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éternellement reconnaissant aux moments de bonheur que je passai proche

des chers amis : Camila ; Carmelo ; Chahinez ; Heba ; Mahran ; Mariella ;
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Abstract

Oil prospecting uses an equipment called drillstring to drill the soil until the

reservoir level. This equipment is a long column under rotation, composed by

a sequence of connected drill-pipes and auxiliary equipment. The dynamics

of this column is very complex because, under normal operational condi-

tions, it is subjected to longitudinal, lateral, and torsional vibrations, which

presents a nonlinear coupling. Also, this structure is subjected to friction and

shocks effects due to the mechanical contacts between the pairs drill-bit/soil

and drill-pipes/borehole. This work presents a mechanical-mathematical

model to analyze a drillstring in horizontal configuration. This model uses

a beam theory which accounts rotatory inertia, shear deformation, and the

nonlinear coupling between three mechanisms of vibration. The model equa-

tions are discretized using the finite element method. The uncertainties in

bit-rock interaction model parameters are taken into account through a

parametric probabilistic approach, and the random parameters probability

distributions are constructed by means of maximum entropy principle. Nu-

merical simulations are conducted in order to characterize the nonlinear

dynamic behavior of the structure, specially, the drill-bit. Dynamical phe-

nomena inherently nonlinear, such as slick-slip and bit-bounce, are observed

in the simulations, as well as shocks. A spectral analysis shows, surprisingly,

that slick-slip and bit-bounce phenomena result from the lateral vibration

mechanism, and that shock phenomena comes from the torsional vibration.

Seeking to increase the efficiency of the drilling process, an optimization

problem that aims to maximize the rate of penetration of the column into

the soil, respecting its structural limits, is proposed and solved.

Keywords
Drillstring dynamics; Nonlinear dynamics; Stochastic modeling;

Uncertainty quantification; Drilling optimization;



Resumo

Prospecção de petróleo usa um equipamento chamado coluna de perfuração

para escavar o solo até o ńıvel do reservatório. Este equipamento é uma

longa coluna, sob rotação, composto por uma sequência de tubos de per-

furação e equipamentos auxiliares conectados. A dinâmica desta coluna é

muito complexa, porque sob condições normais de operação, ela está su-

jeita à vibrações longitudinais, laterais e torcionais, que apresentam um

acoplamento não-linear. Além disso, a estrutura está submetida a efeitos de

atrito e choque devido a contatos mecânicos entre os pares broca/rocha e

tubos de perfuração/parede do poço. Este trabalho apresenta um modelo

mecânico-matemático para analisar uma coluna de perfuração em configura-

ção horizontal. Este modelo usa uma teoria de viga com inércia de rotação,

deformação cisalhante e acoplamento não-linear entre os três mecanismos

de vibração. As equações do modelo são discretizadas utilizando o método

dos elementos finitos. As incertezas dos parâmetros do modelo de interação

broca-rocha são levandas em conta através de uma abordagem probabiĺıstica

paramétrica, e as distribuições de probabilidades dos parâmetros aleatórios

são constrúıdas por meio do prinćıpio da entropia máxima. Simulações nu-

méricas são conduzidas de forma a caracterizar o comportamento dinâmico

não-linear da estrutura, especialmente, da broca. Fenômenos dinâmicos ine-

rentemente não-lineares, como stick-slip e bit-bounce, são observados nas

simulações, bem como choques. Uma análise espectral mostra que, surpre-

endentemente, os fenômenos de stick-slip e bit-bounce são resultado do me-

canismo de vibração lateral, e que os fenômenos de choque decorrem da

vibração torcional. Visando aumentar a eficiência do processo de perfura-

ção, um problema de otimização que tem como objetivo maximizar a taxa

de penetração da coluna no solo, respeitando os seus limites estruturais, é

proposto e resolvido.

Palavras–chave
Dinâmica da coluna de perfuração; Dinâmica não linear; Modelagem

estocástica; Quantificação de incertezas; Otimização de perfuração;



Résumé

La prospection de pétrole utilise un équipement appelé tube de forage pour

forer le sol jusqu’au niveau du réservoir. Cet équipement est une longue

colonne rotative, composée d’une série de tiges de forage interconnectées et

d’équipements auxiliaires. La dynamique de cette colonne est très complexe

car dans des conditions opérationnelles normales, elle est soumise à des vi-

brations longitudinales, latérales et de torsion, qui présentent un couplage

non linéaire. En outre, cette structure est soumise à des effets de frotte-

ment et à des chocs dûs aux contacts mécaniques entre les paires tête de

forage/sol et tube de forage/sol. Ce travail présente un modèle mécanique-

mathématique pour analyser un tube de forage en configuration horizon-

tale. Ce modèle utilise la théorie des poutres qui utilise l’inertie de rotation,

la déformation de cisaillement et le couplage non linéaire entre les trois

mécanismes de vibration. Les équations du modèle sont discrétisées par la

méthode des éléments finis. Les incertitudes des paramètres du modèle d’in-

teraction tête de forage/sol sont prises en compte par l’approche probabiliste

paramétrique, et les distributions de probabilité des paramètres aléatoires

sont construites par le principe du maximum d’entropie. Des simulations

numériques sont réalisées afin de caractériser le comportement dynamique

non linéaire de la structure, et en particulier, de l’outil de forage. Des phé-

nomènes dynamiques non linéaires par nature, comme le slick-slip et le bit-

bounce, sont observés dans les simulations, ainsi que les chocs. Une analyse

spectrale montre étonnamment que les phénomènes slick-slip et bit-bounce

résultent du mécanisme de vibration latérale, et ce phénomène de choc vient

de la vibration de torsion. Cherchant à améliorer l’efficacité de l’opération

de forage, un problème d’optimisation, qui cherche à maximiser la vitesse

de pénétration de la colonne dans le sol, sur ses limites structurelles, est

proposé et résolu.

Mot–clé
Dynamique des tubes de forage; Dynamique non linéaire; Modélisa-

tion stochastique; Quantification des incertitudes; Optimisation de forage;
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q̇n approximation to q̇(tn)

v beam neutral fiber point velocity vector

f reduced force vector
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hn+1 approximation to h(tn+1)

q(t) reduced nodal displacement vector

q0 reduced initial displacement vector

qn approximation to q(tn)

r beam point position vector

{exn , eyn , ezn} non-inertial orthonormal basis of vectors (n = 1, 2, 3)
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c damping constant

cFS shock damping constant of the nonlinear dashpot

cL longitudinal wave velocity
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fmax maximum dimensional frequency (Hz)

g gravity acceleration

i =
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kFS1 shock stiffness constant of the linear spring

kFS2 shock stiffness constant of the nonlinear spring

ns number of MC realizations

r lateral displacement of the neutral fiber

t time
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tn n-th instant of time
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ux displacement of beam section point in x direction

uy displacement of beam section point in y direction

uz displacement of beam section point in z direction

v displacement of beam neutral fiber in y direction

w displacement of beam neutral fiber in z direction

Upper-case Greek

Δt time step

ΓBR bit-rock limit force

[Φ] projection matrix

ΓBR random bit-rock limit force

Σ σ-algebra over Θ

Θ sample space
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αBR rate of change of bit-rock force

β Newmark method parameter
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δX dispersion factor of the random variable X

δnm Kronecker delta symbol

θ̇x rate of rotation around the x axis

θ̇y rate of rotation around the y axis

θ̇z rate of rotation around the z axis

εxx deformation perpendicular to the x axis in the x direction

εxy deformation perpendicular to the x axis in the y direction

εxz deformation perpendicular to the x axis in the z direction

γ Newmark method parameter

κ scaling factor

κs shearing factor

λ first Lamé parameter

μBR bit-rock friction coefficient

μFS shock friction coefficient

ν beam material Poisson’s ratio

ωSOR SOR parameter

ωbit drill-bit angular velocity



ωn n-th natural frequency

σVM random von Mises equivalent stress

αBR random rate of change of bit-rock force

μBR random bit-rock friction coefficient

ρ beam material mass density

σVM von Mises equivalent stress

σX standard deviation of the random variable X

ε Green-Lagrangian strain tensor

σ second Piola-Kirchhoff stress tensor

θx rotation around the x axis

θy rotation around the y axis

θz rotation around the z axis

ε1 prescribed tolerance

ε2 prescribed tolerance

σ2
X variance of the random variable X

θ̇ beam neutral fiber point rate of rotation vector

λn+1 Lagrange multipliers vector

ω angular velocity vector

φn n-th unitary normal mode
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ξBR regularization function
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′ space derivative

∗ dimensionless quantity

˙ time derivative
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(n) approximation constructed with n finite elements

+ positive part of the function

Other Symbols

: double inner product

· Euclidean inner product

E [·] expected value operator

Γ(·) gamma function



1X indicator function of the set X

O big O notation

‖·‖ Euclidean norm

sgn (·) sign function

Supp support of a random variable

⊗ tensor product

tr (·) trace operator

δ(·) variation operator

a.s. almost sure

Abbreviations

BHA bottom hole assembly

FEM finite element method

GEP generalized eigenvalue problem

IVP initial value problem

PDF probability density function
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ROP rate of penetration

SOR successive over-relaxation

WOB weight on bit
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1
General Introduction

Drilling of an oil well is a complex and expensive operation that uses

an equipment, called drillstring, which presents a very complex dynamic

behavior. The modeling of this equipment offers great challenges in terms of

engineering, because it involves the handling and solution of a very complex

problem of nonlinear stochastic dynamics. The subject of this thesis is the

modeling and analysis of the stochastic nonlinear dynamics of a drillstring in

horizontal configuration, taking into account the nonlinear coupling between

the different mechanisms of vibration, the effects of friction and shock to which

the equipment is subject, as well as the quantification of the physical system

uncertainties.

In this chapter it is presented the motivation for this thesis, followed by

the issues of scientific and technological interest associated to the subject, and

finally the scope of the work.

1.1
Research motivation

1.1.1
Historical and economical aspects of oil exploration

Modern oil exploration began in the 19th century with the drilling of the

earliest commercial oil wells. The petroleum extracted from those wells was

mainly used for the production of paraffin and kerosene (Chisholm, 1911) [1].

Since beginning of 20th century, oil demand has been increasing due to

a combination of several factors. Among these factors, one can highlight the

growing need for fuel of automobiles and industrial equipment, driven by the

advent of the internal combustion engine; the high energy power of a oil barrel;

the relative low cost of oil production when compared with coal mining; and,

perhaps the most important, a wide range of oil derivatives, which are used not

only as fuel. In addition to kerosene, other fuels can obtained from petroleum,

such as butane, diesel fuel, fuel oil, gasoline, jet fuel, liquefied petroleum gas,

etc. Other oil by-products include alkenes, aromatic petrochemicals, asphalt,

lubricants, petroleum coke, sulfuric acid, wax, etc.



Chapter 1. General Introduction 25

Nowadays, oil and oil by-fuels are the main source of energy in Brazil and

the world, as can be seen in Table 1.1, which shows the distribution of energy

supply for Brazil in 2013, and for the world in 2011 (MME, 2014) [2]. Note

that in the year of 2011 more than 30% of the global energy matrix was oil

dependent. In the year of 2013 Brazil presented an even greater dependence,

where the importance of oil in the energy matrix has reached nearly 40%.

Also, oil exploration is one of the most important economical activities

developed in the planet. The oil companies handle trillions of U.S. dollars

each year and generate millions of jobs worldwide, besides fomenting the

development of smaller industries of service providers for oil exploration [3]. In

the particular case of Brazil, the oil industry has a key role in the economic

activity of oil-producing regions, such as the states of Rio de Janeiro and

Esṕırito Santo.

Table 1.1: Distribution of energy supply, by source, for Brazil in 2013, and for
the world in 2011 (MME, 2014) [2].

Source Brazil World
(%) (%)

Biomass 24.5 10.0
Coal 5.6 28.8
Hydraulic and eletric energy 12.5 2.3
Natural gas 12.8 21.3
Oil and oil by-products 39.3 31.5
Other 4.0 1.0
Uranium 1.3 5.1

1.1.2
Oil well drilling and drillstring

Oil prospecting demands the creation of exploratory wells, which are

drilled on land (onshore) or at sea (offshore) reservoirs. Usually, onshore

reservoirs have a few hundred meters depth, while offshore reservoirs can

achieve a few kilometers deep (Freudenrich and Strickland, 2001) [4]. For

instance, in Brazilian pre-salt oil fields the average depth of a reservoir,

considering the water layer, is the order of seven kilometers [5, 6].

Traditionally, an oil well configuration is vertical, but directional or even

horizontal configurations, where the boreholes are drilled following a non-

vertical way, are also possible (Willoughby, 2005) [7], (King, 2012) [8]. An

illustration of the different types of configurations which an oil well can take

is presented in Figure 1.1.
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reservoir

vertical well

directional well

Figure 1.1: Schematic representation of two (onshore) oil wells. The left well
configuration is vertical while the right one is directional.

The directional drilling allows to reach oil wells previously inaccessible by

vertical drilling. Additionally, this non-conventional drilling technique should

access a larger area of an oil reservoir and, thus, enhance oil production [9].

On the other hand, this non-conventional drilling technique imposes severe

challenges in terms of engineering. The drilling process which follows a sinuous

path requires drilling equipment with great flexibility and articulation. These

devices have a complex dynamic behavior, and are more subject to damage and

fatigue than the columns used in vertical drilling, once directional configuration

enhances the transverse impacts between the equipment and the borehole walls

(Macdonald and Bjune, 2007) [10].

The main equipment used to drill an oil well, which function is to drill the

soil until the reservoir level, is called drillstring. This device is a long column,

composed of a sequence of connected drill-pipes and auxiliary equipment. It

presents stabilizers throughout its length, whose function is maintain structural

integrity of borehole before cementation process. Furthermore, within the

column flows a drilling mud, which is used to cool the drilling system and

remove the drilling cuttings from the borehole. The bottom part of this column

is called bottom hole assembly (BHA) and consists of a pipe of greater thickness,
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named drill-colar, which provides the necessary weight for drilling, and a tool

used to stick the rock, the drill-bit (Freudenrich and Strickland, 2001) [4]. A

schematic representation of a typical vertical drillstring and its components is

presented in Figure 1.2, but a column in horizontal configuration essentially

has the same structure.

drill pipe

drill colar

drill bit

stabilizer

BHA

Figure 1.2: Schematic representation of a typical drillstring.

To control the drilling process, three operating parameters are used: (i)

rotation frequency of the column, (ii) weight on bit (WOB), and (iii) volumetric

flow rate of mud pumped into the column. These parameters, among many

other things, control the rate of penetration (ROP) of the column into the soil

(Jansen, 1993) [11].

Note that the rotation frequency controls the torque, which is responsible

for rock penetration movement, while the WOB is a type of axial force exerted

by the swivel (a type of hook) on the column top, which forces its advance.

The volumetric flow rate controls the amount of drilling fluid pumped from

the top of column until the borehole bottom. This fluid has the function of

cool the equipment, in addition to transport, from the bottom of the well to

the surface, the residues of the drilling process (Jansen, 1993) [11].
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1.1.3
Uncertainties, variabilities and errors

This thesis also deals with uncertainties in the context of physical

systems. To fix ideas, consider a designed system, which will give rise to a real

system through a manufacturing process. This manufacturing process is subject

to a series of variabilities (due to differences in the geometric dimensions of

the components, variations in operating conditions, etc) that result in some

differences in the parameters (geometrical dimensions, physical properties,

etc) of two or more real systems manufactured. The inaccuracies on these

parameters is known as data uncertainty (Soize, 2012) [12].

In order to make predictions about the behavior of the physical system, a

computational model should be used. In the conception this model mathemat-

ical hypotheses are made. These considerations may be or not in agreement

with the reality and should introduce additional inaccuracies in the model,

known as model uncertainty. This source of uncertainty is essentially due to

lack of knowledge about the phenomenon of interest and, usually, is the largest

source of inaccuracy in model response (Soize, 2012) [12]. This model is also

supplied with the parameters of the real system, so that it is also subjected to

the data uncertainty.

A schematic representation of the conceptual process which show how

uncertainties of a physical system are introduced into a computational model

is shown in Figure 1.3.

manufacturing process
(variabilities)

mathematical modeling
(model uncertainty)

designed
system

real
system

computational
model

model
parameters

(data uncertainty)

Figure 1.3: Schematic representation of the conceptual process which show how
uncertainties of a physical system are introduced into a computational model.

Uncertainties affect the response of a computational model, but should

not be considered errors because they are physical in nature. Errors in the

model response are due to the discretization process of the equations and to

the use of finite precision arithmetic to perform the calculations.
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Therefore, unlike the uncertainties, that have physical origin, errors are

purely mathematical in nature, and can be controlled if the numerical methods

and algorithms used are well known by the analyst.

Being the uncertainties in the physical system the focus of stochastic

modeling, two approaches are found in the scientific literature for the treatment

of uncertainties: (i) non-probabilistic, and (ii) probabilistic.

The non-probabilistic approach uses techniques such as interval and fuzzy

finite elements; imprecise probabilities; evidence theory; probability bounds

analysis; fuzzy probabilities; etc, and is generally applied only when the

probabilistic approach can not be used. For more details on this approach,

the reader may consult the works of Moens and Vandepitte (2005) [13],

Moens and Hanss (2011) [14], and Beer et al. (2013) [15].

The probabilistic approach uses probability theory to model the uncer-

tainties of the physical system as random mathematical objects. This approach

has a more well-developed and consistent mathematical framework, and, for

this reason, there is a consensus among the experts that it is preferable when-

ever possible to use it (Soize, 2012) [12].

In the context of the probabilistic approach, when one wants to treat

only the data uncertainties, the tool used is called parametric probabilistic

approach. This procedure consists in modeling the random parameters of the

computational model as random variables and/or random vectors, consistently

constructing their probability distributions. Consequently, the system response

becomes aleatory, and starts to be modeled by another random mathematical

object, such as random variables, random vectors, stochastic processes and/or

random fields, depending on the nature of the model equations. Then the

system response is calculated using a stochastic solver.

For a review on the parametric probabilistic approach, the reader is en-

couraged to consult the works of Schuëller (1997) [16]; Schuëller (2001) [17];

Schuëller (2006) [18]; Schuëller (2007) [19]; Schuëller (2009a,b) [20, 21];

Soize (2012) [12]; and Soize (2013) [22].

Also in the context of the probabilistic approach, but when the focus

are the model uncertainties, one of the tools used is called nonparametric

probabilistic approach. This method was proposed by Soize (2000) [23], and

describes the mathematical operators of the computational model, not the

parameters, as random objects. The probability distribution of these objects

must be constructed in a consistent manner, using the principle of maximum

entropy. The methodology lumps the level of uncertainty of the model in a

single parameter, which, in an ideal scenario with many experimental data

available, must be identified by solving a problem of parameter identification.
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The application of the nonparametric probabilistic approach in the con-

texts of dynamics and vibrations can be seen, for instance, in Soize (2001) [24],

Soize (2003) [25], and Soize (2005) [26], and a review of the technique is pre-

sented in Soize (2012) [12] and Soize (2013) [22].

Recently Soize (2010) [27] and Batou et al. (2011) [28] published two

papers combining the two probabilistic approaches in order to take into account

data and model uncertainties in a single method, in what the authors called

generalized probabilistic approach.

1.2
Issues of scientific and technological relevance

1.2.1
Study of column nonlinear dynamics

Since the axial direction of a drillstring is orders of magnitude larger

than the characteristic dimension of its cross section area, the column is a long

flexible structure with a very complex flexural dynamic. For sake of illustration

of how flexible is such column, consider a typical 2 km long drillstring which

has mean diameter of 100mm. Herein, the drillstring slenderness, which is

defined as the ratio between its length and diameter, is equal to 20.000. For

comparison, a 300mm long human hair, with mean diameter of 100 μm, has

its slenderness equal to 3.000 (Chevallier, 2000) [29].

Furthermore, during drilling process, the drillstring is also subjected to

other two mechanisms of vibration (longitudinal and torsional), which inter-

act nonlinearly with the flexural mechanism, resulting in a further compli-

cated dynamics. The coupling between these three mechanisms of vibration,

which imposes severe complications on the drillstring dynamics modeling, come

from the action of several agents, such as: structure self weight (for a verti-

cal column); tensile and compressive loads due to the WOB and soil reac-

tion force; dry friction and impacts with borehole walls; bit-rock interaction

forces; internal flow pressure; forces induced by internal flow instabilities; etc

(Spanos et. al., 2003) [30].

Thus, considering only the theoretical point of view, the study of the

nonlinear dynamics of a drilling is already a rich subject. But in addition, the

good understanding of its dynamics has also significance in applications. Only

a few examples, it is fundamental to predict the fatigue life of the structure;

to analyze the structural integrity of an oil well; and to optimize the ROP of

the drill-bit into the soil, which is essential to reduce cost of production of an

oil well.
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1.2.2
Drilling process optimization

The task of drilling an oil well, which generally is not held by oil

companies, but by service providers [31], involves immense amounts of money,

since to rent a drilling rig costs on the order of some hundreds of thousands

of dollars per day [32]. The process of drilling a well sometimes takes up to 3

months, so that this high daily cost has a cumulative effect, which is a major

part in the final price a completed oil well. Moreover, as this drilling cost is

very high and daily, all other fixed costs associated with the process become

less important when one think in reduce the costs of production of an oil well.

In this sense, the strategy adopted to reduce the production cost of an oil

well involves necessarily a reduction in the total number of days of operation.

This is done through the maximization of the drillstring ROP into the soil,

which also has a cumulative effect, that may result at the end of the operation

in significant time savings.

1.3
Scope of scientific work

1.3.1
Problem definition and research objectives

Being motivated by the economic importance that oil exploration has,

and will continue to have in the world for the next decades, this thesis aims

to develop a study on the problematic associated with the drilling of oil wells

in horizontal configuration. For this purpose, the objective is to develop a

mechanical-mathematical model to describe the three-dimensional nonlinear

dynamics of horizontal drillstrings, taking into account in modeling the other

phenomena that affect the behavior of this system, such as friction and shocks

due to the mechanical contacts between the pairs drill-bit/soil and drill-

pipes/borehole. It is also intended to construct a stochastic model to take

into account the uncertainties in this model that are due to the variability on

its parameters. With the deterministic and stochastic models, it is intended to

analyze the behavior of the mechanical system of interest, in order to obtain a

better understanding of its nonlinear behavior. Indeed, the aim is to optimize

the drilling process, by maximizing the ROP of the drillstring into the soil, to

reduce the costs of production of an oil well.
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1.3.2
Research contributions

This doctoral thesis deals with the problem defined in the previous sec-

tion and presents as main contributions: (i) the development of a mechanical-

mathematical model to describe the three-dimensional nonlinear dynamics of

horizontal drillstrings; (ii) the development of an efficient computational model

to simulate the nonlinear dynamics of interest; (iii) the implementation of

this computational model in a MATLAB code; (iv) modeling of the bit-rock in-

teraction model parameters uncertainties through the parametric probabilis-

tic approach; (v) analysis of the nonlinear dynamic behavior of horizontal

drillstrings, in particular the drill-bit; (vi) optimization (deterministic and ro-

bust) of the drilling process, by maximizing the drillstring ROP into the soil.

1.3.3
Manuscript outline

This manuscript is divided in seven chapters and three appendices. This

introduction is the first chapter. In chapter two it is presented a review

of the scientific literature concerning the nonlinear dynamics of drillstrings.

Chapter three develops the deterministic modeling of a mechanical system

that emulates a drillstring, in horizontal configuration, confined within an

oil well. The chapter four shows the construction of a stochastic model for

random parameters associated with the mechanical system of interest. In fifth

chapter are presented the results of the numerical simulations performed to

better understand the nonlinear behavior of the stochastic dynamical system.

The chapter six concerns about the drilling process optimization, seeking to

maximize the drillstring ROP into the soil. The seventh chapter reminds

the thematic discussed in this thesis, the main results obtained, suggests

paths for future works, and lists the authors publications along the doctorate.

The appendix A presents the derivation of the weak equation of motion of

the mechanical system of interest. In appendix B the reader can see the

interpolation functions used by the finite element method. And finally in

appendix C, are available the publications in journals that resulted from the

work of this thesis.
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Review of Scientific Literature

This chapter presents a literature review concerning the fundamental

physics of drillstrings, its deterministic and stochastic modeling, and on the

quantification of uncertainties intrinsic to such physical system.

2.1
Fundamental physics of drillstrings

Drillstrings have very complex physics, with three-dimensional dynamical

behavior that presents longitudinal, flexural, and torsional vibrations, such as

illustrated in Figure 2.1, and these mechanisms of oscillation are nonlinearly

coupled in general.

longitudinal
vibration

flexural
vibration

torsional
vibration

Figure 2.1: Schematic representation of the drillstring vibration mechanisms.

Moreover, these structures are subject to friction and shock effects due

to transverse impacts between the structure and the borehole wall. Nonlinear

effects are also introduced by the bit-rock interaction at the end of the column,

and by the drilling fluid flow, that occurs in the annular space between the tube

and the oil well.
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Next, it is discussed in more detail each of the physical mechanisms that

influence the nonlinear dynamics of a drillstring.

2.2
Longitudinal vibration: the bit-bounce phenomenon

The drillstring longitudinal vibration is a mechanism of axial oscillation.

One of its occurrences is when drill-bit looses contact with rock and, in

sequence, hits the rock sharply, a phenomenon called bit-bounce (Deily et al.,

1968) [33]. This loss of contact may be due to irregularities in rock surface

or due to an axial resonance, caused by a harmonic forcing induced by the

mud pump. This phenomenon should generates some serious problems such as

oscillations on WOB; decrease of ROP into the soil; fatigue of some mechanical

devices; and even a possible damage to the borehole (Spanos et al., 2003) [30].

Early studies of this mechanism of vibration dates back to 1960, with

the works of Bailey and Finnie [34, 35]. This phenomenon was also accessed

experimentally by Cunningham (1968) [36], and Deily et al. (1968) [33], which

observed that column rotation and fluctuations of pressure in drilling mud flow

are sources of longitudinal vibrations on the drillstring.

Numerical studies that were conducted to understand the axial propa-

gation of a wave in a drillstring are available in Lee (1991) [37]. More recent

studies, involving numerical simulation and experimental analysis, which were

conducted in order to understand how one can take advantage of the longi-

tudinal vibrations to improve the efficiency of drilling process can be seen in

Franca and Weber (2004) [38], and Franca (2004) [39], respectively.

Reviews on longitudinal vibration of drillstrings can be seen in Dyk-

stra (1996) [40], Chevallier (2000) [29], and Spanos et al. (2003) [30].

2.3
Flexural vibration: the whirl phenomenon

The drillstring flexural vibration is a mechanism of transversal oscillation.

For instance, this mechanism can occur due to centrifugal forces induced by

rotation, a phenomenon called whirl. These forces can be generated by mass

imbalances, a strong compressive force, etc. The phenomenon of whirling could

result in damages to drill-pipes joints, drill-collars, drill-bit and borehole walls;

shocks; and, reduction of ROP into the soil (Spanos et al., 2003) [30].

Historically this vibration mechanism was the last one to be observed

during drillstring operation, since it occurs only in the regions of the column

that are not visible from the surface. Furthermore, it is the most common

mechanism of damage which the column is subjected (Chevallier, 2000) [29].
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The literature presents a lot of works that investigate the phenomenon

of whirl experimentally (Shyu, 1989) [41], numerically (Payne, 1992) [42],

(Jansen, 1993) [11], (Kotsonis, 1994) [43], (Chevallier, 2000) [29],

(Spanos et al., 2002) [44], or on both fronts (Spanos et al., 1997) [45].

For a deeper insight into whirl phenomenon of drillstrings, the interested

reader is encouraged to consult Jansen (1993) [11], Chevallier (2000) [29], and

Spanos et al. (2003) [30].

2.4
Torsional vibration: the stick-slip phenomenon

The drillstring torsional vibration is a mechanism of circumferential

oscillation. In this mechanism, the vibration modes may be transient or

stationary. The transient modes are encountered when drilling parameters are

subjected to local variations, such as fluctuations in rotation frequency of the

column or changes into soil properties. The most common occurrence of a

stationary mode is when static friction between borehole wall and drill-bit is

sufficient to block the rotation movement of the BHA, a phenomenon called

stick-slip. During this block, the rotation frequency of the column, which is a

structure with high torsional flexibility, is constant. In consequence, the column

is twisted and potential energy of torsion is stored. When the available torque

overcomes the static friction, the stored energy is released as kinetic energy of

rotation and the column rotation frequency increases a lot, sometimes three

times an order of magnitude above the normal. This phenomenon may result

in excessive wear of the drill-bit and/or the borehole walls; can decrease the

ROP into the soil; or even break the column (Spanos et al., 2003) [30].

The stick-slip phenomenon between two surfaces sliding on each other

has been largely studied in the context of theoretical physics for more than

seven decades (Bowden and Leben, 1939) [46], (Persson and Popov, 2000) [47].

In the context of drillstring dynamics, it is the vibration mech-

anism most studied, being analyzed analytically and experimentally

by Bailey and Finnie (1960) [34, 35], Halsey et al. (1986) [48],

Brett (1992) [49]. Other works access the phenomenon from numerical

and experimental point of view, such as Lin and Wang (1991) [50], Miha-

jlovic et al. (2004) [51], Franca (2004) [39], or simply numerically, as is the

case of Richard et al. (2004) [52], and Silveira and Wiercigroch (2009) [53].

For further information about stick-slip phenomenon in drillstring dy-

namics the reader can see Jansen (1993) [11], Chevallier (2000) [29], and

Spanos et al., (2003) [30].
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2.5
Coupling of vibration mechanisms

The individual study of each vibration mechanism that acts on a drill-

string is an important task for better understanding the physical phenomena

involved in the dynamics, besides being an interesting topic of academic re-

search. But if one needs a realistic model to perform predictions about drill-

string dynamics, consider an individual mechanism of vibration is of little in-

terest, because in a real column all of these vibration mechanisms are coupled

(Spanos et al., 2003) [30]. For this reason, most modeling work in this area

take into account the coupling of two or three mechanisms of vibration.

Considerable effort has been developed to propose models that take

into account the coupling between the different mechanisms of vibration. For

example, the coupling between axial and torsional mechanisms was investigated

by Sampaio et al. (2007) [54], and Germay et al. (2009) [55], both modeling the

drillstring as a distributed parameters system, and by Richard et al. (2007) [56],

Divenyi et al. (2012) [57], Nandakumar and Wiercigroch (2013) [58], and

Depouhon and Detournay (2014)[59], which use a lumped parameters approach

with two degrees of freedom. While the work of Sampaio et al. (2007) [54] aims

to understand the effects introduced by the nonlinear coupling between the two

mechanisms of vibration in the system response, the other works are focused

on making qualitative and quantitative analyzes of the system, in order to seek

configurations which reduce the stick-slip and bit-bounce phenomena during

drillstring operation.

Also, studies on the coupling between longitudinal and flexu-

ral vibrations are available in Yigit and Christoforou (1996) [60], and

Trindade et al. (2005) [61]. These two works show that it is necessary

take into account the nonlinear coupling between longitudinal and flexural

vibrations when one wants to correctly predict the transverse impacts between

the drillstring and the borehole wall.

The coupling between the flexural and torsional vibrations is the central

object of study in Yigit and Christoforou (1998) [62]. It is observed that, at

certain frequencies, there is a large transfer of energy between the two modes of

vibration. Furthermore, the model reproduces qualitatively well the stick-slip

phenomenon, once the numerical values obtained with the model presented

good qualitative agreement with the experimental data obtained from a test

rig in laboratory.
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Studies which considers the coupling between the three vibrations mech-

anisms also exist in the literature. For instance, Tucker and Wang (1999) [63],

Coral Alamo (2006) [64], and Silveira (2011) [65], which use an exact geo-

metric description of kinematics, through the theory of Cosserat, to model

the nonlinear dynamics of a drillstring. Additionally, lumped parameters ap-

proach is used by Christoforou and Yigit (2003) [66], in a strategy to control

the drillstring vibrations, and by Liu et al. (2013) [67], to conduct numerical

studies that show the existence of long periods of stick-slip, besides a whirling

state of the tube that periodically alternates between phases of stick and slip.

The approach of distributed parameters is used by Khulief et al. (2007) [68],

Ritto et al. (2009) [69], and Ritto (2010) [70]. As these models take into account

the non-linear coupling between all the mechanisms of vibration, in principle,

they provide a better representation of the physical phenomenon that occurs

in the real system. The price one needs to pay by these nonlinearities in a

distributed parameters model is the computational cost, which is much higher

than the cost associated with previous models. Therefore, all these works use

modal projection to obtain reduced order models.

2.6
Interaction between drill-bit and soil

The drill-bit, which is located at the end of the drillstring, has a

complex geometry so that its kinematical behavior during the drilling process

is extremely complicated to be described in detail. Likewise, it is also difficult

to describe the forces/torques of reaction imposed by the rock formation on

the drill-bit. As an alternative to describe this complex physics, Detournay

and Defourny (1992) [71] established a phenomenological relationship, linking

dynamic parameters into the drill-bit, such as force and torque of reaction,

with kinematic quantities of the drillstring, such as angular velocity and rate

of penetration.

Hence, the standard approach to model the the phenomena of interaction

between the drill-bit and the rock formation became to use phenomenological

equations, known as bit-rock interaction laws, which relate the force and the

torque with the angular velocity and rate of penetration of the drillstring

(Detournay et al., 2008) [72]. Such an approach lumps the dynamic effects

into a force and a torque, concentrated at the end of the column, ignoring all

details of the complex geometry of the drill-bit, such as illustrated in Figure 2.2.
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FBR

TBR

Figure 2.2: Schematic representation of the interaction between the drill-bit
and the rock formation.

Assuming that two independent processes – cutting and friction – char-

acterize the bit-rock interaction of drag bits, and the latter has three dis-

tinct phases, Detournay et al. (2008) [72] proposed a interaction law in which

force and torque do not depend on two kinematic variables (angular velocity

and penetration rate), but only on the ratio between them, and, of course,

some constants which are function of drill-bit geometry and rock properties.

Later, Franca (2010) [73] adapted this model to the context of polycrystalline-

diamond-compact bits, and then to rotary-percussive drilling (Franca, 2011)

[74]. All of these works combine theoretical formulation with experimental val-

idation.

In the natural formulation, these interaction laws receive force and torque

as input, and return the angular velocity and the rate of penetration as

output. However, when these phenomenological equations are inverted, so that

the model receives kinematics parameters and return dynamic quantities, a

singularity arises, which generates infinite force and infinite torque when the

rate of penetration become zero. This singularity has no justification from a

physical perspective. So, a procedure of mathematical regularization, using a

function that decays to zero faster than the force/torque diverges, is used in

some studies, such as Tucker and Wang (2003) [75], Ritto et al. (2009) [69],

Ritto et al. (2012) [76], to avoid the singularity of the model. An artificial

procedure, which showed itself useful for numerical purposes.
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Ritto et al. (2013) [77] proposed a phenomenological equation to describe

the reaction force on the drill-bit in the context of horizontal drilling. This

new interaction law, inspired by an expression used to describe friction in

metal working processes (Wanheim et al., 1974) [78], models the force as an

exponential decay function that is limited below. This avoids the singularity

previously described. Meanwhile, the model is still purely theoretical, without

any experimental validation.

A common deficiency found in all of the above models, even in those who

have undergone an experimental validation process, is the absence of a static

equilibrium configuration (Corben and Stehle, 1994) [79], which is not realistic

from the physical point of view.

