N
N

N

HAL

open science

Markov chain Analysis of Evolution Strategies
Alexandre Chotard

» To cite this version:

Alexandre Chotard. Markov chain Analysis of Evolution Strategies. Optimization and Control
[math.OC]. Université Paris Sud - Paris XI, 2015. English. NNT: 2015PA112230 . tel-01252128

HAL Id: tel-01252128
https://theses.hal.science/tel-01252128
Submitted on 7 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-01252128
https://hal.archives-ouvertes.fr

UNIVERSITE

N PARIS 2 L
SUD lrrzia —

UNIVERSITE PARIS-SUD

ECOLE DOCTORALE D'INFORMATIQUE
LABORATOIRE INRIA SACLAY

DISCIPLINE : INFORMATIQUE

THESE DE DOCTORAT

Soutenue le 24 Septembre 2015 par

Alexandre Chotard

Titre :
Analyse Markovienne des Stratégies d’Evolution

Directeur de thése : Nikolaus Hansen Directeur de recherche (INRIA Saclay)
Co-directeur de these : Anne Auger Chargée de recherche (INRIA Saclay)
Composition du jury:
Rapporteurs : Dirk Arnold Professor (Dalhousie University)

Tobias Glasmachers Junior Professor (Ruhr-Universitédt Bochum)
Examinateurs : Gersende Fort Directrice de Recherche (CNRS)

Francois Yvon Professeur (Université Paris-Sud)






Abstract

In this dissertation an analysis of Evolution Strategies (ESs) using the theory of Markov chains
is conducted. We first develop sufficient conditions for a Markov chain to have some basic
properties. We then analyse different ESs through underlying Markov chains. From the stability
of these underlying Markov chains we deduce the log-linear divergence or convergence of
these ESs on a linear function, with and without a linear constraint, which are problems
that can be related to the log-linear convergence of ESs on a wide class of functions. More
specifically, we first analyse an ES with cumulative step-size adaptation on a linear function
and prove the log-linear divergence of the step-size; we also study the variation of the logarithm
of the step-size, from which we establish a necessary condition for the stability of the algorithm
with respect to the dimension of the search space. Then we study an ES with constant step-
size and with cumulative step-size adaptation on a linear function with a linear constraint,
using resampling to handle unfeasible solutions. We prove that with constant step-size the
algorithm diverges, while with cumulative step-size adaptation, depending on parameters of
the problem and of the ES, the algorithm converges or diverges log-linearly. We then investigate
the dependence of the convergence or divergence rate of the algorithm with parameters of
the problem and of the ES. Finally we study an ES with a sampling distribution that can be
non-Gaussian and with constant step-size on a linear function with a linear constraint. We
give sufficient conditions on the sampling distribution for the algorithm to diverge. We also
show that different covariance matrices for the sampling distribution correspond to a change
of norm of the search space, and that this implies that adapting the covariance matrix of the
sampling distribution may allow an ES with cumulative step-size adaptation to successfully
diverge on a linear function with any linear constraint.
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Notations

We denote R the set of real numbers, R; the set of non-negative numbers, R_ the set of
non-positive numbers, N the set of non-negative integers. For n € N\{0}, R” denotes the
set of n-dimensional real vectors. For A a subset of R”, A* denotes A\{0}, A° denotes the
complementary of A, 14 the indicator function of A, and A, (A) the Lebesgue measure on R"
of A. For A a finite set, we denote #A its cardinal. For A a set, 24 denotes the power set of
A. For F a family of subsets of R”, we denote ¢ (F) the o-algebra generated by F. Let f bea
function defined on an open set of R” and valued in R, and take p € N, we say that f is a
CP function if it is continuous, and p-times continuously differentiable; if f is differentiable,
we denote Dy f the differential of f with respect to x € R”; if m =1 and f is differentiable, we
denote V, f its gradient at x € R”. For (a, b) € N?, [a..b] denotes the set {i € N|a < i < b}. For
xeR", xT denotes x transposed. For n € N*, Id,, is the n-dimensional identity matrix. We
denote A4 (0, 1) the standard normal law, and for x € R” and C a covariance matrix of order
n, A& (x, C) denotes the multivariate normal law of mean x and covariance matrix C. For X a
random vector, E(X) denotes the expected value of X, and for 7 a distribution, X ~ 7 means
that X has distribution 7. For (a, b) e N xN*, a mod b denotes a modulo b. For f and g two
real-valued functions defined on N, we write that f ~ g when f is equal to g asymptotically,
that f = O(g) if there exists C € R} and ng € N such that | f(n)| < C|g(n)| for all n = ny, and that
f=0(g)if f =0(g) and g = O(f). For x € R", | x|| denotes the euclidean norm of x, and for
r € R}, B(x,r) denotes the open ball for the euclidean norm centred in x of radius r, and for
i € [1..n], [x]; denotes the i™ coordinate of x in the canonical basis. We use the acronym i.i.d.
for independent and identically distributed. For (X;) en @ sequence of random vectors and Y
arandom vectors, we denote X; tjf»m Y when the sequence (X ) ey converges almost surely

toY,and X, t% Y when the sequence (X ;) ey converges in probability to Y.
—+00






Chapter 1

Preamble

Optimization problems are frequently encountered in both science and industry. They consist
in finding the optimum of a real-valued function f called the objective function and defined
on a search space X. Depending on this search space, they can be broadly categorized
into discrete or continuous optimization problems. Evolution Strategies (ESs) are stochastic
continuous optimization algorithms that have been successfully applied to a wide range of
real-world problem. These algorithms adapt a sampling distribution of the form x + o H
where H is a distribution with mean 0, generally taken as .4(0, C) a multivariate Gaussian
distribution with covariance matrix C; x € X is the mean of the sampling distribution and
o € R is called the step-size, and controls the standard deviation of the sampling distribution.
ESs proceed to sample a population of points, that they rank according to their f-value, and
use these points and their rankings to update the sampling distribution.

ESs are known in practice to achieve log-linear convergence (i.e. the distance to the optimum
decreases exponentially fast, see Section 2.1) on a wide class of functions. To achieve a better
understanding of ESs, it is important to know the convergence rate and its dependence to
the search problem (e.g. the dimension of the search space) or in different update rules or
parameters of ESs. Log-linear convergence has been shown for different ESs on the sphere
function fiphere : X € R" — %1% using tools from the theory of Markov chains (see [18, 24, 33])
by proving the positivity, Harris recurrence or geometric ergodicity of an underlying Markov
chain (these concepts are defined in Section 1.2). A methodology on a wide class of functions
called scaling-invariant (see (2.33) for a definition of scaling invariant functions) for proving
the geometric ergodicity of underlying Markov chains from which the log-linear convergence
of the algorithm can be deduced is proposed in [25], and has been used to prove the log-
linear convergence of a specific ES [24] on positively homogeneous functions (see (2.34) for a
definition of positively homogeneous functions). In [2] the local convergence of a continuous-
time ES is shown on C? functions using ordinary differential equations. In both [24] and [2]
a shared assumption is that the standard deviation o; of the sampling distribution diverges
log-linearly on the linear function, making the study of ESs on the linear function a key to the
convergence of ESs on a wide range of functions.

The ergodicity (or more precisely, f-ergodicity as defined in 1.2.9) of Markov chains underlying
ESs is a crucial property regarding Monte-Carlo simulations, as it implies that a law of large
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numbers applies, and so shows that Monte-Carlo simulations provide a consistent estimator
of E; (f(®Dy)), where (P;) ey is @ f-ergodic Markov chain and 7 is its invariant measure, as
defined in 1.2.8. This allows the use of Monte-Carlo simulations to estimate the convergence
rate of the algorithm, and evaluate the influence of different parameters on this convergence
rate.

The work presented in this thesis can be divided in two parts: the contributions in Chapter 3
improve techniques from Markov chain theory so that they can be applied to problems met in
continuous optimization and allow us to analyse easily a broader class of algorithms, and the
contributions in Chapter 4 analyse ESs on different linear problems.

1.1 Overview of Contributions

1.1.1 Sufficient conditions for ¢-irreducibility, aperiodicity and 7-chain property

In order to show the ergodicity of a Markov chain ® = (®;),n valued in an open space
Xc R", we use some basic Markov chain properties (namely ¢-irreducibility, aperiodicity,
and that compact sets are small sets for the chain, which are concepts defined in 1.2). For
some Markov chains arising from algorithms that we want to analyse, showing these basic
properties turned out to be unexpectingly difficult as the techniques used with success in
other scenarios failed, as outlined in Section 4.1. In [98, Chapter 7] powerful tools can be
found and be used to show the basic properties we require. However, [98, Chapter 7] assumes
that the Markov chain of interest follows a certain model, namely that there exists an open
set OcRP, a C* function F : X x O — X and (Uy) N+ a sequence of i.i.d. random vectors
valued in O and admitting a lower semi-continuous density, such that ®;,; = F(®;, U ;) for
all £ e N. For some of the Markov chains that we analyse we cannot find an equivalent model:
the corresponding function F is not even continuous, or the random vectors (U ) ;en+ are not
i.i.d.. However, in Chapter 3 which contains the article [42] soon to be submitted to the journal
Bernoulli we show that we can adapt the results of [98, Chapter 7] to a more general model
@4y = F(®y, We4y), with F typically a C! function, W,;; = a(®;, U;4;) and (U ;) jepy+ are ii.d.
such that a(x,U;) admits a lower semi-continuous density. The function « is in our cases
typically not continuous, and the sequence (W ;);en+ is typically not i.i.d.. We then use these
results to solve cases that we could not solve before.

1.1.2 Analysis of Evolution Strategies

In Chapter 4 we analyse ESs on different problems.

In Section 4.2 we present an analysis of the so-called (1,1)-CSA-ES algorithm on a linear
function. The results are presented in a technical report [43] containing [46] which was
published at the conference Parallel Problem Solving from Nature in 2012 and including the
full proofs of the propositions found in [46], and a proof of the log-linear divergence of the
algorithm. We prove that the step-size of the algorithm diverges log-linearly, which is the
desired behaviour on a linear function. The divergence rate is explicitly given, which allow
us to see how it depends of the parameters of the problem or of the algorithm. Also, a study
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1.2. A short introduction to Markov Chain Theory

of the variance of the logarithm of the step-size is conducted, and the scaling of the variance
with the dimension gives elements as how to adapt some parameters of the algorithm with the
dimension.

In Section 4.3 we present two analyses of a (1, 1)-ES on a linear function with a linear constraint,
handling the constraint through resampling unfeasible points.

The first analysis in Section 4.3.1 is presented in [45] which was accepted for publication
at the Evolutionary Computation Journal in 2015, and is an extension of [44] which was
published at the conference Congress on Evolutionary Computation in 2014. It first shows
that a (1, 1)-ES algorithm with constant step-size diverges almost surely. Then for the (1, 1)-
ES with cumulative step-size adaptation (see 2.3.8) it shows the geometric ergodicity of the
Markov chain composed of the distance from the mean of the sampling distribution to the
constraint normalized by the step-size. This geometric ergodicity justifies the use of Monte-
Carlo simulations of the convergence rate of the step-size, which shows that when the angle 6
between the gradients of the constraint and of the objective function is close to 0, the step-size
converges log-linearly, while for values close enough to 7/2 the algorithm diverges log-linearly.
Log-linear divergence being desired here, the algorithm fails to solve the problem for small
values of 8, and otherwise succeeds. The paper then analyses how its parameters affect the
convergence rate and the critical value of 8 which triggers convergence or divergence of the
algorithm.

The second analysis in Section 4.3.2 is presented in a technical report containing [47], pub-
lished at the conference Parallel Problem Solving from Nature in 2014, and the full proofs
of the propositions found in [47]. It analyses a (1, A)-ES with constant step-size and general
(i.e. not necessary Gaussian) sampling distribution. It establishes sufficient conditions on
the sampling distribution for the positivity, Harris recurrence and geometric ergodicity of the
Markov chain composed of the distance from the mean of the sampling distribution to the
constraint. The positivity and Harris recurrence is then used to apply a law of large numbers
and deduce the divergence of the algorithm. It is then shown that changing the covariance
matrix of the sampling distribution is equivalent to a change of norm which imply a change of
the angle between the gradients of the constraint and of the function. This relates to the results
presented in 4.3.1, showing that on this problem and if the covariance matrix is correctly
adapted then the cumulative step-size adaptation is successful. Finally, sufficient conditions
on the marginals of the sampling distribution and the copula combining them are given to get
the absolute continuity of the sampling distribution.

1.2 Ashortintroduction to Markov Chain Theory

Markov chain theory offers useful tools to show the log-linear convergence of optimization
algorithms, and justifying the use of Monte Carlo simulations to estimate convergence rates.
Markov chains are key to the results of this thesis, and therefore we give in this section an
introduction to the concepts that we will be using throughout the thesis.
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1.2.1 A definition of Markov chains through transition kernels

Let X be an open set of R” that we call the state space, equipped with its borel o-algebra &(X).
A function P : X x B(X) — Ris called a kernel if

e forall x € X, the function A € 8(X) — P(x, A) is a measure,
e for all Ae B(X) the function x € X — P(x, A) is a measurable function.

Furthermore, if for all x € X, P(x, X) <1 we call P a substochastic transition kernel, and if for
all xe X, P(x,X) =1, we call P a probability transition kernel, or simply a transition kernel.
Intuitively, for a specific sequence of random variables (®) ;cn, the value P(x, A) represents
the probability that ®,,1 € A knowing that ®; = x. Given a transition kernel P, we define P! as
P, and inductively for t € N*, P'*! as

P (x, A) = f Pl(x,dy)P(y, A) . Ry
X

Let (Q,98(Q)), Py) be a probability space, and ® = (®;);cn be a sequence of random variables
defined on Q and valued in X, and let P be a probability transition kernel. Denote (%) ten
the filtration such that &; := o(®y | k < t). Following [118, Definition 2.3], we say that ®
is a time-homogeneous Markov chain with probability transition kernel P if for all ¢ € N*,
k € [0..t—1] and any bounded real-valued function f defined on X,

Eo(f(d>t)|9k):fo(y)P’_k(-,dy) Py—as. , (1.2)

where Ej is the expectation operator with respect to Py.

Less formally the expected value of f(®,), knowing all the past information of (®;);c(o.
and that @ is distributed according to Py, is equal to the expected value of f(D;_j) with ®,
distributed according to Py. The value P’ (x, A) represents the probability of the Markov chain
® to be in A, t time steps after starting from x.

1.2.2 -irreducibility

A Markov chain is said ¢-irreducible if there exists a non trivial measure ¢ on %8(X) such that
for all Ae B(X)

P(A>0=>VxeX, ) P'x,A)>0. (1.3)
teN*

Every point from the support of ¢ is reachable [98, Lemma 6.1.4], meaning any neighbourhood
of a point in the support has a positive probability of being reached from anywhere in the
state space. This ensures that the state space cannot be cut into disjoints sets that would never
communicate through the Markov chain with each other.
A @-irreducible Markov chain admits the existence of a maximal irreducibility measure ([98,
Proposition 4.2.2]), that we denote v, which dominates any other irreducibility measure. This

6



1.2. A short introduction to Markov Chain Theory

allows us to define 2% (X), the set of sets with positive w-measure:

BH(X)={A€e BX) | y(A) >0} . (1.4)

1.2.3 Small and petite sets

A set C € B(X) is called a small set if there exists m € N* and v,, a non-trivial measure on
% (X) such that

P™(x,A)=v,,(A) ,forallxe Candforall Ac B(X) . (1.5)

A set C € B(X) is called a petite set if there exists a a probability distribution on N* and v, a
non-trivial measure on 8(X) such that

Y P'(x,A)a(t) =v4(A) ,forallxe Candforall Ac B(X) , (1.6)
teN

where P?(x, A) is defined as a Dirac distribution on {x}.
Small sets are petite sets; the converse is true for ¢-irreducible aperiodic Markov chains [98,
Theorem 5.5.7].

1.2.4 Periodicity

Suppose that @ is a w-irreducible Markov chain, and take C € 8% (X) a v,,-small set. The
period of the Markov chain can be defined as the greatest common divisor of the set

Ec ={k e N*|Cis a vi-small set with v} = a;v,, for some a; € R}} .

According to [98, Theorem 5.4.4] there exists then disjoint sets (D;)ie[0..4-1] € B(X )4 called a
d-cycle such that

1. P(x,D;11 modg) =1 forallxe D; ,
2. (Ui Di))=0..

This d-cycle is maximal in the sense that for any other d -cycle (D;) i€l0..d—1] d divides d, and if
d = d then up to a reordering of indexes, D; = D; w-almost everywhere.

If d = 1, then the Markov chain is called aperiodic. For a ¢-irreducible aperiodic Markov
chain, petite sets are small sets [98, Theorem 5.5.7].

1.2.5 Feller chains and T-chains

These two properties concern the lower semi-continuity of the function P(-,A) : x € X —
P(x, A), and help to identify the petite sets and small sets of the Markov chain.

A @-irreducible Markov chain is called a (weak-)Feller Markov chain if for all open set O €
2B (X), the function P(-, O) is lower-semi continuous.
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If there exists a a distribution on N and a substochastic transition kernel T : X x B(X) — R
such that

e forallxe X and A€ B(X), Ky(x,A) 1= ;ena (D) P(x, A) = T(x, A),
e forallxe X, T(x,X) >0,

then the Markov chain is called a T-chain.

According to [98, Theorem 6.0.1] a ¢-irreducible Markov chain for which the support of ¢ has
non-empty interior is a ¢-irreducible T-chain. And a ¢-irreducible Markov chain is a T-chain
if and only if all compact sets are petite sets.

1.2.6 Associated deterministic control model

According to [72, p.24], for ® a time-homogeneous Markov chain on an open state space X,
there exists an open measurable space (, a function F: X x Q — X and (U) ;en+ @ sequence of
i.i.d. random variables valued in Q such that

D1 =F(@,Up41) (1.7

The transition probability kernel P then writes
P(x, A) :fQIA(F(x, w) pldu) (1.8)

where p is the distribution of U;.

Conversely, given a random variable ®( taking values in X, the sequence (®;);cn can be
defined through (1.7), and it is easy to check that it is a Markov chain.

From this function F we can define F° as the identity F: x € X — x, F as F!' and inductively
F™*1for t e N* as

F'™ x,uy, ... up41) = FY(F(x,u0), U, ..., Ugp1) . (1.9)

If U, admits a density p, we can define the control set Q,, := {u € Q|p(u) > 0}, which allow us
to define the associated deterministic control model, denoted CM(F), as the deterministic
system

x;=Fl'(xg,u1,...,u;) , VteN (1.10)

where u;. € Q,, for all k e N*. , and for x € X we define the set of states reachable from x at
time k € N from CM(F) as A% (x) = {x} when k = 0 and otherwise

A ) = (FR e wy, ... wp) luy € Qy forall i € [1..K]) (1.11)
The set of states reachable from x from CM (F) is defined as

A= A W) . (1.12)
keN
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The control model is said to be forward accessible if for all x € X, the set A, (x) has non-empty
interior. A point x* € X is called a globally attracting state if

+00
e () UAky) forallyex . (1.13)
NeN* k=N

In [98, Chapter 7], the function F of (1.7) is supposed C*, the random element U is assumed
to admit a lower semi-continuous density p, and the control model is supposed to be forward
accessible. In this context, the Markov chain is shown to be a T-chain [98, Proposition 7.1.5],
and in [98, Proposition 7.2.5 and Theorem 7.2.6] ¢-irreducibility is proven equivalent to
the existence of a globally attracting state. Still in this context, when the control set Q,, is
connected and that there exists a globally attracting state, the aperiodicity of the Markov chain
is proven to be implied by the connectedness of the set A, (x*) [98, Proposition 7.3.4 and
Theorem 7.3.5]. Although these results are strong and useful ways to show the irreducibility
and aperiodicity or T-chain property of a Markov chain, we cannot apply them on most of the
Markov chains studied in Chapter 4, as the transition functions F modelling our Markov chains
through (1.7) are not C*, but instead are discontinuous due to the selection mechanism in
the ESs studied. A part of the contributions of this thesis is to adapt and generalize the results
of [98, Chapter 7] to be usable in our problems (see Chapter 3).

1.2.7 Recurrence, Transience and Harris recurrence

Aset A€ B(X) is called recurrent if for all x € A, the Markov chain (®;);cn leaving from &y = x
will return in average an infinite number of times to A. More formally, A is recurrent if

Pyp=x|=o00 , forallxe A . (1.14)

E( Y 14(@)
teN*

A y-irreducible Markov chain is called recurrent if for all A€ %% (X), A is recurrent.

The mirrored concept is called transience. A set A € 98(X) is called uniformly transient if
there exists M € R such that

Oog=x|<M ,forallxe A . (1.15)

E( Y 1a(@p)
teN*

A y-irreducible Markov chain is called transient if there exists a countable cover of the state
space X by uniformly transient sets. According to [98, Theorem 8.0.1], a y-irreducible Markov
chain is either recurrent or transient.

