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Titre
Améliorer les interactions homme-machine et la présence sociale avec
l’informatique physiologique

Résumé
Cette thèse explore comment l’informatique physiologique peut
contribuer aux interactions homme-machine (IHM) et encourager
l’apparition de nouveaux canaux de communication parmi le grand
public. Nous avons examiné comment des capteurs physiologiques,
tels que l’électroencéphalographie (EEG), pourraient être utilisés afin
d’estimer l’étatmental des utilisateurs et comment ils se positionnent par
rapport à d’autres méthodes d’évaluation. Nous avons créé la première
interface cerveau-ordinateur capable de discriminer le confort visuel
pendant le visionnage d’images stéréoscopiques et nous avons esquissé
un système qui peux aider à estimer l’expérience utilisateur dans son
ensemble, en mesurant charge mentale, attention et reconnaissance
d’erreur. Pour abaisser la barrière entre utilisateurs finaux et capteurs
physiologiques, nous avons participé à l’intégration logicielle d’un
appareil EEG bon marché et libre, nous avons utilisé des webcams du
commerce pour mesurer le rythme cardiaque à distance, nous avons
confectionné des wearables dont les utilisateurs peuvent rapidement
s’équiper afin qu’électrocardiographie, activité électrodermale et EEG
puissent être mesurées lors de manifestations publiques. Nous avons
imaginé de nouveaux usages pour nos capteurs, qui augmenteraient
la présence sociale. Dans une étude autour de l’interaction humain-
agent, les participants avaient tendance à préférer les avatars virtuels
répliquant leurs propres états internes. Une étude ultérieure s’est
concentrée sur l’interaction entre utilisateurs, profitant d’un jeu de
plateau pour décrire comment l’examen de la physiologie pourrait
changer nos rapports. Des avancées en IHM ont permis d’intégrer de
manière transparente du biofeedback au monde physique. Nous avons
développé Teegi, une poupée qui permet aux novices d’en découvrir
plus sur leur activité cérébrale, par eux-mêmes. Enfin avec Tobe, un
toolkit qui comprend plus de capteurs et donne plus de liberté quant à
leurs visualisations, nous avons exploré comment un tel proxy décale
nos représentations, tant de nous-mêmes que des autres.

Mots clefs
informatique physiologique ; interaction homme-machine ; présence
sociale ; électroencéphalographie ; expérience utilisateur



Title
Leveraging human-computer interactions and social presence with
physiological computing

Abstract
This thesis explores how physiological computing can contribute to
human-computer interaction (HCI) and foster new communication
channels among the general public. We investigated how physiological
sensors, such as electroencephalography (EEG), could be employed
to assess the mental state of the users and how they relate to other
evaluation methods. We created the first brain-computer interface that
could sense visual comfort during the viewing of stereoscopic images
and shaped a framework that could help to assess the overall user
experience by monitoring workload, attention and error recognition.
To lower the barrier between end users and physiological sensors,
we participated in the software integration of a low-cost and open-
hardware EEG device; used off-the shelf webcams to measure heart
rate remotely, crafted wearables that can quickly equip users so that
electrocardiography, electrodermal activity or EEG may be measured
during public exhibitions. We envisioned new usages for our sensors,
that would increase social presence. In a study about human-agent
interaction, participants tended to prefer virtual avatars that were
mirroring their own internal state. A follow-up study focused on
interactions between users to describe how physiological monitoring
could alter our relationships. Advances in HCI enabled us to seamlessly
integrate biofeedback to the physical world. We developped Teegi, a
puppet that lets novices discover by themselves about their brain
activity. Finally, with Tobe, a toolkit that encompasses more sensors and
give more freedom about their visualizations, we explored how such
proxy shifts our representations, about our selves as well as about the
others.

Keywords
physiological computing; human-computer interaction; social presence;
electroencephalography; user experience
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Abstract

This thesis explores how physiological computing can contribute to
human-computer interaction (HCI) and foster new communication
channels among the general public. Our work, which studied physiologi-
cal sensors at large and electroencephalography (EEG) in particular,
covers four aspects.

First, we investigated how those measurements could be employed
to assess the mental state of the users and how they relate to other
evaluation methods, such as inquiries and behavioral measures. Our
review directly led to practical applications, consisting in the continuous
evaluation of HCI. We created the first Brain-Computer Interface
(BCI) that could discriminate visual comfort from visual discomfort
during the viewing of stereoscopic images. In another study, we found
evidences that workload could be assessed continuously with EEG during
3D manipulation tasks. When we extended on this work to monitor
attention and error recognition besides workload,we compared different
interaction techniques through the use of a serious game, shaping a
framework that could help to assess the overall user experience.

These various applications necessitate components that are still too
difficult to use in the field. We made several technical contributions
that permit lowering the barrier between end users and physiological
sensors. We participated in the software integration of a low-cost
and open-hardware EEG device, OpenBCI. We implemented a signal
processing pipeline that uses off-the shelf webcams to measure heart
rate remotely, by the mean of photoplethysmography (PPG). We crafted
wearables that can quickly equip users so that electrocardiography,
electrodermal activity or electroencephalography may be measured
during public exhibitions. Those various developments helped us to
envision new usages for our sensors beside HCI evaluation.
Indeed, thanks to the steady dissemination in everyday life of

devices that sense physiological signals, an additional communication
channel for people may come to exist. So as to ground those insights,
we elaborated two scenarios involving the most common measure,
heart rate. In a study about human-agent interaction, participants
tended to prefer virtual avatars that were mirroring their own internal
state, meaning that the social presence of artificial beings could be
reinforced with little effort. A follow-up study focused on interactions
between users, taking advantage of a board game to describe how
physiological monitoring could alter our relationships.

This last study profited from advances in HCI to mask computers
from the participants, integrating seamlessly digital content – for
instance biofeedback – to the physical world. The combination of
spatial augmented reality and tangible interface enables the emergence
of hybrid objects that can convey a high level of information while
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maintaining ease of use and attractiveness. Those tools helped to build a
“tangible EEG interface”, Teegi. Teegi takes the appearance of a puppet
and lets novices discover by themselves about their brain activity.
The prototype in our laboratory became a mobile installation that we
brought to public festivals. Finally, we pushed forward this project
to encompass more physiological sensors and give more freedom
about their visualizations, the latter spanning across several layers of
abstraction. Using a co-design approach that took place in a museum,
we explored how such proxy shifts our representations, about our selves
as well as about the others.

Four pictures of a 3-years journey during which I came to think that
the purpose of computer science and human-computer interaction is to
enhance well-being and facilitate human relationships on the whole –
or at least this is the path into which I tried to venture, and this work
represents one more step toward this goal I hope. Beyond the possibility
for computers to comprehend some of our internal and mental states,
physiological computing unveils another mean to mediate oneself,
raising our social awareness.
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Résumé

Cette thèse explore comment l’informatique physiologique peut
contribuer aux interactions homme-machine (IHM) et encourager
l’apparition de nouveaux canaux de communication au sein du grand
public. Notre travail, qui étudie les capteurs physiologiques en général
et l’électroencéphalographie (EEG) en particulier, couvre quatre aspects.

Premièrement,nous avons examiné comment cesmesures pourraient
être utilisées afin d’estimer l’état mental des utilisateurs et comment
elles se positionnent par rapport à d’autres méthodes d’évaluation,
telles que les enquêtes ou les mesures comportementales. Notre
revue a directement mené à des applications pratiques, consistant en
l’évaluation continue de IHM. Nous avons créé la première interface
cerveau-ordinateur (BCI) qui est capable de discriminer le confort visuel
de l’inconfort visuel pendant le visionnage d’images stéréoscopiques.
Dans une autre étude, nous avons mis en évidence que la charge mentale
pouvait être estimée de manière continue avec l’EEG pendant des
tâches de manipulation 3D. Lorsque nous avons étendu ce travail pour
surveiller attention et reconnaissance d’erreur en plus de la charge
mentale, nous avons comparé différentes techniques d’interaction via
l’utilisation d’un serious game, esquissant un système qui puisse aider à
estimer l’expérience utilisateur dans son ensemble.
Ces diverses applications requièrent des composants qui sont

encore trop difficiles à utiliser sur le terrain. Nous avons fait plusieurs
contributions techniques qui ont permis d’abaisser la barrière entre
les utilisateurs finaux et les capteurs physiologiques. Nous avons
participé à l’intégration logicielle d’un appareil EEG bon marché et
libre, OpenBCI. Nous avons implémenté une suite de traitement de
signal qui utilise des webcams du commerce pour mesurer le rythme
cardiaque à distance, via photoplethysmographie (PPG). Nous avons
confectionné des wearables dont les utilisateurs peuvent rapidement
s’équiper afin qu’électrocardiographie, activité électrodermale et
électroencéphalographie puissent être mesurées lors de manifestations
publiques. Ces divers développements nous ont aidé à envisager de
nouveaux usages pour nos capteurs à côté de l’évaluation de IHM.

En effet, grâce à la dissémination régulière dans la vie quotidienne
d’appareils qui captent les signaux physiologiques, un canal de commu-
nication supplémentaire entre les personnes pourrait voir le jour. Dans
le but d’ancrer ces idées, nous avons élaboré deux scénarios impliquant
la mesure la plus courante, le rythme cardiaque. Dans une étude autour
de l’interaction humain-agent, les participants avaient tendance à
préférer les avatars virtuels qui répliquaient leur propre état interne, ce
qui signifie que la présence sociale d’êtres artificiels pourrait être
renforcée avec peu d’effort. Une étude ultérieure s’est concentrée sur
l’interaction entre utilisateurs, profitant d’un jeu de plateau pour
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décrire comment l’examen de la physiologie pourrait changer nos
rapports.

Cette dernière étude a bénéficié de progrès en IHM pour masquer
les ordinateurs aux yeux des participants, ceci en intégrant de manière
transparente du contenu numérique – en l’occurrence le biofeedback –
au monde physique. La combinaison de la réalité augmentée spatiale
et d’interfaces tangibles permet l’émergence d’objets hybrides qui
peuvent transmettre un haut niveau d’information tout en préservant
facilité d’utilisation et attrait. Ces outils ont aidé à construire une
« interface tangible pour l’EEG », Teegi. Teegi prend la forme d’une
poupée et permet aux novices d’en découvrir plus sur leur activité
cérébrale, par eux-mêmes. Le prototype dans notre laboratoire est
devenu une installation mobile que nous avons amenée dans des
festivals publiques. Enfin, nous avons poussé en avant ce projet pour
intégrer plus de capteurs physiologiques et donner plus de liberté
quant à leurs visualisations, ces dernières couvrant plusieurs couches
d’abstraction. En utilisant une approche de co-design qui a pris place
dans un musée, nous avons exploré comment un tel proxy décale nos
représentations, tant de nous-mêmes que des autres.

Quatre tableaux d’un voyage de trois ans pendant lequel j’en suis
venu à penser que le but de l’informatique et de l’interaction homme-
machine est d’améliorer le bien-être et de faciliter les relations humaines
dans leur ensemble – ou du moins est-ce la voie dans laquelle j’ai essayé
de m’aventurer, et ce travail représente un pas de plus dans cette
direction je l’espère. Par-delà la possibilité pour les ordinateurs de
comprendre certains de nos états internes et mentaux, l’informatique
physiologique dévoile un autre moyen de servir de médiateur avec
soi-même, élevant notre conscience sociale.
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Introduction
(Mise-en-scène)

You’re looking at me, but I hardly look back at you. I’m mostly
starring at my screen. You wonder what’s going on with me. Are
you disturbingmewhile I’m in themidst of a deadline crisis, with
a couple hours left and tons of gibberish data to analyze with
über complicated algorithms? Did I even notice you were here?
Or am I just faking it, typing randomly so I could pretend I have
better things to do than answering to your questions?
You knew this morning you should have been more tactful when
you phrased your critics regarding my lengthy e-mails, which
obfuscate simple ideas behind convoluted and never-ending sen-
tences. You heard before that I’m touchy on the subject, but you
did not mean to be rude. Even if I did not see that back then, you
just wanted to help, avoid me facing future disappointments.
I’m mumbling from time to time; I cannot be such a good ac-
tor. Maybe I decided to venture once again into this 3D modeller,
powerful and free and all, but a pain to use. Hard to tell.
Not sure how to react, you sigh and leave the room. There is this
bulky manuscript that awaits on your desk. No escape to that.
This is one staging, fictional only in part. There may be other
characters or a different setting involved, yet situations do arise
where one is short on clues about those around, about what they
endure or what they meant.
I have not the room to write a fantasy novel about how some sort
of technological voodoo could create an artifact that fosters em-
pathy and help to bring harmony. I will limit myself to tell how
it all started.

xvi
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Context and motivations
Human-computer interaction
At the Beginning was the Bit. The “computer era” started with simple
computations, automatic systems aimed at easing mathematical opera-
tions. First machines were no more than abacuses (merely) moving
by themselves. One played with switches to input data and obtain in
return clicks, flickering light bulbs and some tape. A time mastered by
engineers and scientists, fortune-tellers reading holes in cardboard.
They were building the system, they knew how to handle it. Then
came Progress: computing power increased, new devices appeared as
abstraction layers between humans and machines, machines the size of
a room shrank to personal computers and, at last, people outside the
field started to use those computers. Concurrently, during the eighties,
a new discipline appeared: human-computer interaction (HCI).

HCI is concerned with the design and evaluation of such interactive
systems [Hewett et al., 1992]. HCI roots in transverse domains – such as
psychology or sociology – and shifts from a vision centered around
technology to a vision centered around the user [Roussel, 2014, Roussel,
2002]. Indeed, with the increasing complexity of computers, it became a
necessity to make the machines comply with human capabilities, practi-
cal to use. Nowadays we have smartphones, smart TV, smartwatches;
computers are literally everywhere, used by everyone. Interactions
between human and computers are richer than ever, yet finding the right
tools to evaluate the overall user experience and ensure convenience is
still an open research question.

Among the variety of evaluation methods, inquiry-based approaches
– e.g. questionnaires, think aloud protocol – and behavioral measures –
e.g. reaction time, error rate – have been used successfully for decades.
They suffer however from a number of limitations. Inquiries are prone
to be contaminated by ambiguities [Nisbett and Wilson, 1977] or may be
affected by social pressure [Picard, 1995]. It is also very difficult to get
continuous insights without disrupting the interaction. Think aloud
protocol distracts users and questionnaires can be given only at specific
time points, usually at the end of a session – which leads to a bias due to
participants’ memory limitations [Kivikangas et al., 2010]. Metrics
inferred from behavioral measures, on the other hand, can be computed
in real time, but they do not provide much information about users’
states. For example, a higher reaction time can be induced either by a
lower attention level or by a higher cognitive workload [Berka and
Levendowski, 2007, Hart and Staveland, 1988].

As such, the conception of new interfaces and interaction techniques
could greatly benefit from a framework that would combine continuous
recordings and qualitative measures.
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Physiological computing
Since a few years, physiological sensors have been studied to improve the
ergonomics of HCI [Fairclough, 2009]. “Physiological computing” is the
term that coins the use of physiological data to gain a real-time feedback
about users’ inner state. Physiological sensors cover bodily activity at
large, such as heart rate measures or electrodermal activity (EDA, i.e.
skin’s perspiration). With the proper signal processing, various mental
states can be measured, for example emotions in [Villon and Lisetti,
2006] or workload in [Fairclough and Houston, 2004]. Whereas these two
works used low-level physiological signals, recently higher-level signals
have been considered to deepen the understanding of users, namely
brain activity.

A technique alike functional magnetic resonance imaging (fMRI) can
determine which regions of the brain are active when users learn
new tools [Kitamura et al., 2003]. It can also sense how brain patterns
changes while users interact with a virtual environment [Sjölie et al.,
2010]. fMRI studies are however difficult to setup and constraining. The
equipment is expensive and users are enclosed in the machine during
the experiment, far from natural (ecological) scenarios. Fortunately,
more affordable and lightweight devices are spreading. Among them,
electroencephalography (EEG) and functional near infrared spectroscopy
(fNIRS) are particularity well suited for mobile brain imaging [Mehta
and Parasuraman, 2013, Cutrell and Tan, 2008].

Thanks to EEG and fNIRS, a new type of interface emerged in the More about BCI in the
first part.last decade. BCI, brain-computer interfaces, are communication devices

between humans and machines that rely only on brain activity – i.e. no
muscular input [Wolpaw et al., 2002]. While the first systems dealt
mostly with commands intentionally issued by users, like moving a
cursor, other kinds of BCI applications appeared. Called passive BCI,
they do not require conscious thoughts from users and are not used
as a voluntary input [Zander and Kothe, 2011]. Passive BCI measure
instead users’ state when they are engaged in another activity. For
instance, they could monitor workload so as to adapt automatically and
continuously a haptic feedback [George and Lécuyer, 2010].

Beyond adaptive systems, physiological computing is an opportunity
to address the current limitation of HCI evaluation methods and assess
the overall usability of a system [Ravaja, 2009, Kivikangas et al., 2010, Pike
et al., 2012]. Furthermore, not only has physiological computing the
potential to alter how we relate to computers, it may also change how
we relate to others. While the “affective computing” movement that
started twenty years ago focuses mainly on emotions [Picard, 1995], the
range of constructs that could be inferred has broadened since then –
e.g. attention level, workload.

As technology mingles more and more between humans, the time
has passed when it could impede our communications for the sake of
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being the only viable alternative to link distant people. Now computers
are on the verge to augment how we exchange information.

Social presence
The notion of “presence” originates from two fields: telecommunications
and virtual reality (VR) [Sallnäs et al., 2000]. In VR, virtual presence
refers to the feeling of belonging to a virtual (or mediated) environment
[Slater et al., 2009]. It is the subjective experience of being in one
place, even when one is physically situated in another [Witmer and
Singer, 1998]. In telecommunications, social presence commonly refers
to the definition given in [Short et al., 1976], where it relates to the
degree of salience of another person. Social presence takes into account
interpersonal relationships, it is the feeling that one is socially present
with another person.

Social presence appeared at a timewhen communicatingwith distant
peers was questioned and compared to face-to-face communications.
The underlying assumption is that social presence decreases as the
medium employed in telecommunications – and, by extension in
computer-mediated communications [Gunawardena, 1995] – is deprived
of channels such as audio or video. Two years before he came up
with a definition with his colleagues, Short showed that negotiations
conducted through a loud-speaking audio link were less successful than
in face-to-face condition or during videoconferencing – “closed circuit
television” back then. Participants were missing various non-verbal
cues: eye gaze, posture, facial expression, . . . [Short, 1974].

Despite instantaneous messages from remote locations or a better Flame wars on
bulletin boards were
already cited in
papers from the
eighties.

efficiency, computers were seen as an issue in regard to societal effects.
For example it is longer to reach consensus through instant messaging
[Kiesler et al., 1984] and computers-mediated communications favour
uninhibited behaviors [Siegel et al., 1986]. Part of the reason why
may be due to the novelty of medium. Usages have to settle; one of
the principle problem was a lack of a shared etiquette [Kiesler et al.,
1984, Siegel et al., 1986, Gunawardena, 1995]. This may no longer hold
true for people that use computers and Internet daily.

Social and virtual presence are not identical [Sallnäs et al., 2000] but
they share the same pitfall: they are bound to technological artifacts.
The former could suffer from the fact that “using a keyboard takes time”
[Kiesler et al., 1984], the latter necessitates a deep immersion in the
virtual environment, thus it requires that the stimuli make people feel
included in and able to interact with the environment [Witmer and
Singer, 1998]. Yet, the never-ending race toward the perfect device,
the perfect simulation, is not the sole path. It has been advocated
that beyond more presence is possible to be obtain a different sense
of presence. In [Roussel, 2007] various example are given, such as
how filtering and notifications result in a good trade-off between
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accessibility and privacy – it gives more control to users, as compared
to a continuous video feed mimicking face-to-face communications.
Sometimes subtle cues are also preferable than direct and explicit
communications: an ambient display of colleagues’ space improves
group coherence and social presence [Roussel, 2007].

All these different works still rely on existing media and senses: text,
audio, video, haptic interfaces, . . . Social presence may shift to another
level if it were for brand new communication channels to become
available. Physiological computing can do just that. Interestingly
enough, when Sheridan – one of founders of telepresence – wrote
about presence, he compared its “subjectivity” to the one of workload,
stating that such mental manifestations are “not so amenable to
objective physiological definition and measurement” [Sheridan, 1992].
Not anymore, physiological measures are now able to give access to
information that were previously covert, hardly available even to
conscious thoughts.

More than that, the potential improvements that physiological data
could bring to social presence are not limited to distant relationships. It
could alter and benefit “real” face-to-face communications as well
[Slovák et al., 2012]. Awareness of others is critical for collaboration
[Dourish and Bellotti, 1992]; ultimately physiological computing could
improve “connectedness”, i.e. exchanges that support and augment
social relationships among people [Kuwabara et al., 2002, Rettie, 2003].

Computers have proven to be powerful tools. Automatic systems
gave to the modern age a considerable boost in productivity; space
constrains are more and more irrelevant thanks to telecommunications;
the opportunity to duplicate digital information with little effort helps
to spread knowledge; that content could be altered and transformed
unleashes creativity. Yet, despite those achievements, computers have
still a way to go before they could be used seamlessly and blend into
society. The same way we sometimes have difficulties to comprehend
one another, we lack proper instruments to assess how we interact
with machines. By shedding light on covert mental states as they are
occurring, physiological computing comes closer to what we experience
and endure. A bit of electronics, a hint of signal processing, so the tools
around could better suit us. And, maybe, once we know better, they will
help in return to improve on our mutual understanding.

Structure of the thesis
The overarching goal of my various contributions is to frame how
physiological computing will benefit the general public; whether it is
when passive brain-computer interfaces are used beforehand to make
human-computer interaction more intuitive, or when unobtrusive
physiological sensors and covert computing enhance social interactions
in everyday life.
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The work I have done during my thesis is divided in 5 parts.
First, I have thoroughly looked at the literature to sense in which

aspects electroencephalography could improve the evaluation of HCI.
The objective is to propose a complementary method that will ease
the conception of better user interfaces. Chapter 1 defines which
evaluation methods are investigated; chapter 2 briefly introduces
the terms “egocentric” and “exocentric” to overcome the semantic
difficulties that arise from the use of “subjective” and “objective” words;
chapter 3 lists the constructs that could be measured with physiological
sensors and highlights which one are the most promising for HCI
evaluation.
Second, I took part in different works which applied these last

findings and used EEG to measure users’ state. I start in chapter 4 by
describing the principles behind BCI and the overall signal processing
pipeline. Then in chapter 5 I show how EEG could be used to measure
visual comfort during the viewing of stereoscopic images. Chapter 6 put
the focus on workload, how EEG bests other physiological sensors
and how it is a promising technique to assesses workload during 3D
manipulation tasks. These results are strengthened in chapter 7, where
EEG is validated as an HCI evaluation method. Workload, attention
level and interaction errors are measured in a carefully crafted virtual
environment and different interactions techniques are compared.

Third, I participated in various projects which aimed at facilitating
the use of EEG and physiological computing. A tool which is not
practical, even if proven effective, will not be used. Popularizing
complex technologies is one motto of the team I have been evolving in,
so no wonder if this is an aspect I was driven to develop. Because this
aspect of my thesis is either more technical or still awaits a proper
validation, it does not appear in the main body of the manuscript but as
appendices. Appendix A summarizes the conditions an “ideal” EEG
device should meet, appendix B compares side-by-side a medical grade
equipment to a low-cost and open-source amplifier and appendix C gives
an example of how such latter device could be quickly integrated to a
wearable. In appendix D another physiological measure is considered,
heart-rate, using remote sensing through video feeds. The framework
works in real time with low-end webcams. Finally, appendix E discusses
how the appearance of artifacts in physiological measures may be
prevented by giving a subtle feedback to users.

Fourth, I have started to explore how physiological computing, once
made easily available and non obtrusive, can shift social interactions. In
chapter 8 I suggest that a “similarity-attraction effect” improves the
social presence of embodied agents, simply by mirroring users’ heart
rate. I also investigate, in chapter 9, how sharing such physiological
signal in a common space can enriches the user experience of board
game players.
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Figure 1 – Outline of the thesis.

Finally, I helped to develop a toolkit that enables the embodiment of
physiological signals and mental states in tangible avatars. A first
application concerns scientific outreach and let novices to know more
about EEG and brain signal – chapter 10. The second implementation,
described in chapter 11, encompasses higher level signals, brings
customization and ventures into multi-users scenarios. Those proxies
enable users to better know themselves and the others.

An outline of the thesis, with the principle chapters, is pictured in
Figure 1. To guide readers in a hurry all along these works, each part as
well as the longest chapters are preceded by a “takeaway message” – an
abstract if you will.



PART I

ASSESSING A USER

In this part we review how one could assess mental states re-
lated to HCI. We first describe what tools are available, with their
main advantages and their drawbacks. We divided those evalua-
tion methods in 4 categories: behavioral studies (measured from
one’s interactions); inquiries (what people express); physiological
sensors (how the body reacts); and finally neuroimaging (a sub-
category of physiological sensors that encompasses brain activ-
ity).
A pessimistic defendinghis thesiswould say that traditional eval-
uation methods are potentially biased or disrupt the interaction.
This is not the case for physiological sensors, which are further
away from conscious thoughts – i.e. “exocentric” – and which
give real-timemeasures. Neuroimaging techniques are oftenmore
accurate and more versatile. EEG for example can account for
various affective and cognitive states that we call “constructs”.
We detail each one of the constructs involved in HCI and frame
how the 4 types of evaluation methods can assess them. Namely,
we studied workload, attention, vigilance, fatigue, error recogni-
tion, emotions, engagement, flow and immersion.
The content of this part is an extended and updated version of
the work previously published in [Frey et al., 2014b], at the be-
ginning of my thesis. At that time we cornered the limitations of
the neuroimaging techniques, which may hold the most promis-
ing applications, but that come at the expense of a more impor-
tant setup. Along the following years, while we were putting into
practice the usages we envisioned – e.g. HCI evaluation in part II
– we also helped to lower those technological barriers, as youwill
read later on in the Appendices.

1
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1
Evaluation

methods in HCI
Along HCI history, various methods aimed at evaluating interactions Until now: inquiries

that disrupt,
behavioral measures
that are ambiguous.

and user interfaces (UI) prior to their public availability have emerged;
there have been behavioral studies (observations of users actions in real
time) and inquiries (e.g. questionnaires, interviews, think aloud). Yet
those traditional evaluation methods could either be ambiguous, lack
continuous recordings, or disrupt the interaction.
Recently, technologies centered around the measure of bodily

activity appeared. Physiological sensors help to improve the ergonomics
of HCI [Fairclough, 2009], for example with systems that could be tuned
to users by monitoring their mental workload in real time [Kohlmorgen
et al., 2007]. Physiological sensors add an insightful information channel,
that could be used in HCI evaluation. Indeed, while designing a UI it
should be acceptable to add the hindrance that comes with some of
those sensors – putting on electrodes, calibrating the system, . . . –
to specially enrolled users. Those testers will then help to improve
beforehand the UI. Laboratory conditions permit a controlled setup for
repeatable measures.

Neuroimaging, a subset of physiological sensors which records Brain activity helps
to understand even
more users.

brain activity, rely on demanding but sensitive sensors. We consider
them as an innovative supplement to conventional evaluation methods.
Measuring neural activity during HCI can help us to better understand
what occurs in the brain when users are interacting [Parasuraman,
2013]; we will highlight which neuroimaging techniques could be
used conveniently within laboratories to overcome the difficulties
encountered by traditional evaluation methods alone.

2
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1.1 Behavioral methods
Recording users interactions, such as mouse speed, is one standard way Behavioral methods

seek how users
interacts with a
system.

to evaluate a UI. “Behavioral studies” refers to this method: behavior
and actions of users inside a software. It represents all the metrics that
can be computed from users interactions, not body measures from the
“outside” environment (e.g. muscular activity) – these will fall into
the “Physiological sensors” section. Behavioral studies are close to
performance measures, as seen in human factors. The easiest way
to sense if a UI is well designed is to watch users. How fast do they
complete the task? How many errors? Are they more accurate with a
slower or bigger mouse cursor? Such methods helped to formulate a
preeminent law in HCI, Fitts’s law, which is all about time to reach a
target depending on its distance and size [Fitts, 1954]1.

Even if behavioral studies take root in the History of computer During complex
interactions our
behavior can give
away our intentions.

science, it is worth noting that new approaches are developing. In [Evans
andWobbrock, 2012] a clever combination of text corpus, crowdsourcing
and machine learning is used to determine users’ intentionswhile typing
on keyboard or using a pointing device. In a study more oriented
toward content industry, machine learning is used again, this time to
build profiles from hundreds of users’ behaviors and see how those
“archetypes” match designers’ intents [Drachen et al., 2009]. It is also
possible to predict users’ behaviors by applying psychology models
[Cowley et al., 2009].

Although behavioral studies are able to account in real time for With simpler tasks,
though, behavioral
methods are limited.

users’ interactions, they can be hard to interpret: measures may not be
specific to one construct. E.g. a high reaction time can be caused either
by a low concentration level or a high workload [Berka and Levendowski,
2007, Hart and Staveland, 1988]. Behavioral studies may also not provide
much information on the users’ state, as on simple tasks little can be
computed beside reaction times and a performance metric.

1.2 Inquiries
While it is possible to infer users’ thoughts through a behavioral study, Inquiries: if you want

to know, just ask.it may be simpler to record their opinion. We call this “inquiries”.
In HCI we are interested in questionnaires related to the use of a UI.
Standardized questionnaires have been validated across several studies
for various measures: e.g. NASA-TLX for workload [Hart and Staveland,
1988].

Unfortunately those “pen and paper” tests are discrete and are not
good for real-time assessments. The “think aloud” protocol [Weber,
2007] is a way to circumvent this, yet it could influence the interaction
as users still have two different things to do: interact and report their

1Fitts’s law is still widely used nowadays for evaluation, proof is [Gervais et al., 2015],
one side work that needed attention.
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experience. It is an example of double task and divided attention [Ogolla,
2011]. “Focus groups” [Bruseberg and McDonagh-Philp, 2002] is the
third form of inquiry. It involves experts and advanced users, who
exchange about their findings under the control of the designer.

Questionnaires, think aloud an focus group are three different Inquiries give
qualitative
information that
could be biased by
many external
factors.

forms of inquiry fraught with the same hazards. Resulting measures are
prone to be contaminated by ambiguities [Nisbett and Wilson, 1977],
social pressure [Picard, 1995] or participants’ memory limitations
[Kivikangas et al., 2010] – we remember most the first and last items
seen and tend to forget what was in-between. If participants figure out
what is at stake, answers could also be oriented toward experimenters’
expectations (or against, depends).

1.3 Physiological sensors
Not only do humans interact with computer using their bodies, but
as soon as they act, as soon as they get feedback of their actions,
changes occurs inside these very bodies. Spirit and flesh are linked. E.g.
respiration rate increases with workload [Karavidas et al., 2010], pupils
dilate while experiencing strong emotions [Partala and Surakka, 2003]:
many cues a mentalist attentive observer can perceive. Fortunately for
less gifted observers, a broadening set of physiological sensors can be
used in order to account for such body changes in HCI [Fairclough,
2009, Dirican and Göktürk, 2011] or game [Ravaja, 2009, Nacke et al.,
2009] research. Electrodermal activity (EDA, also called “galvanic skin
response”) is among those sensors, as well as electrocardiography (ECG,
the signal modality heart rate is derived from) and electromyography
(EMG, caused by muscular activity, including facial expressions).

Physiological cues are great for the “objectivity” they bring into Physiological sensors
combine real-time
measures and
exocentricity.

HCI2. They are also more and more present in everyday life, thanks to
their integration in smartwatches and to technologies that can sense
the body remotely – a hint for what is to come in parts III and IV. Body
reactions are sometimes misleading, though: you may record ECG to
study attention, whereas an increase in heartbeat can also be caused by
strong feelings. Muscles and organs are controlled by the peripheral
nervous system. Physiological sensors are a second-order inference
about the processing which occurs in the central nervous system. It
may then be interesting to go further toward the origin of these signals
in order to gain even more accuracy and reliability.

1.4 Neuroimaging
As their name suggest, neuroimaging techniques allows the assessment Neuroimaging senses

brain activity.of brain activity. We classify them apart even if strictly speaking they do
belong to physiological sensors. We restrain our overview of the subject

2see chapter 2 for a brief discussion about what objectivity is not
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to living organisms. Brain slices are valuable to study brain connectivity
but useless to HCI. Neither will we examine invasive techniques – i.e.
which require surgery, like cortical electrodes. Neuroimaging is a
currently rising field used in brain-computer interfaces (BCI) settings
[Blankertz et al., 2010], [Hamadicharef, 2010], that we will describe more
thoroughly in next part.

Figure 1.1 – Neuroimaging techniques most often used for ergonomics and in
BCI. In blue those relating to electrical currents, in red those
relating to blood flow variations. X-axis: temporal resolution,
y-axis: spatial resolution, z-axis: degree of immobility. From [Ward,
2006, Mehta and Parasuraman, 2013].

Non-invasive neuroimaging techniques are divided into two main fMRI and fNIRS relate
to blood flow
variations. The
former is heavy, both
possess a poor
temporal resolution.

families [Mehta and Parasuraman, 2013] (figure 1.1) The first family
comprise functional magnetic resonance imaging (fMRI) and functional
near-infrared spectroscopy (fNIRS). They indirectly records brain
activity through blood flow variations (discharging neurons need more
oxygen, hence more blood). fMRI has a very good spatial resolution but
is a large device which completely surrounds subjects and costs about
one million dollars. fNIRS is a much more lightweight and affordable
device. Instead of magnetic fields, it uses direct light, invisible to human
eye, to record cervical blood “color” through the skull. Sensors are fixed
on a cap, hence subjects are free to interact with a computer while
wearing it. Compared to fMRI, the spatial resolution of fNIRS is less
detailed. It records only the outer region of the brain due to physical
limitations – light is absorbed by tissues. fMRI and fNIRS share a poor
temporal resolution. With a latency reaching up to several seconds it is
difficult to observe fast and short responses.

The second family of neuroimaging uses electrical currents gen- MEG and EEG relates
to electrical currents,
both posses a high
temporal resolution.

erated by neural activity. Magnetoencephalography (MEG) records
magnetic fields. It is less heavy and expensive than fMRI, but still
hardly manageable for uses in HCI contexts. MEG has a high temporal
resolution, down to the millisecond. Electroencephalography (EEG) also
has a high temporal resolution. It is comparable in size to fNIRS. EEG
measures electrical current onto the scalp. Electrodes are “dry” – no
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electrolyte solution – or, more frequently, “wet” – solvent is either water
or gel. Despite its poor spatial resolution because of volume conduction
effect, it is relatively cheap equipment for a laboratory. Because it is
portable and non invasive, it interferes little with HCI setting.

EEG is the best
tradeoff between
temporal resolution,
spatial resolution,
affordability and ease
of use.

Experimenters must be cautious with the limitations of the device
they choose. Is the signal-to-noise ratio sufficient for what they intend
to measure? What artifacts could pollute their data? Are they in control
of the algorithms producing measures from raw signals? That said,
EEG is the most promising candidate to assist inquiries and other
physiological sensors in a wide range of evaluation measures. Compared
to others neuroimaging devices, EEG offers the best compromise
between spatial and temporal resolution, practical use and cost; a
versatile technique which benefits a lot from recent progress in signal
processing. Properly used, it also gives access to many different mental
states. Therefore we focused mostly on this type of brain activity
recordings, in this part and during the thesis as a whole.



I.2

2
A new continuum
for evaluation

methods
In many works there is a debate if whether or not some evaluation
methods or some particular tools bring different levels of “objectivity”
in their measures. The antagonism of the different positions come
mainly from the fact that in such context “objective” and “subjective”
are scarcely defined in the literature. According to [van de Laar et al.,
2013], “the objective methods are based on overt and covert user
responses during interaction while the subjective methods rely on user
expressions after the interaction”. From that perspective, inquiries
are “subjective” while behavioral studies, physiological sensors and
neuroimaging are “objective”.
While we agree such a distinction is required, a more rigorous

vocabulary is needed. We also doubt the “time” variable should be
involved in the definition. As stated in previous chapter, results of
inquiries are prone to social pressure and other self-interpretations,
and this is also true for the real-time think aloud. Moreover, when
studying emotions, it could be argued that only “subjective” feelings
are recorded, as the evaluation is centered on the user. As a matter of
fact, this is probably the main argument that is replied when one speaks
about objectivity. Hence, without a complex phrasing (i.e. “objective
measure of subjective feelings”), employing such words is open to
criticisms. As an alternative “direct” and “indirect” could be considered.

7
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But then those concepts are more likely to refer to how measures
are reported, not where they originate from (e.g. EMG vs an external
observer annotating facial expressions).

As such, we would like to introduce a new nomenclature to name
those two aspects and avoid ambiguities: exocentric and egocentric.
Those terms are borrowed from spacial navigation research [Brandt
et al., 1973] and bring the notion of the self. Exocentric measures are
here close to the stimuli, to the source, while egocentric measures are
close to the conscious thoughts of the user, to the outcome.

Figure 2.1 – Proposal of an “exocentric / egocentric” scale aimed at classifying
evaluation methods for HCI.

We therefore create a continuous space between two extremes (see
Figure 2.1). We illustrate this scale with the measurement of pain. The
pressure of a needle on a finger would represent a perfect exocentric
measure: the stimulus’ strength, a value disconnected from human body
and perceptions. When the pressure is transmitted to nociceptors in
the skin, the measure shifts a little from exocentric to egocentric. As
nerves are transmitting signals from the peripheral nervous system
to the brain, we go further to the right of the axis. Since we may
not be interested in skin’s thickness, this neural activity represents
the first interesting value from this side of the exo/egocentric scale.
Neuroimaging techniques record such activity, hence it is the most
exocentric evaluation method. When the signal reaches the central
nervous system, autonomic responses are triggered – increase in heart
rate, electrodermal activity [Loggia et al., 2011]. Those reactions could
be recorded through physiological sensors, a step further from the
exocentric extreme.
This scale can be used for various evaluations. Eventually, it is

possible to add “objective/subjective” and “direct/indirect” to describe
a whole framework. A construct could be objective (usability) or
subjective (emotions). A tool could be either direct (sensor) or indirect
(observer). A method is more exocentric (neuroimaging) or egocentric
(inquiries). E.g. the work of an experimenter assessing workload with
ECG can be described as objective/exocentric/direct.

As the pain grows, it will alter behaviors and thoughts. A runner may
slow down when experiencing pain in a foot, no matter his willingness.
Behavioral studies are able to sense modifications occurring against the
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will of the subject; that could be placed somewhere in the middle of our
scale. Concurrently, most of the time, the person is being aware of the
pain and could phrase it if asked to. Many other cognitive processes are
involved in such a high level of consciousness (e.g. planning, awareness),
thus measures recorded by inquiries are close to the far-end of the scale
and are indeed egocentric.
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3
Constructs

Now that we are on par with the evaluation methods, we hereby “Constructs”
encompass the
various states that
could be measured
from brain activity.

review a repertoire of patterns of users’ state which could be used to
characterize HCI, and assess how neuroimaging objectively measures
them. We call those patterns “constructs”, a term which refers to
notions as different as workload and the state of “flow”.
Previous works already began to sense how neurotechnologies

benefit HCI, but they do not cover evaluation [George and Lécuyer, 2010],
or if so they do not study many constructs. [Parasuraman, 2013] only
discusses workload, vigilance and error recognition. Here we sought to
gather from the HCI literature every major construct which relates to
the quality of HCI and that could potentially be evaluated with brain
activity, with a focus on EEG – as such we do not claim to produce here
an exhaustive study, of each evaluation method, for every construct.

We grouped together similar or highly correlated measurements
to ease reading. Starting from a literature which on some occasions
expresses different viewpoints, we tried to define accurately those
constructs whilst remaining brief. We identified thatworkload, attention,
vigilance, fatigue, error recognition, emotions, engagement, flow and
immersion are useful for evaluation and can be measured with EEG.

3.1 Workload
In cognitive science it is theorized that humans’ possess a limited set
of resources to process information [Just et al., 2003]. The workload
endured by the brain is determined by the ratio between processing
power and data coming from the environment. Workload increases as
cognitive resources lessen or as the quantity of data grows – and the
other way around.

10
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Different brain structures handle the information depending Workload assessment
is critical in sensitive
contexts.

on its nature [Just et al., 2003]. If the workload is too high subject’s
performance decreases, sometimes dramatically. In this thesis we
assimilate the term “workload” to mental effort; and although in the
fifties the notion of “effort” was mostly constrained to physical activity,
since then it has been shown that mental activity as well was source of
exhaustion [Fairclough, 2001]. This is why it is critical to check the
strain induced on workload by an interaction, moreover in a sensitive
context (army, hospital, transportation, . . . ).

3.1.1 Behavioral studies
Because performance vary with workload, behavioral studies can reveal
a too demanding task. However, as in all behavioral studies, it is difficult
without any prior knowledge to conclude that the problem lies for sure
in workload. On top of that, for the performance to drop significantly,
cognitive resources will have to bee overloaded. In [van Drunen et al.,
2009] mouse clicks and movements have been recorded along with
physiological data in order to validate workload measurement, but
authors did not find a strong correlation. Thus, it seems questionable
that behavioral studies could stand as a reliable and precise tool to
evaluate this construct.

3.1.2 Inquiries
The NASA-TLX (NASA Task Load Index) is a questionnaire which
elaboration involved dozens of laboratories and spanned over several
years [Hart and Staveland, 1988]. It is nearly systematically used as a
validation tool in workload studies. The questionnaire consist in 6 items
(mental demand, physical demand, temporal demand, performance,
effort and frustration) subjects have to rate on Likert scales.

3.1.3 Physiological sensors
Pupils dilatation is among the physical sensors which has been reported
to correlate mental workload [Just et al., 2003]. ECG as well, which in
[Mathan et al., 2007] is demonstrated to be even more precise than
NASA-TLX. Within ECG signal it is heart-rate variability that denotes
mental effort [Fairclough and Houston, 2004]. A more direct measure of
metabolic activity, albeit more difficult to put into practice because of
the invasive nature of the technique, consists in gauging glucose level
in blood [Fairclough and Houston, 2004].
While the technique is still in its infancy, [Tuček et al., 2012]

investigate speech characteristics as another mean to asses workload.
However, in this particular use of physiological sensors, data is not
acquired in real time. Different interaction techniques were used during
the completion of a sudoku game. The protocol relies on the capacity
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unused in task performance, as speech fluency analysis occurred only
after the completion of a trial, during a second task in which subjects
had to make assumption about a scene presented with picture. This
illustrates how the pros and cons that we listed when we categorized
evaluation methods do not always apply as is before the variety of their
continuum.

3.1.4 Neuroimaging
Using a device with 9 channels [Berka and Levendowski, 2007] correlated
EEG with workload. With a better equipment [Mathan et al., 2007]
shows how EEG outperforms physiological sensors, with more subtle
changes measured compared to ECG.

fNIRS in another well-tried neuroimaging technique which has fNIRS is very often
used to assess
workload.

been studied to assess users’ workload, for example to evaluate user
interfaces [Hirshfield et al., 2009b]. The relation between oxygen
consumption, neuronal activity and workload is pretty straightforward.
In [Peck et al., 2013] a task involving both vision and memory is studied.
Directly compared to EEG, fNIRS show better results, with 82% of correct
classifications between 2 classes (i.e. low vs high workload) and 50%
with 3 classes (low, medium, high) [Hirshfield et al., 2009a].

In [Blankertz et al., 2010] EEG online analyses (i.e. in real time)
discriminate 2 classes with a 70% accuracy. A 2 minutes time window
enables scores from 80% to 90% [Brouwer et al., 2012]. Other reviews
report classification between two classes up to 90%, and a score close to
100% if EEG is combined with other physiological sensors [van Erp et al.,
2010]. Not every study presents such striking results as follows, but
[Grimes et al., 2008] claims 99% success in distinguishing two memory
load levels and 88% for 4 levels. Though, as in many BCI experiments,
not many participants were involved in this last study (only 8).

We had the opportunity to confirm many of these findings. In the
study that we will present in chapter 6, we obtained up to 88% classifica-
tion accuracy over 2s time windows with EEG, which outperformed both
EDA and ECG.

3.2 Attention – Vigilance – Fatigue
Attention, vigilance and fatigue are closely related and regularly
measured altogether [Oken et al., 2006].

“Attention” refers to the ability to focus cognitive resources on a A high attention level
enables one to focus
on a particular
stimulus, like this
note.

particular stimulus [Kivikangas et al., 2010], that is to say to perceive
changes from the environment. A correct selective attention allows
ignoring distractors (information not relevant to the current task). An
insufficient attention level results in a difficulty or an inability to
complete the task, whereas too high or narrow attention resources may
prevent someone to disengage from a sub-task – e.g. no perception of
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the terminal cue or of alarm signals triggered in the background. In the
present definition, the notion of “attention” is similar to the notion of
“awareness”.

Vigilance lets one to
maintain focus over
time.

While in the literature, “attention” designates more frequently the
ability to perceive changes from the environment, the term “vigilance”
then often refers to a broader resource, dependent of both cognitive
performance and the arousal level on the sleep–wake spectrum [Oken
et al., 2006]. In that sense it refers to a state of sustained attention. One
needs to maintain a high degree of vigilance over time in order to focus
his attention on something. Hereby “alertness” will be considered as a
synonym of “vigilance”.

At some point too
many notes will
exhaust your
cognitive resources,
that is fatigue.

“Fatigue” is a state in which cognitive resources are exhausted. If
the required level of vigilance or attention causes a strain too important
on the organism, fatigue arises and performances decrease [Boksem
et al., 2005]. Then the task cannot be performed correctly and errors
appear [van Erp et al., 2010].

3.2.1 Behavioral measures
An increase in reaction times and in the number of errors can be
observed with users who undergo mental fatigue [Lorist et al., 2000].
But it is not systematic and depend on the nature of the task; by coping
strategies users can overcome fatigue in their behavior. In [van der
Linden et al., 2003] performances of a simple memory task were not
affected by fatigue, while subjects displayed impairments in planning
process with more complex exercises.

3.2.2 Inquiries
While it could be somewhat biased to ask a subject if he or she is
attentive, numerous questionnaires have been developed to assess
fatigue. Some scales have been well validated – e.g. [Chalder et al., 1993]
reports high sensitivity and specificity coefficients. But experimenters
have to be cautious when they select one, because sometimes they
measure different things; sleepiness rather than a more typical fatigue
experience [Dittner et al., 2004]. On top of that those questionnaires
have mainly been created by the medical community and it is important
to discriminate normal fatigue from fatigue related to medical disorders
[Schwartz et al., 1993].

3.2.3 Physiological sensors
As stated in [Blankertz et al., 2010], sec. 3.1, eye blinks and heart
rate are the most widely used physical sensors to detect distracted
attention, lapses in vigilance and fatigue. For the latter, eyelid closure is
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a particularly good sign of drowsiness. See also [Kivikangas et al., 2010]
for references about EDA and EMG – allocation of cognitive resources
impacts the autonomic nervous system.

3.2.4 Neuroimaging
The alpha band is associated to attention. When eyes are closed, or Appearance of alpha

waves within EEG is a
good test to see if
actual brain activity
is recorded.

when fatigue occurs, alpha waves amplitude increases [Shaw, 2003]. This
frequency band in the range 8-12Hz is mostly generated by the occipital
lobe. It is easily recorded with EEG, even with a single electrode [George
et al., 2011]. Alpha band analysis discriminates different attention levels
[Klimesch et al., 1998]. Even more, it enables to detect which side of his
visual field a subject is paying attention to while his eyes stare in front
of him with 70% accuracy [Trachel et al., 2013].

Other frequency ranges can be recorded to improve reliability. With
alpha, theta (4-8Hz) and beta (13-18Hz) bands combined, [Laurent et al.,
2013] detect mental fatigue on 4s time windows with 80% accuracy,
94% over 30s. Other types of brain activity are used, such as delays
in event-related potentials (ERP) – e.g. visual selective attention in
[Saavedra and Bougrain, 2012]. [Berka and Levendowski, 2007] suggested
that EEG is the only sensor which can accurately report attention and
vigilance shifts on a second-by-second time frame. Works investigating
vigilance measures are reviewed in [Parasuraman, 2013].

Regarding fatigue, if EEG signals are not more accurate than physio-
logical sensors to detect micro sleeps, they offer the possibility to
detect preceding inattentive states [Blankertz et al., 2010], sec. 3.1.
Mental fatigue has been detected on 4 seconds time windows with 80%
accuracy, or 94% over 30 seconds [Laurent et al., 2013]. In order to
improve reliability, additional frequency ranges were recorded in this
study. For instance alpha, theta (4-8Hz) and beta (13-18Hz) bands have
been combined. ERP on the other hand have been used to study how
fatigue impairs differently cognitive processes [Lorist et al., 2000].
The construct evolving around attention could be one of the

main beneficiaries of neuroimaging. To distinguish clearly in their
measurements vigilance and fatigue would be one point. On the other
hand EEG studies showed that visual artifacts in images or videos
are detected by subjects beyond consciousness [Scholler et al., 2012],
whenever it is conscious perception or attention [Mustafa et al., 2012].
This would suggest that ERP could be used to anticipate how much
information users are able to process, before even considering their
attention level.

Various cues hidden within sensory modalities in order to elicit We will put into
practice these types
probes in the next
part.

evoked potentials would even create a “human bandwidth” assessment,
upstream from vigilance and attention. Such application has been
studied with audio cues while participants were playing a video-game
[Burns and Fairclough, 2015].
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3.3 Error Recognition
We call “error recognition” the situationwhich occurs when users detect Error recognition, or

when the external
world behaves poorly.

by themselves an outcome different from what is expected [Nieuwenhuis
et al., 2001]. It can be something users genuinely trigger but then they
realize they did a mistake, e.g. a wrong turn while driving a car. Or it
can happen due to commands erroneously interpreted by the machine.
E.g. a user manipulates a 3D object in a modelling software and presses
a key combination on the keyboard in order to rotate it, but instead its
scale is modified.

It is important to notice that here “error recognition” do not account
when a negative feedback is given per se. Instead, it is a matter of
recognition by the user of a faulty event. A driver should have turned
left but turns right and realizes the mistake as he does it, without
any road sign involved. The theoretical modelling software would
simply execute another command upon error, not show a red dialog box
written “bad input”. In UI evaluation, error recognition could be an
objective measure of subjective (mis)representations, an objective
assessment of how intuitive an HCI is.

Four types of errors could be distinguished both conceptually and in
practice [Ferrez and Millan, 2008]:

• The response error is detected with an operator realizing that he
or she made a mistake.

• The interaction error arises when a system reacts in an unexpected
way.

• The observation error is produced when a subject sees a third
person committing a mistake.

• The feedback error is measured when a feedback (reward or pun-
ishment) differs from what is expected.

If the mechanism producing the error is not studied here, the ability
of a person to detect a non congruent event depends directly on his
or her vigilance state and his or her level of attention. As soon as an
error is detected, either the operator will try to rectify it, if he or she
can modify the system, either he or she will change his or her inner
representations to accommodate the system, as it is often the case in a
learning context.

3.3.1 Behavioral studies
In software which enables to go back in command history, like with the
“undo” command in office suites, the number of corrections should be
linked to error production. However, command history can also be used
as a way to explore the different options proposed by the software, or as
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a step in the creative process of the user. It is then more a usability issue
[Akers et al., 2012] than error recognition.

3.3.2 Physiological sensors
It is somewhat natural to think about physiological sensors to assess
error recognition. After all, who doesn’t swear out-loud when he misses
something or shout at a reluctant computer? Alas, those reflexes –
which could well be analyzed through a sound sensor – are not that
systematic, hence proceed to an experimental protocol seems slippery
at the least. Muscular activity such as facial expressions (e.g. frowns)
could be recorded over the course of the task [Mirza-Babaei et al., 2013].
But then it would be hard to discriminate emotions related solely to
error recognition from emotions triggered by other events.

3.3.3 Neuroimaging
Event-related potentials (ERP) are “peaks” and “valleys” in averaged
EEG recordings associated with an external event. ERP differ in their
“shapes”, place on the scalp and latency depending on the source of
the stimuli or on the underlying cognitive mechanism. High-level
processing (e.g. planning, memory) takes longer than low-level (e.g.
sensory information, motor reflex).
One particular kind of ERP has been discovered: error-related

potentials (ErrP) [Schalk et al., 2000]. They are triggered when an “error”
occurs, as previously defined. All the four different types of errors
that we described (response, interaction, observation, feedback) have
distinguishable features, hence they could separately be measured
with EEG. During the completion of a simple task, like target selection,
a negative component occurring 80ms after a trial characterizes a
response error [Falkenstein et al., 2000], while a latency of 250ms is
associated to a feedback error [Holroyd and Coles, 2002]. The appearance
of a delayed positive component denotes an interaction feedback
[Ferrez and Millan, 2008]. The amplitudes of the components relates to
the frequency at which the errors appear [Ferrez and Millan, 2008]. ErrP
are closely related to decision-making process [Fedota and Parasuraman,
2010] and dopaminergic activity [Holroyd and Coles, 2002].