One last point, to the best of author’s knowledge, there is no work in

the literature that verifies if bit-rock interaction laws above, which resemble

constitutive equations, were developed into a “suitable” thermodynamical

framework (Rajagopal, 2003) [80].

2.7
Flow of the drilling fluid

During the drilling process, a drilling mud, which is a highly viscous

fluid that presents a non-Newtonian behavior, is pumped inside the tube,

leaving it by the extreme which contains the drill-bit and then flowing through

the annular space between the drillstring and borehole wall. A schematic

representation of this situation can be seen in Figure 2.3.

Figure 2.3: Schematic representation of the drilling fluid flow that occurs inside
the drillstring and in the annular space outside of it.
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In general this fluid flow is three-dimensional and turbulent, so that its

physical behavior is highly nonlinear. The operation in regime of turbulence

generates severe fluctuations in pressure and velocity, which induces vibrations

on the drillstring. Such fluctuations are dependent on various characteristics of

the fluid (viscosity, density, temperature, etc) and of the drillstring geometry

(length, diameter, eccentricity, etc) (Spanos et al., 2003) [30].

The influence of eccentricity in the behavior of a fluid that flows in an

annular space has been studied theoretically, numerically, and experimentally

by several authors. For instance, Siginer and Bakhtiyarov (1998) [81] study

the azimuthal velocity of a non-Newtonian fluid, using linear fluidity model,

and compare the results obtained with an analytical expression with experi-

mental data, obtaining good corroboration. On the other hand, a Newtonian

fluid, flowing in laminar regime through an eccentric annulus, with axial bulk

velocity and angular rotation of the inner cylinder, is investigated by Escud-

ier et al., (2000) [82]. In a later work, Escudier et al. (2002) [83] studied the

effect of eccentricity in case similar to the previous one, but now considering

a non-Newtonian fluid. Lubrication theory was employed by Pina and Car-

valho (2006) [84] to reduce computational cost of a model that describes the

three-dimensional annular flow mentioned above, for a Newtonian fluid. This

numerical study was conducted in order to identify the effect of eccentricity in

the three-dimensional flow. Comparisons with results available in the literature

showed the accuracy of the simplified model.

Another problem, where the annular flow presents a partial obstruction,

which breaks its circumferential symmetry, was studied numerically and exper-

imentally by Loureiro et al. (2006) [85]. This work identified that the width of

the vortices, which are generated due to Taylor-Couette instabilities, depends

on the obstruction height.

Concerning the modeling of fluid flow and drillstring structural dynamics

interaction effects, the works of Ritto et al. (2009) [69], and Ritto (2010) [70],

presented a simplified model for describing this flow based on the work of

Päıdoussis et al. (2008) [86]. This model assumes that the fluid inside the tube

is inviscid, while the fluid in the annular space has viscosity. A linear variation

of pressure throughout the axial direction is also supposed. The flow induced

by rotation around the axial direction of the tube is disregarded. Thus, taking

into account these assumptions, the fluid-structure coupling in this model is

intrinsically linear (Päıdoussis, 1998, 2004) [87, 88].
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2.8
Directional and horizontal drillstrings

Despite the fact that directional drilling have been used in practical

engineering for a few decades, and the majority of the exploratory wells

drilled today be directional in configuration, most of the works find in the

technical/scientific literature study vertical drillstrings only. To the best of the

author’s knowledge, there are very few papers in the open literature which

models drillstring in directional configurations (Sahebkar et al., 2011) [89],

(Hu et al., 2012) [90], and (Ritto et al., 2013) [77].

All of these works use distributed parameters approach, but while Sahe-

bkar et al. (2011) [89] and Ritto et al. (2013) [77] only address the drillstring

longitudinal dynamics, Hu et al. (2012) [90] uses generalized Euler-Bernoulli

beam theory to describe the drillstring three-dimensional dynamics in a sloped

directional well. In Sahebkar et al. (2011) [89], the authors study a sloped con-

figuration for the borehole and uses a perturbation technique to compute a

solution for the equations of the model. Conversely, the model equations are

solved by finite element method in Ritto et al. (2013) [77].

However, regarding the physics of the directional drilling problem, none

of these works examines in depth the phenomena of interest. For instance,

Sahebkar et al. (2011) [89] merely analyzes the resonance frequencies of the

system, while Hu et al. (2012) [90] presents a few results regarding lateral and

axial dynamics, addition to a whirl orbit. It is surprising the absence of results

relative to the torsional dynamics, where one would expect to observe the

stick-slip phenomenon. Ritto et al. (2013) [77] are the authors who discuss the

physics deeper, introducing spectral analysis of the system response, analyzing

the efficiency of the drilling process, and surprisingly, identifying a type of stick-

slip phenomenon in the longitudinal dynamics. However, the main objective

of their work is uncertainty analysis, and not exploration of the nonlinear

dynamics.

Certainly, there is a lack of works in the scientific literature dealing with

the nonlinear dynamics of drillstring in directional and/or horizontal configura-

tions. This fact, together with the engineering applications associated (fatigue

life calculation; structural integrity analysis; ROP optimization; etc), make this

issue a very interesting topic of research, and served as one motivation for this

thesis.



Chapter 2. Review of Scientific Literature 42

2.9
Uncertainty quantification in drillstring dynamics

A drillstring is a very complex physical system, which is subject to many

variabilities in its parameters. This combination of variability in physical pa-

rameters and complexity on physics leads to a computational model (predic-

tion tool) subject to data and model uncertainties. Therefore, for a better

understanding of drillstring dynamics, these uncertainties must be modeled

and quantified.

In the context of vertical drillstrings dynamics, one of the first works

on uncertainty quantification was the Ph.D. Thesis of Chevallier (2000) [29],

giving rise to the work of Spanos et al. (2002) [44], where external forces are

modeled as random objects and the method of statistical linearization is used

along with the Monte Carlo method to treat the stochastic equations of the

model.

Other work in this line include the D.Sc. Thesis of Ritto (2010) [70],

which resulted in a series of publications. Among these publications, some of

then use the nonparametric probabilistic approach to account model uncer-

tainties, such as Ritto et al. (2009) [69], and Ritto et al. (2010a) [91]. On the

other hand, the standard parametric probabilistic approach is used to take into

account the data uncertainty by Ritto et al. (2010b) [92], and Ritto and Sam-

paio (2012) [76].

Aiming to maximize drillstring ROP into the soil, Ritto et al. (2010c) [93]

solve a robust optimization problem, where the objective function is mean

value of the ROP, and the restrictions are imposed by the limits of structural

integrity of the system. The results show that, in some situations, it is more

advantageous to solve a robust optimization problem instead of a classic

optimization problem.

In the assemblies of works that deal with directional drilling, to the best of

the author’s knowledge, only Ritto et al. (2013) [77] considers the uncertainties,

which, in this case, are related to the friction effects due to drillstring/borehole

wall contact.



3
Modeling of Nonlinear Dynamical System

This chapter presents the deterministic modeling of the nonlinear dy-

namics of drillstrings in horizontal configuration, and is divided into four parts.

The first part draws up a physical model for the problem, then, in the second

part the physical model is translated into equations to obtain a mathematical

model. In the third part, it is conceived a computational model to numerically

approximate the solution of the mathematical model. Finally, at the end of the

chapter, one finds a fourth part, that discusses the the position of the modeling

presented in relation to the work that formed the basis for its development.

3.1
Physical model for the problem

The conception of a physical model for the problem includes the definition

and parametrization of the mechanical system, followed by the modeling of the

effects of friction and shock, as well as the effects of bit-rock interaction. As the

main focus of this work is the structural part, are ignored any fluid-structure

and thermal effects that may influence the dynamical system of interest.

3.1.1
Definition of the mechanical system

The mechanical system of interest in this work, which is schematically

represented in Figure 3.1, consists of a horizontal rigid pipe, perpendicular to

the gravity, which contains in its interior a deformable tube under rotation.

This deformable tube is subjected to three dimensional displacements, which

induces longitudinal, lateral, and torsional vibrations of the structure. These

mechanisms of vibration are able to generate slips and shocks in random areas

of the rigid tube. Also, the contact between the drill-bit, at the right extreme of

the tube, with the soil generates nonlinear forces and torques on the drillstring

right extreme, which may completely block the advance of the structure over

the well.
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Figure 3.1: Schematic representation of the mechanical system under analysis.

3.1.2
Parameterization of the nonlinear dynamical system

For purposes of modeling, the only part of the column considered is the

BHA. So, the variation of the diameter along the column is ignored. In this

way, the bottom part of the deformable tube, described in the previous section,

is modeled as a rotating beam in horizontal configuration, whose the transverse

displacement (y and z) at both ends is blocked, as well as the transverse

rotations on the left extreme. This beam is free to rotate around the x axis,

and to move longitudinally. The rigid pipe described in the section 3.1.1 will

be treated as a stationary cylindrical rigid wall in horizontal configuration.

As the beam is confined within the borehole, it is reasonable to assume

that it undergoes small rotations in the transverse directions. By another hand,

large displacements are observed in x, y, and z, as well as large rotations

around the x-axis. Therefore, the analysis that follows uses a beam theory

which assumes large rotation in x, large displacements in the three spatial

directions, and small deformations (Bonet and Wood, 2008) [94].

Seeking not to make mathematical model excessively complex, this work

will not model the fluid flow inside the beam, nor the dissipation effects induced

by the flow on the system dynamics.

Due to the horizontal configuration, the beam is subject to the action of

the gravitational field, which induces an acceleration g. This beam is made of

an isotropic material with mass density ρ, elastic modulus E, and Poisson’s

ratio ν. It has length L and annular cross section, with internal radius Rint

and external radius Rext.

An illustration of the beam geometric model is presented in Figure 3.2.

It is important to note that this model also ignores the mass of the drill-bit

and its geometric shape.
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Figure 3.2: Schematic representation of the beam geometry used to model the
deformable tube under rotation, and the inertial system of coordinates used.

Using the cartesian coordinate system (x, y, z), defined by the orthonor-

mal basis {ex, ey, ez}, fixed in the inertial frame of reference R, and shown

in the Figure 3.2, one can describe the undeformed configuration of the beam

geometry by

B0 =
{
(x, y, z) ∈ R3

∣∣ 0 ≤ x ≤ L, (y, z) ∈ S0

}
, (3.1)

where the undeformed configuration of the beam cross section is described by

S0 =
{
(y, z) ∈ R2

∣∣ R2
int ≤ y2 + z2 ≤ R2

ext

}
. (3.2)

Once the configuration of the undeformed cross section has been charac-

terized, one can define the cross-sectional area,

A =

∫∫
S0

dy dz, (3.3)

the second moment of area around the y axis

Iyy =

∫∫
S0

z2 dy dz, (3.4)

the second moment of area around the z axis

Izz =

∫∫
S0

y2 dy dz, (3.5)

the polar moment of area

Ixx =

∫∫
S0

(
y2 + z2

)
dy dz, (3.6)

the fourth moment of area around the z axis

Izzzz =

∫∫
S0

y4 dy dz, (3.7)

and the fourth product of area

Iyyzz =

∫∫
S0

y2z2 dy dz. (3.8)
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Calculating the integrals on the Eqs. (3.3) to (3.8) one can show that

A = π
(
R2

ext −R2
int

)
, (3.9)

as well as Iyy = Izz = I4, Ixx = 2I4, Iyyzz = I6, and Izzzz = 3I6, where

I4 =
π

4

(
R4

ext −R4
int

)
, (3.10)

and

I6 =
π

24

(
R6

ext −R6
int

)
. (3.11)

In this work other three coordinate systems (all of then with the same

origin as the (x, y, z) coordinate system) are also used, each one fixed in a non-

inertial frame of referenceRn, where n = 1, 2, 3, and defined by an orthonormal

basis of vectors of the form {exn , eyn , ezn}.
These systems of coordinates are related by a sequence of elementary

rotations, such as follows

R θx−−→ R1

θy−−→ R2
θz−−→ R3,

(x, y, z) (x1, y1, z1) (x2, y2, z2) (x3, y3, z3)
(3.12)

where θx is the rotation between the coordinate systems (x, y, z) and (x1, y1, z1),

θy is the rotation between the coordinate systems (x1, y1, z1) and (x2, y2, z2),

and θz is the rotation between the coordinate systems (x2, y2, z2) and

(x3, y3, z3). This sequence of elementary rotations is illustrated in Figure 3.3.

Thus, with respect to the non-inertial frame of reference, the instanta-

neous angular velocity of the beam is written as

ω = θ̇xex + θ̇yey1 + θ̇zez2 , (3.13)

where θ̇x, θ̇y, and θ̇z denote the rate of rotation around the x, y, and z

directions, respectively. From now on, the upper dot ˙ will be used as an

abbreviation for time derivative.

Referencing the vector ω to the inertial frame of reference, and using the

assumption of small rotations in the transversal directions, one obtains

ω =

⎛
⎜⎜⎝

θ̇x

0

0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

1 0 0

0 cos θx − sin θx

0 sin θx cos θx

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0

θ̇y

0

⎞
⎟⎟⎠ + (3.14)

⎛
⎜⎜⎝

1 0 0

0 cos θx − sin θx

0 sin θx cos θx

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 0 θy

0 1 0

−θy 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

0

0

θ̇z

⎞
⎟⎟⎠ ,
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x1 ≡ x
y

z

y 1z 1

θx

θx

3.3(a): System of coordinates (x1, y1, z1) ro-
tates around the x axis.

y2 ≡ y1
z1

x1

z 2x 2

θy

θy

3.3(b): System of coordinates (x2, y2, z2) ro-
tates around the y1 axis.

z3 ≡ z2
x2

y2

x 3y 3

θz

θz

3.3(c): System of coordinates (x3, y3, z3) ro-
tates around the z2 axis.

Figure 3.3: Sequence of elementary rotations that relates the non-inertial
coordinate systems used in this work.

which is equivalent to

ω =

⎛
⎜⎜⎝

θ̇x + θ̇zθy

θ̇y cos θx − θ̇z sin θx

θ̇y sin θx + θ̇z cos θx

⎞
⎟⎟⎠ . (3.15)

The kinematic hypothesis adopted for the beam theory assumes that

the three-dimensional displacement of a beam point, occupying the position

(x, y, z) at the instant of time t, can be written as

ux(x, y, z, t) = u− yθz + zθy, (3.16)

uy(x, y, z, t) = v + y (cos θx − 1)− z sin θx,

uz(x, y, z, t) = w + z (cos θx − 1) + y sin θx,

where ux, uy, and uz respectively denote the displacement of a beam point in

x, y, and z directions. Moreover, u, v, and w are the displacements of a beam

neutral fiber point in x, y, and z directions, respectively. Remember that θx, θy,

and θz represent rotations around axes of the non-inertial coordinate systems.
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Finally, it is possible to define the vectors

r =

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠ , v =

⎛
⎜⎜⎝

u̇

v̇

ẇ

⎞
⎟⎟⎠ , and θ̇ =

⎛
⎜⎜⎝

θ̇x

θ̇y

θ̇z

⎞
⎟⎟⎠ , (3.17)

which, respectively, represent the position of a beam point, the velocity of a

neutral fiber point, and the rate of rotation of a neutral fiber point.

Note that the kinematic hypothesis of Eq.(3.16) is expressed in terms

of the three spatial coordinates (x, y, and z) and six field variables, the

neutral fiber displacements (u, v, and w) and the rotations around axes of

the non-inertial coordinate systems (θx, θy, and θz). These field variables are

the physical quantities of interest to describe the nonlinear dynamics of the

deformable tube under rotation.

It is important to mention that, as the analysis assumed small rotations

in y and z, the kinematic hypothesis of Eq.(3.16) presents nonlinearities,

expressed by the trigonometric functions, only in θx. Besides that, since the

analysis is using a beam theory, the field variables in Eq.(3.16) depend only

on the spatial coordinate x and the time t, i.e., u = u(x, t), v = v(x, t),

w = w(x, t), θx = θx(x, t), θy = θy(x, t), and θz = θz(x, t). Therefore, although

the kinematic hypothesis of Eq.(3.16) is three-dimensional (depends on x, y,

and z), the mathematical model used to describe the nonlinear dynamics of

the beam is one-dimensional (depends only on x).

3.1.3
Modeling of the friction and shock effects

When a drillstring deforms laterally, there may occur a mechanical

contact between the beam and the borehole wall, such as illustrated in the

Figure 3.4. This mechanical contact, which generally take place via a strong

impact, gives rise to effects of friction and shock (Gilardi and Sharf, 2002) [95],

(Wriggers, 2006) [96].

The modeling of the phenomena of friction and shock is made in terms

of a geometric parameter dubbed indentation, which is defined as

δFS = r − gap, (3.18)

where the neutral fiber lateral displacement is defined as

r =
√
v2 + w2, (3.19)

and gap denotes the space between undeformed beam and borehole wall.
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AAAA

Figure 3.4: Schematic representation of the situation where there is a mechan-
ical contact between a drillstring and the borehole wall.

Accordingly, one has δFS > 0 in case of an impact, or δFS ≤ 0 otherwise, as

can be seen in Figure 3.5. Note that the indentation corresponds to a measure

of penetration in the wall of a beam cross section (Gilardi and Sharf, 2002) [95].

gap

r
gap

r

δFS = r − gap ≤ 0 δFS = r − gap > 0

Figure 3.5: Illustration of the indentation parameter in a situation without
impact (left) or with impact (right).

When the impact occurs, a normal force of the form

F n
FS = −kFS1 δFS − kFS2 δ

3
FS − cFS |δ|3δ̇FS, (3.20)

where kFS1 , kFS2 and cFS are constants of the shock model, begins to act on beam

cross section. In this nonlinear shock model, proposed by Hunt and Cross-

ley (1975) [97], the first two terms correspond to a nonlinear spring, and de-

scribe the elastic deformation during the impact, while the last term is a non-

linear damper, and takes into account the loss of energy during the impact. So

kFS1 and kFS2 , which depends on the material/geometry of the impacting bod-

ies, are types of stiffness constants, while cFS, that depends on the coefficient

of restitution, is a type of damping constant.
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Once the column is rotating and moving axially, the impact also induces

a frictional force in the axial direction, F a
FS, and a torsional friction torque, TFS.

Both are modeled by the Coulomb friction law (Cull and Tucker, 1999) [98] so

that the force is given by

F a
FS = −μFS F

n
FS sgn (u̇) , (3.21)

whereas the torque is described by

TFS = −μFS F
n
FS Rbh sgn

(
θ̇x

)
, (3.22)

being μFS the shock friction coefficient, sgn (·) the sign function, and the radius

of the borehole is Rbh = Rext + gap.

In order to find all the points of contact between the beam and the

borehole wall, it is necessary to discover all the values of x where δFS > 0.

This is usually done by solving an optimization problem with constraints

(Wriggers and Zavarise, 2004) [99].

The strategy of detection based on the optimization problem may be

robust in terms of accuracy, but it is extremely complex in terms of implemen-

tation and computational cost. For this reason, this work uses an approach that

introduces the forces of Eqs.(3.20) and (3.21), and the torque of Eq.(3.22), as

efforts concentrated on the nodal points of the finite element mesh, defined in

the section 3.3.1. This procedure sacrifices some accuracy, but simplifies the

implementation of the friction and shock model.

3.1.4
Modeling of the bit-rock interaction effects

During the drilling process, in response to rotational advance of the

drillstring, a force and a torque of reaction begin to act on the drill-bit, giving

rise to the so-called bit-rock interaction effects (Franca, 2010) [73].

In this work, the model proposed by Ritto et al. (2013) [77] is considered

to describe the bit-rock interaction force

FBR =

⎧⎨
⎩ΓBR

(
e−αBR u̇bit − 1

)
for u̇bit > 0, (3.23)

0 for u̇bit ≤ 0,

where ΓBR is the bit-rock limit force, αBR is the rate of change of bit-rock force,

and u̇bit = u̇(L, ·). The graph of the function FBR is illustrated in Figure 3.6.
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u̇bit

FBR

−ΓBR

Figure 3.6: Illustration of the function used to describe the reaction force on
the drill-bit, due to the bit-rock interaction effects.

Also, for the bit-rock interaction torque it is adopted the regularized

Coulomb model used by Khulief et al. (2007) [68], which is expressed as

TBR = −μBR FBR Rbh ξBR (ωbit) , (3.24)

where μBR bit-rock friction coefficient, ωbit = θ̇x(L, ·), and

ξBR (ωbit) = tanh (ωbit) +
2ωbit

1 + ω2
bit

, (3.25)

is a regularization function. The graph of the regularization function ξBR is

illustrated in Figure 3.7.

ωbit

ξBR

Figure 3.7: Illustration of the smooth function used to regularize the reaction
torque on the drill-bit, due to the bit-rock interaction effects.
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3.1.5
Kinetic energy

The kinetic energy of the beam is given by

T =
1

2

∫∫∫
Bb

ρv · v dx dy dz + (3.26)

1

2

∫∫∫
Bb

ρω · (r · r I− r ⊗ r)ω dx dy dz,

where the first triple integral corresponds to the beam translational kinetic

energy, and the second one is associated to the beam rotational kinetic energy.

In this equation, I denotes the identity tensor, the symbol · represents the

standard inner product between two Euclidean vectors, and the symbol ⊗ is

used to designate the tensor product.

Developing the vector operations indicated in the Eq.(3.26), using (3.1)

and (3.2) to define the limits of integration, using the definition of A, Iyy, Izz,

and Ixx, which are given by Eqs.(3.3) to (3.6), remembering that Iyy = Izz = I4,

Ixx = 2I4, and making the other calculations one can show that the Eq.(3.26)

is equivalent to

T =
1

2

∫ L

x=0

ρA
(
u̇2 + v̇2 + ẇ2

)
dx + (3.27)

1

2

∫ L

x=0

2 ρ I4

(
θ̇x + θ̇zθy

)2

dx +

1

2

∫ L

x=0

ρ I4

(
θ̇y cos θx − θ̇z sin θx

)2

dx +

1

2

∫ L

x=0

ρ I4

(
θ̇y sin θx + θ̇z cos θx

)2

dx.

3.1.6
Strain energy

The analysis of the beam assumes that it is subjected to large displace-

ments, and small deformations. In this way, its strain energy is given by

V =
1

2

∫∫∫
B0

ε :σ dx dy dz, (3.28)

where ε denotes the Green-Lagrangian strain tensor, σ is the second Piola-

Kirchhoff stress tensor, and the symbol : represents the double inner product

between two tensors.



Chapter 3. Modeling of Nonlinear Dynamical System 53

It is further considered that the beam is made of an isotropic material,

such that stress and strain are related by the following constitutive equation

(Hooke’s law)

σ = 2G ε+ λ tr (ε) I, (3.29)

where tr (·) represents the trace operator, G is material shear modulus, and λ

is used to designate the material first Lamé parameter. In terms of the elastic

modulus E and the Poisson’s ratio ν, these elastic parameters can be written

as

G =
E

2 (1 + ν)
, and λ =

E ν

(1 + ν)(1− 2 ν)
. (3.30)

According to the beam theory used in this work, there is no tension in

any cross section of the beam that is perpendicular to the x axis, i.e.,

σyy = σzz = σyz = σzy = 0. (3.31)

Thus, when the hypothesis expressed by (3.31) is combined with the

three-dimensional Hook’s law represented by the Eq.(3.29), one can conclude

σxx = E εxx, σxy = 2Gεxy, σxz = 2Gεxz, (3.32)

which is an one-dimensional version of the Hook’s law.

Combining the one-dimensional Hooke’s law given by (3.32), with the

symmetry of the stress tensor, one can express the double contraction between

strain and stress tensors, within the integral in Eq.(3.28), as a quadratic form

ε :σ = E ε2xx + 4Gε2xy + 4Gε2xz, (3.33)

which is modified, by the introduction of the shearing factor κs, as

ε :σ = E ε2xx + 4κs Gε2xy + 4κs Gε2xz. (3.34)

This modification aims to take into account the effect of shear deformation in

the beam cross section area, which is neglected when one uses the relations

expressed by the Eq.(3.32).

Hence, after replace Eq.(3.34) in Eq.(3.28), one finally obtains

V =
1

2

∫∫∫
B0

(
E ε2xx + 4κs Gε2xy + 4κs Gε2xz

)
dx dy dz. (3.35)
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As the analysis is using large displacements, one has

εxx =
1

2

(
∂ux

∂x
+

∂ux

∂x

)
+

1

2

(
∂ux

∂x

∂ux

∂x
+

∂uy

∂x

∂uy

∂x
+

∂uz

∂x

∂uz

∂x

)
, (3.36)

εxy =
1

2

(
∂uy

∂x
+

∂ux

∂y

)
+

1

2

(
∂ux

∂x

∂ux

∂y
+

∂uy

∂x

∂uy

∂y
+

∂uz

∂x

∂uz

∂y

)
, (3.37)

and

εxz =
1

2

(
∂uz

∂x
+

∂ux

∂z

)
+

1

2

(
∂ux

∂x

∂ux

∂z
+

∂uy

∂x

∂uy

∂z
+

∂uz

∂x

∂uz

∂z

)
, (3.38)

where the quadratic terms on the right hand side of the above equations are

associated to the geometric nonlinearity of the beam model.

Substituting the kinematic hypothesis of the Eq.(3.16) in Eqs.(3.36) to

(3.38), and then calculating the partial derivatives, one concludes that the

deformations are respectively given by

εxx = u′ − y θ′z + z θ′y + u′
(
z θ′y − y θ′z

)
− y z θ′y θ

′
z + (3.39)

θ′x
((

y w′ − z v′
)
cos θx −

(
y v′ + z w′) sin θx) +

1

2

(
u′ 2 + v′ 2 + w′ 2 + y2 θ′ 2z + z2 θ′ 2y +

(
y2 + z2

)
θ′ 2x

)
,

εxy =
1

2

(
v′ cos θx + w′ sin θx − z θ′x

)
+ (3.40)

1

2
θz

(
y θ′z − zθ′y − u′ − 1

)
,

and

εxz =
1

2

(
w′ cos θx − v′ sin θx + y θ′x

)
+ (3.41)

1

2
θy

(
−y θ′z + zθ′y + u′ + 1

)
,

where ′ is used as an abbreviation for space derivative.
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3.1.7
Energy dissipation function

It is assumed that the beam under analysis loses energy through a

mechanism of viscous dissipation, with a damping constant c. In this way,

there is an energy dissipation function (per unit of length) associated to the

system, which is given by

D =
1

2

∫∫
S0

c ρv · v dy dz + (3.42)

1

2

∫∫
S0

c ρ θ̇ · (r · r I− r ⊗ r) θ̇ dy dz,

where the first term is a dissipation potential due to the translational move-

ment, and the second term represents a dissipation potential due to the move-

ment of rotation.

Making a development almost similar to the one performed to obtain

Eq.(3.27), it can be shown that

D =
1

2
c ρA

(
u̇2 + v̇2 + ẇ2

)
+ (3.43)

1

2
c ρ I4

(
2 θ̇2x + θ̇2y + θ̇2z

)
.

3.1.8
External forces work

The work done by the external forces acting on the beam is given by

W = −
∫∫∫

B0

ρ g w dx dy dz + WFS + WBR, (3.44)

where the first term is due to the gravity, the second one is associated to the

effects of friction and shock, and the last term accounts the work done by the

force/torque that comes from the bit-rock interaction.

One can show that Eq.(3.44) is equivalent to

W = −
∫ L

x=0

ρ g Aw dx + WFS + WBR. (3.45)

Note that, due to the non-holonomic nature (Lanczos, 1986) [100] of the

forces and torques that comes from the effects of friction/shock, and bit-rock

interaction, it is not possible to write explicit formulas for WFS and WFS.
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However, it is known that the virtual work of WFS, denoted by δWFS, is

written as

δWFS =

Nnodes∑
m=1

(
F a

FS δu+ F n
FS (v δv + w δw) /r + TFS δθx

) ∣∣∣
x=xm

, (3.46)

where xm are the global coordinates of the finite element nodes, Nnodes is the

number of nodes in the finite element mesh, and δu, δv, δw, and δθx respectively

denote the variations of the fields u, v, w, and θx.

On the other hand, the virtual work of WBR, denoted by δWBR, reads as

δWBR = FBR δu
∣∣∣
x=L

+ TBR δθx

∣∣∣
x=L

. (3.47)

3.2
Mathematical model for the problem

The mathematical modeling of the problem includes the derivation of

the equation which describes the nonlinear dynamics of the mechanical system

under study, the description of a linear conservative problem associated to the

nonlinear one, and the definition of the initial conditions which the mechanical

system is subjected.

3.2.1
Equation of motion of the nonlinear dynamics

The extended Hamilton’s principle is employed to derive the equations

which describe the nonlinear dynamics of the mechanical system under anal-

ysis. This variational principle of mechanics (Lanczos, 1986) [100] states that,

among all the available paths between the configurations observed at the in-

stants t0 and tf , the mechanical system of interest follows the path which

minimizes the action

A =

∫ tf

t=t0

(T − V +W) dt. (3.48)

A necessary condition for minimization of the functional A is that its

Gâteaux derivative (Sagan, 1992) [101], also called first variation, be equal to

zero, i.e.

δA = 0, (3.49)

which, by using the properties of the variation operator δ, is equivalent to∫ tf

t=t0

(δT − δV + δW) dt = 0. (3.50)
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In order to include the damping effects into the system dynamics, it is

necessary to rewrite the last equation as follows

∫ tf

t=t0

(δT − δV + δW) dt−
∫ tf

t=t0

∫ L

x=0

δU · ∂D
∂U̇

dx dt = 0, (3.51)

where the first term corresponds to the conservative part of the dynamics,

and the second one is associated to the energy dissipation. In this equation,

U =
(
u, v, w, θx, θy, θz

)
is a vector field which lumps the field variables.

The development which follows is presented in detail in the Appendix A,

and results in the following weak equation of motion

M
(
ψ, Ü

)
+ C

(
ψ, U̇

)
+K (ψ,U ) = F

(
ψ,U , U̇ , Ü

)
, (3.52)

valid for anyψ chosen in a“suitable”space of weight functions. In this equation,

M represents the mass operator, C is the damping operator, K is the stiffness

operator, and F is the force operator. Also, the field variables weight functions

are represented by the lumped vector ψ =
(
ψu, ψv, ψw, ψθx , ψθy , ψθz

)
.

The mass operators is written as

M
(
ψ, Ü

)
=

∫ L

x=0

ρA (ψu ü+ ψv v̈ + ψw ẅ) dx + (3.53)∫ L

x=0

ρ I4

(
2ψθx θ̈x + ψθy θ̈y + ψθz θ̈z

)
dx,

where the first integral is a term associated to the translational inertia, and

the second one is related to the rotational inertia.

Similarly, the damping operator is defined as

C
(
ψ, U̇

)
=

∫ L

x=0

c ρA (ψu u̇+ ψv v̇ + ψw ẇ) dx + (3.54)∫ L

x=0

c ρ I4

(
2ψθx θ̇x + ψθy θ̇y + ψθz θ̇z

)
dx,

where the first term represents a dissipation mechanism that comes from the

translational motion, and the second one is related with the movement of

rotation.
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The operator of stiffness read as

K (ψ,U) =

∫ L

x=0

E Aψ′u u
′ dx + (3.55)

∫ L

x=0

E I4

(
ψ′θy θ

′
y + ψ′θz θ

′
z

)
dx +

∫ L

x=0

2κsGI4 ψ
′
θx θ
′
x dx +

∫ L

x=0

κsGA
((
ψθy + ψ′w

) (
θy + w′

)
+
(
ψθz − ψ′v

) (
θz − v′

))
dx,

where the first integral represents the axial stiffness, the second one is associ-

ated with the flexural stiffness, the third is related to the torsional stiffness,

and the fourth is linked to the shear stiffness.

In the case of the force, the operator is divided into five parts

F
(
ψ,U , U̇ , Ü

)
= FG (ψ) + FFS (ψ,U) + FBR

(
ψ, U̇

)
+ (3.56)

FKE

(
ψ,U , U̇ , Ü

)
+ FSE (ψ,U) ,

where the linear force

FG (ψ) = −
∫ L

x=0

ρ g Aψw dx, (3.57)

is due to the gravity,

FFS (ψ,U) =

Nnodes∑

m=1

(
F a

FS ψu + F n
FS (v ψv + wψw) /r + TFS ψθx

) ∣∣∣
x=xm

,(3.58)

is due to the nonlinear effects of friction and shock,

FBR

(
ψ, U̇

)
= FBR ψu

∣∣∣
x=L

+ TBR ψθx

∣∣∣
x=L

, (3.59)

is due to the nonlinear phenomena of bit-rock interaction,

FKE

(
ψ,U , U̇ , Ü

)
= −

∫ L

x=0

2 ρ I4 ψθx

(
θy θ̈z + θ̇y θ̇z

)
dx (3.60)

+

∫ L

x=0

2 ρ I4 ψθy

(
θy θ̇

2
z + θ̇x θ̇z

)
dx

−
∫ L

x=0

2 ρ I4 ψθz

(
θy θ̈x + θ2y θ̈z + θ̇x θ̇y + 2 θy θ̇y θ̇z

)
dx,

is a nonlinear inertial force that comes from the kinetic energy, and
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FSE (ψ,U ) =

∫ L

x=0

(
ψθx Γ1 + ψθy Γ2 + ψθz Γ3

)
dx + (3.61)∫ L

x=0

(
ψ′
u Γ4 + ψ′

v Γ5 + ψ′
w Γ6 + ψ′

θxΓ7 + ψ′
θy Γ8 + ψ′

θz Γ9

)
dx,

is a force associated to the geometric nonlinearity, and comes from the strain

energy. The nonlinear functions Γn, with n = 1, · · · , 9, are very complex and,

for sake of brevity, are not presented in this chapter. But they can be seen in

the Appendix A.

Is worth noting that the nonlinear coupling between the axial, flexural

and torsional mechanisms of vibration in the beam model is carried out by the

inertial force FKE, and the geometric force FSE.

3.2.2
Initial conditions

With regard to the initial state of the mechanical system, it is assumed

that the beam presents neither displacement nor rotations, i.e.,

u(x, 0) = v(x, 0) = w(x, 0) = θx(x, 0) = θy(x, 0) = θz(x, 0) = 0. (3.62)

The field variables that appear in the Eq.(3.62), except for u and θx, also

have initial velocities and rate of rotations equal to zero. So one can write

v̇(x, 0) = ẇ(x, 0) = θ̇y(x, 0) = θ̇z(x, 0) = 0. (3.63)

It is also assumed that, initially, the beam moves horizontally with a

constant axial velocity V0, and rotates around the x axis with a constant

angular velocity Ω. Thereby, one has that

u̇(x, 0) = V0, (3.64)

and

θ̇x(x, 0) = Ω. (3.65)

Projecting the Eqs.(3.62) to (3.65) in the space of weight functions one

obtains the weak forms of the initial conditions, respectively, given by

M
(
ψ,U (0)

)
= M (ψ,U0) , (3.66)

and

M
(
ψ, U̇ (0)

)
= M

(
ψ, U̇0

)
, (3.67)

where U0 = (0, 0, 0, 0, 0, 0) and U̇0 = (V0, 0, 0,Ω, 0, 0).
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In formal terms, the weak formulation of the initial/boundary value

problem (Hughes, 2000) [102], that describes the nonlinear dynamics of the

mechanical system, consists in find a vector fieldU ,“sufficiently regular”, which

satisfies the weak equation of motion given by Eq.(3.52) for all “suitable”ψ, as

well as the weak form of the initial conditions, given by Eqs.(3.66), and (3.67).

