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Abstract

In this dissertation an analysis of Evolution Strategies (ESs) using the theory of Markov chains

is conducted. We first develop sufficient conditions for a Markov chain to have some basic

properties. We then analyse different ESs through underlying Markov chains. From the stability

of these underlying Markov chains we deduce the log-linear divergence or convergence of

these ESs on a linear function, with and without a linear constraint, which are problems

that can be related to the log-linear convergence of ESs on a wide class of functions. More

specifically, we first analyse an ES with cumulative step-size adaptation on a linear function

and prove the log-linear divergence of the step-size; we also study the variation of the logarithm

of the step-size, from which we establish a necessary condition for the stability of the algorithm

with respect to the dimension of the search space. Then we study an ES with constant step-

size and with cumulative step-size adaptation on a linear function with a linear constraint,

using resampling to handle unfeasible solutions. We prove that with constant step-size the

algorithm diverges, while with cumulative step-size adaptation, depending on parameters of

the problem and of the ES, the algorithm converges or diverges log-linearly. We then investigate

the dependence of the convergence or divergence rate of the algorithm with parameters of

the problem and of the ES. Finally we study an ES with a sampling distribution that can be

non-Gaussian and with constant step-size on a linear function with a linear constraint. We

give sufficient conditions on the sampling distribution for the algorithm to diverge. We also

show that different covariance matrices for the sampling distribution correspond to a change

of norm of the search space, and that this implies that adapting the covariance matrix of the

sampling distribution may allow an ES with cumulative step-size adaptation to successfully

diverge on a linear function with any linear constraint.
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Notations

We denote R the set of real numbers, R+ the set of non-negative numbers, R− the set of

non-positive numbers, N the set of non-negative integers. For n ∈ N\{0}, Rn denotes the

set of n-dimensional real vectors. For A a subset of Rn , A∗ denotes A\{0}, Ac denotes the

complementary of A, 1A the indicator function of A, andΛn(A) the Lebesgue measure on Rn

of A. For A a finite set, we denote #A its cardinal. For A a set, 2A denotes the power set of

A. For F a family of subsets of Rn , we denote σ(F ) the σ-algebra generated by F . Let f be a

function defined on an open set of Rn and valued in Rm , and take p ∈N, we say that f is a

C p function if it is continuous, and p-times continuously differentiable; if f is differentiable,

we denote Dx f the differential of f with respect to x ∈Rn ; if m = 1 and f is differentiable, we

denote ∇x f its gradient at x ∈Rn . For (a,b) ∈N2, [a..b] denotes the set {i ∈N|a ≤ i ≤ b}. For

x ∈ Rn , xT denotes x transposed. For n ∈N∗, I d n is the n-dimensional identity matrix. We

denote N (0,1) the standard normal law, and for x ∈ Rn and C a covariance matrix of order

n, N (x ,C ) denotes the multivariate normal law of mean x and covariance matrix C . For X a

random vector, E(X ) denotes the expected value of X , and for π a distribution, X ∼π means

that X has distribution π. For (a,b) ∈N×N∗, a mod b denotes a modulo b. For f and g two

real-valued functions defined onN, we write that f ∼ g when f is equal to g asymptotically,

that f =O(g ) if there exists C ∈R∗+ and n0 ∈N such that | f (n)| ≤C |g (n)| for all n ≥ n0, and that

f =Θ(g ) if f =O(g ) and g =O( f ). For x ∈Rn , ‖x‖ denotes the euclidean norm of x , and for

r ∈R∗+, B(x ,r ) denotes the open ball for the euclidean norm centred in x of radius r , and for

i ∈ [1..n], [x]i denotes the i th coordinate of x in the canonical basis. We use the acronym i.i.d.

for independent and identically distributed. For (X t )t∈N a sequence of random vectors and Y

a random vectors, we denote X t
a.s.−→

t→+∞ Y when the sequence (X t )t∈N converges almost surely

to Y , and X t
P−→

t→+∞ Y when the sequence (X t )t∈N converges in probability to Y .
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Chapter 1

Preamble

Optimization problems are frequently encountered in both science and industry. They consist

in finding the optimum of a real-valued function f called the objective function and defined

on a search space X . Depending on this search space, they can be broadly categorized

into discrete or continuous optimization problems. Evolution Strategies (ESs) are stochastic

continuous optimization algorithms that have been successfully applied to a wide range of

real-world problem. These algorithms adapt a sampling distribution of the form x +σH

where H is a distribution with mean 0, generally taken as N (0,C ) a multivariate Gaussian

distribution with covariance matrix C ; x ∈ X is the mean of the sampling distribution and

σ ∈R∗+ is called the step-size, and controls the standard deviation of the sampling distribution.

ESs proceed to sample a population of points, that they rank according to their f -value, and

use these points and their rankings to update the sampling distribution.

ESs are known in practice to achieve log-linear convergence (i.e. the distance to the optimum

decreases exponentially fast, see Section 2.1) on a wide class of functions. To achieve a better

understanding of ESs, it is important to know the convergence rate and its dependence to

the search problem (e.g. the dimension of the search space) or in different update rules or

parameters of ESs. Log-linear convergence has been shown for different ESs on the sphere

function fsphere : x ∈Rn 7→ ‖x‖2 using tools from the theory of Markov chains (see [18, 24, 33])

by proving the positivity, Harris recurrence or geometric ergodicity of an underlying Markov

chain (these concepts are defined in Section 1.2). A methodology on a wide class of functions

called scaling-invariant (see (2.33) for a definition of scaling invariant functions) for proving

the geometric ergodicity of underlying Markov chains from which the log-linear convergence

of the algorithm can be deduced is proposed in [25], and has been used to prove the log-

linear convergence of a specific ES [24] on positively homogeneous functions (see (2.34) for a

definition of positively homogeneous functions). In [2] the local convergence of a continuous-

time ES is shown on C 2 functions using ordinary differential equations. In both [24] and [2]

a shared assumption is that the standard deviation σt of the sampling distribution diverges

log-linearly on the linear function, making the study of ESs on the linear function a key to the

convergence of ESs on a wide range of functions.

The ergodicity (or more precisely, f -ergodicity as defined in 1.2.9) of Markov chains underlying

ESs is a crucial property regarding Monte-Carlo simulations, as it implies that a law of large

3



Chapter 1. Preamble

numbers applies, and so shows that Monte-Carlo simulations provide a consistent estimator

of Eπ( f (Φ0)), where (Φt )t∈N is a f -ergodic Markov chain and π is its invariant measure, as

defined in 1.2.8. This allows the use of Monte-Carlo simulations to estimate the convergence

rate of the algorithm, and evaluate the influence of different parameters on this convergence

rate.

The work presented in this thesis can be divided in two parts: the contributions in Chapter 3

improve techniques from Markov chain theory so that they can be applied to problems met in

continuous optimization and allow us to analyse easily a broader class of algorithms, and the

contributions in Chapter 4 analyse ESs on different linear problems.

1.1 Overview of Contributions

1.1.1 Sufficient conditions forϕ-irreducibility, aperiodicity and T -chain property

In order to show the ergodicity of a Markov chain Φ = (Φt )t∈N valued in an open space

X⊂Rn , we use some basic Markov chain properties (namely ϕ-irreducibility, aperiodicity,

and that compact sets are small sets for the chain, which are concepts defined in 1.2). For

some Markov chains arising from algorithms that we want to analyse, showing these basic

properties turned out to be unexpectingly difficult as the techniques used with success in

other scenarios failed, as outlined in Section 4.1. In [98, Chapter 7] powerful tools can be

found and be used to show the basic properties we require. However, [98, Chapter 7] assumes

that the Markov chain of interest follows a certain model, namely that there exists an open

set O⊂Rp , a C∞ function F : X ×O → X and (U t )t∈N∗ a sequence of i.i.d. random vectors

valued in O and admitting a lower semi-continuous density, such thatΦt+1 = F (Φt ,U t+1) for

all t ∈N. For some of the Markov chains that we analyse we cannot find an equivalent model:

the corresponding function F is not even continuous, or the random vectors (U t )t∈N∗ are not

i.i.d.. However, in Chapter 3 which contains the article [42] soon to be submitted to the journal

Bernoulli we show that we can adapt the results of [98, Chapter 7] to a more general model

Φt+1 = F (Φt ,W t+1), with F typically a C 1 function, W t+1 =α(Φt ,U t+1) and (U t )t∈N∗ are i.i.d.

such that α(x ,U 1) admits a lower semi-continuous density. The function α is in our cases

typically not continuous, and the sequence (W t )t∈N∗ is typically not i.i.d.. We then use these

results to solve cases that we could not solve before.

1.1.2 Analysis of Evolution Strategies

In Chapter 4 we analyse ESs on different problems.

In Section 4.2 we present an analysis of the so-called (1,λ)-CSA-ES algorithm on a linear

function. The results are presented in a technical report [43] containing [46] which was

published at the conference Parallel Problem Solving from Nature in 2012 and including the

full proofs of the propositions found in [46], and a proof of the log-linear divergence of the

algorithm. We prove that the step-size of the algorithm diverges log-linearly, which is the

desired behaviour on a linear function. The divergence rate is explicitly given, which allow

us to see how it depends of the parameters of the problem or of the algorithm. Also, a study

4



1.2. A short introduction to Markov Chain Theory

of the variance of the logarithm of the step-size is conducted, and the scaling of the variance

with the dimension gives elements as how to adapt some parameters of the algorithm with the

dimension.

In Section 4.3 we present two analyses of a (1,λ)-ES on a linear function with a linear constraint,

handling the constraint through resampling unfeasible points.

The first analysis in Section 4.3.1 is presented in [45] which was accepted for publication

at the Evolutionary Computation Journal in 2015, and is an extension of [44] which was

published at the conference Congress on Evolutionary Computation in 2014. It first shows

that a (1,λ)-ES algorithm with constant step-size diverges almost surely. Then for the (1,λ)-

ES with cumulative step-size adaptation (see 2.3.8) it shows the geometric ergodicity of the

Markov chain composed of the distance from the mean of the sampling distribution to the

constraint normalized by the step-size. This geometric ergodicity justifies the use of Monte-

Carlo simulations of the convergence rate of the step-size, which shows that when the angle θ

between the gradients of the constraint and of the objective function is close to 0, the step-size

converges log-linearly, while for values close enough to π/2 the algorithm diverges log-linearly.

Log-linear divergence being desired here, the algorithm fails to solve the problem for small

values of θ, and otherwise succeeds. The paper then analyses how its parameters affect the

convergence rate and the critical value of θ which triggers convergence or divergence of the

algorithm.

The second analysis in Section 4.3.2 is presented in a technical report containing [47], pub-

lished at the conference Parallel Problem Solving from Nature in 2014, and the full proofs

of the propositions found in [47]. It analyses a (1,λ)-ES with constant step-size and general

(i.e. not necessary Gaussian) sampling distribution. It establishes sufficient conditions on

the sampling distribution for the positivity, Harris recurrence and geometric ergodicity of the

Markov chain composed of the distance from the mean of the sampling distribution to the

constraint. The positivity and Harris recurrence is then used to apply a law of large numbers

and deduce the divergence of the algorithm. It is then shown that changing the covariance

matrix of the sampling distribution is equivalent to a change of norm which imply a change of

the angle between the gradients of the constraint and of the function. This relates to the results

presented in 4.3.1, showing that on this problem and if the covariance matrix is correctly

adapted then the cumulative step-size adaptation is successful. Finally, sufficient conditions

on the marginals of the sampling distribution and the copula combining them are given to get

the absolute continuity of the sampling distribution.

1.2 A short introduction to Markov Chain Theory

Markov chain theory offers useful tools to show the log-linear convergence of optimization

algorithms, and justifying the use of Monte Carlo simulations to estimate convergence rates.

Markov chains are key to the results of this thesis, and therefore we give in this section an

introduction to the concepts that we will be using throughout the thesis.

5



Chapter 1. Preamble

1.2.1 A definition of Markov chains through transition kernels

Let X be an open set of Rn that we call the state space, equipped with its borel σ-algebra B(X ).

A function P : X ×B(X ) →R is called a kernel if

• for all x ∈ X , the function A ∈B(X ) 7→ P (x , A) is a measure,

• for all A ∈B(X ) the function x ∈ X 7→ P (x , A) is a measurable function.

Furthermore, if for all x ∈ X , P (x , X ) ≤ 1 we call P a substochastic transition kernel, and if for

all x ∈ X , P (x , X ) = 1, we call P a probability transition kernel, or simply a transition kernel.

Intuitively, for a specific sequence of random variables (Φt )t∈N, the value P (x , A) represents

the probability thatΦt+1 ∈ A knowing thatΦt = x . Given a transition kernel P , we define P 1 as

P , and inductively for t ∈N∗, P t+1 as

P t+1(x , A) =
∫

X
P t (x ,d y)P (y , A) . (1.1)

Let (Ω,B(Ω),P0) be a probability space, andΦ= (Φt )t∈N be a sequence of random variables

defined on Ω and valued in X , and let P be a probability transition kernel. Denote (Ft )t∈N
the filtration such that Ft := σ(Φk | k ≤ t). Following [118, Definition 2.3], we say that Φ

is a time-homogeneous Markov chain with probability transition kernel P if for all t ∈ N∗,

k ∈ [0..t −1] and any bounded real-valued function f defined on X ,

E0
(

f (Φt )
∣∣Fk

)= ∫
X

f (y)P t−k (·,d y) P0 −a.s. , (1.2)

where E0 is the expectation operator with respect to P0.

Less formally the expected value of f (Φt ), knowing all the past information of (Φi )i∈[0..k]

and thatΦk is distributed according to P0, is equal to the expected value of f (Φt−k ) withΦ0

distributed according to P0. The value P t (x , A) represents the probability of the Markov chain

Φ to be in A, t time steps after starting from x .

1.2.2 ϕ-irreducibility

A Markov chain is said ϕ-irreducible if there exists a non trivial measure ϕ on B(X ) such that

for all A ∈B(X )

ϕ(A) > 0 ⇒∀x ∈ X ,
∑

t∈N∗
P t (x , A) > 0 . (1.3)

Every point from the support ofϕ is reachable [98, Lemma 6.1.4], meaning any neighbourhood

of a point in the support has a positive probability of being reached from anywhere in the

state space. This ensures that the state space cannot be cut into disjoints sets that would never

communicate through the Markov chain with each other.

A ϕ-irreducible Markov chain admits the existence of a maximal irreducibility measure ([98,

Proposition 4.2.2]), that we denote ψ, which dominates any other irreducibility measure. This

6



1.2. A short introduction to Markov Chain Theory

allows us to define B+(X ), the set of sets with positive ψ-measure:

B+(X ) = {A ∈B(X ) | ψ(A) > 0} . (1.4)

1.2.3 Small and petite sets

A set C ∈ B(X ) is called a small set if there exists m ∈ N∗ and νm a non-trivial measure on

B(X ) such that

P m(x , A) ≥ νm(A) , for all x ∈C and for all A ∈B(X ) . (1.5)

A set C ∈B(X ) is called a petite set if there exists α a probability distribution onN∗ and να a

non-trivial measure on B(X ) such that∑
t∈N

P t (x , A)α(t ) ≥ να(A) , for all x ∈C and for all A ∈B(X ) , (1.6)

where P 0(x , A) is defined as a Dirac distribution on {x}.

Small sets are petite sets; the converse is true for ϕ-irreducible aperiodic Markov chains [98,

Theorem 5.5.7].

1.2.4 Periodicity

Suppose that Φ is a ψ-irreducible Markov chain, and take C ∈ B+(X ) a νm-small set. The

period of the Markov chain can be defined as the greatest common divisor of the set

EC = {k ∈N∗|C is a νk -small set with νk = akνm for some ak ∈R∗
+} .

According to [98, Theorem 5.4.4] there exists then disjoint sets (Di )i∈[0..d−1] ∈B(X )d called a

d-cycle such that

1. P (x ,Di+1 mod d ) = 1 for all x ∈ Di ,

2. ψ
((⋃d−1

i=0 Di
)c

)
= 0 .

This d-cycle is maximal in the sense that for any other d̃-cycle (D̃i )i∈[0..d−1], d̃ divides d , and if

d̃ = d then up to a reordering of indexes, D̃i = Di ψ-almost everywhere.

If d = 1, then the Markov chain is called aperiodic. For a ϕ-irreducible aperiodic Markov

chain, petite sets are small sets [98, Theorem 5.5.7].

1.2.5 Feller chains and T -chains

These two properties concern the lower semi-continuity of the function P (·, A) : x ∈ X 7→
P (x , A), and help to identify the petite sets and small sets of the Markov chain.

A ϕ-irreducible Markov chain is called a (weak-)Feller Markov chain if for all open set O ∈
B(X ), the function P (·,O) is lower-semi continuous.

7



Chapter 1. Preamble

If there exists α a distribution on N and a substochastic transition kernel T : X ×B(X ) → R

such that

• for all x ∈ X and A ∈B(X ), Kα(x , A) :=∑
t∈Nα(t )P t (x , A) ≥ T (x , A),

• for all x ∈ X , T (x , X ) > 0,

then the Markov chain is called a T -chain.

According to [98, Theorem 6.0.1] a ϕ-irreducible Markov chain for which the support of ϕ has

non-empty interior is a ϕ-irreducible T -chain. And a ϕ-irreducible Markov chain is a T -chain

if and only if all compact sets are petite sets.

1.2.6 Associated deterministic control model

According to [72, p.24], forΦ a time-homogeneous Markov chain on an open state space X ,

there exists an open measurable spaceΩ, a function F : X ×Ω→ X and (U t )t∈N∗ a sequence of

i.i.d. random variables valued inΩ such that

Φt+1 = F (Φt ,U t+1) . (1.7)

The transition probability kernel P then writes

P (x , A) =
∫
Ω

1A (F (x ,u))µ(du) , (1.8)

where µ is the distribution of U t .

Conversely, given a random variable Φ0 taking values in X , the sequence (Φt )t∈N can be

defined through (1.7), and it is easy to check that it is a Markov chain.

From this function F we can define F 0 as the identity F 0 : x ∈ X 7→ x , F as F 1 and inductively

F t+1 for t ∈N∗ as

F t+1(x ,u1, . . . ,u t+1) := F t (F (x ,u1),u2, . . . ,u t+1) . (1.9)

If U 1 admits a density p, we can define the control set Ωw := {u ∈Ω|p(u) > 0}, which allow us

to define the associated deterministic control model, denoted C M(F ), as the deterministic

system

x t = F t (x0,u1, . . . ,u t ) , ∀t ∈N (1.10)

where uk ∈Ωw for all k ∈N∗. , and for x ∈ X we define the set of states reachable from x at

time k ∈N from C M(F ) as A0+(x) = {x} when k = 0 and otherwise

Ak
+(x) := {F k (x ,u1, . . . ,uk )|ui ∈Ωw for all i ∈ [1..k]} . (1.11)

The set of states reachable from x from C M(F ) is defined as

A+(x) := ⋃
k∈N

Ak
+(x) . (1.12)
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1.2. A short introduction to Markov Chain Theory

The control model is said to be forward accessible if for all x ∈ X , the set A+(x) has non-empty

interior. A point x∗ ∈ X is called a globally attracting state if

x∗ ∈ ⋂
N∈N∗

+∞⋃
k=N

Ak+(y) for all y ∈ X . (1.13)

In [98, Chapter 7], the function F of (1.7) is supposed C∞, the random element U 1 is assumed

to admit a lower semi-continuous density p, and the control model is supposed to be forward

accessible. In this context, the Markov chain is shown to be a T -chain [98, Proposition 7.1.5],

and in [98, Proposition 7.2.5 and Theorem 7.2.6] ϕ-irreducibility is proven equivalent to

the existence of a globally attracting state. Still in this context, when the control set Ωw is

connected and that there exists a globally attracting state, the aperiodicity of the Markov chain

is proven to be implied by the connectedness of the set A+(x∗) [98, Proposition 7.3.4 and

Theorem 7.3.5]. Although these results are strong and useful ways to show the irreducibility

and aperiodicity or T -chain property of a Markov chain, we cannot apply them on most of the

Markov chains studied in Chapter 4, as the transition functions F modelling our Markov chains

through (1.7) are not C∞, but instead are discontinuous due to the selection mechanism in

the ESs studied. A part of the contributions of this thesis is to adapt and generalize the results

of [98, Chapter 7] to be usable in our problems (see Chapter 3).

1.2.7 Recurrence, Transience and Harris recurrence

A set A ∈B(X ) is called recurrent if for all x ∈ A, the Markov chain (Φt )t∈N leaving fromΦ0 = x

will return in average an infinite number of times to A. More formally, A is recurrent if

E

( ∑
t∈N∗

1A(Φt )

∣∣∣∣∣ Φ0 = x

)
=∞ , for all x ∈ A . (1.14)

A ψ-irreducible Markov chain is called recurrent if for all A ∈B+(X ), A is recurrent.

The mirrored concept is called transience. A set A ∈ B(X ) is called uniformly transient if

there exists M ∈R such that

E

( ∑
t∈N∗

1A(Φt )

∣∣∣∣∣ Φ0 = x

)
≤ M , for all x ∈ A . (1.15)

A ψ-irreducible Markov chain is called transient if there exists a countable cover of the state

space X by uniformly transient sets. According to [98, Theorem 8.0.1], a ψ-irreducible Markov

chain is either recurrent or transient.

A condition stronger than recurrence is Harris recurrence. A set A ∈ B(X ) is called Harris

recurrent if for all x ∈ A the Markov chain leaving from x will return almost surely an infinite

number of times to A, that is

Pr

( ∑
t∈N∗

1A(Φt ) =∞
∣∣∣∣∣ Φ0 = x

)
= 1 , for all x ∈ A . (1.16)

9



Chapter 1. Preamble

A ψ-irreducible Markov chain is called Harris recurrent if for all A ∈ B+(X ), A is Harris

recurrent.

1.2.8 Invariant measure and positivity

A σ-finite measure π on B(X ) is called invariant if

π(A) =
∫

X
π(d x)P (x , A) , for all A ∈B(X ). (1.17)

Therefore ifΦ0 ∼π, then for all t ∈N,Φt ∼π.

For f : X →R a function, we denote π( f ) the expected value

π( f ) :=
∫

X
f (x)π(d x) . (1.18)

According to [98, Theorem 10.0.1] a ϕ-irreducible recurrent Markov chain admits a unique

(up to a multiplicative constant) invariant measure. If this measure is a probability measure,

we callΦ a positive Markov chain.

1.2.9 Ergodicity

For ν a signed measure on B(X ) and f : X →R a positive function, we define ‖ ·‖ f a norm on

signed measures via

‖ν‖ f := sup
|g |≤ f

∣∣∣∣∫
X

g (x)ν(d x)

∣∣∣∣ . (1.19)

Let f : X →R be a function lower-bounded by 1. We callΦ a f -ergodic Markov chain if it is

a positive Harris recurrent Markov chain with invariant probability measure π, that π( f ) is

finite, and for any initial conditionΦ0 = x ∈ X ,

‖P t (x , ·)−π‖ f −→
t→+∞ 0 . (1.20)

We callΦ a f -geometrically ergodic Markov chain if it is a positive Harris recurrent Markov

chain with invariant probability measure π, that π( f ) is finite, and if there exists r f ∈ (1,+∞)

such that for any initial conditionΦ0 = x ∈ X ,∑
t∈N∗

r t
f ‖P t (x , ·)−π‖ f <∞ . (1.21)

We also callΦ a ergodic (resp. geometrically ergodic) Markov chain if there exists a function

f : X →R lower bounded by 1 such thatΦ is f -ergodic (resp. f -geometrically ergodic).

10



1.2. A short introduction to Markov Chain Theory

1.2.10 Drift conditions

Drift conditions are powerful tools to show that a Markov chain is transient, recurrent, positive

or ergodic. They rely on a potential or drift function V : X →R+, and the mean drift

∆V (x) := E (V (Φt+1) | Φt = x)−V (x) . (1.22)

A positive drift outside a set CV (r ) := {x ∈ X | V (x) ≤ r } means that the Markov chain tends to

get away from the set, and indicates transience. Formally, for a ϕ-irreducible Markov chain, if

V : X →R+ is a bounded function and that there exists r ∈R+ such that both sets CV (r ) and

CV (r )c are in B+(X ) and that

∆V (x) > 0 for all x ∈CV (r )c , (1.23)

then the Markov chain is transient [98, Theorem 8.4.2].

Conversely, a negative drift is linked to recurrence and Harris recurrence. For a ϕ-irreducible

Markov chain, if there exists a function V : X →R+ such that CV (r ) is a petite set for all r ∈R,

and if there exists a petite set C ∈B(X ) such that

∆V (x) ≤ 0 for all x ∈C c , (1.24)

then the Markov chain is Harris recurrent [98, Theorem 9.1.8].

A stronger drift condition ensures the positivity and f -ergodicity of the Markov chain: for a ϕ-

irreducible aperiodic Markov chain and f : X → [1,+∞), if there exists a function V : X →R+,

C ∈B(X ) a petite set and b ∈R such that

∆V (x) ≤− f (x)+b1C (x) , (1.25)

then the Markov chain is positive recurrent with invariant probability measure π, and f -

ergodic [98, Theorem 14.0.1].

Finally, a stronger drift condition ensures a geometric convergence of the transition kernel

P t (x , ·) to the invariant measure. For a ϕ-irreducible aperiodic Markov chain, if there exists a

function V : X → [1,+∞), C ∈B(X ) a petite set, b ∈R and β ∈R∗+ such that

∆V (x) ≤−βV (x)+b1C (x) , (1.26)

then the Markov chain is positive recurrent with invariant probability measure π, and V -

geometrically ergodic [98, Theorem 15.0.1].
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Chapter 1. Preamble

1.2.11 Law of Large numbers for Markov chains

LetΦ be a positive Harris recurrent Markov chain with invariant measure π, and take g : X →R

a function such that π(|g |) <∞. Then according to [98, Theorem 17.0.1]

1

t

t∑
k=1

g (Φk )
a.s−→

t→+∞π(g ) . (1.27)
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Chapter 2

Introduction to Black-Box Continuous
Optimization

This chapter intends to be a general introduction to black-box continuous optimization by

presenting different optimization techniques, problems, and results with a heavier focus on

Evolution Strategies. We denote f : X ⊂Rn →R the function to be optimized, which we call

the objective function, and assume w.l.o.g. the problem to be to minimize f 1by constructing

a sequence (x t )t∈N ∈ XN converging to argminx∈X f (x)2.

The term black-box means that no information on the function f is available, and although

for x ∈ X we can obtain f (x), the calculations behind this are not available. This is a common

situation in real-world problems, where f (x) may come from a commercial software whose

code is unavailable, or may be the result of simulations. We will say that an algorithm is a

black-box, zero-order or derivative-free algorithm when it only uses the f -value of x . We

call an algorithm using the gradient of f (resp. its Hessian) a first order algorithm (resp.

second-order algorithm). We will also say that an algorithm is function-value free (FVF) or

comparison-based if it does not directly use the function value f (x), but uses instead how

different points are ranked according to their f -values. This notion of FVF is an important

property which ensures a certain robustness of an optimization algorithm, and is further

developed in 2.4.5.

Section 2.1 will first give some definitions in order to discuss convergence speed in continuous

optimization. Then Sections 2.2 and 2.3 will then give a list of well-known deterministic

and stochastic optimization algorithms, deterministic and stochastic algorithm requiring

different techniques to analyze (the latter requiring the use of probability theory). Section 2.4

will introduce different optimization problems and their characteristics, and Section 2.5 will

present results and techniques relating to the convergence of Evolution Strategies.

1Maximizing f is equivalent to minimizing − f .
2Note that in continuous optimization the optimum is usually never found, only approximated.
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Chapter 2. Introduction to Black-Box Continuous Optimization

2.1 Evaluating convergence rates in continuous optimization

In continuous optimization, except for very particular cases, optimization algorithms never

exactly find the optimum, contrarily to discrete optimization problems. Instead, at each itera-

tion t ∈N an optimization algorithm produces an estimated solution X t , and the algorithm is

considered to solve the problem if the sequence (X t )t∈N converges to the global optimum x∗

of the objective function. To evaluate the convergence speed of the algorithm, one can look at

the evolution of the distance between the estimated solution and the optimum, ‖X t −x∗‖, or

at the average number of iterations required for the algorithm to reach a ball centred on the

optimum and of radius ε ∈R∗+. Note that for optimization algorithms (especially in black-box

problems) the number of evaluations of f made is an important measure of the computa-

tional cost of the algorithm, as the evaluation of the function can be the result of expensive

calculations or simulations. And since many algorithms that we consider do multiple func-

tion evaluations per iteration, it is therefore often important to consider the converge rate

normalized by the number of function evaluations per iteration.

2.1.1 Rates of convergence

Take (x t )t∈N a deterministic sequence of real vectors converging to x∗ ∈Rn . We say that (x t )t∈N
converges log-linearly or geometrically to x∗ at rate r ∈R∗+ if

lim
t→+∞ ln

‖x t+1 −x∗‖
‖x t −x∗‖ =−r . (2.1)

Through Cesàro means3, this implies that limt→+∞ 1
t ln(‖x t −x∗‖) =−r , meaning that asymp-

totically, the logarithm of the distance between x t and the optimum decreases like −r t .

If (2.1) holds for r ∈ R∗−, we say that (x t )t∈N diverges log-linearly or geometrically. If (2.1)

holds for r = +∞ then (x t )t∈N is said to converge superlinearly to x∗, and if (2.1) holds for

r = 0 then (x t )t∈N is said to converge sublinearly.

In the case of superlinear convergence, for q ∈ (1,+∞) we say that (x t )t∈N converges with

order q to x∗ at rate r ∈R∗+ if

lim
t→+∞ ln

‖x t+1 −x∗‖
‖x t −x∗‖q =−r . (2.2)

When q = 2 we say that the convergence is quadratic.

In the case of a sequence of random vectors (X t )t∈N, t he sequence (X t )t∈N is said to con-

verge almost surely (resp. in probability, in mean) log-linearly to x∗ if the random variable

1/t ln(‖X t −x∗‖/‖X 0−x∗‖) converges almost surely (resp. in probability, in mean) to −r , with

r ∈R∗+. Similarly, we define almost sure divergence and divergence in probability when the

random variable 1/t ln(‖X t −x∗‖/‖X 0 −x∗‖) converges to r ∈R∗+.

3The Cesàro means of a sequence (at )t∈N∗ are the terms of the sequence (ct )t∈N∗ where ct := 1/t
∑t

i=1 ai . If
the sequence (at )t∈N∗ converges to a limit l , then so does the sequence (ct )t∈N∗ .
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2.1.2 Expected hitting and running time

Take (X t )t∈N a sequence of random vectors converging to x∗ ∈ X . For ε ∈ R∗+, the random

variable τε := min{t ∈N|X t ∈ B(x∗,ε)} is called the first hitting time of the ball centred in x and

of radius ε. We define the expected hitting time (EHT) as the expected value of the first hitting

time. Log-linear convergence at rate r is related to a expected hitting time of E(τε) ∼ ln(1/ε)/r

when ε goes to 0 [67].

Let x∗ ∈ X denote the optimum of a function f : X → R. We define the running time to a

precision ε ∈R∗+ as the random variable ηε := min{t ∈N|| f (X t )− f (x∗)| ≤ ε}, and the expected

running time (ERT) as the expected value of the running time. Although when the objective

function is continuous the EHT and ERT are related, it is possible on functions with local

optima to have arbitrarily low ERT and high EHT.

2.2 Deterministic Algorithms

In this section we give several classes of deterministic continuous optimization methods.

Although this chapter is dedicated to black-box optimization methods, we still present some

first and second order methods, as they can be made into zero order methods by estimating the

gradients or the Hessian matrices (e.g. through a finite difference method [61]). Furthermore,

these methods being widely known and often applied in optimization they are an important

comparison point.

We start this section by introducing Newton’s method [54] which is a second order algorithm,

and Quasi-Newton methods [109, Chapter 6] which are first order algorithms. Then we

introduce Trust Region methods [52] which can be derivative-free or first order algorithms.

Then we present Pattern Search [115, 136] and Nelder-Mead [108] which are derivative-free

methods, with the latter being also function-value free.

2.2.1 Newton’s and Quasi-Newton Methods

Inspired from Taylor’s expansion, Newton’s method [54] is a simple deterministic second

order method that can achieve quadratic convergence to a critical point of a C 2 function

f :Rn →R. Originally, Newton’s method is a first order method which converges to a zero of

a function f : Rn → Rn . To optimize a general C 2 function f : Rn → R, Newton’s method is

instead applied to the function g : x ∈Rn 7→ ∇x f to search for points where the gradient is zero,

and is therefore used as a second order method. Following this, from an initial point x0 ∈Rn

and t ∈N, Newton’s method defines x t+1 recursively as

x t+1 = x t −H f (x t )−1∇x t f , (2.3)

where H f (x) is the Hessian matrix of f at x . Although the algorithm may converge to saddle

points, these can be detected when H f (x t ) is not positive definite. In order for (2.3) to be

well-defined, f needs to be C 2; and if it is C 3 and convex, then quadratic convergence is

achieved to the minimum of f [123, Theorem 8.5].
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In some cases, computing the gradient or the Hessian of f may be too expensive or not even

feasible. They can instead be approximated, which gives a quasi-Newton method. On simple

functions quasi-Newton methods are slower than Newton’s method but can still, under some

conditions, achieve superlinear convergence (see [37]); e.g. sequent method can achieve

convergence with order (1+p
5)/2. In general, Eq. (2.3) becomes

x t+1 = x t −αt p t , (2.4)

where p t ∈Rn is called the search direction and αt ∈R∗+ the step-size. The step-size is chosen

by doing a line search in the search direction p t , which can be done exactly (e.g. using a

conjugate gradient method [110]) or approximately (e.g. using Wolfe conditions [140]). In

gradient descent method, the search direction p t is taken directly as the gradient of f . In

BFGS (see [109]), which is the state of the art in quasi-Newton methods, p t = B−1
t ∇x t f where

B t approximates the Hessian of f .

These methods are well-known and often used, and so they constitute an important compari-

son point for new optimization methods. Also, even when derivatives are not available, if the

function to be optimized is smooth enough, approximations of the gradient are good enough

for these methods to be effective.

2.2.2 Trust Region Methods

Trust region methods (see [52]) are deterministic methods that approximate the objective

function f : X ⊂ Rn → R by a model function (usually a quadratic function) within an area

called the trust region. At each iteration, the trust region is shifted towards the optimum of

the current model of f . This shift is limited by the size of the trust region in order to avoid

over-estimating the quality of the model and diverging. The size of the trust region is increased

when the quality of the model is good, and decreased otherwise. The algorithm may use the

gradient of the function to construct the model function [144]. NEWUOA [112] is a derivative-

free state-of-the-art trust region method which interpolates a quadratic model using a smaller

number of points m ∈ [n +2..1/2(n +1)(n +2)] (the recommended m-value is 2n +1) than the

1/2(n+1)(n+2) usually used for interpolating quadratic models. The influence of the number

of points m used by NEWUOA to interpolate the quadratic model is investigated in [119, 120].

2.2.3 Pattern Search Methods

Pattern search methods (first introduced in [115], [136]) are deterministic function-value free

algorithms that improve over a point x t ∈ Rn by selecting a step s t ∈ Pt , where Pt is subset

of Rn called the pattern, such that f (x t +σt s t ) < f (x t ), where σt ∈R∗+ is called the step-size.

If no such point of the pattern exists then x t+1 = x t and the step-size σt is decreased by a

constant factor, i.e. σt+1 = θσt with θ ∈ (0,1); otherwise x t+1 = x t +σt s t and the step-size is

kept constant. The pattern Pt is defined as the union of the column vectors of a non-singular

matrix M t , of its opposite −M t , of the vector 0 and of an arbitrary number of other vectors

of Rn [136]. Since the matrix M t has rank n, the vectors of Pt span Rn . The pattern can be
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and should be adapted at each iteration: e.g. while a cross pattern (i.e. M t = I d n) is adapted

to a sphere function, it is not for an ellipsoid function with a large condition number (see

Section 2.4.2), and even less for a rotated ellipsoid.

2.2.4 Nelder-Mead Method

The Nelder-Mead method introduced in [108] in 1965 is a deterministic function-value free

algorithm which evolves a simplex (a polytope with n +1 points in a n-dimensional space) to

minimize a function f : X ⊂Rn →R. From a simplex with vertices (x i )i∈[1..n+1], the algorithm

sorts the vertices according to their f -values: (xi :n+1)i∈[1..n+1] such that f (x1:n+1) ≤ . . . ≤
f (xn+1:n+1). Then, denoting xc := 1/n

∑n
i=1 xi :n+1 the centroid of the n vertices with lowest

f -value, it considers three different points on the line between xc and the vertex with highest

f -value xn+1:n+1. If none of these points have lower f -value than xn+1:n+1, the simplex

is reduced by a homothetic transformation with respect to x1:n+1 and ratio lower than 1.

Otherwise, according to how the f -values of the three points rank with the f -values of the

vertices, one of these points replace xn+1:n+1 as a vertex of the simplex.

It has been shown that Nelder-Mead algorithm can fail to converge to a stationary point even

on strictly convex functions (see [95]). Further discussion about Nelder-Mead algorithm can

be found here [142].

2.3 Stochastic algorithms

Stochastic optimization methods use random variables to generate solutions. This make these

algorithms naturally equipped to deal with randomness, which can prove useful on difficult

functions or in the presence of noise, by for example giving them a chance to escape a local

optimum.

In this section we introduce Pure Random Search [146] and Pure Adaptive Search [146],

Metropolis-Hastings [41], Simulated Annealing [84], Particle Swarm Optimization [83], Evo-

lutionary Algorithms [26], Genetic Algorithms [73], Differential Evolution [134], Evolution

Strategies [117], Natural Evolution Strategies [139] and Information Geometric Optimiza-

tion [111].

2.3.1 Pure Random Search

Pure Random Search [146] consists in sampling independent random vectors (X t )t∈N of Rn

from the same distribution P until a stopping criterion is met. The sampling distribution is sup-

posed to be supported by the search space X . The random vector X t with the lowest f -value

is then taken as the solution proposed by the method, i.e. X best
t := argminX∈{X k |k∈[0..t ]} f (X ).

While the algorithm is trivial, it is also trivial to show that the sequence (X best
t )t∈N converges

to the global minimum of any continuous function. The algorithm is however very inefficient,

converging sublinearly: the expected hitting time for the algorithm to enter a ball of radius

ε ∈R∗+ centred around the optimum is proportional to 1/εn . It is therefore a good reminder that

convergence in itself is an insufficient criterion to assess the performance of an optimization

17



Chapter 2. Introduction to Black-Box Continuous Optimization

algorithm, and any efficient stochastic algorithm using restarts ought to outperform pure

random search on most real-world function.

2.3.2 Pure Adaptive Search

Pure Adaptive Search [146] (PAS) is a theoretical algorithm which consists in sampling vectors

(X t )t∈N of Rn as in PRS, but adding that the support of the distribution from which X t+1

is sampled in the strict sub-level set Vt := {x ∈ X | f (x) < f (X t )}. More precisely, denoting

P the distribution associated to the PAS that we suppose to be supported by a set V0 ⊂ Rn ,

X t+1 ∼ P (·|Vt ) where P (·|Vt ) denotes the probability measure A ∈ B(X ) 7→ P (A ∩Vt )/P (Vt ).

Therefore ( f (X t ))t∈N is a strictly decreasing sequence and the algorithm converges to the

minimum of any continuous function. When f is Lipschitz continuous, that the space V0 is

bounded and that P is the uniform distribution on V0, the running time of PRS with uniform

distribution on V0, ηPRS , is exponentially larger than the running time of PAS, ηPAS , in the

sense that ηPRS = exp(ηPAS +o(ηPAS)) with probability 1 [145, Theorem 3.2].

However, as underlined in [146] simulating the distribution P (·|V t ) in general involves Monte-

Carlo sampling or the use of PRS itself, making the algorithm impractical.

2.3.3 Simulated Annealing and Metropolis-Hastings

Here we introduce the Metropolis-Hastings algorithm [41], which uses Monte-Carlo Markov

chains to sample random elements from a target probability distribution π supported on Rn ,

and Simulated Annealing [84] which is an adaptation of the Metropolis-Hastings algorithm as

an optimization algorithm.

Metropolis-Hastings

Metropolis-Hastings was first introduced by Metropolis and al. in [97] and extended by

Hastings in [71]. Given a function f proportional to the probability density of a distribution

π, a point X t ∈Rd and a conditional symmetric probability density q(x |y) (usually taken as a

Gaussian distribution with mean y [41]), the Metropolis-Hastings algorithm constructs the

random variable X t+1 by sampling a candidate Y t from q(·|X t ), and accepting it as X t+1 = Y t

if f (Y t ) > f (X t ), or with probability f (Y t )/ f (X t ) otherwise. If Y t is rejected, then X t+1 = X t .

Given X 0 ∈Rd , the sequence (X t )t∈N is a Markov chain, and, given that it is ϕ-irreducible and

aperiodic, it is positive with invariant probability distribution π, and the distribution of X t

converges to π [41].

Simulated Annealing

Simulated Annealing (SA) introduced in [96] in 1953 for discrete optimization problems [84],

the algorithm was later extended to continuous problems [34, 53]. SA is an adaptation of

the Metropolis-Hastings algorithm which tries to avoid converging to a local and non global

minima by having a probability of accepting solutions with higher f -values according to

Boltzmann acceptance rule. Denoting X t the current solution, the algorithm generates a
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candidate solution Y t sampled from a distribution Q(·|X t ). If f (Y t ) < f (X t ) then X t+1 = Y t ,

otherwise X t+1 = Y t with probability exp(−( f (Y t )− f (X t ))/Tt ) and X t+1 = X t otherwise. The

variable Tt is a parameter called the temperature, and decreases to 0 overtime in a process

called the cooling procedure, allowing the algorithm to converge.

Although simulated annealing is technically a black-box algorithm, the family of probability

distributions (Q(·|x))x∈X and how the temperature changes over time need to be selected

according to the optimization problem, making additional information on the objective

function f important to the efficiency of the algorithm. Note also that the use of the difference

of f -value to compute the probability of taking X t+1 = Y t makes the algorithm not function-

value free. SA algorithms can be shown to converge almost surely to the ball of center the

optimum of f and radius ε> 0, given sufficient conditions on the cooling procedure including

that Tt ≥ (1 +µ)N f ,ε/ln(t), that the objective function f : X → R is continuous, that the

distribution Q(·, x) is absolutely continuous with respect to the Lebesgue measure for all x ∈ X ,

and that the search space is compact [91].

2.3.4 Particle Swarm Optimization

Particle Swarm Optimization [83, 49, 132] (PSO) is a FVF optimization algorithm evolving a

"swarm", i.e. population of points called particles. It was first introduced by Eberhart and

Kennedy in 1995 [83], inspired from the social behaviour of birds or fishes. Take a swarm of

particules of size N , and (X i
t )i∈[1..N ] the particles composing the swarm. Each particle X i

t is

attracted towards the best position it has visited, that is p i
t := argminx∈{X i

k |k∈[0..t ]} f (x), and

towards the best position the swarm has visited, that is g t := argminx∈{p i
t |i∈[1..N ]} f (x), while

keeping some of its momentum. More precisely, for V i
t the velocity of the particle X i

t ,

V i
t+1 =ωV i

t +ψp R p ◦ (p i
t −X i

t )+ψg R g ◦ (g t −X i
t ) , (2.5)

whereω,ψp andψg are real parameters of the algorithm, ◦ denote the Hadamard product and

R p and R g are two independent random vectors, whose coordinates in the canonical basis

are independent random variables uniformly distributed in [0,1]. Then X i
t is updated as

X i
t+1 = X i

t +V i
t . (2.6)

Note that the distribution of R p and R g is not rotational invariant, and causes PSO to exploit

separability. Although PSO behaves well to ill-conditioning on separable functions, its perfor-

mances have been shown to be greatly affected when the problem is non-separable (see [70]).

Variants of PSO have been developed to avoid these shortcomings [35].

2.3.5 Evolutionary Algorithms

Evolutionary Algorithms [26, 143] (EAs) consist of a wide class of derivative-free optimization

algorithms inspired from Darwin’s theory of evolution. A set of points, called the population,

is evolved using the following scheme: from a population P of µ ∈N∗ points called the parents,

a population O of λ ∈N∗ new points called offsprings is created, and then µ points among
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O or O ∪P are selected to create the new parents. To create an offspring in O, an EA can use

two or more points from the parent population in a process called recombination, or apply a

variation to a parent point due to a random element, which is called mutation. The selection

procedure can operate on O ∪P in which case it is called elitist, or on O is which case it is

called non-elitist. The selection can choose the best µ points according to their rankings in

f -value, or it can use the f -value of a point to compute the chance that this point has to be

selected into the new population.

2.3.6 Genetic Algorihms

Genetic Algorithms [104, 60] (GAs) are EAs using mutation and particular recombination

operators called crossovers. GAs have first been introduced in [73], where the search space

was supposed to be the space of bit strings of a given length n ∈ N∗ (i.e. X = {0,1}n). They

have been widely used and represent an important community in discrete optimization.

Adaptations of GAs to continuous domains have been proposed in [101, 40]. Taking two

points X t and Y t from the parent population, a crossover operator creates a new points by

combining the coordinates of X t and Y t . To justify the importance of crossovers, GAs rely

on the so-called building-block hypothesis, which assumes that the problem can be cut into

several lower-order problems that are easier to solve, and that an individual having evolved

the structure for one of these low order problem will transmit it to the rest of the population

through crossovers. The usefulness of crossovers has long been debated, and it has been

suggested that crossovers can be replaced with a mutation operator with large variance. In

fact, in [81] it was shown that for some GAs in discrete search spaces, the classic crossover

operator is inferior to the headless chicken operator, which consists in doing a crossover of

a point with an independently randomly generated point, which can be seen as a mutation.

However, it has been proven in [56] that for some discrete problems (here a shortest path

problem in graphs), EAs using crossovers can solve these problems better than EAs using pure

mutation.

2.3.7 Differential Evolution

Differential Evolution (DE) is a function value free EA introduced by Storn and Price [134]. For

each point X t of its population, it generates a new sample by doing a crossover between this

point and the point At +F (B t −C t ), where At , B t , and C t are other distinct points randomly

taken the population, and F ∈ [0,2] is called the differentiation weight. If the new sample Y t

has a better fitness than X t , then it replaces X t in the new population (i.e. X t+1 = Y t ). The

performances of the algorithm highly depends on how the recombination is done and of the

value of F [57]. When there is no crossover (i.e. the new sample Y t is At +F (B t −C t )), the

algorithm is rotational-invariant, but otherwise it is not [114, p. 98]. DE is prone to premature

convergence and stagnation [87].
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2.3.8 Evolution Strategies

Evolution Strategies (ESs) are function value free EAs using mutation, first introduced by

Rechenberg and Schwefel in the mid 1960s for continuous optimization [116, 126, 117]. Since

ESs are the focus of this work, a more thorough introduction will be given. From a distribution

Pθt valued in Rn , an ES samples λ ∈ N∗ points (Y i
t )i∈[1..λ], and uses the information on the

rankings in f -value of the samples to update the distribution Pθt and other internal parameters

of the algorithm. In most cases, the family of distribution (Pθ)θ∈Θ are multivariate normal

distributions. A multivariate normal distribution, that we denote N (X t ,C t ), is parametrized

by a mean X t and a covariance matrix C t ; we also add a scaling parameter σt called the step

size, such that (Y i
t )i∈[1..λ] are sampled from σt N (X t ,C t ). Equivalently,

Y i
t = X t +σt C 1/2

t N i
t , (2.7)

where (N i
t )i∈[1..λ] is a sequence of i.i.d. standard multivariate normal vectors that we call

random steps. The choice of multivariate normal distributions fits exactly to the context of

black-box optimization, as multivariate normal distributions are maximum entropy probabil-

ity distributions, meaning as little assumption as possible on the function f is being made.

However, when the problem is not entirely black-box and some information of f is available,

other distributions may be considered: e.g. separability can be exploited by distributions

having more weight on the axes, such as multivariate Cauchy distributions [64].

The different samples (Y i
t )i∈[1..λ] are ranked according to their f -value. We denote Y i :λ

t the

sample with the i th lowest f -value among the (Y i
t )i∈[1..λ]. This also indirectly defines an

ordering on the random steps, and we denote N i :λ
t the random step among (N j

t ) j∈[1..λ] cor-

responding to Y i :λ
t . The ranked samples (Y i :λ

t )i∈[1..λ] are used to update X t , the mean of the

sampling distribution, with one of the following strategy [67]:

(1,λ)-ES: X t+1 = Y 1:λ
t = X t +σt C 1/2

t N 1:λ
t . (2.8)

The (1,λ)-ES is called a non-elitist ES.

(1+λ)-ES: X t+1 = X t +1 f (Y 1:λ
t )≤ f (X t )σt C 1/2

t N 1:λ
t . (2.9)

The (1+λ)-ES is called an elitist ES.

(µ/µW ,λ)-ES: X t+1 = X t +κm

µ∑
i=1

wi (Y i :λ
t −X t ) = X t +κmσt C 1/2

t

µ∑
i=1

wi N i :λ
t , (2.10)

where µ ∈ [1..λ], (wi )i∈[1..µ] ∈ Rµ are weights such that
∑µ

i=1 wi = 1. The parameter κm ∈ R∗+
is called a learning rate, and is usually set to 1. The (µ/µW ,λ)-ES is said to be with weighted

recombination. If for all i ∈ [1..µ], wi = 1/µ, the ES is denoted (µ/µ,λ)-ES.
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Adaptation of the step-size

For an ES to be efficient, the step-sizeσt has to be adapted. Some theoretical studies [33, 78, 79]

consider an ES where the step-size is kept proportional to the distance to the optimum, which

is a theoretical ES which can achieve optimal convergence rate on the sphere function [19,

Theorem 2] (shown in the case of the isotropic (1,λ)-ES). Different techniques to adapt the

step-size exist; we will present σ-Self-Adaptation [129] (σSA) and Cumulative Step-size Adap-

tation [66] (CSA), the latter being used in the state-of-the-art algorithm CMA-ES [66].

