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Abstract. The B0
(s) → `¯̀ decays are generated by Flavor Changing Neutral Currents, hence

they can proceed only through loop processes. For this reason, and because of an additional
helicity suppression, their branching ratios are predicted to be very small in the Standard Model
(SM). Nevertheless their rates can be modified by the appearance of New Physics (NP) particles
inside the loops. In SM their rates are predicted with a very small uncertainty, and from
the comparison between the measured values and their theoretical prediction hints on the NP
realization patterns can be inferred. A part of the original work presented in this thesis has
been devoted to the optimization of the Multi Variate Analysis (MVA) classifier for the search
of the B0

(s) → µ+µ− with the full dataset collected at LHCb during the first run of the LHC
(corresponding to an integrated luminosity of ∼ 3fb−1). This dataset has also been combined
with the one collected by the CMS experiment to obtain the first observation of B0

s → µ+µ−. In
view of the update of the analysis aiming to improve the sensitivity for the B0 → µ+µ− mode,
a new isolation variable, exploiting a topological vertexing algorithm, has been developed and
additional studies for a further optimization of the MVA classifier performances have been done.
Another original part of the work presented in this thesis concerns the definition of an analysis
chain for the search of the B0

(s) → τ+τ− modes, which are still largely unexplored. In this thesis
the final state where both τ go into three charged π and a ντ has been studied. The presence
of two ν in the final state of the decay makes the reconstruction of the τ momenta of the two
τ . Nevertheless the possibility of measuring the two decay vertexes of the τ , as well as the B
candidate production vertex, allows to impose geometrical constraints that can be used in the
reconstruction of the τ momenta. In particular, a new algorithm for the full reconstruction of
each event of these momenta and of related variables has been presented and discussed.
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Resumé. Les désintégrations rares B0
(s) → `¯̀ sont générées par des courants neutres avec

changement de la saveur. Pour cette raison, ainsi qu’à cause de la suppression d’hélicité, leurs
taux de désintégration sont très petits dans le Modèle Standard (MS), mais la présence de par-
ticules virtuelles de Nouvelle Physique peut radicalement modifier cette prédiction. Dans le
MS la prédiction théorique des taux de désintégration est très précise, et la comparaison des
valeurs mesurées avec ces prédictions théoriques peuvent donner des indications sur la structure
de la Nouvelle Physique. Une partie du travail original présenté dans cette thèse est dédié à
l’optimisation de l’algorithme d’Analyse Multi Varié (MVA) pour la recherche de la désintégra-
tion B0

(s) → µ+µ− avec l’échantillon collecté par l’expérience LHCb pendant la première période
de fonctionnement du LHC. Cet échantillon a été combiné avec celui collecté par l’expérience
CMS et pour la première fois la désintégration B0

(s) → µ+µ− a été observée. En vue d’améliorer
la sensibilité au mode B0 → µ+µ−, une nouvelle variable d’isolation, qui utilise un algorithme
de reconstruction topologique inclusif, a été développée. De nouvelles études ont également
été menées pour augmenter la performance des analyses multivariées. Une autre partie du tra-
vail original présenté dans cette thèse concerne la définition d’une chaine de sélection pour la
recherche des désintégrations B0

(s) → τ+τ−, qui restent encore inexplorées. Dans cette thèse
l’état final où les deux τ vont en trois π chargées et un τ est étudié. La présence des deux ν
dans l’état final de la désintégration rend difficile une reconstruction des impulsions des deux τ .
Cependant, la possibilité de mesurer les deux vertex de désintégration des τ ainsi que le vertex
d’origine du candidat B, permet d’imposer des contraintes géométriques qui peuvent être util-
isées dans la reconstruction des impulsions des deux τ . En particulier, un nouvel algorithme pour
la reconstruction complété, événement par événement, de ces impulsions et de leurs variables
associées est présenté et discuté.
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Chapter 1

Introduction and motivations

This chapter introduces the theoretical framework and the main reasons motivating the searches
for B0

(s) → `¯̀ decays.
After a summary of the main concepts needed to build the Standard Model (SM) of ele-

mentary particles (Sec.1.1.1), its specific aspects will be presented (Sec.1.1.2). The Operator
Product Expansion (OPE) approach will be introduced in Sec.1.2.1, and this formalism will
be applied to the study of the observables of the B0

(s) → `¯̀ processes (Sec.1.2.2). The current
experimental status will also be reviewed in Sec.1.2.4.

1.1 Successes and limitations of the Standard Model

The Standard Model of elementary particles physics is the theory currently used to describe
interactions between the elementary particles observed. Far away from being a complete satis-
factory model, its predictions have been nonetheless tested at an impressive level of accuracy.

In this section a pedagogical overview of the SM of elementary particle physics will be
presented, together with the main motivations to look for its extensions. For a more complete
and systematic presentation of the SM the reader is referred to Refs.[1, 3].

1.1.1 The Standard Model of elementary particles physics

The formal framework the SM is based on, is the Quantum Field Theory (QFT): particles are
associated to the fluctuations of a related field, i.e. a set of functions defined on the four-
dimensional space-time:

particle ↔ Φ(xµ) ≡ {φi(xµ)} .

The number of components of the field Φ(xµ) is determined by the spin of the related
particle; the components {φi(xµ)} of each field transform linearly into each other according to a
representation of the Lorentz group (SU(2)⊗ SU(2)) corresponding to the spin of the particle.

The Lagrangian. According to the principles of classical mechanics, the dynamic and the
evolution of the fields are determined by the stationary points of the action S defined as the
integral over the space time of a Lagrangian density L,

S ≡
∫
d4xL . (1.1)

L is given by the difference between a kinetic term Lkin and a potential V, i.e.

L ≡ Lkin − V , (1.2)

1



both of them expressed as a function of the dynamical degrees of freedom of the theory, namely
the set {ψi} of fields related with each observed elementary particle. In particular the kinetic
term is quadratic in the fields ψ and contains at least one derivative of the fields, while the
potential is usually a polynomial of degree greater than 3 in the fields {ψi} and, possibly, of
their derivatives.

A particle is described by the fluctuation of the field around a configuration, called vacuum
state, which minimizes the potential V({ψi}).

By means of the QFT and symmetry principles, the SM describes the dynamic of the so far
observed elementary particles. These can be divided into three categories: the matter fields, the
vector bosons, and the Higgs boson. They will be presented in the following.

Matter fields. The matter fields are associated with the spin 1
2 elementary particles. All

massive elementary spin 1
2 particles can exist in two states of chirality: left or right. This

translates into the fact that the field ψ (also called spinor) associated to the fermion can be
expressed as the sum of two more fundamental objects, called chiral (or Weyl) spinors ψL,R,
defined by the chirality operators PL,R:

PL,R ≡
1∓ γ5

2 , (1.3)

as follows

ψL,R ≡
1∓ γ5

2 ψ . (1.4)

These states transform each other under a parity transformation ~x→ −~x.
Only massless fermions are eigenstates of chirality, while massive particles always exist in a

superposition of the two chirality states.
The kinetic term of the lagrangian describing a generic fermion field is given by the Dirac

term (σµ ≡ (1, σi), σ̄µ ≡ (1,−σi) where σi are the common Pauli matrices)

Lfermionkin = iψ̄L∂µσ̄
µψL + iψ̄R∂µσµσ̄

µψR . (1.5)

The effects of the particle mass in the lagrangian are described by a term quadratic in the
field in the form

Lmass = −mψψ̄LψR + h.c. . (1.6)

The most simple way to take into account the mass of the particle, is to insert it “as it
is”, i.e. by adding the “hard” mass term of eq.(1.6). Nevertheless, this terms couples the left
and right handed components of the fermionic field, and as it will be shown in the following, is
inconsistent with the requirement of the invariance of the SM Lagrangian under the action of
a given symmetry group. This is one of the hints suggesting that the masses of the elementary
matter fields (as well as of the gauge bosons, that will be introduced later) are generated in a
dynamical way, through the so-called Higgs mechanism, described later on.

The matter fields are classified into two families: leptons and quarks. Both feature the same
structure, consisting of three replicas (or flavors) of the same pattern of fields:

• the basic pattern in the quark sector consists of an up type (with electric charge qu = +2
3)

and a down type (with electric charge qd = −1
3) quarks. Both being massive, they exist in

the two chirality states, and, for reasons that will be clear soon, they can be arranged into
a left doublet QL = (uL, dL) and two right singlets uR, and dR. Each quark field exists in
turn in three states of an additional color charge.

This is the Dirac mass term for a fermion. There is also a second way to include the mass of a fermion which
needs only one chiral spinor. This is the so-called Majorana mass term, and could be relevant to include the
effects of the neutrino masses, for whose existence there are experimental evidences.

2



• the leptonic sector contains the charged lepton ` (which has an electric charge q` = −1 and
is described by its two chirality states `R and `L) and its neutrino ν`. In the minimal SM
neutrinos are massless and thus exist in only one chirality state, which has been observed
as the left handed one ν`L. As for the quark sector, these states are usually grouped into a
left doublet LL = (ν`L, `L) and the right singlet `R. The three replicas are called electron
(e), muon (µ), and tau (τ) families. Leptons are neutral with respect to the color charge.

Each elementary particle introduced above comes with its own antiparticle

Multiplets and symmetries. As already anticipated, the elementary fields introduced before
are arranged into different multiplets, whose elements transform linearly into each other under
the action of a given transformation which has the mathematical structure of a Lie group (in
more formal terms, this is expressed by saying that fields belongs to irreducible representations
of some transformation groups). To each elementary field a given charge is associated, which
tells if the field, or the multiplet it belongs to, is affected by a given transformation.

The transformations defined by a Lie group are parametrized by a set of parameters, one for
each generator (i.e. independent actions) of the transformation group.

In general, transformations can be divided in two categories:

• global: where the parameters describing the transformation are constants, i.e. they do not
depend on the particular space-time point.

• gauge (or local): where the parameters are functions of the space-time. A gauge transfor-
mation is also a global transformation, while the viceversa is not true.

The Noether theorem [4] establishes a connection between continuous symmetries among the
degrees of freedom of a system and the existence of conserved charges. In particular it states
that for each invariance of the Lagrangian under a global transformation acting on its degrees of
freedom Ψ there exist:

• a current Jµ(Ψ) whose four-divergence is zero, i.e. ∂µJµ(Ψ) = 0

• a conserved charge Q(Ψ) ≡
∫
dx0J0(Ψ), i.e. ∂tQ(Ψ) = 0.

In other words, the impossibility of distinguishing between two configurations, say Ψ and Ψ′,
of the fields, related each other by a transformation under a given group (i.e.Ψ↔ Ψ′) leads to
the existence of quantities which are conserved. The viceversa is also true, i.e. the observation
of quantities which are conserved in the evolution of a given system is an indication of a global
symmetry between its degrees of freedom.

So for instance, the fact that the total number of leptons of each flavor is conserved in their
interactions is a clear indication of a symmetry of the lagrangian involving these fields (or , at
least, some of their components). For that reason, the charged leptons ` and their neutrinos ν`
enter the lagrangian as a (left) doublet in a form which is invariant under global transformations
mixing these fields.

The lagrangian of the SM is required to be invariant under transformations of the fields
generated by the actions of the group

SU(3)c ⊗ SU(2)L ⊗ U(1)Y : (1.7)

• the color group SU(3)c acts on the color multiplet of the quarks

An important remark concerns the fact that the quark and leptonic sectors are completely decoupled, in the
sense that there are no transformations which mix quarks and leptons together.
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Field SU(3)c SU(2)L U(1)Y

QiL =
(
uiL
diL

)
3 2 1/6

uiR 3 1 2/3
diR 3 1 -1/3

LiL =
(
νi`
`iL

)
1 2 −1/2

`iR 1 1 -1

Table 1.1: Properties of the elementary fermions. The index i refers to the flavor, and goes from
1 to 3.

• the electroweak group SU(2)L ⊗ U(1)Y acts on all the elementary fields and is factorized
into the SU(2)L sub-group, which acts only on the left doublets (and for that reason is
responsible of the parity violation of the weak interactions), and the hypercharge rotation
U(1)Y which acts on both left and right handed fields.

In Tab.1.1 the quantum numbers of the elementary fermions are summarized. As far as their
quantum numbers are concerned, there are no distinctions between the different families both
in the leptonic and in the quark sectors.

The fact that the mass term in eq.(1.6) couples the left and right handed components of the
fermion fields makes this term not invariant under the action of the chiral group SU(2)L, which
affects the left component of the field while leaving the right one unchanged. In addition, the
fact that the SU(2)L transformations mix particles with different masses (i.e. `L ↔ ν`,L and
uL ↔ dL), is an additional indication that masses cannot be described through the lagrangian
term in eq.(1.6), and their introduction in the SM lagrangian requires a more subtle mechanism.
Thus, in the SM all elementary matter fields enter the lagrangian as massless fields, i.e. only
through the term (1.5).

Symmetries and interactions. The main feature of the SM is that interactions between
particles arise as a natural consequence of symmetries among them. In particular, in the SM the
transformations generated by the group (1.7) are required to be a gauge symmetry of the world,
namely of the SM lagrangian. In other terms this means that at each point of the space and
at each time the matter fields can be transformed (according to the symmetry group and the
representation they belong to) into each other in different ways, still leaving the world invariant.

This requirement has two fundamental consequences:

• new spin-1 particles must exist. These particles are associated to the fluctuations of the
so-called gauge connections of the symmetry group (1.7) of the SM.

• interactions between the fermions and these particles arise.

From a formal point of view, these gauge-connections are introduced to make the kinetic
derivative term (1.5) invariant when fields are transformed according to a local transformation,
i.e.

Ψi(xµ)→Mij(xµ)Ψj(xµ) (1.8)
where Ψi(xµ) denotes the set of all matter fields,M is the transformation matrix acting on

them, and a sum over repeated indexes is implied.
The kinetic term of the lagrangian is invariant under the action of a constant transformation

matrix M, because of the fact that Ψ̄ and Ψ bring respectively “factors” M−1 and M which
give the identity matrix when multiplied by each other. In a symbolic way:
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ψ̄∂ψ →M−1ψ̄∂Mψ = (M−1M)ψ̄∂ψ = ψ̄∂ψ (1.9)

On the other hand, this is no more true for a space-time dependent matrix, because then the
derivative will also act on the elements of the matrixM which can not be factorized anymore.
The invariance under local transformations can still be recovered if the derivative ∂µ is replaced
by the so-called covariant derivative, i.e.

