Moving Average (ARIMA) univariate model with particular settings (p,d,q).
Here p is the number of autoregressive terms, d is the number of nonseasonal differences needed
for stationarity, and q is the number of lagged forecast errors in the prediction equation [111].
After applying ARIMA(0,1,1) the forecast result is plotted as a blue line, where the 80% predic-
tion interval is shown as a dark-blue shaded area, and the 95% prediction interval is represented
as a light-blue shaded area. However, intuitively we can clearly identify a problem with the
model, because the forecast result is apparently a flat line.
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(a) A forecast using ARIMA(0,1,1)
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(b) A forecast using AUTO.ARIMA function

Figure 4.8 – Forecast analysis of the temperature variable

One way to solve this problem is to redefine the settings of the model. Next, we implement
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the same 48 hours forecast using the AUTO.ARIMA funtion, which returns the best ARIMA
model according to the Akaike’s Information Criterion (AIC), Corrected Akaike’s Information

Criterion (AICc) and the Bayesian Information Criterion (BIC) [72]. Figure 4.8 (b) presents
the forecast result plotted as a blue line. This time we can clearly notice that the forecast data
follows the sinusoidal variations founded in the observed training data. This straightforward
comparison show the importance of not only selecting a good model, but also using the right
specifications. More detailed information regarding the ARIMA and AUTO.ARIMA functions
can be found in Section A.5.

On the other hand, Figure 4.9 illustrates the frequency domain approach for time series anal-
ysis. Here, we represent a decomposition of the temperature variable taken from our motivation
scenario. For instance, Figure 4.9 (a) depicts one month period of temperature readings from
the MERIDIAN NAS ISH station during the month of June 2010. Whereas, Figure 4.9 (b) rep-
resents a three months period of temperature readings for the same location during the months
of June, July and August of 2010. In both cases, we can appreciate how a time series can be
decomposed into its three main components: season, trend and remainder.
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(b) Three months period

Figure 4.9 – Time series decomposition analysis of the temperature variable

The decomposition analysis helped us to visualize the cyclical behavior of the variables.
Also, based on the trend component, we elaborated adaptation policies, taking as reference the
maximum and minimum values during certain months of the year.
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4.2.2 Knowledge Module

KNIME: A Predictive Analytics Platform

As the underlying platform for the implementation of our approach we used KNIME2, which is
a graphical open source analytic tool that enable us to model the workflow of our approach.

There are two simple reasons for choosing KNIME. Firstly, it helped us move from code-
based data mining towards workflow-based analytics, which makes it easier to understand and
explain. Secondly, KNIME workflows are reusable because they can be saved in an Eclipse
as a workspace and they are easy to maintain. Moreover, KNIME has more than a thousand
independently developed plugging (e.g., nodes) , which is an evidence of its great support by
the research community working behind this idea. Figure 4.10 illustrates both code-based and
workflow-based approaches for data analysis.
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(a) Code-based approach

(b) Workflow-based approach

Figure 4.10 – Code-based vs workflow-based data analysis approaches

The KNIME workbench is organized as a workflow. A workflow is composed of nodes,
which are the basic processing units. These nodes can be dragged from the Node Repository.
Each node has a set of input and/or output ports. Data is transferred over a connection from an
output port to the input port of another node. Nodes can be configured once inside the workflow
and the necessary settings set up with dialog boxes [81].

Once the node is configured, it can be executed and the result of this node will be available
in the output port. Ports on the left side of the node are called input ports, while the output port
provides data for the following node. Nodes are typed, such that only ports of the same type
can be connected. Table 4.1 presents a common set of nodes from the KNIME node Reposi-
tory. However, they are just an example of the hundreds of nodes available at the KNIME node
repository.

2http://www.knime.org/
3http://www.openstreetmap.org/
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Node Description

The most common type of nodes are those that communicate by
data port (a white triangle) which transfers flat data tables from
node to node (e.g., GroupBy node).

Nodes executing commands connecting by HTTP/FTP protocol
can be recognized by their dark cyan square (e.g., HTTP Connec-
tion). Parameters like host, port, username and password can be
setup in the configuration dialog of the node.

This node downloads a file or folder from the server specified by
the connection information and outputs a table with the references
to the local files.

KNIME allows execution of R commands to build a R model in a
local R installation. The model is returned in the output port and
can be used by the R Predictor node to predict unseen data [81].

This node induces a classification decision tree in main memory.
Numeric splits are always binary (two outcomes), dividing the
domain in two partitions at a given split point. Nominal splits can
be either binary or they can have as many outcomes as nominal
values [81].
This node provides an interactive view on Open Street Maps3.
Optionally some points of interest (map markers) can be rendered
onto it.

Meta nodes are nodes that contain subworkflows, (i.e. in the
workflow they look like a single node), they can contain many
nodes and also more meta nodes.

Table 4.1 – Example of nodes from KNIME’s Node repository
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PMML: Standard Predictive Modeling Language

The Predictive Model Markup Language (PMML)4 is an XML-based file format developed by
the Data Mining Group5 to provide a way for applications to describe and exchange models
produced by data mining and machine learning algorithms. It supports common models such as
logistic regression and feedforward neural networks [36].

Since PMML is an XML-based standard, the specification comes in the form of an XML
schema. A PMML file can be described by the following components:

• Header: contains general information about the PMML document, such as copyright
information for the model, its description, and information about the application used to
generate the model such as name and version. It also contains an attribute for a timestamp,
which can be used to specify the date of model creation.

• Data Dictionary: contains definitions for all the possible fields used by the model. It
is here that a field is defined as continuous, categorical, or ordinal (attribute optype).
Depending on this definition, the appropriate value ranges are then defined, as well as the
data type (e.g. string or double).

• Data Transformations: transformations allow for the mapping of user data into a more
desirable form to be used by the mining model. PMML defines several kinds of simple
data transformations [36].

– Normalization: map values to numbers, the input can be continuous or discrete.

– Discretization: map continuous values to discrete values.

– Value mapping: map discrete values to discrete values.

– Functions (custom and built-in): derive a value by applying a function to one or more
parameters.

– Aggregation: used to summarize or collect groups of values.

• Model: contains the definition of the data mining model. E.g., A multi-layered feedfor-
ward neural network is represented in PMML by a “NeuralNetwork” element that contains
attributes such as:

– Model Name (attribute modelName)

– Function Name (attribute functionName)

– Algorithm Name (attribute algorithmName)

– Activation Function (attribute activationFunction)

– Number of Layers (attribute numberOfLayers)

4http://www.dmg.org/v4-1/GeneralStructure.html
5http://www.dmg.org/
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This information is then followed by three kinds of neural layers that specify the archi-
tecture of the neural network model being represented in the PMML document. These
attributes are NeuralInputs, NeuralLayer, and NeuralOutputs. Besides neural networks,
PMML allows for the representation of many other types of models, including support
vector machines, association rules, Naive Bayes classifier, clustering models, text models,
decision trees, and different regression models [36].

• Mining Schema: a list of all fields used in the model. This can be a subset of the fields
as defined in the data dictionary. It contains specific information about each field, such as
[36]:

– Name (attribute name): must refer to a field in the data dictionary

– Usage type (attribute usageType): defines the way a field is to be used in the model.
Typical values are: active, predicted, and supplementary. Predicted fields are those
whose values are predicted by the model.

– Outlier Treatment (attribute outliers): defines the outlier treatment to be used. In
PMML, outliers can be treated as missing values, as extreme values (based on the
definition of high and low values for a particular field), or as is.

– Missing Value Replacement Policy (attribute missingValueReplacement): if this at-
tribute is specified then a missing value is automatically replaced by the given values.

– Missing Value Treatment (attribute missingValueTreatment): indicates how the miss-
ing value replacement was derived (e.g. as value, mean or median).

• Targets: allows for post-processing of the predicted value in the format of scaling if the
output of the model is continuous. Targets can also be used for classification tasks. In this
case, the attribute priorProbability specifies a default probability for the corresponding
target category. It is used if the prediction logic itself did not produce a result. This can
happen, e.g., if an input value is missing and there is no other method for treating missing
values.

• Output: this element can be used to name all the desired output fields expected from the
model. These are features of the predicted field and so are typically the predicted value
itself, the probability, cluster affinity (for clustering models), standard error, etc. The latest
release of PMML, PMML 4.1, extended Output to allow for generic post-processing of
model outputs. In PMML 4.1, all the built-in and custom functions that were originally
available only for pre-processing became available for post-processing too [36].

Machine Learning Tools and Libraries

In previous Section 2.2.3, we mentioned the importance of machine learning for finding patterns
that appear not only in the data at hand, but in general, so that what is learned will hold true
in new situations not yet encountered. Hereafter we discuss the suitability of some popular
machine learning libraries and the limitations used in our approach.
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The R statistical suite [113] is an open source well established programming language fo-
cused on statistical computing and graphics. Even though there is no intuitive graphical user
interface, there is an IDE environment called R Studio, which is well suited for developing
workbenches. Functions in R are grouped into packages, a number of which are automatically
loaded when you start R. However for some specific machine learning algorithms one needs to
download additional packages to obtain other useful functions. R is particularly good for initial
prototyping and implementation of specific reusable code in R (e.g., time series decomposition
analysis). However, for more complex workflow it becomes tedious and hard to maintain text-
based projects. On the positive side, there are a large number of existing examples and numerous
books with applications in R [87, 111].

In the same vein as R, we can find GNU Octave6, which is an interpreted language, primarily
intended for numerical computations. Octave is normally used through its interactive command
line interface. It is mainly used for academic purposes. Octave has been mainly built with
MATLAB compatibility, however some syntax and keywords may be different.