Self-Adaptation The mechanism of σSA to adapt the covariance matrix of the sampling

distribution was first introduced by Schwefel in [127]. In σSA, the sampling of the new points

Y i
t is slightly different from Eq. (2.7). Each new sample Y i

t is coupled with a step-size σi
t :=

σt exp(τξi
t ), where τ ∈ R∗+ and (ξi

t )t∈N,i∈[1..λ] is a sequence of i.i.d. random variables, usually

standard normal variables [130]. The samples Y i
t are then defined as

Y i
t := X t +σi

t C 1/2
t N i

t , (2.11)

where (N i
t )i∈[1..λ] is a i.i.d. sequence of random vectors with multivariate standard normal

distribution. Then σi :λ
t is defined as the step-size associated to the sample with the i th lowest

value, Y i :λ
t . The step-size is then adapted as σt+1 =σ1:λ

t for a (1,λ)-ES, or σt+1 = 1/µ
∑µ

i=1σ
i
t

in the case of weighted recombination with weights wi = 1 for all i ∈ [1..µ]. Note that using an

arithmetic mean to recombine the step-sizes (which are naturally geometric) creates a bias

towards larger step-size values.

The indirect selection for the step-size raises some problems, as raised in [63]: on a linear

function, since N i
t and −N i

t are as likely to be sampled, the i th best sample Y i :λ
t and the i th

worst sample Y λ−i :λ
t are as likely to be generated by the same step-size, and therefore there is

no correlation between the step-size and the ranking. In [68] σSA is analysed and compared

with other step-size adaptation mechanisms on the linear, sphere, ellipsoid, random fitness

and stationary sphere functions.

Cumulative Step-size Adaptation In Cumulative Step-size Adaptation (CSA), which is de-

tailed in [66], for a (µ/µW ,λ)-ES the difference between the means of the sampling distribution

at iteration t and t+1 is renormalized as∆t :=p
µwC−1/2

t (X t+1−X t )/σt whereµw = 1/
∑µ

i=1 w2
i

and (wi )i∈[1..µ] are the weights defined in page 21. If the objective function ranks the sam-

ples uniformly randomly, this renormalization makes ∆t distributed as a standard normal

multivariate vector. The variable ∆t is then added to a variable pσ
t+1 called an evolution path

following

pσ
t+1 = (1− cσ)pσ

t +
√

cσ(2− cσ)
p
µwC−1/2

t
X t+1 −X t

σt
. (2.12)

The coefficients in (2.12) are chosen such that if pσ
t ∼N (0, I d n) and if f ranks the samples

uniformly randomly, then ∆t ∼ N (0, I d n) and pσ
t+1 ∼ N (0, I d n). The variable cσ ∈ (0,1] is

called the cumulation parameter, and determines the "memory" of the evolution path, with

22



2.3. Stochastic algorithms

the importance of a step ∆0 decreasing in (1− cσ)t . The "memory" of the evolution path is

about 1/cσ.

The step-size is then adapted depending on the length of the evolution path. If the evolution

path is longer (resp. shorter) than the expected length of a standard normal multivariate

vector, the step-size is increased (resp. decreased) as follow:

σt+1 =σt exp

(
cσ
dσ

( ‖pσ
t+1‖

E(‖N (0, I d n)‖)
−1

))
. (2.13)

The variable dσ determines the variations of the step-size. Usually dσ is taken as 1.

Adaptation of the covariance matrix

To be able to solve ill-conditioned or not separable functions, evolution strategies need to

adapt the covariance matrix C t , which can be done with the state-of-the-art algorithm Covari-

ance Matrix Adaptation (CMA) [66]. CMA adapts the step-size by using CSA, and uses another

evolution path p t to adapt the covariance matrix:

p t+1 = (1− c)p t +
√
µw c(2− c)

X t+1 −X t

σt
, (2.14)

where c ∈ (0,1]. The evolution path p t is similar to pσ
t with added information on the covari-

ance matrix.

The covariance matrix is then updated as follow:

C t+1 = (1− c1 − cµ)C t + c1p t pT
t︸ ︷︷ ︸

rank-1 update

+cµ
µ∑

i=1
wi

(Y i :λ
t −X t )(Y i :λ

t −X t )T

σ2
t︸ ︷︷ ︸

rank-µ update

, (2.15)

where (c1,cµ) ∈ (0,1]2 and c1+cµ ≤ 1. The update associated to c1 is called the rank-one update,

and bias the sampling distribution in the direction of p t . The other is called the rank-µ update,

and bias the sampling distribution in the direction of the best sampled points of this iteration.

2.3.9 Natural Evolution Strategies and Information Geometry Optimization

ESs can be viewed as stochastic algorithms evolving a population of points defined on the

search space X . In order to optimize a function f , the population needs to converge to the

optimum of f . And in order for this process to be efficient, the sampling distribution used to

evolve the population needs to be adapted as well throughout the optimization.

A new paradigm is proposed with Estimation of Distribution Algorithms [88]: an ES can be said

to evolve a probability distribution among a family of distribution (Pθ)θ∈Θ parametrized by θ ∈
Θ. The current probability distribution Pθt represents the current estimation of where optimal

values of f lies. Hence to optimize a function f , the mass of the probability distribution is

expected to concentrate around the optimum.

In this perspective, theoretically well-founded optimization algorithms can be defined[139,
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111] through stochastic gradient ascent or descent on the Riemannian manifold (Pθ)θ∈Θ
by using a natural gradient [4] which is adapted to the Riemannian metric structure of the

manifold (Pθ)θ∈Θ. Also, interestingly, as shown in [3, 59] the (µ/µW ,λ)-CMA-ES defined in

2.3.8 using rank-µ update (i.e. setting cσ = 0, σ0 = 1 and c1 = 0) can be connected to a natural

gradient ascent on the Riemannian manifold (Pθ)θ∈Θ.

Natural Evolution Strategies

Given a family of probability distributions, Natural Evolution Strategies [139, 138, 59] (NESs)

indirectly minimize a function f :Rn →R by minimizing the criterion

J̃ (θ) :=
∫
Rn

f (x)Pθ(d x) . (2.16)

Minimizing this criterion involves concentrating the distribution Pθ around the global minima

of f . To minimize J̃ (θ), a straightforward gradient descent

θt+1 = θt −η∇θt J̃ (θt ) (2.17)

could be considered, where η ∈R∗+ is a learning rate. Using the so called log-likelihood trick, it

can be shown that

∇θ J̃ (θ) =
∫
Rn

f (x)∇θ ln(Pθ(x))Pθ(d x) , (2.18)

which can be used to estimate ∇θ J̃ (θ) as ∇est
θ

J̃ (θ) via

∇est
θ J̃ (θ) = 1

λ

λ∑
i=1

f
(
Y i

)
∇θ ln

(
Pθ

(
Y i

))
, where

(
Y i

)
i∈[1..λ]

i.i.d. and Y i ∼ Pθ . (2.19)

However, as the authors of [138] stress out, the algorithm defined through (2.17) is not invariant

to a change of parametrization of the distribution. To correct this, NESs use the natural

gradient proposed in [4] which is invariant to changes of parametrization of the distribution.

The direction of the natural gradient ∇̃θ J̄(θ) can be computed using the Fisher information

matrix F (θ) via

∇̃θ J̄ (θ) := F (θ)−1∇θ J̄ (θ) , (2.20)

where the Fisher information matrix is defined as

F (θ) :=
∫
Rn

∇θ ln(Pθ(x))∇θ ln(Pθ(x))T Pθ(d x) . (2.21)

Combining (2.20), (2.19) gives the formulation of NESs which update the distribution parame-

ter θt through a stochastic natural gradient descent

θt+1 = θt −ηF (θt )−1∇est
θt

J̃ (θt ) . (2.22)
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Note that the Fisher information matrix can be approximated as done in [139]. However, in

[3, 59] expressions of the Fisher information matrix for multivariate Gaussian distribution are

given.

The criterion J̃ (θ) is not invariant to the composition of f by strictly increasing transformations

(see 2.4.5), and therefore the algorithm defined in (2.22) is not either. In [138] following

[111], in order for the NES to be invariant under the composition of f by strictly increasing

transformations, the gradient ∇θ J̃ (θ) is estimated through the rankings of the different samples

(Y i )i∈[1..λ] instead of through their f -value, i.e.

∇est,2
θ

J̃ (θ) = 1

λ

λ∑
i=1

wi∇θ ln
(
Pθ

(
Y i :λ

))
, (2.23)

where (Y i )i∈[1..λ] is a i.i.d. sequence of random elements with distribution Pθ and Y i :λ denotes

the element of the sequence (Y i )i∈[1..λ] with the i th lowest f -value, and (wi )i∈[1..λ] ∈ Rλ is a

decreasing sequence of weight such that
∑λ

i=1 |wi | = 1. The approximated gradient ∇est,2
θ

J̃ (θ)

can be used in (2.22) instead of ∇est
θ

J̃ (θ) to make NES invariant with respect to the composition

of f by strictly increasing transformations.

When the probability distribution family (Pθ)θ∈Θ is the multivariate Gaussian distributions, an

NES with exponential parametrization of the covariance matrix results results in eXponential

NES [59] (xNES).

Information Geometry Optimization

Information Geometry Optimization [111] (IGO) offers another way to turn a family of proba-

bilities (Pθ)θ∈Θ into an optimization algorithm. Instead of using J̃ (θ) of (2.16) as in NES, IGO

considers a criterion invariant to the composition of f by strictly increasing transformations

Jθt (θ) :=
∫
Rn

W f
θt

(x)Pθ(d x) , (2.24)

where W f
θt

, the weighted quantile function, is a transformation of f using Pθt -quantiles q≤
θt

and q<
θt

defined as

q≤
θt

(x) := Pr
(

f (Y ) ≤ f (x)|Y ∼ Pθ
)

(2.25)

q<
θt

(x) := Pr
(

f (Y ) < f (x)|Y ∼ Pθ
)

(2.26)

and which define W f
θt

as

W f
θt

(x) :=
 w

(
q≤
θt

(x)
)

if q≤
θt

(x) = q<
θt

(x)

1
q≤
θt

(x)−q<
θt

(x)

∫ q≤
θt

(x)

q<
θt

(x)
w(q)d q otherwise,

(2.27)

where the function w : [0,1] → R is any non-increasing function. Note that small f -values

correspond to high values of W f
θt

. Hence minimizing f translates into maximizing Jθt (θ) over
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Θ.

In order to estimate W f
θt

, λ points (Y i )i∈[1..λ] are sampled independently from Pθt and ranked

according to their f -value. We define their rankings through the function rk< : y ∈ {Y i |i ∈
[1..λ]} 7→ #{ j ∈ [1..λ]| f (Y j ) < f (y)}, and then we define ŵi as

ŵi

((
Y j

)
j∈[1..λ]

)
:= 1

λ
w

(
rk<(Y i )+ 1

2

λ

)
(2.28)

where w : [0,1] →R is the same function as in (2.27). The IGO algorithm with parametrization

θ, sample size λ ∈N∗ and step-size δt ∈ R∗+ is then defined as a stochastic natural gradient

ascent via the update

θt+δt = θt +δtF (θt )−1 1

λ

λ∑
i=1

ŵi

((
Y j

)
j∈[1..λ]

)
∇θ ln

(
Pθ

(
Y i

))∣∣∣
θ=θt

, (2.29)

where F (θt ) is the Fisher information matrix defined in (2.21), and (Y j ) j∈[1..λ] are i.i.d. random

elements with distribution Pθt . Note that the estimate of W f
θt

, ŵi , is also invariant to the

composition of f by strictly increasing transformations, which makes IGO invariant to the

composition of f by strictly increasing transformations. Note that as shown in [111, Theo-

rem 6], 1/λ
∑λ

i=1 ŵi ((Y j ) j∈[1..λ]) ∇θ ln(Pθ(Y i ))
∣∣
θ=θt

is a consistent estimator of ∇θ Jθt (θ)
∣∣
θ=θt

.

IGO offers a large framework for optimization algorithms. As shown in [111, Proposition 20],

IGO for multivariate Gaussian distributions corresponds to the (µ/µW ,λ)-CMA-ES with rank-

µ update (i.e. c1 = 0, cσ = 1). IGO can also be used in discrete problems, and as shown in

[111, Proposition 19], for Bernoulli distributions IGO corresponds to the Population-Based

Incremental Learning [27].

2.4 Problems in Continuous Optimization

Optimization problems can be characterized by several features that can greatly impact the

behaviour of optimization algorithms on such problems, thus proving to be potential sources

of difficulty. We first identify some of these features, then discuss functions that are important

representatives of these features or that relate to optimization problems in general. Some

algorithms can be insensitive to specific types of difficulty, which we will discuss through the

invariance of these algorithms to a class of functions.

2.4.1 Features of problems in continuous optimization

Following [22], we give here a list of important features impacting the difficulty of optimization

problems. For some of the difficulties, we also give examples of algorithms impacted by the

difficulty, and techniques or algorithms that alleviate the difficulty.

A well-known, albeit ill-defined, source of difficulty is ruggedness. We call a function rugged

when its graph is rugged, and the more complex or rugged this graph is, the more information

is needed to correctly infer the shape of the function, and so the more expensive it gets to

26



2.4. Problems in Continuous Optimization

optimize the function. This ruggedness may stem from the presence of many local optima

(which is called multi-modality), the presence of noise (meaning that the evaluation of a point

x ∈ X by f is perturbated by a random variable, so two evaluations of the same point may

give two different f -values), or the function being not differentiable or even not continuous.

Noise is a great source of difficulty, and appears in many real-world problems. We develop it

further in Section 2.4.4. The non-differentiability or continuity of the function is obviously a

problem for algorithms relying on such properties, such as first order algorithms like gradient

based methods. When the gradient is unavailable, these algorithms may try to estimate it

(e.g. through a finite difference method [89]), but these methods are sensitive to noise or

discontinuities. In contrast, as developed in Section 2.4.5, function-free value algorithms

are in a certain measure resilient to discontinuities. Multi-modality is also a great source of

difficulty. A multi-modal function can trap an optimization algorithm in a local minimum,

which then needs to detect it to get outside of the local minimum. This is usually done simply

by restarting the algorithm at a random location (see [107] and [94, Chapter 12] for more

on restarts). To try to avoid falling in a local optima, an algorithm can increase the amount

of information it acquires at each iteration (e.g. increase of population in population-based

algorithms). How large should the increment be is problem dependent, so some algorithms

adapt this online over each restart (e.g. IPOP-CMA-ES [23]).

The dimension of the search space X is a well known source of difficulty. The "curse of

dimensionality" refers to the fact that volumes grow exponentially with the dimension, and so

the amount of points needed to achieve a given density in a volume also grows exponentially.

Also, algorithms that update full n×n matrices, such as BFGS (see 2.2.1) or CMA-ES (see 2.3.8)

typically perform operations such as matrices multiplication or inversion that scale at least

quadratically with the dimension. So in very high dimension (which is called large-scale) the

time needed to evaluate the objective function can become negligible compared to the time

for internal operations of these algorithms, such as matrices multiplication, inversion or eigen

values decomposition. In a large-scale context, these algorithms therefore use sparse matrices

to alleviate this problem (see [90] for BFGS, or [92] for CMA-ES).

Ill-conditioning is another common difficulty. For a function whose level sets are close to an

ellipsoid, the conditioning can be defined as the ratio between the largest and the smallest

axis of the ellipsoid. A function is said ill-conditioned when the conditioning is large (typically

larger than 105). An isotropic ES (i.e. whose sampling distribution has covariance matrix I d n ,

see Section 2.3.8) will be greatly slowed down. Algorithms must be able to gradually learn the

local conditioning of the function through second order models approximating the Hessian or

its inverse (as in BFGS or CMA-ES).

A less known source of difficulty is non-separability. A function f with global optimum

x∗ = (x∗
1 , . . . , x∗

n) ∈ Rn is said separable if for any i ∈ [1..n] and any (a j ) j∈[1..n] ∈ Rn , x∗
i =

argminx∈R f (a1, . . . , ai−1, x, ai+1, . . . , an). This implies that the problem can be solved by solv-

ing n one-dimensional problems, and that the coordinate system is well adapted to the

problem. Many algorithms assume the separability of the function (e.g. by manipulating

vectors coordinate-wise), and their performances can hence be greatly affected when the

function is not separable.
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Constraints are another source of difficulty, especially as many optimization algorithms

are tailored with unconstrained optimization in mind. While any restriction of the search

space from Rn to one of its subset is a constraint, constraints are usually described through

two sequences of functions (gi )i∈[1..r ] and (hi )i∈[1..r ], the inequality constraints and equality

constraints. The constrained optimization problem then reads

min
x∈Rn

f (x)

subject to gi (x) ≥ 0 for i ∈ [1..r ] and

hi (x) = 0 for i ∈ [1..s] .

Constraints are an important problem in optimization, and many methods have been devel-

oped to deal with them [100, 51, 109]. This subject is developed further in this section.

2.4.2 Model functions

In order to gain insight in an optimization algorithm, it is often useful to study its behaviour

on different test functions which represent different situations and difficulties an algorithm

may face in real-world problems. Important classes of test functions include

• Linear functions: If the algorithm admits a step-size σt , linear functions model when

the step-size is small compared to the distance to the optimum. The level sets of the

objective function may then locally be approximated by hyperplanes, which corresponds

to the level sets of a linear function. Since a linear function has no optimum, we say that

an optimization algorithm solves this function if the sequence ( f (X t ))t∈N diverges to

+∞, where X t is the solution recommended by the algorithm at step t . Linear functions

need to be solved efficiently for an algorithm using a step-size to be robust with regards

to the initialization.

• Sphere function: The sphere function is named after the shape of its level sets and is

usually defined as

fspher e : x ∈Rn 7→ ‖x‖2 =
n∑

i=1
[x]2

i .

The sphere function model an optimal situation where the algorithm is close to an

optimum of a convex, separable and well conditioned problem. Studying an algorithm

on the sphere function tells how fast we can expect an algorithm to converge in the best

case. The isotropy and regularity properties of the sphere function also make theoretical

analysis of optimization algorithms easier, and so they have been the subject of many

studies [33, 18, 78, 79].

• Ellipsoid functions: Ellipsoid functions are functions of the form

fel l i psoi d : x ∈Rn 7→ xT OT DOx ,
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where D is a diagonal matrix and O is an orthogonal matrix, and so the level sets are

ellipsoids. Denoting ai the eigenvalues of D , the number maxi∈[1..n] ai /mini∈[1..n] ai is

the condition number. When O = I d n and with a large condition number, ellipsoid

functions are ill-conditioned separable sphere functions, making them interesting func-

tions to study the impact of ill-conditioning on the convergence of an algorithm. When

the matrix OT DO is non diagonal and has a high condition number, the ill-conditioning

combined with the rotation makes the function non-separable. Using ellipsoids with

both OT DO diagonal or non-diagonal and high condition number can therefore give a

measure of the impact of non-separability on an algorithm.

• Multimodal functions: Multimodal functions are very diverse in shape. Multimodal

functions may display a general structure leading to the global optimum, such as the

Rastrigin function [106]

frastrigin := 10n +
n∑

i=1
[x]2

i +10cos(2π[x]i ) .

The global structure of frastrigin is given by
∑n

i=1[x]2
i , while many local optima are created

by 10cos(2π[x]i ). In some functions, such as the bi-Rastrigin Lunacek function [55]

flunacek := min

{
n∑

i=1
([x]i −µ1)2, dn + s

n∑
i=1

([x]i −µ2)2

}
+10

n∑
i=1

(1−cos(2π[x]i )) ,

where (µ1,d , s) ∈R3 and µ2 =−
√
µ2

1 −d/s, this general structure is actually a trap. Oth-

ers display little general structure and algorithms need to fall in the right optimum.

These functions can be composed by a diagonal matrix and/or rotations to further study

the effect of ill-conditioning and non-separability on the performances of optimization

algorithms.

2.4.3 Constrained problems

In constrained optimization, an algorithm has to optimize a real-valued function f defined

on a subset of Rn which is usually defined by inequality functions (gi )i∈[1..r ] and equality

functions (hi )i∈[1..s]. The problem for minimization then reads

min
x∈Rn

f (x)

subject to gi (x) ≥ 0 for i ∈ [1..r ] and

hi (x) = 0 for i ∈ [1..s]

Constraints can be linear or non-linear. Linear constraints appear frequently as some variables

are required to be positive or bounded. When all coordinates are bounded, the problem is

said to be box constrained. Constraints can also be hard (solutions are not allowed to violate

the constraints) or soft (violation is possible but penalized). The set of points for which the

constraints are satisfied is called the feasible set. Note that an equality constraint h(x) = 0

29



Chapter 2. Introduction to Black-Box Continuous Optimization

can be modelled by two inequality constraints h(x) ≥ 0 and −h(x) ≥ 0, so for simplicity of

notations we consider in the following only inequality constraints.

In the case of constrained problems, necessary conditions on a C 1 objective function for the

minimality of f (x∗), such as ∇x∗ f = 0, do not hold. Indeed, an optimum x∗ can be located on

constraint boundaries. Instead, Karush-Kuhn-Tucker (KKT) conditions [82, 86] offer necessary

first order conditions for the minimality of f (x∗).

Real world problems often impose constraints on the problem, but many continuous optimiza-

tion algorithms are designed for unconstrained problems [128, 28]. For some optimization

algorithms a version for box constraints has been specifically developed (e.g. BOBYQA [113]

for NEWUOA [112], L-BFGS-B [38] for L-BFGS [90]). In general, many techniques have been

developed to apply these algorithms to constrained problems, and a lot of investigation has

been done on the behaviour of different algorithms coupled with different constraint-handling

methods, on different search functions [103, 50, 100, 6, 124, 109].

An overview of constraint-handling methods for Evolutionary Algorithms has been concluded

in [51, 100]. Since ESs, which are Evolutionary Algorithms, are the focus of this thesis, fol-

lowing [51, 100] we present a classification of constraint handling methods for Evolutionary

Algorithms:

• Resampling: if new samples are generated through a random variable that has positive

probability of being in the feasible set, then if it is not feasible it can be resampled until

it lies in the feasible set. Although this method is simple to code, resampling can be

computationally expensive, or simply infeasible with equality constraints.

• Penalty functions: penalty functions transform the constrained problem in an uncon-

strained one by adding a component to the objective function which penalizes points

close to the constraint boundary and unfeasible points [109, Chapter 15,17][133]. The

problem becomes minx∈Rn f (x)+p(x)/µ where p is the penalty function and µ ∈R∗+ is

the penalty parameter and determines the importance of not violating the constraint,

and the constrained problem can be solved by solving the unconstrained one with de-

creasing values of µ [109, Chapter 15]. The penalty parameter is often adapted through-

out the optimization (see e.g. [93, 65]). Generally, p(x) = 0 if x is feasible [100], although

for barrier methods unfeasible solutions are given an infinite fitness value, and p(x)

increases as x goes near the constraints boundaries [109, 133]. Usually the function p is

a function of the distance to the constraint, or a function of the amount of violated con-

straints [133]. A well-known penalty function is the augmented Lagrangian [29] which

combine quadratic penalty functions [137] with Lagrange multipliers from the KKT con-

ditions into p(x) =∑r
i=1 pi (x) where pi (x) =−λi

t gi (x)+gi (x)2/(2µ) if gi (x)−µλi ≤ 0, and

pi (x) =−µλ2
i /2 otherwise. The coefficients (λi )i∈[1..r ] are estimates of the Lagrangian

multipliers of the KKT conditions, and are adapted through λi ← max(λi − gi (x)/µ,0).

• Repairing: repairing methods replace unfeasible points with feasible points, e.g. by

projecting the unfeasible point to the nearest constraint boundary [6]. See [124] for a

survey of repair methods.
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• Special operators or representations: these methods ensures that new points cannot

be unfeasible by changing how the points are sampled directly in the algorithm, or

finding a representation mapping the feasible space X to Rd [105, 85, 102]. In [85], the

feasible space is mapped to a n-dimensional cube (which corresponds to Rn with spe-

cific linear constraints), and in [105] the feasible space constrained by linear functions is

mapped to the unconstrained space Rn . Resampling and repair can also be considered

as special operators.

• Multiobjective optimization: contrarily to penalty functions where the objective func-

tion and constraint functions are combined into a new objective function, the con-

strained problem can be seen instead as a problem where both the objective function

and the violation of the constraints are optimized as a multiobjective problem (see [99]

for a survey).

2.4.4 Noisy problems

A function is said noisy when the reevaluation of the f -value of a point x can lead to a different

value. Noisy functions are important to study as many real-world problems contain some noise

due to the imperfection of measurements, data, or because simulations are used to obtain a

value of the function to be optimized. For x ∈ X , the algorithm does not have direct access

to f (x), but instead the algorithm queries a random variable F (x). Different distributions for

F (x) have been considered [17], and correspond to different noise models, e.g.

Additive noise [80] : F (x)
d= f (x)+N

Multiplicative noise [5] : F (x)
d= f (x)(1+N )

Actuator noise [131] : F (x)
d= f (x +N ) ,

where N and N are random elements. When N is a standard normal variable, the noise is

called Gaussian noise [80]. Other distributions for N have been studied in [12], such as Cauchy

distributions in [11].

The inaccuracy of the information acquired by an optimization algorithm on a noisy function

(and so, the difficulty induced by the noise) is directly connected to the variation of f -value

respectively to the variance of the noise, called the signal-to-noise ratio [65]. In fact, for addi-

tive noise on the sphere function where this ratio goes to 0 when the algorithm converges to

the optimum, it has been shown in [17] that ESs do not converge log-linearly to the minimum.

An overview of different techniques to reduce the influence of the noise is realized in [80]. The

variance of the noise can be reduced by a factor
p

k by resampling k times the same point.

The number of times a point is resampled can be determined by a statistical test [39], and for

EAs displaying a population of points, which point should be resampled can be chosen using

the ranking of the points [1]. Another method to smooth the noise is to construct a surrogate

model from the points previously evaluated [125, 36], which can average the effect of the noise.

Population based algorithms, such as EAs, are naturally resilient to noise [5], and a higher
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population size implicitly reduces the noise [8]. For an ES, increasing only the population size

λ is inferior to using resampling [62], but increasing both λ and µ is superior [5] when the

step-size is appropriately adapted.

2.4.5 Invariance to a class of transformations

Invariances [69, 70, 25] are strong properties that can make an algorithm insensitive to some

difficulties. They are therefore important indicators of the robustness of an algorithm, which

is especially useful in black-box optimization where the algorithms need to be effective on a

wide class of problems.

An algorithm is said to be invariant to a class of transformations C if for all functions f and any

transformation g ∈C , the algorithm behaves the same on f and g ◦ f or f ◦ g , depending on

the domain of g . More formally following [69], let H : {X →R} → 2{X→R} be a function which

maps a function f : X →R to a set of functions, let S denote the state space of an algorithm A ,

and A f : S → S be an iteration of A under an objective function f . The algorithm A is called

invariant under H if for all f : X →R and h ∈H ( f ) there exists a bijection T f ,h : S → S such

that

Ah ◦T f ,h(s) = T f ,h(s)◦A f . (2.30)

A basic invariance is invariance to translations, which is expected of any optimization al-

gorithm. An important invariance shared by all FVF algorithms is the invariance to strictly

increasing functions. This implies that a FVF algorithm can optimize just as well a smooth

function than its composition with any non-convex, non-differentiable or non-continuous

function, which indicates robustness against rugged functions [58]. Another important invari-

ance is the invariance to rotations. This allows a rotation invariant algorithm to have the same

performances on an ellipsoid and a rotated ellipsoid, showing robustness on non-separable

functions.

The No Free Lunch theorem [141] states (for discrete optimization) that improvement over

a certain class of functions is offset by lesser performances on another class of functions.

Algorithms exploiting a particular property of a function may improve their performances

when the objective function has this property, at the cost invariance and of their performances

on other functions. For example, algorithms exploiting separability are not invariant to rota-

tions. In [70] CMA-ES (see 2.3.8) is shown to be invariant to rotations, while the performances

of PSO (see 2.3.4) are shown to be greatly impacted on ill-conditioned non-separable func-

tions. In [21] the dependence of BFGS (see 2.2.1), NEWUOA (see 2.2.2), CMA-ES and PSO on

ill-conditioning and separability is investigated.
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2.5 Theoretical results and techniques on the convergence of Evo-

lution Strategies

We will present a short overview of theoretical results on ESs. Most theoretical studies on ESs

are focused on isotropic ESs (that is the covariance matrix of their sampling distribution is

equal to the identity matrix throughout the optimization).

Almost sure convergence of elitist ESs with constant step-size (or non-elitist ESs in a bounded

search space) has been shown in [121][20] on objective functions with bounded sublevel sets

Eε := {x ∈ X | f (x) ≤ ε}. However constant step-size implies a long expected hitting time of the

order of 1/εn to reach an ε-ball around the optimum [20], which is comparable with Pure

Random Search and therefore too slow to be practically relevant. Note that when using step-

size adaptation, ESs are not guaranteed convergence, and the (1+1)-ES using the so-called 1/5

success rule has been shown with probability 1 to not converge to the optimum of a particular

multi-modal function [122]. Similarly, on a linear function with a linear constraint, a (1,λ)-

CSA-ES and a (1,λ)-σSA-ES can converge log-linearly [14, 15, 6], while on a linear function

divergence is required. In constrained problems, the constraint handling mechanism can be

critical to the convergence or divergence of the algorithm: for any value of the population

size λ or of the cumulation parameter c a (1,λ)-CSA-ES using resampling can fail on a linear

function with a linear problem, while for a high enough value of λ or low enough value of c a

(1,λ)-CSA-ES using repair appears to solve any linear function with a linear constraint [6].

The convergence rate of ESs using step-size adaptation has been empirically observed to be

log-linear on many problems. It has been shown in [135] that comparison based algorithms

which use a bounded number of comparisons between function evaluations cannot converge

faster than log-linearly. More precisely, the expected hitting time of a comparison based

algorithm into a ball B(x∗,ε) (where x∗ is the optimum of f ) is lower bounded by n ln(1/ε)

when ε → 0. And more specifically, the expected hitting time of any isotropic (1,λ) and

(1+λ)-ESs is lower bounded by bn ln(1/ε)λ ln(λ) when ε→ 0 where b ∈R∗+ is a proportionality

constant [76, 77]. On the sphere function and some ellipsoid functions for a (1+1)-ES using the

so-called 1/5-success rule, the expected number of function evaluations required to decrease

the approximation error f (X 0)− f (x∗) by a factor 2−t where t is polynomial in n has been

shown to beΘ(tn) [74, 75].

Besides studies on the expected hitting time of ESs, a strong focus has been put in proofs of

log-linear convergence, estimations of the convergence rates and the dependence between the

convergence rate and the parameters of an algorithm. Note that the estimation of convergence

rates or the investigation of their dependency with other parameters often involve the use

of Monte-Carlo simulations. For (Φt )t∈N a positive Markov chain valued on X with invariant

measure π and h : X → R a function, the fact that a Monte-Carlo simulation1/t
∑t−1

k=0 h(Φk )

converge independently of their initialisation to Eπ(h(Φ0)) is implied by the h-ergodicity of

(Φt )t∈N, which is therefore a crucial property. In many theoretical work on ESs this property is

assumed, although as presented in 1.2.9 Markov chain theory provides tools to show ergodicity.

We will start this chapter by introducing in 2.5.1 the so-called progress rate, which can be

used to obtain quantitative estimates of lower bounds on the convergence rate , and results
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obtained through it. Then in 2.5.2 we will present results obtained by analysing ESs using

the theory of Markov chains. And then in 2.5.3 we present ordinary differential equations

underlying the IGO algorithm presented in 2.3.9.

2.5.1 Progress rate

The normalized progress rate [30]) is a measurement over one iteration of an ES, defined as

the dimension of the search space n multiplied by the expected improvement in the distance

to the optimum normalized by the current distance to the optimum, knowing X t the current

mean of the sampling distribution and S t the other parameters of the algorithm or of the

problem; that is

ϕ∗ = nE
(‖X t −x∗‖−‖X t+1 −x∗‖

‖X t −x∗‖
∣∣∣∣X t , S t

)
. (2.31)

The fact that the normalized progress rate is a measurement over one iteration links the

normalized progress rate with the convergence of ESs where the step-size is kept proportional

to the distance to the optimum (see [19]). On the sphere function for isotropic ESs,ϕ∗ depends

of the distance to the optimum normalized by the step-size. Thus the normalized progress rate

is usually expressed as a function of the normalized step-size σ∗ = nσt /‖X t −x∗‖ [30], which

is a constant when the step-size is kept proportional to the distance to the optimum. This has

been used in [30, 117, 31] to define an optimal step-size as the value of σ∗ that maximizes the

normalized progress rate, and to study how the progress rate changes with σ∗. Similarly, it has

been used to define optimal values for other parameters of the algorithm, such as µ/λ for the

(µ/µ,λ)-ES [31], as the values maximizing the progress rate. Through different approximations,

the dependence of the progress rate on these values is investigated [30, 31].

The progress rate lower bounds the convergence rate of ESs. Indeed, take (X t )t∈N the sequence

of vectors corresponding to the mean of the sampling distribution of an ES, and suppose that

the sequence (‖X t −x∗‖)t∈N converges in mean log-linearly to the rate r ∈R∗+. Since for x ∈R∗+,

1−x ≤− ln(x), we have

ϕ∗ = n

(
1−E

(‖X t+1 −x∗‖
‖X t −x∗‖

∣∣∣∣X t , S t

))
≤−n ln

(
E

(‖X t+1 −x∗‖
‖X t −x∗‖

∣∣∣∣X t , S t

))
≤−nE

(
ln

(‖X t+1 −x∗‖
‖X t −x∗‖

)∣∣∣∣X t , S t

)
= nr ,

so the progress rate is a lower bound to the convergence rate multiplied by n, and a positive

progress rate implies that E(ln(‖X t+1−x∗‖/‖X t −x∗‖)) converges to a negative value. However,

suppose that ‖X t+1 −x∗‖/‖X t −x∗‖ ∼ exp(N (0,1)−a) for a ∈R∗+. Then if a is small enough,

then E(‖X t+1 −x∗‖/‖X t −x∗‖) ≥ 1 which imply a negative progress rate, while E(ln(‖X t+1 −
x∗‖/‖X t − x∗‖)) < 0 which implies log-linear convergence; hence a negative progress rate

does not imply divergence [19]. The progress rate is therefore not a tight lower bound of the

convergence rate of ESs.
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To correct this, the log-progress rate ϕ∗
ln [19] can be considered. It is defined as

ϕ∗
ln := nE

(
ln

(‖X t+1 −x∗‖
‖X t −x∗‖

)∣∣∣∣X t ,S t

)
(2.32)

By definition, the log-progress rate is equal to the expected value of the convergence rate of

ESs where the step-size is kept proportional to the optimum, which as shown in [19] consists in

a tight lower bound of the convergence rate of ESs. Furthermore, on the sphere function for a

(1,λ)-ES the normalized progress rate and the log-progress rate coincide when the dimension

goes to infinity [19, Theorem 1], which makes high dimension an important condition for the

accuracy of results involving the normalized progress rate.

Extensive research has been conducted on the progress rate, which give quantitative lower

bounds (i.e. that can be precisely estimated) to the convergence rate in many different sce-

narios [67]. The (1+1)-ES on the sphere function [117], sphere function with noise [10], the

(µ/µ,λ)-ES on the sphere function [30, 31] which gives when n →∞ an optimal ratio µ/λ of

0.27 for the sphere function, sphere function with noise [9]. Different step-size adaptation

mechanisms have also been studied where the normalized step-size is assumed to reach

a stationary distribution, and where its expected value under the stationary distribution is

approximated and compared to the optimal step-size. This has been realized for CSA (see

2.3.8) on the sphere [7] and ellipsoid functions [13], or for σSA (see (see 2.3.8)) on the linear

[63] and sphere [32] functions.

2.5.2 Markov chain analysis of Evolution Strategies

Markov chain theory was first used to study the log-linear convergence of ESs in [33], which

proves the log-linear convergence on the sphere function of a (1,λ)-ES where the step-size

is kept proportional to the distance to the optimum. It also analyses the (1,λ)-σSA-ES on

the sphere function and assumes the positivity and Harris recurrence of the Markov chain

involved, from which it deduces the log-linear convergence of the algorithm. A full proof of

the positivity and Harris recurrence of a Markov chain underlying the (1,λ)-σSA-ES, and so

of the linear-convergence of a (1,λ)-σSA-ES on the sphere function is then realized in [18].

In [79] a scale-invariant (1+1)-ES on a sphere function with multiplicative noise is proven

to converge log-linearly almost surely if and only if the support of the noise is a subset of R∗+.

All of these studies use a similar methodology which is introduced in [25]. The paper [25]

proposes a methodology to analyse comparison-based algorithms adapting a step-size, such

as ESs, on scaling invariant functions. Scaling invariant functions are a wide class of functions

which includes the sphere, the ellipsoid and the linear functions. A function f : Rn → R is

called scaling invariant with respect to x∗ ∈Rn if

f (x) ≤ f (y) ⇔ f (x∗+ρ(x−x∗)) ≤ f (x∗+ρ(y−x∗)) , for all (x , y) ∈Rn×Rn , ρ ∈R∗
+ . (2.33)

Scaling invariant functions are useful to consider in the context of comparison-based algo-

rithms (such as ESs), as the fact that they are comparison based makes them invariant to any

rescaling of the search space around x∗. Note that, as shown in [25], a function which is scaling
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invariant with respect to x∗ cannot have any strict local optima except for x∗ (and x∗ may

not be a local optima, e.g. for linear functions). A more structured class of scaling invariant

functions is positively homogeneous functions: a function f : Rn → R is called positively

homogeneous with degree α> 0 if

f (ρx) = |ρ|α f (x) for all ρ > 0 and x ∈Rn . (2.34)

As shown in [25] the class of scaling invariant functions is important for ESs as, under a few

assumptions, on scaling invariant functions the sequence (X t /σt )t∈N is a time-homogeneous

Markov chain. Proving that this Markov chain is positive and Harris recurrent can be used

to show the linear convergence or divergence of the ES. The methodology proposed in [25]

is used in [24] to show the log-linear convergence of a (1+1)-ES with a step-size adaptation

mechanism called the one-fifth success rule [117] on positively homogeneous functions.

2.5.3 IGO-flow

Let (Pθ)θ∈Θ denote a family of probability distributions parametrized by θ ∈ Θ. The IGO-

flow [111] is the set of continuous-time trajectories on the parameter spaceΘ defined by the

ordinary differential equation

dθt

d t
= F (θt )−1

∫
Rn

W f
θt

(x) ∇θ ln(Pθ(x))|θ=θt
Pθt (d x) , (2.35)

where F (θt ) is the Fisher information matrix defined in (2.21), and W f
θt

is the weighted quantile

function defined in (2.27). IGO algorithms defined in 2.3.9 are a time discretized version of

the IGO-flow, where W f
θt

(x) and the gradient ∇θ ln(Pθ(x))|θ=θt
are estimated using a number

λ ∈ N∗ of samples (Y i )i∈[1..λ] i.i.d. with distribution Pθt through the consistent estimator

1/λ
∑λ

i=1 ŵi ((Y j ) j∈[1..λ]) ∇θ ln(Pθ(Y i ))
∣∣
θ=θt

(see [111, Theorem 6]), with ŵi defined in (2.28).

IGO algorithms offer through the IGO-flow a theoretically tractable model. In [2] the IGO-

flow for multivariate Gaussian distributions with covariance matrix equal to σt I d n has been

shown to locally converge on C 2 functions with Λn-negligible level sets to critical points of

the objective function that admit a positive definite Hessian matrix; this holds under the

assumption that (i) the function w used in (2.27) is non-increasing, Lipschitz-continuous

and that w(0) > w(1); and (ii) the standard deviation σt diverges log-linearly on the linear

function. Furthermore, as the (µ/µW ,λ)-CMA-ES with rank-µ update (i.e. cσ = 1, c1 = 0, see

2.3.8) and the xNES described in 2.3.9 have both been shown to be connected with IGO for

multivariate Gaussian distributions (see [111, Proposition 20, Proposition 21], results in the

IGO-flow framework have impact on the CMA-ES and the NES.
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Contributions to Markov Chain Theory

In in this chapter we present a model for Markov chains for which we derive sufficient condi-

tions to prove that a Markov chain is a ϕ-irreducible aperiodic T -chain and that compact sets

are small sets for the chain. Similar results using properties of the underlying deterministic

control model as presented in 1.2.6 have been previously derived in [98, Chapter 7]. These

results are placed in a context where the Markov chain studiedΦ= (Φt )t∈N, valued on a state

space X which is a open subset of Rn , can be defined through

Φt+1 =G(Φt ,U t+1) , (3.1)

where G : X ×Rp → X is a measurable function that we call the transition function, and

(U t )t∈N∗ is a i.i.d. sequence of random elements valued in Rp . To obtain the results of [98,

Chapter 7] the transition function G is assumed to be C∞ and the random element U 1 is

assumed to admit a lower semi-continuous density p. However the transition functions as

described in (3.1) of most of the Markov chains that we study in the context of ESs are not

C∞, and not even continuous due to the selection mechanism in ESs, and so the results of [98,

Chapter 7] cannot be applied to most of our problems.

However, we noticed in our problems the existence of α : X ×Rp →O a measurable function

where O is an open subset of Rm , such that there exists a C∞ function F : X ×O → X for which

we can define our Markov chain through

Φt+1 = F (Φt ,α(Φt ,U t+1)) . (3.2)

With this new model where the function α is typically discontinuous, and the sequence

(W t+1)t∈N = (α(Φt ,U t+1))t∈N is typically not i.i.d., we give sufficient conditions related to the

ones of [98, Chapter 7] to prove that a Markov chain is ϕ-irreducible, aperiodic T -chain and

that compact sets are small sets. These conditions are

1. the transition function F is C 1,

2. for all x ∈ X the random element α(x ,U 1) admits a density px ,

3. the function (x , w ) 7→ px (w ) is lower semi-continuous,
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4. there exists x∗ ∈ X a strongly globally attracting state, k ∈N∗ and w∗ ∈Ox∗,k such that

F k (x∗, ·) is a submersion at w∗.

The set Ox∗,k is the support of the conditional density of (W t )t∈[1..k] knowing thatΦ0 = x∗; F k

is the k-steps transition function inductively defined by F 1 = F and F t+1(x , w 1, . . . , w t+1) =
F t (F (x , w 1), w 2, . . . , w t+1); and the concept of strongly globally attracting states is introduced

in the paper presented in this chapter, namely x∗ ∈ X is called a strongly globally attracting

state if

∀y ∈ X , ∀ε> 0, ∃ty ,ε ∈N∗ such that ∀t ≥ ty ,ε, At
+(y)∩B(x∗,ε) 6= ; , (3.3)

with At+(y) the set of states reachable at time t from y , as defined in (1.11).

To appreciate these results it is good to know that proving the irreducibility and aperiodicity of

some Markov chains exhibited in [25] used to be a ad-hoc and tedious process, in some cases

very long and difficult1, while proving so is now relatively trivial.

We present this new model and these conditions in the following paper, and in the same

paper we use these conditions to show the ϕ-irreducibility, aperiodicity and the property that

compact sets are small sets, for Markov chains underlying the so-called xNES algorithm [59]

with identity covariance matrix on scaling invariant functions, and for the (1,λ)-CSA-ES

algorithm on a linear constrained problem with the cumulation parameter cσ equal to 1,

which were problems we could not solve before these results.

3.1 Paper: Verifiable Conditions for Irreducibility, Aperiodicity and

T-chain Property of a General Markov Chain

The following paper [42] will soon be submitted to Bernoulli, and presents sufficient conditions

for the irreducibility, aperiodicity, T -chain property and the property that compact sets are

petite sets for a Markov chain, and then presents some applications of these conditions to

problems involving ESs as mentioned in the beginning of this chapter. The different ideas and

proofs in this work are a contribution of the first author. The second author gave tremendous

help to give the paper the right shape, and to proof read as well as discuss the different ideas

and proofs.

1Anne Auger, private communication, 2013.
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We consider in this paper Markov chains on a state space being an open subset of Rn that obey
the following general non linear state space model: Φt+1 = F (Φt, α(Φt,Ut+1)) , t ∈ N, where
(Ut)t∈N∗ (each Ut ∈ Rp) are i.i.d. random vectors, the function α, taking values in Rm, is a
measurable typically discontinuous function and (x,w) 7→ F (x,w) is a C1 function. In the spirit
of the results presented in the chapter 7 of the Meyn and Tweedie book on “Markov Chains
and Stochastic Stability”, we use the underlying deterministic control model to provide sufficient
conditions that imply that the chain is a ϕ-irreducible, aperiodic T-chain with the support of the
maximality irreducibility measure that has a non empty interior. Our results rely on the coupling
of the functions F and α: we assume that for all x, α(x,U1) admits a lower semi-continuous
density and then pass the discontinuities of the overall update function (x,u) 7→ F (x, α(x,u))
into the density while the function (x,w) 7→ F (x,w) is assumed C1. In contrast, using previous
results on our modelling would require to assume that the function (x,u) 7→ F (x, α(x,u)) is
C∞.

We introduce the notion of a strongly globally attracting state and we prove that if there
exists a strongly globally attracting state and a time step k, such that we find a k-path such
that the kth transition function starting from x∗, F k(x∗, .), is a submersion at this k-path, the
the chain is a ϕ-irreducible, aperiodic, T -chain.

We present two applications of our results to Markov chains arising in the context of adaptive
stochastic search algorithms to optimize continuous functions in a black-box scenario.
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1. Introduction

Let X be an open subset of Rn and O an open subset of Rm equipped with their Borel
sigma-algebra B(X) and B(O) for n,m two integers. This paper considers Markov chains
Φ = (Φt)t∈N defined on X via a multidimensional non-linear state space model

Φt+1 = G (Φt,Ut+1) , t ∈ N (1)

where G : X × Rp → X (for p ∈ N) is a measurable function (Rp being equipped of the
Borel sigma-algebra) and (Ut)t∈N∗ is an i.i.d. sequence of random vectors valued in Rp
and defined on a probability space (Ω,A,P) independent of Φ0 also defined on the same
probability space, and valued in X. In addition, we assume that Φ admits an alternative
representation under the form

Φt+1 = F (Φt, α(Φt,Ut+1)) , (2)

where F : X × O → X is in a first time assumed measurable, but will typically be
C1 unless explicitly stated and α : X × Rp → O is measurable and can typically be
discontinuous. The functions F , G and α are connected via G(x,u) = F (x, α(x,u)) for
any x in X and u ∈ Rp such that G can also be typically discontinuous.

Deriving ϕ-irreducibility and aperiodicity of a general chain defined via (1) can some-
times be relatively challenging. An attractive way to do so is to investigate the underlying
deterministic control model and use the results presented in [8, Chapter 7] that connect
properties of the control model to the irreducibility and aperiodicity of the chain. Indeed,
it is typically easy to manipulate deterministic trajectories and prove properties related
to this deterministic path. Unfortunately, the conditions developed in [8, Chapter 7] as-
sume in particular that G is C∞ and Ut admits a lower semi-continuous density such
that they cannot be applied to settings where G is discontinuous.

In this paper, following the approach to investigate the underlying control model for
chains defined with (2), we develop general conditions that allow to easily verify ϕ-
irreducibility, aperiodicity, the fact that the chain is a T-chain and identify that compact
sets are small sets for the chain. Our approach relies on the fundamental assumptions
that while α can be discontinuous, given x ∈ X, α(x,U) for U distributed as Ut admits
a density px(w) where w ∈ O such that p(x,w) = px(w) is lower semi-continuous. Hence
we “pass” the discontinuity of G coming from the discontinuity of α into this density.

The model (2) is motivated by Markov chains arising in the stochastic black-box
optimization context. Generally, Φt represents the state of a stochastic algorithm, for
instance mean and covariance matrix of a multivariate normal distribution used to sample
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candidate solutions, Ut+1 contains the random inputs to sample the candidate solutions
and α(Φt,Ut+1) models the selection of candidate solutions according to a black-box
function f : Rd → R to be optimized. This selection step is usually discontinuous
as points having similar function values can stem from different sampled vectors Ut+1

pointing to different solutions α(Φt,Ut+1) belonging however to the same level set. The
function F corresponds then to the update of the state of the algorithm given the selected
solutions, and this update can be chosen to be at least C1. Some more detailed examples
will be presented in Section 4. For some specific functions to be optimized, proving the
linear convergence of the optimization algorithm can be done by investigating stability
properties of a Markov chain underlying the optimization algorithm and following (2)
[1, 2, 3]. Aperiodicity and ϕ-irreducibility are then two basic properties that generally
need to be verified. This verification can turn out to be very challenging without the
results developed in this paper. In addition, Foster-Lyapunov drift conditions are usually
used to prove properties like Harris-recurrence, positivity or geometric ergodicity. Those
drift conditions hold outside small sets. It is thus necessary to identify some small sets
for the Markov chains.

Overview of the main results and structure of the paper The results we present
stating the ϕ-irreducibility of a Markov chain defined via (2) uses the concept of global
attractiveness of a state–also used in [8]–that is a state that can be approached infinitely
close from any initial state. We prove in Theorem 2 that if F is C1 and the density
px(w) is lower semi-continuous, then the existence of a globally attractive state x∗ for
which at some point in time, say k, we have a deterministic path such that the kth

transition function starting from x∗, F k(x∗, .) is a submersion at this path, implies the
ϕ-irreducibility of the chain. If we moreover assume that F is C∞, we can transfer the
Theorem 7.2.6 of [8] to our setting and show that if the model is forward accessible, then
ϕ-irreducibility is equivalent to the existence of a globally attracting state.