A condition stronger than recurrence is Harris recurrence. A set A € %(X) is called Harris
recurrent if for all x € A the Markov chain leaving from x will return almost surely an infinite
number of times to A, that is

Op=x|=1,forallxe A . (1.16)

Pr(z 14(®;) =00

teN*
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A y-irreducible Markov chain is called Harris recurrent if for all A € 8% (X), A is Harris
recurrent.

1.2.8 Invariant measure and positivity
A o-finite measure 7 on 9 (X) is called invariant if
7 (A) :f n(dx)P(x,A) , forall Ae B(X). (1.17)
X

Therefore if ®y ~ 7, then forall te N, ®; ~ 7.

For f: X — R a function, we denote 7(f) the expected value
n(f) ::fo(x)Jt(dx) . (1.18)

According to [98, Theorem 10.0.1] a ¢-irreducible recurrent Markov chain admits a unique
(up to a multiplicative constant) invariant measure. If this measure is a probability measure,
we call @ a positive Markov chain.

1.2.9 Ergodicity

For v a signed measure on %8(X) and f : X — R a positive function, we define || - |  a norm on
signed measures via

vl f:= sup . (1.19)

lgl<f

f g(x)v(dx)
X

Let f: X — R be a function lower-bounded by 1. We call @ a f-ergodic Markov chain if it is
a positive Harris recurrent Markov chain with invariant probability measure r, that 7 (f) is
finite, and for any initial condition ®y = x € X,

IP (x,)—7lly — O. (1.20)
t—+oo

We call @ a f-geometrically ergodic Markov chain if it is a positive Harris recurrent Markov
chain with invariant probability measure 7, that 7z(f) is finite, and if there exists ry € (1, +00)
such that for any initial condition ®y = x € X,

> rilIPix )~ 7y <oo . (1.21)
reN*

We also call @ a ergodic (resp. geometrically ergodic) Markov chain if there exists a function
f: X — Rlower bounded by 1 such that ®@ is f-ergodic (resp. f-geometrically ergodic).

10



1.2. A short introduction to Markov Chain Theory

1.2.10 Drift conditions

Drift conditions are powerful tools to show that a Markov chain is transient, recurrent, positive
or ergodic. They rely on a potential or drift function V : X — R, and the mean drift

AV(x):=E(V(®;41) | ®;=x)-V(x) . (1.22)

A positive drift outside a set Cy (r) := {x € X | V(x) < r} means that the Markov chain tends to
get away from the set, and indicates transience. Formally, for a ¢-irreducible Markov chain, if
V : X — R, is abounded function and that there exists r € R, such that both sets Cy (r) and
Cy(r)¢ arein 2% (X) and that

AV (x)>0forallxe Cy(r)¢ , (1.23)

then the Markov chain is transient [98, Theorem 8.4.2].

Conversely, a negative drift is linked to recurrence and Harris recurrence. For a ¢-irreducible
Markov chain, if there exists a function V : X — R, such that Cy (r) is a petite set for all r € R,
and if there exists a petite set C € 28(X) such that

AV(x)<OforallxeC*® , (1.24)

then the Markov chain is Harris recurrent [98, Theorem 9.1.8].

A stronger drift condition ensures the positivity and f-ergodicity of the Markov chain: for a ¢-
irreducible aperiodic Markov chain and f: X — [1, +00), if there exists a function V: X — R,
C € $B(X) a petite set and b € R such that

AV (x) = —f(x)+ blc(x) , (1.25)

then the Markov chain is positive recurrent with invariant probability measure 7, and f-
ergodic [98, Theorem 14.0.1].

Finally, a stronger drift condition ensures a geometric convergence of the transition kernel
P!(x,-) to the invariant measure. For a @-irreducible aperiodic Markov chain, if there exists a
function V: X — [1,400), C € 8(X) a petite set, b € R and f € R} such that

AV(x)=-BV(x)+Dblc(x) , (1.26)

then the Markov chain is positive recurrent with invariant probability measure 7, and V-
geometrically ergodic [98, Theorem 15.0.1].
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Chapter 1. Preamble

1.2.11 Law of Large numbers for Markov chains

Let @ be a positive Harris recurrent Markov chain with invariant measure 7, and take g: X — R
a function such that 7(|g|) < co. Then according to [98, Theorem 17.0.1]

1 d a.s
p > 8@ = m(g) . (1.27)
k=1 *

12



Chapter 2

Introduction to Black-Box Continuous
Optimization

This chapter intends to be a general introduction to black-box continuous optimization by
presenting different optimization techniques, problems, and results with a heavier focus on
Evolution Strategies. We denote f : X ¢ R” — R the function to be optimized, which we call
the objective function, and assume w.l.0.g. the problem to be to minimize f!by constructing
asequence (x;) ey € X" converging to argmin .y f (x)2.

The term black-box means that no information on the function f is available, and although
for x € X we can obtain f(x), the calculations behind this are not available. This is a common
situation in real-world problems, where f(x) may come from a commercial software whose
code is unavailable, or may be the result of simulations. We will say that an algorithm is a
black-box, zero-order or derivative-free algorithm when it only uses the f-value of x. We
call an algorithm using the gradient of f (resp. its Hessian) a first order algorithm (resp.
second-order algorithm). We will also say that an algorithm is function-value free (FVF) or
comparison-based if it does not directly use the function value f(x), but uses instead how
different points are ranked according to their f-values. This notion of FVF is an important
property which ensures a certain robustness of an optimization algorithm, and is further
developed in 2.4.5.

Section 2.1 will first give some definitions in order to discuss convergence speed in continuous
optimization. Then Sections 2.2 and 2.3 will then give a list of well-known deterministic
and stochastic optimization algorithms, deterministic and stochastic algorithm requiring
different techniques to analyze (the latter requiring the use of probability theory). Section 2.4
will introduce different optimization problems and their characteristics, and Section 2.5 will
present results and techniques relating to the convergence of Evolution Strategies.

IMaximizing f is equivalent to minimizing — f.
ZNote that in continuous optimization the optimum is usually never found, only approximated.

13



Chapter 2. Introduction to Black-Box Continuous Optimization

2.1 Evaluating convergence rates in continuous optimization

In continuous optimization, except for very particular cases, optimization algorithms never
exactly find the optimum, contrarily to discrete optimization problems. Instead, at each itera-
tion t € N an optimization algorithm produces an estimated solution X, and the algorithm is
considered to solve the problem if the sequence (X¢);eny converges to the global optimum x*
of the objective function. To evaluate the convergence speed of the algorithm, one can look at
the evolution of the distance between the estimated solution and the optimum, || X;— x|, or
at the average number of iterations required for the algorithm to reach a ball centred on the
optimum and of radius € € R} . Note that for optimization algorithms (especially in black-box
problems) the number of evaluations of f made is an important measure of the computa-
tional cost of the algorithm, as the evaluation of the function can be the result of expensive
calculations or simulations. And since many algorithms that we consider do multiple func-
tion evaluations per iteration, it is therefore often important to consider the converge rate
normalized by the number of function evaluations per iteration.

2.1.1 Rates of convergence

Take (x);en a deterministic sequence of real vectors converging to x* € R”. We say that (x¢) seny
converges log-linearly or geometrically to x* at rate r € R} if
lim In —”le x| =-r . 2.1)
t=t+oo  lx;—x*|
Through Cesaro means?, this implies that lim;_. ;o % In(||x; — x*||) = —r, meaning that asymp-
totically, the logarithm of the distance between x; and the optimum decreases like —rt.
If (2.1) holds for r € R*, we say that (x)cn diverges log-linearly or geometrically. If (2.1)
holds for r = +oo then (x;) sy is said to converge superlinearly to x*, and if (2.1) holds for
r =0 then (x;) ey is said to converge sublinearly.
In the case of superlinear convergence, for g € (1, +00) we say that (x;);en converges with
order g to x* atrate r e R} if
lim o X = 2.2)
t=+oo  [lx;—x*[|9
When g = 2 we say that the convergence is quadratic.
In the case of a sequence of random vectors (X;)sen, t he sequence (X ) ey is said to con-
verge almost surely (resp. in probability, in mean) log-linearly to x* if the random variable
1/tIn(| X —x* /1| Xo — x*|I) converges almost surely (resp. in probability, in mean) to —r, with
r € R}. Similarly, we define almost sure divergence and divergence in probability when the
random variable 1/¢In(|| X, — x*[|/| Xy — x*||) converges to r € R}.

3The Cesaro means of a sequence (a) e+ are the terms of the sequence (ct) e+ Where cr := l/tzl?zl a;. If
the sequence (a;) e+ converges to a limit /, then so does the sequence (ct) s
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2.2. Deterministic Algorithms

2.1.2 Expected hitting and running time

Take (X¢):en a sequence of random vectors converging to x* € X. For € € R}, the random
variable 7. := min{t € N|X; € B(x*,€)} is called the first hitting time of the ball centred in x and
of radius €. We define the expected hitting time (EHT) as the expected value of the first hitting
time. Log-linear convergence at rate r is related to a expected hitting time of E(7¢) ~In(1/€)/r
when € goes to 0 [67].

Let x* € X denote the optimum of a function f : X — R. We define the running time to a
precision € € R} as the random variable 7. := min{t € N|| f(X;) — f(x*)| < €}, and the expected
running time (ERT) as the expected value of the running time. Although when the objective
function is continuous the EHT and ERT are related, it is possible on functions with local
optima to have arbitrarily low ERT and high EHT.

2.2 Deterministic Algorithms

In this section we give several classes of deterministic continuous optimization methods.
Although this chapter is dedicated to black-box optimization methods, we still present some
first and second order methods, as they can be made into zero order methods by estimating the
gradients or the Hessian matrices (e.g. through a finite difference method [61]). Furthermore,
these methods being widely known and often applied in optimization they are an important
comparison point.

We start this section by introducing Newton’s method [54] which is a second order algorithm,
and Quasi-Newton methods [109, Chapter 6] which are first order algorithms. Then we
introduce Trust Region methods [52] which can be derivative-free or first order algorithms.
Then we present Pattern Search [115, 136] and Nelder-Mead [108] which are derivative-free
methods, with the latter being also function-value free.

2.2.1 Newton’s and Quasi-Newton Methods

Inspired from Taylor’s expansion, Newton’s method [54] is a simple deterministic second
order method that can achieve quadratic convergence to a critical point of a C? function
f:R" — R. Originally, Newton’s method is a first order method which converges to a zero of
a function f : R"” — R”. To optimize a general C? function f : R” — R, Newton’s method is
instead applied to the function g : x € R” — V f to search for points where the gradient is zero,
and is therefore used as a second order method. Following this, from an initial point xy € R"
and ¢ € N, Newton’s method defines x,; recursively as

X1 =% —Hp(x) Vg, f 2.3)

where Hy(x) is the Hessian matrix of f at x. Although the algorithm may converge to saddle
points, these can be detected when H ¢ (x,) is not positive definite. In order for (2.3) to be
well-defined, f needs to be C?; and if it is C3 and convex, then quadratic convergence is
achieved to the minimum of f [123, Theorem 8.5].
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Chapter 2. Introduction to Black-Box Continuous Optimization

In some cases, computing the gradient or the Hessian of f may be too expensive or not even
feasible. They can instead be approximated, which gives a quasi-Newton method. On simple
functions quasi-Newton methods are slower than Newton’s method but can still, under some
conditions, achieve superlinear convergence (see [37]); e.g. sequent method can achieve
convergence with order (1 + v5)/2. In general, Eq. (2.3) becomes

Xi+1 =X — APy (2.4)

where p, € R" is called the search direction and a; € R} the step-size. The step-size is chosen
by doing a line search in the search direction p,, which can be done exactly (e.g. using a
conjugate gradient method [110]) or approximately (e.g. using Wolfe conditions [140]). In
gradient descent method, the search direction p, is taken directly as the gradient of f. In
BFGS (see [109]), which is the state of the art in quasi-Newton methods, p, = B;lvx[ f where
B; approximates the Hessian of f.

These methods are well-known and often used, and so they constitute an important compari-
son point for new optimization methods. Also, even when derivatives are not available, if the
function to be optimized is smooth enough, approximations of the gradient are good enough
for these methods to be effective.

2.2.2 Trust Region Methods

Trust region methods (see [52]) are deterministic methods that approximate the objective
function f: X ¢ R” — R by a model function (usually a quadratic function) within an area
called the trust region. At each iteration, the trust region is shifted towards the optimum of
the current model of f. This shift is limited by the size of the trust region in order to avoid
over-estimating the quality of the model and diverging. The size of the trust region is increased
when the quality of the model is good, and decreased otherwise. The algorithm may use the
gradient of the function to construct the model function [144]. NEWUOA [112] is a derivative-
free state-of-the-art trust region method which interpolates a quadratic model using a smaller
number of points m € [r+2..1/2(n+ 1)(n + 2)] (the recommended m-value is 2n + 1) than the
1/2(n+1)(n+ 2) usually used for interpolating quadratic models. The influence of the number
of points m used by NEWUOA to interpolate the quadratic model is investigated in [119, 120].

2.2.3 Pattern Search Methods

Pattern search methods (first introduced in [115], [136]) are deterministic function-value free
algorithms that improve over a point x; € R” by selecting a step s; € P;, where P; is subset
of R” called the pattern, such that f(x; +o0s;) < f(x;), where o € R} is called the step-size.
If no such point of the pattern exists then x;; = x; and the step-size o is decreased by a
constant factor, i.e. 0,41 = 00 with 8 € (0, 1); otherwise x;+1 = x; + 0;s; and the step-size is
kept constant. The pattern P; is defined as the union of the column vectors of a non-singular
matrix M, of its opposite —M;, of the vector 0 and of an arbitrary number of other vectors
of R” [136]. Since the matrix M, has rank #, the vectors of P; span R". The pattern can be
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2.3. Stochastic algorithms

and should be adapted at each iteration: e.g. while a cross pattern (i.e. M; = Id}) is adapted
to a sphere function, it is not for an ellipsoid function with a large condition number (see
Section 2.4.2), and even less for a rotated ellipsoid.

2.2.4 Nelder-Mead Method

The Nelder-Mead method introduced in [108] in 1965 is a deterministic function-value free
algorithm which evolves a simplex (a polytope with n + 1 points in a n-dimensional space) to
minimize a function f: X < R"” — R. From a simplex with vertices (x;)c[1..n+1], the algorithm
sorts the vertices according to their f-values: (Xj.+1)ic[1..n+1] Such that f(xy.54+1) < ... <
fXn+1:n+1). Then, denoting x. := I/nZ?:1 Xi.n+1 the centroid of the n vertices with lowest
f-value, it considers three different points on the line between x. and the vertex with highest
f-value x;41.n+1. If none of these points have lower f-value than x,1.,+1, the simplex
is reduced by a homothetic transformation with respect to x;.,+1 and ratio lower than 1.
Otherwise, according to how the f-values of the three points rank with the f-values of the
vertices, one of these points replace x,,+1:n+1 as a vertex of the simplex.

It has been shown that Nelder-Mead algorithm can fail to converge to a stationary point even
on strictly convex functions (see [95]). Further discussion about Nelder-Mead algorithm can
be found here [142].

2.3 Stochastic algorithms

Stochastic optimization methods use random variables to generate solutions. This make these
algorithms naturally equipped to deal with randomness, which can prove useful on difficult
functions or in the presence of noise, by for example giving them a chance to escape a local
optimum.

In this section we introduce Pure Random Search [146] and Pure Adaptive Search [146],
Metropolis-Hastings [41], Simulated Annealing [84], Particle Swarm Optimization [83], Evo-
lutionary Algorithms [26], Genetic Algorithms [73], Differential Evolution [134], Evolution
Strategies [117], Natural Evolution Strategies [139] and Information Geometric Optimiza-
tion [111].

2.3.1 Pure Random Search

Pure Random Search [146] consists in sampling independent random vectors (X ) sery of R”
from the same distribution P until a stopping criterion is met. The sampling distribution is sup-
posed to be supported by the search space X. The random vector X; with the lowest f-value
is then taken as the solution proposed by the method, i.e. X0t := argmin . X, lkero..m S (X).
While the algorithm is trivial, it is also trivial to show that the sequence (Xt;eSt) teN CONverges
to the global minimum of any continuous function. The algorithm is however very inefficient,
converging sublinearly: the expected hitting time for the algorithm to enter a ball of radius
€ € R} centred around the optimum is proportional to 1/¢". It is therefore a good reminder that
convergence in itself is an insufficient criterion to assess the performance of an optimization
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algorithm, and any efficient stochastic algorithm using restarts ought to outperform pure
random search on most real-world function.

2.3.2 Pure Adaptive Search

Pure Adaptive Search [146] (PAS) is a theoretical algorithm which consists in sampling vectors
(X¢)en Of R” as in PRS, but adding that the support of the distribution from which X,
is sampled in the strict sub-level set V; := {x € X|f(x) < f(X;)}. More precisely, denoting
P the distribution associated to the PAS that we suppose to be supported by a set V; < R”,
X:+1 ~ P(:|V;) where P(:|V;) denotes the probability measure A € B(X) — P(AN V;y)/P(Vy).
Therefore (f (X)) ren is a strictly decreasing sequence and the algorithm converges to the
minimum of any continuous function. When f is Lipschitz continuous, that the space Vj is
bounded and that P is the uniform distribution on V}, the running time of PRS with uniform
distribution on Vy, nprs, is exponentially larger than the running time of PAS, npas, in the
sense that npgs = exp(npas + 0(npas)) with probability 1 [145, Theorem 3.2].

However, as underlined in [146] simulating the distribution P(:|V;) in general involves Monte-
Carlo sampling or the use of PRS itself, making the algorithm impractical.

2.3.3 Simulated Annealing and Metropolis-Hastings

Here we introduce the Metropolis-Hastings algorithm [41], which uses Monte-Carlo Markov
chains to sample random elements from a target probability distribution 7 supported on R",
and Simulated Annealing [84] which is an adaptation of the Metropolis-Hastings algorithm as
an optimization algorithm.

Metropolis-Hastings

Metropolis-Hastings was first introduced by Metropolis and al. in [97] and extended by
Hastings in [71]. Given a function f proportional to the probability density of a distribution
7, a point X; € R% and a conditional symmetric probability density g(x|y) (usually taken as a
Gaussian distribution with mean y [41]), the Metropolis-Hastings algorithm constructs the
random variable X, by sampling a candidate Y ; from ¢q(-|X;), and acceptingitas X;+1 = Y,
if f(Y ;) > f(X,), or with probability f(Y )/ f(X;) otherwise. If Y, is rejected, then X;;; = X;.
Given X € R?, the sequence (X;) ;e is a Markov chain, and, given that it is ¢-irreducible and
aperiodic, it is positive with invariant probability distribution 7, and the distribution of X;
converges to 7 [41].

Simulated Annealing

Simulated Annealing (SA) introduced in [96] in 1953 for discrete optimization problems [84],
the algorithm was later extended to continuous problems [34, 53]. SA is an adaptation of
the Metropolis-Hastings algorithm which tries to avoid converging to a local and non global
minima by having a probability of accepting solutions with higher f-values according to
Boltzmann acceptance rule. Denoting X, the current solution, the algorithm generates a
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candidate solution Y ; sampled from a distribution Q(:|X,). If f(Y;) < f(X;) then X} =Y,
otherwise X ;1 = Y ; with probability exp(—(f (Y ;) — f(X))/T;) and X ;11 = X; otherwise. The
variable T} is a parameter called the temperature, and decreases to 0 overtime in a process
called the cooling procedure, allowing the algorithm to converge.

Although simulated annealing is technically a black-box algorithm, the family of probability
distributions (Q(:|x))xex and how the temperature changes over time need to be selected
according to the optimization problem, making additional information on the objective
function f important to the efficiency of the algorithm. Note also that the use of the difference
of f-value to compute the probability of taking X ;,; = Y ; makes the algorithm not function-
value free. SA algorithms can be shown to converge almost surely to the ball of center the
optimum of f and radius € > 0, given sufficient conditions on the cooling procedure including
that Ty = (1 + u)N¢¢/In(z), that the objective function f : X — R is continuous, that the
distribution Q(:, x) is absolutely continuous with respect to the Lebesgue measure for all x € X,
and that the search space is compact [91].

2.3.4 Particle Swarm Optimization

Particle Swarm Optimization [83, 49, 132] (PSO) is a FVF optimization algorithm evolving a
"swarm", i.e. population of points called particles. It was first introduced by Eberhart and
Kennedy in 1995 [83], inspired from the social behaviour of birds or fishes. Take a swarm of
particules of size N, and (X ’;) ie[1..n] the particles composing the swarm. Each particle X lt is
attracted towards the best position it has visited, that is pf; := argmin X1 [ke[0..1]) f(x), and
towards the best position the swarm has visited, thatis g, := argmin, . ,i\;c;; ny f(%), while
keeping some of its momentum. More precisely, for V' the velocity of the particle X},

1 =OVi+ YRy o (P~ X)) +ygRgo (g, - X)) , (2.5)

where w, ¥, and y ¢ are real parameters of the algorithm, o denote the Hadamard product and
R, and Ry are two independent random vectors, whose coordinates in the canonical basis
are independent random variables uniformly distributed in [0, 1]. Then X ‘t is updated as
X, =Xi+vi. (2.6)
Note that the distribution of Rj, and Ry is not rotational invariant, and causes PSO to exploit
separability. Although PSO behaves well to ill-conditioning on separable functions, its perfor-

mances have been shown to be greatly affected when the problem is non-separable (see [70]).
Variants of PSO have been developed to avoid these shortcomings [35].