Weka7 is a collection of machine learning algorithms for data mining tasks, supported by the
University of Waikato, New Zealand. Weka is a Java based library with a graphical user interface
that allows you to run experiments on small datasets. This is a good introductory tool to test the
classification, clustering, and regression algorithms and to get an idea of what is possible with
machine learning. However, the API is poorly designed, the algorithms are not optimized for
production use and the documentation is often lacking.

Another useful open source library is jpmml8, which is a Java API for the Predictive Model

Markup Language (PMML). The class model consists of two types of classes. There is a
small number of manually crafted classes that are used for structuring the class hierarchy.
They are permanently stored in the Java sources directory /pmml-model/src/main/java. Ad-
ditionally, there is a much greater number of automatically generated classes that represent
actual PMML elements. They can be found in the generated Java sources directory /pmml-
model/target/generated-sources/xjc after a successful build operation.

In conclusion, the main criterion used for the selection of the supporting technologies was
based on the premise of the open source availability. In particular, a graphical open source
predictive analysis tool, such as KNIME, was chosen over a code-based analytical tools (e.g.,
R, Python), because of its graphical component, the ability to generate workflows in an Eclipse
likewise environment (i.e., plugging management) and its relatively easy learning curve.

4.3 Summary of the Approach

In this chapter we have presented an overview of our approach to guide proactive self-adaptation
based on predictive analysis. In Figure 4.11 we characterized our approach using the taxonomy
proposed by Salehie et Tahvildari [109].

This framework spans over design time and runtime. Therefore, we have described the sep-
aration of the problem of proactive adaptation into two parts: (1) what is needed in terms of

6https://www.gnu.org/software/octave/
7http://www.cs.waikato.ac.nz/ml/weka/
8https://github.com/jpmml/
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Figure 4.11 – Characterization of our approach using the self-adaptive systems taxonomy

the predictive modeling process at design time was described in Section 4.1.1, and (2) in Sec-
tion 4.1.2, it was presented how to integrate the predictions from the environment to enable
proactive adaptation. We have also described the supporting technologies that enable our ap-
proach in Section 4.2. By doing so, we have set the stage for the next chapter, which describes
the implementation of the motivation scenario presented earlier in the thesis in Section 2.1.
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Chapter 5

Implementation and Evaluation

In this chapter we explain the implementation and evaluation process of our proactive approach
based on predictions.

5.1 Requirements of the Forest Monitoring Scenario

As mentioned in the motivation scenario presented in Section 2.1, we consider a wireless sensor
network deployed at a location prone to wild fires outbreaks. There is a total of n node sensors
in the field and they are assumed to be uniformly distributed within the field. In short, the main
requirements of the environment monitoring scenario are:

1. R1- The system should provide feedback on potential fire risks to its users (e.g., environ-
mental guards, fire department) allowing them to act proactively and anticipate possible
critical situations.

2. R2- The system should support the coordinated reconfiguration (e.g., increasing/decreas-
ing transmission frequencies) of sensor nodes aiming at avoiding service failure due to
battery exhaustion, in order to extend the life time of the system as much as possible.

We tackled these requirements in the following way. During the design phase we collected
data regarding the environmental conditions before a fire outbreak and developped predictive
models to anticipate potentially critical scenarios, in order to satisfy requirement R1. Figure 5.1
illustrates the use case diagram of R1.

To tackle the second requirements (R2), we built a power consumption model based on a
set of given characteristics of a wireless sensor network. Next, we calculated the impact of a
reactive strategy vs. proactive strategy on the life time of the system. Figure 5.2 illustrates the
use case diagram of R2.

5.2 Design Phase of the Approach

In this section we explain in detail the activities of predictive analysis and adaptation in the
design phase. We elaborate on the description of the activities in the context of the motivation
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Figure 5.1 – Use case diagram of functional requirement R1
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Figure 5.2 – Use case diagram of non-functional requirement R2
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scenario of environmental monitoring. The source code of the KNIME workflows implemented
for our motivation scenario can be found in the github repository.1

5.2.1 Data Collection

The purposes of the data collection process was to gather information on the variables of interest.
This data collection was performed in a systematic way that can be reproduced using the specific
settings (e.g., location, time period). This enables us to perform data analysis and build research
questions, test hypotheses, and evaluate outcomes.

We initiated the implementation of the environmental monitoring scenario with the precon-
dition of finding enough historical environmental data for a given location for a selected period
of time. Initially, we considered United States as a broad location (this was later redefined) and
we selected the year of 2010 as the time frame period. So, in order to obtain real data about
external context information, we investigated several existing sources of fire detection data to
feed our environmental monitoring system. Figure 5.3 illustrates the implementation of the part
of the workflow that downloads the fire reports. We achieved the goal of the data collection
process and collected quality evidence through the following points:

Figure 5.3 – Workflow for downloading fire reports from the USDA Forest Service [49]

1. We collected a dataset of the wild fires reports with its precise location (e.g., latitude,
longitude) for the selected period of time, i.e. year 2010. This workflow starts by setting
the URI string that indicates the host server where the data was stored. We downloaded
these datasets from the USDA Forest Service website2. Next, we created a loop to iterate
according to the dates and downloaded all the files from 2010 using a wildcard (e.g.,
conus_2010mmdd.kmz, see Figure 5.4 a).

The fire detections were obtained using the Moderate Resolution Imaging Spectro-radiometer
(MODIS) and processed as a cooperative effort between the USDA Forest Service Remote
Sensing Applications Center, NASA-Goddard Space Flight Center and the University of
Maryland. Section A.2 presents a more detailed description of this data dataset.

1https://github.com/IvanPaez/proactive-example.git
2http://activefiremaps.fs.fed.us/googleearth.php
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2. In order to get data of the weather reports we investigated the Integrated Surface Hourly

(ISH) datasets3 provided by National Climatic Data Center (NCDC). This Integrated Sur-

face Hourly (ISH) weather stations include their specific location (e.g., latitude, longitude)
for the selected period of time (i.e., year 2010), see Figure 5.4 b.

Next, we collected hourly weather readings from ISH land-based stations near (i.e., within
a 50 km radius) from the spots where there were confirmed fire detections. Land-based, or
surface, observations include data such as: temperature, dew point, relative humidity, pre-
cipitation, wind speed and direction, visibility, atmospheric pressure, and types of weather
occurrences such as hail, fog, and thunder collected for locations on every continent [49].

(a) MODIS fire detections in 2010 in USA

Area chosen for 

evaluation

(b) ISH weather stations active in 2010 in USA

Figure 5.4 – Data extracted from by the National Climatic Data Center (NCDC)

5.2.2 Data Processing

Preprocessing the data involves cleaning, tuning and pruning the data. The measured data is
organized representing different features of the systems. Some steps to transform the raw data
into the processed data include:

• Grouping The selected data can be grouped together. These groups determine the number
of variables that are returned in the end. Grouping can be optional.

• Down-sampling It is common for the large dataset retrieved by a query to have been
sampled at a much higher rate than is desired for display, for instance if there is need to
display a full year of data that was sampled every second. Display limitations mean that it
is impossible to see anything more than about 1–10,000 data points. This makes plotting
much faster as well.

• Aggregation Data for particular time windows are aggregated using any of a number of
pre-specified functions such as average, sum, or minimum.

• Interpolation The time scale of the final results regularized at the end by interpolating as
desired to particular standard intervals. This also ensures that all the data returned have
samples at all of the same points.

3http://www.ncdc.noaa.gov/oa/climate/surfaceinventories.html
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• Rate conversion The last step is the optional conversion to input/output rates.

In the context of the environmental monitoring scenario, we combined both data sources
previously described. In this way, we connected individual fires to weather stations in geograph-
ical space and time. In other words, the outcome of this correlation is the historical information
of the weather conditions near the spots where a wild fire outbreak occurred.

Figure 5.5 – Fires detected in Mississippi by MODIS during 2010

As mentioned earlier, Figure 5.4a (a) illustrates all fire detections in year 2010 for the geo-
graphic area covering the continental USA including a 50 km buffer around the periphery. The
fires detected by MODIS are not uniformly distributed throughout the USA. Therefore, we chose
to reduce the sampling and focus on a specific geographical area that contains a large amount of
fires, namely the state of Mississippi, USA (see Figure 5.4a (b)).

Figure 5.5 presents the fires detected in Mississippi by MODIS during year 2010. Colors
represent the nearest ISH station that would detect the fire. In order to generate the previous
figure we used the Open Street Maps map view plugin from the KNIME nodes repository. The
data points were collected in KMZ file format, which is the compressed format of Keyhole
Markup Language (KML) and its used for placemark file by Google Earth.

Figure 5.6 illustrates the number of fires within a 50 km radius from an ISH station. There
were alltogether 12330 fire detections during year 2010 around the preselected ISH stations. In
Section A.3, Table A.2 contains a detailed list of the ISH weather stations from Mississippi,
USA used in this study.
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Figure 5.6 – Fires within 50 km radius of an ISH station [98]

5.2.3 Building Predictive Models

In the forest monitoring use case we use prediction models to predict the risk of fire in the near
future. The prediction computes a series of data points representing the “future view”. In our use
case, given a time series of hourly temperature readings, we predicted the fire potential value for
the next N hours. For instance, predicting the temperature level in t +1, t +2, . . . , t +N hours.
We selected a classification problem with 13 input attributes: the current and the last 9 hours of
temperature readings, and average temperature from the past day, week and month.

In order to develop appropriate evidence to support that we got the right model with the right
settings, we selected a broad set of classifiers. These classifiers produce a prediction for the level
of temperature using the following rule:

• High (e.g., t ≥ 25 ˚C),

• Medium (e.g., 15 ˚C ≥ t < 25 ˚C ) and

• Low (e.g., t < 15 ˚C).