To establish the aperiodicity, we introduce the notion of a strongly globally attracting
state that is, informally speaking, a globally attracting state, x∗, for which for any initial
state and any distance ε > 0, there exists a time step, say ty, such that we find for all
time step larger than ty a deterministic path that puts the chain within distance ε of x∗.
We then prove in Theorem 3 that under the same conditions than for the ϕ-irreducibility
but holding at a strongly globally attracting state (instead of only a globally attracting
state), the chain is ϕ-irreducible and aperiodic.

Those two theorems contain the main ingredients to prove the main theorem of the
paper, Theorem 1, that under the same conditions than for the aperiodicity states that
the chain is a ϕ-irreducible aperiodic T -chain for which compact sets are small sets.

This paper is structured as follows. In Section 2, we introduce and remind several
definitions related to the Markov chain model of the paper needed all along the paper.
We also present a series of technical results that are necessary in the next sections. In
Section 3 we present the main result, i.e. Theorem 1, that states sufficient conditions
for a Markov chain to be a ϕ-irreducible aperiodic T -chain for which compact sets are
small sets. This result is a consequence of the propositions established in the subsequent
subsections, namely Theorem 2 for the ϕ-irreducibility, Theorem 3 for the aperiodicity
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and Proposition 5 for the weak-Feller property. We also derive intermediate propositions
and corollaries that clarify the connection between our results and the ones of [8, Chap-
ter 7] (Proposition 3, Corollary 1) and that characterize the support of the maximal
irreducibility measure (Proposition 4). We present in Section 4 two applications of our
results. We detail two homogeneous Markov chains associated to two adaptive stochastic
search algorithms aiming at optimizing continuous functions, sketch why establishing
their irreducibility, aperiodicity and identifying some small sets is important while ex-
plaining why existing tools cannot be applied. We then illustrate how the assumptions
of Theorem 1 can be easily verified and establish thus that the chains are ϕ-irreducible,
aperiodic, T-chains for which compact sets are small sets.

Notations

For A and B subsets of X, A ⊂ B denotes that A is included in B (( denotes the
strict inclusion). We denote Rn the set of n-dimensional real vectors, R+ the set of
non-negative real numbers, N the set of natural numbers {0, 1, . . .}, and for (a, b) ∈ N2,

[a..b] =
⋃b
i=a{i}. For A ⊂ Rn, A∗ denotes A\0. For X a metric space, x ∈ X and ε > 0,

B(x, ε) denotes the open ball of center x and radius ε. For X ⊂ Rn a topological space,
B(X) denotes the Borel σ-algebra on X. We denote Λn the Lebesgue measure on Rn, and
for B ∈ B(Rn), µB denotes the trace-measure A ∈ B(Rn) 7→ Λn(A∩B). For (x,y) ∈ Rn,
x.y denotes the scalar product of x and y, and [x]i denotes the ith coordinate of the
vector x and xT denotes the transpose of the vector. For a function f : X → Rn, we say
that f is Cp if f is continuous, and its k-first derivatives exist and are continuous. For
f : X → Rn a differentiable function and x ∈ X, Dxf denotes the differential of f at x.
A multivariate distribution with mean vector zero and covariance matrix identity is called
a standard multivariate normal distribution, a standard normal distribution correspond
to the case of the dimension 1. We use the notation N (0, In) for a indicating the standard
multivariate normal distribution where In is the identity matrix in dimension n. We use
the acronym i.i.d. for independent identically distributed.

2. Definitions and Preliminary Results

The random vectors defined in the previous section are assumed measurable with re-
spect to the Borel σ-algebras of their codomain. We denote for all t, the random vector
α(Φt,Ut+1) of O as Wt+1, i.e.

Wt+1 := α(Φt,Ut+1) (3)

such that Φ satisfies
Φt+1 = F (Φt,Wt+1) . (4)

Given Φt = x, the vector Wt is assumed absolutely continuous with distribution px(w).
The function p(x,w) = px(w) will be assumed lower semi-continuous in the whole paper.
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We remind the definition of a substochastic transition kernel as well as of a transition
kernel. Let K : X × B(X) → R+ such that for all A ∈ B(X), the function x ∈ X 7→
K(x, A) is a non-negative measurable function, and for all x ∈ X, K(x, ·) is a measure on
B(X). If K(x, X) ≤ 1 then K is called a substochastic transition kernel, and if K(x, X) =
1 then K is called a transition kernel.

Given F and px we define for all x ∈ X and all A ∈ B(X)

P (x, A) =

∫
1A(F (x,w))px(w)dw . (5)

Then the function x ∈ X 7→ P (x, A) is measurable for all A ∈ B(X) (as a consequence of
Fubini’s theorem) and for all x, P (x, .) defines a measure on (X,B(X)). Hence P (x, A)
defines a transition kernel. It is immediate to see that this transition kernel corresponds
to the transition kernel of the Markov chain defined in (2) or (4).

For x ∈ X, we denote Ox the set of w such that px is strictly positive, i.e.

Ox := {w ∈ O|px(w) > 0} = p−1x ((0,+∞)) (6)

that we call support of px
1. Similarly to [8, Chapter 7] we consider the recursive functions

F t for t ∈ N∗ such that F 1 := F and for x ∈ X and (wi)i∈[1..t+1] ∈ Ot+1

F t+1 (x,w1,w2, ...,wt+1) := F
(
F t (x,w1,w2, ...,wt) ,wt+1

)
. (7)

The function F t is connected to the Markov chain Φ = (Φt)t∈N defined via (4) in the
following manner

Φt = F t(Φ0,W1, . . . ,Wt) . (8)

In addition, we define px,t as px for t = 1 and for t > 1

px,t((wi)i∈[1..t]) := px,t−1((wi)i∈[1..t−1])pF t−1(x,(wi)i∈[1..t−1])(wt) , (9)

that is

px,t((wi)i∈[1..t]) = px(w1)pF (x,w1)(w2) . . . pF t−1(x,w1,...,wt−1)(wt) . (10)

Then px,t is measurable as the composition and product of measurable functions. Let
Ox,t be the support of px,t

Ox,t := {w = (w1, . . . ,wt) ∈ Ot|px,t(w) > 0} = p−1x,t((0,+∞)) . (11)

Then by the measurability of px,t, Ox,t is a Borel set of Ot (endowed with the Borel
σ-algebra). Note that Ox,1 = Ox.

Given Φ0 = x, the function px,t is the joint probability distribution function of
(W1, . . . ,Wt).

1Note that the support is often defined as the closure of what we call support here.
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Since px,t is the joint probability distribution of (W1, . . . ,Wt) given Φ0 = x and
because Φt is linked to F t via (8), the t-steps transition kernel P t of Φ writes

P t(x, A) =

∫

Ox,t

1A
(
F t (x,w1, . . . ,wt)

)
px,t(w)dw , (12)

for all x ∈ X and all A ∈ B(X).
The deterministic system with trajectories

xt = F t(x0,w1, . . . ,wt) = F t(x0,w)

for w = (w1, . . . ,wt) ∈ Ox,t and for any t ∈ N∗ is called the associated control model
and is denoted CM(F ). Using a similar terminology to Meyn and Tweedie’s [8], we say
that Ox is a control set for CM(F ). We introduce the notion of t-steps path from a point
x ∈ X to a set A ∈ B(X) as follows:

Definition 1 (t-steps path). For x ∈ X, A ∈ B(X) and t ∈ N∗, we say that w ∈ Ot is
a t-steps path from x to A if w ∈ Ox,t and F t(x,w) ∈ A.

Similarly to chapter 7 of Meyn-Tweedie, we define

Ak+(x) := {F k(x,w)|w ∈ Ox,k}

that is the set of all states that can be reached from x after k steps.
Note that this definition depends on the probability density function px that deter-

mines the set of control sequences w = (w1, . . . ,wk) via the definition of Ox,k. More
precisely, several density functions equal almost everywhere can be associated to a same
random vector α(x,U1). However, they can generate different sets Ak+(x).

Following [8], the set of states that can be reached starting from x at some time in
the future from x is defined as

A+(x) =

+∞⋃

k=0

Ak+(x) .

The associated control model CM(F ) is forward accessible if for all x, A+(x) has non
empty interior [6].

Finally, a point x∗ is called a globally attracting state if for all y ∈ X,

x∗ ∈
+∞⋂

N=1

+∞⋃

k=N

Ak+(y) := Ω+(y) . (13)

Although in general Ω+(y) 6= A+(y), these two sets can be used to define globally
attracting states, as shown in the following proposition.

Chapter 3. Contributions to Markov Chain Theory

44



Conditions for Irreducibility and Aperiodicity 7

Proposition 1. A point x∗ ∈ X is a globally attracting state if and only if for all
y ∈ X, x∗ ∈ A+(y).

Equivalently, a point x∗ ∈ X is a globally attracting state if and only if for all y ∈ X
and any U ∈ B(X) neighbourhood of x∗, there exists t ∈ N∗ such that there exists a
t-steps path from y to U .

Proof. Let us prove the first equivalence. Let x∗ be a globally attracting state. According

to (13), x∗ ∈ ⋃+∞
k=1A

k
+(y) = A+(y)\{y} ⊂ A+(y), so x∗ ∈ A+(y).

Let x∗ such that for all y ∈ X, x∗ ∈ A+(y). We want to show that for all y ∈ X,

x∗ ∈ ⋂+∞
N=1

⋃+∞
k=N A

k
+(y), so that for all N ∈ N∗, x∗ ∈ ⋃+∞

k=N A
k
+(y). Let N ∈ N∗. Note

that for any ỹ ∈ AN+ (y),
⋃+∞
k=N A

k
+(y) ⊃ A+(ỹ). And by hypothesis, x∗ ∈ A+(ỹ) so

x∗ ∈ ⋃+∞
k=N A

k
+(y).

For the first implication of the second equivalence, let us take U a neighbourhood of
x∗, and suppose that x∗ is a globally attracting state, which as we showed in the first
part of this proof, implies that for all y ∈ X, x∗ ∈ A+(y). This implies the existence of
a sequence (yk)k∈N of points of A+(y) converging to x∗. Hence there exists a k ∈ N such
that yk ∈ U , and since yk ∈ A+(y), then either there exists t ∈ N∗ such that there is
a t-steps path from y to yk ∈ U , or either yk = y. In the latter case, we can take any
w ∈ Oy and consider F (y,w): from what we just showed, either there exists t ∈ N∗ and
u a t-steps path from F (y,w) to U , in which case (w,u) is a t+ 1-steps path from y to
U ; either F (y,w) ∈ U , in which case w is a 1-step path from y to U .

Now suppose that for all y ∈ X and U neighbourhood of x∗, there exists t ∈ N∗
such that there exists a t-steps path from y to U . Let wk be a tk-steps path from y to
B(x∗, 1/k), and yk denote F tk(y,wk). Then since yk ∈ A+(y) for all k ∈ N∗ and that
the sequence (yk)k∈N∗ converges to x∗, we do have x∗ ∈ A+(y), which according to what
we previously proved, prove that x∗ is a globally attracting state.

The existence of a globally attracting state is linked in [8, Proposition 7.2.5] with
ϕ-irreducibility. We will show that this link extends to our context.

We now define the notion of strongly globally attractive state that is needed for our
result on the aperiodicity. More precisely we define:

Definition 2 (Strongly globally attracting state). A point x∗ ∈ X is called a strongly
globally attracting state if for all y ∈ X, for all ε ∈ R∗+, there exists ty,ε ∈ N∗ such
that for all t ≥ ty,ε, there exists a t-steps path from y to B(x∗, ε). Equivalently, for all
(y, ε) ∈ X × R∗+

∃ ty,ε ∈ N∗such that ∀ t ≥ ty,ε, At+(y) ∩B(x∗, ε) 6= ∅ . (14)

The following proposition connects globally and strongly globally attracting states.

Proposition 2. Let x∗ ∈ X be a strongly globally attracting state, then x∗ is a globally
attracting state.
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Proof. We will show its contrapositive: if x∗ is not a globally attracting state, then
according to (13) there exists y ∈ X, N ∈ N∗ and ε ∈ R∗+ such that for all k ≥ N ,
B(x∗, ε) ∩ Ak+(y) = ∅. This holds for all k ≥ N , and therefore with (14), for all k ≥ ty,ε
which contradicts (14).

Our aim is to derive conditions for proving ϕ-irreducibility, aperiodicity and prove
that compacts of X are small sets. We remind below the formal definitions associated to
those notions as well as the definition of a weak Feller chain and a T-chain. A Markov
chain Φ is ϕ-irreducibile if there exists a measure ϕ on B(X) such that for all A ∈ B(X)

ϕ(A) > 0⇒
∞∑

t=1

P t(x, A) > 0 for all x . (15)

A set C is small if there exists t ≥ 1 and a non-trivial measure νt on B(X) such that for
all z ∈ C

P t(z, A) ≥ νt(A) , A ∈ B(X) . (16)

The small set is then called a νt-small set. Consider a small set C satisfying the previous
equation with νt(C) > 0 and denote νt = ν. The chain is called aperiodic if the g.c.d. of
the set

EC = {k ≥ 1 : C is a νk-small set with νk = αkν for some αk > 0}

is one for some (and then for every) small set C.
The transition kernel of Φ is acting on bounded functions f : X → R via the following

operator

Pf(x) 7→
∫
f(y)P (x, dy),x ∈ X . (17)

Let C(X) be the class of bounded continuous functions from X to R, then Φ is weak Feller
if P maps C(X) to C(X). This definition is equivalent to P1O is lower semicontinuous
for every open set O ∈ B(X).

Let a be a probability distribution on N, we denote

Ka : (x, A) ∈ X × B(X) 7→
∑

i∈N
a(i)P i(x, A) (18)

the transition kernel, the associated Markov chain being called the Ka chain with sam-
pling distribution a. When a satisfy the geometric distribution

aε(i) = (1− ε)εi (19)

for i ∈ N, then the transition kernel Kaε is called the resolvent. If there exists a sub-
stochastic transition kernel T satisfying

Ka(x, A) ≥ T (x, A)
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for all x ∈ X and A ∈ B(X) with T (·, A) a lower semi-continuous function, then T is
called a continuous component of Ka ([8, p.124]). If there exists a sampling distribution
a, T a continuous component of Ka, and that T (x, X) > 0 for all x ∈ X, then the Markov
chain Φ is called a T -chain ([8, p.124]). We say that B ∈ B(X) is uniformly accessible
using a from A ∈ B(X) if there exists δ ∈ R∗+ such that

inf
x∈A

Ka(x, B) > δ ,

which is written as A
a B ([8, p.116]).

2.1. Technical results

We present in this section a series of technical results that will be needed to establish
the main results of the paper.

Lemma 1. Let A ∈ B(X) with X an open set of Rn. If for all x ∈ A there exists Vx
an open neighbourhood of x such that A ∩ Vx is Lebesgue negligible, then A is Lebesgue
negligible.

Proof. For x ∈ A, let rx > 0 be such that B(x, rx) ⊂ Vx, and take ε > 0. The set⋃
x∈AB(x, rx/2) ∩ B(0, ε) is closed and bounded, so it is a compact, and

⋃
x∈A Vx is

an open cover of this compact. Hence we can extract a finite subcover (Vxi)i∈I , and so⋃
i∈I Vxi ⊃ A ∩ B(0, ε). Hence, it also holds that A ∩ B(0, ε) =

⋃
i∈I A ∩ B(0, ε) ∩ Vxi .

Since by assumption Λn(A ∩ Vxi) = 0, from the sigma-additivity property of mea-
sures we deduce that Λn(A ∩ B(0, ε)) = 0. So with Fatou’s lemma

∫
X

1A(x)dx ≤
lim infk→+∞

∫
X

1A∩B(0,k)(x)dx = 0, which shows that Λn(A) = 0.

Lemma 2. Suppose that F : X × O → X is Cp for p ∈ N, then for all t ∈ N∗,
F t : X ×Ot → X defined as in (7) is Cp.

Proof. By hypothesis, F 1 = F is Cp. Suppose that F t is Cp. Then the function h :
(x, (wi)i∈[1..t+1]) ∈ X × Ot+1 7→ (F t(x,w1, . . . ,wt),wt+1) is Cp, and so is F t+1 =
F ◦ h.

Lemma 3. Suppose that the function p : (x,w) ∈ X × O 7→ px(w) ∈ R+ is lower
semi-continuous and the function F : (x,w) ∈ X × O 7→ F (x,w) ∈ X is continuous,
then for all t ∈ N∗ the function (x,w) ∈ X × Ot 7→ px,t(w) defined in (9) is lower
semi-continuous.

Proof. According to Lemma 2, F t is continuous. By hypothesis, the function p is lower
semi-continuous, which is equivalent to the fact that p−1((a,+∞)) is an open set for all
a ∈ R. Let t ∈ N∗. Suppose that (x,w) ∈ X × Ot 7→ px,t(w) is lower semi-continuous.
Let a ∈ R, then the set Ba,t := {(x,w) ∈ X × Ot|px,t(w) > a}} is an open set. We will
show that then Ba,t+1 is also an open set.
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First, suppose that a > 0. With (9),

Ba,t+1 = {(x,w,u) ∈ X ×Ot ×O|px,t(w)pF t(x,w)(u) > a}
=
⋃

b∈R∗+

{(x,w,u) ∈ Bb,t ×O|pF t(x,w)(u) > a/b}

=
⋃

b∈R∗+

{(x,w,u) ∈ Bb,t ×O|(F t(x,w),u) ∈ Ba/b,1}

The function F t being continuous and Ba/b,1 being an open set, the set BFa/b,t+1 :=

{(x,w,u) ∈ X × Ot × O|(F t(x,w),u) ∈ Ba/b,1} is also an open set. Therefore and as
Bb,t is an open set so is the set (Bb,t × O) ∩ BFa/b,t+1 for any b ∈ R, and hence so is

Ba,t+1 =
⋃
b∈R∗+(Bb,t ×O) ∩BFa/b,t+1.

If a = 0, note that px,t(w)pF t(x,w)(u) > 0 is equivalent to px,t(w) > 0 and pF t(x,w)(u) >
0; hence B0,t+1 = {(x,w,u) ∈ B0,t × O|(F t(x,w),u) ∈ B0,1}, so the same reasoning
holds.

If a < 0, then Ba,t+1 = X ×Ot+1 which is an open set.
So we have proven that for all a, Ba,t+1 is an open set and hence (x,w) ∈ X×Ot+1 7→

px,t+1(w) is lower semi-continuous.

Lemma 4. Suppose that the function F : X × O → X is C0, and that the function
p : (x,w) 7→ px(w) is lower semi-continuous. Then for any x∗ ∈ X, t ∈ N∗, w∗ ∈ Ox∗,t

and V an open neighbourhood of F t(x∗,w∗), P t(x∗, V ) > 0.

Proof. Since F is C0, from Lemma 2 F t is also C0. Similarly, since p is lower semi-
continuous, according to Lemma 3 so is the function (x,w) 7→ px,t(w), and so the set
Ox,t = p−1x,t((0,+∞)) is open for all x and thus also for x = x∗. Let BV := {w ∈
Ox∗,t|F t(x∗,w) ∈ V }. Since F t is continuous and Ox∗,t is open, the set BV is open, and
as w∗ ∈ BV , it is non-empty. Furthermore

P t(x∗, V ) =

∫

Ox∗,t

1V (F t(x∗,w))px∗,t(w)dw

=

∫

BV

px∗,t(w)dw .

As px∗,t is a strictly positive function over BV ⊂ Ox∗,t, and that BV has positive Lebesgue
measure, P t(x∗, V ) > 0.

The following lemma establishes useful properties on a C1 function f : X × O → X
for which there exists x∗ ∈ X and w∗ ∈ O such that f(x∗, ·) is a submersion at w∗, and
show in particular that a limited inverse function theorem and implicit function theorem
can be expressed for submersions. These properties rely on the fact that a submersion
can be seen locally as the composition of a diffeomorphism by a projection, as shown in
[10].
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Lemma 5. Let f : X ×O → X be a C1 function where X ⊂ Rn and O ⊂ Rm are open
sets with m ≥ n. If there exists x∗ ∈ X and w∗ ∈ O such that f(x∗, ·) is a submersion
at w∗, then

1. there exists N an open neighbourhood of (x∗,w∗) such that for all (y,u) ∈ N ,
f(y, ·) is a submersion at u,

2. there exists Uw∗ ⊂ O an open neighbourhood of w∗, and Vf(x∗,w∗) a neighbourhood
of f(x∗,w∗), such that Vf(x∗,w∗) equals to the image of w ∈ Uw∗ 7→ f(x∗,w), i.e.
Vf(x∗,w∗)=f(x∗, Uw∗),

3. there exists g a C1 function from Ṽx∗ an open neighbourhood of x∗ to Ũw∗ an open
neighbourhood of w∗ such that for all y ∈ Ṽx∗

f(y, g(y)) = f(x∗,w∗) .

Proof. Let (ei)i∈[1..m] be the canonical basis of Rm and let us denote f = (f1, . . . , fn)T

the representation of f (in the canonical basis of Rn). Similarly, u ∈ O writes in the
canonical basis u = (u1, . . . ,um)T .

We start by proving the second point of the lemma. Since f(x∗, ·) is a submersion at
w∗, the matrix composed by the vectors (Dw∗f(x∗, ·)(ei))i∈[1..m] is of full rank n, hence
there exists σ a permutation of [1..m] such that the vectors (Dw∗f(x∗, ·)(eσ(i)))i∈[1..n]
are linearly independent. We suppose that σ is the identity (otherwise we consider a
reordering of the basis (ei)i∈[1..m] via σ). Let

hx∗ : u = (u1, . . . ,um)T ∈ O 7→ (f1(x∗,u), . . . , fn(x∗,u),un+1, . . . ,um)T ∈ Rm .

The Jacobian matrix of hx∗ taken at the vector w∗ writes

Jhx∗(w
∗) =




∇wf1(x∗,w)T

...
∇wfn(x∗,w)T

En+1

...
Em




where Ei ∈ Rm is the (line) vector with a 1 at position i and zeros everywhere else. The
matrix of the differential of (Dw∗f(x∗, ·) expressed in the canonical basis correspond to
the n first lines of the above Jacobian matrix, such that the matrix (Dw∗f(x∗, ·)(ei))i∈[1..m]

corresponds to the n times n first block. Hence the Jacobian matrix Jhx∗(w
∗) is invert-

ible. In addition, hx∗ is C1. Therefore we can apply the inverse function theorem to hx∗ :
there exists Uw∗ ⊂ O a neighbourhood of w∗ and Vhx∗ (w∗) a neighbourhood of hx∗(w

∗)
such that hx∗ is a bijection from Uw∗ to Vhx∗ (w∗). Let πn denote the projection

πn : y = (y1, . . . ,ym)T ∈ Rm 7→ (y1, . . . ,yn)T ∈ Rn .

Then f(x∗,u) = πn ◦ hx∗(u) for all u ∈ O, and so f(x∗, Uw∗) = πn(Vhx∗ (w∗)). The set
Vhx∗ (w∗) being an open set, so is Vf(x∗,w∗) := πn(Vhx∗ (w∗)) which is therefore an open
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neighbourhood of f(x∗,w∗) = πn ◦ hx∗(w∗), that satisfies Vf(x∗,w∗)=f(x∗, Uw∗), which
shows 2.

We are now going to prove the first point of the lemma. Since f is C1, the coefficients
of the Jacobian matrix of hx∗ at w∗ are continuous functions of x∗ and w∗, and as
the Jacobian determinant is a polynomial in those coefficients, it is also a continuous
function of x∗ and w∗. The Jacobian determinant of hx∗ at w∗ being non-zero (since
we have seen when proving the second point above that the Jacobian matrix at w∗ is
invertible), the continuity of the Jacobian determinant implies the existence of N an open
neighbourhood of (x∗,w∗) such that for all (y,u) ∈ N , the Jacobian determinant of hy
at u is non-zero. Since the matrix (Duf(y, .)(ei))1≤i≤m corresponds to the n times n
first block of the Jacobian matrix Jhy(u), it is invertible which shows that Duf(y, .) is
of rank n which proves that f(y, ·) is a submersion at u for all (y,u) ∈ N , which proves
1.

We may also apply the implicit function theorem to the function (y,u) ∈ (Rn×Rm) 7→
hy(u) ∈ Rm: there exists g a C1 function from Ṽx∗ an open neighbourhood of x∗ to

Ũw∗ a open neighbourhood of w∗ such that hy(u) = hx∗(w
∗) ⇔ u = g(y) for all

(y,u) ∈ Ṽx∗ × Ũw∗ . Then f(y, g(y)) = πn ◦ hy(g(y)) = πn ◦ hx∗(w∗) = f(x∗,w∗),
proving 3.

The following lemma is a generalization of [8, Proposition 7.1.4] to our setting.

Lemma 6. Suppose that F is C∞ and that the function (x,w) 7→ px(w) is lower semi-
continuous. Then the control model is forward accessible if and only if for all x ∈ X there
exists t ∈ N∗ and w ∈ Ox,t such that F t(x, ·) is a submersion at w.

Proof. Suppose that the control model is forward accessible. Then, for all x ∈ X, A+(x)
is not Lebesgue negligible. Since

∑
i∈N Λn(Ai+(x)) ≥ Λn(A+(x)) > 0, there exists i ∈ N∗

such that Λn(Ai+(x)) > 0 (i 6= 0 because A0
+(x) = {x} is Lebesgue negligible). Suppose

that for all w ∈ Ox,i, w is a critical point for F i(x, ·), that is the differential of F i(x, ·)
in w is not surjective. According to Lemma 2 the function F t is C∞, so we can apply
Sard’s theorem [13, Theorem II.3.1] to F i(x, ·) which implies that the image of the critical
points is Lebesgue negligible, hence F i(x, Ox,t) = Ai+(x) is Lebesgue negligible. We have
a contradiction, so there exists w ∈ Ox,i for which F i(x, ·) is a submersion at w.

Suppose now that for all x ∈ X, there exists t ∈ N∗ and w ∈ Ox,t such that F t(x, ·)
is a submersion at w and let us prove that the control model is forward accessible. Since
the function (x,w) 7→ px(w) is lower continuous and that F is continuous, according
to Lemma 3, then px,t is lower semi-continuous and hence Ox,t is an open set. Then
according to Lemma 5, point 2) applied to the function F t restricted to the open set
X×Ox,t, there exists Uw ⊂ Ox,t and VF t(x,w) non-empty open sets such that F t(x, Uw) ⊃
VF t(x,w). Since A+(x) ⊃ F t(x, Ox,t) ⊃ F t(x, Uw), A+(x) has non-empty interior for all
x ∈ X, meaning the control model is forward accessible.

The following lemma treats of the preservation of Lebesgue null sets by a locally
Lipschitz continuous function on spaces of equal dimension.
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Lemma 7. (From [7, Corollary 5.9]) Take U an open set of Rn and f : U → Rn a
locally Liptschiz-continuous function. Take A ⊂ U a set of zero Lebesgue measure. Then
its image f(A) is also of zero Lebesgue measure.

Lemma 7 requires the dimensions of the domain and codomain to be equal. When
the dimension of the domain is lower or equal than the dimension of the codomain, a
generalization of Lemma 7 is presented in [11] for the preimage of sets via submersions.
The authors of [11] investigate the so-called 0-property: a continuous function f : Z ⊂
Rm → X ⊂ Rn has the 0-property if the preimage of any set of Lebesgue measure 0
has Lebesgue measure 0. They show in [11, Theorem 2 and Theorem 3] that if f is a
continuous function and that for almost all z ∈ Z it is a submersion at z, then is has the
0-property. They also show in [11, Theorem 1] that for f a Cr function with r ≥ m−n+1
(this inequality coming from Sard’s theorem [13, Theorem II.3.1]), then the 0-property
is equivalent to f being a submersion at z for almost all z ∈ Z. In the following lemma,
we establish conditions for a function f to have a stronger form of 0-property, for which
the preimage of a set has Lebesgue measure 0 if and only if the set has measure 0.

Lemma 8. Let g : Z ⊂ Rm → X ⊂ Rn be a C1 function where Z and X are open sets.
Let A ∈ B(X) and let us assume that for almost all z ∈ g−1(A), g is a submersion at z,
i.e. the differential of g at z is surjective (which implies that m ≥ n).

Then (i) Λn(A) = 0 implies that Λm(g−1(A)) = 0, and (ii) if A ⊂ g(Z) and if g is a
submersion at z for all z ∈ g−1(A), then Λn(A) = 0 if and only if Λm(g−1(A)) = 0.

Proof. This first part of the proof is similar to the proof of Lemma 5. Let N ∈ B(Z)
be a Λm-negligible set such that g is a submersion at all points of g−1(A)\N , and take
z ∈ g−1(A)\N and (ei)i∈[1..m] the canonical basis of Rm. For y ∈ Rm, we denote y =
(y1, . . . ,ym)T its expression in the canonical basis. In the canonical basis of Rn we denote
g(x) = (g1(x), . . . , gn(x))T . Since g is a submersion at z, Dzg the differential of g at z
has rank n so there exists a permutation σz : [1..m]→ [1..m] such that the matrix formed
by the vectors (Dzg(eσ(i)))i∈[1..n] has rank n. We assume that this permutation is the
identity (otherwise we consider a reordering of the canonical basis via σ). Let

hz : y ∈ Rm 7→ (g1(y), . . . , gn(y),yn+1, . . . ,ym)T

Similarly as in the proof of Lemma 5, by expressing the differential of hz in the basis
(ei)i∈[1..m] we can see that the Jacobian determinant of hz equals to the determinant of
the matrix composed of the vectors (Dzg(ei))i∈[1..n], which is non-zero, multiplied by the
determinant of the identity matrix, which is one. Hence the Jacobian determinant of hz
is non-zero, and so we can apply the inverse function theorem to hz (which inherits the
C1 property from g). We hence obtain that there exists Uz an open neighbourhood of
z, Vhz(z) an open neighbourhood of hz(z) such that the function hz is a diffeomorphism
from Uz to Vhz(z). Then, denoting πn the projection

πn : z = (z1, . . . , zm)T ∈ Rm 7→ (z1, . . . , zn)T ,
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we have g(u) = πn ◦ hz(u) for all u ∈ Z.
Then g−1(A) ∩ Uz = h−1z ◦ π−1n (A) ∩ h−1z (Vhz(z)) = h−1z (A×Rm−n ∩ Vhz(z)). Since hz

is a diffeomorphism from Uz to Vhz(z), hz and h−1z are locally Lipschitz continuous. So
we can use Lemma 7 with h−1z and its contrapositive with hz and obtain that Λm(A ×
Rm−n ∩ Vhz(z)) = 0 if and only if Λm(h−1z (A× Rm−n ∩ Vhz(z))) = 0, which implies that

Λm(A× Rm−n ∩ Vhz(z)) = 0 if and only if Λm(g−1(A) ∩ Uz) = 0 . (20)

If Λn(A) = 0 then Λm(A × Rm−n) = 0 and thus Λm(A × Rm−n ∩ Vhz(z)) = 0 which
in turns implies with (20) that Λm(g−1(A)∩Uz) = 0. This latter statement holds for all
z ∈ g−1(A)\N , which with Lemma 1 implies that Λm(g−1(A)\N) = 0, and since N is a
Lebesgue negligible set Λm(g−1(A)) = 0. We have then proven the statement (i) of the
lemma.

We will now prove the second statement. Suppose that Λn(A) > 0, so there exists
x ∈ A such that for all ε > 0, Λn(B(x, ε) ∩A) > 0 (this is implied by the contrapositive
of Lemma 1). Assume that A ⊂ g(Z), i.e. g is surjective on A, then there exists z ∈ Z
such that g(z) = x. Since in the second statement we suppose that g is a submersion at
u for all u ∈ g−1(A), we have that g is a submersion at z, and so hz is a diffeomorphism
from Uz to Vhz(z) and (20) holds. Since Vhz(z) is an open neighbourhood of hz(z) =
(g(z), zn+1, . . . , zm), there exists (r1, r2) such that B(g(z), r1) × B((zi)i∈[n+1..m], r2) ⊂
Vhz(z). Since Λm(A × Rm−n ∩ B(x, r1) × B((zi)i∈[n+1..m], r2)) = Λm((A ∩ B(x, r1)) ×
B((zi)i∈[n+1..m], r2)) > 0, we have Λm(A × Rm−n ∩ Vhz(z)) > 0. This in turn implies
through (20) that Λm(g−1(A)∩Uz) > 0 and thus Λm(g−1(A)) > 0. We have thus proven
that if Λn(A) > 0 then Λm(g−1(A)) > 0, which proves the lemma.

3. Main Results

We present here our main result. Its proof will be established in the following subsections.

Theorem 1. Let Φ = (Φt)t∈N be a time-homogeneous Markov chain on an open state
space X ⊂ Rn, defined via

Φt+1 = F (Φt, α(Φt,Ut+1)) (21)

where (Ut)t∈N∗ is a sequence of i.i.d. random vectors in Rp, α : X × Rp → O and
F : X × O → X are two measurable functions with O an open subset of Rm. For all
x ∈ X, we assume that α(x,U1) admits a probability density function that we denote
w ∈ O 7→ px(w). We define the function F t : X × Ot → X via (7), the probability
density function px,t via (9), and the sets Ox and Ox,t via (6) and (11). For B ∈ B(X),
we denote µB the trace measure A ∈ B(X) 7→ Λn(A∩B), where Λn denotes the Lebesgue
measure on Rn. Suppose that

1. the function (x,w) ∈ (X ×O) 7→ F (x,w) is C1,
2. the function (x,w) ∈ (X ×O) 7→ px(w) is lower semi-continuous,
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3. there exists x∗ ∈ X a strongly globally attracting state, k ∈ N∗ and w∗ ∈ Ox∗,k

such that the function w ∈ Ok 7→ F k(x∗,w) is a submersion at w∗.

Then there exists B0 a non-empty open subset of Ak+(x∗) containing F k(x∗,w∗) such
that Φ is a µB0

-irreducible aperiodic T-chain, and compacts sets of X are small sets.

Before to provide the proof of this theorem, we discuss its assumptions with respect
to the chapter 7 of the Meyn and Tweedie book. Results similar to Theorem 1 are
presented in [8, Chapter 7]. The underlying assumptions there translate to our setting
as (i) the function p(x,w) is independent of x, that is (x,w) 7→ p(x,w) = p(w), (ii)
w 7→ p(w) is lower semi-continuous, F is C∞. In contrast, in our context we do not
need p(x,w) to be independent of x, we need the function (x,w) 7→ px(w) to be lower
semi-continuous, and we need F to be C1 rather than C∞. In [8], assuming (i) and (ii)
and the forward accessibility of the control model, the Markov chain is proved to be a
T -chain [8, Proposition 7.1.5]; this property is then used to prove that the existence of
a globally attracting state is equivalent to the ϕ-irreducibility of the Markov chain [8,
Proposition 7.2.5 and Theorem 7.2.6]. The T -chain property is a strong property and
in our context, we prove in Proposition 3 that if Φ is a T -chain, then we also get the
equivalence between ϕ-irreducibility and the existence of a globally attracting state. We
develop another approach in Lemma 9, relying on the submersion property of point 3) of
Theorem 1 rather than on the T -chain property. This approach is used in Theorem 2 to
prove that the existence of a globally attracting state x∗ ∈ X for which there exists k ∈ N∗
and w∗ ∈ Ox∗,k such that F k(x∗, ·) is a submersion at w∗ implies the ϕ-irreducibility of
the Markov chain. The approach developed in Lemma 9 allows for a finer control of the
transition kernel than with the T -chain property, which is then used to get aperiodicity
in Theorem 3 by assuming the existence of a strongly attracting state on which the
submersion property of 3) of Theorem 1 holds. In the applications of Section 4, the
existence of a strongly attracting state is immediately derived from the proof of the
existence of a globally attracting state. In contrast in [8, Theorem 7.3.5], assuming (i),
(ii), the forward accessibility of the control model, the existence of a globally attracting
state x∗ and the connexity of Ox, aperiodicity is proven to be equivalent to the connexity
of A+(x∗).

Proof. (of Theorem 1) From Theorem 3, there exists B0 a non-empty open subset of
Ak+(x∗) containing F k(x∗,w∗) such that Φ is a µB0

-irreducible aperiodic chain. With
Proposition 5 the chain is also weak Feller. Since B0 is a non-empty open set supp µB0

has non empty interior, so from [8, Theorem 6.0.1] with (iii) Φ is a µB0
-irreducible T-

chain and with (ii) compact sets are petite sets. Finally, since the chain is µB0-irreducible
and aperiodic, with [8, Theorem 5.5.7] petite sets are small sets.

Assuming that F is C∞ we showed in Lemma 6 that the forward accessibility of the
control model is equivalent to assuming that for all x ∈ X there exists t ∈ N∗ and
w ∈ Ox,t such that F t(x, ·) is a submersion at w, which satisfies a part of condition 3.
of Theorem 1. Hence, we can use Lemma 6 and Theorem 1 to derive Corollary 1.
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Corollary 1. Suppose that

1. the function (x,w) 7→ F (x,w) is C∞,
2. the function (x,w) 7→ px(w) is lower semi-continuous,
3. the control model CM(F ) is forward accessible,
4. there exists x∗ a strongly globally attracting state.

Then there exists B0 a non-empty open subset of Ak+(x∗) containing F k(x∗,w∗) such
that Φ is a µB0-irreducible aperiodic T-chain, and compacts sets of X are small sets.

Proof. From Lemma 6, the second part of the assumption 3. of Theorem 1 is satisfied
such that the conclusions of Theorem 1 hold.

3.1. ϕ-Irreducibility

When (i) the function (x,w) 7→ p(x,w) is independent of x, that is p(x,w) = p(w),
(ii) the function w 7→ p(w) for all x ∈ X is lower semi-continuous, (iii) F is C∞ and
(iv) the control model is forward accessible, it is shown in [8, Proposition 7.1.5] that Φ
is a T -chain. This is a strong property that is then used to show the equivalence of the
existence of a globally attracting state and the ϕ-irreducibility of the Markov chain Φ in
[8, Theorem 7.2.6]. In our context where the function (x,w) 7→ p(x,w) varies with x, the
following proposition shows that the equivalence still holds assuming that the Markov
chain Φ is a T -chain.

Proposition 3. Suppose that

1. the Markov chain Φ is a T -chain,
2. the function F is continuous,
3. the function (x,w) 7→ px(w) is lower semi-continuous

Then the Markov chain Φ is ϕ-irreducible if and only if there exists x∗ a globally attracting
state.

Proof. Suppose that there exists x∗ a globally attracting state. Since Φ is a T -chain,
there exists a a sampling distribution such that Ka possesses a continuous component T
such that T (x, X) > 0 for all x ∈ X.

Take A ∈ B(X) such that T (x∗, A) > 0 (such a A always exists because we can for
instance take A = X). The function T (·, A) being lower semi-continuous, there exists

δ > 0 and r > 0 such that for all y ∈ B(x∗, r), T (y, A) > δ, hence B(x∗, r)
a A.

Since x∗ is a globally attracting state, for all y ∈ X, x∗ ∈ ⋃k∈N∗ Ak+(y) so there exists

points of
⋃
k∈N∗ A

k
+ arbitrarily close to x∗. Hence there exists ty and w ∈ Oy,ty such

that F ty(y,w) ∈ B(x∗, r). Furthermore, since Oy,ty is an open set (by the lower semi-
continuity of px,ty(·) which in turn is implied by the lower semi-continuity of the function
(x,w) 7→ px(w), the continuity of F with Lemma 3) and F ty(y, ·) is continuous (as im-
plied by the continuity of F with Lemma 2) the set E := {u ∈ Oy,ty |F ty(y,u) ∈ B(x∗, r)}
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is an open set, and as w ∈ E it is non empty. Since P ty(y, B(x∗, r)) =
∫
E
py,ty(u)du and

that py,ty(u) > 0 for all u ∈ E ⊂ Oy,ty , P ty(y, B(x∗, r)) > 0 as the integral of a positive
function over a set of positive Lebesgue measure is positive. Hence Kaε(y, B(x∗, r)) > 0
(where Kaε is the transition kernel defined in (18) with the geometric distribution (19)),

and so {y} aε B(x∗, r). Hence with [8, Lemma 5.5.2] {y} a∗aε A which implies that for
some t ∈ N∗, P t(y, A) > 0. Therefore, T (x∗, A) > 0 implies that

∑
t∈N∗ P

t(y, A) > 0 for
all y ∈ X. And since T (x∗, X) > 0, T (x∗, ·) is not a trivial measure, so the Markov chain
Φ is T (x∗, ·)-irreducible.

Suppose that Φ is ϕ-irreducible, then ϕ is non-trivial and according to Proposition 4
any point of suppϕ is a globally attracting state, so there exists a globally attracting
state.

Although the T -chain property allows for a simple proof of the equivalence between
the existence of a globally attracting state and the ϕ-irreducibility of the Markov chain.
The T -chain property is not needed for Theorem 2, which instead relies on the following
lemma. Interestingly, not using the T -chain in the lemma allows some control on the
transition kernel, which is then used for Theorem 3 for aperiodicity.

Lemma 9. Let A ∈ B(X) and suppose that

1. the function F is C1,
2. the function (x,w) 7→ px(w) is lower semi-continuous,
3. there exists x∗ ∈ X, k ∈ N∗ and w∗ ∈ Ox∗,k such that F k(x∗, ·) is a submersion at

w∗.

Then there exists B0 ⊂ Ak+(x∗) a non-empty open set containing F k(x∗,w∗) and such
that for all z ∈ B0, there exists Ux∗ an open neighbourhood of x∗ that depends on z and
having the following property: for y ∈ X if there exists a t-steps path from y to Ux∗ , then
let A ∈ B(X)

P t+k(y, A) = 0 ⇒ ∃Vz an open neighbourhood of z such that Λn(Vz ∩ A) = 0 (22)

or equivalently,

for all Vz open neighbourhood of z,Λn(Vz ∩A) > 0⇒ P t+k(y, A) > 0 . (23)

Proof. (i) We will need through this proof a setN = N1×N2 which is an open neighbour-
hood of (x∗,w∗), such that for all (x,w) ∈ N we have px,k(w) > 0 and that F k(x, ·) is a
submersion at w. To obtain N , first let us note that since F is C1, according to Lemma 7
so is F t for all t ∈ N∗; and since the function (x,w) 7→ px(w) is lower semi-continuous,
according to Lemma 3 so is the function (x,w) 7→ px,t(w) for all t ∈ N∗. Hence the
set {(x,w) ∈ X × Ot|px,k(w) > 0} is an open set, and since w∗ ∈ Ox∗,k, there exists
M1 ×M2 a neighbourhood of (x∗,w∗) such that for all (x,w) ∈M1 ×M2, px,k(w) > 0.

Furthermore, according to point 1. of Lemma 5, there exists M̃ = M̃1 × M̃2 an open
neighbourhood of (x∗,w∗) such that for all (x,w) ∈ M̃1 × M̃2, F k(x, ·) is a submersion
at w. Then the set N := M ∩ M̃ has the desired property.
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(ii) We now prove that for all y ∈ X, U any open neighbourhood of x∗ and A ∈ B(X),
if there exists v a t-steps path from y to U and if P t+k(y, A) = 0 then there exists
x0 ∈ U such that P k(x0, A) = 0. Indeed, U being open containing F t(y,v) there exists
ε > 0 such that B(F t(y,v), ε) ⊂ U , and by continuity of F t(y, ·), there exists η > 0 such
that F t(y, B(v, η)) ⊂ B(F t(y,v), ε) ⊂ U ; furthermore, P t+k(y, A) = 0 implies that

P t+k(y, A) =

∫

Oy,t

py,t(u)P k(F t(y,u), A)du = 0 .

Since for all u ∈ Oy,t, py,t(u) > 0, this implies that for almost all u ∈ Oy,t, P
k(F t(y,u), A) =

0. Since v ∈ Oy,t, the set Oy,t∩B(v, η) is a non-empty open set and therefore has positive
Lebesgue measure; so there exists u0 ∈ Oy,t ∩ B(v, η) such that P k(F t(y,u0), A) = 0.
Let x0 denote F t(y,u0). By choice of η, we also have x0 ∈ F t(y, B(v, η)) ⊂ U .

(iii) Now let us construct the set B0 mentioned in the lemma. We consider the function
F k restricted to X × N2. According to assumption 3. and (i), we have x∗ ∈ X and w∗

in N2 such that F k(x∗, .) is a submersion at w∗. Hence using point 2. of Lemma 5 on
the function F k restricted to X × N2, we obtain that there exists Vw∗ ⊂ N2 an open
neighbourhood of w∗ and UFk(x∗,w∗) an open neighbourhood of F k(x∗,w∗) such that

UFk(x∗,w∗) ⊂ F k(x∗, Vw∗). We take B0 = UFk(x∗,w∗) and will prove in what follows that

it satisfies the properties announced. Note that since B0 ⊂ F k(x∗, Vw∗), that Vw∗ ⊂ N2

and that x∗ ∈ N1, Vx∗ ⊂ Ox∗,k and so B0 ⊂ Ak+(x∗).
(iv) Now, for z ∈ B0, let us construct the set Ux∗ mentioned in the lemma. We

will make it so that there exists a C1 function g valued in O and defined on a set
containing Ux∗ , such that F k(x, g(x)) = z for all x ∈ Ux∗ . First, since z ∈ B0 and
B0 = UFk(x∗,w∗) ⊂ F k(x∗, Vw∗), there exists wz ∈ Vw∗ such that F k(x∗,wz) = z. Since

Vw∗ ⊂ N2, the function F k(x∗, ·) is a submersion at wz, so we can apply point 3. of
Lemma 5 to the function F k restricted to X ×N2: there exists g a C1 function from Ũgx∗
an open neighbourhood of x∗ to Ṽ gwz

⊂ N2 an open neighbourhood of wz such that for

all x ∈ Ũgx∗ , F k(x, g(x)) = F k(x∗,wz) = z. We now take Ux∗ := Ũgx∗ ∩N1; it is an open
neighbourhood of x∗ and for all x ∈ Ux∗ , F

k(x, g(x)) = z.
(v) We now construct the set Vz. For y ∈ X, if there exists a t-steps path from y to

Ux∗ and that P t+k(y, A) = 0, then we showed in (ii) that there exists x0 ∈ Ux∗ such
that P k(x0, A) = 0. Since x0 ∈ Ux∗ ⊂ Ũgx∗ ∩N1 and that g(x0) ∈ Ṽ gwz

⊂ N2, the function
F k(x0, ·) is a submersion at g(x0). Therefore, we can apply point 2) of Lemma 5 to F
restricted to X × N2, and so there exists Ug(x0) ⊂ N2 an open neighbourhood of g(x0)

and Vz an open neighbourhood of F k(x0, g(x0)) = z such that Vz ⊂ F k(x0, Ug(x0)).

(vi) Finally we will show that Λn(Vz ∩ A) = 0. Let B̃ := {w ∈ Ug(x0)|F k(x0,w) ∈
Vz ∩A}. Then

P k(x0, A) =

∫

Ox0,k

1A(F k(x0,w))px0,k(w)dw ≥
∫

B̃

px0,k(w)dw ,

so
∫
B̃
px0,k(w)dw = 0. As x0 ∈ Ux∗ ⊂ N1 and B̃ ⊂ Ug(x0) ⊂ N2, px0,k(w) > 0 for

all w ∈ B̃, which implies with the fact that
∫
B̃
px0,k(w)dw = 0 that B̃ is Lebesgue
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negligible. Now let h denote the function F k(x0, ·) restricted to Ug(x0). The function h
is a C1 function and Vz is included into the image of h. Both Ug(x0) to Vz are open sets.
Furthermore x0 ∈ N1 and for all u ∈ h−1(Vz) since h−1(Vz) ⊂ Ug(x0) ⊂ N2 we have
u ∈ N2 so the function h is a submersion at u. Therefore we can apply Lemma 8 to h,
and so if Λm(h−1(Vz ∩ A)) = 0 then Λn(Vz ∩ A) = 0. Since h−1(Vz) = Ug(x0), we have

h−1(Vz ∩A) = B̃, so we do have Λm(h−1(Vz ∩A)) = 0 which implies Λn(Vz ∩A) = 0.
(vii) The equivalent formulation between (22) and (23) is simply obtained by taking

the contrapositive.

If the function F is C∞, then the condition of Lemma 9 on the differential of F (x∗, ·)
can be relaxed by asking the control model to be forward accessible using Lemma 6. If
the point x∗ used in Lemma 9 is a globally attracting state it follows from Lemma 9 that
the chain Φ is irreducible, as stated in the following theorem.

Theorem 2. Suppose that F is C1, the function (x,w) 7→ px(w) is lower semi-
continuous and there exists a globally attracting state x∗ ∈ X, k ∈ N∗ and w∗ ∈ Ox∗,k

such that the function w ∈ Rmk 7→ F k(x∗,w) ∈ Rn is a submersion at w∗. Then Φ is a
µB0

-irreducible Markov chain, where B0 is a non empty open subset of Ak+(x∗) containing
F k(x∗,w∗).

Furthermore if F is C∞, the function (x,w) 7→ px(w) lower semi-continuous, and
the control model is forward accessible, then the existence of a globally attracting state is
equivalent to the ϕ-irreducibility of the Markov chain Φ.

Proof. We want to show that for ϕ a non-trivial measure, Φ is ϕ-irreducible; i.e. for
any A ∈ B(X), we need to prove that ϕ(A) > 0 implies that

∑
t∈N∗ P

t(x, A) > 0 for all
x ∈ X.

According to Lemma 9 there exists a non-empty open set B0 ⊂ Ak+(x∗) containing
F k(x∗,w∗), such that for all z ∈ B0 there exists Ux∗ a neighbourhood of x∗ that depends
on z having the following property: if for y ∈ X there exists a t-steps path from y to
Ux∗(z), and if for all Vz neighbourhood of z, Vz ∩ A has positive Lebesgue measure,
then P t+k(y, A) > 0. Since B0 is a non-empty open set, the trace-measure µB0

is non-
trivial. Suppose that µB0(A) > 0, then there exists z0 ∈ B0 ∩ A such that for all Vz0

neighbourhood of z0, Vz0 ∩ A has positive Lebesgue measure2. And since x∗ is globally
attractive, according to Proposition 1 for all y ∈ X there exists ty ∈ N∗ such that there
exists a ty-steps path from y to the set Ux∗ corresponding to z0. Hence, with Lemma 9,
P ty+k(y, A) > 0 for all y ∈ X and so Φ is µB0

-irreducible.
If F is C∞, according to Lemma 6, forward accessibility implies that for all x ∈ X

there exists k ∈ N∗ and w ∈ Ox,k such that the function F k(x, ·) is a submersion at
w, which, using the first part of the proof of Theorem 2, shows that the existence of a
globally attracting state implies the irreducibility of the Markov chain.