3.2.3
Linear conservative dynamics associated

For all functions ψ in the space of weight functions, consider the linear

homogeneous equation given by

M
(
ψ, Ü

)
+K (ψ,U ) = 0, (3.68)

obtained from Eq.(3.52) when one discards the damping, and the force opera-

tors.

Suppose that Eq.(3.68) has a solution of the form U = eiωtφ, where ω is

a natural frequency (in rad/s), φ is the associated normal mode, and i =
√
−1

is the imaginary unit. Replacing the expression of U above in the Eq.(3.68)

and using the linearity of the operators M, and K, and dividing by eiωt one

gets

−ω2M (ψ,φ) +K (ψ,φ) = 0, (3.69)

a generalized eigenvalue problem (GEP).

Since the operator M is positive definite, and the operator K is positive

semi-definite, the GEP above has a denumerable number of solutions. The

solutions of this eigenproblem are of the form (ω2
n,φn), where ωn is the n-th

natural frequency and φn is the n-th unitary normal mode (Hagedorn and

DasGupta, 2007) [103].

Also, it should be noted that the symmetry of the operators M, and K
implies the following orthogonality relations

M (φn,φm) = δnm, and K (φn,φm) = ω2
n δnm, (3.70)

where δnm represents the Kronecker delta symbol. For more details the reader

can see Hagedorn and DasGupta (2007) [103].

3.3
Computational model for the problem

The computational modeling include the procedure of discretization

of the nonlinear equations that describe the dynamics of the mechanical

system, as well as a procedure to reduce the model dimension, in order to

make it computationally efficient. It also includes the numerical integration of
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the reduced dynamical system, the incorporation of the geometric boundary

conditions of the physical problem into the formulation, and the numerical

solution of the system of algebraic equations that arises from the discretization

in space and time.

3.3.1
Discretization of the nonlinear dynamics

To proceed with the discretization of the initial/boundary value problem

which describes the nonlinear dynamics beam, whose the weak formulation is

given by Eqs.(3.52), (3.66), and (3.67), it is used the standard finite element

method (FEM) [102], where the spaces of basis and weight functions are

constructed by the same (finite dimensional) class of functions.

In this procedure, the beam geometry is discretized by a FEM mesh with

Nelem finite elements. Each one of these elements is composed by two nodes, and

each one of these nodes has six degrees of freedom associated, one for each field

variable in the beam model described in the section 3.2.1. Thus, the number

of degrees of freedom associated with the FEM model is Ndofs = 6(Nelem +1).

An illustration of the FEM mesh/element can be seen in the Figure 3.8.

u1

v1
w1

θx1

θy1

θz1

u2

v2
w2

θx2

θy2

θz2

Figure 3.8: Illustration of the FEM mesh/element used to discretize the beam
geometry.

Concerning the shape functions, it is adopted an interdependent interpo-

lation scheme which avoids the shear-locking effect (Reddy, 1997) [104]. This

scheme uses, for the transverse displacements/rotations, Hermite cubic polyno-

mials, and, for the fields of axial displacement/torsional rotation, affine func-

tions. These shape functions are presented in the Appendix B, and further

details can be seen in Bazoune et al. (2003) [105] and Luo (2008) [106].
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Thus, each field variable of the physical model is approximated by a linear

combination of basis functions, in such way that

u(x, t) ≈
Ndofs∑
m=1

Qm(t)Nm(x), θx(x, t) ≈
Ndofs∑
m=1

Qm(t)Nm(x), (3.71)

v(x, t) ≈
Ndofs∑
m=1

Qm(t)H(1)
m (x), w(x, t) ≈

Ndofs∑
m=1

Qm(t)H(1)
m (x),

θy(x, t) ≈
Ndofs∑
m=1

Qm(t)H(2)
m (x), θz(x, t) ≈

Ndofs∑
m=1

Qm(t)H(2)
m (x),

where Nm(x), H(1)
m (x), and H(2)

m (x) are the (position dependent) shape func-

tions, and the (time dependent) coefficients of the linear combination, Qm(t),

are the unknowns of the discretized problem. In physical terms, each one of

these temporal coefficients represents a degree of freedom of the FEM model.

The result of the discretization is the following Ndofs × Ndofs nonlinear

system of ordinary differential equations

[M] Q̈(t) + [C] Q̇(t) + [K]Q(t) = F
(
Q(t), Q̇(t), Q̈(t)

)
, (3.72)

where Q(t) is the nodal displacement vector (translations and rotations), Q̇(t)

is the nodal velocity vector, and Q̈(t) is the nodal acceleration vector. The

other objects in the Eq.(3.72) are the mass matrix [M], the damping matrix

[C], the stiffness matrix [K], and the force vector F .

A discretization procedure similar to one presented above is applied to

the initial conditions of Eqs.(3.66) and (3.67), which results in linear systems

of algebraic equations given by

[M]Q(0) = Q0, and [M] Q̇(0) = Q̇0. (3.73)

Note that the solution of the initial value problem (IVP), defined by

differential equation of the Eq.(3.72) and the initial conditions of the Eq.(3.73),

gives a finite dimensional approximation to the solution of the initial/boundary

value problem of Eqs.(3.52), (3.66), and (3.67). In a sense intrinsic to the FEM,

this approximation is optimal (Hughes, 2000) [102].

3.3.2
Reduction of the finite element model

In order to reduce the dimension of the finite element model developed

in the section 3.3.1, it is considered a finite dimensional version of the GEP
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presented in section 3.2.3, which is defined by

[K]φn = ω2
n [M]φn. (3.74)

As a consequence of the properties of the operators M, and K discussed

in section 3.2.3, that are inherited by the finite dimensional operators [M] and

[K], the above GEP has Ndofs solutions. But the Eq.(3.74) is solved only for

n = 1, 2, · · · , Nred, where the dimension of the reduced model Nred is an integer

chosen such that Nred 
 Ndofs.

The procedure that follows consists in project the nonlinear dynamic,

defined by the IVP of Eqs.(3.72) and (3.73), into the vector space spanned by

{φ1,φ2, · · · ,φNred
}.

For this purpose, define the Ndofs ×Nred projection matrix by

[Φ] =

⎡
⎢⎢⎣

| | |
φ1 φ2 · · · φNred

| | |

⎤
⎥⎥⎦ , (3.75)

make in the Eqs.(3.72) and (3.73) the change of basis defined by

Q(t) = [Φ] q(t), (3.76)

and then pre-multiply the resulting equations by the matrix [Φ]T , where the

superscript T represents the transposition operation.

This development results in the reduced IVP given by

[M ] q̈(t) + [C] q̇(t) + [K] q(t) = f
(
q(t), q̇(t), q̈(t)

)
, (3.77)

and

q(0) = q0, and q̇(0) = q̇0, (3.78)

where q(t) is the reduced nodal displacement vector, q̇(t) is the reduced

nodal velocity vector, q̈(t) is the reduced nodal acceleration vector. The

reduced matrices of mass, damping, and stiffness, as well as the reduced

vectors of force, initial displacement, and initial velocity are, respectively,

defined by [M ] = [Φ]T [M] [Φ], [C] = [Φ]T [C] [Φ], [K] = [Φ]T [K] [Φ], f =

[Φ]T F (
[Φ] q(t), [Φ] q̇(t), [Φ] q̈(t)

)
, q0 = [Φ]T Q0, q̇0 = [Φ]T Q̇0. These matrices

are Nred × Nred, while these vectors are Nred × 1. Furthermore, due to

the orthogonality properties defined by Eq.(3.70), that are inherited by the

operators in finite dimension, these matrices are diagonal.

Thus, although the IVP of Eqs.(3.77) and (3.78) is apparently similar

to the one defined by Eqs.(3.72) and (3.73), the former has a structure that

makes it much more efficient in terms of computational cost, and so, it will be

used to analyze the nonlinear dynamics under study.
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3.3.3
Integration of the discretized nonlinear dynamics

In order to solve the IVP of Eqs.(3.77) and (3.78), it is employed the

Newmark method (Newmark, 1959) [107], which defines the following implicit

integration scheme

q̇n+1 = q̇n + (1− γ)Δt q̈n + γΔt q̈n+1, (3.79)

qn+1 = qn +Δt q̇n +

(
1

2
− β

)
Δt2 q̈n + βΔt2 q̈n+1, (3.80)

where qn, q̇n and q̈n are approximations to q(tn), q̇(tn) and q̈(tn), respectively,

and tn = nΔt is an instant in a temporal mesh defined over the interval [t0, tf ],

with an uniform time step Δt. This integration scheme was chosen because

it is well suited to structural dynamics problems, and due to its simplicity in

terms of implementation.

The parameters γ and β are associated with the accuracy and stability of

the numerical scheme, in such a way that the method is unconditionally stable

if the parameters respect

γ ≥ 1

2
, and β ≥ 1

4

(
γ +

1

2

)2

. (3.81)

If γ = 1/2 the method is stable and there is no damping of the high

frequencies introduced in the system dynamics by the discretization of the

model equations. Conversely, if γ > 1/2, then the high frequencies in the

system response are damped. For instance, the simulations reported in this

work use γ = 1/2 + α, and β = 1/4, with α = 15/1000, for which Newmark

method is O (Δt). Further details about the convergence and stability of the

Newmark method, can be seen in Hughes (2000) [102].

Handling up properly the Eqs.(3.79) and (3.80) one concludes that

q̈n+1 =
1

βΔt2
(qn+1 − qn)−

1

βΔt
q̇n −

1

2

(
1

β
− 2

)
q̈n, (3.82)

and

q̇n+1 =
γ

βΔt
(qn+1 − qn) +

(
1− γ

β

)
q̇n +

(
1− γ

2β

)
Δt q̈n. (3.83)

After one replaces the Eqs.(3.82) and (3.83) in the discrete version of the

Eq.(3.77), which is defined by

[M ] q̈n+1 + [C] q̇n+1 + [K] qn+1 = f (qn+1, q̇n+1, q̈n+1) , (3.84)

and does some manipulation, one arrives in the nonlinear system of algebraic

equations, with unknown vector qn+1, represented by
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ˆ[K]qn+1 = f̂n+1 (qn+1) , (3.85)

where the effective stiffness matrix is defined as

ˆ[K] = [K] +
γ

βΔt
[C] +

1

βΔt2
[M ] , (3.86)

and the effective force vector is written as

f̂n+1 (qn+1) = [M ]

(
1

βΔt2
qn +

1

βΔt
q̇n +

(
1

2β
− 1

)
q̈n

)
+ (3.87)

[C]

(
γ

βΔt
qn +

(
γ

β
− 1

)
q̇n +

1

2

(
γ

β
− 2

)
Δt q̈n

)
+

f (qn+1, q̇n+1, q̈n+1) .

Note that the nonlinearity of the Eq.(3.85) is on the right side, and is due to

the force vector f .

3.3.4
Incorporation of the boundary conditions

As can be seen in Figure 3.2, the mechanical system has the following

boundary conditions: (i) left extreme with no transversal displacement, nor

transversal rotation; (ii) right extreme with no transversal displacement. It

is also assumed that the left end has has: (iii) constant axial and rotational

velocities in x, respectively equal to V0 and Ω.

Hence, for x = 0, it is true that

u(0, t) = V0 t, (3.88)

v(0, t) = 0,

w(0, t) = 0,

θx(0, t) = Ω t,

θy(0, t) = 0,

θz(0, t) = 0.

On the other hand, for x = L, one has

v(L, t) = 0, (3.89)

w(L, t) = 0.
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The variational formulation presented in section 3.2.1, was made for a

free-free beam, so that the above geometric boundary conditions were not

included.

The most common way of impose the geometric boundary condition

is require that any function in the space of base functions satisfies it, once

the solution of the variational problem is sought in this space. However, this

strategy is not the most interesting from the computational implementation

point of view, because it requires the modification of the matrices and vectors

associated to the finite element discretization after the assembly process.

Thus, this work chose to use a strategy, based on the method of Lagrange

multipliers, that makes the inclusion of the geometric boundary conditions as

constraints which the solution of the variational problem must satisfy (Hughes,

2000) [102]. The details of this procedure are presented below.

Note that the boundary conditions expressed in (3.88) and (3.89) can be

rewritten as

[B]Q(t) = h(t), (3.90)

where the 8×Ndofs constraint matrix is defined as

[B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 · · · 0 0 0 0 0 0

0 1 0 0 0 0 0 · · · 0 0 0 0 0 0

0 0 1 0 0 0 0 · · · 0 0 0 0 0 0

0 0 0 1 0 0 0 · · · 0 0 0 0 0 0

0 0 0 0 1 0 0 · · · 0 0 0 0 0 0

0 0 0 0 0 1 0 · · · 0 0 0 0 0 0

0 0 0 0 0 0 0 · · · 0 1 0 0 0 0

0 0 0 0 0 0 0 · · · 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.91)

and the constraint vector is given by

h(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(0, t)

v(0, t)

w(0, t)

θx(0, t)

θy(0, t)

θz(0, t)

v(L, t)

w(L, t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.92)
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Making the change os basis defined by the Eq.(3.76), one can rewrite the

Eq.(3.90) as

[B] q(t) = h(t), (3.93)

where the 8×Nred reduced constraint matrix is defined by

[B] = [B] [Φ] . (3.94)

The discretization of the Eq.(3.93) results in

[B] qn+1 = hn+1, (3.95)

where hn+1 is an approximation to h(tn+1). This equation defines the con-

straint that must be satisfied by the “approximate solution” of the variational

problem.

In what follows it is helpful to think that the Eq.(3.85) comes from the

minimization of a energy functional qn+1 �→ F (qn+1), which is the weak form

of this nonlinear system of algebraic equations.

Then, one defines the Lagrangian as

L (qn+1,λn+1) = F (qn+1) + λT

n+1

(
[B] qn+1 − hn+1

)
, (3.96)

being the (time-dependent) Lagrange multipliers vector of the form

λn+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1(tn+1)

λ2(tn+1)

λ3(tn+1)

λ4(tn+1)

λ5(tn+1)

λ6(tn+1)

λ7(tn+1)

λ8(tn+1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.97)

Invoking the condition of stationarity for the Lagrangian one arrives in

the following (Nred + 8)× (Nred + 8) system of nonlinear algebraic equations[
ˆ[K] [B]T

[B] [0]

](
qn+1

λn+1

)
=

(
f̂n+1

hn+1

)
, (3.98)

where [0] is a 8 × 8 null matrix. The unknowns are qn+1 and λn+1, and must

be solved for each instant of time in the temporal mesh, in order to construct

an approximation to the dynamic response of the mechanical system under

analysis.
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3.3.5
Solution of the nonlinear system of algebraic equations

Before discussing the algorithm used to solve the nonlinear system of

Eq.(3.98), it is appropriate to argue about the structure of the matrix on the

left hand side of this equation.

Note that the nonzero elements of the matrix [B] are all equal to 1. On

the other hand, the elements of the matrix ˆ[K] are several orders of magnitude

greater than unity. This imbalance, in the magnitude of the two matrices

elements, implies that the (Nred + 8) × (Nred + 8) extended matrix of the

Eq.(3.98) is ill-conditioned (Trefethen and Bau, 1997) [108].

To circumvent this ill-conditioning, Negrut et al. (2009) [109] suggests

the introduction of the factor κ =
(
βΔt2

)−1
. This scaling factor is multiplied

to both sides of Eq.(3.95), which results, after invoking the stationarity of the

Lagrangian, in the following nonlinear system of algebraic equations[
ˆ[K] κ [B]T

κ [B] [0]

](
qn+1

λn+1

)
=

(
f̂n+1

κhn+1

)
, (3.99)

which is completely equivalent to the nonlinear system of the Eq.(3.98) from

the theoretical point of view, but better suitable for numerical calculations.

In what follows, the first line of Eq.(3.99) is written as

qn+1 = ˆ[K]
−1

(
f̂n+1 − κ [B]T λn+1

)
, (3.100)

which, in combination with the second line, results in

¯[K]λn+1 = f̄n+1, (3.101)

where the generalized stiffness matrix is defined as

¯[K] = κ [B] ˆ[K]
−1
κ [B]T , (3.102)

and the generalized force vector is given by

f̄n+1 = κ [B] ˆ[K]
−1
f̂n+1 − κhn+1. (3.103)

The nonlinear system of Eq.(3.99) is solved in two steps. First, the

vector λn+1 is computed from Eq.(3.101), which is solved through a Cholesky

decomposition (Golub and Van Loan, 2013) [110]. Then, a procedure of fixed

point iteration (Hamming, 1987) [111] is employed to obtain the vector qn+1

from the nonlinear system of Eq.(3.100). This iteration procedure is initialized

using the previous instant of time as initial guess for the current instant of

time, and continues until a convergence criterium is achieved or the maximum

number of iteration is executed.
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The convergence criterium used is defined by the inequalities∥∥∥λ(k+1)
n+1 − λ

(k)
n+1

∥∥∥
1
2

∥∥∥λ(k+1)
n+1 + λ

(k)
n+1

∥∥∥ < ε1, (3.104)

and ∥∥∥q(k+1)
n+1 − q

(k)
n+1

∥∥∥
1
2

∥∥∥q(k+1)
n+1 + q

(k)
n+1

∥∥∥ < ε2, (3.105)

where ε1 and ε2 are prescribed tolerances, (k) denotes the index of the iteration,

and ‖·‖ is the standard Euclidean norm of vectors.

It is worthy of mention that convergence problems were observed dur-

ing the simulations, mainly due to the nonlinearities induced by geometric

and friction/shock effects. To circumvent these problems, a successive over-

relaxation (SOR) procedure (Young, 2003) [112], with a heuristically chosen

SOR parameter ωSOR, was be employed to force the iteration convergence.

3.3.6
MATLAB code

The computational model described in this chapter was implemented in

a computer code written in MATLAB. In the implementation of this code one has

excelled by efficiency from the point of view of time processing and memory use,

in order to do the numerical simulations with high performance. A flowchart

representation of this computer program is presented in Figure 3.9.

All the matrices in the computational model that are associated with

the discretization process by means of the finite element method have sparse

structure. Thus, in order to save memory and optimize the calculations made

with these matrices, the computer code implementation uses a representation

scheme for sparse matrices (Saad, 2003) [113]. Still concerning the finite

element matrices, an efficient assembly strategy of the global matrices is

employed. This algorithm involves a single loop and uses a triple of arrays

(two for the matrices indices and one for the nonzero elements) to construct a

matrix sparse representation at once. In this algorithm, the overlapping of local

matrices inside the global matrix are treated during the arrays list creation

(Davis, 2007) [114].

The finite element matrices are constant, so that they are assembled

just once. On the other hand, the forcing vector depends on the current

configuration of the system, in way that it must be reassembled in each

time step. Thus, in terms of time processing, the most expensive tasks in

this computational model is the evaluation, via Gaussian quadrature, of the
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START
set physical
parameters

create
FEMmesh

create
timemesh

assembly

[M] [C] [K]

solve the GEP

[K]φ = ω2 [M]φ

model reduction

[M ] [C] [K]

solve the IVP

(Newmark)

return

q q̇ q̈
END

Figure 3.9: Flowchart representation of the computer program that implements
the computational model developed in this work.

integral on the forcing vector, due to its highly nonlinear nature. Fortunately,

this task can be optimized through the creation of a table that stores the values

of the shape functions and their derivatives integrals along the finite element

reference domain. As the calculation of the integral in the nonlinear vector

uses the tabulated values recurrently, the use of this table allows substantial

savings in terms of processing.

3.4
Remarks about the modeling

This thesis is one more work in a series of developments related to

drillstring dynamics done by the Dynamics and Vibrations Group of PUC-

Rio since 2005.
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The first work of the group in this line was developed by

Trindade et al. (2005) [61], considering the coupling between longitudinal

and flexural vibrations but without regard to the rotation of the column.

Followed the work of Sampaio et al. (2007) [54], that took into account the

rotation of the column, studying the coupling between torsional and axial vi-

brations. Finally, a model taking into account the non-linear coupling between

the vibrational three mechanisms proposed by Ritto et al. (2009) [69] and

Ritto (2010) [70], works which also investigated issues related to uncertainties

of the model.

In this thesis, the beam model proposed by Ritto et al. (2009) [69] in the

context of vertical drillstrings dynamics is employed with some modifications,

to adjust it to a drillstring in horizontal configuration.

First, the new direction of action of gravity is perpendicular to the

drillstring axis. Therefore, the former problem is primarily a problem that

addresses the dynamics of a column, while the new problem deals with the

dynamics of a beam. Also, the original problem treated the nonlinear dynamics

around a pre-stressed equilibrium configuration, while the new problem does

not consider the dynamics around any particular configuration.

To describe the effect of shock during contact between the column and

the borehole wall, Ritto et al. (2009) [69] used a linear spring to emulate the

elastic deformation effects. This work added to the model a nonlinear spring

to make the description of the elastic deformation more realistic, as well as a

nonlinear dashpot, to take into account energy dissipation due to the impact.

With respect to the bit-rock interaction model, this thesis uses different

expressions for both, the torque and the force of reaction on the bit, from those

used in the reference work (Ritto et al., 2009) [69].

On the other hand, Ritto et al., (2009) [69] took into account the effects of

dynamic loading induced by fluid-structure interaction, which that have been

neglected in this work for simplicity.

Finally, in this thesis the boundary conditions, besides being different

from those considered in Ritto et al. (2009) [69], are included in the prob-

lem formulation differently. The method of Lagrange multipliers is used to

include then as restrictions, which leads to a mixed finite elements formulation

(Hughes, 2000) [102].



4
Probabilistic Modeling of System Uncertanties

This chapter presents the stochastic modeling of the nonlinear dynamics.

It begins with a brief discussion about the uncertainties in the mechanical

system, by identifying the major source inaccuracy in the model. Then,

presents the probabilistic framework and the construction of the stochastic

model for the bit-rock interaction law. Finally, it presents the stochastic

dynamical system associated with the mechanical system, and the strategy

to compute the propagation of uncertainties.

4.1
Uncertainties in the mechanical system

The mechanical system of interest in this thesis has its physical behavior

modeled by a set of equations that describe the structure nonlinear dynamics,

its coupling with the phenomena of torsional friction, transverse shock, and

bit-rock interaction, which the drillstring is subjected. Obviously this mathe-

matical model is an abstraction of reality, and its use does not consider some

aspects of the problem physics.

Regarding the modeling of the system, either the beam theory used to

describe the structure nonlinear dynamics (Ritto et al., 2009) [69], as the

friction and shock model used to describe the drillstring/borehole wall impact

phenomenon (Hunt and Crossley, 1975) [97] are fairly established physical

models, who have gone through several experimental tests to prove their

validity, and have been used for many years in similar situations.

On the other hand, the bit-rock interaction model adopted in this work,

until now was used only in a purely numeric context (Ritto et al., 2013) [77],

without any experimental validation. Thus, it is natural to conclude that bit-

rock interaction law is the weakness of the model proposed in this work.

In this sense, this work will focus on modeling and quantifying the

uncertainties that are introduced in the mechanical system by the bit-rock

interaction model. For convenience, it was chosen to use the parametric

probabilistic approach (Soize, 2012) [12], where only the uncertainties of the

model parameters are considered.
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4.2
Probabilistic framework

Consider a probability space (Θ,Σ,P), where Θ is sample space, Σ is

a σ-algebra over Θ, and P is a probability measure. Let X be a real-valued

random variable, defined on (Θ,Σ,P), for which the probability distribution

PX(dx) on R admits a density x �→ pX(x) with respect to dx. The support of

the probability density function (PDF) pX will be denoted by SuppX ⊂ R, and

any realization of random variable X is denoted by X(θ) for θ ∈ Θ.

The expected value of X is defined as

E [X] =
∫
SuppX

x pX(x) dx, (4.1)

and with the aid of expected value operator one can define some characteristic

values of X which will be used later, such as mean value

mX = E [X] , (4.2)

variance

σ2
X = E

[
(X−mX)

2
]
, (4.3)

standard deviation

σX =
√

σ2
X, (4.4)

and the Shannon entropy of pX

S (pX) = −E
[
ln pX(X)

]
. (4.5)

In order to obtain a consistent stochastic model, one cannot arbitrarily

choose the probability distribution of a random parameters, under the penalty

of violating some physical principle and/or obtain an inconsistent mathemati-

cal model. It is a consensus that all information available about these param-

eters must be taken into account before define their distributions, i.e., specify

their PDFs (Soize, 2012) [12].

The work of Soize (2000) [23] suggests the use of the maximum entropy

principle to obtain a desired PDF. This axiom of Bayesian probability, intro-

duced by Jaynes (1957) [115, 116], allows one to construct a coherent probabil-

ity distribution in situations where little information of the random parameters

are available, through the use of a function (entropy) that measures the level

of uncertainty of a random parameter (Shannon, 1948) [117]. The principle can

be formulated as follows:

Among all the probability distributions, consistent with the current known

information of a given random parameter, the one which best represents your

knowledge about this random parameter is the one which maximizes its entropy.
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The idea is to choose, over all the PDFs consistent with the information

that one has about the random parameter, the distribution most uninformative

which is possible (the maximum entropy distribution). One can not choose a

distribution with higher entropy because this would violate the constraints

imposed by the known information. Conversely, choose a distribution with

lower entropy involves assume information about the random parameter which

are not known. Thereby, the distribution that maximizes the entropy becomes

the only reasonable choice.

4.3
Probabilistic model for the bit-rock interface law

Recalling that the bit-rock interaction force and torque used in this work

are respectively given by

FBR =

⎧⎨
⎩ΓBR

(
e−αBR u̇bit − 1

)
for u̇bit > 0, (4.6)

0 for u̇bit ≤ 0,

and

TBR = −μBR FBR Rbh ξBR (ωbit) , (4.7)

the reader can see that this bit-rock interface law is characterized by three

parameters, namely, αBR, ΓBR, and μBR. The construction of the probabilistic

model for each one parameter of these parameters, which are respectively

modeled by random variables αBR, ΓBR, and μBR, is presented below.

4.3.1
Distribution of the force rate of change

As the rate of change αBR is positive, it is reasonable to assume

Supp αBR =]0,∞[. Therefore, the PDF of αBR is a nonnegative function pαBR
,

which respects the following normalization condition∫ +∞

α=0

pαBR
(α) dα = 1. (4.8)

It is also convenient to assume that the mean value of αBR is a known

positive number, denoted by mαBR
, i.e.,

E [αBR] = mαBR
> 0. (4.9)

For technical reasons, one also need to require that

E
[
ln (αBR)

]
= qαBR

, |qαBR
| < +∞, (4.10)
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which ensures, as can be see in Soize (2000) [23], that the inverse of αBR is

second order random variable. This condition is necessary to guarantee that

the stochastic dynamical system associated to this random variable is of second

order, i.e., it has finite variance.

Employing the principle of maximum entropy one need to maximize

the entropy function S

(
pαBR

)
, respecting the constraints imposed by (4.8),

(4.9) and (4.10). The desired PDF corresponds to the gamma distribution and

is given by

pαBR
(α) = 1]0,∞[(α)

1

mαBR

(
1

δ2αBR

)1/δ2
�BR

× 1

Γ(1/δ2αBR
)

(
α

mαBR

)1/δ2
�BR

−1

exp

(
−α

δ2αBR
mαBR

)
,

(4.11)

where the symbol 1]0,∞[(α) denotes the indicator function of the interval ]0,∞[,

0 ≤ δαBR
= σαBR

/mαBR
< 1/

√
2 is a type of dispersion parameter, and

Γ(z) =

∫ +∞

y=0

yz−1 e−y dy (4.12)

is the gamma function.

An illustration for the PDF of the gamma distributed random variable

αBR, with mean mαBR
= 400 1/m/s and dispersion factor δαBR

= 0.5%, is

presented in Figure 4.1.
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Figure 4.1: Illustration of the PDF of the gamma distributed random variable
αBR, with mean mαBR

= 400 1/m/s and dispersion factor δαBR
= 0.5%.
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4.3.2
Distribution of the limit force

The parameter ΓBR is also positive, in a way that SuppΓBR =]0,∞[, and

consequently ∫ +∞

γ=0

pΓBR
(γ) dγ = 1. (4.13)

The hypothesis that the mean is a known positive number mΓBR
is also

done, i.e.,

E [ΓBR] = mΓBR
> 0, (4.14)

as well as that the technical condition, required for the stochastic dynamical

system associated be of second order, is fulfilled, i.e.

E
[
ln (ΓBR)

]
= qΓBR

, |qΓBR
| < +∞. (4.15)

In a similar way to the procedure presented in section 4.3.1, it can be

shown that PDF of maximum entropy in this case also has gamma distribution,

and is given by

pΓBR
(γ) = 1]0,∞[(γ)

1

mΓBR

(
1

δ2ΓBR

)1/δ2
�BR

× 1

Γ(1/δ2ΓBR
)

(
γ

mΓBR

)1/δ2
�BR

−1

exp

(
−γ

δ2ΓBR
mΓBR

)
.

(4.16)

An illustration of this PDF, with meanmΓBR
= 30× 103 N and dispersion

factor δΓBR
= 1% can be seen in Figure 4.2.
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Figure 4.2: Illustration of the PDF of the gamma distributed random variable
ΓBR, with mean mΓBR

= 30× 103 N and dispersion factor δΓBR
= 1%.
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4.3.3
Distribution of the friction coefficient

With respect to the parameter μBR, one know it is nonnegative and

bounded above by the unity. Thus, one can safely assume that SuppμBR = [0, 1],

so that the normalization condition read as∫ 1

μ=0

pμBR
(μ) dμ = 1. (4.17)

For technical reasons (Soize, 2000) [23], the following two conditions are

also imposed

E
[
ln (μBR)

]
= q1μBR

, |q1μBR
| < +∞, (4.18)

E
[
ln (1− μBR)

]
= q2μBR

, |q2μBR
| < +∞, (4.19)

representing a weak decay of the PDF of μBR in 0+ and 1− respectively. A

similar development is presented in Ritto et al. (2010) [92].

Evoking again the principle of maximum entropy, considering now as

known information the constraints defined by (4.17), (4.18), and (4.19) one

has that the desired PDF is given by

pμBR
(μ) = 1[0,1](μ)

Γ(a+ b)

Γ(a) Γ(b)
μa−1 (1− μ)b−1 , (4.20)

which corresponds to the beta distribution. The parameters a and b are

associated with the shape of the probability distribution, and can be related

with mμBR
and δμBR

by

a =
mμBR

δ2μBR

(
1

mμBR

− δ2μBR
− 1

)
, (4.21)

and

b =
mμBR

δ2μBR

(
1

mμBR

− δ2μBR
− 1

)(
1

mμBR

− 1

)
. (4.22)

In Figure 4.3 the reader can see the illustration a beta distributed PDF,

with mμBR
= 0.4 and δμBR

= 0.5%.

4.4
Stochastic initial/boundary value problem

Due to the randomness of the parameters αBR, ΓBR, and μBR, the the

vector field U , unknown of variational problem defined by Eqs.(3.52), (3.66),

and (3.67), becomes a random vector field�, which is solution of the stochastic

initial/boundary value problem defined by
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Figure 4.3: Illustration of the PDF of the beta distributed random variable
μBR, with mean mμBR

= 0.4 and dispersion factor δμBR
= 0.5%.

M
(
ψ, �̈

)
+ C

(
ψ, �̇

)
+K (ψ,�) = F

(
ψ,�, �̇, �̈

)
, a.s. (4.23)

M
(
ψ,�(0)

)
= M (ψ,U0) , a.s. (4.24)

and

M
(
ψ, �̇(0)

)
= M

(
ψ, U̇0

)
. a.s. (4.25)

4.5
Stochastic nonlinear dynamical system

When the stochastic initial/boundary value problem of Eqs.(4.23), (4.24),

and (4.25) is discretized in its spatial coordinate, using the standard finite

element method, the result is the Ndofs×Ndofs stochastic nonlinear dynamical

system defined by

[M] �̈(t, θ) + [C] �̇(t, θ) + [K]�(t, θ) = �
(
�, �̇, �̈

)
, a.s. (4.26)

[M]�(0, θ) = Q0, and [M] �̇(0, θ) = Q̇0, a.s. (4.27)

where, for a fixed t, �(t, ·) is the random displacement vector, �̇(t, ·) is the

random velocity vector, and �̈(t, ·) is the random acceleration vector, and �

is the random nonlinear force vector.
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4.6
Reduced stochastic dynamical system

To reduce the stochastic dynamical system of Eqs.(4.26) and (4.27), the

procedure is similar to that shown in section 3.3.2, once the matrices which

define the associated generalized eigenvalue problem are the same as before.

In this way, using the new change of base defined by

�(t, θ) = [Φ]�(t, θ), a.s. (4.28)

and pre-multiplying the stochastic dynamical system by [Φ]T , one reaches its

reduced form, which is defined by the following stochastic initial value problem

[M ] �̈(t, θ) + [C] �̇(t, θ) + [K]�(t, θ) = � (�, �̇, �̈) , a.s. (4.29)

�(0, θ) = q0, and �̇(0, θ) = q̇0, a.s. (4.30)

where, for a fixed t, �(t, ·) is the reduced random displacement vector, �̇(t, ·)
is the reduced random velocity vector, and �̈(t, ·) is the reduced random

acceleration vector, and the reduced random force is given by

� = [Φ]T �
(
[Φ]�(t, θ), [Φ] �̇(t, θ), [Φ] �̈(t, θ)

)
. a.s. (4.31)

The methodology used to calculate the propagation of uncertainties

through this stochastic dynamical system is described in the next section.

4.7
Stochastic solver: Monte Carlo method

The stochastic solver employed in this work to compute the propaga-

tion of the uncertainties through the computational model is the Monte Carlo

(MC) method (Metropolis and Ulam, 1949) [118]; Liu (2001) [119]; Fish-

man (2003) [120]; Rubinstein and Kroese (2007) [121]; Shonkwiler and Men-

divil (2009) [122]; Robert and Casella (2010) [123].

In essence, this method is an algorithm in which several realizations

(samples) of the random parameters of the stochastic model are generated

according to the probability distribution that was specified to them a priori.

Each one of these realizations defines a new deterministic problem, which is

solved (processing) using a deterministic technique, generating an amount of

data. Then, all of these data are combined through statistics to access the

response of the random system under analysis (Kroese et al., 2011) [124]. A

general overview of the MC algorithm can be seen in the Figure 4.4.
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Regarding the computational implementation, the MC method has a

nonintrusive characteristic, once it does not require a new computer code

to simulate a stochastic model. If a deterministic code to simulate a similar

deterministic model is available, the stochastic simulation can be conducted

by running the deterministic program several times, changing only the value

of the parameters that are randomly generated (Kroese et al., 2011) [124].

Monte Carlo method

samples
generation

stochastic
model

processing

deterministic
model

output
data statistics

response

Figure 4.4: General overview of Monte Carlo algorithm.

Additionally, if the MC simulation is performed for a large number of

samples, it completely describes the statistical behavior of the random system

(Caflisch, 1998) [125]. Unfortunately, MC is a very time-consuming method,

which makes unfeasible its use for complex simulations, when the processing

time of a single realization is very large or the number of realizations to

an accurate result is huge. Fortunately the algorithm is easily parallelizable,

allowing circumvent this deficiency (Cunha Jr et al., 2014) [126].



5
Exploration of Nonlinear Stochastic Dynamics

This chapter deals with the numerical analysis of the nonlinear stochastic

dynamical system. Here are presented numerical results related to modal anal-

ysis of the system; convergence of finite element approximation; construction

of reduced order model; calculation of static equilibrium configuration; drill-bit

and beam nonlinear dynamics; influence of impacts on the dynamics; spectral

analysis of nonlinear dynamics; drilling process efficiency analysis; propagation

of uncertainties of random parameters through nonlinear dynamical system.