Brain signals are elicited even when users are not consciously aware
of errors [Nieuwenhuis et al., 2001]. ErrP have been used to discriminate
between incorrect and correct users decision. In [Chavarriaga and
Millan, 2010], respectively 76% and 63% classification accuracy with
observed ErrP. In “single trial”, that is to say in detecting ErrP for
each user’s action, these are scores commonly found in literature.
Other studies expose similar recognition rates: 79% and 84% in a task
involving interaction ErrP [Ferrez and Millan, 2008]; 79% and 83% with
observed ErrP [Iturrate et al., 2010]. Accuracy relates to the quality of
EEG devices. It can vary from 70% with an entry-level headset and non
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gel-based electrodes [Vi and Subramanian, 2012] up to 90% with a more
expansive device [Schmidt et al., 2012]. While ErrP detection does not
yet reach 100% (chance is 50%), those scores are already sufficient to
improve HCI reliability in various task, such as visual discrimination
[Parra et al., 2003]. There are successful examples in a target acquisition
task with two different interaction techniques, touch-based in [Vi and
Subramanian, 2012] and mid-air gestures in [Chavarriaga et al., 2010].
When EEG recordings already takes place, as in BCI settings with mental
typewriter, ErrP could be used to improve the accuracy of the system
with no additional cost [Schmidt et al., 2012] – see [Chavarriaga et al.,
2014] for a broader review of the possible applications of ErrP in a BCI
context.

[Sobolewski et al., 2013] recorded EEG while subjects use a mouse
and have to reach different targets. In one-fourth of the trials the
hand-to-cursor mapping is randomly off-set by several degrees. Users
do not expect these shifts and the analysis gives first insights that
the amplitudes of elicited ErrP could relate to the degree of error. If
this result is confirmed we may link error recognition to “intuitivity”
evaluation.

Currently only a binary measure and poorly detailed data – “an ErrP
is detected or not” – is reliably obtained. Fortunately it seems possible
to measure a modulated ErrP [Sobolewski et al., 2013], thus sensing
by howmuch an operation in the UI has perturbed users. If it is to
be confirmed, this would enable a quantitative and qualitative data
assessment. We saw how single trial detection can be achieved with EEG.
Promising work reported ErrP detection as the movement is occurring,
within a 400ms time frame [Milekovic et al., 2013]. At the moment this
near continuous detection uses an invasive technique.

In chapter 7 we will investigate how interaction errors could be used
to compare a keyboard-based interaction technique with a touch-based
interaction technique.

3.4 Emotions
Emotions are more than just a matter of passive perceptions. Psychology
and neuroscience showed that contrary to previous beliefs, emotions
are not disconnected from high-level reasoning. They are tightly linked
to decision-making processes [Damasio, 1994]. As emotions both arise
from subjective feelings and impact our interactions, their study is
getting more and more attention from the HCI community [Picard,
1995, Hancock et al., 2005].

The valence/arousal model is the most commonly used paradigm to
categorize emotions [Picard, 1995, Posner et al., 2005, Kivikangas et al.,
2010]. In this two-dimensional representation, valence is related to
hedonic tone and varies from “negative” to “positive” (e.g. frustrated vs
pleasant); arousal is related to bodily activation and varies from “calm”
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to “excited” (e.g. satisfied vs happy). While the valence/arousal model
is a useful tool to categorize emotions, it must be applied with caution
with some population. Children, for example, hardly make distinction
between different arousal levels [Posner et al., 2005].

3.4.1 Inquiries
The self-Assessment Manikin (SAM) is an effective and quick way for Sometimes a third

component is
investigated with
SAM, “dominance”.

subjects to report their affective response [Bradley and Lang, 1994]. Two
scales are presented to them, each one aimed at rating valence or arousal.
A sketchy character is associated with each measure, taking different
traits along the axis in order to guide subjects in their evaluation. The
SAM is widely used in emotions studies, for example to validate other
evaluation methods – e.g. [Nijboer et al., 2009, Soleymani et al., 2009].
Emotions, and how we deal with them, are a sensitive subject though,
and a potential bias in the assessment of emotional states through
inquiries lies maybe in our tendency to conceal negative feelings.

3.4.2 Behavioral studies
How emotions affect behavior has been described through approach-
avoidance motivation. Our reaction time varies depending on the
valence associated to a stimulus; we are quicker to dodge something
that represent a danger (avoidance motivation) and more prompt to
seize an object that appears to bring a reward (approach motivation)
[Chen and Bargh, 1999].

Even though those findings may be combined with the fact that
cursor trajectory is affected by distracting elements [Hurtienne et al.,
2014], it was another feature derived from the mouse that was measured
by [Sun et al., 2014] so as to sense the emotional state of a user. In this
study, the mouse patterns associated to muscle stiffness were used
to differentiate between a calm and a stressful condition. Authors
concluded that this indicator was more sensitive and more robust than
ECG, although a classification score was computed only for the former
(70%).

3.4.3 Physiological sensors
Three physiological sensors are mainly used to assess emotions. ECG is
among the most widely employed, both for valence and arousal. Yet,
since heart is regulated by many different bodily processes, it is difficult
to ensure signal reliability in complex situations [Kivikangas et al.,
2010], especially if subject is moving.
EMG, through facial expressions, is used as a valence indicator.

Sensors are usually placed on the cheek and on the eyebrow to record
smiles (positive valence) and frowns (negative valence) [Mandryk and
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Atkins, 2007]. Because of these positions, EMG is prone to noise and
could be affected by social communication [Kivikangas et al., 2010].

EDA is associated with arousal; while in general EDA is less sensible EDA relates to the
sympathetic branch
of the autonomic
nervous system.

to noise than ECG and EMG and very easy to setup, responses are
delayed between one and four seconds [Kivikangas et al., 2010].

There is not a sensor on its own which is able to record adequately
emotions. This is why a combination of sensors is often employed. Either
EMG and EDA to account for both dimensions of the arousal/valence
model [Soleymani et al., 2009], or more frequently – for even better
results – the three mentioned sensor at the same time [Ravaja et al.,
2006, Mandryk and Atkins, 2007]. For example, using EDA, ECG and
temperature [Lisetti and Nasoz, 2004] report a 84% accuracy in detecting
6 emotions; [Picard et al., 2001] used EDA, EMG, blood pressure and
respiration and reached 81% in accuracy for 8 emotions.

3.4.4 Neuroimaging
While different neuroimaging techniques have been used to study how
the brain responds to emotions, technologies with the highest temporal
resolution, such as MEG or EEG, are more indicated when a dynamic
content is involved [Vecchiato et al., 2011].

An asymmetry of the alpha band power in the frontal brain correlates
with the emotional valence. A negative valence is associated with a
power decrease in the left lobe. On the opposite a positive valence is
linked to a decrease in the right lobe [Molina et al., 2009]. The arousal
level of a stimulus is more easily perceived through the theta band, or
by studying the amplitudes of ERP [Molina et al., 2009]. Still, EEG is not
yet a reliable sensor to assess emotions. In [Chanel et al., 2011] even if
EEG was better than the other studied physiological sensors on short
period of times, a 56% accuracy barely suffices for the differentiation of
three emotions (chance level is 33%).

Some Papers report high classifications rates. In [Liu et al., 2011] 7
emotions are categorized. Authors state a 85% accuracy for arousal and
90% for valence. This using only three channels of an EEG headset
which is known to be sensitive to EMG artifacts. In pure EEG studies it is
important to control for facial expressions (i.e. EMG signals), because
they can be easily recorder by electrodes. This is even more problematic
when emotions are involved. Although we have to be cautious when
assessing EEG reliability, there is nothing wrong in combining EEG and
EMG (or other sensors) to improve overall performance or to build
proof of concepts – we have done so when we tested a device in a public
exhibition, see chapter 11.

Despite the lack of clear indicators of affect in EEG, neuroimaging is
nevertheless a good lead for novel research in this topic. For example
different patterns of EEG signals have been observed depending on the
sense (sight or hearing) which induces an emotion [Mühl et al., 2011]. It



I.3

CHAPTER 3. CONSTRUCTS 20

could then be speculated that neuroimaging one day will be able to
discriminate which emotion is elicited by which input modality, or
which information channel leads to positive and which to negative user
experience.

3.5 Usability – Comfort
The term usability groups together the notions of “ease of use” and
“usefulness” [Bowman et al., 2002]. It relates to speed, accuracy and error
rates in task completion, hence it depends on UI. The learnability of UI,
that is to say how fast a user learn to use an interface, is also a key point
of usability. As such a good affordance of UI elements – how perceptions
of objects induce a proper use – will improve overall usability. Usability
suffers from UI nature and constrains. E.g. a gesture-based input device
such as the Microsoft Kinect is likely to be more tiring than a joystick in
the long run. Usability is inextricably bound to users’ comfort because
of that.

3.5.1 Behavioral studies
By definition, usability on its own can be partly assessed from speed,
accuracy and error rate measures when two different UI are compared.
Events logging, such as navigation in commands history by users, allows
restraining which parts of the interaction need improvements [Akers
et al., 2012].

3.5.2 Inquiries
It is possible to foresee how different designing choices in an UI will
impact overall usability. Focus groups of experts originating from
various fields such as ergonomics, cognitive science or physiology
help to quicken tedious development process based on trial-and-error
approach and will avoid dead-ends – e.g. [Hix et al., 1999, Stanney et al.,
2003].

A poor usability brings confusion to users, who do not understand
instructions. Some studies use a think aloud protocol to record such
events [Pike et al., 2012]. More commonly questionnaires are given to
users, where for example they have to rate items such as “ease” or
“feels good” [Bos et al., 2011].

The System Usability Scale tries to standardize this approach around
10 criteria (e.g. “I found the system to be simple”, “I felt very confident
using the system”, . . . ). This scale has been correlated to behavioral
measures such as speed or number of errors [Sauro and Lewis, 2009].
Even a subset of 2 of its items can asses usability [Lewis et al., 2013].
However, it has been shown that such questionnaires hardly account
impartially for a whole session. Instead, the psychological “recency
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effect” emphasizes last experiences and influences results [Hassenzahl
and Sandweg, 2004].

3.5.3 Physiological sensors & neuroimaging
To our knowledge there is no study involving physiological sensors or
neuroimaging which account solely for usability. Because the notion
of usability involves various parameters, those measures has been
used instead as an indicator. For example workload through fNIRS
[Hirshfield et al., 2009b] or frustration through EDA [Gilleade and Dix,
2004]. Eye-tracking is also a promising type of input [Vrzakova, 2013]. In
conjunction with other evaluation methods, continuous recordings
from physiological sensors and neuroimaging give additional insights
and help to contextualize data [Pike et al., 2012].

Prior to the work that led to the completion of this thesis, there was
as well hardly any study that had dealt with the evaluation of users
comfort along an interaction using neuroimaging. Therefore, we tried
to fill the gap with other constructs while we were evaluating a specific
aspect of users comfort: physical hindrance during the viewing of 3D
scenes through stereoscopic displays [Frey et al., 2014c, Frey et al.,
2015]. See chapter 5 for a description of this work.

3.6 Engagement – Flow – Immersion
There is no real consensus in literature to define exactly what “engage-
ment”, “immersion”, nor “flow” overlap. From [Matthews et al., 2002],
task engagement is defined as an “effortful striving towards task goals”.
Authors add that task engagement increases during a demanding
cognitive task and decreases when participants perform a sustained and
monotonous vigilance task – see also [Fairclough, 2009]. In [Chanel et al.,
2011] “engagement” is one particular emotion, expressed as “positive
excited” in the valence/arousal model. As we can see, engagement is at
a crossroads between several concepts studied in this chapter: workload,
attention and emotions.

“Flow” originates from psychological studies involving challenge
and/or creativity, such as sport, art or chess. It is a state in which
someone is totally involved in what he is doing. Flow happens when
the skills of the person meet a sufficient amount of challenge. A too
important challenge brings anxiety, for too many skills it is boredom,
and too few of both results in apathy [Nacke and Lindley, 2009]. Here
again, several measures are involved. Challenge relates to workload and
the resulting state to emotions. By definition, flow implies engagement.

“Immersion” is studied mainly in virtual reality (VR) literature. In
[Slater et al., 2009] immersion stands for the modalities hardware gives
to users, how well devices can preserve fidelity in VR compared to
reality (e.g. display’s size, input’s degrees of freedom, etc.). Then the
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subjective feeling of belonging to VR is called “presence” – here in
the sense of virtual presence, see [Sallnäs et al., 2000]. Unfortunately
this useful distinction is less clear-cut in other papers – see [Nacke
and Lindley, 2009]. If not a prerequisite to it, immersion is sometimes
regarded as a synonymous for flow, e.g. [Nijholt et al., 2009].

3.6.1 Inquiries
The Dundee Stress State Questionnaire assess factors linked emotion,
motivation and cognition and has been used to gauge engagement
[Matthews et al., 2002]. Flow and immersion are among the seven
factors assessed by the Game Experience Questionnaire (GEQ) [Ravaja,
2009]. Correlation has been observed between flow assessed via GEQ and
intended level design of a first-person shooter video-game [Nacke and
Lindley, 2009]. Further analysis on items split from GEQ also correlated
the questionnaire to “immersion” condition and “boredom” condition
(seen as the counterpart of engagement in the paper) [Nacke et al.,
2010].
Specifically dedicated to immersion, the Immersive Experience

Questionnaire (IEQ) [Jennett et al., 2008] measures how much users are
sensible to external stimuli – an approach similar to the report of
breaks in presence, when a user disengages from the task and shift his
attention from virtual environment to reality [Slater et al., 2009]. Even
though IEQ could differentiate between two conditions that involved a
different content – 3D video-game and a 2D task in [Jennett et al., 2008] –
it failed to differentiate a screen and a head-mounted display when the
immersive variable related to the interface [Burns and Fairclough, 2015].

3.6.2 Behavioral studies
How users engage in an interaction reflects directly on how they
perform – this is in fact the very reason why for many the quest is to
seek the Holy Flow. As such, performance metrics, such as completion
time, can be used to discriminate different levels of immersion [Jennett
et al., 2008].

3.6.3 Physiological Sensors
Emotional states relating to frustration, stress or anxiety are linked to
flow and engagement. It is hypothesized in [Gilleade and Dix, 2004] that
among physiological sensors, interactions with the physical controller
can help to assess frustration. In another study superfluous mouse
clicking is being considered [Scheirer et al., 2002] – how users interact
with the mouse or the gamepad could be assimilated to EMG measures.
In the same paper up to 82% classification for frustration is achieved
with a combination of EDA and blood pressure.
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In [Nacke and Lindley, 2009] a more extensive study has been using
facial EMG and EDA during video-game sessions with three different
conditions (level design): boredom, immersion and flow. EDA measures
correlated to the “flow” condition. Depending on the recorded muscle,
EMG activity was significantly different between the three conditions.
While studied sample is small and homogeneous, since users also filled
the GEQ it is possible assert that physiological sensors are able to
account for flow.

3.6.4 Neuroimaging
In neuroimaging literature [Fairclough, 2009, George and Lécuyer, 2010]
engagement assessment studies are mentioned, but they often relate
only to sub-components such as workload or attention. Their purpose is
really to adapt the challenge level of the interaction.

Engagement is seen as a process related to information gathering,
visual scanning, and sustained attention in [Berka and Levendowski,
2007]. This study managed to discriminate workload and engagement
by using EEG and correlations to an engagement index measures with
egocentric tools. However, the tasks involved (mental additions, recalls)
are close to what is seen elsewhere in attention/vigilance protocols.
Engagement is often left entangled with other states in a “performance”
measure, see [Blankertz et al., 2010], sec. 3.2. Complex experiments are
needed for engagement to emerge on its own, maybe by adding to its
“monad” [Latour et al., 2012] emotions assessments. This situation is
similar with immersion, when ERP associated to external stimuli –
hence, to attention level – is explicitly used [Burns and Fairclough,
2015].

Experiments conducted during the FUGA project showed that flow
could be related to fMRI measures [Ravaja, 2009]. The analysis with EEG
of band frequencies shows different pattern across three conditions of
interaction: boredom (i.e. not engaged), flow and immersion in a pilot
study [Nacke et al., 2010, Berta et al., 2013] improved on this work and
achieved a 66% classification accuracy.

3.7 User Experience
We dedicated a proper section to user experience (UX) as it is the subject
of many HCI papers, but this notion entirely sits atop previously seen
measures. For [Mandryk et al., 2006], UX is a shift from usability analysis,
and by bringing emotions into the equation, users’ entertainment is
involved. UX embeds “usability / comfort”, “emotions” and “engagement
/ flow / immersion”. UX is a higher level of comprehension of what
users undergo during interactions.

The project FUGA, “fun of gaming”, compiled various evaluation
methods in order to measure media enjoyment [Ravaja, 2009]. It is also
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possible to refer to UX when one intends to study the social aspect of
interactions – EDA is different if the opponent in a sport game is played
by a friend or a computer [Mandryk et al., 2006]. Assessing UX every
time new technologies are used could guide the HCI community in its
choices, e.g. with BCI [van de Laar et al., 2013].

3.8 Conclusion and pointers to subsequent work

Figure 3.1 – One possible view of a simplified characterization of the con-
structs. In the middle circles are the constructs (dotted = not
yet measurable with EEG). The inner circles represent the HCI
components the most closely related to the constructs, or on
which it would be easier to leverage. The outer circles give a hint
about what an evaluation would be useful for.

We reviewed how neuroimaging techniques could assess constructs
relevant for HCI evaluation. Between the four categories of evaluation
methods, inquiries could deliver more qualitative data, while physiolog-
ical sensors and neuroimaging are exocentric measures (the most
“objective” measures of subjectively perceived stimuli). It is particularly
interesting to combine those methods for constructs otherwise difficult
to assess with exactitude, as investigated in many studies [Ravaja,
2009, Nacke and Lindley, 2009, van Erp et al., 2010, Chanel et al., 2011].
Our analysis of neuroimaging techniques focused on EEG as it

promises a good trade-off between cost, time resolution and ease of
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installation. We advocate that neurotechnologies can bring useful
insights to HCI evaluation. EEG devices are not yet perfectly reliable and
practical to use; hardware and software processing are still evolving.
However, their cumbersomeness is partially avoided if they are used
during a dedicated evaluation phase in the HCI development process,
with specially enrolled users (testers).

This review enabled us to shed light on certain issues that needed
to be addressed in order to push forward the evaluation of HCI with
passive BCI. These issues guided our subsequent work. Altogether with
pointers to the dedicated sections relating their story, they can be
summarized as follows:

3.8.1 Evaluating constructs with a comprehensive methodology
We studied workload, attention, vigilance, fatigue, error recognition,
emotions, engagement, flow and immersion. Figure 3.1 stimulates
thoughts about their relationships with HCI components. Some con-
structs should benefit more than the others from EEG measures: 1)
workload, EEG being more sensible to changes compared to other
methods [Mathan et al., 2007]; 2) attention, because event related
potentials could help to anticipate how many details users register
[Mustafa et al., 2012]; 3) emotions, with an arousal/valence state
measured over a short time-frame [Chanel et al., 2011]. Error recognition
could hardly be assessed precisely with anything but neuroimaging.
Such construct highlights how innovative this evaluation method is.
Among the outlined challenges, a continuous and modulated error
recognition would greatly help to assess usability and comfort.

Next studies should start to combine the various constructs, along
with a comprehensive framework which gathers every evaluation
method, one’s advantages preventing others’ drawbacks. This should
lead to an increase of the overall user experience.

As such, we first used a combination of physiological sensors and
EEG to study workload during the evaluation of a novel input device, the
CubTile. The CubTile multiplies the number of degrees of freedom of a
classical touch surface by using 5 different sides of a cube. It has been
used with a 3D manipulation task. This work is described in chapter 6.

In a second study, we dug into the evaluation of a construct that was
yet to be investigated through neuroimaging techniques. Focusing this
time on output device, we assessed visual comfort of users while they
were watching at a stereoscopic display. In chapter 5 we demonstrate
that in this situation EEG was able to monitor in near real time users’
state. Besides HCI evaluation, this study also serves as a proof of concept
of an adaptive system that could circumvent one of the major drawback
of a promising technology.

A third study takes HCI evaluation through passive BCI to another
level by giving an example of the use of our methodology during the
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conception from scratch of a software. In chapter 7 we described how
the elaboration of a 3D maze could be the opportunity to verify various
hypothesis concerning different kinds of interaction technique with
neuroimaging techniques. We recorded workload, attention and error
recognition and match the dynamic of these measures with changes we
provoked during the interaction.

Over the course of this thesis we describe extensively the different
“bricks” that we used, developed and/or improved. We hope that the
description of such a backbone will help to disseminate the use of
passive BCI, either for HCI evaluation of in other settings, as later parts
of the thesis bring EEG outside the lab, in public or social settings.

3.8.2 Two directions to make signal processing more reliable
Improvements in signal processing, either in features extraction or clas-
sification, could benefit every technology. Constructs, such as emotions,
are not yet accurately assessed with pure EEG signals. When too many
classes (e.g. emotions and workload levels) are assessed altogether, the
classifier performance drops – e.g. see how the “curse-of-dimensionality”
relates to classifiers’ complexity [Friedman, 1997]. Improvements in
mathematical analysis and machine learning algorithms, as well as a
better understanding of brain activity, would increase the reliability of
the whole system by a great amount and favour every construct.

This was for themachine learning part. Wewent for another direction,
opposite in some aspect, by investigating in appendix E how we would
guide users while they interact with a BCI in order to get more reliable
EEG signals, giving them a feedback about how tensed their muscles
were. The more relaxed the better.

3.8.3 Jumping into open hardware movement to craft affordable EEG
headsets

Some limitations observed in EEG research are yet to be resolved to
make EEG-based evaluation of HCI more operable. EEG devices, while
practical compared to other neuroimaging techniques, take long to
setup. Hence, experiments can be tedious both for the experimenter
and for the participant. This is why there are often only few participants
during EEG or BCI experiments, which is a problem for the reliability of
the results. EEG signals contain many potential artifacts (e.g. muscular
activity and electrical parasites); the quality of the device is essential.
EEG signals must be calibrated, processed and interpreted carefully.

Since a few years new EEG devices have appeared, oriented toward a
larger public. Their electrodes use no conductive solution, or water as
solvent. These electrodes are faster to set-up – no more gel to be put on
each one after the device has been installed – but may be less sensitive,
see [Blankertz et al., 2010], sec. 2.1. Hence, some companies, while
transforming EEG into a mass-product, bring less reliable technology to
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the market. Those devices often possess fewer electrodes. Without a cap
the electrodes are difficult to place in a standardized position on the
scalp. Finally, they are often packaged with software development
kits which hide the signal processing from the users. Constructs like
attention or emotions are then claimed to be directly measured, without
further justification or muscular artifact control, see [Heingartner,
2009]. Nevertheless, while experimenters must be aware of such limits if
their intent is to rely solely on brain activity, this increasing appeal in
favor of cheap EEG devices is a great opportunity to push forward the
use of neuroimaging in HCI.

Enthusiasts coming from the DIY (do it yourself) movement came
to the building of an EEG headset based an Arduino board: OpenBCI.
It occurred during the achievement of this thesis and we took this
opportunity to be among the first to test such solution, participating in
its software integration. We have studied this hardware and compared it
to medical grade amplifiers. In the Appendices we describe how a cheap
alternative, costing a fraction of the price the products seen in the
marked up until then, compete to what is sold by established actors
within EEG suppliers. It may well be the perfect trade-off between cost
and reliability that we were hoping for at the beginning of our work in
order to see the HCI community grasp neuroimaging.
Not only did we test and compare hardware that were already

available, but we also crafted our own sensors. Indeed, we saw an
opportunity to finish the job and obtain a EEG headset practical to
use, that we used to deploy quickly an installation in a public setting.
We gave back to the open-hardware community by describing all the
process and giving away every details and files that led to our solution.
Of course the performances that we could achieve at this moment are
not as good as with medical grade devices, far from it, but this proof of
concept helped to ease the acceptability of EEG devices. This story takes
place in part IV.



PART II

BRINGING EEG AS AN EVALUATION
METHOD

Now that we reviewed what mental states could be assessed and
which tools are at our disposal to do so, we will put into prac-
tice this knowledge, first by travelling into the realm of human-
computer interaction (HCI). In this part, we use brain-computer
interfaces (BCI) by the mean of electroencephalography (EEG) in
order to evaluate beforehand various HCI components.
In chapter 5, we study how users’ comfort vary depending on the
extent of stereoscopic effects when “3D” displays are used. This
a proof of concept of the first BCI that could discriminate in near
real timebetweendifferent visual comfort conditions – an revised
version of works previously published in [Frey et al., 2014c, Frey
et al., 2015, Frey et al., 2016a].
We also describe how a BCI could monitor the workload induced
during a 3D manipulation task in chapter 6 – appeared in [Wo-
brock et al., 2015]. We improved on this work in chapter 7, where
we propose protocols and tools to assess workload, attention and
error recognition.We compared two interaction techniques (key-
board vs touch) during a 3D navigation task that we built from
scratch. We tailored the virtual environment so as to validate the
use of EEG as an evaluation method for HCI.
In order to fully grasp the pipelines that will be utilized in those
three chapters, we start by detailing further the grand principles
behind BCI.
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BCI 101: the basics

BCI, brain-computer interfaces, are communication devices between
humans and machines that rely only on brain activity (i.e. no muscular
input) to issue commands or monitor states [Wolpaw et al., 2002]. BCI is
an emerging research area in Human-Computer Interaction that offers
new opportunities for interaction, beyond standard input devices [Tan
and Nijholt, 2010].

The “interface” term covers many different areas of applications. As
soon as a command originating from recordings of brain activity is
issued to the computer, the process could be called a BCI. Sometimes
the term “brain-machine interface” (BMI) is used. Nowadays, BCI and
BMI both designate the same thing . Each originate from a different
community. BMI comes from the neuroscience field and the people
using invasive techniques, where brain interfaces where historically
studied to command prosthesis. BCI comes from computer science, and
at the beginning it was bound to non invasive interfaces, that did not
required surgery. Fortunately the technical skills and the knowledge
involved have merged years ago and all scientists or so work happily
together under the “BCI” flag.

The different technologies that could be used to sense brain activity
have been described in section 1.4. Basically, EEG and – to a less extend –
fNIRS are used as non-invasive techniques. In few research projects that
deals with invasive technologies applied to humans, electrodes arrays
(ECOG, electrocorticography) are used in some specific applications with
humans, e.g. motor tasks [Leuthardt et al., 2006], that demonstrates how
invasive technologies enable better performances. There is but very few
examples of humans implanted with deep brain electrodes, even though
this is a promising technique for people with motor impairments, such
as tetraplegia [Hochberg et al., 2006]. Deep brain electrodes are at
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the moment mostly employed with animals to study neurological
diseases or to prepare the ground for human BCI. Electrodes implanted
in human brain may be used to stimulate neurons but then there is
no BCI involved, “just” a therapy, e.g. to suppress motor tremor in
Parkinson’s disease [Benabid et al., 2009].

Most of the BCI studies seen in the literature and described in this
thesis use EEG, but the other way round is not systematically true: it
is not because a system uses EEG that it is a BCI. EEG could just be
used as a diagnostic tool, without issuing commands, with no feature
extraction or classification. It may be a little difficult to pin-down an
exact definition of what a “BCI” is and what it is not – as it goes with all
trendy terms, it is employed more often that it should be [Allison, 2011].
The task is difficult, but we will try to face the challenge.

First, a BCI needs to rely on brain activity. It is not that obvious to
everybody, really, even if the “brain” word is comprised in the acronym.
Brain activity does not mean muscle activity, frown your eyebrow
activity, eye blinks activity, be very focus and clench your teeth activity.
It is brain activity, messages that are inferred directly (may it be current,
oxygen consumption, electromagnetism) from firing neurons. OK, this
part may be polemical, we never know really what we record. Even if we
are very precocious, something more than brain activity is quick to slip
through signal processing, and many confounding factors can deter
what is truly measured with neuroimaging [Brouwer et al., 2015].

Let’s talk about the second requirement of a BCI system: a feedback.
That is to say a command issued to the computer from the brain
activity. At least that was the case at first, when BCI were all active, when
brain activity was processed in real time (minus delays imposed by
computations) and that the users were issuing consciously commands,
for example imagininghandmovements tomove inside a 3D environment
[Lotte et al., 2010]. . . or feet movements to lift a (virtual, alas) space ship
[Lotte et al., 2008].

More recently, other kinds of BCI applications emerged, that do not
required users to consciously issue command but that toggle commands
or adapt software depending on the basal state of users. These are called
passive BCI, BCI not used as input to HCI [Zander and Kothe, 2011, George
and Lécuyer, 2010]. Passive BCI could be used to build adaptive systems,
for example by adding details to an air traffic control software if brain
recordings show that users can handle more information [Abbass et al.,
2014]; or by supporting users with an interface easier to manipulate
when the workload is too important [Afergan et al., 2014]. BCI “users”
could even be part of a signal processing pipeline, as for projects
that show rapidly numerous satellite images and seek within EEG the
event-related potentials that arise when operators see a missile silos
[Sajda et al., 2010] – kind of subliminal reactions. To think about users as
computational units does not exactly please me, but in a sense it is a
way to create a hybrid between flesh and silicon. Not necessarily a bad
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thing once the tool is given to people a bit more creative – designers or
architects that construct new shape by listening to their sub-conscious
[Cutellic and Lotte, 2013]; or when it acts as an explicit communication
channel between people, as I tried to investigate ultimately in part IV
with physiological sensors at large.

Between passive and active BCI there is an available slot: reactive BCI
[Zander and Kothe, 2011]. In reactive BCI, the brain activity triggered by
external stimuli is indirectly modulated by users so as to control the
application. One of the most famous BCI belongs to this category: in the
“P300 speller” letters that randomly flash on the screen can be used to
spell words with the sole brain activity. When the letter that the user
wants to spell flashes, a particular event-related potential arises within
the EEG, which possess a positive “peak” around t=300 ms after the
stimulus onset – this is commonly referred to as the “oddball paradigm”.
A promising application, but hold your horses before you get rid of your
keyboard, even with online correction the speed is in the range of 1
word per minute [Schmidt et al., 2012].

It is sometimes difficult to separate active, passive and reactive BCI.
The level of awareness or control of users is not always obvious. For
example, in the area of affective computing, games have been modified
to adapt the players avatar to the player emotional states. In a lab
version of World of Warcraft, the nice elves shifted in a terrible bear
when the users get stressed [Nijholt et al., 2009]. Although this can be
described as a passive BCI, users learn how to control their activity, and
during combats they could want to deliberately enrage so that their
character could fight back.

An active BCI is traditionally represented by the full loop of Figure 4.1,
with users commands detected by brain imagery and signal processing
and a feedback given. A passive BCI will only lack one step in the process,
the feedack that may be absent (when the BCI occurs afterwards) or
unconscious (with adaptive systems). A BCI is what sounds BCI and
looks BCI – and uses brain activity. In the end a BCI could be seen as a
tool to comprehend users brain activity.
Machine learning is widely used with BCI because these is an

important variability between people’s brain and brain patterns, and
many external factors that could influence brain recordings (amplifier’s
specifications, electrodes exact location, . . . ). As such, it is difficult
to make a strong assumption between a set of features and a given
mental state, one that could carry on between sessions and between
participants. With this approach, a calibration phase occurs so that the
system could learn which features are associated to a specific individual.
In this part we will make use of machine learning to select features that
come from EEG signals. There is three main types of information:

• Frequency domain: oscillations that occur when large groups of
neurons fire altogether at a similar frequency
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Figure 4.1 – The classic active BCI loop. 1: user’s brain activity is recorded,
2: signal processing detects features, 3: user’s mental state is
detected or a command is issued, 4: a feedback is given to the user.
Passive BCI: there is no feedback given to users, yet the system
monitors continuously brain activity.

• Temporal information: event-related potentials (ERP) posses
temporal features; positive and negative “peaks” with varying
amplitudes and delays. Note that while ERP cover self-induced
signals (e.g. motor preparation), the term “evoked potentials”
(EP), which is also found in the literature, is restrained to activities
that arise from external stimuli.

• Spatial domain: position of the electrodes on the scalp that record
a specific brain activity. It is possible to reconstruct the source of
the signals thanks to an inverse-model, a mathematical model
that describe how the signal is diffused. The connectivity between
sets of electrodes could be studied as well.

A BCI must use brain activity, but if we do not focus on fundamental
research, could as well use everything that is recorded by EEG (EOG and
EMG included) to extend the possibilities and improve the performances
– when muscular artifacts help the system and do not disrupt the signals.
Machine learning could be used the same way with other physiological
signals, the resulting system being a hybrid BCI [Zander, 2011]. We
described it at several occasions in section 3 and this is what we studied
while we evaluated a novel interaction technique in 6. Well, it is not
always beneficial to combine physiological sensors, but contrary to the
impressions we may give until now by focusing as much on clean EEG
signals, we welcome every churches in the happy world of physiological
computing.

It is implicit that BCI work in real time. In this part, EEG activity
is used in order to evaluate HCI. But the evaluation has nothing to
do with the interaction when it occurs. It is a tool that will be used
afterwards to correct poor choices. EEG enables continuous measures
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that do not need to take place at the same time of the interaction. It is a
“time-shifted live recording”, that utilizes almost all the workflow
employed in BCI, except for the feedback given to users.
The studies that follow put intro practice the signal processing

pipeline described in this chapter. If we consider BCI applications
where users are not aware of the ongoing modification of the system,
the works described in this part lie at the frontier of passive BCI’s
definition. For instance, the results gathered during the evaluation of
visual comfort pave the way for an adaptive system that could ease
users’ experience with stereoscopic displays.
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Visual comfort
with stereoscopic

displays
With stereoscopic displays a sensation of depth that is too strong
could impede visual comfort and may result in fatigue or pain.
We used Electroencephalography (EEG) to develop a novel brain-
computer interface that monitors users’ states in order to reduce
visual strain.We present the first system that discriminates com-
fortable conditions fromuncomfortable ones during stereoscopic
vision using EEG. In particular, we show that either changes in
Event Related Potentials (ERP) amplitudes or changes in EEG os-
cillations power following stereoscopic objects presentation can
be used to estimate visual comfort. Our system reacts within 1s to
depth variations, achieving 63% accuracy on average (up to 76%)
and 74% on average when 7 consecutive variations are measured
(up to 93%). Performances are stable (≈ 62.5%) when a simplified
signal processing is used to simulate online analyses or when the
number of EEG channels is lessened. Even though at the moment
only very specific stimuli are considered, this study could lead to
adaptive systems that automatically suit stereoscopic displays to
users and viewing conditions. For example it could be possible to
match the stereoscopic effect with users’ state by modifying the
overlap of left and right images according to the classifier output.
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This work first appeared in [Frey et al., 2015] in a shorter format.
The present chapter contains most of the additional analyses that were
published afterwards in [Frey et al., 2016a], as well as some details that
appeared in a previous pilot study [Frey et al., 2014c].

I thank Léonard Pommereau and Aurélien Appriou for their help –
more in the appendices, section Credits.1.

5.1 Stereoscopy at risk
Stereoscopic displays have been developed and used for years in
computer science, for example to improve data visualization [Frohlich
et al., 1999, Drossis et al., 2013], to ease collaboration between operators
[Salzmann et al., 2009] or to better manipulate virtual objects [Hachet
et al., 2011]. However, it is only during the past decade that this
technology began to reach users beyond experts. Notably, movie
theaters – and the entertainment industry in general – helped to
popularize so-called “3D” contents. Nowadays stereoscopic displays
are used at home. “3D” television sets gain in popularity and game
devices started to use this technology. Yet, whenever devices use
shutter or polarized glasses1, parallax barrier2 (e.g. Nintendo 3DS) or
head-mounted displays (as with the Oculus Rift) to produce pairs of
images, visual discomfort could occur when the stereoscopic effect is
too strong. Some viewers could even feel pain [Lambooij et al., 2009].
In order to mitigate those symptoms and adapt the viewing ex-

perience to each user, we propose an innovative method that can
discriminate uncomfortable situations from comfortable ones. It reacts
quickly (within 1s), without calling upon users, so it does not disrupt
the viewing.

Our solution is versatile because all stereoscopic displays use the
same mechanism to give the illusion of depth. They send a different
image to the left and right eyes. As with natural vision, the visual fields
of our eyes overlap and the difference between the two images helps
our brain to estimate objects’ distance.

To facilitate images merge, observers rely on two mechanisms. First, Besides stereoscopy,
other mechanisms
help to asses depth,
such as shadows or
parralax.

they need to maintain the point of interest at the same place on both
their retinas. This is why the closer an object gets, the more eyeballs
rotate inward. This is called “vergence”, and it also happens with
stereoscopic displays. Second, in a way similar to how camera lenses
operate, crystalline lenses need to focus light beams. They deform
accordingly to objects’ position in order to obtain a clear picture. This
other physiological phenomenon is called “accommodation” and is not
replicated with stereoscopic displays.

In a natural environment, vergence and accommodation are locked
to objects’ positions and occur altogether. However, since the focal

1respectively "active" and "passive" displays
2"autoscopic" displays
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plane in stereoscopic displays is fixed, accommodation will not change.
No matter how far or how close virtual objects appear to be, physical
screens remain at the same place. The discrepancy between vergence
and accommodation is called the “vergence-accommodation conflict”
(VAC, see Figure 5.1). It causes stress on users [Lambooij et al., 2009].
The closer or further a virtual object gets compared to the display plane,
the stronger this conflict is. When it is too important or lasts too long,
visual discomfort occurs.

Figure 5.1 – The vergence-accommodation conflict (VAC). Left: object “behind”
the screen, negative VAC. Middle: the object appears flat, no VAC.
Right: object “in front”, positive VAC.

VAC is one of the major causes of the symptoms associated to visual
fatigue in stereoscopic displays [Hoffman et al., 2008, Lambooij et al.,
2009]. Guidelines exist to limit the VAC and prevent such negative
effects. In particular, Shibata et al. [Shibata et al., 2011] established
a “zone of comfort” using questionnaires, a zone within which the
apparent depth of objects should remain to avoid discomfort (see
Figure 5.2). It takes into account the distance between viewers and
displays. Unfortunately individual differences [Lambooij et al., 2009]
make it hard to generalize such recommendations and use them as
is. Besides, viewing conditions vary. Ambient light, screen settings,
viewing angle and stereoscopic techniques are parameters among
others that influence the rendering and as such alter visual strain
[Bangor, 2001]. It may then be interesting to back up the VAC with
another type of measure than sporadic and disruptive questionnaires.

As seen in part I, new investigation techniques record users’ physiol-
ogy. Complementary to qualitative questionnaires, as used in [Shibata
et al., 2011], brain activity recordings enable the monitoring of users
states. Not only such technology could give continuous insights, it also
makes measures without interrupting or disrupting the interaction,
here the viewing. In [Gaeblerlabel et al., 2014], authors demonstrate
with functional magnetic brain resonance imaging (fMRI) how stere-
oscopy increases inter-subject correlation of several neural networks,
overlapping data with the time course of a movie, and how it reflects
immersive tendencies reported via questionnaires.
Electroencephalography (EEG) is among the cheapest and most

lightweight devices that sense brain signals. Even though EEG has
been used to investigate visual fatigue induced by stereoscopic display
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Figure 5.2 – The acceptable zone of comfort depending on viewing distance
and vergence distance – i.e. the apparent depth of contents. From
[Shibata et al., 2011]

[Li et al., 2008, Cho et al., 2012, Chen et al., 2013, Bang et al., 2014],
those studies only compared flat images with stereoscopy. They do not
control for objects virtual positions, hence they cannot account for
different comfort conditions. Furthermore, most of the EEG studies
related to stereoscopic display and fatigue analyzed stimuli which last
several minutes (e.g. from 3 to 40 min in [Li et al., 2008, Chen et al.,
2013, Bang et al., 2014]). Such protocols could not lead to adaptive
systems that react quickly.

In a first pilot we studied the zone of comfort continuum through
EEG. In [Frey et al., 2014c], we conducted a preliminary investigation
that compared short appearances of virtual objects. Results tended to
show that the brain activity induced by stereoscopic displays was
different whether objects were presented within the zone of comfort or
not. There ware significant differences both in event-related potentials
(ERP) and in frequency bands power. An uncomfortable stereoscopy
correlates with a weaker negative component and a delayed positive
component in ERP. It also induces a power decrease in the alpha band
and increases in theta and beta bands.

Following this work, we tested the accuracy of a system that classifies
EEG data to measure visual comfort. Our main contribution is to prove
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the feasibility of an EEG system that could estimate in near real time
(1s delay) the visual comfort viewers are experiencing as they watch
stereoscopic displays. It could be adapted to real-case scenarios by
controlling the discrepancy between left and right images depending
on the output of the classifier. Then it could be employed in different
settings to improve HCI by easing users’ comfort, for example when
they manipulate 3D contents during prolonged periods of time – such as
remote design or video games – or when people are watching 3D movies
– especially when there are many rapid depth variations, as seen in
action sequences.

5.2 Experiment
5.2.1 Overview
We studied the appearance of virtual objects. They were presented
to participants at different apparent depths for a few seconds (see
Figure 5.3). We studied two conditions: objects appeared at a comfort-
able position (“C” condition) or at an uncomfortable position (“NC”
condition).

Baseline Stimulus Task

?

Press
or

1 object out of 5 locations

2.5 to 3s1 to 1.5s 1.5s

+
NC

C

NC

C

Figure 5.3 – One trial: cross (baseline), object at random depth, task.

We displayed simple grey objects over a black background. Three
kinds of primitives were employed: cube, cylinder (32 vertices) and
icosphere (80 faces). The primitives varied in shapes as curves and
surfaces size are important for objects comprehension [Champion
et al., 2004]. Objects orientation were randomized along the three axes,
rotations producing more stimuli [Norman et al., 2009]. Rotations were
controlled so as cube and cylinder faces couldn’t be orthogonal to the
camera plan, thus preventing the appearance of artificial 2D shapes.
The resulting 3D scenes were kept simple enough to ensure that there
were no distracting elements and that no variables beside the VAC
were manipulated. We deprived the depth cues to control for VAC. For
example casting shadows would have helped to differentiate close
objects from far objects without the need of binocular fusion [Mikkola
et al., 2010].
We defined ranges inside and outside the zone of comfort that

match the equations established by [Shibata et al., 2011]. Related
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to the location of participants sitting 1m away from the display, in
“C” condition virtual objects were positioned within [0.75m; 0.85m]
(comfortable close) or within [1.3m; 1.6m] (comfortable far). In “NC”
conditions, ranges were [0.35m; 0.45m] (uncomfortable close) or [4m;
6m] (uncomfortable far). During one third of the trials, objects appeared
“flat” (no stereoscopic effect, 1m apparent depth, as far as the screen).

In order to assess their capacity to situate virtual objects in space
and to maintain their vigilance high during the whole experiment,
participants had to perform a task. When a question mark was shown
on screen, “down” arrow, “space” bar or “up” arrow were pressed to
indicate whether objects appeared “in front of”, “as far as” (flat images)
or “behind” the screen. With both hands on the keyboard, choosing
those keys to answer ensured that participants’ gaze was not leaving the
screen and that participants’ movements would not pollute EEG signals.

The participants were also motivated to complete the experiment
and reach the best score (the number of correct responses). They were
told that the one with the best score during the task would won a bottle
of wine3.

A trial startedwith a neutral stimulus, a 2D cross appearing on-screen
for 1 to 1.5s. Then the virtual object appeared for 2.5 to 3s. Finally, a
question mark appeared for 1.5s, a period during which participants
had to perform the task. After that, a new trial began. This sequence is
illustrated in Figure 5.3. The first two time intervals, that randomly
varied by 0.5s, prevented participants to anticipate objects appearance
and the moment they had to respond to the task. On average a trial
took 5.5s. All in all there were 160 trials per C and NC conditions,
randomly distributed. Trials were equally split across 4 sub-sessions to
let participants rest during the investigation and avoid a too tedious
experiment.

5.2.2 Apparatus
Stereoscopic images were shown in full HD resolution (1080p) on a 65
inches Panasonic TX-P65VT20E, an active display – participants wore
shuttered glasses. The software that rendered the virtual objects was
programmed with Processing framework, version 2.2.1. Objects were
dynamically created. No matter their apparent depths, primitives sizes
on screen remained identical: they were scaled within the virtual scene.
In combination with a diffuse illumination of the scene, this made
it impossible to discriminate conditions without stereoscopy. The
interpupillary distance used to compose stereoscopic images was set at
6cm, an average value across population [Dodgson, 2004].
EEG signals were acquired at a 512Hz sampling rate with 2 g.tec

g.USBamp amplifiers. This medical-grade equipment handles 32 elec-
3Bordeaux city makes us do this kind of promises, even if in the end it ended up with

a beer fest for everyone.
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Figure 5.4 – Setup of the experiment, with a participant being presented with
stereoscopic images while his EEG signals are being recorded.

trodes. We used 4 electrodes to record specifically electrooculographic
(EOG) activity and 28 to record EEG. In the international 10-20 system,
EOG electrodes were placed at LO1, LO2, IO1 and FP1 sites; EEG electrodes
were placed at AF3, AF4, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, C3, Cz, C4,
CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO3, PO4, O1, Oz and O2 sites.
OpenViBE 0.17 recorded both electrodes signals and key strokes of the
task.

OpenViBE was also used to trigger images appearance in Processing.
To do so, TCP messages were sent from OpenViBE to Processing. The
same machine ran both programs, thus TCP latency was negligible (less
than 1ms). 3D rendering on Processing side could necessitate some
CPU cycles, though, and event-related potentials (ERP) analyses suffer
from bad synchronizations. This is why we took extra precautions to
accommodate rendering delays and ensure a reliable synchronization
between objects appearance and EEG recordings. Processing framerate
was reduced down to 25 FPS and a 60ms interval was set between TCP
messages interception and the appearance of a new image – a sufficient
time for the machine to make the virtual rendering and avoid lags.
Overall, this mechanism ensured a constant 100ms delay between sent
messages and images appearance4. The whole setup can be seen in
Figure 5.4.

5.2.3 Participants
12 participants took part in the experiment: 5 females, 7 males, mean
age 22.33 (SD=1.15). They reported little use of stereoscopic displays:
1.91 (SD=0.54) on a 5-point Likert scale (1: never; 2, 3, 4, 5: respectively
several times a year, month, week or day). If applicable, participants

4Here we dealt with static images, we took another approach regarding ERP
synchronization in chapter 7
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wore their optical corrections – there was enough space beneath the
shutter glasses for regular glasses not to disrupt user experience.

We made sure that no participant suffered from stereo blindness
by using a TNO test [Momeni-Moghadam et al., 2012]. We created a
computerized version of this test to ensure that their ability to perceive
stereoscopic images was on par with our equipment, as advised in
[Gadia et al., 2014].

5.2.4 Measures
Beside EEG measures, task scores were computed from participants’
assessment of objects’ virtual position in space – whether they appeared
“in front of”, “as far as” or “behind” the screen. During the 1.5s time
window question marks appeared, the first pressed key, if any, was taken
into account. A correct answer resulted in 1 point, an incorrect in -1
point and none in 0 point. Final scores were normalized from [-480;480]
to [-1;1] intervals.

A questionnaire inquiring the symptoms associatedwith the different
apparent depths preceded first trials and followed each sub-session.
There were 2 items, one asking about participants vision clarity and the
other about eyes tiredness. The corresponding 5-point Likert scales
were adapted from [Shibata et al., 2011] and translated to French, “1”
representing no negative symptoms and “5” severe symptoms. We
measured respectively how well participants saw the stereoscopic
images and how comfortable they felt; to do so we averaged the answers
(10 values per item and per C/NC conditions).

5.2.5 Procedure
The experiment occurred in a quiet environment, isolated from the
outside, with a dimmed ambient light. The whole experiment was
approximately 90 minutes long and comprised the following steps:

1. Participants entered the room. They were seated 1m away from
the stereoscopic screen (distance from their eyes), next to a
table. They read and signed an inform consent form and filled a
demographic questionnaire.

2. The stereoscopic display was switched on and participants stereo-
scopic vision was assessed with a TNO test.

3. EEG cap was installed onto participants’ heads and we ensured
reliable EEG signals recordings.

4. The “symptoms” questionnaire was given orally, experimenter
manually triggering objects appearances. There was 1 object per
virtual depth range (C close/far, NC close/far) and 2 flat objects;
making 6 randomized objects per questionnaire.
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5. A training session occurred. During this session participants had
the opportunity to get familiar with the trials and with the task.
We waited until participants felt confident enough and were ready
to proceed with the main part of the experiment.

6. The 4 sub-sessions, described previously, occurred. When a sub-
session ended, participants were given again the questionnaire of
step 4 before they could rest, drink and eat. Once they felt ready,
we pursued with the next sub-session.

We made sure that the participants were not suffering for any
sickness before they left the experimental room.

5.3 Analyses
Because we want to increase fundamental knowledge on brain activity,
we were particularly cautious to base our analyses on “clean” EEG
signals, that is to say on EEG signals not polluted by artifacts such
as eye movements [Fatourechi et al., 2007]. The signal processing
that we present in this section, uses state-of-the-art tools to remove
such artifacts. In the results section we will explain how the use of a
simplified pipeline – one that could be easily applied online in real-life
scenarios – has little impact on performance

5.3.1 EEG signal processing
We used EEGLAB 13.3.2b and Matlab R2014a to process EEG signals
offline. Data gathered from the 4 sub-sessions were concatenated. We
applied a 0.5Hz high-pass filter to correct DC drift and a 25Hz low-pass
filter to remove from our study signal frequencies that were more likely
to be polluted by muscle activity. We extracted the 320 epochs – “slices”
of EEG – around C and NC stimuli onsets, from -1s to +2.5s.
Due to the important amount of data (3840 trials across our 12

participants), we chose automated methods to clean the signals. The
EEGLAB function popautorej removed epochs that contained muscular
artifacts. Following the results obtained in [Ghaderi et al., 2013], EOG
activity was suppressed from the signal using the ADJUST toolbox
1.1 [Mognon et al., 2010]. After an Infomax independent component
analysis, we rejected components that ADJUST labelled as eye blinks or
eye movements (vertical and horizontal).

An event-related potential (ERP) corresponds to one or more “peaks”
in EEG recordings, associated with an event – in our case the appearance
of stereoscopic images. Averaged ERPs across participants indicated
that ERPs had a higher positive peak in C (see Figure 5.5).

There were some differences in EEG oscillations – event-related
spectral perturbations (ERSP), depicted in Figure 5.6. Overall, there may
be notably both a decrease of signal power within the alpha band (≈



II.5

CHAPTER 5. VISUAL COMFORT WITH STEREOSCOPIC DISPLAYS 43

NC

C

-0.5

0

0.5

1

1.5

-1

-1.5

-2

-500 0 500 1000 1500

P
ot

en
tia

l (
µ

V
)

Time (ms)

Figure 5.5 – Average ERP across 28 EEG electrodes and 12 participants. Blue:
Comfort condition; green: No-Comfort condition (≈ 160 trials
each). The stereoscopic object appears at t=0ms.

7Hz - 13Hz) and an increase within the theta band (≈ 4Hz - 6Hz) in
non-comfort condition. Based on these findings over averaged trials,
we employed spectral domain information with different features
extraction methods and different classifiers for single trial classification.
The benefits derived from the combination of temporal (ERP) and
spectral (band power) characteristics were minor compared to the
growing complexity of the underlying signal processing. For the sake of
the argument, we preferred to detail a more intelligible framework in
this section and to relegate a brief description of the combination of
features in the Results section. This is why our classification strategy
solely relies on temporal information when we compared different
pipelines – e.g. Monte Carlo simulations, pseudo-online and reduced
number of electrodes, see below.

Figure 5.6 – Average ERSP in Pz (medial parietal region). Left: No-Comfort con-
dition; right: Comfort condition (≈ 160 trials each, 12 participants).
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5.3.2 Classification
We used a common pipeline to classify EEG signals. Basically, it consists
in extracting relevant signal features, training the classifier on a certain
set of data – it corresponds to a “calibration” phase – and then testing
the classifier performances on unseen data, which simulates a real-case
application.

We split in two the EEG dataset of each participant. The first half of
the trials was used as a training set, and the second half as a testing set.
This distribution facilitates the comparison between offline and online
signal processing. In order to utilize temporal information, features
extraction relied on regularized Eigen Fisher spatial filters (REFSF)
method [Hoffmann et al., 2006]. This spatial filter, specifically designed
for ERPs classification, reduced signals dimension from 28 EEG channels
to 5 “virtual” channels whose signal is more discriminant between
conditions. Note that we did not include in our study the 4 channels
that were specifically recording EOG activity.

We selected a timewindow of 1s, starting at t=100ms to accommodate
the fixed delay with objects appearances (see Apparatus). In order to
reduce the number of features, we decimated the signal by a factor 16.
As a result, there was 160 features by epoch (5 channels × 512Hz × 1s /
16). We used shrinkage LDA (linear discriminant analysis) as a classifier
[Ledoit and Wolf, 2004]. Shrinkage LDA algorithm is more efficient
compared to regular LDA when it comes to a high number of features
[Blankertz et al., 2011].

5.3.3 Simulating longer stimuli with Monte Carlo
Although we used 1s time windows as a basis for our analyses, we
wanted to go beyond and test longer stimuli by aggregating trials.

We could not use directly the data we gathered because in our
experimental protocol conditions were randomized. So we had to
simulate. We used Monte Carlo simulations to cluster trials. The
principle is as follows: studying 3 presentations, we cluster 3 similar
trials drawn from the testing set (e.g. “no-comfort”, 3xNC). Then we
look at individual classifications from the system (e.g. NC-NC-C) and
keep the label which has the majority – in this case NC, the resulting
classification is correct for this cluster. Had the classifier labelled trials
as “C-C-C”, “NC-C-C”, “C-NC-C” or “C-C-NC”, the cluster would have
been erroneously labelled as “C”.

Different combinations of trials were drawn from the testing set to
compute the scores for n=3,5,7. Monte Carlo simulations served two
purposes. On the one hand, it simulates the behavior of the classifier
over a longer sequence of identical stimuli. On the other hand – and
reciprocally – it allows the experimenter to suit the stimuli to the
performance she or he wants to obtain for the desired use-case. Indeed,
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with a “n” as big as one want, the trade-off between accuracy and
exposure time could be freely chosen.