2.3.5 Evolutionary Algorithms

Evolutionary Algorithms [26, 143] (EAs) consist of a wide class of derivative-free optimization
algorithms inspired from Darwin’s theory of evolution. A set of points, called the population,
is evolved using the following scheme: from a population P of u € N* points called the parents,
a population O of 1 € N* new points called offsprings is created, and then u points among
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O or OuU P are selected to create the new parents. To create an offspring in O, an EA can use
two or more points from the parent population in a process called recombination, or apply a
variation to a parent point due to a random element, which is called mutation. The selection
procedure can operate on O U P in which case it is called elitist, or on O is which case it is
called non-elitist. The selection can choose the best y points according to their rankings in
[f-value, or it can use the f-value of a point to compute the chance that this point has to be
selected into the new population.

2.3.6 Genetic Algorihms

Genetic Algorithms [104, 60] (GAs) are EAs using mutation and particular recombination
operators called crossovers. GAs have first been introduced in [73], where the search space
was supposed to be the space of bit strings of a given length n € N* (i.e. X = {0,1}""). They
have been widely used and represent an important community in discrete optimization.
Adaptations of GAs to continuous domains have been proposed in [101, 40]. Taking two
points X; and Y, from the parent population, a crossover operator creates a new points by
combining the coordinates of X; and Y ,. To justify the importance of crossovers, GAs rely
on the so-called building-block hypothesis, which assumes that the problem can be cut into
several lower-order problems that are easier to solve, and that an individual having evolved
the structure for one of these low order problem will transmit it to the rest of the population
through crossovers. The usefulness of crossovers has long been debated, and it has been
suggested that crossovers can be replaced with a mutation operator with large variance. In
fact, in [81] it was shown that for some GAs in discrete search spaces, the classic crossover
operator is inferior to the headless chicken operator, which consists in doing a crossover of
a point with an independently randomly generated point, which can be seen as a mutation.
However, it has been proven in [56] that for some discrete problems (here a shortest path
problem in graphs), EAs using crossovers can solve these problems better than EAs using pure
mutation.

2.3.7 Differential Evolution

Differential Evolution (DE) is a function value free EA introduced by Storn and Price [134]. For
each point X, of its population, it generates a new sample by doing a crossover between this
point and the point A; + F(B; — C;), where A, B;, and C; are other distinct points randomly
taken the population, and F € [0,2] is called the differentiation weight. If the new sample Y,
has a better fitness than X}, then it replaces X; in the new population (i.e. X;+; = Y;). The
performances of the algorithm highly depends on how the recombination is done and of the
value of F [57]. When there is no crossover (i.e. the new sample Y, is A; + F(B;— C¢)), the
algorithm is rotational-invariant, but otherwise it is not [114, p. 98]. DE is prone to premature
convergence and stagnation [87].
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2.3.8 Evolution Strategies

Evolution Strategies (ESs) are function value free EAs using mutation, first introduced by
Rechenberg and Schwefel in the mid 1960s for continuous optimization [116, 126, 117]. Since
ESs are the focus of this work, a more thorough introduction will be given. From a distribution
Py, valued in R”, an ES samples A € N* points (Yi)ie[l,, 17> and uses the information on the
rankings in f-value of the samples to update the distribution Py, and other internal parameters
of the algorithm. In most cases, the family of distribution (Pp)gee are multivariate normal
distributions. A multivariate normal distribution, that we denote A (X, C;), is parametrized
by a mean X; and a covariance matrix C;; we also add a scaling parameter o called the step
size, such that (Yl;)ie[l../l] are sampled from o ;A (X, Cy). Equivalently,

Y!=X,+0,C}*N! , 2.7)

where (N l;)ieu“ A1 is a sequence of i.i.d. standard multivariate normal vectors that we call
random steps. The choice of multivariate normal distributions fits exactly to the context of
black-box optimization, as multivariate normal distributions are maximum entropy probabil-
ity distributions, meaning as little assumption as possible on the function f is being made.
However, when the problem is not entirely black-box and some information of f is available,
other distributions may be considered: e.g. separability can be exploited by distributions
having more weight on the axes, such as multivariate Cauchy distributions [64].

The different samples (Yl;)ie[l‘_ a1 are ranked according to their f-value. We denote Y’;A the
sample with the i Jowest [-value among the (Yl;)ie[ln 2- This also indirectly defines an
ordering on the random steps, and we denote N ?’1 the random step among (N{) jel1..A] COT-
responding to Y’;’l. The ranked samples (Yi”l) ier1..) are used to update X, the mean of the
sampling distribution, with one of the following strategy [67]:

1,A)-ES: X, =Y =X,+0,Cl2N . 2.8)
The (1, 1)-ES is called a non-elitist ES.
(1+A0)-ES: X=X+ 1f(Y%:A)Sf(Xt)a[C}’2N}Z" . (2.9)

The (1 + 1)-ES is called an elitist ES.

p . p )
(W pw, V-ES:  Xpo =X +Kkm Y wi(Yi— X)) = Xy +x,0,CH2 Y w;NEY | (2.10)
i=1 i=1

where p € [1..A], (w;)ieq1. ) € R* are weights such that Zé‘zl w; = 1. The parameter x, € R}
is called a learning rate, and is usually set to 1. The (u/uw, 1)-ES is said to be with weighted
recombination. If for all i € [1..u], w; = 1/, the ES is denoted (u/p, 1)-ES.
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Adaptation of the step-size

For an ES to be efficient, the step-size o, has to be adapted. Some theoretical studies [33, 78, 79]
consider an ES where the step-size is kept proportional to the distance to the optimum, which
is a theoretical ES which can achieve optimal convergence rate on the sphere function [19,
Theorem 2] (shown in the case of the isotropic (1, 1)-ES). Different techniques to adapt the
step-size exist; we will present o-Self-Adaptation [129] (0SA) and Cumulative Step-size Adap-
tation [66] (CSA), the latter being used in the state-of-the-art algorithm CMA-ES [66].

Self-Adaptation The mechanism of 0SA to adapt the covariance matrix of the sampling
distribution was first introduced by Schwefel in [127]. In 0SA, the sampling of the new points
Y’; is slightly different from Eq. (.2.7). Each new sample Y’; is coupled with a step-size a’; =
o.exp(r¢}), where 7 € R} and (&}) sen ieqn..4) is @ sequence of i.i.d. random variables, usually
standard normal variables [130]. The samples Y’; are then defined as

Yi:=X,+0!CV*N! , (2.11)

where (N l;)ie[l‘_ a1 is aii.d. sequence of random vectors with multivariate standard normal
distribution. Then 0’;}‘ is defined as the step-size associated to the sample with the i lowest
value, Yl;’l. The step-size is then adapted as 0441 = 0%1’1 fora (1,A)-ES,or o1 = lluZé‘:l al;
in the case of weighted recombination with weights w; =1 for all i € [1..u]. Note that using an
arithmetic mean to recombine the step-sizes (which are naturally geometric) creates a bias
towards larger step-size values.

The indirect selection for the step-size raises some problems, as raised in [63]: on a linear
function, since Ni and —N' are as likely to be sampled, the i best sample ¥** and the i"
worst sample Y’}‘i A are as likely to be generated by the same step-size, and therefore there is
no correlation between the step-size and the ranking. In [68] 0SA is analysed and compared
with other step-size adaptation mechanisms on the linear, sphere, ellipsoid, random fitness
and stationary sphere functions.

Cumulative Step-size Adaptation In Cumulative Step-size Adaptation (CSA), which is de-
tailed in [66], for a (u/uw, A)-ES the difference between the means of the sampling distribution
atiteration r and ¢+1isrenormalized as A; := \/fi;C; "/2(X ;41— X ) /oy where i, =1/ X! w?
and (w;)e(1. are the weights defined in page 21. If the objective function ranks the sam-
ples uniformly randomly, this renormalization makes A; distributed as a standard normal
multivariate vector. The variable A is then added to a variable p?, | called an evolution path

following
g o -1/2 Xt+1 _Xt
Pl =10-co)p? +V o2 —ce)/pwC; ' " —— . 2.12)
o
t

The coefficients in (2.12) are chosen such that if p7 ~ 4(0, Id ;) and if f ranks the samples
uniformly randomly, then A; ~ .A(0, Id ) and p{ , ~ A4(0,1d,). The variable ¢, € (0,1] is
called the cumulation parameter, and determines the "memory" of the evolution path, with
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the importance of a step Ay decreasing in (1 — ¢,) . The "memory" of the evolution path is
about 1/c,.

The step-size is then adapted depending on the length of the evolution path. If the evolution
path is longer (resp. shorter) than the expected length of a standard normal multivariate
vector, the step-size is increased (resp. decreased) as follow:

o =0 exp(c—a (”p?—ﬂu—l)) (2.13)
T, \E(r 0, 1d ) ) ' '

The variable d,; determines the variations of the step-size. Usually d,; is taken as 1.

Adaptation of the covariance matrix

To be able to solve ill-conditioned or not separable functions, evolution strategies need to
adapt the covariance matrix C;, which can be done with the state-of-the-art algorithm Covari-
ance Matrix Adaptation (CMA) [66]. CMA adapts the step-size by using CSA, and uses another
evolution path p, to adapt the covariance matrix:

X -X
Pr=0-0p,+\Viwe@ - =220 (2.14)

Ot

where c € (0,1]. The evolution path p, is similar to p7 with added information on the covari-
ance matrix.

The covariance matrix is then updated as follow:

u (Yi:/l_Xt)(Yi:)l_Xt)T
Cini=(1-c1-c)Ci+ app; +cuy wi— > d ) (2.15)
— i=1 o
rank-1 update ~- d
rank-p update

where (c1, ¢y) € (0, 1] and c; + ¢y < 1. The update associated to c is called the rank-one update,
and bias the sampling distribution in the direction of p,. The other is called the rank-u update,
and bias the sampling distribution in the direction of the best sampled points of this iteration.

2.3.9 Natural Evolution Strategies and Information Geometry Optimization

ESs can be viewed as stochastic algorithms evolving a population of points defined on the
search space X. In order to optimize a function f, the population needs to converge to the
optimum of f. And in order for this process to be efficient, the sampling distribution used to
evolve the population needs to be adapted as well throughout the optimization.

A new paradigm is proposed with Estimation of Distribution Algorithms [88]: an ES can be said
to evolve a probability distribution among a family of distribution (Pg)gce parametrized by 8 €
©. The current probability distribution Py, represents the current estimation of where optimal
values of f lies. Hence to optimize a function f, the mass of the probability distribution is
expected to concentrate around the optimum.

In this perspective, theoretically well-founded optimization algorithms can be defined[139,
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111] through stochastic gradient ascent or descent on the Riemannian manifold (Pg)gco
by using a natural gradient [4] which is adapted to the Riemannian metric structure of the
manifold (Pg)gee. Also, interestingly, as shown in [3, 59] the (u/puw, 1)-CMA-ES defined in
2.3.8 using rank-u update (i.e. setting ¢, = 0, 0o = 1 and ¢; = 0) can be connected to a natural
gradient ascent on the Riemannian manifold (Py)gce-

Natural Evolution Strategies

Given a family of probability distributions, Natural Evolution Strategies [139, 138, 59] (NESs)
indirectly minimize a function f : R"” — R by minimizing the criterion

j6) = fR Fe@Pydx) . 2.16)

Minimizing this criterion involves concentrating the distribution Py around the global minima
of f. To minimize J(0), a straightforward gradient descent

Or1 Zet—ﬂvej(gt) (2.17)

could be considered, where 1 € R is a learning rate. Using the so called log-likelihood trick, it
can be shown that

Vo J(0) = fR @)V In (Pp(x) Py(da) | (2.18)

which can be used to estimate Vg J(0) as Vg“ J(6) via

vEji9) = 1 if(Yi)Vgln(Pg(Yi)) . where (Yi). fidandYi~Py . (2.19)

Ao i€[l1..A]

However, as the authors of [138] stress out, the algorithm defined through (2.17) is not invariant
to a change of parametrization of the distribution. To correct this, NESs use the natural
gradient proposed in [4] which is invariant to changes of parametrization of the distribution.
The direction of the natural gradient @g J(6) can be computed using the Fisher information
matrix F(0) via

Vol (0):=F©)'Vej ) , (2.20)
where the Fisher information matrix is defined as

F():= f Voln (Pg(x)) Voln (Pg(x)) T Py(dx) . 2.21)
Rﬂ

Combining (2.20), (2.19) gives the formulation of NESs which update the distribution parame-
ter 6, through a stochastic natural gradient descent

0141 =0;—nF©O)™'Vg'J6)) . (2.22)
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Note that the Fisher information matrix can be approximated as done in [139]. However, in
[3, 59] expressions of the Fisher information matrix for multivariate Gaussian distribution are
given.

The criterion J(6) is not invariant to the composition of f by strictly increasing transformations
(see 2.4.5), and therefore the algorithm defined in (2.22) is not either. In [138] following
[111], in order for the NES to be invariant under the composition of f by strictly increasing
transformations, the gradient Vg J(0) is estimated through the rankings of the different samples
(Yi),-e[l_. 1) instead of through their f-value, i.e.

A

VeL2f(6) = %IZI w;Vyln (Pg ( YM)) , (2.23)
where (Y?) ief1..a1 is aii.d. sequence of random elements with distribution Py and Y} denotes
the element of the sequence (Yi)ie[l,_/l] with the i™ lowest f-value, and (w;)jen1.2) € R is a
decreasing sequence of weight such that Z?Zl |w;| = 1. The approximated gradient VSSLZ J(©)
can be used in (2.22) instead of Vgﬂ J(0) to make NES invariant with respect to the composition
of f by strictly increasing transformations.
When the probability distribution family (Py)gep is the multivariate Gaussian distributions, an
NES with exponential parametrization of the covariance matrix results results in eXponential
NES [59] (xNES).

Information Geometry Optimization

Information Geometry Optimization [111] (IGO) offers another way to turn a family of proba-
bilities (Pg)gce into an optimization algorithm. Instead of using J(0) of (2.16) as in NES, IGO
considers a criterion invariant to the composition of f by strictly increasing transformations

Jo,(0) := fR Wl @Pyd) | (2.24)

where Wefj , the weighted quantile function, is a transformation of f using Py, -quantiles ‘705,
and qgr defined as

dg,(x) :=Pr(f(Y) = f(0)|Y ~ Pp) (2.25)
dg,(x) :=Pr(f(Y) < f(0)|Y ~ Pp) (2.26)

and which define ng: as

w5 () if g5 (%) = g5 (%)
X 4, 2.27)

Wy (x) = i othenu
W qg[(x) w(q)dqg otherwise,

where the function w: [0,1] — R is any non-increasing function. Note that small f-values
correspond to high values of WG{ . Hence minimizing f translates into maximizing Jy, (0) over
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o.
In order to estimate ng; , A points (Y?) ie(1..2) are sampled independently from Py, and ranked

according to their f-value. We define their rankings through the function rk*: y € {Y’|i €
[1.Al} — #{j € [1.A]| f(Y7) < f(p)}, and then we define 10; as

(1), )= 70

where w: [0,1] — R is the same function as in (2.27). The IGO algorithm with parametrization

(2.28)

k= (Y% + 3
A

0, sample size A € N* and step-size 6t € R} is then defined as a stochastic natural gradient
ascent via the update

A

0,5, =0, +6tF(0t)_1% ,:Zl ; ((Yf)je[m) Vyln (Pg (Y"))‘Ht , 2.29)

where F(0,) is the Fisher information matrix defined in (2.21), and (Yh) jel1.A] are i.i.d. random

elements with distribution Py,. Note that the estimate of ng w;, is also invariant to the

composition of f by strictly increasing transformations, whicfl makes IGO invariant to the
composition of f by strictly increasing transformations. Note that as shown in [111, Theo-
rem 6], /AY | @i((Y7)jen.ap) Vo ln(Pg(Y"))|0:6[ is a consistent estimator of V9]9[(6)|6:9[.

IGO offers a large framework for optimization algorithms. As shown in [111, Proposition 20],
IGO for multivariate Gaussian distributions corresponds to the (¢/uw, 1)-CMA-ES with rank-
@ update (i.e. c; =0, ¢ = 1). IGO can also be used in discrete problems, and as shown in
[111, Proposition 19], for Bernoulli distributions IGO corresponds to the Population-Based

Incremental Learning [27].

2.4 Problems in Continuous Optimization

Optimization problems can be characterized by several features that can greatly impact the
behaviour of optimization algorithms on such problems, thus proving to be potential sources
of difficulty. We first identify some of these features, then discuss functions that are important
representatives of these features or that relate to optimization problems in general. Some
algorithms can be insensitive to specific types of difficulty, which we will discuss through the
invariance of these algorithms to a class of functions.

2.4.1 Features of problems in continuous optimization

Following [22], we give here a list of important features impacting the difficulty of optimization
problems. For some of the difficulties, we also give examples of algorithms impacted by the
difficulty, and techniques or algorithms that alleviate the difficulty.

A well-known, albeit ill-defined, source of difficulty is ruggedness. We call a function rugged
when its graph is rugged, and the more complex or rugged this graph is, the more information
is needed to correctly infer the shape of the function, and so the more expensive it gets to
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optimize the function. This ruggedness may stem from the presence of many local optima
(which is called multi-modality), the presence of noise (meaning that the evaluation of a point
x € X by f is perturbated by a random variable, so two evaluations of the same point may
give two different f-values), or the function being not differentiable or even not continuous.
Noise is a great source of difficulty, and appears in many real-world problems. We develop it
further in Section 2.4.4. The non-differentiability or continuity of the function is obviously a
problem for algorithms relying on such properties, such as first order algorithms like gradient
based methods. When the gradient is unavailable, these algorithms may try to estimate it
(e.g. through a finite difference method [89]), but these methods are sensitive to noise or
discontinuities. In contrast, as developed in Section 2.4.5, function-free value algorithms
are in a certain measure resilient to discontinuities. Multi-modality is also a great source of
difficulty. A multi-modal function can trap an optimization algorithm in a local minimum,
which then needs to detect it to get outside of the local minimum. This is usually done simply
by restarting the algorithm at a random location (see [107] and [94, Chapter 12] for more
on restarts). To try to avoid falling in a local optima, an algorithm can increase the amount
of information it acquires at each iteration (e.g. increase of population in population-based
algorithms). How large should the increment be is problem dependent, so some algorithms
adapt this online over each restart (e.g. IPOP-CMA-ES [23]).

The dimension of the search space X is a well known source of difficulty. The "curse of
dimensionality" refers to the fact that volumes grow exponentially with the dimension, and so
the amount of points needed to achieve a given density in a volume also grows exponentially.
Also, algorithms that update full n x n matrices, such as BFGS (see 2.2.1) or CMA-ES (see 2.3.8)
typically perform operations such as matrices multiplication or inversion that scale at least
quadratically with the dimension. So in very high dimension (which is called large-scale) the
time needed to evaluate the objective function can become negligible compared to the time
for internal operations of these algorithms, such as matrices multiplication, inversion or eigen
values decomposition. In a large-scale context, these algorithms therefore use sparse matrices
to alleviate this problem (see [90] for BFGS, or [92] for CMA-ES).

IllI-conditioning is another common difficulty. For a function whose level sets are close to an
ellipsoid, the conditioning can be defined as the ratio between the largest and the smallest
axis of the ellipsoid. A function is said ill-conditioned when the conditioning is large (typically
larger than 10%). An isotropic ES (i.e. whose sampling distribution has covariance matrix Id ,
see Section 2.3.8) will be greatly slowed down. Algorithms must be able to gradually learn the
local conditioning of the function through second order models approximating the Hessian or
its inverse (as in BFGS or CMA-ES).

A less known source of difficulty is non-separability. A function f with global optimum
x* = (x],...,x;) € R" is said separable if for any i € [1..n] and any (a;) je;1.n € R", x] =
argmin, . f(ay,...,ai-1,X,ai+1,...,a,). This implies that the problem can be solved by solv-
ing n one-dimensional problems, and that the coordinate system is well adapted to the
problem. Many algorithms assume the separability of the function (e.g. by manipulating
vectors coordinate-wise), and their performances can hence be greatly affected when the
function is not separable.
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Constraints are another source of difficulty, especially as many optimization algorithms
are tailored with unconstrained optimization in mind. While any restriction of the search
space from R" to one of its subset is a constraint, constraints are usually described through
two sequences of functions (g;);eq1..-) and (h;)ie1..1, the inequality constraints and equality
constraints. The constrained optimization problem then reads

?gulgf(x)
subject to g;(x) =0forie[l..r] and
hi(x)=0forie[l..s]

Constraints are an important problem in optimization, and many methods have been devel-
oped to deal with them [100, 51, 109]. This subject is developed further in this section.