5.1
Parameters for the mathematical model

In order to simulate the nonlinear dynamics of the mechanical system,

the physical parameters presented in the Table 5.1 are adopted, as well as

the length L = 100m, the rotational and axial velocities in x, respectively

given by Ω = 2π rad/s, and V0 = 1/180m/s. The values of these parameters

do not correspond exactly to the actual values used in a real drillstring,

but are of the same order of magnitude. For this configuration, the beam

geometry is discretized by 500 finite elements, and the interval of integration

[t0, tf ] = [0, 10] s is considered.

Table 5.1: Physical parameters of the mechanical system.

parameter value unit

ρ 7900 kg/m3

g 9.81 m/s2

ν 0.3 —
c 0.01 —
E 203× 109 Pa
Rbh 95× 10−3 m
Rint 50× 10−3 m
Rext 80× 10−3 m

For the constants of the friction and shock model, are considered the

values shown in Table 5.2, which have order of magnitude typical of a borehole

wall made of steel (Zhang and Sharf, 2009) [127]. The low value for the
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friction coefficient μFS is justified by the fact that in the real system, there is

a fluid between the borehole wall and the column, which carries a substantial

reduction in the torsional friction.

Table 5.2: Parameters of the friction and shock model.

parameter value unit

kFS1 1× 1010 N/m
kFS2 1× 1016 N/m3

cFS 1× 106 (N/m3)/(m/s)
μFS 0.25 —

The constants of the bit-rock interaction model can be seen in Table 5.3,

and were estimated in a similar way as in Ritto et al. 2013 [77]. Besides that,

trial and error numerical studies showed that ωSOR = 0.75, and ε1 = ε2 = 10−2

are sufficient for convergence of the simulations.

Table 5.3: Parameters of the bit-rock interaction model.

parameter value unit

ΓBR 30× 103 N
αBR 400 1/(m/s)
μBR 0.4 —

5.2
Modal analysis of the mechanical system

In this section, the modal content of the mechanical system is investi-

gated. This investigation aims to identify the natural frequencies of the sys-

tem, and, especially, to check the influence of slenderness ratio, defined as the

ratio between beam length and external diameter, in the natural frequencies

distribution.

Therefore, the dimensionless frequency band of interest in the problem

is assumed as being B = [0, 4], with the dimensionless frequency defined by

f ∗ =
f L

cL
, (5.1)

where f is the dimensional frequency (Hz), and cL =
√
E/ρ is the longitudinal

wave velocity. As it was defined in terms of a dimensionless frequency, the band

of analysis does not change when the beam length is varied. Also, the reader

can check that this band is representative for the mechanical system dynamics,

once the beam rotates at 2π rad/s, which means that the mechanical system

is excited at 1Hz.
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Figure 5.1: Distribution of the flexural modes as a function of dimensionless
frequency, for several values of slenderness ratio.
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Figure 5.2: Distribution of the torsional modes as a function of dimensionless
frequency, for several values of slenderness ratio.

In Figure 5.1 one can see the distribution of the flexural modes as a

function of dimensionless frequency, for several values of slenderness ratio.

Clearly it is observed that the flexural modes are denser in the low frequency

range. Further, when the slenderness ratio increases, the modal density in the

low frequencies range tend to increase.

A completely different behavior is observed for the torsional and longitu-

dinal (traction-compression) modes of vibration, as can be seen in Figures 5.2

and 5.3, respectively. One can note that, with respect to these two modes of vi-

bration, the modal distribution is almost uniform with respect to dimensionless

frequency, and invariant to changes in the slenderness ratio.

It may also be noted from Figures 5.1 to 5.3 that, the lowest natural

frequencies are associated with the flexural mechanism. This is because the

flexural stiffness of the beam is much smaller than the torsional stiffness, which

in turn is less than the axial stiffness. In other words, it is much easier to bend

the beam than twisting it. However, twists the beam is easier than buckling it.

The dimensionless frequency band adopted in the analysis corresponds

to a maximum dimensional frequency of fmax = 4 cL/L. In this way, a nominal

time step of Δt = (2 fmax)
−1 is adopted for time integration. This time step is
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Figure 5.3: Distribution of the longitudinal modes as a function of dimension-
less frequency, for several values of slenderness ratio.

automatically refined by the algorithm of integration, whenever necessary, to

capture the shock effects.

5.3
Convergence of finite element approximations

Before one start to study the mechanical system of interest, it is necessary

to analyze the convergence of FEM approximations used to access the nonlinear

dynamics. For this purpose, it is taken into account the map n ∈ N �→
conv

FEM
(n) ∈ R, being

conv
FEM

(n) =

(∫ tf

t=t0

∫ L

x=0

(∥∥∥U (n)(x, t)
∥∥∥2

+
∥∥∥U̇ (n)(x, t)

∥∥∥2
)

dx dt

)1/2

, (5.2)

where n denotes the number of finite elements used in the approximation,

and ‖·‖ represents the standard Euclidean norm, here applied to the vector

fields U (x, t) and U̇ (x, t). The superscript (n) indicates an approximation

constructed with n finite elements. For details the reader is referenced to

Oden and Reddy (2011) [128].

The (discrete) mean mechanical energy of the mechanical system, over

the interval [t0, tf ], for an approximation constructed with n finite element is

a map n ∈ N �→ energy
mech

(n) ∈ R, where

energy
mech

(n) =
1

tf − t0

∫ tf

t=t0

(
1

2
Q̇(n)T (t) [M] Q̇(n)(t) +

1

2
Q(n)T (t) [K]Q(n)(t)

)
dt.

(5.3)

This metric also used to measure the convergence of the finite element

approximations in reason of its physical appeal.
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In the convergence tests reported herein, it is considered a “temporal

window” defined by the interval [t0, tf ] = [0, 512×Δt], with Δt = 2.5× 10−3 s.

The number of finite elements in the mesh is increased, first by 10 units until

a total of 100 elements is achieved, and then by 50 units up to a total of 800

elements.

The evolution of conv
FEM

(n) as a function of the number of finite elements

used in the approximation can be seen in Figure 5.4. Note that for a number

of elements equal to 200 or more, the metric value varies slightly.
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Figure 5.4: This figure illustrates the convergence metric of FEM approxima-
tions as a function of the number of finite elements.

It also noted that there is no change in the behavior of energy
mech

(n) to

a number of elements greater than 200, as can be see in Figure 5.5. A study

of convergence which considers the first 350 natural frequencies of the system

is also conducted, and shows that these frequencies converge with two decimal

places of precision when 500 or more elements are used in the approximation.

Accordingly, it is admitted that Nelem = 500 represents a good compromise

between accuracy and computational cost, and all other simulations reported

in this work use this number of elements to construct the approximation.

5.4
Construction of the reduced model

In the construction of the reduced model, are taken into account the rigid

body modes of the mechanical system, as well as modes of bending, torsion

and traction-compression. The construction strategy consists of including: (i)

the two rigid body modes (translation and rotation); (ii) all the flexural modes

such that 0 < f ∗ ≤ 5L/cL; (iii) all the torsional modes such that 0 < f ∗ ≤ 4;

(iv) all the longitudinal modes such that 0 < f ∗ ≤ 4.
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Figure 5.5: This figure illustrates the mean mechanical energy of the system
as a function of the number of finite elements.

In this way, the total number of modes used in the FEM model is a

function of the beam length. In Table 5.4 the reader can see a comparison, for

different values of L, of the full FEM model dimension and the corresponding

dimension of the reduced order model. Note that the dimension of the reduced

models, constructed using the above strategy, is always much smaller than the

full model dimension.

Table 5.4: Dimension of the FEM model as a function of beam length.

beam length full model reduced model
(m) DoFs DoFs

50 306 37
100 3006 49
150 4506 60

5.5
Calculation of the static equilibrium configuration

Before the beginning of drilling operation, the drillstring is inserted into

the borehole, without axial velocity and rotation imposed. Due to gravitational

effects, the column deflects until it reaches a static equilibrium configuration.

This configuration is calculated by the temporal integration of the dynamical

system defined by the Eqs.(3.77) and (3.78), assuming zero initial conditions,

i.e., Ω = 0 rad/s, and V0 = 0m/s. In this way, after a short transient, the system

reaches static equilibrium and remains in this configuration indefinitely.
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Figure 5.6: Illustration of static equilibrium configuration of a horizontal
drillstring with 100 m length.

An illustration of this equilibrium configuration, for a 100m long column

is presented in Figure 5.6. In this illustration, one can see the mechanical

system sectioned by the plane y = 0m, as well as by the planes x =

{0, 50, 100}m. A visual inspection clearly indicates that this equilibrium is

stable. Moreover, as this equilibrium configuration is the initial state of the

real system, it will be used as initial condition in all other simulations reported

bellow.

An animation which illustrates the calculation of the beam static

equilibrium can be seen in Video 1: http://www.youtube.com/watch?v=

jJu1E19p434.

5.6
Drill-bit nonlinear dynamic behavior

The drill-bit longitudinal displacement and velocity, can be seen in

Figure 5.7. For practical reasons, some scaling factors were introduced in the

units of measure of these quantities. They allow one to read the displacement

in “millimeter”, and the velocity in “meters per hour”. Accordingly, it is noted

that, during the interval of analysis, the column presents an advance in the

forward direction with very small axial oscillations in the displacement. The

axial oscillations in the velocity curve are more pronounced, and correspond to

the vibration mechanism known as bit-bounce, where the drill-bit loses contact

with the soil and then hits the rock abruptly. This phenomenon, which is widely

observed in real systems (Spanos et at., 2003) [30], presents itself discreetly

http://www.youtube.com/watch?v=jJu1E19p434
http://www.youtube.com/watch?v=jJu1E19p434
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Figure 5.7: Illustration of drill-bit displacement (top) and drill-bit velocity
(bottom).

in the case analyzed. Note that the velocity exhibits a mean value of 19.36

“meters per hour”, close to the velocity V0 = 20 “meters per hour”, which is

imposed on the left end of the beam. Also, throughout the “temporal window”

analyzed, one can observe packages where the velocity of the drill-bit presents

large fluctuations, which can reach up to 40 times the mean value.

The drill-bit rotation and angular velocity, can be seen in Figure 5.8.

Now the scale factors allow one to read rotation in “revolution”, and the

angular velocity in “revolution per minute”. Thus, what it is observed is a

almost monotonic rotation. However, when one looks to the angular velocity,

it is possible to see packages of fluctuations with amplitude variations that can

reach up to an order of magnitude. This indicates that the drill-bit undergoes a

blockage due to the torsional friction, and then it is released subtly, so that its

velocity is sharply increased, in a stick-slip phenomenon type. This is also seen

experimentally (Spanos et at., 2003) [30] in real drilling systems, and a serious

consequence of this blockage is the reduction of drilling process efficiency.
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Figure 5.8: Illustration of drill-bit rotation (top) and drill-bit angular velocity
(bottom).

5.7
Transverse nonlinear dynamics of the beam

Observing the cross section of the beam at x = 50m, for which the

transversal displacement (top) and velocity (bottom) are shown in Figure 5.9,

one can see an asymmetry of the displacement, with respect to the plane

z = 0m. This is due to gravity, which favors the beam to move below this

plane. Furthermore, one can note that the this signal is composed of“packages”,

which has a recurring oscillatory pattern. As will be seen in section 5.8, these

packages present a strong correlation with the number of impacts which the

mechanical system is subjected.

The evolution of the radial displacement, for x = 50m, of the beam cross-

section can be seen in the Figure 5.10, which shows that several transverse

impacts occur between the drillstring and the borehole wall during the drilling

process. This fact is also reported experimentally (Spanos et at., 2003) [30],

and is an important cause of damage to the well and to the drillstring.
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Figure 5.9: Illustration of transversal displacement (top) and velocity in z
(bottom) when x = 50m.

Note that, after an impact, the amplitudes of the oscillations decreases

until subtly increase sharply, giving rise to a new impact, and then the entire

process repeats again.

5.8
Influence of transverse impacts on the nonlinear dynamics

In Figure 5.11 it is shown the graph of the map t ∈ R �→
number of shocks ∈ N, which associates for any instant t the number of

impacts suffered by the mechanical system.

The “packages of fluctuation” observed in the Figures 5.7 to 5.9 corre-

spond to transitory periods of the dynamical system, and are highly correlated

with the process of collision between beam and borehole wall. This assertion

can be verified if the reader compares the graphs of Figures 5.7 to 5.9 with

the graph of Figure 5.11, which shows the existence of “shock packages”. The

existence of a correlation is clearly evident.
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Figure 5.10: Illustration of beam radial displacement for x = 50m.
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Figure 5.11: Illustration of the number of impacts suffered by the mechanical
system as function of time.

Whenever there is a shock, the system “loses it memory” about the

previous dynamic behavior, and undergoes a new transient period until reach a

steady state again. This behavior is repeated 11 times in the“temporal window”

analyzed.

Regarding the distribution of impacts along the beam, the graph of

the map x ∈ [0, L] �→ number of shocks ∈ N, which associates for any

position x the number of impacts suffered by the mechanical system, is shown

in Figure 5.12. It is clear that impacts do not occur near the beam ends.

This is natural due to the restrictions of movement imposed by the boundary

conditions.

The impacts between the drillstring and the borehole wall generate

nonlinear elastic deformations in the beam, but without residual deformation

effects. In this contact also occurs energy dissipation, due to the normal

shock, and the torsional friction, induced by the rotation of the beam. These
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Figure 5.12: Illustration of the number of impacts suffered by the mechanical
system as function of position.

mechanical contacts also activate flexural modes of vibration associated to high

natural frequencies, so that the mechanical system assumes complex spatial

configurations, as can be seen, for several instants, in Figure 5.13.

It is also very clear from the Figure 5.13 that, the mechanical contacts

between the beam and the borehole wall, do not occur all the time among

discrete points, they can also be seen along continuous line segments.

For a qualitative illustration of the nonlinear dynamics, the reader can

see the Video 2: http://www.youtube.com/watch?v=-4UVinZr4QQ.

5.9
Spectral analysis of the nonlinear dynamics

All signals presented above, that are associated with the mechanical sys-

tem response, have stochastic characteristics. Thereby, for a good understand-

ing of them, it is necessary to analyze their spectral content through the power

spectral density (PSD) function (Oppenheim and Schafer, 2009) [129].

The PSDs that are presented in this section (magenta line) were esti-

mated using the periodogram method (Oppenheim and Schafer, 2009) [129],

and the smooth curves (blue line) appearing were obtained by a filtering pro-

cess, using a Savitzky-Golay filter (Savitzky and Golay, 1964) [130]. The PSDs

are measured in dB/Hz, where the intensity of reference is adopted as being

equal to one.

An illustration of PSD functions of drill-bit velocity and angular velocity

is show in Figure 5.14. One can note that, in the case of velocity, the two peaks

of highest amplitude correspond to the frequencies 84.55Hz, and 115.20Hz, re-

spectively. These frequencies are very close to the flexural frequencies 84.53Hz,

and 115.29Hz, so that the drill-bit axial dynamics is controlled by the transver-

http://www.youtube.com/watch?v=-4UVinZr4QQ
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Figure 5.13: Illustration of the mechanical system, for several instants, sec-
tioned by the planes y = 0m, and x = {0, 50, 100}m.
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Figure 5.14: Illustration of power spectral density functions of drill-bit velocity
(top) and angular velocity (bottom).

sal mechanisms of vibration. Furthermore, with respect to the angular velocity,

it is noted a peak standing out in relation to the others. This peak is associated

with 7.92Hz frequency, which is very close to the flexrual frequency 7.89Hz.

In Figure 5.15 the reader can see an illustration of PSD functions of

beam transversal velocity in z and angular velocity around x when x = 50m.

The two peaks of highest amplitude, for the velocity in z, correspond to the

frequencies 143.20Hz, and 172.50Hz, respectively. These frequencies are close

to the torsional frequencies 145.55Hz, and 174.67Hz, which indicates that

lateral vibrations in z, when x = 50m, are induced by the torsional vibration

mechanism. On the other hand, in what concerns angular velocity around x, the

two peaks of largest amplitude are associated to the frequencies 6.93Hz, and

107.10Hz, respectively close to the flexural frequencies 6.84Hz, and 107.16Hz.

According to Figure 5.16, torsion is the primary mechanism of vibration

that causes the impacts between the beam and borehole wall, since the highest

peak of the PSD shown in this figure is associated with the frequency 57.42Hz,



Chapter 5. Exploration of Nonlinear Stochastic Dynamics 95

Figure 5.15: Illustration of power spectral density functions of beam transversal
velocity in z (top) and angular velocity around x (bottom) when x = 50m.

which is close to the torsional frequency 58.21Hz. This result is surprising

because intuition, especially when thinking about the dynamics of vertical

drillstrings, suggests that lateral vibration mechanism is the mainly responsible

for inducing the transverse impacts.

5.10
Analysis of the drilling process efficiency

The efficiency of the drilling process is defined as

E =

∫ tf
t0

Pout dt∫ tf
t0

Pin dt
, (5.4)

where Pout is the useful (output) power used in the drilling process, and

Pin is the total (input) power injected in the system, such as proposed by

Ritto and Sampaio (2013) [131].
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Figure 5.16: Illustration of power spectral density function of number of shocks
per unit of time.

The output power is due to the drill-bit movements of translation and

rotation so that

Pout = u̇+
bit (−FBR)

+ + ω+
bit (−TBR)

+ , (5.5)

where the upper script + means the positive part of the function. The input

power is defined as

Pin = u̇(0, t)+ (−λ1)
+ + θ̇x(0, t)

+ (−λ4)
+, (5.6)

where the first and the fourth Lagrange multipliers, respectively, represent the

drilling force and torque on the origin of the beam. The reason for considering,

in the above definitions, only the positive part of the functions is that negative

powers do not contribute to the drilling process.

One can observe the contour map of E , for an operating window defined by

1/360m/s ≤ V0 ≤ 1/120m/s and 3π/2 rad/s ≤ Ω ≤ 2π rad/s, in Figure 5.17.

Note that, by operating window of a drillstring, one means the subset of R2 that

provides acceptable values for the pair (Ω, V0). In order to facilitate the results

interpretation, some scaling factors were introduced in the units of measure.

They allow one to read the velocity in “meters per hour” and the rotation in

“rotation per minute”.

Accordingly, it can be noted in Figure 5.17 that the optimum operating

condition is obtained at the point (V0,Ω) = (1/144m/s, 5π/3 rad/s), which

corresponds to an efficiency of approximately 16%, and suboptimal operation

conditions occur in the vicinity of this point. Some points near the operating

window boundary show lower efficiency.
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Figure 5.17: Illustration of efficiency function contour plot, for an operating
window defined by 1/360m/s ≤ V0 ≤ 1/120m/s and 3π/2 rad/s ≤ Ω ≤
2π rad/s.

5.11
Probabilistic analysis of the dynamics

For the probabilistic analysis of the dynamical system a paramet-

ric approach is used, where the distributions of the random parameters

are constructed according to the procedure presented in chapter 4. In this

case, the random variables of interest are characterized by the mean values

mαBR
= 400 1/m/s, mΓBR

= 30× 103 N, and mμBR
= 0.4, and by the dispersion

factors δαBR
= 0.5%, δΓBR

= 1%, and δμBR
= 0.5%.

Initially it is necessary to analyze the convergence of MC simulations. For

this purpose, it is taken into consideration the map ns ∈ N �→ conv
MC
(ns) ∈ R,

being

conv
MC
(ns) =

(
1

ns

ns∑
n=1

∫ tf

t=t0

∥∥�(t, θn)∥∥2
dt

)1/2

, (5.7)

where ns is the number of MC realizations, and ‖·‖ denotes the standard

Euclidean norm. This metric allows one to evaluate the convergence of the

approximation �(t, θn) in the mean-square sense. For further details the reader

is encouraged to see Soize (2005) [26].

The evolution of conv(ns) as a function of ns can be seen in Figure 5.18.

Note that for ns = 1024 the metric value has reached a steady value. In this

sense, if something is not stated otherwise, all the stochastic simulations that

follows in this work use ns = 1024.

An illustration of the mean value (blue line), and a confidence band (grey

shadow), wherein a realization of the stochastic dynamic system has 95% of

probability of being contained, for the drill-bit longitudinal displacement and
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Figure 5.18: This figure illustrates the convergence metric of MC simulation as
a function of the number of realizations.

velocity is shown in Figure 5.19. For sake of reference, the deterministic model,

which the numerical results were presented earlier, is also presented and called

the nominal model (red line). It is observed that the mean value is very similar

to the nominal model for the displacement. Meanwhile, for the velocity the

mean value presents oscillations that are correlated with the nominal model,

but with very different amplitudes. Regarding the confidence band, there is

a significant amplitude in the instants that corresponds to the packages of

fluctuation and negligible amplitude in the other moments.

Fixing the time in t = 10 s, it is possible to analyze the behavior

of the drill-bit longitudinal velocity through its normalized PDF, which is

presented in Figure 5.20. In this context normalized means a distribution

of probability with zero mean and unit standard deviation. It is observed a

unimodal behavior, with the maximum value occurring in a neighborhood

of the mean value. The narrow shape of the PDF curve shows that, at the

analyzed instant, the drill-bit longitudinal velocity presents small dispersion

around the mean value.

In Figure 5.21, the reader can see the nominal model, the mean value, and

the 95% probability envelope of drill-bit rotation and angular velocity. A good

agreement between the nominal model and the mean value of the rotation is

observed, and the confidence band around it is negligible. On the other hand,

with respect to the angular velocity, it is possible to see discrepancies in the

amplitudes of the nominal model and the mean value. These differences occur

in the instants when the system is subject to shocks, as in the case of drill-

bit longitudinal velocity. The band of uncertainty shows that the dispersion

around the mean increases with time due to the uncertainties of accumulation,

but also in reason of the impacts, once its amplitude increases a lot near the



Chapter 5. Exploration of Nonlinear Stochastic Dynamics 99

0 2 4 6 8 10
−10

0

10

20

30

40

50

60

 time (s)

 d
is

p
la

c
e
m

e
n
t 
(×

 1
0

−
3
 m

)

 drill−bit longitudinal displacement

 

 

 nominal

 mean value

 95% prob.

0 2 4 6 8 10
−1000

−500

0

500

1000

1500

 time (s)

 v
e
lo

c
it
y
 (

×
 1

/3
6
0
0
 m

/s
)

 drill−bit longitudinal velocity

 

 

 nominal

 mean value

 95% prob.

Figure 5.19: Illustration of the nominal model (red line), the mean value
(blue line), and the 95% probability envelope (grey shadow) for the drill-bit
longitudinal displacement (top) and velocity (bottom).
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Figure 5.20: Illustration of the normalized probability density function of the
drill-bit longitudinal velocity.

instants where the mean value presents large fluctuations, i.e., the instants

which are correlated to the impacts between the beam and the borehole wall.



Chapter 5. Exploration of Nonlinear Stochastic Dynamics 100

0 2 4 6 8 10
−2

0

2

4

6

8

10

12

 time (s)

 r
ot

at
io

n 
(×

 2
π
 r

ad
/s

)

 drill−bit rotation

 

 

 nominal
 mean value
 95% prob.

0 2 4 6 8 10
−600

−400

−200

0

200

400

600

800

 time (s)

 a
ng

ul
ar

 v
el

oc
ity

 (
×
 2

π
/6

0 
ra

d/
s)

 drill−bit angular velocity

 

 

 nominal
 mean value
 95% prob.

Figure 5.21: Illustration of the mean value (blue line) and the 98% probability
envelope (grey shadow) for the drill-bit rotation (top) and angular velocity
(bottom).

For t = 10 s, the reader can see the normalized PDF of the drill-bit

angular velocity in Figure 5.22. It is noted again an unimodal behavior, with

the maximum again near mean value. But now the wide shape of the PDF

curve shows that, at the analyzed instant, the drill-bit longitudinal angular

velocity presents large dispersion around the mean value.

Moreover, in Figure 5.23 it is shown the nominal model, the mean

value, and the 95% probability envelope of the beam transversal displacement

and velocity in z at x = 50m. Here the mean values of both, velocity

and displacement, present correlation with the nominal models. Indeed, both

present discrepancies in the oscillation amplitudes, especially the velocity,

discrepancies that are more pronounced, as before, in the instants wherein

the system is subject to impacts. The confidence bands present meaningful

amplitudes, what evidentiates a certain level of dispersion around the means,

which are more significant, as expected, at the instants of impact.
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Figure 5.22: Illustration of the normalized probability density function of the
drill-bit angular velocity.

0 2 4 6 8 10
−20

−15

−10

−5

0

5

10

 time (s)

 d
is

pl
ac

em
en

t (
×
 1

0−
3  m

)

 transversal displacement in z at x = 50.0 m

 

 

 nominal
 mean value
 95% prob.

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2

3

4

 time (s)

 v
el

oc
ity

 (
m

/s
)

 transversal velocity in z at x = 50.0 m

 

 

 nominal
 mean value
 95% prob.

Figure 5.23: Illustration of the mean value (blue line) and the 98% probability
envelope (grey shadow) for the beam transversal displacement (top) and
velocity in z (bottom) at x = 50m.

The PDF of the drilling process efficiency function it is shown in Fig-

ure 5.24. One can observe a unimodal distribution with the maximum around
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Figure 5.24: Illustration of the probability density function of the drilling
process efficiency.

16% and wide dispersion between 0 and 40%, declining rapidly to negligible

values outside this range. This probability distribution is compatible with a

real drilling system, which is known to be extremely inefficient.

Finally, in Figure 5.25 one can see the PDF of the drillstring rate of

penetration function. One notes an unimodal behavior in a narrow range

between 20 and 50 “meters per hour”, with the maximum around 30 “meters

per hour”. Once these value for the ROP are within a realistic range, the PDF

may be reasonable.
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Figure 5.25: Illustration of the probability density function of the rate of
penetration function.



6
Optimization of Drilling Process

This chapter concerns about the drilling process optimization. For this

purpose, it presents the deterministic formulation of an optimization problem,

with constraint, that seeks to maximize the drillstring ROP into the soil, the

algorithm used to solve the problem, the stochastic version of the problem, by

means of a robust optimization problem formulation, and numerical results.

6.1
Formulation of deterministic optimization problem

In order to optimize the drilling process of an oil well in horizontal

configuration, it is necessary to maximize the drillstring ROP into the soil.

To “drive” a drillstring, an operator has three parameters available (rotation

frequency, WOB, and volumetric flow rate). In the model used in this thesis,

the first two control parameters are respectively identified with Ω, and V0,

while the volumetric flow rate is ignored, once the flow inside the tube is not

taken into account. Thus, the optimization problem that will be treated in this

chapter seek to find, within the drillstring operating window, pairs of the form

(Ω, V0) that make drillstring penetration into the soil maximum, subject to

the restrictions (imposed by structural limits) that will be defined below.

The instantaneous rate of penetration is given by the function u̇bit(t),

defined for all instants of analysis. Meanwhile, as objective function, it is more

convenient to consider a scalar function. Thus, the temporal mean of u̇bit(t)

is adopted as the rate of penetration, and, consequently, objective function of

the optimization problem

rop(Ω, V0) =
1

tf − t0

∫ tf

t=t0

u̇+bit(t) dt. (6.1)

Furthermore, respect the structural limits is indispensable to avoid

failures of drillstring during the drilling process. For this reason, von Mises

criterion of failure is considered.
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In this criterion, the von Mises equivalent stress is defined by

σVM =

√
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6 (σxy + σyz + σzx)2

2
,

(6.2)
which, after the replacement of Eqs.(3.31) and (3.32), is equivalent to

σVM(V0, Ω, x, t) =
√
(E εxx)2 + 12 (Gεxy)2 + 12 (Gεxz)2, (6.3)

a function depending on x and t, besides the operating parameters. Moreover,

it is established that, for all pairs (Ω, V0) in the operating window,

UTS− max
0≤x≤L
t0≤t≤tf

{
σVM(V0, Ω, x, t)

}
≥ 0, (6.4)

where UTS is the ultimate tensile strength of the material.

In formal terms, the deterministic optimization problem of drillstring

ROP can be read as follows:

Find a pair (V0, Ω), in the operating window, that maximizes the objective

function given by (6.1), respecting the constraint imposed by (6.4).

6.2
Solution algorithm for optimization problem

The first question that should be raised about this optimization problem

is the existence of a solution. Since it is nonlinear and nonconvex, there is no

guarantee on the existence of a global maximum. Besides that, if the global

maximum exists, one can not expect to find an algorithm to search it in finite

time. The best that can be done is to find a local maximum in the feasible

region (Bazaraa et al. 2006) [132].

Furthermore, since the evaluation of the objective function is done

through a finite element code, from the computational point of view, this opti-

mization problem is extremely costly, making it unfeasible search for extremes

candidates via gradient based methods (Nocedal and Wright 2006) [133].

In this way, to construct an approximation for the optimization problem

solution, it is adopted a strategy that consists in building a surrogate surface

that emulates the objective function (Queipo et al. 2005) [134]. To do this the

objective function is evaluated in a structured grid of points, previously defined,

in the operating window. Then the contour lines of the function are interpolated

through these points, and, thereby, one constructs an approximation to the

function contour map. The same procedure is repeated with the constraint

of the optimization problem. Finally, the points that satisfy the constraint in

the operating window are verified, and with then it is defined the admissible
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Figure 6.1: Illustration of maximum von Mises stress contour plot, for an
operating window defined by 1/360 m/s ≤ V0 ≤ 1/90 m/s and 3π/2 rad/s ≤
Ω ≤ 7π/3 rad/s.

region. Within the admissible region it is done the search for the point of local

maximum. As the interpolation used is linear, local extremes always occur in

the structured grid of points, so that only these points are evaluated to get the

maximum.

6.3
Optimum value for rate of penetration

Regarding the analysis of the rate of penetration, the operating window

is defined by the inequalities 1/360 m/s ≤ V0 ≤ 1/90 m/s and 3π/2 rad/s ≤
Ω ≤ 7π/3 rad/s.

The contour map of the constraint (6.4), is shown in Figure 6.1. From

the way constraint (6.4) is written, the Mises criterion is not satisfied when the

function is negative, which occurs in a “small neighborhood” of the upper left

corner of the rectangle that defines the operating window. It is noted that all

other points respect the structural limits of the material. Then, the admissible

region of the operating window consists of all points that satisfy the constraint.

In Figure 6.2 the reader can see the contour map of the function rop.

Taking into account only points in the admissible region, the maximum of rop

occurs at the point (V0,Ω) = (7/720 m/s, 2π rad/s), which is indicated on the

graph with a blue cross. This point corresponds to a mean rate of penetration,

during the time interval analyzed, approximately equal to 90“meters per hour”.

It is worth remembering that the definition of rop uses temporal mean

of the positive part of u̇bit(t). In such a way, it is not surprising to find

the maximum value of rop much higher than the corresponding velocity, V0

imposed on the left end of the column. This occurs because, by taking only
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Figure 6.2: Illustration of rate of penetration function contour plot, for an
operating window defined by 1/360 m/s ≤ V0 ≤ 1/90 m/s and 3π/2 rad/s ≤
Ω ≤ 7π/3 rad/s. The maximum is indicated with a blue cross.

the positive part of the function, the rate of penetration value increases.

To see how significant is the inclusion of the positive part of u̇bit(t) in

the definition of rop, the reader can see in Figure 6.3. This Figure shows the

same information as Figure 6.2, i.e., the contour map of the function rop, but

now considering u̇bit(t) instead of u̇+
bit(t) in the definition of rop. Note that, in

comparison with the contour map of Figure 6.2, lower values for the levels of

the function are observed, and these values are now are closer to the values of

V0. Furthermore, the topology of contour lines change, so that no local extreme

point can be seen isolated. This example shows the importance of considering

u̇+
bit(t) in the definition of rop.
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Figure 6.3: Illustration of the contour plot of the rate of penetration function,
with an alternative definition, for an operating window defined by 1/360m/s ≤
V0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s.
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6.4
Formulation of robust optimization problem

To improve the level of confidence of the drilling process optimization,

the uncertainties intrinsic to the problem should be taken into account, for

instance, such as is done in Ritto et al. (2010) [93]. This leads to a robust

optimization problem, i.e, optimization under uncertainty where the range

of the random parameters are known, but not necessarily their distribution

(Beyer and Sendhoff, 2007) [135], (Capiez-Lernout and Soize, 2008) [136,

137, 138], (Soize et al., 2008) [139], (Schuëller and Jensen, 2008) [140], (Ben-

Tal et al., 2009) [141].

Taking into account the uncertainties, through the parametric approach

presented in chapter 4, drill-bit velocity becomes the stochastic process

�bit(t, θ), so that the random rate of penetration is defined by

���(V0, Ω, θ) =
1

tf − t0

∫ tf

t=t0

�̇
+
bit(t, θ) dt. (6.5)

In the robust optimization problem, who plays the role of the objective

function is not the random variable ���(V0, Ω, θ), but its expected value,

i.e., E
[
���(V0, Ω, θ)

]
.

Regarding the restriction imposed by the von Mises criteria, now the

equivalent stress is a random field σVM(V0, Ω, x, t, θ), so that the inequality is

written as

UTS− max
0≤x≤L
t0≤t≤tf

{
σVM(V0, Ω, x, t, θ)

}
≥ 0. (6.6)

However, the robust optimization problem considers as restriction the

probability of the event defined by inequality (6.6),

P

⎧⎪⎨
⎪⎩UTS− max

0≤x≤L
t0≤t≤tf

{
σVM(V0, Ω, x, t, θ)

}
≥ 0

⎫⎪⎬
⎪⎭ ≥ 1− Prisk, (6.7)

where 0 < Prisk < 1 is the risk percentage acceptable to the problem.

In formal terms, the robust optimization problem of drillstring ROP can

be read as follows:

Find a pair (V0, Ω), in the operating window, that maximizes

E
[
���(V0, Ω, θ)

]
, respecting the probabilistic constraint imposed by (6.7).

A robust optimization problem very similar to this one, in the context

of a vertical drillstring dynamics, is considered by Ritto et al. (2010) [93]. In

this work the authors also take into account as constraints the material limit

of fatigue and a stability factor against stick-slip, which were not considered

here for simplicity.
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6.5
Robust optimum value for rate of penetration

To solve this robust optimization problem it is employed the same

strategy used for the deterministic optimization problem, only considering

the new objective function E
[
���(V0, Ω, θ)

]
and the probabilistic constraint

(6.7).

Accordingly, it is considered the same “operating window” used in the

deterministic optimization problem solved above, i.e., 1/360 m/s ≤ V0 ≤
1/90m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s, in addition to UTS = 650×106 Pa

and Prisk = 10%. Each MC simulation in this case used 128 realizations to

compute the propagation of uncertainties.

Concerning the simulation results, the probabilistic constraint (6.7) is

respected in all grid points that discretize the “operating window”. Thus,

the admissible region of the robust optimization problem is equal to the

“operating window”. In what follows, the contour map of the function

E
[
���(V0, Ω, θ)

]
can be see in Figure 6.4. Note that the maximum, which

is indicated on the graph with a blue cross, occurs at at the point (V0,Ω) =

(1/90 m/s, 7π/3 rad/s). This point is located in the boundary of the admissi-

ble region, in the upper right corner, and corresponds to a expected value of

the mean rate of penetration, during the time interval analyzed, approximately

equal to 58 “meters per hour”.
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Figure 6.4: Illustration of the contour plot of the mean rate of penetration
function, for an operating window defined by 1/360 m/s ≤ V0 ≤ 1/90 m/s and
3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s. The maximum is indicated with a blue cross
in the upper right corner.
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This result says that, in the operating window considered here, increasing

the drillstring rotational and translational velocities provides the most robust

strategy to maximize its ROP into the soil. This is in some ways an intuitive

result, but is at odds with the result of the deterministic optimization problem,

which provides another strategy to achieve optimum operating condition.