5.4 Results
5.4.1 Task & symptoms questionnaires
We used a Wilcoxon Signed-rank test to compare task scores between C
and NC conditions (means: 0.45 vs 0.40). There was no significant effect
(p = 0.78).

A Wilcoxon Signed-rank test showed a significant effect of the C/NC
conditions on both symptoms items (p < 0.01). Participants reported
more eye comfort (means: 2.41 vs 3.46) and more vision clarity (means:
2.10 vs 3.13) in C than in NC.

5.4.2 Classification

Table 5.1 – Classifier accuracy (in percentage) for every participant. Mean:
63.30%, SD: 7.64.

Participant 1 2 3 4 5 6
Accuracy 54.17 59.23 58.22 70.32 60.53 64.19
Participant 7 8 9 10 11 12
Accuracy 62.91 76.06 72.46 71.52 53.24 56.74

We were able to predict with an average accuracy of 63.30% (SD=7.64)
the visual comfort experienced by viewers (see Table 5.1). We studied
further this first result on 3 different aspects: we used Monte Carlo
simulations to improve performances over longer stimuli; we investi-
gated how the classifier behave when only half of the EEG electrodes
are employed and finally we simulated an online analysis to assess
performance in a real-life scenario. Those results are detailed below and
summarized in Table 5.2.

5.4.2.1 Monte Carlo simulations
With Monte Carlo simulations, we investigated how the system would
perform with the appearance of several images from the same condition.
Classifier accuracy reached 68.91% (SD=10.32) over 3 trials. Over 5 trials
the classification reached 90% for some users, resulting in a 71.83%
average (SD=12.28). With n=7, one-third of the participants reached 90%
or more (74.08\ on average, SD=13.39). See Figure 5.7.

5.4.2.2 Channels’ contribution – accuracy over 14 channels
EEG device that possesses fewer electrodes would be more comfortable
to wear, faster to setup – i.e. more practical – and less expensive.
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Figure 5.7 – Classifier accuracy depending on the size of trials clusters

We studied which channels contributed the most and which con-
tributed the least to the classifier output. For each channel, we averaged
across participants the absolute value of the spatial filter’s coefficients
that were computed by the REFSF extraction method. We arbitrarily
normalized the data between -1 and 1 for more clarity (see Figure 5.8).

To assess the performance of a BCI system that would use less EEG
electrodes, we retained the upper half of the channels that contributed
the most to features extraction using these computations – i.e. F4, PO4,
CP1, FC1, FC2, CP2, P3, Oz, FC6, P4, Fz, AF4, PO3 and Pz. With the reduced
set of 14 EEG channels, the classifier resulted in a 62.77% accuracy
(SD=7.47), which is close to the configuration that includes all channels.

5.4.2.3 Online scenario
The pipeline that we presented in Section 5.3 would be difficult to apply
in real-life scenarios – online analyses prevent the use of advanced
signal processing, such as ICA for artifact removal, because it requires
heavy computations and often necessitates the entire EEG trace to be
effective. Fortunately, artifacts had little incidence on the performance
of our system. We simulated an online pipeline by skipping several
steps – we removed ICA decomposition and did not use neither the
ADJUST toolbox nor the pop_autorej function from eeglab – and still
obtained similar results, with an accuracy of 62.40% (SD=4.80).

5.4.2.4 Combining with frequency bands
Although the purpose of this chapter is not to focus on signal processing,
we will briefly describe how we managed to improve the performance
of our system by combining temporal features (i.e. ERPs) with spectral
features (“frequency bands”).
Besides REFSF for temporal features, we used common spatio-

spectral patterns (CSSP) to extract spectral features [Lemm et al.,
2005]. 4 frequency bands were extracted: delta (1Hz - 3Hz), theta
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Figure 5.8 – EEG channels’ contribution to the spatial filter used by the
classifier, averaged across participants. The unit of the scale is
arbitrary, from “-1” (least important) to “+1” (most important).

(4Hz - 6Hz), alpha (7Hz - 13Hz) and beta (14Hz - 25Hz). Concurring
with ERSP analyses and the time course in Figure 5.6 – that depicts
differences between C and NC conditions – the best results were reached
by extracting spectral features over a 1s time window that started at
t=1100ms (1000ms + 100ms for image appearance delay). REFSF and
CSSP features were concatenated and normalized (z-score). Using
a feature selection method based on the ratio of features’ medians
[Guyon, 2003], we reduce the number of features passed to the classifier
from 184 to 50 – there were at the beginning 160 features from REFSF +
24 features from CSSP, 3 pairs from 4 bands.

In the end we obtained a 64.66% mean accuracy (SD=5.79). Note,
however, that this 64.66% classification accuracy is not statistically
different from the 63.30% accuracy obtained using only ERP (Wilcoxon
test, p > 0.05). This therefore suggests that although the spectral features
do contain relevant information for classification, this information
might not be different from the one contained in ERP. Alternatively,
maybe the approach we used to combine these two kinds of information
was not optimal.
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Table 5.2 – Overview of the classifier performance for the various methods we
investigated.
Method Accuracy SD
Offline pipeline (ERP) 63.30% 7.64
Monte Carlo (ERP, n=3) 68.91% 10.32
Monte Carlo (ERP, n=5) 71.83% 12.28
Monte Carlo (ERP, n=7) 74.08% 13.39
ERP + spectral 64.66% 5.79
14 EEG channels (ERP) 62.77% 7.47
Simulated online pipeline (ERP) 62.40% 4.80

5.4.3 Factors influencing classification
We investigated which personal factors could influence the results of
our classifier. Outside EEG recordings, the data that reflected most
participants inter-variability was concealed among the task’s scores and
the symptoms associated to stereoscopy. We used Spearman’s rank
correlation to test between, on the one hand, classifier accuracy and, on
the other hand, the difference between NC/C scores and NC/C answers
to symptoms questionnaires.

There was no significant association. Neither with the performance
task (p = 0.44), with eye comfort (p = 0.81) nor with vision clarity (p =
0.57).

5.5 Discussion
During short exposures to images, participants reported worse vision
clarity and less visual comfort in NC condition, thereby validating a
clear distinction between the two zones of comfort of our protocol.
Participants performed equally well in both conditions during the
task, suggesting that even if severe, a VAC does not alter their ability
to make rough estimations of virtual depths. In this context, it also
highlights the limits of behavioral methods in measuring participants’
comfort. A neuroimaging technique, on the other hand, did manage to
discriminate two comfort conditions.

EEG signals reflected the disparities in visual comfort. We mainly
focus our computations on ERPs, as temporal features led to a signal
processing pipeline that was both comprehensible and effective. Using
an offline analysis, it was possible to build a classifier that achieved an
accuracy greater than 63%, with several participants exceeding 70%.
The system scored above chance level in all our analyses (p < 0.01)
[Müller-Putz et al., 2008]. The performance of the classifier was not
influenced by participants’ ability to perceive depth nor by the strain
that induced the presentation of stereoscopic images.

This score of 63% accuracy, while not as high as some other estab-
lished BCI systems, may be already sufficient to improve users’ comfort.
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Indeed, on-the-fly correction of uncomfortable images can be seen as
error correction, and in such settings detection rates from 65% are
acceptable to improve interactions [Vi and Subramanian, 2012]. These
findings depend on the nature of the task, of course. This is why we
proposed a mechanism to increase the performance of the classifier.
By taking into account more than one object appearance, or by

increasing the duration of viewing sessions, the classifier should become
more reliable. The system score improved by 6 points when we clustered
trials by 3. During our simulations, the accuracy went around 90% for
some users with 5 trials, and for one-third of the participants over 7
trials. It is possible to use this method to simulate an arbitrary number
of consecutive trials. Therefore, this tool can estimate how many
presentations are needed to reach a specific accuracy and suit the
desired application.
During our study we found differences among frequency bands

power. While those differences were not large and did not significantly
improve the accuracy, spectral features may present an opportunity to
strengthen classifier’s performance with further investigations.
We were able to replicate our results with a simplified pipeline

that could be applied online, paving the way for real-life applications.
Furthermore, we were able to select the EEG channels that contributed
the most to classifier performance and to halve their number with little
loss in accuracy. Even though we used a medical grade EEG equipment
to set the basis of a new adaptive system, it seems to indicate that
our system could remain functional with entry-level devices. As a
matter of fact, the reduced number of channels that we used – 14 –
correspond to the number of EEG electrodes found on the Emotiv EPOC5.
With the EPOC the positioning of the electrodes is constrained by the
manufacturer, but other initiatives, such as the 16-channels OpenBCI
system6, may combine affordability, flexibility, reliability and ease-of
use, as we investigate in the Appendices.

5.6 Conclusion
We described an innovative system that can distinguish uncomfortable
stereoscopic viewing conditions from comfortable ones by relying
on EEG signals. We controlled the experimental conditions with
questionnaires, founding significant differences in visual comfort
between short exposures of images. Visual comfortwas assessed,whereas
existing studies focused on visual fatigue – a component that appears on
the long term and that we propose to prevent beforehand.

A passive stereoscopic comfort detector could potentially be useful
for multiple applications, as a tool to: 1) compare with exocentric mea-
sures (possibly offline) different stereoscopic displays, 2) dynamically

5https://emotiv.com/
6http://www.openbci.com/

https://emotiv.com/
http://www.openbci.com/
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enhance stereoscopic effects, by increasing discrepancy without causing
discomfort, 3) quickly calibrate stereoscopic displays, 4) dynamically
adapt discrepancy to avoid discomfort (e.g. during 3D movies) or
voluntarily cause discomfort (e.g. for basic science studies about
perception), among many others.

Using short time windows (features were extracted over 1s), and
minimalist stimuli (still objects) we set the basics of a tool capable
of monitoring user experience with stereoscopic displays in near
real time. Our offline analysis used the state of the art in signal
processing to demonstrate the feasibility of such a method with clean
EEG signals. We obtained a similar classification accuracy without
computationally demanding artifacts filtering, demonstrating also that
the work presented here could perfectly be applied online. A framework
like OpenViBE could ease the creation of an online scenario. Even
though some BCI applications are biased by artifacts non originating
from brain activity – e.g. emotion recognition by facial expression
[Friedman and Thayer, 1991] – during our investigations we discovered
that eye artifacts did nothing but adding slight noise to the system.
Either an automatic removal method could be employed to clean
the signal online [Schlögl et al., 2007] or the EEG electrodes could be
positioned over the parietal and occipital regions.

More complex signal processing can increase classification rate. We
gave insights on how the addition of spectral features to the temporal
information may improve the accuracy of the system. We also described
a method that can assess how many stimuli are needed to reach a
particular accuracy – i.e. Monte Carlo simulations.

Although it is not deniable that it is currently easier to calibrate
displays without EEG, a passive BCI can adapt the parameters to users’
state throughout the viewing. It is complementary to other methods
that aimed at improving users’ comfort. It is possible to integrate EEG
measures with other physiological sensors, as hinted by other systems
[Bang et al., 2014] and as see when we reviewed HCI evaluation methods
in part II.
At the same time that a passive BCI that could adapt viewing

conditions to users is built, experimental protocol should be enhanced
to integrate richer stimuli. Colors, shadows, relative positions or
movements: many cues participate in the comprehension of depth.
Besides, real-life scenarios involve virtual scenes that are more complex
than grey images of primitive shapes. It will also lead to a broader VAC
spectrum. Even if the “curse-of-dimensionality” [Friedman, 1997] will
prevent a classifier to possess many classes, the more VAC are taken
into account, the more refined adaptive systems will be.

In order tomake the adaptive system reliable and useful for themany,
differences between individuals that influence classifier performance
need to be studied. Physiological characteristics – e.g. interpupillary
distance –, past experience with stereoscopic displays – some people
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may need more time to acclimate to such technology – should be
weighed against. Users’ states also have to be taken into account; e.g.
mental fatigue likely relates to visual fatigue. This study will hereby
lead to promising work in many fields: human factors to understand
brain patterns disparities, signal processing to improve accuracy, design
to create adaptive interfaces, entertainment to integrate comfort
measures, and manufacturers, to create more accessible hardware
solutions and popularize the use of EEG. By combining those different
areas of expertise, passive BCIs should become a viable option for
increasing users’ comfort, a solution that does not disrupt work or the
narrative.

The transition toward more practical settings should be seamless,
as classifier performance remains stable even when half the EEG
electrodes are used. Next step would consist in conceiving an analogous
online system that monitors more complex virtual scenes. A real-world
application could consist in a gamified version of our task that smoothly
corrects depth range upon classifier output. Such smooth alteration
could be applied to animation movies as well. The discrepancy between
left and right images would be gradually reduced while discomfort is
detected – e.g. when several presentations of objects that are virtually
close to the users trigger such label within the classifier. On the
contrary, the discrepancy could be increased gradually to enhance the
stereoscopic effect as long as no discomfort is detected. This requires
only the tuning of one parameter of the display, which is accessible for
example through devices such as the Nintendo 3DS or the Nvidia 3D
vision system. When the content is dynamically generated – i.e. video
games – the control over the virtual scene is even more substantial. In
this case one could differently adapt objects’ position, according to
whether they seem to appear in front of the screen or behind it.

We documented a novel solution to a famous issue – i.e. estimating
stereoscopic discomfort – thus increasing fundamental knowledge.
Besides 3D scenes control, by giving access in real time to users’ inner
states, EEG will help to modulate more closely the viewing experience
according to the effect one wants to achieve. In a HCI context, this tool
could also be extended with the measure of other constructs, such as
workload – see next chapters.
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6
Workload during
3D manipulation

tasks
As stated in part I, designing User Interfaces (UI) requires adequate
evaluation tools to ensure good usability and user experience. While
many evaluation tools are already available and widely used, existing ap-
proaches generally cannot provide continuous and exocentric measures
of usability qualities during interaction without interrupting the user.
In this chapter, we propose to use brain (with electroencephalography)
and physiological (electrocardiography, electrodermal activity) signals
to continuously assess the mental effort made by the user to perform
3D object manipulation tasks. We first show how this mental effort
(a.k.a., mental workload) can be estimated from such signals, and then
measure it on 8 participants during an actual 3D object manipulation
task with an input device known as the CubTile. Our results suggest that
monitoring workload enables us to continuously assess the 3DUI and/or
interaction technique ease-of-use. This was the first application of the
framework outlined in previous part, suggesting that EEG could become
a useful addition to the repertoire of available evaluation tools, enabling
a finer grain assessment of the ergonomic qualities of a given 3D user
interface.

This work was published in [Wobrock et al., 2015].
I thankDennisWobrock for his involvement –more in the appendices,

section Credits.2.
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6.1 Introduction
3D User Interfaces (UI) and systems are increasingly used in a number of
applications including industrial design, education, art or entertainment
[Bowman et al., 2004, Jankowski and Hachet, 2013]. As such, 3DUI and
interaction techniques can be used by many different users with many
varying skills and profiles. Therefore, designing them requires adequate
evaluation tools to ensure good usability and user experience for most
targeted users [Bowman et al., 2002, Jankowski and Hachet, 2013]. To do
so, a number of evaluation methods has been developed including
behavioral studies, testbeds, questionnaires and inquiries, among
others [Bowman et al., 2004, Jankowski and Hachet, 2013] – see also
chapter 1. This resulted in the design of more relevant, efficient and
easy-to-use 3DUI.

Figure 6.1 – Schematic view of a user performing 3D manipulations tasks with
the CubTile input device. His/her mental effort are monitored
based on brain signals (ElectroEncephaloGraphy).

Nevertheless, there is still a lot of room for improvements due to
limitations of traditional evaluation methods – e.g. measures’ ambiguity
and discontinuity, bias due to social pressure and so on, see part I. A
useful UI evaluation measure is the user’s mental workload, i.e. the
pressure on the user’s working memory, which is typically measured
using the NASA-TLX post-hoc questionnaire [Hart and Staveland, 1988].
Even though it can be used to assess users’ preferences regarding UI
[Karnik et al., 2013], NASA-TLX being a post-experiment measure, this is
only a egocentric and global measure that cannot inform on where and
when the user experienced higher or lower workload. There is therefore
a need for more exocentric and continuous measures of the usability
qualities of 3DUI that do not interrupt the user during interaction. We
described previously how physiological computing could help to obtain
such measures of the user’s inner-state during interaction.
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Indeed, there are increasing evidence that the mental states that
can be relevant for 3DUI evaluation, like mental workload [Mühl
et al., 2014], can be estimated from brain and physiological signals
[Nourbakhsh et al., 2013]. Interestingly enough, some recent works have
started to use brain signal based measures of workload to compare 2D
visual information displays [Peck et al., 2013, Anderson et al., 2011].
However, to the best of our knowledge, estimating mental workload
from both brain and physiological signals has never been explored to
evaluate 3DUI, although it could provide relevant evaluation metrics
to complement the already used ones. Indeed, previous works were
focused on evaluating workload levels based on brain signals during 2D
visualizations, thus with more passive users [Peck et al., 2013, Anderson
et al., 2011]. 3D interaction tasks are more complex for the user since 1)
the user is actively interacting with the application, and not as passively
observing it, and as such should decide what to do and how to do
so, and 2) perceiving and interacting with a 3D environment is more
cognitively demanding than perceiving and interacting with a 2D
one, since it required the user to perform 3D mental rotation tasks to
successfully manipulate 3D objects or to orientate him/herself in the 3D
environment. Therefore, as compared to existing works which only
explored passive 2D visualizations, monitoring mental workload seems
more relevant during 3D manipulation tasks, since the user is more
likely to experience pressure on his/her cognitive resources. Therefore,
evaluating the resulting changes in workload levels seems even more
necessary to ensure the design of usable 3DUI. Moreover, the active role
of the user during 3D interaction tasks (as compared to more passive
visualizations) and the higher cognitive demand as well as the richer
visual feedback resulting from the use of a 3D environment means that
EEG and physiological signals will be substantially different and more
variable as compared to those measured during 2D visualization tasks.
Finding out whether they can still be used to estimate workload levels in
this context is therefore a challenging and relevant question to explore.

Therefore, in this chapter, we propose to assess users’ workload (i.e.
their mental effort) during 3D object manipulation tasks, based on brain
(EEG) and other physiological signals. We notably propose a method to
estimate workload levels from EEG, ECG and EDA signals, and we study
mental workload levels during a 3D docking task in a pilot study (see
Figure 6.1). Our results show that this approach can provide useful
information about how users learn to use the 3DUI and how easy-to-use
it is.
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6.2 Experiment
6.2.1 Interaction device and 3D task
Participants had to completed 3D manipulation tasks using the CubTile.
The CubTile is an input device developed by Immersion, made of
5 orthogonal touch surfaces (see Figure 6.2). Several webcams are
embedded inside the “cube” and monitor the shadow that are cast off
the outer surface in order to detect touch – thus gloves or tools can be
used to interact with the CubTile. Since the surface are white and
opaque, only close fingers or objects are registered, i.e. when a contact
is made. Finally, because the surfaces are illuminated from the inside,
the ambient light do not interfere with the images recorded by the
webcams. A computer is comprised in the main body of the CubTile,
which acquires webcams’ optical flow and detects commands. Three
different commands are handled:

• Zoom with a “pinch” movement. Fingers getting closer: zoom-out,
fingers spreading on the surface: zoom-in.

• Rotation, when at least 2 fingers are detected and a rotation
motion is detected

• Translation: sliding movement motion detected

Figure 6.2 – The CubTile device, 5 touch surfaces assembled orthogonally.

The axis onto which are applied those transformations depends of
the face of the cube that is used. E.g. a rotation gesture on the sides of
the box will produce a rotation of the Y axis in a point of reference with
Z facing upward, a sliding gesture on face situated on top of the cube
that goes further away from the user will produce a translation along
the X axis of the virtual environment, toward the origin.

The CubTile is connected to the main computer with an ethernet
cable, using VRPN (virtual reality peripheral network) protocol to send
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information. Each transformation and axis is encoded in one VRPN
channel (9 in total).

Figure 6.3 – Building of a bridge using the CubTile in a virtual environment.

The CubTile is particularly well suited to manipulate 3D objects, Virtually building the
bridge “Chaban
Delmas” was initially
a public exhibition
that took place in the
scientific museum
Cap Sciences.

as the transformations could be directly applied to them. The task
used in our experiment was previously developed to demonstrate
such capabilities, where users had to assemble one by one parts of
a 3D bridge – 4 supporting pillars and the road (see Figure 6.3). In
particular, users had to perform docking tasks, by translating, rotating
and scaling the bridge parts, in order to put them at the correct location.
The correct location was indicated to users with proper 3D feedback,
integrated to the 3D scene, in the form of text and color indicating how
close he/she was from the correct position, scale and orientation. All
the translations, rotations and scaling were controlled by the CubTile.
The participant had to perform a set of 7 docking tasks:
1. Positioning the 1st pillar, by controlling rotation, translation and
scaling. Repeated 3 times for different angles, sizes and positions.

2. Positioning the 2nd pillar, by controlling 2 translations, 1 rotation
and scaling, while the pillar was being continuously and auto-
matically translated along the vertical axe. Repeated 4 times for
different angles, sizes and positions.

3. Positioning the 3rd pillar lower half by controlling a crane, carrying
the pillar part, along 1 rotation and 1 translation (up/down).
Repeated 3 times for different angles and heights.

4. Positioning the 3rd pillar upper half by controlling a crane along 1
rotation and 1 translation, seen from a different angle as above.
Repeated 3 times for different angles and heights.

5. Positioning the 4th pillar by controlling 2 translations and 1
rotation. Without warning the users, the gestures for rotation and
translation were inverted, e.g. moving symmetrically two fingers
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on opposite sides of the cube triggered a rotation instead of the
usual translation. Controls were only inverted for this task.

6. Positioning the road joining the first two pillars to the river bank
with 2 translations and 1 rotation. Repeated 3 times for different
angles and starting position.

7. Positioning the road joining the four pillars with 1 translation, 3
rotations and scaling.

These different tasks enable us to observe how users get to learn
how to use the CubTile for 3D objects manipulation tasks. Task number 5,
with inverted control commands, enables us to observe mental workload
while using voluntarily difficult and counter-intuitive interaction
techniques.

6.2.2 Physiological recordings
During the experiment, the physiological states of the users were
recorded with EEG, ECG and EDA.
The EEG device was, once again, composed by two g.USBAmp

amplifiers made by g.tec. This system can record up to 32 electrodes. In
this montage 30 electrodes were installed, but we had to discard two of
them due to technical difficulties. The active electrodes were connected
to two g.GAMMAsys boxes and were positioned according to the 10-20
international system. In the end the following locations were used
during our analysis: C6, CP4, CPz, CP3, P5, P3, P1, Pz, P2, P4, P6, PO7, PO8,
Oz, Fz, F4, FT8, FC4, FCz, FC3, FC5, FT7, C5, C3, C1, Cz, C2 and C4.

The other physiological sensors were acquired separately, through
the use of a Bitalino acquisition card, an Arduino compatible board
dedicated to physiological recording [Placido da Silva et al., 2014]. We
used the “plugged” version of the Bitalino board. The sensors of the
plugged version are remotely connected to the board through a molex
wire and not directly attached to the board, so that users movements
are less hindered by the device.

3 ECG sensors were placed on the user’s torso, and 2 EDA sensors on
the user’s index and middle fingers from the non active hand. EMG
electrodes were also positioned on the forearm corresponding to the
active hand. Although we believed that muscle activity related to the
dominant hand could have assessed users state – an increased tonic
in activity caused by stress or phasic responses triggered by poorly
responsive interface – we discarded those recordings as did not find a
way to analyze them correctly. The position of the electrodes or the
type of interaction may have induced too much noise, or the features
were too randomly distributed, in any case there were no conclusive
information whatsoever that would gain in being described further. We
only kept the description for the sake of a fully described protocol, as
participants were all in all heavily equipped.
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All physiological measures were recorded within OpenViBE. EEG
data was fetched from the acquisition server while the python API of
the Bitalino was employed in custom boxes to retrieve data from the
others sensors.

6.2.3 Calibrating workload with the N-back task
Each one of us is unique: it is not a vain refrain, we react indeed differ-
ently; more particularly, for identical mental states our physiological
signals vary. This is why estimating workload levels from EEG, ECG and
EDA signals first requires signals labelled with the corresponding user’s
mental workload.

To obtain a ground truth signal data set to calibrate and validate
our workload estimator, we induced 2 different workload levels in
our participants. To do so, we had them perform cognitive tasks, the
cognitive difficulty of which being manipulated using a protocol known
as the N-back task, a well-known task to induce workload by playing on
memory load [Owen et al., 2005]. While various sensory modalities can
be used to implement a N-back (e.g. sounds), usually visual information,
such as letters, are employed. Since the CubTile manipulation involved
mainly visual information, we kept those types of item.
In the N-back task, users watch a sequence of letters on screen,

the letters being displayed one by one. For each letter the user had
to indicate whether the displayed letter was the same one as the
letter displayed N letters before or was different – hence users have to
remember n items at every moment – using a left or right mouse click
respectively.

We implemented a version similar to [Grimes et al., 2008], removing
vowels to prevent chunk strategies based on phonemes. We used the
same time constraint as in [Mühl et al., 2014], i.e. letters appeared
for 0.5s, with an inter-stimulus interval of 1.5s. Each user alternated
between “easy” blocks with the 0-back task (the user had to identify
whether the current letter was a randomly chosen target letter, e.g. ’X’)
and “difficult” blocks with the 2-back task (the user had to identify
whether the current letter was the same letter as the one displayed 2
letters before). For example, in the 2-back task, with the sequence “1: W,
2: Q, 3: R, 4: Q, 5: R, 6: K”, users should press on the left buttons at t=4
(“Q” on-screen and “Q” at t=2) and at t=5 (“R” on screen and “R” at t=3) –
see Figure 6.4.

Each block contained 60 letters presentations. 4 letters were drawn
at the beginning of a block so that the number of target letters accounted
for 25% of the trials. Each participant completed 6 blocks, 3 blocks for
each workload level (0-back vs 2-back). Therefore, 360 calibration trials
(i.e. one trial being one letter presentation) were collected for each user,
with 180 trials for each workload level (“low” vs “high”).
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Figure 6.4 – Top: 2-back task, the target letter is the one that appeared two
steps earlier, users have to select trials 4 and 5. Bottom: 0-back task,
the target letter “S” is randomly chosen, users have to select trials
2 and 5.

The calibration took approximately 12 minutes. It was possible
to configure mouse buttons according to users’ habits, even though
that possibility have never been requested. Indeed, some users (e.g.
left-handed people) invert right click and left click sequences in their
desktop environments so that the default action selection occurs with a
right click instead of a left click.

6.2.4 Procedure
The experiment took place in a dedicated experimental room, in a
quiet environment. 8 participants (2 females, age from 16 to 29) took
part in this study. They were all first-time users of the bridge building
application and the CubTile (except for one participant who has used
the CubTile before for another application). During the whole duration
of the experiment, the participants’ brain and physiological signals
were recorded.

The experiment comprised the following stages:

1. Participants entered the room, they were seated before a table.
They read and signed the inform consent. They were briefly
explained the context and the goal of the study.

2. Participants were equippedwith the physiological sensors, starting
with the EEG headset. Once the EEGwas installed, quick verification
were made to control for the quality of the recordings (participant
had to blink and to clench their teeth). Then we proceeded to
the installation of the different Bitalino sensors. Once again, we
verified that the readings were consistent with the sensors, e.g.
heart beats visible in the ECG at a non-lethal pace.

3. Participant still seated at the same table, we proceeded to the
calibration of workload. This took approximately 15 minutes. Two
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other calibration sessions occurred (about 15 minutes each), for
two other constructs that were not used nor analyzed for this
study – see Conclusion.

4. Once the calibration was complete, the participant was asked
to sit on an elevated chair in front of the CubTile which was
itself in front of a 65 inches Panasonic TX-P65VT20E screen. The
task involving the bridge construction occurred, as described
previously. Since the instructions were clearly indicated on-sceen,
we had to interact little with participants. On very rare occasions,
when we saw that they were in difficulty regarding the exact
positioning of bridge pieces, we gave them some advice on how to
complete the trial. Mainly these problems were caused by a poor
depth perception (offset in the Z-axis between the manipulated
element and the target). Apart from these possible interruptions,
participants smoothly completed the different tasks at their own
pace (no time constraints).

5. After the completions of the 3D docking task, physiological sensors
were removed.

Overall, with sensors setup and removal, calibration and docking
task, the experiment lasted approximately one hour and a half.

6.2.5 Signal processing
In order to estimate mental workload from brain and physiological
sensors, we used a machine learning approach: the measured signals
were first represented as a set of descriptive features. These features
were then given as input to a machine learning classifier whose objective
was to learn whether these features represented a low workload level
(induced by the 0-back task) or a high workload level (induced by the
2-back task). Once calibrated, this classifier can be used to estimate
workload levels on new data, which we will use to estimate mental
effort during 3D object manipulation tasks. This pipeline is analogous to
what was used during our study of stereoscopic displays in chapter
5, except for artifacts removal that we disabled in order to use the
calibration data against the data collected during the main task (see
next section below).

From the signals collected during the N-back tasks described above,
we extracted features from each time window of EEG and physiological
signals immediately following a letter presentation – 2s time windows
for EEG, 10s for ECG and EDA, see below. We used each of these time
windows as an example to calibrate our classifier. Note that a classifier
was calibrated separately for each participant, based on the examples
of brain and physiological signals collected from that participant.
Indeed, EEG signals are known to be very variable between participants,
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hence the need for user-specific classifiers to ensure maximal EEG
classification performances [van Erp et al., 2012, Mühl et al., 2014].

6.2.5.1 EEG
We used the EEGLab software [Delorme and Makeig, 2004] to process
EEG signals. We filtered the signals in the delta (1-3 Hz), theta (4-6 Hz),
alpha (7-13 Hz), beta (14-25 Hz) and gamma (26-40 Hz) bands, as in
[Mühl et al., 2014]. For each band, we optimized a set of 6 Common
Spatial Patterns (CSP) spatial filters (i.e. linear combinations of the
original EEG channels that lead to maximally different features between
the two workload levels) [Ramoser et al., 2000, Lotte, 2014]. For each
frequency band and spatial filter, we then used as feature the average
band power of the filtered EEG signals. This resulted in 30 EEG features
(5 bands × 6 spatial filters per band). Note that high frequency EEG is
likely to be contaminated by muscle activity (ElectroMyoGraphy - EMG)
from the user’s face or neck [Fatourechi et al., 2007, Goncharova et al.,
2003]. As such, we explored EEG-based workload estimation based
on low frequencies only (delta, theta, alpha) and both low and high
frequencies (delta, theta, alpha, beta, gamma).

This signal processing approach is the one we used to discriminate
workload levels from EEG signals between 0-back and 2-back tasks, i.e.
within the same context on which the workload estimator was calibrated.
However, it is known that EEG signals change between different contexts,
due, e.g. to the different user’s attention and involvement that the
context triggers or to different sensory stimulations (e.g. different
visual inputs) that change brain responses and thus EEG signals. This
means that a workload estimator calibrated in a given context will have
poorer performances (i.e. will estimate an erroneous workload level
more often) when applied to a different context [Mühl et al., 2014].
In our experiment, the final application context, i.e. 3D objects

manipulation, is very different from the calibration context, i.e. the
N-back tasks. Indeed, during the N-back tasks the user is moving very
little as he/she is only performing mouse clicks, and exposed to very
little visual stimulations as the N-back task only involves the display of
white letters on a black background. On the contrary, manipulating
3D objects means that the user will be moving more and would be
exposed to very rich visual stimulations. As such, a workload estimator
simply calibrated on the N-back tasks and applied to the 3D object
manipulation tasks is very likely to give very poor results or even to
fail. Therefore, we modified the above mentioned signal processing
approach to make it robust to EEG signal changes between the two
contexts.

Rather than using basic CSP spatial filters, we used regularized CSP
spatial filters [Lotte and Guan, 2011] that are robust to changes between
calibration and use contexts. To do so, based on [Samek et al., 2013], we
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estimated the EEG signal covariance matrix from the calibration context
(N-back tasks) and from the use context (3D object manipulation tasks),
and computed the Principal Components (PC) of the difference between
these two matrices. These PC represent the directions along which
EEG signals change between calibration and use. These directions are
then used to regularize the CSP spatial filters as in [Samek et al., 2013],
to ensure that the obtained spatial filters are invariant to these EEG
signals changes. These stationary subspace CSP (SSCSP) spatial filters
prevented us to use the artifacts removal methods employed in chapter
5. It seemed that signals resulting from ICA components rejections were
too dissimilar between training and testing for our implementation of
SSCSP to be still effective.

Note that SSCSP filters are only possible here because we perform an
offline evaluation, after the 3D manipulation tasks have been performed
and the corresponding EEG signals collected. It would not be possible to
use the exact same algorithm for a real-time estimation of workload
during 3D objects manipulation tasks as the covariance matrix of EEG
signals during these tasks is not yet fully known.

6.2.5.2 ECG
When heart beats, a clear signature appears in the ECG, a positive peak
of large amplitude that is preceded and followed by much smaller
peaks and deflections. It corresponds to the blood flowing between
the different ventricles. Each peak and deflection is represented by a
latter and the overall signature is called the “QRS complex”. Feature
extractions algorithm can detect those QRS complexes and retrieve at
which precise moment they occurred in the ECG recordings. To do so,
we used Biosig 2.92 [Vidaurre et al., 2011], a Matlab toolbox that is
integrated within EEGLab suite.

Two QRS detection methods are implemented in Biosig: [Afonso As for newer versions
of Biosig, e.g. 2.94, the
QRS method we chose
back then became the
default.

et al., 1999] (default) and [Nygårds and Sörnmo, 1983]. We obtained
more reliable results using the latter – we compared timings and QRS
counts with ECG raw signal on several samples. We did not need to filter
the ECG signal, the QRS detection yielded the same results whether we
applied a high-pass filter to remove the DC drift or not.

From ECG signals we extracted the Heart Rate (HR) and 2 features
from the Heart Rate Variability (HRV), namely the low frequency HRV
(0.1 Hz) and the Root Mean Square of Successive Differences, as in
[Mehler et al., 2011], using functions from the Biosig toolbox.

6.2.5.3 EDA
EDA relates to the sympathetic branch of the autonomic nervous system.
Although it is often used as a proxy for arousal, EDA is a multifaceted
phenomenon that does not reflect a single psychological process [Figner
and Murphy, 2011].
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From EDA signals we extracted 3 features: the mean EDA amplitude,
skin conductance responses (SCR, here band power between 0.5 Hz
and 2 Hz) and the skin conductance level (SCL, 0.1-0.5 Hz) [Figner and
Murphy, 2011].

SCL correspond to the tonic response of the skin, a slow shift of
conductance from the basal level that characterizes the latent state of
the user. The SCR, on the contrary, is linked to events of short duration –
e.g. conductance will rise over a few seconds before going back to the
previous level when a sudden increase of arousal occur.

6.2.6 Classification
We used a shrinkage Linear Discriminant Analysis (sLDA) classifier
[Lotte, 2014] to learn which feature values correspond to a high or low
workload level.

Note that since both ECG and EDA analyses rely on low frequencies,
we had to extend the time windows from 2s to 10s when we studied
those physiological signals (for instance, for HRV at 0.1Hz, 10s are
needed to observe a single cycle). As such the number of trials per
condition (0-back vs 2-back) in these particular scenarios were reduced
from 180 down to 36.

6.3 Results
For each user, we first setup a workload level classifier based on the
signals collected during the calibration session (N-back tasks). The next
section describes the performances achieved for each participant and
each signal type. Then, using the best workload classifier, we could
estimate the workload level over time during the 3D docking tasks. This
work was done offline, after the experiment.

6.3.1 Accuracy of mental effort detection
First, based on the data collected during the calibration session (N-back
tasks), we could estimate how well low workload could be discriminated
from high workload based on EEG, ECG and EDA. To do so, we used
2-fold cross-validation (CV) on the calibration data collected. In other
words, we split the collected data into two parts of equal size, used one
part to calibrate the classifier (CSP filters and sLDA), and tested the
resulting classifier on the data from the other part. We then did the
opposite (training on the second part and testing on the first part), and
averaged the obtained classification accuracies (percentage of signal
time windows whose workload level was correctly identified). This
CV was performed by using each signal type (i.e. EEG, ECG and EDA)
either separately or in combination. Table 6.1 displays the obtained
classification accuracies.
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Table 6.1 – Cross-validation classification accuracies (%) to discriminate
workload levels from EEG (delta, theta and alpha bands), EMG+EMG
(delta, theta, alpha, beta and gamma bands ), ECG and EDA on
the calibration session data. A “*” indicates mean classification
accuracies that are significantly better than chance (according to
[Müller-Putz et al., 2008]).

Sensor S1 S2 S3 S4 S5 S6 S7 S8 Mean.
EEG 74.0 76.2 76.5 80.2 84.9 81.9 81.7 75.4 78.9*
EEG+EMG 85.0 93.1 81.7 87.6 94.8 97.3 84.8 84.3 88.6*
ECG 37.3 50.7 45.3 58.7 42.6 55.3 54.9 61.2 50.7
EDA 77.3 52.1 60.0 70.6 74.7 68.4 58.6 54.6 64.5
All 44.0 53.3 44.0 61.5 54.8 52.6 54.6 61.2 53.3

Classification results highlight that workload levels can be es-
timated in brain and physiological signals, even though the large
inter-participant performance variability suggests that workload levels
can be estimated more clearly for some users than for some others.
As can be first observed, it appears that EEG can discriminate

workload levels with an accuracy higher than chance level, for all
participants. In other words, the classification accuracies obtained are
statistically significantly higher than 50% for a 2-class problem, i.e.
more accurate than flipping a coin to estimate the workload level.
Indeed, according to [Müller-Putz et al., 2008], for 160 trials per class,
the chance level for p < 0.01 and a 2-class problem is an accuracy of
56.9%. Note that 180 trials per class were available with EEG in our
experiment, meaning that the chance level is actually even slightly
lower.
Regarding the EDA, it led to a better-than-chance classification

accuracy only for some participants, but not for all. Indeed, we had 36
trials per class with EDA (due to the use of longer time windows as
mentioned previously), which means a chance level of about 65% for p <
0.01 according to [Müller-Putz et al., 2008]. ECG signals could not lead to
better-than-chance performances for any participant.

Overall, EEG seems to be the signal type the best able to discriminate
workload levels reliably. Moreover, when EEG features include high
frequency bands – i.e. when delta, theta and alpha bands are combined
with beta and gamma bands – and thus when EEG measures potentially
contain EMG activity as well, the performances are the highest, close to
90% on average.

The poor performances of the system when all physiological Normalizing features
with z-score did not
help, nor did features
selection methods.

signals are combined (EEG + EMG + ECG + EDA) may be explained by
too important disparities in the features for the classifier to handle
them correctly. On a side note, we also tested ECG and EDA on 2s time
windows with adapted features – HR for the former, mean value and
SCR for the latter. Despite the increased number of trials in training and
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testing phases, the results were very similar to those already described
in Table 6.1. Altogether, the relatively poor performances obtained
with ECG and EDA are likely due to the short time windows (2s or 10s
long) used. Much better performances should be expected with larger
windows, e.g. with 30s-long or even 2min-long time windows [Mehler
et al., 2011], at the cost of a coarser temporal resolution.

Since we already obtained a classification accuracy close to 90%
through the sole use of EEG recordings (which possibly include EMG
activity as well), we did not push further our investigations about a
multimodal (multiple signals) approach tomental effort estimation. Such
method would necessitate longer time windows, strong synchronization
between signals and extra classification steps, with little benefit to
expect considering that a classifier based on EDA hardly reaches 65% of
accuracy in our protocol. We then calibrated the workload classifier on
EEG signals from both low and high frequency bands (i.e. combining
EEG and possibly EMG), and used it to analyze workload variations
during the 3D manipulation tasks.

6.3.2 Mental effort during 3D object manipulation
While the participants were performing 3D docking tasks to build the 3D
bridge, their brain signals were recorded. By using the workload level
classifier obtained offline, such classifier being able to estimate whether
the current 2-seconds long time window of signals corresponds to a low
or high workload for the user, we could notably continuously estimate
the workload levels during the tasks. This gave us unique insights into
how much mental effort the participants were devoting to each task,
and how this mental effort evolved over time.
Due to the large between-user variability in terms of workload

level estimation accuracy, and since these estimations are not 100%
accurate, we studied average workload levels to obtain a robust and
reliable picture of the mental workload level associated with each task.
To do so, we first normalized between -1 and +1 the output that was
produced by the classifier for each participant during the virtual bridge
construction. As such, a workload index close to +1 during the 3D object
manipulation represents the highest mental workload a participant had
to endure while performing the 3D docking tasks. It should come close
to the 2-back condition of the calibration phase. In a similar manner, a
workload index close to -1 denotes the lowest workload (similar to that
of the 0-back condition).

Because there was no time constraint regarding task completion –
users made as many attempts as needed to complete each one of them
– we could not compare directly workload indexes over time. Some
participants took more than 13 minutes to complete all the tasks while
others finished in less than 5 minutes (mean: 7.7 min, SD: 2.9 min).
This is why we averaged the workload index per task. Note that due
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to technical issues, for some participants the beginning and end of
a couple of tasks were not accurately recorded or missing. If it was
the case, the workload indexes for this task and participant were not
included in the analysis to ensure unbiased results. Altogether, out of
the 56 tasks (8 participants × 7 tasks per participant), 13 tasks were not
included in the analysis to ensure clean results. More precisely, 1 task
was missing for participant S3, 2 tasks were missing for participants S2
and S5, 3 tasks for participant S8, and 5 tasks for participant S4. No tasks
were missing for the remaining participants. We followed a rather
conservative approach (i.e. we discarded a task in case of doubt), to
ensure only clean and meaningful results are presented.

Figure 6.5 displays the workload levels averaged over all participants
and over the duration of each docking task. This thus provides us with
the average mental workload induced by each 3D object manipulation
task.

Figure 6.5 – Average workload levels (averaged over participants and task
duration) measured for the different 3D docking tasks.

To ensure that the observed workload levels were really due to
some information and structure in the data that are detected by the
workload classifier, and not just due to chance or to some artifacts
that are unrelated to workload levels, we performed a permutation
analysis. In particular, we performed the exact same analysis described
previously except that we used random classifiers instead of the real
workload classifiers trained on the N-back task data. This aimed at
estimating the type of workload level indexes we could obtain by chance
on our data. To do so, for each participant, we shuffled the labels of
the N-back task data, (i.e. the EEG signals were not labelled with the
correct workload level anymore), and optimized the spatial filters
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and classifier based on this shuffled training data. In order words, we
built random classifiers that would not be able to detect workload
levels. Then using these random classifiers for each participant, we
computed the mean normalized workload level indexes for each 3D
manipulation task, as described previously. We repeated this process
(workload labels shuffling, then random classifier training, and testing
of the classifier on the 3D manipulation task data) 1000 times, to obtain
the distribution of the mean workload level indexes for each task that
can be obtained by chance (see Figure 6.6). More precisely, we estimated
the multivariate normal distribution of the vectors of mean workload
level per class (i.e. a vector with 7 elements, the ith element being
the averaged workload level over participants for task i) obtained for
each of the 1000 permutations. This multivariate distribution thus
represents the mean workload levels per task that can obtain by chance.
We finally compared the actual mean workload levels per task that we
obtained using the real workload classifiers (i.e. those optimized on the
unshuffled training data, whose output is displayed on Figure 6.5) to this
chance multivariate distribution obtained with the random classifiers.
This helped us estimate whether the obtained mean workload levels per
task were due to chance or not. Results showed that the observed
real workload levels are statistically significantly different from that
obtained by the chance distribution with p < 0.001, i.e. they are not
due to chance. This suggests that our workload classifier does find a
workload level information during the 3D docking tasks that cannot be
found by chance.

Figure 6.6 – Average workload levels obtained with a permutation test (see
text for details), i.e. with random classifiers, for the different 3D
docking tasks. The real workload levels we observed (i.e. those
displayed in Figure 6.5) significantly differ from those random
workload levels, i.e. they are not due to chance.

In order to sense whether or not the workload index fluctuated
along tasks completion, we conducted a second analysis. Using the same
normalized index, we compared the workload level between the first
quarter and the last quarter of every task – average across tasks for each
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participant (Figure 6.7). A Wilcoxon Signed-rank test showed that there
was no significant difference.

Figure 6.7 – Average per participant of the workload index during the first
quarter of every task (left) compared to the last quarter (right).

6.4 Discussion
First, the fact that the observed workload levels during 3D manipulation
tasks are not due to chance on the one hand and that our workload
classifiers are calibrated on the N-back task, which is a widely used and
validated workload induction protocol [Owen et al., 2005] on the other
hand, strongly suggests that our approach may be used to observe how
workload levels vary during 3Dmanipulation tasks. Indeed, our workload
classifiers identified a specific EEG+EMG signature of workload levels
thanks to the use of the N-back task, which then enabled us to estimate
a non-random sequence of workload levels for each task. Naturally, if
the variations of another mental state (or artifact) are highly correlated
to that of the workload levels, and have a similar EEG+EMG signature as
workload so that these variations are picked-up by our classifiers, then
the observed variations of workload may be due to variations of another
mental state. Therefore, the influence of a confounding mental state or
artifacts cannot be completely ruled out without exploring how all
possible mental states vary, which is of course impossible. However, the
fact that our classifiers are specific to workload variations (since they
are calibrated with the N-back task which specifically makes workload
levels vary) and that the observed variations are not due to chance
makes the influence of a such confounding factor rather unlikely. Based
on this interpretation, we can now analyze how the workload level
changes during the different 3D manipulation tasks and why.
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The observed workload levels suggest that despite the novelty and
the complexity of the interaction – handling at the same time rotation,
translation and scaling of elements in a 3D environment right from the
beginning – the participants did not make an important mental effort to
complete the first task. That could be due to the practicality of the
CubTile, which may ease 3D interaction thanks to its additional degrees
of freedom compared to a traditional input device such as a mouse.

When a constraint appeared concurrently with the second task –
pillars were “falling” continuously from the sky and had to be positioned
quickly before they touched the ground – the workload index increased
substantially. This is consistent with the sudden pressure that was
exerted on users. As one could expect, the mental workload lowered
and settled in tasks 3 and 4, during which there was no more time
pressure – but still more complex manipulations compared to task 1.
We purposely inverted the commands during the fifth task to

disorientate participants. As a matter of fact, this is the moment when
the workload index was the highest on average among all participants.
Then, after this sudden surge of mental stress, once again the measured
workload has been reduced in the two subsequent tasks. Interestingly
enough, for task 6, in which the control commands were inverted back
to normal, the workload indeed decreased as compared to that of task 5,
but was still higher than for the other tasks. This probably reflects
the fact that users had somehow integrated the counter-intuitive
manipulation technique and had to change again the gestures they used
to manipulate the 3D object, thus being forced to forget what they had
just learned in task 5 which resulted in a high workload. Since the new
control scheme was the one they had already used during the previous
tasks though, the workload was not as high as in task 5.

Overall, the mental workload that was measured with EEG and EMG
along the course of the interaction matches the design of the tasks.
Workload increased when a sensitive element of the interaction was
deprived – e.g. time or commands– which can be explained by the need
to overcome what participants have learned previously and re-learn
how to handle the new environment. Afterwards, when going back to
the previous scheme, the workload goes back to a low level, as could be
expected.
The absence of differences in the workload index between the

beginning and the end of the tasks could be due to their duration. We
expect to observe a learning effect when the CubTile – or any other
input device – is operated during a prolonged period of time in steady
conditions; i.e. the workload index would be lower in the end.

These results suggested that continuousmentalworkloadmonitoring
was possible and could provide us with interesting insights about how
cognitively easy-to-use a given 3D interaction technique can be. As
compared to previous works, our results show that it is possible to
monitor mental workload based on brain and physiological signals,
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even when the user is actively interacting (and not passively observing
as in previous works), moving, and performing more complex and more
cognitively demanding 3D manipulation tasks, in a visually rich 3D
environment.

Concerning the disappointing performances obtained with heart
measures, we realized during our analyses that the ECG signals acquired
from the Bitalino contained many artifacts. We quickly understood that
they were not due to noise or to movements, but that they originated
from problems in data acquisition. We believe that the python scripts
we used within OpenViBE to acquire the signal had synchronization
issues. When we looked at the raw data we observed that sometimes
values were suddenly zeroing, either for several values in a row or
for one only. It may be due to a bug in the programming API – for
example an absence of interpolation within a data chunk should an
insufficient number of samples be fetched from the Bitalino bluetooth
feed. Moreover when we used the Bitalino to manufacture wearables
later on (see chapter 11) we observed weird behaviors with one of our
two Bitalino boards; small values appearing in unused channels next to
the one attached to ECG, as if the lower bits of the raw values were not
correctly unpacked in floats. As such we also suspect a problem in the
Bitalino firmware depending on boards’ version.

We did not have time to investigate this issue further, but despite
the bad “shape” of raw ECG recordings – i.e. signal drops – the QRS
detection may not have been affected so much in this study since
statistically few of the QRS complexes were affected (regarding to the
size of the data, QRS rarely occurred and during a short time frame).
Besides, a simple filtering could overcome in part missing data, and as a
matter of fact the method we employed for QRS detection does low-pass
filtering [Nygårds and Sörnmo, 1983].

Measuring brain signals with EEG enabled us to perform continuous
mental workload monitoring, but only with an offline analysis. Indeed,
our algorithm required computing the covariance matrix of EEG
signals recorded during the context of use (i.e. here during 3D object
manipulation tasks), which would not have been possible if mental
workload was to be estimated in real time during these manipulation
tasks. The covariance matrix was estimated on all the EEG data collected
during the manipulation tasks, and thus could only be estimated once
the tasks were completed. In the future, it would be interesting to
design a continuous workload estimator that can also be used in real
time. To do so, our algorithm could be adapted in two ways: 1) the
covariance matrix of the EEG signals recorded during 3D manipulation
tasks could be estimated on the first task – or couple of tasks – only, to
enable workload estimation in real time on the subsequent tasks; 2)
the differences between the calibration context and the use context
are likely to be the same across different participants [Samek et al.,
2013]. As such, the EEG signals directions that vary between contexts
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can be estimated on the data from some users, and used to estimate
robustly the workload on the data from other users, hence without the
need to estimate these variations for a new user, as done in [Samek
et al., 2013] for the classification of EEG signals related to imagined
hand movements. We will explore these options in the future, which
would potentially open the door for robust continuous mental effort
estimation during 3D interaction, in real time.

6.5 Conclusion
In this chapter, we have explored a new way to evaluate 3DUI in a more
continuous, exocentric and non-interrupting way. In particular we
proposed to continuously monitor the mental effort exerted by users of
a given 3DUI based on the measure of their brain signals (EEG). We first
proposed a method to estimate such level of mental effort from EEG,
ECG and EDA signals. EEG outperformed other physiological sensors and
we then used the resulting mental effort estimator to study mental
workload during a pilot study involving 3D object manipulation tasks
with a CubTile. For the first time, we able to transfer the assessment
of a construct from a control task (calibration) to a more ecological
situation (virtual environment simulating the construction of a bridge).
Monitoring workload enabled us to continuously observe when and
where the 3DUI and/or interaction technique was easy or difficult to
use, unveiling a new path to create better interfaces.
Since the use of EDA and ECG sensors was not likely to improve

the overall performance of a system aimed at evaluating HCI – at
least in our experimental settings – we did not pursue with these
physiological sensors in the next chapter. Although we recorded
participants’ physiological signals during a calibration task meant
to study emotional valence using the IAPS (International Affective
Picture System), no sensors or combination of sensors did better than a
57% mean classification accuracy – a score too low for applying the
classifier to an ecological task. Therefore, we also discarded the measure
of emotions in the studies that followed. Valence calibration – that
occurred alongside workload calibration – consisted in the presentation
of 140 images, 35 with a negative valence, 35 with a positive valence and
70 with a neutral valence. Since images appeared for only 7s and the
sequence were randomly chosen, maybe the time widow was too short
for any relevant effect to appear in the physiology – or in the mind.

Another unused calibration occurred during this study with a task
that involved error recognition (see part II). We did not analyze this data
because there were no markers that we could use to investigate this
construct during the 3D manipulation task. This situation highlights one
limitation of the current protocol: the software used for the assembly of
the bridge was not modified for the purpose of the experiment. As such
there was no stimulations (i.e. markers) that was automatically triggered
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during the task and that could enable an accurate synchronization
between physiological recordings and events in the virtual environment
– we relied instead on a manual segmentation of the tasks, enough to
roughly cluster data but impossible to use for the ERP analyses required
by error recognition.
This is why we developed from scratch a virtual environment

specifically dedicated at validating the use of EEG for HCI evaluation,
that we present in the next chapter. Not only did we establish a protocol
that induced a specific amount of workload, but were able to monitor
continuously users’ mental state. Beside more accurate workload
conditions, this was also opportunity to study attention level and error
recognition, to measure how intuitive a UI can be and compare various
interactions techniques.
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7
Validating EEG as
an HCI evaluation

method
In this chapter, we go beyond the results obtained previously with
3D manipulation tasks. Here the objective is to validate the use of
EEG as an evaluation method for HCI in a controlled and carefully
crafted environment. We contribute a set of methods to estimate
continuously the user’s mental workload, attention level and recognition
of interaction errors during different interaction tasks.

This work was published in [Frey et al., 2016b].
Special thanks to Maxime Daniel for his hard work all along this

project – more in the appendices, section Credits.3.

7.1 Introduction
In HCI, measuring the attention level could help to estimate how much
information users perceive. More particularly, in the present work
the measure of attention relates to inattentional blindness; i.e. it
concerns participants’ capacity to process stimuli irrelevant to the task
[Cartwright-Finch and Lavie, 2007]. Error recognition relates to the
detection by users of an outcome different from what is expected,
and interaction errors arise when a system reacts in an unexpected
way, for example if a touch gesture is badly recognized (see chapter 3).
Interaction errors enable to assess how intuitive a user interface is.