This set of classifiers represents a large panel of existing training-based techniques for automated
classification of items into categories. Table 5.1 presents height classification models selected
for modeling our problem. In order to compare the aforementioned classification models, we
needed training and testing data, as well as a scoring method.

5.2.4 Training and Cross-Validation of Predictive Models

In this step we separate data into the desire training, testing and validation sets. Next, we eval-
uated the effectiveness of the previously selected classification models using well established
metrics (e.g., precision, recall, F1-measure).

Training and testing data

In general, a supervised machine learning approach requires a representative amount of data
usually divided into (i) training dataset, (ii) development dataset and (iii) testing dataset. To
achieve good performance, the classifier should be trained on a training set that sufficiently
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Classifier Training Settings

Multi-Layer Perceptronπ (0..1) normalization, 3 layers, max. 30 neurons/layer, 300 iterations
Fuzzy Rules linear sampling (3000 samples), min/max fuzzy norm
Probabilistic Neural Net Z-Score norm., Theta -0.1/+0.9
Logistic Regressionπ –
SVMπ Polynomial kernel, power=0.5
Naive Bayesπ –
Random Forest 100 trees
Functional Trees 30 boosting iterations

π available as a PMML-based models

Table 5.1 – Selected prediction models (classifiers)

captures the variability of data. During the development process, when the features are designed,
the development test set is used to assess the performance of selected features by computing
statistical measures such as F1 explained below. To avoid overfitting, the classifier’s performance
is evaluated against the unseen testing dataset.

Since there is no specific data partition ratio rule, many practitioners have suggested the
following partition: 70% for training and 30% for testing. In this study, we realized 70% for
training, 20% for developing, and 10% for testing, and we have found it to be more suitable than
other ratios.

Cross-validation

Often the training data is scarce (as in our case), and then “hold out” methods are used for
evaluation. The most popular is the k-fold cross validation. The data is divided into k subsets
(folds) of equal size. Then, we can perform k measurements where one fold is considered as the
test set and the other folds are considered as the training set. It means that in every iteration,
one of the folds is unseen to the classifier. Although this approach is slightly biased, because we
saw all the samples when designing the features, we expect that in practice the classifiers will
be reevaluated on domain-specific training data and a new feature set can be selected to suit the
new environment.

The implementation of the training and cross-validation analysis was performed using KN-
IME. Figure 5.7 illustrates the workflow for training and validating the aforementioned classifi-
cation models.

For the training dataset we used the MERIDIAN NAS temperature readings and for the
testing dataset the temperatures from NACHES/HARDY (AWOS) station. The geographical
distance between these two stations is approximately 276 km, which gives us confidence that
the results are independent and unbiased.

Another reason for choosing these stations is that there are enough fire detections close to
them (for both, approx. 550 fires within the radius of 50 km (see Figure 5.6), which allows us
to later simulate and evaluate the actual running systems. However, these classifiers do not care
about fire detections, but rather predict the risk of fire potential based on historical temperatures.
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Figure 5.7 – Workflow for training and validating different regression-based models

We run the train-test evaluation loop 43 times for each classifier while changing the number
of hours in future for the fire potential prediction (t + 1, t + 2, . . . , t + 24[1d], t + 48[2d], . . . , t
+ 480[20d])). Each iteration yields several accuracy measures (scores).

As commonly accepted in the machine-learning community, we used the F1-measure to
compare our classifiers (F1-measure is a harmonic mean of Precision and Recall). By the end of
the evaluation, each classifier is characterized by a series of F1-measures depicted in Figure 5.8.
The outcome of this analysis allowed us to have a ranking of the best predictor models.

We clearly see that most of our classification models achieve a pretty high prediction perfor-
mance. For instance, predicting 5 hours in the future can be achieved with F1 = 85% accuracy,
as depicted in Table 5.8. Moreover, even 20 days in future can be predicted with more than 75%
F1. In our experiment, we only used predictions from 1, 2,. . . , 7 hours in the future.

In contrast to the best performing Random Forest (RF) model, Multi Layer Perceptron
(MLP) is available as a PMML model. We finally selected the MLP model because of the
following reasons. Training MLP requires more time than RF. However it must be done only
once, and running predictions using MLP is faster than RF. A trained MLP model consists of 63
neurons organized in 3 layers, with a network of 13 inputs and 3 outputs.

5.3 Runtime Phase of the Approach

Having explained the activities performed at design time in previous section we now focus on
the activities at runtime phase. These activities include on-line monitoring, variable selection,
model evaluation performed in a reactive and a proactive way, dynamic decision making and
deploy reconfigurations. Figure 5.9 illustrates such activities.
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Training: MERIDIAN NAS, Testing: NATCHEZ/HARDY, Distance between locations: 276 km

Figure 5.8 – Comparing different classification models using data from distant stations.

MLP PNN LR RF FT
FirePotential(+1) 94% 91% 94% 94% 94%
FirePotential(+2) 91% 89% 90% 91% 89%
FirePotential(+3) 89% 86% 87% 89% 88%
FirePotential(+4) 86% 85% 85% 87% 85%
FirePotential(+5) 85% 84% 83% 85% 83%

Table 5.2 – F1-measures of 5 best performing classification models predicting fire potential out-
come for 1 to 5 hours in future.

5.3.1 On-line Monitoring

Due to the limitations of real experimentation test bed, we choose to perform simulations of the
runtime components of our approach. This offers major advantages regarding cost and feasibility
versus replicating a real-world configuration.

To tackle the second requirement R2 presented in Section 4.1.3, we assume the following
conditions regarding the organization, communication and develop a basic power consumption
model of the system.

Communications in Wireless Sensor Networks

From our working example, a forest is equipped with wireless sensor network, where each node
has several sensing capabilities (e.g., temperature, humidity, smoke). Sensor nodes can com-
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Monitoring  Analyze  Predict  Plan  Execute 

Figure 5.9 – Runtime activities of our proactive approach

municate among themselves (i.e. intra-node communication) and with external data collector
devices (i.e., extra node communication) to transmit the raw data. We assume all sensors are
aware of the location of the receiver via some type of pre-configuration. However, there are
different ways of collecting the sensing data.

The simplest is direct transmission, where each sensor directly sends gathered information
to the remote receiver independently of each other [67]. This approach does not require any
communication between sensors. However, this approach has an inherent scalability problem
considering the fact that this is a many-to-one communication where the number of sensors can
be potentially huge. In addition, this also puts a limit on how far away from the sensing field the
remote collector can be since each sensor will need to be able to reach the collector [38].

A second approach is via multi-hop routing, which has been extensively studied for both
generic ad hoc routing networks as well as wireless sensor networks, e.g. [67, 86]. Such routing
protocols can be designed to realize different goals, e.g. minimize energy consumption. How-
ever, these protocols are typically evaluated assuming a random traffic pattern, and it is not clear
how they would perform under the scenario where communications are mostly all-to-one or all-
to-few (i.e., there can be a small number of collectors). Further investigation on using multi-hop
routing within this context is part of our ongoing research [38].

A third approach is clustering, where sensors form clusters dynamically with neighboring
sensors. One of the sensor in the cluster will be elected cluster head and be responsible for relay-
ing data from each sensor in the cluster to the remote receiver/collector. This approach localizes
traffic and can potentially be more scalable. In addition, the cluster heads naturally become
points where data fusion and data compression can occur considering the potential correlation
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among data from neighboring sensors [118]. In this study we assume a configuration where all
sensor nodes are connected to at least one data collector.

Power Consumption Model

The way energy models are developed greatly depends on the platform-specific implementation
of the wireless sensor networks. In addition to that, the power consumption rate for sensors
varies depending on the protocols used for communications. In this section we derive a power
consumption model for the communication subsystem of a wireless sensor network device. For
this model, the physical communication rate is constant and assumed to be b bits per second.
In addition, we initially assume that the communication bandwidth is low low enough so that
interference and transmission collisions can be easily avoided by using simple protocols without
significant power consumption penalty.

Figure 5.10 – Communication Structure (based on [122])

A wireless sensor node consists of a micro-controller, a radio transceiver, sensors and other
peripherals. It is generally assumed that the radio transceiver is the dominant energy consumer
in a wireless sensor node. Also a micro-controller is also considered as a major power con-
sumption component in a wireless sensor node. Figure 5.10 illustrates the internal structure of a
communication module found in a typical WSN node. Table 5.3 defines the power consumption
of each component.

A. Power Consumption in Receive Mode

The power consumption of the receiver mode can be modeled by

PR = PR0 (5.1)

where PR0 includes the power consumption of micro-controller, the front-end circuitry of the
receiver and the low noise amplifier (LNA).

B. Power Consumption in Transmit Mode

The power consumption of the transmitter mode is given by

PT (d) = PT 0 +PPA(d) (5.2)
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Variable name Description

PT B/PRB Power consumption in micro-controller for
transmitting or receiving (mW)

PT RF/PRRF Power consumption in front-end circuit for
transmitting or receiving (mW)

PA Power consumption of the power amplifier
(PA) for transmitting (mW)

PL Power consumption of the the low noise am-
plifier (LNA) for receiving (mW)

Ptx Radio frequency (RF) output power
η Power efficiency

PRO Power consumption of the receiver i.e., PRB +
PRRF +PL

PTO PT B +PT RF

PPA Power consumption of the power amplifier
i.e., Ptx

η

Table 5.3 – Variables in energy consumption model

where PT 0 accounts for the power consumption of the micro-controller (PT B) and the front-
end circuit of the transmitter (), and PPA denotes the power consumption of the power ampli-
fier (PA) which is a function of the transmission range, d.