The contrast between the two results opens an interesting perspective

regarding the optimization of the drilling process, since it is clearly shown

that include the uncertainties in the formulation makes a big difference in the

resulting optimization strategy.
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Concluding Remarks

This chapter recalls the theme addressed in the thesis, summarizes and

highlights its main conclusions and contributions, suggest some paths for future

works, and list the resulting publications.

7.1
Thematic addressed in the thesis

This work was motivated by the economic importance that oil exploration

has in the global scenario, looking in particular to a problem associated with

the drilling of oil wells in horizontal configuration.

In this context, the thesis proposed to develop a mechanical-

mathematical model to describe the three-dimensional nonlinear dynamics

of horizontal drillstrings, taking into account friction and shocks phenomena

that are due to the mechanical contacts between the pairs drill-bit/soil and

drill-pipes/borehole. It was also objectified to construct a stochastic model

to take into account the uncertainties in the mechanical-mathematical model

that are due to the variability on its parameters.

Once the models have been developed, the next objective was to analyze

the mechanical system of interest, in order to obtain a better understanding

its nonlinear behavior. Indeed, it was intended to optimize the drilling process,

by maximizing the ROP of the drillstring into the soil, to reduce the costs of

production of an oil well.

7.2
Contributions and conclusions of the thesis

A mechanical-mathematical model was developed in this work to describe

the nonlinear dynamics of horizontal drillstrings. The construction of this

model passed through the steps of: (i) definition of the physical system of

interest; (ii) parameterization of the nonlinear dynamics; and (iii) description

of the physical phenomena of interest. In this context, the structure dynamic

is described by a beam theory, with effects of rotatory inertia and shear

deformation, which is capable of reproducing large displacements that the
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beam undergoes. The model also considers the friction and shock effects due

to transversal impacts, as well as, the force and torque induced by the bit-rock

interaction. The model equations are deduced in a formal way, and a variational

formulation for the problem is presented, where each of the mathematical

operators involved is defined in infinite dimension.

It was also presented the construction of a computational model to

approximate the solution of the initial/boundary value problem associated with

the mechanical-mathematical model that describes the nonlinear dynamical

behavior of a horizontal drillstring. This model uses the standard finite element

method to discretize the model equations, and the resulting initial value

problem is projected in the space spanned by the linear modes associated to

the conservative part of the underlying linear dynamical system to reduce the

order of the model. The reduced dynamics is integrated using the Newmark

method, and the nonlinear system of algebraic equations, resulting from the

time discretization, is solved by a fixed point iteration. This computational

model was efficiently implemented in a MATLAB code.

Regarding the uncertainties treatment, this thesis presented the construc-

tion of a parametric probabilistic model for description of the uncertainties

associated with the parameters of the bit-rock interaction model. These pa-

rameters were assumed to be random variables, and their distributions were

specified using only the known information about them, through the princi-

ple of maximum entropy. The propagation of uncertainties of these parameters

through the nonlinear dynamics was calculated using the Monte Carlo method.

Numerical simulations showed that the mechanical system of interest has

a very rich nonlinear dynamics, which reproduces complex phenomena such as

bit-bounce, stick-slip, and transverse impacts. The study also indicated that

the large velocity fluctuations observed in the phenomena of bit-bounce and

stick-slip are correlated with the transverse impacts, i.e., with the number

of shocks per unit time which the system is subjected. Also, the mechanical

impacts cause the beam to assume complex spatial configurations, which are

formed by flexural modes associated to high natural frequencies.

A study aiming to maximize the drilling process efficiency, varying drill-

string velocities of translation and rotation was presented. The optimization

strategy used a trial approach to seek for a local maximum, which was located

within operating window and corresponds to an efficiency of approximately

16%.
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The probabilistic analysis of the nonlinear dynamics showed that, with

respect to the velocities, the nominal model and the mean value of the

stochastic model differ significantly. Furthermore, at the instants which the

system was subjected to mechanical impacts, it was possible to see a more

pronounced dispersion around the mean value. Regarding the probability

distributions of the velocities, it was noticed a unimodal behavior essentially.

Two optimizations problems, one deterministic and one robust, where

the objective was to maximize the drillstring rate of penetration into the soil

respecting its structural limits were formulated and solved. The solutions of

these problems provided two different strategies to optimize the ROP.

7.3
Suggestions for future works

In the simulations conducted in this study, the whirl phenomenon was not

detected, although it is very common in the dynamics of vertical drillstrings.

This issue has not been investigated in depth, but could have been evaluated

with the model developed in this thesis, as well as the possibility of the

horizontal drillstring presents mechanisms of helical/sinusoidal buckling.

Other natural suggestion for future work is to compare the predictive

capacity of the beam model presented in this work with simpler models, based

on the lumped parameters approach. For instance, Jansen (1993) [11] and

Divenyi et al. (2012) [57]. It is of interest to determine the limitations of

prediction for each model, the similarities and differences between the responses

of the models, etc.

Since this work only takes into account the uncertainties of the parame-

ters of the drill-rock interaction model, a future work on stochastic modeling

can use the nonparametric probabilistic approach (Soize, 2013) [22] to address

the model uncertainties.

An interesting application would be to develop a control system for the

drilling process, based on the model developed in this thesis, for regulating

drillstring driving parameters to take the ROP always close to the optimal

value. This control system can also be used to avoid oscillations such as stick-

slip and bit bounce, which may be harmful and lead to an early failure of the

structure.

Despite being optimized, the computational model developed in this work

is expensive in terms of time complexity. This opens space for a series of future

work to reduce the cost of the model, either through the use of more efficient

numerical algorithms, or using advanced reduction techniques, or by the use

of high performance computing resources, such as GPU.
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Finally, it sounds stressing the mechanical-mathematical model used

in this work has not gone through any process of experimental validation

(Oberkampf and Roy, 2010) [142]. This is because experimental data for this

type of system is difficult to be obtained, and to construct an experimental

apparatus in real scale is virtually impossible. Another interesting proposal for

future work would be the construction of an experimental test rig, in reduced

scale, that emulates the main aspects of a real drillstring. The model used

in this study could be validated, following, for instance, the methodology

presented by Batou and Soize (2009) [143], with the aid of experimental

measurements taken from this reduced apparatus. The measurements obtained

in this test rig could also be used to calibrate the model parameters, by solving

an inverse problem of parameters identification (Allmaras et al., 2014) [144].

7.4
Publications

During his period in the doctorate, the author published, with the

advisors and other collaborators, 6 research articles and submitted another one

for publication in peer-reviewed journals, and presented 10 works at scientific

conferences.

The articles published or submitted for publication in scientific journals are:

[J1] A. Cunha Jr, C. Soize, and R. Sampaio. Computational modeling of the

nonlinear stochastic dynamics of horizontal drillstrings, (submitted for

publication).

[J2] A. Cunha Jr and R. Sampaio. On the nonlinear stochastic dynamics of a

continuous system with discrete attached elements. Applied Mathematical

Modelling, 39:809––819, 2015. doi:10.1016/j.apm.2014.07.012.

[J3] A. Cunha Jr, R. Nasser, R. Sampaio, H. Lopes, and K. Breitman. Un-

certainty quantification through Monte Carlo method in a cloud comput-

ing setting. Computer Physics Communications, 185:1355––1363, 2014.

doi:10.1016/j.cpc.2014.01.006.

[J4] A. Cunha Jr and R. Sampaio. Study of the nonlinear longitudinal

dynamics of a stochastic system. MATEC Web of Conferences, 16:05004,

2014. doi:10.1051/matecconf/20141605004.

http://dx.doi.org/10.1016/j.apm.2014.07.012
http://dx.doi.org/10.1016/j.cpc.2014.01.006
http://dx.doi.org/10.1051/matecconf/20141605004
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[J5] A. Cunha Jr, C. Soize, and R. Sampaio. Exploring the nonlinear dynamics

of horizontal drillstrings subjected to friction and shocks effects. Mecánica

Computacional, 33:1517–1527, 2014.

http://www.cimec.org.ar/ojs/index.php/mc/article/view/4750.

[J6] M. G. Sandoval, A. Cunha Jr, and R. Sampaio. Identification of param-

eters in the torsional dynamics of a drilling process through Bayesian

statistics. Mecánica Computacional, 32:763–773, 2013.

http://www.cimec.org.ar/ojs/index.php/mc/article/view/4388.

[J7] A. Cunha Jr and R. Sampaio. Effect of an attached end mass in the

dynamics of uncertainty nonlinear continuous random system. Mecánica

Computacional, 31:2676–2683, 2012.

http://www.cimec.org.ar/ojs/index.php/mc/article/view/4214.

The works presented at scientific conferences are:

[C1] A. Cunha Jr, C. Soize, and R. Sampaio. Mathematical modeling of

horizontal drillstrings subjected to friction and shocks effects. In XXXV

Congresso Nacional de Matemática Aplicada e Computacional, Natal,

Brazil, 2014.

[C2] A. Cunha Jr, C. Soize, and R. Sampaio. Numerical study of the nonlinear

dynamics of horizontal drillings. In 8th European Nonlinear Dynamics

Conference, Vienna, Austria, 2014.

[C3] A. Cunha Jr, C. Soize, and R. Sampaio. Analysis of the nonlinear

dynamics of a horizontal drillstring. In 9th International Conference

on Structural Dynamics, Porto, Portugal, 2014.

[C4] A. Cunha Jr and R. Sampaio. Effects of a random cubic spring on the

longitudinal dynamics of a bar excited by a gaussian white noise. In 2nd

International Symposium on Uncertainty Quantification and Stochastic

Modeling, Rouen, France, 2014.

[C5] A. Cunha Jr, C. Soize, and R. Sampaio. A deterministic approach

to analyze the nonlinear dynamics of a horizontal drillstring. In 12th

Conference on Dynamical Systems - Theory and Applications, 	Lódź,

Poland, 2013. (resume).

[C6] A. Cunha Jr, R. Nasser, R. Sampaio, H. Lopes, and K. Breitman. Un-

certainty quantification using cloud computing for Monte Carlo paral-

lelization. In 22th International Congress of Mechanical Engineering,

Ribeirão Preto, Brazil, 2013.

http://www.cimec.org.ar/ojs/index.php/mc/article/view/4750
http://www.cimec.org.ar/ojs/index.php/mc/article/view/4388
http://www.cimec.org.ar/ojs/index.php/mc/article/view/4214
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[C7] A. Cunha Jr and R. Sampaio. Analysis of the nonlinear stochastic

dynamics of an elastic bar with an attached end mass. In 3rd South-East

European Conference on Computational Mechanics, Kos Island, Greece,

2013.

[C8] A. Cunha Jr and R. Sampaio. Uncertainty propagation in the dynamics

of a nonlinear random bar. In XV International Symposium on Dynamic

Problems of Mechanics, Armação dos Búzios, Brazil, 2013.

[C9] A. Cunha Jr and R. Sampaio. Exploring Monte Carlo method to access

the dynamical behavior of a continuous random system. In Congresso de

Matemática Aplicada e Computacional - Nordeste 2012, Natal, Brazil,

2012. (resume).

[C10] A. Cunha Jr and R. Sampaio. On the dynamics of a nonlinear contin-

uous random system. In 1st International Symposium on Uncertainty

Quantification and Stochastic Modeling, Maresias, Brazil, 2012.

All the publications above are related to the area of stochastic modeling

and uncertainty quantification, in the context of nonlinear dynamics of me-

chanical systems. The journal articles whose the content is directly related to

the research developed in this thesis can be seen in the Appendix C.
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A
Derivation of Nonlinear Equations of Motion

In this appendix it is presented the derivation of the Eq.(3.52), which

is a weak equation of motion of the horizontal drillstring nonlinear dynamics.

All the development is based on the modification of the extended Hamilton’s

principle presented in Eq.(3.51), which is equivalent to

∫ tf

t=t0

δT dt−
∫ tf

t=t0

δV dt+

∫ tf

t=t0

δW dt−
∫ tf

t=t0

∫ L

x=0

δU · ∂D
∂U̇

dx dt = 0. (A.1)

The formalism that follows presents the calculation of each one of the

terms in the Eq.(A.1), the correct handling of its terms, and the unfolding of

the definitions presented earlier, to finally arrive at the result expressed in the

Eq.(3.52).

A.1
Variation of the kinetic energy

Remembering that the kinetic energy of the mechanical system of interest

in this work is given by

T =
1

2

∫ L

x=0

ρA
(
u̇2 + v̇2 + ẇ2

)
dx + (A.2)

1

2

∫ L

x=0

2 ρ I4

(
θ̇x + θ̇zθy

)2

dx +

1

2

∫ L

x=0

ρ I4

((
θ̇y cos θx − θ̇z sin θx

)2

+
(
θ̇y sin θx + θ̇z cos θx

)2
)
dx,

one has, after the calculation of the first variation, that

∫ tf

t=t0

δT dt =

∫ tf

t=t0

∫ L

x=0

ρA (u̇ δu̇+ v̇ δv̇ + ẇ δẇ) dx dt + (A.3)

∫ tf

t=t0

∫ L

x=0

2 ρ I4

((
θ̇x θ̇z + θy θ̇

2
z

)
δθy +

(
θ̇x + θy θ̇z

)
δθ̇x

)
dx dt +

∫ tf

t=t0

∫ L

x=0

ρ I4

(
θ̇y δθ̇y +

(
θ̇z + 2 θy θ̇x + 2 θ2y θ̇z

)
δθ̇z

)
dx dt,
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which, after the integration by parts in time, and taking into account that the

variation of the field variables between the instants t0 and tf are zero, can be

written as

∫ tf

t=t0

δT dt = −
∫ tf

t=t0

∫ L

x=0

ρA (ü δu+ v̈ δv + ẅ δw) dx dt (A.4)

−
∫ tf

t=t0

∫ L

x=0

ρ I4

(
2 θ̈x δθx + θ̈y δθy + θ̈z δθz

)
dx dt

−
∫ tf

t=t0

∫ L

x=0

2 ρ I4

(
θy θ̈z + θ̇y θ̇z

)
δθx dx dt

+

∫ tf

t=t0

∫ L

x=0

2 ρ I4

(
θy θ̇

2
z + θ̇x θ̇z

)
δθy dx dt

−
∫ tf

t=t0

∫ L

x=0

2 ρ I4

(
θy θ̈x + θ2y θ̈z + θ̇x θ̇y + 2 θy θ̇y θ̇z

)
δθz dx dt,

Now, for sake of esthetic, a change in the notation of the variation of a

field variable is made

ψu = δu, ψv = δv, ψw = δw, ψθx = δθx, ψθy = δθy, ψθz = δθz, (A.5)

so that the Eq.(A.4) now read as

∫ tf

t=t0

δT dt = −
∫ tf

t=t0

∫ L

x=0

ρA (ψu ü+ ψv v̈ + ψw ẅ) dx dt (A.6)

−
∫ tf

t=t0

∫ L

x=0

ρ I4

(
2ψθx θ̈x + ψθy θ̈y + ψθz θ̈z

)
dx dt

−
∫ tf

t=t0

∫ L

x=0

2 ρ I4 ψθx

(
θy θ̈z + θ̇y θ̇z

)
dx dt

+

∫ tf

t=t0

∫ L

x=0

2 ρ I4 ψθy

(
θy θ̇

2
z + θ̇x θ̇z

)
dx dt

−
∫ tf

t=t0

∫ L

x=0

2 ρ I4 ψθz

(
θy θ̈x + θ2y θ̈z + θ̇x θ̇y + 2 θy θ̇y θ̇z

)
dx dt.

According to the Eqs.(3.53), and (3.60), the operators that come from

the kinetic energy are

M
(
ψ, Ü

)
=

∫ L

x=0

ρA (ψu ü+ ψv v̈ + ψw ẅ) dx + (A.7)∫ L

x=0

ρ I4

(
2ψθx θ̈x + ψθy θ̈y + ψθz θ̈z

)
dx,
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and

FKE

(
ψ,U , U̇ , Ü

)
= −

∫ L

x=0

2 ρ I4 ψθx

(
θy θ̈z + θ̇y θ̇z

)
dx (A.8)

+

∫ L

x=0

2 ρ I4 ψθy

(
θy θ̇

2
z + θ̇x θ̇z

)
dx

−
∫ L

x=0

2 ρ I4 ψθz

(
θy θ̈x + θ2y θ̈z + θ̇x θ̇y + 2 θy θ̇y θ̇z

)
dx,

so that it is possible to rewrite the Eq.(A.6) as

∫ tf

t=t0

δT dt =

∫ tf

t=t0

(
−M

(
ψ, Ü

)
+ FKE

(
U , U̇ , Ü

))
dt. (A.9)

A.2
Variation of the strain energy

In the case of the strain energy, after the deformations given by

εxx = u′ − y θ′z + z θ′y + u′
(
z θ′y − y θ′z

)
− y z θ′y θ

′
z + (A.10)

θ′x
((

y w′ − z v′
)
cos θx −

(
y v′ + z w′) sin θx) +

1

2

(
u′ 2 + v′ 2 + w′ 2 + y2 θ′ 2z + z2 θ′ 2y +

(
y2 + z2

)
θ′ 2x

)
,

εxy =
1

2

(
v′ cos θx + w′ sin θx − z θ′x

)
+ (A.11)

1

2
θz

(
y θ′z − zθ′y − u′ − 1

)
,

and

εxz =
1

2

(
w′ cos θx − v′ sin θx + y θ′x

)
+ (A.12)

1

2
θy

(
−y θ′z + zθ′y + u′ + 1

)
,

are substituted into

V =
1

2

∫∫∫
B0

(
E ε2xx + 4κs Gε2xy + 4κs Gε2xz

)
dx dy dz, (A.13)

the right side of the last equation becomes a large and complex expression.
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The manipulation of the above expression manually is an arduous task,

almost certainly subjected to errors of calculation. Therefore, the calculation of

the strain energy variation was performed with the aid of the computer algebra

system Maple [161]. The spreadsheet used to make symbolic calculations can

be seen in Listing A.1.

Listing A.1: Maple spreadsheet used to compute the strain energy variation.

1 restart:

2

3 # beam strains

4 Exx := (1/2)*(u7^2+u8^2+u9^2) + (1/2)*(y^2*u12^2+z^2*u11^2)+

5 (1/2)*(y^2+z^2)*u10^2-(1+u7)*(y*u12-z*u11)-

6 u10*sin(u4)*(y*u8+z*u9)+u10*cos(u4)*(y*u9-z*u8)-y*z*u11*u12+u7:

7

8 Exy := -(1/2)*u6*(u7-y*u12+z*u11+1)-(1/2)*z*u10+

9 (1/2)*(u8*cos(u4)+u9*sin(u4)):

10

11 Exz := (1/2)*u5*(u7-y*u12+z*u11+1)+(1/2)*y*u10+

12 (1/2)*(-u8*sin(u4)+u9*cos(u4)):

13

14 # partial derivatives of Exx

15 dExxdu1 := diff(Exx, u1):

16 dExxdu2 := diff(Exx, u2):

17 dExxdu3 := diff(Exx, u3):

18 dExxdu4 := diff(Exx, u4):

19 dExxdu5 := diff(Exx, u5):

20 dExxdu6 := diff(Exx, u6):

21 dExxdu7 := diff(Exx, u7):

22 dExxdu8 := diff(Exx, u8):

23 dExxdu9 := diff(Exx, u9):

24 dExxdu10 := diff(Exx, u10):

25 dExxdu11 := diff(Exx, u11):

26 dExxdu12 := diff(Exx, u12):

27

28 # partial derivatives of Exy

29 dExydu1 := diff(Exy, u1):

30 dExydu2 := diff(Exy, u2):

31 dExydu3 := diff(Exy, u3):

32 dExydu4 := diff(Exy, u4):

33 dExydu5 := diff(Exy, u5):

34 dExydu6 := diff(Exy, u6):

35 dExydu7 := diff(Exy, u7):

36 dExydu8 := diff(Exy, u8):

37 dExydu9 := diff(Exy, u9):

38 dExydu10 := diff(Exy, u10):
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39 dExydu11 := diff(Exy, u11):

40 dExydu12 := diff(Exy, u12):

41

42 # partial derivatives of Exz

43 dExzdu1 := diff(Exz, u1):

44 dExzdu2 := diff(Exz, u2):

45 dExzdu3 := diff(Exz, u3):

46 dExzdu4 := diff(Exz, u4):

47 dExzdu5 := diff(Exz, u5):

48 dExzdu6 := diff(Exz, u6):

49 dExzdu7 := diff(Exz, u7):

50 dExzdu8 := diff(Exz, u8):

51 dExzdu9 := diff(Exz, u9):

52 dExzdu10 := diff(Exz, u10):

53 dExzdu11 := diff(Exz, u11):

54 dExzdu12 := diff(Exz, u12):

55

56 # variations Exx

57 dExx := dExxdu1*du1+dExxdu2*du2+dExxdu3*du3+

58 dExxdu4*du4+dExxdu5*du5+dExxdu6*du6+

59 dExxdu7*du7+dExxdu8*du8+dExxdu9*du9+

60 dExxdu10*du10+dExxdu11*du11+dExxdu12*du12:

61

62 # variations Exy

63 dExy := dExydu1*du1+dExydu2*du2+dExydu3*du3+

64 dExydu4*du4+dExydu5*du5+dExydu6*du6+

65 dExydu7*du7+dExydu8*du8+dExydu9*du9+

66 dExydu10*du10+dExydu11*du11+dExydu12*du12:

67

68 # variations Exz

69 dExz := dExzdu1*du1+dExzdu2*du2+dExzdu3*du3+

70 dExzdu4*du4+dExzdu5*du5+dExzdu6*du6+

71 dExzdu7*du7+dExzdu8*du8+dExzdu9*du9+

72 dExzdu10*du10+dExzdu11*du11+dExzdu12*du12:

73

74 # variation of the strain energy density

75 dEhat := (1/2)*(2*E*Exx*dExx+8*ks*G*Exy*dExy+8*ks*G*Exz*dExz):

76

77 # variation of the strain energy

78 dE:=Int(subs(y=r*cos(t),z=r*sin(t),dEhat*r),r=RIN..REX,t=0..2*Pi):

79 dE1:=value(dE):

80

81 # group terms which has common factors

82 dE2:=collect(dE1,[du1,du2,du3,du4,du5,du6,

83 du7,du8,du9,du10,du11,du12]):

84

85
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86 # replace by zero the variations different than du12

87 # (in order to compute the other terms,

88 # do the same with the other variations)

89 dE3:=subs(du1=0,du2=0,du3=0,du4=0,du5=0,du6=0,

90 du7=0,du8=0,du9=0,du10=0,du11=0,dE2):

91 simplify(dE3);

After the symbolic calculations, introducing the notation

ψ′
u = δu′, ψ′

v = δv′, ψ′
w = δw′, ψ′

θx = δθ′x, ψ′
θy = δθ′y, ψ′

θz = δθ′z, (A.14)

together with the notation given by (A.5), it is possible to show that the

variation of the energy functional can be written as

∫ tf

t=t0

δVdt =
∫ tf

t=t0

(
K (ψ,U )−FSE

(
U , U̇ , Ü

))
dt, (A.15)

where, obviously, the following definitions are recalled

K (ψ,U ) =

∫ L

x=0

E Aψ′
u u

′ dx + (A.16)∫ L

x=0

E I4

(
ψ′
θy θ

′
y + ψ′

θz θ
′
z

)
dx +∫ L

x=0

2κs GI4 ψ
′
θx θ

′
x dx +∫ L

x=0

κs GA
((

ψθy + ψ′
w

) (
θy + w′)+ (

ψθz − ψ′
v

) (
θz − v′

))
dx,

and

FSE (ψ,U ) = −
∫ L

x=0

(
ψθx Γ1 + ψθy Γ2 + ψθz Γ3

)
dx (A.17)

−
∫ L

x=0

(
ψ′
u Γ4 + ψ′

v Γ5 + ψ′
w Γ6 + ψ′

θxΓ7 + ψ′
θy Γ8 + ψ′

θz Γ9

)
dx,

whereas the Γn (n = 1, · · · , 9) are defined as:

Γ1 = E I4
(
1 + u′)(sin θx (v′ θ′y + w′ θ′z

)
+ cos θx

(
v′ θ′z − w′ θ′y

))
θ′x + (A.18)

ks GA
(
1 + u′) (sin θx (θz v′ − θy w

′)− cos θx
(
θy v

′ + θz w
′)) ,
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Γ2 = ksGI4

(
θy

(
θ′ 2y + θ′ 2z

)
− θ′x θ′z

)
+ (A.19)

ksGA
(
−w′ + u′ θy

(
2 + u′

)
−
(
1 + u′

) (
v′ sin θx − w′ cos θx

))
,

Γ3 = ksGI4

(
θz

(
θ′ 2y + θ′ 2z

)
+ θ′x θ

′
y

)
+ (A.20)

ksGA
(
v′ + u′ θz

(
2 + u′

)
−
(
1 + u′

) (
w′ sin θx + v′ cos θx

))
,

Γ4 = E A

(
1

2

(
1 + u′

) (
v′ 2 + w′ 2

)
+

1

2
u′ 2
(
3 + u′

))
+ (A.21)

E I4

(
sin θx

(
v′ θ′z − w′ θ′y

)
− cos θx

(
v′ θ′y + w′ θ′z

))
θ′x +

E I4
(
1 + u′

)(
θ′ 2x +

3

2

(
θ′ 2y + θ′ 2z

))
+

ksGA
(

cos θx
(
θy w

′ − θz v′
)
− sin θx

(
θy v

′ + θz w
′)) +

ksGA
(
1 + u′

) (
θ2y + θ2z

)
,

Γ5 = E A

(
u′ +

1

2

(
u′ 2 + v′ 2 + w′ 2

))
v′ + (A.22)

E I4

(
2 θ′ 2x +

1

2

(
θ′ 2y + θ′ 2z

))
v′ +

E I4
(
1 + u′

) (
θ′z sin θx − θ′y cos θx

)
θ′x +

ksGA
(
1 + u′

) (
θz − θy sin θx − θz cos θx

)
,

Γ6 = E A

(
u′ +

1

2

(
u′ 2 + v′ 2 + w′ 2

))
w′ + (A.23)

E I4

(
2 θ′ 2x +

1

2

(
θ′ 2y + θ′ 2z

))
w′ +

E I4
(
1 + u′

) (
−θ′y sin θx − θ′z cos θx

)
θ′x +

ksGA
(
1 + u′

) (
−θy + θy cos θx − θz sin θx

)
,
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Γ7 = E I4

(
u′ 2 + 2

(
u′ + v′ 2 + w′ 2

))
θ′x + (A.24)

E I4
(
1 + u′

)(
sin θx

(
v′ θ′z − w′ θ′y

)
− cos θx

(
v′ θ′y + w′ θ′z

))
+

E I6

(
4 θ′ 2x + 2

(
θ′ 2y + θ′ 2z

))
θ′x +

ksGA
(
θz θ

′
y − θy θ′z

)
,

Γ8 = E I4

(
3u′ +

1

2

(
3u′ 2 + v′ 2 + w′ 2

))
θ′y + (A.25)

E I4
(
1 + u′

) (
−w′ sin θx − v′ cos θx

)
θ′x +

E I6

(
2 θ′ 2x +

3

2

(
θ′ 2y + θ′ 2z

))
θ′y +

ksGI4

(
θz θ

′
x + θ′y

(
θ2y + θ2z

))
,

and

Γ9 = E I4

(
3u′ +

1

2

(
3u′ 2 + v′ 2 + w′ 2

))
θ′z + (A.26)

E I4
(
1 + u′

) (
v′ sin θx − w′ cos θx

)
θ′x +

E I6

(
2θ′ 2x +

3

2

(
θ′ 2y + θ′ 2z

))
θ′z +

ksGI4

(
−θy θ′x + θ′z

(
θ2y + θ2z

))
.

A.3
Variation of the external forces work

The external forces work acting on the mechanical system is given by

W = −
∫ L

x=0

ρ g Aw dx + WFS + WBR. (A.27)

in way that, after the first variation, one has
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∫ tf

t=t0

δW dt = −
∫ tf

t=t0

∫ L

x=0

ρ g A δw dx dt (A.28)

+

∫ tf

t=t0

δWFS dt

+

∫ tf

t=t0

δWBR dt.

Replacing Eqs.(3.46) and (3.47) on the right hand side of the above

equation, and introducing the notation ψu = δu, ψv = δv, ψw = δw, and

ψθx = δθx, one obtains

∫ tf

t=t0

δW dt = −
∫ tf

t=t0

∫ L

x=0

ρ g Aψw dx dt (A.29)

+

∫ tf

t=t0

⎛
⎝Nnodes∑

m=1

(
F a

FS ψu + F n
FS (v ψv + wψw) /r + TFS ψθx

) ∣∣∣
x=xm

⎞
⎠ dt

+

∫ tf

t=t0

(
FBR ψu

∣∣∣
x=L

+ TBR ψθx

∣∣∣
x=L

)
dt.

In accordance with the Eqs.(3.57), (3.58) and (3.59), it follows that

FG (ψ) = −
∫ L

x=0

ρ g Aψw dx, (A.30)

FFS (ψ,U ) =

Nnodes∑
m=1

(
F a

FS ψu + F n
FS (v ψv + wψw) /r + TFS ψθx

) ∣∣∣
x=xm

,(A.31)

and

FBR

(
ψ, U̇

)
= FBR ψu

∣∣∣
x=L

+ TBR ψθx

∣∣∣
x=L

, (A.32)

so that one may write the variation of the work as

∫ tf

t=t0

δW dt =

∫ tf

t=t0

(
FG (ψ) + FFS (ψ,U ) + FBR

(
ψ, U̇

))
dt. (A.33)
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A.4
Variation of the energy dissipation function

For the dissipation function, which is given by

D =
1

2
c ρA

(
u̇2 + v̇2 + ẇ2

)
+ (A.34)

1

2
c ρ I4

(
2 θ̇2x + θ̇2y + θ̇2z

)
,

after calculating the inner product between the gradient of D and the variation

vector δU , the fourth integral of Eq.(A.1) read as

∫ tf

t=t0

∫ L

x=0

δU · ∂D
∂U̇

dx dt =

∫ tf

t=t0

∫ L

x=0

c ρA (u̇ δu+ v̇ δv + ẇ δw) dx dt + (A.35)

∫ tf

t=t0

∫ L

x=0

c ρ I4

(
2 θ̇x δθx + θ̇y δθy + θ̇z δθz

)
dx dt,

which, after the introduction of the notation defined by (A.5), is rewritten as

∫ tf

t=t0

∫ L

x=0

δU · ∂D
∂U̇

dx dt =

∫ tf

t=t0

∫ L

x=0

c ρA (ψu u̇+ ψv v̇ + ψw ẇ) dx dt + (A.36)

∫ tf

t=t0

∫ L

x=0

c ρ I4

(
2ψθx θ̇x + ψθy θ̇y + ψθz θ̇z

)
dx dt.

The operator associated with energy dissipation of the system is, accord-

ing to the Eq.(3.54), given by

C
(
ψ, U̇

)
=

∫ L

x=0

c ρA (ψu u̇+ ψv v̇ + ψw ẇ) dx + (A.37)∫ L

x=0

c ρ I4

(
2ψθx θ̇x + ψθy θ̇y + ψθz θ̇z

)
dx,

so that Eq.(A.36) is equivalent to∫ tf

t=t0

∫ L

x=0

δU · ∂D
∂U̇

dx dt =

∫ tf

t=t0

C
(
ψ, U̇

)
dt. (A.38)

A.5
Weak equations of motion

Substituting the variations of the functionals given by the Eqs.(A.9),

(A.15), (A.33), and (A.38), into the modified extended Hamilton’s principle,

represented by the Eq.(A.1), one obtains that
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∫ tf

t=t0

(
−M

(
ψ, Ü

)
+ FKE

(
U , U̇ , Ü

)
+ (A.39)

−K (ψ,U ) + FSE

(
U , U̇ , Ü

)
+

FG (ψ) + FFS (ψ,U ) + FBR

(
ψ, U̇

)
+

−C
(
ψ, U̇

))
dt = 0,

Recalling the definition of the force operator

F
(
ψ,U , U̇ , Ü

)
= FG (ψ) + FFS (ψ,U ) + FBR

(
ψ, U̇

)
+ (A.40)

FKE

(
ψ,U , U̇ , Ü

)
+ FSE (ψ,U ) ,

and, taking into account that the term inside the integral must be zero, one

can finally write the Eq.(A.39) as

M
(
ψ, Ü

)
+ C

(
ψ, U̇

)
+K (ψ,U ) = F

(
ψ,U , U̇ , Ü

)
, (A.41)

the weak form of the equation of motion that describes the nonlinear dynamics

of the horizontal drillstring.



B
Interpolation Functions for the Finite Element Method

This appendix presents the type of (beam) finite element used in the

discretization of the nonlinear dynamical system equations, the shape functions

associated to the element, and the interpolation functions used to approximate

the value of the field variables throughout the domain of the element. For

details, the reader is referred to Bazoune et al. (2003) [105] and Luo (2008)

[106].

B.1
Timoshenko beam element

In this work, the finite element considered is the Timoshenko beam

element, which has two nodes, and each node has six degrees of freedom

associated (three displacements and three rotations). The degrees of freedom

of the first node are called u1, v1, w1, θx1 , θy1 , and θz1 . For the second node

the same nomenclature applies, exchanging is only 1 for 2. An illustration of

this element is presented in the Figure B.1.

ξ

u1

v1
w1

θx1

θy1

θz1

u2

v2
w2

θx2

θy2

θz2

Figure B.1: Illustration of a Timoshenko beam element with two nodes and six
degrees of freedom per node.

The parametrization of this element is done by the local coordinate

ξ = x/L, in a way that the first node corresponds to ξ = 0, while the second

node is associated to ξ = 1.
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B.2
Shape functions

Different shape functions are used to represent the field variables associ-

ated to the degrees of freedom of the Timoshenko beam element. For instance,

the axial displacement and the torsional rotation use the following affine func-

tions

N1(ξ) = 1− ξ, (B.1)

N2(ξ) = ξ,

while the lateral displacements use the Hermite cubic polynomials defined by

H(1)
1 (ξ) =

1

1 + ϕ

(
1− 3 ξ2 + 2 ξ3 + ϕ (1− ξ)

)
, (B.2)

H(1)
2 (ξ) =

L

1 + ϕ

(
ξ − 2 ξ2 + ξ3 +

ϕ

2

(
ξ − ξ2

))
,

H(1)
3 (ξ) =

1

1 + ϕ

(
3 ξ2 − 2 ξ3 + ϕ ξ

)
,

H(1)
4 (ξ) =

L

1 + ϕ

(
−ξ2 + ξ3 +

ϕ

2

(
−ξ + ξ2

))
,

and the lateral rotations are also represented in terms of the Hermite quadratic

polynomials, defined by

H(2)
1 (ξ) =

6

L(1 + ϕ)

(
−ξ + ξ2

)
, (B.3)

H(2)
2 (ξ) =

1

1 + ϕ

(
1− 4 ξ + 3 ξ2 + ϕ (1− ξ)

)
,

H(2)
3 (ξ) =

−6

L(1 + ϕ)

(
−ξ + ξ2

)
,

H(2)
4 (ξ) =

1

1 + ϕ

(
−2 ξ + 3 ξ2 + ϕ ξ

)
,

being the shear deformation parameter, which is the ratio between bending

and shear stiffness, defined as

ϕ =
12E I4

κs GAL2
. (B.4)

In the context of dynamic analysis of structures using finite elements,

Reddy (1997) [104] suggests one to use ϕ = 0. This suggestion is heeded in all

the analyzes reported in this thesis.
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B.3
Interpolation functions

Once one has defined the shape functions, the interpolation functions of

the field variables are obtained as linear combinations of then. The coefficients

of these linear combinations are the degrees of freedom located at the nodes

of the finite element (Hughes, 2000) [102].