73
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Figure 7.1 – We demonstrate how electroencephalography can be used to evaluate human-
computer interaction. For example, a keyboard (left) can be compared with a
touch interface (middle) using a continuous measure of cognitive workload (right,
here participant 4).

We show how these measures can be used to compare different
interaction techniques or devices, by comparing here a keyboard and
a touch-based interface. Thanks to such framework, EEG becomes
a promising method to improve the overall usability of computer
systems. Is constitutes a powerful complementary tool for people who
develop new interaction techniques, so they could test beforehand new
approaches.

In the following sections, we will first describe the virtual environ-
ment that we developed, specifically aimed at validating the use of EEG
as an evaluation method for HCI. We validated the workload (mental
effort) induced by our environment in a first study, with NASA-TLX
questionnaires [Hart and Staveland, 1988]. After this pilot study, we
will detail how EEG can be put into practice to assess the 3 studied
mental states. Finally, during the main study we then employ EEG
recordings to measure continuously such workload, altogether with the
attention level of participants toward external stimuli and the number
of interaction errors they perceived.

To summarize, our main contributions are:

1. To validate the use of EEG as a continuous HCI evaluation method
2. To demonstrate how such tool can assess which interaction
technique is better suited for a particular environment

3. To propose a framework that could be easily replicated to improve
existing interfaces with little or no modifications

7.2 Virtual 3D maze
This section describes the virtual environment that we purposely
developed for the validation of EEG as an HCI evaluation method.
Building the interaction from the ground up gave us precise control over
the different constructs we wanted to test, i.e. workload, attention and
error recognition. The 3D environment uses gamification [Deterding
et al., 2011] in order to increase users’ engagement and ensure better
physiological recordings [Flatla et al., 2011]. Such an environment also
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Figure 7.2 – Caption: The virtual environment, where players control a character that moves
by itself inside a 3D maze. Left: Symbols appear in each tunnel to indicate the
possible directions for the next turn; players have to select a particular sequence
of symbols/directions.Middle: During the “learning” phase, the correct direction
is highlighted by a breadcrumb trail and the associated symbol bounces (here
the disc on top). Right: Controls depend on the position of the character. If the
character is on the right side, players have to press right in order to go up.

enables us to assess these constructs during ecological and realistic
interaction tasks. Indeed, such constructs are traditionally evaluated
during controlled lab experiments based on protocols from psychology
that are vastly different from an actual interaction task, see, e.g., [Grimes
et al., 2008].

7.2.1 Overall description
The virtual environment takes the form a maze where players have
to learn and reproduce a path by triggering directions at regular
intervals (see Figure 7.2). A character displayed with a third person
perspective moves by itself at a predefined speed inside orthogonal
tunnels (somewhat similar to a running game). Soon after the character
enters a new tunnel, symbols appear on-screen. Those symbols are
basic 2D shapes, such as square, circle, triangle, diamond or star, and
their positions (bottom, top, left or right) indicate which directions are
“opened”. Players must select one of these symbols before the character
reaches the end of an intersection, either by pressing a key or touching
the screen. If users respond too early – before symbols appeared –, too
late, or if they select a direction that does not exist, they loose points
and the character “dies” by smashing against a wall, respawning soon
after at the beginning of the current tunnel.

Themain element of the gameplay consists in selecting the directions
in the correct order. Indeed, one level is comprised of two phases. During
the “learning” phase a particular sequence of symbols is highlighted; at
each symbols’ appearance one of them is bouncing to indicate the
correct direction. Another cue takes the form of a “breadcrumb trail”,
a beam of light that precedes the character and points to the right
direction (see Figure 7.2, middle). Selecting an available but incorrect
direction exist does not result in the character’s “death” but still leads
to a loss of points. A visual feedback is given to users when they select a
direction, the corresponding symbol turns green if the choice is correct
and red otherwise. The feedback remains visible until the character
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reaches the end of the tunnel and turns into the next section. When
the sequence is completed and the end of the maze is reached, the
character loops over the entire maze so that players have another
opportunity to learn the sequence. When the training phase ends the
“recall” phase follows, where the symbols are identical but where cues
are no more displayed; players have to remember by themselves the
right path. Symbols position in each tunnel and symbols sequence are
randomly drawn when a new level starts.

Beside learning a sequence, the principal challenge comes from how
the directions are selected. The third-person view fulfills a purpose: the
interface that users are controlling – i.e. keyboard or touch screen –
is mapped to the character position. Since the character is a futuristic
surfer that defies the law of gravity, from time to time it slides by itself
from the bottom of the tunnel to one of the walls or to the ceiling. In
this latter situation, when the character is upside down, commands are
inverted compared to what players are used to, even though symbols
remain in the same position. This game mechanism stresses spatial
cognition abilities; users have to constantly remain aware of two
different frames of reference. For example, if “up” and “left” directions
are open in a given tunnel and if the character’s position – controlled by
the application – is on the right wall, as in Figure 7.2 right, in order to
go up users have to press right. This discrepancy between input and
output is a reminder of the problematic often observed with 3D user
interfaces, where most users possess a device with 2 degrees of freedom
(DOF), such as a mouse, to interact with a 6 DOF environment.

The combination of the game design and game mechanisms herein
described offers a wide variety of elements that we put in use so as to
investigate users’ mental states. We detail below how the study of
users’ workload, attention and error recognition shaped our choices. In
particular, we detail how we tuned the game elements to manipulate
the user’s workload and attention in controlled ways as well as to
trigger interaction errors. Knowing which constructs value (e.g. high or
low workload) to expect, we could then validate whether our EEG-based
estimates during interaction match these expectations, and thus
whether they are reliable.

7.2.2 Manipulating workload
Our virtual environment possesses several characteristics that could be
used to induce different levels of mental workload. We can notably
adjust 4 parameters:

• Maze depth: the number of tunnels players have to cross before
reaching the end of the maze, hence the length of the symbols
sequence they have to learn. More symbols to learn means more
items to be held in the working memory, which increases workload
[Grimes et al., 2008, Sternberg, 1966].
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• Number of directions: at each intersections up to 4 directions are
“opened” in the maze; the complexity of the symbols sequence
grows as this number increases.

• Game speed: the pace of the game can be adjusted to increase
temporal pressure. When the speed increases symbols appear
sooner and users must respond quicker, thus increasing overall
stress [Hart and Staveland, 1988, Maule and Edland, 1997]. In the
easier levels the character spends 6s in a tunnel and players must
respond within 3s after symbols’ appearance; in the hardest levels
a tunnel lasts 2s and players have 1s to choose a symbol.

• Spatial orientation: in order to keep selecting the correct directions,
users have to perform a mental rotation if the character they
control jumps from the floor to the walls or to the ceiling. Further-
more, they need to update their frame of reference as often as
the character shifts from one side to another. Depending on the
spatial ability of users, this mechanism can cause an important
cognitive load [Poor et al., 2013].

We used those mechanisms and dimensions to create 4 different
difficulty levels for the game: “EASY”, “MEDIUM”, “HARD” and “ULTRA”
(see Table 7.1). These levels affect mostly (symbolic) memory load
and time pressure. Indeed, the 3D maze is more about remembering a
sequence of symbols or directions rather than spatial navigation per se.
Because randomization could create loops in the maze topography and
since there were no landmarks, it is unlikely that participants were able
to adopt an allocentric strategy.

While the EASY level is designed to be completed with very little
effort, the ULTRA level, on the other hand, is designed to sustain a very
high level of workload, up to the point that it is barely possible to
complete it with no error. While during EASY levels there is no need
to perform mental rotations and players have to memorize only 2
symbols that are constrained to either left and right directions, in
ULTRA levels the frame of reference changes between each selection
and the sequence reaches 5 symbols that could appear in all 4 directions,
and players have to react thrice as fast. No matter the level, players had
3 “loops” to learn the maze and another set of 3 loops to reproduce the
path.

7.2.3 Assessing attention
We relied on stimuli not congruent to the main task in order to probe
for inattentional blindness, using the “oddball” paradigm. The oddball
paradigm is an experimental design often employed in combination
with EEG recordings, as the appearance of rare (i.e. “odd”) stimuli
among a stream of frequent stimuli (i.e. distractors) triggers a particular
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Table 7.1 – Four difficulty levels are created by leveraging on game mecha-
nisms. Depth: depth of the 3D maze, hence the number of direc-
tions/symbols players have to learn. Directions: number of possible
directions at each intersection. Response time: how much time
players have to respond after symbols appearance. Orientation:
percentage chance that the controlled character changes its
orientation before symbols appearance.

Difficulty Depth Directions Resp. time Orientation
EASY 2 2 3s 0%
MEDIUM 4 3 2.5s 30%
HARD 5 4 2s 60%
ULTRA 5 4 1s 100%

event-related potential within EEG signals [Coull, 1998]. The amplitude
of these latter ERP decreases as users are less attentive to stimuli [Fabiani
et al., 2007]. Stimuli could be either audio or visual, the advantage of
the former being that is does not interfere with the main task in our
experimental design.
This mechanism is similar to what was employed in [Burns and

Fairclough, 2015] in order to measure how many participants were
focused on a video game. While in this latter study audio tones were
played externally to the chosen commercial game, we had the op-
portunity to directly integrate sounds to our virtual environment.
As such, while users’ character was navigating in the maze, sounds
were played at regular intervals, serving as a background “soundtrack”
that was consistent with the user experience. 20% of these sounds
had a high pitch (odd event) and the remaining 80% had a low pitch
(distracting events) – this proportion is on par with the literature
[Burns and Fairclough, 2015, Ferrez and Millan, 2008].

Our hypothesis is that the attention level of participants toward
sounds – as measured with the oddball paradigm – should decrease as
the workload increase, since most of their cognitive resources will be
allocated to the main task during the most demanding levels.

7.2.4 Assessing error recognition
EEG could be used to measure interaction errors, i.e. errors originating
from an incorrect response of the user interface, that differ from what
users were expecting [Ferrez and Millan, 2008]. We have seen in chapter
3, how interaction errors are of particular interest for HCI evaluation
since they could account for how intuitive an interface is. In order to
test the feasibility of such measure, we decided to implement two
different interaction techniques. Both of them use discrete events – i.e.
symbols’ selection – so that we could more easily synchronize EEG
recordings with in-game events later on.
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The first technique uses indirect interactions by the mean of a
keyboard (Figure 7.1, left). In due time, left, right, up or down arrow
keys are used to send the character in the tunnel that is situated to its
left, right, top or bottom. Indeed, we have seen previously that in our
virtual environment players have to orientate themselves depending of
the position of the character. If the character is moving on the sides,
players have to perform a mental rotation of 90°, if it is on the ceiling
then the angle is 180°, i.e. commands are inverted.

The second technique uses direct interaction by the mean of a touch
screen (Figure 7.1, middle). Usually, with touch screen, pointing is
co-localized with software events, since users can directly indicate
where they want to interact. However, in our case, we decided to mimic
exactly the behavior of the keyboard interface. That is to say that
with the touch screen as well players have to orientate themselves
depending on the position of the character. Hence, if the character is
positioned on the left, players have to touch the right fringe of the
screen in order to go up. This is mostly counter-intuitive since players
have to inhibit the urge to point to the actual direction they want to go;
there is a cognitive dissonance.

Since in our experimental design the utilization of the direct (touch-
based) interaction is counter-intuitive, we hypothesize that it will lead
to an overall higher number of interaction errors compared to the
indirect interface (keyboard).

7.2.5 Implementation
We developed our environment using the game engine Unity 5. It ran
under Windows 7 64bit, on an Alienware Aurora R4 equipped with an
Intel i7-3820 processor, 8GB of RAM and a GeForce GTX 660 Ti graphic
card. The screen was a 24-inch multi-touch display (3MM2467PW).
During touch-based sessions it was positioned at a comfortable angle
for participants.

In order to synchronize accurately in-game events with brain Notice to OpenViBE
users: set python
boxes frequency to
128hz to increase
responsiveness.

recordings, we used Lab Streaming Layer1 (LSL) library. LSL is a network
protocol dedicated to physiological recordings. It is designed to achieve
sub-millisecond accuracy on local networks, however the delay between
the data sent over the protocol and actual stimuli (images or sounds)
depends on the performance of the software. Even though the refresh
rate of the screen was locked at 60Hz, we increased game framerate to
240FPS to prevent any lag. Using OpenVibe 1.0 to acquire EEG signals,
we managed to ensure a constant delay of 25ms (SD: 2.5) – ERP detection
is particularly sensitive to signals’ latency as variations will diminish
the amplitude measured in the averaged signals.

1https://github.com/sccn/labstreaminglayer

https://github.com/sccn/labstreaminglayer
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7.3 Pilot study: validation of the induced workload
level

We designed our virtual environment as a test-bench aimed at inducing
several mental states within users. Notably, we implemented several
game mechanisms that attempt to modulate mental workload. While we
defined a set of parameters using the literature that we adjusted during
internal tests, we had to formally validate the mental workload that
each one of our 4 different game levels seeks to induce. Each one should
be different from the other, and users’ workload should range from low
to high with the following levels’ order: EASY < MEDIUM < HARD <
ULTRA.

As such, we conducted a pilot study with no physiological recordings
but using the NASA-TLX questionnaire [Hart and Staveland, 1988], a
well established questionnaire that accounts for workload.

7.3.1 Protocol
15 participants took part in this study – 4 females, 11 males, mean age
24.53 (SD: 3.00). We used a within-subject experimental design; all
participants answered for all 4 difficulty levels. The gaming session
occurred with the indirect interaction (keyboard) and started with 2
“training levels”, that introduced participants to the game mechanisms.
In the first training level, players learned the objective of the game –
navigate in the maze and memorize a sequence of items. In the second
training level, they discovered how the character could change its
orientation by itself. After the completion of this training phase, and
once they felt confident enough, participants continued with the main
phase of the experiment.

During the main phase of the experiment, participants played once
each one of the four main levels (EASY, MEDIUM, HARD or ULTRA).
The presentation order was randomly chosen. Immediately after the
end of a level, participants were given a NASA-TLX questionnaires
to inquire about their mental workload. The questionnaire took the
form of a 9-points Likert scale. As in the original questionnaire, it was
comprised of 6 items, that assessed mental demand, physical demand,
temporal demand, performance, effort and frustration. For example,
effort was rated from “low” to “high” with the following question: “How
hard did you have to work to accomplish your level of performance?”.
The experiment lasted approximately 25 minutes and finished once
participants played all 4 levels and filled the corresponding NASA-TLX
questionnaires.

7.3.2 Results
For each participant and each level of difficulty, we averaged the 6 items
of the NASA-TLX questionnaire and normalized the scales from [1;9] to
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Figure 7.3 – NASA-TLX scores obtained during the pilot study. Each difficulty
level differs significantly from the others (p < 0.01).

[0;1] – except for the “performance” item, that was normalized from
[1;9] to [1;0] because its scale is in reverse order compared to the other
items (“1” for “good” and “9” for “poor”).

The resulting averaged scores are: EASY: 0.11 (SD: 0.09); MEDIUM:
0.32 (SD: 0.17); HARD: 0.43 (SD: 0.13); ULTRA: 0.65 (SD: 0.13) – see Figure
7.3.

A repeated measures analysis of variance (ANOVA) showed a signifi-
cant effect of the difficulty factor over the NASA-TLX scores and a
post-hoc pairwise Student’s t-test with false discovery rate (FDR) [Noble,
2009] correction showed that each levels differed significantly from the
others (p < 0.01).

7.3.3 Discussion
In this pilot study, we demonstrated through questionnaires that each
difficulty level presented in Table 7.1 induces a different workload level.
Hence, we can use our virtual environment as a baseline to assess the
reliability of analogous EEG measures and put into perspective this new
evaluation method.

7.4 EEG in practice
In this section, we describe the calibration tasks that we implemented
in order to measure workload and error recognition. We chose to use
standard tasks, validated by the literature, so that our findings could be
easily reproduced. Moreover, as shown later in this chapter, using a
single of these tasks to calibrate each construct estimator was enough
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to obtain reliable estimations of such constructs during different and
complex interaction tasks.

Concerning attention, we did not develop a dedicated task per se for
its calibration. Since the audio probes were already integrated to our
virtual environment, we simple used a specific level of our game.

7.4.1 Calibration of workload
We used the N-back task protocol to induce 2 different cognitive loads
and calibrate our workload estimator. We used the exact same protocol
and implementation as the one described in the previous chapter, when
we studied 3D manipulations tasks. All details are there – there were
also 360 trials, divided in 6 blocks of 60 letters that alternated between
0-back and 2-back conditions.

7.4.2 Calibration of error recognition
We replicated the protocol described in [Ferrez and Millan, 2008] to
calibrate the system regarding error recognition, since it could be
considered as a standard approach to evaluate interaction errors. The
task simulates a scenario in which users control the movements of a
robot. The robot appears on screen and has to reach a target. At each
turn users order the robot to go right or left in order to reach the target
as fast as possible (with the least steps). Except that the robot may
understand badly the given command. This is simulated by some trials
during which the command is (on purpose) erroneously interpreted;
hence an interaction error happens.

The calibration task is a simplified version of this scenario: the robot
is pictured by blue rectangle on screen that users control with the
arrow key, the target is represented by a blue outline. The robot is
constrained to the X axis and along this axis there are only 7 different
positions both for the “robot” and the target (see Figure 7.4).

We choose a ratio for the occurrence of interaction errors that is Do not confuse an
ErrP for an ERP!consistent with the literature. 80% of the movements matched the

actual key pressed and for the other 20% the “robot” moved in the
opposite direction. It was necessary not to balance both events since the
kind of EEG features that interaction errors are triggering relates to the
oddball paradigm – it is called an “error related potential”, ErrP [Ferrez
and Millan, 2008]. A timer was set to prevent the appearance of artifacts,
such as muscle movements, within EEG recordings. The rectangle moves
1s after a key was pressed, and after movement completion users have
to wait another 1s before they could press a key again. Rectangle turned
yellow as long as users could not control the rectangle.

A trial is completed once the robot reaches the target. A trial fails if
after 10 attempts the robot is not yet on target. Whenever the trial is a
success of a failure, the screen is reinitialized and a new trial begins,
with a new position for the robot and the target. The last trial occurred
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Figure 7.4 – Error recognition calibration task. Users control a blue filled
rectangle. They have to move it to an outlined target by pressing
left or right arrow key. The rectangle moves 1s after key press and
users have to wait another 1s to move it again. 20% of the time,
the rectangle goes in the opposite direction, thus causing an
interaction error.

after 350 interactions were performed. On average this calibration
phase lasted 15 minutes.

7.4.3 Calibration of attention
The calibration of attention occurred within a simplified version of the
virtual environment. Users did not have to control the character during
this special level, it was moving by itself through the maze. They were
asked to watch the character and count in their head how many times
they heard the “odd” sound – the sound of a high pitched bell lasting
200ms. The distractor was a low pitched beat of 70ms – we did not use
pure tones to improve users experience. The pace of the game was
adjusted so that a sound (target or distractor) was played every second.
Once again, since the probes for attention relies to the oddball paradigm,
we chose a 20% of appearance of the target event. The calibration lasted
for approximately 7 minutes, after 350 sounds were played. Note that
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participants were instructed to count the “odd” events only during the
calibration phase, and not during the completion of the 3D maze.

7.5 Main study: EEG as an evaluation method
The main study consisted in the evaluation of the game environment
with two different types of interface using EEG recordings. As such we
created a 4 (difficulty: EASY, MEDIUM, HARD, ULTRA) × 2 (interaction:
KEYBOARD vs TOUCH)within-subject experimental plan. Ourhypotheses
are:

1. The workload index measured by EEG is higher in TOUCH and
increases with the difficulty, reflecting NASA-TLX scores obtained
during the pilot study.

2. The attention level of participants decreases as the difficulty
increases.

3. The TOUCH condition induces a higher number of interaction
errors compared to the KEYBOARD condition.

The gaming phasewas split in two, one for each interaction technique.
In order to avoid a too tedious experiment, participants alternated
between those game sessions and the 3 calibration tasks (workload,
attention and error recognition). Since the analysis were performed
offline, there was no need to cluster all the calibrations at the beginning
of the experiment. The resulting variety of the exercises helped
participants to remain engaged during the various tasks, which is
of importance since from the reliability of the signals during the
calibration depends the accuracy of the final measures.

The order of the gaming sessions and calibration phases was counter-
balanced between participants following a latin square (12 combinations
possible, see Figure 7.5). After the experiment, the signals gathered
from the calibration tasks were processed in order to evaluate both the
virtual environment (difficulty levels) and the chosen interaction
techniques.

7.5.1 Apparatus
Besides thematerial related to the virtual environment, EEG signals were
acquired at a 512Hz sampling rate with 2 g.tec g.USBamp amplifiers. This
medical-grade equipment handles 32 electrodes. In the international
10-20 system, electrodes were placed at AF3, AFz, AF4, F7, F3, Fz, F4, F8,
FC3, FCz, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CPz, CP4, P7, P3, Pz, P4, P8,
PO7, POz, PO8, O1, Oz and O2 sites.

12 participants took part in this study – 3 females, 9 males, mean
age 26.25 (SD: 3.70). All of them reported a daily use of tactile interfaces.
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Figure 7.5 – The order of the 3 calibration tasks and 2 interactions techniques
was counter-balanced between the 12 participants to improve
engagement.

The experiment occurred in a quiet environment, isolated from the
outside. There were two experimenters in the room and the procedure
comprised the following steps:

1. Participants entered the room, read and signed an informed
consent form and filled a demographic questionnaire.

2. While one of the experimenter installed an EEG cap onto partici-
pants’ heads, the other experimenter introduced participants to
the virtual environment. They played 2 training levels and the 4
main levels in an increasing order of difficulty. They could redo
some levels if they did no feel confident enough.

3. One of the 3 calibration tasks occurred (workload, attention or
error recognition).

4. Participants played to the game using one of the 2 interaction
techniques (KEYBOARD or TOUCH). The four levels of difficulty
(EASY, MEDIUM, HARD, ULTRA) appeared twice during the session,
in a random order. In the case of TOUCH, a dedicated training
session occurred beforehand so that participant could get used to
this interaction technique.

5. Another calibration task occurred, different from step 3.
6. Participants tested the second interaction technique. As in step 4,
in case of TOUCH it was preceded by a training session, that lasted
until participants felt confident enough to proceed to the main
task.

7. Participants performed the last remaining calibration task.
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A game session (steps 4 and 6) took approximately 20 minutes and
the whole experiment lasted 2h.

7.5.2 EEG Analyses
The calibration tasks were used to train a classifier specific to each one of
the studied mental states. Classifiers were calibrated separately for each
participant, user-specific classifiers ensuring maximal EEG classification
performances. We used EEGLAB 13.4.4b and Matlab R2014a to process
EEG signals offline. While the descriptive EEG features associated to
workload relate to the frequency domain, the features associated to
attention and error recognition relate to temporal information. We
detail below those pipelines.

7.5.2.1 Processing workload
The signal processing concerning workload was exactly the same as
what we successfully applied in our previous study – we employed the
EEG pipeline that was the most effective.

Once again, we used 2s time windows extracted during the N-back
tasks to train the classifier. We filtered EEG signals in the delta (1-3 Hz),
theta (4-6 Hz), alpha (7-13 Hz), beta (14-25 Hz) and gamma (26-40 Hz)
bands. To reduce features’ dimension, we used for each band a set of
Common Spatial Patterns (CSP) spatial filters and reduced the 32 original
channels down to 6 “virtual” channels. Since the calibration (N-back
task) and use contexts (virtual environment) differs also substantially in
this study, we used a regularized version of these filters called stationary
subspace CSP (SSCSP) – refer to Chapter 6.2.1 for details.

Once calibrated, this classifier can be used to estimate workload
levels on new data, which we will use to estimate users’ mental effort
whilst interacting with the virtual environment.

7.5.2.2 Processing attention and error recognition
Since in our experimental design both attention and error recognition
relied on the oddball paradigm, they share the same signal processing.

We selected time windows of 1s, starting at the event of interest (i.e. This time the pipeline
is similar to the study
measuring visual
comfort with
stereoscopic displays.

sounds for attention, rectangle’s movements for error recognition). In
order to utilize temporal information, feature extraction relied on
regularized Eigen Fisher spatial filters (REFSF) method [Hoffmann
et al., 2006]. Thanks to this spatial filter, specifically designed for ERPs
classification, the 32 EEG channels were reduced to a set of 5 vectors.

To reduce furthermore the number of features, we decimated the
signal by a factor 32. The “decimate” function of Matlab was used,
which applies a low-pass filter after decimation to prevent aliasing. As a
result, there was 80 features by epoch (5 channels × 512Hz × 1s / 32).
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7.5.2.3 Classification
We used shrinkage LDA (linear discriminant analysis) as a classifier;
which is more efficient compared to regular LDA when it comes to a
high number of features [Ledoit and Wolf, 2004].
For each construct there was two steps: first we used the data

collected during the calibration tasks to estimate the performance of
the classifiers. Second, we studied the output of the different classifiers
to evaluate the virtual environment and test our hypotheses.

To assess the classifiers’ performance on the calibration data, we Compared to previous
studies, here we
switched to AUROCC
metric to account for
unbalanced classes.

used 4-fold cross-validation (CV). I.e. we split the collected data into 4
parts of equal size, selecting trials randomly, used 3 parts to calibrate
the classifiers and tested the resulting classifiers on the unseen data
from the remaining part. This process occurred 3 more times so that in
the end each part was used once as test data. Finally, we averaged the
obtained classification accuracies. The accuracy was measured using
the area under the receiver-operating characteristic curve (AUROCC).
The AUROCC is a metric that is robust against unbalanced classes, as it is
the case with attention and error recognition (20% of targets, 80% of
distractors). A score of “1” means a perfect classification, a score of “0.5”
is chance.

Once the classifiers were trained thanks to the calibrations tasks, we
could use them on the EEG signals acquired while participants were
interacting with the virtual environment, to estimate the different
constructs values.

For workload, we used 2s long sliding time windows that were Outliers removal was
added to the pipeline
to account for the
greater heterogeneity
of the LDA outputs
between subjects
with the other
constructs, but it does
not concern more
than few data points.

overlapping by 1s, to extract signals and feed the classifier. From the
outputs that was produced by the LDA classifier for each participant
(i.e., the distance to the separating hyperplane), we first removed
outliers by iteratively removing one outlier at a time using a Grubb’s
test with p = 0.05, until no more outlier was detected [Grubbs, 1969].
We then normalized the outlier-free scores between -1 and +1. As such,
for all participants a workload index close to +1 represents the highest
mental workload they had to endure while they were playing. It should
come close to the 2-back condition of the calibration phase. On the
opposite, a workload index close to -1 denotes the lowest workload,
similar to the 0-back condition.

The process was similar for attention, but we only extracted epochs
that corresponded to the target stimuli onset, i.e. when the high pitch
sound was played. Note that contrary to [Burns and Fairclough, 2015],
that studied the amplitudes of ERPs and did not use the data gathered
during the calibration phase, here we kept the machine learning
approach. As such, the resulting scores can be seen as a confidence
index of the LDA classifier about whether or not participants noticed
odd events while they were playing.
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As for the classifier dedicated to error recognition, the processing of
its output differs. Indeed, we could not assume which interaction yielded
or not an interaction error, i.e. if and when participants perceived a
discrepancy between what they intended to do and what occurred.
Consequently, we simply counted over an entire game session the
number of times the classifier labelled an interaction as being erroneous
in the eye of the participants.

7.5.3 Results
Unless otherwise noted, we tested for significance using repeated
measures ANOVA. For significantmain effects, we used post-hoc pairwise
Student’s t-test with FDR correction.
Table 7.2 – Classification accuracy during the calibration tasks for the 3

measured mental states (AUROCC scores).
P1 P2 P3 P4 P5 P6 P7

Workload 0.85 0.93 0.98 0.95 0.97 0.97 0.79
Attention 0.83 0.82 0.96 0.81 0.85 0.90 0.82
Err. recog. 0.88 0.57 0.90 0.90 0.86 0.90 0.78

P8 P9 P10 P11 P12 Avg
Workload 0.87 0.87 0.98 0.95 0.94 0.92
Attention 0.82 0.86 0.92 0.88 0.83 0.86
Err. recog. 0.80 0.88 0.78 0.85 0.74 0.82

7.5.3.1 Workload
On average, the classifier’s AUROCC score during the training task was
0.92 (SD: 0.06) – see Table 7.2. Over the test set there were on average
2171 data points per participant across all condition (time windows).
The statistical analysis of the classifier output during the game

session showed a significant effect of the difficulty factor (p < 0.01); the
workload index increasing along the difficulty of the levels (Figure 7.6,
top). The post-hoc analysis showed that all difficulty levels significantly
differs one from the other with p < 0.01; except for the MEDIUM level,
which differs from EASY with p < 0.05 and with HARD only by a margin
(p = 0.11).

There was as well as a significant effect of the interaction factor
(p < 0.01), the workload being higher on average during the TOUCH
condition. There was no interaction between difficulty and interaction
factors.
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Figure 7.6 – EEG measures. Top: The workload index significantly differs
across difficulties and between interaction techniques. Bottom left:
The attention index significantly differs across difficulties. Bottom
right: The number of interaction errors differs by a tendency
between KEYBOARD and TOUCH.

7.5.3.2 Attention
On average, the classifier’s AUROCC score during the training task was
0.86 (SD: 0.05) – see Table 7.2. Over the test set there were on average
497 data points per participant across all conditions (odd events).

The statistical analysis of the classifier output during the game
session showed a significant effect of the difficulty factor (p < 0.01) but
not of the interaction. The attention index decreases as the difficulty
decreases (Figure 7.6, bottom left). The post-hoc analysis showed that
the ULTRA level significantly differs from the others (p < 0.05).

7.5.3.3 Error recognition
On average, the classifier’s AUROCC score during the training task was
0.82 (SD: 0.10) – see Table 7.2. Over the test set there were on average
388 data points per participant across all conditions (interactions).
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Due to the nature of the data (numbers of interaction errors across
entire game sessions), we used a one-tailed Wilcoxon Signed Rank Test
to stress our hypothesis. The number of interaction errors differs by a
tendency (p = 0.08) between the KEYBOARD and the TOUCH conditions.
19% of the interactions (SD: 9%) was labelled as interaction errors by the
classifier for KEYBOARD vs 22% (SD: 9%) for TOUCH (Figure 7.6, bottom
right).

7.5.4 Behavioral measures
Besides EEG metrics, we had the opportunity to study participants’
reaction time and performance so as to get a clearer picture of their
user experience.
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Figure 7.7 – Behavioral measures: reaction time in seconds (left) and per-
formance (proportion of correctly selected directions – right)
significantly differs between difficulty levels and interactions. E:
EASY, M: MEDIUM, H: HARD, U: ULTRA.

7.5.4.1 Reaction time
There was a significant effect of both the difficulty and interaction
factor, as well as an interaction effect between them (p < 0.01). Post-hoc
tests showed that all difficulty levels differ one from the other (p < 0.01),
except for MEDIUM and HARD, which do not differ significantly (p =
0.91).

The mean reaction times (SD) were respectively for EASY, MEDIUM,
HARD and ULTRA: 0.78s (0.14), 0.97s (0.18), 0.98s (0.15) and 0.69s (0.06).
Mean reaction time for KEYBOARD: 0.78 (SD: 0.12); for TOUCH: 0.93 (SD:
0.13). See Figure 7.7, left. Note that users had less time to respond
during higher difficulty levels.

7.5.4.2 Performance
The performance was computed as the ratio between the number of
correct selections and the total number of interactions. There was a
significant effect of both the difficulty and interaction factor, as well as
an interaction effect between them (p < 0.01). Post-hoc tests showed
that all difficulty levels differ one from the other (p < 0.01).
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The mean performance (SD) was respectively for EASY, MEDIUM,
HARD and ULTRA: 98% (3), 89% (12), 83% (17) and 55% (21). Mean
performance for KEYBOARD: 85% (SD: 13); for TOUCH: 77% (SD: 13). See
Figure 7.7, right.

7.5.5 Discussion
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Figure 7.8 – Workload index over time for participant 3 – 60s smoothing
window. Left: KEYBOARD condition, right: TOUCH condition.
Background color represents the corresponding difficulty level.

Most of the main hypotheses are verified. The workload index as
computed with EEG showed significant differences that match the
intended design of the difficulty levels. It was also shown that in the
highest difficulty level the attention of participants toward external
stimuli was significantly lower – i.e. inattentional blindness increased.
Concerning the interaction techniques, the number of interaction
errors as measured by EEG was higher with the TOUCH condition, but
this is a tendency and not a significant effect. The workload index,
on the other hand, was significantly higher in the TOUCH condition
compared to the KEYBOARD condition.

Thanks to the ground truth obtained during the pilot study with the
NASA-TLX questionnaire, these results validate the use of a workload
index measured by EEG for HCI evaluation and set the path for two other
constructs: attention and error recognition. Beside the evaluation of the
content (i.e. difficulty levels) we were able to compare two interaction
techniques. These are promising results for those who seek to assess
how intuitive a UI is with exocentric measures.

In this study, we chose to use the particularity of the touch screen to
make the task more difficult. Indeed, while we used a touch screen for
its possibility of direct manipulation, we kept the character as a frame
of reference, resulting in input commands that were (patently) not co-
localized with output directions. Besides results denoting the differences
between the conditions, participants also spontaneously reported
how non intuitive this condition was. We wanted to investigate our
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evaluation method on a salient difference at first. Then our framework
could well be employed to go further; for example seeking physiological
differences between direct and indirect manipulation interfaces in
more traditional tasks.

It is interesting to note how those EEG measures could be combined
with existing methods to broaden the overall comprehension of the user
experience. For instance,while we did show significant differences across
difficulty levels and between interaction techniques with behavioral
measures (reaction time and performance index), EEG measures could
help to understand the underlying mechanisms. Because we have a
more direct access to brain activity, we can make assumptions about
the cause of observed behaviors. For example participants’ worse
performance with TOUCH than with KEYBOARD could be due to the
fact that they anticipate less the outcomes of their actions (more
interaction errors); the higher reaction time may not only be caused by
the interface per se, but by a higher workload. And while participants
manage to cope with the fast pace of the ULTRA level (the smallest
reaction time), the increase in perceptual load lower their awareness to
task-irrelevant stimuli

Additionally, while the performances obtained at the easy, medium
and hard levels are very similar with the keyboard and the touch
screen – see Figure 7.7, right –, the analysis of the workload levels
from EEG reveals that the workload was significantly higher in the
TOUCH condition, meaning that users had to perform significantly
more mental efforts to reach the same performance. This further
highlights that EEG-based measures do bring additional information
that can complement traditional evaluations such a behavioral measure.

Measuring users’ cognitive processes such as workload and attention
may prove particularly useful to assess 3D user interfaces (3DUI), since
they are known to be more cognitively demanding. They require users to
perform 3D mental rotation tasks to successfully manipulate objects or
to orientate themselves in the 3D environment. Moreover, the usual need
for a mapping between the user inputs with limited degrees-of-freedom
(DOF) and the corresponding actions on 3D objects makes 3DUI usually
difficult to assess and design. Indeed, 3D environments possess typically
6 DOF while mouses possess only 3 DOF, and multiple DOF input controls
demand complex coordination [Zhai and Milgram, 1998]. We reproduced
part of this problematic with our game environment and obtained
coherent results from EEG measures.

Above all, an evaluation method based on EEG enables a continuous
monitoring of users. The intended use case of our framework is to enroll
dedicated testers that would wear the EEG equipment and perform well
during the calibration tasks. As a matter of fact, the best performer
during workload calibration (participant 3 in Table 7.2) shows patterns
that clearly meet the expectations concerning both difficulty levels and
interactions, as pictured in Figure 7.8.
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7.6 Limitations and future challenges
Although using EEG measures as an evaluation method for HCI was
proven conclusive regarding workload – we obtained a continuous index
on par with a ground truth based on traditional questionnaires – the two
other constructs we studied could benefit from further improvements.

Despite the direct interaction (TOUCH) being more disorienting for
users than the indirect one (KEYBOARD), the recognition of interaction
errors differed only by a tendency. This could be explained by the fact
that the calibration task was too dissimilar to the virtual environment.
Notably, while there was few and slow paced events during the calibra-
tion, users were confronted to many stimuli while they were playing,
hence overlapping ERPs must have appeared within EEG, which that
may have disturbed the classifier. A calibration task closer to real-life
scenarios than the one described in [Ferrez and Millan, 2008] should be
envisioned. Such task should remain generic in order to facilitate the
dissemination of EEG as an evaluation method for HCI.

Another mean to facilitate the transfer of the classification between
a standard task and the evaluated HCI lies in signal processing. Indeed,
if our results demonstrate that the EEG classification of workload could
be transferred from the N-back tasks to a dissimilar virtual environment
and user interface, we benefited from spatial filters that specifically
take into account the variance between calibration contexts and use
contexts – the stationary subspace CSP that we used both in this chapter
and in chapter 6. Since ERPs may also slightly differ in amplitudes and
delays between calibration and use contexts, in the future, it would be
worth designing similar approaches to optimize temporal or spatial
filters for ERPs as well.
Concerning the nature of the measures we made, our protocol

for assessing participants’ attention level is inspired by [Burns and
Fairclough, 2015]. In this latter study, however, authors sought immersion.
Their assumption was that the less players were attentive to external
stimuli, the more they were immersed in the game. Because in the
present study the stimuli not congruent to the tasks were embedded
directly in the virtual environment, we assumed that the less players
were attentive to sounds the lower was their overall attention level.
This is an open issue, and one may try in the future to look more closely
if it is either immersion on distraction that change such attention level,
and in which cases being less aware of external stimuli is a concern.

The reliability of mental states’ measures is strongly correlated to Influence of physical
characteristics and
the need for
involvement is not
limited to EEG, this is
also the case for
fNIRS, among others.

the quality of EEG signals. The hardware is not the sole factor, though,
there is also a lot of variability between individuals. Brain patterns
differs from one to another. One’s brain activity is neither “wrong”
or “good”, but depending on the considered signal processing the
system will pickup more easily features with some. Even anecdotal
body differences, such as scalp’s thickness, influence EEG recordings.



II.7

CHAPTER 7. VALIDATING EEG AS AN HCI EVALUATION METHOD 94

Participants’ mindset during the recordings is another the factor
influencing EEG signals. Their awareness and involvement toward the
tasks improve system’s accuracy. The form of the calibration tasks could
be enhanced to engage more users, for example through gamification
[Flatla et al., 2011] – and our virtual environment proved to be suitable
to do so. Whereas our participants were volunteers enrolled among
students, in the end the outcome of an evaluation method based on
EEG should be strengthened by recruiting dedicated testers, using
as selection criteria how reliably the different constructs could be
estimated from their EEG signals during calibration tasks.

Finally, one should acknowledge that when it comes to recordings as
sensitive as EEG, artifacts such as the ones induced by muscular activity
are of major concern. The way we prevented the appearance of such
bias in the present study is threefold. 1) The hardware we used – active
electrodes with Ag/AgCl coating – is robust to cable movements, see
e.g., [Wilson et al., 2012b]. 2) The classifiers were trained on features not
related to motion artifacts or motor cortex activation. 3) The position
of the screen during the “touch” condition minimized participants’
motion, and gestures occurred mostly before the time window used for
detecting interaction errors. These precautions are important for the
technology to be correctly apprehended.

To further control for any bias in our protocol, we ran a batch of
simulations where the labels of the calibration tasks had been randomly
shuffled, similarly to the verification process described in chapter 6.
Should artifacts bias our classifiers, differences would have appeared
between the KEYBOARD and TOUCH conditions even with such random
training. Among the 20 simulations that ran for each of the 3 constructs
(workload, attention, error recognition), none yielded significant
differences.

7.7 Conclusion
In this chapter, we demonstrated how brain signals – by the mean
of electroencephalography – could be put into practice in order to
obtain a continuous evaluation of different interaction techniques, their
ergonomic pros and cons. In particular, we validated an EEG-based
workload estimator that does not necessitate to modify the existing
software. Furthermore, we showed how users’ attention level could
be evaluated using background stimuli, such as sounds. Finally, we
investigated how the recognition of interaction errors could help to
determine the best user interface. Shaping a set of limited mental tasks
– e.g. a sole workload calibration task to evaluate a broad range of
interfaces and situations – will considerably ease the application of an
evaluation framework based on EEG.

Being able to estimate these three constructs – workload, attention
and error recognition – continuously during realistic and visually



II.7

CHAPTER 7. VALIDATING EEG AS AN HCI EVALUATION METHOD 95

complex interaction tasks opened new possibilities. Notably, it enabled
us to obtain additional and more exocentric metrics of user experience,
based on the users’ cognitive processes. It also provided us with
additional insights that traditional measures (e.g. behavioral measures)
could not reveal. To sum up, this suggests that combined with existing
evaluation methods, EEG-based evaluations tools as the ones proposed
here can help to understand better the overall user experience. Future
work should apply this framework to other contexts and may refine the
distinction between, from the one hand, the evaluation of the interface
and, from the other hand, the evaluation of the interaction technique.
This study is a step forward from the assumptions made in the

first part of this thesis. However, for such approach to disseminate,
physiological sensors in general and EEG devices in particular must
become widely available. The need for sensors practical to use is a
quest that has to be completed before we could effectively benefit the
HCI field. I have attempted to tackle some of these issues during my
thesis, and this more technical aspect of my thesis is presented in the
appendices.



PART III

FOSTERING SOCIAL INTERACTIONS

This part starts the shift toward practical applications of phys-
iological computing among the general public. One seeks how a
pervasive feedback based on users’ own heart rate can improve
the social presence of embodied agents; another how that same
physiological activity can foster a new kind of interaction be-
tween several board game players.

These two works own a debt to the young PhyCS conference
(International Conference on Physiological Computing System). The
idea of the first study came to my mind during the first instalment of
PhyCS in 2014 – . . .where I presented my first paper ever – and was
presented the year after at PhyCS ’15 [Frey, 2015].

PhyCS ’14 was also the time when I discovered remote PPG, which
seemed just the right technology to avoid the cumbersomeness that too
often goes with physiological sensors. While we had been discussing
for some months after that within the team of the possibility of an
application that could combine a “bluff game” and heart rate sensing, it’s
when I came back from PhyCS ’15, fuelled by a replenished motivation,
that I found the will to finally put that idea into practice.
A modest attempt at exploring which “killer app” could help to

disseminate even more physiological computing.
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8
Physiological

similarity-
attraction

Physiological sensors are gaining the attention of manufactur-
ers and users, as denoted by devices such as smartwatches or by
the popularity of smartphone apps that track heart rate during
fitness activities. Soon, physiological monitoring could become
widely accessible and transparent to users, especially since re-
mote sensing is within reach (see appendix D).
We demonstrate here how one could take advantage of this sit-
uation to increase users’ engagement and enhance user experi-
ence in human-agent interaction. We created an experimental
protocol involving embodied agents – “virtual avatars”. Those
agents were displayed alongside a beating heart. We compared
a condition in which this feedback was simply duplicating the
heart rates of users to another condition in which it was set to
an average heart rate. Results suggest a superior social presence
of agents when they display feedback similar to users’ internal
state. This physiological “similarity-attraction” effect may lead,
with little effort, to a better acceptance of agents and robots by
the general public.
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8.1 Introduction
Covert sensing of users’ physiological state is likely to open new
communication channels between human and computers. When
anthropomorphic characteristics are involved – as with embodied
agents –mirroring suchphysiological cues could guide users’ preferences
in a cheap yet effective manner.

One aspect of human-computer interaction (HCI), albeit difficult to
account for, lies in users’ engagement. Engagement may be seen as a
way to increase performance, as in the definition given by [Matthews
et al., 2002] for task engagement: an “effortful striving towards task
goals”. In a broader acceptation, the notion of engagement is also
related to fun and accounts for the overall user experience [Mandryk
et al., 2006] (see chapter 3). Several HCI components can be tuned to
improve engagement. For example, content and challenge need to be
adapted and renewed to avoid boredom and maintain users in a state of
flow [Berta et al., 2013]. It is also possible to study interfaces: [Karlesky
and Isbister, 2014] use tangible interactions in surrounding space to
spur engagement and creativity. When the interaction encompasses
embodied agents – either physically (i.e. robots) or not (on-screen
avatars) – then anthropomorphic characteristics can be involved to seek
better human-agent connections.

Following the affective computing outbreak [Picard, 1995], studies
using agents that possess human features in order to respond to
users with the appropriate emotions and behaviors began to emerge.
[Prendinger et al., 2004] created an “empathic” agent that serves as
a companion during a job interview. While playing on empathy to
engage users more deeply into the simulation was conclusive, the
difficulty lies in the accurate recognition of emotions. Even using
physiological sensors, as did the authors with electrodermal activity
and electromyography, no signal processing could yet reach an accuracy
of 100%, even on a reduced set of emotions – see [Lisetti and Nasoz,
2004] for a review.

Humans are difficult to comprehend for computers and, still, humans
are more attracted to others – human or machine – that match their
personalities [Lee and Nass, 2003]. This finding is called “similarity-
attraction” in [Lee and Nass, 2003] and was tested by the authors by
matching the parameters of a synthesized speech (e.g. paralinguistic
cues) to users, whenever they were introverted or extroverted. An
analogous effect on social presence and engagement in HCI has been
described as well in [Reidsma et al., 2010], this time under the name of
“synchrony” and focusing on nonverbal cues (e.g. gestures, choice of
vocabulary, timing, . . . ). Unfortunately, being somewhat linked to a
theory of mind, such improvements lean against tedious measures, for
instance psychological tests or recordings of users’ behaviors. What if
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the similarity-attraction could be effective with cues that are much
simpler and easier to set up?

Indeed, at a lower level of information, [Slovák et al., 2012] studied
how the display of heart rate (HR) could impact social presence during
human-human interaction. They showed that, without any further
processing than the computation of an average heartbeat, users did
report in various contexts being closer or more connected to the person
with whom they shared their HR. We wondered if a similar effect could
be obtained between a human and a machine. Moreover, we anticipated
the rise of devices that could covertly measure physiological signals,
such as the Kinect 2, which can use its cameras (color and infrared) to
compute users’ HRs – the use of video feeds to perform volumetric
measurements of organs is dubbed as “photoplethysmography” [Kranjec
et al., 2014].

Consequently, we extended on the theory and we hypothesized
that users would feel more connected toward an embodied agent
if it displays a heart rate similar to theirs, even if users do not
realize that their own heart rates are being monitored.
By relying on a simple mirroring of users’ physiology, we elude

the need to test users’ personality [Lee and Nass, 2003] or to process
– and eventually fail to recognize – their internal state [Prendinger
et al., 2004]. Creating agents too much alike humans may provoke
rejection and deter engagement due to the uncanny valley effect
[MacDorman, 2005]. Since we do not emphasize the link between users’
physiological cues and the feedback given by agents, we hope to prevent
such negative effect. The similary-attraction applied to physiological
data should work at an almost subconscious level. Furthermore, implicit
feedback makes it easier to improve an existing HCI. As a matter of fact,
only the feedback associated with the agent has to be added to the
application; feedback that can then take a less anthropocentric form –
e.g. see [Harrison et al., 2012] for the multiple meanings a blinking light
can convey and [Huppi et al., 2003] for a use case with breathing-like
features. Ultimately, our hypothesis proved robust, it could benefit to
virtually any human-agent interaction, augmenting agent’s social
presence, engaging users.

The following sections describe an experimental setup involving
embodied agents that compares two within-subject conditions: one
condition during which agents display heartbeats replicating the HR of
the users, and a second condition during which the displayed heartbeats
are not linked to users. Our main contribution is to show first evidence
that displaying identical heart rates makes users more engaged toward
agents.
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8.2 Experiment
The main task of our HCI consisted in listening to embodied agents
while they were speaking aloud sentences extracted from a text corpus,
as inspired by [Lee and Nass, 2003]. When an agent was on-screen, a
beating heart was displayed below it and an audio recording of a heart
pulse was played along each (fake) beat. This feedback constituted our
first within-subject factor: either the displayed HR was identical to the
one of the participant (“human” condition), either it was set at an
average HR (“medium” condition). The HR in the “medium” condition
was ranging from 66 to 74 BPM (beats per minute), which is the grand
average for our studied population [Agelink et al., 2001].

Agents possessed some random parameters: their gender (male or
female), their appearance (6 faces of different ethnic groups for each
gender), their voice (2 voices for each gender) and the voice pitch. Those
various parameters aimed at concealing the true independent variable.
Had we chosen a unique appearance for all the agents, participants could
have sought what was differentiating them. By individualizing agents
we prevented participants to discover that ultimately we manipulated
the HR feedback. To make agents look more alive, their eyes were
sporadically blinking and their mouths were animated while the
text-to-speech system was playing.

In order to elicit bodily reactions, we chose sentences for which a
particular valence has been associated with, and, as such, that could
span a wide range of emotions. Valence relates to the hedonic tone and
varies from negative (e.g. sad) to positive (e.g. happy) emotions [Picard,
1995]. HR has a tendency to increase when one is experiencing extreme
pleasantness, and to decrease when experiencing unpleasantness
[Winton et al., 1984].

Our experiment was split in two parts (second within-subject factor).
During the first session, called “disruptive” session (see Figure 8.1),
participants had to rate each sentence they heard on a 7-point Likert
scale according to valence they perceived (very unpleasant to very
pleasant). Sentences came from newspapers. A valence (negative,
neutral or positive) was randomly chosen every 2 sentences. Every 4
sentences, participants had to rate the social presence of the agent.
Then a new randomly generated agent appeared, for a total of 20 agents,
10 for each “human”/“medium” condition.

As opposed to the first part, during the second part of the experiment,
called “involving” session, sentences order was sequential (see Figure
8.2). Agents were in turns narrating a fairy tale. Participants did not
have to rate each sentence’s valence, instead they only rated the social
presence of the agents. To match the length of the story, agents were
shuffled every 6 sentences and there were 23 agents in total, 12 for the
“human” condition, 11 for the “medium” condition.
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Figure 8.1 – Procedure during the “disruptive” session: participants rate the
valence of each one of the sentences spoken by an agent. After 4
sentences, they rate agent’s social presence (3 items). Then a new
agent appears. 20 agents, average time per agent ≈ 62.2s.

Because of its distracting task and the nature of its sentences, the
first part was more likely to disrupt human-agent connection; while the
second part was more likely to involve participants. This let us test the
influence of the relation between users and agents on the perception of
HR feedback. We chose not to randomize sessions order because we
estimated that putting the “disruptive” session last would have made
the overall experiment too fatiguing for participants. A higher level of
vigilance was necessary to sustain its distracting task and series of
unrelated sentences. Participants’ cognitive resources were probably
higher at the beginning of the experiment.

We created a 2 (HR feedback: “human” vs “medium” condition) × 2
(nature of the task: “disruptive” vs “involving” session) within-subject
experimental plan. Hence, our two hypothesis. H1: Hear rate feedback
replicating users’ physiology increases the social presence of agents.
H2: This effect is more pronounced during an interaction involving
more deeply agents.
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Figure 8.2 – Procedure during the “involving” session: participants rate
agent’s social presence after it recited all its sentences. Then a
new agent appears, continuing the tale. 23 agents, average time
per agent ≈ 46.6s.

8.2.1 Technical description
Most of the elements we describe in this section, hardware or software,
come from open source movements, for which we are grateful. I would
also like to thank the artist who made freely available the graphics on
which agents are based1. All code and materials related to the study are
freely available at https://github.com/jfrey-phd/2015_phycs_HR_
code/.

1http://harridan.deviantart.com/

https://github.com/jfrey-phd/2015_phycs_HR_code/
https://github.com/jfrey-phd/2015_phycs_HR_code/
http://harridan.deviantart.com/
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8.2.1.1 Hardware
We chose to use a BVP (blood volume pulse) sensor to measure HR, One of the creator of

the Pulse Sensor is
behind OpenBCI. Note
that BVP and PPG are
synonyms; we try
here to avoid
confusion with the
remote sensing we
saw.

employing the open hardware Pulse Sensor2 (see Figure 8.3 for a
closeup). It assesses blood flow variations by emitting a light onto the
skin and measuring back how fluctuates the intensity of the reflected
light thanks to an ambient light photo sensor. Each heartbeat produces
a characteristic signal. This technology is cheap and easy to implement.
While it is less accurate than electrocardiography (ECG) recordings, we
found the HR measures to be reliable enough for our purpose. Compared
to ECG, BVP sensors are less intrusive and quicker to install – i.e. one
sensor around a finger or on an earlobe instead of 2 or 3 electrodes on
the chest. In addition, as far as general knowledge is concerned, BVP
sensors are less likely to point out the exact nature of their measures.
This “fuzziness” is important for our experimental protocol, as we want
to be as close as possible to the real-life scenarios we foresee with
devices such as the Kinect 2, where HR recordings will be transparent to
users.

The BVP sensor was connected to an Arduino Due3 (see Figure Fortunately we deal
with not expensive
components; since it
was a pet project at
the time both the
Arduino and the
sensor were on me.

8.3). Arduino boards have become a well-established platform for
electrical engineering. The Due model comes forward due to its 12 bits
resolution for operating analog sensors. The program uploaded into the
Arduino Due was feeding the serial port with BVP values every 2ms,
thus achieving a 500Hz sampling rate.

Figure 8.3 – BVP (blood volume pulse) sensormeasuring heartbeats, connected
to an Arduino Due.

Two computers were used. One, a 14 inches screen laptop (Alienware The second (and way
older) computer was
my personal, as well
as the Fooloose (the
remake) goody used
as headphones. What
would’nt I give for
Science...