2.4.2 Model functions

In order to gain insight in an optimization algorithm, it is often useful to study its behaviour
on different test functions which represent different situations and difficulties an algorithm
may face in real-world problems. Important classes of test functions include

* Linear functions: If the algorithm admits a step-size o, linear functions model when
the step-size is small compared to the distance to the optimum. The level sets of the
objective function may then locally be approximated by hyperplanes, which corresponds
to the level sets of a linear function. Since a linear function has no optimum, we say that
an optimization algorithm solves this function if the sequence (f(X))en diverges to
+00, where X is the solution recommended by the algorithm at step ¢. Linear functions
need to be solved efficiently for an algorithm using a step-size to be robust with regards
to the initialization.

¢ Sphere function: The sphere function is named after the shape of its level sets and is
usually defined as

n
. n 2 _ 2
fsphere-xEIR — [lx]l _Z[x]i .
i=1

The sphere function model an optimal situation where the algorithm is close to an
optimum of a convex, separable and well conditioned problem. Studying an algorithm
on the sphere function tells how fast we can expect an algorithm to converge in the best
case. The isotropy and regularity properties of the sphere function also make theoretical
analysis of optimization algorithms easier, and so they have been the subject of many
studies [33, 18, 78, 79].

¢ Ellipsoid functions: Ellipsoid functions are functions of the form
feltipsoia : X € R"—x"0"DOx ,
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where D is a diagonal matrix and O is an orthogonal matrix, and so the level sets are
ellipsoids. Denoting a; the eigenvalues of D, the number maxe(1. 5 @;/ min;e(;. ) a; is
the condition number. When O = Id,, and with a large condition number, ellipsoid
functions are ill-conditioned separable sphere functions, making them interesting func-
tions to study the impact of ill-conditioning on the convergence of an algorithm. When
the matrix 07 DO is non diagonal and has a high condition number, the ill-conditioning
combined with the rotation makes the function non-separable. Using ellipsoids with
both OT DO diagonal or non-diagonal and high condition number can therefore give a
measure of the impact of non-separability on an algorithm.

e Multimodal functions: Multimodal functions are very diverse in shape. Multimodal
functions may display a general structure leading to the global optimum, such as the
Rastrigin function [106]

n
frastrigin := 10n+ Y_ [x]5 + 10cos(27[x];) .
i=1

The global structure of frastrigin is given by X7, [x]%, while many local optima are created
by 10cos(27[x];). In some functions, such as the bi-Rastrigin Lunacek function [55]
n n n

([x]; — )%, dn+sy ([x]; — p2)* } +10) " (1-cos2r[x]) ,
=1 i=1 i=1

ﬁunacek = min{
i

where (u1,d, s) € R3 and py = — /,uf —d/s, this general structure is actually a trap. Oth-
ers display little general structure and algorithms need to fall in the right optimum.
These functions can be composed by a diagonal matrix and/or rotations to further study
the effect of ill-conditioning and non-separability on the performances of optimization
algorithms.

2.4.3 Constrained problems

In constrained optimization, an algorithm has to optimize a real-valued function f defined
on a subset of R” which is usually defined by inequality functions (g;);e1..-) and equality
functions (h;)eq1..5). The problem for minimization then reads

?,}ul@l%f(x)
subject to g;(x) =0forie[l..r] and
h;(x)=0forie[l..s]

Constraints can be linear or non-linear. Linear constraints appear frequently as some variables
are required to be positive or bounded. When all coordinates are bounded, the problem is
said to be box constrained. Constraints can also be hard (solutions are not allowed to violate
the constraints) or soft (violation is possible but penalized). The set of points for which the
constraints are satisfied is called the feasible set. Note that an equality constraint (x) = 0
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can be modelled by two inequality constraints /(x) = 0 and —h(x) = 0, so for simplicity of
notations we consider in the following only inequality constraints.

In the case of constrained problems, necessary conditions on a C! objective function for the
minimality of f(x*), such as V-~ f =0, do not hold. Indeed, an optimum x* can be located on
constraint boundaries. Instead, Karush-Kuhn-Tucker (KKT) conditions [82, 86] offer necessary
first order conditions for the minimality of f(x*).

Real world problems often impose constraints on the problem, but many continuous optimiza-
tion algorithms are designed for unconstrained problems [128, 28]. For some optimization
algorithms a version for box constraints has been specifically developed (e.g. BOBYQA [113]
for NEWUOA [112], L-BFGS-B [38] for L-BFGS [90]). In general, many techniques have been
developed to apply these algorithms to constrained problems, and a lot of investigation has
been done on the behaviour of different algorithms coupled with different constraint-handling
methods, on different search functions [103, 50, 100, 6, 124, 109].

An overview of constraint-handling methods for Evolutionary Algorithms has been concluded
in [51, 100]. Since ESs, which are Evolutionary Algorithms, are the focus of this thesis, fol-
lowing [51, 100] we present a classification of constraint handling methods for Evolutionary
Algorithms:

* Resampling: if new samples are generated through a random variable that has positive
probability of being in the feasible set, then if it is not feasible it can be resampled until
it lies in the feasible set. Although this method is simple to code, resampling can be
computationally expensive, or simply infeasible with equality constraints.

¢ Penalty functions: penalty functions transform the constrained problem in an uncon-
strained one by adding a component to the objective function which penalizes points
close to the constraint boundary and unfeasible points [109, Chapter 15,17][133]. The
problem becomes minyeg» f(x) + p(x)/p where p is the penalty function and p € R} is
the penalty parameter and determines the importance of not violating the constraint,
and the constrained problem can be solved by solving the unconstrained one with de-
creasing values of y [109, Chapter 15]. The penalty parameter is often adapted through-
out the optimization (see e.g. [93, 65]). Generally, p(x) = 0 if x is feasible [100], although
for barrier methods unfeasible solutions are given an infinite fitness value, and p(x)
increases as x goes near the constraints boundaries [109, 133]. Usually the function p is
a function of the distance to the constraint, or a function of the amount of violated con-
straints [133]. A well-known penalty function is the augmented Lagrangian [29] which
combine quadratic penalty functions [137] with Lagrange multipliers from the KKT con-
ditions into p(x) = Z;zl pi(x) where p;(x) = —A’;gi (x)+gi (x)2/(2p) ifgi(x)—pA; =0,and
pi(x) = —,wl?/ 2 otherwise. The coefficients (1;);c1..;] are estimates of the Lagrangian
multipliers of the KKT conditions, and are adapted through 1; — max(1; — g;(x)/,0).

* Repairing: repairing methods replace unfeasible points with feasible points, e.g. by
projecting the unfeasible point to the nearest constraint boundary [6]. See [124] for a
survey of repair methods.
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* Special operators or representations: these methods ensures that new points cannot
be unfeasible by changing how the points are sampled directly in the algorithm, or
finding a representation mapping the feasible space X to R? [105, 85, 102]. In [85], the
feasible space is mapped to a n-dimensional cube (which corresponds to R” with spe-
cific linear constraints), and in [105] the feasible space constrained by linear functions is
mapped to the unconstrained space R”. Resampling and repair can also be considered
as special operators.

* Multiobjective optimization: contrarily to penalty functions where the objective func-
tion and constraint functions are combined into a new objective function, the con-
strained problem can be seen instead as a problem where both the objective function
and the violation of the constraints are optimized as a multiobjective problem (see [99]
for a survey).

2.4.4 Noisy problems

A function is said noisy when the reevaluation of the f-value of a point x can lead to a different
value. Noisy functions are important to study as many real-world problems contain some noise
due to the imperfection of measurements, data, or because simulations are used to obtain a
value of the function to be optimized. For x € X, the algorithm does not have direct access
to f(x), but instead the algorithm queries a random variable F(x). Different distributions for
F(x) have been considered [17], and correspond to different noise models, e.g.

Additive noise [80] : F(x) 2 fx)+N
Multiplicative noise [5]: F(x) < f(x)(1+N)

Actuator noise [131] : F(x) gf(x+N) ,

where N and N are random elements. When N is a standard normal variable, the noise is
called Gaussian noise [80]. Other distributions for N have been studied in [12], such as Cauchy
distributions in [11].

The inaccuracy of the information acquired by an optimization algorithm on a noisy function
(and so, the difficulty induced by the noise) is directly connected to the variation of f-value
respectively to the variance of the noise, called the signal-to-noise ratio [65]. In fact, for addi-
tive noise on the sphere function where this ratio goes to 0 when the algorithm converges to
the optimum, it has been shown in [17] that ESs do not converge log-linearly to the minimum.
An overview of different techniques to reduce the influence of the noise is realized in [80]. The
variance of the noise can be reduced by a factor vk by resampling k times the same point.
The number of times a point is resampled can be determined by a statistical test [39], and for
EAs displaying a population of points, which point should be resampled can be chosen using
the ranking of the points [1]. Another method to smooth the noise is to construct a surrogate
model from the points previously evaluated [125, 36], which can average the effect of the noise.
Population based algorithms, such as EAs, are naturally resilient to noise [5], and a higher
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population size implicitly reduces the noise [8]. For an ES, increasing only the population size
A is inferior to using resampling [62], but increasing both A and p is superior [5] when the
step-size is appropriately adapted.

2.4.5 Invariance to a class of transformations

Invariances [69, 70, 25] are strong properties that can make an algorithm insensitive to some
difficulties. They are therefore important indicators of the robustness of an algorithm, which
is especially useful in black-box optimization where the algorithms need to be effective on a
wide class of problems.

An algorithm is said to be invariant to a class of transformations ¥ if for all functions f and any
transformation g € €, the algorithm behaves the same on f and go f or f o g, depending on
the domain of g. More formally following [69], let /2 : {X — R} — 2X=R be a function which
maps a function f: X — R to a set of functions, let S denote the state space of an algorithm <,
and o/ : S — S be an iteration of &/ under an objective function f. The algorithm </ is called
invariant under # if for all f: X — R and h € #(f) there exists a bijection Ty, : S — S such
that

,Q{ho Tf,h(s) = Tf,h(s) O.fo . (2.30)

A basic invariance is invariance to translations, which is expected of any optimization al-
gorithm. An important invariance shared by all FVF algorithms is the invariance to strictly
increasing functions. This implies that a FVF algorithm can optimize just as well a smooth
function than its composition with any non-convex, non-differentiable or non-continuous
function, which indicates robustness against rugged functions [58]. Another important invari-
ance is the invariance to rotations. This allows a rotation invariant algorithm to have the same
performances on an ellipsoid and a rotated ellipsoid, showing robustness on non-separable
functions.

The No Free Lunch theorem [141] states (for discrete optimization) that improvement over
a certain class of functions is offset by lesser performances on another class of functions.
Algorithms exploiting a particular property of a function may improve their performances
when the objective function has this property, at the cost invariance and of their performances
on other functions. For example, algorithms exploiting separability are not invariant to rota-
tions. In [70] CMA-ES (see 2.3.8) is shown to be invariant to rotations, while the performances
of PSO (see 2.3.4) are shown to be greatly impacted on ill-conditioned non-separable func-
tions. In [21] the dependence of BFGS (see 2.2.1), NEWUOA (see 2.2.2), CMA-ES and PSO on
ill-conditioning and separability is investigated.
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2.5 Theoretical results and techniques on the convergence of Evo-
lution Strategies

We will present a short overview of theoretical results on ESs. Most theoretical studies on ESs
are focused on isotropic ESs (that is the covariance matrix of their sampling distribution is
equal to the identity matrix throughout the optimization).

Almost sure convergence of elitist ESs with constant step-size (or non-elitist ESs in a bounded
search space) has been shown in [121][20] on objective functions with bounded sublevel sets
E. :={x € X|f(x) < €}. However constant step-size implies a long expected hitting time of the
order of 1/¢" to reach an e-ball around the optimum [20], which is comparable with Pure
Random Search and therefore too slow to be practically relevant. Note that when using step-
size adaptation, ESs are not guaranteed convergence, and the (1 + 1)-ES using the so-called 1/5
success rule has been shown with probability 1 to not converge to the optimum of a particular
multi-modal function [122]. Similarly, on a linear function with a linear constraint, a (1,1)-
CSA-ES and a (1, 1)-0SA-ES can converge log-linearly [14, 15, 6], while on a linear function
divergence is required. In constrained problems, the constraint handling mechanism can be
critical to the convergence or divergence of the algorithm: for any value of the population
size A or of the cumulation parameter c a (1, 1)-CSA-ES using resampling can fail on a linear
function with a linear problem, while for a high enough value of 1 or low enough value of c a
(1, 1)-CSA-ES using repair appears to solve any linear function with a linear constraint [6].
The convergence rate of ESs using step-size adaptation has been empirically observed to be
log-linear on many problems. It has been shown in [135] that comparison based algorithms
which use a bounded number of comparisons between function evaluations cannot converge
faster than log-linearly. More precisely, the expected hitting time of a comparison based
algorithm into a ball B(x*,€) (where x* is the optimum of f) is lower bounded by nIn(1/¢)
when € — 0. And more specifically, the expected hitting time of any isotropic (1,A) and
(1+ A)-ESs is lower bounded by bnIn(1/€) A In(A) when € — 0 where b € R} is a proportionality
constant [76, 77]. On the sphere function and some ellipsoid functions for a (1+1)-ES using the
so-called 1/5-success rule, the expected number of function evaluations required to decrease
the approximation error f(Xg) — f(x*) by a factor 2~/ where ¢ is polynomial in n has been
shown to be O(tn) [74, 75].

Besides studies on the expected hitting time of ESs, a strong focus has been put in proofs of
log-linear convergence, estimations of the convergence rates and the dependence between the
convergence rate and the parameters of an algorithm. Note that the estimation of convergence
rates or the investigation of their dependency with other parameters often involve the use
of Monte-Carlo simulations. For (®;) ey a positive Markov chain valued on X with invariant
measure 7 and k& : X — R a function, the fact that a Monte-Carlo simulationl/t}) ,tc_:%) h(Dy)
converge independently of their initialisation to E; (h(®y)) is implied by the h-ergodicity of
(®¢) reny, which is therefore a crucial property. In many theoretical work on ESs this property is
assumed, although as presented in 1.2.9 Markov chain theory provides tools to show ergodicity.
We will start this chapter by introducing in 2.5.1 the so-called progress rate, which can be
used to obtain quantitative estimates of lower bounds on the convergence rate , and results
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obtained through it. Then in 2.5.2 we will present results obtained by analysing ESs using
the theory of Markov chains. And then in 2.5.3 we present ordinary differential equations
underlying the IGO algorithm presented in 2.3.9.

2.5.1 Progressrate

The normalized progress rate [30]) is a measurement over one iteration of an ES, defined as
the dimension of the search space n multiplied by the expected improvement in the distance
to the optimum normalized by the current distance to the optimum, knowing X; the current
mean of the sampling distribution and S; the other parameters of the algorithm or of the
problem; that is

1Xe = X" = 1 X 41 = %7

*=nE
¢ X, — x|

Xy, St) . (2.31)

The fact that the normalized progress rate is a measurement over one iteration links the
normalized progress rate with the convergence of ESs where the step-size is kept proportional
to the distance to the optimum (see [19]). On the sphere function for isotropic ESs, ¢* depends
of the distance to the optimum normalized by the step-size. Thus the normalized progress rate
is usually expressed as a function of the normalized step-size 0 * = no /|| X; —x*|| [30], which
is a constant when the step-size is kept proportional to the distance to the optimum. This has
been used in [30, 117, 31] to define an optimal step-size as the value of o* that maximizes the
normalized progress rate, and to study how the progress rate changes with o *. Similarly, it has
been used to define optimal values for other parameters of the algorithm, such as u/A for the
(u/p, A)-ES [31], as the values maximizing the progress rate. Through different approximations,
the dependence of the progress rate on these values is investigated [30, 31].

The progress rate lower bounds the convergence rate of ESs. Indeed, take (X ;) ;en the sequence
of vectors corresponding to the mean of the sampling distribution of an ES, and suppose that
the sequence (| X — x™||) ey converges in mean log-linearly to the rate r € R}. Since for x e R},
1-x < —In(x), we have

X1 —x*
(p*:n(l—E(” t+1 [ X, St))
1 X —x*|
X _ *
S—nln(E(M Xy, Sl’))
X —x*|l
X _ *
S—nE(ln(M) X, S[)=nr ,
1 X, —x*|

so the progress rate is a lower bound to the convergence rate multiplied by n, and a positive
progress rate implies that E(In(|| X ;41 —x*||/| X ;—x* ||)) converges to a negative value. However,
suppose that | X 1 —x* /| X;— x*|| ~ exp(A(0,1) — a) for a € R}. Then if a is small enough,
then E(|| X;+1 —x* I/l X — x*||) = 1 which imply a negative progress rate, while E(In(|| X ;41 —
x*|I/11X;—x*)) < 0 which implies log-linear convergence; hence a negative progress rate
does not imply divergence [19]. The progress rate is therefore not a tight lower bound of the
convergence rate of ESs.
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To correct this, the log-progress rate ¢ [19] can be considered. It is defined as

*
5 = nE (ln (H)‘Xt,st) (2.32)
By definition, the log-progress rate is equal to the expected value of the convergence rate of
ESs where the step-size is kept proportional to the optimum, which as shown in [19] consists in
a tight lower bound of the convergence rate of ESs. Furthermore, on the sphere function for a
(1, 1)-ES the normalized progress rate and the log-progress rate coincide when the dimension
goes to infinity [19, Theorem 1], which makes high dimension an important condition for the
accuracy of results involving the normalized progress rate.

Extensive research has been conducted on the progress rate, which give quantitative lower
bounds (i.e. that can be precisely estimated) to the convergence rate in many different sce-
narios [67]. The (1 + 1)-ES on the sphere function [117], sphere function with noise [10], the
(u/ 1, 1)-ES on the sphere function [30, 31] which gives when n — oo an optimal ratio u/A of
0.27 for the sphere function, sphere function with noise [9]. Different step-size adaptation
mechanisms have also been studied where the normalized step-size is assumed to reach
a stationary distribution, and where its expected value under the stationary distribution is
approximated and compared to the optimal step-size. This has been realized for CSA (see
2.3.8) on the sphere [7] and ellipsoid functions [13], or for 0SA (see (see 2.3.8)) on the linear
[63] and sphere [32] functions.

2.5.2 Markov chain analysis of Evolution Strategies

Markov chain theory was first used to study the log-linear convergence of ESs in [33], which
proves the log-linear convergence on the sphere function of a (1, 1)-ES where the step-size
is kept proportional to the distance to the optimum. It also analyses the (1,1)-0SA-ES on
the sphere function and assumes the positivity and Harris recurrence of the Markov chain
involved, from which it deduces the log-linear convergence of the algorithm. A full proof of
the positivity and Harris recurrence of a Markov chain underlying the (1, 1)-oSA-ES, and so
of the linear-convergence of a (1, 1)-0SA-ES on the sphere function is then realized in [18].
In [79] a scale-invariant (1 + 1)-ES on a sphere function with multiplicative noise is proven
to converge log-linearly almost surely if and only if the support of the noise is a subset of R .
All of these studies use a similar methodology which is introduced in [25]. The paper [25]
proposes a methodology to analyse comparison-based algorithms adapting a step-size, such
as ESs, on scaling invariant functions. Scaling invariant functions are a wide class of functions
which includes the sphere, the ellipsoid and the linear functions. A function f : R" — R is
called scaling invariant with respect to x* € R" if

fsfy e fx +px—x") < f(x"+p(y—x) , forall (x,y) eR"xR", peR} . (2.33)

Scaling invariant functions are useful to consider in the context of comparison-based algo-
rithms (such as ESs), as the fact that they are comparison based makes them invariant to any
rescaling of the search space around x*. Note that, as shown in [25], a function which is scaling
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invariant with respect to x* cannot have any strict local optima except for x* (and x* may
not be alocal optima, e.g. for linear functions). A more structured class of scaling invariant
functions is positively homogeneous functions: a function f : R” — R is called positively
homogeneous with degree a > 0 if

f(px)=1pl*f(x) forall p>0andxeR". (2.34)

As shown in [25] the class of scaling invariant functions is important for ESs as, under a few
assumptions, on scaling invariant functions the sequence (X;/0) ten is a time-homogeneous
Markov chain. Proving that this Markov chain is positive and Harris recurrent can be used
to show the linear convergence or divergence of the ES. The methodology proposed in [25]
is used in [24] to show the log-linear convergence of a (1 + 1)-ES with a step-size adaptation
mechanism called the one-fifth success rule [117] on positively homogeneous functions.