2If not, it would mean that for all z ∈ B0 ∩ A, there exists Vz a neighbourhood of z such that
B0 ∩A∩Vz is Lebesgue-negligible, which with Lemma 1 would imply that B0 ∩A is Lebesgue negligible
and bring a contradiction.
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Finally, if Φ is ϕ-irreducible, take x∗ ∈ suppϕ. By definition of the support of a
measure, for all U neighbourhood of x∗, ϕ(U) > 0. This imply through (15) that for all
y ∈ X there exists t ∈ N∗ such that P t(y, U) > 0. Since

P t(y, U) =

∫

Oy,t

1U (F t(y,w))py,t(w)dw > 0

this implies the existence of a t-steps path from y to U . Then, according to Proposition 1,
x∗ is a globally attracting state.

Let x∗ ∈ X be the globally attracting state used in Theorem 2. The support of
the irreducibility measure used in Theorem 2 is a subset of A+(x∗). In the following
proposition, we expend on this and show that when F is continuous and px lower semi-
continuous, the support of the maximal irreducibility measure is exactly A+(x∗) for any
globally attractive state x∗.

Proposition 4. Suppose that the function F is continuous, that the function (x,w) 7→
px(w) is lower semi-continuous, and that the Markov chain Φ is ϕ-irreducible. Take ψ
the maximal irreducibility measure of Φ. Then

suppψ = {x∗ ∈ X|x∗ is a globally attracting state} ,
and so, for x∗ ∈ X a globally attracting state,

suppψ = A+(x∗) .

Proof. Take x∗ ∈ suppψ, we will show that it is a globally attracting state. By definition
of the support of a measure, for all U neighbourhood of x∗, ψ(U) > 0. The measure ψ
being a irreducibility measure, this imply through (15) that for all y ∈ X there exists
t ∈ N∗ such that P t(y, U) > 0, which in turns imply the existence of a t-steps path
from y to U . Then, according to Proposition 1, x∗ is a globally attracting state, and so
suppψ ⊂ {x∗ ∈ X|x∗ is a globally attracting state}.

Take x∗ ∈ X a globally attracting state, then according to Proposition 1, for all
y ∈ X there exists ty ∈ N∗ and w ∈ Oy,ty such that F ty(y,w) ∈ B(x∗, ε). And since
according to Lemma 2, F ty is continuous and that B(x∗, ε) is an open, there exists η > 0
such that for all u ∈ B(w, η), F ty(y,u) ∈ B(x∗, ε). Since p is lower semi-continuous
and F continuous, according to Lemma 3 so is the function (x,w) 7→ px,ty(w) and so
the set Oy,ty is an open set. We can then chose the value of η small enough such that
B(w, η) ⊂ Oy,ty . Hence

P ty(y, B(x∗, ε)) ≥
∫

B(w,η)

1B(x∗,ε)

(
F ty(y,u)

)
py,ty(u)du =

∫

B(w,η)

py,ty(u)du > 0 .

The measure ψ being the maximal irreducibility measure, then

ψ(A) > 0⇔
∑

t∈N∗
P t(y, A) > 0, for all y ∈ X .3

3The implication ⇒ is by definition of a irreducibility measure. For the converse suppose that A is a
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Since we proved that for all y ∈ X, P ty(y, B(x∗, ε)) > 0, we have ψ(B(x∗, ε)) > 0.
Finally, since we can chose ε arbitrarily small, this implies that x∗ ∈ suppψ.

Let (x∗,y∗) ∈ X2 be globally attracting states, then y∗ ∈ Ω+(x∗) ⊂ A+(x∗), so
{y∗ ∈ X|y∗ is a globally attracting state} ⊂ A+(x∗).

Conversely, take y∗ ∈ A+(x∗), we will show that y∗ is a globally attracting state.
Since y∗ ∈ A+(x∗), for all ε > 0 there exists kε ∈ N∗ and wε a kε-steps path from x∗ to
B(y∗, ε). Take x ∈ X. Since x∗ is a globally attracting state, according to Proposition 1
for all η > 0 there exists t ∈ N∗ and uη a t-steps path from x to B(x∗, η). And since F kε

is continuous, there exists η0 > 0 such that for all z ∈ B(x∗, η0), F kε(z,wε) ∈ B(y∗, ε).
Furthermore, since the set {(x,w) ∈ X × Okε |px,kε(w) > 0} is an open set we can take
η0 small enough to ensure that wε ∈ OF t(x,uη0 ),kε . Hence for any x ∈ X, ε > 0, (uη0 ,wε)
is a t + kε-steps path from x to B(y∗, ε), which with Proposition 1 proves that y∗ is a
globally attracting state. Hence A+(x∗) ⊂ {y∗|y∗ is a globally attracting state}.

3.2. Aperiodicity

The results of Lemma 9 give the existence of a non-empty open set B0 such that for all
z ∈ B0 there exists Ux∗ a neighbourhood of x∗ which depends of z. And if Vz ∩ A has
positive Lebesgue measure for all Vz neighbourhood of z, then for all y ∈ X the existence
of a t-steps path from y to Ux∗ implies that P t+k(y, A) > 0. Note that P t(y, A) > 0
holds true for any t ∈ N∗ such that there exists a t-steps path from y to Ux∗ .

The global attractivity of x∗ gives for any y ∈ X the existence of one such t for which
there exists a t-step path from y to Ux∗ ; and as seen in Theorem 2 this can be exploited
to prove the irreducibility of the Markov chain. However, the strong global attractivity
of x∗ gives for all y ∈ X the existence of a ty such that for all t ≥ ty there exists a t-step
path from y to Ux∗ , which implies that P t(y, A) > 0 for all t ≥ ty and for all y ∈ X. We
will see in the following theorem that this implies the aperiodicity of the Markov chain.

Theorem 3. Suppose that

1. the function (x,w) 7→ F (x,w) is C1,
2. the function (x,w) 7→ px(w) is lower semi-continuous,
3. there exists x∗ ∈ X a strongly globally attractive state, k ∈ N∗ and w∗ ∈ Ox∗,k

such that F k(x∗, ·) is a submersion at w∗.

Then there exists B0 a non-empty open subset of Ak+(x∗) containing F k(x∗,w∗) such
that Φ is a µB0

-irreducible aperiodic Markov chain.

Proof. According to Theorem 2 there exists B0 an open neighbourhood of F k(x∗,w∗)
such that the chain Φ is µB0-irreducible. Let ψ be its maximal irreducibility measure

set such that
∑

t∈N∗ P
t(y, A) > 0 for all y ∈ X, so the set {y ∈ X|∑t∈N∗ P

t(y, A) > 0} equals X. If

ψ(A) = 0, from [8, Theorem 4.0.1] this would imply that the set {y ∈ X|∑t∈N∗ P
t(y, A) > 0}, which

equals X, is also ψ-null, which is impossible since by definition ψ is a non-trivial measure. Therefore∑
t∈N∗ P

t(y, A) > 0 for all y ∈ X implies that ψ(A) > 0.
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(which exists according to [8, Theorem 4.0.1]). According to [8, Theorem 5.4.4.] there
exists d ∈ N∗ and a sequence (Di)i∈[0..d−1] ∈ B(X)d of sets such that

1. for i 6= j, Di ∩Dj = ∅
2. µB0((

⋃d−1
i=0 Di)

c) = 0
3. for i = 0, . . . , d− 1 (mod d), for x ∈ Di, P (x, Di+1) = 1

Note that 2. is usually stated with the maximal measure ψ but then of course also holds
for µB0 . We will prove that d = 1.

From 3. we deduce that for x ∈ Di and j ∈ N∗, P j(x, Di+j mod d) = 1. And with the
first point for l 6= j mod d, P j(x, Di+l mod d) = 0.

From Lemma 9, there exists B̃0, an open neighbourhood of F k(x∗,w∗) such that for
all z ∈ B̃0 there exists Ux∗ an open neighbourhood of x∗ having the following property:
for y ∈ X if there exists a t-steps path from y to Ux∗ and if given A in B(X), for all Vz
open neighbourhood of z, Vz ∩ A has positive Lebesgue measure then P t+k(y, A) > 0.
We did not show that B0 = B̃0, but we can consider the set B1 = B0 ∩ B̃0 which is also
an open neighbourhood of F k(x∗,w∗).

Then with 2., µB0
((
⋃d−1
i=0 Di)

c)≥ µB1
((
⋃d−1
i=0 Di)

c) = 0, and since B1 is a non-empty

open set, µB1
is not trivial hence µB1

(
⋃d−1
i=0 Di) > 0. So there exists i ∈ [0..d − 1] and

z ∈ B1 such that for all Vz open neighbourhood of z, Vz ∩ Di has positive Lebesgue
measure (as implied by the contrapositive of Lemma 1).

Since x∗ is a strongly globally attracting state, for all y ∈ X there exists ty ∈ N∗
such that for all t ≥ ty there exists a t-steps path from y to Ux∗ . Using the property of
Ux∗ , this implies that P t+k(y, Di) > 0. Since this holds for any t ≥ ty, it also holds for
t = d(ty + k) + 1 − k, and so P d(ty+k)+1−k+k(y, Di) > 0. As we had deduced that for
l 6= j mod d, P j(y, Di+l mod d) = 0, we can conclude that d(ty + k) + 1 = 0 mod d,
hence 1 = 0 mod d meaning d = 1 and so Φ is aperiodic.

In [8, Proposition 7.3.4 and Theorem 7.3.5] in the context of the function (x,w) 7→
px(w) being independent of x, F being C∞ and px lower semi-continuous, under the
assumption that the control model is forward accessible, that there exists a globally
attracting state x∗ ∈ X and that the setOx is connected, aperiodicity is proven equivalent
to the connexity of A+(x∗). Although in most practical cases the set Ox is connected, it
is good to keep in mind that when Ox is not connected, A+(x∗) can also not be connected
and yet the Markov chain can be aperiodic (e.g. any sequence of i.i.d. random variables
with non-connected support is a ϕ-irreducible aperiodic Markov chain). In such problems
our approach still offer conditions to show the aperiodicity of the Markov chain.

3.3. Weak-Feller

Our main result summarized in Theorem 1 uses the fact that the chain is weak Feller.
Our experience is that this property can be often easily verified by proving that if f is
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continuous and bounded then

x ∈ X 7→
∫
f(F (x,w))px(w)dw

is continuous and bounded. This latter property often deriving from the dominated con-
vergence theorem. We however provide below another result to automatically prove the
weak Feller property.

Proposition 5. Suppose that

• for all w ∈ O the function x ∈ X 7→ F (x,w) is continuous,
• for all x ∈ X the function w ∈ O 7→ F (x,w) is measurable,
• for all w ∈ O, the function x ∈ X 7→ px(w) is lower semi-continuous.
• for all x ∈ X the function w ∈ O 7→ px(w) is measurable,

Then the Markov chain Φ is weak-Feller.

Proof. To be weak-Feller means that for any open set U ∈ B(X) the function x ∈ X 7→
P (x, U) is lower semi-continuous.

Take x ∈ X and w ∈ O. If F (x,w) /∈ U then ∀y ∈ X, 1U (F (y,w)) ≥ 1U (F (x,w)) =
0. If F (x,w) ∈ U as U is an open set there exists ε > 0 such that B(F (x,w), ε) ⊂ U , and
as the function y 7→ F (y,w) is continuous for all ε > 0 there exists η > 0 such that if
y ∈ B(x, η) then F (y,w) ∈ B(F (x,w), ε) ⊂ U . Therefore for all y in the neighbourhood
B(x, η) we have 1U (F (y,w)) = 1U (F (x,w)) ≥ 1U (F (x,w)) − ε, meaning the function
x ∈ X 7→ 1U (F (x,w)) is lower semi-continuous. For w ∈ O the function x 7→ px(w) is
assumed lower semi-continuous, hence so is x 7→ 1U (F (x,w))px(w).

Finally we can apply Fatou’s Lemma for all sequence (xt)t∈N ∈ XN converging to x:

lim inf P (xt, U) = lim inf

∫

O

1U (F (xt,w))pxt(w)dw

≥
∫

O

lim inf 1U (F (xt,w))pxt(w)dw

≥
∫

O

1U (F (x,w))px(w)dw = P (x, U) .

4. Applications

We illustrate now the usefulness of Theorem 1. For this, we present two examples of
Markov chains that can be modeled via (2) and detail how to apply Theorem 1 to
prove their ϕ-irreducibility, aperiodicity and the fact that compact sets are small sets.
Those Markov chains stem from adaptive stochastic algorithms aiming at optimizing
continuous optimization problems. Their stability study implies the linear convergence
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(or divergence) of the underlying algorithm. Those examples are not artificial: in both
cases, showing the ϕ-irreducibility, aperiodicity and the fact that compact sets are small
sets by hand without the results of the current paper seem to be very difficult. They
actually motivated the development of the theory of this paper.

4.1. A step-size adaptive randomized search on scaling-invariant
functions

We consider first a step-size adaptive stochastic search algorithm optimizing an objective
function f : Rn → R without constraints. The algorithm pertains to the class of so-called
Evolution Strategies (ES) algorithms [12] that date back to the 70’s. The algorithm
is however related to information geometry. It was recently derived from taking the
natural gradient of a joint objective function defined on the Riemannian manifold formed
by the family of Gaussian distributions [4, 9]. More precisely, let X0 ∈ Rn and let
(Ut)t∈N∗ be an i.i.d. sequence of random vectors where each Ut is composed of λ ∈ N∗
components Ut = (U1

t , . . . ,U
λ
t ) ∈ (Rn)λ with (Ui

t)i∈[1..λ] i.i.d. and following each a

standard multivariate normal distributionN (0, In). Given (Xt, σt) ∈ Rn×R∗+, the current
state of the algorithm, λ candidate solutions centered on Xt are sampled using the vector
Ut+1, i.e. for i in [1..λ]

Xt + σtU
i
t+1 , (24)

where σt called the step-size of the algorithm corresponds to the overall standard devia-
tion of σtU

i
t+1. Those solutions are ranked according to their f -values. More precisely,

let S be the permutation of λ elements such that

f
(
Xt + σtU

S(1)
t+1

)
≤ f

(
Xt + σtU

S(2)
t+1

)
≤ . . . ≤ f

(
Xt + σtU

S(λ)
t+1

)
. (25)

To break the possible ties and have an uniquely defined permutation S, we can simply con-
sider the natural order, i.e. if for instance λ = 2 and f

(
Xt + σtU

1
t+1

)
= f

(
Xt + σtU

2
t+1

)
,

then S(1) = 1 and S(2) = 2. The new estimate of the optimum Xt+1 is formed by taking
a weighted average of the µ best directions (typically µ = λ/2), that is

Xt+1 = Xt + κm

µ∑

i=1

wiU
S(i)
t+1 (26)

where the sequence of weights (wi)i∈[1..µ] sums to 1, and κm > 0 is called a learning rate.
The step-size is adapted according to

σt+1 = σt exp

(
κσ
2n

(
µ∑

i=1

wi

(
‖US(i)t+1 ‖2 − n

)))
, (27)

where κσ > 0 is a learning rate for the step-size. The equations (26) and (27) correspond
to the so-called xNES algorithm with covariance matrix restricted to σ2

t In [4]. One crucial
question in optimization is related to the convergence of an algorithm.
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On the class of so-called scaling-invariant functions (see below for the definition) with
optimum in x∗ ∈ Rn, a proof of the linear convergence of the aforementioned algorithm
can be obtained if the normalized chain Zt = (Xt − x∗)/σt—which turns out to be
an homogeneous Markov chain—is stable enough to satisfy a Law of Large Numbers.
This result is explained in details in [1] but in what follows we remind for the sake of
completeness the definition of a scaling invariant function and detail the expression of
the chain Zt.

A function is scaling-invariant with respect to x∗ if for all ρ > 0, x,y ∈ Rn

f(x) ≤ f(y)⇔ f(x∗ + ρ(x− x∗)) ≤ f(x∗ + ρ(y − x∗)) . (28)

Examples of scaling-invariant functions include f(x) = ‖x− x∗‖ for any arbitrary norm
on Rn. It also includes functions with non-convex sublevel sets, i.e. non-quasi-convex
functions.

As mentioned above, on this class of functions, Zt = (Xt − x∗)/σt is an homogeneous
Markov chain that can be defined independently of the Markov chain (Xt, σt) in the
following manner. Given Zt ∈ Rn sample λ candidate solutions centered on Zt using a
vector Ut+1, i.e. for i in [1..λ]

Zt + Ui
t+1 , (29)

where similarly as for the chain (Xt, σt), (Ut)t∈N are i.i.d. and each Ut is a vectors
of λ i.i.d. components following a standard multivariate normal distribution. Those λ
solutions are evaluated and ranked according to their f -values. Similarly to (25), the
permutation S containing the order of the solutions is extracted. This permutation can
be uniquely defined if we break the ties as explained below (25). The update of Zt then
reads

Zt+1 =
Zt + κm

∑µ
i=1 wiU

S(i)
t+1

exp
(
κσ
2n

(∑µ
i=1 wi(‖U

S(i)
t+1 ‖2 − n)

)) . (30)

We refer to [1, Proposition 1] for the details. Let us now define Wt+1 = (U
S(1)
t+1 , . . . ,U

S(µ)
t+1 ) ∈

Rn×µ and for z ∈ Rn, y ∈ (Rn)µ (with y = (y1, . . . ,yµ))

FxNES(z,y) =
z + κm

∑µ
i=1 wiy

i

exp
(
κσ
2n (

∑µ
i=1 wi(‖yi‖2 − n))

) , (31)

such that
Zt+1 = FxNES(Zt,Wt+1) .

Also there exists a function α : (Rn,Rn×λ) → Rn×µ such that Wt+1 = α(Zt,Ut+1).
Indeed, given z and u in Rn×λ we have explained how the permutation giving the rank-
ing of the candidate solutions z + ui on f can be uniquely defined. Then α(z,u) =
(uS(1), . . . ,uS(λ)). Hence we have just explained why the Markov chain defined via (30)
fits the Markov chain model underlying this paper, that is (2). If we assume that the level
sets of the function f are Lebesgue negligible, then a density p : (z,w) ∈ Rn×Rn×µ 7→ R+
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associated to Wt+1 writes

p(z,w) =
λ!

(λ− µ)!
1{f(z+w1)<...<f(z+wµ)}(1−Qfz(wµ))λ−µpN (w1) . . . pN (wµ) (32)

with each wi ∈ Rn and w = (w1, . . . ,wµ), where Qfz(wµ) = Pr (f(z +N ) ≤ f(z + wµ))
with N following a standard multivariate normal distribution and

pN (y) =
1

(
√

2π)n
exp(−yTy/2)

the density of a standard multivariate normal distribution in dimension n. If the objective
function f is continuous, then the density p(z,w) is lower semi-continuous.

We now prove by applying Theorem 1 that the Markov chain Zt is a ϕ-irreducible
aperiodic T -chain and compact sets are small sets for the chain. Those properties together
with a drift for positivity will imply the linear convergence of the xNES algorithm [1].

Proposition 6. Suppose that the scaling invariant function f is continuous, and that
its level sets are Lebesgue negligible. Then the Markov chain (Zt)t∈N defined in (30) is a
ϕ-irreducible aperiodic T -chain and compact sets are small sets for the chain.

Proof. It is not difficult to see that p(z,w) is lower-semi continuous since f is continuous
and that FxNES is a C1 function. We remind that Oz = {w ∈ Rn×µ|p(z,w) > 0} hence
with (32) Oz = {w ∈ Rn×µ|1{f(z+w1)<...<f(z+wµ)}>0}.

We will now prove that the point z∗ := 0 is a strongly globally attracting state. For
y ∈ Rn and ε ∈ R∗+, this means there exists a ty,ε ∈ N∗ such that for all t ≥ ty,ε, there
exists a t-steps path from y to B(0, ε). Note that lim‖w‖→+∞ FxNES(y,w) = 0, meaning
that there exists a r ∈ R∗+ such that if ‖w‖ ≥ r then FxNES(z,w) ∈ B(0, ε). Therefore,
and since Oy ∩ {w ∈ Rn×µ|‖w‖ ≥ r} is non empty, there exists a wy,ε ∈ Oy which is a
1-step path from y to B(0, ε). Now, showing that there is such a path from ỹ ∈ Rn for
all t ≥ 1 is trivial: take w ∈ Oy,t−1, and denote y = F t−1(ỹ,w); (w,wy,ε) is a t-steps
path from ỹ to B(0, ε).

We now prove that there exists w∗ ∈ O0 such that F (0, ·) is a submersion at w∗, by
proving that the differential of F (0, ·) at w∗ is surjective. Take w0 = (0, . . . ,0) ∈ Rn×µ
and h = (hi)i∈[1..µ] ∈ Rn×µ, then

FxNES(0,0 + h) =
κm
∑µ
i=1 wihi

exp
(
κσ
2n (

∑µ
i=1 wi(‖hi‖2 − n))

)

= 0 + κm

(
µ∑

i=1

wihi

)
exp

(κσ
2

)
exp

(
−κm

2n

µ∑

i=1

wi‖hi‖2
)

= FxNES(0,0) + κm

(
µ∑

i=1

wihi

)
exp

(κσ
2

)
(1 + o(‖h‖)) .
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Hence Dw0
FxNES(0, ·)(h) = κm exp(κσ/2)

∑µ
i=1 wihi, and is therefore a surjective linear

map. The point w0 is not in O0, but according to Lemma 5 since FxNES(0, ·) is a sub-
mersion at w0 there exists Vw0

an open neighbourhood of w0 such that for all v ∈ Vw0
,

FxNES(0, ·) is a submersion at v. Finally since Vw0∩O0 is not empty, there exists w∗ ∈ O0

such that FxNES(0, ·) is a submersion at w∗.
We can then apply Theorem 1 which shows that (Zt)t∈N is a ψ-irreducible aperiodic

T -chain, and that compact sets are small sets for the chain.

4.2. A step-size adaptive randomized search on a simple
constraint optimization problem

We now consider a similar algorithm belonging to the class of evolution strategies op-
timizing a linear function under a linear constraint. The goal for the algorithm is to
diverge as fast as possible as the optimum of the problem is at infinity. More pre-
cisely let f, g : Rn → R be two linear functions (w.lo.g. we take f(x) = [x]1, and
g(x) = − cos θ[x]1− sin θ[x]2) with θ ∈ (0, π/2). The goal is to maximize f while respect-
ing the constraint g(x)>0.

As for the previous algorithm, the state of the algorithm is reduced to (Xt, σt) ∈
Rn×R∗+ where Xt represents the favorite solution and σt is the step-size controlling the
standard deviation of the sampling distribution used to generate new solutions. From
Xt, λ new solutions are sampled

Yi
t+1 = Xt + σtV

i
t+1 , (33)

where each Vt = (V1
t , . . . ,V

λ
t ) with (Vi

t)i i.i.d. following a standard multivariate normal
distribution in dimension n. Those solutions may lie in the infeasible domain, that is
they might violate the constraint, i.e. g(Yi

t+1)≤0. Hence a specific mechanism is added
to ensure that we have λ solutions within the feasible domain. Here this mechanism is
very simple, it consists in resampling a solution till it lies in the feasible domain. We
denote Ỹi

t+1 the candidate solution i that satisfies the constraint. While the resampling
of a candidate solution can possibly call for an infinite numbers of multivariate normal
distribution, it can be shown in our specific case that this candidate solution can be
generated using a single random vector Ui

t+1 and is a function of the normalized distance
to the constraint δt = g(Xt)/σt. This is due to the fact that the distribution of the feasible
candidate solution orthogonal to the constraint direction follows a truncated Gaussian
distribution and orthogonal to the constraint a Gaussian distribution (we refer to [2,
Lemma 2] for the details). Hence overall,

Ỹi
t+1 = Xt + σtG̃(δt,U

i
t+1)

where [Ut = (U1
t , . . . ,U

λ
t )]t are i.i.d. (see [2, Lemma 2]) and the function G̃ is defined

in [2, equation (15)]. Those λ feasible candidate solutions are ranked on the objective
function f and as before, the permutation S containing the ranking of the solutions is
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extracted. The update of Xt+1 then reads

Xt+1 = Xt + σtG̃(δt,U
S(1)
t+1 ) , (34)

that is the best solution is kept. The update of the step-size satisfies

σt+1 = σt exp

(
1

2dσ

(
‖G̃(δt,U

S(1)
t+1 )‖2

n
− 1

))
, dσ ∈ R∗+ . (35)

This algorithm corresponds to a so-called (1, λ)-ES with resampling using the cumula-
tive step-size adaptation mechanism of the covariance matrix adaptation ES (CMA-ES)
algorithm [5].

It is not difficult to show that (δt)t∈N is an homogeneous Markov chain (see [2, Propo-
sition 5]) whose update reads

δt+1 =
(
δt + g(G̃(δt,U

S(1)
t+1 ))

)
exp

(
− 1

2dσ

(
‖G̃(δt,U

S(1)
t+1 )‖2

n
− 1

))
. (36)

and that the divergence of the algorithm can be proven if (δt)t∈N satisfies a Law of Large
Numbers. Given that typical conditions to prove that an homogeneous Markov chain
satisfies a LLN is ϕ-irreducibility, aperiodicity, Harris-recurrence and positivity and that
those latter two conditions are practical to verify with drift conditions that hold outside
a small set, we see the interest to be able to prove the irreducibility aperiodicity and
identify that compact sets are small sets for (δt)t∈N.

With respect to the modeling of the paper, let Wt = G̃(δt,U
S(1)
t+1 ), then there is a

well-defined function α such that Wt = α(δt,Ut+1) and according to [2, Lemma 3] the
density p(δ,w) of Wt knowing that δt = δ equals

p(δ,w) = λ
pN (w)1R∗+(δ + g(w))

FpN (δ)

(∫ [w]1

−∞
p1(u)

FpN ( δ−u cos θ
sin θ )

FpN (δ)
du

)λ−1
, (37)

where p1 is the density of a one dimensional normal distribution, pN the density of a
n-dimensional multivariate normal distribution and FpN its associated cumulative dis-
tribution function.

The state space X for the Markov chain (δt)t∈N is R∗+, the set O equals to Rn and the
function F implicitly given in (36):

F (δ,w) = (δ + g(w)) exp

(
− 1

2dσ

(‖w‖2
n
− 1

))
. (38)

The control set Ox,t equals

Ox,t := {(w1, . . . ,wt) ∈ Rnt|x > −g(w1), . . . , F t−1(x,w1, . . . ,wt−1) > −g(wt)} .

We are now ready to apply the results develop within the paper to prove that the chain
(δt)t∈N is a ϕ-irreducible aperiodic T -chain and that compact sets are small sets.
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Proposition 7. The Markov chain (δt)t∈N is a ϕ-irreducible aperiodic T -chain and
compact sets of R∗+ are small sets.

Proof. The function p(δ,w) defined in (37) is lower semi-continuous, and the function
F defined in (38) is C1.

We now prove that any point δ∗ ∈ R∗+ is a strongly globally attracting state, i.e. for
all δ0 ∈ R∗+ and ε ∈ R∗+ small enough there exists t0 ∈ N∗ such that for all t ≥ t0
there exists w ∈ Oδ0,t such that F t(δ0,w) ∈ B(δ∗, ε). Let δ0 ∈ R∗+. Let k ∈ N∗ be
such that δ0 exp(k/(2dσ)) > δ∗. We take wi = 0 for all i ∈ [1..k] and define δk :=
F k(δ0,w1, . . . ,wk). By construction of k, we have δk = δ0 exp(−k/(2dσ)(−1)) > δ∗.
Now, take u = (−1, . . . ,−1) and note that the limit limα→+∞ F (δk, αu) = 0. Since the
function F is continuous and that F (δk, 0u) > δk, this means that the set (0, δk) is
included into the image of the function α 7→ F (δk, αu). And since δ∗ < δk, there exists
α0 ∈ R+ such that F (δk, α0u) = δ∗. Now let w̄ = (w1, . . . ,wk, α0u), and note that since
g(u) ≥ 0 and g is linear, αu ∈ Oδ = {v ∈ Rn|δ + g(v) > 0} for all α ∈ R+ and all
δ ∈ R∗+; hence α0u ∈ Oδk and wi = 0u ∈ Oδ for all δ ∈ R∗+. Therefore w̄ ∈ Oδ0,k+1 and
F k+1(δ0, w̄) = δ∗, so w̄ is a k + 1-steps path from δ0 to B(δ∗, ε). As the proof stand for
all k large enough, δ∗ is a strongly globally attractive state.

We will now show that F (0, ·) is a submersion at some point w ∈ Rn. To do so we
compute the differential DwF (0, ·) of F (0, ·) at w:

F (0,w + h) = g(w + h) exp

(
− 1

2dσ

(‖w + h‖2
n

− 1

))

= g(w + h) exp

(
− 1

2dσ

(‖w‖2 + 2w.h + ‖h‖2
n

− 1

))

= g(w + h) exp

(
− 1

2dσ

(‖w‖2
n
− 1

))
exp

(
− 1

2dσ

(
2w.h + ‖h‖2

n

))

= g(w + h) exp

(
− 1

2dσ

(‖w‖2
n
− 1

))(
1− 2w.h

2dσn
+ o(‖h‖)

)

= F (0,w)− F (0,w)
w.h

dσn
+ g(h) exp

(
− 1

2dσ

(‖w‖2
n
− 1

))
+ o(‖h‖) .

Hence for w = (−√n, 0, . . . , 0) and h = (0, α, 0, . . . , 0), DwF (0, ·)(h) = −α sin θ exp(0).
Hence for α spanning R, DwF (0, ·)(h) spans R such that the image of DwF (0, ·) equals R,
i.e. DwF (0, ·) is surjective meaning F (0, ·) is a submersion at w. According to Lemma 5
this means there exists N an open neighbourhood of (0,w) such that for all (δ,u) ∈ N ,
F (δ, ·) is a submersion at u. So for δ∗ ∈ R∗+ small enough, F (δ∗, ·) is a submersion at
w = (−√n, 0, . . . , 0) ∈ Oδ∗ .

Adding this with the fact that δ∗ is a strongly globally attracting state, we can then
apply Theorem 1 which concludes the proof.
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Chapter 4

Analysis of Evolution Strategies

In this chapter we present analyses of different ESs optimizing a linear function with or

without linear constraints. The aim of these analyses is to fully prove whether a given ES

successfully optimizes these problems or not (which on a linear function translates into log-

linear divergence), and to get a better understanding of how the different parameters of the ES

or of the problem affect the behaviour of the ES on these problems.

Linear functions constitute an important class of problems which justify the focus of this

work on them. Indeed, linear functions model when the distance between the mean of the

sampling distribution X t and the optimum is large compared to the step-size σt , as on a C 1

function the sets of equal values can then generally be approximated by hyperplanes, which

correspond to the sets of equal values of linear functions. Hence, intuitively, linear functions

need to be solved by diverging log-linearly in order for an ES to converge on other functions

log-linearly independently of the initialization. Indeed, in [24] the log-linear convergence of

the (1+1)-ES with 1/5 success rule [117] is proven on C 1 positively homogeneous functions

(see (2.34) for a definition of positively homogeneous functions), under the condition that

the step-size diverges on the linear function (more precisely that the expected inverse of

the step-size change, E(σt /σt+1), is strictly smaller than 1 on linear functions). In [2] the

ES-IGO-flow (which can be linked to a continuous-time (µ/µW ,λ)-ES when µ is proportional

to λ and λ→∞, see 2.5.3) is shown to locally converge1 on C 2 functions under two conditions.

One of these conditions is that a variable which corresponds to the step-size of a standard

ES diverges log-linearly on linear functions. Hence, log-linear divergence on linear functions

appears to be a key to the log-linear convergence of ESs on a very wide range of problems.

In Section 4.1 we explain the methodology that we use to analyse ESs using Markov chain

theory. In Section 4.2 we analyse the (1,λ)-CSA-ES on a linear function without constraints. In

Section 4.3 we analyse a (1,λ)-ES on a linear function with a linear constraint; in 4.3.1 we both

study a (1,λ)-ES with constant step-size and the (1,λ)-CSA-ES, and in 4.3.2 we study a (1,λ)-ES

with constant step-size and with a general sampling distribution that can be non-Gaussian.

1According to private communications, log-linear convergence has been proven and is about to be published.
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Chapter 4. Analysis of Evolution Strategies

4.1 Markov chain Modelling of Evolution Strategies

Following [25] we present here our methodology and reasoning when analysing ESs using

Markov chains on scaling invariant functions (see (2.33) for a definition of scaling invariant

functions). We remind that linear functions, which will be the main object of study in this

chapter, are scaling-invariant functions. Moreover many more functions are scaling-invariant,

for instance all functions g ◦ f where f :Rn →R is a norm and g :R→R is strictly increasing

are scaling invariant.

For a given ES optimizing a function f : X ⊂Rn →Rwith optimum x∗ ∈ X , we would like to

prove the almost sure log-linear convergence or divergence of the step-size σt to 0 or of the

mean of the sampling distribution X t to the optimum x∗. This corresponds to the almost sure

convergence of respectively

1

t
ln

(
σt

σ0

)
= 1

t

t−1∑
k=0

ln

(
σk+1

σk

)
a.s.−→

t→+∞ r ∈R∗ (4.1)

and

1

t
ln

(‖X t −x∗‖
‖X 0 −x∗‖

)
= 1

t

t−1∑
k=0

ln

(‖X k+1 −x∗‖
‖X k −x∗‖

)
a.s.−→

t→+∞ r ∈R∗ (4.2)

to a rate r ∈R∗ (r > 0 corresponds to divergence, r < 0 to convergence). Expressing 1/t ln(σt /σ0)

as the average of the terms ln(σk+1/σk ) allows to apply a law of large numbers provided that

each term ln(σk+1/σk ) can be expressed as a function h of a positive Harris recurrent Markov

chain (Φt )t∈N with invariant measure π, that is

ln

(
σk+1

σk

)
= h(Φk+1) . (4.3)

Indeed, if π(h) (which is defined in (1.18)) if finite, then according to 1.2.11 we have that

1

t
ln

(
σt

σ0

)
= = 1

t

t∑
k=1

h(Φk )
a.s.−→

t→+∞π(h) . (4.4)

The same holds for the mean of the sampling distribution, provided that the terms ln(‖X k+1 −
x∗‖/‖X k −x∗‖) can be expressed as a function h̃ of a positive Harris recurrent Markov chain

(Φ̃t )t∈N.

For example, for the step-size of the (1,λ)-CSA-ES, inductively from the update rule ofσt (2.13),

composing by ln and dividing by t

1

t
ln

(
σt

σ0

)
= cσ

dσ

( 1
t

∑t
k=1 ‖pσ

k ‖
E (‖N (0, I d n)‖)

−1

)
, (4.5)

where pσ
t is the evolution path defined in (2.12). By showing that ‖pσ

t ‖ is a function of a positive

Harris Markov chain which is integrable under its invariant measure π (i.e. Eπ(‖pσ
t ‖) <∞), a

law of large numbers could be applied to deduce the log-linear convergence or divergence
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4.1. Markov chain Modelling of Evolution Strategies

of the step-size. Note that we cannot always express the term ln(σk+1/σk ) or ln(‖X k+1 −
x∗‖/‖X k − x∗‖) as a function of a positive Harris recurrent Markov chain. It will however

typically be true on the linear functions studied in this chapter, and more generally on scaling-

invariant functions [24, 25]. Following [25] we will give the expression of a suitable Markov-

chain for scaling-invariant functions.

Let us define the state of an algorithm as the parameters of its sampling distribution (e.g.

in the case of a multivariate Gaussian distribution, its mean X t , the step-size σt and the

covariance matrix C t ) combined with any other variable that is updated at each iteration (e.g.

the evolution path pσ
t for the (1,λ)-CSA-ES), and denoteΘ the state space. The sequence of

states (θt )t∈N ∈ΘN of an ES is naturally a Markov chain, as θt+1 is a function of the previous

state θt and of the new samples (N i
t )i∈[1..λ] (defined in (2.7)) through the selection and update

rules. However, the convergence of the algorithm implies that the distribution of the step-size

and the distribution of the mean of the sampling distribution converge to a Dirac distribution,

which typically renders the Markov chain non-positive or non ϕ-irreducible. To apply a

law of large numbers on our Markov chain as in (4.4), we need the Markov chain to be Harris

recurrent which requires the Markov chain to be ϕ-irreducible to be properly defined.

Hence on scaling invariant functions instead of considering σt and X t separately, as in [25]

we usually consider them combined through the random vector Z t := (X t −x∗)/σt , where x∗

is the optimum of the function f optimized by the ES (usually assumed to be 0). The sequence

(Z t )t∈N is not always a Markov chain for a given objective function f or ES. It has however

been shown in [25, Proposition 4.1] that on scaling invariant functions, given some conditions

on the ES, (Z t )t∈N is a time-homogeneous Markov chain which can be defined independently

of X t and σt . For a (1,λ)-CSA-ES with cumulation parameter cσ = 1 (defined in 2.3.8 through

(2.13) and (2.12)) we have the following update for Z t :

Z t+1 =
Z t +N 1:λ

t

exp
(

1
2dσ

( ‖N 1:λ
t ‖

E(‖N (0,I d n )‖) −1
)) , (4.6)

where N 1:λ
t is the step associated to the best sample Y 1:λ

t , i.e. N 1:λ
t = (X t −Y 1:λ

t )/σt . On scaling

invariant functions, the step N 1:λ
t can be redefined only from Z t , independently of X t and σt

and hence Z t can also be defined independently from X t and σt and can be shown to be a

Markov chain [25, Proposition 4.1]. This can be easily generalized to the (1,λ)-CSA-ES with

cσ ∈ (0,1] on scaling-invariant functions to the sequence (Z t , pσ
t )t∈N which is a Markov chain

(although it is not proven here). The update for Z t then writes

Z t+1 =
Z t +N 1:λ

t

exp
(

cσ
dσ

( ‖pσ
t+1‖

E(‖N (0,I d n )‖) −1
)) . (4.7)

To show that the Markov chain (Z t , pσ
t )t∈N is positive Harris recurrent, we first show the

irreducibility of the Markov chain, and identify its small sets. This can be done by studying the
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transition kernel P which here writes

P ((z , p), A×B) =
∫
Rn

1A
(
Fz (z , p , w )

)
1B

(
Fp (z , p , w )

)
pz ,p (w )d w , (4.8)

where Fp is the function associated to (2.12)

Fp (z , p , w ) := (1− cσ)p +
√

cσ(2− cσ)w (4.9)

and where Fz is the function associated to (4.7)

Fz (z , p , w ) := z +w

exp
(

cσ
dσ

( ‖Fp (z ,p ,w )‖
E(‖N (0,I d n )‖) −1

)) , (4.10)

and pz ,p (w ) the conditional probability density function of N 1:λ
t knowing that Z t = z and pσ

t =
p (note that N 1:λ

t is valued in Rn , as indicated in (4.8)). In simple situations (no cumulation,

optimizing a linear function), z and p can be moved out of the indicator functions by a change

of variables, and the resulting expression can be used to build a non-trivial measure to show

irreducibility, aperiodicity or small sets property (see Lemma 12 in 4.2.1, Proposition 3 in

4.3.1 and Proposition 2 in 4.3.2). However, this is a ad-hoc and tedious technique, and when

the step-size is strongly coupled to the mean update it is very difficult2. The techniques

developed in Chapter 3 could instead be used. In the example of a (1,λ)-CSA-ES, we define

the transition function F as the combination of Fz and Fp , and we inductively define F 1 := F ,

and F t+1((z , p), w 1, . . . , w t+1) := F t (F ((z , p), w 1), w 2, . . . , w t+1), and O(z ,p),t is defined as the

support of the distribution of (N 1:λ
k )k∈[1..t ] conditionally to (Z 0, pσ

0 ) = (z , p). Provided that the

transition function F is C 1, that the function (z , p , w ) 7→ pz ,p (w )) is lower semi-continuous,

and that there exists a strongly globally attracting state (z∗, p∗) (see (3.3) for a definition) for

which there exists k ∈N∗ and w∗ ∈ O(z∗,p∗),k such that F k ((z∗, p∗), ·) is a submersion at w∗,

then the Markov chain (Z t , pσ
t )t∈N is ϕ-irreducible, aperiodic, and compact sets are small sets

for the Markov chain.

Once the irreducibility measure and the small sets are identified, the positivity and Harris

recurrence of the Markov chain are proved using drift conditions defined in 1.2.10. In the

case of the (1,λ)-CSA-ES with cumulation parameter cσ equal to 1, we saw that on scaling

invariant functions (Z t )t∈N is a Markov chain. In this case the drift function V can be taken as

V (z) = ‖z‖α, and the desired properties can be obtained by studying the limit of ∆V (z)/V (z)

when ‖z‖ tends to infinity, as done in Proposition 6 in 4.3.1 on the linear function with a linear

constraint. A negative limit shows the drift condition for geometric ergodicity, which not

only allows us to apply a law of large numbers and ensures the convergence of Monte Carlo

simulations to the value measured, but also ensures a fast convergence of these simulations.

In the case of the (1,λ)-CSA-ES for any cumulation parameter cσ ∈ (0,1], on scaling invariant

functions (Z t , pσ
t )t∈N is a Markov chain and the natural extension of the drift function for

cσ = 1 would be to consider V (z , p) = ‖z‖α+‖p‖β; however for large values of ‖z‖ and low

values of ‖p‖, from (4.7) we see that ‖z‖ would be basically multiplied by exp(cσ/dσ) which

2Anne Auger, private communication, 2013.
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makes ‖z‖ increase, and results in a positive drift, and so this drift function fails. The evolution

path induces an inertia in the algorithm, and it may take several iterations for the algorithm

to recover from a ill-initialized evolution path. Our intuition is that a drift function for the

evolution path would therefore need to measure several steps into the future to see a negative

drift.

4.2 Linear Function

In this section we present an analysis of the (1,λ)-CSA-ES on a linear function. This analysis is

presented through a technical report [43] which contains the paper [46] which was published

at the conference Parallel Problem Solving from Nature in 2012 and which includes the full

proofs of every proposition of [46], and a proof of the log-linear divergence of (| f (X t )|)t∈N.

This analysis investigates a slightly different step-size adaptation rule than the one defined in

(2.13), and instead as proposed in [16] the step-size is adapted following

σt+1 =σt exp

(
cσ

2dσ

(‖pσ
t+1‖2

n
−1

))
, (4.11)

where as introduced in 2.3.8, cσ ∈ (0,1] is the cumulation parameter, dσ ∈R∗+ is the damping

parameter, and pσ
t+1 as defined in (2.12) is the evolution path. This step-size adaptation rule

is selected as it is easier to analyse, and similar to the original one.

An important point of this analysis is that on the linear function, the sequence of random

vectors (ξ?t+1)t∈N := ((X t+1 −X t )/σt )t∈N is i.i.d.. This implies that the evolution path (pσ
t )t∈N is

a time-homogeneous Markov chain. Since, as can be seen in (4.11), the distribution of the step-

size is entirely determined by σ0 and the evolution path (pσ
t )t∈N, this has the consequence

that to prove the log-linear divergence of the step-size, we do not need to study the full Markov

chain (Z t , pσ
t )t∈N, where Z t is defined through (4.7), as proposed in Section 4.1. Instead,

studying (pσ
t )t∈N suffice. In the following article we establish that when cσ = 1 and λ≥ 3 or

when cσ < 1 and λ ≥ 2, the Markov chain (pσ
t )t∈N is geometrically ergodic, from which we

deduce that the step-size of the (1,λ)-CSA-ES diverges log-linearly almost surely at a rate that

that we specify.

However to establish the log-linear divergence of (| f (X t )|)t∈N∗ , we need to study the full

Markov chain (Z t , p t )t∈N. While, for reasons suggested in Section 4.1, the analysis of this

Markov is a difficult problem, we consider in the following technical report a simpler case

where cσ = 1 and so p t+1 = ξ?t , and (Z t )t∈N is a time-homogeneous Markov chain. We establish

from studying (Z t )t∈N that when cσ equals 1, (Z t )t∈N is a geometrically ergodic Markov chain

and we derive almost sure log-linear divergence when λ≥ 3 of (| f (X t )|)t∈N at the same rate

than for the log-linear divergence of the step-size.

Furthermore a study of the variance of the logarithm of the step-size is conducted, and

the scaling of this variance with the dimension gives elements regarding how to adapt the

cumulation parameter cσ with the dimension of the problem.
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4.2.1 Paper: Cumulative Step-size Adaptation on Linear Functions

74



Cumulative Step-size Adaptation on Linear Functions:
Technical Report

Alexandre Chotard1, Anne Auger1 and Nikolaus Hansen1

TAO team, INRIA Saclay-Ile-de-France, LRI, Paris-Sud University, France
firstname.lastname@lri.fr

Abstract. The CSA-ES is an Evolution Strategy with Cumulative Step size Adap-
tation, where the step size is adapted measuring the length of a so-called cumu-
lative path. The cumulative path is a combination of the previous steps realized
by the algorithm, where the importance of each step decreases with time. This
article studies the CSA-ES on composites of strictly increasing functions with
affine linear functions through the investigation of its underlying Markov chains.
Rigorous results on the change and the variation of the step size are derived with
and without cumulation. The step-size diverges geometrically fast in most cases.
Furthermore, the influence of the cumulation parameter is studied.

Keywords: CSA, cumulative path, evolution path, evolution strategies, step-size adap-
tation

1 Introduction

Evolution strategies (ESs) are continuous stochastic optimization algorithms searching
for the minimum of a real valued function f : Rn → R. In the (1, λ)-ES, in each
iteration, λ new children are generated from a single parent point Xt ∈ Rn by adding
a random Gaussian vector to the parent,

X ∈ Rn 7→X + σN (0,C) .

Here, σ ∈ R∗+ is called step-size and C is a covariance matrix. The best of the λ
children, i.e. the one with the lowest f -value, becomes the parent of the next iteration.
To achieve reasonably fast convergence, step size and covariance matrix have to be
adapted throughout the iterations of the algorithm. In this paper, C is the identity and
we investigate the so-called Cumulative Step-size Adaptation (CSA), which is used to
adapt the step-size in the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[13,10]. In CSA, a cumulative path is introduced, which is a combination of all steps the
algorithm has made, where the importance of a step decreases exponentially with time.
Arnold and Beyer studied the behavior of CSA on sphere, cigar and ridge functions
[2,3,1,7] and on dynamical optimization problems where the optimum moves randomly
[5] or linearly [6]. Arnold also studied the behaviour of a (1, λ)-ES on linear functions
with linear constraint [4].

In this paper, we study the behaviour of the (1, λ)-CSA-ES on composites of strictly
increasing functions with affine linear functions, e.g. f : x 7→ exp(x2 − 2). Because
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the CSA-ES is invariant under translation, under change of an orthonormal basis (ro-
tation and reflection), and under strictly increasing transformations of the f -value, we
investigate, w.l.o.g., f : x 7→ x1. Linear functions model the situation when the current
parent is far (here infinitely far) from the optimum of a smooth function. To be far from
the optimum means that the distance to the optimum is large, relative to the step-size σ.
This situation is undesirable and threatens premature convergence. The situation should
be handled well, by increasing step widths, by any search algorithm (and is not handled
well by the (1, 2)-σSA-ES [9]). Solving linear functions is also very useful to prove
convergence independently of the initial state on more general function classes.

In Section 2 we introduce the (1, λ)-CSA-ES, and some of its characteristics on
linear functions. In Sections 3 and 4 we study ln(σt) without and with cumulation,
respectively. Section 5 presents an analysis of the variance of the logarithm of the step-
size and in Section 6 we summarize our results.

Notations In this paper, we denote t the iteration or time index, n the search space
dimension,N (0, 1) a standard normal distribution, i.e. a normal distribution with mean
zero and standard deviation 1. The multivariate normal distribution with mean vector
zero and covariance matrix identity will be denoted N (0, In), the ith order statistic of λ
standard normal distributionsNi:λ, and Ψi:λ its distribution. If x = (x1, · · · , xn) ∈ Rn
is a vector, then [x]i will be its value on the ith dimension, that is [x]i = xi. A random
variableX distributed according to a law L will be denotedX ∼ L. If A is a subset of
X , we will denote Ac its complement in X .

2 The (1, λ)-CSA-ES

We denote withXt the parent at the tth iteration. From the parent pointXt, λ children
are generated: Y t,i = Xt+σtξt,i with i ∈ [[1, λ]], and ξt,i ∼N (0, In), (ξt,i)i∈[[1,λ]]
i.i.d. Due to the (1, λ) selection scheme, from these children, the one minimizing the
function f is selected: Xt+1 = argmin{f(Y ),Y ∈ {Y t,1, ...,Y t,λ}}. This latter
equation implicitly defines the random variable ξ?t as

Xt+1 = Xt + σtξ
?
t . (1)

In order to adapt the step-size, the cumulative path is defined as

pt+1 = (1− c)pt +
√
c(2− c) ξ?t (2)

with 0 < c ≤ 1. The constant 1/c represents the life span of the information contained
in pt, as after 1/c generations pt is multiplied by a factor that approaches 1/e ≈ 0.37
for c→ 0 from below (indeed (1−c)1/c ≤ exp(−1)). The typical value for c is between
1/
√
n and 1/n. We will consider that p0 ∼ N (0, In) as it makes the algorithm easier

to analyze.
The normalization constant

√
c(2− c) in front of ξ?t in Eq. (2) is chosen so that

under random selection and if pt is distributed according to N (0, In) then also pt+1

follows N (0, In). Hence the length of the path can be compared to the expected length
of ‖N (0, In)‖ representing the expected length under random selection.
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The step-size update rule increases the step-size if the length of the path is larger
than the length under random selection and decreases it if the length is shorter than
under random selection:

σt+1 = σt exp

(
c

dσ

( ‖pt+1‖
E(‖N (0, In)‖) − 1

))

where the damping parameter dσ determines how much the step-size can change and
is set to dσ = 1. A simplification of the update considers the squared length of the
path [5]:

σt+1 = σt exp

(
c

2dσ

(‖pt+1‖2
n

− 1

))
. (3)

This rule is easier to analyse and we will use it throughout the paper. We will denote η?t
the random variable for the step-size change, i.e. η?t = exp(c/(2dσ)(‖pt+1‖2/n− 1)),
and for u ∈ Rn, η?(u) = exp(c/(2dσ)(‖u‖2/n− 1)).