The PA receives a signal at an input power and produces an amplified radio frequency (RF)
signal for transmission by the antenna. The PA is driven by a direct current (DC) input
voltage, provided for example by a battery in the transmitter, and the efficiency of the power
amplifier is given by the ratio of the output power to the DC input power [122]. Thus, the
power consumption of the PA can be written as

PPA =
Ptx

η
(5.3)

where η is the power efficiency and Ptx is the RF output power. However, the RF power
amplifiers are generally designed to provide maximum efficiency at the maximum output
service.

To explain this point, we take into consideration the parameters for a well-known com-
mercially available low-power transceiver frequently used in sensor networks such as the
CC2420 [117]. Figure 5.11 illustrates the CC2420 power consumption in terms of the trans-
mit power (Ptx). It can be seen that if the power amplifier produces an output power that
is less than the maximal output power, the efficiency of the power amplifier may be signifi-
cantly reduced. In this study we assume that the amplifier it working at its maximum output
services (e.g., when Rtx = 0.8, power consumption = 53 mW).

C. Basic Power Consumption Model
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In order to validate the power model a network model is needed. In our case we assume
a single-hop communication between the source node S and a destination, data collector
node D.

P = PRO +PTO +PPA (5.4)

where PRO is the power consumption in receiver mode, PTO is the power consumption in
transmit mode, and PPA is assumed as a constant designed to provide maximum efficiency at
the maximum output service.

Figure 5.11 – Power consumption in transmit mode (CC2420) [128]

It should be noted that this power consumption model is meant to provide a generic frame-
work for the first order validation of our proactive algorithm. This model should not be consid-
ered as platform-specific model. More detailed energy models can be built, including the lower
layers of the protocol stack (e.g., radio models, channels, package propagation). It is possible
to build such kind of models using sensor networks simulators/emulators available (e.g., Om-
Net++, MiXim, Castalia). However, such detailed representation is beyond the scope of this
study.

5.3.2 Variable Selection

The goal of this module is to analyze the current configuration of the running system. For this
reason we assume the following constraints in our fire potential monitoring system:
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• Sensing rate is a constant in the system.

• The smallest time unit in the system is 1 hour. Therefore, the time for redeploying a
reconfiguration is 1 hour;

• There are three frequency levels of transmission rates:

1. High (every hour)

2. Medium (every 8 hours)

3. Low (every 24 hours)

• A round means an iteration, it implies that the system reads its sensors and sends the data
to the data collector. Thus, we can estimate the number of data transmissions in a year
based on the previous frequencies. This values is denoted by T .

We further elaborate to be able to compare between the different configuration settings of
the system. There are four variants of the current condition in the system:

Variants Code Description

Predictive Up "U" The system runs the prediction only if chang-
ing from lower transmission rate to higher
transmission rate. This setting targets a bet-
ter accuracy strategy.

Predictive Down "D" The system runs the prediction only if chang-
ing from higher transmission rate to lower
transmission rate. This setting targets an en-
ergy saving strategy.

Predictive Standard "d" The system runs the prediction before any
triggered event. This setting combine the pre-
vious two strategies.

Interval check "i" runs prediction for all hours in the interval
t+1, t+2, . . . , t+F, so that there is a higher
chance to cancel the adaptation.

Table 5.4 – Variants in the behavior of the system

When a positive fire potential is detected by the system, we compute the number of hours
that the fire should have been reported to the base station. We call this measure “Late Fire
Hours” λi.

L =
h

∑
i=1

λi (5.5)

where h is the total of hours in the year (i.e., 8760 hours).
Each system variant described in Table 5.4 operates in a certain interval that is either constant

or varies over time, depending on the type of a system. If the interval changes, we consider it as
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an adaptation. For each system, we compute the number A as the number of adaptations in the
year.

Using the power model defined in Equation 5.4, we define the yearly power consumption
metrics as

P = PRO ∗A+PTO ∗T +PPA (5.6)

where PRO is the power consumption in receiver mode, A is the number of adaptations over
a year, PTO is the power consumption in transmit mode, T is the total number transmission
over one year and PPA is a constant designed to provide maximum efficiency at the maximum
output service. We also compute relative versions of the metrics AR, TR that are relative to
the reactive system. As mentioned in Section 2.1 Motivation scenario, we described that the
autonomic manager can be considered as a cloud-based dedicated server. For this reason the
stochastic models runs in the server and therefore there is no extra computation cost over the
nodes modeled in the power consumption equation.

5.3.3 Decision-making and Deploying Reconfigurations

The goal of the planing component is to take charge of the decision-making mechanism. This
decision making process implies a trade-off based on the length of the decision-making horizon.
The decision-making horizon is given by the units of the prediction scale. In other words, ac-
curate predictions must be available as far ahead into the future as the decision-making horizon
(e.g. middle or long term). It is important to identify the best prediction scheme like prediction
on-demand, or every certain periods of time (e.g., when the environment has changed).

In our case, we adopted the decision-making paradigm ECA rules explained earlier. Using
the temperature prediction, we have implemented the following ECA rule:

Event: An increase or decrease in temperature in all the future 7 hours.

Condition: If the temperature crosses the threshold in ascending or descending manner during
the coming 7 hours.

Action: The system will increase or decrease the sensing rate accordingly.

Let us consider the following scenario that lasts 3 time units, where we represent the system
state with a (sensing rate, temperature) tuple as follows:

1. (medium transmission rate, medium temperature)

2. (medium transmission rate, high temperature)

3. (high transmission rate, medium temperature)

4. (medium transmission rate, medium temperature)
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Figure 5.12 – Summary of the different implementations of the business rule

In the case of the reactive approach, the system triggers a reconfiguration at point 2, be-
cause the previous temperature reading moves from medium to high. However by the time the
reconfiguration has taken place the temperature has dropped back to medium level, making this
reconfiguration useless and consuming extra energy.

In the case of the predictive approach, the system does not take decisions on instantaneous
values of environmental variables, but it considers the trend and seasonal components of the
historical data, plus the forecast of the variables (e.g., 7 hours into the future), thus avoiding
this useless reconfiguration. The Figure 5.12 summarizes the different implementations of the
business rule previously introduced in Table 5.4.

5.4 Empirical Evaluation

5.4.1 A Brief Introduction to the Goal/Question/Metric (GQM) Paradigm

The Goal/Question/Metric (GQM) paradigm is a mechanism for defining and evaluating a set
of operational goals, using measurement. It represents a systematic approach for tailoring and
integrating goals with models of the software processes, products, and quality perspectives of
interest [11]. In other words, the GQM supports a top-down approach to define the goals behind
the model with measures of software processes and products. Assigning these goals to questions
helps to decide precisely what to measure (choosing metrics). More precisely, the three main
components of the GQM approach are:

Goal: The goal represents the conceptual level and is defined for an object, for a variety of
reasons, with respect to various models of quality, from various points of view, relative to
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a particular environment.

Question: The questions represent the operational level. A set of questions is used to char-
acterize the way the assessment/achievement of a specific goal is going to be performed
based on some characterizing model. Questions try to characterize the object of measure-
ment with respect to a selected quality issue and to determine its quality from the selected
viewpoint.

Metric: Represents the quantitative level, which is a set of data associated with every question
in order to answer it in a quantitative way. The data can be: (1) objective, if they depend
only on the object that is being measured and not on the viewpoint from which they are
taken; or (2) subjective, if they depend on both the object that is being measured and the
viewpoint from which they are taken.

We performed an experimental study on the fire monitoring scenario to validate our ap-
proach. We defined the experimental design of our study using the GQM method described
above. Our goal can be defined as following:

Purpose: Improve

Issue: the global effectiveness and reconfigurations

Object: the wireless sensor network

Context: proactive self-adaptive software system

To fulfill this goal, we will focus on answering the three following research questions:

RQ1: Does a proactive adaptation approach trigger less reconfigurations than a reactive ap-
proach under seasonal behavior conditions?

RQ2: Does a proactive adaptation approach improve power consumption compared with a
reactive adaptation approach?

RQ3: Does a proactive adaptation approach reduce the delay in transmitting fire alerts in com-
parison with a reactive approach?

5.4.2 Empirical Evaluation of Proactive vs. Reactive Strategies

In general, there are three approaches to asses the quality of a solution: modeling, simulation and
physical evaluation. However, utilization of real sensor networks limits the scale of experiments
and makes the reproduction of results an extremely difficult task that involves real-time feedback
from a safety critical system. For that reason, in this study we performed validation by modeling
and simulating the system based on real data collected from public organizations such as the
USDA Forest Service4 and the National Climatic Data Center (NCDC)5.

4http://www.fs.fed.us/
5http://www.ncdc.noaa.gov/
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In our case, the environment is composed entirely of computer models, with which human
interaction is reduced to a minimum. This offers major advantages regarding cost and feasibility
of replicating a real-world configurations. The simulations were carried out on a MacBookPro
with four-core, hyper-threaded i7, SSD, 16GB of DDR3 memory.

To evaluate the previous research questions we consider the following systems:

• Reactive system. This is our first baseline system that adapts its transmission rate based
on the current temperature.

• Predictive systems. This system operates similarly to the reactive system. However, before
each adaptation it uses a classifier to predict fire potential at time t +F (t is current time,
F is the number of hours in future). The adaptation is canceled whenever

FirePotential(t−1) = FirePotential(t+F) (5.7)

Figure 5.13 illustrates an extract of the evaluation workflow developed in KNIME and it can
be found in the Git repository6 (i.e., 07 - Simulate Systems).