2.5.3 1GO-flow

Let (Pp)gece denote a family of probability distributions parametrized by 8 € ©. The IGO-
flow [111] is the set of continuous-time trajectories on the parameter space © defined by the
ordinary differential equation

aé;

= FO,)™ fR ) ng (X) Vg In (Py(x))lg—g, P, (dx) , (2.35)

where F(6,) is the Fisher information matrix defined in (2.21), and ng; is the weighted quantile
function defined in (2.27). IGO algorithms defined in 2.3.9 are a time discretized version of
the IGO-flow, where ng[ (x) and the gradient VgIn(Pg(x))lg-g, are estimated using a number
A € N* of samples (Y");¢. 1) i.i.d. with distribution Py, through the consistent estimator
VAYE  wi(Y7) jen.ap) Voln(Py(Y) |9=6, (see [111, Theorem 6]), with i; defined in (2.28).
IGO algorithms offer through the IGO-flow a theoretically tractable model. In [2] the IGO-
flow for multivariate Gaussian distributions with covariance matrix equal to oId; has been
shown to locally converge on C? functions with A,-negligible level sets to critical points of
the objective function that admit a positive definite Hessian matrix; this holds under the
assumption that (i) the function w used in (2.27) is non-increasing, Lipschitz-continuous
and that w(0) > w(1); and (ii) the standard deviation o, diverges log-linearly on the linear
function. Furthermore, as the (u/uw, 1)-CMA-ES with rank-u update (i.e. c; =1, ¢c; =0, see
2.3.8) and the xNES described in 2.3.9 have both been shown to be connected with IGO for
multivariate Gaussian distributions (see [111, Proposition 20, Proposition 21], results in the
IGO-flow framework have impact on the CMA-ES and the NES.
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Chapter 3

Contributions to Markov Chain Theory

In in this chapter we present a model for Markov chains for which we derive sufficient condi-
tions to prove that a Markov chain is a ¢-irreducible aperiodic T-chain and that compact sets
are small sets for the chain. Similar results using properties of the underlying deterministic
control model as presented in 1.2.6 have been previously derived in [98, Chapter 7]. These
results are placed in a context where the Markov chain studied ® = (®;)en, valued on a state
space X which is a open subset of R”, can be defined through

D1 =G @, Us41) (3.1)

where G : X x RP — X is a measurable function that we call the transition function, and
(U{)ten- is ai.id. sequence of random elements valued in R”. To obtain the results of [98,
Chapter 7] the transition function G is assumed to be C* and the random element U, is
assumed to admit a lower semi-continuous density p. However the transition functions as
described in (3.1) of most of the Markov chains that we study in the context of ESs are not
C®, and not even continuous due to the selection mechanism in ESs, and so the results of [98,
Chapter 7] cannot be applied to most of our problems.

However, we noticed in our problems the existence of a : X x R? — O a measurable function
where O is an open subset of R, such that there exists a C* function F : X x O — X for which
we can define our Markov chain through

D1 = F( @, (P, Ur41)) - (3.2)

With this new model where the function « is typically discontinuous, and the sequence
(Wi1)ten = (@(@, U41)) ren is typically not i.i.d., we give sufficient conditions related to the
ones of [98, Chapter 7] to prove that a Markov chain is ¢-irreducible, aperiodic T-chain and
that compact sets are small sets. These conditions are

1. the transition function F is C1,
2. for all x € X the random element a(x, U,) admits a density py,

3. the function (x, w) — px(w) is lower semi-continuous,
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4. there exists x* € X a strongly globally attracting state, k € N* and w™* € O+ ; such that
FK(x*,.) is a submersion at w*.

The set Oy i is the support of the conditional density of (W) ;c[1. k) knowing that &g = x*; F k
is the k-steps transition function inductively defined by F 1= Fand F''' (x,wy,...,ws1) =
F'(F(x,w1),w>,...,w1); and the concept of strongly globally attracting states is introduced
in the paper presented in this chapter, namely x* € X is called a strongly globally attracting
state if

VyeX, Ve>0, 3ty eN* suchthat Ve =1y, AL NB&x* e #0 , (3.3)

with Afr (y) the set of states reachable at time ¢ from y, as defined in (1.11).

To appreciate these results it is good to know that proving the irreducibility and aperiodicity of
some Markov chains exhibited in [25] used to be a ad-hoc and tedious process, in some cases
very long and difficult!, while proving so is now relatively trivial.

We present this new model and these conditions in the following paper, and in the same
paper we use these conditions to show the ¢-irreducibility, aperiodicity and the property that
compact sets are small sets, for Markov chains underlying the so-called xNES algorithm [59]
with identity covariance matrix on scaling invariant functions, and for the (1,1)-CSA-ES
algorithm on a linear constrained problem with the cumulation parameter ¢, equal to 1,
which were problems we could not solve before these results.

3.1 Paper: Verifiable Conditions for Irreducibility, Aperiodicity and
T-chain Property of a General Markov Chain

The following paper [42] will soon be submitted to Bernoulli, and presents sufficient conditions
for the irreducibility, aperiodicity, T-chain property and the property that compact sets are
petite sets for a Markov chain, and then presents some applications of these conditions to
problems involving ESs as mentioned in the beginning of this chapter. The different ideas and
proofs in this work are a contribution of the first author. The second author gave tremendous
help to give the paper the right shape, and to proof read as well as discuss the different ideas
and proofs.

1Anne Auger, private communication, 2013.
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We consider in this paper Markov chains on a state space being an open subset of R" that obey
the following general non linear state space model: @441 = F (P¢, (P, Ugt1)),t € N, where
(Ui)ten+ (each U, € RP) are i.i.d. random vectors, the function «, taking values in R™, is a
measurable typically discontinuous function and (x, w) — F(x, w) is a C' function. In the spirit
of the results presented in the chapter 7 of the Meyn and Tweedie book on “Markov Chains
and Stochastic Stability”, we use the underlying deterministic control model to provide sufficient
conditions that imply that the chain is a ¢-irreducible, aperiodic T-chain with the support of the
maximality irreducibility measure that has a non empty interior. Our results rely on the coupling
of the functions F' and a: we assume that for all x, a(x,U;) admits a lower semi-continuous
density and then pass the discontinuities of the overall update function (x,u) — F(x, a(x,u))
into the density while the function (x, w) — F(x, w) is assumed C". In contrast, using previous
results on our modelling would require to assume that the function (x,u) — F(x,a(x,u)) is
ce.

We introduce the notion of a strongly globally attracting state and we prove that if there
exists a strongly globally attracting state and a time step k, such that we find a k-path such
that the &*® transition function starting from x*, F¥(x*,.), is a submersion at this k-path, the
the chain is a ¢-irreducible, aperiodic, T-chain.

We present two applications of our results to Markov chains arising in the context of adaptive
stochastic search algorithms to optimize continuous functions in a black-box scenario.

Keywords: Markov Chains, Irreducibility, Aperiodicity, T-chain, Control model, Optimization.
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1. Introduction

Let X be an open subset of R” and O an open subset of R™ equipped with their Borel
sigma-algebra B(X) and B(O) for n, m two integers. This paper considers Markov chains
® = (P4)ten defined on X via a multidimensional non-linear state space model

CI)t+1 =G (q)t, Ut+1), teN (1)

where G : X x R? — X (for p € N) is a measurable function (R? being equipped of the
Borel sigma-algebra) and (Uy);en+ is an i.d.d. sequence of random vectors valued in RP
and defined on a probability space (2, .4, P) independent of @ also defined on the same
probability space, and valued in X. In addition, we assume that ® admits an alternative
representation under the form

‘I’t+1 = F(@t,a(©t7Ut+1)) ) (2)

where F' : X x O — X is in a first time assumed measurable, but will typically be
C! unless explicitly stated and o : X x RP — O is measurable and can typically be
discontinuous. The functions F, G and « are connected via G(x,u) = F(x, a(x,u)) for
any x in X and u € R? such that G can also be typically discontinuous.

Deriving ¢-irreducibility and aperiodicity of a general chain defined via (1) can some-
times be relatively challenging. An attractive way to do so is to investigate the underlying
deterministic control model and use the results presented in [8, Chapter 7] that connect
properties of the control model to the irreducibility and aperiodicity of the chain. Indeed,
it is typically easy to manipulate deterministic trajectories and prove properties related
to this deterministic path. Unfortunately, the conditions developed in [8, Chapter 7] as-
sume in particular that G is C*° and U; admits a lower semi-continuous density such
that they cannot be applied to settings where G is discontinuous.

In this paper, following the approach to investigate the underlying control model for
chains defined with (2), we develop general conditions that allow to easily verify ¢-
irreducibility, aperiodicity, the fact that the chain is a T-chain and identify that compact
sets are small sets for the chain. Our approach relies on the fundamental assumptions
that while o can be discontinuous, given x € X, a(x, U) for U distributed as U; admits
a density px(w) where w € O such that p(x, w) = px(w) is lower semi-continuous. Hence
we “pass” the discontinuity of G coming from the discontinuity of « into this density.

The model (2) is motivated by Markov chains arising in the stochastic black-box
optimization context. Generally, ®; represents the state of a stochastic algorithm, for
instance mean and covariance matrix of a multivariate normal distribution used to sample
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candidate solutions, Uy contains the random inputs to sample the candidate solutions
and a(®;, Us41) models the selection of candidate solutions according to a black-box
function f : R — R to be optimized. This selection step is usually discontinuous
as points having similar function values can stem from different sampled vectors U;4
pointing to different solutions a(®;, Usy1) belonging however to the same level set. The
function F' corresponds then to the update of the state of the algorithm given the selected
solutions, and this update can be chosen to be at least C'. Some more detailed examples
will be presented in Section 4. For some specific functions to be optimized, proving the
linear convergence of the optimization algorithm can be done by investigating stability
properties of a Markov chain underlying the optimization algorithm and following (2)
[1, 2, 3]. Aperiodicity and p-irreducibility are then two basic properties that generally
need to be verified. This verification can turn out to be very challenging without the
results developed in this paper. In addition, Foster-Lyapunov drift conditions are usually
used to prove properties like Harris-recurrence, positivity or geometric ergodicity. Those
drift conditions hold outside small sets. It is thus necessary to identify some small sets
for the Markov chains.

Overview of the main results and structure of the paper The results we present
stating the -irreducibility of a Markov chain defined via (2) uses the concept of global
attractiveness of a state—also used in [8]-that is a state that can be approached infinitely
close from any initial state. We prove in Theorem 2 that if F is C! and the density
px(W) is lower semi-continuous, then the existence of a globally attractive state x* for
which at some point in time, say k, we have a deterministic path such that the kP
transition function starting from x*, F*(x*,.) is a submersion at this path, implies the
p-irreducibility of the chain. If we moreover assume that F' is C°°, we can transfer the
Theorem 7.2.6 of [8] to our setting and show that if the model is forward accessible, then
p-irreducibility is equivalent to the existence of a globally attracting state.

To establish the aperiodicity, we introduce the notion of a strongly globally attracting
state that is, informally speaking, a globally attracting state, x*, for which for any initial
state and any distance € > 0, there exists a time step, say t,, such that we find for all
time step larger than ¢, a deterministic path that puts the chain within distance € of x*.
We then prove in Theorem 3 that under the same conditions than for the y-irreducibility
but holding at a strongly globally attracting state (instead of only a globally attracting
state), the chain is ¢-irreducible and aperiodic.

Those two theorems contain the main ingredients to prove the main theorem of the
paper, Theorem 1, that under the same conditions than for the aperiodicity states that
the chain is a ¢-irreducible aperiodic T-chain for which compact sets are small sets.

This paper is structured as follows. In Section 2, we introduce and remind several
definitions related to the Markov chain model of the paper needed all along the paper.
We also present a series of technical results that are necessary in the next sections. In
Section 3 we present the main result, i.e. Theorem 1, that states sufficient conditions
for a Markov chain to be a @-irreducible aperiodic T-chain for which compact sets are
small sets. This result is a consequence of the propositions established in the subsequent
subsections, namely Theorem 2 for the p-irreducibility, Theorem 3 for the aperiodicity
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and Proposition 5 for the weak-Feller property. We also derive intermediate propositions
and corollaries that clarify the connection between our results and the ones of [8, Chap-
ter 7] (Proposition 3, Corollary 1) and that characterize the support of the maximal
irreducibility measure (Proposition 4). We present in Section 4 two applications of our
results. We detail two homogeneous Markov chains associated to two adaptive stochastic
search algorithms aiming at optimizing continuous functions, sketch why establishing
their irreducibility, aperiodicity and identifying some small sets is important while ex-
plaining why existing tools cannot be applied. We then illustrate how the assumptions
of Theorem 1 can be easily verified and establish thus that the chains are -irreducible,
aperiodic, T-chains for which compact sets are small sets.

Notations

For A and B subsets of X, A C B denotes that A is included in B (C denotes the
strict inclusion). We denote R™ the set of n-dimensional real vectors, R. the set of
non-negative real numbers, N the set of natural numbers {0,1,...}, and for (a,b) € N
[a..b] = Uf:a{z} For A C R™, A* denotes A\0. For X a metric space, x € X and € > 0,
B(x, €) denotes the open ball of center x and radius e. For X C R™ a topological space,
B(X) denotes the Borel o-algebra on X. We denote A,, the Lebesgue measure on R™, and
for B € B(R"), up denotes the trace-measure A € B(R") — A, (AN B). For (x,y) € R,
x.y denotes the scalar product of x and y, and [x]; denotes the i*" coordinate of the
vector x and xT denotes the transpose of the vector. For a function f : X — R, we say
that f is CP if f is continuous, and its k-first derivatives exist and are continuous. For
f X — R” a differentiable function and x € X, Dxf denotes the differential of f at x.
A multivariate distribution with mean vector zero and covariance matrix identity is called
a standard multivariate normal distribution, a standard normal distribution correspond
to the case of the dimension 1. We use the notation N'(0,1,,) for a indicating the standard
multivariate normal distribution where I,, is the identity matrix in dimension n. We use
the acronym i.i.d. for independent identically distributed.

2. Definitions and Preliminary Results

The random vectors defined in the previous section are assumed measurable with re-
spect to the Borel o-algebras of their codomain. We denote for all ¢, the random vector
a(@t,UtJrl) of O as Wt+17 i.e.

Wt+1 = Ot(q)t,Ut+1) (3)

such that ® satisfies
Qi =F (D, Wiy1) - (4)

Given ®; = x, the vector W; is assumed absolutely continuous with distribution py(w).
The function p(x, w) = px(w) will be assumed lower semi-continuous in the whole paper.
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We remind the definition of a substochastic transition kernel as well as of a transition
kernel. Let K : X x B(X) — R4 such that for all A € B(X), the function x € X —
K (x, A) is a non-negative measurable function, and for all x € X, K(x, ) is a measure on
B(X). If K(x,X) <1 then K is called a substochastic transition kernel, and if K (x, X) =
1 then K is called a transition kernel.

Given F' and px we define for all x € X and all A € B(X)

P(x, A) :/1A(F(x,w))px(w)dw . (5)

Then the function x € X — P(x, A) is measurable for all A € B(X) (as a consequence of
Fubini’s theorem) and for all x, P(x,.) defines a measure on (X, B(X)). Hence P(x, A)
defines a transition kernel. It is immediate to see that this transition kernel corresponds
to the transition kernel of the Markov chain defined in (2) or (4).

For x € X, we denote O the set of w such that py is strictly positive, i.e.

Ox 1= {w € Olpx(w) > 0} = p ((0, +00)) (6)

that we call support of py!. Similarly to [8, Chapter 7] we consider the recursive functions
F' for t € N* such that F' := F and for x € X and (W;);eq1.441] € O'!

F' (x, Wi, Wa, .o, Wiy 1) i= F (Ft (%X, W1, Wa, ..., Wy) ,Wt+1> . (7)

The function F! is connected to the Markov chain ® = (®;);cn defined via (4) in the
following manner

®, = F1(dg, Wy, .. W) (8)
In addition, we define px+ as px for t =1 and for ¢t > 1
Pt (Wi)ie[1..4)) 7= Px,t—1((Wi)ig..e—1)PFe—1(x.(wi)scpno- 1)) (W) 9)

that is

Px,t (Wi)ie1.4)) = Px(W1)Pre,wi) (W2) - DEe-1 (e, . owi 1) (W) (10)

Then py; is measurable as the composition and product of measurable functions. Let
Ox,+ be the support of px ¢

Oxt = {w = (W1,...,w;) € O'|px (W) > 0} :p;é((O,—l—oo)) ) (11)

Then by the measurability of py;, Ox¢ is a Borel set of O! (endowed with the Borel
o-algebra). Note that Ox 1 = Ox.
Given ®; = x, the function px: is the joint probability distribution function of

(Wla s 7Wt)'

INote that the support is often defined as the closure of what we call support here.
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Since px: is the joint probability distribution of (Wy,..., W) given &y = x and
because ®; is linked to F! via (8), the t-steps transition kernel P! of ® writes

Pl(x,A) = /o 1a (F* (x,W1,..., W) pxe(W)dw (12)

for all x € X and all A € B(X).
The deterministic system with trajectories

Xt = Ft(X07W17"'7wt) = Ft(XO:W)

for w = (wy,...,w;) € Ox, and for any ¢t € N* is called the associated control model
and is denoted CM(F'). Using a similar terminology to Meyn and Tweedie’s [8], we say
that Oy is a control set for CM(F'). We introduce the notion of ¢-steps path from a point
x € X to aset A€ B(X) as follows:

Definition 1 (t-steps path). Forx e X, A € B(X) and t € N*, we say that w € O' is
a t-steps path from x to A if w € Ox and F'(x,w) € A.

Similarly to chapter 7 of Meyn-Tweedie, we define
AR (x) i= {F¥(x, w)|w € Ox 1}

that is the set of all states that can be reached from x after k steps.

Note that this definition depends on the probability density function pyx that deter-
mines the set of control sequences w = (w1,...,wy) via the definition of Oy . More
precisely, several density functions equal almost everywhere can be associated to a same
random vector a(x, Uy). However, they can generate different sets Ai(x).

Following [8], the set of states that can be reached starting from x at some time in
the future from x is defined as

+oo
A= 4 .
k=0

The associated control model CM(F) is forward accessible if for all x, Ay (x) has non
empty interior [6].
Finally, a point x* is called a globally attracting state if for all y € X,

400 +4oo

x e () U ALy =) - (13)

N=1k=N

Although in general Q(y) # A, (y), these two sets can be used to define globally
attracting states, as shown in the following proposition.
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Proposition 1. A point x* € X is a globally attracting state if and only if for all
veX,x* €A (y).

Equivalently, a point x* € X is a globally attracting state if and only if for ally € X
and any U € B(X) neighbourhood of x*, there exists t € N* such that there exists a
t-steps path fromy to U.

Proof. Let us prove the first equivalence. Let x* be a globally attracting state. According

to (13), x* € UZ] Ak (v) = A+ ()\{y} C A4 (y), so x* € A1 (y).

Let x* such that for all y € X, x* € A;(y). We want to show that for all y € X,
x* € N2 Uiy A (y), so that for all N € N*, x* € Uiy A% (y). Let N € N*. Note
that for any y € AY(y), U:;XJN A% (y) D Ay(y). And by hypothesis, x* € A, (y) so
x* € Ul A ().

For the first implication of the second equivalence, let us take U a neighbourhood of
x*, and suppose that x* is a globally attracting state, which as we showed in the first
part of this proof, implies that for all y € X, x* € A, (y). This implies the existence of
a sequence (yr)ren of points of A4 (y) converging to x*. Hence there exists a k € N such
that yr € U, and since y; € A4 (y), then either there exists ¢ € N* such that there is
a t-steps path from y to y; € U, or either y; = y. In the latter case, we can take any
w € Oy, and consider F'(y,w): from what we just showed, either there exists t € N* and
u a t-steps path from F(y,w) to U, in which case (w,u) is a t 4+ 1-steps path from y to
U; either F(y,w) € U, in which case w is a 1-step path from y to U.

Now suppose that for all y € X and U neighbourhood of x*, there exists t € N*
such that there exists a t-steps path from y to U. Let wy be a tx-steps path from y to
B(x*,1/k), and y}, denote F*(y, wy). Then since y; € A, (y) for all k € N* and that
the sequence (y)ren+ converges to x*, we do have x* € A, (y), which according to what
we previously proved, prove that x* is a globally attracting state. O

The existence of a globally attracting state is linked in [8, Proposition 7.2.5] with
p-irreducibility. We will show that this link extends to our context.

We now define the notion of strongly globally attractive state that is needed for our
result on the aperiodicity. More precisely we define:

Definition 2 (Strongly globally attracting state). A point x* € X is called a strongly
globally attracting state if for all'y € X, for all ¢ € RY, there ewists ty . € N* such
that for all t > ty ., there exists a t-steps path from y to B(x*,€). Equivalently, for all
(y,6) € X xR%

Jty.e € N*such that Vit >ty ., AL (y) N B(x*,e) #0 . (14)
The following proposition connects globally and strongly globally attracting states.

Proposition 2. Let x* € X be a strongly globally attracting state, then x* is a globally
attracting state.
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Proof. We will show its contrapositive: if x* is not a globally attracting state, then
according to (13) there exists y € X, N € N* and ¢ € R such that for all £ > N,
B(x*,e) N Ak (y) = 0. This holds for all k > N, and therefore with (14), for all k > ¢,
which contradicts (14).