M14x), was dedicated to the participant and ran the human-agent
2http://pulsesensor.myshopify.com
3http://arduino.cc/

http://pulsesensor.myshopify.com
http://arduino.cc/
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interaction. This computer was also plugged to the Arduino board to
accommodate sensor’s cable length. A second laptop (Lenovo ThinkPad
T61p) was used by the experimenter to monitor the experiment and to
detect heartbeats. Computers were connected through an ethernet
cable (network latency was inferior to 1ms).

8.2.1.2 Software and signal processing
Computers were running Kubuntu 13.10 operating system. The software I did not implement

LSL back then,
synchronization
would have been
easier.

on the client side was programmed with Processing framework4, version
2.2.1. Data acquired from the BVP sensor was streamed to the local
network with ser2sock5. This serial port-to-TCP bridge software allowed
us to reliably process and record data on our second computer. OpenViBE
[Renard et al., 2010] version 0.18 was running on the experimenter’s
computer to process BVP, with custom python scripts to retrieve signals
and send stimulations.

Within OpenViBE the BVP values were interpolated from 500 to
512Hz to ease computations. The script which received values from
TCP was downsampling or oversampling packets’ content to ensure
synchronization and decrease the risk of distorted signals due to
network or computing latency. A 3Hz low-pass filter was applied to the
acquired data in order to eliminate artifacts. Then a derivative was
computed. Since a heartbeat provokes a sudden variation of blood
flow, a pulsation was detected when the signal exceeded a certain
threshold. This threshold was set during installation: values too low
could produce false positives due to remaining noise, and values too
high could skip heartbeats. Eventually a message was sent. See figure
8.4 for an overview of the signal processing.
Using raw TCP communication and Ethernet cable, delays, for

signal or stimulation where negligible (inferior to 1ms). Even the
bottleneck induced by a 60 FPS of the main program couldn’t impact
our processing.

Once the main program received a pulse message, it computed the
HR from the delay between two beats. As a failsafe measure against
poor beat detection – e.g. noise due to head motion – the HR value
computed within Processing could not vary by more than 10% and a
min/max threshold was set (30/200). This value was passed over the
engine handling the HR feedback during the “human” condition. We
purposely created an indirection here – using BPM values in separate
handlers instead of triggering a feedback pulse as soon as a heartbeat
was detected – in order to suit our experimental protocol to devices
that could only average HR over a longer time window (e.g. fitness HR
monitor belts or remote PPG). It should be easier to replicate our results

4http://www.processing.org/
5https://github.com/nutechsoftware/ser2sock

http://www.processing.org/
https://github.com/nutechsoftware/ser2sock
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Figure 8.4 – Signal processing of the BVP sensor with OpenViBE. A low-pass
filtered and a first-derivative are used to detect heartbeats.

without the need to synchronize precisely feedback pulses with actual
heartbeats.
The TTS (text-to-speech) system comprised two applications.

eSpeak6 1.47.11 was used to transform textual sentences into phonemes
and MBROLA7 3.01h to synthesize phonemes and produce an actual
voice. The TTS speed was controlled by eSpeak (120 word per minutes),
as well as the pitch (between 65 and 85, values higher than the baseline
of 50 to match the teenage appearance of the agents). The four voices (2
male and 2 female, “fr1” to “fr4”) were provided by the MBROLA project.
Sentences’ valence did not influence speech synthesis.

8.2.2 Text corpuses
During the first part of the experiment (i.e. the “disruptive” session)
sentences were gathered from archives of a french-speaking newspaper.
These data were collated by [Bestgen et al., 2004]. Sentences were
anonymized, e.g. names of personalities were replaced by generic first
names. A panel of 10 judges evaluated their emotional valence on a
7-point Likert scale. The final scores were produced by averaging those
10 ratings. We split the sentences in three categories: unpleasant (scores
between [−3;−1[, e.g. a suspect was arrested for murder), neutral
(between [−1; 1]) and pleasant (between ]1; 3], e.g. the national sport
team won a match) – see section 8.2.

The sentences of the second part (i.e. the “involving” session) come Never had time to
run some machine
learning against
those valence scores
to see how HR
perform with
narrative content.
Data are here for
those interested...

from the TestAccord Emotion database [Le Tallec et al., 2011]. This
database originates from a fairy tale for children – see [Wright and
McCarthy, 2008] for an example of storytelling as an incentive for

6http://espeak.sourceforge.net/
7http://tcts.fpms.ac.be/synthesis/mbrola.html

http://espeak.sourceforge.net/
http://tcts.fpms.ac.be/synthesis/mbrola.html
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empathy. We did not utilize per se the associated valences (average
of a 5-point Likert scale across 27 judges for each sentence), but as
an indicator it did help us to ensure the wide variety of the carried
emotions. For instance, deaths or bonding moments are described
during the course of the tale.
It is worth noting that when the valence of these corpuses has

been established, sentences were presented in their textual form, not
through a TTS system.

8.2.3 Procedure
The overall experiment took approximately 50 minutes per participant.
10 French speaking participants took part in the experiment; 5 males, 5
females, mean age 30.3 (SD=8.2). The whole procedure comprised the
following steps:

Figure 8.5 – Our experimental setup. A BVP sensor connects participant’s
earlobe to the first laptop, where the human-agent interaction
takes place. Participant is wearing a headset to listen to the speech
synthesis. A second laptop is used by the experimenter to monitor
heartbeats detection.

1. Participants were given an informed consent and a demographic
questionnaire. While they filled the forms, the equipment was set
up. Then we explained to them the procedure of the experiment.
We emphasized the importance of the distraction task (i.e. to rate
sentences’ valence) and explained to the participants that we
were monitoring their physiological state, without further detail
about the exact measures. ≈ 5 min.

2. The BVP sensor was placed on the earlobe opposite to the domi-
nant hand, so as not to impede mouse movements. Right after,
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the headset was positioned. We ensured that participants felt
comfortable, in particular we checked that the headset wasn’t
putting pressure on the sensor. We started to acquire BVP data
and adjusted the heartbeat detection. ≈ 2 min.

3. A training session took place. We started our program with an
alternate scenario, adjusting the audio volume to participants’
taste. Both parts of the experiment occurred, but with only two
agents and with a dedicated set of sentences. This way participants
were familiarized with the task and with the agents – i.e. with
their general appearance and with the TTS system. During this
overview, so as not to bias the experiment, “human” and “medium”
conditions were replaced with a “slow” HR feedback (30 BPM) and
a “fast” HR feedback (120 BPM). Once participants reported that
they understood the procedure and were ready, we proceeded to
the experiment. ≈ 5 min.

4. We ran the experiment, as previously described. First the “dis-
ruptive” session (80 sentences, 20 agents, ≈ 22 min), then the
“involving” session (138 sentences, 23 agents, ≈ 17 min). We were
monitoring the data acquired from the BPV sensor and silently
adjusted the heartbeat detection through OpenViBE if needed –
rarely, a big head movement could slightly move the sensor and
modify signal amplitude. Figure 8.5 illustrates our setup. ≈ 40 min.

The newspapers’ sentences being longer than the ones forming the
fairy tale, agents on-screen time varied between both parts. Agents
mean display time during the first part was 62.2s, during the second
part it was 46.6s.

8.2.4 Measures
We computed a score of social presence for each agent, averaged from
the 7-point Likert scales questionnaires presented to the participants
before a new agent were generated. This methodology was validated
with spoken dialogue systems by [Möller et al., 2007]. This score
was composed of 3 items, consistent with ITU guidelines [ITU, 2003].
Translated to English, the items were: “Do you consider that the agent is
pleasant?” (“very unpleasant” to “very pleasant”); “Do you think it is
friendly?” (“not at all” to “very friendly”); “Did it seem ’alive’?” (“not at
all” to “much alive”).

8.2.5 Results
We compared agents’ social presence scores between the “human”
and the “medium” conditions for each part. Statistical analyses were
performed with R 3.0.1. The different scores were comprised between 0
(negative) and 6 (positive), 3 corresponding to neutral.
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A Wilcoxon Signed-rank test showed a significant difference (p H1: p<0.01 with
“greater” hypothesis.< 0.05) during the “disruptive” session (means 3.29 vs 2.91) but no

significant difference (p = 0.77) during the “involving” session (means:
3.30 vs 3.34). H1 is verified while H2 cannot be verified. Besides, when
we analyzed further the data, we found no significant effect (p = 0.27) of
the “human”/“medium” factor on the valence scores attributed to the
sentences during the “disruptive” session (means: 3.06 vs 2.91).
Participants’ HRs were a little higher than expected during the

experiment: mean ≈ 74.73 BPM (SD = 5.59); to be compared with the
average 70 BPM set in the “medium” condition. We used Spearman’s
rank correlation test to checkwhenever this factor could have influenced
the results obtained in the “disruptive” session. To do so, we compared
participants’ average HRs with the differences in social presence scores
between “human” and “medium” conditions. There was not significant
correlation (p = 0.25).

8.3 Discussion
In the course of the “disruptive” session our main hypothesis has been
confirmed: users’ engagement toward our HCI increased when agents
provided feedback mirroring their physiological state. This result
could not be explained by a preference for a certain pace of the HR
feedback. For instance, even though their HRs were higher than average,
participants did not prefer agents of the “human” condition because of
faster heartbeats. Some of them did possess HRs lower than 70 BPM.
The only other explanation lies in the difference of HR synchronization
between “human” and “medium” conditions.
Beside agents’ social presence, similarity-attraction effect may

influence the general mood of participants, as they had a slight tendency
to overrate sentences valence during “human” condition. It is interesting
to note that while the increase in social presence scores is not huge
(+13%), it shifts the items from slightly unpleasant to slightly pleasant.

Maybe the effect would have been greater in a less artificial situation.
Indeed, despite our experimental protocol, participants reported
afterwards that the TTS system was sometimes hard to comprehend,
which bothered them on some occasions. It may have resulted in a task
not involving enough for the participants to really “feel” the emotions
carried by the sentences.

Several reasons could explain why the effect appeared only during
our “disruptive” session. During the first session agents were displayed
on a longer duration (+33%) because of the longer sentences used in the
newspapers. The attraction toward a mirrored feedback could take
time to occur. In addition, because the task was less disruptive in the
second session, participants were more likely to focus their attention
on the content (i.e. the narrative) instead of the interface (i.e. the
feedback). This could explain why they were less sensible to ambient
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cues. Participants were less solicited during the “involving” session; we
observed that between agents questionnaires they often removed
their hands from the mouse, leaning back on the chair. Lastly, the
“involving” session systematically occurred in second position. Maybe
the occurrence of the similarity-attraction effect is correlated to the
degree of users’ vigilance.

As for participants’ awareness of the real goal of the study, during
informal discussions after the experiments, most of them confirmed
that they had no knowledge about the kind of physiological trait the
sensor was recording, and none of them realized that at some point
they were exposed to their own HR. This increases the resemblance of
our installation with a setup where HR sensing occurs covertly.

8.4 Conclusion
We demonstrated how displaying physiological signals close to users
could impact positively social presence of embodied agents. This
approach of “ambient” feedback is easier to set up and less prone
to errors than feedback as explicit as facial expressions. It does not
require prior knowledge about users nor complex computations. For
practical reasons we limited our study to a virtual agent. We believe the
similarity-attraction effect could be even more dramatic with physically
embodied agents, namely robots. That said, other piece of hardware or
components of an HCI could benefit from such approach. While its
appearance is not anthropomorphic, the robotic lamp presented by
[Gerlinghaus et al., 2012] behaves like a sentient being. Augmenting it
with physiological feedback, moreover when correlated to users, is
likely to increase its presence.

Further research is of course mandatory to confirm and analyze how
the similarity-attraction applies to human-agent interaction and to
physiological computing. The kind of feedback given to users need to be
studied. Are both audio and visual cues necessary? Does the look of the
measured physiological signal need to be obvious or could a heart pulse
take the form of a blinking light? In human-human interaction such
questions are more and more debated [Slovák et al., 2012, Walmink
et al., 2014]. Obviously, one should check that a physiological feedback
does not diminish user experience. [Lee et al., 2014] suggest it is not the
case, but the comparison should be made again with human-agent
interaction.

Various parameters in human-agent interaction need to be examined
to shape the limits of the similarity-attraction effect: exposure time to
agents, nature of the task, involvement of users, and so on. Especially,
we suspect the relation between human and agent to be an important
factor. Gaming settings are good opportunities to try collaboration
or antagonism. Concerning users, some will perceive differently the
physiological feedback. As amatter of fact, interoception – the awareness



III.8

CHAPTER 8. PHYSIOLOGICAL SIMILARITY-ATTRACTION 110

of internal body states – varies from person to person and affects howwe
feel toward others [Fukushima et al., 2011]. It will be beneficial to record
finely users reactions, maybe by using the very same physiological
sensors [Becker et al., 2005].

Finally, our findings should be replicated with other hardware. We
used lightweight equipment to monitor HR, yet webcams could enable
remote sensing in the near future (see appendix D). But with the spread
of devices that sense users’ physiological states, it is essential not to
forgo ethics.
Measuring physiological signals such as HR enters the realm of

privacy. Notably, physiological sensors can make accessible to others
data unknown to self [Fairclough, 2014]. Even though among a certain
population there is a trend toward the exposition of private data, if no
agreement is provided it is difficult to avoid a violation of intimacy.
Users may feel the urge to publish online the performances associated
to their last run – including HR, as more andmore products that monitor
it for fitness’ sake are sold – but experimenters and developers have to
remain cautious.
Physiological sensors are becoming cheaper and smaller, and

hardware manufacturers are increasingly interested in embedding
them in their products. With sensors acceptance, smartwatches may
tomorrow provide a wide range of continuous physiological data, along
with remote sensing through cameras. If users’ rights and privacy are
protected, this could provide a wide range of areas for investigating
and putting into practice the similarity-attraction effect. Heart rate,
electrodermal activity, breathing, eye blinks: we “classify” events
coming from the outside world and it influences our physiology. An
agent that seamlessly reacts like us, based on the outputs we produce
ourselves, could drive users’ engagement.

If we do not formally test it afterwards, the similarity-attraction
effect is the paradigm that supports most of our work in the following
chapters. It is applied to human-human interaction in chapter 9 and to
human-proxy8 interaction in chapters 10 and 11. All those 3 works also
take great care at giving explicitly a feedback corresponding to the
recorded measures in order to give the upper hand to users regarding
what data they share.

8Teegi and Tobe are not exactly robots. Not yet.
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9
Using heart rate
to foster social

interactions
This chapter describes an application of physiological computing
that uses heart rate monitoring as an incentive for social interactions.
A traditional board game has been “augmented” through remote
physiological sensing, using webcams. Projection helped to conceal the
technological aspects from end users. We detail how players reacted –
stressful situations could emerge when users are deprived from their
own signals – and we give directions for game designers to integrate
physiological sensors.

A shorter version of this work was published in [Frey, 2016b].
This projected originated in passionate discussions with Renaud

Gervais and Jérémy Laviole; the experimental setup as well as the few
game mechanics found in the conclusion are a mere ersatz of the idea
we exchanged back then.

Besides ideas, both of them contributed the work presented below. I
thank Renaud for having introduced me to Complot – what a funny and
handy card game indeed – and Jérémy for the work he has done on the
code that displays the heart rate feedback.
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Figure 9.1 – A board game session that we augmented with remote physiological monitoring
and projection.

9.1 Introduction
Through the rise of wearables – such as smartwatches – physiological
sensors are among the technologies that are gaining increased attention.
Heart rate belts, for example, are sold in many sports shops across the
globe, heart monitoring being used by sportsmen to increase their
performance [Tholander and Nylander, 2015] – heart rate activity is
probably the measure that is the most commonly made outside of
medical facilities.

However, maybe because of such “priming” effect, up until now
the range of applications of physiological sensing among the general
public has been limited. Despite the fact that already two decades
ago physiological sensors were envisioned as a mean to shape new
interactions through the so called “affective computing” [Picard, 1995],
they are more often than not experienced within medical or sports
settings only.

Now that physiological sensors are increasingly present around us,
they are still missing an application that could spread their use outside
people with special needs, in everyday life

Fortunately this situation can change. Lately, sensors have been
investigated as a supplementary communication channel. They have
been used to enhance existing interactions; implicitly with video games
that adapt to users’ state [Nijholt et al., 2009]; explicitly when the
physiological activity is visualized for telepresence [Lee et al., 2014] or
to enhance human-agent interaction, as we have seen in chapter 8.

While those latter examples mainly deal with human-computer
interactions, physiological computing can also intercede between
people that interact directly with each other. New usages emerged for
social interplay [Walmink et al., 2014] or for mediating affect [Williams
et al., 2015] – see [Chanel and Mühl, 2015] for a more thorough review
regarding social interaction. Among those works, a study showed that
heartbeats was a meaningful source of information for players and
helped people to “connect” between each others [Slovák et al., 2012].
Authors mentioned how displaying heartbeat during a real life poker
game suddenly arose players’ interest.

“Human-human” interaction, such as card games, could well consti-
tute the entry point for physiological computing to come out of its shell.
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In return, board games constitute a good context to study complex
social interactions in a close environment. Other studies used poker to
test different aspects of physiological monitoring, for example if players
could use the information to control their signals in [Yamabe et al.,
2010] or how a “nervousness” indicator could affect gameplay in [Dang
and André, 2010]. This is the kind of findings that could foster the
demand for physiological sensors by the general public.

In this chapter, our main interest is to use a game as a dedicated use
case of physiological monitoring’s influence over social interactions.
Indeed, such information could help to create deeper interactions
[Janssen et al., 2011], enriching social presence.

Even though previous works combined physiological monitoring
and board games, they did not focus on how users reacted to this new
feedback – nor did they consider the benefits for board games in general.
For instance, [Slovák et al., 2012] investigated how people comprehend
heart rate feedback in various situations, and the appearance of a
gaming application among users was incidental. The biofeedback was
studied for training in [Yamabe et al., 2010] as a way to help poker
players gain control over themselves. Another combination of poker and
physiological signals is sketched in [Dang and André, 2010], but heart
activity only stands as an additional feature of a new human-computer
interaction technique.
We seek to use a game as a dedicated use case of physiological

monitoring’s influence over social interactions. We also want to explore
how we could maximize user experience by integrating seamlessly the
technology behind. As a matter of fact, the tabletop setup proposed in
[Dang and André, 2010] requires additional gestures from users to
perform actions as simple as hiding cards and in [Slovák et al., 2012]
each player needed a laptop. Yamabe and al. [Yamabe et al., 2010] used a
projector to display the heartbeat directly on the gaming table, but,
as in each other previous work, users still had to wear sensors. It is
possible for technology to be even less intrusive, and we solution both
kinds of artifacts.
In the present work we used projection to display information,

because it is less likely to disrupt the gaming experience than relying
on screens to display heart rates; spatial augmented reality (SAR,
introduced in [Raskar et al., 2001]) brings digital content to the physical
world and facilitates the merge between computer science and existing
board games (Figure 9.1). Furthermore, as opposed to sensors that
are attached to the body – i.e. to the skin – we relied on a system
that uses non-contact sensors to record heart rate by the mean of
photoplethysmographiy (PPG). Detailed in appendix D, this system
makes it possible to record heart rate by processing the subtle variations
in skin colors while blood is flowing.
Through games and afferent social interactions, physiological

sensors may finally reach end users in a casual way. Using SAR and PPG,
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Figure 9.2 – Our experimental conditions regarding heart rate (HR) visualizations. Left: HR
visible by all players. Center: HR visible by the others but not by self. Right: HR
not visible.

the technology behind disappears in the eyes of the players, keeping
the genuine “feel” of traditional board games. But then we need to
ensure that such addition does not hinder user experience and, more
importantly, that sharing an information that usually belongs to the
realm of the self does not deter how users feel. Some may not like that
others see “through” them, especially when heartbeats may relate to
intimacy [Janssen et al., 2011]. In particular, this negative effect may be
more likely to arise if the situation between players is not perceived as
being “fair”, e.g. if the biofeedback is seen by others and not by the one
being measured.

Our first hypothesis is that the presence of a biofeedback equally
shared between players – i.e. a heart rate visible by all – will improve
game experience and social presence. Our second hypothesis is that an
asymmetrical biofeedback – i.e. players see opponents’ heart rate but
not their own – will on the contrary cause more stressful situations and
deter game experience.

In order to test these hypotheses, we used the versatility offered
by SAR to create three different biofeedback conditions: heart rates
visible by all, heart rates visible by others but not by self, no heart rates
displayed.

The main highlights of this chapter are:

1. To describe an application that could facilitate the dissemination
of physiological computing to the general public

2. To investigate how biofeedack influences user experience
3. To demonstrate how physiological monitoring could be integrated
seamlessly to an environment that usually does not involve
computers

9.2 Technical description of the system
One of the idea behind this study was to propose a “sit and play”
setup for 3 persons, where players would not have to endure any
supplementary equipment before experimenting physiological sensing.
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Instead of choosing electrocardiography – that requires electrodes on
the torso or on the wrists, or a pulse oximeter – that would clip to
the finger, we turned to video analysis to record heart activity. The
various modules that we developed in order to go from the webcam
acquisition down to heart rate measures are described in appendix D.
Our pipeline ends with heart rate feedback, which is projected in the
gaming environment.

We used spatial augmented reality for mainly two reasons. It enables
a seamless integration of the digital world into the physical world, the
“disappearance” of computers resulting in a physiological monitoring
that becomes one of the game mechanism of a traditional board game.
SAR was also a way to multiply the displays without the need of adding
physical screens – tablets, laptops, . . . – to the players’ surroundings.
For instance, since we wanted to compare whether or not the visual
feedback of oneself heart rate would change the social interaction, we
just had to craft display stands with two sides, onto which we projected
either a heart rate or an idling animation (see Figure 9.2), instead of
using 6 separate screens.

The video projector, a Viewsonic PLED-W800 with a 1280 by 800
pixels native resolution, was positioned in a top-down orientation 1.5m
above the table. The display surface was 1.2 by 0.75m. The projector was
calibrated using ProCamCalib [Audet and Okutomi, 2009]. The positions
of the stands were tracked beforehand using SURF algorithm [He et al.,
2009] and then fixed for the rest of the experiment in order to save
processing power for the heart rate measures. It was also an incentive
for the participant not to move those display surfaces so much that they
could see both faces of their stand and bias our experimental conditions.

The visual feedback of the heart rate had two modalities. An icon
shaped as a heart that was beating at the pace recorded by PPG, and
beneath was a histogram plotting the BPM of the previous 20 seconds.
We did not give a more explicit feedback – e.g. BPM values – so as
not to distract too much the attention of the players from the main
interaction, that is to say from the board game. Finally, the names of the
players were displayed on the stands’ sides facing others – “me” on the
side facing them, helping to raise both their presence and their social
awareness.

To obtain the desired visualization we used a framework developed
in Processing1 that could be easily grasped by game makers or artists
[Laviole and Hachet, 2012].

All computations, for all 3 players, were done on a single computer,
an Alienware Aurora R4 equipped with an Intel i7-3820 processor, 8GB
of RAM and a GeForce GTX 660 Ti graphic card. The computer was
running Kubuntu 14.04 operating system.

1https://processing.org/

https://processing.org/
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9.3 User study
In this study we compared how users felt – regarding themselves
and regarding the others – in three different conditions of heart rate
feedback: heart rate visible by all (“HR all”), heart rate visible by
the others but not by self (“HR others”), heart rate visible by none
(control condition, “HR none”) – see Figure 9.2. We used a within-subject
experimental design. The conditions were set for all 3 players of a group
at the same time, and each condition occurred once. The order of the
conditions was counter balanced between groups following a latin
square – hence we recruited 6 groups.
Beside the experiment that we describe below, this user study

was also an opportunity to demonstrate how physiological sensors
could be integrated to a traditional interaction, and to check that the
technological choices we made – SAR and remote PPG – did not impact
negatively the player experience.

9.3.1 Board game
As opposed to other studies, we did not choose poker as a card game to
test the impact of physiological monitoring. Poker has too much of a
background and, for some people, it may be associated to negative
feelings due to the competitive spirit that surrounds it.

We chose instead a board game less known to people, more friendly
and casual, “Coup” – edited by Indie Boards and Cards2 – in its French
version, “Complots”. Coup possesses bluffing as one of the core elements
of its gameplay. This is an incentive for players to use the physiological
signals, since for the general public heart rate is strongly related
to emotions. In Coup the main goal of the game is to “kill” the two
characters of the other players, with various occasions to interact –
block or counter attacks, steal money, and so on. Unless someone is
“challenged” by an opponent, players never have to actually show
their cards when they use the power associated to a character. These
situations are most engaging for the players, whether they knew each
others beforehand or not.

Except for two players, none of the participants were familiar with
the game. Coup being quick to learn, every player was on par once the
study started. Coup is also fast to play, with one game lasting about 5
minutes on average during our study, so we could have several games
for each of our conditions.

9.3.2 Participants
18 participants took part in this study – 6 groups of 3 players, 5 females,
13 males, mean age 23.3 (SD: 6.9). Within each group, most of the
participants knew each others beforehand. Half of them reported a

2http://www.indieboardsandcards.com/

http://www.indieboardsandcards.com/
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previous use of physiological sensors, each time associated to sport –
indoor bike or running – or to medical activities.

9.3.3 Protocol
The user study took place in a dedicated experimental room with
homogeneous artificial light coming from the ceiling. The participants
came by 3 to play the card game. Overall, a session lasted approximately
90 minutes and comprised the following steps:

1. The participants entered the room and sat around one end of a
table, the other end being occupied by the experimenter. They read
and signed a consent form and filled a demographic questionnaire.
≈ 5 minutes.

2. The rules of the card game were explained by the experimenter
and a “warm up” game took place – two games if necessary. ≈ 15
minutes.

3. Once the players were confident they knew the rules, the SAR
systemwas switched-on with fake signals so that the experimenter
could explain how to read the feedback.

4. Then PPG signals were fed to the system and one of the 3 condition
occurred. Participants played on their own. After about 10 minutes
and a game ended, the experimenter interrupted the players.

5. While the SAR system was momentously switched-off, the par-
ticipants filled 2 questionnaires related to emotion and social
presence (see next section). ≈ 5 minutes.

6. Step 3 and 4 were repeated two more times, one for each other
conditions of the user study.

7. After the completion of the 3 conditions, participants filled one
last questionnaire to sense their overall feeling about the setup. ≈
5 minutes.

Due to limited space the opposite end of the table was occupied by
the experimenter, but the two control screens and the disposition
of the room still gave some privacy to the participants while they
were playing. Apart when – very occasionally – they asked about some
specific rule, they were in fact so engaged in the game that they tended
to forgot the presence of the experimenter. Generally there were two
games over the course of one condition, sometimes 1 or 3 depending on
the speed of the players.
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9.3.4 Measures
Our main metric is composed by the two questionnaires given after
each condition occurred – step 5 of previous section. Besides those
measures, aimed at comparing our experimental conditions, we also
wrote down participants’ reactions while they were playing in order to
gather more insights about what they experienced.
The first questionnaire is the self-assessment manikin (SAM)

[Bradley and Lang, 1994]. Using various pictures of a cartoony manikin,
respondents could indicate their emotions. There are three types of
manikins – hence, 3 axis. One related to valence, one to arousal, and one
to dominance. Valence relates to the hedonic tone and varies from
negative to positive emotions (e.g. frustration vs pleasantness); arousal
relates to bodily and mental activation and varies from “calm” to
“excited” (e.g. satisfaction vs happiness) – see chapter 3. Dominance
relates to the degree of control. Choosing between pictures instead of
using words helps people to express feelings that could be difficult to
externalize. We used a 9-points Likert scale version of the SAM and
computed 3 scores for each condition.

The second questionnaire is the Social Presence in Gaming Question-
naire (SPGQ) [de Kort, 2007], that we translated to French. Originally
developed for video games, its aim is to qualify social presence between
players on three different axis: “empathy”, “negative feelings” and
“behavioral engagement” – “empathy” and “negative feelings” are both
linked to psychological involvement. The SPGQ is rated on 5-points
Likert scales and contains 21 items in total. A score related to “Empathy”
is computed by averaging 7 of them (e.g. “When the others were happy,
I was happy”); “negative feelings” is computed over 6 items (e.g. “I felt
revengeful”); “behavioral engagement” over 8 items (e.g. “The others
paid close attention to me”). As for SAM, 3 scores were computed for
each HR condition out of the SPGQ.

9.3.5 Results
For each questionnaire and each axis, we used a Friedman test and
post-hoc pairwise Wilcoxon signed-rank tests to compare our 3 heart
rate feedback conditions (“HR none”, “HR others”, “HR all”). The results
were adjusted for multiple comparisons with false discovery rate [Noble,
2009].

Regarding the SAM, there was no significant differences between
the scores reported for valence, arousal and dominance between the 3
conditions.

There was no significant differences either in the SPGQ, although we
found a tendency for the “negative feelings” score (p ≈ 0.1) between
“HR others” and “HR all” conditions. There was slightly more negative
feelings reported in “HR others” compared to “HR all” condition – 1.19
vs 1.06 (SD: 0.87 vs 0.64), see Figure 9.3.
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Figure 9.3 – Results of the SPGQ questionnaire – tendency is marked with a “+”
sign.

Besides those two sets of questionnaires, at the end of the user study
we also asked informally our participants their opinions about each
experimental condition and about the technical aspects of the setup,
using 5-points Likert scales ranging from “I did not like at all” (score: 0)
to “I liked a lot” (score: 4).

The “HR all” condition was slightly favored over the “HR others”
condition – 2.83 vs 2.78 (SD: 0.79 vs 1.06), and the condition with no
HR feedback was ranked last – mean: 2.44 (SD: 0.86). On the technical
aspects of the setup, participants praised the SAR display – 3.28 score,
SD: 0.89, and were satisfied with the remote PPG heart rate measure –
2.89 score, SD: 0.96.

Concerning players’ comments to each other during the game, here
is a selection of what participants said when they were referring out
loud to the heart rate feedback:

• “Your rate is really high now, it’s because you’re upset!”
• “It’s stressful because I don’t see my heart!” (HR others condition)
• “Look at how his heart’s beating, he’s going to make a mistake I
think. . . ”

• “Damn, I got a huge spike, it’s because I won, I killed someone!”
• “You’re a bit fast, you look stressed!”
• “I see your plot and I see you bluffing.”
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• “We’re seeing your plot, don’t go crazy!”
• “I don’t own the game anymore, I cannot bluff. . . ”
• “You saw how it went up suddenly?” / “Yes, it’s because I was
happy.”

• “He said he liked her, and his heart increased. . . ”
• “You’re totally busted, I saw it, it increased!”
The proportion of sentences referring to emotions or decision

processes, to events in-game or out-game, is representative of what we
annotated during the different games.

As for how the physiological feedback was utilized, we observed two
different kinds of players, roughly in equal proportions. First, the
players that did not use explicitly the heart rate display during the game.
Even when they liked to see it, they did not use this information while
interacting with other players. During informal inquiries, those players
reported that the provided heart rate display was hard to interpret. The
second profile is among players that did use the feedback; participants
that knew beforehand the game and the rules were immediately
attracted by the heart rate feedback and remained the most enthusiast
throughout the game.

9.4 Discussion
Between the two HR conditions, players had a tendency to report more
negative feelings in the SPGQ questionnaire when others could see their
heart rate but when themselves could not. From direct observation,
it seems that players used this asymmetry to “tease” themselves,
giving false or exaggerated feedback to the one that could not see by
herself or himself the real heart rate. Sharing the information evenly
should prevent social stress – unless of course a game designer wishes to
create a very competitive gameplay. These findings only partially go
along our hypotheses since players still preferred an asymmetrical
feedback rather than no HR feedback at all when they were asked to
rank explicitly the experimental conditions at the end of the study.

Concerning the utilization of the heart rate display, we did not give
absolute values to avoid a too intrusive feedback, and we used the same
scale for all players in the “history” plot to adapt to all metabolisms.
These choices may have prevented some players to comprehend well
the information. Hence, other visualizations should be investigated as
well as other feedback modalities, such as sounds.

Many players also reported being too much focused on the actual
game and on their adversaries’ strategies to gather yet another clue. In
this case the novelty of the gamemay explain why players’ attention was
centered elsewhere. On the contrary, players that had already played
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the game and knew the rules before the user study were immediately
attracted by the heart rate feedback; they were the most enthusiast
thorough the game. Physiological signals, for instance, could be used to
add another layer to an existing game, especially for experts.
Among the players that did use the heart rate, most of them

associated the heart rate to emotions, even though in reality this is
one among many different traits that could be inferred from heart
rate [Kivikangas et al., 2010]. This is easily explained by the common
knowledge surrounding heart activity and by our cultural references.
Still, other participants did not hesitate to interpret various events with
regard to the heart rate feedback – players who spoke first during the
exchanges were mostly looking at others’ signals in order to bother
playfully opponents.

Maybe the loss and gains would have been the same without, but
physiological sensors altered the gaming experience, improving the
richness of the relationships.

9.5 Conclusion
We presented a framework that combined remote heart rate monitoring
and projection in order to bring anew an existing board game, without
modifying the latter. We showed how the scope of physiological signals
can be extended to reach a new population, beyond medical and sport
contexts. Finally, we reported how it enriched social interactions.

During our study we sensed how a discrepancy between what is
recorded by the system and what is showed to the user could lead to
stress, when only the other players could see one heart rate. Overall our
observations seem to indicate that the presence of a physiological
feedback improved the richness of the relationships between the
players, even though more thorough examinations are needed before
we could draw solid conclusions about how the gaming experience is
altered.

Game designers may use PPG or any other technology to integrate
heart rate measurements to the gameplay. In the end, they have the
possibility to develop a new game system. For example, in a card game a
special picture could trigger the masking of one’s heart rate for a fixed
duration. In this case it would be up to the opponents to decide if the
player wants to hide something. . . or if it is a strategy to make it believe
so. Another card, or a gesture, could switch feedback between players. A
common shared space, thanks to SAR, could also favor the collaboration
or competition over physiological states – e.g. synchronize signals. A
“game master” could use biofeedback as an input in a role-playing game.
The possibilities are limitless, and may rapidly be explored by the
players themselves. As matter of fact, not all the modifications observed
by our players were related to actual physiological changes, especially
when it was sudden. Some players reported rightfully that when the
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webcam was “seeing the hair”, the values changed. Attempting to
deceive opponents is one way to play with physiological signals.

The visual feedback we provided through projection was relying on
simple 3D models. While this kind of projection was already sufficient to
obtain a game room where anybody, at anytime, could take a seat and
start to play, others may wish to venture further into spatial augmented
reality. Projection could be mapped to detailed objects, small avatars
that could be tracked in real time for example. Tangible interaction
could be a powerful incentive for novices to grasp physiological sensors
[Frey et al., 2014a].

In the last part of this thesis, we purposefully venture into tangible
avatars that act as proxies for inner physiological activities and mental
states. We study how this form factor help to relieve the fears and
misunderstandings that surround a technology such as EEG, prompting
users to engage in self-investigations (Teegi, chapter 10). Then we
investigate how such augmented “puppets” help to better know
ourselves – cognitive processes that go beyond emotions – and how
they favour the emergence of new interactions between users.



PART IV

PHYSIOLOGY TO MEDIATE ONESELF

Over the course of various projects we saw how physiological sig-
nals could be used to asses mental states and how they could im-
prove the quality of existing interactions – either betweenhuman
and computers or between peers.
These different pieceswandered and are nowabout to be brought
together.
This part describes two applications were physiological signals
go back to a body. A body, not the one signals were originating
from at start, but a physical persona that will act as a proxy be-
tween users and their signals. Two examples of embodiment that
are a tangible representation of users’ inner states.
Teegi lets novices discover about their brain activity; Tobe is the
personification of a platform that enables users to shape and share
their physiology.
Such tangible artifacts help to investigate the concepts under-
neath physiological signals, making literally easier to grasp one’s
state. Teegi and Tobe, two physical personas, two siblings soon to
be reunited to properly mediate oneself using physiological com-
puting, acting like a social prosthesis and facilitating introspec-
tion.

Those tangible avatars would not be if it was not for Renaud Gervais.
Renaud brought his vision, knowledge and skills as much as I did. Both
our theses share the pages that follow, however we approached these
works with two different angles. Only half of the story lies in the present
text. You may not wish to read two manuscripts in a row, but you should
at least check out the backstory by jumping to the appendices, section
Credits.6. And if you wonder how tangible augmented objects could leak
information between the screen and your surroundings, shattering
forever the boundaries between digital and physical worlds, well, it’s
never too late to switch.
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10
Teegi: Tangible EEG

Interface
Teegi is a Tangible ElectroEncephaloGraphy (EEG) Interface that
enables novice users to get to know more about something as
complex as brain signals, in an easy, engaging and informative
way. To this end, we have designed a new system based on a
unique combination of spatial augmented reality, tangible inter-
action and real-time neurotechnologies. With Teegi, a user can
visualize and analyze his or her own brain activity in real time,
on a tangible character that can be easilymanipulated, and with
which it is possible to interact. An exploratory study has shown
that interacting with Teegi seems to be easy, motivating, reliable
and informative. Overall, this suggests that Teegi is a promising
and relevant training and mediation tool for the general public.

This chapter is a (slightly) extended version of the work published
in [Frey et al., 2014a]. Beside the authors credited in this paper, I would
like to thank Jérémy Laviole – who helped to implement the “on-the-go”
version of Teegi that we brought outside the lab – and Maxime Duluc,
who’s late work concerned an instrumented version of Teegi (codename
“Teegi disco”, coming soon in a store near you!).

10.1 Introduction
Electroencephalography (EEG) measures the brain activity of partici-
pants under the form of electrical currents, through use of a set of
electrodes connected to amplifiers and placed on the scalp [Niedermeyer
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Figure 10.1 – Teegi (Tangible EEG Interface) is a friendly interactive character
that users can manipulate to observe and analyze their own
brain activity in real time.

and da Silva, 2005] – appendix C describes how such device could be
made.

Although the scope of this thesis is limited to mental states assess-
ment and Brain-Computer Interfaces (BCI, see part II), EEG is first and
foremost widely used in medicine for diagnostic purposes, e.g. for the
diagnosis of sleep disorders or epilepsy [Niedermeyer and da Silva, 2005].
While these emerging technologies are becoming increasingly more
popular, they feed into fears and dreams in the general public, where
many fantasies are linked to a misunderstanding of their strengths and
weaknesses. No, it is not possible to read thoughts! But what can be done
exactly? Our motivation is to provide a tool that allows one to better
learn how EEG works, and to better understand the kinds of brain
activity that can be detected in EEG signals. Beyond the knowledge of
the brain that a user can acquire, we believe that a dedicated tool may
help demystify BCI, and consequently, it may favor the development of
such a promising field.
We followed a multidisciplinary approach, combining Human-

Computer Interaction (Spatial Augmented Reality, Tangible User
Interfaces), Neurotechnologies (EEG, brain signal processing) and
Psychology/Human sciences (Human Learning and Representations,
Scientific Mediation) to design an interactive multimedia system that
enables novice users to get to know more about something as complex
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as EEG signals and the brain, in an easy, engaging and informative
way. Our final goal is to enhance learning efficiency and knowledge
acquisition by letting users actively and individually manipulate and
investigate the concept to be learned [Vosniadou et al., 2001], i.e. EEG
signals.

This gave birth to Teegi (Tangible EEG Interface), a physical character
that users can manipulate in a natural way to observe and analyze their
own brain activity projected in real time on the character’s head (see
Figure 10.1. Beyond the technical description of Teegi, this paper depicts
an exploratory study we conducted, which provides an experimental
basis for discussions and future works. Our major contribution for
this paper is the design of the first system to make EEG signals and
brain activity easily accessible, interactive and understandable. This
work is based on theoretical foundations, technical developments, and
preliminary investigations.

10.2 Neuroimaging and EEG
EEG signals are small electrical currents (in the $µ$V range) that can be
measured on the surface of the scalp [Niedermeyer and da Silva, 2005].
They reflect the synchronous activity of millions of neurons from the
brain cortex (i.e. the outer layer of the brain).

The currently available tools used to visualize and analyze such
signals are tailored for experts with a deep understanding of the brain,
EEG principles and EEG signal processing [Niedermeyer and da Silva,
2005]. Figure 10.2] (left and center) shows some typical visualizations of
EEG signals used by experts, i.e. EEG signal traces and a 2D topographic
map. More complex visualizations have been proposed, such as 3D
topographic maps (Figure 10.2, right), but they require many mouse
inputs to be observed from all angles, which make them inconvenient to
use in practice.

Figure 10.2 – (Left) A trace of EEG signals collected frommultiple sensors.
2D (center) and 3D (right) topographic maps. (Screenshots
from OpenViBE [Renard et al., 2010]). The first two views are
traditionally used by experts.

Although EEG visualizations are intended for experts only, the
general public is often compelled by how the brain works and how
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its activity is measured. Anyone wondering about brain injuries,
epilepsy, sleep or learning disorders, aging, etc. may want to seek
further knowledge about how the brain works. Currently, the public is
increasingly exposed to neurotechnologies due to the availability of
consumer grade EEG devices, such as the Emotiv EPOC or the Neurosky
MindWave. Consequently, it has become necessary to design tools
and user interfaces which will allow the general public to visualize,
understand and interact with EEG signals. For instance, Mullen et al.
proposed a software solution to process EEG signals collected using
wearable EEG devices and visualize them in 3D [Mullen et al., 2013].
This software enables the user to estimate brain activity sources
and connectivity but is still mainly designed for brain signal and
neuroscience experts, and not so public-friendly. Another recent work,
more suited to lay persons, is the “Portable Brain Scanner” [Stopczynski
et al., 2014]. This system makes use of a consumer-grade EEG device
(the Emotiv EPOC) and a smartphone to provide a cheap and portable
solution enabling anyone to visualize the sources of their brain activity
on their smartphone in 3D. Another more attractive work, which is the
most closely related to our Teegi system, is the “Mind-Mirror” system
[Mercier-ganady et al., 2014]. This system combines Augmented Reality
(AR), 3D Visualization, and EEG to enable users to visualize their own
brain activity in real time superimposed to their own head, thanks to a
semi-transparent mirror-based AR setup.
This short review of the existing literature about making EEG

accessible to the general public revealed that this is still a vastly
unexplored area. Moreover, these solutions do not take into account any
representation that the general public may have regarding the brain and
EEG signals – many lay people do not even know what EEG signals are –
in order to provide suitable visualizations and interaction devices to
better understand these concepts. Some rare studies have indicated that
misconceptions about brain functions prevail in general public [Dekker
et al., 2012, Herculano-Houzel, 2002, Simons and Chabris, 2011]. These
works stress the importance of popular scientific communication and
indicate that communication efforts should be focused on increasing
public awareness. It is important to note that the existing works
mentioned above are mostly centered on visualization, with little or no
interaction possibilities to manipulate and understand the EEG signals
in real time and in a friendly way. This further deters the general public
from understanding brain activity [Vosniadou, 1992]. Therefore, with
the aim to enhance general public awareness, our work associates
technical innovation and user-centered design.
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10.3 Introducing Teegi
10.3.1 Founding principles
Design choices were made according to pedagogical principles. It
has long been recognized that learner-centered education is much
more effective than transmission-based education, even in informal
situations [Wellington, 1990]. According to the constructivist paradigm,
people create unique personal meanings by reflecting on interactive
learning experiences. Therefore, people/learners should investigate
and manipulate in order to become conscious of complex phenomena,
change their misconceptions and construct scientific knowledge
[Vosniadou et al., 2001]. In association, meaningful models play an
important role in this type of learning processes [Fleck and Simon,
2013]. This motivated the design of an anthropomorphic interface that
can be freely manipulated.

Our user-centered interactive media uses Spatial Augmented Reality
(SAR) and tangible interaction. SAR, introduced by Raskar et al. [Raskar
et al., 2001], adds dynamic graphics to real-world surfaces by the means
of projected light. Many systems were designed using projectors to add
“painted” surface [Raskar et al., 2001] or to give the illusion of virtual
elements actually being there [Wilson et al., 2012a, Benko et al., 2012]. A
related approach is Tangible User Interface (TUI). TUI is concerned with
providing tangible (i.e. physical) representations to digital information
and controls [Ishii and Ullmer, 1997, Shaer, 2009]. One of the strengths of
tangibles is their situatedness: the interaction takes place in a real-world
environment that often hides most of the technological aspects to
expose physical interaction components only. They are particularly
well suited for mediation purposes as they tend to be more inviting
compared to mouse-screen based interfaces [Horn et al., 2009].
SAR and TUIs are often found together [Underkoffler and Ishii,

1999, Piper et al., 2002]. They are very complementary in that they
both take place in the real world, in a common canvas. The tangible
interaction allows for a hands-on approach by offering different input
affordances (as well as physical constraints) to the user while the SAR
technology allows for a flexible and situated way to give feedback. SAR
can also be used as an affordable way to embed dynamic graphics
on a physical surface that would otherwise require curved displays
[Brockmeyer et al., 2013] or rear projection [Benko et al., 2008] – SAR
helped for example to integrate seamlessly 6 different viewports to the
surrounding space of game board players in chapter 9.
There are examples of systems that use either tangible or AR

principles to interact or review physiological data. Hinckley et al.
[Hinckley et al., 1994] designed a system which used tangible props to do
neurosurgical planning. A small tangible head was used in conjunction
with a plastic plane to select the cutting planes to be visualized on a
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screen. Also mentioned above, the “Mind-Mirror” [Mercier-ganady
et al., 2014] is the work closest to Teegi. However, with Teegi, the data
is not co-localized with the data source. It provides flexibility and
easier visualization as the users can change viewpoints by tangible
interactions instead of rotating their head while keeping their eyes on
the mirror. This “out-of-body” visualization also enables collaboration
where multiple users can explore the data.

10.3.2 General description
Teegi is a tangible interface that enables users to visualize and analyze a
representation of their own brain activity recorded via an EEG system in
real time and displayed on a physical character. After some processing
of the raw signals, a dedicated visualization is projected directly on top
of the character. This character is tracked, which allows us to co-locate
the projection with the character’s head, at any time. Hence, the user
can easily visualize a realistic modeling of the EEG signals in any part of
the scalp by manipulating the character, while maintaining a good
spatial topology of the observed data. Teegi was purposely given a
child-like appearance, as well as animated eyes (also projected) that
blink at the same time as the users do, in order to breathe life to the
character and enhance attractiveness. Indeed blinking can be easily
detected in electrodes neighboring the eyes.
Three different filters can be applied to the raw data (see the

technical section for details) enabling users to investigate influences of
motor motions, visual activities or meditation, on their brain activity
in real time. To remain consistent with the tangible philosophy of
this project, we decided to control the filters by way of small tangible
characters (mini-Teegis) that can be moved on a “filter area”, which
is highlighted on the table by a projected halo (see Figure 10.4). For
example, if a user wants to apply a filter that will allow her to better
see what happens when moving her hand, she just needs to take the
dedicated mini-Teegi, i.e. the one with the colored hands, and to move
it to the filter area. Then, by moving her right hand, she should see
changes in EEG amplitude on the left hemisphere of Teegi’s head, as
illustrated in Figure 10.3. The manipulation of Teegi requires a motor
activity. Therefore, when the motor filter is on, manipulating Teegi will
obviously lead to observable changes in brain activity.

Later on during this chapter, we present an exploratory study we
conducted to obtain feedback about the main features of Teegi. However,
Teegi is not limited to these first features. In the next section, we
describe additional interaction metaphors we have explored, and that
may benefit more advanced users. These advanced features were not
evaluated during the study.
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Figure 10.3 – Three mini-Teegis can be used to apply high-level EEG filters
to highlight brain processes associated to Motor, Vision and
Meditation activities. To do so, the user simply needs to move the
desired mini-Teegi into a specific zone projected on the table
(green circle).

Figure 10.4 – Examples of the displayed visualizations on Teegi for each of the
provided filters. Once a filter is active, the brain area correspond-
ing to the selected and processed activity is highlighted in colors
while the remaining EEG signals are displayed in grayscale.

10.3.3 Advanced features
Visualizing the raw signal recorded on each electrode of the EEG is not VRPN was used with

Teegi to tranmit
signals from
OpenViBE to vvvv; it
was a time before we
had LSL
implementations
running..

very informative for the general public. However, this can be instructive
for students who are learning EEG signal processing and analysis. In our
approach, we can display on the table these raw data, as shown in Figure
10.5 (left). This creates a visual link between what is recorded with the
EEG system, and the visualization that is provided on Teegi’s head. This
is possible because we know the rough position of the user, and the
exact position of Teegi. When applying a filter, as described in the
previous section, the user can see the effect of his or her action on the
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signal (see Figure 10.5, right). Compared to a standard approach where
everything takes place on a screen, we believe that such a spatial and
tangible approach might ease the understanding of the filters’ effect.

Figure 10.5 – Left: the raw EEG readings are displayed going from the user to
the filter area and then rerouted towards Teegi. Right: When a
mini-Teegi (i.e. a filter) is active, the corresponding filtered
signals are displayed between the filter area and Teegi instead.

Another dimension we explored is the use of tangible actions to Eventually, the idea
would be to have the
whole visual
programming
environment of
OpenViBE on the
table with tangible
tokens.

control some parameters of the EEG signal processing. As an example,
we have implemented a technique where the user can control the
amplitude of the visualization color map by moving a tangible object on
the table (figure 10.6). This could be useful to reveal tiny fluctuations of
EEG signals. With such interaction techniques, the whole analysis could
be conducted without the use of a screen or a mouse, which remains
consistent with the tangible philosophy of the project.

Figure 10.6 – A moving tangible cursor is controlling the amplitude of the
visualization color map.

Finally, we developed a solution that highlights the relationship
between EEG signals and localized cortical sources, that is where the
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signals come from inside the brain. Using sLORETA inverse modeling
[Pascual-Marqui, 2002] and Brainstorm to compute the kernel matrix
[Tadel et al., 2011], we obtained a model of the cortex containing 2002
voxels linked to the 32 EEG electrodes we used. We can then project in
real time the activity which arises from the outer regions of the cortex
on an object representing the brain, alongside with Teegi (Figure 10.7).
Since both Teegi and the brain proxy are tracked, it becomes possible to
manipulate two synchronized representations of the same brain activity
(the source at the surface of the brain and the measures on the scalp).
This opens way to mediation activities that are more advanced all the
while keeping the simplicity and ease of use brought forth by using SAR
and tangible interaction.

Figure 10.7 – Using an inverse model, the cortical activity and EEG measures
are presented together to users.
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10.4 Technical description
10.4.1 EEG
We designed different EEG signal processing pipelines that each create a
specific visualization tailored to identify specific elements in the signal.
The details of these pipelines are transparent to the user. Each pipeline
corresponds to a mini-Teegi filter. In particular, we set up the following
EEG signal processing pipelines:

1. Wide-band EEG activity: EEG signals were band-pass filtered
between 3Hz and 26Hz, in order to filter DC drift and part of the
artifacts (e.g. facial muscle activity [Fatourechi et al., 2007]) that
may pollute them. Their power is then computed before being
displayed. This corresponds to unspecific brain signals, hence
they were labelled as “raw” signals.

2. Sensorimotor activity: EEG signals were first band-pass filtered
in the β band (16-24Hz), a brain rhythm highly involved in
sensorimotor tasks [Pfurtscheller and Lopes da Silva, 1999].
Then, they were spatially filtered, i.e. the signals from several
neighboring EEG sensors were combined in order to enhance the
signal of interest. In particular, we used and displayed Laplacian
spatial filters around electrodes C3, C4 and Cz. This enabled the
users to visualize EEG activity changes due to movements of the
left hand, right hand and feet. Indeed, it is known that the power
of EEG signals in the β rhythm decreases in electrodes C3/Cz/C4
during right hand/feet/left hand movements respectively, and
increases just after the end of this movement [Pfurtscheller and
Lopes da Silva, 1999].

3. Visual activity: EEG signals were band-pass filtered in the α band
(8-12Hz), then only electrodes P3, Pz, P4, PO3, POz, PO4, O1, Oz
and O2 (located on the back of the head, above the neck) were
selected and displayed. These electrodes are indeed located over
the visual cortex of the brain, i.e. the brain area in charge of
visual information processing. The amplitude of the α rhythm is
actually known to increase while the user is closing his/her eyes
and is thus not processing any visual information [Niedermeyer
and da Silva, 2005]. To ensure that the user could perceive this
increase after he/she reopened his/her eyes, the visualization was
delayed by 0.5s.

4. Meditation: on a more exploratory note, we used the synchro-
nization between the signals from the anterior and posterior
cortex (AFz/Pz), which was measured in a 7-28Hz band with
instantaneous phase locking value [Lachaux et al., 2000]. There
are different outcomes (increase/decrease in synchronization)
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depending on meditation type. Mindfulness and body focus
practices decrease the synchronization while transcendental
practice increases it [Lehmann et al., 2012].

EEG signals were acquired with a 32-channels EEG device (made of
two g.tec g.USBAmp EEG amplifiers). This professional-grade system
ensured that our prototype had a good signal-to-noise ratio and accurate
electrode location, avoiding unneeded uncertainties. Signals were
processed in real time using OpenViBE [Renard et al., 2010]. For pipelines
1 to 3, the displayed colors correspond to signal power strength; for
pipeline 4 they correspond to the degree of synchronization.

10.4.2 Spatial Augmented Reality
In order to create an augmented character, we have designed a tabletop
augmentation setup (see Figure 10.8). Teegi itself is a 25cm high Trexi
DIY toy. The mini-Teegis are also 10cm high Trexis. The main program
handling the whole installation was created with vvvv1.

The primary projected content (Teegi augmentation and GUI display)
is handled with a single wide lens projector ProjectionDesign F20SX of
resolution 1024x768 located over the table in a top-down orientation.
The tracking of Teegi is achieved with an OptiTrack V120:Trio. It runs at
120 FPS with an overall latency of 8.3ms and a precision of 0.8mm. The
OptiTrack is located in the same configuration as the main projector
and both devices are calibrated together manually. The tracking data
is sent to vvvv using OptiTrack’s NatNet protocol. Teegi’s eyes are
projected using a second projector (Vivitek Qumi Q2) that is located on
the side of the table.