During this workflow the historical data of fire reports, together with the conditions of the
local area prior to the fire outbreak are connected to actual weather conditions in the simulation
of the running example. Only fires around Mississippi are taken into account (using a geocoor-
dinate filter) to speed up the filter joining. Next, for each station separately we enrich its hourly
table with the following variables:

• Number of fire reports per hour (i.e., fire count) by joining the fires with the stations using
geo-location (CFG_FIRE_RADIUS = 50km). In other words, all the fires reported within
a radius of 50 km form the weather station.

• We calculate the predictions of fire potential using a Multilayer Perceptron (MLP) model.
This model predicts 7 hours into the future. By shifting this new time series we get
predictions for +6, +5, +4, +3, +2, +1 hours. The decision of using a MLP model
has been explained in Section 5.2.4.

• The model is trained on MERIDIAN NAS weather station and simulates predictions for
all other stations,

• the simulated predictions are stored in columns "FP+1", "FP+2",... "FP+7".

Figure 5.14 describes the fire potential output table. This table serves as input for the sim-
ulation of the Simple, Reactive and Predictive systems. Listing 5.1 shows the Java code for
the Predictive system. The Predictive system changes its sending period based on the current
fire potential at time ”t”, however, only if the predicted FirePotential(t+Nhours) differs from the
FirePotential(t−1hour). This way, it avoids spikes, which reduces the number of required adapta-
tions.

6https://github.com/IvanPaez/proactive-example
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Figure 5.13 – Evaluation of Fire Potential Classification

Figure 5.14 – Fire potential output table
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1 package proact.eval.knime;

2

3 public class PredictiveSystem extends AbstractSystem {

4

5 private int hoursInFuture;

6 private boolean checkWholeInterval = false;

7 private boolean speedupWithoutPrediction = false;

8 private boolean slowdownWithoutPrediction = false;

9

10 public void setHoursInFuture(final int hoursInFuture) {

11 this.hoursInFuture = hoursInFuture;

12 }

13

14 public void setCheckWholeInterval(boolean checkWholeInterval)

{

15 this.checkWholeInterval = checkWholeInterval;

16 }

17

18 public void setSlowdownWithoutPrediction(boolean

slowdownWithoutPrediction) {

19 this.slowdownWithoutPrediction = slowdownWithoutPrediction;

20 }

21

22 public void setSpeedupWithoutPrediction(boolean

speedupWithoutPrediction) {

23 this.speedupWithoutPrediction = speedupWithoutPrediction;

24 }

25

26 @Override

27 protected boolean isPeriodChangeAllowed(final int

proposedPeriodSize) {

28

29 // speedup

30 if( getPeriodSize() > proposedPeriodSize &&

speedupWithoutPrediction )

31 return true;

32

33 // slowdown

34 if( getPeriodSize() < proposedPeriodSize &&

slowdownWithoutPrediction )

35 return true;

36
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37 if(in_lastHourFP == null)

38 return true;

39

40 if(checkWholeInterval) {

41 for(int i = 0; i < hoursInFuture - 1; ++i) {

42 if(pastSameAsFuture(i))

43 return false;

44 }

45 }

46

47 return ! pastSameAsFuture(hoursInFuture - 1);

48 }

49

50 private boolean pastSameAsFuture(final int idx) {

51 return in_lastHourFP.equals( in_predictedFP[ idx ] );

52 }

Listing 5.1 – Listing of PredictiveSystem.java

5.4.3 Evaluation in Terms of Number of Reconfigurations

In the first analysis, we evaluated the different variants of the system, base-model, reactive and
proactive strategies presented in Table 5.4, comparing them in terms of the number of trig-
gered reconfigurations. Figure 5.15 expands the Predictive systems meta-node presented in Fig-
ure 5.14. In this workflow we can clearly identify the default (d), slowing-down (D), speeding-up
(U) and interval check (i) variants of the system behavior.

This first analysis addressed the following research question (RQ1): Does a proactive adap-
tation approach trigger less reconfigurations than a reactive approach under seasonal behavior
conditions?

From this result, we can observe that all 28 systems based on proactive adaptations are
achieving a smaller number of reconfigurations than a pure reactive system. We are able to save
up to 20% of the number of reconfigurations of the system with the Predictive(1) system. These
results highlight that using predictive information can help to reduce the number of reconfig-
urations of a system. Figures 5.16 show the number of reconfigurations for each self-adaptive
system.

5.4.4 Evaluation in Terms of System Lifetime

In the second analysis, we evaluated the different variants of the system, base-model, reactive
and proactive strategies presented in Table 5.4, comparing them in terms of the system’s life
time using the power consumption model previously defined in Equation 5.6

This second analysis addressed the second research question (RQ2): Does a proactive adap-
tation approach improves power consumption compared with a reactive strategy? As evaluation
results we use as input the previously generated power consumptions model from Section 5.3.1.
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Figure 5.15 – Implementation of the Predictive systems

Figure 5.16 – Number of needed reconfigurations relative to the reactive system
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Figure 5.17 shows the total power consumption for each type of a systems. We use this metric to
quantify the lifetime of the system as the lifetime is directly correlated to the power consumption
model.

For this metric, all the Predictive systems reduced the power consumption with respect to
Reactive system. The lowest power consumption has been measured in the Predictive(*)D (i.e.,
slowing-down) and Predictive(*)Di (i.e., interval check) group. In other words, when choosing
an adequate adaptation strategy, these results show that using prediction information allows for
an increase in system lifetime.

Figure 5.17 – Power consumption relative to the reactive system

5.4.5 Evaluation in Terms of Late Fire Report

In the third analysis we evaluated the different variants of the system, base-model, reactive and
proactive strategies presented in Table 5.4, comparing them in terms of the hours taken for the
system to reports a potential fire situation which we denominated late fire report.

This analysis deals with the third research question (RQ3): Does a proactive adaptation
approach reduce the delay in transmitting fire alert in comparison to a reactive approach?

Figure 5.18 presents the delay introduced in reporting fire alerts for each self-adaptive sys-
tem. On these results, we can observe that the Predictive(*)Di (i.e., interval check) techniques
are exhibiting larger delays than the other approaches. This is due to the fact that this proactive
adaptation strategy tends to slow down the adaptation process.

From these results, we can observe that most of the predictive techniques show fire detection
delays similar to the reactive approach technique. This result is valuable since proactive tech-
niques such as Predictive(3)U (i.e., speeding-up) were able to decrease the number of system
reconfigurations, while providing a smaller delay for detecting fire.
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Figure 5.18 – Number of hours when a fire detected by the node was waiting for transmission to
the data collector. The number is relative to the reactive system

5.5 Discussion

This chapter covers the third objective of this thesis by explaining the implementation details of
our proactive adaptation approach. In our work we have demonstrated and explained the design
decisions we took, other considered alternatives were described and we justified our decisions.

Firstly, we analyze the number of reconfigurations based on an ECA rule that decides
whether to trigger or not a new reconfiguration according to the predictive horizon that it is
available. In a reactive adaptation strategy, the predictive horizon is one unit of time, which
represents the current state. For the proactive strategy, we design, train, test and validate differ-
ent predictive models and we selected the best scoring according to well established measures
of model goodness. The Figure 5.19 presents a summary of the encountered results organized
according the request question: number of triggered adaptations, energy power consumption
and delay in transmitting a fire alert. These characteristics are compared versus the different
adaptation strategies, namely: reactive, predictive standard, predictive up, predictive down and
predictive interval.

Secondly,we evaluate the impact of implementing a reactive strategy vs. a proactive one
in the context of the motivation scenario. We used historical weather conditions and fire re-
ports based on realistic data extracted from publicly recognized organizations. These data was
correlated in time and geographical location, which allowed us to model realistic scenarios.

Thirdly, we demonstrated through a series of experiments the different advantages and limi-
tations of the reactive and proactive strategies. The validation of our approach on the fire mon-
itoring case study have shown interesting results that confirm the idea that proactive adaptation



CHAPTER 5. IMPLEMENTATION AND EVALUATION 111

based on predictive analysis is a promising research direction.
It is important to highlight that there is no single strategy that have a better performance

regarding all the characteristics. For example, the strategy Predictive standard performed bet-
ter regarding the number of reconfigurations. In second place, the Prediction interval strategy
performed better regarding the energy consumption characteristic. Last, the reactive strategy
together with the predictive up, both presented the minimum time delay to report a critical con-
dition in the systems.

Figure 5.19 – Summary of the different results for the different adaptation strategies

5.5.1 Limitations and Threats to Validity

Indeed, the benefits of predictive analysis combined with proactive adaptation techniques out-
weights its overhead when compared with a purely reactive approach. However, there exist some
limitations and our approach can be improved in several ways. Drawing general conclusions
from empirical studies in software engineering is difficult because any process depends on a
potentially large number of relevant context variables that are particular for each domain and
there remain threats to validity and generalization [11, 12].

• Internal validity relates to the extent to which the design and analysis of the study might
have been compromised by the existence of confounding variables and other unexpected
sources of bias [80]. Some factors that could affect the characteristics of our design are:
selection bias in the variable of study, confounding variables (e.g., an extra factor that
affects the relationship between the independent variable and dependent variable), the
measurement process changed or the testing process changed.

In our case study, as a matter of fact, we considered historical data from fire reports and
weather stations sensor readings. This data was then correlated in space and time to gener-
ate the positive occurrences of fire. A possible limitation is that we focused on predicting
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temperature readings. Other variables such as type of soil and vegetation were not con-
sidered into this analysis.

• External validity relates to the extent to which the hypotheses capture the objectives of the
research and the extent to which any conclusions can be generalized [80].