Using the shape functions Nm(ξ), the fields of axial displacement and

torsional rotation are, respectively, interpolated by the functions

uh(ξ, t) = u1(t)N1(ξ) + u2(t)N2(ξ), (B.5)

and

θhx(ξ, t) = θx1(t)N1(ξ) + θx2(t)N2(ξ). (B.6)

Similarly, but now considering the family of shape functions H(1)
m , one has

that the interpolation functions for the lateral displacement fields are given by

vh(ξ, t) = v1(t)H(1)
1 (ξ) + θz1(t)H(1)

2 (ξ) + v2(t)H(1)
3 (ξ) + θz2(t)H(1)

4 (ξ), (B.7)

and

wh(ξ, t) = w1(t)H(1)
1 (ξ)− θy1(t)H(1)

2 (ξ)+w2(t)H(1)
3 (ξ)− θy2(t)H(1)

4 (ξ). (B.8)

Considering now the family of shape functions H(2)
m , one has that the

interpolation functions for the lateral rotation fields are

θhy (ξ, t) = −w1(t)H(2)
1 (ξ)+θy1(t)H(2)

2 (ξ)−w2(t)H(2)
3 (ξ)+θy1(t)H(2)

4 (ξ), (B.9)

and

θhz (ξ, t) = v1(t)H(2)
1 (ξ) + θz1(t)H(2)

2 (ξ) + v2(t)H(2)
3 (ξ) + θz1(t)H(2)

4 (ξ). (B.10)
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Abstract This work intends to analyze the nonlinear
stochastic dynamics of drillstrings in horizontal config-

uration. For this purpose, it considers a beam theory,
with effects of rotatory inertia and shear deformation,
which is capable of reproducing the large displacements

that the beam undergoes. The friction and shock effects,
due to beam/borehole wall transversal impacts, as well
as the force and torque induced by the bit-rock interac-
tion, are also considered in the model. Uncertainties of

the bit-rock interaction model are taken into account
using a parametric probabilistic approach. Numerical
simulations have shown that the mechanical system of

interest has a very rich nonlinear stochastic dynamics,
which generate phenomena such as bit-bounce, stick-
slip, and transverse impacts. A study aiming to max-

imize the drilling process efficiency, varying drillstring
velocities of translation and rotation is presented. Also,
the work presents the definition and the solution of two
optimizations problems, one deterministic and one ro-

bust, where the objective is to maximize the drillstring
rate of penetration into the soil respecting its structural
limits.
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1 Introduction

High energy demands of the 21st century make that
fossil fuels, like oil and shale gas, still have a great

importance in the energy matrix of several countries.
Prospection of these fossil fuels demands the creation
of exploratory wells. Traditionally, an exploratory well
configuration is vertical, but directional or even hori-

zontal configurations, where the boreholes are drilled
following a non-vertical way, are also possible [61]. An
illustration of the different types of configurations which

an exploratory well can take is presented in Figure 1.

reservoir

vertical well

directional well

Fig. 1 Schematic representation of two exploratory wells.
The left well configuration is vertical while the right one is
directional.

The equipment used to drill the soil until the reser-
voir level is called drillstring. This device is a long col-

umn, composed of a sequence of connected drill-pipes
and auxiliary equipment. It presents stabilizers through-
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out its length, whose function is to maintain structural
integrity of the borehole before cementation process.
Furthermore, within the column flows drilling mud, which
is used to cool the drilling system and to remove the

drilling cuttings from the borehole. The bottom part
of this column is called bottom hole assembly (BHA)
and consists of a pipe of greater thickness, named drill-

colar, and a tool used to stick the rock, the drill-bit
[20]. A schematic representation of a typical vertical
drillstring and its components is presented in Figure 2,

but a column in horizontal configuration essentially has
the same structure.

drill pipe

drill colar

drill bit

stabilizer

BHA

Fig. 2 Schematic representation of a typical drillstring.

Since the axial dimension of a drillstring is orders
of magnitude larger than the characteristic dimension

of its cross section area, the column is a long flexible
structure with a very complex flexural dynamic. Fur-
thermore, during drilling process, the drillstring is also

subjected to other two mechanisms of vibration (longi-
tudinal and torsional), which interact nonlinearly with
the flexural mechanism, resulting in a further compli-
cated dynamics [59]. The coupling between these three

mechanisms of vibration, which imposes severe com-
plications on the drillstring dynamics modeling, comes
from the action of several agents, such as: structure self

weight (for a vertical column); tensile and compressive
loads due to the weight on bit (WOB) and soil reac-
tion force; dry friction and impacts with borehole wall;

bit-rock interaction forces; internal flow pressure; forces
induced by internal flow instabilities; etc [59].

The dynamics of a drillstring is not a new subject
in the technical/scientific literature. Works on this sub-

ject, covering experimental analysis, numerical and/or
analytical modeling, can be seen since the 1960s. Most
of the numerical works developed between 1960s and

1990s, have used lumped parameters approach to gain
insight about drillstrings dynamical behavior. On the

other hand, the analytical works focused on simple dis-

tributed parameters models. Little has been done us-
ing finite element-based approaches until the beginning
of 1990s. A comprehensive literature survey of the re-

search work produced until 2000 can be found in [10]
and [59].

In recent studies, the lumped parameters approach

have been used, for example, to seek configurations which
reduce the stick-slip occurrence during drillstring oper-
ation [51]; to identify suitable values for the drilling

system operational parameters [32]; to analyze the cou-
pling between axial and torsional vibrations and its sta-
bility [19, 17, 34, 15]. On the other hand, approaches

based on distributed parameters models have been used
to: investigate drillstring failure mechanisms [27]; bet-
ter understand the transversal impacts between the col-
umn and the borehole wall [60]; study the effects in-

duced by the nonlinear coupling between the longitudi-
nal and torsional dynamics the drillstring [46]; describe
the dynamic behavior of the column taking into account

the coupling between the three mechanisms of vibration
[40, 38]; investigate the chaotic regime which the mech-
anism of drillstring transverse vibrations is subjected

[9].

Despite the fact that directional drilling has been
used in practical engineering for a few decades, and

most of the exploratory wells drilled today be direc-
tional in configuration, all the works mentioned above
model vertical drillstrings only. To the best of the au-

thors’ knowledge, there are very few papers in the open
literature which models drillstring in directional con-
figurations [45, 24, 43]. All of these works use a dis-
tributed parameters approach, but while [45, 43] only

address the drillstring longitudinal dynamics, [24] uses
generalized Euler-Bernoulli beam theory to describe the
drillstring three-dimensional dynamics in a sloped di-

rectional well. In [45], the authors study a sloped con-
figuration for the borehole and uses a perturbation tech-
nique to discretize the model equations. Conversely, the

model equations are discretized by finite element in [43].

In addition to the difficulties inherent to the non-
linear dynamics, drillstrings are subjected to random-

ness on their geometrical dimensions, physical proper-
ties, external forcing, etc. The lack of knowledge on
these parameters, known as system-parameter uncer-

tainty, is a source of inaccuracies in drillstring modeling,
which may, in an extreme case, completely compromise
the model predictability [48, 49]. Furthermore, during
the modeling process, hypotheses about the drillstring

physical behavior are made. These considerations may
be or not be in agreement with reality and should in-
troduce additional inaccuracies in the model, known as

model uncertainty induced by modeling errors [55, 56].
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This source of uncertainty is essentially due to the use of
simplified computational model for describing the phe-
nomenon of interest and, usually, is the largest source of
inaccuracy in computational model responses [55, 56].

Therefore, for a better understanding of the drill-
string dynamics, these uncertainties must be modeled

and quantified. In terms of quantifying these uncer-
tainties for vertical drillstrings, the reader can see [58],
where external forces are modeled as random objects
and the method of statistical linearization is used along

with the Monte Carlo (MC) method to treat the stochas-
tic equations of the model. Other works in this line in-
clude: [40, 38], where system-parameter and model un-

certainties are considered using a nonparametric prob-
abilistic approach; and [42, 39], which use a standard
parametric probabilistic approach to take into account

the uncertainties of the system parameters. Regarding
the works that model the directional configurations,
only [43] considers the uncertainties, which, in this case,
are related to the friction effects due to drillstring/borehole

wall contact.

From what is observed above, considering only the
theoretical point of view, the study of the drillstring

nonlinear dynamics is already a rich subject. But in
addition, a good understanding of its dynamics has also
significance in applications. Only a few examples, it is

fundamental to predict the fatigue life of the column
structure [33] and the drill-bit wear [67]; to analyze the
structural integrity of an exploratory well [14]; and to

optimize the rate of penetration (ROP) of the drill-bit
into the soil [41], and the last is essential to reduce cost
of production of an exploratory well.

In this sense, this study aims to analyze the three-
dimensional nonlinear dynamics of a drillstring in hor-
izontal configuration, taking into account the system-

parameter uncertainties. Through this study it is ex-
pected to gain a better understanding of drillstring physics
and, thus, improve the drilling process efficiency, and
maximize the column ROP accordingly. All results pre-

sented here were developed in the thesis of [12].

The rest of this work is organized as follows. The

section 2 presents the mechanical system of interest in
this work, its parametrization and modeling from the
physical point of view. In section 3 the reader can see
the mathematical formulation of the initial/boundary

value problem that describes the behavior of the me-
chanical system of interest, as well as the conservative
dynamics associated. The computational modeling of

the problem, which involves the discretization of the
model equations, reduction of order of the discretized
dynamics, the algorithms for numerical integration and
solution of nonlinear system of algebraic equations, can

be seen in section 4. The probabilistic modeling of un-

certainties is presented in section 5. Results of numeri-

cal simulations are presented and discussed in section 6.
Finally, in the section 7, the main conclusions are em-
phasized, and some paths to future works are pointed

out.

2 Physical model for the problem

2.1 Definition of the mechanical system

The mechanical system of interest in this work, which is

schematically represented in Figure 3, consists of a hor-
izontal rigid pipe, perpendicular to gravity, which con-
tains in its interior a deformable tube under rotation.

This deformable tube is subjected to three dimensional
displacements, which induces longitudinal, lateral, and
torsional vibrations of the structure. These mechanisms

of vibration are able to generate slips and shocks in ran-
dom areas of the rigid tube. Also, the contact between
the drill-bit, at the right extreme of the tube, with the
soil generates nonlinear forces and torques on the drill-

string right extreme, which may completely block the
advance of the structure over the well.

Fig. 3 Schematic representation of the mechanical system
under analysis.

2.2 Nonlinear dynamical system parameterization

For purposes of modeling, the only part of the column

considered is the BHA. So, the variation of the diame-
ter along the column is being ignored. In this way, the
bottom part of the deformable tube described, in the
section 2.1, is modeled as a rotating beam in horizon-

tal configuration, whose the transverse displacement (y
and z) at both ends is blocked, as well as the transverse
rotations on the left extreme. It looks like the left end

of the system is a stabilizer and the right one a sup-
port. This beam is free to rotate around the x axis, and
to move longitudinally. The rigid pipe is treated as a

stationary cylindrical rigid wall in horizontal configura-
tion.

As the beam is confined within the borehole, it is
reasonable to assume that it undergoes small rotations
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in the transverse directions. On the other hand, large
displacements are observed in x, y, and z, as well as
large rotations around the x-axis. Therefore, the analy-
sis that follows uses a beam theory which assumes large

rotation in x, large displacements in the three spatial
directions, and small deformations [5].

Seeking not to make the mathematical model exces-

sively complex, this work will not model the fluid flow
inside the beam, nor the dissipation effects induced by
the flow on the system dynamics.

Due to the horizontal configuration, the beam is
subject to the action of the gravitational field, which
induces an acceleration g. The beam is made of an
isotropic material with mass density ρ, elastic modu-

lus E, and Poisson’s ratio ν. It has length L and annu-
lar cross section, with internal radius Rint and external
radius Rext.

An illustration of the beam geometric model is pre-
sented in Figure 4. It is important to note that this
model also ignores the mass of the drill-bit and its ge-
ometric shape.

x

L

y

z

Rext

Rint

Fig. 4 Schematic representation of the beam geometry used
to model the deformable tube under rotation, and the inertial
system of coordinates used.

Using the cartesian coordinate system (x, y, z), de-

fined by the orthonormal basis {ex, ey, ez}, fixed in the
inertial frame of reference R, and shown in the Fig-
ure 4, one can describe the undeformed configuration

of the beam geometry by

Bb =
{

(x, y, z) ∈ R3
∣∣ 0 ≤ x ≤ L, (y, z) ∈ Sb

}
, (1)

where the undeformed configuration of the beam cross
section is described by

Sb =
{

(y, z) ∈ R2
∣∣ R2

int ≤ y2 + z2 ≤ R2
ext

}
. (2)

Once the configuration of the undeformed cross sec-
tion has been characterized, one can define and compute
the cross-sectional area,

A =

∫∫

Sb
dy dz = π

(
R2
ext −R2

int

)
, (3)

the second moment of area around the y axis

Iyy =

∫∫

Sb
z2 dy dz = I4, (4)

the second moment of area around the z axis

Izz =

∫∫

Sb
y2 dy dz = I4, (5)

the polar moment of area

Ixx =

∫∫

Sb

(
y2 + z2

)
dy dz = 2 I4, (6)

the fourth moment of area around the z axis

Izzzz =

∫∫

Sb
y4 dy dz = 3 I6, (7)

and the fourth product of area

Iyyzz =

∫∫

Sb
y2z2 dy dz = I6, (8)

where

I4 =
π

4

(
R4
ext −R4

int

)
, (9)

and

I6 =
π

24

(
R6
ext −R6

int

)
. (10)

In this work other three coordinate systems (all of
then with the same origin as the (x, y, z) coordinate sys-

tem) are also used, each one fixed in a non-inertial frame
of reference Rn, where n = 1, 2, 3, and defined by an
orthonormal basis of vectors of the form {exn

, eyn , ezn}.
These systems of coordinates are related by a se-

quence of elementary rotations, such as follows

R θx−−−→ R1

θy−−−→ R2
θz−−−→ R3,

(x, y, z) (x1, y1, z1) (x2, y2, z2) (x3, y3, z3)
(11)

where θx is the rotation between the coordinate systems
(x, y, z) and (x1, y1, z1), θy is the rotation between the
coordinate systems (x1, y1, z1) and (x2, y2, z2), and θz is

the rotation between the coordinate systems (x2, y2, z2)
and (x3, y3, z3).

Thus, with respect to the non-inertial frame of refer-

ence, the instantaneous angular velocity of the rotating
beam is written as
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ω = θ̇xex + θ̇yey1 + θ̇zez2 , (12)

where θ̇x, θ̇y, and θ̇z denote the rate of rotation around
the x, y, and z directions, respectively. From now on,

the upper dot ˙ will be used as an abbreviation for time
derivative.

Referencing the vector ω to the inertial frame of

reference, and using the assumption of small rotations
in the transversal directions, one obtains

ω =




θ̇x + θ̇zθy
θ̇y cos θx − θ̇z sin θx
θ̇y sin θx + θ̇z cos θx


 . (13)

Regarding the kinematic hypothesis adopted for the
beam theory, it is assumed that the three-dimensional
displacement of a beam point, occupying the position

(x, y, z) at the instant of time t, can be written as

ux(x, y, z, t) = u− yθz + zθy, (14)

uy(x, y, z, t) = v + y (cos θx − 1)− z sin θx,

uz(x, y, z, t) = w + z (cos θx − 1) + y sin θx,

where ux, uy, and uz respectively denote the displace-
ment of a beam point in x, y, and z directions. More-

over, u, v, and w are the displacements of a beam neu-
tral fiber point in x, y, and z directions, respectively.
Remember that θx, θy, and θz were previously defined

above, and represent rotations around axes of the non-
inertial coordinate systems.

Finally, it is possible to define the vectors

r =



x
y

z


 , v =



u̇
v̇

ẇ


 , and θ̇ =



θ̇x
θ̇y
θ̇z


 , (15)

which, respectively, represent the position of a beam
point, the velocity of a neutral fiber point, and the rate

of rotation of a neutral fiber point.

2.3 Modeling of the friction and shock effects

When a drillstring deforms laterally, there may occur
a mechanical contact between the rotating beam and
the borehole wall, such as illustrated in the Figure 5.
This mechanical contact, which generally take place via

a strong impact, gives rise to friction and shock [21, 62,
31].

The modeling of the phenomena of friction and shock

is made in terms of a geometric parameter dubbed in-
dentation, which is defined as

AAAA

Fig. 5 Schematic representation of the situation where there
is a mechanical contact between a drillstring and the borehole
wall.

δFS = r − gap, (16)

where r =
√
v2 + w2 is the lateral displacement of the

neutral fiber, and gap denotes the spacing between the

undeformed beam and the borehole wall. One has that
δFS > 0 in case of an impact, or δFS ≤ 0 otherwise,
as can be seen in Figure 6. Note that the indentation
corresponds to a measure of penetration in the wall of

a beam cross section [21].

gap

r
gap

r

δFS = r − gap ≤ 0 δFS = r − gap > 0

Fig. 6 Illustration of the indentation parameter in a situa-
tion without impact (left) or with impact (right).

When the impact occurs, a normal force of the form

FnFS = −kFS1
δFS − kFS2

δ3FS − cFS |δ|3δ̇FS, (17)

where kFS1 , kFS2 and cFS are constants of the shock
model, begins to act on the beam cross section. In this
nonlinear shock model, proposed by Hunt and Cross-

ley [26], the first (a linear spring) and the second (a
nonlinear spring) terms describe the elastic deforma-
tion during the impact, while the third term (a nonlin-

ear damper) takes into account the loss of energy during
the impact.

Once the column is rotating and moving axially, the
impact also induces a frictional force in the axial direc-

tion, F aFS, and a torsional friction torque, TFS. Both are
modeled by the Coulomb friction law [11], so that the
force is given by

F aFS = −µFS F
n
FS sgn (u̇) , (18)
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where the torque is described by

TFS = −µFS F
n
FSRbh sgn

(
θ̇x

)
, (19)

being µFS the friction coefficient, sgn (·) the sign func-
tion, and the radius of the borehole is Rbh = Rext+gap.

In order to find all the points of contact between the
beam and the borehole wall, it is necessary to discover
all the values of x where δFS > 0. This is usually done

by solving an an optimization problem with constraints
[64, 63].

Although the strategy of detection based on the op-
timization problem is robust in terms of accuracy, it
is extremely complex in terms of implementation and

computational cost. For this reason, this work uses an
approach that introduces the forces of Eqs.(17) and
(18), and the torque of Eq.(19), as efforts concentrated
on the nodes of the finite element mesh, defined in

the section 4.1. This procedure sacrifices accuracy, but
simplifies the implementation of the friction and shock
model.

2.4 Modeling of the bit-rock interaction effects

During the drilling process, in response to rotational
advance of the drillstring, a force and a torque of re-
action begin to act on the drill-bit , giving rise to the

so-called bit-rock interaction effects [16, 18].

In this work, the model proposed by [43] is consid-
ered to describe the bit-rock interaction force

FBR =




ΓBR

(
e−αBR u̇bit − 1

)
for u̇bit > 0, (20)

0 for u̇bit ≤ 0,

where ΓBR is the bit-rock limit force, αBR is the rate of
change of bit-rock force, and u̇bit = u̇(L, ·). The graph
of the function FBR is illustrated in Figure 7.

u̇bit

FBR

−ΓBR

Fig. 7 Illustration of the function used to describe the re-
action force on the drill-bit, due to the bit-rock interaction
effects.

Also, for the bit-rock interaction torque it is adopted
the regularized Coulomb model used by [28], which is
expressed as

TBR = −µBR FBRRbh ξBR (ωbit) , (21)

where µBR bit-rock friction coefficient, ωbit = θ̇x(L, ·),
and

ξBR (ωbit) = tanh (ωbit) +
2ωbit

1 + ω2
bit

, (22)

is a regularization function. The graph of the regular-

ization function ξBR is illustrated in Figure 8.

ωbit

ξBR

Fig. 8 Illustration of the smooth function used to regular-
ize the reaction torque on the drill-bit, due to the bit-rock
interaction effects.

2.5 Kinetic energy

The kinetic energy of the rotating beam is given by

T =
1

2

∫∫∫

Bb

ρv · v dx dy dz + (23)

1

2

∫∫∫

Bb

ρω · (r · r I− r ⊗ r)ω dx dy dz,

where the first triple integral corresponds to the beam

translational kinetic energy, and the second one is as-
sociated to the beam rotational kinetic energy. In this
equation, I denotes the identity tensor, the symbol ·
represents the standard inner product between two Eu-
clidean vectors, and the symbol ⊗ is used to designate
the tensor product.

Developing the vector operations indicated in the
Eq.(23), using (1) and (2) to define the limits of inte-
gration, using the definitions of A, Iyy, Izz, and Ixx,

and making the other calculations one can show that
the Eq.(23) is equivalent to
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T =
1

2

∫ L

x=0

ρA
(
u̇2 + v̇2 + ẇ2

)
dx + (24)

1

2

∫ L

x=0

2 ρ I4

(
θ̇x + θ̇zθy

)2
dx +

1

2

∫ L

x=0

ρ I4

(
θ̇y cos θx − θ̇z sin θx

)2
dx +

1

2

∫ L

x=0

ρ I4

(
θ̇y sin θx + θ̇z cos θx

)2
dx.

2.6 Strain energy

The analysis of the beam assumes that it is subjected
to large displacements, and small deformations. In this
way, its strain energy is given by

V =
1

2

∫∫∫

Bb

ε :σ dx dy dz, (25)

where ε denotes the Green-Lagrangian strain tensor,
σ is the second Piola-Kirchhoff stress tensor, and the

symbol : represents the double inner product between
two tensors.

It is further considered that the beam is made of
an isotropic material, such that stress and strain are

related by the following constitutive equation (Hooke’s
law)

σ = 2G ε+ λ tr (ε) I, (26)

where tr (·) represents the trace operator, G is material

shear modulus, and λ is used to designate the material
first Lamé parameter. In terms of the elastic modulus
E and the Poisson’s ratio ν, these elastic parameters
can be written as

G =
E

2 (1 + ν)
, and λ =

E ν

(1 + ν)(1− 2 ν)
. (27)

According to the beam theory used in this work,
there is no tension in any cross section of the beam that

is perpendicular to the x axis, i.e., σyy = 0, σzz = 0,
σyz = 0, and σzy = 0. When this hypothesis is com-
bined with the tri-dimensional Hooke’s law, represented
by the Eq.(26), one can conclude that σxx = E εxx,

σxy = 2Gεxy, and σxz = 2Gεxz, which is an one-
dimensional version of the Hooke’s law.

Combining this one-dimensional Hooke’s law with
the symmetry of the stress tensor, one can express the

double contraction between strain and stress tensors,
within the integral in Eq.(25), as a quadratic form

ε :σ = E ε2xx + 4Gε2xy + 4Gε2xz, (28)

which is modified, by the introduction of the shearing
factor κs, as

ε :σ = E ε2xx + 4κsGε
2
xy + 4κsGε

2
xz. (29)

This modification aims to take into account the effect

of shear deformation in the beam cross section area,
which is neglected when one uses the one-dimensional
Hooke’s law.

Hence, after replace Eq.(29) in Eq.(25), one finally
obtains

V =
1

2

∫∫∫

Bb

(
E ε2xx + 4κsGε

2
xy + 4κsGε

2
xz

)
dx dy dz.

(30)

As the analysis is using large displacements, one has

εxx =
1

2

(
∂ux
∂x

+
∂ux
∂x

)
+ (31)

1

2

(
∂ux
∂x

∂ux
∂x

+
∂uy
∂x

∂uy
∂x

+
∂uz
∂x

∂uz
∂x

)
,

εxy =
1

2

(
∂uy
∂x

+
∂ux
∂y

)
+ (32)

1

2

(
∂ux
∂x

∂ux
∂y

+
∂uy
∂x

∂uy
∂y

+
∂uz
∂x

∂uz
∂y

)
,

and

εxz =
1

2

(
∂uz
∂x

+
∂ux
∂z

)
+ (33)

1

2

(
∂ux
∂x

∂ux
∂z

+
∂uy
∂x

∂uy
∂z

+
∂uz
∂x

∂uz
∂z

)
,

where the quadratic terms on the right hand side of the
above equations are associated to the geometric nonlin-
earity of the beam model.

Substituting the kinematic hypothesis of the Eq.(14)
in Eqs.(31) to (33), and then calculating the partial
derivatives, one concludes that the deformations are re-

spectively given by

εxx = u′ − y θ′z + z θ′y + u′
(
z θ′y − y θ′z

)
− y z θ′y θ′z + (34)

θ′x
((
y w′ − z v′

)
cos θx −

(
y v′ + z w′

)
sin θx

)
+

1

2

(
u′ 2 + v′ 2 + w′ 2 + y2 θ′ 2z + z2 θ′ 2y +

(
y2 + z2

)
θ′ 2x

)
,
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εxy =
1

2

(
v′ cos θx + w′ sin θx − z θ′x

)
+ (35)

1

2
θz

(
y θ′z − zθ′y − u′ − 1

)
,

and

εxz =
1

2

(
w′ cos θx − v′ sin θx + y θ′x

)
+ (36)

1

2
θy

(
−y θ′z + zθ′y + u′ + 1

)
,

where ′ is used as an abbreviation for space derivative.

2.7 Energy dissipation function

It is assumed that the beam loses energy through a
mechanism of viscous dissipation, with a (dimension-
less) damping constant c. In this way, there is an energy

dissipation function (per unit of length) associated to
the system, which is given by

D =
1

2

∫∫

Sb
c ρv · v dy dz + (37)

1

2

∫∫

Sb
c ρ θ̇ · (r · r I− r ⊗ r) θ̇ dy dz,

where the first term is a dissipation potential due to the
translational movement, and the second term represents

a dissipation potential due to the movement of rotation.

Making a development almost similar to the one per-

formed to obtain Eq.(24), it can be shown that

D =
1

2
c ρA

(
u̇2 + v̇2 + ẇ2

)
+ (38)

1

2
c ρ I4

(
2 θ̇2x + θ̇2y + θ̇2z

)
.

2.8 External forces work

The work done by the external forces acting on the

beam is given by

W = −
∫ L

x=0

ρAg w dx+WFS +WBR. (39)

where the first term is due to the gravity, the second one
is associated to the effects of friction and shock, and the

last term accounts the work done by the force/torque
that comes from the bit-rock interaction.

Note that, due to the non-holonomic nature of the
forces and torques that comes from the effects of fric-
tion/shock, and bit-rock interaction, it is not possible

to write explicit formulas for WFS and WFS [30].
However, it is known that the virtual work of WFS,

denoted by δWFS, is written as

δWFS =

Nnodes∑

m=1

(
F aFS δu+ FnFS (v δv + w δw) /r + TFS δθx

) ∣∣∣
x=xm

(40)

where xm are the global coordinates of the finite ele-

ment nodes, Nnodes is the number of nodes in the finite
element mesh, and δu, δv, δw, and δθx respectively de-
note the variations of the fields u, v, w, and θx.

On the other hand, the virtual work ofWBR, denoted
by δWBR, reads as

δWBR = FBR δu
∣∣∣
x=L

+ TBR δθx

∣∣∣
x=L

. (41)

3 Mathematical model for the problem

3.1 Equation of motion of the nonlinear dynamics

A modified version of the extended Hamilton’s principle
[30] is employed to derive the equations which describe

the nonlinear dynamics of the mechanical system, so
that the first variation is expressed as

∫ tf

t=t0

(δT − δV + δW) dt −
∫ tf

t=t0

∫ L

x=0

δU · ∂D
∂U̇

dx dt = 0, (42)

where the first term corresponds to the conservative

part of the dynamics, the second one is associated to
the energy dissipation. Also, U is a vector field which
lumps the field variables, the initial and final instants of

observation are respectively denoted by t0 and tf , and
the symbol δ represents the variation operator [44].

The development of Eq.(42) results in the following
weak equation of motion

M
(
ψ, Ü

)
+ C

(
ψ, U̇

)
+K (ψ,U) = F

(
ψ,U , U̇ , Ü

)
, (43)

valid for any ψ chosen in a “suitable” space of weight
functions, where the field variables and their correspond-

ing weight functions are represented by the vector fields
U =

(
u, v, w, θx, θy, θz

)
, andψ =

(
ψu, ψv, ψw, ψθx , ψθy , ψθz

)
.

Furthermore,

M
(
ψ, Ü

)
=

∫ L

x=0

ρA (ψu ü+ ψv v̈ + ψw ẅ) dx + (44)

∫ L

x=0

ρ I4

(
2ψθx θ̈x + ψθy θ̈y + ψθz θ̈z

)
dx,
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represents the mass operator,

C
(
ψ, U̇

)
=

∫ L

x=0

c ρA (ψu u̇+ ψv v̇ + ψw ẇ) dx + (45)

∫ L

x=0

c ρ I4

(
2ψθx θ̇x + ψθy θ̇y + ψθz θ̇z

)
dx,

is the damping operator,

K (ψ,U) =

∫ L

x=0

E Aψ′u u
′ dx + (46)

∫ L

x=0

E I4

(
ψ′θy θ

′
y + ψ′θz θ

′
z

)
dx +

∫ L

x=0

2κsGI4 ψ
′
θx θ
′
x dx +

∫ L

x=0

κsGA
(
ψθy + ψ′w

) (
θy + w′

)
dx +

∫ L

x=0

κsGA
(
ψθz − ψ′v

) (
θz − v′

)
dx,

is the stiffness operator, and

F
(
ψ,U , U̇ , Ü

)
= FKE

(
ψ,U , U̇ , Ü

)
+ (47)

FSE (ψ,U) + FFS (ψ,U) +

FBR

(
ψ, U̇

)
+ FG (ψ) ,

is the force operator, which is divided into five parts. A
nonlinear force due to inertial effects

FKE = −
∫ L

x=0

2 ρ I4 ψθx

(
θy θ̈z + θ̇y θ̇z

)
dx (48)

+

∫ L

x=0

2 ρ I4 ψθy

(
θy θ̇

2
z + θ̇x θ̇z

)
dx

−
∫ L

x=0

2 ρ I4 ψθz

(
θy θ̈x + θ2y θ̈z

)
dx

−
∫ L

x=0

2 ρ I4 ψθz

(
θ̇x θ̇y + 2 θy θ̇y θ̇z

)
dx,

a nonlinear force due to geometric nonlinearity

FSE =

∫ L

x=0

(
ψθx Γ1 + ψθy Γ2 + ψθz Γ3

)
dx + (49)

∫ L

x=0

(
ψ′u Γ4 + ψ′v Γ5 + ψ′w Γ6

)
dx +

∫ L

x=0

(
ψ′θxΓ7 + ψ′θy Γ8 + ψ′θz Γ9

)
dx,

a nonlinear force due to the effects of friction and shock

FFS =

Nnodes∑

m=1

(
F aFS ψu + FnFS (v ψv + wψw) /r + TFS ψθx

) ∣∣∣
x=xm

(50)

a nonlinear force due to the bit-rock interaction

FBR = FBR ψu

∣∣∣
x=L

+ TBR ψθx

∣∣∣
x=L

, (51)

and a linear force due to the gravity

FG = −
∫ L

x=0

ρAg ψw dx. (52)

The nonlinear functions Γn, with n = 1, · · · , 9, in
Eq.(49) are very complex and, for sake of space limita-
tion, are not presented in this section. But they can be

seen in the Appendix A.
The model presented above is an adaptation, for the

case of horizontal drillstrings, with some variations in

the friction and shock treatment, of the model proposed
by [40, 38] to describe the nonlinear dynamics of vertical
drillstrings.

3.2 Initial conditions

With regard to the initial state of the mechanical sys-
tem, it is assumed that the beam presents neither dis-

placement nor rotations, i.e., u(x, 0) = 0, v(x, 0) = 0,
w(x, 0) = 0, θx(x, 0) = 0, θy(x, 0) = 0, and θz(x, 0) = 0.
These field variables, except for u and θx, also have ini-

tial velocities and rate of rotations equal to zero, i.e.
v̇(x, 0) = 0, ẇ(x, 0) = 0, θ̇y(x, 0) = 0, and θ̇z(x, 0) = 0.

It is also assumed that, initially, the beam moves
horizontally with a constant axial velocity V0, and ro-

tates around the x axis with a constant angular velocity
Ω. Thereby, one has that u̇(x, 0) = V0, and θ̇x(x, 0) = Ω.

Projecting the initial conditions above in the space

of weight functions one obtains the weak forms of the
initial conditions, respectively, given by

M
(
ψ,U(0)

)
=M (ψ,U0) , (53)

and

M
(
ψ, U̇(0)

)
=M

(
ψ, U̇0

)
, (54)

where U0 = (0, 0, 0, 0, 0, 0) and U̇0 = (V0, 0, 0, Ω, 0, 0).
In formal terms, the weak formulation of the ini-

tial/boundary value problem that describes the nonlin-

ear dynamics of the mechanical system consists in find
a vector field U , “sufficiently regular”, which satisfies
the weak equation of motion given by Eq.(43) for all

“suitable” ψ, as well as the weak form of the initial
conditions, given by Eqs.(53), and (54) [25].
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3.3 Associated linear conservative dynamics

Consider the linear homogeneous equation given by

M
(
ψ, Ü

)
+K (ψ,U) = 0, (55)

obtained from Eq.(43) when one discards the damping,

and the force operators, and which is valid for all ψ in
the space of weight functions.

Suppose that Eq.(55) has a solution of the formU =
eiωtφ, where ω is a natural frequency (in rad/s), φ is the
associated normal mode, and i =

√
−1 is the imaginary

unit. Replacing this expression of U in the Eq.(55) and
using the linearity of the operatorsM, and K, one gets

(
−ω2M (ψ,φ) +K (ψ,φ)

)
eiωt = 0, (56)

which is equivalent to

−ω2M (ψ,φ) +K (ψ,φ) = 0, (57)

a generalized eigenvalue problem.

Since the operator M is positive-definite, and the
operatorK is positive semi-definite, the generalized eigen-

value problem above has a denumerable number of so-
lutions. The solutions of this eigenproblem are of the
form (ω2

n,φn), where ωn is the n-th natural frequency
and φn is the n-th normal mode [23].

Also, it should be noted that the symmetry of the

operatorsM, and K implies the following orthogonality
relations

M (φn,φm) = δnm, and K (φn,φm) = ω2
n δnm, (58)

where δnm represents the Kronecker delta symbol. See
[23] for more details.

The generalized eigenvalue problem of Eq.(57), as
well as the properties of (58), will be useful for the con-
struction of a reduced order model for the discretized

dynamical system which approximates the solution of
the weak boundary-initial value problem of Eqs.(43),
(53), and (54).

4 Computational model for the problem

4.1 Discretization of the nonlinear dynamics

To proceed with the discretization of the initial/boundary
value problem which describes the nonlinear dynamics

rotating beam, whose the weak formulation is given by
Eqs.(43), (53), and (54), it is used the standard finite

element method (FEM) [25], where the spaces of ba-

sis and weight functions are constructed by the same
(finite dimensional) class of functions.