The filter selection is done using a Sony PSEye web camera pointed at
the position of the program selection GUI. Each mini-teegi representing
a filter has a fiducial marker attached to it. The library ARToolkitPlus
[Wagner and Schmalstieg, 2007] is used to detect which marker is
currently selected.

The OpenViBE software that processes EEG also generates a grayscale
texture of the scalp signals. This texture is then exported to a local shared
samba folder which is then fetched and remapped to an appropriate
color scale in vvvv before being mapped to Teegi’s head. In addition, the
raw EEG signals are sent to vvvv over VRPN for display purposes (see
Figure 10.5).

10.5 Explorative study
10.5.1 Protocol
We conducted an exploratory study where participants had to manipu-
late Teegi following a given scenario. The objectives of this study were

1http://vvvv.org

http://vvvv.org
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Figure 10.8 – Diagram of the installation. (A) ProjectionDesign F20SX projector
(B) Sony PSEye web camera (C) OptiTrack V120:Trio (D) Vivitek
Qumi Q2 projector (E) Teegi (F) Program selection zone and
mini-Teegis.

to 1) evaluate the general usability of the interface and 2) obtain initial
feedback about the relevance of the approach to help users understand
EEG signals and the brain. Ten participants – 6 males, 4 females, mean
age 28.6 (SD=9.7) – took part in this study. Pre-tests confirmed they were
rather naive on the subject. They manipulated the version of Teegi
described in the General Description section (no advanced features).
The general procedure was as follows:

1. Pre-tests: The participant answered a first questionnaire assessing
his or her representation of the brain. The participant then filled
in different forms to measure his or her previous knowledge; one
form per studied brain process (motor, vision and meditation, see
Figure 10.9, top).

2. Setting-up: The experimenter positioned the EEG cap on the
participant’s head. In parallel, the participant, guided by the
experimenter, was made aware of the four didactic “cards” ex-
plaining the different filters i.e.Motor, Vision,Meditation and Raw
(Figure 10.9, middle). Each card was comprised of an image of the
mini-Teegi associated with the filter along with basic instructions
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to follow (e.g. the Motor card indicated to the participants to
move their hands or feet while staying relaxed). There were also
two cards describing the two types of visualization participants
could face, signal strength and synchronization (Figure 10.9, bottom).
Once the participant was equipped, a quick calibration phase
occurred. While Teegi was still inactive, participants were asked
to close their eyes for a few seconds, and to move their hands and
feet in order to identify the baseline activity for visualization.

3. Personal Investigation: The participant was asked to freely manip-
ulate Teegi as well as the filters to be able to answer the following
questions:
• What happens when you move your hands or feet?
• What happens when you close your eyes?
• What happens when you meditate?

During the whole study the participant sat comfortably in a chair.
To avoid the occurrence of muscle artifacts that may pollute the
signals, the user was instructed to stay relaxed and to refrain from
making strong head movements.

4. Post-tests: The participant answered the questions above on
dedicated forms, the same that were given at the beginning of
step 1. Finally, he or she filled in a user survey questionnaire
based on a 7-point Likert scale.

The whole session lasted approximately 1.5 hours per participant,
with 15 to 20 minutes of hands-on time with Teegi. Each session was
video-recorded. Video segments were separately visualized and labelled
with the corresponding behavior (i.e. tangible and visual interactions,
emotional expressions, and investigation strategies) using The Observer
XT 11.5 (Noldus, Info Tech, Wageninen, The Netherlands). After the
session, the experimenter had an informal talk with the participant. He
corrected the answers, making sure the participant was not leaving
with false knowledge, and explained in more detail some aspects of the
system (e.g. relationship between visual filter and attentional states,
the various effects of meditation, . . . ). This phase lasted from 30 min to
1 hour depending on the participant’s curiosity.

10.5.2 Results and discussions
To better understand the inherent strengths of Teegi towards learning,
we assessed three main aspects of Teegi: its technical reliability, its
relevance to ease understanding for non-experts, and the User eXperi-
ence (UX) it provides. This evaluation is based on 1) the results of the
questionnaire that are summarized in Figure 10.10, 2) the analysis of the
video recordings, and 3) the analysis of the forms the participants filled
in to assess their pre and post-knowledge of the brain and EEG.
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Filter

What?

MEDITATION

How?

Let your thoughts freely flow, 
breath slowly: reach the 

perfect zen moment.

Filter

What?

MOTOR

How?

Otherwise steady and relaxed, 
move your left or right hand, 

or your feet.

Filter

What?

VISION

How?

Special!

Close your eyes for a few 
seconds.

There is a 0.5 second delay 
between measures and 

visualization so you could 
observe changes.

Visualization

What?

SYNCHRONIZATION

How?

_ +

The extent to which both parts of 
the scalp are synchronized is 

pictured with a colorscale.

Visualization

What?

SIGNAL'S POWER

How?

_ +

The amount of electrical activity 
recorded onto the scalp is 
pictured by a colorscale.

Using the following drawings, indicate 
where the related brain activity takes place.

More precisely, what happens?

Exercice

VISION
Id T

Figure 10.9 – Top: An example of question card given during pre and post
test. Middle: Cards decribing the meaning of the visual feedback.
Bottom: Filters that could be investigated with Teegi.

10.5.2.1 Technical reliability
Participants unanimously reported that the whole system worked
properly. The quality of the SAR display is valued by the participants. In
particular, they reported that the resolution was appropriate, and
they did not report problems of offset between the display and the
physical character. Participants declared that they were not disturbed
by occlusion problems. The mild temporal delay between their action
and their consequences seems not to be an issue.

Manipulations of Teegi were numerous and frequent. Teegi was
touched or moved on average 25% of the session’s duration, twice
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Figure 10.10 – Results of the questionnaire (selected questions). Note that
purple (resp. orange) bars indicate questions measuring Teegi’s
qualities (resp. limitations).

per minute. These manipulations consisted mostly of rotations, and
to a lesser extent of lifting Teegi to enhance visual perception. Two
participants reported difficulties in grasping Teegi while the remaining
8 were comfortable with the form of the character. Video analyses did
not show difficulties for the manipulation of Teegi. Similarly, applying
filters by manipulating the mini-Teegis seemed easy for the participants.

10.5.2.2 Relevance of the interface to ease understanding
The participants reported that they understood the visualization associ-
ated with the filters. Video analyses indicated that they systematically
used all filters several times (3 times per session on average) for a
similar duration – Raw filter: 30.4% (SD 13.3) of session duration; Motor
filter: 26.0% (8.3); visual filter: 16.9% (5.5); meditation filter: 26.6%
(8.7). Interestingly, the visual activity filter seemed slightly easier to
understand than the other filters. Moreover, video analyses indicated
that the participants did not have difficulty observing the signals on
Teegi’s head, as soon as they found the right location to observe. Overall,
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participants reported that they were able to use Teegi without any
difficulties.

All participants completed the required tasks. They used instruction
cards 5 times per session on average. They reported that they could
focus on the tasks rather than on the mechanisms used to achieve them.
This suggests that Teegi is a rather transparent interface. Regarding
learning of brain processes and EEG, participants reported that they
believed they had learned while doing the study. This was confirmed by
the results of the pre- and post-test assessments (see Figure 10.11).
These assessments focused on the recognition and the understanding of
brain activation during Motor activities, Visual activities andMeditation.
Understanding was marked as acquired if 1) the activated areas were
correctly localized and 2) the explanations of the brain process were
correct. It was marked as under way if only 1) or 2) was satisfied but not
both; and as not acquired if neither 1) nor 2) were satisfied. The marks
obtained by the participants improved after using Teegi. Overall, this
suggests that Teegi offers many interesting features to ease learning
and mediation.

Figure 10.11 – Marks obtained by the participants during the pre- and post-test
assessments. See text for details.

All our results indicate that Teegi clearly promotes real-time tangible
interactions, which contributes to enhancing awareness. Constructivism
and inquiry-based science education principles indicate that, to become
conscious of complex phenomena and construct scientific knowledge,
people/learners have to experiment by interacting with and physically
manipulating the content [Vosniadou, 1992]. This is particularly true for
brain activity that is difficult to understand because it cannot be sensed
[Damasio, 1994], contrary to other activities (e.g. respiratory) that are
perceived through sensory-motor mechanisms. Hence, brain activities
need to be conceptualized, and the success of learning processes strongly
depends on the interface. Teegi, which has been largely promoted by
the participants, seems to fulfill this function.
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10.5.2.3 User eXperience
The general experience with Teegi was rated as pleasant, attractive and
stimulating, and participants did not feel stressed or oppressed. Overall,
participants reported that they liked interacting with Teegi. The emotion
expression analyses confirmed those statements. They showed that on
average participants expressed curiosity and questioning about Teegi
feedback during almost 20% (20.1% SD=9.1) of the manipulation duration.
Other emotion expressions observed for all participants were joy and
pleasure (e.g. smile, laugh, joyful verbal expression. . . ). They occurred
during almost 10% (9.8% SD= 6.7) of the interaction duration with Teegi.
Surprise emotions were observed but less frequently. Interestingly,
boredom, weariness expressions rarely occurred (only for 2 users)
and only at the end of the manipulation time. We did not observe any
occurrence of exasperation or irritation. These results suggest a high
level of acceptance for Teegi. This is a fundamental requirement for a
tool aiming at improving access to knowledge.

Behavior observations indicated that the majority of participants Such engagement
toward an
anthropomorphic
character encouraged
us to keep this form
factor with Tobe in
next chapter.

spoke with Teegi and used morphological zones specific to human
interactions while manipulating it. For example, they held its hands and
held it up by the waist as one would do with a child. Some users spoke
in the first person when they observed changes on the character’s scalp
for example “so, when I move my hands, I light up on the sides”; many
said aloud that Teegi was their own image, for example “so, Teegi is
me!”. This identification suggests that an activation of associations
between the perceived character’s personality and self-perception may
have occurred [Paiva et al., 2005]. It is known that identification can be
associated with increasing loss of self-awareness, and its temporary
replacement with elements of the perceived character’s personality
[Cohen, 2001]. Therefore, a human shaped, child-like character, made
lifelike by animated projected eyes, could enhance both empathy and
implicit self-perception of one’s own brain activity, as provided by our
interactive media. The anthropomorphic appearance of Teegi could
explain the motivation and positive UX reported by the users. All these
hypotheses would be the aim of a more extensive UX study.

Regarding visual attention, the participants were apparently paying
attention to Teegi most of the time (83.3%, SD 7.6). This supports the
fact that Teegi mobilized user attention. It also indicates a cognitive
user engagement. Personal investigations were permanent (only 1.9% of
inactivity was measured during the session duration; SD=1.7). Behavior
analyses indicate that participants made predictions, hypotheses and
tested them by conducting experiments. Numerous trial and error
strategies were frequently used. This clearly indicates personal active
control of the task and inquiry processes. Overall, Teegi stimulates
investigations and encourages persistence in task completion.
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10.6 Teegi for scientific outreach
We built Teegi in part to bridge the gap between, from the one hand, BCI
researchers and, from the other hand, the general public and the media.
The BCI community agrees that scientists should prevent inaccurate
statements and correct representations in the media [Nijboer et al.,
2011]; a tool such as Teegi could facilitate the dialogue and ease the
transition from the laboratory to the outside world.

Figure 10.12 – Teegi has been used for scientific outreach during the science
and technology festival IIT Techfest.

Since we first published our work in [Frey et al., 2014a], we devel- Techfest version is
powered by Jérémy
Laviole’s Papart
framework.

oped a portable version, based on the Emotiv Epoc headset, that we
demonstrated on several occasions, both in local and in international
manifestations. Notably, we were invited to present Teegi during the
IIT Techfest in Bombay, the largest science and technology festival in
Asia (≈ 200 000 attendees, see Figure 10.12). We could appreciate in
the field how Teegi raised people’s interest. Visitors were driven by
their curiosity and we used this opportunity to introduce them to BCI
technologies and discuss with the public issues related to the field.

Our various interventions echoed in online mass media. For example, Sadly, Yahoo also
demonstrates by few
off sentences that
there is still a long
way to go before a
true comprehension
of BCI.

not only did a major hub dedicated to new technologies relayed our
work2 or a journal picked Teegi as one of the “best projects” of the fair
we’ve been demonstrated in3, but a general information website saw the
potential of our approach for teaching about brain activity4. Teegi

2http://gizmodo.com/7-experimental-interfaces-that-show-the-future-
of-ui-de-1642890943

3http://www.dnaindia.com/scitech/slideshow-the-best-projects-at-the-
iit-bombay-tech-fest-2015-2048986

4https://www.yahoo.com/tech/using-brain-wave-technology-to-create-
art-108761329324.html

http://gizmodo.com/7-experimental-interfaces-that-show-the-future-of-ui-de-1642890943
http://gizmodo.com/7-experimental-interfaces-that-show-the-future-of-ui-de-1642890943
http://www.dnaindia.com/scitech/slideshow-the-best-projects-at-the-iit-bombay-tech-fest-2015-2048986
http://www.dnaindia.com/scitech/slideshow-the-best-projects-at-the-iit-bombay-tech-fest-2015-2048986
https://www.yahoo.com/tech/using-brain-wave-technology-to-create-art-108761329324.html
https://www.yahoo.com/tech/using-brain-wave-technology-to-create-art-108761329324.html
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proved to be an effective medium to raise awareness, demonstrating the
viability of the project for scientific outreach.

10.7 Conclusion
In this chapter, we presented Teegi, a tangible interface that makes
EEG understandable to non-expert users. Our main contribution is
the interface itself, which is built from both theoretical foundations,
notably from human learning and scientific mediation and technical
developments, including spatial augmented reality, tangible interaction
and real-time neurotechnologies. We demonstrated that this interface
was well accepted by a first pool of users. We also showed that it
appealed to novices’ interest in public exhibitions.

In the future, we plan to make a more in-depth investigation into
how well users are able to learn about EEG and brain activity with Teegi.
To this end, we will conduct dedicated experiments with students
and/or visitors in scientific museums. We would also like to precisely
evaluate how Teegi benefits learning compared to standard approaches.
For more advanced users, ad-hoc tangible filter creation could prove to
be of great interest, adding flexibility to the overall system. Finally, it is
known that BCI requires the user to learn to control his/her own brain
activity to input computer commands [Wolpaw and Wolpaw, 2012],
which is a long and tedious task. We expect Teegi to be a motivating and
informative way to support this training.

Figure 10.13 – Prototype of a spherical display composed of LEDs (Adafruit
NeoPixels) that could replace projection to display EEG signals
with spatial augmented reality.

In order to ease the deployment of Teegi, we are currently finishing
an instrumented version of the puppet, that is using a spherical display
made of LEDs (Figure 10.13) and that embeds signal processing thanks
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to a Raspberry Pi inside the body – RFID chips within the mini-Teegis
would be used to to select the EEG filters. No external hardware will be
required anymore beside the EEG device. This will significantly cut the
costs and will favour the spread of such tool.
The next chapter addresses a project that springs from Teegi.

Although “Tobe” is as well a tangible avatar that deals with EEG, it
encompasses other physiological sensors – ECG, EDA and breathing –
and is more about high level mental states – such as attention level
or emotions – rather than preprocessed physiological signals. The
framework underneath has also been improved so it is now scalable,
with multiple avatars that could exist at the same time. Thanks to those
new possibilities, with Tobe the focus shifts from scientific outreach to
social interactions.
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11
Tobe:

Tangible-Out-of
Body Experience

We present a toolkit for creating Tangible Out-of-Body Experi-
ences: exposing the inner states of users using physiological sig-
nals such as heart rate or brain activity. Tobe can take the form of
a tangible avatar displaying live physiological readings to reflect
on ourselves and others. As a toolkit, it can help the general pub-
lic familiarize itself with Science Technologies Engineering and
Mathematics (STEM) disciplines and cognitive science. Through
a co-design approach, we investigated how everyday people pic-
ture their physiology and we validated the acceptability of Tobe
in a scientificmuseum. Finally, we describe a “design space” that
frames howTobe could be put into practice – in amedical context
or not, whether there is one or several users or Tobes involved.We
give a practical example of a scenario where 2 users have to relax
together, with insights on how Tobe helped them to synchronize
their signals and share a moment.

Pinacle of this thesis, the Tobe platform aims at eventually holding
it all together. Mental states (I) measured with passive BCI (II) using
practical sensors (Appendices) could facilitate social interactions (III)
once made tangible (IV). A social prosthesis to foster social presence
and empathy among peers.

144
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The work described in this chapter was presented at TEI ’16 [Gervais
et al., 2016].

Many different persons participated in one way or another in this
work. Besides my co-authors, I would like to thank Didier Laval from
Cap Sciences1, Pierre-Alain Joseph, Éric Sorita, Matthew S. Goodwin and
Christelle Godin – more about their respective role in the appendices,
section Credits.7.

11.1 Introduction
Wearable computational devices are more accessible and more popular
than ever. These devices are personal and could be embedded with
physiological sensors similar to the ones we have seen thorough this
manuscript – i.e. sensors that can monitor signals such as heart beats or
electrodermal activity. Nowadays even brain activity is within reach of
consumers thanks to cheap alternatives to medical equipment, such
as the Emotiv Epoc2 or, closer to the Do-It-Yourself community, the
OpenBCI board3 (see appendix C). Physiological computing is becoming
mainstream, however for the general public the use of such sensors
seems mostly centered around performance. Despite an era of personal
development, well-being and communication, how many smart watches
and heart rate belts advertise themselves as sportspersons’ best buddies,
while they can account for so much more than physical health? Indeed,
besides the social applications retold in part III, physiological computing
is mature enough to asses mental states [Fairclough, 2009, Picard,
1995, Zander and Kothe, 2011, Frey et al., 2014b] (part I). Therefore, it
could be used as a mean to better know our own self and others.

On the one hand, physiological technologies are not exploited to
their full potential, on the other hand, we have end users that ignore
what technology has to offer for their well-being. Some companies are
pioneers, as for example Empatica and its Embrace smart watch4, but
such companies focus on health applications – e.g. monitor with epilepsy
to predict seizures – and, consequently, the targeted consumers are still
a niche. Both a process that will raise public awareness and a collection
of meaningful use cases are missing. Finally, when bodily activity and
mental states are at stake – which are difficult to conceptualize and
often difficult to perceive – the feedback given to users matters for
them to comprehend at first sight what is being measured. How to
represent the arousal state of someone? How would you represent
cognitive workload? We found little examples besides pies and charts,
which are not always obvious informants in data visualizations – e.g.
[McCandless, 2010].

1http://www.cap-sciences.net/
2https://emotiv.com/
3http://www.openbci.com/
4https://www.empatica.com/

http://www.cap-sciences.net/
https://emotiv.com/
http://www.openbci.com/
https://www.empatica.com/
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Figure 11.1 – Tobe, the tangible avatar displaying real-time physiological
readings along with the interface to control the different visual-
izations.

To address these issues, we first conducted surveys and interviews
to gain insight about physiological feedback. We then created Tobe (to
be pronounced “tobi”), a Tangible Out-of-Body Experience shaped as a
tangible avatar (Figure 11.1). This avatar lets users freely explore and
represent their physiological signals, displayed on the avatar itself using
spatial augmented reality. The overarching goal is to help one reflect on
his physiological and mental states in his own way. The main activity
would be for users to actively build from the ground up their own
self-representation and then visualize physiological signals through it.
As such, we designed a modular toolkit around Tobe that can be used to
customize any part of the system. Tobe has been tested on two different
occasions in a scientific museum to collect user feedback. A specialized
version of the system was also built to give biofeedback to multiple
users in a relaxation task. Beside these two implementations, we frame
potential uses of the system, such as a biofeedback device for stroke
rehabilitation or replaying inner states synchronized along with videos
of cherished memories. The latter example could help create more
cherishable versions of personal digital data [Golsteijn et al., 2012].
Previous works do not embrace such system as a whole and are

limited either to low-level signals or to emotions. Wearables were used
in [Williams et al., 2015] to mediate affect using multimodal stimuli
(sounds, heat, vibration, . . . ). However, as with the “Social Skin” project
[Uğur, 2013] – that also embodies emotions into actuated wearables –,
the information given to those around was rather implicit. When a
more comprehensible feedback was studied, as in [Norooz et al., 2015],
it was limited to anatomical models, for instance to teach children
how the body works. Tobe, on the other hand, gives both access to
meaningful visualizations and to additional cognitive states. Tangible
proxies and material representations were already studied in [Khot
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et al., 2014], although the feedback was not dynamic and, once again,
constrained to bodily activity. With Teegi (chapter 10) a tangible puppet
was already used as a proxy for brain activity, but the settings concerned
scientific outreach and the feedback focused only on preprocessed brain
signals and not on higher level mental states (which Tobe does). Our
toolkit pushes further the boundaries of the applications. By giving
access to physiological signals, high-level mental states, dynamic and
customizable feedback, a tool that helps to communicate and that
facilitates social interactions have emerged.

Our contribution for this chapter are:

1. A toolkit enabling users to create an animated tangible represen-
tation of their inner states, encompassing the whole workflow
including the physical avatar creation, sensors, signal processing,
feedback and augmentation.

2. Two use cases of Tobe which were tested in public settings.
3. Users’ feedback about the Tobe system and how they perceive
physiological signals and mental states.

11.2 Representing Physiological Signals
Exposing physiological signals in a way that makes sense for the user is
not trivial. Some types of signals might be more obvious to represent
than others. For example, heart activity could be understood using a
symbolic heart shape due to largely accepted cultural references. This
question is, however, harder when talking about more abstract mental
states such as workload. Nevertheless, even the dynamic representation
of low-level physiological signals is still an open question at the moment
[Chanel and Mühl, 2015]. We conducted two surveys to gain more
insight about the knowledge and the representation people had of
different types of signals and high-level mental states.

In the first survey, conducted online, we asked 36 persons about their
knowledge of physiological signals in general. We inquired about the
self-awareness of inner states on a 7-points Likert scale (1: no awareness,
7: perfectly aware). About “internal physiological activities”, the average
score was 3.5 (SD=1.4) and for “mental states”, the average score was 4.9
(SD=1.3). The latter score indicates that the participants thought they
knew their inner states – even though a whole literature demonstrates
how difficult this is [Nisbett and Wilson, 1977]. Interestingly, we also
observed that most of the participants reduced mental state and
physiology to emotions only. Mentions of any cognitive processes such
as vigilance and workload were very rare (7 out of 36). This lack of
knowledge about the inner self and the different cognitive processes is
an opportunity to raise awareness of the general public about the
complexity of the mind. When inquired about possible uses of a Tobe
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system, very few respondents (6 out of 36) gave examples other than
sports or health. This emphasis the fact that the general public is
unaware of possibilities of technology for well-being.

With motion we’re
entering in the
robots’ realm

The second survey specifically investigated how users would shape
the feedback. We focused on visual cues because it was easier to express
on paper, but note that other modalities could be explored. Sound is
among them – e.g. [Janssen et al., 2013],Mealla2011 and chapter 8 – but
motions may play also an important role, especially when affect is
involved [Cooney et al., 2014].

We asked 15 participants to express with drawings and text how
they would represent various metrics (Figure 11.2). There was little
resemblance between participants for a given high-level metric and
even low-level ones – breathing and heart activity – sprang different
views. For example, some people drew a physiologically accurate
heart instead of a simple sketch. Overall, there was a wide variety of
sketches and people were very creative. This highlighted the absence of
consensus on how we conceive and view our inner states. Therefore,
people could benefit from being able to tailor a meaningful and personal
feedback.

Figure 11.2 – Sample of the drawings made by participants to represent
various high-level metrics.

11.3 Toolkit
We created a tangible anthropomorphic avatar, named Tobe as a
host for displaying real-time feedback. We chose this form factor
because we found evidence in the literature that this combination of
anthropomorphism and tangibility can foster social presence and
likability [Schmitz, 2010, Hornecker, 2011, Horn et al., 2009]. This also
reminds users and observers that the feedback is linked to an actual
being; it helps to recognize Tobe as a persona and to bond with it, hence
it facilitates engagement. Finally, this was a logical step forward after
we had developed Teegi. During the work described in the previous
chapter, we witnessed firsthand the benefits of such type of proxy.
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Our implementation uses open or low-cost hardware and we are in
the process of releasing as open-source software the entire pipeline,
thus facilitating reproduction and dissemination.

11.3.1 General Approach
We conceived a toolkit to assist the creation of representations of inner
activities – our body at large and the hidden processes of our mind in
particular, making it visible to oneself and to others. The different
components are highlighted in Figure 11.3. The first step consists in
choosing a metric, e.g. the arousal level. For this given metric there are
different ways to measure it, that include a combination of one or
multiple sensor(s) and signal processing algorithm(s). One chooses a
support to express this metric (e.g. tangible avatar, screen, speaker for
sound) and creates a shape associated to it (e.g. a circle with a changing
color, a rhythmic tone). The conjunction of both the shape and the
support produces the feedback. It is an iterative process because when
one acknowledges the feedback, it changes one’s self-representation.
Moreover, it creates a feedback loop which affects one’s biosignals.

In order to help users mold the system to their likening, we identified
three different degrees of freedom:

• The measured physiological signal or mental state (Metric)
• The form factor (Support)
• The display of the signals (Shape)

Beside the opportunity to answer to a specific need, the process of
building something matters. Between 2 equivalent things, we prefer the
one that took us efforts to achieve / acquire [Norton et al., 2012], hence
the bond we seek between users and Tobes should be enhanced at the
same more degrees of freedom are given.

11.3.1.1 Sensors and Signal Processing
Sensors are the hardware used to capture the raw signals of the
body. These encompass heart measures such as electrocardiography
(ECG) and photoplethysmography (PPG), brain activity measured
by electroencephalography (EEG), electrodermal activity (EDA, i.e.
perspiration), etc. Once the raw data is acquired, it needs to be processed
in order to produce any relevant metric. As an example, heart rate
variability can be inferred from the combination of a set of electrodes
attached to the chest and a QRS wave detector. Emotions can be inferred
from EDA or certain frequency bands within EEG.
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Figure 11.3 – Simplified view of the toolkit that supports Tobe.

11.3.1.2 Metrics
There is a continuum in the visibility of the signals and mental states
measured from physiological sensors, i.e. metrics. We categorized those
metrics in three different levels, depending on who can perceive them
without technological help. Each level relates and links differently the 3
actors involved, i.e. the user, the observer and the personae (Tobe).
1. Perceived by self and others, e.g. eye blinks. Even if those signals
may sometimes appear redundant as one may directly look at the
person in order to see them, they are crucial in associating a
feedback to a user.

2. Perceived only by self, e.g. heart rate or breathing. Mirroring these
signals provides presence towards the feedback (e.g. similarity-
attraction effect, chapter 8).

3. Hidden to both self and others, e.g. mental states such as cogni-
tive workload. This type of metrics holds the most promising
applications since they are mostly unexplored.

Lower levels (1 & 2) help to breath life into a proxy used to mediate
the inner state of the user. These metrics are accessible to our conscious
selves; they are likely to increase the social presence of the proxy
(see chapter 8) and they participate in the “minimal features” that an
embodied agent should possess in order to create human presence
[Sumioka et al., 2014]. On the other hand, level 3 metrics are little
known and are hard to conceptualize for the general public [Nisbett and
Wilson, 1977] and would benefit the most of a system enabling their
visualization.
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11.3.2 Support: 3D printing
3D printing a tangible avatar is a powerful incentive for customization.
While the version of the system that we deployed in the scientific
museum used an already modeled and 3D printed incarnation of Tobe
because of time constraints, a user of the system could change the
parametric model in order to obtain an avatar that pleases her. The
process would be similar to how the appearance of a Nintendo “Mii” can
be tuned, except for the tangibility. An automatic feature extraction
could even occur to match some of the puppet’s traits with the user (e.g.
body shape, nose, chin, . . . ). As a tradeoff between preparation time and
customization, we prototyped a “Mr. Potato Head” version of Tobe, with
parts ready to be assembled (Figure 11.8).

11.3.3 Sensors: Wearables

Figure 11.4 – Wearables: coat embedding ECG sensors.

Metrics were acquired from five physiological signals. We measured
thoracic circumference for breathing, ECG for heart rate, EDA for
arousal, electrooculography (EOG, eyes activity) for eye blinks, and
electroencephalography (EEG, brain activity) for most high-level mental
states.

We created the sensors with a wearable form factor in mind. Since
we used Tobe in public settings, it was important that the sensors were
non-invasive (no need to remove clothes or apply gel to the skin) and be
quick to install and remove, while being able to acquire a reliable signal,
and no products on the market could entirely respond to our needs.
With the setup described in this section, we were able to equip the users
and record physiological signals in less than two minutes.

The different sensors were embedded inside a lab coat (Figure 11.10)
which could be put on quickly over daily clothes. This form factor



IV.11

CHAPTER 11. TOBE: TANGIBLE-OUT-OF BODY EXPERIENCE 152

Figure 11.5 – Wearables: fingerless glove measuring EDA.

Figure 11.6 – Wearables: breathing belt.

provides enough room in the sleeves and the pockets to take care of
the wiring and electronic components storage. The recording of the
low-level physiological signals (i.e. everything except EEG) is done using
the BITalino board, an Arduino-based recording device. It contains
modules that amplifies various physiological signals and embeds a
Bluetooth adapter as well as a battery to work in ambulatory settings.

11.3.3.1 ECG
We chose to use ECG for heart rate activity as it is more accurate TDE-201 from FRI are

the “pins free”
version of TDE-200,
itself sold as "EL120"
by Biopac.

than light emission-based methods to detect individual heartbeats
[Kranjec et al., 2014]. Existing solutions for ECG require electrodes to be
put directly on the chest, e.g. heart rate monitor belts. We instead
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opted for installing TDE-201 Ag/AgCl electrodes from Florida Research
Instruments (FRI) on both wrists of the user (ECG needs two electrodes
diametrically opposed to sense heart electrical activity). The electrodes
were attached to an elastic band sewed inside the end of the lab coat
sleeves which could be tightened with velcro straps (Figure 11.4). ECG
was recorded with the dedicated ECG module of the BITalino.

11.3.3.2 EDA
When measuring EDA, most accurate readings can be obtained from the
tip of the fingers. However, since it is difficult to manipulate a tangible
interface and controls while having hardware attached to one’s fingers,
we acquire the signal from the palm of a single hand instead – the palm
is good tradeoff between accuracy and practicality, compared to fingers
or wrist [Prasad, 2013]. We assess skin conductance from two small
conductive thread patches sewn inside a fingerless glove (Figure 11.5).
Because the BITalino EDA amplifier was not sensitive enough for signals
acquired from the palm we made our own, replicating the schematics
described in [Poh et al., 2010].

11.3.3.3 Breathing
For breathing, we built a belt based on a stretch sensor (Figure 11.6). A
conductive rubber band was mounted as a voltage divider and connected
to an instrumentation amplifier (Texas Instruments INA128). As opposed
to piezoelectric components, that are sensitive to momentous speed
instead of position, stretch sensors can directly map users’ chest
inflation onto their avatar. An alternate solution consists in measuring
air flow near the mouth of the nose, but it would have been too obtrusive.

11.3.3.4 EEG and Eye Blinks (EOG)
We built our own EEG helmet based on the open hardware OpenBCI
board. To shorten setup time we used dry electrodes – the same TDE-201
as for ECG for the forehead, and elsewhere TDE-200 electrodes, which
possess small protuberance that could go through the hair. Using a
stretchable headband, we restrained electrodes’ locations to the rim of
the scalp to avoid difficulties with long-haired people. In the 10-20
system, electrodes were positioned at O1, P7, F7, FP1, F8, T8, P8 and O2
locations – reference at T7, ground at FP2. Appendix C is dedicated to
the problematic surrounding the construction of such practical headset,
which required more thorough engineering compared to the other
sensors presented in this chapter.

In earlier iterations of the system we tested the use of an Emotiv
EPOC headset to account for brain activity. The EPOC is a consumers-
oriented EEG device, easier to install than medical headsets that use gel.
However, it still requires a saline solution that tends to dry over time,
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causing additional installation time between users. Moreover, good
signal quality was next to impossible to obtain with long haired persons.

11.3.4 Signal processing
Consumers-oriented EEG headsets usually conceal signal processing
behind proprietary algorithms, with little scientific evidence on what is
truly measured. While building a tailored EEG helmet, we took the
upper hand on the whole pipeline. With access to raw EEG signals,
we looked into the literature to match the inner state we wanted to
measure with actual neurological markers.

Here our approach somewhat varies from the studies conducted in
part II. During the evaluation of HCI components, the experimental
setup involved participants willing to spend at least half an hour
for calibrating the system, and only in a second phase did we use
machine learning to assess their mental states. With Tobe, on the
contrary, we could not require users to endure such procedure during
our preliminary investigations. Our interventions were meant to be
“wear and play”. Therefore, instead of pipelines made of external probes,
N-back tasks or classifiers, we have used the following features (see
chapter 3 for more background about those constructs):

• Vigilance: appoints for the ability to maintain attention over time.
We use the ratio between beta frequency band (15-20Hz) and
theta + low alpha frequency band (4-10Hz) for all electrodes [Oken
et al., 2006].

• Workload: increases with the amount of mental effort required to
complete a task. We use the ratio between delta + theta band
(1-8Hz) in frontal cortex (F7, FP1, F8, T8) and wide alpha band
(8-14Hz) in parietal + occipital cortex (P8, P7, O2, O1) [Antonenko
et al., 2010, Schober et al., 1995].

• Meditation: we used the same computations as for Teegi, e.g.
instantaneous phase locking value [Lachaux et al., 2000] between
front (FP1, F7, F8) and rear (O1, P7, P8) parts of the brain in alpha +
beta bands (7-28Hz) [Lehmann et al., 2012] – mindfulness and body
focus practices decrease the synchronization while transcendental
practice increases it.

• Valence: designates the hedonic tone of an emotion and varies
from positive to negative (e.g. frustrated vs pleasant). We use the
ratio between the EEG signal power in the left (F7, P7, O1) and
right (F8, P8, O2) cortex in the alpha band (8-12Hz) [Molina et al.,
2009].

• Arousal: relates to the intensity of an emotion and varies from
calm to excited (e.g. satisfied vs happy). We use the EDA readings
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(even though there is actually more than a single psychological
process behind this signal [Figner and Murphy, 2011]).

We used OpenViBE to analyze physiological data in real time.
EEG signals were re-referenced using a common average reference.
Mentioned frequencies were extracted with a band-pass filter, taking
the log of the power of signals in order to normalize indices.

Those features constitute a rough estimation of the inner state of
participants. Actual applications, as the one we describe in section 11.5,
require more thorough computations, notably a calibration phase and
machine learning to adapt features to each user and acquire truly
meaningful signals (e.g. part II).

Eye blinks were detected when the signal, after DC drift removal,
exceeded 4 times the variance in the F8 electrode. The detection of
heart beats, hence of QRS waves recorded from ECG, was achieved by
combining a similar automatic threshold with a 1-20Hz band-pass filter
and a first-order derivative.
Each physiological signal or mental state index was sent to the

other stage of the toolkit using LSL, a network protocol dedicated to
physiological recordings that possesses implementations in many
programming languages.

11.3.5 Shape: Augmentation
Mostly the same as
Teegi, except for the
calibration.

The visualization of users’ signals are displayed onto Tobe using
Spatial Augmented Reality (SAR), as introduced by Raskar et al. [Raskar
et al., 2001]. SAR adds dynamic graphics to real-world surfaces by the
means of projected light. Despite external hardware – i.e. a projector and
eventually a tracking device (Figure 11.10) – SAR is an easy solution to
prototype a system, faster to deploy than putting actual screens in users’
surroundings. For instance we were able to switch instantaneously back
and forth between a beating heart onto Tobe chest and a pulsing circle
projected onto the table around it. The augmentation occurred within
vvvv5, a software that uses real-time visual programming to render 3D
scenes. As for hardware, we used a LG PF80G projector of resolution
1920x1080 and the tracking of Tobe was achieved with an OptiTrack
V120:Trio, running a 120 FPS with an overall latency of 8.3ms and a
precision of 0.8mm. The projector was calibrated with the OptiTrack
using OpenCV’s camera calibration function.

As an alternative to SAR, Tobe can be embedded with small screens,
LEDs, actuators and small electronics components so that it represents
a standalone unit. We already have a proof of concept of such an
implementation thanks to the easiness and accessibility of the building
blocks that go with the Arduino platform and the Raspberry Pi (Figure

5http://vvvv.org/

http://vvvv.org/
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11.9). This approach participates in the trend around ubiquitous
computing [Weiser, 1993] and the Internet of Things – e.g. Flotilla6,
Printoo7, the Airboard8, Node-RED9 (for software), and so on.

Figure 11.7 – Simplemultitouch animator allowing users to create and animate
visual feedback.

Figure 11.8 – Customizing the tangible support of Tobe can be achieved using
modular body pieces.

11.3.6 Feedback Customization
We conceived a GUI that let users draw a picture and animate it according
to their wishes. The animator is touch based; users press a “record”
button and animate the picture with gestures (Figure 11.7). Once done,
the animation’s timeline is automatically mapped to the chosen signal.
This animator is kept simple on purpose, it is designed for novice users

6http://flotil.la/
7http://www.printoo.pt/
8http://www.theairboard.cc/
9http://nodered.org/

http://flotil.la/
http://www.printoo.pt/
http://www.theairboard.cc/
http://nodered.org/
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Figure 11.9 – It is possible to embedded electronics inside the support to have
a standalone Tobe.

and as such must remain easy to understand and operate for someone
not familiar with animation. Only three basic operations are currently
supported – scaling, rotation and translation – and yet it is sufficient to
generate meaningful animations. For example, scaling makes a heart
beat, translation moves a cloud along respiration and rotation spins
cogs faster as workload increases. An advanced tool such as Photoshop
has already been integrated as a proof of concept, but the simplicity
of the current GUI does not impede users’ creativity and already is
sufficient to enable a tailored feedback.

11.4 Tobe in the Wild
We used and tested Tobe in two different applications cases: as a
demonstration in a scientific museum and as a multi-user biofeedback
device for relaxation and empathy.

11.4.1 Tobe in a public exhibition
Using a co-design approach, we intervened in a scientific museum over
two half days, proposing to passersby to try out Tobe (Figure 11.10).
We built the sensors and prepared the signal processing beforehand
because these steps require hardware and expertise. Five high-level
metrics were selected: workload, vigilance, meditation, valence and
arousal. These metrics were chosen because the wide public showed
interest into them (meditation and emotions) or because they could
benefit from being better known (workload and vigilance). Due to
the short duration of our exhibitions, we also set the corresponding
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Figure 11.10 – In a scientific museum, various activities were proposed to
visitors in order to prompt self-investigation. The setup consists
of a projector handling the augmentation and an OptiTrack for
the tracking.

feedback (both support and shape), according to the outcome of the
questionnaires about people’s representations.

After we equipped participants, we gave them “activity cards”, a
collection of scenarios that were likely to modify their inner state and
that prompted self-investigation (Figure 11.11). There were riddles,
arithmetic problems, cute and less cute images, a breathing exercise and
a “Where’s Waldo?” picture. Implicitly the activity cards targeted in this
order workload, valence, arousal, meditation and vigilance, but partici-
pants were free to test whatever they wanted. These sole cards, inspired
by those made for Teegi (chapter 10), sufficed to engage participants for
a few tens minutes without our intervention. Participants had also at
their disposal “definition cards”, very brief definitions of each one of
the mental state that could be measured.
We created the activity cards after our first intervention in the

museum. There were some candies left at disposal next to Tobe to
lure museum’s visitors to our booth. At some point, one user wanted
to see how different tastes affected the emotional valence that was
displayed on Tobe. This proved to be a fun activity for him – and for the
people around. Having such goal in mind was an effective way to drive
participants. This is the upside to going in the field: we learn from our
errors – we were short on incentives for self-investigation – and new
ideas emerge.

One degree of freedom was left to users by the mean of a graphical Who never lost hours
customizing the
appearance of an
avatar in a RPG video
game?

interface (see Figure 11.1). They had to manipulate the GUI on a nearby
tablet to drag and drop visualizations on predefined anchor points.
Users could customize some of Tobe’s aspects (eyes and heart rate
feedback) and among the 5 high-level metrics available, they selected
which one to study at a particular time. When at first we tested Tobe
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Workload

Workload varies according to the 
difficulty of a task. The more 
important mental effort is, the 

more workload increases.

+_

Riddle

What is the answer? .........................................

Were your signals affected? 

Vigilance

not at
all

a lotso so
I don't
know

did not
try

Arousal

Meditation

Valence

Heart rate

Workload

Tim has 10 pets. Not only has he 
canaries and dogs, but also tortoises 
and even snakes. Overall there are 6 

wings, 3 shells and 26 legs.

Calculating in your head, how many 
snakes does tim have?

not at
all

a lotso so
I don't
know

did not
try

not at
all

a lotso so
I don't
know

did not
try

not at
all
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I don't
know

did not
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not at
all
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I don't
know

did not
try

not at
all

a lotso so
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know

did not
try

Figure 11.11 – An example of the activities and definitions proposed to
participants in order to prompt self-investigation.

with no degree of freedom – i.e. all metrics were displayed altogether –
we realized that users were too passive and quickly overwhelmed. The
GUI helped to focus and engage users.

To further engage users, Tobe was tracked and participants were The “wake up” or
“summoning” action
could be use at start
to choose one puppet
among several
possible models, thus
bonding with the
personae through
touch.

asked to put Tobe on a spotlight to “awake” it – i.e. to start physiological
signals’ streams. The action of bringing life to an inanimate puppet goes
well with making the world “magical” again [Rose, 2014], that is to
say to use the power of abstraction of modern computer science in
order to bring back awe. The aim is not to take benefit of ignorance
but to strengthen the amazement that technology can offer. We were
ourselves pleasantly disturbed and surprised when we happened to
hold in our hands a representation of our beating heart during some
routine test10. Suddenly the relationship with the digital content felt
different, truly tangible.
The “wake up zone” was also an opportunity to implement the

ambient feedback described in appendix E: the spotlight got pixelated
and noisy depending on the quality of EEG signals’. By computing an
index based on the upper beta band (25-45Hz) [van de Velde et al., 1998]
we could detect artifacts produced by strong muscle activity – e.g. teeth
clenching – or by participants’ movements and give them a gentle
feedback about the noise they were provoking.

10Truth is, that occurred back during the study of chapter 9.
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11.4.2 Tobe for multi-users relaxation
We tested Tobe as a relaxation device for two users (Figure 11.12). The
objective was to see if Tobe could be used both as a biofeedback tool and
for collaboration.

Figure 11.12 – Multi-users application: relaxation through cardiac coherence.

11.4.2.1 Implementation
This version of Tobe relies only on respiration and heart rate variability.
It relates to cardiac coherence: when someone takes deep breaths,
slowly (≈ 10s periods) and regularly, her or his heart rate (HR) varies
accordingly and the resulting state has positive impact on well-being
[McCraty et al., 2009]. During cardiac coherence, HR increases slightly
when one inhales and decreases as much when one exhales. We took
the magnitude squared coherence between HR and breathing signals
over 10s time windows as a “relaxation” index.

Sensors consisted in a breathing belt and in a pair of elastic bands
around the wrists to measure ECG. We used OpenBCI instead of BITalino
to measure ECG and breathing in order to get more accurate readings.
Indeed, the OpenBCI amplifier has a resolution of 24 bits instead of 10
for the BITalino.

There were two Tobes on the table, one for each participant. They
were not tracked. Breathing activity was pictured with inflating lungs
onto the torso; cardiac coherence with a blooming flower onto the
forehead. The synchronicity between participants – users’ heart rates
varying at the same pace – was represented with a similar but bigger
flower projected between both Tobes. Additionally, “ripples” on the
table, around Tobes’ feet, matched heart beats.
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11.4.2.2 Protocol
We asked 14 participants, by pairs, to come and use Tobe to reach cardiac
coherence – 6 females, 8 males, mean age 25.3 (SD=2.8). Participants
were coworkers from the same research institute and already knew each
other. Participants were seated on each side of a screen and instructed
to not talk to each other. We presented them the cardiac coherence
activity as a relaxation exercise. Afterwards, we equipped them and
turned the system on.

The experiment comprised of three sessions of 5 minutes. During
the first session, participants had to individually learn how to reach
cardiac coherence. A smaller screen on the table prevented them to see
each other’s Tobe. They had to imitate the breathing pattern given by a
gauge going up and down in 5s cycles onto Tobe’s body. The lights of the
room were dimmed to facilitate a relaxation state and each participant
was given headphones playing back rain sounds.

After the training session, the screen separating the two Tobes
was removed. Participants were then instructed to repeat the same
exercise as before, but without the help of the gauge. They could see
their colleague’s Tobe. However, there was no interaction between them
at this stage – it served as a transition between a self-centered task and
a collaboration task.

During the third session, participants were instructed to synchronize
their hearts. In order to do so, they had to both reach cardiac coherence
while breathing on the same rhythm–withno otherway to communicate
than using their Tobes.

After this final session, we gave questionnaires to participants and
conducted informal interviews with them to gather feedback about
their experience.

11.4.2.3 Results & Discussion
From the questionnaires, that took the form of 5-points Likert scales,
participants reported that they were more relaxed after the end of the
session: 4.36 on a scale ranging from 1 “much less relaxed” to 5 “much
more relaxed” (SD=0.74). Beside the fact that Tobe acted as an effective
biofeedback device, the experiment was also a chance to introduce
participants to activities centered around well-being, as few of them
were practicing relaxation or meditation in their daily life – 1.93 score
(SD=1.44) with 1 “never” and 5 “regularly”.

During the interviews, the participants reported that they appreci-
ated the feedback, saying that it formed a coherent experience – e.g.
ripples on the table and sounds of rain. Among the few that were prac-
ticing yoga regularly, one praised how Tobe favors learning-by-doing
over wordy and disrupting instructions but had troubles to follow
the 10s breathing cycle since it differed from his usual practice. We
had mixed reviews about the visualization associated to breathing,
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mostly due to the mapping between Tobe’s lungs and the measured
thoracic circumference being dynamically adapted over time rather
than calibrated per user with a min/max. Because of that, some users
had to draw their attention away from the breathing patterns in order
to achieve cardiac coherence. These two last issues could be resolved by
giving users access to the signal processing through our toolkit.

We received comments about how a qualitative and ambient feedback
(blooming flower) fostered a better focus on the activity compared to
the use of quantitative metrics which are an incentive for competition.
Indeed, apart from some comparisons made during the second session,
participants did use their Tobes for collaboration. Users described
how they use the respiration of their partner to get in sync during
the third stage – usually by waiting before inhaling. One participant
described how she tried to “help” her companion when he struggled to
follow. Another retold how she quickly resumed her regular breathing
when she saw that a brief hold troubled her colleague. More playful, a
participant laughed afterwards at how he purposely “tricked” twice his
partner. Even with a communication channel as basic as the display of
thoracic circumference, rich interactions emerged between participants
over a short period – 5 minutes that felt like less for many of them.

Overall these findings suggest that Tobe could be employed as a
proxy for interpersonal communications and that it has an interesting
potential for enhancing well-being.

11.5 Applications (design space)
We drew usages for Tobe by exploring different dimensions: on the one
hand the number of users, Tobes and external observers involved, and,
on the other hand the time and space separating the feedback and the
recordings.

On a handful occasions our design space intersects with existing
research projects or prototype, indicating that the framework built
around Tobe is able to unite – and to extend – the emerging usages that
come out of physiological computing.

11.5.1 One User
Tobe can be used as a biofeedback device with a specific goal – e.g.
reduce stress – or to gain knowledge about one self. A feedback about
workload and vigilance would prevent overwork, as to work too hard
for too long results in efforts becoming counterproductive. A “cute”
form-factor may be an incentive to take care of Tobe. . . hence of
ourselves.

Insights gathered from an introspection session with Tobe could be
employed not only to become better, but also to act better. Try to recall
those times when you answered a bit too harshly to a beloved one
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because you were irritated by something completely unrelated and did
not realize it. . . An angry-looking Tobe could have reminded you of your
inner state before you answered harshly the wrong word.

11.5.2 One User and Observer(s)
Scientists involved in stroke rehabilitation research suggested that
Tobe could be used in a medical context. Indeed, patients with motor
disabilities may regain mobility after long and difficult sessions of
reeducation. However, occasional drawbacks may create anxiety and a
counterproductive attitude towards therapy, which leads to even more
anxiety. A Tobe could help patients and therapists acknowledge this
affective state and break this vicious circle.
Autistic persons could also benefit from using Tobe since it is

difficult for them and their relatives to gauge their inner state. To make
explicit arousal could help their integration into society, as envisioned
in [Picard, 2009] and experimented offline – i.e. after signals were
recorded – in [Hedman et al., 2012].

11.5.3 Multiple Users and Tobes
Using Tobe as an alternate communication channel during casual I’m most looking

forward to these use –
many users with one
Tobe each – so as to
increase social
presence and
facilitate social
interactions.

interactions would help to explore connections with relatives, blossom
friendships, discover and learn from strangers or improve collaboration
and efficiency with coworkers. This has been partially explored through
the “Reflect Table”, which gives a feedback about the affective state
of meeting participants [Bachour, 2010]; and a bicycle helmet that
displays the heart rate of the wearer to the other cyclists nearby has
been proposed to support social interactions during physical efforts
[Walmink et al., 2014].

11.5.4 Archetype of a Group
Tobe could summarize the state of a group. A real-time feedback from
the audience would be a valuable tool for every speaker or performer –
and for example Google Glasses could be used to monitor its affective
state [Hernandez and Picard, 2014]. EDA has been used to analyze
afterwards the emotional state of spectators while a company performed
in [Wang et al., 2014].

To pace a course, a teacher could use one Tobe as an overall index
that aggregates the attention level of every student in the classroom.
Through behavioral measures and with a feedback given afterwards,
this was investigated in [Raca and Dillenbourg, 2013].
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11.5.5 Time and Space
One could want to analyze or to recall inner states after an event. Tobe
could replay how one actually felt alongside a video of a cherished
moment, a more vivid picture than plots.
If it is not time but space that separates a Tobe from its owner,

imagine a distant relationship where the Tobe on your desk slowly
awakens as the sun rises in the timezone of your beloved one – and you
would wait for Tobe’s vigilance to increase to a sufficient level before
you pick up your phone for a chat, knowing that your soul mate is a bit
grumpy at the beginning of the day. Besides this theoretical view, it has
been hinted that even low-level physiological signals could enhance
telepresence [Lee et al., 2014].
Finally, if both time and space are different, we could imagine a

trail left during a journey as the “neuro tagging map” project from
Neurowear11.

11.6 Conclusion
We have presented an open system aimed at externalizing physiological
signals and mental states in order to offer users a shared “out-of-body
experience”. This system covers the entire pipeline, from signals’
acquisition to their visualization. Our framework being customizable
and modular, it can adapt to the context where it is applied and to the
many views people do have about physiological signals and mental
states. Its open nature may be used to introduce STEM discipline to the
general public through inquiry-based learning, while end usages can
steer them to cognitive science, psychology and humanities, bridging
the gap between “hard” and “soft” sciences. Even if the modules we
chose promote the inclusion of novices – e.g. visual programming that
could be easily extended in OpenViBE or vvvv, they can be switched
to other components that would suit more experienced users – e.g.
Matlab for signal processing. The system is not reduced to a set of tools,
though, and we emphasized how such device is aimed at knowing better
ourselves and others.

We put the focus on one implementation of the system that consists
in a tangible puppet, Tobe, onto which signals are displayed. Its
anthropomorphic shape eases users’ identification, improves readability
and enhances likability. We tested how Tobe affected positively social
interactions in a 2-users scenario centered around a relaxation activity.
Our co-design approach relied on two interventions that occurred in a
scientific museum, as well as on surveys assessing how people relate
to physiological signals and how they represent themselves various
mental states.

11http://www.neurowear.com/projects_detail/neuro_tagging_map.html

http://www.neurowear.com/projects_detail/neuro_tagging_map.html
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We have identified design dimensions that we used to propose
potential applications for our system. Supporting rehabilitation in
medical care and facilitating the life in society of individuals with
sensory challenges such as autism or ADHD – with the possibility to
include the therapists in the loop – are use cases that could benefit from
a friendly way to expose inner states. Moreover, it would be interesting
to investigate how such a system could be used to ease social interaction
and collaboration or to foster empathy towards others.

Should be also studied how the form factor of the proxy influences
relationships, between a user and a Tobe from one hand, and between a
Tobe and observers on the other hand. Tobe is an anthropomorphic
avatar at the moment whereas more stereotypes and fantasies may be
associated to animal figures, even the more when tangibility anchors
the bond between the user and the proxy. There is already a literature
surrounding digital environments that could point out to research
directions on how we relate to avatars, e.g. [Jin, 2012].

Future work will include testing Tobe in classrooms or public work-
shops where users will be invited to build their own self-representation
from the ground up, including the tangible support, sensors and the
feedback design. Longer usages of the toolkit, over multiple days or
weeks, will also be the opportunity to strengthen signal processing in
order to provide more reliable mental states that could be displayed
between users – e.g. BCI settings as in part II. Giving users the tools and
manuals to investigate their own bodies and mind is a good way to
empower them and prompt self-reflection.
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Conclusion
After 4 acts, this is the end.

Parts I and II can be summarized in one sentence: EEG may be used
as a complementary method for the evaluation of human-computer
interactions.