∂µ → Dµ ≡ ∂µ − igsGaµta − ig2W
b
µT

t − ig1BµY (1.10)

where

• ta (a = 1, 2, ..., 8) are the SU(3)c generators, T t (t = 1, 2, 3) are the generator of SU(2)L
and Y is the generator of U(1)Y

• gs, g1, and g2 are the gauge-couplings

• Gaµ, W t
µ, Bµ are the gauge connections. These fields describe the eight gluons mediating

the strong force, and four electroweak gauge bosons: W 1,2,3 and B, respectively for the
chiral SU(2)L and hypercharge U(1)Y sub-groups. These gauge connection are in turn
representation of the respective transformation group, which transform in the so-called
adjoint representation of the group. Being four-vectors these field transform as a spin-1
representation of the Lorentz group.

With the replacement ∂µ → Dµ the transformation law (1.9) is true also for local transfor-
mations, i.e. :

ψ̄Dψ →M(x)−1ψ̄DM(x)ψ = (M(x)−1M(x))ψ̄Dψ = ψ̄Dψ (1.11)

When replacing the derivative ∂µ with the covariant derivative Dµ in the Dirac lagrangian,
new interaction terms appear. These are given by the product of a Lorentz four vector fermion-
antifermion bilinear (also called current) contracted with the gauge connections. Depending
on the electric charge of the gauge boson which couples with the fermion current, there can
be neutral or charged currents. An important remark concerns the fact that these terms are
diagonal in the flavor space, both for quarks and for leptons.

In order to allow for gauge fields to propagate, a kinetic (gauge invariant!) term for these
fields Lgauge is added to the fermionic lagrangian:

Lgauge = −1
4F

a
µνF

aµν (1.12)

where F aµν is the so-called field strength and is defined for the generic gauge connection Fµ
of a group symmetry with structure constants fabc as

F aµν ≡ ∂µF aν − ∂νF aµ − fabcF bµF cν . (1.13)

The observation that weak forces have a short range requires the introduction of a mass term
for the electroweak gauge connections. Nevertheless the requirement of the invariance under the
gauge group (1.7) does not allow for a hard mass term in the form

Lmassgauge bosons = m2
F

2 FµF
µ . (1.14)

As for fermions, the masses of the gauge bosons must be generated dynamically, as it is explained
in the following paragraphs.

This is the representation with the same dimension of the group.

5



Field SU(3)c SU(2)L U(1)Y

Φ =
(
φ+

φ0

)
1 2 -1/2

Table 1.2: Quantum numbers of the Higgs field with respect to the gauge group of the SM.

Higgs field and spontaneous breaking of the electroweak symmetry The lagrangian
obtained from (1.5) with the replacement (1.10) and by adding the kinetic term (1.12) does not
take yet into account the fact that particles have masses. It consists only of a kinetic term and
of the interaction terms between matter and the gauge bosons, but it does not yet contain the
quadratic term in the fields needed to take into account the mass in the evolution of the fields. In
the SM the masses of the particles are generated by the Higgs-Brout-Englert mechanism [5, 6].

A SU(2)L doublet of scalar complex fields Φ (neutral under SU(3)c transformations) is
introduced:

Φ =
(
φ+

φ0

)
. (1.15)

The quantum numbers with respect to the gauge symmetry group are reported in Tab.1.2.
The dynamic of this field is described by the following lagrangian term

LHiggs = (DµΦ)†(DµΦ)− V (Φ†Φ) (1.16)

containing a kinetic term for Φ plus a potential V (Φ†Φ), quadratic in the field Φ:

V (Φ†Φ) = µ2(Φ†Φ) + λ(Φ†Φ)2 (1.17)

where µ2 and λ are two real parameters.

If µ2 > 0, the potential (1.17) has a unique minimum Φ̄ =
(

0
0

)
. If instead µ2 < 0, V (Φ†Φ)

has several minima and the Higgs field gets a non vanishing vacuum expectation value (vev)
which can be cast in the standard form:

Φ̄ =
(

0
v/
√

2

)
(1.18)

where v ≡
√
−µ2

λ .
Among the known particles, the Higgs field, being a scalar, is the only one that can have a

non vanishing vev.
No matter the sign of the µ2 parameter, the Higgs potential is symmetric under the elec-

troweak group SU(2)L⊗U(1)Y . Nevertheless, depending on the sign of µ2 the ground state can
or not respect the symmetry of the potential. In particular, the vacuum state for µ2 > 0 exhibits
the same symmetry of the potential, while this does not happen if µ2 < 0. In this case, indeed,
the vacuum state breaks the symmetry of the lagrangian. This situation where the symmetry
of the lagrangian is not preserved by its vacuum state is called spontaneous symmetry breaking
(SSB).

Indeed, any non scalar field acquiring a non vanishing vev would violate the assumed Lorentz invariance of
the vacuum state.

This case is also referred to as a symmetry realized à la Wigner-Weyl.
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SSB and Higgs mechanism: bosons and fermion masses. The SSB of the electroweak
group allows to introduce in the theory the mass terms both for fermions and for gauge bosons.

By requiring in the Higgs potential (1.17) µ2 < 0, the Higgs field gets a non-zero vev and
can then be cast in the form:

Φ = Φ̄ + δΦ (1.19)

with δΦ the fields describing the fluctuation of the Higgs field around its vacuum state.
The covariant derivative in eq.(1.16) gives rise to quadratic terms in the electroweak gauge

bosons:

L(2)
gaugebosons = g2

2v
2

8 (W 1W 1 +W 2W 2) + v2

8 (g2W
3 − g1B)2 (1.20)

plus interaction terms between them and the Higgs field fluctuation δΦ.
The fields W 1,2 can be arranged as

W±µ =
W 1
µ ± iW 2

µ√
2

(1.21)

giving the fields associated to the W± vector bosons. Their mass is given by

mW = g2v

2 . (1.22)

The second term in eq.(1.20) can be diagonalized in order to obtain the mass eigenstates.
The two eigenvectors are given by

Zµ = W 3
µ cos θW −Bµ sin θW (1.23)

Aµ = W 3
µ sin θW +Bµ cos θW . (1.24)

where the sine and cosine of the mixing angle θW (also called “Weinberg angle”) are defined
as:

sin θW = g1√
g2

1 + g2
2

, cos θW = g2√
g2

1 + g2
2

. (1.25)

The combination Zµ is associated with the Z0 boson, while the Aµ with the photon.
The masses of these two eigenstates are:

mZ = MW

cos θW
(1.26)

mγ = 0 . (1.27)

Only the SU(3)c gauge connections remain massless because the Higgs field does not couple
with them.

Mass terms for the fermion fields can be introduced in the lagrangian of the SM by adding
an interaction term between the fermions and the Higgs fields. This interaction takes the form
of a Yukawa term

LY ukawa = Y ij
u ū

i
RΦT εQjL − Y

ij
d d̄

i
RΦ†QjL − Y

ij
`

¯̀i
RΦ†LjL + h.c , (1.28)

where

• i, j are indexes on the flavor space, while color indexes are implied

• ε ≡
(

0 1
1 0

)
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• Y ij
u , Y

ij
d , Y

ij
` are three generic 3 × 3 matrices in the flavor space, parameterizing the

strength of the coupling of the Higgs with the fermion fields. These matrices generate the
differences between the different flavors in the quark and in the leptonic sector.

The interaction term in eq.(1.28) is invariant under the SM gauge symmetry group. By
expanding the Yukawa lagrangian around the non vanishing vev of the Higgs field Φ̄, the in-
teraction between Φ and the fermion fields provides mass terms for the fermions trough the
following three matrices:

M ij
u = vY ij

u /
√

2 (1.29)
M ij
d = vY ij

d /
√

2 (1.30)
M ij
` = vY ij

` /
√

2 (1.31)

plus interaction terms between fermions and δΦ in the form

LY ukawa = Y ij
u ū

i
RδΦT εQjL − Y

ij
d d̄

i
RδΦ†Q

j
L − Y

ij
`

¯̀i
RδΦ†L

j
L + h.c (1.32)

Because the matrices Y ij are not diagonal the flavor and mass eigenstates are not aligned. The
matrices M ij

u,d,` can be expressed as a function of a diagonal matrix M with real non negative
elements through two independent unitary global transformations, i.e.M = ULMU†R. Inserting
this expression into the Yuwawa term obtained after the SSB, the flavor eigenstates u, d, ` can
be expressed as a function of the mass eigenstates u′, d′, `′ through the following relations:

uL = UuLu′L , uR = UuRu′R (1.33)
dL = UdLd′L , dR = UdRd′R (1.34)
`L = U `L`′L , `R = U `R`′R . (1.35)

The mass matricesMu,d,` are given by

Mu = Diag(mu,mc,mt), (1.36)
Md = Diag(md,ms,mb), (1.37)
M` = Diag(me,mµ,mτ ) . (1.38)

It’s important to notice that the two elements of the quark left doublet transform in two
different ways, so that (

uL
dL

)
=
(
UuLu′L
UdLd′L

)
= UuL

(
u′L

VCKMd
′
L

)
(1.39)

where the Cabibbo-Kobayashi-Maskawa matrix VCKM is defined as

VCKM ≡ U†uL U
d
L (1.40)

The transformations (1.33)-(1.35) do not affect the kinetic term for the fermion fields nor
the interaction terms with the gluons and the neutral electroweak gauge bosons. Indeed these
terms, being diagonal in each fermion field, both for their left and right handed components,
remain diagonal also in the basis given by the mass eigenstates. On the other hand, the charged
electroweak interaction terms mix up and down type quarks and thus they introduce a mixing
between the different quark flavors, being

g2√
2
ūiLγ

µdiLW
+
µ = g2√

2
ū′iLγ

µV ij
CKMd

′j
LW

+
µ (1.41)

8



The CKM matrix is a 3 × 3 unitary matrix and is parametrized by nine real parameters.
This number can be reduced through a redefinition of the quark field phases, and VCKM can
be expressed as a function of only four parameters, three mixing angles and a unitary complex
phase.

A widely used parametrization for VCKM is the one proposed by Wolfenstein [7]. In this case
VCKM is expressed as a function of four real parameters A, ρ, λ, η as follows:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


=

 1− λ2/2 λ Aλ3(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) .

(1.42)

The current measured values for the parameters A, λ, ρ, and η are [8]:

λ = 0.22537± 0.00014 , A = 0.814+0.023
−0.024 ,

ρ = 0.117± 0.021 , η = 0.353± 0.013 . (1.43)

The mixing mechanism described by the CKM matrix is the only source of mixing between
flavors in the SM and it can take place at tree level only in charged currents, i.e. through the
interaction vertex in eq.(1.41).

Discrete symmetries of the SM and CP violation The Lagrangian of the SM is made
up of quadratic terms in the fermionic and bosonic fields, and interactions terms in the form
of the Lorentz product between fermionic bilinears (usually referred as fermionic currents) and
the vector boson or Higgs fields. Each of these terms is invariant under the combined action of
the following three discrete symmetries:

• Time reversal (T) which consists in the inversion of the time coordinate t→ −t;

• Spatial inversion (P) which inverts the spatial coordinates ~x→ −~x. As a consequences, a
left (right) handed fermion transforms into a right (left) handed one ψL,(R) → ψR,(L);

• Charge conjugation (C) which changes the sign of the electric charge of the field. The
action of the charge conjugation on a left (right) handed fermion is given by ψL,R →
ψcL,R ≡ ±iσ2ψ

?
L,R.

The invariance of the SM Lagrangian under the action of the CPT transformations is known
as CPT theorem (for a more detailed explanation the reader is referred to Refs.[1]-[3]). All
the Lagrangian terms except those describing the interaction of the massive gauge bosons with
the fermionic currents are invariant under the action of the P,C,T transformations separately,
and thus, trivially, under their combined action. On the other hand, the Lagrangian terms
entering the electroweak sector are not invariant under the action of the P, C, and their combined
action (referred as CP and which consist in the exchange of a particle with its own antiparticle)
transformations, as it has been observed experimentally (see e.g.Refs.[9]-[12]). Under the formal
point of view, the violation of the CP symmetry is due to the presence in the SM Lagrangian of
complex parameters. The action of the CP transformation on any product, generically denoted
by φi, of the SM fields is equivalent to the operation of complex conjugation, i.e.φi → φ?i . By
writing in a very general form the Lagrangian L as follows (each ai is a generic parameter of the
Lagrangian):

L =
∑
i

aiφi + a?iφ
?
i (1.44)
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the action of the CP transformation on L is given by

L → LCP =
∑
i

aiφ
?
i + a?iφi . (1.45)

From this transformation law it can be seen that if each ai parameter is real, then L is invariant;
otherwise, if at least one of the ai coefficients is complex, the invariance under CP is broken.
The complex parameters entering the SM Lagrangian are the VCKM matrix elements. Some
complex phases of the VCMK matrix elements can be reabsorbed through a redefinition of the
SM field phases. In particular, it is possible to completely reabsorb the complex phases in VCMK

in presence of only two quark flavors; nevertheless, in the physical case where three quark flavors
exist this is not possible anymore and the SM Lagrangian is left with one complex parameter,
which is responsible for the violation of the CP physics. This mechanism has been pointed out
in Ref.[30] by Kobayashi and Maskawa, and the CP violation induced by the presence of this
complex phase in the VCMK matrix is nowadays referred as “KM mechanism”.

1.1.2 Peculiar aspects of the Standard Model and indirect probes of New
Physics

The SM is characterized by some features which are quite specific. The most important of these
aspects are:

• Lepton Family Number conservation: being the electro-weak interaction diagonal in
the leptonic flavor, even after the redefinition of the lepton fields in the mass eigenstates,
only leptons of the same flavor can interact with an electro-weak gauge boson. In particular
only the following interaction terms are allowed: Z0`¯̀, γ`¯̀, W−`ν̄`. This property is true
not only at the tree level, but at each order in the perturbative expansion. Very small
departures (well beyond the current experimental sensitivity) from this property are due to
the neutrino oscillations (see next section), which allow for very small rates. For example,
the predicted rate for the Lepton Flavor Violating decay µ+ → e+γ is of the order ∼ 10−54

[13] and the current experimental limit (at 90% C.L.) on its branching fraction is [14]

BR(µ+ → e+γ) < 5.7× 10−13 . (1.46)

• Lepton Flavor Universality (LFU): the coupling of the leptons to the electroweak
gauge bosons are flavor independent. This property has been tested at colliders by looking
at the W+ decays. For instance the BR of the decays W+ → `+ν` with ` = e, µ have been
measured to be [8]:

BR(W+ → e+νe) = 10.63± 0.15 (1.47)
BR(W+ → µ+νµ) = 10.71± 0.16 (1.48)

whose relative difference is smaller than 1%.