Our proposed approach is not restricted to the case study we have chosen to evaluate and
can be applied to a wide range of domain areas. Preconditions for applying our approach
are directly related to the amount of historical data (e.g., time series) available at the
design phase, because this will hinder the predictive modeling process. We argue that
other application domains are those who have well defined input parameters that can be
represented on as mathematical functions (e.g., bandwidth demand forecast).
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Chapter 6

Conclusions and Perspectives

6.1 Conclusions

This thesis presented a proactive self-adaptation approach based on predictive analysis for self-
adaptive pervasive systems [98]. Following an stepwise process, this approach leverages the
advantages of predictive analysis both at design-time and at runtime to support the dynamic
decision-making of self-adaptive pervasive systems. We evaluated our approach in a realistic
scenario for environmental monitoring.

More in particular, we used predictive analysis machine learning techniques into the MAPE-
K autonomic control loop to enable proactive adaptation in self-adaptive pervasive systems.
Predictive analysis (PA) leverages on extracting information from existing data sets in order to
determine patterns, predict future outcomes and trends. It is important to remark that PA does
not tell what will happen in the future. It forecasts what might happens in the future with an
acceptable level of reliability. This allows engineers and designers to include what-if scenarios
and do risk assessment for such scenarios [112].

Regarding the integration of predictive analysis in software engineering, in the past there has
been great interest in modeling and predicting software costs as part of project planning [19], or
to predict the number of faults to be encountered in a new software version [54]. However, these
activities were performed mostly at the early stages of the software life-cycle. In this thesis we
developed a proactive approach to dynamic adaptation at runtime.

The benefits of combining predictive analysis with self-adaptive approach can be summa-
rized as follows:

• avoiding unnecessary adaptation and oscillatory behavior,

• managing allocation of exhaustible resources, and

• being proactive to take seasonal behavior into account.

Let us continue by positioning our contributions regarding the objectives presented in the
Introduction Chapter (Section 1.3).
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O1: Explore proactive adaptation approaches that leverage on existing context and envi-

ronment streams of data in order to anticipate erroneous behavior of the system by

predicting conflicting situations.

In Chapter 3, Section 3.2 we explored the state-of-the-art related to different proactive
adaptation approaches. We took a broad range of approaches coming from multidisci-
plinary areas such as software engineering, artificial intelligence and control theory/engi-
neering. Within these areas we had a closer look at architecture-based self-adaptation,
extended model-based self-adaptation, reinforcement learning adaptation, adaptive con-
trol and reconfiguration control techniques.

O2: Study the activeness (e.g., reactive vs. proactive) of self-adaptive systems, analyze

the potentials and limitations of system’s parameters predictability, and investigate

solutions to deal with parameters’ future value uncertainty.

In Chapter 4, we presented a comparison analysis of both adaptation strategies (i.e., reac-
tive, proactive), including their benefits and challenges in three different scenarios.

O3: Develop a methodological framework of predictive modeling using machine learn-

ing techniques to enhance the effectiveness of proactive adaptation in self-adaptive

software systems.

In Chapter 4, Section 4.1 we developed a method for integrating predictive analysis into
the autonomic control loop of self-adaptive systems. We defined a stepwise predictive
modeling process, which can be implemented at design time. We also pointed out the
integration points with the running system at runtime. In Chapter 5, Section 5.4 we devel-
oped an empirical evaluation of our approach and identified the most effective predictive
strategies regarding different concerns.

As we mentioned in the previous Evaluation Chapter Section 5.5. It is important to high-
light that there is no single predictive strategy that has a better performance for all the evaluated
characteristics. In other words there is no silver bullet. For example, the strategy Predictive
standard performed better regarding the number of reconfigurations. In second place, the Pre-
diction interval strategy performed better regarding the energy consumption characteristic. Last,
the reactive strategy together with the predictive up, both presented the minimum time delay to
report a critical condition in the systems.

Therefore, the concept of trade off is key to evaluate the impact of implementing a proactive
strategy complementary to a reactive one. However, in the context of environmental monitoring,
like the one of our motivation scenario, proactiveness it is a requirement due to the fact of the
penalty cost of not anticipating a significant fire condition.

The approach presented in this thesis is effectively supported by predictive workflow devel-
oped in data analysis tools (i.e. KNIME) in the context of the ITN RELATE Project. These
workflows are open to the public in a GIT repository 1. The use of standard predictive models,
such as PMML, and preliminary feedback from participants of the RELATE project indicate that
our approach can be used in an industrial context.

1https://github.com/IvanPaez/proactive-example
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6.2 Lessons Learned

In this subsection we critically reflect on the entire thesis. We also discuss the design decisions
we made while developing our approach. We describe alternatives that we considered, compare
our decisions with the alternatives, and justify our decisions. We describe the lessons learned
through out the developing of our approach.

Model of preference. In our work we use Multi-layer perceptron (see Section 5.2.4) with
the following settings: (0..1) normalization, 3 layers, maximum 30 neurons/layer, and up to 300
iterations. This model was used for classification of the significant fire potential conditions.

One alternative is the approach proposed by Herbst et al. [68]. The authors propose an
approach that selects suitable forecasting methods for a given context, based on a decision tree.
As input, the user needs to provide his general forecasting objectives. For building their proactive
mechanism the authors rely on a sophisticated spectrum of forecasting methods based on time
series analysis, and demonstrated that the ensembles of these methods achieved higher accuracy
than individual forecasting methods. Even though we share the notion of prediction models, in
our work we consider applying not only forecasting techniques for times series analysis, but also
classification, regression and clustering to a wider extent of data types.

Workflow versus code-based developing environment. In our work we used a workflow-based
developing environment (see Section 4.2.2). As the underlying platform for the implementation
of our approach we used KNIME2, which is a graphical open source analytic tool that enable us
to model the workflow of our approach. There are two reasons for choosing KNIME. Firstly, it
helped us move from code-based data mining towards workflow-based analytics, which makes it
easier to understand and explain predictive process to non data scientist people. Secondly, KN-
IME workflows are reusable because the workflows can be saved in an Eclipse like workspace
and are easy to maintain. Moreover, KNIME has more than a thousand independently developed
plugging (e.g., nodes) , which is an evidence of its great support by the research community
working behind this idea.

Comparing proactive versus reactive strategies. In our work we evaluated a basic reactive
strategy versus a set of four different predictive strategies designed for different objectives (see
Section 5.3.3). However, before we compare them, let us discuss the differences of the two
configuration strategies. The strategies differ in two respects: (1) the input information that
is used to make reconfiguration decisions and (2) the length of the decision-making horizon.
The proactive strategies requires predictive inputs and must be available at least as far ahead
into the future as the decision making-horizon. Conversely, prediction beyond the decision-
making horizon are not needed, because they are irrelevant for the configuration decisions. So
both strategies can be distinguished from each other using the parameter of the length of the
decision-making horizon.

In our work, we measure the length of the decision-making horizon in units of prediction
scale (e.g. 1 hour). The reactive strategy has a decision horizon of one unit of time, while the
predictive strategies have an horizon of multiple units, more specifically seven hours into the
future as we mentioned in Section 5.3.3. These forward looking input parameters are necessary
to make a single decision, while the reactive approach only looks at the present time unit. As

2http://www.knime.org/
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we mentioned, predictions of future events contain uncertainty. The two strategies also differ
in the way they treat uncertainty. The reactive strategy simply ignores such uncertainty by
waiting until the future uncertainty has resolved, and then reacting. The proactive strategies
leverages quantified uncertainty of future events and plans its decision based on predictions. In
this manner, the proactive strategy handles uncertainty instead of ignoring it.

There are many possible traps and difficulties in building and implementing a predictive-
based self-adaptation approach. Just to mention a few regarding the modeling steps of the
predictive process: (1) lack of clarity around the problem definition, or problem defined too
narrowly, (2) gathering data too old or otherwise irrelevant to the broader goal being targeted,
(3) using a too complex model to represent a simple problem, the modeling methodology should
be appropriate to the nature of the data, (4) not cleaning the data, not identifying outliers, or
inefficient encoding of categorical variables, (5) going deep on a single specialized predictive
algorithm rather than evaluating and comparing a broad spectrum of methods, finally (6) not
monitoring model ongoing performance, inputs, outputs, and predictive power.

In order to avoid the previously mentioned pitfalls, there is a need to follow a methodological
process. Typically, good modelers can come from the area of data analysis or computer sciences
for the characteristics of their background. However, there is a wide range of other scientific
disciplines including mathematics, statistics, engineering and physics, that have the essential
baseline skills and trained ability to identify the nature of problems. In concrete, there are
two main characteristics required for someone who wants to build and implement proactive
adaptations: (1) curiosity and passion for data. Data is at the foundation of all our models and
everything we do. It is required to understand where the data came from, what will it be used for,
the quality, the robustness and stability of data, (2) technical competence in math and statistics
and good programming skills. Although there are commercial software that already implements
predictive analytics, there is a need for an in-depth understanding of the possible techniques and
possible modifications of existing algorithms.

6.3 Perspectives

In this thesis we have considered a proactive approach that integrates predictive analysis into the
autonomic control loop. However, our approach can be improved in several ways and can be
applied to other possible scenarios. This section also outlines new directions for future research
work.