Indeed, it is always difficult to assess the benefits and downsides of a
completely novel interaction technique; the quality of a tool heavily
relies on the type of glasses you wear while looking at it, hence on
the evaluation method. Imagine your are the chief executive officer
of a big company caring about 3D contents. Despite the well-known
discrepancy between the degrees of freedom of the input and output
devices (typically 2 vs 6), your employees have been using for years
the same tools – mouses and keyboards are not ideal but keep the
work done. While now and then you hear about revolutionizing and
jaw-dropping new devices, you would need more that nice words to get
convinced and change your habits. In order to make such impacting
decision you need proof, you need studies. Inquiries do not suffice you –
you witnessed too many times your children getting excited for new
toys, harassing you for months before Christmas, only for said toys
to be put in the attic and get dust before new year’s eve has passed.
At home you endure this stoically each year because you love your
little daemons no matter what, but damn you if at work you let your
feelings cloud your judgment. If you have to push something new to
your assembly line, you want your proofs, a taste of how the new device
impacts users – both how they feel while using it and how it affects
their work. You need something objective to chew on.

You should rather use the term “exocentric” instead, but we forgive
you. More importantly, we understand you. The evaluation of human-
computer interaction with physiological sensors responds to a common
need by the high ranked deciders: to give them reliable ammunition so
they could decide important stuff. We got that covered; we have shown
howmeasures of brain activity based on EEG could estimate users’
visual comfort with stereoscopic displays and workload during 3D
manipulation tasks. We have also validated the use of EEG to assess at
the same time workload, attention and error recognition; comparing
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two interaction techniques during a navigation task. Future work will
have to replicate those results with other user interfaces and consider
even more constructs. This way we will get closer to a continuous
measure of user experience, which in turn will help to shape better
interfaces.

Neuroergonomics benefits from the availability and affordability of
the hardware; a solution based on the open hardware board OpenBCI is
a good candidate to disseminate the use of EEG. During a preliminary
study – see Appendices – we showed that the signals measured by
this device are close to what could be recorded with a medical grade
equipment. This lowers the barrier between BCI applications and the
general public. In return, new usages may emerge, driven by end users
that will finally have access to a reliable source to sense their brain
activity. For example it did not require much to craft a headset that
could account for a mental state such has workload. Cheaper and more
practical sensors will not only improve what already exists, it will also
unveil brand new applications, beyond human-computer interaction.

In part III we saw how heart rate could support playful interactions
such as board games. Thanks to remote sensing, users did not have
to wear any equipment to enjoy the proposed application. It was a
“seat and play” setting; ideal to integrate seamlessly physiological
computing to everyday life. Physiological sensors could intercede
between any persons, whether or not they have a medical condition,
even if they do not seek to improve in sport activities or if they are not
interested in self empowerment, no matter if computers are in the
environment or not. Sharing physiological signals, even as simple as
cardiac activity, may help to increase social presence. We unveiled how
the “physiological similarity-attraction” effect could foster empathy
toward embodied agents (even poorly animated faces with a synthetic
voice!). We built on these various premises to create tangible avatars
that display physiological activities and mental states, one step further
toward the removal of technological artifacts – computers are at their
best when you forget they’re even there.

We proposed a toolkit to let people explore freely their physiology
and mental states in part IV. Not only do users’ physiological signals
reflects on Tobe, but high-level mental state can be selected and overtly
displayed, giving insights about processes that are usually hard – if
not impossible – to acknowledge. Teegi, which makes EEG signals
tangible for the purpose of scientific outreach, can be assimilated as
one implementation of the Tobe system. We envisioned multi-users
scenarios where each user have a distinct Tobe. When we tested
a relaxation exercise with 2-users, we saw the emergence of rich
interactions that were based only on signals associated to breathing.
This suggests that Tobe could be indeed employed as a proxy for
interpersonal communications. Technology eventually stopped to
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diminish social presence, it is now on the verge to augment it with
alternate communication channels.



Challenges and
perspectives

Although several leads have already been suggested for future works all
along the various chapters of this thesis, some broader challenges cover
more than a single work. These long-term goals are split in four items.
We will question how much sensors may disrupt what they measure,
awe before the new wonders of the big data, get suspicious one moment
about others’ intentions but eventually remain hopeful for brighter
social interactions.

Influence of the sensors
We shaped new scenarios and toyed with more practical devices, but
no matter how lightweight they are, EEG and physiological sensors
change the way people behave and users interact. Movements could be
restrained by the devices and users could perceive a more stressful
context, potentially biasing their experience.

Some studies inquired the acceptability and usability of EEG headsets
from end-users perspective, e.g. [Nijboer et al., 2015]. More generally,
we can wonder how many sensors users could handle before the user
experience falters and which form factor is best suited. When we
intervened in a scientific museum in chapter, 11 we tried our best to
craft wearables that would not impede users’ comfort. The informal
interviews we had with the participants afterwards suggested that
the latter were not bothered by our “instrumented” lab coat, but we
intervened only over short periods of time and there was no proper
evaluation.

We started to establish a protocol to investigate whether or not
physiological sensors are a burden, and if so to which extent. During the
work that took place along the “3D maze” project in chapter 7, we
gave to our participants at mid-experiment a questionnaire inquiring
about immersion. Indeed, in virtual reality one common metric to
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assess by how much the environment and the sensory modalities of the
simulation favour immersion consists in measuring how much users are
still aware of the real reality when they are interacting. The Immersive
Experience Questionnaire (IEQ) that we gave possesses items that
specifically inquire the perception of stimuli non congruent to the
virtual environment. The more users perceive the external world,
the less they are immersed. We hypothesized that an EEG cap or an
experimental setup too disturbing or disruptive would translate into
poor IEQ scores.

The objective was to make between-subjects comparisons, with a
group enduring the regular experiment, another one playing the same
levels (including calibration tasks) but with no EEG recordings and a last
group with still the same protocol but additional physiological sensors
on top of the EEG headset – EDA and ECG used during the evaluation of
3D tasks in chapter 6. Because of time constrains we could not proceed
with the last two groups.

Hence, we only have IEQ scores from a group wearing the EEG Other scores means
and SD: cognitive
involvement: 53.33
(9.48); emotional
involvement: 54.08
(8.95); challenge: 20.83
(3.38); control: 29.58
(7.18); single measure
of immersion: 6.50
(2.35).

headset, with no possible comparisons. For the record, we computed
IEQ scores as described in [Jennett, 2010]. Those scores are calculated by
summing up the items of the 7-point Likert scale questionnaires. Across
our 12 participants – see chapter 7 for apparatus – the mean immersion
score was 142.50 (SD: 23.77). This score can vary between 31 and 217 (7
× 31 items); the bigger it is the more immersed players feel. The “real
world dissociation factor” score was 24.17 (SD: 8.00). This score is the
most interesting factor for assessing sensors’ influence; it represents
how much players are both aware of their surroundings (e.g. external
stimuli) and their “real life” (e.g. everyday concerns). It varies between
6 (totally aware of the real world) to 42 (totally forgetful of the real
world).

The scores we measured seem on par with the various immersive
conditions that were tested in [Jennett, 2010] – where no physiological
sensors were involved. This may suggest that even a tedious equipment
such as a full EEG headset composed of 32 wet electrodes does not
necessarily impede user experience, or at least not blatantly. Of course,
even if the IEQ questionnaire may serve as a standard for measuring
sensors’ hindrance, the virtual environment that we utilized was
different from the literature and many factors could have influenced
positively or negatively the scores we report here.
Our group, or others, will have to carry on with these investiga-

tions and delimit the boundaries within which it is acceptable to use
physiological sensors to account for users’ mental states.

Real-time measures from the many
When dealing with physiological signals in general and brain recordings
in particular, one should remain cautious about the interpretations of
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the results. Confounding factors may obfuscate the mental states that
are inferred from brain activity [Gerjets et al., 2014]. This is why we
ended up using a dedicated virtual environment in chapter 7, with
difficulty levels that were validated beforehand through questionnaires.
This way we confirmed that a task such as the N-back could be used to
calibrate the monitoring of workload during richer interactions. We
did so to compare interaction techniques, but retrospectively it also
strengthens the results observed in chapter 6 about the strain that
complex 3D manipulation tasks induce .

EEG can be added to the repertoire of HCI evaluation methods. It can
be put into practice to assess the quality of a product – a new user
interface or interaction technique – during its conception. Brain signals
can assess more than onemental state at the same time,which is another
advantage over inquiries beside continuous and egocentric measures.
However, on the other hand, inquiries are qualitative measures that
help to determine which precise aspect of the user experience is being
evaluated. It would be interesting, then, to combine those two forms of
evaluation methods within the same framework.
For instance, if real-time measures are made instead of offline

analyses, we could imagine experts monitoring users while they are
interacting, and asking them directly questions about what they are ex-
periencing if the physiological signals prompt for further investigations.
For example, an unexpected peak in workload or a sudden burst of
interaction errors – which may look like artifacts otherwise – may be
due to the fact that the user momentously lost sight of the task. We
had somewhat of a similar situation with one of our participants that
were playing with our “3D maze”. At some point the reactions of the
participant within the game seemed completely random. It was only by
talking to him directly that we could understand he had trouble with
the instructions. Only for commodity did we not try to implement “real”
passive BCI, with real-time measures, but with such tool at disposal a
focus group could greatly enhance the overall quality of the evaluation.

Another great potential for HCI evaluation lies in the trend that goes
along big data and cloud computing. With the 3D maze still, we have a
version of the software that can be played directly within the browser.
It is not a technological marvel, nowadays with a development platform
alike Unity, it is a matter of a few clicks to deploy an application on
the web. Had we pushed into this direction, we could have gathered
an incredible amount of behavioral measures, way more than the 12
data points that we harvested over a week of experiments. In fact, the
company behind Unity itself now advertises on the fact that developers
could gather metrics about players’ habits thanks to their platform.

A true game changer would consist in benefiting from such approach
with physiological computing. We mentioned how sensors embedded
into wearables may one day become mainstream, but as of today,
with devices that users possess, it is already possible to evaluate HCI
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through physiological signals and through the web – an opportunity to
scale up a little the collected data. Indeed, appendix D shows that a
simple video feed could be used to monitor cardiac activity, and we
already saw in chapter 3 that from heart rate and heart rate variability
mental states can be inferred – e.g. valence or workload. Knowing that
a good proportion of the computers that are sold already possess a
webcam – look-up at the bezel that surrounds the shiny screen of your
laptop – there would be little left to accomplish before we could have
physiological computing in the cloud.

Even the computing power required to synchronize and process such
data may not be an issue. Indeed, a framework supporting cloud-based
BCI – much more resource consuming than heart rate – is well described
in [Zao et al., 2014]. There, the data streams were encapsulated in a
real-time messaging protocol that ensured that no packets were lost
during the transmission over Internet (MQTT) and off-site data centers
were used to process signals. While this study involved few users, the
company Affectiva12 is currently deploying a toolkit called “Affdex”
that lets content providers and advertisers measure through Internet
the emotional state of their audience using facial recognition, showing
that real-time processing of the many is doable.

We drew a particular usage for HCI evaluation, but the prospects of
physiological cloud computing – or, if I may, “brain cloud interfaces” – go
far beyond this scope. It would be an answer to the cumbersomeness of
having the software and the knowledge to use BCI. You put on the device,
request for an application, and that’s it. Interaxon, the company behind
the consumer-oriented MUSE EEG headset, is collecting and harvesting
data from thousands of users across the world. Allegedly to do research
and improve their measures. Collecting data across individuals do
help to improve measures, for example in [Huang et al., 2014] various
physiological signals from 250 participants were gathered to study
emotions, but it is doubtful that private companies will open anytime
soon their framework. A community-driven effort toward cloud-based
EEG signal processing is actually emerging with CloudBrain13 and may
be better suited to support pipelines agnostic to applications.

It is hard to anticipate what outcome will emerged from big data
applied to physiological states – or even if any of these solutions
will really take off. More practicality? Better algorithms? Better
understanding of our mental processes? New insights about the patterns
that drive entire societies? One should stay cautious, though, and even
prior to reaching those scales there are ethical concerns that surround
physiological computing.

12http://www.affectiva.com/
13https://github.com/marionleborgne/cloudbrain

http://www.affectiva.com/
https://github.com/marionleborgne/cloudbrain
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Ethics
We saw how physiological computing could benefit human-computer
interaction and social presence (if not, I have something to worry
about). However, although I am thrilled by the possibilities unveiled by
physiological computing regarding casual interactions we, as scientists,
should raise the awareness of users toward the signals that could be
measured from their physiology, and help to prevent controversial uses.
For instance, despite people being more andmore concerned about their
privacy, it seems that the general public still sees activity tracker as being
inoffensive [Motti and Caine, 2015]. Yet, with smartwatches constantly
connected to smartphones, there is little technological barriers against
an application that would covertly data mine physiological reactions for
profiling and advertisement. The question is even more problematic
when remote sensing is involved. Physiological sensors should be a tool
that give more control to them, not one that takes power away.

Hence, users’ awareness and active participation should be encour-
aged. Such principle presided over our choices when we built Tobe. The
use-cases we studied with Tobe ensure that users have the upper hand
on what they share about themselves, for example they choose which
signals are displayed on their puppet. I think that symmetry is an
important factor for the acceptability of physiological sensors. In a
given space, that everyone shares her or his Tobe ensures equal terms
between users.

In the end, I do not insist on social interactions solely because I think
that a tool such as Tobe could trigger a shift in what computer science
has to offer to everyday people. I do so also because physiological
computing brings applications and scenarios that are ethically debatable.
I am not comfortable with usages that seek to create something alike
a “lie detector” or that use body monitoring for advertisement and
neuromarketing. Others will disagree, and they have the perfect right to
push into these directions. However, I believe that Tobe, which displays
in a constrained space and time what is inferred from physiological
signals, is an opportunity to give users both awareness about what is
measured and control over what they let out – signals are not recorded,
not broadcasted, there is no intention to conceal some monitoring
behind a one-time authorization.

For example, during the board-game scenario in chapter 9, even
though the “bluffing” game mechanism was de facto an incentive for the
players to probe heart rates and guess the real hand of their adversaries,
this was one information among others concealed within the signal;
they knew the outcome and made fun of it. They volunteered, and it
was when the symmetry was broken – when players had no feedback
about their own internal state – that stressful situation tented to arise.
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Only with careful precautions about how and why physiological
data is utilized could proxies alike Tobe become social prostheses that
question and extend the boundaries of our self.

Tobeegi
Let’s put aside the technological and practical aspects of physiological
computing and focus instead on its applications.

In chapters 10 and 11 we saw how such signals could be put into
practice to mediate people. The simple fact of reflecting on ourselves
and know better our own body – i.e. improving interoception – could
suffice to favour a better health [Farb et al., 2015]. One may benefit from
a device that puts physiological activity into context. In [Rennert and
Karapanos, 2013], users prone to social anxiety wear a mobile device
that detects when heart rate increases to tag and geolocalize stressful
events; “lifelogging” through the day helps them to acknowledge the
causes of their turmoil and deal better with those situations.

With Tobe, people can build from scratch their own representation
of their inner self. Thanks to the building block we developed along
those last years – both hardware and software – it is now feasible for the
general public to assemble and run by themselves a tangible avatar that
is linked to their physiology, a “mini-me” of some sort. Guidance is still
required, of course, but the process can well occur within a fablab; we
have working prototypes that are based on off-the shelf components
and we intend to document every step.

At the time I’m wrapping up my thesis, I have the chance to visit a
laboratory in Montréal. Not that I’m particularly inclined to unveil
what’s going on in my life, but here I witness firsthand the emergence
of a fast growing community that evolves around BCI technologies.
Within a year, enthusiasts from all around the city gathered and started
to meet frequently. They have tight links with local scientists from the
field, they organize events to introduce the general public to the subject,
they hack their way through the various devices at their disposal.
Moreover, they attempt to build on the long term, spurring initiatives
among students, looking after projects that could involve a variety of
expertise. Now under the flag NeuroTechX14 several branches all over
the world are federating. CloudBrain is one realization that came from
this working force.

I do not want to give away free advertising space in this section,
but I wonder how far such community could go. Their approach, that
seeks popularization and nurturing, is very close to the views we had
been sharing within the Potioc team – in the end this thesis is but an
emanation of a whole scientific group. There is one caveat, though: by
far the majority of community has a background in engineering or
computer sciences. I may had ventured into cognitive science, but I

14http://neurotechx.com/

http://neurotechx.com/
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have, too, the mark of the geek imprinted in my flesh. People that have
no particular interest in gadgets and computers, or that cannot stand
obscure and stupidmachines – long way to go before seamless HCI –
should not be left aside.

We framed how proxies displaying physiological activity and mental
states can foster new kind of social interactions and augment social
presence. Physiological computing is an opportunity to put back
the focus on the human. Using physiology to mediate oneself is a
long-term achievement that may or may not take place in a structure
alike NeuroTechX, but that will definitely comes from the people.

First step on the road, In the near future I hope to investigate more
of multi-users scenarios, using passive BCI settings to provide reliable
measures; craft a “Tobeegi” of some sort that could present both low
and high level signals to users. And eventually put it on a drone to make
it fly, obviously.



Appendices

TOWARD PRACTICAL SENSORS

In the following appendices are compiled more technical aspects
of my work as well as insights that I have yet to validate. Indeed,
as an intermission between applications of physiological com-
puting oriented from the one hand toward HCI evaluation and,
from the other hand, toward social interactions, I took a closer
look at the hardware that supports physiological sensing.
Here, concerning neuroimaging, we investigate how new EEG de-
vices,more affordable and open, compete against traditional equip-
ment. As for heart rate measures, we describe how remote sens-
ing could be implemented with a simple webcam thanks to pho-
toplethysmography. Finally, we draw some guidelines that could
help to reduce the amount of artifacts by relying onnon-obtrusive
feedback about signals’ quality.
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A
Manifesto for an
ideal EEG world

We mentioned in part I how new EEG devices appeared on the market in
the last years, oriented toward a larger public, with a lower price tag
and a more comfortable use. As opposed to “wet” electrodes employed
for medical research, “dry” electrodes are faster to set-up (no more
conductive gel) but are less sensitive – see [Blankertz et al., 2010], sec.
2.1. Hence, some companies, while trying to transform EEG into a
mass-product, bring less reliable technology to the market. Those
devices often posses fewer electrodes. Lastly, without a helmet the
electrodes are difficult to place in a standardized position on the scalp.

While there are alreadymany devices that are practical to use thanks
to dry sensors and wireless connection to computer – a must-have
for ambulatory use-cases – it is not always easy to verify their claims
concerning their accuracy. The use of proprietary or close software also
prevent users from freely choosing their workflow, e.g. one may have to
switch to another operating system because of poor support from the
manufacturer1.

Having the possibility to place electrodes at specific locations on the
scalp is essential, especially because it would require very expensive
and cumbersome hardware in order to cover at once all the positions.
Unfortunately, most of the EEG headsets that are appealing from a user
perspective are an all-inclusive solution were we must comply with the
choice of the manufacturer – that sometimes differ from standard

1any resemblance with situations where I had to run a computer on windows in
order to feed a pipeline under Linux is completely assumed
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positioning [David Hairston et al., 2014]. Often, as it is the case with
motor imagery, it would be preferable to have 8 electrodes packed
around a narrow area of interest (i.e. C3/Cz/C3) than 16 electrodes
trying to cover the whole head. The poor spatial resolution of EEG could
be solved in part by the versatility of electrodes position.

This is why we defined three requirements for an ideal EEG solution:
• Open-source driver in order to process freely and knowingly data
(I strongly disagree with a business model that make pay 100
extra dollars just to provide a SDK for another distribution of linux.
Don’t temp me to give away the brand I’m thinking about.)

• Open-source hardware in order to acknowledge beforehand the
reliability of measured signals. When the specification and the
schematics of hardware are a known variable it is easier to
assess the precision of the measures. Characteristics such as the
signal-to-noise ratio of the amplifier or the resolution of the
analog-to-digital converter (ADC) are critical. For example, even
if you can acquire the electrical currents originating from the
heart with a pair of clips – true story! – it would be delusional to
measure anything with a 8bit ADC: since the system likely runs at
3.3V (or 5V), the resulting precision is 3.3V

28 = 12mV , way bigger
than the few millivolts range of ECG signals. And if you plug an
amplifier to boost the input signal, then it would be impossible to
measure with the same component ECG and EEG signals, the
latter being within the µV range, a thousand times less. Even
though traditional manufacturers give the overall specifications
of their amplifiers, the electronic circuitry is the result of complex
interactions and in practice many components influence devices’
performance [Usakli, 2010].

• Customizable electrode positioning, that is to said the possibility to
place electrodes anywhere on the scalp. Moreover, this positioning
should follow the 10-20 international system, or even better the
10-5 system (more refined separations along the sagittal reference
curve), so that measures and findings could be compared together
and with the existing scientific knowledge.

To which we add new items for a practical solution:
• Affordable, not only for every lab to be able to use them, or to
make possible to use many different EEG headsets at the same
time, but also – and maybe especially – for the technology to reach
the general public. More often that we may realize science is
driven by the usages, and even if scientists posses many qualities,
the most important pool of creativity lies in everyday women and
men. Give them a tool that could not hurt them, see how they
handle it, what they want to do with it, and help them to do better.
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• Lightweight, so it could be used in ambulatory settings. That
implies a technology that is not a hindrance nor a health risk
when it is used during a prolonged period. Little is studied in BCI
with users that could use EEG during days or weeks – instead
of hours and minutes. Again, new usages, and new processing
(constant background auto-calibration?), could arise.

• Wireless; it seems obvious that EEG recordings with no strings
attached is better for the freedom of movements, but is poses new
constraints on extensive uses, for example energy consumption –
a problem often occurring with “wearables”, computers and
devices that users could wear and use all day long.

• No preparation – having especially the skin preparation in mind.
Because it is the one nightmare of someone coming in the lab to do
a BCI experiment, and the one tedious step for the experimenter
at the same time: fill electrode one by one with gel or other
conducting solution, wait for good measures, sometimes check the
impedance and correct accordingly the position. Such operation
could last for dozens of minutes if there are many electrodes. As
such, dry electrodes seem the obvious choice. At the same time as
individual electrode setup, the positioning of the cap according to
the 10-20 system should be made as fast as possible, e.g. with easy
to handle markers that do not require to measure by hand the
distance between the nasion and the inion or between the ears.

With all these observations in mind, we welcomed happily the
appearance of the OpenBCI project on the participative funding
plateforme Kickstarter during December 2013. We almost immediately
jumped in and were among the firsts to received this new generation of
amplifier, aimed at the many, once the campaign and the manufacturing
process ended, by November 2014.

The OpenBCI project by itself was fulfilling many of the items on our
list for achieving a perfect and practical EEG device. It’s open-hardware,
the firmware and the proposed software suite is open-source, it was
nearly a hundred times cheaper than the hardware that we used in the
lab, and both the form-factor design and the proposed 3D printable
headset oversaw quite a handful of possible use.

There were few downsides, of course. First it has only 16 electrodes
available, which is less than the 32 that we were used to. The more
channels we have the better, since a better scalp coverage enable more
accurate measures, but as mentioned at the beginning of this section,
when the EEG markers are known, a good placement can overcome this
difficulty. Second, the electronics such as the core chip, the Texas
Instrument ADS1299, were suited on the paper for precise and reliable
measure, but they needed to be tested. This is why it was necessary
to compare it with our existing solution: After some pre-test (P300
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speller and motor imagery, team’s specialty) we conceived a protocol to
conduct a proper evaluation of the system that we describe below in
appendix B. In the appendix C that follows, we had the opportunity to
craft our own headset, that we could attach to it.



B

B
Evaluating the
OpenBCI board

To our knowledge, this preliminary study is the first which attempts
to investigate formally the reliability of the OpenBCI board. In this
chapter we compare side by side the OpenBCI to the g.tec g.USBamp
amplifier. For this purpose, we employed an original montage, based on
the simultaneous recording of the same set of electrodes. Two set
of recordings were performed. During the first experiment a simple
adapter with a direct connection between the amplifiers and the
electrodes was used. Then, in a second experiment, we attempted to
discard any possible interference that one amplifier could cause to the
other by adding “ideal” diodes to the adapter.

Both spectral and temporal features were tested – the former with a
N-back task, the latter with an P300 speller. Overall, the results suggest
that the OpenBCI board could be an effective alternative to traditional
EEG devices. Even though a medical grade equipment still outperforms
the OpenBCI board, the latter gives very close EEG readings, resulting in
practice in a classification accuracy that may be suitable for popular
interactions. We conclude the chapter with several leads for further
improvements of the open-hardware solution.

An summarized version of this work was published in [Frey, 2016a].
I thank here and now Thibault Laine for the technical support –

more below in section Credits.4.
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B.1 Introduction
We have shaped what form would take more practical EEG devices, that
could be used in the field while remaining reliable enough to it could
account for actual brain signals. The main component of an EEG device
is its amplifier, the circuit board that will seek electrical currents few
millionths volt and give comprehensive readings to the computer. It is a
critical step in the chain. We highlighted a community driven and open
hardware project that aroused recently, the OpenBCI board, based on
Texas Instrument ADS1299 chips.

In this chapter we investigate how this board compares to medical
grade equipment that is commonly used in research laboratories
dealing with EEG. For instance, we compare side by side OpenBCI with
the hardware used all along the works described in part II, the g.tec
g.USBamp amplifier. The price tag of the g.tec solution is around 20
thousands euros, 25 times more expensive than the 800 euros of 16
channels version of the OpenBCI board. Besides the price, the g.USBAmp
is also more bulky; bigger, heavier and does not run on batteries.

There are of course alternatives, even within g.tec products, that
would be closer to what OpenBCI has to offer on the paper. For instance
the g.USBamp does not aim at wearables. Still, one could wonder if
there is a catch, if in practice, beside the specs, there are differences
in using a solution alike OpenBCI. Here the question is not to assess
which device is the best per se. Instead, we investigate if in a context of
popular interactions – a narrow scope compared to the possibilities that
offers the g.USBamp – it is conceivable for researchers from the field or
(well equipped) enthusiasts to make the leap. To which extend should
we employ devices coming from the DIY community for actual BCI
applications?
To answers this question, we adopted an approach somewhat

different to what exists in the literature. Many papers deal with the
comparison of electrodes, e.g. wet vs dry. To do so, authors try to
optimize the placement of both sets of sensors in order to get measures
that originate from the same spots. However, no matter their efforts
they could notmerge sensors, and even clevermontages, with electrodes
of one sort positioned between electrodes of the other sort [Tautan
et al., 2013], are not ideal. It will produce a slight offset, hence a slight
inaccuracy. Another alternative is to make separate measures by
repeating the recordings with each system [Nijboer et al., 2015], but
once again the conditions could not be exactly the same.
In the present study we do not attempt to assess the quality of

electrodes, but the behavior of amplifiers that are attached to them. Not
a whole system, only the amplifiers. Therefore, we would not mind
using the same electrodes during simultaneous recordings. This setup
would ensure that the signal coming in each amplifier’s inputs is exactly
the same, avoiding any bias regarding the source of the measures.
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We made that possible by crafting a dedicated adapter, one that
basically splits in two the electrodes’ wires. Such parallel measurement
works because the amplifiers have high impedance circuits, that is to
say that they are designed to not draw any amount of current from
their source. As such, when one amplifier is connected, the readings
of the other stay the same. Of course an infinite impedance cannot
be achieved, and no matter the precautions this setup may cause a
very slight difference compared to separate recordings. This is why in
a second time we added to our adapter a circuit that prevents any
interference between the two amplifiers, using ideal diodes to block
current flows in one direction.

During the two experience described bellow, we covered the two
types of EEG features that we employed during part II. A task monitoring
workload aimed at assessing spectral information, and an oddball task
sought temporal information. For each amplifier we measured the
performance of a classifier based on those recordings, and additionally
we compared both by correlating the signals that they recorded. No
matter the financial aspects, the qualities of the g.USBamp amplifier
make it the perfect baseline to gauge new challengers. This is also true
for the electrodes developed by its manufacturer; in this study we are
using g.tec wet and active electrodes.

B.2 First experiment: direct connections
B.2.1 Experimental setup
We acquired 16 EEG channels using the active g.Ladybird electrodes from Newer

g.GAMMAboxes
posses proprietary
connectors instead of
D-sub.

g.tec. In this system, the electrodes are attached to a box that powers
their electrical components and retrieves the signal; the g.GAMMAbox.
After studying the wiring of the g.GAMMAbox, we designed a printed
circuit board (PCB) to connect both amplifiers. Our adapter plugs on
one end to the D-sub 26 connector of the g.GAMMAbox. Thanks to a
pinout composed of 2.54mm connectors that gave access to all the
channels (16 EEG + reference + ground), we attached the OpenBCI board
to the adapter. On the other end of the adapter there was a D-sub 26
female connector, onto which we could plug the g.USBamp amplifier as
if it were the regular end of the g.GAMMAbox. The schematics of the 2
layers PCB and a view of the setup are presented in Figure B.1.

The EEG channels were positioned according to the 10-20 system at As advised by the
documentation, the
ground channel was
attached to the “BIAS”
pin of the OpenBCI.

AFz, Fz, FCz, C3, C1, Cz, C2, C4, CPz, P3, Pz, P4, POz, O1, Oz and O2 – ground
at FPz, reference on the left earlobe. Since the measures between both
amplifiers were identical, only one recording session occurred, with one
participant – there were no factors to counterbalance with repeated
measures. The signals of both amplifier were acquired using OpenViBE
1.0.1; at 512Hz sampling rate for the g.USBamp and 125Hz sampling rate
for the OpenBCI board.
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Figure B.1 – Left: schematics of the direct adapter. Right: Corresponding view
of the setup.

The spectral features were investigated using the very same N-back
task used to calibrate workload in part II. There were 360 trials presented
during 6 blocks of alternate difficulty levels – see chapter 6 for details.
The recording session lasted approximately 12 minutes.

The temporal features were investigated using an oddball task
directly implemented within OpenViBE with a visual P300 speller (see
chapter 4). During the recordings a matrix of 6 by 6 letters and digits
was displayed in full screen on a 24-inch display. Only the calibration
session occurred, during which one need to focus one’s attention on a
predefined sequence of letters. 32 letters composing a pangram were
mentally “spelled” this way. The sentence was, without spaces, “pack
my box with five dozen liquor jugs”. Letters were flashing for 0.2s.
There were 24 flashes per letter (12 times the row, 12 times the column),
hence due to the matrix disposition there were in total 4608 trials,
among which 768 were targets – “odd” trials, i.e. the letters of the target
sentence were flashing. The recording session lasted approximately 30
minutes.

The acquisition of both amplifiers’ signals and the P300 application
occurred within the same OpenViBE scenario (script). The recordings of
each amplifier were synchronized with the appropriate events and
exported in separate GDF files for later analyses. There was also only
one scenario involved in the synchronization of all signals and events
in the case of the N-back task; stimulation from the python script
supporting this latter task were retrieved using the LSL protocol.
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B.2.2 Signal processing
Two kinds of analyses were performed. One aimed at assessing if and
how the amplifiers differ in practice, when used for classification. The
second then looked at the correlation between the acquired signals.

B.2.2.1 Classification
The signal processing of the data acquired during the N-back task is
identical to what was employed in previous works, i.e. 2s time windows,
5 frequency bands – delta (1-3 Hz), theta (4-6 Hz), alpha (7-13 Hz), beta
(14-25 Hz) and gamma (26-40 Hz) – and spatial filters. Because there was
no point in transferring the calibration task to another context, we
did not use the stationary subspace CSP introduced in chapter 6, but
the “regular” common spatial patterns spatial filters to reduce the
16 channels to 6 “virtual” channels more discriminant between the
workload conditions. Additionally, we also tested the 3 frequency bands
version of our pipeline, that consider only the lower frequencies, less
prone to muscular artifacts – delta, theta and alpha.

Concerning the oddball task, we kept the same signal processing The safeguard
against overlapping
time windows was in
fact present during
every single analysis
described in this
thesis, but only useful
here.

as the one described in chapter 7 for interaction errors and audio
probes. That is to say that we band-passed the signal between 0.5Hz
and 40Hz, downsampled it by a factor 32 using the “decimate” Matlab
function – by a factor 8 for OpenBCI because of the reduced sampling
rate –, and applied a REFSF spatial filter to reduce channels’ dimension
from 16 to 5. We used 1s time windows after stimuli onsets – letters’
flashes – to epoch (“slice”) our signal. However, in order to prevent data
to overlap between consecutive stimuli due to the rapid pace of the
flashes, after a first pass of epoching we discarded overlapping time
windows from further analyses. This ensured that no part of the signal
could be seen twice by the classifier between the training phase and the
testing phase and bias the accuracy. The procedure was automatic, the
first non-overlapping epoch in order of appearance being kept. As a
result, in the end we obtained 48 target trials and 240 distractor trials
for classification, identical between the g.USBamp and the OpenBCI
recordings.

Both for the workload and the P300 speller tasks, we used shrinkage
LDA for classification and 4-fold cross-validation to assess the accuracy
of the system, computing AUROCC scores (refer to chapter 7 for
more details). In order to make statistical comparisons between both
amplifiers for each type of features that we studied, we ran 10 times the
analyses – the trials were selected randomly for cross-validation.

B.2.2.2 Correlations
We compared, on the one hand, the frequency spectra associated to the
different workload conditions and, on the other hand, the time course
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Figure B.2 – Left: Averaged ERP across channels of the target trials during the oddball task,
before time shift correction. Right: Cross-correlation between the amplifiers.
The computed lag of 11 data points corresponds to 88ms. (Direct connection.)

of the ERP that were caused by the flashing target letters. To do so, we
used Pearson correlations, on par with the literature for similar analyses
– e.g. [Zander et al., 2011]. In order to ensure a 1-to-1 correspondence
between our sets of data, the recordings from the g.USBamp were
downsampled to 125Hz – same sampling rate as for the OpenBCI – using
the “resample” function from Matlab R2014a signal processing toolbox.
Concerning the workload task, we first aggregated the 2s time-

windows corresponding to each condition (0-back and 2-back). Then we
used the “spectopo” function of the EEGLAB toolbox (version 13.4.4b) to
compute the grand average power spectral between 1Hz and 40Hz, for
each channel. The output of the function was then passed on to R
(version 3.0.2) to compute correlations through the “rcorr” function
from the “Hmisc” package.

For the oddball task, we first band-passed the signals between 1Hz
and 8Hz – the approximate frequency band used for classification. Then
we extracted time epochs starting 0.5s prior to the flashing of the target
letters and ending 1s after stimuli onset. Contrary to what occurred for
classification, we did not prune overlapping epochs in the oddball task
when we compute the averaged ERP – there was no bias that could have
been induced here. Finally, we averaged the ERP per channel before
exporting the time points to the R environment.

B.2.3 Results
B.2.3.1 Classification
The results regarding classification accuracy are presented in Table B.1,
with the AUROCC scores for each one of the 10 repetitions, for both
amplifiers and both tasks – including the 3 and 5 frequency bands
pipeline for workload.

We tested for significance using Wilcoxon signed-rank tests. There
was a significant difference between amplifiers for the P300 tasks (p <
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Figure B.3 – Averaged ERP for the target trials of the oddball task (direct connection).

0.01). The AUROCC mean score for the g.USBamp was 0.961 vs 0.918
for the OpenBCI. There were however no significance but tendencies
concerning the workload task, with mean AUROCC scores between 0.85
and 0.86 for the 3 bands pipeline and between 0.89 and 0.90 for the 5
bands task – see Table B.1 for details.

B.2.3.2 Correlations
When we first analyzed our data to seek correlations regarding the
oddball tasks, we realized that a shift occurred during the recordings,
as denoted in Figure B.2 by the grand average of the ERP for target
trials across channels. This may have been caused by a software issue
(see Discussion). In order to correct the shift and conduct proper
comparisons between both amplifiers’ measures, we used a cross-
correlation to estimate the time shift, using the “ccf” function from the
R “stats” package. We found a delay of 88ms between the two signals –
11 data points at 125Hz, see Figure B.2.

In Figure B.3, the averaged ERP were shifted by as much for Truth is, rcorr
returned a “0”
p-value for all the
correlations
mentioned in this
chapter.

each channel. Corresponding Pearson correlation R scores, that were
computed using the “rcorr” function, are presented in Table B.2. The
mean R score is 0.9965 and is statistically significant (p < 0.001).

There was also a significant correlation (p < 0.001) for the spectral
features, with a mean R score of 0.9983 for the 0-back condition and
0.9979 the 2-back condition (see Table B.2 for details). Among the brain
signals patterns that could be expected during the completion of a
difficult task, the decrease nearby the alpha frequency band during the
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Figure B.4 – Averaged spectra for the 0-back trials of the N-bak task (direct connection).
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2-task condition can be observed within per-channel spectra presented
in Figures B.4 and B.5. Note that we did not correct time shifts prior to
workload analyses due to the nature of the features – i.e. spectral and
not temporal.

B.2.4 Discussion
The correlation between both temporal and spectral features tends so
show that the signals acquired by the g.USBamp and the OpenBCI are, if
not identical, very closely related. For every condition and channel
tested, the Pearson R score was greater than 0.99.
There were however more dissimilarities in the classification

accuracy obtained during the corresponding tasks. While there were
hardly a difference between the AUROCC scores computed from both
amplifiers with the N-back tasks, the g.USBamp performed significantly
better than the OpenBCI during the P300 speller task. The time shift
observed afterwards between the two amplifiers may partially explain
this difference. Indeed, the detection of ERP is particularly sensitive to
signals’ latency, and a shift between events’ timestamp and signal’s
acquisition could result in such degradation of performance when
temporal features are involved.

The radio transmission between the wireless OpenBCI board and
the dongle plugged to the computer may be one of the cause of the
situation. The problem could also originate from the software. As a
matter of fact, the OpenViBE acquisition driver of the OpenBCI board
was released no so long before our experiment, and was still labelled as
“unstable” as for version 1.0.1 of the software. One “oddity” that may
further highlight the youth of OpenBCI software integration: we realized
during our analysis that the recorded signals were completely inverted
on the Y axis. The voltage reported by the board were the opposite
of what g.USBamp was claiming. Since on numerous occasions we
acknowledged the accuracy of g.tec devices readings, it is the OpenBCI’s
signals that we inverted back to “normal” prior to correlation analyses.

Beside time shifts issues, as mentioned during the introduction we
needed to strengthen those first insights by discarding the eventuality
that both EEG signals may have influence each other due to the direct
wiring with the electrodes.

B.3 Second experiment: isolated connections
The second set of recordings is very similar to the what was described
during the first study. The second experiment only differs by the nature
of the adapter that was employed. As such we will only discuss the
changes that were made to the hardware and quickly dive into the
results.
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Figure B.6 – Left: schematics of the adapter with the ideal diodes montage. Note that there is
a set of ideal diodes on the ground channel, but they were shorted with a
jumper during our experiment. Right: Correspoding view of the setup.

B.3.1 Ideal adapter
Wemodified the adapter that connects the amplifiers to the g.GAMMAbox
– and by extent to the EEG electrodes. Instead of a direct connection
between each amplifier’s inputs and the EEG channels, we interposed
“ideal” (or “super”) diodes on the branches of the “Y” wiring.

Diodes are electrical components that let the current flow in only
one direction, the “forward” direction. Hence, this type of montage
ensures that no current could travel directly from one amplifier to the
other, contaminating the recordings. However, regular diodes cause a
voltage drop. The voltage drop varies depending on the materials used
for their construction, but it is at least 0.3V. Meaning that if the current
coming in the forward direction is lesser than 0.3V, no signal will pass
through. 0.3V is an order of magnitude superior to the range of EEG
signal – ≈ a thousand time, therefore regular diode could not be used.

To circumvent this problem, we utilized a particular montage that The regular diode is
placed between the
output and the
negative input of the
op-amp, i.e. on the
feedback loop.

involved operational amplifiers (op-amp). Op-amps are components
widely used in electrical circuits, acting as sorts of “building blocks”.
Notably, in combination with a regular diode, one could use a precision
rectifier configuration to obtain an “ideal” diode. This particular
montage is also known as a “super” diode, since there will always be a
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Figure B.7 – Left: Averaged ERP across channels of the target trials during the oddball task,
before time shift correction. Right: Cross-correlation between the amplifiers.
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slight voltage drop, but in this case, thanks to the gain of the op-amp, it
becomes negligible.

We mounted 36 of such ideal diodes on the adapter. One on each
end of the “Y” section associated to the 16 EEG channels, plus 2 for
the reference. Due to the nature of the electrical recordings, only the
ground was left without such circuit. We utilized Texas Instrument
op-amps, model TLC2272ACPE4. The TLC227xA series are more indicated
for precision application, and with 2 op-amps per chip we could limit
the overall size of the adapter. The operational amplifiers were powered
by an external circuit with regulated -2.5 / +2.5 voltage. The schematics
and a view of the adapter – also a 2 layers 2 layers PCB – are presented
in Figure B.6.

B.3.2 Results
The signal processing and the analyses were strictly identical to the
first experiment detailed above, refer to the previous section for related
information.

B.3.2.1 Classification
As with the first study, the results regarding classification accuracy are
presented in Table B.3, with the AUROCC scores for each one of the 10
repetitions, for both amplifiers and both tasks – including the 3 and 5
frequency bands pipeline for workload. We tested for significance using
Wilcoxon signed-rank tests. No matter the task there was no significant
difference, although the 5% threshold was nearly reached for spectral
features; the p-value was 0.051 for the 3 bands version of the workload
pipeline.
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Figure B.8 – Averaged ERP for the target trials of the oddball task (isolated connection).

B.3.2.2 Correlations
Concerning the P300 oddball task, there was a offset of 88ms as well
between the recordings of both amplifier with the isolated connection –
see Figure B.7 for the grand ERP average and the cross correlation. The
per-channel averaged ERP are plotted in figure B.8. Corresponding
Pearson correlation R scores are presented in Table B.4. The mean R
score is 0.8847 and is statistically significant (p < 0.001).

There was also a significant correlation (p < 0.001) for the spectral
features, with a mean R score of 0.9976 for the 0-back condition and
0.9987 the 2-back condition (see Table B.4 for details). The per-channel
spectra are presented in Figures B.9 and B.10. As with the direct
connection, the band frequency changes between the 0-back and the
2-back conditions can be observed in the spectra.

B.3.3 Discussion
The results with the isolated connections are not that different from
what was obtained during the first experiment. This would suggest that
directly connecting two high impedance amplifiers to the same EEG
electrodes could be a viable montage for a side-by-side comparison.

Since with both types of connector there was only one set of record-
ings, we could not draw any conclusion about the lower classification
accuracy obtained with the isolated montage. The vigilance level of the
participant alone could explain these performances.
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Figure B.9 – Averaged spectra for the 0-back trials of the N-bak task (isolated connection).
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Thanks to signals’ correlations, however, we may infer that noise
was added to the system due to the presence of additional electrical
components in the adapter. Indeed, while the spectra were once again
strongly correlated, the averaged ERP achieved “only” a mean R score of
0.88. Here external factors such as the metal state of the participant
or the quality of electrodes contacts could not have influenced one
amplifier rather than the other. Since temporal features are more
sensitive than spectral features to signal quality – e.g. one “peak” in the
signal vs oscillatory patterns over several seconds –, it is instead more
plausible that the difference with the first experiment comes from the
adapter.

Nonetheless, even though the ideal diode montage did not produce
ideal signals, those results still advocate for a close proximity between
the g.USBamp and the OpenBCI. No device behaved “better” than the
other, because no matter the lower correlation between averaged ERP,
the classification accuracy is in practice comparable between both
amplifiers. Each one probably endured different fluctuations since each
had a dedicated set of ideal diodes.

B.4 Conclusion
During this preliminary study, we compared the OpenBCI board to the
g.tec g.USBamp amplifier. We employed an original montage, based on
the simultaneous recording of the same set of electrodes. While as
a first approach we used a simple adapter with a direct connection
between the amplifiers and the electrodes, in a second experiment we
attempted to discard any possible interference that one amplifier could
cause to the other.

To do so, we built an adapter that embedded “ideal” diodes, com-
ponents that prevented electrical currents to flow “backward”. This
ensured that we could test both devices in isolation. We did not try to
compare both adapters as the purpose was simply to gather more
insights about the possibility of simultaneous recordings – this was a
precaution to detect a possible bias.

Overall, the results strongly suggest that the OpenBCI board – or a
similar solution – could indeed be an effective alternative to traditional
EEG devices. Even though a medical grade equipment still outperforms
the OpenBCI board, the latter gives very close EEG readings, resulting in
practice in a classification accuracy that may be suitable for popular
interactions.

Again, that is not to say that the OpenBCI could replace anyhow an
equipment such as the g.USBamp. For example, the open-hardware
initiative does not aim atmedical applications, nor should it be employed
in sensitive contexts. It does not possess any certification; one reason
why so many cheap EEG devices are wireless is not for practicality, but
to avoid any hazard due to power supply. Connecting somehow a body
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to the power grid requires extra precautions and a certified isolation,
moreover when the impedance between the electrodes and the brain is
intentionally lowered.

Beside the scope of application, we also stumbled on few issues with
the current state of the OpenBCI project. One concerns the sampling
rate of the board. While 125Hz may be enough for our use-cases – no
frequencies beyond 40Hz are used during this thesis – it may not suffice
others. The limitation of the sampling rate is caused by the wireless
protocol used for data transmission. OpenBCI can deliver 250Hz signals
to the computer, but only on 8 channels instead of 16. Note that this
may be optimized in the future by updating the firmware or using
alternate communications – as far as the board itself is concerned, the
documentation of the ADS1299 claims a sampling rate up to 16,000Hz.
The bandwidth is too limited to increase the sampling rate.

More problematic, there were unexpected behaviors regarding
signals synchronization. However, here I have to make my mea culpa.
Indeed, for the better or for the worse, I’m the one who implemented
OpenBCI support within OpenViBE. Hence, I may be also the one to
blame for any concerns regarding this particular software, even though
I have been precocious and programmed safeguards against data loss. I
will not try to dodge my own critics, but I also observed a difference of a
fraction of hertz in the actual sampling rate of the OpenBCI board I
tested, as well as packets that were lost here and then during recordings
– another source of respectively drift and artifacts. Fortunately there are
alternatives to OpenViBE and a wide variety of development kit available
to acquire OpenBCI signals, not mentioning the board firmware that can
bee freely reprogrammed. Consequently, there is room for improvement
thanks to the open-source nature of the project, and is likely that the
few issues raised regarding temporal features will be fixed in the future.

Now that we have demonstrated that an affordable device could give
reliable measures, in the next chapter we take a closer look to the
form factor aspect of the EEG device. At the same time we consider
more practical and more accessible electrodes – the active electrodes
employed in this chapter require a box twice as big as the OpenBCI
board and costs twice its price. We investigate to which extent one
could craft a dry headband with mostly off the self components.
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C
Popular EEG

headset
In this chapter we investigate the creation of an EEG headband
which could be used during public exhibitions for a fast instal-
lation of an EEG device. Indeed, while we were developing our
“Tobe” platform (chapter 11), we had the opportunity to bring
EEG to a scientific museum and let everyday people grasp their
brain activity. In the earlier iterations of the system we tested
the use of an Emotiv EPOC headset. The EPOC was already eas-
ier to install than medical headsets that use gel. However, it still
required a saline solution that tended to dry over time, caus-
ing additional installation time between users. Since the Tobe
project aims also at popularizing physiological computing by let-
ting people craft their own systems, we built an EEG device that
suited our need and that could at the same time be reproduced
by the general public within a fablab.

Amplifiers are usually agnostic to electrodes, and it is the case for
the OpenBCI device. There are standard connectors, and as soon as an
electrode could be connected with one pin and deliver a voltage, it is
good to go. The standard kit on OpenBCI comprises passive electrodes
made with gold. Compared to the electrode that we already possessed
(g.tec active g.Ladybird), passive electrodes are more sensitive to noise
(notably movements or magnetic disturbance). “Active” means that
a pre-amplifier is located right next to the recording site, onto the
electrode, so the signal that is transmitted through the cable to the main
amplifier is stronger. Besides, with active electrode the skin impedance

201
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is less of a problem. The other handicap consists in the material: gold
may have a better reputations for jewels, but for conductance the
best metal is silver, more precisely a combination of silver and silver
chloride (Ag/AgCl) [Tallgren et al., 2005].

Electrodes shipped with OpenBCI adopted a “cup” format and Mixing materials
could result in ions
slowly drifting from
one type of coating to
the other because of
differences in
electrical charges
between electrodes.

needed a paste to make contact with the scalp. This was maybe its only
advantage over the g.tec active Ag/AgCl electrode, as Ten20 product
which was delivered altogether is more reliable than other conductive
solutions [Tallgren et al., 2005]. The passive/active antagonism was the
most problematic to circumvent. Adapting existing solution to the
OpenBCI board would have withdrawn one of its benefits, as this small
and lightweight main amplifier would have required the addition of
proprietary cases (i.e. g.GAMMAbox) to power the active electrodes and
convert their connector to the more standard touchproof one. And
building our own active circuits would have required much engineering
and increased the coast of an affordable system, even if some paper
describe elegant solutions [Degen and Jäckel, 2006, Chi et al., 2010].

Fortunately, when we studied furthermore the differences between
our two sets of electrodes, we realized that in this particular situation,
and against many messages conveyed by manufacturers, passive
electrodes are not dead yet. Indeed, the length of the cable and their
dangling, two of the three causes of poor signal quality, did not really
apply to an OpenBCI board that is supposed to be embedded in a
headset – e.g. attached to the rear part. With the main amplifier at the
back of the skull, the cables’ length leading to the electrodes could be
greatly reduced, and since all cables are tightly attached to the headset,
their movements when users move is also reduced. And as for the
third variable, skin impedance, it is often a requirement of the past, a
reminiscence of a time when scientists were happily scratching their
subjects’ scalps for the sake of good signals. Excepts that since a few
years now, the quality of EEG amplifiers have increased, and their (very)
high input-impedance – that is to say their capacity to not disrupt the
incoming electrical current while it is being measured – deals way
better with scalp-electrode impedance [Ferree et al., 2001].
This is why we took this opportunity to build our own passive

electrodes, that use Ag/AgCl and, because we stumbled on cheap
electrodes that possess “fingers” to go through hair, we were also
tempted to test a dry solution. The result is of course not perfect, either
regarding the quality or the ease of use but we think we have been close
enough for a thesis that is not labelled as electrical engineering – I am
eagerly waiting for contact-free [Chi et al., 2010] or almost invisible
[Norton et al., 2015] electrodes.

C.1 Electrodes
We used a set of Ag/AgCl electrodes (reference TDE-201) from Florida These electrodes are

also sold by Biopac,
reference EL120
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Research Instruments (FRI) in order to build our passive solution. These
electrodes can be bought with no leads at a low price: less than 50 euros
(shipping included) for 20 electrodes. Their coating is made in Ag/AgCl
and they possess 12 pins that can go through the hair and reach the
surface of the scalp with no skin preparation. For the areas not covered
by hair – i.e. forehead – we used TDE-200 electrodes, that do not possess
pins.

Figure C.1 – Various examples of commercially available dry electrodes. Left:
TD-201 from Florida Research Instruments that we used in our
headset (“EL120” in Biopac catalogue).Middle: Cognionics Flex.
Right: g.tec g.SAHARA. Pictures from manufacturers. Note: scales
mismatch between images.

The geometry of the TDE-201 is not the best suited for the conception
of dry electrodes. In [Nathan and Jafari, 2014] authors studied how
the number of pins influence hair penetration, the surface of the
coating in contact with the scalp and at last EEG signal quality. They
describe guidelines about the best pins density to facilitate contact. They
conclude that an increase in a number of pins do not necessarily increase
the quality of the signal. The effect could even be the opposite: when
the number of pins is too important it could impede hair penetration.
The TDE-201 do not posses a pins array too dense, however since the
pins are located only on the outer ring of the electrode, their disposition
may not be ideal. In case the dry contact is not enough – e.g. very long
hair – a hole occupy the center part of the electrode and can be filled
with gel if needed (see Figure C.1).

The length of the pins of the TDE-201 prevent its use when the hair
is too furnished. The pins are 2mm long, much less than traditional dry
electrodes. For example the g.SAHARA system from g.tec comes in
two lengths: 7mm for the traditional electrodes and 16mm for the
extended version that aims at people with more hair than the average,
or people with a thick hairstyle. Finally, there is on the market novel
components that enable the creation of flexible electrodes that could
adapt to the pressure applied onto them and penetrate the hair even
more effectively, such as the electrodes conceived by Cognionics1.

All in all, that could make appear the FRI TDE-201 as a poor candidate
for the conception of dry electrode. Indeed, the specifications of the

1http://www.cognionics.com/

http://www.cognionics.com/
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manufacturer are unclear on the real purpose of those electrodes. Dry
recordings may not be exactly their intended use case, even though it as
been use as such in several studies in the past [Degen et al., 2007, Ye
et al., 2014, Tautan et al., 2013].
The main reason why we chose the TDE-201 is because of their

price and their availability, but they do possess a concrete advantage
over the other candidates: the fact that there is a space located in the
inner space of the electrode let the possibility for the experimenter to
use conductive solution in situations that prevent direct skin contact
or to improve signal quality. Other dry electrodes use a button-like
contact with the cable lead. It facilitates the installation but prevent the
addition of conductive solution once the electrodes are positioned.
FRI sells dedicated cable leads to be used with the EL120 but we

constructed our own cable lead in order to have more flexibility using,
regular wires.

C.2 Headset and cable leads

Figure C.2 – The 10-20 system used to standardized electrodes location. The
head is assimilated as a sphere that is centered in Cz – half the
distance between nasion and the inion in the sagittal axis and half
the distance between the ears in the frontal axis. Electrodes are
separated onto a that sphere by steps of 10 or 20 degrees. If you
think this is the best picture ever of the 10-20 system, go fetch
and re-use the SVG there: https://github.com/jfrey-xx/10-
20_system_svg.

https://github.com/jfrey-xx/10-20_system_svg
https://github.com/jfrey-xx/10-20_system_svg
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EEG electrodes that use conductive solution such as the Ten20
paste could be directly position onto the scalp. The viscosity of the
paste can hold electrodes at the same time contact is made with the
skin. However, part of the reason why cap are used with EEG – besides
facilitating and securing the installation – is to make sure that the
electrodes are positioned according to standardized locations, usually
according to the 10-20 international system. Once the cap is installed
along skull marks – Cz is positioned at half the distance between nasion
and inion on one axis at half the distance between the ears, see Figure
C.2 – then electrodes are locked onto standardized positions. Some
manufacturers even propose to locate in space the exact position of
each electrode using a tracking system similar to what is used to motion
tracking or spatial augmented reality (see part IV to know more about
the latter), e.g. Cephalon2 and their “Xsensor 3D electrode digitizer”.