O

Our aim is to derive conditions for proving -irreducibility, aperiodicity and prove
that compacts of X are small sets. We remind below the formal definitions associated to
those notions as well as the definition of a weak Feller chain and a T-chain. A Markov
chain ® is g-irreducibile if there exists a measure ¢ on B(X) such that for all A € B(X)

p(A)>0= ZPt(x, A) >0 for all x . (15)
t=1
A set C' is small if there exists ¢t > 1 and a non-trivial measure v, on B(X) such that for

allz e C
Pl(z,A) > 1n(A),Aec B(X) . (16)

The small set is then called a 1-small set. Consider a small set C' satisfying the previous
equation with 14(C) > 0 and denote v; = v. The chain is called aperiodic if the g.c.d. of
the set

Ec ={k>1:Cis a yg-small set with v, = agv for some oy > 0}

is one for some (and then for every) small set C.
The transition kernel of @ is acting on bounded functions f : X — R via the following
operator

f(x) / f(y)P(x,dy), x € X . (17)

Let C(X) be the class of bounded continuous functions from X to R, then ® is weak Feller
if P maps C(X) to C(X). This definition is equivalent to Plo is lower semicontinuous
for every open set O € B(X).

Let a be a probability distribution on N, we denote

Ko (x,A) € X x B(X) = Y _a(i)P'(x, A) (18)
ieN

the transition kernel, the associated Markov chain being called the K, chain with sam-
pling distribution a. When a satisfy the geometric distribution

ac(i) = (1 —e)é (19)

for i € N, then the transition kernel K,_ is called the resolvent. If there exists a sub-
stochastic transition kernel T' satisfying

Kq.(x,A) > T(x,A)
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for all x € X and A € B(X) with T'(-, A) a lower semi-continuous function, then T is
called a continuous component of K, ([8, p.124]). If there exists a sampling distribution
a, T a continuous component of K, and that T'(x, X) > 0 for all x € X, then the Markov
chain @ is called a T-chain ([8, p.124]). We say that B € B(X) is uniformly accessible
using a from A € B(X) if there exists § € R such that

inf K,(x,B) >0 ,
XEA

which is written as A < B ([8, p.116]).

2.1. Technical results

We present in this section a series of technical results that will be needed to establish
the main results of the paper.

Lemma 1. Let A € B(X) with X an open set of R™. If for all x € A there exists Vx
an open neighbourhood of x such that AN Vy is Lebesque negligible, then A is Lebesque
negligible.

Proof. For x € A, let rr > 0 be such that B(x,rx) C Vi, and take ¢ > 0. The set
Uxea B(x,7x/2) N B(0,¢) is closed and bounded, so it is a compact, and (J,c 4 Vi is
an open cover of this compact. Hence we can extract a finite subcover (Vx,)icr, and so
Uier Vx: O AN B(0,¢). Hence, it also holds that AN B(0,¢) = J,c; AN B(0,¢) N Vy,.
Since by assumption A,(A N Vy,) = 0, from the sigma-additivity property of mea-
sures we deduce that An(A N B(0,€)) = 0. So with Fatou’s lemma [, 14(x)dx <
liminfy 4o fX 1 4nB(0,k) (X)dx = 0, which shows that A, (A) = 0. O

Lemma 2. Suppose that F' : X x O — X is CP for p € N, then for all t € N*,
Ft: X x Ot = X defined as in (7) is CP.

Proof. By hypothesis, F! = F is CP. Suppose that F* is CP. Then the function h :
(%, (Wi)ieqr.i41)) € X x O o (FH(x,w1,..., W), Wyp1) is CP, and so is F'*! =
Foh. O

Lemma 3. Suppose that the function p : (x,w) € X X O — px(w) € Ry is lower
semi-continuous and the function F : (x,w) € X x O — F(x,w) € X is continuous,
then for all t € N* the function (x,w) € X x O 5 px(w) defined in (9) is lower
semi-continuous.

Proof. According to Lemma 2, F'* is continuous. By hypothesis, the function p is lower
semi-continuous, which is equivalent to the fact that p~1((a,+oc)) is an open set for all
a € R. Let t € N*. Suppose that (x,w) € X x O — py (W) is lower semi-continuous.
Let a € R, then the set B, := {(x,w) € X x O'|px(w) > a}} is an open set. We will
show that then B, ;11 is also an open set.
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First, suppose that a > 0. With (9),

Ba,tJrl = {(X,W, 11) € X x Ot X Olpx,t(w)th(x,w) (u) > CL}
= |J {(x,w,u) € Byt x Olpp+ (x.w)(11) > a/b}

beR?

U {(x,w,u) € By x O|(F'(x,w),u) € By/p1}
bER?,

The function F! being continuous and By, p,1 being an open set, the set Bf/bﬂt+1 =

{(x,w,u) € X x O" x O|(F*(x,w),u) € B} is also an open set. Therefore and as
By is an open set so is the set (Bp; x O) N Bf/b’tJrl for any b € R, and hence so is
Bat41 = Uper; (Bot x O)N By, -

If a = 0, note that px ¢ (W)ppe (x,w) (1) > 0is equivalent to px,¢(wW) > 0 and ppe (x,w) (1) >
0; hence By i1 = {(x,w,u) € Bo: x O|(F(x,w),u) € Bj1}, so the same reasoning
holds.

If a < 0, then B, 41 = X x O which is an open set.

So we have proven that for all a, B, ;11 is an open set and hence (x,w) € X x O'!
Px,t+1(W) is lower semi-continuous. O

Lemma 4. Suppose that the function F : X x O — X is C°, and that the function
D (X, W) = px(W) is lower semi-continuous. Then for any x* € X, t € N*, w* € Ox~,
and V an open neighbourhood of F't(x*,w*), Pt(x*,V) > 0.

Proof. Since F is O, from Lemma 2 F? is also C°. Similarly, since p is lower semi-
continuous, according to Lemma 3 so is the function (x,w) — px(W), and so the set
Ox.t = px.4((0,400)) is open for all x and thus also for x = x*. Let By = {w €
Ox+ 4| F'(x*,w) € V'}. Since F" is continuous and Ox- ; is open, the set By is open, and
as w* € By, it is non-empty. Furthermore

PHx", V) = /O 1y (FH (X, W))pxe 4 (w)dw

:/ DPx ¢ (W)dw .
By

As py- 1 is a strictly positive function over By C Ox- ¢, and that By has positive Lebesgue
measure, P!(x*, V) > 0. O

The following lemma, establishes useful properties on a C! function f: X x O — X
for which there exists x* € X and w* € O such that f(x*,-) is a submersion at w*, and
show in particular that a limited inverse function theorem and implicit function theorem
can be expressed for submersions. These properties rely on the fact that a submersion
can be seen locally as the composition of a diffeomorphism by a projection, as shown in
[10].
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Lemma 5. Let f: X xO — X be a C' function where X C R™ and O C R™ are open
sets with m > n. If there exists x* € X and w* € O such that f(x*,-) is a submersion
at w*, then

1. there exists N an open neighbourhood of (x*,w*) such that for all (y,u) € N,
fly,-) is a submersion at u,

2. there ewists Uy+ C O an open neighbourhood of w*, and Vix« w+) a neighbourhood
of f(x*,w*), such that Vi« w+) equals to the image of w € Uy~ — f(x*, W), i.c.
Vf(x*’w*):f(x*, Uw* ), ~ ~

3. there exists g a Ct function from Vi~ an open neighbourhood of x* to Uw~ an open
neighbourhood of w* such that for all y € Vier

[y, 9(y) = Fx",w7) .

Proof. Let (€;)ic[1..m) be the canonical basis of R™ and let us denote f = (fi,... )T
the representation of f (in the canonical basis of R™). Similarly, u € O writes in the
canonical basis u = (uy,...,u,)7.

We start by proving the second point of the lemma. Since f(x*,-) is a submersion at
w*, the matrix composed by the vectors (Dy-f(x*,-)(€i))ic[1..m] is of full rank n, hence
there exists o a permutation of [1..m] such that the vectors (D~ f(x*,-)(€s(i)))ic[1..n]
are linearly independent. We suppose that o is the identity (otherwise we consider a
reordering of the basis (€;);c[1..,m] Via o). Let

hyr U= (ul,...,um)T €0 (fl(x*,u),...,fn(x*,u),un_,_l,...,um)T eR™ .

The Jacobian matrix of hy+ taken at the vector w* writes

vwfl (X*7 W)T

* vW n ;(*,W T
Thser (W) = fE(n+1 )

E’rn

where E; € R™ is the (line) vector with a 1 at position ¢ and zeros everywhere else. The
matrix of the differential of (Dy~ f(x*,-) expressed in the canonical basis correspond to
the n first lines of the above Jacobian matrix, such that the matrix (D= f(x*,-)(€;))ic[1..m]
corresponds to the n times n first block. Hence the Jacobian matrix Jhy«(w*) is invert-
ible. In addition, hy- is C'. Therefore we can apply the inverse function theorem to hy-:
there exists Uy« C O a neighbourhood of w* and Vj,_, (w+) a neighbourhood of hy-(w*)
such that hy- is a bijection from Uy~ to V},_. (w+)- Let m, denote the projection

7rn:y:(yl,...,ym)TeRmr—)(yl,...,yn)TeR" .

Then f(x*,u) = 7, 0 hx-(u) for all u € O, and so f(x*,Uw-) = 7, (V4. (w+))- The set
Vi« (w+) being an open set, 50 is Vi we) 1= (Vi (w*)) which is therefore an open
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neighbourhood of f(x*,w*) = 7, 0 hy-(W*), that satisfies Vi (x» w+)=f(x*, Uw~), which
shows 2.

We are now going to prove the first point of the lemma. Since f is C!, the coefficients
of the Jacobian matrix of hy+« at w* are continuous functions of x* and w*, and as
the Jacobian determinant is a polynomial in those coeflicients, it is also a continuous
function of x* and w*. The Jacobian determinant of hx« at w* being non-zero (since
we have seen when proving the second point above that the Jacobian matrix at w* is
invertible), the continuity of the Jacobian determinant implies the existence of NV an open
neighbourhood of (x*, w*) such that for all (y,u) € N, the Jacobian determinant of h,,
at u is non-zero. Since the matrix (Dyf(y,.)(€;))1<i<m corresponds to the n times n
first block of the Jacobian matrix Jhy(u), it is invertible which shows that Dy f(y,.) is
of rank n which proves that f(y,-) is a submersion at u for all (y,u) € N, which proves
1.

We may also apply the implicit function theorem to the function (y,u) € (R™ xR™) —
hy(u) € R™: there exists g a C' function from Vi= an open neighbourhood of x* to
Uw- a open neighbourhood of w* such that hy(u) = hx«(W*) & u = g(y) for all
(y,u) € Ve X Uw+. Then f(y,g(y)) = mn 0 hy(9(y)) = Tn 0 haer (W*) = f(x*, W"),
proving 3. O

The following lemma is a generalization of [8, Proposition 7.1.4] to our setting.

Lemma 6. Suppose that F' is C* and that the function (x,w) — px(W) is lower semi-
continuous. Then the control model is forward accessible if and only if for allx € X there
exists t € N* and w € Ox ¢ such that F'(x,-) is a submersion at w.

Proof. Suppose that the control model is forward accessible. Then, for all x € X, A (x)
is not Lebesgue negligible. Since >, . An (A% (%)) > Ap(A4(x)) > 0, there exists ¢ € N*
such that A, (A% (x)) > 0 (i # 0 because A9 (x) = {x} is Lebesgue negligible). Suppose
that for all w € Oy ;, w is a critical point for F"*(x,-), that is the differential of F*(x, -)
in w is not surjective. According to Lemma 2 the function F* is C°°, so we can apply
Sard’s theorem [13, Theorem I1.3.1] to F(x, -) which implies that the image of the critical
points is Lebesgue negligible, hence F*(x, Ox ) = Ai_ (x) is Lebesgue negligible. We have
a contradiction, so there exists w € Ox ; for which F'(x,-) is a submersion at w.
Suppose now that for all x € X, there exists t € N* and w € Oy such that F*(x,-)
is a submersion at w and let us prove that the control model is forward accessible. Since
the function (x,w) — px(w) is lower continuous and that F is continuous, according
to Lemma 3, then py . is lower semi-continuous and hence Ox; is an open set. Then
according to Lemma 5, point 2) applied to the function F* restricted to the open set
X X Ox ¢, there exists Uy, C Ox ¢ and Ve (x w) Non-empty open sets such that Fi(x,Uy) D
Vit (x,w)- Since Ay (x) D F'(x,0x) D F'(x,Uy), A1 (x) has non-empty interior for all
x € X, meaning the control model is forward accessible. O

The following lemma treats of the preservation of Lebesgue null sets by a locally
Lipschitz continuous function on spaces of equal dimension.
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Lemma 7. (From [7, Corollary 5.9]) Take U an open set of R™ and f : U — R™ a
locally Liptschiz-continuous function. Take A C U a set of zero Lebesgue measure. Then
its image f(A) is also of zero Lebesgue measure.

Lemma 7 requires the dimensions of the domain and codomain to be equal. When
the dimension of the domain is lower or equal than the dimension of the codomain, a
generalization of Lemma 7 is presented in [11] for the preimage of sets via submersions.
The authors of [11] investigate the so-called O-property: a continuous function f : Z C
R™ — X C R" has the 0-property if the preimage of any set of Lebesgue measure 0
has Lebesgue measure 0. They show in [11, Theorem 2 and Theorem 3] that if f is a
continuous function and that for almost all z € Z it is a submersion at z, then is has the
O-property. They also show in [11, Theorem 1] that for f a C" function with r > m—n+1
(this inequality coming from Sard’s theorem [13, Theorem I1.3.1]), then the O-property
is equivalent to f being a submersion at z for almost all z € Z. In the following lemma,
we establish conditions for a function f to have a stronger form of 0-property, for which
the preimage of a set has Lebesgue measure 0 if and only if the set has measure 0.

Lemma 8. Letg:Z CR™ — X CR"” be a C' function where Z and X are open sets.
Let A € B(X) and let us assume that for almost all z € g=1(A), g is a submersion at z,
i.e. the differential of g at z is surjective (which implies that m > n).

Then (i) An(A) = 0 implies that A, (g1 (A)) =0, and (i) if A C g(Z) and if g is a
submersion at z for all z € g~1(A), then A,,(A) =0 if and only if Ay (g71(A)) = 0.

Proof. This first part of the proof is similar to the proof of Lemma 5. Let N € B(Z)
be a A,,-negligible set such that g is a submersion at all points of g=!(A4)\N, and take
z € g 1 (A)\N and (€i)ic[1..m] the canonical basis of R™. For y € R™, we denote y =
(¥1,---, ym)T its expression in the canonical basis. In the canonical basis of R we denote
g(x) = (91(x),--.,9n(x))T. Since g is a submersion at z, D,g the differential of g at z
has rank n so there exists a permutation o : [1..m] — [1..m] such that the matrix formed
by the vectors (Dzg(es(;)))ic[1..n] has rank n. We assume that this permutation is the
identity (otherwise we consider a reordering of the canonical basis via o). Let

hz 'ye R™ +— (gl(y)a .. -agn(y)7}’n+17 se 7ym)T

Similarly as in the proof of Lemma 5, by expressing the differential of h, in the basis
(€i)ic[1..m) We can see that the Jacobian determinant of h, equals to the determinant of
the matrix composed of the vectors (Dg(e;))iec[1..n], Which is non-zero, multiplied by the
determinant of the identity matrix, which is one. Hence the Jacobian determinant of h,
is non-zero, and so we can apply the inverse function theorem to h, (which inherits the
C! property from g). We hence obtain that there exists U, an open neighbourhood of
z, Vi, (z) an open neighbourhood of h,(z) such that the function h, is a diffeomorphism
from U, to V},, (z). Then, denoting m, the projection

)T

Tn:2=(21,...,2m) ER™ = (z1,...,2,)" ,

51




Chapter 3. Contributions to Markov Chain Theory

52

14 A. Chotard, A. Auger

we have g(u) = 7, 0 hy(u) for all u € Z.

Then g~ (A) N U, = ht om, H(A) N hy ' (Vi) = hy H(A X R™ ™ NV, (). Since hy,
is a diffeomorphism from U, to Vj, (5, hz and hy 1 are locally Lipschitz continuous. So
we can use Lemma 7 with h, ! and its contrapositive with h, and obtain that A, (A4 x
R™™" O Vi, () = 0 if and only if Ay, (hy (A X R™™™ NV}, (,))) = 0, which implies that

A (A X R™ " NV, () = 0 if and only if A (97 (A)NU,) =0 . (20)

If A,,(A) = 0 then A,,,(A x R™™™) = 0 and thus A,,(A x R™™" NV}, ;) = 0 which
in turns implies with (20) that A,,(g~'(A) NU,) = 0. This latter statement holds for all
z € g~ '(A)\N, which with Lemma 1 implies that A,,(¢7'(A4)\N) = 0, and since N is a
Lebesgue negligible set A,,(g71(A)) = 0. We have then proven the statement (i) of the
lemma.

We will now prove the second statement. Suppose that A,(A) > 0, so there exists
x € A such that for all € > 0, A,,(B(x,¢) N A) > 0 (this is implied by the contrapositive
of Lemma 1). Assume that A C ¢g(Z), i.e. g is surjective on A, then there exists z € Z
such that g(z) = x. Since in the second statement we suppose that g is a submersion at
u for all u € g71(A), we have that g is a submersion at z, and so h,, is a diffeomorphism
from U, to Vj,(,) and (20) holds. Since Vj, (,) is an open neighbourhood of h,(z) =
(9(2), Zny1, - - -, 2Zm), there exists (rq,r2) such that B(g(z),71) X B((2i)icin+1..m],T2) C
Via(z)- Since Ay (A x R™™" N B(x,71) X B((2i)icint+1.m]»72)) = Am((A N B(x,71)) X
B((zi)ie[n+1..m)>72)) > 0, we have Ap,(A x R™™" NV}, ;) > 0. This in turn implies
through (20) that A, (g7 *(4)NU,) > 0 and thus A,,(¢g7*(A4)) > 0. We have thus proven
that if A,,(A) > 0 then A,,(g7*(A)) > 0, which proves the lemma. O

3. Main Results

We present here our main result. Its proof will be established in the following subsections.

Theorem 1. Let ® = (P¢)en be a time-homogeneous Markov chain on an open state
space X C R"™, defined via

Qi1 = F(Py, Py, Upyr)) (21)

where (Uy)ien+ s a sequence of i.i.d. random vectors in RP, a : X x R — O and
F: X x0 — X are two measurable functions with O an open subset of R™. For all
x € X, we assume that a(x,Uy) admits a probability density function that we denote
w € O = pe(w). We define the function F' : X x O — X wvia (7), the probability
density function px: via (9), and the sets Ox and Ox, via (6) and (11). For B € B(X),
we denote up the trace measure A € B(X) — A,(ANB), where A,, denotes the Lebesgue
measure on R™. Suppose that

1. the function (x,w) € (X x O) = F(x,w) is C!,
2. the function (x,w) € (X X O) — px(W) is lower semi-continuous,
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3. there exists x* € X a strongly globally attracting state, k € N* and w* € Ox« i
such that the function w € OF s F¥(x* ,w) is a submersion at w*.

Then there exists By a non-empty open subset of A% (x*) containing F*(x*,w*) such
that @ is a pp,-irreducible aperiodic T-chain, and compacts sets of X are small sets.

Before to provide the proof of this theorem, we discuss its assumptions with respect
to the chapter 7 of the Meyn and Tweedie book. Results similar to Theorem 1 are
presented in [8, Chapter 7]. The underlying assumptions there translate to our setting
as (i) the function p(x,w) is independent of x, that is (x,w) — p(x,w) = p(w), (ii)
w — p(w) is lower semi-continuous, F' is C*°. In contrast, in our context we do not
need p(x, w) to be independent of x, we need the function (x,w) — px(w) to be lower
semi-continuous, and we need F' to be C* rather than C°°. In [8], assuming (i) and (ii)
and the forward accessibility of the control model, the Markov chain is proved to be a
T-chain [8, Proposition 7.1.5]; this property is then used to prove that the existence of
a globally attracting state is equivalent to the p-irreducibility of the Markov chain [8,
Proposition 7.2.5 and Theorem 7.2.6]. The T-chain property is a strong property and
in our context, we prove in Proposition 3 that if ® is a T-chain, then we also get the
equivalence between @-irreducibility and the existence of a globally attracting state. We
develop another approach in Lemma 9, relying on the submersion property of point 3) of
Theorem 1 rather than on the T-chain property. This approach is used in Theorem 2 to
prove that the existence of a globally attracting state x* € X for which there exists k € N*
and w* € Oy  such that F*(x*,-) is a submersion at w* implies the p-irreducibility of
the Markov chain. The approach developed in Lemma 9 allows for a finer control of the
transition kernel than with the T-chain property, which is then used to get aperiodicity
in Theorem 3 by assuming the existence of a strongly attracting state on which the
submersion property of 3) of Theorem 1 holds. In the applications of Section 4, the
existence of a strongly attracting state is immediately derived from the proof of the
existence of a globally attracting state. In contrast in [8, Theorem 7.3.5], assuming (i),
(ii), the forward accessibility of the control model, the existence of a globally attracting
state x* and the connexity of O, aperiodicity is proven to be equivalent to the connexity
of Ay (x*).