6.3.1 Improving our approach

A crucial characteristic of the predictive modeling concept is that it is performed at design time
by data analysts. In our approach the dynamic adjustment are carried out as parametric adap-
tations. We believe that we can use the same knowledge in a model-driven approach to guide
structural adaptations. The main idea for improvement is to reflect the changes in models at
runtime on the systems architecture [52]. These structural adaptations can be deplyoed in the
running system using models@runtime tools like Kevoree [51].
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Figure 6.1 – A Traffic Management System (TMS) with proactive adaptation

A possible limitation of our approach that can be considered is the decision-making mech-
anism. In our case, we adopted a decision-making paradigm based on ECA rules, using the
temperature as the main input parameter. As explained earlier, each individual rule is quite easy
to specify, understand and implement: it can be seen as if-then constructs. However, to fully
specify an adaptive system using ECA rules often requires to define numerous rules [47]. More
over, one specific context can trigger several rules that can be conflicting at the same time. It is
thus required to define additional constraints, priorities and exclusion rules to properly manage
the set of ECA rules. A possible option to handle uncertainty is to use fuzzy logic, which deals
with approximate values, rather than fixed and exact reasoning. Recently, there are works in
extending UML for the modeling of fuzzy self-adaptive software systems [65].

Other possible improvement is to extend our approach towards self-organizing systems. The
self-organizing property is bottom-up in contrast to self-adaptiveness, which is typically top-
down [109]. Self-organization emphasizes decentralization and emergent functionalities on the
interacting elements that are unaware of or have partial knowledge about the global system. In
our case, we considered a centralized approach, where the computation is carried out in the
proactive autonomic manager component and the predictions are consumed by the managed
elements.

6.3.2 Other possible application scenarios

While this thesis has demonstrated the potential of predictive analysis in dynamic environmen-
tal monitoring, many opportunities for extending the scope of this thesis remain. This section
presents some of these directions.

Cyber Physical Systems Other possible application scenarios include Cyber Physical Sys-
tems (CPS). As an example, let us consider the following traffic navigation scenario. Vehicles



118 CHAPTER 6. CONCLUSIONS AND PERSPECTIVES

Figure 6.2 – A trajectory selection mechanism based predictive analysis

moving in a city communicate with a Traffic Management System (TMS) to obtain an optimal
route to their destinations. TMS is a cloud-based dedicated service that decides on the route for
each vehicle, taking into account the following vehicle-related parameters: (i) position, (ii) des-
tination, and (iii) driver’s preferences expressed as a cost function of journey time, journey
distance, and safety. Figure 6.1 illustrates the previously described scenario.

A vehicle can follow different routes to reach its destination B from its current position A.
Each route is a sequence of road segments. Each road segment has an associated cost that is
calculated as a function of the route-relevant parameters and constraints, which correspond to
the data layers (e.g. precipitation, traffic, speed limits). Then, routing is the process of choosing
the route among the possible ones that maximizes the driver’s preferences (e.g., journey time,
journey distance, safety), represented as a utility vector.

The key idea is that the layers of information contain a projection of location-dependent
data into the future, as provided by the analysis and prediction phases. For example, traffic
level along a road segment is calculated not by the current level, but on the prediction of the
traffic level when the vehicle is expected to reach the segment, see Figure 6.2. This allows, for
instance, to penalize certain road segments that are known to become too busy at a certain time
of the day.

Elastic Distributed Data Centers In this thesis we have proposed a prediction-based ap-
proach for anticipating critical conditions. Elastic distributed data centers are complex systems
with a variety of operations and analytics taking place around the clock. Multiple teams need
access at the same time, which requires coordination. In order to optimize resource use and
manage workloads, system administrators monitor a huge number of parameters with frequent
measurements for a fine-grained view. For example, data on CPU usage, memory residency,
I/O activity, levels of disk storage, and many other parameters are all useful to collect as time
series [39].

The utilization of our approach can contribute to prediction mechanisms that forecast the
number of I/O operations, how they affect the systems performance and how to take advantage
of it. Once these datasets are recorded as time series, data center operations teams can recon-
struct the circumstances that lead to outages, plan upgrades by looking at trends, or even detect
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many kinds of security intrusion by noticing changes in the volume and patterns of data transfer
between servers and the outside world [39].

6.4 Publications and Dissemination Activities

Publications

• Ivan Paez Anaya. Integrating Predictive Analysis with Self-Adaptive Systems. Report of
the GI-Dagstuhl Seminar 14433: Software Engineering for Self-Adaptive Systems. Oct
19-24. 2014.

• Paez Anaya I., Simko V., Bourcier J., Plouzeau N. and Jézéquel J.-M.: A prediction-
driven adaptation approach for self-adaptive sensor networks. In Proceedings of 9th Inter-
national Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS’14), Hyderabad, India, May 31, 2014.

• Hamadache K., Zerva P., Polyviou A., Simko V., Dautov R,. Gonidis F., Paez Anaya
I.: Cost in the Cloud Rationalisation and Research Trails. In Proceedings of the 2nd
International Conference on Advanced Cloud and Big Data (CBD 2014), November 20-
22, Huangshan, Anhui, China, 2014

Research Internships

• FZI Forschungszentrum Informatik research center in Karlsruhe, Germany, under the su-
pervision of Dr. Ing. Klaus Krogmann, from September to November 2013.

Presentations

Table 6.1 shows the most representatives presentations and talks regarding the integration of pre-
dictive analysis in self-adaptive pervasive systems that I had the opportunity to conduct during
my doctorate.

Date Topic Place

20.10.2014 Integrating Predictive analy-
sis in self-adaptive systems

Software Engineering for Self-Adaptive Sys-
tems, Dagstuhl Seminar, Germany

03.06.2014 Prediction-driven approach
for self-adaptive systems

SEAMS’14- Hyderabad, India

06.11.2013 Proactive adaptation ap-
proach for pervasive dis-
tributed systems

KIT Doctoral round - Computer Sciences De-
partment, Karlsruhe, Germany

Table 6.1 – Presentations and Talks
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Appendix A

Implementation Details

A.1 Time Series Analysis Background

In this section, we present a light introduction to the time series theory and the classical de-
composition approach. This will serve as a motivation and starting point for defining resource
predictor types and operations among them.

In time series analysis, we consider a discrete time model. Let t denote an integer time. A
time series is an infinite vector of values indexed by time. We denote time series like this: Yt , Xt ,
etc. The classical decomposition breaks up time series Yt into three components as follows:

Yt = mt + st +Xt (A.1)

where Yt is the original time series, mt is the trend component, st is the known pattern com-
ponent (called a seasonal component in time series literature), Xt is the remainder, a stationary
series.

The trend component captures a steady change, typically an increase, in the series. The trend
can be linear, quadratic, exponential, etc. The known pattern component captures periodic pat-
terns in the series, e.g. increases and decreases that repeat reliably over a defined period of time.
There may be multiple known pattern components, e.g. hourly, daily, weekly, or monthly. When
multiple season components are present, the decomposition formula above will have additional
terms.

In the time series analysis using the classical decomposition approach, once the trend and
known pattern components are removed, the remaining time series will be stationary, a technical
term that guarantees the series has certain properties. A stationary time series can be analyzed
using a model that captures serial correlation in the series. Serial correlation, or autocorrelation,
is the relationship between he adjacent values of a time series. The objective of this analysis
would be to determine a model (model selection) that does a good job of predicting future values
based on past observations and solving for the best-fit parameters (parameter inference) of the
model.

A historical trace of the series Yt is first analyzed to determine trend and known pattern
components. Then these are removed to obtain a stationary series, Xt . Model selection and
parameter estimation is done using Xt .
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A.2 MODIS Active Fire Detections for CONUS (2010)

Abstract:

This coverage represents year 2010 MODIS fire detections for the geographic area covering
the continental United States including a 50km buffer around the periphery. The detections are
obtained using both TERRA MODIS and AQUA MODIS data are collected and processed as
a cooperative effort between the USDA Forest Service Remote Sensing Applications Center,
NASA-Goddard Space Flight Center and the University of Maryland [49].

Purpose:

These fire detection data are collected for the USDA Forest Service MODIS Active Fire Mapping
Program (http://activefiremaps.fs.fed.us). These data are intended to provide a synoptic view of
active fires for the past and present over the specified time period. These data are collected at
a spatial resolution of 1 kilometer and therefore are only intended for geographic display and
analysis at the national and regional levels. No responsibility is assumed by the USDA Forest
Service in the use of these data [49]. Figure A.1 illustrates an image of an actual fire taken by
the MODIS satellite. Table A.1 describe the data type of the data points of a fire report.

Figure A.1 – An actual fire satellite image taken by MODIS near RODEO LANDSAT

Label Definition

FID Internal feature number.
Shape Feature geometry
AREA Area of feature in internal units squared.
PERIMETER Perimeter of feature in internal units
LAT Latitude of fire detection.
LONG Longitude of fire detection
DATE Date of fire detection.
JULIAN Julian date of fire detection
GMT Time of fire detection.
TEMP Measured brightness temperature
SRC Station source of MODIS data and detection

Table A.1 – MODIS fire detections metadata [49]
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A.3 ISH/ISD Weather Stations in MS, USA

Table A.2 contains the ISH/ISD weather stations in the Mississippi state of the USA. In total we
collected data from 20 ISH/ISD weather stations from Mississippi, USA.