• Flavor Changing Neutral Currents (FCNC) in the quark sector: differently from
the leptonic sector, flavor changing interactions can take place in the quark sector. The
misalignment between the flavor and mass eigenstates of the quarks fields makes flavor
changing currents arising, through the interaction term in eq.(1.41). Though, at tree
level, only charged currents can change flavor while FCNC’s are (accidentally) forbidden
and can take place only at the loop level, through the emission of at least two off-shell
heavy virtual states. For that reason all the processes involving transitions or interactions
between quarks of the same down or up type are highly suppressed in the SM.
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The first two of these aspects are related to the leptonic sector, and the discussion if one
implies the other is still under investigation (see e.g.Refs.[15, 16]).

Even though all these properties have been tested at a very high precision level, they still
represent one of the golden ways to probe possible extensions of the SM, required by the argu-
ments presented in the next section. Indeed, these properties, being quite peculiar, are expected
to be violated by any more general theory beyond the SM. One of the most promising ways
to look for sources of NP beyond the SM is then represented by the precision measurements of
observables related to processes sensitives to one or more of these features.

1.1.3 Limits of the Standard Model

Despite its non “fashionable” name, the SM is the most satisfactory description of the elementary
particle dynamics available so far. Under the formal point view it is a renormalizable (and thus
predictive) theory, and the quantum numbers of the fermions with respect to the gauge group
in eq.(1.7) make the chiral anomalies vanishing at every order in the perturbation-theory, thus
saving the consistency of the model. Under the experimental point of view its predictions have
been verified to a very high precision level. Thanks to the mixing mechanism described by the
CKM matrix, it can account for the CP violation observed in processes involving the K, D and
B systems.

However, both on the theoretical and the experimental sides, there are several hints suggest-
ing that this model should be interpreted as a low-energy manifestation of a more fundamental
underlying theory. In particular, two kinds of motivations pushes for the search for NP sources.
For sake of clarity, these motivations are here divided into two categories: the completeness and
naturalness problems.

The completeness arguments have to do with the fact that the SM is actually an incomplete
description of the world, and it does not take into account the outcome of some experimental
observations. These motivations strongly indicate that the SM must be modified in order to
include these effects. The major experimental hints requiring an extension of the SM are:

• observation of the mixing of neutrinos [18]. The oscillation between neutrinos of different
flavors require the introduction of a mass term for these particles. The nature of this
mass term, i.e.Majorana or Dirac, is still matter of study and no evidence in favor of one
of the two hypothesis has still been obtained. In addition, the oscillations of neutrinos
make possible Flavor Changing Currents also in the leptonic sector, as it happens between
the quarks. Nevertheless, due to magnitude of these oscillations, this mixing, described
through the so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, has a smaller
strength than in the quark sector, thus giving an even stronger suppression of Lepton
Flavor Violating processes;

• cosmological observations [20, 21, 22] suggesting that new kinds of matter must exists.
This dark matter (DM) interacts with the ordinary barionic particles only through gravity
and its dynamic must be inserted in the framework of the SM as well. In addition, the
existence of a dark energy density driving the observed expansion of the Universe is a
further motivation for looking for extension of the SM;

• the amount of the observed matter-antimatter asymmetry in the Universe suggesting that
extra sources of CP violation must exist. Indeed, even though the SM can account, through
the KM mechanism, for this asymmetry, the predicted amount of CP violation in the SM
is not enough to explain the observed amount of matter in the Universe;

Especially if compared with the name of its extensions.
To be precise, chiral anomalies vanish at one loop level, and then, thanks to Adler-Bardeen theorem [17], at

every order in the loop expansion.
One of the “golden” way to probe the nature of the neutrino mass term is the observation of the so-called

neutrinoless double β decay (see e.g. [19]) which can probe the Majorana nature of neutrinos.
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• need of a quantum theory of gravity. Indeed gravitational interaction is well understood at
the classical level and successfully described through the theory of general relativity, but a
quantum theory of gravity has not yet been formulated. Every attempt to describe gravity
as the result of an invariance under local transformations of the fundamental degrees of
freedom (as it is done for the electroweak and strong interactions) turned out to fail so far.

The naturalness arguments, on the other hand, are not related to the consistency or com-
pleteness of the SM, hence they do not actually require a modification of the theory. These
arguments just point out the fact that the SM, as it is, features some very particular patterns
for which there are no reasons a-priori to exist. Nevertheless, these “accidental” features, that
in the SM are just interpreted as the result of a fine tuning of the parameters of the theory, can
be a natural consequence of the particular structure of the underlying fundamental theory. The
most relevant of these naturalness problems are:

• smallness of the Higgs mass. The Higgs boson is the only spin-0 elementary particle.
Differently from the elementary fermions and spin-1 bosons (whose masses are protected
by some custodial symmetries [23] against huge radiative contributions coming from loop
processes), the mass of the Higgs boson receives radiative contributions which diverges as
∼ Λ2, being Λ the cut-off for the momentum flowing in the loops. If the SM is valid up to
the Planck scale (ΛPlanck ' 1019 GeV/c2) this will make the Higgs boson mass MH being
much higher of the observed value [24] MH = 125.09± 0.24 GeV/c2, being

∆m2
H ∼

1
16π2 Λ2

Planck ' 1036GeV
2

c4 (1.49)

This suggests that new degrees of freedom can be excited inside the loop at an energy scale
ΛNP ∼TeV, in order to cancel the SM divergent contributions. If this is not the case and
SM is the true fundamental theory up to ΛPlanck, a cancellation between the bare Higgs
mass and the SM contributions arising from the loop diagrams must take place.

• High number of free parameters in the flavor sector (i.e. the Yukawa sector). The flavor
sector is the most puzzling in SM, if compared with the gauge and Higgs ones. For instance
these last two sectors feature a small number of free parameters which are the three gauge
couplings in the gauge sector, and the two parameters µ2 and λ in the Higgs potential.
On the other hand, there are sixteen free parameters entering the flavor sector of the SM
lagrangian; these parameters describe the masses of the elementary matter fields (twelve
Yukawa couplings) and the mixing between quarks (four parameters which parametrize
the CKM matrix: three mixing angles and a CP-violating complex phase). In addition,
these parameters feature a highly hierarchical pattern, both with respect to the fermion
masses and to the magnitude of the CKM matrix elements, as it is shown in Figs.1.1 and
1.2.

• CP violation in QCD: the smallness of the θ-term. In principle a CP-violating term built
up with the gluon field strength Gaµν can be added to the lagrangian of the SM through
the so called θ-term:

Lθ = θεµνρσG
a
µνG

a
ρσ . (1.50)

This term would violate the CP invariance of the lagrangian (because of the antisymmetric
tensor εµνρσ), being Lθ

CP−−→ −Lθ. Nevertheless, since no evidence for CP violation in
the strong interactions is observed (such, for instance, the existence of an electric dipole
moment for the neutron), the θ coefficient turns out to be very small. The reason of the

In particular the gauge symmetry forbids hard mass terms for the gauge fields, while the chiral symmetry
forbids the Dirac mass term for fermions.
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Figure 1.1: Schematic pattern
of the fermion masses.
Neutrinos are not included.

Figure 1.2: Schematic pattern
of the magnitude of
the CKM matrix elements.

smallness of this parameters is usually referred to as the strong CP problem. One possible
solution for this problem has been provided by the Peccei-Queen model [25]. In this model
the θ parameter is “promoted” to a dynamical (spin-0) field, called axion, which relaxes
at the vanishing minimum of its potential, thus suppressing the interaction in eq.(1.50).
Nevertheless, such a particle has never been observed so far and the strong CP problem
still remains an open issue.

1.1.4 Flavor observables and the NP scale: the “Flavor Puzzle”

The observables from the flavor sector have played a major role in the construction of the SM.
Since the 70’s they have allowed to predict the existence and the properties of particles that
were not yet observed:

• from the small branching fraction of the K0
L → µ+µ− mode Glashow, Iliopulos, and

Maiani predicted, in 1970, the existence of the charm quark to suppress, through the GIM
mechanism [26], this FCNC. In addition, from the measurement of the K − K̄ frequency
oscillation, Gaillard and Lee [27] predicted, in 1974, the value of the charm quark mass.
The charm quark was discovered by two different teams at SLAC [28] and BNL [29] the
same year;

• the observation of the CP violation in the K− K̄ oscillations leads to the prediction of the
existence of a third generation of quarks [30] in 1973. The down-type quark of this third
generation, the bottom (or beauty) quark, has been experimentally observed at Fermilab
in 1977 [31];

• the frequency of B − B̄ oscillations leads in the late 80’s to the prediction of the large
quark top mass, experimentally observed at Fermilab in 1995 [32].

As in the past, flavor observables can still play a major role in the search for NP. As it is
shown in Fig.1.3, the current lower bounds for ΛNP obtained from flavor observables push the
NP scale far beyond the TeV scale. At the same time, it has been shown that a natural solution
of the fine tuning problem for the Higgs mass requires NP at a scale ∼TeV. The relevant question
is then why the effects of this NP have not yet been observed in flavor observables? This is the
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Figure 1.3: NP scale allowed from several flavor observables [33]. The dark and the light
arrows correspond to the current and the future expected sensitivity (in the coming ∼ ten years)
respectively.

so-called “flavor problem”. This pending issue motivates the study of flavor observables related
to processes not yet studied but that can be sensitive to NP effects. In particular, an increasing
interest is given to processes involving third generation leptons.

1.2 B0
(s) → `¯̀ decays

Among the processes that can potentially reveal NP effects, one of the golden channels is repre-
sented by the rare dileptonic B0

(s) → `¯̀ decays. They are generated by the annihilation between
the b and s (or d) quarks which constitute the B0

s (B0) meson. The Feynman diagrams con-
tributing to this FCNC in the SM are shown in Fig.1.4.

The contributions of additional diagrams with new heavy intermediate particles in the loop,
can modify the expected values in the SM of the observables related to these processes, such as
their BR. In order to provide a general description of such possible effects, the most common
approach is represented by the so called “Operator Product Expansion” approach, that will be
introduced in the following section.

1.2.1 The effective hamiltonian for B0
(s) → `¯̀

The Operator Product Expansion (OPE) approach (see e.g. [34]) allows a model-independent
analysis of the process under study, without the need to specify the underlying theory.

The dynamics of the observable degrees of freedom are described using an effective hamilto-
nian Heff . This is given by the sum of several contributions, each of them being the product of
an effective operator O, describing the long distance physics, namely the particles in the initial
and final states, times an effective coupling C (also called Wilson coefficient) which is obtained
by integrating out the heavy degree of freedom of the fundamental underlying theory. These
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Figure 1.4: Feynman diagrams describing the di-leptonic decay of a B0
s meson. The first two

diagrams from the right are the so-called Z penguins, while the last one is the box diagram.

coefficients can be computed pertubatively at a given energy scale µ (usually taken equal to the
top quark mass) and then extrapolated, through the Renormalization Group Equations (RGE)
to the energy scale relevant for the process under study (in the case of B mesons decays, it is
the b-quark mass).

The relevant feature of the OPE approach is that it allows to separate different scales effects
entering a given process; the effects of NP modify only the values of the Wilson coefficients.

A typical example of such description is the theory of the β decay proposed by Fermi [35]. In
this case the n → pe−ν̄e transition is described by an effective four-fermion operator (p̄n)(ēνe)
with an effective coupling given by the “Fermi constant” GF . In the fundamental theory (i.e. the
SM) this effective interaction arises after integrating the heavy degree of freedom represented
by the W boson mediating the fundamental transition d→ ue−ν̄e.

Depending on the particular process under study, different effective operators will contribute
to the observables related to the process. It is important to stress the fact that the observables
related to those transitions, such as annihilation or transitions rates, or angular observables, are
functions of the Wilson coefficients, and their measurement can help to shed light into the NP
realization pattern.

The effective operators O have dimension greater than four. For this reason they appear in
Heff multiplied by a negative power of an energy scale ΛNP which is the typical energy scale of
the NP.

For the dileptonic decays of a B0
s meson, the effective hamiltonian made up of the most

general lowest dimension (six) effective operators, describing the annihilation between the b̄ and
s (d) quarks forming the B0

s (B0) meson, is given by

Heff |bs`` = GF (C`10O`10 + C′`10O′`10 + C`SO`S + C′`SO′`S + C`PO`P + C′`PO′`P ) . (1.51)

where

GF ≡ −
4GF√

2
VtbV

?
ts

e2

16π2 (1.52)

and the effective operators O(′)
10,P,S are defined as follows (qd is the light down-type quark, s

or d):

O`(′)10 = (b̄γµPL(R)qd)(¯̀γµγ5`) (1.53)

O`(′)S = mb(b̄ PL(R)qd)(¯̀̀ ) (1.54)

O`(′)P = mb(b̄PL(R)qd)(¯̀γ5`) (1.55)
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The effective operators O(′)
10,P,S are in the form of a current-current product

O`(′)10,P,S = J10,P,S
q × J10,P,S

` (1.56)

where J10,P,S
q and J10,P,S

` are respectively the quark and leptonic currents with different
Lorentz structures. The Wilson coefficients C`(′)10,P,S are in the most general scenario independent.
Nevertheless, as it has been pointed out in Ref.[36], some constraints among them can be imposed
by requiring the invariance of the effective operators O(′)

10,P,S under the electroweak symmetry
group SU(2)L × U(1)Y . In particular, the following constraints are found:

C`S = −C`P
C`′S = C`′P .