Proof. (of Theorem 1) From Theorem 3, there exists By a non-empty open subset of
A% (x*) containing F*(x*,w*) such that @ is a pp,-irreducible aperiodic chain. With
Proposition 5 the chain is also weak Feller. Since By is a non-empty open set supp pg,
has non empty interior, so from [8, Theorem 6.0.1] with (iii) ® is a up,-irreducible T-
chain and with (ii) compact sets are petite sets. Finally, since the chain is up,-irreducible
and aperiodic, with [8, Theorem 5.5.7] petite sets are small sets. O

Assuming that F'is C*° we showed in Lemma 6 that the forward accessibility of the
control model is equivalent to assuming that for all x € X there exists ¢ € N* and
w € Oy such that F'(x,-) is a submersion at w, which satisfies a part of condition 3.
of Theorem 1. Hence, we can use Lemma 6 and Theorem 1 to derive Corollary 1.
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Corollary 1. Suppose that

1. the function (x,w) — F(x,w) is C*,

2. the function (x,w) — px(W) is lower semi-continuous,
3. the control model CM(F) is forward accessible,

4. there exists x* a strongly globally attracting state.

Then there exists By a non-empty open subset of Ai(x*) containing F*(x*, w*) such
that ® is a up,-irreducible aperiodic T-chain, and compacts sets of X are small sets.

Proof. From Lemma 6, the second part of the assumption 3. of Theorem 1 is satisfied
such that the conclusions of Theorem 1 hold. O

3.1. @-Irreducibility

When (i) the function (x,w) + p(x,w) is independent of x, that is p(x,w) = p(w),
(ii) the function w — p(w) for all x € X is lower semi-continuous, (iii) F' is C*° and
(iv) the control model is forward accessible, it is shown in [8, Proposition 7.1.5] that ®
is a T-chain. This is a strong property that is then used to show the equivalence of the
existence of a globally attracting state and the ¢-irreducibility of the Markov chain ® in
[8, Theorem 7.2.6]. In our context where the function (x, w) — p(x, w) varies with x, the
following proposition shows that the equivalence still holds assuming that the Markov
chain ® is a T-chain.

Proposition 3. Suppose that

1. the Markov chain ® is a T-chain,
2. the function F' is continuous,
3. the function (x,w) — px(W) is lower semi-continuous

Then the Markov chain ® is p-irreducible if and only if there exists x* a globally attracting
state.

Proof. Suppose that there exists x* a globally attracting state. Since ® is a T-chain,
there exists a a sampling distribution such that K, possesses a continuous component T’
such that T'(x, X) > 0 for all x € X.

Take A € B(X) such that T'(x*, A) > 0 (such a A always exists because we can for
instance take A = X). The function T'(-, A) being lower semi-continuous, there exists
§ > 0 and r > 0 such that for all y € B(x*,r), T(y,A) > §, hence B(x*,r) ~ A.
Since x* is a globally attracting state, for all y € X, x* € ,en- A]jr(y) so there exists
points of J,cy- Ai arbitrarily close to x*. Hence there exists t, and w € Oy such
that F'v(y,w) € B(x*,r). Furthermore, since Oy, is an open set (by the lower semi-
continuity of py ¢ (-) which in turn is implied by the lower semi-continuity of the function
(x, W) — px(W), the continuity of F' with Lemma 3) and F (y,-) is continuous (as im-
plied by the continuity of F' with Lemma 2) the set E := {u € Oy, |F* (y,u) € B(x*,7)}
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is an open set, and as w € E it is non empty. Since P% (y, B(x*,r)) = [ py.t, (u)du and
that py ., (u) >0 forallu e E C Oy, , P (y,B(x*,r)) > 0 as the integral of a positive
function over a set of positive Lebesgue measure is positive. Hence K, (y, B(x*,r)) >0
(where K, is the transition kernel defined in (18) with the geometric distribution (19)),
and so {y} ~5 B(x*,r). Hence with [8, Lemma 5.5.2] {y} “*° A which implies that for
some t € N*, P*(y, A) > 0. Therefore, T'(x*, A) > 0 implies that ), . P*(y, A) > 0 for
ally € X. And since T(x*, X) > 0, T(x*, ) is not a trivial measure, so the Markov chain
® is T'(x*, -)-irreducible.

Suppose that @ is p-irreducible, then ¢ is non-trivial and according to Proposition 4
any point of supp ¢ is a globally attracting state, so there exists a globally attracting
state. O

Although the T-chain property allows for a simple proof of the equivalence between
the existence of a globally attracting state and the -irreducibility of the Markov chain.
The T-chain property is not needed for Theorem 2, which instead relies on the following
lemma. Interestingly, not using the T-chain in the lemma allows some control on the
transition kernel, which is then used for Theorem 3 for aperiodicity.

Lemma 9. Let A € B(X) and suppose that

1. the function F is C!,
2. the function (x,w) — px(W) is lower semi-continuous,
3. there exists x* € X, k € N* and w* € Oy such that F*(x*,-) is a submersion at

w*.

Then there exists By C A% (x*) a non-empty open set containing F*(x*,w*) and such
that for all z € By, there exists Ux~ an open neighbourhood of x* that depends on z and
having the following property: for'y € X if there exists a t-steps path from'y to Ux~, then
let A e B(X)

PE(y, A) = 0 = 3V, an open neighbourhood of z such that A,(V, N A) = 0 (22)
or equivalently,

for all V, open neighbourhood of z, A,(V, N A) > 0= P (y,A) >0 . (23)

Proof. (i) We will need through this proof a set N = N; x Ny which is an open neighbour-
hood of (x*,w*), such that for all (x, w) € N we have py x(w) > 0 and that F¥(x,) is a
submersion at w. To obtain N, first let us note that since F is C!, according to Lemma 7
so is F* for all ¢ € N*; and since the function (x,w) > px(w) is lower semi-continuous,
according to Lemma 3 so is the function (x,w) — px(w) for all ¢ € N*. Hence the
set {(x,w) € X x O|pxx(w) > 0} is an open set, and since w* € Ox« 1, there exists
My x M a neighbourhood of (x*, w*) such that for all (x,w) € My x My, px (W) > 0.
Furthermore, according to point 1. of Lemma 5, there exists M = M; x M, an open
neighbourhood of (x*, w*) such that for all (x,w) € M; x M, F¥(x,-) is a submersion
at w. Then the set N := M N M has the desired property.
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(ii) We now prove that for all y € X, U any open neighbourhood of x* and A € B(X),
if there exists v a t-steps path from y to U and if P!™*(y, A) = 0 then there exists
xo € U such that P¥(xg, A) = 0. Indeed, U being open containing F*(y, v) there exists
€ > 0 such that B(F(y,v),e) C U, and by continuity of F'(y,-), there exists n > 0 such
that F'(y, B(v,n)) C B(F'(y,v),¢) C U; furthermore, P***(y, A) = 0 implies that

Py, A) = / Py + (W) PH(F(y,u), A)du =0 .

y,t

Since for allu € Oy 4, py +(u) > 0, this implies that for almost allu € Oy 4, P¥(F'(y,u), A) =
0. Since v € Oy 4, the set Oy :NB(v,n) is a non-empty open set and therefore has positive
Lebesgue measure; so there exists ug € Oy ; N B(v,n) such that P*(F!(y,up), A) = 0.
Let x¢ denote F(y,up). By choice of 1, we also have xo € F'(y, B(v,n)) C U.

(iii) Now let us construct the set By mentioned in the lemma. We consider the function
FF restricted to X x Ny. According to assumption 3. and (i), we have x* € X and w*
in Ny such that F*(x*,.) is a submersion at w*. Hence using point 2. of Lemma 5 on
the function F'* restricted to X x N, we obtain that there exists Vi~ C Na an open
neighbourhood of w* and Ugk (x+ w+) an open neighbourhood of FF(x*, w*) such that
Upk(xwe) C FF(x*, Vig~ ). We take By = Upk(x*,w+) and will prove in what follows that
it satisfies the properties announced. Note that since By C F*(x*, Viy+), that Vo= C Ny
and that x* € Ny, Vi« C Ox- 1 and so By C A’jr(x*).

(iv) Now, for z € By, let us construct the set Ux+ mentioned in the lemma. We
will make it so that there exists a C! function g valued in O and defined on a set
containing Uy~, such that F*¥(x,g(x)) = z for all x € Uy~. First, since z € By and
By = Upk (x+ w+) C FF(x*, Vi« ), there exists w, € Vi such that F*(x*, w,) = z. Since
Vi« C Na, the function F¥(x*,-) is a submersion at w,, so we can apply point 3. of
Lemma 5 to the function F* restricted to X x Na: there exists g a C! function from U,f*
an open neighbourhood of x* to \7“9,2 C N> an open neighbourhood of w, such that for

all x € UL, F¥(x,g(x)) = FF(x*, w,) = 2. We now take Uy~ := UZ. N Ny; it is an open
neighbourhood of x* and for all x € Ux~, F*(x,g(x)) = z.

(v) We now construct the set V,. For y € X, if there exists a t-steps path from y to
Uy~ and that P'**(y A) = 0, then we showed in (ii) that there exists xo € Uy~ such
that P*(xg, A) = 0. Since xo € Ux- C UZ. NNy and that g(xo) € Vi, C Na, the function
F¥(xg,-) is a submersion at g(xg). Therefore, we can apply point 2) of Lemma 5 to F
restricted to X x Ny, and so there exists Uy(x,) C N2 an open neighbourhood of g(xq)
and V,, an open neighbourhood of F*(xg, g(x¢)) = z such that V, C F*(xq, Uy(x,))-

(vi) Finally we will show that A,(V, N A) = 0. Let B := {W € Uyx,)|F*(x0, W) €
Vz N A}. Then

pxo,k(w)dw b

Oxo,k B

Phx A) = [ La(F¥ (0, w) i (W) =

SO prxoﬁ;g(w)dw =0.As xg € Ug» C Ny and B C Ug(xo) € Na, pxo,r(w) > 0 for

all w € B, which implies with the fact that [z px,x(w)dw = 0 that B is Lebesgue
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negligible. Now let h denote the function F*(xq,-) restricted to Ug(xy)- The function h
is a C' function and V; is included into the image of h. Both Uy(x,) to V are open sets.
Furthermore xg € Ny and for all u € h™'(V,) since h='(V,) C Uyx,) C N2 we have
u € N5 so the function h is a submersion at u. Therefore we can apply Lemma 8 to h,
and so if Ay, (h™1(V, N A)) = 0 then A, (V, N A) = 0. Since h™ (V) = Uy(x,), we have
h=1 (VN A) = B, so we do have A,,,(h~*(V, N A)) = 0 which implies A,,(V, N A) = 0.
(vii) The equivalent formulation between (22) and (23) is simply obtained by taking
the contrapositive.
O

If the function F' is C*°, then the condition of Lemma 9 on the differential of F'(x*, )
can be relaxed by asking the control model to be forward accessible using Lemma 6. If
the point x* used in Lemma 9 is a globally attracting state it follows from Lemma 9 that
the chain @ is irreducible, as stated in the following theorem.

Theorem 2. Suppose that F is C!, the function (x,w) — px(W) is lower semi-
continuous and there exists a globally attracting state x* € X, k € N* and w* € Ox- i,
such that the function w € R™F s Fk(x* w) € R" is a submersion at w*. Then ® is a
1B, -trreducible Markov chain, where By is a non empty open subset of Ai(x*) containing
Fk(x*, w*).

Furthermore if F is C*, the function (X,w) — px(wW) lower semi-continuous, and
the control model is forward accessible, then the existence of a globally attracting state is
equivalent to the p-irreducibility of the Markov chain ®.

Proof. We want to show that for ¢ a non-trivial measure, ® is @-irreducible; i.e. for
any A € B(X), we need to prove that ¢(A) > 0 implies that Y, . P'(x, A) > 0 for all
x e X.

According to Lemma 9 there exists a non-empty open set By C A¥ (x*) containing
F*(x*,w*), such that for all z € By there exists Uy a neighbourhood of x* that depends
on z having the following property: if for y € X there exists a t-steps path from y to
Ux~(z), and if for all V, neighbourhood of z, V, N A has positive Lebesgue measure,
then P'™*(y, A) > 0. Since By is a non-empty open set, the trace-measure yp, is non-
trivial. Suppose that pp,(A) > 0, then there exists zg € By N A such that for all V,,
neighbourhood of zg, V;, N A has positive Lebesgue measure?. And since x* is globally
attractive, according to Proposition 1 for all y € X there exists t, € N* such that there
exists a ty-steps path from y to the set Ux- corresponding to zy. Hence, with Lemma 9,
Pt*F(y, A) > 0 for all y € X and so ® is up,-irreducible.

If F is C°, according to Lemma 6, forward accessibility implies that for all x € X
there exists k € N* and w € Oy, such that the function F¥(x,-) is a submersion at
w, which, using the first part of the proof of Theorem 2, shows that the existence of a
globally attracting state implies the irreducibility of the Markov chain.

2If not, it would mean that for all z € Bg N A, there exists Vz a neighbourhood of z such that
BoN ANVy is Lebesgue-negligible, which with Lemma 1 would imply that Bg N A is Lebesgue negligible
and bring a contradiction.
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Finally, if ® is @-irreducible, take x* € suppy. By definition of the support of a
measure, for all U neighbourhood of x*, ¢(U) > 0. This imply through (15) that for all
y € X there exists t € N* such that P'(y,U) > 0. Since

Py ) = [ L(F (g w)py a(w)dw > 0
y,t
this implies the existence of a t-steps path from y to U. Then, according to Proposition 1,
x* is a globally attracting state. O

Let x* € X be the globally attracting state used in Theorem 2. The support of
the irreducibility measure used in Theorem 2 is a subset of Ay (x*). In the following
proposition, we expend on this and show that when F' is continuous and pyx lower semi-
continuous, the support of the maximal irreducibility measure is exactly A4 (x*) for any
globally attractive state x*.

Proposition 4. Suppose that the function F' is continuous, that the function (x,w) —
px (W) is lower semi-continuous, and that the Markov chain ® is @-irreducible. Take 1
the maximal irreducibility measure of ®. Then

supp ¢ = {x* € X|x* is a globally attracting state} ,
and so, for x* € X a globally attracting state,

supp ) = Ay (x*) .

Proof. Take x* € supp 1, we will show that it is a globally attracting state. By definition
of the support of a measure, for all U neighbourhood of x*, ¥)(U) > 0. The measure v
being a irreducibility measure, this imply through (15) that for all y € X there exists
t € N* such that P!(y,U) > 0, which in turns imply the existence of a t-steps path
from y to U. Then, according to Proposition 1, x* is a globally attracting state, and so
suppy C {x* € X|x* is a globally attracting state}.

Take x* € X a globally attracting state, then according to Proposition 1, for all
y € X there exists t, € N* and w € Oy, such that F'(y,w) € B(x*,€). And since
according to Lemma 2, F¥ is continuous and that B(x*,¢) is an open, there exists n > 0
such that for all u € B(w,n), F'(y,u) € B(x*¢€). Since p is lower semi-continuous
and F' continuous, according to Lemma 3 so is the function (x,w) > px ¢, (W) and so
the set Oy ; is an open set. We can then chose the value of 1 small enough such that
B(w,n) C Oy, . Hence

Py B, 0) > [

Ex)mwﬂwwmwm@ww=/ Pysy (Wdu > 0 .
w,n

B(w,n)
The measure ¥ being the maximal irreducibility measure, then

$(A)>0e Y Ply,A)>0, forally e X
teN*

3The implication = is by definition of a irreducibility measure. For the converse suppose that A is a
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Since we proved that for all y € X, P (y, B(x*,¢)) > 0, we have ¥(B(x*,¢)) > 0.
Finally, since we can chose € arbitrarily small, this implies that x* € supp .

Let (x*,y*) € X? be globally attracting states, then y* € Q. (x*) C A, (x*), so
{y* € X|y* is a globally attracting state} C A, (x*).

Conversely, take y* € AL (x*), we will show that y* is a globally attracting state.
Since y* € A, (x*), for all € > 0 there exists k. € N* and w, a kc.-steps path from x* to
B(y*,¢). Take x € X. Since x* is a globally attracting state, according to Proposition 1
for all > 0 there exists t € N* and u,, a t-steps path from x to B(x*,7). And since F'*
is continuous, there exists 79 > 0 such that for all z € B(x*,ng), F*(z,w.) € B(y*, ).
Furthermore, since the set {(x,w) € X x OF<|py k. (W) > 0} is an open set we can take
1o small enough to ensure that w, € OFt(x’uno)Jce. Hence for any x € X, € > 0, (uy,, W)
is a t + ke-steps path from x to B(y*,e€), which with Proposition 1 proves that y* is a
globally attracting state. Hence A, (x*) C {y*|y* is a globally attracting state}. O

3.2. Aperiodicity

The results of Lemma 9 give the existence of a non-empty open set By such that for all
z € By there exists Uy~ a neighbourhood of x* which depends of z. And if V, N A has
positive Lebesgue measure for all V, neighbourhood of z, then for all y € X the existence
of a t-steps path from y to Uy implies that P***(y A) > 0. Note that P(y, A) > 0
holds true for any ¢ € N* such that there exists a t-steps path from y to Uxs«.

The global attractivity of x* gives for any y € X the existence of one such ¢ for which
there exists a t-step path from y to Ux+; and as seen in Theorem 2 this can be exploited
to prove the irreducibility of the Markov chain. However, the strong global attractivity
of x* gives for all y € X the existence of a t,, such that for all ¢ > t, there exists a t-step
path from y to Uy, which implies that P!(y, A) > 0 for all ¢t > ¢, and for all y € X. We
will see in the following theorem that this implies the aperiodicity of the Markov chain.

Theorem 3. Suppose that

1. the function (x,w) — F(x,w) is C*,

2. the function (x,w) — px(W) is lower semi-continuous,

3. there exists x* € X a strongly globally attractive state, k € N* and w* € Ox- i
such that F*¥(x*,-) is a submersion at w*.

Then there exists By a non-empty open subset of A% (x*) containing F*(x*,w*) such

that ® is a pp,-irreducible aperiodic Markov chain.

Proof. According to Theorem 2 there exists By an open neighbourhood of F*(x*, w*)
such that the chain ® is pp,-irreducible. Let 1 be its maximal irreducibility measure

set such that >,y Pi(y, A) > 0 for all y € X, so the set {y € X|>,cy« P!y, A) > 0} equals X. If
¥(A) = 0, from [8, Theorem 4.0.1] this would imply that the set {y € X| >,y P*(y,A) > 0}, which
equals X, is also t-null, which is impossible since by definition v is a non-trivial measure. Therefore
Yien+ Pi(y,A) >0 for all y € X implies that ¢ (A) > 0.
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(which exists according to [8, Theorem 4.0.1]). According to [8, Theorem 5.4.4.] there
exists d € N* and a sequence (D;);c0..4—1] € B(X)? of sets such that

1. fori#j, D;ND; =0

2. /ffBo((Ud 1D ) 0
3. fori=0,...,d—1 (mod d), for x € D;, P(x,D;11) =1

Note that 2. is usually stated with the maximal measure 1 but then of course also holds
for pup,. We will prove that d = 1.

From 3. we deduce that for x € D; and j € N*, PJ(x, Dj4; mod 4) = 1. And with the
first point for [ # j mod d, P’ (x Diti moa d) = 0.

From Lemma 9, there exists By, an open nelghbourhood of F*(x*, w*) such that for
all z € By there exists Uy~ an open neighbourhood of x* having the following property:
for y € X if there exists a t-steps path from y to Uy~ and if given A in B(X), for all V,
open neighbourhood of z, V, N A has positive Lebesgue measure then Pt+k(y A) > 0.
We did not show that By = Bo, but we can consider the set By = By N Bo which is also
an open neighbourhood of F*(x*, w*).

Then with 2. MBO((Ud ' D;)e)> IJB]((U ' D;)°) = 0, and since B; is a non-empty

open set, up, is not trivial hence pp, (Ui:0 Dl) > 0. So there exists ¢ € [0..d — 1] and
z € Bj such that for all V, open neighbourhood of z, V, N D; has positive Lebesgue
measure (as implied by the contrapositive of Lemma 1).