Preliminary results on linear functions. Selection on the linear function, f(x) = [x]1,
is determined by [Xt]1 + σt [ξ?t ]1 ≤ [Xt]1 + σt

[
ξt,i
]
1

for all i which is equivalent to
[ξ?t ]1 ≤

[
ξt,i
]
1

for all i where by definition
[
ξt,i
]
1

is distributed according to N (0, 1).
Therefore the first coordinate of the selected step is distributed according to N1:λ and
all others coordinates are distributed according to N (0, 1), i.e. selection does not bias
the distribution along the coordinates 2, . . . , n. Overall we have the following result.

Lemma 1. On the linear function f(x) = x1, the selected steps (ξ?t )t∈N of the (1, λ)-
ES are i.i.d. and distributed according to the vector ξ := (N1:λ,N2, . . . ,Nn) where
Ni ∼ N (0, 1) for i ≥ 2.

Because the selected steps ξ?t are i.i.d. the path defined in Eq. 2 is an autonomous
Markov chain, that we will denote P = (pt)t∈N. Note that if the distribution of the
selected step depended on (Xt, σt) as it is generally the case on non-linear functions,
then the path alone would not be a Markov Chain, however (Xt, σt,pt) would be an
autonomous Markov Chain. In order to study whether the (1, λ)-CSA-ES diverges geo-
metrically, we investigate the log of the step-size change, whose formula can be imme-
diately deduced from Eq. 3:

ln

(
σt+1

σt

)
=

c

2dσ

(‖pt+1‖2
n

− 1

)
(4)

By summing up this equation from 0 to t− 1 we obtain

1

t
ln

(
σt
σ0

)
=

c

2dσ

(
1

t

t∑

k=1

‖pk‖2
n
− 1

)
. (5)

We are interested to know whether 1
t ln(σt/σ0) converges to a constant. In case this

constant is positive this will prove that the (1, λ)-CSA-ES diverges geometrically. We
recognize thanks to (5) that this quantity is equal to the sum of t terms divided by t that
suggests the use of the law of large numbers to prove convergence of (5). We will start
by investigating the case without cumulation c = 1 (Section 3) and then the case with
cumulation (Section 4).
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3 Divergence rate of (1, λ)-CSA-ES without cumulation

In this section we study the (1, λ)-CSA-ES without cumulation, i.e. c = 1. In this case,
the path always equals to the selected step, i.e. for all t, we have pt+1 = ξ?t . We have
proven in Lemma 1 that ξ?t are i.i.d. according to ξ. This allows us to use the standard
law of large numbers to find the limit of 1

t ln(σt/σ0) as well as compute the expected
log-step-size change.

Proposition 1. Let ∆σ := 1
2dσn

(
E
(
N 2

1:λ

)
− 1
)
. On linear functions, the (1, λ)-CSA-

ES without cumulation satisfies (i) almost surely limt→∞ 1
t ln (σt/σ0) = ∆σ , and (ii)

for all t ∈ N, E(ln(σt+1/σt)) = ∆σ .

Proof. We have identified in Lemma 1 that the first coordinate of ξ?t is distributed ac-
cording to N1:λ and the other coordinates according to N (0, 1), hence E(‖ξ?t ‖2) =

E([ξ?t ]1
2
)+
∑n
i=2 E([ξ?t ]

2
i ) = E(N 2

1:λ)+n−1. Therefore E(‖ξ?t ‖2)/n−1 = (E(N 2
1:λ)−

1)/n. By applying this to Eq. (4), we deduce that E(ln(σt+1/σt) = 1/(2dσn)(E(N 2
1:λ)−

1). Furthermore, as E(N 2
1:λ) ≤ E((λN (0, 1))2) = λ2 < ∞, we have E(‖ξ?t ‖2) < ∞.

The sequence (‖ξ?t ‖2)t∈N being i.i.d according to Lemma 1, and being integrable as we
just showed, we can apply the strong law of large numbers on Eq. (5). We obtain

1

t
ln

(
σt
σ0

)
=

1

2dσ

(
1

t

t−1∑

k=0

‖ξ?k‖2
n
− 1

)

a.s.−→
t→∞

1

2dσ

(
E
(
‖ξ?· ‖2

)

n
− 1

)
=

1

2dσn

(
E
(
N 2

1:λ

)
− 1
)

ut

The proposition reveals that the sign of E(N 2
1:λ)− 1) determines whether the step-

size diverges to infinity or converges to 0. In the following, we show that E(N 2
1:λ)

increases in λ for λ ≥ 2 and that the (1, λ)-ES diverges for λ ≥ 3. For λ = 1 and
λ = 2, the step-size follows a random walk on the log-scale. To prove this we need the
following lemma:

Lemma 2 ([11]). Let g : R→ R be a function, and (Ni)i∈[1..λ] be a sequence of i.i.d.
random variables, and letNi:λ denote the ith order statistic of the sequence (Ni)i∈[1..λ].
For λ ∈ N∗,

(λ+ 1)E (g (N1:λ)) = E (g (N2:λ+1)) + λE (g (N1:λ+1)) . (6)

Proof. This method can be found with more details in [11].
Let χi = g(Ni), and χi:λ = g(Ni:λ). Note that in general χ1:λ 6= mini∈[[1,λ]] χi.

The sorting is made on (Ni)i∈[1..λ], not on (χi)i∈[1..λ]. We will also note χ{j}i:λ the ith

order statistic after that the variable χj has been taken away, and χ
[j]
i:λ the ith order

statistic after χj:λ has been taken away. If i 6= 1 then we have χ[i]
1:λ = χ1:λ, and for

i = 1 and λ ≥ 2, χ[i]
1:λ = χ2:λ.

We have that (i) E(χ
{i}
1:λ) = E(χ1:λ−1), and (ii)

∑λ
i=1 χ

{i}
1:λ =

∑λ
i=1 χ

[i]
1:λ. From (i)

we deduce that λE (χ1:λ−1) = λE(χ
{i}
1:λ) =

∑λ
i=1 E(χ

{i}
1:λ) = E(

∑λ
i=1 χ

{i}
1:λ). With (ii),

Chapter 4. Analysis of Evolution Strategies

78



we get that E(
∑λ
i=1 χ

{i}
1:λ) = E(

∑λ
i=1 χ

[i]
1λ) = E(χ2:λ)+(λ−1)E(χ1:λ). By combining

both, we get
λE(χ1:λ−1) = E(χ2:λ) + (λ− 1)E(χ1:λ) .

ut
We are now ready to prove the following result.

Lemma 3. Let (Ni)i∈[[1,λ]] be independent random variables, distributed according to
N (0, 1), and Ni:λ the ith order statistic of (Ni)i∈[[1,λ]]. Then E

(
N 2

1:1

)
= E

(
N 2

1:2

)
=

1. In addition, for all λ ≥ 2, E
(
N 2

1:λ+1

)
> E

(
N 2

1:λ

)
.

Proof. For λ = 1, N1:1 = N1 and so E(N 2
1:1) = 1. So using Lemma 2 and taking g as

the square function, E(N 2
1:2)+E(N 2

1:1) = 2E(N 2
1:1) = 2. By symmetry of the standard

normal distribution, E(N 2
1:2) = E(N 2

1:2), and so E(N 2
1:2) = 1.

Now for λ ≥ 2, using Lemma 2 and taking g as the square function, (λ+1)E(N 2
1:λ) =

E(N 2
2:λ+1) + λE(N 2

1:λ+1), and so

(λ+ 1)(E(N 2
1:λ)− E(N 2

1:λ+1)) = E(N 2
2:λ+1)− E(N 2

1:λ+1) . (7)

Hence E(N 2
1:λ+1) > E(N 2

1:λ) for λ ≥ 2 is equivalent to E(N 2
1:λ) > E

(
N 2

2:λ

)
for

λ ≥ 3.
Forω ∈ Rλ letωi:λ ∈ R denote the ith order statistic of the sequence ([ω]j)j∈[1..λ].

Let p be the density of the sequence (Ni)i∈[1..λ], i.e. p(ω) := exp(−‖ω‖2/2)/
√

2π

and let E1 be the set {ω ∈ Rλ|ω2
1:λ < ω

2
2:λ}. For ω ∈ E1, |ω1:λ| < |ω2:λ|, and since

ω1:λ < ω2:λ, we have −ω2:λ < ω1:λ < ω2:λ. For ω ∈ E1, take ω̄ ∈ Rλ such that
ω̄1:λ = −ω2:λ, ω̄2:λ = ω1:λ, and [ω̄]i = [ω]i for i ∈ [1..λ] such that ω2:λ < [ω]i. The
function g : E1 → Rλ that maps ω to ω̄ is a diffeomorphism from E1 to its image by
g, that we denote E2, and the Jacobian determinant of g is 1. Note that by symmetry of
p, p(ω̄) = p(ω), hence with the change of variables ω̄ = g(ω),

∫

E2

(ω̄2
2:λ − ω̄2

1:λ)p(ω̄i:λ)dω̄ =

∫

E1

(ω2
1:λ − ω2

2:λ)p(ω)dω . (8)

Since E(N 2
1:λ −N 2

2:λ) =
∫
Rλ(ω2

1:λ − ω2
2:λ)p(ω)dω and E1 and E2 being disjoint

sets, with (8)

E(N 2
1:λ −N 2

2:λ) =

∫

Rλ\(E1∪E2)

(ω2
1:λ − ω2

2:λ)p(ω)dω . (9)

Since p(ω) > 0 for all ω ∈ Rλ and that ω2
1:λ − ω2

2:λ ≤ 0 if and only if ω ∈ E1

or ω2
1:λ = ω2

2:λ, Eq. (9) shows that E(N 2
1:λ − N 2

2:λ) > 0 if and only if there exists a
subset of Rλ\(E1 ∪ E2 ∪ {ω ∈ Rλ|ω2

1:λ = ω2
2:λ}) with positive Lebesgue-measure.

For λ ≥ 3, the set E3 := {ω ∈ Rλ|ω1:λ < ω2:λ < ω3:λ < 0} has positive Lebesgue
measure. For all ω ∈ E3, ω2

1:λ > ω
2
2:λ so E3 ∩ E1 = ∅. Furthermore, ω1:λ 6= ω2:λ so

E3 ∩ {ω ∈ Rλ|ω2
1:λ = ω2

2:λ} = ∅. Finally for ω ∈ E3, denoting ω̄ = g−1(ω), since
ω̄1:λ = ω2:λ and ω̄2:λ = ω3:λ, ω̄2

1:λ > ω̄
2
2:λ and so ω̄i:λ /∈ E1, that is ω /∈ E2. So E3

is a subset of Rλ\(E1 ∪E2 ∪{ω ∈ Rλ|ω2
1:λ = ω2

2:λ} with positive Lebesgue measure,
which proves the lemma. ut
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We can now link Proposition 1 and Lemma 3 into the following theorem:

Theorem 1. On linear functions, for λ ≥ 3, the step-size of the (1, λ)-CSA-ES without
cumulation (c = 1) diverges geometrically almost surely and in expectation at the rate
1/(2dσn)(E(N 2

1:λ)− 1), i.e.

1

t
ln

(
σt
σ0

)
a.s.−→
t→∞

E
(

ln

(
σt+1

σt

))
=

1

2dσn

(
E
(
N 2

1:λ

)
− 1
)
. (10)

For λ = 1 and λ = 2, without cumulation, the logarithm of the step-size does
an additive unbiased random walk i.e. lnσt+1 = lnσt + Wt where E[Wt] = 0. More
preciselyWt ∼ 1/(2dσ)(χ2

n/n−1) for λ = 1, andWt ∼ 1/(2dσ)((N 2
1:2 +χ2

n−1)/n−
1) for λ = 2, where χ2

k stands for the chi-squared distribution with k degree of freedom.

Proof. For λ > 2, from Lemma 3 we know that E(N 2
1:λ) > E(N 2

1:2) = 1. Therefore
E(N 2

1:λ)− 1 > 0, hence Eq. (10) is strictly positive, and with Proposition 1 we get that
the step-size diverges geometrically almost surely at the rate 1/(2dσ)(E(N 2

1:λ)− 1).
With Eq. 4 we have ln(σt+1) = ln(σt) + Wt, with Wt = 1/(2dσ)(‖ξ?t ‖2/n − 1).

For λ = 1 and λ = 2, according to Lemma 3, E(Wt) = 0. Hence ln(σt) does an
additive unbiased random walk. Furthermore ‖ξ‖2 = N 2

1:λ +χ2
n−1, so for λ = 1, since

N1:1 = N (0, 1), ‖ξ‖2 = χ2
n. ut

3.1 Geometric divergence of ([Xt]1)t∈N

We now establish a result similar to Theorem 1 for the sequence ([Xt]1)t∈N. Using
Eq (1)

ln

∣∣∣∣
[Xt+1]1
[Xt]1

∣∣∣∣ = ln

∣∣∣∣1 +
σt

[Xt]1
[ξ?t ]1

∣∣∣∣ .

Summing the previous equation from 0 till t− 1 and dividing by t gives that

1

t
ln

∣∣∣∣
[Xt]1
[X0]1

∣∣∣∣ =
1

t

t−1∑

k=0

ln

∣∣∣∣1 +
σk

[Xk]1
[ξ?t ]1

∣∣∣∣ . (11)

Let Zt =
[Xt+1]1
σt

for t ∈ N, then

Zt+1 =
[Xt+2]1
σt+1

=
[Xt+1]1 + σt+1

[
ξ?t+1

]
1

σt+1

Zt+1 =
Zt
η?t

+
[
ξ?t+1

]
1

using that σt+1 = σtη
?
t . According to Lemma 1, (ξ?t )t∈N is a i.i.d. sequence. As η?t =

exp((‖ξ?t ‖2/n − 1)/(2dσ)), (η?t )t∈N is also independent over time. Therefore, Z :=
(Zt)t∈N, is a Markov chain.
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By introducing Z in Eq (11), we obtain:

1

t
ln

∣∣∣∣
[Xt]1
[X0]1

∣∣∣∣ =
1

t

t−1∑

k=0

ln

∣∣∣∣1 +
σk−1η?k−1

[Xk]1
[ξ?k]1

∣∣∣∣

=
1

t

t−1∑

k=0

ln

∣∣∣∣1 +
η?k−1
Zk−1

[ξ?k]1

∣∣∣∣

=
1

t

t−1∑

k=0

ln

∣∣∣∣∣∣

Zk−1

η?k−1
+ ξ?k

Zk−1

η?k−1

∣∣∣∣∣∣

=
1

t

t−1∑

k=0

(
ln |Zk| − ln |Zk−1|+ ln

∣∣η?k−1
∣∣) (12)

The right hand side of this equation reminds us again of the law of large numbers.
The sequence (Zt)t∈N is not independent over time, but Z being a Markov chain, if it
follows some specific stability properties of Markov chains, then a law of large numbers
may apply.

Study of the Markov chain Z To apply a law of large numbers to a Markov chainΦ =
(Φt)t∈N taking values inX a subset of Rn, it has to satisfies some stability properties: in
particular, the Markov chain Φ has to be ϕ-irreducible, that is, there exists a measure ϕ
such that every Borel setA ofX with ϕ(A) > 0 has a positive probability to be reached
in a finite number of steps byΦ starting from any x ∈ Rn, i.e. Pr(Φt ∈ A|Φ0 = x) > 0
for all x ∈ X . In addition, the chain Φ needs to be (i) positive, that is the chain admits
an invariant probability measure π, i.e., for any Borel setA, π(A) =

∫
X
P (x, A)π(dx)

with P (x, A) := Pr(Φ1 ∈ A|Φ0 = x), and (ii) Harris recurrent which means for any
Borel set A such that ϕ(A) > 0, the chain Φ visits A an infinite number of times with
probability one. Under those conditions, Φ satisfies a law of large numbers as written
in the following lemma.

Lemma 4. [12, 17.0.1] Suppose that Φ is a positive Harris chain defined on a set X
with stationary measure π, and let g : X → R be a π-integrable function, i.e. such that
π(|g|) :=

∫
X
|g(x)|π(dx) is finite. Then

1/t

t∑

k=1

g(Φk)
a.s−→
t→∞

π(g) . (13)

To show that a ϕ-irreducible Markov defined on a set X ⊂ Rn equipped with its
Borel σ-algebra B(X) is positive Harris recurrent, we generally show that the chain
follows a so-called drift condition over a small set, that is for a function V , an in-
equality over the drift operator ∆V : x ∈ X 7→

∫
X
V (y)P (x, dy) − V (x). A

small set C ∈ B(X) is a set such that there exists a m ∈ N∗ and a non-trivial
measure νm on B(X) such that for all x ∈ C, B ∈ B(X), Pm(x, B) ≥ νm(B).
The set C is then called a νm-small set. The chain also needs to be aperiodic, mean-
ing for all sequence (Di)i∈[0..d−1] ∈ B(X)d of disjoint sets such that for x ∈ Di,
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P (x, Di+1 mod d) = 1, and [∪di=1]c is ϕ-negligible, d equals 1. If there exists a ν1-
small-set C such that ν1(C) > 0, then the chain is strongly aperiodic (and therefore
aperiodic). We then have the following lemma.

Lemma 5. [12, 14.0.1] Suppose that the chain Φ is ϕ-irreductible and aperiodic, and
f ≥ 1 a function on X . Let us assume that there exists V some extended-valued non-
negative function finite for some x0 ∈ X , a small set C and b ∈ R such that

∆V (x) ≤ −f(x) + b1C(x) , x ∈ X. (14)

Then the chain Φ is positive Harris recurrent with invariant probability measure π and

π(f) =

∫

X

π(dx)f(x) <∞ . (15)

Proving the irreducibility, aperiodicity and exhibiting the small sets of a Markov
chain Φ can be done by showing some properties of its underlying control model. In
our case, the model associated to Z is called a non-linear state space model. We will, in
the following, define this non-linear state space model and some of its properties.

Suppose there exists O ∈ Rm an open set and F : X ×O → X a smooth function
(C∞) such that Φt+1 = F (Φt,W t+1) with (W t)t∈N being a sequence of i.i.d. random
variables, whose distribution Γ possesses a semi lower-continuous density γw which
is supported on an open set Ow; then Φ follows a non-linear state space model driven
by F or NSS(F ) model, with control set Ow. We define its associated control model
CM(F ) as the deterministic system xt = Ft(x0,u1, · · · ,ut), where Ft is inductively
defined by F1 := F and

Ft(x0,u1, · · · ,uk) := F (Ft−1(x0,u1, · · · ,ut−1),ut) ,

provided that (ut)t∈N lies in the control set Ow. For a point x ∈ X , and k ∈ N∗ we
define

Ak+(x) := {Fk(x, u1, · · · , uk)|ui ∈ Ow, ∀i ∈ [1..k]} ,
the set of points reachable from x after k steps of time, for k = 0, Ak+(x) := {x}, and
the set of points reachable from x

A+(x) =
⋃

k∈N
Ak+(x) .

The associated control model CM(F ) is called forward accessible if for each x ∈ X ,
the set A+(x) has non empty-interior.

Let E be a subset of X . We note A+(E) =
⋃
x∈E A+(x), and we say that E is

invariant if A+(E) ⊂ E. We call a set minimal if it is closed, invariant, and does not
strictly contain any closed and invariant subset. Restricted to a minimal set, a Markov
chain has strong properties, as stated in the following lemma.

Lemma 6. [12, 7.2.4, 7.2.6 and 7.3.5] Let M ⊂ X be a minimal set for CM(F ). If
CM(F ) is forward accessible then the NSS(F ) model restricted to M is an open set
irreducible T-chain.

Furthermore, if the control set Ow and M are connected, and that M is the unique
minimal set of the CM(F ), then the NSS(F ) model is a ψ-irreducible aperiodic T-chain
for which every compact set is a small set.
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We can now prove the following lemma:

Lemma 7. The Markov chain Z is open-set irreducible, ψ-irreducible, aperiodic, and
compacts of R are small-sets.

Proof. This is deduced from Lemma 6 when all its conditions are fulfilled. We then
have to show the right properties of the underlying control model.

Let F : (z,u) 7→ z exp
(
−1/(2dσ)

(
‖u‖2/n− 1

))
+[u]1, then we do haveZt+1 =

F (Zt, ξ
?
t ). The function F is smooth (it is not smooth along the instances ξt,i, but

along the chosen step ξ?t ). Furthermore, with Lemma 1 the distribution of ξ?t admits a
continuous density, whose support is Rn. Therefore the process Z is a NSS(F ) model
of control set Rn.

We now have to show that the associated control model is forward accessible. Let
z ∈ R. When [ξ?t ]1 → ±∞, F (z, ξ?t ) → ±∞. As F is continuous, for the right value
of [ξ?t ]1 any point of R can be reach. Therefore for any z ∈ R, A+(z) = R. The set R
has a non-empty interior, so the CM(F ) is forward accessible.

As from any point of R, all of R can be reached, so the only invariant set is R itself.
It is therefore the only minimal set. Finally, the control set Ow = Rn is connected, and
so is the only minimal set, so all the conditions of Lemma 6 are met. So the Markov
chain Z is ψ-irreducible, aperiodic, and compacts of R are small-sets. ut

We may now show Foster-Lyapunov drift conditions to ensure the Harris positive
recurrence of the chain Z . In order to do so, we will need the following lemma.

Lemma 8. Let exp(− 1
2dσ

(‖ξ
?‖2
n − 1)) be denoted η?. For all λ > 2 there exists α > 0

such that

E
(
η?−α

)
− 1 < 0 . (16)

Proof. Let ϕ denote the density of the standard normal law. According to Lemma 1 the
density of ξ?t is the function (ui)i∈[1..n] 7→ Ψ1:λ(u1)ϕ(u2) · · ·ϕ(un). Using the Taylor
series of the exponential function we have

E
(
η?−α

)
= E

(
exp

(
− α

2dσ

(‖ξ?‖2
n
− 1

)))

= E



∞∑

i=0

(
− α

2dσ

(
‖ξ?‖2
n − 1

))i

i!


 .

Since Ψ1:λ(u1) ≤ λϕ(u1),

exp

∣∣∣∣
α

2dσ

(‖ξ?‖2
n
− 1

)∣∣∣∣Ψ1:λ(u1)

n∏

i=2

ϕ(ui) ≤ λ exp

∣∣∣∣
α

2dσ

(‖ξ?‖2
n
− 1

)∣∣∣∣
n∏

i=1

ϕ(ui)
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which is integrable, and so E|η?−α| < ∞. Hence we can apply Fubini’s theorem and
invert integral with series (which are integrals for the counting measure). Therefore

E
(
η?−α

)
=

∞∑

i=0

1

i!
E

((
− α

2dσ

(‖ξ?‖2
n
− 1

))i)

= 1− α

2dσn

(
E
(
‖ξ?‖2

)

n
− 1

)
− o

(
α2
)

= 1− α

2dσn

(
E
(
N 2

1:λ

)
− 1
)
− o

(
α2
)
.

According to Lemma 3 E
(
N 2

1:λ

)
> 1 for λ > 2, so when α > 0 goes to 0 we have

E
(
η?−α

)
< 1. ut

We are now ready to prove the following lemma:

Lemma 9. The Markov chain Z is Harris recurrent positive, and admits a unique in-
variant measure µ. Furthermore, for f : x 7→ |x|α ∈ R, µ(f) =

∫
R µ(dx)f(x) < ∞,

with α such that Eq. (16) holds true.

Proof. By using Lemma 7 and Lemma 5, we just need the drift condition (14) to prove
Lemma 9. Let V be such that for x ∈ R, V (x) = |x|α + 1.

∆V (x) =

∫

R
P (x, dy)V (y)− V (x)

=

∫

R
P

(
x

η?
+ [ξ?]1 ∈ dy

)
(1 + |y|α)− (1 + |x|α)

= E
(∣∣∣∣

x

η?
+ [ξ?]1

∣∣∣∣
α)
− |x|α

≤ |x|αE
(
η?−α − 1

)
+ E

(
[ξ?]

α
1

)

∆V (x)

V (x)
=

|x|α
1 + |x|αE

(
η?−α − 1

)
+

1

1 + |x|αE (Nα
1:λ)

lim
|x|−→∞

∆V (x)

V (x)
= E

(
η?−α − 1

)

We take α such that Eq. (16) holds true (as according to Lemma 8, there exists
such a α). As E(η?−α − 1) < 0, there exists ε > 0 and M > 0 such that for all
|x| ≥M , ∆V/V (x) ≤ −ε. Let b be equal to E(N 2

1:λ) + εV (M). Then for all |x| ≤M ,
∆V (x) ≤ −εV (x) + b. Therefore, if we note C = [−M,M ], which is according to
Lemma 7 a small-set, we do have ∆V (x) ≤ −εV (x) + b1C(x) which is Eq. (14)
with f = εV . Therefore from Lemma 5 the chain Z is positive Harris recurrent with
invariant probability measure µ, and εV is µ-integrable. And since µ is a probability
measure, µ(R) = 1. Since µ(f) =

∫
R
|x|αµ(dx) + µ(R) <∞, the function x 7→ |x|α

is also µ-integrable. ut
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Since the sequence (ξ?t )t∈N is i.i.d. with a distribution that we denote µξ, and that
Z is a Harris positive Markov chain with invariant measure µ, the sequence (Zt, ξ

?
t )t∈N

is also a Harris positive Markov chain, with invariant measure µ × µξ. In order to
use Lemma 4 on the right hand side of (12), we need to show that Eµ×µξ | ln |Zk| −
ln |Zk−1|+ln |η?k−1|| <∞, which would be implied by Eµ| ln |Z|| <∞ and Eµξ | ln |η?|| <
∞. To show that Eµ| ln |Z|| <∞ we will use the following lemma on the existence of
moments for stationary Markov chains.

Lemma 10. Let Z be a Harris-recurrent Markov chain with stationary measure µ, on
a state space (S,F), with F is σ-field of subsets of S. Let f be a positive measurable
function on S.

In order that
∫
S
f(z)µ(dz) < ∞, it suffices that for some set A ∈ F such that

0 < µ(A) and
∫
A
f(z)µ(dz) <∞, and some measurable function g with g(z) ≥ f(z)

for z ∈ Ac,

1. ∫

Ac
P (z, dy)g(y) ≤ g(z)− f(z) , ∀x ∈ Ac

2.
sup
z∈A

∫

Ac
P (z, dy)g(y) <∞

.

We may now prove the following theorem on the geometric divergence of ([Xt]1)t∈N.

Theorem 2. On linear functions, for λ ≥ 3, the absolute value of the first dimension
of the parent point in the (1, λ)-CSA-ES without cumulation (c = 1) diverges geomet-
rically almost surely at the rate of 1/(2dσn)E(N 2

1:λ − 1), i.e.

1

t
ln

∣∣∣∣
[Xt]1
[X0]1

∣∣∣∣
a.s−→
t→∞

1

2dσn

(
E
(
N 2

1:λ

)
− 1
)
> 0 . (17)

Proof. According to Lemma 9 the Markov chain Z is Harris positive with invari-
ant measure µ. According to Lemma 1 the sequence (ξ?t )t∈N is i.i.d. with a distri-
bution that we denote µξ, so the sequence (Zt, ξ

?
t )t∈N is a Harris positive Markov

chain with invariant measure µ × µξ. In order to apply Lemma 4 to the right hand
side of (12), we need to prove that Eµ×µξ | ln |Zt| − ln |Zt−1| + ln |η?t−1|| is finite.
With the triangular inequality, this is implied if Eµ| ln |Zt|| is finite and Eµξ | ln |η?||
is finite. We have ln |η?| = (‖ξ?‖2/n − 1)/(2dσ). Since the density of ξ? is the
function u ∈ Rn 7→ Ψ1:λ([u]1)

∏n
i=2 ϕ([u]i), with ϕ the density of the standard

normal law, and that Ψ1:λ([u]1) ≤ λϕ([u]1), the function u ∈ Rn 7→ |‖u‖2/n −
1|/(2dσ)Ψ1:λ([u]1)

∏n
i=2 ϕ([u]i) is integrable and so Eµξ | ln |η?|| is finite.

We now prove that the function g : x 7→ ln |x| is µ-integrable. From Lemma 9 we
know that the function f : x 7→ |x|α is µ-integrable, and as for anyM > 0, and any x ∈
A := [−M,M ]c there existsK > 0 such thatK|x|α > | ln |x||, then

∫
A
|g(x)|µ(dx) <∫

1
K|x|αµ(dx) <∞. So what is left is to prove that

∫
Ac
|g(x)|µ(dx) is also finite. We

now check the conditions to use Lemma 10.
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According to Lemma 7 the chainZ is open-set irreducible, so µ(A) > 0. ForC > 0,
if we take h : z 7→ C/

√
|z|, with M small enough we do have for all z ∈ Ac, h(z) ≥

|g(z)|. Furthermore, denoting η the function that maps u ∈ Rn to exp((‖u‖2/n −
1)/(2dσ)),
∫

Ac
P (z, dy)h(y) =

∫

S

P

(
z

η?
+ [ξ?]1 ∈ dy

)
C√
|y|

1Ac(y)

= E




C√∣∣∣ zη? + [ξ?]1

∣∣∣
1[−M,M ]

(
z

η?
+ [ξ?]1

)



=

∫

Rn
C
1[−M,M ]

(
z

η(u) + [u]1

)

√∣∣∣ z
η(u) + [u]1

∣∣∣
Ψ1:λ([u]1)

n∏

i=2

ϕ([ui])du .

Using that Ψ1:λ(x) ≤ λϕ(x) and that characteristic functions are upper bounded by 1,

C
1[−M,M ]

(
z

η(u) + [u]1

)

√∣∣∣ z
η(u) + [u]1

∣∣∣
Ψ1:λ([u]1)

n∏

i=2

ϕ([ui]) ≤
λC√∣∣∣ z

η(u) + [u]1

∣∣∣

n∏

i=1

ϕ([ui]) .

(18)
The right hand side of (18) is integrable for high values of ‖u‖, and as the function
x 7→ |z + x|−1/2 is integrable around 0, the right hand side of (18) is integrable. Also,
for a > 0 since

∫ a
−a |z + x|−1/2dx is maximal for z = 0,

sup
z∈R

∫

Ac
P (z, dy)h(y) ≤

∫

Rn

λC√
|[u]1|

n∏

i=1

ϕ([ui])du <∞ ,

which satisfies the second condition of Lemma 10. Furthermore, we can apply Lebesgue’s
dominated convergence theorem using the fact that the left hand side of (18) converges
to 0 almost everywhere when M → 0, and so

∫
Ac
P (z, dy)h(y) converges to 0 when

M → 0. Combining this with the fact that
∫
Ac
P (z, dy)h(y) is bounded for all z ∈ R,

there exists M small enough such that
∫
Ac
P (z, dy)h(y) ≤ h(z) for all z ∈ [−M,M ].

Finally, for C large enough |g(z)| is negligible compared to C/
√
|z|, hence for M

small enough and C large enough the first condition of Lemma 10 is satisfied. Hence,
according to Lemma 10 the function |g| is µ-integrable.

This allows us to apply Lemma 4 to the right hand side of (12) and obtain that

1

t

t−1∑

k=0

(
ln |Zk| − ln |Zk−1|+ ln

∣∣η?k−1
∣∣) a.s.−→

t→+∞
Eµ(ln(Z))−Eµ(ln(Z))+Eµξ(ln(η?)) .

Since Eµξ(ln(η?)) = E((‖ξ?‖2/n−1)/(2dσ)) and that E(‖ξ?‖2) = E(N 2
1:λ)+(n−1),

we have Eµξ(ln(η?)) = (E(N 2
1:λ) − 1)/(2dσn), which with (12) gives (17), and with

Lemma 3 is strictly positive for λ ≥ 3. ut

Chapter 4. Analysis of Evolution Strategies

86



4 Divergence rate of CSA-ES with cumulation

We are now investigating the (1, λ)-CSA-ES with cumulation, i.e. 0 < c < 1. Accord-
ing to Lemma 1, the random variables (ξ?t )t∈N are i.i.d., hence the path P := (pt)t∈N
is a Markov chain. By a recurrence on Eq. (2) we see that the path follows

pt = (1− c)tp0 +
√
c(2− c)

t−1∑

k=0

(1− c)k ξ?t−1−k︸ ︷︷ ︸
i.i.d.

. (19)

For i 6= 1, [ξ?t ]i ∼ N (0, 1) and, as also [p0]i ∼ N (0, 1), by recurrence [pt]i ∼
N (0, 1) for all t ∈ N. For i = 1 with cumulation (c < 1), the influence of [p0]1
vanishes with (1 − c)t. Furthermore, as from Lemma 1 the sequence ([ξ?t ]1])t∈N is
independent, we get by applying the Kolgomorov’s three series theorem that the series∑t−1
k=0(1 − c)k

[
ξ?t−1−k

]
1

converges almost surely. Therefore, the first component of
the path becomes distributed as the random variable [p∞]1 =

√
c(2− c)∑∞k=0(1 −

c)k[ξ?k]1 (by re-indexing the variable ξ?t−1−k in ξ?k, as the sequence (ξ?t )t∈N is i.i.d.).
We will specify the series

√
c(2− c)∑∞k=0(1 − c)k[ξ?k]1 by applying a law of large

numbers to the right hand side of (5), after showing that the Markov chain [P ]1 :=
([pt]1)t∈N has the right stability properties to apply a law of large numbers to it.

Lemma 11. The Markov chain [P ]1 is ϕ-irreducible, aperiodic, and compacts of R are
small-sets.

Proof. Using (19) and Lemma 1, [pt+1]1 = (1−c)[pt]1+
√
c(2− c)[ξ?t ]1 with [ξ?t ]1 ∼

N1:λ. Hence the transition kernel for [P ]1 writes

P (p,A) =

∫

R
1A

(
(1− c)p+

√
c(2− c)u

)
Ψ1:λ(u)du .

With a change of variables ũ = (1− c)p+
√
c(2− c)u, we get that

P (p,A) =
1√

c(2− c)

∫

R
1A (ũ)Ψ1:λ

(
ũ− (1− c)p√

(2− c)c

)
dũ .

As Ψ1:λ(u) > 0 for all u ∈ R, for all A with positive Lebesgue measure we have
P (p,A) > 0, thus the chain [P ]1 is µLeb-irreducible with µLeb denoting the Lebesgue
measure.

Furthermore, if we takeC a compact of R, and νC a measure such that forA a Borel
set of R

νC(A) =
1√

(2− c)c

∫

R
1A (ũ) min

p∈C
Ψ1:λ

(
ũ− (1− c)p√

(2− c)c

)
dũ , (20)

we see that P (p,A) ≥ νC(A) for all p ∈ C. Furthermore C being a compact for all
ũ ∈ R there exists δũ > 0 such that Ψ1:λ((ũ − (1 − c)p)/

√
(2− c)c) > δũ for all

p ∈ C. Hence νC is not a trivial measure. And therefore compact sets of R are small
sets for [P ]1. Finally, if C has positive Lebesgue measure νC(C) > 0, so the chain
[P ]1 is strongly aperiodic. ut
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We now prove that the Markov chain [P ]1 is Harris positive.

Lemma 12. The chain [P ]1 is Harris recurrent positive with invariant measure µpath,
and the function x 7→ x2 is µpath-integrable.

Proof. Let V : x 7→ x2 + 1. Then

∆V (x) =

∫

R
V (y)P (x, dy)− V (x)

∆V (x) = E
((

1− c)x+
√
c(2− c) [ξ?]1

)2
+ 1

)
− x2 − 1

∆V (x) ≤ ((1− c)2 − 1)x2 + 2|x|
√
c(2− c)E ([ξ?]1) + c(2− c)E

(
[ξ?]1

2
)

∆V (x)

V (x)
≤ −c(2− c) x2

1 + x2
+

2|x|
√
c(2− c)

1 + x2
E (|[ξ?]1|) +

c(2− c)
1 + x2

E
(

[ξ?]1
2
)

lim
|x|→∞

∆V (x)

V (x)
≤ −c(2− c)

As 0 < c ≤ 1, c(2 − c) is strictly positive and therefore, for ε > 0 there exists
C = [−M,M ] with M > 0 such that for all x ∈ Cc, ∆V (x)/V (x) ≤ −ε. And since
E([ξ?]1) and E([ξ?]

2
1) are finite, ∆V is bounded on the compact C and so there exists

b ∈ R such that ∆V (x) ≤ −εV (x) + b1C for all x ∈ R.
According to Lemma 11 the chain [P ]1 is ϕ-irreducible and aperiodic, so with

Lemma 5 it is positive Harris recurrent, with invariant measure µpath, and V is µpath-
integrable. Therefore the function x 7→ x2 is also µpath-integrable.

For g ≥ 1 a function and ν a signed measure, the g-norm of ν is defined through
‖ν‖g = suph:|h|≤g |ν(h)| Lemma 12 allow us to show the convergence of the transition
kernel P to the stationary measure µpath in g-norm through the following lemma. .

Lemma 13. [12, 14.3.5] Suppose Φ is an aperiodic positive Harris chain on a space
X with stationary measure π, and that there exists some non-negative function V , a
function f ≥ 1, a small-set C and b ∈ R such that for all x ∈ X , ∆V (x) ≤ −f(x) +
b1C(x). Then for all initial probability distribution ν, ‖νPn − π‖f −→

t→∞
0.

We now obtain geometric divergence of the step-size and get an explicit estimate of
the expression of the divergence rate.

Theorem 3. The step-size of the (1, λ)-CSA-ES with λ ≥ 2 diverges geometrically fast
if c < 1 or λ ≥ 3. Almost surely and in expectation we have for 0 < c ≤ 1,

1

t
ln

(
σt
σ0

)
−→
t→∞

1

2dσn

(
2(1− c)E (N1:λ)

2
+ c

(
E
(
N 2

1:λ

)
− 1
))

︸ ︷︷ ︸
>0 for λ≥3 and for λ=2 and c<1

. (21)

Proof. We will start by the convergence in expectation. With Lemma 1, [ξ?]1 ∼ N1:λ,
and [ξ?]i ∼ N (0, 1) for all i ∈ [2..n]. Hence, using that [p0]i ∼ N (0, 1), [pt]i ∼
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N (0, 1) for all i ∈ [2..n] too. Therefore E(‖pt+1‖2) = E([pt+1]21) + n − 1. By re-
currence

[
pt+1

]
1

= (1− c)t+1[p0]1 +
√
c(2− c)∑t

i=0(1− c)i
[
ξ?t−i

]
1
. When t goes

to infinity, the influence of [p0]1 in this equation goes to 0 with (1 − c)t+1, so we can
remove it when taking the limit:

lim
t→∞

E
([
pt+1

]2
1

)
= lim
t→∞

E
((√

c(2− c)
t∑

i=0

(1− c)i
[
ξ?t−i

]
1

)2)
(22)

We will now develop the sum with the square, such that we have either a product[
ξ?t−i

]
1

[
ξ?t−j

]
1

with i 6= j, or
[
ξ?t−j

]2
1
. This way, we can separate the variables by

using Lemma 1 with the independence of ξ?i over time. To do so, we use the develop-
ment formula (

∑n
i=1 an)2 = 2

∑n
i=1

∑n
j=i+1 aiaj +

∑n
i=1 a

2
i . We take the limit of

E(
[
pt+1

]2
1
) and find that it is equal to

lim
t→∞

c(2−c)


2

t∑

i=0

t∑

j=i+1

(1−c)i+j E
([
ξ?t−i

]
1

[
ξ?t−j

]
1

)

︸ ︷︷ ︸
=E[ξ?t−i]1E[ξ?t−j]1=E[N1:λ]2

+

t∑

i=0

(1−c)2i E
([
ξ?t−i

]2
1

)

︸ ︷︷ ︸
=E[N 2

1:λ]




(23)
Now the expected value does not depend on i or j, so what is left is to calculate∑t
i=0

∑t
j=i+1(1 − c)i+j and

∑t
i=0(1 − c)2i. We have

∑t
i=0

∑t
j=i+1(1 − c)i+j =

∑t
i=0(1−c)2i+1 1−(1−c)t−i

1−(1−c) and when we separates this sum in two, the right hand side

goes to 0 for t → ∞. Therefore, the left hand side converges to limt→∞
∑t
i=0(1 −

c)2i+1/c, which is equal to limt→∞(1 − c)/c∑t
i=0(1 − c)2i. And

∑t
i=0(1 − c)2i is

equal to (1 − (1 − c)2t+2)/(1 − (1 − c)2), which converges to 1/(c(2 − c)). So, by
inserting this in Eq. (23) we get that E(

[
pt+1

]2
1
) −→
t→∞

2 1−c
c E(N1:λ)2+E(N 2

1:λ), which
gives us the right hand side of Eq. (21).

By summing E(ln(σi+1/σi)) for i = 0, . . . , t − 1 and dividing by t we have the
Cesaro mean 1/tE(ln(σt/σ0)) that converges to the same value that E(ln(σt+1/σt))
converges to when t goes to infinity. Therefore we have in expectation Eq. (21).

We will now focus on the almost sure convergence. From Lemma 12, we see that we
have the right conditions to apply Lemma 4 to the chain [P ]1 with the µpath-integrable
function g : x 7→ x2. So

1

t

t∑

k=1

[pk]21
a.s−→
t→∞

µpath(g) .

With Eq. (5) and using that E(‖pt+1‖|2) = E([pt+1]21) + n− 1, we obtain that

1

t
ln

(
σt
σ0

)
a.s−→
t→∞

c

2dσn
(µpath(g)− 1) .

We now prove that µpath(g) = limt→∞ E(
[
pt+1

]2
1
). Let ν be the initial distribution

of [p0]1, so we have |E(
[
pt+1

]2
1
) − µpath(g)| ≤ ‖νP t+1 − µpath‖h, with h : x 7→
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1 + x2. From the proof of Lemma 12 and from Lemma 11 we have all conditions
for Lemma 13. Therefore ‖νP t+1 − µpath‖h −→

t→∞
0, which shows that µpath(g) =

limt→∞ E(
[
pt+1

]2
1
) = (2− 2c)/cE(N1:λ)2 + E(N 2

1:λ).
According to Lemma 3, for λ = 2, E(N 2

1:2) = 1, so the RHS of Eq. (21) is equal to
(1−c)/(dσn)E(N1:2)2. The expected value ofN1:2 is strictly negative, so the previous
expression is strictly positive. Furthermore, according to Lemma 3, E(N 2

1:λ) increases
strictly with λ, as does E(N1:2)2. Therefore we have geometric divergence for λ ≥ 2 if
c < 1, and for λ ≥ 3.

ut

From Eq. (1) we see that the behaviour of the step-size and of (Xt)t∈N are directly
related. Geometric divergence of the step-size, as shown in Theorem 3, means that
also the movements in search space and the improvements on affine linear functions
f increase geometrically fast. Analyzing (Xt)t∈N with cumulation would require to
study a double Markov chain, which is left to possible future research.

5 Study of the variations of ln (σt+1/σt)

The proof of Theorem 3 shows that the step size increase converges to the right hand
side of Eq. (21), for t → ∞. When the dimension increases this increment goes to
zero, which also suggests that it becomes more likely that σt+1 is smaller than σt. To
analyze this behavior, we study the variance of ln (σt+1/σt) as a function of c and the
dimension.

Theorem 4. The variance of ln (σt+1/σt) equals to

Var

(
ln

(
σt+1

σt

))
=

c2

4d2σn
2

(
E
([
pt+1

]4
1

)
− E

([
pt+1

]2
1

)2
+ 2(n− 1)

)
. (24)

Furthermore, E
([
pt+1

]2
1

)
−→
t→∞

E
(
N 2

1:λ

)
+ 2−2c

c E (N1:λ)
2 and with a = 1− c

lim
t→∞

E
([
pt+1

]4
1

)
=

(1− a2)2

1− a4 (k4 + k31 + k22 + k211 + k1111) , (25)

where k4 =E
(
N 4

1:λ

)
, k31 = 4

a(1+a+2a2)
1−a3 E

(
N 3

1:λ

)
E (N1:λ), k22 = 6 a2

1−a2E
(
N 2

1:λ

)2
,

k211 =12a
3(1+2a+3a2)
(1−a2)(1−a3) E

(
N 2

1:λ

)
E(N1:λ)

2 and k1111 = 24 a6

(1−a)(1−a2)(1−a3)E (N1:λ)
4.

Proof.

Var

(
ln

(
σt+1

σt

))
= Var

(
c

2dσ

(‖pt+1‖2
n

− 1

))
=

c2

4d2σn
2

Var
(
‖pt+1‖2

)
︸ ︷︷ ︸

E(‖pt+1‖4)−E(‖pt+1‖2)
2

(26)
The first part of Var(‖pt+1‖2), E(‖pt+1‖4), is equal to E((

∑n
i=1

[
pt+1

]2
i
)2). We de-

velop it along the dimensions such that we can use the independence of [pt+1]i with
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[pt+1]j for i 6= j, to get E(2
∑n
i=1

∑n
j=i+1

[
pt+1

]2
i

[
pt+1

]2
j
+
∑n
i=1

[
pt+1

]4
i
). For i 6=

1
[
pt+1

]
i

is distributed according to a standard normal distribution, so E
([
pt+1

]2
i

)
=

1 and E
([
pt+1

]4
i

)
= 3.

E
(
‖pt+1‖4

)
= 2

n∑

i=1

n∑

j=i+1

E
([
pt+1

]2
i

)
E
([
pt+1

]2
j

)
+

n∑

i=1

E
([
pt+1

]4
i

)

=


2

n∑

i=2

n∑

j=i+1

1


+ 2

n∑

j=2

E
([
pt+1

]2
1

)
+

(
n∑

i=2

3

)
+ E

([
pt+1

]4
1

)

=

(
2

n∑

i=2

(n− i)
)

+ 2(n− 1)E
([
pt+1

]2
1

)
+ 3(n− 1) + E

([
pt+1

]4
1

)

= E
([
pt+1

]4
1

)
+ 2(n− 1)E

([
pt+1

]2
1

)
+ (n− 1)(n+ 1)

The other part left is E(‖pt+1‖2)2, which we develop along the dimensions to get
E(
∑n
i=1

[
pt+1

]2
i
)2 = (E(

[
pt+1

]2
1
) + (n− 1))2, which equals to E(

[
pt+1

]2
1
)2 + 2(n−

1)E(
[
pt+1

]2
1
) + (n− 1)2. So by subtracting both parts we get

E(‖pt+1‖4)−E(‖pt+1‖2)2 = E(
[
pt+1

]4
1
)−E(

[
pt+1

]2
1
)2 + 2(n−1), which we insert

into Eq. (26) to get Eq. (24).
The development of E(

[
pt+1

]2
1
) is the same than the one done in the proof of

Theorem 3, that is E(
[
pt+1

]2
1
) = (2 − 2c)/cE(N1:λ)2 + E(N 2

1:λ). We now develop

E(
[
pt+1

]4
1
). We have E(

[
pt+1

]4
1
) = E(((1−c)t[p0]1+

√
c(2− c)∑t

i=0(1−c)i
[
ξ?t−i

]
1
)4).

We neglect in the limit when t goes to ∞ the part with (1 − c)t[p0]1, as it converges
fast to 0. So

lim
t→∞

E
([
pt+1

]4
1

)
= lim
t→∞

E


c2(2− c)2

(
t∑

i=0

(1− c)i
[
ξ?t−i

]
1

)4

 . (27)

To develop the RHS of Eq.(27) we use the following formula: for (ai)i∈[[1,m]]

(
m∑

i=1

ai

)4

=

m∑

i=1

a4i + 4

m∑

i=1

m∑

j=1
j 6=i

a3i aj + 6

m∑

i=1

m∑

j=i+1

a2i a
2
j

+ 12

m∑

i=1

m∑

j=1
j 6=i

m∑

k=j+1
k 6=i

a2i ajak + 24

m∑

i=1

m∑

j=i+1

m∑

k=j+1

m∑

l=k+1

aiajakal .