In this procedure, the beam geometry is discretized

by a FEM mesh with Nelem finite elements. Each one of
these elements is composed by two nodes, and each one
of these nodes has six degrees of freedom associated, one

for each field variable in the beam model described in
the section 3.1. Thus, the number of degrees of freedom
associated with the FEM model isNdofs = 6(Nelem+1).
An illustration of the FEM mesh/element can be seen

in the Figure 9.

u1

v1
w1

θx1

θy1

θz1

u2

v2
w2

θx2

θy2

θz2

Fig. 9 Illustration of the FEM mesh/element used to dis-
cretize the beam geometry.

Concerning the shape functions, it is adopted an

interdependent interpolation scheme which avoids the
shear-locking effect [37]. This scheme uses, for the trans-
verse displacements/rotations, Hermite cubic polyno-
mials, and, for the fields of axial displacement/torsional

rotation, affine functions [2].
Thus, each field variable of the physical model is ap-

proximated by a linear combination of basis functions,

in such way that

u(x, t) ≈
Ndofs∑

m=1

Qm(t)Nm(x), (59)

θx(x, t) ≈
Ndofs∑

m=1

Qm(t)Nm(x),

v(x, t) ≈
Ndofs∑

m=1

Qm(t)H(1)
m (x),

w(x, t) ≈
Ndofs∑

m=1

Qm(t)H(1)
m (x),

θy(x, t) ≈
Ndofs∑

m=1

Qm(t)H(2)
m (x),

θz(x, t) ≈
Ndofs∑

m=1

Qm(t)H(2)
m (x),
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where Nm(x), H(1)
m (x), and H(2)

m (x) are the (position
dependent) shape functions, and the (time dependent)
coefficients of the linear combination, Qm(t), are the

unknowns of the discretized problem. In physical terms,
each one of these temporal coefficients represents a de-
gree of freedom of the FEM model.

The discretization results is the Ndofs×Ndofs non-
linear system of ordinary differential equations given by

[M] Q̈(t) + [C] Q̇(t) + [K]Q(t) = F
(
Q, Q̇, Q̈

)
, (60)

where Q(t) is the nodal displacement vector (transla-
tions and rotations), Q̇(t) is the nodal velocity vector,

and Q̈(t) is the nodal acceleration vector. The other
objects in the Eq.(60) are the mass matrix [M], the
damping matrix [C], the stiffness matrix [K], and the
force vector F .

A discretization procedure similar to one presented

above is applied to the initial conditions of Eqs.(53)
and (54), which results in linear systems of algebraic
equations given by

[M]Q(0) = Q0, and [M] Q̇(0) = Q̇0. (61)

4.2 Reduction of the finite element model

In order to reduce the dimension of the finite element
model developed in the section 4.1, it is considered a
finite dimensional version of the generalized eigenvalue

problem presented in section 3.3, which is defined by

[K]φn = ω2
n [M]φn. (62)

As a consequence of the properties of the operators

M, and K discussed in section 3.3, that are inherited
by the finite dimensional operators [M] and [K], the
above eigenvalue problem has Ndofs solutions. But the
Eq.(62) is solved only for n = 1, 2, · · · , Nred, where the

dimension of the reduced model Nred is an integer cho-
sen such that Nred � Ndofs.

The procedure that follows consists in project the
nonlinear dynamic, defined by the initial value problem
of Eqs.(60) and (61), into the vector space spanned by

{φ1,φ2, · · · ,φNred
}.

For this purpose, define the Ndofs×Nred projection
matrix by

[Φ] =



| | |
φ1 φ2 · · · φNred

| | |


 , (63)

make in the Eqs.(60) and (61) the change of basis de-

fined by

Q(t) = [Φ] q(t), (64)

and then pre-multiply the resulting equations by the

matrix [Φ]
T
, where the superscript T represents the trans-

position operation.

This development results in the reduced initial value

problem given by

[M ] q̈(t)+[C] q̇(t)+[K] q(t) = f
(
q(t), q̇(t), q̈(t)

)
, (65)

and

q(0) = q0, and q̇(0) = q̇0, (66)

where q(t) is the reduced displacement vector, q̇(t) is
the reduced velocity vector, q̈(t) is the reduced acceler-

ation vector. The reduced matrices of mass, damping,
and stiffness, as well as the reduced vectors of force, ini-
tial displacement, and initial velocity are, respectively,
defined by [M ] = [Φ]

T
[M] [Φ], [C] = [Φ]

T
[C] [Φ], [K] =

[Φ]
T

[K] [Φ], f = [Φ]
T F ([Φ] q(t), [Φ] q̇(t), [Φ] q̈(t)

)
, q0 =

[Φ]
T
Q0, q̇0 = [Φ]

T
Q̇0. These matrices are Nred×Nred,

while these vectors are Nred × 1. Furthermore, due to

the orthogonality properties defined by Eq.(58), that
are inherited by the operators in finite dimension, these
matrices are diagonal.

Thus, although the initial value problem of Eqs.(65)

and (66) is apparently similar to the one defined by
Eqs.(60) and (61), the former has a structure that makes
it much more efficient in terms of computational cost,

and so, it will be used to analyze the nonlinear dynam-
ics under study.

4.3 Integration of the discretized nonlinear dynamics

In order to solve the initial value problem of Eqs.(65)
and (66), it is employed the Newmark method [35],
which defines the following implicit integration scheme

q̇n+1 = q̇n + (1− γ)∆t q̈n + γ∆t q̈n+1, (67)

qn+1 = qn+∆t q̇n+

(
1

2
− β

)
∆t2 q̈n+β ∆t2 q̈n+1, (68)

where qn, q̇n and q̈n are approximations to q(tn), q̇(tn)

and q̈(tn), respectively, and tn = n∆t is an instant
in a temporal mesh defined over the interval [t0, tf ],
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with an uniform time step ∆t. The parameters γ and
β are associated with the accuracy and stability of the
numerical scheme [25], and for the simulations reported
in this work they are assumed as γ = 1/2 + α, and

β = 1/4
(
1/2 + γ

)2
, with α = 15/1000.

Handling up properly the Eqs.(67) and (68), and

the discrete version of Eq.(65), one arrives in a nonlin-
ear system of algebraic equations, with unknown vector
qn+1, which is represented by

ˆ[K]qn+1 = f̂n+1 (qn+1) , (69)

where ˆ[K] is the effective stiffness matrix, and f̂n+1 is

the (nonlinear) effective force vector.

4.4 Incorporation of the boundary conditions

As can be seen in Figure 4, the mechanical system has
the following boundary conditions: (i) left extreme with

no transversal displacement, nor transversal rotation;
(ii) right extreme with no transversal displacement. It
is also assumed that the left end has has: (iii) constant
axial and rotational velocities in x, respectively equal

to V0 and Ω.
Hence, for x = 0, it is true that u(0, t) = V0 t,

v(0, t) = 0, w(0, t) = 0, θx(0, t) = Ω t, θy(0, t) = 0,

and θz(0, t) = 0. On the other hand, for x = L, one has
v(L, t) = 0, and w(L, t) = 0.

The variational formulation presented in section 3.1,

was made for a free-free beam, so that the above geo-
metric boundary conditions were not included. For this
reason, they are included in the formulation as con-
straints using the Lagrange multipliers method [25].

The details of this procedure are presented below.
Observe that the boundary conditions can be rewrit-

ten in matrix form as

[B]Q(t) = h(t), (70)

where the constraint matrix [B] is 8 × Ndofs and has
almost all the entries equal to zero. The exceptions are
[B]ii = 1 for i = {1, · · · , 6}, [B]7(Ndofs−5) = 1, and

[B]8(Ndofs−4) = 1. The constraint vector is given by

h(t) =




u(0, t)
v(0, t)

w(0, t)
θx(0, t)
θy(0, t)

θz(0, t)
v(L, t)
w(L, t)




. (71)

Making the change of basis defined by Eq.(64), one

can rewrite Eq.(70) as

[B] q(t) = h(t), (72)

where the 8×Nred reduced constraint matrix is defined
by [B] = [B] [Φ].

The discretization of the Eq.(72) results in

[B] qn+1 = hn+1, (73)

where hn+1 is an approximation to h(tn+1). This equa-
tion defines the constraint that must be satisfied by the
“approximate solution” of the variational problem.

In what follows it is helpful to think that the Eq.(69)
comes from the minimization of a energy functional
qn+1 7→ F (qn+1), which is the weak form of this non-

linear system of algebraic equations.
Then, one defines the Lagrangian as

L (qn+1,λn+1) = F (qn+1) + λT

n+1

(
[B] qn+1 − hn+1

)
, (74)

being the (time-dependent) Lagrange multipliers vector
of the form

λn+1 =




λ1(tn+1)
λ2(tn+1)
λ3(tn+1)

λ4(tn+1)
λ5(tn+1)
λ6(tn+1)
λ7(tn+1)

λ8(tn+1)




. (75)

Invoking the stationarity condition of the Lagrangian
one arrives in the following (Nred + 8)× (Nred + 8) sys-
tem of nonlinear algebraic equations

[
ˆ[K] [B]

T

[B] [0]

](
qn+1

λn+1

)
=

(
f̂n+1

hn+1

)
, (76)

where [0] is a 8×8 null matrix. The unknowns are qn+1

and λn+1, and must be solved for each instant of time in
the temporal mesh, in order to construct an approxima-

tion to the dynamic response of the mechanical system
under analysis.

The solution of the nonlinear system of algebraic
equations, defined by Eq.(76), is carried out first ob-

taining and solving a discrete Poisson equation for λn+1

[22], and then using the first line of (76) to obtain qn+1.
To solve these equations, a procedure of fixed point iter-

ation is used in combination with a process of successive
over relaxation [65].
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5 Probabilistic modeling of system-parameter
uncertainties

The mathematical model used to describe the physical
behavior of the mechanical system is an abstraction of
reality, and its use does not consider some aspects of the

problem physics. Regarding the modeling of the system,
either the beam theory used to describe the structure
dynamics [40], as the friction and shock model used
[26] are fairly established physical models, who have

gone through several experimental tests to prove their
validity, and have been used for many years in similar
situations. On the other hand, the bit-rock interaction

model adopted in this work, until now was used only
in a purely numeric context [43], without any experi-
mental validation. Thus, it is natural to conclude that

bit-rock interaction law is the weakness of the model
proposed in this work.

In this sense, this work will focus on modeling and
quantifying the uncertainties that are introduced in the
mechanical system by the bit-rock interaction model.
For convenience, it was chosen to use the parametric

probabilistic approach [55], where only the uncertain-
ties of the system parameters are considered, and the
maximum entropy principle is employed to construct

the probability distributions.

5.1 Probabilistic framework

Let X be a real-valued random variable, defined on a
probability space (Θ,Σ,P), for which the probability
distribution PX(dx) on R admits a density x 7→ pX(x)

with respect to dx. The support of the probability den-
sity function (PDF) pX will be denoted by SuppX ⊂ R.
The mathematical expectation of X is defined by

E [X] =

∫

SuppX
x pX(x) dx , (77)

and any realization of random variable X will be de-

noted by X(θ) for θ ∈ Θ. Let mX = E [X] be the mean

value, σ2
X = E

[
(X−mX)

2
]

be the variance, and σX =
√
σ2
X be the standard deviation of X. The Shannon en-

tropy of PDF pX is defined by S (X) = −E
[
ln pX(X)

]
.

5.2 Probabilistic model for the bit-rock interface law

Recalling that the bit-rock interaction force and torque
are, respectively, given by Eqs.(20) and (21), the reader

can see that this bit-rock interface law is character-
ized by three parameters, namely, αBR, ΓBR, and µBR.

The construction of the probabilistic model for each one
parameter of these parameters, which are respectively
modeled by random variables αBR, ΓBR, and µBR, is pre-
sented below.

5.3 Distribution of the force rate of change

As the rate of change αBR is positive, it is reasonable to

assume SuppαBR =]0,∞[. Therefore, the PDF of αBR is
a nonnegative function pαBR

, such that

∫ +∞

α=0

pαBR(α) dα = 1. (78)

It is also convenient to assume that the mean value
of αBR is a known positive number, denoted by mαBR

,
i.e.,

E [αBR] = mαBR > 0. (79)

One also need to require that

E
[
ln (αBR)

]
= qαBR

, |qαBR
| < +∞, (80)

which ensures, as can be see in [52, 53, 54], that the
inverse of αBR is second order random variable. This

condition is necessary to guarantee that the stochastic
dynamical system associated to this random variable is
of second order, i.e., it has finite variance. Employing
the principle of maximum entropy one need to maxi-

mize the entropy function S (αBR), respecting the con-
straints imposed by (78), (79) and (80).

The desired PDF corresponds to the gamma distri-
bution and is given by

pαBR(α) = 1]0,∞[(α)
1

mαBR

(
1

δ2αBR

)1/δ2αBR

× 1

Γ (1/δ2αBR
)

(
α

mαBR

)1/δ2αBR
−1

exp

(
−α

δ2αBR
mαBR

)
,

(81)

where the symbol 1]0,∞[(α) denotes the indicator func-

tion of the interval ]0,∞[, 0 ≤ δαBR = σαBR/mαBR <
1/
√

2 is a type of dispersion parameter, and

Γ (z) =

∫ +∞

y=0

yz−1 e−y dy, (82)

is the gamma function.
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5.4 Distribution of the limit force

The parameter ΓBR is also positive, in a way that SuppΓBR =
]0,∞[, and consequently

∫ +∞

γ=0

pΓBR
(γ) dγ = 1. (83)

The hypothesis that the mean is a known positive

number mΓBR is also done, i.e.,

E [ΓBR] = mΓBR
> 0, (84)

as well as that the technical condition, required for the
stochastic dynamical system associated be of second or-
der, is fulfilled, i.e.

E
[
ln (ΓBR)

]
= qΓBR , |qΓBR | < +∞. (85)

In a similar way to the procedure presented in sec-
tion 5.3, it can be shown that PDF of maximum entropy
is also gamma distributed, and given by

pΓBR
(γ) = 1]0,∞[(γ)

1

mΓBR

(
1

δ2ΓBR

)1/δ2ΓBR

× 1

Γ (1/δ2ΓBR
)

(
γ

mΓBR

)1/δ2ΓBR
−1

exp

(
−γ

δ2ΓBR
mΓBR

)
.

(86)

5.5 Distribution of the friction coefficient

With respect to the parameter µBR, one know it is non-
negative and bounded above by the unity. Thus, one
can safely assume that SuppµBR = [0, 1], so that the
normalization condition read as

∫ 1

µ=0

pµBR
(µ) dµ = 1. (87)

For technical reasons [52, 53, 54], the following two
conditions are also imposed

E
[
ln (µBR)

]
= q1µBR

, |q1µBR
| < +∞, (88)

E
[
ln (1− µBR)

]
= q2µBR

, |q2µBR
| < +∞, (89)

representing a weak decay of the PDF of µBR in 0+ and

1− respectively. Evoking again the principle of max-
imum entropy considering now as known information

the constraints defined by (87), (88), and (89) one has
that the desired PDF is given by

pµBR(µ) = 1[0,1](µ)
Γ (a+ b)

Γ (a)Γ (b)
µa−1 (1− µ)

b−1
, (90)

which corresponds to the beta distribution

The parameters a and b are associated with the
shape of the probability distribution, and can be re-
lated with mµBR

and δµBR
by

a =
mµBR

δ2µBR

(
1

mµBR

− δ2µBR
− 1

)
, (91)

and

b =
mµBR

δ2µBR

(
1

mµBR

− δ2µBR
− 1

)(
1

mµBR

− 1

)
. (92)

5.6 Stochastic nonlinear dynamical system

Due to the randomness of the parameters αBR, ΓBR, and
µBR, the physical behavior of the mechanical system is

now described, for all θ in Θ, by the stochastic nonlinear
dynamical system defined by

[M ] q̈(t, θ) + [C] q̇(t, θ) + [K] q(t, θ) = f (q, q̇, q̈) , (93)

q(0, θ) = q0, and q̇(0, θ) = q̇0, a.s. (94)

where q(t) is the random reduced displacement vector,
q̇(t) is the random reduced velocity vector, and q̈(t) is
the random reduced acceleration vector, and f is the

random reduced nonlinear force vector.

The methodology used to calculate the propagation

of uncertainties through this stochastic dynamical sys-
tem is Monte Carlo (MC) method [29], employing a
strategy of parallelization described in [13].

6 Numerical experiments and discussions

In order to simulate the nonlinear dynamics of the me-
chanical system, the physical parameters presented in

the Table 1 are adopted, as well as the length L =
100 m, the rotational and axial velocities in x, respec-
tively given by Ω = 2π rad/s, and V0 = 1/180 m/s.

The values of these parameters do not correspond ex-
actly to the actual values used in a real drillstring, but
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Table 1 Physical parameters of the mechanical system that
are used in the simulation.

parameter value unit

ρ 7900 kg/m3

g 9.81 m/s2

ν 0.3 —
c 0.01 —
E 203× 109 Pa

Rbh 95× 10−3 m

Rint 50× 10−3 m

Rext 80× 10−3 m

are of the same order of magnitude. For this configura-

tion, the beam geometry is discretized by 500 finite ele-
ments, and the interval of integration [t0, tf ] = [0, 10] s
is considered.

For the constants of the friction and shock model,
are considered the values shown in Table 2, which have

order of magnitude typical of a borehole wall made of
steel [66]. The low value for the friction coefficient µFS

is justified by the fact that in the real system, there is a
fluid between the borehole wall and the column, which

carries a substantial reduction in the torsional friction.

Table 2 Parameters of the friction and shock model that are
used in the simulation.

parameter value unit

kFS1 1× 1010 N/m

kFS2 1× 1016 N/m3

cFS 1× 106 (N/m3)/(m/s)
µFS 0.25 —

The constants of the bit-rock interaction model can
be seen in Table 3, and were estimated following a sim-

ilar strategy as that shown in [43].

Table 3 Parameters of the bit-rock interaction model that
are used in the simulation.

parameter value unit

ΓBR 30× 103 N

αBR 400 1/(m/s)
µBR 0.4 —

6.1 Modal analysis of the mechanical system

In this section, the modal content of the mechanical sys-
tem is investigated. This investigation aims to identify

the natural frequencies of the system, and, especially,
to check the influence of slenderness ratio, defined as

the ratio between beam length and external diameter,
in the natural frequencies distribution.

Therefore, the dimensionless frequency band of in-
terest in the problem is assumed as being B = [0, 4],

with the dimensionless frequency defined by

f∗ =
f L

cL
, (95)

where f is the dimensional frequency (Hz), and cL =√
E/ρ is the longitudinal wave velocity. As it was de-

fined in terms of a dimensionless frequency, the band
of analysis does not change when the beam length is
varied. Also, the reader can check that this band is rep-
resentative for the mechanical system dynamics, once

the beam rotates at 2π rad/s, which means that the
mechanical system is excited at 1 Hz.

In Figure 10 one can see the distribution of the flex-

ural modes as a function of dimensionless frequency, for
several values of slenderness ratio. Clearly it is observed
that the flexural modes are denser in the low frequency

range. Further, when the slenderness ratio increases,
the modal density in the low frequencies range tend to
increase.

A completely different behavior is observed for the

torsional and longitudinal (traction-compression) modes
of vibration, as can be seen in Figures 11 and 12, re-
spectively. One can note that, with respect to these two

modes of vibration, the modal distribution is almost
uniform with respect to dimensionless frequency, and
invariant to changes in the slenderness ratio.

It may also be noted from Figures 10 to 12 that, the
lowest natural frequencies are associated with the flex-
ural mechanism. This is because the flexural stiffness of
the beam is much smaller than the torsional stiffness,

which in turn is less than the axial stiffness. In other
words, it is much easier to bend the beam than twisting
it. However, twists the beam is easier than buckling it.

The dimensionless frequency band adopted in the
analysis corresponds to a maximum dimensional fre-
quency of fmax = 4 cL/L. In this way, a nominal time
step of ∆t = (2 fmax)−1 is adopted for time integration.

This time step is automatically refined by the algorithm
of integration, whenever necessary, to capture the shock
effects.

6.2 Construction of the reduced model

In the construction of the reduced model, are taken into
account the rigid body modes of the mechanical sys-
tem, as well as modes of bending, torsion and traction-

compression. The construction strategy consists of in-
cluding: (i) the two rigid body modes (translation and
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Fig. 10 Distribution of the flexural modes as a function of dimensionless frequency, for several values of slenderness ratio.
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Fig. 11 Distribution of the torsional modes as a function of dimensionless frequency, for several values of slenderness ratio.
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Fig. 12 Distribution of the longitudinal modes as a function of dimensionless frequency, for several values of slenderness ratio.

rotation); (ii) all the flexural modes such that 0 <

f∗ ≤ 5L/cL; (iii) all the torsional modes such that
0 < f∗ ≤ 4; (iv) all the longitudinal modes such that
0 < f∗ ≤ 4.

In this way, the total number of modes used in the
FEM model is a function of the beam length. In Table 4
the reader can see a comparison, for different values
of L, of the full FEM model dimension and the corre-

sponding dimension of the reduced order model. Note

that the dimension of the reduced models, constructed

using the above strategy, is always much smaller than

the full model dimension.

Table 4 Dimension of the FEM model as a function of beam
length.

beam length full model reduced model
(m) DoFs DoFs

50 306 37
100 3006 49
150 4506 60
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Fig. 13 Illustration of static equilibrium configuration of a horizontal drillstring with 100 m length.

6.3 Calculation of the static equilibrium configuration

Before the beginning of drilling operation, the drill-
string is inserted into the borehole, without axial veloc-
ity and rotation imposed. Due to gravitational effects,
the column deflects until it reaches a static equilibrium
configuration. This configuration can calculated by the
temporal integration of the dynamical system defined
by the Eqs.(65) and (66), assuming zero initial condi-
tions, i.e., Ω = 0 rad/s, and V0 = 0 m/s. In this way,
after a short transient, the system reaches static equi-
librium and remains in this configuration indefinitely.

An illustration of this equilibrium configuration, for
a 100 m long column is presented in Figure 13. In

this illustration, one can see the mechanical system sec-

tioned by the plane y = 0 m, as well as by the planes
x = {0, 50, 100} m. A visual inspection clearly indi-
cates that this equilibrium is stable. Moreover, as this

equilibrium configuration is the initial state of the real
system, it will be used as initial condition in all other
simulations reported bellow.

An animation which illustrates the calculation of
the beam static equilibrium can be seen in Online Re-
source 1.

6.4 Drill-bit nonlinear dynamic behavior

The drill-bit longitudinal displacement and velocity, can
be seen in Figure 14. For practical reasons, some scal-
ing factors were introduced in the units of measure of
these quantities. They allow one to read the displace-
ment in “millimeter”, and the velocity in “meters per

hour”. Accordingly, it is noted that, during the inter-
val of analysis, the column presents an advance in the
forward direction with very small axial oscillations in
the displacement. The axial oscillations in the veloc-
ity curve are more pronounced, and correspond to the
vibration mechanism known as bit-bounce, where the
drill-bit loses contact with the soil and then hits the
rock abruptly. This phenomenon, which is widely ob-
served in real systems [59], presents itself discreetly in

the case analyzed. Note that the velocity exhibits a
mean value of 19.36 “meters per hour”, close to the ve-
locity V0 = 20 “meters per hour”, which is imposed on

the left end of the beam. Also, throughout the “tempo-

ral window” analyzed, one can observe packages where
the velocity of the drill-bit presents large fluctuations,
which can reach up to 40 times the mean value.

The drill-bit rotation and angular velocity, can be
seen in Figure 15. Now the scale factors allow one to
read rotation in “revolution”, and the angular velocity

in “revolution per minute”. Thus, what it is observed is
a almost monotonic rotation. However, when one looks
to the angular velocity, it is possible to see packages of

fluctuations with amplitude variations that can reach
up to an order of magnitude. This indicates that the
drill-bit undergoes a blockage due to the torsional fric-

tion, and then it is released subtly, so that its velocity
is sharply increased, in a stick-slip phenomenon type.
This is also seen experimentally [59] in real drilling sys-
tems, and a serious consequence of this blockage is the

reduction of drilling process efficiency.
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Fig. 14 Illustration of drill-bit displacement (top) and drill-
bit velocity (bottom).

6.5 Transverse nonlinear dynamics of the beam

Observing the cross section of the beam at x = 50m, for
which the transversal displacement (top) and velocity
(bottom) are shown in Figure 16, one can see an asym-
metry of the displacement, with respect to the plane
z = 0 m. This is due to gravity, which favors the beam
to move below this plane. Furthermore, one can note
that the this signal is composed of “packages”, which
has a recurring oscillatory pattern. As will be seen in
section 6.6, these packages present a strong correlation
with the number of impacts which the mechanical sys-
tem is subjected.

The evolution of the radial displacement, for x =
50 m, of the beam cross-section can be seen in the Fig-

ure 17, which shows that several transverse impacts oc-

cur between the drillstring and the borehole wall during

the drilling process. This fact is also reported experi-

mentally [59], and is an important cause of damage to

the well and to the drillstring.
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Fig. 15 Illustration of drill-bit rotation (top) and drill-bit
angular velocity (bottom).

Note that, after an impact, the amplitudes of the

oscillations decreases until subtly increase sharply, giv-

ing rise to a new impact, and then the entire process

repeats again.

6.6 Influence of transverse impacts on the nonlinear
dynamics

In Figure 18 it is shown the graph of the map t ∈ R �→
number of shocks ∈ N, which associates for any in-

stant t the number of impacts suffered by the mechan-
ical system.

The “packages of fluctuation” observed in the Fig-
ures 14 to 16 correspond to transitory periods of the
dynamical system, and are highly correlated with the
process of collision between beam and borehole wall.
This assertion can be verified if the reader compares
the graphs of Figures 14 to 16 with the graph of Fig-
ure 18, which shows the existence of “shock packages”.
The existence of a correlation is clearly evident.
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Fig. 16 Illustration of transversal displacement (top) and
velocity in z (bottom) when x = 50 m.

Whenever there is a shock, the system“loses it mem-
ory” about the previous dynamic behavior, and under-
goes a new transient period until reach a steady state

again. This behavior is repeated 11 times in the “tem-

poral window” analyzed.

Regarding the distribution of impacts along the beam,
the graph of the map x ∈ [0, L] �→ number of shocks ∈
N, which associates for any position x the number of
impacts suffered by the mechanical system, is shown in

Figure 19. It is clear that impacts do not occur near
the beam ends. This is natural due to the restrictions
of movement imposed by the boundary conditions.

The impacts between the drillstring and the bore-
hole wall generate nonlinear elastic deformations in the
beam, but without residual deformation effects. In this

contact also occurs energy dissipation, due to the nor-
mal shock, and the torsional friction, induced by the
rotation of the beam. These mechanical contacts also

activate flexural modes of vibration associated to high

natural frequencies, so that the mechanical system as-
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Fig. 17 Illustration of beam radial displacement for x =
50 m.
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Fig. 18 Illustration of the number of impacts suffered by the
mechanical system as function of time.
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Fig. 19 Illustration of the number of impacts suffered by the
mechanical system as function of position.
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sumes complex spatial configurations, as can be seen,
for several instants, in Figure 20.

It is also very clear from the Figure 20 that, the me-

chanical contacts between the beam and the borehole

wall, do not occur all the time among discrete points,

they can also be seen along continuous line segments.

For a qualitative illustration of the nonlinear dy-
namics, the reader can see the Online Resource 2.

6.7 Spectral analysis of the nonlinear dynamics

All signals presented above, that are associated with
the mechanical system response, have stochastic char-
acteristics. Thereby, for a good understanding of them,

it is necessary to analyze their spectral content through
the power spectral density (PSD) function [36].

The PSDs that are presented in this section (ma-

genta line) were estimated using the periodogrammethod

[36], and the smooth curves (blue line) appearing were

obtained by a filtering process, using a Savitzky-Golay
filter [47]. The PSDs are measured in dB/Hz, where the

intensity of reference is adopted as being equal to one.

An illustration of PSD functions of drill-bit veloc-
ity and angular velocity is show in Figure 21. One can
note that, in the case of velocity, the two peaks of high-
est amplitude correspond to the frequencies 84.55 Hz,
and 115.20 Hz, respectively. These frequencies are very

close to the flexural frequencies 84.53Hz, and 115.29Hz,
so that the drill-bit axial dynamics is controlled by the
transversal mechanisms of vibration. Furthermore, with
respect to the angular velocity, it is noted a peak stand-

ing out in relation to the others. This peak is associ-

ated with 7.92 Hz frequency, which is very close to the
flexrual frequency 7.89 Hz.

In Figure 22 the reader can see an illustration of
PSD functions of beam transversal velocity in z and
angular velocity around x when x = 50 m. The two

peaks of highest amplitude, for the velocity in z, cor-

respond to the frequencies 143.20 Hz, and 172.50 Hz,
respectively. These frequencies are close to the torsional

frequencies 145.55 Hz, and 174.67 Hz, which indicates
that lateral vibrations in z, when x = 50 m, are in-
duced by the torsional vibration mechanism. On the
other hand, in what concerns angular velocity around x,
the two peaks of largest amplitude are associated to the
frequencies 6.93 Hz, and 107.10 Hz, respectively close
to the flexural frequencies 6.84 Hz, and 107.16 Hz.

According to Figure 23, torsion is the primary mech-
anism of vibration that causes the impacts between the
beam and borehole wall, since the highest peak of the
PSD shown in this figure is associated with the fre-
quency 57.42 Hz, which is close to the torsional fre-

Fig. 21 Illustration of power spectral density functions of
drill-bit velocity (top) and angular velocity (bottom).

quency 58.21 Hz. This result is surprising because in-
tuition, especially when thinking about the dynamics
of vertical drillstrings, suggests that lateral vibration
mechanism is the mainly responsible for inducing the
transverse impacts.

6.8 Analysis of the drilling process efficiency

The efficiency of the drilling process is defined as

E =

∫ tf
t0

Pout dt∫ tf
t0

Pin dt
, (96)

where Pout is the useful (output) power used in the
drilling process, and Pin is the total (input) power in-
jected in the system. The output power is due to the

drill-bit movements of translation and rotation so that

Pout = u̇+
bit (−FBR)

+
+ ω+

bit (−TBR)
+
, (97)



Computational modeling of the nonlinear stochastic dynamics of horizontal drillstrings 21

0 10 20 30 40 50 60 70 80 90 100

−80

−50

0

50

80

beam deflexion in z

position (m)

de
fle

xi
on

 (
m

m
)

time = 2.145 sec

−80 −50 0 50 80

−80

−50

0

50

80

x = 0 m

y (mm)

z 
(m

m
)

−80 −50 0 50 80

−80

−50

0

50

80

x = 50 m

y (mm)

z 
(m

m
)

−80 −50 0 50 80

−80

−50

0

50

80

x = 100 m

y (mm)

z 
(m

m
)

(a) t = 2.145 s

0 10 20 30 40 50 60 70 80 90 100

−80

−50

0

50

80

beam deflexion in z

position (m)

de
fle

xi
on

 (
m

m
)

time = 4.932 sec

−80 −50 0 50 80

−80

−50

0

50

80

x = 0 m

y (mm)

z 
(m

m
)

−80 −50 0 50 80

−80

−50

0

50

80

x = 50 m

y (mm)

z 
(m

m
)

−80 −50 0 50 80

−80

−50

0

50

80

x = 100 m

y (mm)

z 
(m

m
)

(b) t = 4.932 s

0 10 20 30 40 50 60 70 80 90 100

−80

−50

0

50

80

beam deflexion in z

position (m)

de
fle

xi
on

 (
m

m
)

time = 6.214 sec

−80 −50 0 50 80

−80

−50

0

50

80

x = 0 m

y (mm)

z 
(m

m
)

−80 −50 0 50 80

−80

−50

0

50

80

x = 50 m

y (mm)

z 
(m

m
)

−80 −50 0 50 80

−80

−50

0

50

80

x = 100 m

y (mm)

z 
(m

m
)

(c) t = 6.214 s

Fig. 20 Illustration of the mechanical system, for several instants, sectioned by the planes y = 0 m, and x = {0, 50, 100} m.
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Fig. 22 Illustration of power spectral density functions of
beam transversal velocity in z (top) and angular velocity
around x (bottom) when x = 50 m.

Fig. 23 Illustration of power spectral density function of
number of shocks per unit of time.
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Fig. 24 Illustration of efficiency function contour plot, for an
“operating window” defined by 1/360 m/s ≤ V0 ≤ 1/120 m/s

and 3π/2 rad/s ≤ Ω ≤ 2π rad/s. The maximum is indicated
with a blue cross.

where the upper script + means the positive part of the
function. The input power is defined as

Pin = u̇(0, t)+ (−λ1)
+ + θ̇x(0, t)

+ (−λ4)
+, (98)

where the first and the fourth Lagrange multipliers, re-
spectively, represent the drilling force and torque on the
origin of the beam. The reason for considering, in the
above definitions, only the positive part of the functions
is that negative powers do not contribute to the drilling
process.

One can observe the contour map of E , for an“oper-
ating window”defined by 1/360m/s ≤ V0 ≤ 1/120m/s
and 3π/2 rad/s ≤ Ω ≤ 2π rad/s, in Figure 24. Note
that, by operating window of a drillstring, one means
the subset of R2 that provides acceptable values for the
pair (Ω, V0). In order to facilitate the results interpre-
tation, some scaling factors were introduced in the units
of measure. They allow one to read the velocity in “me-

ters per hour”and the rotation in“rotation per minute”.
Accordingly, it can be noted in Figure 24 that the

optimum operating condition is obtained at the point

(V0, Ω) = (1/144 m/s, 5π/3 rad/s), which is indicated
with a blue cross in the graph. This point corresponds
to an efficiency of approximately 16%. Suboptimal op-
eration conditions occur in the vicinity of this point,
and some points near the “operating window” bound-
ary show lower efficiency.

6.9 Optimization of drillstring rate of penetration

In order to optimize the drilling process of an oil well

in horizontal configuration, it is necessary to maximize

the drillstring ROP into the soil.
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The instantaneous rate of penetration is given by
the function u̇bit(t), defined for all instants of analy-
sis. Meanwhile, only contributes to the advance of the
column, the positive part of this function u̇+

bit(t). In ad-

dition, as objective function, it is more convenient to

consider a scalar function. Thus, the temporal mean of
u̇+
bit(t) is adopted as rate of penetration, and, conse-

quently, objective function of the optimization problem

rop(Ω, V0) =
1

tf − t0

∫ tf

t=t0

u̇+
bit(t) dt. (99)

Furthermore, respect the structural limits is indis-
pensable to avoid failures of drillstring during the drilling
process. For this reason, von Mises criterion of failure
is considered, where it is established that, for all pairs
(Ω, V0) in the “operating window”, one has

UTS− max
0≤x≤L

t0≤t≤tf

{
σVM (V0, Ω, x, t)

}
≥ 0, (100)

where UTS is the ultimate tensile strength of the mate-
rial, and σVM is the von Mises equivalent stress.

Regarding the analysis of the rate of penetration,

the “operating window” is defined by the inequations

1/360 m/s ≤ V0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤
7π/3 rad/s, and UTS = 650× 106 Pa.

The contour map of the constraint (100), is shown

in Figure 25. From the way constraint (100) is written,

the Mises criterion is not satisfied when the function

is negative, which occurs in a “small neighborhood” of

the upper left corner of the rectangle that defines the
“operating window”. It is noted that all other points
respect the structural limits of the material. In this way,
then, the admissible region of the “operating window”
consists of all points that satisfy the constraint.