(1.57)

A final remark concerns the fact that only the axial current operator O`(′)10 contributes to the
decay. This happens because the amplitudes from the vectorial current operator

O`(′)9 = (b̄γµPL(R)qd)(¯̀γµ`) (1.58)

vanish because of the conservation of the electromagnetic current ¯̀γµ`, being:

〈`¯̀|O`(′)9 |B
0
(s)〉 = fB0

(s)
pµ
B0

(s)
· ¯̀γµ` =

fB0
(s)
pµ
`+¯̀ · ¯̀γµ` = fB0

(s)
∂µ(¯̀γµ`) = 0 .

(1.59)

1.2.2 B0
(s) → `¯̀ observables

Using the effective hamiltonian in eq.(1.51), the expression for the time-integrated untagged
rate, summed over the helicities of the leptons, of the B0

(s) → `¯̀ decay is given by the following
expression [37]:

BR(B0
q → `+`−) =

τBqG
4
FM

2
W sin4 θW

8π5 × |V ?
tbVtq|2f2

BqMBqm
2
`βm`

× (|P|2 + |S|2)× 1 + yqA``∆Γ
1− y2

q

= BR(B0
q → `+`−)|CPt=0 ×

1 + yqA``∆Γ
1− y2

q

(1.60)

where:

• f2
Bq

is the B0
q meson decay constant, defined as 〈0|B0

q 〉;

• τBq and MBq are the B0
q lifetime and mass, GF is the Fermi constant, MW is the W±

boson mass, θW is the Weinberg angle;

• m` is the mass of the lepton in the final state;

• βm` is the phase space volume of the final state, i.e.

βm` ≡

√√√√1− 4m2
`

M2
B0
q

; (1.61)
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• yq and A``∆Γ are defined as follows

yq ≡
ΓqL − ΓqH
ΓqL + ΓqH

(1.62)

A``∆Γ ≡ Γq,``L − Γq,``H

Γq,``L + Γq,``H

(1.63)

being ΓqL,H and Γq,``L,H the B0
q total width and the B0

q → `¯̀ partial width for the light
and heavy eigenstate respectively; these quantities are needed to correctly compare the
untagged B0

q → `+`− decay rate summed over the helicities of the leptons at t = 0
BR(B0

q → `+`−)|CPt=0 (which is the quantity computed theoretically) with the measured
time-integrated branching fraction which is instead the observable which is experimentally
measured. The difference between these two expressions for the BR arises because of the
interplay between the B0

q − B̄0
q mixing and the B0

q → `¯̀ decay. The product yqA``∆Γ is
given by

yqA``∆Γ =
(1− y2

q )τ`` − (1 + y2
q )τBq

2τBq − (1− y2
q )τ``

, (1.64)

where the effective B0
q (t) → `¯̀ lifetime τ`` is expressed as a function of the CP-averaged

decay width 〈Γ(B0
q (t)→ `¯̀)〉 ≡ Γ(B0

q (t)→ `¯̀) + Γ(B̄0
q (t)→ `¯̀) as

τ`` ≡
∫∞

0 t〈Γ(B0
q (t)→ `¯̀)〉dt∫∞

0 〈Γ(B0
q (t)→ `¯̀)〉dt

. (1.65)

The quantity A``∆Γ can assume, in principle, any value in the range [−1, 1]. The SM
prediction is A``∆Γ = 1 [37], but it has never been constrained so far. Experimentally, it
can be measured using the effective lifetime τ``, through the relation in eq.(1.64).

• P and S are Wilson coefficient dependent combinations defined as (mb is the b-quark mass)

P = (C`10 − C′`10) +
M2
Bq

2m`

mb

mb +mq
(C`P − C′`P ) , (1.66)

S = βm`
M2
Bq

2m`

mb

mb +mq
(C`S − C′`S ) . (1.67)

Discussion on the BR. In the SM only the C`10 Wilson coefficients in eq.(1.60) is non neg-
ligible. This is due to the fact that in the SM only left-handed currents interact weakly. The
computed value for the C`10 in the SM case is

C`SM10 ≡ CSM10 = −4.31 . (1.68)

A contribution to CS coming from the mediation of a Higgs boson is suppressed by a factor
∼ 103 with respect to the contribution due to C10.

The SM contribution receives an additional suppression due to the factor m`
MBq

in front of it.
This is the so-called helicity suppression, which makes the BR vanishing for massless leptons in
the final state. This is a consequence of the momentum and spin conservation in the decay of a
spin-0 particles into two spin-1

2 daughters. To better explain why this happens it is helpful to
analyze the decay in the spin-0 mother’s rest frame. In this reference, the two daughter particles
are emitted back-to-back along a given direction, say z, that can be used as quantization axis
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for their spin; in order to conserve the spin projection along this z-direction, the spin projections
of the two daughters must be opposite. This means that the two daughters have the same
helicity, defined as the spin projection along the momentum directions (i.e. h ≡ ~s · ~p|p|). Now, a
massless fermion and its antiparticle have opposite chirality. Since in the massless limit chirality
eigenstates are also helicity eigenstates, it follows that the decay of a spin zero particle into a
pair of massless spin-1

2 particle-antiparticle is forbidden.
In NP scenarios, the other Wilson coefficients as well can be non negligible and the C10

coefficient can receive a (lepton flavor dependent) shift δC`NP10 .
An important remark concerns the fact that only one hadronic non-perturbative parameter

enters the expression of the BR. This is the B0
(s) meson decay constant f2

B(s)
, and it is currently

the most important source of uncertainty in the theoretical prediction. The important fact to
stress here is that this parameter appears as an overall factor, hence it cancels out in ratios of
observables. This is also true for the elements of the VCKM matrix.

From eq.(1.60), it can be seen that the BR can only constrain the differences (C`10,P,S −
C`′10,P,S). For this reason the BR(B0

(s) → `¯̀) observable is not sensitive to NP effects shifting
in the same “direction” the C`10,P,S and the C`′10,P,S coefficients. In order to constrain their sum,
other processes must be exploited, for instance the decays B → K`¯̀.

Another remark concerns the fact that depending on the NP scenario, the value of the BR
can be higher but also lower than the SM prediction. In particular, if NP enters only the C(′)

S

coefficient, the value of the BR can only be higher than the SM prediction; if NP appears in
the pseudoscalar operator OP then the BR can also have a lower value with respect to the
SM prediction, depending on the relative phase between the two terms “2 m`

MBq
(C`10 − C`′10)” and

“(C`P − C`′P )”.

The ratio BR(B0→µ+µ−)
BR(B0

s→µ+µ−) . An additional observable to be measured is given by the ratio of
the branching fractions for the B0 → `¯̀ and B0

s → `¯̀ modes [41] (see also [42]):

R ≡ BR(B0 → µ+µ−)
BR(B0

s → µ+µ−) = τB
τBs

MB

MBs

f2
B

f2
Bs

∣∣∣∣VtdVts
∣∣∣∣2 . (1.69)

This ratio is sensitive to departures from the Minimal Flavor Violating (MFV) hypothesis
for NP scenarios.

1.2.3 SM predictions

The last updated SM predictions for the branching fraction of the B0
(s) → `¯̀ modes have been

computed in Ref.[39]. These predictions include both electromagnetic and QCD corrections, at
O(αem) and O(α2

s) respectively.
For the B0 → `¯̀ modes the predicted BR are:

BR(B0 → e+e−) = (2.48± 0.21)× 10−15 (1.70)
BR(B0 → µ+µ−) = (1.06± 0.09)× 10−10 (1.71)
BR(B0 → τ+τ−) = (2.22± 0.19)× 10−8 (1.72)

while for the B0
s → `¯̀ modes are found

BR(B0
s → e+e−) = (8.54± 0.55)× 10−14 (1.73)

BR(B0
s → µ+µ−) = (3.65± 0.23)× 10−9 (1.74)

BR(B0
s → τ+τ−) = (7.73± 0.49)× 10−7 (1.75)

As has been pointed out in Ref.[38], this particular dependence is a direct consequence of the conservation of
parity in strong interactions.
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For each B0
(s) mode, the ratio of the BR for two final different final states is given by

BR(B0
(s) → `¯̀)

BR(B0
(s) → `′ ¯̀′)

= m2
`

m2
`′
· βm`
βm′

`

(1.76)

where βm` is defined in eq.(1.61).
The ratio m2

`

m2
`′
is the helicity suppression factor while the term βm`

βm`′
comes from the available

phase space in the decay. This ratio is an additional observable theoretically clean, since the
uncertainties from the non-perturbative hadronic form factors and from the knowledge of the
CKM matrix elements cancel in the ratio. A departure from the theoretical prediction for these
quantities would be a clear indication of LFU violating extensions of the SM.

Concerning the ratio R defined in eq.(1.69), the SM prediction is (see [49] and references
therein)

R = 0.0295+0.0028
−0.0025 . (1.77)

1.2.4 B0
(s) → `¯̀: current bounds

The modes with two electrons in the final state have the smallest branching fractions (because of
the higher helicity suppression). The measurement of their BR is out of the experimental reach
within the near future, and only the following Upper Limits (UL) (at 90% C.L.) are available
so far [43]:

BR(B0 → e+e−) < 8.3× 10−8 (1.78)
BR(B0

s → e+e−) < 2.8× 10−7 (1.79)

The B0
(s) → µ+µ− modes are the “cleanest” ones under the experimental point of view. Their

searches have started more than 30 years ago, and the first evidence for the B0
s → µ+µ− decay

has been obtained by the LHCb Collaboration [44] analyzing the first 2fb−1 collected during
the first run of the LHC. The measured BR was:

BR(B0
s → µ+µ−) = (3.2+1.5

−1.2)× 10−9 . (1.80)

The same analysis set an Upper Limit (UL) at 95% Confidence Level on the branching
fraction of the B0 → µ+µ− mode:

BR(B0 → µ+µ−) < 9.4× 10−10 . (1.81)

These values are consistent with the SM predictions and rule out huge NP effects. The latest
results on this decay from the LHCb collaboration (together with the combination with the
results from CMS) will be presented in Chapter 3.

The modes B0
(s) → τ+τ− have the highest branching fraction but are still largely unexplored,

being much more challenging from an experimental point of view (as it will be shown in Chapter
4). The BABAR collaboration measured an UL for the branching fraction of the B0 → τ+τ−

decay using a sample of (232 ± 3) × 106 BB̄ events produced in the decay Υ(4S) → BB̄ [45].
The reported limit at 90% Confidence Level is

BR(B0 → τ+τ−) < 4.3× 10−3 . (1.82)

A direct search for the B0
s → τ+τ− mode has never been performed and the only available

limits on its BR come from indirect constraints. These have been obtained in two ways:
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• from an analysis of B decays with large missing energy at LEP [46] which gives an UL of
5%;

• from the measurement of the ratio of the B0
(s) lifetimes from LHCb [48] which gives an UL

of 3%

Even though several orders of magnitude above the SM prediction, these bounds are the only
ones available for these modes. Despite the practical difficulty of reconstructing modes with τ ’s
in the final state (due to missing energy carried away by the ν), these modes are acquiring an
increasing importance and are triggering a lot of interest in connection to hints of LFU violating
NP scenarios. In particular, as it will be shown in the next section, decays involving τ ’s can still
show sizable NP effects even if the corresponding modes with µ or electrons were in agreement
with SM predictions.

1.3 Current anomalies in B-meson decay observables and hints
of NP in third generation

The possibility that NP could give sizable contributions to observables related to processes
involving third generation leptons has been considered for several years, well before the start of
the LHC.

In this section the main motivations for the search of the B0
(s) → τ+τ− will be briefly

reviewed.

The anomalous like-sign dimuon charge asymmetry. A reason of interest in the rates of
processes generated by the effective four-fermions operator (b̄s)(τ̄ τ) raised in relation with the
observed anomalous like-sign di-muon asymmetry AbSL observed by the DØ and CDF Collabo-
rations [52, 55]. The weighted average for AbSL is

AbSL = (−74.1± 19.3)× 10−4 (1.83)

and must be compared with the SM prediction [56]:

A
b(SM)
SL = (−2.3± 0.4)× 10−4 . (1.84)

The discrepancy between the measured value and the theoretical prediction is ∼ 3.8σ. In
Ref.[57] has been pointed out the fact that the enhancement in AbSL can be explained only by
four-fermions operators of the type (b̄Γs)(τ̄Γτ) and (b̄Γs)(c̄Γc) (where Γ is a generic matrix with
spinorial indexes). In Ref.[51] the possible enhancement of the B0

(s) → τ+τ− rate has been
studied in two specific models:

• in a leptoquark model an enhancement no larger than 0.3% is allowed for the BR(B0
s →

τ+τ−);

• in a model with a light Z ′ which does not couple with light quarks an enhancement up to
∼ 5% is still possible for BR(B0

s → τ+τ−).

Nevertheless none of the previous scenarios account for the observed discrepancy in AbSL,
and only the model with the light Z ′ can help to reduce the tension still without solving it.

LFU violation. The interest in modes with τ leptons in the final state is further strengthened
by the recent observation of anomalies in B decays involving b→ s`¯̀ transitions. In particular,
these anomalies have triggered a lot of interest in relation to LFU violation in B decays. In this
framework, the study of the B0

(s) → τ+τ− mode acquires an increasing importance.
Among the observed anomalies, the most relevant motivating the interest in final states with

third generation leptons are:
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• RK anomaly. The LHCb collaboration has measured the ratio of the decay rate of the
B+ → K+`¯̀ modes for q2 ∈ [1, 6] GeV 2/c4 (where q2 is the invariant mass square of the
dimuon system). The result is [58]:

RK ≡
BR(B+ → K+µ+µ−)
BR(B+ → K+e+e−) = 0.745+0.090

−0.074(stat)± 0.036(syst) (1.85)

and must be compared with the SM prediction which is RK = 1. The result (1.85) is 2.6σ
away from the SM.

• B → D(?)τν anomalies. These anomalies appear in the tauonic current interactions. The
interesting observables are the ratios (` = µ, e)

RD(?) = BR(B̄ → D(?)τ ν̄τ )
BR(B̄ → D(?)`ν̄`)

(1.86)

which in the SM are predicted to be [59, 60]:

RSMD = 0.296± 0.016 , (1.87)
RSMD? = 0.252± 0.003 . (1.88)

The BABAR [61], Belle [62, 63, 64] and LHCb [65] Collaborations have measured such
ratios, and their average gives the following results [66]:

RD = 0.391± 0.041(stat)± 0.028(syst) , (1.89)
RD? = 0.322± 0.018(stat)± 0.012(syst) , (1.90)

which result in a combined tension of 3.9σ with respect to the SM predictions.