Figure C.3 – Left: 3D-printed holders used to mount regular gold cup electrodes
on medical grade EEG cap. Our design. Right: the setup was tested
successfully in combination with the OpenBCI amplifier with a
P300 speller application (see http://blog.jfrey.info/2015/
02/04/openbci-p300-coadapt/).

Regular EEG cap aremade out of an elastic fabric. While we developed
and 3D-printed custom holders in order to use 3rd parties electrodes with
the g.tec g.GAMMAcap (Figure C.3), we chose to based our solution on a
headband instead. That way we shorten even further the installation
time of our dry electrodes. We did not need a high spatial resolution
with our intended use case in the scientific museum, and restraining
electrodes’ locations to the rim of the scalp also avoided difficulties
with long-haired people. Finally, we wanted to investigate alternatives
to pricey EEG caps – they range in the hundreds euros.

Using a stretchable headband, electrodes were positioned at O1, P7, We prevented the
possibility to charge
and use at the same
the EEG board with a
switch. You do not
want your brain to be
at one chip distance
of a household outlet.

F7, FP1, F8, T8, P8 and O2 locations – reference at T7, ground at FP2. The
headband was attached to users with a Velcro fastener and an 8 channels
32bit OpenBCI board was clipped with a dedicated 3D printed case at

2http://www.cephalon.dk/

http://blog.jfrey.info/2015/02/04/openbci-p300-coadapt/
http://blog.jfrey.info/2015/02/04/openbci-p300-coadapt/
http://www.cephalon.dk/
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Figure C.4 – EEG headband created for public exhibitions.

the rear of it (Figure C.4). The case contained a 1400mAh lithium-ion
polymer (LiPo) battery – light enough not to disturb participants and
yet enough power to supply the system for hours. The battery was
strapped to a charging circuit to facilitate maintenance.

Figure C.5 – Close-up of the attach system. EL120 electrodes are snapped to a
size 10 Dritz and contact with the cable leads is made through
crimp rings.Middle: a man that knows his sewing. Or not.

Snaps that fit the size of the dry electrodes were sewed on the
chosen 10-20 locations – we used nickel Dritz size 10, reference D80N-21
– so that the EL120 could be easily replaced should the Ag/AgCl coating
wears off. We did not solder the cable lead directly on the sew-on snaps
but on a tin plated crimp ring M2 stud size (Figure C.5). Even though the
ring were squeezed between the electrode and the snap, there was a
tiny wiggle room. Because of that additional noise was added to the
system when users were moving, but we wanted to keep a modular
system for this proof of concept. As a “failsafe”, we left tiny holes in the
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headband, aligned to the ones of the Dritz snaps and electrodes, so that
gel could be added later on to improve readings.

C.3 Validation
In the previous chapter we validated the amplifier used in our dry
headband, showing that in our experimental setup it could be compared
to medical grade equipment. Yet we were using tried and tested active
electrodes and a regular EEG cap. There is yet to see if the do-it-yourself
solution that we describe here can record actual signals.

To sense so, we investigated how the headband behaves with spectral
information, as those features were used in the field, in chapter 11.

We used once again the N-back task to induce workload. Because we
did not try to compare the headband to another device – or use the
trained classifier with unknown data as in part II – we setup a basic
experiment. One participant was recorded during the N-back task.
There were 6 blocks of 60 trials, blocks alternated between the 0-back
and the 2-back tasks. We repeated the procedure twice in a row and
conducted two separate analyses. The signal processing is analogous to
what was described at length previously. In Table C.1 we present the
results both for the 5 frequency bands version of our pipeline – delta
(1-3 Hz), theta (4-6 Hz), alpha (7-13 Hz), beta (14-25 Hz) and gamma
(26-40 Hz) – and the 3 frequency bands version that is less prone to
muscular artifacts – delta, theta and alpha.
Table C.1 – Cross-validation accuracies (%) to descriminate workload levels (4

folds). Two runs, 360 trials per run – 160 for 0-back condition (easy)
and 160 for 2-back condition (hard).
Frequency bands Session 1 Session 2 Average
δ + θ + α 65.56 71.11 68.33
δ + θ + α+ β + γ 64.72 71.39 68.06

While the average accuracy (≈ 68%) is worse that what was obtained
with a medical grade amplifier used in combination with 32 gel-based
active electrodes placed all over the scalp – ≈ 84% in chapter 6) –,
these scores are better than chance (according to [Müller-Putz et al.,
2008]). This suggests that cheap, custom-made and quickly crafted
alternatives could indeed retrieve useful information, which may be
employed at least in non sensitive contexts, such as entertainment or
for demonstration purposes.

C.4 Conclusion
In this section we documented the design of a cheap and lightweight
EEG headset that could be installed in seconds and that we used during
a public exhibition (see chapter 11). This proof of concept – very rough
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compared to other works more oriented toward research [Zander et al.,
2011] – was the opportunity to explore the conception of a home-made
equipment. While we did not try nor seek to obtain the cleanest EEG
signals – the critical factor back then being the practicality of the
system – we did manage to obtain a classification accuracy better than
chance on spectral features. We can draw various directions to improve
our prototype and broaden the possible applications of such device
outside the laboratory.

We used a passive electrode design, more sensitive to noise than
active electrodes but easier to craft and less cumbersome. Between
those two solutions a third alternative exists: driven shields [Rich,
1983, Fraden, 2010]. With this technique, also known as active shielding,
a shielded cable – such as RG-174 coaxial cable – is used to limit noise
due electromagnetic disturbances and movements. The shielding is not
simply grounded – otherwise it could produce more noise – but a guard
circuit is used to “inject” back in the shield the signal measured from
the electrode (inverting buffer). Various implementations has been
successfully reported with physiological recordings in general and EEG
in particular [Gargiulo et al., 2011, Usakli, 2010] – detailed schematics
and PCB [Matsuzaka et al., 2012]. The takeaway message: the electronics
is deported to the end of the cable lead, next to the amplifier – there are
no components on the electrodes, as opposed to active solutions –
hence headsets equipped with this system remain lightweight.

Concerning electrodes location, a 3D printed headset such as the one
published along with OpenBCI3 or themesh described in [Giacometti and
Diamond, 2013] could combine affordability and flexibility. Flexibility of
the positioning – a parametric model could adapt to each morphology –
but also of the material: nowadays flexible filament can be printed out
regular 3D printers (e.g. Ninjaflex4 worked well with our Makerbot
Replicator 25). With dual extruders – i.e. two “heads” that could print
two filaments at the same time – it may be even possible to have solid
parts for rigidity and flexible parts for comfort, both at once in the
same piece. And why not use a triple extruder and conductive filament
in order to print directly electrodes? At least alpha waves seem to be
observable with first prototypes6.

Alas, even though dry electrodes may match one day the reliability
of wet ones, they are not as comfortable to wear because of the constant
pressure needed onto the scalp to make contact [Chen et al., 2014]. Even
the flexible polymer described by this latter paper leaves marks on the
skin after a prolonged period. At least dry electrodes, well, don’t dry.

Reduce signal noise, improve practicality, make longer recordings:
EEG may be an old technique – nearly a 100 years [Haas, 2003] – but it

3https://github.com/OpenBCI/Ultracortex
4http://www.ninjaflex3d.com/
5http://www.makerbot.com
6http://conorrussomanno.com/2015/02/16/3d-printed-eeg-electrodes/

https://github.com/OpenBCI/Ultracortex
http://www.ninjaflex3d.com/
http://www.makerbot.com
http://conorrussomanno.com/2015/02/16/3d-printed-eeg-electrodes/
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is still in the making. New devices appear regularly, with some that
could even be used while running [Reis et al., 2014]. The future of the
hardware is still ahead, however one should not loose sight that for a
technology to become mainstream, there is more than good numbers on
the paper. There is more at stake than good-looking devices – although
end users’ preference do matter [David Hairston et al., 2014] – or even
comfortable headsets – oddly, spiky electrodes do not please every one
[Nijboer et al., 2015]. For a technology to spread, it has to fulfill a need.
Such as bettering everyday life by strengthening the social fabric,
bringing people closer. Just a random thought, nothing that could be
possibly be done in the scope of this manuscript. Part IV, anyone?
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D
Heart rate

through video
feed

Over the course of my thesis I had the opportunity setup an application
that let people interact with their physiology during a casual interaction,
for instance a card board game. The idea was to let players play as
usual. . . except for their heart rate, that would be displayed live within
the gaming area. I could have decided to use some of our physiological
sensors to record hearts’ activity, but since I wanted almost no setup
time and no intrusive recordings – not counting the fact that I wanted
to have at least 3 players – there really was no regular technology at our
disposal that could fulfill my requirements. Even though I tested ECG
recordings of several users with one OpenBCI board (shared ground and
a “bipolar” montage that could accommodate up to 16 persons with our
model), skin contact was mandatory and I was afraid this sole setup,
even if restrained to the wrists, would have disrupted the interaction.
Indeed, physiology was not the focus of the interaction here, it was
really the game.

This is why I decided to have a try at remote heart rate monitoring,
using video feeds. A covert solution, scalable and that could be easily
deployed since the required hardware is already widespread. Although
the card board game, as an example of social interaction that could be
augmented with physiology, is described in part III, the implementa-

210
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tion of such remote sensing is a fit for a part that aims at diffusing
physiological computing through tools.

This chapter describes the implemented pipeline, starting from
webcam acquisition and stopping at heart rate feedback. The end-use
described in chapter 9 being actually under review, no source code is
available yet. The entire pipeline – summarized by Figure D.1 – will
eventually be released as an opensource software.

I thank Hereiti Hatitio, Anta Mbaye, Jean-Baptiste Rey and Maxime
Vincent for their help – a few more words in section Credits.5.

Figure D.1 – The pipeline composing the system measuring remotely heart
rate. While signal acquisition and processing is detailed appendix
D, the augmentation and use-case are recounted in chapter 9.

D.1 Heart rate measures
The eulerian video magnification method [Wu et al., 2012] had a
significant impact within the computer vision community. It demon-
strated how subtle color changes in a video could be amplified to the
point that the variations of skin pigmentation occurring along each
heartbeat became visible. This method works almost at the pixel level,
but processing the average color of the entire skin suffices to compute a
heart rate. An algorithm that takes as input values averaged from a
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region of interest (ROI) is also less computationally demanding – the
processing described in [Wu et al., 2012] and in the follow-up papers
[Wadhwa et al., 2014] would be difficult to implement in real time, even
more if 3 players should be recorded simultaneously.

The optical measuring of the volumetric variation of an organ –
such as the heart – is dubbed as photoplethysmography (PPG). Several
methods have been described in the past years that use PPG and a video
feed to monitor specifically heart rate activity [Kranjec et al., 2014]. We
chose to implement the PPG algorithm described in [Bousefsaf et al.,
2013] because it uses a regular webcam and combines good accuracy
and simplicity.

Instead of the green channel – often employed in PPG because of the
green photosites being twice as numerous in Bayer arrangement, it uses
the “u” channel of the Luv color space as a basis for its signal processing.
This channel has a noise level nearly as low as the green channel of the
RGB color space, is less sensible to motion artifacts, and contains color
wavelengths matching those of hemoglobin absorption [Bousefsaf et al.,
2013].

We tuned some of the signal processing steps described by Bousefsaf
and al. [Bousefsaf et al., 2013] to improve the performance of our system.
Notably, to speedup the filtering we detrended the signal and used a 5th
order Butterworth band-pass filter between 0.6 and 4Hz. Then we kept
the continuous wavelet transform (CWT), using Morlet wavelet, to make
the spectral analysis and extract mean heart rates from 10 seconds
sliding windows – compared to Fourier transform, there is no trade-off
between the size of the window and the frequency resolution with CWT.
We managed to obtain at least 10Hz in heart rate measures for a 3
players setup.

D.2 Video capture
We used a set of 3 PlayStation Eyes to record the faces of the players –
they were hanging from the ceiling, slightly above the head. These
webcams are cheap – around 10 dollars the unit – and yet provide
satisfactory video quality. With PPG, color accuracy and consistency is
more important than resolution; the algorithm we based our work on
used 320 by 240 pixels images at 30 FPS. We set the PlayStation Eye to
an even better video mode, with a 640x480 resolution. Note that the
PlayStation Eye is capable to achieve 60 FPS, but we had no use of such
high framerate – the noise would have increased and the computations
would have been more important, with no benefits for players’ heart
rates that could hardly go faster 2Hz (120 BPM).

Another reason to use the PlaySation Eye lies in the availability of
its electrical components’ datasheets. We managed to modify its Linux
driver (kernel 3.13) in order to access directly to the raw images of the
webcam, i.e. to the Bayer matrix, before any demosaicing occurred.
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With the raw images, we by-passedmost of the automatic corrections
that could parasite PPG recordings and that were previously performed
by the hardware, such as brightness, contrast or white balance. Only
the exposition and the gain remained enabled. Exposition was set to
its maximum and the gain to its minimum to keep sensor’s noise to
its lowest. Without on-chip color correction, we relied on software
algorithms upon which we had total control – e.g. accurate skin tones,
no fluctuations of the color once the video feed was initiated.

As for most of the image processing undergone in this work, we
used OpenCV [Bradski, 2000] to convert the raw images from the
Bayer matrix to RGB colorspace – in our situation we did not need
any advanced demosaicing that would preserve edges sharpening
or prevent moiré artifacts. The white balance and the color levels
were adjusted once, before the start of the PPG recordings, using
“Simplest Color Balance” algorithm with 1% clipping [Limare et al.,
2011] and a test image picturing purposely various faces and color
scales[1. We performed colors adjustment in a 32 bits color space to
avoid information loss.

Processing raw images ensured that we got the best possible video
quality out of the PlayStation Eye, but our pipeline is not limited to this
webcam. Indeed, once decoded and adjusted by our program, the raw
images were fed to the Linux video API (V4L2) through v4l2loopback2, so
that the rest of our processing could accommodate any other peripherals,
as we demonstrate during the validation study.

D.3 Face tracking and skin detection
For each one of the video feed, the OpenCV implementation of Haar
Feature-based Cascade Classifiers [Viola and Jones, 2001] extracted the
position of users’ faces. To keep-up with the 30 FPS of the video, the
Haar classifiers were computed once every 5 frames – the players were
seated and their heads had a limited motion speed. In the use-case
scenario of this multi-users remote PPG system, payers interact with
each others. And not only would it be illusory to hope for them to
remain perfectly still, but it would degrade significantly their game
experience if they were instructed to do so. The measures have to adapt
to ecological settings, and in order to stabilize the ROIs detected by the
classifiers and reduce PPG artifacts, we filtered the face tracking with
the 1€ filter [Casiez et al., 2012] (mincutoff = 0.01, β = 0.01, dcutoff = 1.0).
If the face of a player was not detected at a particular frame, the last
known position was used.

A threshold in the Y CbCr color space [Mahmoud, 2008, Bousefsaf
et al., 2013] was used to create a mask from the square containing the
face – see Equation D.1. For skin types beyond 4 on Fitzpatrick scale

1http://www.gballard.net/photoshop/pdi_download/
2https://github.com/umlaeute/v4l2loopback

http://www.gballard.net/photoshop/pdi_download/
https://github.com/umlaeute/v4l2loopback
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[Fitzpatrick, 1988] – i.e. the darkest tones – we adjusted the formula
with Y > 0. 

Y > 80
77 < Cb < 127
133 < Cr < 173

(D.1)

Once we got the mask, we were able to compute the average color of
the detected skin and to process it with the PPG algorithm described
previously. The communication between the module handling skin
detection and the module detecting the heart rate was made through
the Lab Streaming Layer (LSL) network protocol. The LSL protocol
ensures a good synchronization and avoids data loss. It was also used to
link the heart rate module to the display module.

In a playful interaction, as the final test case described in chapter 9,
the practicality of the sensors takes precedence. We did not equip
our board game players with contact sensors in order to assess the
reliability of the resulting system. It would have disrupted the whole
interaction. Instead, we conducted a separate study to assess the quality
of our implementation.

D.4 Validation
We compared the measures produced by our implementation of remote
PPG to a ground truth obtained with an electrocardiogram (ECG). No
only did we assess the correlation between PPG and ECG, but we also
took this opportunity to test on-the-fly other consumer-oriented
webcams beside the PlayStation Eye.

D.4.1 Apparatus
The study involved one participant whose physiological activity was
recorded over the course of three sessions – skin type 3 on Fitzpatrick
scale [Fitzpatrick, 1988]. Each recording session lasted 10 minutes and
was preceded by 5 minutes of aerobic exercise. This way the heart
activity was expected to vary in two ways: the average heart rate
would decrease down to a basal state after the activity stopped, and the
instantaneous heart would vary according to the breathing patterns –
heart-rate tends to decrease when one breathes in and decrease when
one breathes out.

ECG was recorded at 512Hz with a g.tec g.USBAmp amplifier. Three
passive Ag/AgCl electrodes with conductive gel applied on them were
taped to the torso. A three leads montage was used, ground placed on
the lower part at the left arm side, main channel upper part same side,
reference placed on the upper part at the right arm side.

During the recording sessions, the participant was seated about
30cm away from the various cameras, that were attached together
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Figure D.2 – Experimental setup used during the experiment. Altogether with
recordings from ECG electrodes placed on the torso, 3 webcams
were recording subtle changes in skin color.

at level with the face – see Figure D.2. There were 3 cameras: the
PlayStation Eye, a Logitech C270 and a Kinect2. The experiment took
place in a room well lit – fluorescent light from the ceiling that was
somewhat diffused by the white walls and floor.

D.4.2 Signal processing
The video feed of the Logitech C270 was set to a resolution of 640x480 pix-
els. All parameters were set to default – including automatic corrections,
such as white balance or exposition, that were left activated. The Kinect
2 possesses two video feeds; a high resolution RGB feed (1910x1080
pixels) and an infra-red (IR) feed of 512×424 pixels. The acquisition of
the cameras as well as the signal processing were performed on an
Alienware Aurora R4 running Kubuntu 14.04 operating system. To
retrieve the video feeds of the Kinect 2 under linux, the libfreenect2
library3 was used in combination with v4l2loopback. The video feed of
the PlayStation Eye was computed from the raw Bayer matrix with a
resolution of 640x480 pixels, as previously described.

All four video feeds were acquired at 30 FPS. In case of RGB images,
we used the same feature extraction method to retrieve PPG signals –
face tracking, skin pixels, “u” channel of the Luv color space. However,
because the Kinect 2 IR video feed is monochromatic, in this latter case
we could not use the same techniques to extract skin pixels. Instead, we
restrained the region of interest detected by the face tracking algorithm
to a square half as wide and two-thirds as tall – an approximation to
discard pixels not related to the face (see Figure D.2). The average of
this region was passed on to the next stage of the signal processing, as
with the other three video feeds.

3https://github.com/OpenKinect/libfreenect2

https://github.com/OpenKinect/libfreenect2
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Figure D.3 – Snapshot of the video feeds that were simultaneously recorded
during the experiment, including skin pixels masks for color
feeds. Maybe by the look you could tell it was the last experiment
that took place in the scope of this thesis.

Because we wanted to stress the quality of the recordings and see
if we were able to retrieve heart-rate variability from remote PPG
measures, in this study we replaced the last stage of our pipeline by a
heartbeats detector. Indeed, using a continuous wavelet transform
over 10s windows may be less prone to artifacts in casual settings that
require no more than an average heart rate – e.g. chapter 9 –, it is
also less sensitive to instantaneous heart rate – heart rates values are
smoothed.

Hence, all PPG signals – as well as the ECG signal – were retrieved
and processed in OpenViBE (version 1.0.1). The ECG signals were filtered
with a Butterworth band-bass filter between 1Hz and 20Hz. The ECG
being loud and clear, heartbeat detection was achieved with a simple
threshold applied to the power of the signals.

On the other hand, PPG signals were more noisy – even though we
could clearly see the pulsatile component in the raw signals (Figure
D.4). PPG signals were smoothed other a sliding windows of 0.25s and
then a 5Hz, low-pass filter was applied. Note that because we needed
instantaneous heart rate in real time, we had to use a low filter order – 2
for instance. Indeed, while the 512Hz sampling rate of the ECG ensures
chunks of data big enough for OpenViBE to apply higher orders, with
PPG streams sampled at 30Hz there are only 7 data points aggregated
over 0.25s. This is also why we used a derivative instead of a low-pass
filter to remote signals drift. After filtering, a heart beat was detected
when the derivative changed from positive to negative values, that is to
say when the “peak” of the pulsatile component was reached.

Finally, whatever the source of the signal (ECG or PPG), the instan- True formula for max
heart rate: 208 - 0.7 x
age.

taneous heart rates were computed by measuring the elapsed time
between two consecutive heartbeats. To discard values that would make
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Figure D.4 – Screen capture of the PPG signals processed in real time within OpenViBE. Top
left: raw signals exctacted extracted from video feeds. Top middle: filtered signals.
Top right: ECG. Bottom: corresponding instantaneous heart rates. Pulsatile
components can bee clearly seen within the raw signals of the PlayStation Eye
(top left, first plot).

no sense physiologically, one last filtering occurred. Heart rates were
cropped between 30 beats per minute (BPM) and 190 BPM [Tanaka et al.,
2001] and could not variate by more than 45 BPM in one second [O’Brien
et al., 1986]. The heart rates acquired within OpenViBE were then
exported to the hard drive for later statistical analysis.

D.4.3 Results
The instantaneous heart rates measured from each PPG stream are
plotted against the ground truth in Figure D.5.

R version 3.0.2 was used to perform statistical analyses. The instan-
taneous heart rates collected from PPG and the data retrieved from ECG
were compared using a Pearson correlation (“rcorr” function of the
“Hmisc” package). The correlation coefficients are presented in Table
D.1; the corresponding p-values – corrected for multiple comparisons
using false rate discovery (FDR) – are in Table D.2. Table D.3 lists the
heart rate grand averages over the sessions.

D.4.4 Discussion
The data acquired with the PlayStation Eye camera is the closest to the
ground truth. The heart rate patterns fit EGC measures; the variability
induced by breathing could be observed in particular during the second
recording session (Figure D.5). These findings are confirmed by the
correlation scores. With a grand average which is only 1.5 BPM off the
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Table D.1 – Pearson correlation coefficients between the instantaneous heart
rates obtained from the webcam and the measures acquired from
the ECG.
PSEye Raw Logitech C270 Kinect 2 RGB Kinect 2 IR

Session 1 0.301 -0.079 0.025 -0.031
Session 2 0.811 0.316 0.540 0.000
Session 3 0.463 0.085 0.333 0.011
Mean 0.525 0.107 0.300 -0.007
Table D.2 – p-values – FDR corrected – corresponding to the Pearson correla-

tion coefficients presented in Table D.1.
PSEye Raw Logitech C270 Kinect 2 RGB Kinect 2 IR

Session 1 < 0.001 < 0.001 0.103 0.044
Session 2 < 0.001 < 0.001 < 0.001 0.980
Session 3 < 0.001 < 0.001 < 0.001 0.500

Table D.3 – Mean heart rate over the entire recording sessions.
ECG PSEye Raw Logitech C270 Kinect 2 RGB Kinect 2 IR

S1 76.38 77.81 122.6 90.49 76.92
S2 79.52 79.68 100.80 81.74 83.90
S3 80.31 82.60 107.80 85.75 83.31
All 78.74 80.03 110.40 85.99 81.38

ground truth, the results suggest that these remote measures could
indeed account for heart rates.

The numbers are less conclusive concerning the other webcams we
had the opportunity to test, however in this case we did not try to
optimize anyhow signal acquisition. Notably, the IR video feed obtained
with the Kinect 2 could benefit from more robust algorithms (e.g.
[Cennini et al., 2010]). The RGB video feed of the Kinect 2 ranks second
in the correlation scores. While this device is at the moment an order of
magnitude more expensive than the PlayStation Eye camera – ≈ ten
times more –, its high resolution, combined with its wide angle lense
may be put to use to cover a bigger area, or to measure multiple users.
The Logitech C270, which belongs to an intermediate category, shows
how an image that may be more flattering to the eye due to sharpening
or auto color correction (Figure D.3) fails to deliver proper signals.
There was little correlation between this camera and ECG, and the
average HR was nearly 60% more important than it should be.

Sensitivity to motion is the main reason why there were so many
artifacts that pushed instantaneous HR to high values. During our real
use-case scenario (chapter 9), in combination to a heart rate extraction
method less sensitive to noise, we used a confidence index that discards
values when motion is detected [Bousefsaf, 2015].
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D.5 Conclusion
In this chapter we propose an implementation of a heart rate measure
that does not require to equip users. Off the shelf cameras could be
employed to measure the instantaneous heart rate of multiple users in
real time.

On a technical point of view, it is worth noting that the framework
we developed could accommodate other devices besides the PlayStation
Eye. For instance, we were able to incorporate the Microsoft Kinect 2 to
our pipeline. Even though the first measures we obtained with this
device are not on par with the carefully optimized pipeline of the
PlayStation Eye, the Kinect 2 is interesting because of the wide angle of
its lens. We have a prototype that uses a single video feed to record
the heart rate of several users at the same time. Besides, the infrared
camera that is integrated may be used to improve the accuracy of the
physiological measures once robust algorithms will be integrated. The
Kinect 2 could be used in a “blackjack” placement, with players seated
in an arc and facing the camera – whether in this case the game is
“video” or not.

Combining remote sensing for input modality and spatial augmented
reality for output modality enable the emergence of complex HCI; and
yet most of the technological artifacts are hidden to end-users. In the
application proposed in chapter 9, no computers lie in the immediate
environment of the players. Seamless integration of the technology is
another step toward acceptability.
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E
Remove artifacts
the human way

E.1 Introduction
Physiological sensors in general are sensitive to noise caused by users’
motion. With EEG in particular, many muscular artifacts could pollute
the data. If the upper part of the body is tensed, the amplitude of
the signal notably increase in the upper beta frequency band and
beyond (i.e. gamma). Should the user clench his or her teeth, and the
corresponding EEG segment is to be discarded.

There are other sources of noise than participants for the instru-
ments, such as the utility frequencies from the power grid that scramble
signals around 50hz or 60hz depending on the country, but these
external factors are much easier to anticipate and acknowledge. Users’
behavior is often more random, more difficult to prevent or fix.

Although the experimenter instruct users to move the least and to
remain relaxed during the experiment – with instructions such as “try to
blink only between trials”, it is tedious and often frustrating to remind
user when too often noise is seen within the EEG; the experimenter
has to monitor the signals consciously and it also jeopardizes users’
immersion.

This was the problematic of the part of the team working with BCI
and physiological sensors. I saw a way to remedy to this after fruitful
discussions with Renaud1 about persvasive and ambient feedback – he is

1Go read his thesis!
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into gentle reminders displayed in the ambient space rather than
irritating popups.

What if, instead of explicit warnings, the level of noise is displayed
in a supporting and not disruptive way to end users, so they could
correct their behavior on the go, autonomously? Better still, what if the
feedback is so meaningful that no instructions are needed anymore?

To support our idea, we implemented both an “explicit” and an We had an
experiment ready for
Teegi during the IIT
Techfest but nothing
was done in the end
because there was too
many attendees.

“ambient” feedback. While we had it working with an EEG setup – some
users tested an ambient feedback while we exhibit Tobe (chapter 11) –
the first real deployment of this type of feedback occurred while we
were using remote PPG, as seen in previous chapter. As such, we will use
this implementation, aimed at reducing heart rate artifacts caused by
head movements, to detail what form could take this feedback.

E.2 An ambient feedback to guide users

Figure E.1 – Proof of concept of an “explicit” feedback that uses spatial
augmented reality to indicate PPG signal quality. Left: good signal.
Center: bad signal. Right: the user is not detected.

We took the opportunity of the study supporting remote PPG
(chapter 9) to test our hypothesis regarding an ambient feedback
that could guide users’ behavior during physiological recordings. For
instance, PPG is sensitive to motion artifacts.



E

APPENDIX E. REMOVE ARTIFACTS THE HUMANWAY 223

Figure E.2 – Example of an “ambient” feedback, consisting of moving waves, that gives
information about PPG signal’s quality. Left: good signal. Center: user is moving
too much, waves are pixelated. Right: the user is not detected, waves are noisy

The best strategy to prevent such artifacts would be to give an
explicit feedback to users’, that is to say a feedback that they would not
miss and that they would understand at first sight. Such feedback could
take the form of pictures, visible icons displayed on directly in front of
the player – see Figure E.1.
Even though an explicit feedback should be the most effective

solution to acquire good signals [Hattie and Timperley, 2007], it may
disrupt too much the interaction; during pre-test we realized that
displaying an explicit feedback grabbed too much players’ attention.
Besides, they felt more anxious because of such a visible prompt, which
was giving a negative feedback when they were moving too much.

In our game settings, the exchanges between players were more
important than the physiological measures, and depending on the
intended use of a BCI, it could be important not to draw too much
of users’ attention. This is why, instead of a feedback explicit and
disruptive, we developed an implicit feedback. Our approach is similar to
the “ambient persuasive feedback” tested in [Maan et al., 2010], where a
lamp with changing colors gave feedback about power consumption.

E.3 Apparatus
As mentioned previously, our pilot study took place alongside the
board game described in chapter 9. During those gaming sessions,
participants were playing to a card game by groups of 3. We recruited
18 participants, i.e. 6 groups of 3 players – 5 females, 13 males, mean
age 23.3. We gave to half of the groups an ambient feedback about
the quality of remote PPG recordings. The other half acted as control
groups and did not have any feedback.
Our implicit feedback took the form of “waves” going from the

participants to the game table, using projection. Note that this “ambient
feedback” was not overlapping the heart rate visualizations that took
place on dedicated display stands. The ambient feedback was projected
in the surroundings of the players, the waves smoothly fading in the
area covered by the projector.

The waves were pixelated if a participant was moving too much, and
were becoming very noisy if the face was not detected (see Figure E.2).
For each participant, the state – “still”, “moving” or “not detected” –
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had to remain unchanged for 2 seconds before we changed the ambient
feedback.
To control for participants’ motion, a “confidence index” was

computed using the formula presented in [Bousefsaf, 2015]. It uses the
derivative of the PPG value before filtering as an indicator of players
motion, hence as an indicator for the quality of the PPG signals. With no
motion the confidence index reaches 100. We set a threshold to 50,
below which the ambient feedback was pixelated.

During the card board game used alongside remote PPG, the groups
that had an ambient feedback received the same instructions than
the groups without. Once, before the study started, they were told to
remain in front of the webcam and to limit their head movements for
the heart rate to be accurately measured. After this sole disclaimer, they
were not remembered the instructions.

E.4 Results and conclusion
The influence of the ambient feedback over players’ behavior and signal
quality was tested using a between-subjects experimental plan – 2 × 9
participants. We measured, from the one hand, the ratio of the time
during which players’ faces were detected, and from the other hand the
ratio of the time during which the confidence index remained above
our threshold of 50.

We tested for significance using Mann-Whitney test. There was no
significant difference between the group that received an ambient
feedback and the group that had no feedback, neither for the ratio of
face detection nor for the ratio related to the confidence index. Mean
for face detection (“ambient” group vs “none” group): 0.14 vs 0.13;
SD: 0.16 vs 0.14. Mean for confidence index above 50: 0.21 vs 0.23; SD:
0.09 vs 0.09. Note that the low ratios are explained by the fact that the
recordings took place during whole game sessions, including between
turns, when players were casually talking to each others.
Even though the size of our sample and the important variance

between participants prevented the appearance of any significant
difference, we believe that with a bigger population and a less rich
environment, this kind of feedback could be a useful addition to
physiological monitoring. Notably, out of the 9 players that got the
ambient feedback condition, 5 did not notice at all that something was
projected on the table beside the HR visualization. The one who did
thought it was only some cosmetics. The ambient feedback was discrete
by design, and we hoped that the self-explanatory relationship “quality
of the waves == quality of the signal” would strike players. Had the
players been less engaged in the game and their attention drawn to the
waves from the beginning, the ambient feedback may have served as a
gentle reminder of signal’s reliability.
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In the future this kind of ambient feedback should be studied more
thoroughly, for example it could be combined with a BCI based on
motor imagery or arithmetical tasks in order to discreetly remind
participant why their mental state is not recognized. Using spatial
augmented reality to display information in the surrounding space
instead of the screen would avoid distracting users’ attention from the
main task, hence such method that improve signals reliability would
come with little or no additional cost.



Behind Science

A HUMAN STORY

Every chapter of this thesis or so rests on the shoulders of various
collaborators – colleagues and students – that accompanied me
during those last 3 years. I owe them a debt; the least I could do
was to spare a few paragraphs about each one of them.
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Credits.1 The backstage behind stereo (chapter 5)
I have to write down a huge THANKS to two persons with whom I have
collaborated during the evaluation of stereoscopic displays: Léonard
Pommereau and Aurélien Appriou. Both have been interns during the
first year of their master degree in cognitive science, staying for about
12 weeks in the team.

When Léonard came in 2013 he only had a fuzzy subject: combine
stereoscopic displays and EEG. He was given some papers to read and
within a couples weeks he managed to come by himself with an idea
about how users’ visual comfort could be assess with EEG. At that time I
was busy with something else, but as soon as he was done with the
boring necessary bibliographic stuff my duties magically disappeared
(no, I’m not thatMachiavellian, I really had a deadline ongoing while he
was sweating). As his work was very close to the main theme of my
thesis I jumped in, of course, and after few brainstorms with the rest of
the team we refined the protocol. Léonard managed to do an amazing
work in a short time frame. After he was gone I played a little with the
data, most of the work consisting in analyzing the EEG, and that led to
the publication of a pilot study. It was the first time during my thesis
that I had the impression to do real science – not that a minor point
should I add – and it’s already one hell of a good reason to high-five the
man.
The “stereo” project, as call it in my file-system, was put on a

hold until the year after, when Aurélien arrived from the following
vintage, taking over. This time we had a clear view of what needed to be
done, the items that needed to be improved in order to finalize the
protocol and produce a complete study. Nonetheless, Aurélien also had
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to work by himself for a couples weeks, shortly after he started his
internship. . . while I was lucky enough to fly to Toronto to present the
first results we got (weird timing). Aurélien managed to support with
the right references the hunches we got, at the same time he got his
hands on many mysterious technologies in order to shape the software
behind the final study. Surprisingly, he accommodated well to a geekish
environment, we were not easy on him. He was also a great asset thanks
to his numerous relationships: he recruited 12 participants that were
close demographically, perfect for good inferences. All the pieces of the
puzzle were eventually there in order to obtain definitive results. Well, I
do not intend to write references letters, only to report another great
team work – if you have the occasion, buy one or two students from the
cognitive science master of Bordeaux University, they’re good (and I
don’t say that because I’ve been there myself). By that time of course I
already was a true and great etc. scientist, the EEG signal processing
pipeline was there; but still it was another premiere that took place
back then: first time I built a true BCI, borrowing handful scripts from
Fabien for features extractions and classification. One more milestone
on my personal journey and second big-up, it’s free.

I can’t end this “behind the scene” retrospective without acknowl-
edging the participation of Jérémy Laviole to this project. We took some
of his Processing voodoo and knowledge of how to produce accurate
stereoscopy in order to craft our stereoscopic images. It’s always great
to have someone reliable and obliging around. All in all, maybe it is a bit
of a long description to serve as a chapter’s incipit, but I did not want to
silence or overcome the achievements of those with whom I worked. A
PhD is not one’s journey – would it still be Science if it were? – if for
some the “they” may diminish my apparent contribution, so it is.

Credits.2 The other guy behind 3D tasks’ evaluation
(chapter 6)

The work described in chapter 6 could not have been done without the
strong involvement of Dennis Wobrock. Dennis did a six months (or so)
internship in the team during 2014. Contrary to some of the others
persons mentioned along this thesis, Dennis does not come from the
beloved master in cognitive science of the university of Bordeaux. . . but
from a sibling, an engineering school located in the same city, the ENSC
– “École Nationale Supérieure de Cognitique”. The idea behind this
internship was to put into practice some of the first leads that arose at
the beginning of my thesis. In fact, for various reasons it was more than
a simple practice, it was an investigation and an extension of what I
had projected back then. Dennis carried-on on his own, while I was
busy with Teegi (chapter 10) and tying up loose ends regarding the
evaluation of stereoscopic displays that you just read – I always got
many irons on the fire! I won’t hide the fact that Dennis and I had little
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interaction during this period. I was genuinely interested by the work
that was being achieved, but had no real opportunity to give a hand. Not
that Dennis would have needed it. He was already well supervised by his
many advisers, and managed to keep himself busy for the whole time.
His job was not facilitated by the fact that he shared his time

between the laboratory and the company that partnered on the project,
Immersion. It became a strength: the many spokespersons involved and
the numerous meetings that was necessary to keep everyone on track
resulted in various reports that proved valuable afterwards, when
the work needed to be taken over. Apart for some piece of code and
for being a naive participant (quite helpful to experience first-hand
something when one need to describe it later-on), when the study
actually took place I was off. I like to think that I could have helped to
speedup some part of the process if I tried harder to get my hands dirty,
but even with the equipment that I actively voted for I’m not really sure
I would have done a better job. The Bitalino was a new addition to
the hardware that the team possessed, and in a short amount of time
Dennis managed to integrate it within our OpenViBE workflow. It was
not the only device that he needed to master within a small time frame,
there was also the interacting device developed by Immersion, the
“CubTile” that was one of the focus of the study.

Once more, I want to stress where my contribution starts, and
when it stops. I had some influence on the background story, even if at
the midst of my thesis I was not sure I would spend much effort in
physiological sensors beside EEG (silly me!). So, Dennis did most of the
stuff, and I am here about to mercilessly steal all of that and integrate
his work in my thesis, is that so? Not exactly, fortunately. The study of
the CubTile fits beautifully in the landscape of a thesis that study at
large how EEG could enhance HCI evaluation. You’re right, it is not
enough; it’s not because you pass by a nice painting that you could
grab it and hang it in your bedroom. In fact I really stepped-in in the
project. . . once Dennis left (and that it was time for me to get back on
tracks1).
Dennis managed to pass the experiments before the end of his

internship, but he had little time to do proper analyses. All in all we
end up by a promising study but with no solid evidence about what
we could expect from it, just some hints about the kind of help that
physiological recordings could give to HCI designers, and one or two
figures that seem to indicate that indeed, maybe there was something
that was worth it, some interesting curves and peaks that seemed to
match a purposely difficult interaction.

This is why and where I came in. To rescue the study, to thoroughly
analyze data and shed light on the first evaluation of an interaction
technique and through physiological sensors.

1. . . and that a close deadline pushed me to dive into Matlab, but shush, this kind of
behavior never happens in Science.
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Credits.3 The working force behind Maze project (chap-
ter 7)

It may not seems so, but from all the stories collected in the present
manuscript, the study described in chapter 7 is by far the one that
spanned an over the longest period of time.

The very idea of using a 3-dimensional maze to test various con- Basal Gang forever!
structs and conceive over-complicated interfaces and poor interaction
techniques – not that simple to make bad choices so as to test the good
ones – dates back to before I started my thesis, when I was merely
an intern in a cognitive neuroscience laboratory. Not that I want to
disrespect in any way the beloved participants that took part in this
work, but truth said, the at 3D maze comes from a. . . 2D maze that was –
and is – tested with. . . monkeys (and that comes from a T maze tested
with mice, but enough!). Our non-human primates siblings are very
good at learning and repeating over and over simple tasks, and their
occupation in the maze I’m referring to is inspired by the multi-armed
bandit used in decision-making. Curious may refer to [Etienne et al.,
2014] to gather some clues about that.

So I had this idea of transferring the “monkey maze” to a (clever and
engaging) 3D environment, with tons of possibilities – study spatial
orientation, see which strategies is used between learning by place or
learning by targets, add probabilistic choices to the picture, . . . – but
there was one slight problem in the way. I hardly had any skill regarding
the programming of such environment. Not to say it was an impossible
task with the tools we have nowadays, but it still required a major
investment in time and in will. I only managed to achieve a very rough
prototype with Unity. Then the project went dormant – shortly after I
finished my prototype I was irresistibly attracted to a little tangible
guy that you have read about (or you will, depending on you reading
itinerary). There had been talks and meetings here and there, but in the
end I never manage to finish what I started, even though it should have
been from day one the major accomplishment of my (original) thesis.

One year after my last commit other projects passed by and almost
all my hopes were dry. I hardly saw anything but a sad ending. Then, as
an angel descending from the sky, came Maxime Daniel. The Immersion
company with which we collaborated previously saw some potential in
the almost dead project, and they let one of their interns toy a bit with
it. Let’s say that Maxime did far more than his share. Not afraid by
having others things in the pipeline, he brought back to life the maze
prototype. A good and hard worker he is – and not the least, no flapping
wings that put feathers in every corner.

Thanks to his skills he surpassed what I could have possibly done by
myself, adding his own views to the mix, preventing more than a few
wrong turns. Beside his technical and theoretical savoir-faire (potpourri:
LSL, audio probes, Sternberg paradigm), he also had a sheer amount of
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enthusiasm to share. A willpower that never failed nor faded all along
those 8 months he had been working on this project. Even when I
forced him to implement stupid ideas that we thrown away, even when I
had his own agenda and study to finish, even after the official term of
his internship, even once he found a PhD of his own, even when he left
the city (!), he made sure that the study could be achieved in time – i.e.
before the deadline of the 3-letters-conference that shakes the entire
human-computer interaction community each year, incidentally before
I had to send my manuscript. The “maze energy” owes him one (all the
graphics are entirely his fault, too).

So, thank you Maxime, if it were not for you, this thesis would have
missed a proper closure. May the EEG goddesses and gods – or any other
deity that you revere – favour the PhD thesis you just started.

Credits.4 The missing geek behind OpenBCI evaluation
(appendix B)

When I had the idea of the simultaneous recordings for evaluating
formally the OpenBCI board, I rapidly became excited by the prospect. A
perfect comparison in one pass! Involving only one participant while
maintaining a high scientific value is not that common. I dutifully
sketched the wiring that could adapt our electrodes to the OpenBCI
board, prototyped a first version of the adapter, dreamed of the perfectly
isolated montage based on no less perfect electrodes. . . and that was it.
For months and months the item stayed on my todo list. Huge potential
but low priority. Most of all, it was such a pain to solder this damn D-sub
26 connector that my eagerness to start the study was balanced by fear
to ruin the electronic components. For sure I would have ended with a
poor hardware.
Fortunately, a couple months before the term of my PhD a new

engineer arrived at Inria, freshly out of school but loaded with the skills
that I lacked. In a matter of days Thibault Laine came up with the
solution I was desperately after. Long days – it was a chance to stay
behind while most of the center was on vacation; during this period I
was the sole beneficiary of this work force. Digging into specifications,
drawing electrical circuits and soldering components that I could barely
see were a no-brainer for him. I would have never imagined it was
remotely possible to end up with an actual PCB – it seemed nearly easy
to craft those “Gerber” files while I watched him. A thrill to receive
something that looks so much like a “real” product. And, above all, that
behaves as intended. I’m particularly grateful that all went right at the
first attempt. My schedule was tight and it was literally during my last
week in the laboratory that I could finally proceed to the study that I
longed – best value for money ever. This thesis would have been one
chapter too short if it were not for Thibault’s committed labour.
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Credits.5 The precious students behind remote PPG
(appendix D)

I had the chance to teach a bit alongside my PhD, and among my duties
I supervised groups of students during software engineering projects.
One of those groups chose a subject of mine: measuring heart rate
through a video feed. Rings any bells? Back then I was new to the matter
and just threw at them some references and a task more challenging
than expected. They faced many difficulties but they managed to keep
the boat afloat. I must admit that I was sometimes part of the problem;
at first I absolutely wanted to use a Kinect 2 on linux to do that thing. It
required more hacks than expected, they lost weeks trying to please me
before I let them focus on what really mattered for them, the code.
Even though in the end very few of their code remains in the

software presented here – I’m too paranoid to let students have the last
word regarding algorithms! – their motivation drove me to have a closer
look at their prototype. When I realized this remote PPG thing could go
somewhere, I secretly forked their project in its early stages and started
to follow my own path. So, thank you Hereiti Hatitio, Anta Mbaye,
Jean-Baptiste Rey and Maxime Vincent; for all the crazy projects I
thought of over the course of my thesis, without you I would have not
jumped the shark on this one.

Credits.6 Tangible avatars, tribute to a Quebecois (part
IV)

You know, those proverbs and expressions that lost their meaning after
they have been said so many times out of context, becoming mere
clichés? It’s like an old clothing you keep wearing even years after colors
washed out, the days off, at home. At some point there was something
written on this T-shirt, a text that now only you could decipher.

“Two sides of the same coin”. . . how does it sound? Maybe in other
circumstances that would oversell how an external work complement a
thesis; yet I can’t think of a better term to describe how the last part of
my work – and by extension the very point I’m trying to make in my
manuscript – would be shallow, no, empty, if it were not for some guy
popping in the Potioc team a couple months after I began my PhD.

Renaud Gervais, coming from the far far away Québec, had been
doing a PhD at the same time as myself. He started with a subject very
unlikely to have anything to do with me, all about creative coding and
tangible user interfaces. The fate put both of us in the same open space
(speaking about the sneaky influence of architecture) and, even worst,
placed our desks few meters apart (supposedly projection mapping
needs the right balance of luminosity, between the sun and artificial
light. . . my foot!). So be it.
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I was trying to measure mental states with passive brain-computer
interfaces, playing with physiological sensors and experimental proto-
cols, interested in social interactions. He was trying to shatter the
barrier between digital content and physical surroundings, playing with
the idea of customizable objects that you would be compelled to hold
and interact with, interested in personal development.
Slowly each one got curious in the work of the other. Before we

knew it, our worlds collided. Supported by comprehensive supervisors,
who gave us freedom to do so, we ventured into another territory. This
part is at the crossroad of our motives, the result of our complementary
skills, aftermath of a fruitful emulation; I think you get it.
That is not to say that our theses are the same. Even if it is now

difficult, if not impossible, to decide which contribution belongs to one
or the other, I believe we did not have the same angle, and not the
same agenda either – for example, if you were interested in tangible
interaction, SAR, cute things and creativity, you’re definitely reading
the wrong manuscript.

All I can do is recall some memories from my PhD life before we
started to build Teegi together.

I am 5 months into my thesis, I present what BCI are and how they
work during “La semaine digitale”, a public event aimed at promoting
computer science that took place in my city. I am myself quite new to
the subject – fortunately I have a great mentor – and to conclude my talk
I show miscellaneous applications, among them the not so insignificant
Necomimi2, a headband with “cat ears” that supposedly move according
to brain activity. After a handful of medical applications and signal
processing, these examples are here to lighten the mood, make the
audience laugh a bit. (You’ve never encountered genuine comedy
until you see me impersonating cat ears with my bare hands.) Despite
the fact that with one electrode on the forehead Necomimi may have
more to do with facial expression than anything else, since I inserted
this picture in my slide I could not stop thinking what if ? What if such
device could come with true brain signals and proper mental states?

Since I began my PhD 13 months have passed. I have the impression
to have such a slow start. After a year I finally had one paper accepted,
but I’m not sure if I should celebrate or if it’s just random luck after a
third submission; sometimes I doubt I will be able to advance much my
PhD subject. (Fear not, young Jérémy, basically it ended up being parts
I and II). It’s night, we are at Cap Sciences, in the midst of IHM ’13
conference, after a keynote talk from Anatole Lécuyer. (Signs of the
things to come.) Appetizers and drinks await the replete audience.
Usually I’m not last to answer to the free food call, but tonight I don’t
feel like it. Instead, I’m seating in a corner of the first floor, distant from
the animation. In the dark I’m starring at the screen of my laptop and

2http://neurowear.com/projects_detail/necomimi.html

http://neurowear.com/projects_detail/necomimi.html
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my fingers type furiously. During the talk there were works I already
knew about and sometimes my thought wandered against my will.
Between two BCI and virtual reality applications, suddenly I had a
vision. And now I have to write everything I can remember of before it
vanishes. An avatar representing inner mental states, a device to make
explicit the emotions and processes of the mind. Not talking about
human but social enhancement. What shift in social interactions could
that bring? Useful for people bad at empathy – may be easier to interact
with an avatar – or to facilitate collaborative work – could gently
point out the colleagues in trouble; for sure I’d be a better teaching
assistant with such a tool. What form could it take? Animated tatoos? A
smartphone around the neck with a cartoon face on it? The event ends,
the restaurant awaits, the grandest inspirations fade before my stomach,
I get back to reality. The days later I try to find a name for what I want
to achieve. Social prosthesis? Physiological homunculus? Brain to social
interface? I discover that the slot is not entirely unexplored; their
website looks old but I found interesting references in this “Affective
Computing Group” thing. (Silly me for having underestimate the fierce
MIT media lab back then, as if they are one step ahead for everything.)
Unfortunately I have to put a hold on my review and focus once again
on how to use BCI for 3DUI evaluation. I keep my notes aside but for the
better I must forget my impossible fantasies.

And then, just few months later, right after I came back from PhyCS
in January 2014, Renaud came forth and wondered what it’d feel like to
see from the outside his own brain activity – at that time there was
already the Mind Mirror project to think about. And we started to talk,
to share. Step by step blurry interrogations became more consistent
and Teegi was brought to life, first of his kind, followed by Tobe after a
long maturation. I could not have conceived a better platform for the
“social prosthesis” (or whatever, I’m bad at branding) described above.
It’s only the beginning, we have yet to test formally our hypothesis
concerning social interactions and empathy, but I never thought I could
go sot far already. This manuscript is the “secret plan” flavour of my
thesis, shyly disclosed one year ago during a team seminar, when I
presented several outlines for my manuscript – including an ambitious
one with numerous “work in progress” and “todo” flags. I did not
expect this version – which somehow hold everything in place (or so I
hope!) – to become the final one. Thank you Renaud, you made my
dreams come true.

Moreover, you were a valuable companion during 3 years. I met
and talk to PhD students outside the team, outside the lab, outside
the field. Among the recurrent critics regarding the harsh life during
a PhD there was one that stroke me by its strangeness: most of the
students felt lonely. Very often they had to work on their own they said,
with little interactions with other members of their teams. As far as I
can tell communication was not the issue, it was really more about
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collaboration. Up to the point that many were not sure they wanted to
pursue in research. A shame since Science is all about sharing (but a
useful shame, that means more positions available later!). I sympathized
and tried not to brag too much since this was one problem I did not
have at all. Those testimonies helped me understand once again my
good fortune. On many projects I had been closely working with people
around, above all with Renaud. So I guess he also saved me from mental
breakdowns. Thanks for my sanity, pal! What? This whole section
almost feels like a love letter? Why not? They may be made of plastic
and a bit dead inside, but we had babies together. And here they come.

Credits.7 Tobe, son of many (chapter 11)
I will not mention again how much this work owes to Renaud, instead I
will briefly put the highlight on a third dad for Tobe: Alexis Gay. Our
work would have not be same without this intern in Design – who’s also
got a background in cognitive science and education (3 master degrees
largely make up for a PhD!). While we wanted from the start to go
public with Tobe, to bring our project in the field, Renaud and I are
not very comfortable with strangers when we have to put our hats as
scientists, especially when they are many.

Alexis does not have this problem. More than we knew, we needed
someone not afraid to put a prototype into the hands of people; as a
chill-tattooed-surfing-artist he fitted perfectly the character. He’s
the kind of guy who go talk to people – and who enjoy it! Unthinkable,
and yet this is quite a precious perk. We went on is own with pages of
questionnaires seeking people’s representation about mental states and
physiology. He came back unharmed but full of data.

Beyond his personality, he spurred his views and his working method
– before I met him I had no idea about designers’ job, I thought they
were making nice things, not that it was all about the process, with fancy
words such as “participatory design”. The methodology for shaping the
“design space” below, it’s him. He forced us to think Tobe as a product,
speeding up work, helping us to face dead-ends.

Valuable addition to a HCI team, Alexis was also our interface with
the scientific museum where we intervened. For a long time we longed
for a public space where we could expose our works. We were lucky
enough to have Cap Sciences as a playground and Didier Laval as an
enthusiast interlocutor. We write “scientific museum” to save on words
count, but it is truly a scientific cultural center, a shared space between
the public, makers, scientists and designers. Pay them a visit next time
you come to Bordeaux, maybe you’ll see us around.

During our journey with Tobe we also had the occasion to talk to
colleagues from other fields about our project. Not only did their positive
feedback comforted us in our approach at a time when doubts were
clouding our judgment, but we also gained new ideas of applications
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thanks to their ingenuity. On particular, we would like to thank Pierre-
Alain Joseph from the laboratory “Handicap & Système Nerveux”
(Bordeaux University) and Éric Sorita from the university hospital
Pellegrin Bordeaux – using Tobe for stroke rehabilitation, it’s all on
them – as well as Matthew S. Goodwin from the Bouvé College of Health
and Sciences (Northeastern University), who saw the potential of Tobe
for teaching STEM. Finally, I would like to thank Christelle Godin. She
does not know it yet, but by casually mentioning cardiac coherence on
the way back from PhyCS’ 15 welcome cocktail, she sparkled a nice
multi-users scenario.

For the brightest ideas remain rough and fuzzy concepts without
the right people to nurture them, the awesomeness of Tobe stands on
the shoulders of many.
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