In Figure 26 the reader can see the contour map of
the function rop. Taking into account only points in

the admissible region, the maximum of rop occurs at
the point (V0, Ω) = (7/720 m/s, 2π rad/s), which is
indicated on the graph with a blue cross. This point

corresponds to a mean rate of penetration, during the
time interval analyzed, approximately equal to 90 “me-
ters per hour”.

It is worth remembering that the definition of rop

uses temporal mean of the positive part of u̇bit(t). In
such a way, it is not surprising to find the maximum
value of rop much higher than the corresponding ve-

locity, V0 imposed on the left end of the column. This
occurs because, by taking only the positive part of the
function, the rate of penetration value increases.

To see how significant is the inclusion of the positive
part of u̇bit(t) in the definition of rop, the reader can

×

×

×

Fig. 25 Illustration of maximum von Mises stress contour
plot, for an “operating window” defined by 1/360 m/s ≤ V0 ≤
1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s.
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Fig. 26 Illustration of rate of penetration function contour
plot, for an “operating window” defined by 1/360 m/s ≤ V0 ≤
1/90 m/s and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s. The maximum
is indicated with a blue cross.

see in Figure 27. This Figure shows the same informa-
tion as Figure 26, i.e., the contour map of the function
rop, but now considering u̇bit(t) instead of u̇+

bit(t) in

the definition of rop. Note that, in comparison with the
contour map of Figure 26, lower values for the levels of
the function are observed, and these values are now are
closer to the values of V0. Furthermore, the topology of

contour lines change, so that no local extreme point can

be seen isolated. This example shows the importance of

considering u̇+
bit(t) in the definition of rop.

6.10 Probabilistic analysis of the dynamics

For the probabilistic analysis of the dynamic system a
parametric approach is used, where the distributions
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Fig. 27 Illustration of the contour plot of the rate of pene-
tration function, with an alternative definition, for an “oper-
ating window” defined by 1/360 m/s ≤ V0 ≤ 1/90 m/s and
3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s.

of the random parameters are constructed according to

the procedure presented in section 5. In this case, the
random variables of interest are characterized by the
mean values mαBR

= 400 1/m/s, mΓBR
= 30 × 103 N ,

and mμBR = 0.4, and by the dispersion factors δαBR =
0.5%, δΓBR

= 1%, and δμBR
= 0.5%.

To compute the propagation of the uncertainties of
the parameters through the model, the MC method is
employed. To analyze the convergence of MC simula-

tions, it is taken into consideration the map ns ∈ N �→
conv

MC
(ns) ∈ R, being

conv
MC
(ns) =

⎛
⎝ 1

ns

ns∑
n=1

∫ tf

t=t0

∥∥q(t, θn)∥∥2 dt

⎞
⎠

1/2

, (101)

where ns is the number of MC realizations, and ‖·‖ de-
notes the standard Euclidean norm. This metric allows

one to evaluate the convergence of the approximation
q(t, θn) in the mean-square sense. For further details
the reader is encouraged to see [54].

The evolution of conv(ns) as a function of ns can be
seen in Figure 28. Note that for ns = 1024 the metric

value has reached a steady value. In this sense, if some-

thing is not stated otherwise, all the stochastic simula-
tions that follows in this work use ns = 1024.

An illustration of the mean value (blue line), and a
confidence band (grey shadow), wherein a realization of

the stochastic dynamic system has 95% of probability of

being contained, for the drill-bit longitudinal displace-

ment and velocity is shown in Figure 29. For sake of

reference, the deterministic model, which the numeri-

cal results were presented earlier, is also presented and
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Fig. 28 This figure illustrates the convergence metric of MC
simulation as a function of the number of realizations.

called the nominal model (red line). It is observed that
the mean value is very similar to the nominal model for
the displacement. Meanwhile, for the velocity the mean
value presents oscillations that are correlated with the
nominal model, but with very different amplitudes. Re-
garding the confidence band, there is a significant am-
plitude in the instants that corresponds to the packages
of fluctuation and negligible amplitude in the other mo-
ments.

Fixing the time in t = 10 s, it is possible to ana-
lyze the behavior of the drill-bit longitudinal velocity
through its normalized PDF, which is presented in Fig-

ure 30. In this context normalized means a distribu-

tion of probability with zero mean and unit standard
deviation. It is observed an unimodal behavior, with

the maximum value occurring in a neighborhood of the
mean value, with small dispersion around this position.

In Figure 31, the reader can see the nominal model,
the mean value, and the 95% probability envelope of
drill-bit rotation and angular velocity. A good agree-

ment between the nominal model and the mean value
of the rotation is observed, and the confidence band
around it is negligible. On the other hand, with respect
to the angular velocity, it is possible to see discrepancies
in the amplitudes of the nominal model and the mean
value. These differences occur in the instants when the
system is subject to shocks, as in the case of drill-bit

longitudinal velocity. The band of uncertainty shows
that the dispersion around the mean value increases
with time due to the uncertainties of accumulation, but
also in reason of the impacts, once its amplitude in-
creases a lot near the instants where the mean value
presents large fluctuations, i.e., the instants which are

correlated to the impacts between the beam and the

borehole wall.
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Fig. 29 Illustration of the nominal model (red line), the
mean value (blue line), and the 95% probability envelope
(grey shadow) for the drill-bit longitudinal displacement (top)
and velocity (bottom).
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Fig. 30 Illustration of the normalized probability density
function of the drill-bit longitudinal velocity.
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Fig. 31 Illustration of the nominal model (red line), the
mean value (blue line), and the 95% probability envelope
(grey shadow) for the drill-bit rotation (top) and angular ve-
locity (bottom).

For t = 10 s, the reader can see the normalized PDF
of the drill-bit angular velocity in Figure 32. It is noted

again an unimodal behavior, with the maximum again
near mean value. But now a large dispersion around the
mean can be seen.

Moreover, in Figure 33 it is shown the nominal model,

the mean value, and the 95% probability envelope of

the beam transversal displacement and velocity in z

at x = 50 m. Here the mean values of both, velocity

and displacement, present correlation with the nominal

models. Indeed, both present discrepancies in the oscil-

lation amplitudes, especially the velocity, discrepancies

that are more pronounced, as before, in the instants

wherein the system is subject to impacts. The confi-

dence bands present meaningful amplitudes, what evi-

dentiates a certain level of dispersion around the means,

which are more significant, as expected, at the instants

of impact.
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Fig. 32 Illustration of the normalized probability density
function of the drill-bit angular velocity.
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Fig. 33 Illustration of the nominal model (red line), the
mean value (blue line), and the 95% probability envelope
(grey shadow) for the beam transversal displacement (top)
and velocity in z (bottom) at x = 50 m.
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Fig. 34 Illustration of the probability density function of the
drilling process efficiency.
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Fig. 35 Illustration of the probability density function of the
rate of penetration function.

The PDF of the drilling process efficiency function

it is shown in Figure 34. One can observe a unimodal

distribution with the maximum around 16% and wide
dispersion between 0 and 40%, declining rapidly to neg-
ligible values outside this range.

Finally, in Figure 35 one can see the PDF of the
drillstring rate of penetration function. One notes an
unimodal behavior in a narrow range between 20 and
50 “meters per hour”, with the maximum around 30
“meters per hour”.

6.11 Robust optimization of drillstring rate of

penetration

To improve the level of confidence of the drilling process
optimization, the uncertainties intrinsic to the problem
should be taken into account. This leads to a robust op-
timization problem, i.e, optimization under uncertainty
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where the range of the random parameters are known,
but not necessarily their distribution [4, 50, 7, 6, 8, 57,
3].

Taking into account the uncertainties, through the

parametric approach presented in section 5, drill-bit ve-

locity becomes the stochastic process Ubit(t, θ), so that
the random rate of penetration is defined by

ROP(V0, Ω, θ) =
1

tf − t0

∫ tf

t=t0

U̇+
bit(t, θ) dt. (102)

In the robust optimization problem, who plays the
role of the objective function is the expected value of the
random variable ROP(V0, Ω, θ), i.e., E

[
ROP(V0, Ω, θ)

]
.

Regarding the restriction imposed by the von Mises
criteria, now the equivalent stress is a random field
σVM (V0, Ω, x, t, θ), so that the inequality is written
as

UTS− max
0≤x≤L

t0≤t≤tf

{
σVM (V0, Ω, x, t, θ)

}
≥ 0. (103)

However, the robust optimization problem considers
as restriction the probability of the event defined by
inequality (103),

P

⎧⎪⎨
⎪⎩UTS− max

0≤x≤L

t0≤t≤tf

{
σVM (V0, Ω, x, t, θ)

}
≥ 0

⎫⎪⎬
⎪⎭ ≥ 1− Prisk,

(104)

where 0 < Prisk < 1 is the risk percentage acceptable

to the problem.

A robust optimization problem very similar to this
one, in the context of a vertical drillstring dynamics, is
considered in [41].

To solve this robust optimization problem it is em-
ployed a trial strategy which discretizes the “operating
window” in a structured grid of points and then eval-

uates the objective function E
[
ROP(V0, Ω, θ)

]
and the

probabilistic constraint (104) in these points.

Accordingly, it is considered the same “operating
window” used in the deterministic optimization prob-
lem solved above, i.e., 1/360 m/s ≤ V0 ≤ 1/90 m/s
and 3π/2 rad/s ≤ Ω ≤ 7π/3 rad/s, in addition to
UTS = 650× 106 Pa and Prisk = 10%. Each MC simu-

lation in this case used 128 realizations to compute the
propagation of uncertainties.

Concerning the simulation results, the probabilistic
constraint (104) is respected in all grid points that dis-
cretize the “operating window”. Thus, the admissible
region of the robust optimization problem is equal to

the “operating window”. In what follows, the contour
map of the function E

[
ROP(V0, Ω, θ)

]
can be see in

Figure 36. Note that the maximum, which is indicated
on the graph with a blue cross, occurs at at the point

(V0, Ω) = (1/90 m/s, 7π/3 rad/s). This point is located
in the boundary of the admissible region, in the upper
right corner, and corresponds to a expected value of
the mean rate of penetration, during the time interval
analyzed, approximately equal to 58 “meters per hour”.
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Fig. 36 Illustration of the contour plot of the mean rate
of penetration function, for an “operating window” defined
by 1/360 m/s ≤ V0 ≤ 1/90 m/s and 3π/2 rad/s ≤ Ω ≤
7π/3 rad/s. The maximum is indicated with a blue cross in
the upper right corner.

This result says that, in the“operating window”con-

sidered here, increasing the drillstring rotational and
translational velocities provides the most robust strat-
egy to maximize its ROP into the soil. This is in some

ways an intuitive result, but is at odds with the result
of the deterministic optimization problem, which pro-
vides another strategy to achieve optimum operating
condition.

7 Concluding remarks

Amodel was developed in this work to describe the non-
linear dynamics of horizontal drillstrings. The model
uses a beam theory, with effects of rotatory inertia and
shear deformation, which is capable of reproducing large
displacements that the beam undergoes. This model
also considers the friction and shock effects due to transver-
sal impacts, as well as, the force and torque induced by
the bit-rock interaction.

Numerical simulations showed that the mechanical

system of interest has a very rich nonlinear dynam-

ics, which reproduces complex phenomena such as bit-
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bounce, stick-slip, and transverse impacts. The study
also indicated that the large velocity fluctuations ob-
served in the phenomena of bit-bounce and stick-slip
are correlated with the transverse impacts, i.e., with

the number of shocks per unit time which the system
is subjected. Also, the mechanical impacts cause the
beam to assume complex spatial configurations, which

are formed by flexural modes associated to high natural
frequencies.

A study aiming to maximize the drilling process ef-

ficiency, varying drillstring velocities of translation and
rotation was presented. The optimization strategy used
a trial approach to seek for a local maximum, which was
located within “operating window” and corresponds to

an efficiency of approximately 16%.

The probabilistic analysis of the nonlinear dynamics
showed that, with respect to the velocities, the nomi-

nal model and the mean value of the stochastic model
differ significantly. Furthermore, at the instants which
the system was subjected to mechanical impacts, it was

possible to see a more pronounced dispersion around
the mean value. Regarding the probability distributions
of the velocities, it was noticed a unimodal behavior es-
sentially.

Two optimizations problems, one deterministic and
one robust, where the objective was to maximize the
drillstring rate of penetration into the soil respecting its

structural limits were formulated and solved. The solu-
tions of these problems provided two different strategies
to optimize the ROP.

Finally, it sounds stressing the mathematical model
used in this work has not gone through any process
of experimental validation. This is because experimen-

tal data for this type of system is difficult to be ob-
tained, and to construct an experimental apparatus in
real scale is virtually impossible. An interesting pro-
posal for future work would be the construction of an

experimental test rig, in reduced scale, that emulates
the main aspects of a real drillstring. The model used
in this study could be validated, following, for instance,

the methodology presented in [1], with the aid of ex-
perimental measurements taken from this reduced ap-
paratus.

A Geometric nonlinearly force coefficients

This appendix presents the coefficients which appears in the
geometric nonlinearity force of Eq.(49). For the sake of saving
space, in the following lines it is used the abbreviations: Sθx =
sin θx, and Cθx = cos θx.

Γ1 = E I4
(
1 + u′

) (
v′ θ′y + w′ θ′z

)
Sθx θ

′
x + (105)

E I4
(
1 + u′

) (
v′ θ′z − w′ θ′y

)
Cθx θ

′
x +

ksGA
(
1 + u′

) (
θz v
′ − θy w′

)
Sθx −

ksGA
(
1 + u′

) (
θy v
′ + θz w

′)Cθx ,

Γ2 = ksGI4

(
θy

(
θ′ 2y + θ′ 2z

)
− θ′x θ′z

)
+ (106)

ksGA
(
−w′ + u′ θy

(
2 + u′

))
−

ksGA
(
1 + u′

) (
v′ Sθx − w′ Cθx

)
,

Γ3 = ksGI4

(
θz

(
θ′ 2y + θ′ 2z

)
+ θ′x θ

′
y

)
+ (107)

ksGA
(
v′ + u′ θz

(
2 + u′

))
−

ksGA
(
1 + u′

) (
w′ Sθx + v′ Cθx

)
,

Γ4 = EA

(
1

2

(
1 + u′

) (
v′ 2 + w′ 2

)
+

1

2
u′ 2

(
3 + u′

))
+ (108)

E I4

(
Sθx

(
v′ θ′z − w′ θ′y

)
− Cθx

(
v′ θ′y + w′ θ′z

))
θ′x +

E I4
(
1 + u′

)(
θ′ 2x +

3

2

(
θ′ 2y + θ′ 2z

))
+

ksGA
(
Cθx

(
θy w

′ − θz v′
)
− Sθx

(
θy v
′ + θz w

′)) +

ksGA
(
1 + u′

) (
θ2y + θ2z

)
,

Γ5 = EA

(
u′ +

1

2

(
u′ 2 + v′ 2 + w′ 2

))
v′ + (109)

E I4

(
2 θ′ 2x +

1

2

(
θ′ 2y + θ′ 2z

))
v′ +

E I4
(
1 + u′

) (
θ′zSθx − θ′yCθx

)
θ′x +

ksGA
(
1 + u′

) (
θz − θy Sθx − θz Cθx

)
,

Γ6 = EA

(
u′ +

1

2

(
u′ 2 + v′ 2 + w′ 2

))
w′ + (110)

E I4

(
2 θ′ 2x +

1

2

(
θ′ 2y + θ′ 2z

))
w′ +

E I4
(
1 + u′

) (
−θ′y Sθx − θ′z Cθx

)
θ′x +

ksGA
(
1 + u′

) (
−θy + θy Cθx − θz Sθx

)
,

Γ7 = E I4

(
u′ 2 + 2

(
u′ + v′ 2 + w′ 2

))
θ′x + (111)

E I4
(
1 + u′

) (
v′ θ′z − w′ θ′y

)
Sθx −

E I4
(
1 + u′

) (
v′ θ′y + w′ θ′z

)
Cθx +

E I6

(
4 θ′ 2x + 2

(
θ′ 2y + θ′ 2z

))
θ′x +

ksGA
(
θz θ
′
y − θy θ′z

)
,
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Γ8 = E I4

(
3u′ +

1

2

(
3u′ 2 + v′ 2 + w′ 2

))
θ′y + (112)

E I4
(
1 + u′

) (
−w′ Sθx − v′ Cθx

)
θ′x +

E I6

(
2 θ′ 2x +

3

2

(
θ′ 2y + θ′ 2z

))
θ′y +

ksGI4

(
θz θ
′
x + θ′y

(
θ2y + θ2z
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,

and

Γ9 = E I4

(
3u′ +

1

2

(
3u′ 2 + v′ 2 + w′ 2

))
θ′z + (113)

E I4
(
1 + u′

) (
v′ Sθx − w′ Cθx

)
θ′x +

E I6

(
2θ′ 2x +

3

2

(
θ′ 2y + θ′ 2z

))
θ′z +
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(
−θy θ′x + θ′z

(
θ2y + θ2z
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.

Acknowledgements The authors are indebted to the Brazil-
ian agencies CNPq, CAPES, and FAPERJ, and the French
agency COFECUB for the financial support given to this
research.

References

1. Batou A, Soize C (2009) Identification of stochastic
loads applied to a non-linear dynamical system using
an uncertain computational model and experimental re-
sponses. Computational Mechanics 43:559–571, DOI
10.1007/s00466-008-0330-y

2. Bazoune A, Khulief YA, Stephen NG (2003) Shape func-
tions of three-dimensional Timoshenko beam element.
Journal of Sound and Vibration 259:473–480, DOI
10.1006/jsvi.2002.5122

3. Ben-Tal A, Ghaoui LE, Nemirovski A (2009) Robust Op-
timization. Princeton University Press, Princeton

4. Beyer HG, Sendhoff B (2007) Robust optimization –
A comprehensive survey. Computer Methods in Ap-
plied Mechanics and Engineering 196:3190–3218, DOI
10.1016/j.cma.2007.03.003

5. Bonet J, Wood RD (2008) Nonlinear Continuum Mechan-
ics for Finite Element Analysis, 2nd edn. Cambridge Uni-
versity Press, Cambridge

6. Capiez-Lernout E, Soize C (2008) Design optimization
with an uncertain vibroacoustic model. Journal of Vibra-
tion and Acoustics 130:021,001, DOI 10.1115/1.2827988

7. Capiez-Lernout E, Soize C (2008) Robust design opti-
mization in computational mechanics. Journal of Applied
Mechanics 75:021,001, DOI 10.1115/1.2775493

8. Capiez-Lernout E, Soize C (2008) Robust updating
of uncertain damping models in structural dynam-
ics for low- and medium-frequency ranges. Mechani-
cal Systems and Signal Processing 22:1774–1792, DOI
10.1016/j.ymssp.2008.02.005

9. Chatjigeorgiou IK (2013) Numerical simulation of the
chaotic lateral vibrations of long rotating beams. Applied
Mathematics and Computation 219:5592–5612, DOI
10.1016/j.amc.2012.11.076

10. Chevallier A (2000) Nonlinear Stochastic Drilling Vibra-
tions. Ph.D Thesis, Rice University, Houston

11. Cull SJ, Tucker RW (1999) On the modelling of Coulomb
friction. Journal of Physics A: Mathematical and General
32:2103–2113, DOI 10.1088/0305-4470/32/11/006

12. Cunha Jr A (2015) Modeling and Uncertainty Quantifi-
cation in the Nonlinear Stochastic Dynamics of a Hori-
zontal Dsrillstrings. D.Sc. Thesis, Pontif́ıcia Universidade
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Abstract. This paper presents a model to describe the nonlinear dynamics of a drillstring in
horizontal configuration, which is intended to correctly predict the three-dimensional dynamics
of this complex structure. This model uses a beam theory, with effects of rotatory inertia
and shear deformation, which is capable of reproducing the large displacements that the beam
undergoes. Also, it considers the effects of torsional friction and normal shock due to the
transversal impacts between the rotating beam and the borehole wall, as well as, the force and
the torque induced by the bit-rock interaction. This is done as a first effort to solve a robust
optimization problem, which seeks to maximize the rate of penetration of the drillstring into
the soil, to reduce the drilling process costs. Numerical simulations reported in this work shown
that the developed computational model is able to quantitatively well describe the dynamical
behavior of a horizontal drillstring, once its reproduces some phenomena observed in real drilling
systems, such as bit-bounce, stick-slip, and transverse impacts.
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1 INTRODUCTION

A drillstring is a device, used to drill oil wells, which presents an extremely com-
plex three-dimensional nonlinear dynamics. The dynamical system associated with this
physical system involves the nonlinear coupling between three different mechanisms of vi-
bration (longitudinal, transverse, and torsional), as well as lateral and frontal shocks, due
to drill-pipes/borehole and drill-bit/soil and impacts respectively (Spanos et al., 2003).
Traditionally, a drillstring configuration is vertical, but directional or even horizontal con-
figurations, where the boreholes are drilled following a non-vertical way, are also possible.

Once oil drilling a topic of great relevance in the context of engineering, the dynamics
of a vertical drillstring has been studied in several works (Chevallier, 2000; Ritto et al.,
2009, 2010; Chatjigeorgiou, 2013; Liu et al., 2013; Depouhon and Detournay, 2014). How-
ever, although of most of the oil wells today be drilled with columns using non-vertical
configurations, very few papers in the open literature models drillstring in directional
configurations (Sahebkar et al., 2011; Hu et al., 2012; Ritto et al., 2013).

Aiming to fill the gap in the scientific literature on horizontal drillstring dynamics,
this work presents the modeling of a drillstring in a horizontal configuration. This model
takes into account the three-dimensional dynamics of the structure, as well as the transver-
sal/torsional effects of shock, which the structure is subject due to the impact with the
borehole wall. Also, the model considers the bit-rock interaction effects, and the weight
of the drilling fluid.

This rest of this paper is organized as follows. The mathematical modeling of the
nonlinear dynamics appears in section 2. Then, in section 3, the results of numerical
simulations are presented and discussed. Finally, in section 4, the main conclusions are
emphasized and some directions for future work outlined.

2 MATHEMATICAL MODELING

2.1 Mechanical system of interest

The mechanical system of interest in this work is sketched in Figure 1. It consists of
a horizontal rigid pipe (illustrated as the pair of stationary rigid walls), perpendicular
to gravity acceleration g, which contains in its interior a deformable tube under rotation
(rotating beam), subjected to three-dimensional displacements. This deformable tube
has a length L, cross section area A, and is made of a material with mass density ρ,
elastic modulus E, and Poisson ratio ν. It loses energy through a mechanism of viscous
dissipation, proportional to the mass operator, with damping coefficient c. Inside the
tube there is a fluid without viscosity, with mass density ρf . Concerning the boundary
conditions, the rotating beam is blocked for transversal displacements in both extremes;
blocked to transversal rotations on the left extreme; and, on the left extreme, has a
constant angular velocity around x equal to Ω, and an imposed longitudinal velocity V0.

2.2 Beam theory

The beam theory adopted takes into account the rotatory inertia and shear deforma-
tion of the beam cross section. Also, as the beam is confined within the borehole, it is
reasonable to assume that it is undergoing small rotations in the transverse directions.
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Figure 1: Schematic representation of the rotating beam which models the horizontal drillstring.

By another hand, large displacements are observed in x, y, and z. Therefore, the
analysis that follows uses a beam theory which assumes large rotation in x, and large
displacements the three spatial directions, which couples the longitudinal, transverse and
torsional vibrations (Bonet and Wood, 2008).

Regarding the kinematic hypothesis adopted for the beam theory, it is assumed that
the three-dimensional displacement of a beam point, occupying the position (x, y, z) at
the instant of time t, can be written as

ux(x, y, z, t) = u− yθz + zθy, (1)

uy(x, y, z, t) = v + y (cos θx − 1)− z sin θx,

uz(x, y, z, t) = w + z (cos θx − 1) + y sin θx,

where letters u, v, and w are used to denote the displacements of a beam neutral fiber
point in x, y, and z directions, respectively, while θx, θy, and θz represent rotations of the
beam around the x, y, and z axes respectively. Note that these quantities depend on the
position x and the time t.

2.3 Friction and shock effects

This rotating beam is also able to generate normal shocks and torsional friction in
random areas of the rigid tube, which are respectively described by the Hunt and Cross-
ley shock model Hunt and Crossley (1975), and the standard Coulomb friction model.
Therefore, the force of normal shock is given by

FFS = −kFS1 δFS − kFS2 δ
3
FS − cFS |δ|3δ̇FS, (2)

and the Coulomb frictional torque by

TFS = −μFS FFS Rbh sgn
(
θ̇x

)
. (3)

In the above equations, kFS1 , kFS2 and cFS are constants of the shock model, while
μFS is a friction coefficient, Rbh is the borehole radius, and sgn (·) the sign function.
The ˙ is an abbreviation for time derivative, and the parameter δFS = r − gap, where
r =

√
v2 + w2, is dubbed indentation, and is a measure of penetration in the wall of a

beam cross section, such as illustrated in Figure 2.
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Figure 2: Illustration of the indentation parameter in a situation without impact (left) or with impact
(right).

2.4 Bit-rock interaction effects

At the right extreme of the rotating beam act a force and a torque, which emulate the
effects of interaction between the drill-bit and the soil. They are respectively given by

FBR =

⎧⎨
⎩ΓBR

(
exp

(
−αBRu̇(L, ·)

)
− 1

)
, for u̇(L, ·) > 0 (4)

0, for u̇(L, ·) ≤ 0

and

TBR = −μBR FBR ξBR

(
θ̇x

)
, (5)

where ΓBR is the bit-rock limit force; αBR is the rate of change of bit-rock force; μBR

bit-rock friction coefficient; and ξBR is a regularization function, which takes into account
the dimension of length, to the Eq.(5) gives a torque. The expression for the bit-rock
interaction models above were, respectively, proposed by Ritto et al. (2013) and Khulief
et al. (2007).

2.5 Variational formulation of the nonlinear dynamics

Using a modified version of the extended Hamilton’s principle, to include the effects
of dissipation, one can write the weak form of the nonlinear equation of motion of the
mechanical system as

M
(
ψ, Ü

)
+ C

(
ψ, U̇

)
+K (ψ,U ) = FNL

(
ψ,U , U̇ , Ü

)
, (6)

where M represents the mass operator, C is the damping operator, K is the stiffness
operator, and FNL is the nonlinear force operator. Also, the field variables and their
weight functions are lumped in the vectors fields U =

(
u, v, w, θx, θy, θz

)
, and ψ =(

ψu, ψv, ψw, ψθx , ψθy , ψθz

)
.
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The above operators are respectively defined by

M
(
ψ, Ü

)
=

∫ L

x=0

ρA (ψu ü+ ψv v̈ + ψw ẅ) dx + (7)∫ L

x=0

ρf Af (ψv v̈ + ψw ẅ) dx +∫ L

x=0

ρ I4

(
2ψθx θ̈x + ψθy θ̈y + ψθz θ̈z

)
dx,

C
(
ψ, U̇

)
=

∫ L

x=0

c ρA (ψu u̇+ ψv v̇ + ψw ẇ) dx + (8)∫ L

x=0

c ρ I4

(
2ψθx θ̇x + ψθy θ̇y + ψθz θ̇z

)
dx,

K (ψ,U ) =

∫ L

x=0

E Aψ′
u u

′ dx + (9)∫ L

x=0

E I4

(
ψ′
θy θ

′
y + ψ′

θz θ
′
z

)
dx +∫ L

x=0

2κs GI4 ψ
′
θx θ

′
x dx +∫ L

x=0

κs GA
((

ψθy + ψ′
w

) (
θy + w′)+ (

ψθz − ψ′
v

) (
θz − v′

))
dx,

and

FNL

(
ψ,U , U̇ , Ü

)
= FKE

(
ψ,U , U̇ , Ü

)
+ FSE (ψ,U ) + (10)

FFS (ψ,U ) + FBR

(
ψ, U̇

)
+ FG (ψ) ,

where

FKE = −
∫ L

x=0

2 ρ I4 ψθx

(
θy θ̈z + θ̇y θ̇z

)
dx (11)

+

∫ L

x=0

2 ρ I4 ψθy

(
θy θ̇

2
z + θ̇x θ̇z

)
dx

−
∫ L

x=0

2 ρ I4 ψθz

(
θy θ̈x + θ2y θ̈z

)
dx

−
∫ L

x=0

2 ρ I4 ψθz

(
θ̇x θ̇y + 2 θy θ̇y θ̇z

)
dx

is a nonlinear force due to inertial effects;
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FSE =

∫ L

x=0

(
ψθx Γ1 + ψθy Γ2 + ψθz Γ3

)
dx + (12)∫ L

x=0

(
ψ′
u Γ4 + ψ′

v Γ5 + ψ′
w Γ6

)
dx +∫ L

x=0

(
ψ′
θxΓ7 + ψ′

θy Γ8 + ψ′
θz Γ9

)
dx,

is a nonlinear force due to geometric nonlinearity;

FFS =

Nnodes∑
m=1

(
FFS (v ψv + wψw) /r + TFS ψθx

) ∣∣∣
x=xm

, (13)

is a nonlinear force due to the effects of friction and shock;

FBR = FBR ψu

∣∣∣
x=L

+ TBR ψθx

∣∣∣
x=L

, (14)

is a nonlinear force due to the bit-rock interaction; and

FG = −
∫ L

x=0

(
ρA+ ρf Af

)
g ψw dx, (15)

is a linear force due to the gravity. The nonlinear functions Γn, with n = 1, · · · , 9, in
Eq.(12) are very complex and, for sake of space limitation, are not presented here. See
Cunha Jr (2015) for details.

The weak form of the initial conditions reads

M
(
ψ,U (0)

)
= M (ψ,U0) , (16)

and

M
(
ψ, U̇ (0)

)
= M

(
ψ, U̇0

)
, (17)

where U0 and U̇0, respectively, denote the initial displacement, and the initial velocity
fields.

The model presented above is an adaptation, for the case of horizontal drillstrings, with
some variations in the friction and shock treatment, of the model proposed by Ritto et al.
(2009) to describe the nonlinear dynamics of vertical drillstrings.

2.6 Discretization of the model equations

The Eqs.(6), (16) and (17) are discretized by means of the standard finite element
method (Hughes, 2000), using an interdependent interpolation scheme (Reddy, 1997),
which adopts affine functions for the axial displacement/torsional rotation, and Hermite
cubic polynomials for the transverse displacements/rotations.
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Therefore, one arrives in the following initial value problem

[M ] Q̈(t) + [C] Q̇(t) + [K]Q(t) = F
(
Q(t), Q̇(t), Q̈(t)

)
, (18)

and

[M ]Q(0) = Q0, and [M ] Q̇(0) = Q̇0, (19)

where Q(t) is the nodal displacement vector (translations and rotations), Q̇(t) is the
nodal velocity vector, Q̈(t) is the nodal acceleration vector, [M ] is the mass matrix, [C] is
the damping matrix, [K] is the stiffness matrix, and F is a nonlinear force vector, which
contains contributions of an inertial force and a force of geometric stiffness.

The geometric boundary conditions are included as constraints, via the method of
Lagrange multipliers. Nominally, they are the velocity of translation, V0, and the velocity
of rotation, Ω, which are imposed at the left end of the beam.

2.7 Reduction of the nonlinear dynamics

To reduce the computational cost of the simulations, the initial value problem of
Eqs.(18) and (19) is projected in a vector space of dimension Nred, spanned by the linear
modes associated to the conservative part of the underlying linear dynamical system. This
results in the reduced initial value problem given by

[M ] q̈(t) + [C] q̇(t) + [K] q(t) = f
(
q(t), q̇(t), q̈(t)

)
, (20)

and

q(0) = q0, and q̇(0) = q̇0, (21)

which is integrated using the Newmark method (Newmark, 1959), and the nonlinear
system of algebraic equations, resulting from the time discretization, is solved by a fixed
point iteration.

3 RESULTS AND DISCUSSION

In order to simulate the nonlinear dynamics of the mechanical system, the physical
parameters presented in the Table 1 are adopted, as well as the length L = 35 m, the ro-
tational and axial velocities in x, respectively given by Ω = 2π rad/s, and V0 = 1/720m/s.
For the geometry discretization, 105 finite elements are used. This results in FEM model
with 636 degrees of freedom. In the reduced order model, 51 DOF are considered.

The dynamics is investigated for a “temporal window” of 90s, with a nominal time step
Δt = 69 ms, which is refined whenever necessary to capture the effects of shock. For the
initial conditions, the static equilibrium configuration of the beam is adopted.

The drill-bit longitudinal displacement and velocity, can be seen in Figure 3. It is
noted that, during the interval of analysis, the column presents an advance in the forward
direction with small axial oscillations. These axial oscillations, which are more pronounced
in the velocity curve, correspond to the vibration mechanism known as bit-bounce, where
the drill-bit loses contact with the soil and then hits the rock abruptly. This phenomenon
is widely observed in real systems (Spanos et al., 2003).
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Table 1: Physical parameters of the mechanical system that are used in the simulation.

parameter value unit

ρ 7900 kg/m3

ρf 1200 kg/m3

E 203 GPa
ν 0.3 —

Rint 40 mm
Rext 60 mm
Rbh 70 mm
c 0.03 —
g 9.81 m/s2

kFS1 1× 1010 N/m
kFS2 1× 1016 N/m3

cFS 1× 10 9 (N/m3)/(m/s)
μFS 1× 10−5 —
ΓBR 250 kN
αBR 180 1/(m/s)
μBR 400× 10−4 —
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Figure 3: Illustration of the drill-bit displacement (left) and of the drill-bit velocity (right).

The drill-bit rotation and angular velocity, can be seen in Figure 4. What it is observed
now is a almost monotonic rotation. However, when one looks to the angular velocity, it
is possible to see packages of fluctuations with amplitude variations that can reach up to
four orders of magnitude. This indicates that the drill-bit undergoes a blockage due to the
torsional friction, and then it is released subtly, so that its velocity is sharply increased,
in a stick-slip phenomenon type. This is also seen experimentally (Spanos et al., 2003) in
real drilling systems.

The evolution of the radial displacement, for x = 20, of the beam cross-section can be
seen in the Figure 5. Analyzing this figure it is clear that transverse impacts between the
drillstring and the borehole wall occur during the drilling process, which is also reported
experimentally (Spanos et al., 2003).
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Figure 4: Illustration of the drill-bit rotation (left) and of the drill-bit angular velocity (right).
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Figure 5: Illustration of the beam radial displacement for x = 20 m.

4 CONCLUDING REMARKS

A model was developed in this work to describe the nonlinear dynamics of horizontal
drillstrings. The model uses a beam theory, with effects of rotatory inertia and shear
deformation, which is capable of reproducing the large displacements that the beam un-
dergoes. This model also considers the effects of friction and shock due to the transversal
impacts between the beam and the borehole wall, as well as, the force and the torque
induced by the bit-rock interaction.

Numerical simulations reported in this work shown that the developed computational
model is able to quantitatively well describe the dynamical behavior of a horizontal drill-
string, once its reproduces some phenomena observed in real drilling systems, such as
bit-bounce, stick-slip, and transverse impacts.
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In a future work, the authors intend to develop a stochastic modeling of the nonlinear
dynamics of horizontal drillstrings, in order to quantify the uncertainties associated with
this problem, which are due to the variability of its parameters (Schuëller, 2007), and/or
epistemic in nature, i.e., result of the ignorance about the physics of the problem (Soize,
2013). Also, in a next step, they want to solve an robust optimization problem, which
seeks to maximize the rate of penetration of the column into the soil (Ritto et al., 2010).
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