Taken singularly, none of these measurements has a significance high enough to claim for
deviations from the SM. Nevertheless, if the central values are confirmed after the updated
analysis with the new data from the RunII of the LHC, they points towards a NP scenario with
LFU violation. The consequences of such scenarios have been analyzed in the framework of a
MLFV extension of the SM in Ref.[16]. In particular for the modes with two τ in the final state
a boost of ∼ 103 is predicted, thus bringing the BR(B0

s → τ+τ−) at a level of ∼ 1×10−3, which
is reachable in the near future.

Lifetime differences in the B0
q − B̄0

q system. In Ref.[50], NP scenarios giving an en-
hancement of the lifetime differences in the B0

q − B̄0
q system have been studied; in this model

dependent analysis, the enhancement of ∆Γs/Γs is correlated with an enhancement of the
BR(B0

(s) → τ+τ−). In particular, in a NP scenario with scalar Leptoquarks an enhancement up
to ∼ 18% and ∼ 0.4% respectively for the B0

s and the B0 modes is predicted.

1.4 Conclusions

In this Chapter a brief introduction to the Standard Model of elementary particle physics has
been presented. The crucial point of the SM is that the interactions among the elementary
particles is a natural consequence of a symmetry of the fundamental lagrangian under local
transformations mixing them. The requirement of the invariance of the Lagrangian under the

The predicted value for BR(B0 → τ+τ−) is just below the current experimental limit from BABAR [45].
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gauge group of the SM forbids hard mass terms (both for fermions and for gauge connections)
and the masses of elementary particles must be generated in a dynamical way through the Higgs
mechanism.

Despite the high predictive power of the SM, there are several hints indicating that it must
be considered as an effective low-energy realization of a more fundamental theory.

Among the processes that could reveal NP effects there are the rare dileptonic B0
(s) →

`¯̀ decays. To describe in a model independent way these processes, the Operator Product
Expansion formalism has been introduced and a discussion about the relevant observables has
been presented. Even though the golden channel under the experimental point of view is the
mode with two µ in the final state, several recent anomalies observed in b → s`¯̀, motivates
the search for the more challenging decay to two τ in the final state. Indeed, in LFU violating
scenarios, NP effects can show up in these modes even if the corresponding decays with lighter
leptons were in agreement with the SM predictions.
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Chapter 2

The LHCb detector

LHCb is a dedicated B-physics experiment installed at CERN at the Large Hadron Collider
(LHC). It is mainly devoted to the study of CP -violation and the search for rare decays of b-
hadrons. These are created in the hadronization process of the bb̄ pairs produced in the collisions
between the proton beams accelerated with the LHC.

The LHC has been designed to accelerate two proton beams circulating in opposite directions
at an energy of 7 TeV each (corresponding to an energy of 14 TeV in their center of mass
system); nevertheless during the first run of the LHC, in the years 2011-2012, protons have been
accelerated up to an energy of 3.5 and 4 TeV respectively in 2011 and 2012 (corresponding to
an energy in the center of mass of 7 and 8 TeV respectively). Only from June 2015, after the
Long Shutdown I, the LHC has started working at an energy in the center of mass of 13 TeV.

In this chapter the LHC environment will be presented together with a brief overview of the
LHCb detector.

2.1 The LHC accelerator complex

The LHC is a two rings superconducting proton accelerator. It is installed in the 27 km tunnel
used previously for the LEP program. The beams accelerated in the LHC are structured in
proton bunches and are guided by different varieties of magnets:

• 1232 dipole magnets of 15 meters in length, which bend the beams

• 392 quadrupole magnets of 5-7 meters long, which focus the beams.

Before being injected in the LHC rings, the proton beams are accelerated through the accel-
erating machines already present in the CERN site. Protons are obtained from hydrogen atoms
from which the electrons are stripped through an intense electric field. Protons are accelerated
up to 50 MeV by the LINAC before being boosted up to 1.8 GeV by the Proton Synchroton
Booster. Through the Proton Synchroton the proton beams are accelerated up to an energy of
25 GeV before reaching the last accelerator, the Super Proton Synchroton (SPS) which boosts
them up to 450 GeV. Then protons are injected in the LHC accelerator rings. All this chain is
schematically shown in Fig.2.1.

Along the LHC are installed four main experiments. Two of them are general-purpose ex-
periments: “A Toroidal LHC ApparatuS” (ATLAS) and the “Compact Muon Solenoid” (CMS).
The other two experiments are dedicated to the study of the quark-gluon plasma and QCD in
extreme conditions of pressure and temperature, “A Large Ion Collider Experiment” (ALICE),
and to precision measurements in b and c-hadron decays, LHCb.

Instantaneous and integrated Luminosity. The most important parameter characterizing
an accelerator is the instantaneous luminosity L defined as
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Figure 2.1: The CERN accelerator complex.
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Parameter 2011 2012 Nominal
Center of mass energy (TeV) 7 8 14
Particles per bunch (N) 1.2× 1011 1.2× 1011 1.2× 1011

Number of Bunches (n) 1800 1800 2808
Bunch revolution frequency [kHz] frev 11 11 11
σ?x,y [µm] ∼ 60 ∼60 ∼15
Bunch spacing [ns] 50 50 25
Instantaneous luminosity [cm−1s−1] (L) 3.65 · 1033 3.65 · 1033 1034

Table 2.1: LHC parameters during the 2011 and 2012 data taking periods, and their nominal
values.

L = N2nfrev
4πσxσy

F (2.1)

where

• N and n are the number of protons per bunch and the number of bunches respectively;

• frev the bunch revolution frequency;

• σx,y the sizes of the beam in the transverse plane to the beam axis;

• F a geometrical factor taking into account the crossing angle between the two colliding
beams and separations of the beams at the interaction point.

The designed instantaneous luminosity of the LHC is L = 1034cm−1s−1 and is reached using
∼ 2835 proton bunches per beam crossing each 25ns, which corresponds to a spatial separation
between two bunches of ∼ 7.5 m. Each bunch consists of an average number of 1011 protons. In
Tab.2.1 the main parameters of the LHC are reported, for different running configurations.

The instantaneous luminosity can also be expressed as a function of the average number of
interactions per bunch crossing µ as follows [67]:

L = µnfrev
σine

(2.2)

being σine the inelastic pp cross section (which is equal to 73.5± 3.1 mb at
√
s = 7 TeV).

Each of the four experiments at the LHC works with different running conditions by tuning
the geometrical factor F and the beam section sizes σx,y. At the LHCb detector the constraints
from the detector readout and the trigger thresholds require to keep the average number of
collisions µ of 1.7.

The collisions between the protons beams, together with other processes (like interaction
of the protons with gas molecules present in the beam pipe), reduce progressively the beam
population. On average, the beam lifetime is about ten hours from the first collisions. For that
reason also the instantaneous luminosity will decrease with time. In order to have stable data
taking conditions, in LHCb (and ALICE), the decrease of the beam population is compensated by
modifying the geometrical factor F bringing the two beams closer to each other. This technique
is usually referred as luminosity leveling [69]. In ATLAS and CMS the geometric factor is
maintained at its maximum value, Fig.2.2 shows the instantaneous luminosity as a function of
time for the four LHC experiments.

The instantaneous luminosity can be integrated over time, giving the integrated luminosity
L:
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Figure 2.2: Instantaneous luminosity as a function of time for the four LHC experiments.

L ≡
∫
dtL . (2.3)

Fig.2.3 shows the integrated luminosity delivered by LHCb experiment during the first two
years of data taking.

2.2 The bb̄ production cross section at LHC

The production of bb̄ pairs at the LHC is the result of the interactions among the partons during
the collisions between the protons. In particular the three processes responsible for the bb̄ pair
production are [70, 71, 72]:

• pair production, accounting for 16% of the total production, which is due to the elementary
processes: qq̄ → bb̄ (qq̄ annihilation) and gg → bb̄ (gluon fusion);

• flavor excitation, representing 54% of the total production. It takes place when one of the
two bb̄ virtual quarks in the proton quark pair undergoes an interaction with a parton of
the other proton;

• gluon splitting (or separation), contributing for 27% of the total production;

The Feynman diagrams describing the above mentioned processes are shown in Fig.2.4.
The angular distribution of the bb̄ pairs produced in the collisions has a non trivial distri-

bution. Indeed, the bb̄ pair is very closed to the direction of the colliding protons. The angular
correlation between the polar angle of the two b quarks with respect to the direction of the
incoming proton is shown in Fig.2.5.

2.3 The LHCb detector

The LHCb detector is a one arm spectrometer in the forward direction covering an angle comprise
between 10 and 250 mrad around the beam pipe. The angular coverage is usually expressed as
a function of the pseudo-rapidity η defined as follows:

26



Figure 2.3: Integrated luminosity delivered and recorded by the LHCb experiment during the
first two years of data taking.
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Figure 2.4: bb̄ production mechanism in proton-proton collisions at the LHC.
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Figure 2.5: Angular correlation between the two b quarks produced in proton-proton collision.

η = − ln tan
(
θ

2

)
(2.4)

In terms of η the LHCb acceptance is between 2 and 5.
A schematic representation of the LHCb detector is shown in Fig.2.6.
The particular forward geometry is dictated by the angular distribution of the bb̄ pairs

produced in the proton-proton collisions. Indeed, despite its reduced angular acceptance, the
detector covers the region in the polar angle with the highest rate of bb̄ events, as it is shown in
Fig.2.7

The LHCb detector uses information collected from different sub-detectors to:

• reconstruct charged tracks through the tracking system devices (described in Sec.2.3.1)

• identify the tracks through Particle IDentification (PID) dedicated sub-detectors (pre-
sented in Sec.2.3.2).

In order to reduce the data flow coming from the detector and select only the potentially inter-
esting events containing a b-hadron decay, the LHCb detector is also equipped of a multi-level
trigger system briefly presented in Sec.2.3.3.

In a very schematic way, the functioning of the detector can be summarized in the following
steps:

• the b-hadrons are produced in the collision point, where the two proton beams cross each
other. The Vertex Locator surrounds the interaction region in order to reconstruct where
exactly the two protons interacted;

• the produced b-hadron travels inside the Vertex Locator for a distance of ∼1 cm; then it
decays into its daughter particles that travel all along the different sub-detectors which
collect the relevant information for their track reconstruction and particle identification;

• a hardware trigger system, based on information coming from some sub-detectors, selects
only potentially interesting events, which will be then fully reconstructed and analyzed
off-line.
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Figure 2.6: Lateral section of the LHCb detector. Particles are created at the interaction points
between the two proton beams, at the origin of the z axis, which is inside the Vertex Locator
(VELO).

Figure 2.7: Correlation between the pseudo-rapidities of the two b quarks. The red square is the
region covered by the LHCb detector, while the yellow one is the region covered by CMS and
ATLAS.
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Figure 2.8: VELO sensors geometries.

2.3.1 The tracking system

One of the main features of b-hadrons is their long lifetime. For instance, the lifetime of a B0
s

meson is about 1ps. This results, thanks also to the high boost of the bb̄ pairs produced, in a
large separation (∼1cm) between the primary interaction vertex of the protons and the b-hadron
decay vertex. In order to exploit as much as possible this property in the search for b-hadron
decays and reject background events, an efficient vertexing system is required. In addition, an
efficient tracking is required not only to resolve the different vertices in the event, but also to
achieve a good momentum resolution of the tracks, which will reflect in a good mass resolution.
In the following the various sub-detectors forming the LHCb tracking system will be presented.

The Vertex Locator. The Vertex Locator (VELO) is located around the crossing points of
the two proton beams and its purpose is to provide information on the trajectories of charged
particles in the region close to the interaction point. Through this information it allows to
reconstruct the position of the primary and secondary vertices. The VELO sensors are shown
in Fig.2.8: they are silicon modules with two different segmentations: one in φ and the other in
r. The complete VELO detector is shown in Fig.2.9

The VELO contains also a Pile-Up veto stations, which provides to the hardware trigger
system informations about the number of interactions in the event.

In a typical event at the LHCb around 30-35 tracks per interaction vertex are reconstructed.
In these conditions, the resolution on the primary vertex is ∼12µm in the plane transverse to
the beam axis, and ∼65µm along the direction of the beam axis.

The magnet. The magnet is used to measure the tracks’ momenta. It generates a magnetic
field of 4 Tesla and, by bending the trajectory of charged tracks, it allows to measure their
momenta with a relative error δp/p ∼ 0.4%. The polarity of the magnet is periodically inverted
in order to study left-right asymmetries detections effects and to evaluate related systematic
errors for CP-violation related analysis.

Tracker stations. The tracking stations are divided in the following two categories:
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Figure 2.9: Schematic illustration of the VELO detector of LHCb.

T-stations are placed upstream and downstream the magnet. Depending on the detection
principle, the trackers are divided into silicon trackers (TT and IT1-3) and outer trackers (OT1-
3).

• Tracker Turicensis (TT) are placed upstream the magnet and downstream the RICH1
detector (see next section). The main goal of this system is to determine the momentum
of tracks having a high impact parameter with respect to the reconstructed primary inter-
action vertex of the two proton beams (PV). They are made of silicon strips with a high
granularity in order to achieve a good track resolution in the high tracks density region
near the beam axis.

• 3 T-stations placed downstream the magnet and before the RICH2 detector. Depending
on the distance with respect to the beam axis, these stations are divided into:

– Inner Tracker (IT) covering the region closest to the beam axis. Similarly to the TT,
it consists of silicon detectors with a high granularity in order to better resolve tracks
in the high charged tracks density region close to the beam pipe

– Outer Tracker (OT) covering the rest of the area of the T tracker. It is used to
measure the momenta over a wider acceptance. It is made of straw tubes because of
the smaller track density in the outer region on the T-stations

Fig.2.10 shows the tracking stations, while the whole tracking system is shown in Fig.2.11.

Track reconstruction. Depending on the tracking station where they are detected, the fol-
lowing kinds of tracks are defined (see also Fig.2.12):

• Velo tracks leave hits only in the VELO stations and are used to reconstruct the primary
vertices;
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Figure 2.10: The T-stations. The different colors indicates different technologies: in violet the
silicon tracker in blue the straw tubes.