Since x* is a strongly globally attracting state, for all y € X there exists ¢, € N*
such that for all £ > ¢, there exists a t-steps path from y to Ux~. Using the property of
Ux=, this implies that P**(y, D;) > 0. Since this holds for any ¢ > t,, it also holds for
t =d(ty + k) +1—k, and so PAtTR+1-k+k(y D;) > 0. As we had deduced that for
I # j modd, P/(y,Diti moda) =0, we can conclude that d(ty + k) + 1 = 0 mod d,
hence 1 =0 mod d meaning d = 1 and so ® is aperiodic. O

In [8, Proposition 7.3.4 and Theorem 7.3.5] in the context of the function (x,w) —
px (W) being independent of x, F' being C* and pyx lower semi-continuous, under the
assumption that the control model is forward accessible, that there exists a globally
attracting state x* € X and that the set Oy is connected, aperiodicity is proven equivalent
to the connexity of A4 (x*). Although in most practical cases the set Oy is connected, it
is good to keep in mind that when Oy is not connected, A (x*) can also not be connected
and yet the Markov chain can be aperiodic (e.g. any sequence of i.i.d. random variables
with non-connected support is a @-irreducible aperiodic Markov chain). In such problems
our approach still offer conditions to show the aperiodicity of the Markov chain.

3.3. Weak-Feller

Our main result summarized in Theorem 1 uses the fact that the chain is weak Feller.
Our experience is that this property can be often easily verified by proving that if f is
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continuous and bounded then
x e X [ F(POxw)palw)dw

is continuous and bounded. This latter property often deriving from the dominated con-
vergence theorem. We however provide below another result to automatically prove the
weak Feller property.

Proposition 5. Suppose that

e for all w € O the function x € X — F(x,w) is continuous,

o for all x € X the function w € O — F(x,w) is measurable,

o for all w € O, the function x € X — px(W) is lower semi-continuous.
o for all x € X the function w € O — px(W) is measurable,

Then the Markov chain ® is weak-Feller.

Proof. To be weak-Feller means that for any open set U € B(X) the function x € X —
P(x,U) is lower semi-continuous.

Take x € X and w € O. If F(x,w) ¢ U then Vy € X, 1y(F(y,w)) > 1y (F(x,w)) =
0.If F(x,w) € U as U is an open set there exists e > 0 such that B(F(x,w),e) C U, and
as the function y — F(y,w) is continuous for all € > 0 there exists n > 0 such that if
y € B(x,n) then F(y,w) € B(F(x,w),¢) C U. Therefore for all y in the neighbourhood
B(x,n) we have 1y(F(y,w)) = 1y(F(x,w)) > 1y(F(x,w)) — €, meaning the function
x € X — 1y(F(x,w)) is lower semi-continuous. For w € O the function x — px(w) is
assumed lower semi-continuous, hence so is x — 1y (F(x, W))px(W).

Finally we can apply Fatou’s Lemma for all sequence (x;)ieny € X' converging to x:

liminf P(x¢, U) = lim inf/ 1y (F(x¢, W))px, (W)dw
o
> / liminf 1y (F(x¢, w))px, (W)dw
O

> /O 10(F(x, w))ps(w)dw = P(x,U) .

4. Applications

We illustrate now the usefulness of Theorem 1. For this, we present two examples of
Markov chains that can be modeled via (2) and detail how to apply Theorem 1 to
prove their @-irreducibility, aperiodicity and the fact that compact sets are small sets.
Those Markov chains stem from adaptive stochastic algorithms aiming at optimizing
continuous optimization problems. Their stability study implies the linear convergence
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(or divergence) of the underlying algorithm. Those examples are not artificial: in both
cases, showing the -irreducibility, aperiodicity and the fact that compact sets are small
sets by hand without the results of the current paper seem to be very difficult. They
actually motivated the development of the theory of this paper.

4.1. A step-size adaptive randomized search on scaling-invariant
functions

We consider first a step-size adaptive stochastic search algorithm optimizing an objective
function f : R™ — R without constraints. The algorithm pertains to the class of so-called
FEuvolution Strategies (ES) algorithms [12] that date back to the 70’s. The algorithm
is however related to information geometry. It was recently derived from taking the
natural gradient of a joint objective function defined on the Riemannian manifold formed
by the family of Gaussian distributions [4, 9]. More precisely, let Xo € R™ and let
(Up)ten+ be an i.i.d. sequence of random vectors where each Uy is composed of A € N*
components U, = (U},...,U}) € (R")* with (Ui)ie[l.)\] ii.d. and following each a
standard multivariate normal distribution A'(0,1,,). Given (X, 0¢) € R" xR, the current
state of the algorithm, A candidate solutions centered on X; are sampled using the vector
U;iq, ie. for i in [1..A]

X+ Uy (24)
where o, called the step-size of the algorithm corresponds to the overall standard devia-

tion of o, U} +1- Those solutions are ranked according to their f-values. More precisely,
let S be the permutation of A elements such that

(X UiY) <7 (X4 o UiD) < o< F (Xt aUZY) o (29)

To break the possible ties and have an uniquely defined permutation S, we can simply con-
sider the natural order, i.e. if for instance A = 2 and f (X; + 0, U}t,,) = f (X; + 00 U7,,),
then S(1) = 1 and S§(2) = 2. The new estimate of the optimum X, is formed by taking
a weighted average of the p best directions (typically u = A/2), that is

w
Xit1 = X¢ + bm Z wiUZ(.Zl) (26)
i=1

where the sequence of weights (w;)ie[1..,,) sums to 1, and ky,, > 0 is called a learning rate.
The step-size is adapted according to

“w
Ko 2 : S (i
Oty1 = Ot €XP (2,” ( (O] (HUtil)||2 — n))) s (27)
=1

where £, > 0 is a learning rate for the step-size. The equations (26) and (27) correspond
to the so-called xNES algorithm with covariance matrix restricted to 071, [4]. One crucial
question in optimization is related to the convergence of an algorithm.
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On the class of so-called scaling-invariant functions (see below for the definition) with
optimum in x* € R", a proof of the linear convergence of the aforementioned algorithm
can be obtained if the normalized chain Z; = (X; — x*)/o—which turns out to be
an homogeneous Markov chain—is stable enough to satisfy a Law of Large Numbers.
This result is explained in details in [1] but in what follows we remind for the sake of
completeness the definition of a scaling invariant function and detail the expression of
the chain Z;.

A function is scaling-invariant with respect to x* if for all p > 0, x,y € R”

fX) < fy) & fx+px—x)) < f(x"+ply —x7)) - (28)
Examples of scaling-invariant functions include f(x) = ||x — x*|| for any arbitrary norm
on R™. It also includes functions with non-convex sublevel sets, i.e. non-quasi-convex

functions.

As mentioned above, on this class of functions, Z; = (X; —x*)/o; is an homogeneous
Markov chain that can be defined independently of the Markov chain (X, 0¢) in the
following manner. Given Z; € R™ sample A candidate solutions centered on Z,; using a
vector Uy, ie. for ¢ in [1..}]

Z; + UiJrl ’ (29)

where similarly as for the chain (X¢,0¢), (Ut)ien are ii.d. and each Uy is a vectors
of A ii.d. components following a standard multivariate normal distribution. Those A
solutions are evaluated and ranked according to their f-values. Similarly to (25), the
permutation S containing the order of the solutions is extracted. This permutation can
be uniquely defined if we break the ties as explained below (25). The update of Z; then
reads

Zi+ bm by wiU‘tgfl)

Zt+1 - N . (30)
Ko Sz
e (52 (S wlUZRIP =)
We refer to [1, Proposition 1] for the details. Let us now define W, = (Ufﬁ), ey Uﬂ’f)) €

R™# and for z € R”, y € (R")* (with y = (y!,...,y*))

z + Rm Z'l;=1 sz’
exp (52 (i willly'2 —n)))

Fines(z,y) = (31)

such that
Zii1 = Fines(Ze, Weyg)

Also there exists a function a : (R",R"**) — R"*# such that Wi, = a(Z¢, Usyq).
Indeed, given z and u in R™** we have explained how the permutation giving the rank-
ing of the candidate solutions z + u’ on f can be uniquely defined. Then «(z,u) =
(W, ... uSN). Hence we have just explained why the Markov chain defined via (30)
fits the Markov chain model underlying this paper, that is (2). If we assume that the level
sets of the function f are Lebesgue negligible, then a density p : (z, w) € R" xR"*# — R

63




Chapter 3. Contributions to Markov Chain Theory

64

26 A. Chotard, A. Auger

associated to Wy writes

Al _
p(z,w) = ml{f(z+wl)<...<f(z+w“)}(1 - QZ(W“))A MPN(WI) coopn(wh) o (32)
with each w’ € R™ and w = (w!,..., wH), where Qf (wH) = Pr (f(z+ N) < f(z + wH))
with A/ following a standard multivariate normal distribution and

1 T
pn(y) = WD exp(—y" y/2)

the density of a standard multivariate normal distribution in dimension n. If the objective
function f is continuous, then the density p(z, w) is lower semi-continuous.

We now prove by applying Theorem 1 that the Markov chain Z; is a ¢-irreducible
aperiodic T-chain and compact sets are small sets for the chain. Those properties together
with a drift for positivity will imply the linear convergence of the xNES algorithm [1].

Proposition 6. Suppose that the scaling invariant function f is continuous, and that
its level sets are Lebesque negligible. Then the Markov chain (Z¢)ten defined in (30) is a
p-irreducible aperiodic T-chain and compact sets are small sets for the chain.

Proof. 1t is not difficult to see that p(z, w) is lower-semi continuous since f is continuous
and that Fings is a C' function. We remind that O, = {w € R™*#|p(z,w) > 0} hence
with (32) 0, = {W € Rnxﬂ|1{f(z+w1)<_._<f(z+wu)}>0}.

We will now prove that the point z* := 0 is a strongly globally attracting state. For
y € R" and € € R}, this means there exists a ¢y . € N* such that for all ¢ > ¢, ., there
exists a t-steps path from y to B(0, €). Note that lim w4 FxnEs(Y, W) = 0, meaning
that there exists a r € R¥ such that if ||w| > 7 then Fings(z, w) € B(0,¢€). Therefore,
and since Oy N {w € R™*#|||w|| > r} is non empty, there exists a wy € Oy which is a
1-step path from y to B(0,¢€). Now, showing that there is such a path from y € R™ for
all ¢ > 1 is trivial: take w € Oy ;_1, and denote y = F*"!(y,w); (w,wy ) is a t-steps
path from y to B(0,¢).

We now prove that there exists w* € Og such that F(0,-) is a submersion at w*, by
proving that the differential of F(0,-) at w* is surjective. Take wy = (0,...,0) € R**#
and h = (h;);eq1..,,) € R™*#, then

Rm Z?:l wzhl
exp (52 (1, will[hy |2 = n)))

Iz Iz
Ko Km
0+ K (Z w,-hi> exp (?) exp (—% Zwi||hi|2>
i=1 i=1

= Faxes(0,0) + i (Zwihz) exp (%5 ) (1+o(lIn])) -

=1

Fines(0,0+h) =
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Hence Dy, Fxnes(0,-)(h) = K, exp(ke/2) Y5 wihy, and is therefore a surjective linear
map. The point wq is not in Og, but according to Lemma 5 since Fyngs(0,-) is a sub-
mersion at wq there exists V4, an open neighbourhood of wy such that for all v € V5,
Fings(0, -) is a submersion at v. Finally since V4, NOp is not empty, there exists w* € Og
such that Fings(0,-) is a submersion at w*.

We can then apply Theorem 1 which shows that (Z):cn is a y-irreducible aperiodic
T-chain, and that compact sets are small sets for the chain. O

4.2. A step-size adaptive randomized search on a simple
constraint optimization problem

We now consider a similar algorithm belonging to the class of evolution strategies op-
timizing a linear function under a linear constraint. The goal for the algorithm is to
diverge as fast as possible as the optimum of the problem is at infinity. More pre-
cisely let f,g : R® — R be two linear functions (w.lo.g. we take f(x) = [x];, and
g(x) = — cos 0[x]; —sinO[x]3) with 6 € (0, 7/2). The goal is to maximize f while respect-
ing the constraint g(x)>0.

As for the previous algorithm, the state of the algorithm is reduced to (X, 0¢) €
R™ x R where X; represents the favorite solution and o; is the step-size controlling the
standard deviation of the sampling distribution used to generate new solutions. From
X4, A new solutions are sampled

Y, =X +0 Vi, (33)

where each V; = (V},..., V) with (V1); i.i.d. following a standard multivariate normal
distribution in dimension n. Those solutions may lie in the infeasible domain, that is
they might violate the constraint, i.e. g(Y? +1)<0. Hence a specific mechanism is added
to ensure that we have A solutions within the feasible domain. Here this mechanism is
very simple, it consists in resampling a solution till it lies in the feasible domain. We
denote Yi 11 the candidate solution i that satisfies the constraint. While the resampling
of a candidate solution can possibly call for an infinite numbers of multivariate normal
distribution, it can be shown in our specific case that this candidate solution can be
generated using a single random vector U? 11 and is a function of the normalized distance
to the constraint 6; = g(X;)/o+. This is due to the fact that the distribution of the feasible
candidate solution orthogonal to the constraint direction follows a truncated Gaussian
distribution and orthogonal to the constraint a Gaussian distribution (we refer to [2,
Lemma 2| for the details). Hence overall,

Yi,, =X+ 0605, Ujyy)
where [U, = (U},...,U})]; are ii.d. (see [2, Lemma 2]) and the function G is defined

in [2, equation (15)]. Those A feasible candidate solutions are ranked on the objective
function f and as before, the permutation S containing the ranking of the solutions is

65




Chapter 3. Contributions to Markov Chain Theory

66

28 A. Chotard, A. Auger

extracted. The update of X;; 1 then reads

Xy = X + Utg~(5t7 Uf.ﬁ)) ) (34)
that is the best solution is kept. The update of the step-size satisfies
1 5 (S 7U‘S(l) 2
Oi4+1 = Ot €Xp <2d <|g(tf+1)|| -1 5 do’ S R:_ . (35)
- n

This algorithm corresponds to a so-called (1, A)-ES with resampling using the cumula-
tive step-size adaptation mechanism of the covariance matrix adaptation ES (CMA-ES)
algorithm [5].

It is not difficult to show that (d;)¢en is an homogeneous Markov chain (see [2, Propo-
sition 5]) whose update reads

5 1 (166, us)|?
b1 = (0 + 966, USY))) exp (Qd (”g(n“)' 1)) e

and that the divergence of the algorithm can be proven if (J;)en satisfies a Law of Large
Numbers. Given that typical conditions to prove that an homogeneous Markov chain
satisfies a LLN is @-irreducibility, aperiodicity, Harris-recurrence and positivity and that
those latter two conditions are practical to verify with drift conditions that hold outside
a small set, we see the interest to be able to prove the irreducibility aperiodicity and
identify that compact sets are small sets for (0¢):en.

With respect to the modeling of the paper, let W, = Q(ét,Ufﬁ)), then there is a
well-defined function « such that W; = «(d;, U41) and according to [2, Lemma 3] the
density p(d, w) of W, knowing that §; = 0 equals

" w1 d—ucos@ A1
P (W)lgy (0 + g(w)) /[ | pl(u)]:lw( sin 0 )du . (@37
Fpu (0) —o0 Fpur (6)

where p; is the density of a one dimensional normal distribution, pys the density of a
n-dimensional multivariate normal distribution and F,,, its associated cumulative dis-
tribution function.

The state space X for the Markov chain (d;):en is R7, the set O equals to R™ and the
function F' implicitly given in (36):

p(d,w) = A

Faw) = 6+ gt (5 (P2 -1 ) (3)

2d, \ n
The control set O, ; equals
Oy = {(wi,...,w;) € Rz > —g(wy),... ST N w, . we) > —g(wy))

We are now ready to apply the results develop within the paper to prove that the chain
(0¢)ten is a p-irreducible aperiodic T-chain and that compact sets are small sets.
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Proposition 7. The Markov chain (0t)ten is a @-irreducible aperiodic T-chain and
compact sets of R are small sets.

Proof. The function p(d, w) defined in (37) is lower semi-continuous, and the function
F defined in (38) is C*.

We now prove that any point 6* € R is a strongly globally attracting state, i.e. for
all o € R% and € € R’ small enough there exists ty € N* such that for all t > %,
there exists w € Os, ¢ such that F'(dp,w) € B(d6*,€). Let 69 € R%. Let k € N* be
such that dpexp(k/(2d,)) > 6*. We take w; = 0 for all ¢ € [1..k] and define d; :=
F*(89,w1,...,wy). By construction of k, we have §; = &pexp(—k/(2d,)(—1)) > &*.
Now, take u = (—1,...,—1) and note that the limit limq— o F (%, @u) = 0. Since the
function F is continuous and that F(dy,0u) > dj, this means that the set (0,d;) is
included into the image of the function « — F(dx, au). And since 0* < dy, there exists
ap € Ry such that F(dy, apu) = §*. Now let w = (wy, ..., Wy, agu), and note that since
g(u) > 0 and g is linear, cu € O5 = {v € R"6 + g(v) > 0} for all @ € Ry and all
0 € R7; hence apu € Oy, and w; = Ou € Os for all § € RY}. Therefore W € Oj, 141 and
F*+1(5p, W) = §*, so w is a k + 1-steps path from &y to B(0*,¢). As the proof stand for
all k large enough, 0* is a strongly globally attractive state.

We will now show that F(0,-) is a submersion at some point w € R™. To do so we
compute the differential Dy, F'(0,-) of F(0,-) at w:

F(0,w +h) = g(w + h) ex f% <”W+h|2 _ 1)>

n

E - <|W2+2Zh+ Ls 1))
o (55 ()
( 10 (IIW2 _ 1>> <1— it (||h||)>
- — +g(h)ex <_2clza (V;"Q - 1)) +o(||h]]) .

Hence for w = (—/n,0,...,0) and h = (0,,0,...,0), DwF(0,-)(h) = —asinfexp(0).
Hence for « spanning R, Dy, F'(0, -)(h) spans R such that the image of Dy F(0, -) equals R,
i.e. Dy F(0,-) is surjective meaning F(0, -) is a submersion at w. According to Lemma 5
this means there exists NV an open neighbourhood of (0, w) such that for all (§,u) € N,
F(6,-) is a submersion at u. So for §* € R small enough, F(6*,-) is a submersion at
W = (—\/H,O,...,O) S O(;*.

Adding this with the fact that ¢* is a strongly globally attracting state, we can then
apply Theorem 1 which concludes the proof. O

p
= g(w+h)exp

=g(w+h)exp 5

:F(O,w)—F(O,W)
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Chapter 4

Analysis of Evolution Strategies

In this chapter we present analyses of different ESs optimizing a linear function with or
without linear constraints. The aim of these analyses is to fully prove whether a given ES
successfully optimizes these problems or not (which on a linear function translates into log-
linear divergence), and to get a better understanding of how the different parameters of the ES
or of the problem affect the behaviour of the ES on these problems.

Linear functions constitute an important class of problems which justify the focus of this
work on them. Indeed, linear functions model when the distance between the mean of the
sampling distribution X; and the optimum is large compared to the step-size o, as on a C!
function the sets of equal values can then generally be approximated by hyperplanes, which
correspond to the sets of equal values of linear functions. Hence, intuitively, linear functions
need to be solved by diverging log-linearly in order for an ES to converge on other functions
log-linearly independently of the initialization. Indeed, in [24] the log-linear convergence of
the (1 + 1)-ES with 1/5 success rule [117] is proven on C! positively homogeneous functions
(see (2.34) for a definition of positively homogeneous functions), under the condition that
the step-size diverges on the linear function (more precisely that the expected inverse of
the step-size change, E(o;/0+1), is strictly smaller than 1 on linear functions). In [2] the
ES-IGO-flow (which can be linked to a continuous-time (u/yw, A)-ES when p is proportional
to A and A — oo, see 2.5.3) is shown to locally converge1 on C? functions under two conditions.
One of these conditions is that a variable which corresponds to the step-size of a standard
ES diverges log-linearly on linear functions. Hence, log-linear divergence on linear functions
appears to be a key to the log-linear convergence of ESs on a very wide range of problems.

In Section 4.1 we explain the methodology that we use to analyse ESs using Markov chain
theory. In Section 4.2 we analyse the (1, 1)-CSA-ES on a linear function without constraints. In
Section 4.3 we analyse a (1, 1)-ES on a linear function with a linear constraint; in 4.3.1 we both
study a (1, 1)-ES with constant step-size and the (1, 1)-CSA-ES, and in 4.3.2 we study a (1, 1)-ES
with constant step-size and with a general sampling distribution that can be non-Gaussian.

1 According to private communications, log-linear convergence has been proven and is about to be published.
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4.1 Markov chain Modelling of Evolution Strategies

Following [25] we present here our methodology and reasoning when analysing ESs using
Markov chains on scaling invariant functions (see (2.33) for a definition of scaling invariant
functions). We remind that linear functions, which will be the main object of study in this
chapter, are scaling-invariant functions. Moreover many more functions are scaling-invariant,
for instance all functions go f where f:R" — Ris a norm and g : R — R is strictly increasing
are scaling invariant.

For a given ES optimizing a