(28)

This formula will allow us to use the independence over time of [ξ?t ]1 from Lemma 1,
so that E([ξ?i ]

3
1

[
ξ?j
]
1
) = E([ξ?i ]

3
1)E(

[
ξ?j
]
1
) = E(N 3

1:λ)E(N1:λ) for i 6= j, and so on.
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We apply Eq (28) on Eq (25), with a = 1− c.

lim
t→∞

E
([
pt+1

]4
1

)

c2(2− c)2 = lim
t→∞

t∑

i=0

a4iE
(
N 4

1:λ

)
+ 4

t∑

i=0

t∑

j=0
j 6=i

a3i+jE
(
N 3

1:λ

)
E (N1:λ)

+ 6

t∑

i=0

t∑

j=i+1

a2i+2jE
(
N 2

1:λ

)2

+ 12

t∑

i=0

t∑

j=0
j 6=i

t∑

k=j+1
k 6=i

a2i+j+kE
(
N 2

1:λ

)
E (N1:λ)

2

+ 24

t∑

i=0

t∑

j=i+1

t∑

k=j+1

t∑

l=k+1

ai+j+k+lE (N1:λ)
4 (29)

We now have to develop each term of Eq. (29).

t∑

i=0

a4i =
1− a4(t+1)

1− a4

lim
t→∞

t∑

i=0

a4i =
1

1− a4 (30)

t∑

i=0

t∑

j=0
j 6=i

a3i+j =

t−1∑

i=0

t∑

j=i+1

a3i+j +

t∑

i=1

i−1∑

j=0

a3i+j (31)

t−1∑

i=0

t∑

j=i+1

a3i+j =

t−1∑

i=0

a4i+1 1− at−i
1− a

lim
t→∞

t−1∑

i=0

t∑

j=i+1

a3i+j = lim
t→∞

a

1− a
t−1∑

i=0

a4i

=
a

(1− a)(1− a4)
(32)
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t∑

i=1

i−1∑

j=0

a3i+j =

t∑

i=1

a3i
1− ai
1− a

=
1

1− a

(
a3

1− a3t
1− a3 − a

4 1− a4t
1− a4

)

lim
t→∞

t∑

i=1

i−1∑

j=0

a3i+j =
1

1− a

(
a3

1− a3 −
a4

1− a4
)

=
a3(1− a4)− a4(1− a3)

(1− a)(1− a3)(1− a4)

=
a3 − a4

(1− a)(1− a3)(1− a4)
(33)

By combining Eq (32) with Eq (33) to Eq (31) we get

lim
t→∞

t∑

i=0

t∑

j=0
j 6=i

a3i+j =
a(1− a3) + a3 − a4

(1− a)(1− a3)(1− a4)
=

a(1 + a2 − 2a3)

(1− a)(1− a3)(1− a4)

=
a(1− a)(1 + a+ 2a2))

(1− a)(1− a3)(1− a4)
=

a(1 + a+ 2a2))

(1− a3)(1− a4)
(34)

t−1∑

i=0

t∑

j=i+1

a2i+2j =

t−1∑

i=0

a4i+2 1− a2(t−i)
1− a2

lim
t→∞

t−1∑

i=0

t∑

j=i+1

a2i+2j =
a2

1− a2
t−1∑

i=0

a4i

=
a2

(1− a2)(1− a4)
(35)

t∑

i=0

t−1∑

j=0
j 6=i

t∑

k=j+1
k 6=i

a2i+j+k =

t∑

i=2

i−2∑

j=0

i−1∑

k=j+1

a2i+j+k +

t−1∑

i=1

i−1∑

j=0

t∑

k=i+1

a2i+j+k

+

t−2∑

i=0

t−1∑

j=i+1

t∑

k=j+1

a2i+j+k (36)
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t∑

i=2

i−2∑

j=0

i−1∑

k=j+1

a2i+j+k =

t∑

i=2

i−2∑

j=0

a2i+2j+1 1− ai−j−1
1− a

=
1

1− a
t∑

i=2

a2i+1 1− a2(i−1)
1− a2 − a3i 1− a

i−1

1− a

=
1

1− a

(
a5

1− a2
1− a2(t−1)

1− a2 − a7

(1− a2)

1− a4(t−1)
1− a4

− a6

1− a
1− a3(t+1)

1− a3 +
a7

1− a
1− a4(t+1)

1− a4
)

−→
t→∞

a5

1− a

(
1

(1− a2)2
− a2

(1− a2)(1− a4)

− a

(1− a)(1− a3)
+

a2(1 + a)

(1 + a)(1− a)(1− a4)

)

−→
t→∞

a5

1− a

(
(1 + a2)

(1− a2)2(1 + a2)
+

a3

(1− a2)(1− a4)

− a

(1− a)(1− a3)

)

−→
t→∞

a5

1− a

(
1 + a2 + a3

(1 + a)(1− a)(1− a4)
− a

(1− a)(1− a3)

)

−→
t→∞

a5

(1− a)2
(1 + a2 + a3)(1− a3)− a(1 + a)(1− a4)))

(1 + a)(1− a3)(1− a4)

−→
t→∞

a5
1 + a2 − a5 − a6 − (a+ a2 − a5 − a6)

(1− a)(1− a2)(1− a3)(1− a4)

−→
t→∞

a5

(1− a2)(1− a3)(1− a4)
(37)

t−1∑

i=1

i−1∑

j=0

t∑

k=i+1

a2i+j+k =

t−1∑

i=1

i−1∑

j=0

a3i+j+1 1− at−i
1− a

−→
t→∞

lim
t→∞

a

1− a
t−1∑

i=1

a3i
1− ai
1− a

−→
t→∞

lim
t→∞

a

(1− a)2

(
a3

1− a3t
1− a3 − a

4 1− a4t
1− a4

)

−→
t→∞

a

(1− a)2

(
a3(1− a4)− a4(1− a3)

(1− a3)(1− a4)

)

−→
t→∞

a4 − a5
(1− a)2(1− a3)(1− a4)

=
a4

(1− a)(1− a3)(1− a4)
(38)
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t−2∑

i=0

t−1∑

j=i+1

t∑

k=j+1

a2i+j+k =

t−2∑

i=0

t−1∑

j=i+1

a2i+2j+1 1− at−j
1− a

−→
t→∞

lim
t→∞

a

1− a
t−2∑

i=0

a4i+2 1− a2(t−i−1)
1− a2

−→
t→∞

lim
t→∞

a3

(1− a)(1− a2)

1− a4(t−1)
1− a4

−→
t→∞

a3

(1− a)(1− a2)(1− a4)
(39)

We now combine Eq (37), Eq. (38) and Eq. (37) in Eq. (36).

t∑

i=0

t−1∑

j=0
j 6=i

t∑

k=j+1
k 6=i

a2i+j+k −→
t→∞

a5(1− a) + a4(1− a2) + a3(1− a3)

(1− a)(1− a2)(1− a3)(1− a4)

−→
t→∞

a3 + a4 + a5 − 3a6

(1− a)(1− a2)(1− a3)(1− a4)

−→
t→∞

a3(1 + 2a+ 3a2)

((1− a2)(1− a3)(1− a4)

(40)

t−3∑

i=0

t−2∑

j=i+1

t−1∑

k=j+1

t∑

l=k+1

ai+j+k+l =

t−3∑

i=0

t−2∑

j=i+1

t−1∑

k=j+1

ai+j+2k+1 1− at−k
1− a

−→
t→∞

lim
t→∞

a

1− a
t−3∑

i=0

t−2∑

j=i+1

ai+3j+2 1− a2(t−1−j)
1− a2

−→
t→∞

lim
t→∞

a3

(1− a)(1− a2)

t−3∑

i=0

a4i+3 1− a3(t−2−i)
1− a3

−→
t→∞

lim
t→∞

a6

(1− a)(1− a2)(1− a3)

1− a4(t−2)
1− a4

−→
t→∞

a6

(1− a)(1− a2)(1− a3)(1− a4)
(41)

By factorising Eq. (30), Eq. (34), Eq. (35), Eq. (40) and Eq. (41) by 1
1−a4 we get the

coefficients of Theorem 4. ut

Figure 1 shows the time evolution of ln(σt/σ0) for 5001 runs and c = 1 (left) and
c = 1/

√
n (right). By comparing Figure 1a and Figure 1b we observe smaller variations

of ln(σt/σ0) with the smaller value of c.
Figure 2 shows the relative standard deviation of ln (σt+1/σt) (i.e. the standard

deviation divided by its expected value). Lowering c, as shown in the left, decreases
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Fig. 1: ln(σt/σ0) against t. The different curves represent the quantiles of a set of
5.103 +1 samples, more precisely the 10i-quantile and the 1−10−i-quantile for i from
1 to 4; and the median. We have n = 20 and λ = 8.

the relative standard deviation. To get a value below one, c must be smaller for larger
dimension. In agreement with Theorem 4, In Figure 2, right, the relative standard de-
viation increases like

√
n with the dimension for constant c (three increasing curves).

A careful study [8] of the variance equation of Theorem 4 shows that for the choice
of c = 1/(1 + nα), if α > 1/3 the relative standard deviation converges to 0 with√

(n2α + n)/n3α. Taking α = 1/3 is a critical value where the relative standard devi-
ation converges to 1/(

√
2E(N1:λ)2). On the other hand, lower values of α makes the

relative standard deviation diverge with n(1−3α)/2.

6 Summary

We investigate throughout this paper the (1, λ)-CSA-ES on affine linear functions com-
posed with strictly increasing transformations. We find, in Theorem 3, the limit distri-
bution for ln(σt/σ0)/t and rigorously prove the desired behaviour of σ with λ ≥ 3 for
any c, and with λ = 2 and cumulation (0 < c < 1): the step-size diverges geometrically
fast. In contrast, without cumulation (c = 1) and with λ = 2, a random walk on ln(σ)
occurs, like for the (1, 2)-σSA-ES [9] (and also for the same symmetry reason). We de-
rive an expression for the variance of the step-size increment. On linear functions when
c = 1/nα, for α ≥ 0 (α = 0 meaning c constant) and for n → ∞ the standard de-
viation is about

√
(n2α + n)/n3α times larger than the step-size increment. From this

follows that keeping c < 1/n1/3 ensures that the standard deviation of ln(σt+1/σt) be-
comes negligible compared to ln(σt+1/σt) when the dimensions goes to infinity. That
means, the signal to noise ratio goes to zero, giving the algorithm strong stability. The
result confirms that even the largest default cumulation parameter c = 1/

√
n is a stable

choice.
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Fig. 2: Standard deviation of ln (σt+1/σt) relatively to its expectation. Here λ = 8.
The curves were plotted using Eq. (24) and Eq. (25). On the left, curves for (right to
left) n = 2, 20, 200 and 2000. On the right, different curves for (top to bottom) c = 1,
0.5, 0.2, 1/(1 + n1/4), 1/(1 + n1/3), 1/(1 + n1/2) and 1/(1 + n).
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4.3. Linear Functions with Linear Constraints

4.3 Linear Functions with Linear Constraints

In this section we present two analyses of (1,λ)-ESs on a linear function f with a linear

constraint g , where the constraint is handled through the resampling of unfeasible points

until λ feasible points have been sampled. The problem reads

maximize f (x) for x ∈Rn

subject to g (x) ≥ 0 .

An important characteristic of the problem is the constraint angle (∇ f ,−∇g ), denoted θ. The

two analyses study the problem for values of θ in (0,π/2); lower values of θ correspond to a

higher conflict between the objective function and the constraint, making the problem more

difficult. Linear constraints are a very frequent type of constraint (e.g. non-negative variables

from problems in physics or biology). Despite that a linear function with a linear constraint

seems to be an easy problem, a (1,λ)-ES with σSA or CSA step-size adaptation fails to solve

the problem when the value of the constraint angle θ is too low [14, 15].

This section first presents a study of a (1,λ)-ES with constant step-size and with cumulative

step-size adaptation (as defined with (2.12) and (4.11)) on a linear function with a linear

constraint. Then this section presents a study of a (1,λ)-ES with constant step-size and with

a general sampling distribution that can be non-Gaussian on a linear function with a linear

constraint.

4.3.1 Paper: Markov Chain Analysis of Cumulative Step-size Adaptation on a Lin-
ear Constraint Problem

The article presented here [45] has been accepted for publication at the Evolutionary Com-

putation Journal in 2015, and is an extension of [44] which was published at the conference

Congress on Evolutionary Computation in 2014. It was inspired by [14], which assumes

the positivity (i.e. the existence of an invariant probability measure) of the sequence (δt )t∈N
defined as a signed distance from the mean of the sampling distribution to the constraint

normalized by the step-size, i.e. δt :=−g (X t )/σt . The results of [14] are obtained through a

few approximations (mainly, the invariant distribution π of (δt )t∈N is approximated as a Dirac

distribution at Eπ(δt )) and the accuracy of these results is then verified through Monte Carlo

simulations. The ergodicity of the sequence (δt )t∈N studied is therefore a crucial underlying

hypothesis since it justifies that the Monte Carlo simulations do converge independently of

their initialization to what they are supposed to measure. Therefore we aim in the following

paper to prove the ergodicity of the sequence (δt )t∈N.

Note that the problem of a linear function with a linear constraint is much more complex

than in the unconstrained case of Section 4.2, due to the fact that the sequence of random

vectors (N?
t )t∈N := ((X t+1 − X t )/σt )t∈N is not i.i.d., contrarily as in Section 4.2. Instead, the

distribution of N?
t can be shown to be a function ofδt , and to prove the log-linear divergence or

convergence of the step-size for a (1,λ)-CSA-ES, a study of the full Markov chain (δt , pσ
t+1)t∈N

is required. Furthermore, due to the resampling, sampling N?
t involves an unbounded number

of samples.
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The problem being complex, the paper [44] starts by studying the more simple (1,λ)-ES with

constant step-size in order to investigate the problem and establish a methodology. In order

to avoid any problem with the unbounded number of samples required to sample N?
t , the

paper considers a random vector sampled with a constant and bounded number of random

variables, and which is equal in distribution to N?
t . The paper shows in this context the

geometric ergodicity of the Markov chain (δt )t∈N and that the sequence ( f (X t ))t∈N diverges in

probability to +∞ at constant speed s > 0, i.e.

f (X t )− f (X 0)

t
P−→

t→+∞ s > 0 . (4.12)

Note that the divergence cannot be log-linear since the step-size is kept constant. The paper

then sketches results for the (1,λ)-CSA-ES on the same problem.

In [45], which is the article presented here, the (1,λ)-CSA-ES is also investigated. The article

shows that (δt , pσ
t )t∈N is a time-homogeneous Markov chain, which for reasons suggested in

Section 4.1 is difficult to analyse. Therefore the paper analyses the algorithm in the simpler

case where the cumulation parameter cσ equals to 1, which implies that the evolution path

pσ
t+1 equals N?

t , and that (δt )t∈N is a Markov chain. The Markov chain (δt )t∈N is shown to be

a geometrically ergodic Markov chain, from which it is deduced that the step-size diverges

or converges log-linearly in probability to a rate r whose sign indicates whether divergence

or convergence occurs. This rate is then estimated through Monte Carlo simulations, and

its dependence with the constraint angle θ and parameters of the algorithm such as the

population size λ and the cumulation parameter cσ is investigated. It appears that for small

values of θ this rate is negative which shows the log-linear convergence of the algorithm,

although this effect can be countered by taking large enough values of λ or low enough values

of cσ. Hence critical values of λ and cσ, between the values implying convergence and the

values implying divergence, exist, and are plotted as a function of the constraint angle θ.
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Abstract
This paper analyses a (1, λ)-Evolution Strategy, a randomised comparison-based adap-
tive search algorithm, optimizing a linear function with a linear constraint. The algo-
rithm uses resampling to handle the constraint. Two cases are investigated: first the
case where the step-size is constant, and second the case where the step-size is adapted
using cumulative step-size adaptation. We exhibit for each case a Markov chain de-
scribing the behavior of the algorithm. Stability of the chain implies, by applying a
law of large numbers, either convergence or divergence of the algorithm. Divergence
is the desired behavior. In the constant step-size case, we show stability of the Markov
chain and prove the divergence of the algorithm. In the cumulative step-size adap-
tation case, we prove stability of the Markov chain in the simplified case where the
cumulation parameter equals 1, and discuss steps to obtain similar results for the full
(default) algorithm where the cumulation parameter is smaller than 1. The stability of
the Markov chain allows us to deduce geometric divergence or convergence, depend-
ing on the dimension, constraint angle, population size and damping parameter, at a
rate that we estimate. Our results complement previous studies where stability was
assumed.

Keywords
Continuous Optimization, Evolution Strategies, CMA-ES, Cumulative Step-size Adap-
tation, Constrained problem.

1 Introduction

Derivative Free Optimization (DFO) methods are tailored for the optimization of nu-
merical problems in a black-box context, where the objective function f : Rn → R is
pictured as a black-box that solely returns f values (in particular no gradients are avail-
able).

Evolution Strategies (ES) are comparison-based randomised DFO algorithms. At it-
eration t, solutions are sampled from a multivariate normal distribution centered in a
vector Xt. The candidate solutions are ranked according to f , and the updates of Xt

and other parameters of the distribution (usually a step-size σt and a covariance matrix)
are performed using solely the ranking information given by the candidate solutions.
Since ES do not directly use the function values of the new points, but only how the
objective function f ranks the different samples, they are invariant to the composition
(to the left) of the objective function by a strictly increasing function h : R→ R.

c©2015 by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx
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This property and the black-box scenario make Evolution Strategies suited for a
wide class of real-world problems, where constraints on the variables are often im-
posed. Different techniques for handling constraints in randomised algorithms have
been proposed, see (Mezura-Montes and Coello, 2011) for a survey. For ES, common
techniques are resampling, i.e. resample a solution until it lies in the feasible domain,
repair of solutions that project unfeasible points onto the feasible domain (e.g. (Arnold,
2011b, 2013)), penalty methods where unfeasible solutions are penalised either by a
quantity that depends on the distance to the constraint (e.g. (Hansen et al., 2009) with
adaptive penalty weights) (if this latter one can be computed) or by the constraint value
itself (e.g. stochastic ranking (Runarsson and Yao, 2000)) or methods inspired from
multi-objective optimization (e.g. (Mezura-Montes and Coello, 2008)).

In this paper we focus on the resampling method and study it on a simple con-
strained problem. More precisely, we study a (1, λ)-ES optimizing a linear function with
a linear constraint and resampling any infeasible solution until a feasible solution is sam-
pled. The linear function models the situation where the current point is, relatively to
the step-size, far from the optimum and “solving” this function means diverging. The
linear constraint models being close to the constraint relatively to the step-size and far
from other constraints. Due to the invariance of the algorithm to the composition of the
objective function by a strictly increasing map, the linear function could be composed
by a function without derivative and with many discontinuities without any impact on
our analysis.

The problem we address was studied previously for different step-size adaptation
mechanisms and different constraint handling methods: with constant step-size, self-
adaptation, and cumulative step-size adaptation, resampling or repairing unfeasible
solutions (Arnold, 2011a, 2012, 2013). The drawn conclusion is that when adapting the
step-size the (1, λ)-ES fails to diverge unless some requirements on internal parame-
ters of the algorithm are met. However, the approach followed in the aforementioned
studies relies on finding simplified theoretical models to explain the behaviour of the
algorithm: typically those models arise by doing some approximations (considering
some random variables equal to their expected value, etc.) and assuming some math-
ematical properties like the existence of stationary distributions of underlying Markov
chains.

In contrast, our motivation is to study the real-–i.e., not simplified–-algorithm and
prove rigorously different mathematical properties of the algorithm allowing to deduce
the exact behaviour of the algorithm, as well as to provide tools and methodology for
such studies. Our theoretical studies need to be complemented by simulations of the
convergence/divergence rates. The mathematical properties that we derive show that
these numerical simulations converge fast. Our results are largely in agreement with
the aforementioned studies of simplified models thereby backing up their validity.

As for the step-size adaptation mechanism, our aim is to study the cumulative
step-size adaptation (CSA) also called path-length control, default step-size mechanism
for the CMA-ES algorithm (Hansen and Ostermeier, 2001). The mathematical object to
study for this purpose is a discrete time, continuous state space Markov chain that
is defined as the pair: evolution path and distance to the constraint normalized by
the step-size. More precisely stability properties like irreducibility, existence of a sta-
tionary distribution of this Markov chain need to be studied to deduce the geometric
divergence of the CSA and have a rigorous mathematical framework to perform Monte
Carlo simulations allowing to study the influence of different parameters of the algo-
rithm. We start by illustrating in details the methodology on the simpler case where the

2 Evolutionary Computation Volume x, Number x

Chapter 4. Analysis of Evolution Strategies

102



CSA-ES on a Linear Constrained Problem

step-size is constant. We show in this case that the distance to the constraint reaches
a stationary distribution. This latter property was assumed in a previous study (see
(Arnold, 2011a)). We then prove that the algorithm diverges at a constant speed. We
then apply this approach to the case where the step-size is adapted using path length
control. We show that in the special case where the cumulation parameter c equals to
1, the expected logarithmic step-size change, E ln(σt+1/σt), converges to a constant r,
and the average logarithmic step-size change, ln(σt/σ0)/t, converges in probability to
the same constant, which depends on parameters of the problem and of the algorithm.
This implies geometric divergence (if r > 0) or convergence (if r < 0) at the rate r that
we estimate.

This paper is organized as follows. In Section 2 we define the (1, λ)-ES using re-
sampling and the problem. In Section 3 we provide some preliminary derivations on
the distributions that come into play for the analysis. In Section 4 we analyze the con-
stant step-size case. In Section 5 we analyse the cumulative step-size adaptation case.
Finally we discuss our results and our methodology in Section 6.

A preliminary version of this paper appeared in the conference proceedings
(Chotard et al., 2014). The analysis of path-length control with cumulation parame-
ter equal to 1 is however fully new, as well as the discussion on how to analyze the case
with cumulation parameter smaller than one. Also Figures 4–11 are new as well as the
convergence of the progress rate in Theorem 1.

Notations

Throughout this article, we denote by ϕ the density function of the standard multi-
variate normal distribution (the dimension being clarified within the context), and Φ
the cumulative distribution function of a standard univariate normal distribution. The
standard (unidimensional) normal distribution is denotedN (0, 1), the (n-dimensional)
multivariate normal distribution with covariance matrix identity is denoted N (0, Idn)
and the ith order statistic of λ i.i.d. standard normal random variables is denoted Ni:λ.
The uniform distribution on an interval I is denoted UI . We denote µLeb the Lebesgue
measure. The set of natural numbers (including 0) is denoted N, and the set of real
numbers R. We denote R+ the set {x ∈ R|x ≥ 0}, and for A ⊂ Rn, the set A∗ denotes
A\{0} and 1A denotes the indicator function of A. For two vectors x ∈ Rn and y ∈ Rn,
we denote [x]i the ith-coordinate of x, and x.y the scalar product of x and y. Take
(a, b) ∈ N2 with a ≤ b, we denote [a..b] the interval of integers between a and b. For
a topological set X , B(X ) denotes the Borel algebra of X . For X and Y two random

vectors, we denote X
d
= Y if X and Y are equal in distribution. For (Xt)t∈N a sequence

of random variables and X a random variable we denote Xt
a.s.→ X if Xt converges

almost surely to X and Xt
P→ X if Xt converges in probability to X .

2 Problem statement and algorithm definition

2.1 (1, λ)-ES with resampling

In this paper, we study the behaviour of a (1, λ)-Evolution Strategy maximizing a func-
tion f : Rn → R, λ ≥ 2, n ≥ 2, with a constraint defined by a function g : Rn → R
restricting the feasible space to Xfeasible = {x ∈ Rn|g(x)>0}. To handle the constraint,
the algorithm resamples any unfeasible solution until a feasible solution is found.

From iteration t ∈ N, given the vector Xt ∈ Rn and step-size σt ∈ R∗+, the algo-

Evolutionary Computation Volume x, Number x 3
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Figure 1: Linear function with a linear constraint, in the plane generated by ∇f and
n, a normal vector to the constraint hyperplane with angle θ ∈ (0, π/2) with ∇f . The
point x is at distance g(x) from the constraint.

rithm generates λ new candidates:

Yi
t = Xt + σtN

i
t , (1)

with i ∈ [1..λ], and (Ni
t)i∈[1..λ] i.i.d. standard multivariate normal random vectors. If a

new sample Yi
t lies outside the feasible domain, that is g(Yi

t)≤0, then it is resampled
until it lies within the feasible domain. The first feasible ith candidate solution is de-
noted Ỹi

t and the realization of the multivariate normal distribution giving Ỹi
t is Ñi

t,
i.e.

Ỹi
t = Xt + σtÑ

i
t (2)

The vector Ñi
t is called a feasible step. Note that Ñi

t is not distributed as a multivariate
normal distribution, further details on its distribution are given later on.

We define ? = argmaxi∈[1..λ] f(Ỹi
t) as the index realizing the maximum objective

function value, and call Ñ?
t the selected step. The vector Xt is then updated as the

solution realizing the maximum value of the objective function, i.e.

Xt+1 = Ỹ?
t = Xt + σtÑ

?
t . (3)

The step-size and other internal parameters are then adapted. We denote for the
moment in a non specific manner the adaptation as

σt+1 = σtξt (4)

where ξt is a random variable whose distribution is a function of the selected steps
(Ñ?

i )i≤t, X0, σ0 and of internal parameters of the algorithm. We will define later on
specific rules for this adaptation.

2.2 Linear fitness function with linear constraint

In this paper, we consider the case where f , the function that we optimize, and g, the
constraint, are linear functions. W.l.o.g., we assume that ‖∇f‖ = ‖∇g‖ = 1. We denote
n := −∇g a normal vector to the constraint hyperplane. We choose an orthonormal Eu-
clidean coordinate system with basis (ei)i∈[1..n] with its origin located on the constraint
hyperplane where e1 is equal to the gradient∇f , hence

f(x) = [x]1 (5)

and the vector e2 lives in the plane generated by ∇f and n and is such that the angle
between e2 and n is positive. We define θ the angle between ∇f and n, and restrict
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our study to θ ∈ (0, π/2). The function g can be seen as a signed distance to the linear
constraint as

g(x) = x.∇g = −x.n = −[x]1 cos θ − [x]2 sin θ . (6)

A point is feasible if and only if g(x)>0 (see Figure 1). Overall the problem reads

maximize f(x) = [x]1 subject to

g(x) = −[x]1 cos θ − [x]2 sin θ>0 .
(7)

Although Ñi
t and Ñ?

t are in Rn, due to the choice of the coordinate system and the
independence of the sequence ([Ni

t]k)k∈[1..n], only the two first coordinates of these vec-
tors are affected by the resampling implied by g and the selection according to f . There-
fore [Ñ?

t ]k ∼ N (0, 1) for k ∈ [3..n]. With an abuse of notations, the vector Ñi
t will denote

the 2-dimensional vector ([Ñi
t]1, [Ñ

i
t]2), likewise Ñ?

t will also denote the 2-dimensional
vector ([Ñ?

t ]1, [Ñ
?
t ]2), and n will denote the 2-dimensional vector (cos θ, sin θ). The co-

ordinate system will also be used as (e1, e2) only.
Following (Arnold, 2011a, 2012; Arnold and Brauer, 2008), we denote the normal-

ized signed distance to the constraint as δt, that is

δt =
g(Xt)

σt
. (8)

We initialize the algorithm by choosing X0 = −n and σ0 = 1, which implies that
δ0 = 1.

3 Preliminary results and definitions

Throughout this section we derive the probability density functions of the random vec-
tors Ñi

t and Ñ?
t and give a definition of Ñi

t and of Ñ?
t as a function of δt and of an i.i.d.

sequence of random vectors.

3.1 Feasible steps

The random vector Ñi
t, the ith feasible step, is distributed as the standard multivariate

normal distribution truncated by the constraint, as stated in the following lemma.

Lemma 1. Let a (1, λ)-ES with resampling optimize a function f under a constraint function
g. If g is a linear form determined by a vector n as in (6), then the distribution of the feasible
step Ñi

t only depends on the normalized distance to the constraint δt and its density given that
δt equals δ reads

pδ (x) =
ϕ(x)1R∗+ (δ − x.n)

Φ(δ)
. (9)

Proof. A solution Yi
t is feasible if and only if g(Yi

t)>0, which is equivalent to
−(Xt + σtN

i
t).n>0. Hence dividing by σt, a solution is feasible if and only if δt =

−Xt.n/σt>N
i
t.n. Since a standard multivariate normal distribution is rotational invari-

ant, Ni
t.n follows a standard (unidimensional) normal distribution. Hence the proba-

bility that a solution Yi
t or a step Ni

t is feasible is given by

Pr(N (0, 1)<δt) = Φ (δt) .

Therefore the probability density function of the random variable Ñi
t.n for δt = δ is

x 7→ ϕ(x)1R∗+(δ − x)/Φ(δ). For any vector n⊥ orthogonal to n the random variable
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Ñi
t.n
⊥ was not affected by the resampling and is therefore still distributed as a standard

(unidimensional) normal distribution. With a change of variables using the fact that
the standard multivariate normal distribution is rotational invariant we obtain the joint
distribution of Eq. (9).

Then the marginal density function p1,δ of [Ñi
t]1 can be computed by integrating

Eq. (9) over [x]2 and reads

p1,δ (x) = ϕ (x)
Φ
(
δ−x cos θ

sin θ

)

Φ (δ)
, (10)

(see (Arnold, 2011a, Eq. 4) for details) and we denote F1,δ its cumulative distribution
function.

It will be important in the sequel to be able to express the vector Ñi
t as a function

of δt and of a finite number of random samples. Hence we give an alternative way to
sample Ñi

t rather than the resampling technique that involves an unbounded number
of samples.

Lemma 2. Let a (1, λ)-ES with resampling optimize a function f under a constraint function
g, where g is a linear form determined by a vector n as in (6). Let the feasible step Ñi

t be the
random vector described in Lemma 1 and Q be the 2-dimensional rotation matrix of angle θ.
Then

Ñi
t

d
= F̃−1

δt
(U it )n +N i

tn
⊥ = Q−1

(
F̃−1
δt

(U it )
N i
t

)
(11)

where F̃−1
δt

denotes the generalized inverse of the cumulative distribution of Ñi
t.n

1, U it ∼ U[0,1],
N i
t ∼ N (0, 1) with (U it )i∈[1..λ],t∈N i.i.d. and (N i

t )i∈[1..λ],t∈N i.i.d. random variables.

Proof. We define a new coordinate system (n,n⊥) (see Figure 1). It is the image of
(e1, e2) by Q. In the new basis (n,n⊥), only the coordinate along n is affected by
the resampling. Hence the random variable Ñi

t.n follows a truncated normal distribu-
tion with cumulative distribution function F̃δt equal to min(1,Φ(x)/Φ(δt)), while the
random variable Ñi

t.n
⊥ follows an independent standard normal distribution, hence

Ñi
t
d
= (Ñi

t.n)n +N i
tn
⊥. Using the fact that if a random variable has a cumulative dis-

tribution F , then for F−1 the generalized inverse of F , F−1(U) with U ∼ U[0,1] has the

same distribution as this random variable, we get that F̃−1
δt

(U it )
d
= Ñi

t.n, so we obtain
Eq. (11).

We now extend our study to the selected step Ñ?
t .

3.2 Selected step

The selected step Ñ?
t is chosen among the different feasible steps (Ñi

t)i∈[1..λ] to maxi-
mize the function f , and has the density described in the following lemma.

Lemma 3. Let a (1, λ)-ES with resampling optimize the problem (7). Then the distribution of
the selected step Ñ?

t only depends on the normalized distance to the constraint δt and its density

1The generalized inverse of F̃δ is F̃−1
δ (y) := infx∈R{F̃δ(x) ≥ y}.
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given that δt equals δ reads

p?δ(x)=λpδ (x)F1,δ([x]1)λ−1 , (12)

=λ
ϕ(x)1R∗+(δ − x.n)

Φ(δ)

(∫ [x]1

−∞
ϕ(u)

Φ( δ−u cos θ
sin θ )

Φ(δ)
du

)λ−1

where pδ is the density of Ñi
t given that δt = δ given in Eq. (9) and F1,δ the cumulative

distribution function of [Ñi
t]1 whose density is given in Eq. (10) and n the vector (cos θ, sin θ).

Proof. The function f being linear, the rankings on (Ñi
t)i∈[1..λ] correspond to the order

statistic on ([Ñi
t]1)i∈[1..λ]. If we look at the joint cumulative distribution F ?δ of Ñ?

t

F ?δ (x, y) = Pr
(

[Ñ?
t ]1 ≤ x, [Ñ?

t ]2 ≤ y
)

=

λ∑

i=1

Pr

(
Ñi
t ≤

(
x
y

)
, [Ñj

t ]1 < [Ñi
t]1 for j 6= i

)

by summing disjoints events. The vectors (Ñi
t)i∈[1..λ] being independent and identi-

cally distributed

F ?δ (x, y) = λPr

(
Ñ1
t ≤

(
x
y

)
, [Ñj

t ]1 < [Ñ1
t ]1 for j 6= 1

)

= λ

∫ x

−∞

∫ y

−∞
pδ(u, v)

λ∏

j=2

Pr([Ñj
t ]1 < u)dvdu

= λ

∫ x

−∞

∫ y

−∞
pδ(u, v)F1,δ(u)λ−1dvdu .

Deriving F ?δ on x and y yields the density of Ñ?
t of Eq. (12).

We may now obtain the marginal of [Ñ?
t ]1 and [Ñ?

t ]2.

Corollary 1. Let a (1, λ)-ES with resampling optimize the problem (7). Then the marginal
distribution of [Ñ?

t ]1 only depends on δt and its density given that δt equals δ reads

p?1,δ (x) = λp1,δ(x)F1,δ(x)λ−1 , (13)

= λϕ(x)
Φ
(
δ−x cos θ

sin θ

)

Φ(δ)
F1,δ(x)λ−1 ,

and the same holds for [Ñ?
t ]2 whose marginal density reads

p?2,δ (y) = λ
ϕ(y)

Φ(δ)

∫ δ−y sin θ
cos θ

−∞
ϕ(u)F1,δ(u)λ−1du . (14)

Proof. Integrating Eq. (12) directly yields Eq. (13).
The conditional density function of [Ñ?

t ]2 is

p?2,δ(y|[Ñ?
t ]1 = x) =

p?δ((x, y))

p?1,δ(x)
.
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As p?2,δ(y) =
∫
R p

?
2,δ(y|[Ñ?

t ]1 = x)p?1,δ(x)dx, using the previous equation with Eq. (12)
gives that p?2,δ(y) =

∫
R λpδ((x, y))F1,δ(x)λ−1dx, which with Eq. (9) gives

p?2,δ(y) = λ
ϕ(y)

Φ(δ)

∫

R
ϕ(x)1R∗+

(
δ −

(
x
y

)
.n

)
F1,δ(x)λ−1dx.

The condition δ − x cos θ − y sin θ ≥ 0 is equivalent to x ≤ (δ − y sin θ)/ cos θ, hence
Eq. (14) holds.

We will need in the next sections an expression of the random vector Ñ?
t as a func-

tion of δt and a random vector composed of a finite number of i.i.d. random variables.
To do so, using notations of Lemma 2, we define the function G̃ : R∗+× ([0, 1]×R)→ R2

as

G̃(δ,w) = Q−1

(
F̃−1
δ ([w]1)

[w]2

)
. (15)

According to Lemma 2, given that U ∼ U[0,1] and N ∼ N (0, 1), (F̃−1
δ (U),N ) (resp.

G̃(δ, (U,N ))) is distributed as the resampled step Ñi
t in the coordinate system (n,n⊥)

(resp. (e1, e2)). Finally, let (wi)i∈[1..λ] ∈ ([0, 1]×R)λ and let G : R∗+ × ([0, 1]×R)λ → R2

be the function defined as

G(δ, (wi)i∈[1..λ]) = argmax
N∈{G̃(δ,wi)|i∈[1..λ]}

f(N) . (16)

As shown in the following proposition, given that Wi
t ∼ (U[0,1],N (0, 1)) and Wt =

(Wi
t)i∈[1..λ], the function G(δt,Wt) is distributed as the selected step Ñ?

t .

Proposition 1. Let a (1, λ)-ES with resampling optimize the problem defined in Eq. (7), and
let (Wi

t)i∈[1..λ],t∈N be an i.i.d. sequence of random vectors with Wi
t ∼ (U[0,1],N (0, 1)), and

Wt = (Wi
t)i∈[1..λ]. Then

Ñ?
t

d
= G(δt,Wt) , (17)

where the function G is defined in Eq. (16).

Proof. Since f is a linear function f(Ỹi
t) = f(Xt) + σtf(Ñi

t), so f(Ỹi
t) ≤ f(Ỹj

t ) is
equivalent to f(Ñi

t) ≤ f(Ñj
t ). Hence ? = argmaxi∈[1..λ] f(Ñi

t) and therefore Ñ?
t =

argmaxN∈{Ñi
t|i∈[1..λ]} f(N). From Lemma 2 and Eq. (15), Ñi

t
d
= G̃(δt,W

i
t), so Ñ?

t
d
=

argmaxN∈{G̃(δt,Wi
t)|i∈[1..λ]} f(N), which from (16) is G(δt,Wt).

4 Constant step-size case

We illustrate in this section our methodology on the simple case where the step-size is
constantly equal to σ and prove that (Xt)t∈N diverges in probability at constant speed
and that the progress rate ϕ∗ := E([Xt+1]1 − [Xt]1) = σE([Ñ?

t ]1) (see Arnold 2011a,
Eq. 2) converges to a strictly positive constant (Theorem 1). The analysis of the CSA
is then a generalization of the results presented here, with more technical results to
derive. Note that the progress rate definition coincides with the fitness gain, i.e. ϕ∗ =
E(f(Xt+1)− f(Xt)).

As suggested in (Arnold, 2011a), the sequence (δt)t∈N plays a central role for the
analysis, and we will show that it admits a stationary measure. We first prove that this
sequence is a homogeneous Markov chain.
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Proposition 2. Consider the (1, λ)-ES with resampling and with constant step-size σ optimiz-
ing the constrained problem (7). Then the sequence δt = g(Xt)/σ is a homogeneous Markov
chain on R∗+ and

δt+1 = δt − Ñ?
t .n

d
= δt − G(δt,Wt).n , (18)

where G is the function defined in (16) and (Wt)t∈N = (Wi
t)i∈[1..λ],t∈N is an i.i.d. sequence

with Wi
t ∼ (U[0,1],N (0, 1)) for all (i, t) ∈ [1..λ]× N.

Proof. It follows from the definition of δt that δt+1 = g(Xt+1)
σt+1

=
−(Xt+σÑ

?
t ).n

σ = δt −
Ñ?
t .n, and in Proposition 1 we state that Ñ?

t
d
= G(δt,Wt). Since δt+1 has the same

distribution as a time independent function of δt and ofWt where (Wt)t∈N are i.i.d., it
is a homogeneous Markov chain.

The Markov Chain (δt)t∈N comes into play for investigating the divergence of
f(Xt) = [Xt]1. Indeed, we can express [Xt−X0]1

t in the following manner:

[Xt −X0]1
t

=
1

t

t−1∑

k=0

([Xk+1]1 − [Xk]1)

=
σ

t

t−1∑

k=0

[Ñ?
k]1

d
=

σ

t

t−1∑

k=0

[G(δk,Wk)]1 . (19)

The latter term suggests the use of a Law of Large Numbers (LLN) to prove the conver-
gence of [Xt−X0]1

t which will in turn imply–-if the limit is positive-–the divergence of
[Xt]1 at a constant rate. Sufficient conditions on a Markov chain to be able to apply the
LLN include the existence of an invariant probability measure π. The limit term is then
expressed as an expectation over the stationary distribution. More precisely, assume
the LLN can be applied, the following limit will hold

[Xt −X0]1
t

a.s.−→
t→∞

σ

∫

R∗+
E ([G(δ,W)]1)π(dδ) . (20)

If the Markov chain (δt)t∈N is also V -ergodic with |E([G(δ,W)]1)| ≤ V (δ) then the
progress rate converges to the same limit.

E([Xt+1]1 − [Xt]1) −→
t→+∞

σ

∫

R∗+
E ([G(δ,W)]1)π(dδ) . (21)

We prove formally these two equations in Theorem 1.
The invariant measure π is also underlying the study carried out in (Arnold, 2011a,

Section 4) where more precisely it is stated: “Assuming for now that the mutation strength
σ is held constant, when the algorithm is iterated, the distribution of δ-values tends to a station-
ary limit distribution.”. We will now provide a formal proof that indeed (δt)t∈N admits
a stationary limit distribution π, as well as prove some other useful properties that will
allow us in the end to conclude to the divergence of ([Xt]1)t∈N.

4.1 Study of the stability of (δt)t∈N
We study in this section the stability of (δt)t∈N. We first derive its transition kernel
P (δ, A) := Pr(δt+1 ∈ A|δt = δ) for all δ ∈ R∗+ and A ∈ B(R∗+). Since Pr(δt+1 ∈ A|δt =
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δ) = Pr(δt − Ñ?
t .n ∈ A|δt = δ) ,

P (δ, A) =

∫

R2

1A (δ − u.n) p?δ (u) du (22)

where p?δ is the density of Ñ?
t given in (12). For t ∈ N∗, the t-steps transition kernel P t

is defined by P t(δ, A) := Pr(δt ∈ A|δ0 = δ).
From the transition kernel, we will now derive the first properties on the Markov

chain (δt)t∈N. First of all we investigate the so-called ψ-irreducible property.
A Markov chain (δt)t∈N on a state space R∗+ is ψ-irreducible if there exists a non-

trivial measure ψ such that for all sets A ∈ B(R∗+) with ψ(A) > 0 and for all δ ∈ R∗+,
there exists t ∈ N∗ such that P t(δ, A) > 0. We denote B+(R∗+) the set of Borel sets of R∗+
with strictly positive ψ-measure.

We also need the notion of small sets and petite sets. A set C ∈ B(R∗+) is called
a small set if there exists m ∈ N∗ and a non trivial measure νm such that for all sets
A ∈ B(R∗+) and all δ ∈ C

Pm(δ, A) ≥ νm(A) . (23)

A set C ∈ B(R∗+) is called a petite set if there exists α a probability measure on N It
seems and a non trivial measure να such that for all sets A ∈ B(R∗+) and all δ ∈ C

Kα(x,A) :=
∑

m∈N
Pm(x, A)α(m) ≥ να(A) . (24)

A small set is therefore automatically a petite set. If there exists C a ν1-small set such
that ν1(C) > 0 then the Markov chain is said strongly aperiodic.

Proposition 3. Consider a (1, λ)-ES with resampling and with constant step-size optimizing
the constrained problem (7) and let (δt)t∈N be the Markov chain exhibited in (18). Then (δt)t∈N
is µLeb-irreducible, strongly aperiodic, and compact sets of R∗+ and sets of the form (0,M ] with
M > 0 are small sets.

Proof. Using Eq. (22) and Eq. (12) the transition kernel can be written

P (δ, A)=λ

∫

R2

1A(δ −
(
x
y

)
.n)

ϕ(x)ϕ(y)

Φ(δ)
F1,δ(x)λ−1dydx .

We remove δ from the indicator function by a substitution of variables u = δ −
x cos θ − y sin θ, and v = x sin θ − y cos θ. As this substitution is the composition of
a rotation and a translation the determinant of its Jacobian matrix is 1. We denote
hδ : (u, v) 7→ (δ − u) cos θ + v sin θ, h⊥δ : (u, v) 7→ (δ − u) sin θ − v cos θ and g(δ, u, v) 7→
λϕ(hδ(u, v))ϕ(h⊥δ (u, v))/Φ(δ)F1,δ(hδ(u, v))λ−1. Then x = hδ(u, v), y = h⊥δ (u, v) and

P (δ, A) =

∫

R

∫

R
1A(u)g(δ, u, v)dvdu . (25)

For all δ, u, v the function g(δ, u, v) is strictly positive hence for all A with µLeb(A) > 0,
P (δ, A) > 0. Hence (δt)t∈N is irreducible with respect to the Lebesgue measure.

In addition, the function (δ, u, v) 7→ g(δ, u, v) is continuous as the composition of
continuous functions (the continuity of δ 7→ F1,δ(x) for all x coming from the dom-
inated convergence theorem). Given a compact C of R∗+, we hence know that there
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exists gC > 0 such that for all (δ, u, v) ∈ C × [0, 1]2, g(δ, u, v) ≥ gC > 0. Hence for all
δ ∈ C,

P (δ, A) ≥ gCµLeb(A ∩ [0, 1])︸ ︷︷ ︸
:=νC(A)

.

The measure νC being non-trivial, the previous equation shows that compact sets of R∗+,
are small and that for C a compact such that µLeb(C ∩ [0, 1]) > 0, we have νC(C) > 0
hence the chain is strongly aperiodic. Note also that since limδ→0 g(δ, u, v) > 0, the
same reasoning holds for (0,M ] instead of C (where M > 0). Hence the set (0,M ] is
also a small set.

The application of the LLN for a ψ-irreducible Markov chain (δt)t∈N on a state
space R∗+ requires the existence of an invariant measure π, that is satisfying for all A ∈
B(R∗+)

π(A) =

∫

R∗+
P (δ, A)π(dδ) . (26)

If a Markov chain admits an invariant probability measure then the Markov chain is
called positive.

A typical assumption to apply the LLN is positivity and Harris-recurrence. A ψ-
irreducible chain (δt)t∈N on a state space R∗+ is Harris-recurrent if for all setsA ∈ B+(R∗+)
and for all δ ∈ R∗+, Pr(ηA = ∞|δ0 = δ) = 1 where ηA is the occupation time of A, i.e.
ηA =

∑∞
t=1 1A(δt). We will show that the Markov chain (δt)t∈N is positive and Harris-

recurrent by using so-called Foster-Lyapunov drift conditions: define the drift operator
for a positive function V as

∆V (δ) = E[V (δt+1)|δt = δ]− V (δ) .

Drift conditions translate that outside a small set, the drift operator is negative. We
will show a drift condition for V-geometric ergodicity where given a function f ≥ 1,
a positive and Harris-recurrent chain (δt)t∈N with invariant measure π is called f -
geometrically ergodic if π(f):=

∫
R f(δ)π(dδ) <∞ and there exists rf > 1 such that

∑

t∈N
rtf‖P t(δ, ·)− π‖f <∞ ,∀δ ∈ R∗+ , (27)

where for ν a signed measure ‖ν‖f denotes supg:|g|≤f |
∫
R∗+
g(x)ν(dx)|.

To prove the V -geometric ergodicity, we will prove that there exists a small set C,
constants b ∈ R, ε ∈ R∗+ and a function V ≥ 1 finite for at least some δ0 ∈ R∗+ such that
for all δ ∈ R∗+

∆V (δ) ≤ −εV (δ) + b1C(δ) . (28)

If the Markov chain (δt)t∈N is ψ-irreducible and aperiodic, this drift condition implies
that the chain is V -geometrically ergodic (Meyn and Tweedie, 1993, Theorem 15.0.1)2

as well as positive and Harris-recurrent3.
Because sets of the form (0,M ] with M > 0 are small sets and drift conditions

investigate the negativity outside a small set, we need to study the chain for δ large.
The following lemma is a technical lemma studying the limit of E(exp(G(δ,W).n)) for
δ to infinity.

2The condition π(V ) <∞ is given by (Meyn and Tweedie, 1993, Theorem 14.0.1).
3The function V of (28) is unbounded off small sets (Meyn and Tweedie, 1993, Lemma 15.2.2) with (Meyn

and Tweedie, 1993, Proposition 5.5.7), hence with (Meyn and Tweedie, 1993, Theorem 9.1.8) the Markov chain
is Harris-recurrent.
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Lemma 4. Consider the (1, λ)-ES with resampling optimizing the constrained problem (7),
and let G be the function defined in (16). We denote K and K̄ the random variables
exp(G(δ,W).(a, b)) and exp(a|[G(δ,W)]1| + b|[G(δ,W)]2|). For W ∼ (U[0,1],N (0, 1))λ

and any (a, b) ∈ R2 limδ→+∞E(K) = E(exp(aNλ:λ))E(exp(bN (0, 1))) < ∞ and
limδ→+∞E(K̄) <∞

For the proof see the appendix. We are now ready to prove a drift condition for
geometric ergodicity.

Proposition 4. Consider a (1, λ)-ES with resampling and with constant step-size optimizing
the constrained problem (7) and let (δt)t∈N be the Markov chain exhibited in (18). The Markov
chain (δt)t∈N is V -geometrically ergodic with V : δ 7→ exp(αδ) for α > 0 small enough, and
is Harris-recurrent and positive with invariant probability measure π.

Proof. Take the function V : δ 7→ exp(αδ), then

∆V (δ) = E (exp (α(δ − G(δ,W).n)))− exp(αδ)

∆V

V
(δ) = E (exp (−αG(δ,W).n))− 1 .

With Lemma 4 we obtain that

lim
δ→+∞

E (exp (−αG(δ,W).n)) = E (exp(−αNλ:λ cos θ))E(exp(−αN (0, 1) sin θ)) <∞ .

As the right hand side of the previous equation is finite we can invert integral with
series with Fubini’s theorem, so with Taylor series

lim
δ→+∞

E (exp (−αG(δ,W).n)) =

(∑

i∈N

(−α cos θ)
i
E
(
N i
λ:λ

)

i!

)(∑

i∈N

(−α sin θ)
i
E
(
N (0, 1)i

)

i!

)
,

which in turns yields

lim
δ→+∞

∆V

V
(δ) =(1− αE(Nλ:λ) cos θ + o(α)) (1 +o(α))−1

= −αE(Nλ:λ) cos θ + o(α) .

Since for λ ≥ 2, E(Nλ:λ) > 0, for α > 0 and small enough we get limδ→+∞ ∆V
V (δ) <

−ε < 0. Hence there exists ε > 0, M > 0 and b ∈ R such that

∆V (δ) ≤ −εV (δ) + b1(0,M ](δ) .

According to Proposition 3, (0,M ] is a small set, hence it is petite (Meyn and
Tweedie, 1993, Proposition 5.5.3). Furthermore (δt)t∈N is a ψ-irreducible aperiodic
Markov chain so (δt)t∈N satisfies the conditions of Theorem 15.0.1 from (Meyn and
Tweedie, 1993), which with Lemma 15.2.2, Theorem 9.1.8 and Theorem 14.0.1 of (Meyn
and Tweedie, 1993) proves the proposition.

We now proved rigorously the existence (and unicity) of an invariant measure π
for the Markov chain (δt)t∈N, which provides the so-called steady state behaviour in
(Arnold, 2011a, Section 4). As the Markov chain (δt)t∈N is positive and Harris-recurrent
we may now apply a Law of Large Numbers (Meyn and Tweedie, 1993, Theorem 17.1.7)
in Eq (19) to obtain the divergence of f(Xt) and an exact expression of the divergence
rate.
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Theorem 1. Consider a (1, λ)-ES with resampling and with constant step-size optimizing the
constrained problem (7) and let (δt)t∈N be the Markov chain exhibited in (18). The sequence
([Xt]1)t∈N diverges in probability and expectation to +∞ at constant speed, that is

[Xt −X0]1
t

P−→
t→+∞

σEπ⊗µW ([G (δ,W)]1) > 0 (29)

ϕ∗ = E ([Xt+1 −Xt]1) −→
t→+∞

σEπ⊗µW ([G (δ,W)]1) > 0 , (30)

where ϕ∗ is the progress rate defined in (Arnold, 2011a, Eq. (2)), G is defined in (16),
W = (Wi)i∈[1..λ] with (Wi)i∈[1..λ] an i.i.d. sequence such that Wi ∼ (U[0,1],N (0, 1)), π
is the stationary measure of (δt)t∈N whose existence is proven in Proposition 4 and µW is the
probability measure ofW .