Figure 2.11: Schematic representation of the tracking system functioning.
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Figure 2.12: Track types in LHCb.

• T tracks traverse only the T stations and are usually generated by secondary interactions
of the produced particles in the collision with the material of the detector;

• Upstream tracks leave hits in the VELO and the TT stations;

• Downstream tracks traverse the TT and T stations;

• Long tracks leave hits across the whole tracking system, allowing the most precise mea-
surement of their momentum and impact parameter. Most physics analysis use these
tracks.

Track reconstruction algorithm. The LHCb track reconstruction algorithm is divided into
two steps:

• a track candidate is built by associating hits in the T stations to the track candidate. The
association of the track candidate with the hits is done with different strategies [73];

• for each track candidate, the corresponding track is fitted using a Kalman fitter technique
[74]. The quality of a track is quantified by the χ2 of the fit, the pulls of the track
parameters, and a covariance matrix .

Because of the several strategies adopted to build the track candidates the same particle can
be associated to different track candidates, called clone tracks. This multiplicity is solved by
running a “clone killer” algorithm [78]. In addition, some track candidates can be built up of
random hits in the detector. These fake tracks are usually referred to as “ghost” tracks, and a
likelihood method to quantify the probability that a given track candidate be a ghost has been
defined in Ref.[79].

The efficiency of the tracking system and reconstruction algorithm is estimated to be around
96% for Long Tracks.

Vertex and tracks related geometrical variables Once the tracks and vertexes have been
reconstructed, variables quantifying their quality and their geometrical properties are computed
in order to be used in the physics analyses.

Vertex positions are reconstructed by fitting together the reconstructed tracks that are com-
patible with being originating from the same point. The quality of the reconstructed vertexes
is quantified by the fit χ2. To quantify the distance between two reconstructed vertexes in the
event (for instance between a PV and a candidate B meson decay vertex) the following two
variables are used:
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• “flight dstance” (FD) defined as the distance between the two vertexes,

• “flight distance χ2” (FDχ2), defined as the χ2 of the vertex obtained by fitting together
the two vertexes.

The most relevant variables related to the reconstructed tracks are:

• “impact parameter” with respect to the reconstructed interaction vertex (IP ). This is
defined as the distance of closest approach of the reconstructed PV and the track. Decay
vertexes of b or c-hadron decays are well displaced with respect to the PV and tracks
originating from such decays are thus expected to have a large value of the IP ;

• “impact parameter χ2” (IPχ2), defined for each reconstructed track as the change in the
χ2 of the reconstructed PV after including the considered track to the set of those (here
referred as “{tracksPV }”) used to fit the PV:

IPχ2 ≡ χ2({tracksPV }+ track)− χ2({tracksPV }). (2.5)

If the considered track has been originated from a b or c-hadron decay the change in the
χ2 of the PV is expected to be large.

2.3.2 The Particle Identification

The particle identification of tracks is a key ingredient to study B decays. For instance, the
study of the B0

(s) → µ+µ− requires a good muon identification but also an efficient separation
between π and K for the invariant mass PDF calibration for the signal from the control channel
B → hh(′) (where h(′) = π,K). This particle identification is achieved at LHCb using the
information from the sub-detectors presented in the following.

The RICH detectors. The Ring Imaging Cherenkov (RICH) detectors are used to iden-
tify pions, kaons, and protons. A RICH detector allows to measure the velocities of particles
through the ring of Cherenkov light produced by charged particles when passing inside a ra-
diator medium. LHCb uses two RICH detectors: the RICH1 and RICH2 situated respectively
upstream and downstream the magnet. While the RICH1 covers all the angular acceptance of
LHCb, the RICH2 covers a limited acceptance. Also the momentum range of the particles they
can discriminate is different: from 1 to 60 GeV for the RICH1 and from 15 to 100 GeV for
RICH2. Figs.2.13(a)-2.13(b) shows schematically the two RICH detectors.

The calorimeter system. The calorimeter system is designed to estimate the energy of
charged and neutral particles and at the same time to provide information for their identification.
In particular, the calorimeter system is made up of the following sub-detectors:

• the Scintillator Pad Detector (SPD) is used to distinguish charged particles from neutral
ones;

• the Pre-Shower detector (PS) allows to distinguish photons and electrons from hadrons;

• the Electromagnetic Calorimeter (ECAL) detects electron and photons through their elec-
tromagnetic shower. Using the information from the PS, it allows an energy measurement
with a resolution δE/E = 9%/

√
E ⊕ 0.8% (E expressed in GeV);

• the Hadronic Calorimeter (HCAL) is situated upstream the ECAL and allows a measure-
ment of the energy of the hadrons of δE/E = 69%/

√
E ⊕ 9% (E expressed in GeV);
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(a) (b)

Figure 2.13: RICH detectors: RICH1 (2.13(a)) and RICH2 (2.13(b))

The muon system. This sub-detector consists of five stations (M1-M5). In particular the
M1 station is placed upstream while the remaining (M2-M5) downstream with respect to the
calorimeter system, as shown in Fig.2.14. Given a reconstructed track, a candidate muon is
found when hits in the muon stations match the direction of a track reconstructed in the tracking
system. In particular a test statistics for the muon or non-muons hypothesis is built looking at
the average distance of the closest hits in the muon station to the extrapolation of the track
direction and the boolean variable IsMuon is defined.

2.3.3 The Trigger system

In the LHC running conditions presented in Sec.2.1, the total inelastic pp cross section is ∼70
mb. This value is well above the cross section for the bb̄ production, as shown in Fig.2.15. For
this reason, a selective trigger system is required before performing physics analysis. The aim
of the LHCb trigger system is to select events containing B and D decays with hadrons and
leptons in the final state while rejecting as much as possible the background events created in
the proton-proton collisions. In particular, the trigger system has to reduce the event rate down
to 5kHz (from the starting frequency of 40 MHz of the proton-proton collision). This rate is the
one allowed from the stockage resources.

The trigger system of LHCb is splitted into two levels: a level zero (L0) hardware trigger
which performs an on-line selection reducing the rate down to 1MHz, and a High Level Trigger
(HLT) which is a software trigger which refines the L0 selection and further reduces the rate
down to the required 5kHz. The set of trigger decisions is encoded in a Trigger Configuration
Key (TCK) which uniquely identifies the requirements used for the selection of the events.

The Level-0 trigger. The L0 trigger exploits simple features of B decays. Using the infor-
mation from the calorimeters and the muon system, it returns a positive decision depending
on:

• transverse energy of the candidate in the calorimeters (L0hadron, L0electron, L0photon),

• transverse momentum of the candidates in the muon system (L0muon, L0dimuon).
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Figure 2.14: Representation of the muon stations.

Figure 2.15: pp cross section for different processes as a function of the energy in the center of
mass of the two proton beams (

√
s).
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Line Requirements GEC

L0SingleMuon TCK1 pT > 1.48 GeV/c n.SPD hits < 600TCK2-3 pT > 1.76 GeV/c

L0DiMuon TCK1
√
pT1 × pT2 > 1.3 GeV/c n.SPD hits < 900TCK2-3
√
pT1 × pT2 > 1.6 GeV/c

L0Hadron ET > 3.5 GeV n.SPD hits < 600

Table 2.2: L0 trigger requirements for the relevant lines of the analysis presented in this work.

Line TCK Requirements

Hlt1DiMuonLowMass TCK1 IPχ2 > 3 pTµ > 0.5 GeV/c mµµ > 1.0GeV/c2

TCK2-3 IPχ2 > 6 pTµ > 0.5 GeV/c mµµ > 1.0GeV/c2

Hlt1DiMuonHighMass pTµ > 0.5 GeV/c mµµ > 2.5 GeV/c2

Hlt1TrackMuon IPχ2 > 16 IP > 100µm pTµ > 1 GeV/c
Hlt1TrackAllL0 IPχ2 > 16 IP > 100µm pTµ > 1.85 GeV/c
GEC VELO Hits < 104 IT Hits < 3000 OT Hits < 15000

Table 2.3: HLT1 trigger requirements for the lines relevant for the analysis presented in this
thesis.

In addition, in order to reject very busy events in term of the number of tracks (which will
require long time to be processed by the High Level Trigger), a Global Event Cut (GEC) is
applied. This cut exploits the following information:

• number of PV’s estimated through the Pile-Up system in the VELO,

• multiplicity of charged tracks measured by the SPD.

In Tab.2.2 the L0 trigger requirements for the lines relevant in the analysis presented in this
thesis are reported.

The High Level Trigger. The HLT refines the selection done from the L0 trigger by exploit-
ing the information from the all sub-detectors. The HLT is in turn splitted into two levels:

• the HLT1 uses only the information from the VELO and the tracking stations. In Tab.2.3
the HLT1 trigger requirements for the lines relevant in the analysis presented in this thesis
are reported.

• the HLT2 performs a full reconstruction of the event, thus making the final choice if retain
or reject a given event. For the analysis presented here the main HLT2 trigger line is the
“Hlt2Topo” which uses the output of a Multivariate discriminant (see Sec.3.2.1) to select
the interesting events. More details about this line can be found in Ref.[75]. The other
lines used are reported in Tab.2.4.

A schematic representation of the trigger system is shown in Fig.2.16.

2.4 Conclusions

In this Chapter the experimental setup for the studies presented in this thesis has been pre-
sented. After a brief introduction about the LHC complex accelerator, the main bb̄ production
mechanism have been presented. Then the LHCb detector has been briefly described in its main
components:
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Line Requirements
Hlt2DiMuonJPsi IsMuonµ1,µ2= true |mµµ −mJ/ψ| < 120 MeV/c2

Hlt2DiMuonDetached IsMuonµ1,µ2= true |mµµ −mJ/ψ| < 120 MeV/c2 DLS>3
Hlt2DiMuonBmm IsMuonµ1,µ2= true mµµ > 4.5 GeV/c2 DLS>3
GEC VELO tracks < 350

Table 2.4: HLT2 trigger requirements for the lines relevant for the analysis presented in this
thesis. “DLS” is the distance between the primary and secondary vertexes divided by its error.

Figure 2.16: Scheme of the LHCb trigger architecture.
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• the tracking system which allows to reconstruct with an excellent precision the interaction
points as well as the secondary vertices in the event, and at the same times provides a very
precise measurement of the charged tracks momentum;

• the RICH, the calorimeters, and the muon stations whose information are exploited in the
particle identification algorithms and by the trigger system;

• the trigger system which allows to select only the potentially interesting events featuring
a b-hadron decay, while rejecting the huge amount of background events produced in the
proton-proton collision.

The good performances achieved by the LHCb detector are crucial to perform searches for
rare decays, especially B0

(s) → µ+µ−. The good tracking algorithm performances together with
the efficient particle identification allow to efficiently reconstruct very tiny signals and to achieve
a good discrimination against the different sources of background.
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Chapter 3

B0
(s)→ µ+µ−

The B0
(s) → µµ analysis presented in this chapter is based on a dataset of 3.1 fb−1 collected

during the first LHC Run in 2011-2012. 1 fb−1 has been collected at a center of mass energy
of
√
s = 7 TeV during the last months of 2010 and in 2011, while the remaining 2.1 fb−1 have

been collected in 2012 at
√
s = 8 TeV. The results presented in this chapter have been published

in Refs.[77, 49].
The Standard Model (SM) expected rates for the B0 → µ+µ− and the B0

s → µ+µ− modes
imply that in one billion of B0

s only three B0
s mesons decay into the di-muon channel, while only

one B0 in ten billions goes into a dileptonic final state. The first evidence for the B0
s → µ+µ−

decay has been obtained by the LHCb collaboration using a dataset of 2.1fb−1 [44].
To measure the branching fraction (BR) of the B0

(s) → µµ decay, the number of observed
signal events in the dataset is extracted and then converted into a value for the BR using some
normalization channels.

In Section 3.1 a general overview of the analysis is presented. In Section 3.2 the optimization
of the performances of the Boosted Decision Tree (BDT) classifier is presented. Section 3.3
covers the BR measurement and limit extraction and in Section 3.4 the combined analysis of
LHCb and CMS is presented. Finally in Section 3.7 the definition and optimization of new
isolation variables and of the final Boosted Decision Tree classifier in view of future rounds of
the analysis are presented.

3.1 Overview of the analysis

The BR of a given decay is proportional to the total number of observed signal events NB(s)

and inversely proportional to the total number NB(s) of B0
(s) produced. Taking into account an

efficiency factor εsig describing the effects due to the detector acceptance as well as the whole
selection process, the following relation holds

BRsig = ε−1
sig

Nsig

NB(s)

. (3.1)

The goal of the analysis is thus to select in the collected dataset those events being potentially
the B0

(s) → µµ decays, count them and convert through relation (3.1) in a value for the BR. To
do that the number of B0

(s) mesons in the dataset must be extracted and the efficiency factor
εsig must be computed.

The total number of B mesons in the sample is proportional to the integrated luminosity L
through the relation

NBq = L · σbb̄ · fq · εq , (3.2)
where
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• σbb̄ is the bb̄ pair cross section

• fq is the hadronization fraction, i.e. the fraction of b-quarks hadronizing into a Bq meson

• εq is an efficiency factor due to the detector acceptance.

In the analysis presented here, nevertheless, the total number of B(s) is obtained in a different
way. In particular eq. (3.1) is used for some normalization channels of already well known BR.
By inverting this relation the value of NB(s) is obtained as a function of the number NNorm of
normalization channel events present in the dataset. More explicitly, the relation between the
BR and the number of observed signal events Nsig is:

BRsig = εNorm
εsig

BRNorm
NNorm

· fNorm
fsig

·Nsig = αNorm ·Nsig (3.3)

where fNorm
fsig

is the ratio of the hadronization probabilities for a b-quark into the signal and
the decaying B meson in the normalization channel. The normalization factor αNorm has been
defined as the conversion factor between the observed number of signal events and the signal
BR.

The particular form of eq.(3.3) motivates the choice of the normalization channels. In par-
ticular they are chosen in order to be as much as possible similar to the signal, both with respect
to the topology and the particle content of the final state. In such a way, possible systematics
and biases in the reconstruction, trigger, and selection processes cancel out in their ratio. In
addition these channels must be precisely measured.