Code Station Name Latitude Longitude Elevation

722354 HAWKINS FIELD AIRPORT 32.337 -90.221 104.2
722350 JACKSON INTERNATIONAL AIRPORT 32.320 -90.078 100.6
999999 NEWTON 5 ENE 32.338 -89.07 114.0
747688 TRENT LOTT INTL AIRPORT 30.463 -88.532 5.5
998219 BAY WAVELAND YACHT CLUB 30.317 -89.317 5.0
722358 Mc COM/PIKE CO/J E LWS FD AP 31.183 -90.471 125.9
723306 COLUMBUS AFB AIRPORT 33.650 -88.45 66.8
722340 MERIDIAN/KEY FIELD AIRPORT 32.335 -88.744 89.6
747686 KEESLER AIR FORCE BASE 30.417 -88.917 10.1
999999 HOLLY SPRINGS 4 N 34.822 -89.435 147.5
722357 HARDY-ANRES FD NATCHEZ-ADAMS

COUNTY AIRPORT
31.617 -91.283 82.9

998234 WEST PIER GULFPORT 30.350 -89.083 7.0
998271 PETITS BOIS ISLAND 30.350 -88.417 5.0
998239 RANGE A REAR PASCAGOULA 30.333 -88.517 5.0
723320 TUPELO REGIONAL AIRPORT 34.262 -88.771 110.0
722345 MERIDIAN NAS/Mc CAIN FD AP 32.549 -88.566 82.6
998233 GULFPORT OUTER RANGE 30.233 -88.983 13.0
722348 HATTIESBURG-LAUREL RGNL AP 31.467 -89.333 89.3

Table A.2 – ISD/ISH Weather Stations with in 50 km radius range from fire detections in Mis-
sissippi State USA
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A.4 PMML: Predictive Model Markup Language

1 <?xml version="1.0"?>

2 <PMML version="4.1" xmlns="http://www.dmg.org/PMML -4_1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema -instance"

xsi:schemaLocation="http://www.dmg.org/PMML -4_1 http://www.

dmg.org/v4 -1/pmml -4-1.xsd">

3 <Header copyright="Copyright (c) 2013 www.inria.fr"

description="A binary tree model of significant wildland

fire potential.">

4 <Extension name="user" value="ipaezana" extender="

TreeModel/PMML"/>

5 <Application name="TreeModel/PMML" version="1.3"/>

6 <Timestamp>2013-11-05 10:00:15</Timestamp>

7 </Header>

8 <DataDictionary numberOfFields="5">

9

10 <DataField name="temperature" optype="continuous">

11 <Interval closure="openOpen" leftMargin="-20" rightMargin

="120" />

12 </DataField>

13

14 <DataField name="humidity" optype="continuous">

15 <Interval closure="closedClosed" leftMargin="0"

rightMargin="100" />

16 </DataField>

17

18 <DataField name="windy" optype="categorical">

19 <Value value="true" />

20 <Value value="false" />

21 </DataField>

22

23 <DataField name="outlook" optype="categorical" >

24 <Value value="sunny" />

25 <Value value="cloudy "/>

26 <Value value="rain" />

27 </DataField>

28

29 <DataField name="outcome" optype="ordinal">

30 <Value value="above -normal" />

31 <Value value="normal" />

32 <Value value="below -normal" />

33 </DataField>
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34

35 </DataDictionary>

36

37 <TreeModel modelName="firePotential">

38

39 <MiningSchema>

40 <MiningField name="temperature" />

41 <MiningField name="humidity" />

42 <MiningField name="windy" />

43 <MiningField name="outlook" />

44 <MiningField name="outcome" usageType="predicted" />

45 </MiningSchema>

46

47 <Node score="normal">

48 <True/>

49

50 <Node score="normal">

51 <Predicate field="outlook" operator="equal" value="sunny"/>

52

53 <Node score="normal">

54

55 <CompoundPredicate booleanOperator="and">

56 <Predicate field="temperature" operator="lessThan"

value="90" />

57 <Predicate field="temperature" operator="greaterThan"

value="50" />

58 </CompoundPredicate>

59

60 <Node score="above -normal">

61 <CompoundPredicate booleanOperator="and">

62 <Predicate field="humidity" operator="lessThan" value

="30" />

63 <Predicate field="windy" operator="equal" value="true

" />

64 </CompoundPredicate>

65 </Node>

66

67 <Node score="normal">

68 <CompoundPredicate booleanOperator="and">

69 <Predicate field="humidity" operator="greaterOrEqual"

value="30" />

70 <Predicate field="windy" operator="equal" value="

false" />
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71 </CompoundPredicate>

72 </Node>

73

74 </Node>

75

76 <Node score="normal">

77

78 <CompoundPredicate booleanOperator="or">

79 <Predicate field="temperature" operator="greaterOrEqual

" value="90"/>

80 <Predicate field="temperature" operator="lessOrEqual"

value="50" />

81 </CompoundPredicate>

82

83 <Node score="above -normal">

84 <CompoundPredicate booleanOperator="and">

85 <Predicate field="temperature" operator="

greaterOrEqual" value="90" />

86 <Predicate field="humidity" operator="lessThan" value

="30" />

87 <Predicate field="windy" operator="equal" value="true

" />

88 </CompoundPredicate>

89 </Node>

90

91 <Node score="below -normal">

92 <CompoundPredicate booleanOperator="and">

93 <Predicate field="temperature" operator="lessOrEqual"

value="50" />

94 <Predicate field="humidity" operator="greaterOrEqual"

value="30" />

95 <Predicate field="windy" operator="equal" value="

false" />

96 </CompoundPredicate>

97 </Node>

98 </Node>

99 </Node>

100

101 <Node score="normal">

102 <CompoundPredicate booleanOperator="or">

103 <Predicate field="outlook" operator="equal" value="

overcast" />
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104 <Predicate field="outlook" operator="equal" value="rain"

/>

105 </CompoundPredicate>

106

107 <Node score="normal">

108

109 <CompoundPredicate booleanOperator="and">

110 <Predicate field="temperature" operator="greaterThan"

value="50" />

111 <Predicate field="temperature" operator="lessThan"

value="90" />

112 <Predicate field="outlook" operator="equal" value="

overcast" />

113 <Predicate field="humidity" operator="greaterThan"

value="30" />

114 <Predicate field="windy" operator="equal" value="false"

/>

115 </CompoundPredicate>

116 </Node>

117

118 <Node score="below -normal">

119 <CompoundPredicate booleanOperator="and">

120 <Predicate field="outlook" operator="equal" value="rain

" />

121 <Predicate field="humidity" operator="greaterThan"

value="70" />

122 </CompoundPredicate>

123 </Node>

124

125 </Node>

126

127 </Node>

128 </TreeModel>

129 </PMML>

Listing A.1 – Example PMML TreeModel



128 APPENDIX A. IMPLEMENTATION DETAILS

A.5 Fit best ARIMA model to univariate time series

Description Returns best ARIMA model according to either AIC, AICc or BIC value. The
function conducts a search over possible model within the order constraints provided [72]. The
following listing A.2 describe in detail its use with the R language.

Usage

1 auto.arima(x, d=NA, D=NA, max.p=5, max.q=5,

2 max.P=2, max.Q=2, max.order=5, max.d=2, max.D=1,

3 start.p=2, start.q=2, start.P=1, start.Q=1,

4 stationary=FALSE , seasonal=TRUE ,

5 ic=c("aicc","aic", "bic"), stepwise=TRUE , trace=FALSE ,

6 approximation=(length(x) >100 | frequency(x) >12), xreg=NULL

,

7 test=c("kpss","adf","pp"), seasonal.test=c("ocsb","ch"),

8 allowdrift=TRUE , lambda=NULL , parallel=FALSE , num.cores=

NULL)

Listing A.2 – Description of the AUTO.ARIMA function

Details Non-stepwise selection can be slow, especially for seasonal data. Stepwise algo-
rithm outlined in Hyndman and Khandakar (2008) except that the default method for selecting
seasonal differences is now the OCSB test rather than the Canova-Hansen test.

Usage

1 library(forecast)

2 fit <- auto.arima(WWWusage)

3 plot(forecast(fit,h=20))

Listing A.3 – Usage of the AUTO.ARIMA function



APPENDIX A. IMPLEMENTATION DETAILS 129

Argument Definition

x a univariate time series
d Order of first-differencing. If missing, will choose a value based

on KPSS test.
D Order of seasonal-differencing. If missing, will choose a value

based on OCSB test.
max.p Maximum value of p
max.q Maximum value of q
max.P Maximum value of P
max.Q Maximum value of Q
max.order Maximum value of p+q+P+Q if model selection is not stepwise.
max.d Maximum number of non-seasonal differences
max.D Maximum number of seasonal differences
start.p Starting value of p in stepwise procedure.
start.q Starting value of q in stepwise procedure.
start.P Starting value of P in stepwise procedure.
start.Q Starting value of Q in stepwise procedure.
stationary If TRUE, restricts search to stationary models.
seasonal If FALSE, restricts search to non-seasonal models.
ic Information criterion to be used in model selection.
stepwise If TRUE, will do stepwise selection (faster). Otherwise, it

searches over all models. Non-stepwise selection can be very
slow, especially for seasonal models.

trace If TRUE, the list of ARIMA models considered will be reported.
approximationIf TRUE, estimation is via conditional sums of squares andthe

information criteria used for model selection are approximated.
The final model is still computed using maximum likelihood es-
timation. Approximation should be used for long time series or a
high seasonal period to avoid excessive computation times.

xreg Optionally, a vector or matrix of external regressors, which must
have the same number of rows as x.

test Type of unit root test to use. See ndiffs for details.
seasonal.test This determines which seasonal unit root test is used. See nsdiffs

for details.
allowdrift If TRUE, models with drift terms are considered.
lambda Box-Cox transformation parameter. Ignored if NULL. Other-

wise, data transformed before model is estimated.
parallel If TRUE and stepwise = FALSE, then the specification search is

done in parallel. This can give a significant speedup on mutlicore
machines.

num.cores Allows the user to specify the amount of parallel processes to be
used if parallel = TRUE and stepwise = FALSE. If NULL, then
the number of logical cores is automatically detected.

Table A.3 – Arguments of the AUTO.ARIMA function
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