Proof. From Proposition 4 the Markov chain (δt)t∈N is Harris-recurrent and positive,
and since (Wt)t∈N is i.i.d., the chain (δt,Wt) is also Harris-recurrent and positive with
invariant probability measure π × µW , so to apply the Law of Large Numbers (Meyn
and Tweedie, 1993, Theorem 17.0.1) to [G]1 we only need [G]1 to be π ⊗ µW -integrable.

With Fubini-Tonelli’s theorem Eπ⊗µW (|[G(δ,W)]1|) equals to
Eπ(EµW (|[G(δ,W)]1|)). As δ ≥ 0, we have Φ(δ) ≥ Φ(0) = 1/2, and for all x ∈ R
as Φ(x) ≤ 1, F1,δ(x) ≤ 1 and ϕ(x) ≤ exp(−x2/2) with Eq. (13) we obtain that
|x|p?1,δ(x) ≤ 2λ|x| exp(−x2/2) so the function x 7→ |x|p?1,δ(x) is integrable. Hence
for all δ ∈ R+, EµW (|[G(δ,W)]1|) is finite. Using the dominated convergence the-
orem, the function δ 7→ F1,δ(x) is continuous, hence so is δ 7→ p?1,δ(x). From (13)
|x|p?1,δ(x) ≤ 2λ|x|ϕ(x), which is integrable, so the dominated convergence theorem
implies that the function δ 7→ EµW (|[G(δ,W]1|) is continuous. Finally, using Lemma 4
with Jensen’s inequality shows that limδ→+∞EµW (|[G(δ,W)]1|) is finite. Therefore the
function δ 7→ EµW (|[G(δ,W]1|) is bounded by a constant M ∈ R+. As π is a probability
measure Eπ(EµW (|[G(δ,W)]1|)) ≤ M < ∞, meaning [G]1 is π ⊗ µW -integrable. Hence
we may apply the LLN on Eq. (19)

σ

t

t−1∑

k=0

[G(δk,Wk)]1
a.s.−→

t→+∞
σEπ⊗µW ([G(δ,W)]1) <∞ .

The equality in distribution in (19) allows us to deduce the convergence in probability
of the left hand side of (19) to the right hand side of the previous equation.

From (19) [Xt+1 − Xt]1
d
= σG(δt,Wt) so E([Xt+1 − Xt]1|X0 = x) =

σE(G(δt,Wt)|δ0 = x/σ). As G is integrable with Fubini’s theorem E(G(δt,Wt)|δ0 =
x/σ) =

∫
R∗+

EµW (G(y,W))P t(x/σ, dy), so E(G(δt,Wt)|δ0 = x/σ) − Eπ×µW (G(δ,W)) =∫
R∗+

EµW (G(y,W))(P t(x/σ, dy) − π(dy)). According to Proposition 4 (δt)t∈N is V -
geometrically ergodic with V : δ 7→ exp(αδ), so there exists Mδ and r > 1 such that
‖P t(δ, ·)− π‖V ≤Mδr

−t. We showed that the function δ 7→ E(|[G(δ,W)]1|) is bounded,
so since V (δ) ≥ 1 for all δ ∈ R∗+ and limδ→+∞ V (δ) = +∞, there exists k such that
EµW (|[G(δ,W)]1|) ≤ kV (δ) for all δ. Hence |

∫
EµW (|[G(x,W)]1|)(P t(δ, dx) − π(dx))| ≤

k‖P t(δ, ·)−π‖V ≤ kMδr
−t. And therefore |E(G(δt,Wt)|δ0 = x/σ)−Eπ×µW (G(δ,W))| ≤

kMδr
−t which converges to 0 when t goes to infinity.

As the measure π is an invariant measure for the Markov chain (δt)t∈N, using (18),
Eπ⊗µW (δ) = Eπ⊗µW (δ − G(δ,W).n), hence Eπ⊗µW (G(δ,W).n) = 0 and thus

Eπ⊗µW ([G(δ,W)]1) = − tan θEπ⊗µW ([G(δ,W)]2) .

Evolutionary Computation Volume x, Number x 13

4.3. Linear Functions with Linear Constraints

113



A. Chotard, A. Auger, N. Hansen

10-3 10-2 10-1 100

θ

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

ϕ
∗
/λ

λ=5
λ=10
λ=20

Figure 2: Normalized progress rate ϕ? = E(f(Xt+1) − f(Xt)) divided by λ for the
(1, λ)-ES with constant step-size σ = 1 and resampling, plotted against the constraint
angle θ, for λ ∈ {5, 10, 20}.

We see from Eq. (14) that for y > 0, p?2,δ(y) < p?2,δ(−y) hence the expected value
Eπ⊗µW ([G(δ,W)]2) is strictly negative. With the previous equation it implies that
Eπ⊗µW ([G(δ,W)]1) is strictly positive.

We showed rigorously the divergence of [Xt]1 and gave an exact expression of the
divergence rate, and that the progress rate ϕ∗ converges to the same rate. The fact that
the chain (δt)t∈N is V -geometrically ergodic gives that there exists a constant r > 1 such
that

∑
t r
t‖P t(δ, ·) − π‖V < ∞. This implies that the distribution π can be simulated

efficiently by a Monte Carlo simulation allowing to have precise estimations of the
divergence rate of [Xt]1.

A Monte Carlo simulation of the divergence rate in the right hand side of (29)
and (30) and for 106 time steps gives the progress rate of (Arnold, 2011a) ϕ? =
E([Xt+1 − Xt]1), which once normalized by σ and λ yields Fig. 2. We normalize per
λ as in evolution strategies the cost of the algorithm is assumed to be the number of
f -calls. We see that for small values of θ, the normalized serial progress rate assumes
roughly ϕ?/λ ≈ θ2. Only for larger constraint angles the serial progress rate depends
on λ where smaller λ are preferable.

Fig. 3 is obtained through simulations of the Markov chain (δt)t∈N defined in
Eq. (18) for 106 time steps where the values of (δt)t∈N are averaged over time. We
see that when θ → π/2 then Eπ(δ) → +∞ since the selection does not attract Xt to-
wards the constraint anymore. With a larger population size the algorithm is closer to
the constraint, as better samples are more likely to be found close to the constraint.

5 Cumulative Step size Adaptation

In this section we apply the techniques introduced in the previous section to the case
where the step-size is adapted using Cumulative Step-size Adaptation, CSA (Hansen
and Ostermeier, 2001). This technique was studied on sphere functions (Arnold and
Beyer, 2004) and on ridge functions (Arnold and MacLeod, 2008).
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Figure 3: Average normalized distance δ from the constraint for the (1, λ)-ES with con-
stant step-size and resampling plotted against the constraint angle θ for λ ∈ {5, 10, 20}.

In CSA, the step-size is adapted using a path pt, vector of Rn, that sums up the
different selected steps Ñ?

t with a discount factor. More precisely the evolution path
pt ∈ Rn is defined by p0 ∼ N (0, Idn) and

pt+1 = (1− c)pt +
√
c(2− c)Ñ?

t . (31)

The variable c ∈ (0, 1] is called the cumulation parameter, and determines the ”mem-
ory” of the evolution path, with the importance of a step Ñ?

0 decreasing in (1 − c)t.
The backward time horizon is consequently about 1/c. The coefficients in Eq (31) are
chosen such that if pt follows a standard normal distribution, and if f ranks uniformly
randomly the different samples (Ñi

t)i∈[[1..λ]] and that these samples are normally dis-
tributed, then pt+1 will also follow a standard normal distribution independently of
the value of c.

The length of the evolution path is compared to the expected length of a Gaussian
vector (that corresponds to the expected length under random selection) (see (Hansen
and Ostermeier, 2001)). To simplify the analysis we study here a modified version
of CSA introduced in (Arnold, 2002) where the squared length of the evolution path
is compared with the expected squared length of a Gaussian vector, that is n, since
it would be the distribution of the evolution path under random selection. If ‖pt‖2
is greater (respectively lower) than n, then the step-size is increased (respectively de-
creased) following

σt+1 = σt exp

(
c

2dσ

(‖pt+1‖2
n

− 1

))
, (32)

where the damping parameter dσ determines how much the step-size can change and
can be set here to dσ = 1.

As [Ñ?
t ]i ∼ N (0, 1) for i ≥ 3, we also have [pt]i ∼ N (0, 1). It is convenient in the

sequel to also denote by pt the two dimensional vector ([pt]1, [pt]2). With this (small)
abuse of notations, (32) is rewritten as

σt+1 = σt exp

(
c

2dσ

(‖pt+1‖2 +Kt

n
− 1

))
, (33)

Evolutionary Computation Volume x, Number x 15

4.3. Linear Functions with Linear Constraints

115



A. Chotard, A. Auger, N. Hansen

with (Kt)t∈N an i.i.d. sequence of random variables following a chi-squared distribu-
tion with n − 2 degrees of freedom. We shall denote η?c the multiplicative step-size
change σt+1/σt, that is the function

η?c (pt, δt,Wt,Kt) = exp

(
c

2dσ

(
‖(1− c)pt+

√
c(2− c)G(δt,Wt)‖2 +Kt

n
−1

))
. (34)

Note that for c = 1, η?1 is a function of only δt,Wt andKt that we will hence denote
η?1(δt,Wt,Kt).

We prove in the next proposition that for c < 1 the sequence (δt,pt)t∈N is an ho-
mogeneous Markov chain and explicit its update function. In the case where c = 1 the
chain reduces to δt.

Proposition 5. Consider a (1, λ)-ES with resampling and cumulative step-size adaptation
maximizing the constrained problem (7). Take δt = g(Xt)/σt. The sequence (δt,pt)t∈N is a
time-homogeneous Markov chain and

δt+1
d
=

δt − G(δt,Wt).n

η?c (pt, δt,Wt,Kt)
, (35)

pt+1
d
= (1− c)pt +

√
c(2− c)G(δt,Wt) , (36)

with (Kt)t∈N a i.i.d. sequence of random variables following a chi squared distribution with
n− 2 degrees of freedom, G defined in Eq. (16) andWt defined in Proposition 1.

If c = 1 then the sequence (δt)t∈N is a time-homogeneous Markov chain and

δt+1
d
=

δt − G(δt,Wt).n

exp
(

c
2dσ

(
‖G(δt,Wt)‖2

n − 1
)) (37)

Proof. With Eq. (31) and Eq. (17) we get Eq. (36).
From Eq. (8) and Proposition 1 it follows that

δt+1 = −Xt+1.n

σt+1

d
= − Xt.n + σtÑ

?
t .n

σtη?c (pt, δt,Wt,Kt)

d
=

δt − G(δt,Wt).n

η?c (pt, δt,Wt,Kt)
.

So (δt+1,pt+1) is a function of only (δt,pt) and i.i.d. random variables, hence (δt,pt)t∈N
is a time-homogeneous Markov chain.

Fixing c = 1 in (35) and (36) immediately yields (37), and then δt+1 is a function
of only δt and i.i.d. random variables, so in this case (δt)t∈N is a time-homogeneous
Markov chain.

As for the constant step-size case, the Markov chain is important when investi-
gating the convergence or divergence of the step size of the algorithm. Indeed from
Eq. (33) we can express ln(σt/σ0)/t as

1

t
ln
σt
σ0

=
c

2dσ




1
t

(∑t−1
i=0 ‖pi+1‖2 +Ki

)

n
− 1


 (38)
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The right hand side suggests to use the LLN. The convergence of ln(σt/σ0)/t to a strictly
positive limit (resp. negative) will imply the divergence (resp. convergence) of σt at a
geometrical rate.

It turns out that the dynamic of the chain (δt,pt)t∈N looks complex to analyze.
Establishing drift conditions looks particularly challenging. We therefore restrict the
rest of the study to the more simple case where c = 1, hence the Markov chain of
interest is (δt)t∈N. Then (38) becomes

1

t
ln
σt
σ0

d
=

c

2dσ

(
1
t

∑t−1
i=0 ‖G(δi,Wi)‖2 +Ki

n
− 1

)
. (39)

To apply the LLN we will need the Markov chain to be Harris positive, and the
properties mentioned in the following lemma.
Lemma 5 (Chotard and Auger 201, Proposition 7). Consider a (1, λ)-ES with resampling
and cumulative step-size adaptation maximizing the constrained problem (7). For c = 1 the
Markov chain (δt)t∈N from Proposition 5 is ψ-irreducible, strongly aperiodic, and compact sets
of R∗+ are small sets for this chain.

We believe that the latter result can be generalized to the case c < 1 if for any
(δ0,p0) ∈ R∗+ × Rn there exists tδ0,p0

such that for all t ≥ tδ0,p0
there exists a path of

events of length t from (δ0,p0) to any point of the set [0,M ]×B(0, r).
To show the Harris positivity of (δt)t∈N we first need to study the behaviour of the

drift operator we want to use when δ → +∞, that is far from the constraint. Then,
intuitively, as [Ñ?

t ]2 would not be influenced by the resampling anymore, it would be
distributed as a random normal variable, and [Ñ?

t ]1 would be distributed as the last
order statistic of λ normal random variables. This is used in the following technical
lemma.
Lemma 6. For α > 0 small enough

1

δα + δ−α
E

(
(δ − G(δ,W).n)

α

η?1(δ,W,K)α

)
−→
δ→+∞

E1E2E3<∞ (40)

1

δα + δ−α
E

(
(δ − G(δ,W).n)

α

η?1(δ,W,K)α

)
−→
δ→0

0 (41)

1

δα + δ−α
E

(
η?1(δ,W,K)α

(δ − G(δ,W).n)
α

)
−→
δ→+∞

0 (42)

1

δα + δ−α
E

(
η?1(δ,W,K)α

(δ − G(δ,W).n)
α

)
−→
δ→0

0 , (43)

where E1 = E(exp(− α
2dσn

(N 2
λ:λ − 1))), E2 = E(exp(− α

2dσn
(N (0, 1)2 − 1))), and E3 =

E(exp(− α
2dσn

(K − (n − 2)))); where G is the function defined in Eq. (16) and η?1 is defined
in Eq. (34) (for c = 1), K is a random variable following a chi-squared distribution with n− 2
degrees of freedom andW ∼ (U[0,1],N (0, 1))λ is a random vector.

The proof of this lemma consists in applications of Lebesgue’s dominated conver-
gence theorem, and can be found in the appendix.

We now prove the Harris positivity of (δt)t∈N by proving a stronger property,
namely the geometric ergodicity that we show using the drift inequality (28).
Proposition 6. Consider a (1, λ)-ES with resampling and cumulative step-size adaptation
maximizing the constrained problem (7). For c = 1 the Markov chain (δt)t∈N from Proposi-
tion 5 is V -geometrically ergodic with V : δ ∈ R∗+ 7→ δα + δ−α for α> 0 small enough, and
positive Harris with invariant measure π1.
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Proof. Take V the positive function V (δ) = δα+δ−α (the parameter α is strictly positive
and will be specified later), W ∼ (U[0,1],N (0, 1))λ a random vector and K a random
variable following a chi squared distribution with n − 2 degrees of freedom. We first
study ∆V/V (δ) when δ → +∞. From Eq. (37) we then have the following drift quotient

∆V (δ)

V (δ)
=

1

V (δ)
E

(
(δ − G(δ,W).n)α

η?1(δ,W,K)α

)
+

1

V (δ)
E

(
η?1(δ,W,K)α

(δ − G(δ,W).n)α

)
− 1 , (44)

with η?1 defined in Eq. (34) and G in Eq. (16). From Lemma 6, following the same
notations than in the lemma, when δ → +∞ and if α > 0 is small enough, the right
hand side of the previous equation converges to E1E2E3 − 1. With Taylor series

E1 = E



∑

k∈N

(
− α

2dσn

(
N 2
λ:λ − 1

))k

k!


 .

Furthermore, as the density of Nλ:λ at x equals to λϕ(x)Φ(x)λ−1 and that
exp |α/(2dσn)(x2 − 1)|λϕ(x)Φ(x)λ−1 ≤ λ exp(α/(2dσn)x2 − x2/2) which for α small
enough is integrable,

E



∑

k∈N

∣∣∣− α
2dσn

(
N 2
λ:λ − 1

)∣∣∣
k

k!


 =

∫

R
exp

∣∣∣∣
α

2dσn

(
x2 − 1

)∣∣∣∣λϕ(x)Φ(x)λ−1dx <∞ .

Hence we can use Fubini’s theorem to invert series (which are integrals for the counting
measure) and integral. The same reasoning holding for E2 and E3 (for E3 with the chi-
squared distribution we need α/(2dσn)x− x/2 < 0) we have

lim
δ→+∞

∆V

V
(δ) =

(
1− α

2dσn
E(N 2

λ:λ−1)+o(α)

)(
1− α

2dσn
E(N (0, 1)2−1)+o(α)

)

(
1− α

2dσn
E(χ2

n−2 − (n− 2)) + o(α)

)
− 1 ,

and as E(N (0, 1)2) = 1 and E(χ2
n−2) = n− 2

lim
δ→+∞

∆V

V
(δ) = − α

2dσn
E
(
N 2
λ:λ − 1

)
+ o(α) .

From (Chotard et al., 2012a) if λ > 2 then E(N 2
λ:λ) > 1. Therefore, for α small enough,

we have limδ→+∞ ∆V
V (δ) < 0 so there exists ε1 > 0 and M > 0 such that ∆V (δ) ≤

−ε1V (δ) whenever δ > M .
Similarly, when α is small enough, using Lemma 6, limδ→0 E((δ −

G(δ,W))α/η?1(δ,W,K)α)/V (δ) = 0 and limδ→0 E(η?1(δ,W,K)α/(δ−G(δ,W))α)/V (δ) =
0. Hence using (44), limδ→0 ∆V (δ)/V (δ) = −1. So there exists ε2 and m > 0 such that
∆V (δ) ≤ −ε2V (δ) for all δ ∈ (0,m). And since ∆V (δ) and V (δ) are bounded functions
on compacts of R∗+, there exists b ∈ R such that

∆V (δ) ≤ −min(ε1, ε2)V (δ) + b1[m,M ](δ) .

With Lemma 5, [m,M ] is a small set, and (δt)t∈N is a ψ-irreducible aperiodic
Markov chain. So (δt)t∈N satisfies the assumptions of (Meyn and Tweedie, 1993, Theo-
rem 15.0.1), which proves the proposition.
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The same results for c < 1 are difficult to obtain, as then both δt and pt must be
controlled together. For pt = 0 and δt ≥ M , ‖pt+1‖ and δt+1 will in average increase,
so either we need that [M,+∞)× B(0, r) is a small set (although it is not compact), or
we need to look τ steps in the future with τ large enough to see δt+τ decrease for all
possible values of pt outside of a small set.

Note that although in Proposition 4 and Proposition 6 we show the existence of
a stationary measure for (δt)t∈N, these are not the same measures, and not the same
Markov chains as they have different update rules (compare Eq. (18) and Eq. (35)) The
chain (δt)t∈N being Harris positive we may now apply a LLN to Eq. (39) to get an exact
expression of the divergence/convergence rate of the step-size.

Theorem 2. Consider a (1, λ)-ES with resampling and cumulative step-size adaptation maxi-
mizing the constrained problem (7), and for c = 1 take (δt)t∈N the Markov chain from Proposi-
tion 5. Then the step-size diverges or converges geometrically in probability

1

t
ln

(
σt
σ0

)
P−→

t→∞
1

2dσn

(
Eπ1⊗µW

(
‖G (δ,W) ‖2

)
− 2
)
, (45)

and in expectation

E

(
ln

(
σt+1

σt

))
−→
t→+∞

1

2dσn

(
Eπ1⊗µW

(
‖G (δ,W) ‖2

)
− 2
)

(46)

with G defined in (16) andW = (Wi)i∈[1..λ] where (Wi)i∈[1..λ] is an i.i.d. sequence such that
Wi ∼ (U[0,1],N (0, 1)), µW is the probability measure ofW and π1 is the invariant measure of
(δt)t∈N whose existence is proved in Proposition 6.

Furthermore, the change in fitness value f(Xt+1)− f(Xt) diverges or converges geomet-
rically in probability

1

t
ln

∣∣∣∣
f(Xt+1)− f(Xt)

σ0

∣∣∣∣
P−→

t→∞
1

2dσn

(
Eπ1⊗µW

(
‖G (δ,W) ‖2

)
− 2
)
. (47)

Proof. From Proposition 6 the Markov chain (δt)t∈N is Harris positive, and since
(Wt)t∈N is i.i.d., the chain (δt,Wt)t∈N is also Harris positive with invariant probabil-
ity measure π1 × µW , so to apply the Law of Large Numbers of (Meyn and Tweedie,
1993, Theorem 17.0.1) to Eq. (38) we only need the function (δ,w) 7→ ‖G(δ,w)‖2 +K to
be π1 × µW -integrable.

Since K has chi-squared distribution with n − 2 degrees of freedom,
Eπ1×µW (‖G(δ,W)‖2 +K) equals to Eπ1×µW (‖G(δ,W)‖2) +n− 2. With Fubini-Tonelli’s
theorem, Eπ1×µW (‖G(δ,W)‖2) is equal to Eπ1(EµW (‖G(δ,W)‖2)). From Eq. (12)
and from the proof of Lemma 4 the function x 7→ ‖x‖2p?δ(x) converges simply to
‖x‖2pNλ:λ([x]1)ϕ([x]2) while being dominated by λ/Φ(0) exp(−‖x‖2) which is inte-
grable. Hence we may apply Lebesgue’s dominated convergence theorem showing that
the function δ 7→ EµW (‖G(δ,W)‖2) is continuous and has a finite limit and is therefore
bounded by a constantMG2 . As the measure π1 is a probability measure (so π1(R) = 1),
Eπ1

(EµW (‖G(δ,W)‖2|δt = δ)) ≤ MG2 < ∞. Hence we may apply the Law of Large
Numbers

t−1∑

i=0

‖G(δi,Wi)‖2+Ki

t

a.s−→
t→∞

Eπ1×µW
(
‖G(δ,W)‖2

)
+ n− 2 .

Combining this equation with Eq. (39) yields Eq. (45).

Evolutionary Computation Volume x, Number x 19

4.3. Linear Functions with Linear Constraints

119



A. Chotard, A. Auger, N. Hansen

From Proposition 1, (31) for c = 1 and (33), ln(σt+1/σt)
d
= 1/(2dσn)(‖G(δt,Wt)‖2 +

χ2
n−2 − n) so E(ln(σt+1/σt)|(δ0, σ0)) = 1/(2dσn)(E(‖G(δt,Wt)‖2|(δ0, σ0)) − 2).

As ‖G‖2 is integrable with Fubini’s theorem E(‖G(δt,Wt)‖2|(δ0, σ0)) =∫
R∗+

EµW (‖G(y,W)‖2)P t(δ0, dy), so E(‖G(δt,Wt)‖2|(δ0, σ0)) − Eπ1×µW (‖G(δ,W)‖2) =
∫
R∗+

EµW (‖G(y,W)‖2)(P t(x/σ, dy) − π1(dy)). According to Proposition 6 (δt)t∈N is

V -geometrically ergodic with V : δ 7→ δα+/δ−α, so there exists Mδ and r > 1 such that
‖P t(δ, ·)−π1‖V ≤Mδr

−t. We showed that the function δ 7→ E(‖G(δ,W)‖2) is bounded,
so since V (δ) ≥ 1 for all δ ∈ R∗+ there exists k such that EµW (‖G(δ,W)‖2) ≤ kV (δ) for
all δ. Hence |

∫
EµW (‖G(x,W)‖2)(P t(δ, dx) − π1(dx))| ≤ k‖P t(δ, ·) − π1‖V ≤ kMδr

−t.
And therefore |E(‖G(δt,Wt)‖2|(δ0, σ0)) − Eπ1×µW (‖G(δ,W))‖2) ≤ kMδr

−t which
converges to 0 when t goes to infinity, which shows Eq. (46).

For (47) we have that Xt+1−Xt
d
= σtG(δt,Wt) so (1/t) ln |(f(Xt+1)−f(Xt))/σ0| d=

(1/t) ln(σt/σ0) + (1/t) ln |f(G(δt,Wt))/σ0|. From (13), since 1/2 ≤ Φ(x) ≤ 1 for all x ≥ 0
and that F1,δ(x) ≤ 1, the probability density function of f(G(δt,Wt)) = [G(δt,Wt)]1 is
dominated by 2λϕ(x). Hence

Pr(ln |[G(δ,W)]1|/t ≥ ε) ≤
∫

R
1[εt,+∞)(ln |x|)2λϕ(x)dx

≤
∫ +∞

exp(εt)

2λϕ(x)dx+

∫ − exp(εt)

−∞
2λϕ(x)dx

For all ε > 0 since ϕ is integrable with the dominated convergence theorem both
members of the previous inequation converges to 0 when t → ∞, which shows that
ln |f(G(δt,Wt))|/t converges in probability to 0. Since ln(σt/σ0)/t converges in proba-
bility to the right hand side of (47) we get (47).

If, for c < 1, the chain (δt,pt)t∈N was positive Harris with invariant measure πc and
V -ergodic such that ‖pt+1‖2 is dominated by V then we would obtain similar results
with a convergence/divergence rate equal to c/(2dσn)(Eπc⊗µW (‖p‖2)− 2).

If the sign of the RHS of Eq. (45) is strictly positive then the step size diverges
geometrically. The Law of Large Numbers entails that Monte Carlo simulations will
converge to the RHS of Eq. 45, and the fact that the chain is V -geometrically ergodic
(see Proposition 6) means sampling from the t-steps transition kernel P t will get close
exponentially fast to sampling directly from the stationary distribution π1. We could
apply a Central Limit Theorem for Markov chains (Meyn and Tweedie, 1993, The-
orem 17.0.1), and get an approximate confidence interval for ln(σt/σ0)/t, given that
we find a function V for which the chain (δt,Wt)t∈N is V -uniformly ergodic and such
that ‖G(δ,w)‖4 ≤ V (δ,w). The question of the sign of limt→+∞ f(Xt) − f(X0) is not
adressed in Theorem 2, but simulations indicate that for dσ ≥ 1 the probability that
f(Xt) > f(X0) converges to 1 as t → +∞. For low enough values of dσ and of θ this
probability appears to converge to 0.

As in Fig. 3 we simulate the Markov chain (δt,pt)t∈N defined in Eq. (35) to obtain
Fig. 4 after an average of δt over 106 time steps. The expected value Eπ1

(δ) shows
the same dependency in λ that in the constant case, with larger population size, the
algorithm follows the constraint from closer, as better samples are available closer to
the constraint, which a larger population helps to find. The difference between Eπc(δ)
and Eπ(δ) appears small except for large values of the constraint angle. When Eπ(δ) >
Eπc(δ) we observe on Fig. 6 that Eπc(ln(σt+1/σt)) > 0.
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Figure 4: Average normalized distance δ from the constraint for the (1, λ)-CSA-ES plot-
ted against the constraint angle θ, for λ ∈ {5, 10, 20}, c = 1/

√
2, dσ = 1 and dimension

2.

In Fig. 5 the average of δt over 106 time steps is again plotted with λ = 5, this time
for different values of the cumulation parameter, and compared with the constant step-
size case. A lower value of c makes the algorithm follow the constraint from closer.
When θ goes to 0 the value Eπc(δ) converges to a constant, and limθ→0 Eπ(δ) for con-
stant step-size seem to be limθ→0 Eπc(δ) when c goes to 0. As in Fig. 4 the difference
between Eπc(δ) and Eπ(δ) appears small except for large values of the constraint angle.
This suggests that the difference between the distributions π and πc is small. Therefore
the approximation made in (Arnold, 2011a) where π is used instead of πc to estimate
ln(σt+1/σt) is accurate for not large values of the constraint angle.

In Fig. 6 the left hand side of Eq. (45) is simulated for 106 time steps against the con-
straint angle θ for different population sizes. This is the same as making an average of
∆i = ln(σt+1/σt) for i from 0 to t−1. If this value is below zero the step-size converges,
which means a premature convergence of the algorithm. We see that a larger popula-
tion size helps to achieve a faster divergence rate and for the step-size adaptation to
succeed for a wider interval of values of θ.

In Fig. 7 like in the previous Fig. 6 the left hand side of Eq. (45) is simulated for
106 time steps against the constraint angle θ, this time for different values of the cumu-
lation parameter c. A lower value of c yields a higher divergence rate for the step-size
although Eπc(ln(σt+1/σt)) appears to converge quickly when c→ 0. Lower values of c
hence also allow success of the step-size adaptation for wider range values of θ, and in
case of premature convergence a lower value of c means a lower convergence rate.

In Fig. 8 the left hand side of Eq. (45) is simulated for 104 time steps for the
(1, λ)-CSA-ES plotted against the constraint angle θ, for λ = 5, c = 1/

√
2, dσ ∈

{1, 0.5, 0.2, 0.1, 0.05} and dimension 2. A lower value of dσ allows larger change of
step-size and induces here a bias towards increasing the step-size. This is confirmed
in Fig. 8 where a low enough value of dσ implies geometric divergence of the step-size
regardless of the constraint angle. However simulations suggest that while for dσ ≥ 1
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Figure 5: Average normalized distance δ from the constraint for the (1, λ)-CSA-ES plot-
ted against the constraint angle θwith c ∈ {1, 1/

√
2, 0.1, 0.01} and for constant step-size,

where λ = 5, dσ = 1 and dimension 2.
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Figure 6: Average of the logarithmic adaptation response ∆t = ln(σt+1/σt) for the
(1, λ)-CSA-ES plotted against the constraint angle θ, for λ ∈ {5, 10, 20}, c = 1/

√
2, dσ =

1 and dimension 2. Values below zero (straight line) indicate premature convergence.
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Figure 7: Average of the logarithmic adaptation response ∆t = ln(σt+1/σt) for the
(1, λ)-CSA-ES plotted against the constraint angle θ, for λ = 5, c ∈ {1, 1/

√
2, 0.1, 0.01},

dσ = 1 and dimension 2. Values below zero (straight line) indicate premature conver-
gence.
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Figure 8: Average of the logarithmic adaptation response ∆t = ln(σt+1/σt) for the
(1, λ)-CSA-ES plotted against the constraint angle θ, for λ = 5, c = 1/

√
2, dσ ∈

{1, 0.5, 0.2, 0.1, 0.05} and dimension 2. Values below zero (straight line) indicate pre-
mature convergence.

the probability that f(Xt) < f(X0) is close to 1, this probability decreases with smaller
values of dσ . The bias induced by a low value of dσ may also prevent convergence
when it is desired, as shown in Fig. 9.

In Fig. 9 the average of ln(σt+1/σt) is plotted against dσ for the (1, λ)-CSA-ES min-
imizing a sphere function fsphere : x 7→ ‖x‖, for λ = 5, c ∈ {1, 0.5, 0.2, 0.1} and dimen-
sion 5, averaged over 10 runs. Low values of dσ induce a bias towards increasing the
step-size, which makes the algorithm diverge while convergence here is desired.

In Fig. 10 the smallest population size allowing geometric divergence is plotted
against the constraint angle for different values of c. Any value of λ above the curve
implies the geometric divergence of the step-size for the corresponding values of θ
and c. We see that lower values of c allow for lower values of λ. It appears that the
required value of λ scales inversely proportionally with θ. These curves were plotted
by simulating runs of the algorithm for different values of θ and λ, and stopping the
runs when the logarithm of the step-size had decreased or increased by 100 (for c = 1)
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Figure 9: Average of the logarithmic adaptation response ∆t = ln(σt+1/σt) against dσ
for the (1, λ)-CSA-ES minimizing a sphere function for λ = 5, c ∈ {1, 0.5, 0.2, 0.1}, and
dimension 5.
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Figure 10: Minimal value of λ allowing geometric divergence for the (1, λ)-CSA-ES
plotted against the constraint angle θ, for c ∈ {1., 0.5, 0.2, 0.05}, dσ = 1 and dimension
2.

or 20 (for the other values of c). If the step-size had decreased (resp. increased) then
this value of λ became a lower (resp. upper) bound for λ and a larger (resp. smaller)
value of λ would be tested until the estimated upper and lower bounds for λ would
meet. Also, simulations suggest that for increasing values of λ the probability that
f(Xt) < f(X0) increases to 1, so large enough values of λ appear to solve the linear
function on this constrained problem.

In Fig. 11 the highest value of c leading to geometric divergence of the step-size
is plotted against the constraint angle θ for different values of λ. We see that larger
values of λ allow higher values of c to be taken, and when θ → 0 the critical value of c
appears proportional to θ2. These curves were plotted following a similar scheme than
with Fig. 10. For a certain θ the algorithm is ran with a certain value of c, and when the
logarithm of the step-size has increased (resp. decreased) by more than 1000

√
c the run

is stopped, the value of c tested becomes the new lower (resp. upper) bound for c and a
new c taken between the lower and upper bounds is tested, until the lower and upper
bounds are distant by less than the precision θ2/10. Similarly as with λ, simulations
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Figure 11: Transition boundary for c between convergence and divergence (lower value
of c is divergence) for the (1, λ)-CSA-ES plotted against the constraint angle θ, for λ ∈
{5, 10, 20} and dimension 2.

suggest that for decreasing values of c the probability that f(Xt) < f(X0) increases to
1, so small enough values of c appear to solve the linear function on this constrained
problem.

6 Discussion

We investigated the (1, λ)-ES with constant step-size and cumulative step-size adap-
tation optimizing a linear function under a linear constraint handled by resampling
unfeasible solutions. In the case of constant step-size or cumulative step-size adapta-
tion when c = 1 we prove the stability (formally V -geometric ergodicity) of the Markov
chain (δt)t∈N defined as the normalised distance to the constraint, which was pressumed
in Arnold (2011a). This property implies the divergence of the algorithm with con-
stant step-size at a constant speed (see Theorem 1), and the geometric divergence or
convergence of the algorithm with step-size adaptation (see Theorem 2). In addition, it
ensures (fast) convergence of Monte Carlo simulations of the divergence rate, justifying
their use.

In the case of cumulative step-size adaptation simulations suggest that geometric
divergence occurs for a small enough cumulation parameter, c, or large enough pop-
ulation size, λ. In simulations we find the critical values for θ → 0 following c ∝ θ2

and λ ∝ 1/θ. Smaller values of the constraint angle seem to increase the difficulty
of the problem arbitrarily, i.e. no given values for c and λ solve the problem for every
θ ∈ (0, π/2). However, when using a repair method instead of resampling in the (1, λ)-
CSA-ES, fixed values of λ and c can solve the problem for every θ ∈ (0, π/2) (Arnold,
2013).

Using a different covariance matrix to generate new samples implies a change of
the constraint angle (see Chotard and Holena 2014 for more details). Therefore, adapta-
tion of the covariance matrix may render the problem arbitrarily close to the one with
θ = π/2. The unconstrained linear function case has been shown to be solved by a
(1, λ)-ES with cumulative step-size adaptation for a population size larger than 3, re-
gardless of other internal parameters (Chotard et al., 2012b). We believe this is one
reason for using covariance matrix adaptation with ES when dealing with constraints,
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as has been done in (Arnold and Hansen, 2012), as pure step-size adaptation has been
shown to be liable to fail on even a very basic problem.

This work provides a methodology that can be applied to many ES variants. It
demonstrates that a rigorous analysis of the constrained problem can be achieved. It re-
lies on the theory of Markov chains for a continuous state space that once again proves
to be a natural theoretical tool for analysing ESs, complementing particularly well pre-
vious studies (Arnold, 2011a, 2012; Arnold and Brauer, 2008).
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Appendix

Proof of Lemma 4.

Proof. From Proposition 1 and Lemma 3 the density probability function of G(δ,W) is
p?δ , and from Eq. (12)

p?δ

((
x
y

))
= λ

ϕ(x)ϕ(y)1R∗+

(
δ −

(
x
y

)
.n

)

Φ(δ)
F1,δ(x)λ−1 .

From Eq. (10) p1,δ(x) = ϕ(x)Φ((δ − x cos θ)/ sin θ)/Φ(δ), so as δ>0 we have 1 ≥
Φ(δ)>Φ(0) = 1/2, hence p1,δ(x)<2ϕ(x). So p1,δ(x) converges when δ → +∞ to ϕ(x)
while being bounded by 2ϕ(x) which is integrable. Therefore we can apply Lebesgue’s
dominated convergence theorem: F1,δ converges to Φ when δ → +∞ and is finite.

For δ ∈ R∗+ and (x, y) ∈ R2 let hδ,y(x) be exp(ax)p?δ((x, y)). With Fubini-Tonelli’s
theorem E(exp(G(δ,W).(a, b))) =

∫
R
∫
R exp(by)hδ,y(x)dxdy. For δ → +∞, hδ,y(x) con-

verges to exp(ax)λϕ(x)ϕ(y)Φ(x)λ−1 while being dominated by 2λ exp(ax)ϕ(x)ϕ(y),
which is integrable. Therefore by the dominated convergence theorem and as the
density of Nλ:λ is x 7→ λϕ(x)Φ(x)λ−1, when δ → +∞,

∫
R hδ,y(x)dx converges to

ϕ(y)E(exp(aNλ:λ)) <∞.
So the function y 7→ exp(by)

∫
R hδ,y(x)dx converges to

y 7→ exp(by)ϕ(y)E(exp(aNλ:λ)) while being dominated by y 7→
2λϕ(y) exp(by)

∫
R exp(ax)ϕ(x)dx which is integrable. Therefore we may ap-

ply the dominated convergence theorem: E(exp(G(δ,W).(a, b))) converges to∫
R exp(by)ϕ(y)E(exp(aNλ:λ))dy which equals to E(exp(aNλ:λ))E(exp(bN (0, 1)));

and this quantity is finite.
The same reasoning gives that limδ→∞E(K̄) <∞.

Proof of Lemma 6.

Proof. As in Lemma 4, let E1, E2 and E3 denote respectively E(exp(− α
2dσn

(N 2
λ:λ − 1))),

E(exp(− α
2dσn

(N (0, 1)2 − 1))), and E(exp(− α
2dσn

(K − n + 2))), where K is a random
variable following a chi-squared distribution with n − 2 degrees of freedom. Let us
denote ϕχ the probability density function of K. Since ϕχ(z) = (1/2)(n−2)/2/Γ((n −
2)/2)z(n−2)/2 exp(−z/2), E3 is finite.
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Let hδ be a function such that for (x, y) ∈ R2

hδ(x, y) =
|δ − ax− by|α

exp
(

α
2dσn

(x2 + y2 − 2)
) ,

where a := cos θ and b := sin θ.
From Proposition 1 and Lemma 3, the probability density function of (G(δ,Wt),K)

is p?δϕχ. Using the theorem of Fubini-Tonelli the expected value of the random variable
(δ−G(δ,Wt).n)α

η?1 (δ,W,K)α , that we denote Eδ , is

Eδ=

∫

R

∫

R

∫

R

|δ − ax− by|αp?δ((x, y))ϕχ(z)

exp
(

α
2dσ

(
‖(x,y)‖2+z

n − 1
)) dzdydx

=

∫

R

∫

R

∫

R

|δ − ax− by|αp?δ((x, y))ϕχ(z)

exp
(

α
2dσn

(x2 + y2 − 2)
)

exp
(

α
2dσn

(z − (n− 2))
)dzdydx

=

∫

R

∫

R

∫

R

hδ(x, y)p?δ((x, y))ϕχ(z)

exp
(

α
2dσn

(z − (n− 2))
)dzdydx .

Integration over z yields Eδ =
∫
R
∫
R hδ(x, y)p?δ((x, y))dydxE3.

We now study the limit when δ → +∞ of Eδ/δα. Let ϕNλ:λ denote the probability
density function of Nλ:λ. For all δ ∈ R∗+, Φ(δ) > 1/2, and for all x ∈ R, F1,δ(x) ≤ 1,
hence with (9) and (12)

p?δ(x, y) = λ
ϕ(x)ϕ(y)1R∗+(δ − ax− by)

Φ(δ)
F1,δ(x)λ−1 ≤ λϕ(x)ϕ(y)

Φ(0)
, (48)

and when δ → +∞, as shown in the proof of Lemma 4, p?δ((x, y)) converges to
ϕNλ:λ(x)ϕ(y). For δ ≥ 1, |δ − ax − by|/δ ≤ 1 + |ax + by| with the triangular inequality.
Hence

p?δ((x, y))
hδ(x, y)

δα
≤ λϕ(x)ϕ(y)

Φ(0)

(1 + |ax+ by|)α

exp
(

α
2dσn

(x2 + y2 − 2)
) for δ ≥ 1, and (49)

p?δ((x, y))
hδ(x, y)

δα
−→
δ→+∞

ϕNλ:λ(x)ϕ(y)
1

exp
(

α
2dσn

(x2 + y2 − 2)
) . (50)

Since the right hand side of (49) is integrable, we can use Lebesgue’s dominated con-
vergence theorem, and deduce from (50) that

Eδ
δα

=

∫

R

∫

R

hδ(x, y)

δα
p?δ((x, y))dydxE3 −→

δ→+∞

∫

R

∫

R

ϕNλ:λ(x)ϕ(y)

exp
(

α
2dσn

(x2 + y2 − 2)
)dydxE3

and so
Eδ
δα

−→
δ→+∞

E1E2E3 <∞ .

Since δα/(δα+δ−α) converges to 1 when δ → +∞, Eδ/(δα+δ−α) converges to E1E2E3

when δ → +∞, and E1E2E3 is finite.
We now study the limit when δ → 0 of δαEδ , and restrict δ to (0, 1]. When δ → 0,

δαhδ(x, y)p?δ((x, y)) converges to 0. Since we took δ ≤ 1, |δ + ax + by| ≤ 1 + |ax + by|,
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and with (48) we have

δαhδ(x, y)p?δ((x, y)) ≤ λ (1 + |ax+ by|)αϕ(x)ϕ(y)

Φ(0) exp
(

α
2dσn

(x2 + y2 − 2)
) for 0 < δ ≤ 1 . (51)

The right hand side of (51) is integrable, so we can apply Lebesgue’s dominated con-
vergence theorem, which shows that δαEδ converges to 0 when δ → 0. And since
(1/δα)/(δα + δ−α) converges to 1 when δ → 0, Eδ/(δα + δ−α) also converges to 0 when
δ → 0.

Let H3 denote E(exp(α/(2dσn)(K − (n+ 2)))). Since ϕχ(z) = (1/2)(n−2)/2/Γ((n−
2)/2)z(n−2)/2 exp(−z/2), when α is close enough to 0, H3 is finite. Let Hδ denote
E(δ−αt+1|δt = δ), then

Hδ =

∫

R

∫

R

∫

R

p?δ((x, y))ϕχ(z) exp
(

α
2dσn

(z − (n− 2))
)

hδ(x, y)
dzdydx .

Integrating over z yields Hδ =
∫
R
∫
R
p?δ((x,y))
hδ(x,y) dydxH3.

We now study the limit when δ → +∞ of Hδ/δ
α. With (48), we have that

p?δ((x, y))

δαhδ(x, y)
≤ λϕ(x)ϕ(y)

Φ(0)

exp
(

α
2dσn

(
x2 + y2 − 2

))

δα|δ − ax− by|α .

With the change of variables x̃ = x− δ/a we get

p?δ((x̃+ δ
a , y))

δαhδ(x̃+ δ
a , y)

≤ λ
exp

(
− (x̃+ δ

a )2

2

)
ϕ(y)

√
2πΦ(0)

exp
(

α
2dσn

((
x̃+ δ

a

)2
+ y2 − 2

))

δα|ax̃+ by|α

≤ λϕ(x̃)ϕ(y)

Φ(0)

exp
(

α
2dσn

(
x̃2 + y2 − 2

))

|ax̃+ by|α
exp

((
α

2dσn
− 1

2

)(
2 δa x̃+ δ2

a2

))

δα

≤ λϕ(x̃)ϕ(y)

Φ(0)

1

h0(x̃, y)

exp
((

α
2dσn

− 1
2

)(
2 δa x̃+ δ2

a2

))

exp(α ln(δ))
.

An upper bound for all δ ∈ R∗+ of the right hand side of the previous inequation is
related to an upper bound of the function l : δ ∈ R∗+ 7→ (α/(2dσn) − 1/2)(2(δ/a)x̃ +
δ2/a2) − α ln(δ). And since we are interested in a limit when δ → +∞, we can restrict
our search of an upper bound of l to δ ≥ 1. Let c := α/(2dσn) − 1/2. We take α
small enough to ensure that c is negative. An upper bound to l can be found through
derivation:

∂l(δ)

∂δ
= 0⇔ 2

c

a2
δ + 2

c

a
x̃− α

δ
= 0

⇔ 2
c

a2
δ2 + 2

c

a
x̃δ − α = 0

The discriminant of the quadratic equation is ∆ = 4(c2/a2)x̃2 + 8αc/a2. The deriva-
tive of l multiplied by δ is a quadratic function with a negative quadratic coeffi-
cient 2c/a2. Since we restricted δ to [1,+∞), multiplying the derivative of l by δ
leaves its sign unchanged. So the maximum of l is attained for δ equal to 1 or for
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δ equal to δM := (−2c/ax̃ −
√

∆)/(4c/a2), and so l(δ) ≤ max(l(1), l(δM )) for all
δ ∈ [1,+∞). We also have that limx̃→∞

√
∆/x̃ = 2|c|/a = −2ca, so limx̃→∞ δM/x̃ =

(−2c/a − (−2c/a))/(4c/a2) = 0. Hence when |x̃| is large enough, δM ≤ 1, so since
we restricted δ to [1,+∞) there exists m > 0 such that if |x̃| > m, l(δ) ≤ l(1) for all
δ ∈ [1,+∞). And trivially, l(δ) is bounded for all x̃ in the compact set [−m,m] by a
constant M > 0, so l(δ) ≤ max(M, l(1)) ≤ M + |l(1)| for all x̃ ∈ R and all δ ∈ [1,+∞).
Therefore

p?δ((x̃+ δ
a , y))

δαhδ(x̃+ δ
a , y)

≤ λϕ(x̃)ϕ(y)

Φ(0)

1

h0(x̃, y)
exp(M + |l(1)|)

≤ λϕ(x̃)ϕ(y)

Φ(0)

1

h0(x̃, y)
exp

(
M +

∣∣∣2 c
a
x̃+

c

a2

∣∣∣
)
.

For α small enough, the right hand side of the previous inequation is integrable. And
since the left hand side of this inequation converges to 0 when δ → +∞, according
to Lebesgue’s dominated convergence theorem Hδ/δ

α converges to 0 when δ → +∞.
And since δα/(δα + δ−α) converges to 1 when δ → +∞, Hδ/(δ

α + δ−α) also converges
to 0 when δ → +∞.

We now study the limit when δ → 0 of Hδ/(δ
α + δ−α). Since we are interested in

the limit for δ → 0, we restrict δ to (0, 1]. Similarly as what was done previously, with
the change of variables x̃ = x− δ/a,

p?δ((x̃+ δ
a , y))

(δα + δ−α)hδ(x̃+ δ
a , y)

≤ λϕ(x̃)ϕ(y)

Φ(0)

1

h0(x̃, y)

exp
((

α
2dσn

− 1
2

)(
2 δa x̃+ δ2

a2

))

δα + δ−α

≤ λ ϕ(x̃)ϕ(y)

Φ(0)h0(x̃, y)
exp

((
α

2dσn
− 1

2

)(
2
δ

a
x̃+

δ2

a2

))
.

Take α small enough to ensure that α/(2dσn)−1/2 is negative. Then an upper bound for
δ ∈ (0, 1] of the right hand side of the previous inequality is related to an upper bound
of the function k : δ ∈ (0, 1] 7→ 2δx̃/a + δ2/a2. This maximum can be found through
derivation: ∂k(δ)/∂δ = 0 is equivalent to 2x̃/a+2δ/a2 = 0, and so the maximum of k is
realised at δM := −ax̃. However, since we restricted δ to (0, 1], for x̃ ≥ 0 we have δM ≤ 0
so an upper bound of k in (0, 1] is realized at 0, and for x̃ ≤ −1/a we have δM ≥ 1 so
the maximum of k in (0, 1] is realized at 1. Furthermore, k(δM ) = −2x̃2 + x̃2 = −x̃2

so when −1/a < x̃ < 0, k(δ) < 1/a2. Therefore k(δ) ≤ max(k(0), k(1), 1/a2). Note
that k(0) = 0 which is inferior to 1/a2, and note that k(1) = 2cx̃/a + /a2. Hence
k(δ) ≤ max(2x̃/a+ 1/a2, 1/a2) ≤ |2x̃/a+ 1/a2|+ 1/a2, and so

p?δ((x̃+ δ
a , y))

(δα + δ−α)hδ(x̃+ δ
a , y)

≤ λ ϕ(x̃)ϕ(y)

Φ(0)h0(x̃, y)
exp

((
α

2dσn
− 1

2

)(∣∣∣∣2
x̃

a
+

1

a2

∣∣∣∣+
1

a2

))
.