The analysis proceeds in two steps: the B0
(s) → µµ candidate selection is achieved through a

preliminary loose selection followed by a refined selection based on the output of a Multi Variate
Analysis (MVA) classifier (see e.g.Ref.[80]). This first selection aims to remove as many obvious
background events as possible while keeping a very high signal efficiency, in order to increase
the sensitivity S which is defined as

S = N√
N +B

(3.4)

where N and B are the number of signal and background events respectively. In order to
avoid any further removal of signal events from the sample, the selected events are classified
with respect to two independent variables: the invariant mass of the di-muon system mµµ

and a variable describing the geometry of the event. This variable is the output of a second
MVA classifier using kinematical and topological variables related to the signal candidate. The
B0 → µ+µ− and the B0

s → µ+µ− signal yields are extracted through a simultaneous unbinned
extended maximum likelihood fit in the mµµ variable in eight bins of the output of the MVA
classifier. If an excess of signal candidate events is observed, its significance is evaluated. If
this is greater than 3σ a value for the BR is measured, if not, the observed pattern of events
is compared with the expected one for several BR hypotheses and an upper limit on the BR is
computed.

3.1.1 Signal features

Fig.3.1 shows a typical B0
(s) → µµ decay. The B0

(s) meson is produced at the interaction point
between the two proton beams, which will be referred to as the Primary Vertex (PV). Thanks
to its large lifetime (see Tab.3.1) it flies inside the VELO for ∼ 1cm before decaying into the
two µ of the final state.

The signature of a B0
(s) → µµ decay in an event is thus the presence of two tracks identified

as muons forming a good Secondary Vertex (SV) well displaced with respect to any other PV in
the event; the sum of the momenta of the two tracks must be collinear with the direction defined
by the B0

(s) production and decay vertexes, and the invariant mass of the two tracks mµµ must
be compatible with the one of the B0

s or B0 mesons.
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B

µ+
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Figure 3.1: Schematic representation of a B0
(s) → µµ event.

Meson quark content Mass (MeV/c2) Mean life τ (s−12)
B0
s sb̄ 5366.3 ± 0.24 1.472+0.024

−0.026
B0 db̄ 5279.5 ± 0.17 1.525 ± 0.009

Table 3.1: Properties of the B0
s and B0 mesons.

Since (as it will be shown in the next section) both the signal selection and the final classifi-
cation rely on requirements on the quality of the reconstructed vertex formed by the two muons
and the topology of the reconstructed B0

(s) → µµ candidates, the following two normalization
channels are chosen

• B+ → J/ψ(→ µµ)K+: which, like the B0
(s) → µµ signal, contains two muons coming from

the same vertex in the final state;

• B0 → π±K∓ which, being a 2-body decay, has the same topology of the B0
(s) → µµ signal.

3.1.2 Trigger selection

At the trigger level, events featuring the presence of a B0
(s) → µµ decay candidate are selected

by the following trigger requirements (see Sec.2.3.3):

• at the L0 level the high transverse momentum (pT ) of the muons coming from a B decay
is exploited. In particular the following two triggers are used:

– L0Muon,

– L0Dimuons;

• at the HLT1 level the trigger selection relies on the single muon trigger Hlt1TrackMuon
or the di-muon triggers Hlt1DiMuonLowMass and Hlt1DiMuonHighMass;

• the HLT2 trigger is based on Hlt2DiMuonBmm for the signal. For the B+ → J/ψK+ the
Hlt2DiMuonJPsi is used (except for the last 470fb−1 for which the Hlt2DiMuonDetached
is used), while for the B → hh(′) the Hlt2Topo2Body, Hlt2B2hhX and Hlt2B2hh
decisions are used.
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Figure 3.2: Feynman diagram for the production mechanism of the exclusive di-muons process.

B

µ+

µ-

B

Figure 3.3: Schematic representation of a combinatoric background event for B0
(s) → µµ .

3.1.3 Loose selection

The collected dataset contains a huge amount of background events, namely events appearing
to be very similar to the signal but coming from other processes. The most important sources
of backgrounds are:

• exclusive di-muons processes pp→ pµµp. The production mechanism is shown in Fig.3.2.

• Prompt combinatorial candidates where (at least) one of the two muons comes from the
primary vertex.

• B0
(s) → µµγ decays which can fake the B0

(s) → µµ signal because of the two muons
coming from the same vertex. In addition, being a 3-body decay, this process is not
helicity suppressed as in the case of the B0

(s) → µµ signal and can represent a potentially
dangerous source of background.

• B cascade decays B → D(→ µX)µX which are due to the decay of the B into a muon and
charmed meson, which subsequently decays into another muon and other (neutral) tracks

• Combinatorial background due to semileptonic decays of the two B mesons produced in
the collision, as depicted in Fig.3.3, and which reconstructed as coming from the same
fictitious vertex.

• B → hh′ with h, h′ = π,K decays, where the two hadrons are misidentified because of
decays in flight.
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Mode Requirements
B0 → π−µ+νµ mπµ > 4.5 GeV/c2

B0
s → K−µ+νµ mKµ > 4.5 GeV/c2

B+ → π+µ+µ− both µ in the acceptance
B0 → π0µ+µ− both µ in the acceptance
Λ0
b → pµ−ν̄µ mpµ > 4.5 GeV/c2

B+
c → J/ψ(→ µ+µ−)µ+νµ mµµ > 4.5 GeV/c2

Λ0
b → pπ

Λ0
b → pK

Table 3.2: List of the main exclusive modes studied in the present analysis, together with the
generator cuts applied during the production of the related MC samples.

• Other hadronic or semileptonic decays of a B meson, where some of the daughter particles
escape the detection or are misidentified as a muon, can contribute to the background. In
Tab.3.2 the exclusive modes taken into account in the present analysis are listed.

In order to remove these background events from the dataset and increase the signal purity,
a selection achieved in two steps has been designed.

A first loose selection aims to reduce the dataset to a manageable level by removing all the
obvious background events. The main requirements of this selection are the following:

• tracks quality requirements: good track χ2, small ghost probability , small Kullback-
Leibler (KL) distance (by which tracks that have been duplicated at the reconstruction
level are removed);

• vertex quality and geometry requirements: small distance of closest approach (DOCA)
between the two tracks, good χ2 of the vertex formed by the two muons. High flight dis-
tance significance of the candidate B meson, small impact parameter significance (IPχ2)
of the B and high IPχ2 of the two daughters.

These cuts allow to remove the background events for which the two muons making the B
candidates originate from two different vertexes.

• kinematical requirements: candidates are required to have an invariant mass mµµ in
a window of ±500 MeV around the central value of the Bs mass, a minimum transverse
momentum of the µ and the B0

(s) with respect to the direction defined by the beam axis
(pT ) greater than 0.25 GeV/c2 and 0.5 GeV/c2 respectively.

These kinematical cuts allow to remove the sources of (exclusive) backgrounds where the
two muons in the final state are produced together with other undetected or unreconstructed
particles. In particular the cut on the invariant mass mµµ is very efficient to remove the B(s) →
µµγ background. Indeed, even if it is a three body decay not helicity suppressed, the di-muon
system hardly passes the cuts on mµµ, being [81]

BR(B0
s → µµγ)E(γ)<60 MeV/c2 = 1.6× 10−12 . (3.5)

The cut on the transverse momentum pT of the B0
(s) candidate is very efficient to remove

the pp → pµµp processes. Indeed, even though each of the two muons has a high transverse
momentum, their sum will result in a very soft pT , being produced in opposite direction [82].

• PID requirements on the muon tracks. The variables used are (see Ref.[83] for a more
detailed description):

i.e. the probability that a track has been reconstructed from hits due to different particles

45



– DLL(µ(K), π) defined as the logarithm of the ratio between the probability Pµ(K)
for the track to be compatible with the ‘’µ(K)-hypothesis” and the one Pπ to be
compatible with the π hypothesis:

DLL(µ(K), π) = ln
(
Pµ(K)
Pπ

)
– the IsMuon variable which looks for hits in the muon stations around the extrapo-

lation of the reconstructed track.

These requirements are meant to reduce backgrounds coming from misidentified hadrons.

In Tab.3.3 all the requirements of this loose selection are reported in detail.
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Table 3.3: Selection for B0
(s) → µ+µ− , B0

(s) → h+h− , and B+ → J/ψK+ channels; DOCA is the distance of closest approach between the two
tracks, VDS is the secondary vertex flight distance significance, and DLL is the combined PID likelihood to discriminate different particle hypotheses.

Cut applied on value applied on value
B0
s→ µ+µ− and B0

(s) → h+h− B+ → J/ψK+

track χ2/ndf µ / h <3 µ / h < 3
ghost prob < 0.3
DOCA <0.3mm <0.3mm
IPχ2 >25 >25
pT > 0.25 and < 40 GeV/c > 0.25 and < 40 GeV/c
p <500GeV/c <500GeV/c

IsMuon µ only true µ only true
vertex χ2 B(s) <9 J/ψ <9

VDS > 15 > 15
∆M |M(hh, µµ)−mB | < |M(µµ)−mJ/ψ| <

60 MeV/c2 60 MeV/c2

IPχ2 B(s) < 25 B+ < 25
t < 9 ·τ(B0

s ) < 9 ·τ(B0
s )

BDTS > 0.05 > 0.05
DLL(K − π) < 10
DLL(µ− π) > −5

∆M |M(J/ψK)−mB | <
100 MeV/c2

pT (B0
s ) B0

s→ µ+µ− > 0.5 GeV/c
B0

(s) → h+h−
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The loose selection presented is very efficient to remove all prompt background (thanks to
the pT requirement), the B(s) → µµγ (thanks to the requirement on the di-muon invariant mass)
and a large fraction of B → hh′.

3.1.4 Tight selection

The sample selected with the criteria presented in the previous section is still polluted by a huge
amount of combinatorial candidates, as well as of physical exclusives modes. A refined selection,
based on a Boosted Decision Tree (BDT) algorithm (see Sec.3.2.1), has thus been designed to
further increase the signal purity of the sample. The selection criteria based on the output of
this BDT, hereafter called “BDTS”, allows a background rejection of 70% in the whole di-muon
invariant mass fit region while keeping an efficiency on the signal of 95%.

The BDT algorithm has been trained using the following set of six input variables:

• the impact parameter and the impact parameter χ2 of the B candidate,

• the χ2 of the B (or the J/ψ vertex, for the normalization channel B+ → J/ψ(→ µµ)K+),

• the angle between the direction of the momentum of the B candidate and the direction
given by the B candidate production and decay vertexes (DIRA),

• DOCA between the two µ tracks,

• the smallest impact parameter of the two µ tracks with respect to any reconstructed
primary vertex in the event.

To train the BDT classifier a sample of simulated signal events has been used, while a
sample of events falling in the invariant mass sidebands [4800− 5000]∪ [5500− 6000]MeV/c2 of
the di-muon pair is used as background training sample.

The selected events are classified with respect to two variables, the invariant mass of the
di-muon system mµµ and the output of another MVA classifier which uses topological and
kinematical input variables as well. The more these two variables are able to discriminate signal
against the background, the higher the sensitivity of the analysis will be.

3.2 BDT optimization

One of the important improvements in the analysis presented here is the optimization of the
MVA classifier used to extract the signal yields and the limit. In this section a brief introduction
to the MVA techniques is given and the optimization of the performances of the BDT is then
described.

3.2.1 Introduction to Boosted Decision Trees

A Multi Variate Classifier combines the information from different variables {xi} (called input
variables of the classifier) differently distributed for signal and background events in a unique
output variable X = F({xi}). The distributions of the output variable X for signal and back-
ground events will be much more separated than the ones of the single input variables, resulting
in an improvement of the signal-background discrimination. In particular, depending on the
output value X of the MVA classifier, it is possible to classify an event of unknown category
(i.e. signal or background) as being signal or background-like. The function F({xi}) does not
have an analytic parametrization and its particular mapping from the set {xi} to the output
value X is the result of a learning algorithm (or, equivalently, of a learning machine). Indeed
in order to make the classifier learning how to classify events of unknown category using the
information from the single input variables, a training must be done on the so-called Training
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samples, one representative of signal and another for background. On these samples, the algo-
rithm “learns” which are the distinctive features of signal and background events with respect
to the input variables {xi}.

In more details, the training process establishes the set of decisions (based on the distributions
of the input variables {xi}) by which the signal-background classification is achieved.

The most elementary example is a simple cut: given a variable x̄ with known Probability
Distribution Functions (PDFs) fsig(x̄) and fbkg(x̄) for signal and background events respectively,
an optimal value x̄cut can be fixed by requiring the maximization of a given criteria, e.g. the
sensitivity defined below:

S(x̄cut) =
∫ x̄cut
x̄min

fsig(y)dy√∫ x̄cut
x̄min

fsig(y)dy +
∫ x̄cut
x̄min

fbkg(y)dy
. (3.6)

Practically, while looking for the value x̄cut maximizing S(x̄cut), a scan on m values of x̄ is
done, and the one giving the highest value for S(x̄) is taken as x̄cut. Of course, the highest the
value of m, the better the efficiency of the selected cut will be.

In a Boosted Decision Tree the previous process is iterated several times as follows (see
Fig.3.4):

• the initial sample is splitted in two subsamples (defined by the cuts on the most discrimi-
nating variable x1 among the input ones) with different signal purities S;

• then the two subsamples are further splitted using cuts on the most discriminating variable
among the remaining ones (which can be, in principle, differents for each subsample);

• this process is iterated a certain number of times (called Depth of the tree) till a given cri-
terium is fulfilled (e.g. no more input variables to use, too few events left in the subsample,
or maximum number of splittings achieved);

• each of these intermediate sub-samples is called node of the tree, while each of the sub-
samples at the end of the splitting process is called leaf. Depending on its signal purity, a
given node or leaf can be signal or background-like. The whole decision/splitting process
is called decision tree.

Since the composition of the training events is known, it is possible to identify those events,
which, being signal (background), are classified as background (signal) at the end of the decision
process. The tree of decision can be repeated n-times assigning to misidentified events at the
iteration i a higher weight with respect to the correctly classified ones. In this way at the (i+1)th
iteration the decision processes will take more into account such events and thus all cuts will
be tuned in a more refined way to correctly classify the previously misidentified events. This
process is called boosting of the decision tree. The set of decision trees obtained after n iterations
is called forest.