For α small enough the right hand side of the previous inequation is integrable. Since
the left hand side of this inequation converges to 0 when δ → 0, we can apply
Lebesgue’s dominated convergence theorem, which proves that Hδ/(δ

α + δ−α) con-
verges to 0 when δ → 0.
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4.3.2 Paper: A Generalized Markov Chain Modelling Approach to (1,λ)-ES Linear
Optimization

The article presented here is a technical report [48] which includes [47], which was published

at the conference Parallel Problem Solving from Nature in 2014, and the full proofs for every

proposition of [47]. The subject of this paper has been proposed by the second author as

an extension of the study conducted in [44] on the (1,λ)-ES with constant step-size on a

linear function with a linear constraint to more general sampling distributions, i.e. for H a

distribution, the sampling of the candidates writes

Y i , j
t = X t +σM i , j

t , (M i , j
t )i∈[1..λ],t∈N, j∈N i.i.d., M i , j

t ∼ H , (4.13)

where Y i , j
t denotes at iteration t ∈N the sample obtained after j resampling for the i th feasible

sample, in case all the previous samples (Y i ,k
t )k∈[1.. j−1] were unfeasible. Although the use of H

as Gaussian distributions is justified in the black-box optimization context as Gaussian distri-

butions are maximum entropy probability distributions, when more information is available

(e.g. separability of the function or multimodality) the use of other sampling distributions may

be preferable (e.g. see [64] for an analysis of some heavy-tailed distributions). Furthermore,

since in the study presented in 4.3.1 the Gaussian sampling distribution is assumed to have

identity covariance matrix, in this article different covariance matrices can be taken, and so

the influence of the covariance matrix on the problem can be investigated.

The article presented here starts by analysing how the sampling distribution H is impacted

by the resampling. It then shows that the sequence (δt )t∈N which is defined as the signed

distance from X t to the constraint normalized by the step-size (i.e. δt :=−g (X t )/σ) is a Markov

chain. It then gives sufficient conditions on the distribution H for (δt )t∈N to be positive Harris

recurrent and ergodic or geometrically ergodic (note that heavy-tailed distributions do not

follow the condition for geometrical ergodicity). The positivity and Harris recurrence of the

Markov chain (δt )t∈N is then used to show that the sequence ( f (X t ))t∈N diverges almost surely

similarly as in (4.12). The paper then investigates more specific distributions: it recovers the

results of [44] with isotropic Gaussian distributions for a (1,λ)-ES with constant step-size,

and shows that a different covariance matrix for the sampling distribution is equivalent to

a different norm on the search space, which implies a different constraint angle θ. Since, as

seen in [14, 15, 45] small values of the constraint angle cause the step-size adaptation to fail,

adapting the covariance matrix to the problem could allow the step-size to successfully diverge

log-linearly on the linear function with a linear constraint. Finally, sufficient conditions on the

marginals of the sampling distribution and the copula combining them are given to get the

absolute continuity of the sampling distribution.
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Abstract. Several recent publications investigated Markov-chain mod-
elling of linear optimization by a (1, λ)-ES, considering both uncon-
strained and linearly constrained optimization, and both constant and
varying step size. All of them assume normality of the involved random
steps, and while this is consistent with a black-box scenario, information
on the function to be optimized (e.g. separability) may be exploited by
the use of another distribution. The objective of our contribution is to
complement previous studies realized with normal steps, and to give suf-
ficient conditions on the distribution of the random steps for the success
of a constant step-size (1, λ)-ES on the simple problem of a linear func-
tion with a linear constraint. The decomposition of a multidimensional
distribution into its marginals and the copula combining them is applied
to the new distributional assumptions, particular attention being paid
to distributions with Archimedean copulas.

Keywords: evolution strategies, continuous optimization, linear opti-
mization, linear constraint, linear function, Markov chain models, Archi-
medean copulas

1 Introduction

Evolution Strategies (ES) are Derivative Free Optimization (DFO) methods,
and as such are suited for the optimization of numerical problems in a black-box
context, where the algorithm has no information on the function f it optimizes
(e.g. existence of gradient) and can only query the function’s values. In such a
context, it is natural to assume normality of the random steps, as the normal
distribution has maximum entropy for given mean and variance, meaning that
it is the most general assumption one can make without the use of additional
information on f . However such additional information may be available, and
then using normal steps may not be optimal. Cases where different distributions
have been studied include so-called Fast Evolution Strategies [1] or SNES [2, 3]
which exploits the separability of f , or heavy-tail distributions on multimodal
problems [4, 3].

In several recent publications [5–8], attention has been paid to Markov-chain
modelling of linear optimization by a (1, λ)-ES, i.e. by an evolution strategy in
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which λ children are generated from a single parent X ∈ Rn by adding normally
distributed n-dimensional random steps M ,

X ←X + σC
1
2M , where M ∼ N (0, In). (1)

Here, σ is called step size, C is a covariance matrix, and N (0, In) denotes the n-
dimensional standard normal distribution with zero mean and covariance matrix
identity. The best among the λ children, i.e. the one with the highest fitness,
becomes the parent of the next generation, and the step-size σ and the covariance
matrix C may then be adapted to increase the probability of sampling better
children. In this paper we relax the normality assumption of the movement M
to a more general distribution H.

The linear function models a situation where the step-size is relatively small
compared to the distance towards a local optimum. This is a simple problem that
must be solved by any effective evolution strategy by diverging with positive
increments of ∇f.M . This unconstrained case was studied in [7] for normal
steps with cumulative step-size adaptation (the step-size adaptation mechanism
in CMA-ES [9]).

Linear constraints naturally arise in real-world problems (e.g. need for posi-
tive values, box constraints) and also model a step-size relatively small compared
to the curvature of the constraint. Many techniques to handle constraints in ran-
domised algorithms have been proposed (see [10]). In this paper we focus on the
resampling method, which consists in resampling any unfeasible candidate until
a feasible one is sampled. We chose this method as it makes the algorithm eas-
ier to study, and is consistent with the previous studies assuming normal steps
[11, 5, 6, 8], studying constant step-size, self adaptation and cumulative step-size
adaptation mechanisms (with fixed covariance matrix).

Our aim is to study the (1, λ)-ES with constant step-size, constant covari-
ance matrix and random steps with a general absolutely continuous distribution
H optimizing a linear function under a linear constraint handled through re-
sampling. We want to extend the results obtained in [5, 8] using the theory of
Markov chains. It is our hope that such results will help in designing new algo-
rithms using information on the objective function to make non-normal steps.
We pay a special attention to distributions with Archimedean copulas, which
are a particularly well transparent alternative to the normal distribution. Such
distributions have been recently considered in the Estimation of Distribution
Algorithms [12, 13], continuing the trend of using copulas in that kind of evolu-
tionary optimization algorithms [14].

In the next section, the basic setting for modelling the considered evolu-
tionary optimization task is formally defined. In Section 3, the distributions of
the feasible steps and of the selected steps are linked to the distribution of the
random steps, and another way to sample them is provided. In Section 4, it is
shown that, under some conditions on the distribution of the random steps, the
normalized distance to the constraint defined in (5) is a ergodic Markov chain,
and a law of large numbers for Markov chains is applied. Finally, Section 5 gives
properties on the distribution of the random steps under which some of the
aforementioned conditions are verified.
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Notations

For (a, b) ∈ N2 with a < b, [a..b] denotes the set of integers i such that a ≤ i ≤ b.
For X and Y two random vectors, X

(d)
= Y denotes that these variables are

equal in distribution, X
a.s.→ Y and X

P→ Y denote, respectively, almost sure
convergence and convergence in probability. For (x,y) ∈ Rn, x.y denotes the
scalar product between the vectors x and y, and for i ∈ [1..n], [x]i denotes the
ith coordinate of x. For A a subset of Rn, 1A denotes the indicator function of
A. For X a topological set, B(X ) denotes the Borel algebra on X .

2 Problem setting and algorithm definition

Throughout this paper, we study a (1, λ)-ES optimizing a linear function f :
Rn → R where λ ≥ 2 and n ≥ 2, with a linear constraint g : Rn → R, han-
dling the constraint by resampling unfeasible solutions until a feasible solution
is sampled.

Take (ek)k∈[1..n] a orthonormal basis of Rn. We may assume ∇f to be nor-
malized as the behaviour of an ES is invariant to the composition of the objective
function by a strictly increasing function (e.g. h : x 7→ x/‖∇f‖), and the same
holds for∇g since our constraint handling method depends only on the inequality
g(x) ≤ 0 which is invariant to the composition of g by a homothetic transforma-
tion. Hence w.l.o.g. we assume that ∇f = e1 and ∇g = cos θe1 + sin θe2 with
the set of feasible solutions Xfeasible := {x ∈ Rn|g(x) ≤ 0}. We restrict our study
to θ ∈ (0, π/2). Overall the problem reads

maximize f(x) = [x]1 subject to

g(x) = [x]1 cos θ + [x]2 sin θ ≤ 0 .
(2)

Fig. 1. Linear function with a linear constraint, in the plane spanned by ∇f and ∇g,
with the angle from ∇f to ∇g equal to θ ∈ (0, π/2). The point x is at distance g(x)
from the constraint hyperplan g(x) = 0.

At iteration t ∈ N, from a so-called parent point Xt ∈ Xfeasible and with
step-size σt ∈ R∗+ we sample new candidate solutions by adding to Xt a random
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vector σtM
i,j
t where M i,j

t is called a random step and (M i,j
t )i∈[1..λ],j∈N,t∈N is

a i.i.d. sequence of random vectors with distribution H. The i index stands for
the λ new samples to be generated, and the j index stands for the unbounded
number of samples used by the resampling. We denote M i

t a feasible step, that
is the first element of (M i,j

t )j∈N such that Xt +σtM
i
t ∈ Xfeasible (random steps

are sampled until a suitable candidate is found). The ith feasible solution Y i
t is

then

Y i
t := Xt + σtM

i
t . (3)

Then we denote ? := argmaxi∈[1..λ] f(Y i
t) the index of the feasible solution

maximizing the function f , and update the parent point

Xt+1 := Y ?
t = Xt + σtM

?
t , (4)

where M?
t is called the selected step. Then the step-size σt, the distribution of

the random steps H or other internal parameters may be adapted.

Following [5, 6, 11, 8] we define δt as

δt := −g(Xt)

σt
. (5)

3 Distribution of the feasible and selected steps

In this section we link the distributions of the random vectors M i
t and M?

t to
the distribution of the random steps M i,j

t , and give another way to sample M i
t

and M?
t not requiring an unbounded number of samples.

Lemma 1. Let a (1, λ)-ES optimize the problem defined in (2) handling con-
straint through resampling. Take H the distribution of the random step M i,j

t ,
and for δ ∈ R∗+ denote Lδ := {x ∈ Rn|g(x) ≤ δ}. Providing that H is absolutely

continuous and that H(Lδ) > 0 for all δ ∈ R+, the distribution H̃δ of the feasi-
ble step and H̃?

δ the distribution of the selected step when δt = δ are absolutely

continuous, and denoting h, h̃δ and h̃?δ the probability density functions of, re-
spectively, the random step, the feasible step M i

t and the selected step M?
t when

δt = δ

h̃δ(x) =
h(x)1Lδ(x)

H(Lδ)
, (6)

and

h̃?δ(x) = λh̃δ(x)H̃δ((−∞, [x]1)× Rn−1)λ−1

= λ
h(x)1Lδ(x)H((−∞, [x]1)× Rn−1 ∩ Lδ)λ−1

H(Lδ)λ
. (7)
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Proof. Let δ > 0, A ∈ B(Rn). Then for t ∈ N, i = 1 . . . λ, using the the fact that
(M i,j

t )j∈N is a i.i.d. sequence

H̃δ(A) = Pr(M i
t ∈ A|δt = δ)

=
∑

j∈N
Pr(M i,j

t ∈ A ∩ Lδ and ∀k < j,M i,k
t ∈ Lcδ|δt = δ)

=
∑

j∈N
Pr(M i,j

t ∈ A ∩ Lδ|δt = δ) Pr(∀k < j,M i,k
t ∈ Lcδ|δt = δ)

=
∑

j∈N
H(A ∩ Lδ)(1−H(Lδ))

j

=
H(A ∩ Lδ)
H(Lδ)

=

∫

A

h(x)1Lδ(x)dx

H(Lδ)
,

which yield Eq. (6) and that H̃δ admits a density h̃δ and is therefore absolutely
continuous.

Since ((M i,j
t )j∈N)i∈[1..λ] is i.i.d., (M i

t)i∈[1..λ] is i.i.d. and

H̃?
δ (A) = Pr(M?

t ∈ A|δt = δ)

=

λ∑

i=1

Pr(M i
t ∈ A and ∀j ∈ [1..λ]\{i}, [M i

t]1 > [M j
t ]1|δt = δ)

= λPr(M1
t ∈ A and ∀j ∈ [2..λ], [M1

t ]1 > [M j
t ]1|δt = δ)

= λ

∫

A

h̃δ(x) Pr(∀j ∈ [2..λ], [M j
t ]1 < [x]1|δt = δ)dx

=

∫

A

λh̃δ(x)H̃δ((−∞, [x]1)× Rn−1)λ−1dx ,

which shows that H̃?
δ possess a density, and with (6) yield Eq. (7). ut

The vectors (M i
t)i∈[1..λ] andM?

t are functions of the vectors (M i,j
t )i∈[1..λ],j∈N

and of δt. In the following Lemma an equivalent way to sample M i
t and M?

t

is given which uses a finite number of samples. This method is useful if one
wants to avoid dealing with the infinite dimension space implied by the sequence
(M i,j

t )i∈[1..λ,j∈N.

Lemma 2. Let a (1, λ)-ES optimize problem (2), handling the constraint through
resampling, and take δt as defined in (5). Let H denote the distribution of M i,j

t

that we assume absolutely continuous, ∇g⊥ := − sin θe1 + cos θe2, Q the ro-
tation matrix of angle θ changing (e1, e2, . . . , en) into (∇g,∇g⊥, . . . , en). Take
F1,δ(x) := Pr(M i

t.∇g ≤ x|δt = δ), F2,δ(x) := Pr(M i
t.∇g⊥ ≤ x|δt = δ) and

Fk,δ(x) := Pr([M i
t]k ≤ x|δt = δ) for k ∈ [3..n], the marginal cumulative distribu-

tion functions when δt = δ, and Cδ the copula of (M i
t.∇g,M i

t.∇g⊥, . . . ,M i
t.en).
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We define

G : (δ, (ui)i∈[1..n]) ∈ R+ × [0, 1]n 7→ Q



F−11,δ (u1)

...
F−1n,δ (un)


 , (8)

G? : (δ, (vi)i∈[1..λ]) ∈ R+ × [0, 1]nλ 7→ argmax
G∈{G(δ,vi)|i∈[1..λ]}

f(G) . (9)

Then, if the copula Cδ is constant in regard to δ, for Wt = (V i,t)i∈[1..λ] a i.i.d.
sequence with V i,t ∼ Cδ

G(δt,V i,t)
(d)
= M i

t , (10)

G?(δt,Wt)
(d)
= M?

t . (11)

Proof. Since V i,t ∼ Cδ

(M i
t.∇g,M i

t.∇g⊥, . . . ,M i
t.en)

(d)
= (F−11,δ (V 1,t), F

−1
2,δ (V 2,t), . . . , F

−1
n,δ (V n,t)) ,

and if the function δ ∈ R+ 7→ Cδ is constant, then the sequence of random vectors
(V i,t)i∈[1..λ],t∈N is i.i.d.. Finally by definition Q−1M i

t = (M i
t.∇g,M i

t.∇g⊥, . . . ,M i
t.en),

which shows Eq. (10). Eq. (11) is a direct consequence of Eq. (10) and the fact
that M?

t = argmax
G∈{G(δ,vi)|i∈[1..λ]}

f(G) (which holds as f is linear). ut

We may now use these results to show the divergence of the algorithm when
the step-size is constant, using the theory of Markov chains [15].

4 Divergence of the (1, λ)-ES with constant step-size

Following the first part of [8], we restrict our attention to the constant step size
in the remainder of the paper, that is for all t ∈ N we take σt = σ ∈ R∗+.

From Eq. (4), by recurrence and dividing by t, we see that

[Xt −X0]1
t

=
σ

t

t−1∑

i=0

M?
i . (12)

The latter term suggests the use of a Law of Large Numbers to show the con-
vergence of the left hand side to a constant that we call the divergence rate. The
random vectors (M?

t )t∈N are not i.i.d. so in order to apply a Law of Large Num-
bers on the right hand side of the previous equation we use Markov chain theory,
more precisely the fact that (M?

t )t∈N is a function of a (δt, (M
i,j
t )i∈[1..λ],j∈N)t∈N

which is a geometrically ergodic Markov chain. As (M i,j
t )i∈[1..λ],j∈N,t∈N is a i.i.d.

sequence, it is a Markov chain, and the sequence (δt)t∈N is also a Markov chain
as stated in the following proposition.
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Proposition 1. Let a (1, λ)-ES with constant step-size optimize problem (2),
handling the constraint through resampling, and take δt as defined in (5). Then
no matter what distribution the i.i.d. sequence (M i,j

t )i∈[1..λ],(j,t)∈N2 have, (δt)t∈N
is a homogeneous Markov chain and

δt+1 = δt − g(M?
t ) = δt − cos θ[M?

t ]1 − sin θ[M?
t ]2 . (13)

Proof. By definition in (5) and since for all t, σt = σ,

δt+1 = −g(Xt+1)

σt+1

= −g(Xt) + σg(M?
t )

σ
= δt − g(M?

t ) ,

and as shown in (7) the density of M?
t is determined by δt. So the distribution of

δt+1 is determined by δt, hence (δt)t∈N is a time-homogeneous Markov chain. ut

We now show ergodicity of the Markov chain (δt)t∈N, which implies that the
t-steps transition kernel (the function A 7→ Pr(δt ∈ A|δ0 = δ) for A ∈ B(R+))
converges towards a stationary measure π, generalizing Propositions 3 and 4 of
[8].

Proposition 2. Let a (1, λ)-ES with constant step-size optimize problem (2),
handling the constraint through resampling. We assume that the distribution of
M i,j

t is absolutely continuous with probability density function h, and that h
is continuous and strictly positive on Rn. Denote µ+ the Lebesgue measure on
(R+,B(R+)), and for α > 0 take the functions V : δ 7→ δ, Vα : δ 7→ exp(αδ) and
r1 : δ 7→ 1. Then (δt)t∈N is µ+-irreducible, aperiodic and compact sets are small
sets for the Markov chain.

If the following two additional conditions are fulfilled

E(|g(M i,j
t )| | δt = δ) <∞ for all δ ∈ R+ , and (14)

lim
δ→+∞

E(g(M?
t )|δt = δ) ∈ R∗+ , (15)

then (δt)t∈N is r1-ergodic and positive Harris recurrent with some invariant mea-
sure π.

Furthermore, if

E(exp(g(M i,j
t ))|δt = δ) <∞ for all δ ∈ R+ , (16)

then for α > 0 small enough, (δt)t∈N is also Vα−geometrically ergodic.
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Proof. The probability transition kernel of (δt)t∈N writes

P (δ, A) =

∫

Rn
1A(δ − g(x))h̃?δ(x)dx

=

∫

Rn
1A(δ − g(x))λ

h(x)1Lδ(x)H((−∞, [x]1)× Rn−1 ∩ Lδ)λ−1
H(Lδ)λ

=
λ

H(Lδ)λ

∫

g−1(A)

h




δ − [u]1
−[u]2

...
−[u]n


H((−∞, δ − [u]1)× Rn−1 ∩ Lδ)λ−1du ,

with the substitution of variables [u]1 = δ − [x]1 and [u]i = −[x]i for i ∈ [2..n].
Denote L?δ,v := (−∞, v) × Rn−1 ∩ Lδ and tδ : u 7→ (δ − [u]1,−[u]2, . . . ,−[u]n),
take C a compact of R+, and define νC such that for A ∈ B(R+)

νC(A) := λ

∫

g−1(A)

inf
δ∈C

h(tδ(u))H(L?δ,[u]1
)λ−1

H(Lδ)λ
du .

As the density h is supposed to be strictly positive on Rn, for all δ ∈ R+ we
have H(Lδ) ≥ H(L0) > 0. Using the fact that H is a finite measure, and is
absolutely continuous, applying the dominated convergence theorem shows that
the functions δ 7→ H(Lδ) and δ 7→ H((−∞, δ−[u]1)×Rn−1∩Lδ) are continuous.
Therefore the function δ 7→ h(tδ(u))H(L?δ,[u]1

)λ−1/H(Lδ)
λ is continuous and C

being a compact, the infimum of this function is reached on C is reached on C.
Since this function is strictly positive, if g−1(A) has strictly positive Lebesgue
measure then νC(A) > 0 which proves that this measure is not trivial. By con-
struction P (δ, A) ≥ νC(A) for all δ ∈ C, so C is a small set which shows that
compact sets are small. Since if µ+(A) > 0 we have P (δ, A) ≥ νC(A) > 0, the
Markov chain (δt)t∈N is µ+-irreducible. Finally, if we take C a compact set of
R+ with strictly positive Lebesgue measure, then it is a small set and νC(C) > 0
which means the Markov chain (δt)t∈N is strongly aperiodic.

The function ∆V is defined as δmapstoE(V (δt+1)|δt = δ) − V (δ). We want
to show a drift condition (see [15]) on V . Using Eq. (13)

∆V (δ) = E(δ − g(M?
t )|δt = δ)− δ)

= −E(g(M?
t )) .

Therefore using the condition (15), we have that there exists a ε > 0 and a
M ∈ R+ such that ∀δ ∈ (M,+∞), ∆V (δ) ≤ −ε. With condtion (14) implies
that the function ∆V + ε is bounded on the compact [0,M ] by a constant b ∈ R.
Hence for all δ ∈ R+

∆V (δ)

ε
≤ −1 +

b

ε
1[0,M ](δ) . (17)

For all x ∈ R the level set CV,x of the function V , {y ∈ R+|V (y) ≤ x}, is equal
to [0, x] which is a compact set, hence a small set according to what we proved
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earlier (and hence petite [15, Proposition 5.5.3]). Therefore V is unbounded off
small sets and with (17) and Theorem 9.1.8 of [15], the Markov chain (δt)t∈N is
Harris recurrent. The set [0,M ] is compact and therefore small and petite, so
with (17), if we denote r1 the constant function δ ∈ R+ 7→ 1 then with Theorem
14.0.1 of [15] the Markov chain (δt)t∈N is positive and is r1-ergodic.

We now want to show a drift condition (see [15]) on Vα.

∆Vα(δ) = E (exp (αδ − αg (M?
t )) |δt = δ)− exp (αδ)

∆Vα
Vα

(δ) = E (exp (−αg (M?
t )) |δt = δ)− 1

=

∫

Rn
lim

t→+∞

t∑

k=0

(−αg(x))k

k!
h̃?δ(x)dx− 1 .

With Eq. (7) we see that h̃?δ(x) ≤ λh(x)/H(L0)λ, so with our assumption

that E(expα|g(M i,j
t )||δt = δ) < ∞ for α > 0 small enough we have that

the function δ 7→ E(exp(α|g(M?
t )||δt = δ) is bounded for the same α. As∑t

k=0(−αg(x))k/k!h̃?δ(x) ≤ exp(α|g(x)|)h̃?δ(x) which, with condition (16), is
integrable so we may apply the theorem of dominated convergence to invert
limit and integral:

∆Vα
Vα

(δ) = lim
t→+∞

t∑

k=0

∫

Rn

(−αg(x))k

k!
h̃?δ(x)dx− 1

=
∑

k∈N
(−α)k

E
(
g (M?

t )
k|δt = δ

)

k!
− 1

Since h̃?δ(x) ≤ λh(x)/H(L0)2, (−α)kE(g(M?
t )
k|δt = δ)/k! ≤ (−α)kE(g(M i,j

t )
k
)/k!

which is integrable with respect to the counting measure so we may apply the
dominated convergence theorem with the counting measure to invert limit and
serie.

lim
δ→+∞

∆Vα
Vα

(δ) =
∑

k∈N
lim

δ→+∞
(−α)

k
E
(
g (M?

t )
k|δt = δ

)

k!
− 1

= −α lim
δ→+∞

E (g (M?
t ) |δt = δ) + o (α) .

With condition (17) we supposed that limδ→+∞E(g(M?
t )|δt = δ) > 0 this im-

plies that for α > 0 and small enough, limδ→+∞∆Vα(δ)/Vα(δ) < 0, hence there
exists M ∈ R+ and epsilon > 0 such that ∀δ > M , ∆Vα(δ) < −εVα(δ). Finally
as ∆Vα − Vα is bounded on [0,M ] there exists b ∈ R such that

∆Vα(δ) ≤ −εVα(δ) + b1[0,M ](δ) .

According to what we did before in this proof, the compact set [0,M ] is small,
and hence is petite ([15, Proposition 5.5.3]). So the µ+-irreducible Markov chain
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(δt)t∈N satisfies the conditions of Theorem 15.0.1 of [15] which with Theorem
14.0.1 of [15] proves that the Markov chain (δt)t∈N is Vα-geometrically ergodic.

ut

We now use a law of large numbers ([15] Theorem 17.0.1) on the Markov chain
(δt, (M

i,j
t )i∈[1..λ],j∈N)t∈N to obtain an almost sure divergence of the algorithm.

Proposition 3. Let a (1, λ)-ES optimize problem (2), handling the constraint
through resampling. Assume that the distribution H of the random step M i,j

t is
absolutely continuous with continuous and strictly positive density h, that condi-
tions (16) and (15) of Proposition 2 hold, and denote π and µM the stationary
distribution of respectively (δt)t∈N and (M i,j

t )i∈[1..λ],(j,t)∈N2 . Then

[Xt −X0]1
t

a.s.−→
t→+∞

σEπ×µM ([M?
t ]1) . (18)

Furthermore if E([M?
t ]2) < 0, then the right hand side of Eq. (18) is strictly

positive.

Proof. According to Proposition 2 the sequence (δt)t∈N is a Harris recurrent pos-
itive Markov chain with invariant measure π. As (M i,j

t )i∈[1..λ],(j,t)∈N2 is a i.i.d.

sequence with distribution µM , (δt, (M
i,j
t )i∈[1..λ],j∈N)t∈N is also a Harris recur-

rent positive Markov chain. As [M?
t ]1 is a function of δt and (M i,j

t )i∈[1..λ],j∈N,
if Eπ×µM (|[M?

t ]1|) < ∞, according to Theorem 17.0.1 of [15], we may apply a
law of large numbers on the right hand side of Eq. (12) to obtain (18).

Using Fubini-Tonelli’s theorem Eπ×µM (|[M?
t ]1|) = Eπ(EµM (|[M?

t ]1||δt =

δ)). From Eq. (7) for all x ∈ Rn, h̃?δ(x) ≤ λh(x)/H(L0)2, so the condition
in (16) implies that for all δ ∈ R+, EµM (|[M?

t ]1||δt = δ) is finite. Furthermore,
with condition (15), the function δ ∈ R+ 7→ EµM (|[M?

t ]1||δt = δ) is bounded
by some M ∈ R. Therefore as π is a probability measure, Eπ(EµM (|[M?

t ]1||δt =
δ)) ≤ M < ∞ so we may apply the law of large numbers of Theorem 17.0.1 of
[15].

Using the fact that π is an invariant measure, we have Eπ(δt) = Eπ(δt+1),
so Eπ(δt) = Eπ(δt − σg(M?

t )) and hence cos θEπ([M?
t ]1) = − sin θEπ([M?

t ]2).
So using the assumption that E([M i,j

t ]2) ≤ 0 then we get the strict positivity of
Eπ×µM ([M i,j

t ]1). ut

5 Application to More Specific Distributions

Throughout this section we give cases where the assumptions on the distribution
of the random steps H used in Proposition 2 or Proposition 3 are verified.

The following lemma shows an equivalence between a non-identity covariance
matrix for H and a different norm and constraint angle θ.

Lemma 3. Let a (1, λ)-ES optimize problem (2), handling the constraint with
resampling. Assume that the distribution H of the random step M i,j

t has pos-
itive definite covariance matrix C with eigenvalues (α2

i )i∈[1..n] and take B =
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(bi,j)(i,j)∈[1..n]2 such that BCB−1 is diagonal. Denote AH,g,X0 the sequence of
parent points (Xt)t∈N of the algorithm with distribution H for the random steps
M i,j

t , constraint angle θ and initial parent X0. Then for all k ∈ [1..n]

βk [AH,θ,X0 ]k
(d)
=
[
AC−1/2H,θ′,X′0

]
k
, (19)

where βk =

√∑n
j=1

b2j,i
α2
i

, θ′ = arccos(β1cosθ
βg

) with βg =
√
β2
1 cos2 θ + β2

2 sin2 θ,

and [X ′0]k = βk[X0]k for all k ∈ [1..n].

Proof. Take (ēk)k∈[1..n] the image of (ek)k∈[1..n] by B−1. We define a new norm
‖ · ‖− such that ‖ēk‖− = 1/αk. We define two orthonormal basis (e′k)k∈[1..n] and
(ē′k)k∈[1..n] for (Rn, ‖·‖−) by taking e′k = ek/‖ek‖− and ē′k = ēk/‖ēk‖− = αkēk.

As Var(M i,j
t .ēk) = α2

k, Var(M i,j
t .ē

′
k) = 1 so in (Rn, ‖·‖−) the covariance matrix

of M i,j
t is the identity.

Take h the function that to x ∈ Rn maps its image in the new orthonor-
mal basis (e′k)k∈[1..n]. As e′k = ek/‖ek‖−, h(x) = (‖ek‖−[x]k)k∈[1..n], where

‖ek‖− = ‖∑n
i=1 bi,kēk‖− =

√∑n
i=1 b

2
i,k/α

2
k = βk. As we changed the norm,

the angle between ∇f and ∇g is also different in the new space. Indeed cos θ′ =

h(∇g).h(∇f)/(‖h(∇g)‖−‖h(∇f)‖−) = β2
1 cos θ/(

√
β2
1 cos2 θ + β2

2 sin2 θβ1) which

equals β1 cos θ/βg.

If we take N i,j
t ∼ C−1/2H then it has the same distribution as h(M i,j

t ).
Take X ′t = h(Xt) then for a constraint angle θ′ = arccos(β1 cos θ/βg) and a
normalized distance to the constraint δt = X ′t.h(∇g)/σt the ressampling is the

same for N i,j
t and h(M i,j

t ) so N i
t

(d)
= h(M i

t). Finally the rankings induced by

∇f or h(∇f) are the same so the selection in the same, hence N?
t

(d)
= h(M?

t ),

and therefore X ′t+1

(d)
= h(Xt+1). ut

Although Eq. (18) shows divergence of the algorithm, it is important that
it diverges in the right direction, i.e. that the right hand side of Eq. (18) has
a positive sign. This is achieved when the distribution of the random steps is
isotropic, as stated in the following proposition.

Proposition 4. Let a (1, λ)-ES optimize problem (2) with constant step-size,
handling the constraint with resampling. Suppose that the Markov chain (δt)t∈N
is positive Harris, that the distribution H of the random step M i,j

t is absolutely
continuous with strictly positive density h, and take C its covariance matrix. If
the distribution C−1/2H is isotropic then Eπ×µM ([M?

t ]1) > 0.

Proof. First if C = In, using the same method than in the proof of Lemma 1

h?δ,2(y) = λ

∫

R
. . .

∫

R
h̃δ(u1, y, u3, . . . , un) Pr(u1 ≥ [M i

t]1)λ−1du1

n∏

k=3

duk .
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Using Eq.(6) and the fact that the condition x ∈ Lδ is equivalent to [x]1 ≤
(δ − [x]2 sin θ)/ cos θ we obtain

h?δ,2(y) = λ

∫

R
. . .

∫ δ−y sin θ
cos θ

−∞

h(u1, y, u3, . . . , un)

H(Lδ)
Pr(u1 ≥ [M i

t]1)λ−1du1

n∏

k=3

duk .

If the distribution of the random steps steps is isotropic then h(u1, y, u3, . . . , un) =
h(u1,−y, u3, . . . , un), and as the density h is supposed strictly positive, for y > 0
and all δ ∈, h?δ,2(y)− h?δ,2(−y) < 0 so E([M?

t ]2|δt = δ) < 0. If the Markov chain
is Harris recurrent and positive then this imply that Eπ([M?

t ]2) < 0 and using
the reasoning in the proof of Proposition 3 Eπ([M?

t ]1) > 0.
For any covariance matrix C this result is generalized with the use of Lemma 3.

ut

Lemma 3 and Proposition 4 imply the following result to hold for multivariate
normal distributions.

Proposition 5. Let a (1, λ)-ES optimize problem (2) with constant step-size,
handling the constraint with resampling. If H is a multivariate normal distribu-
tion with mean 0, then (δt)t∈N is a geometrically ergodic positive Harris Markov
chain, Eq. (18) holds and its right hand side is strictly positive.

Proof. Suppose M i,j
t ∼ N (0, In). Then H is absolutely continuous and h is

strictly positive. The function x 7→ exp(g(x)) exp(−‖x‖2/2)/
√

2π is integrable,
so Eq. (16) is satisfied. Furthermore, when δ → +∞ the constraint disappear
so M i,j

t behaves like (Nλ:λ,N (0, 1), . . . ,N (0, 1)) where Nλ:λ is the last order
statistic of λ i.i.d. standard normal variables, so using that E(Nλ:λ) > 0 and
E(N (0, 1)) = 0, with multiple uses of the dominated convergence theorem we
obtain condition (15) so with Proposition 2 the Markov chain (δt)t∈N is geomet-
rically ergodic and positive Harris.

Finally H being isotropic the conditions of Proposition 4 are fulfilled, and
therefore so are every condition of Proposition 3 which shows what we wanted.

ut

To obtain sufficient conditions for the density of the random steps to be
strictly positive, it is advantageous to decompose that distribution into its marginals
and the copula combining them. We pay a particular attention to Archimedean
copulas, i.e., copulas defined

(∀u ∈ [0, 1]n) Cψ(u) = ψ(ψ−1([u]1) + · · ·+ ψ−1([u]n)), (20)

where ψ : [0,+∞]→ [0, 1] is an Archimedean generator, i.e., ψ(0) = 1, ψ(+∞) =
limt→+∞ ψ(t) = 0, ψ is continuous and strictly decreasing on [0, inf{t : ψ(t) =
0}), and ψ−1 denotes the generalized inverse of ψ,

(∀u ∈ [0, 1]) ψ−1(u) = inf{t ∈ [0,+∞] : ψ(t) = u}. (21)
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The reason for our interest is that Archimedean copulas are invariant with re-
spect to permutations of variables, i.e.,

(∀u ∈ [0, 1]n) Cψ(Qu) = Cψ(u). (22)

holds for any permutation matrix Q ∈ Rn,n. This can be seen as a weak form of
isotropy because in the case of isotropy, (20) holds for any rotation matrix, and
a permutation matrix is a specific rotation matrix.

Proposition 6. Let H be the distribution of the two first dimensions of the
random step M i,j

t , H1 and H2 be its marginals, and C be the copula relating H
to H1 and H2. Then the following holds:

1. Sufficient for H to have a continuous strictly positive density is the simul-
taneous validity of the following two conditions.
(i) H1 and H2 have continuous strictly positive densities h1 and h2, respec-

tively.
(ii) C has a continuous strictly positive density c.
Moreover, if (i) and (ii) are valid, then

(∀x ∈ R2) h(x) = c(H1([x]1), H2([x]2))h1([x]1)h2([x]2). (23)

2. If C is Archimedean with generator ψ, then it is sufficient to replace (ii) with
(ii’) ψ is at least 4-monotone, i.e., ψ is continuous on [0,+∞], ψ′′ is decreas-

ing and convex on R+, and (∀t ∈ R+) (−1)kψ(k)(t) ≥ 0, k = 0, 1, 2.
In this case, if (i) and (ii’) are valid, then

(∀x ∈ R2) h(x) =
ψ′′(ψ−1(H1([x]1)) + ψ−1(H2([x]2)))

ψ′(ψ−1(H1([x]1)) + ψ−1(H2([x]2)))
h1([x]1)h2([x]2).

(24)

Proof. The continuity and strict positivity of the density of H is a straightfor-
ward consequence of the conditions (i) and (ii), respectively (ii’). In addition,
the assumption that ψ is at least 4-monotone implies that it is also 2-monotone,
which is for the function Cψ in (20) with n = 2 a necessary and sufficient con-
dition to be indeed a copula [16]. To prove (23), the relationships

(∀x ∈ R2) h(x) =
∂2H

∂[x]1∂[x]2
(x), h1([x]1) =

H1

d[x]1
([x]1), h2([x]2) =

H2

d[x]2
([x]2), (25)

are combined with the Sklar’s theorem ([17], cf. also [18])

(∀x ∈ R2) H(x) = C(H1([x]1), H2([x]2)) (26)

and with

c(u) =
∂2C

∂[u]1∂[u]2
(u). (27)

For Archimedean copulas, combining (27) with (20) turns (23) into (24). ut
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6 Discussion

The paper presents a generalization of recent results of the first author [8] con-
cerning linear optimization by a (1, λ)-ES in the constant step size case. The
generalization consists in replacing the assumption of normality of random steps
involved in the evolution strategy by substantially more general distributional
assumptions. This generalization shows that isotropic distributions solve the
linear problem. Also, although the conditions for the ergodicity of the studied
Markov chain accept some heavy-tail distributions, an exponentially vanishing
tail allow for geometric ergodicity, which imply a faster convergence to its sta-
tionary distribution, and faster convergence of Monte Carlo simulations. In our
opinion, these conditions increase the insight into the role that different kinds
of distributions play in evolutionary computation, and enlarges the spectrum of
possibilities for designing evolutionary algorithms with solid theoretical funda-
mentals. At the same time, applying the decomposition of a multidimensional
distribution into its marginals and the copula combining them, the paper at-
tempts to bring a small contribution to the research into applicability of copulas
in evolutionary computation, complementing the more common application of
copulas to the Estimation of Distribution Algorithms [12, 14, 13].

Needless to say, more realistic than the constant step size case, but also
more difficult to investigate, is the varying step size case. The most important
results in [8] actually concern that case. A generalization of those results for
non-Gaussian distributions of random steps for cumulative step-size adaptation
([9]) is especially difficult as the evolution path is tailored for Gaussian steps, and
some careful tweaking would have to be applied. The σ self-adaptation evolution
strategy ([19]), studied in [6] for the same problem, appears easier, and would
be our direction for future research.
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Chapter 5

Summary, Discussion and Perspectives

The context of this thesis is the study of Evolution Strategies (ESs) using tools from the theory

of Markov chains. This work is composed of two parts. The first part focuses on adapting

specific techniques from the theory of Markov chains to a general non-linear state space

model that encompasses in particular the models that appear in the ES context, allowing us to

easily prove some Markov chain properties that we could not prove before. In the second part,

we study the behaviour of ESs on the linear function with and without a linear constraint. In

particular, log-linear divergence or convergence of the ESs is shown.

In Section 5.1 we give a summary of the contributions of this thesis. Then in Section 5.2 we

propose different possible extensions to our contributions.

5.1 Summary and Discussion

5.1.1 Sufficient conditions for theϕ-irreducibility, aperiodicity and T -chain prop-
erty of a general Markov chain

In Chapter 3 we showed that we can adapt the results of [98, Chapter 7] to a more general

model

Φt+1 = F (Φt ,α(Φt ,U t+1)) (5.1)

where F : X ×O → X is a measurable function that we call a transition function, α : X ×Ω→O

is a (typically discontinuous) measurable function and (U t )t∈N∗ are i.i.d. random variables

valued inΩ, but the random elements W t+1 =α(Φt ,U t+1) are not necessarily i.i.d., and X ,Ω

and O are open sets of respectively Rn , Rp and Rm . We derive for this model easily verifiable

conditions to show that a Markov chain is aϕ-irreducible aperiodic T -chain and that compact

sets are small sets for the Markov chain. These conditions are

• the transition function F is C 1

• for all x ∈ X the random variable α(x ,U 1) admits a density px ,

• the function (x , w ) 7→ px (w ) is lower semi-continuous,
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• there exists x∗ ∈ X a strongly globally attracting state, k ∈N∗ and w∗ ∈Ox∗,k such that

F k (x∗, ·) is a submersion at w∗.

The set Ox∗,k is the support of the conditional density of (W t )t∈[1..k] knowing thatΦ0 = x∗; F k

is the k-steps transition function inductively defined by F 1 := F and F t+1(x , w 1, . . . , w t+1) :=
F t (F (x , w 1), w 2, . . . , w t+1); and the concept of strongly globally attracting states is introduced

in Chapter 3, namely that x∗ ∈ X is called a strongly globally attracting state if for all y ∈ X

and ε > 0 there exists ty ,ε ∈ N∗ such that for all t ≥ ty ,ε there exists a w ∈ Oy ,t such that

F t (y , w ) ∈ B(x∗,ε). We then used these results to show the ϕ-irreducibility, aperiodicity, T -

chain property and that compact sets are small sets for Markov chains underlying the so-called

xNES algorithm [59] with identity covariance matrix on scaling invariant functions, or in the

CSA algorithm on a linear constrained problem with the cumulation parameter cσ equal to 1,

which were problems we could not solve before these results.

5.1.2 Analysis of Evolution Strategies using the theory of Markov chains

In Section 4.2 we presented an analysis of the (1,λ)-CSA-ES on a linear function. The analysis

shows the geometric ergodicity of an underlying Markov chain, from which it is deduced that

the step-size of the (1,λ)-CSA-ES diverges log-linearly almost surely for λ≥ 3, or for λ= 2 and

with the cumulation parameter cσ < 1. When λ= 2 and cσ = 1, the sequence (ln(σt ))t∈N is an

unbiased random walk. It was also shown in the simpler case of cσ = 1 that the sequence of

| f |-value of the mean of the sampling distribution, (| f (X t )|)t∈N, diverges log-linearly almost

surely when λ≥ 3 at the same rate than the step-size. An expression of the divergence rate

is derived, which explicitly gives the influence of the dimension of the search space and of

the cumulation parameter cσ on the divergence rate. The geometric ergodicity also shows the

convergence of Monte Carlo simulations to estimate the divergence rate of the algorithm (and

the fact that the ergodicity is geometric ensures a fast convergence), justifying the use of these

simulations.

A study of the variance of ln(σt+1/σt ) is also conducted and an expression of the variance of

ln(σt+1/σt ) is derived. For a cumulation parameter cσ equal to 1/nα (where n is the dimen-

sion of the search problem), the standard deviation of ln(σt+1/σt ) is about
√

(n2α+n)/n3α

times larger than its expected value. This indicates that keeping cσ < 1/n1/3 ensures that the

standard deviation of ln(σt+1/σt ) becomes negligible compared to its expected value when

the dimension goes to infinity, which implies the stability of the algorithm with respect to the

dimension.

In Section 4.3 we present two analyses of (1,λ)-ESs on a linear function f :Rn →Rwith a linear

constraint g :Rn →R. W.l.o.g. we can assume the problem to be

maximize f (x) for x ∈Rn

subject to g (x) ≥ 0 .

The angle θ := (∇ f ,∇g ) is an important characteristic of this problem, and the two studies of

Section 4.3 are restricted to θ ∈ (0,π/2).

The first analysis on this problem, which is presented in 4.3.1, is of a (1,λ)-ES where two

updates of the step-size are considered: one for which the step-size is kept constant, and
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one where the step-size is adapted through cumulative step-size adaptation (see 2.3.8). This

study was inspired by [14] which showed that the (1,λ)-CSA-ES fails on this linear constrained

problem for too low values of θ, assuming the existence of an invariant measure for the

sequence (δt )t∈N, where δt is the signed distance from the mean of the sampling distribution

to the constraint, normalized by the step-size, i.e. δt := g (X t )/σt . In 4.3.1 for the (1,λ)-ES

with constant step-size, (δt )t∈N is shown to be a geometrically ergodic ϕ-irreducible aperiodic

Markov chain for which compact sets are small sets, from which the almost sure divergence

of the algorithm, as detailed in (4.12), is deduced. Then for the (1,λ)-CSA-ES, the sequence

(δt , pσ
t )t∈N where pσ

t is the evolution path defined in (2.12) is shown to be a Markov chain,

and in the simplified case where the cumulation parameter cσ equals 1, (δt )t∈N is shown to

be a geometrically ergodic ϕ-irreducible aperiodic Markov chain for which compact sets are

small sets, from which the almost sure log-linear convergence or divergence of the step-size at

a rate r is deduced. The sign of r indicates whether convergence or divergence takes place,

and r is estimated through the use of Monte Carlo simulations. These simulations, justified by

the geometric ergodicity of the Markov chain (δt )t∈N, investigate the dependence of r with

respect to different parameters, such as the constraint angle θ, the cumulation parameter

cσ or the population size λ, and show that for a large enough population size or low enough

cumulation parameter, r is positive and so the step-size of the (1,λ)-CSA-ES successfully

diverges log-linearly on this problem, but conversely for a low enough value of the constraint

angle θ, r is negative and so the step-size of the (1,λ)-CSA-ES then converges log-linearly, thus

failing on this problem.

The second analysis on the linear function with a linear constraint, presented in 4.3.2, investi-

gates a (1,λ)-ES with constant step-size and a not necessarily Gaussian sampling distribution.

The analysis establishes that if the sampling distribution is absolutely continuous and sup-

ported on Rn then the sequence (δt )t∈N is a ϕ-irreducible aperiodic Markov chain for which

compact sets are small sets. From this, sufficient conditions are derived to ensure that the

Markov chain (δt )t∈N is positive, Harris recurrent and V -geometrically ergodic for a specific

function V . The Harris recurrence and positivity of the Markov chain is then used to apply a

law of large numbers and deduce the divergence of the algorithm under these conditions. The

effect of the covariance of the sampling distribution on the problem is then investigated, and it

is shown that changing the covariance matrix is equivalent to changing the norm on the space,

which in turn implies a change of the constraint angle θ. This effect gives useful insight on the

results presented in 4.3.1, as it has been shown in 4.3.1 that a too low value of the constraint

angle implies the log-linear convergence of the step-size for the (1,λ)-CSA-ES, therefore failing

to solve the problem. Changing the covariance matrix can therefore trigger the success of the

(1,λ)-CSA-ES on this problem. Finally, sufficient conditions on the marginals of the sampling

distribution and the copula combining them are given to get the absolute continuity of the

sampling distribution.

The results of Chapter 4 are important relatively to [2] and [24]. In [2] an IGO-flow (see 2.5.3)

which can be related to a continuous-time ES is shown to locally converge to the critical

points with positive definite Hessian of any C 2 function with Lebesgue negligible level sets,

under assumptions including that the step-size of the algorithm diverges log-linearly on the
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linear function. In [24] the (1+1)-ES using the so called one-fifth success rule [117] is shown

to converge log-linearly on positively homogeneous functions (see (2.34) for a definition of

positively homogeneous functions), under the assumption that E(σt /σt+1) < 1 on the linear

function, which is related to the log-linear divergence of the step-size on the linear function.

We showed in Section 4.2 that for the (1,λ)-CSA-ES the step-size diverges log-linearly on

the linear function; and in 4.3.1 that for too low constraint angle it does not; but with 4.3.2,

adaptation of the covariance matrix can allow the step-size of a (1,λ)-ES with CSA step-size

adaptation to successfully diverge even for low constraint angles. Therefore, although our

analyses of ESs are restricted to linear problems, they relate to the convergence of ESs on C 2

and positively homogeneous functions.

5.2 Perspectives

The results presented in Chapter 3 present many different extensions:

• The techniques developed can be applied to prove ϕ-irreducibility, aperiodicity, T -

chain property and that compact sets are small sets on many other problems. Particular

problems of interest to us would be ESs adapting the covariance matrix, or using an

evolution path (see 2.3.8).

• The transition function F from our model described in (5.1) is assumed in most of the

results of Chapter 3 to be C 1. However, for an ES using the cumulative step-size adap-

tation described in (2.13), due to the square root in ‖pσ
t ‖ =

√∑n
i=1[pσ

t ]2
i the transition

function involved is not differentiable when pσ
t = 0. Although this can be alleviated by

studying the slightly different version of CSA described in (4.11), as has been done in

Chapter 4, it would be useful to extend the results of Chapter 3 to transition functions

that are not C 1 everywhere.

• The distribution of the random elements α(x ,U t+1) described in (5.1) is assumed in our

model to be absolutely continuous. However, in elitist ESs such as the (1+1)-ES, there

is a positive probability that the mean of the sampling distribution of the ES does not

change over an iteration. Therefore, the distribution of α(x ,U t+1) in this context has a

singularity and does not fit the model of Chapter 3. Extending the results of Chapter 3 to

a model where the distribution of the random elements α(x ,U t+1) admits singularities

would then allow us to apply them to elitist ESs.

• In [98, Chapter 7], the context described in 1.2.6 is that the Markov chain (Φt )t∈N is

defined via Φ0 following some initial distribution and Φt+1 = F (Φt ,U t+1); where the

transition function F : X ×Ω→ X is supposed C∞, and (U t )t∈N is a sequence of i.i.d.

random elements valued in Ω and admitting a density p. In this context it is shown

that if the set Ow := {u ∈ O|px (u) > 0} is connected, if there exists x∗ ∈ X a globally

attracting state, and if the control model C M(F ) is forward accessible (see 1.2.6), then

the aperiodicity is proven to be implied by the connexity of the set A+(x∗). In our context,

we gave sufficient conditions (including the existence of a strongly globally attracting
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state) to prove aperiodicity. It would be interesting to investigate if the existence of a

strongly globally attracting state is a necessary condition for aperiodicity, and to see if

we could use in our context the condition of connexity of A+(x∗) to prove aperiodicity.

The techniques of Chapter 3 could be used to investigate the log-linear convergence of different

ESs on scale-invariant functions (see (2.33) for a definition of scale-invariant functions).

However, new techniques need to be developed to fully investigate the (1,λ)-CSA-ES on scale-

invariant functions, when the Markov chain of interest is (Z t , pσ
t )t∈N where Z t = X t /σt and

pσ
t is the evolution path defined in (2.12). Indeed, as explained in 2.5.2, the drift function

V : (z , p) 7→ ‖z‖α+‖p‖β , which generalizes the drift function usually considered for cases

without the evolution path, cannot be used in this case with an evolution path to show a

negative drift: a value close to 0 of ‖pσ
t ‖ combined with a high value of ‖Z t‖ will result, due to

(4.7), in a positive drift∆V . To counteract this effect, in future research we will investigate drift

functions that measure the mean drift after several iterations of the algorithm, which leave

some iterations for the norm of the evolution path to increase, and then for the norm of Z t to

decrease.
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