The most important advantages of the MVA classification are:

• a higher efficiency with respect to a simple chain of rectangular cuts, since the optimal set
of cut values {x̄icut} with respect to the input variables are fixed in a “global” way, looking
at the interplay between the different input variables,

• the exploitation of the correlations between the input variables, which are not fully used
in a chain of rectangular cuts.

The final output variable X is, by construction, more discriminating than each of the sin-
gle input variables. The performances are usually evaluated on two independent signal and
background samples (called Test samples) with respect to the ones used for the training of the
operator, using the so-called Receiving Operating Characteristic (ROC) curve. This is built from
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Figure 3.4: Schematic representation of a Decision Tree of maximal Depth equal to 3. Vi are
the input variables, while Ti are the values of the cuts.

the (known) PDFs for the output variable X for signal (Fsig(X )) and background (Fbkg(X )) of
the Test sample events as the pair of values

(εsig(X ), 1− εbkg(X )) (3.7)

where εsig(bkg)(X ) is the efficiency for a given cut on X for signal and background respectively,
i.e.

εsig(bkg)(X ) =
∫ X
Xmin

Fsig(bkg)(X )dX . (3.8)

The performances of a classifier depend on three factors:

• the set of input variables {xi}: the more the input variables are differently distributed
and correlated between signal and background, the better will be the signal-background
separation of the BDT output X ;

• the training parameters of the classifier: as explained, during the training of the classifier
several parameters control the learning process, summarized in the following:

– the number of decision trees in the forest (nTrees)
– the minimum number of events required in a leaf (EvtsMin)
– the maximum allowed depth of the decision tree (MaxDepth)
– the number of steps during the optimization of the node cut (nCuts)
– the parameter of the boosting algorithm (AdaBoostBeta or β);

• the size of the training samples for signal and background.

By optimizing the values of these training parameters, the performances of a BDT can be
improved considerably, for example by increasing the number of trees in the forest, the depth
of each decision tree and the number of cuts. The counterpart of this improvement is the
risk of overtraining the classifier. This means that the learning process is very sensible to
statistical fluctuations in the training sample, so that the classifier becomes very efficient in the
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signal-background discrimination for the samples with which it has been trained, but looses in
performances when classifying events in a statistically independent sample. Even if it is not a
problem in itself it’s better to reduce it as much as possible. In particular the overtraining can
be cured :

• using large training samples for signal and background, in order to reduce the dependence
on statistical fluctuations;

• tuning the BDT parameters to make the decision process as less as possible driven by the
statistical fluctuations in the training sample. The most relevant parameters to this extent
are the nCuts and the MaxDepth, and, even if it has a smaller impact, the nTrees.

While the increase in the size of the training sample both reduces the overtraining and
improves the signal background discrimination, the tuning of the BDT parameters in order to
reduce the overtraining of the classifier can lead to a degradation of the performances of the
classifier. For this reason, when optimizing the performances of a classifier, the best possible
compromise between signal-background discrimination and overtraining of the classifier must be
found.

The TMVA package. The tools used for the analysis presented here is the Toolkit for Multi
Variate Analysis (TMVA) package [84]. This Toolkit implements several MVA techniques, in
addition to the BDT algorithm, such as Neural Network (NN) classification algorithms.

No matter the particular MVA algorithm, the output given by the TMVA classifier is a
number in the range [−1, 1]: it’s close to −1 for background-like events or to 1 for signal-like
events.

Flattening of the BDT . The distributions Fsig(bkg) of the output variable X of the Boosted
Decision Tree are transformed through the following change of variable, called flattening:

X → Xflat ≡
∫ X
Xmin Fsig(y)dy∫ Xmax
Xmin Fsig(y)dy

(3.9)

By definition, the values of the variable Xflat are then constantly distributed in the interval
[0, 1] for signal events, while they are peaking at zero for background events.

Another way to interpret the flattening transformation is a rebinning (with differents bin
sizes) of the histogram describing the distribution of the X variable. The rebinning is done in
such a way that the fractions of signal events be equal in each bin.

3.2.2 Optimization of the input variables set and tuning parameters

One of the main improvements of the analysis presented here with respect to the previous
ones consists in the use of an improved MVA classifier. To this extent, a larger sample of
background combinatorial MC generated events has been generated. This sample corresponds
to an integrated luminosity ∼ 50 fb−1 (to be compared with the sample used for the previous
rounds of the analysis, equivalent only to ∼ 0.5fb−1). In term of number of events, 90164 generic
MC bb̄ → µµX events have been used as a proxy for background, while 683671 B0

s → µµ MC
generated events for signal.

BDT input variables. The classifier used for the previous B0
(s) → µµ analysis was trained

using the following set of nine input variables:

• the B candidate meson proper time (τ),

• the impact parameter of the B (IP(B)),
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• the transverse momentum of the B candidate (pT (B)),

• the B candidate isolation based on the CDF definition (ICDF (B)) [88], i.e. ,

ICDF = pT (B)
pT (B) +

∑
track∈cone pT (track) (3.10)

where the ‘’cone” is defined by the relation√
δη2 + δφ2 < 1.0 (3.11)

being δη and δφ the difference in pseudorapidity and φ coordinate of the given track with
respect to the B candidate,

• the minimum impact parameter significance of the muons with respect to any primary
vertex (IPχ2(µ)),

• the distance of closest approach of the two muons (DOCA),

• the isolation of the two muons (defined in Appendix A) with respect to any other track in
the event (I(µ)),

• the minimum transverse momentum of the two muons (minpT (µ)),

• the cosine of the angle between the muon momentum in the di-muon rest frame and the
vector perpendicular to the plane defined by the B direction and the beam axis (“polar
angle”).

Only the DOCA and the IP(B) are in common with the BDT classifier used for the tight
selection.

Thanks to the larger available statistics of generic bb̄ → µµX MC events the effects of the
following new input variables for the BDT classifier (in addition to the previous ones) have been
tested:

• the absolute value of the difference between the pseudorapidity of the two muons (∆η),

• the absolute value of the difference between the spherical φ coordinate of the two muons
(∆φ),

• the angle between the B candidate momentum and the “thrust momentum” of the B
(‘’other B angle”). The “thrust momentum” is defined as the sum of the momenta of
all long tracks coming from a B and excluding those coming from long lived particles.
These tracks are selected through requirements on the IPχ2 with respect to the B PV
(0.4 <IPχ2 < 40), on their transverse momentum pT (200 < pT (track) < 30000 MeV),
and on the ratio of their transverse momentum and the one of the two muons (pT (track)

pT (µ±) >

0.0001). If there is no track in the event satisfying these requirements the thrust momentum
is set to 0. Said in a different way, the thrust momentum is the sum of the momenta of all
tracks consistent with originating from the decay of the other b-hadron in the event,

• the angle between the direction of the µ+ and the thrust momentum above defined in B
rest frame (‘’other B boost angle”).

These variables had already been studied for the previous round of the analysis [86] but due
to the lack of MC statistics their performances couldn’t be evaluated with enough precision and
had been discarded at the moment.
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The Figure of Merit of classifiers. The optimization of the BDT classifier has been per-
formed with respect to the BDT tuning parameters and the set of input variables. To compare
the performances of different classifiers, a so-called Figure Of Merit (FOM) must be defined.
One possible choice (that had been adopted for previous rounds of the analysis) is to take the
FOM as the integral of the ROC curve; nevertheless this method does not take fully into account
the importance of the most sensitive bins.

For this round of the analysis a new FOM is used, and its computation is done as follows:

• for each bin of the BDT under optimization the expected number of background nb and
signal+background events ns+b in the B0

s mass signal window are computed. The total
number of signal and background events are taken to be the ones expected in the first half
of 2011 1.1fb−1 dataset, while the efficiencies are taken from the signal and background
test samples.

• under the assumption that in each BDT bin these numbers fluctuate as a poissonian
distribution, the following quantity is computed

∆LQi = 2 · ln

 Poiss(nb,nb)
Poiss(ns+b,nb)
Poiss(nb,ns+b)
Poiss(ns+b,ns+b)

 ; (3.12)

• the FOM for a given BDT operator is given by the sum over all the BDT bins of the ∆LQi.

The higher the value of the FOM, the higher the signal-background separation of the BDT
classifier will be.

3.2.3 Correlation with the invariant mass

The BDT classifier is required to be as much as possible uncorrelated with the other variable
used to classify the events in the dataset, i.e. the di-muon invariant mass mµµ, at least for the
combinatorial background events. The reason has to do with the extrapolation of the combi-
natorial background invariant mass shape inside the signal mass windows, which, as it will be
shown in the next section, is obtained by interpolating the distribution in the invariant mass
sidebands. For this reason, a BDT classifier more performant for events falling in one or both the
invariant mass sidebands and less performant for events falling in the signal region with respect
to mµµ will cause a bias in the estimation of the combinatorial background inside the signal mass
window. Two kinds of correlation between the BDT output and the di-muon invariant mass can
arise:

• linear correlation due to a BDT classifier more discriminating for events falling, for ex-
ample, in the left mµµ sideband and less performant for events falling in the right mµµ

sideband. This kind of correlation can still be dealt with during the fit and it has been
shown (see Ref.[76]) that effects of correlations up to ∼ 10% are taken into account by the
systematic errors of the fit. This kind of correlation is quantified by the linear coefficient
∂X
∂mµµ

;

• peaking correlation arising when the BDT classifier is more performant for events falling
in both the left and right invariant mass sidebands, and less performant for those events
with an invariant mass in the signal mass windows. This particular kind of correlation
must be avoided at all, because it creates a false peak in the signal mass region. This
peaking correlation can be estimated looking at the coefficient between the BDT output
and the absolute value of the difference between the di-muon invariant mass and the B0

s

mass, i.e. ∂X
∂|mµµ−MB0

s
| .
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nTrees β EvtsMin MaxDepth nCuts
BDT9 2.1fb−1 250 1 400 3 20
BDT9 optimized 1000 0.75 4200 8 20

Table 3.4: Tuning parameters of two BDT classifiers using the set of nine input variables used
in the previous round of the analysis. In first line are reported the ones of the classifier used
for the 2.1fb−1 paper (which were optimized on a background sample of equivalent integrated
luminosity of 0.50 fb−1, in second line the optimized values using the 50fb−1).

mµµ |mµµ −MB0
s
|

BDT9 2.1fb−1 3.6 1.12
BDT9 retrained 2.58 0.56

Table 3.5: Values (in %) of the BDT output correlations with mµµ for bb̄→ µµX MC generated
events for classifiers using nine input variables and trained on training samples of different sizes
(0.5fb−1 and 50fb−1).

Correlations of the BDT output with the invariant mass arise when one or more of the
input variables are correlated with the mass. For example, variables related to the pointing
are correlated with the reconstructed invariant mass of the two muons in the final state, both
for signal and physical background events. Indeed, the emission of neutral or unreconstructed
particles together with the two muons causes a shift of mµµ towards lower values and the total
momentum of the visible system is no more well aligned with the one of the reconstructed B
meson candidate.

Another reason for the correlation of the output of the BDT classifier with the invariant
mass lies in the values of the BDT tuning parameters. As it will be shown soon, if these are too
optimized, the classifier can spot out the correlations between some of the input variables (even
starting from variables which are not so strongly correlated with the invariant mass) thus giving
an output correlated with mµµ.

Effects of BDT training parameters. In the first line of Tab.3.4 are reported the values of
the BDT classifier’s tuning parameters used for the previous round of the analysis (which uses
as input variables the first nine ones introduced earlier).

The optimization of the tuning parameters, using the larger training sample available for this
round of the analysis, gives higher optimal values for the nTrees and MaxDepth parameters, as
it can be seen from the second line of Tab.3.4.

This translates in an improvement of the performances of the BDT, but, at the same time, a
peaking correlation between the output of the classifier and the dimuon invariant mass appears,
as can be seen from Fig.3.5.

To understand the reasons of such a correlation the following tests have been done:

• to test the effects of the training sample dimension, a BDT classifier with the tuning
parameters used for the previous round has been trained on a larger training sample. The
results are shown in Fig.3.6 and the values for the correlation of the BDT output with the
invariant mass are reported in Tab.3.5. The use of a bigger training sample only improves
the performances of the classifier and is not responsible for the peaking correlation.

• to test the effect of the increased number of trees a scan on nTrees has been performed,
while keeping fixed all others parameters. The result of such scan is reported in Fig.3.7
and in the first three lines of Tab.3.6. As in the previous case, the increasing number of
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Figure 3.5: Average values of the output of different BDT classifiers as a function of the mµµ

for bb̄ → µµX MC generated events: in blue of a BDT trained with the tuning parameters
of the classifier used for the previous round of the analysis that have been optimized using a
background sample of integrated luminosity equivalent to 0.5 fb−1; in red of a classifier using
tuning parameters optimized using a background sample of integrated luminosity equivalent to
50 fb−1.
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Figure 3.6: Average values of the output of two different BDT classifiers, using nine input
variables, the tuning parameters in the first row of Tab.3.4, and trained on training samples of
different sizes (blue ∼ 0.5fb−1, red ∼ 50fb−1), as a function of mµµ for bb̄→ µµX MC generated
events.
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Figure 3.7: Average values of the output of different BDT classifiers using nine input variables
and the tuning parameters in the first row of Tab.3.4 except for the “nTree” tuning parameter
as a function of mµµ for bb̄→ µµX MC generated events.

nTrees mµµ |mµµ −MB0
s
|

500 3.16 0.78
750 3.30 0.78
1000 3.43 0.82
MaxDepth mµµ |mµµ −MB0

s
|

3 2.58 0.56
8 11.38 12.41

Table 3.6: Values (in %) of the BDT output correlations with mµµ for bb̄→ µµX MC generated
events for classifiers using nine input variables and different values of the tuning parameters.

trees in the forest is not what causes the peaking correlation, and in fact it only improves
the performances.

• finally, the effect of the increased depth of each tree (MaxDepth) has been studied, by
scanning over two possible values while keeping fixed all other parameters. The result of
such scan is reported in Fig.3.8 and in the last two lines of Tab.3.6. In this case it’s evident
that the peaking correlation is due to the high value of the MaxDepth parameter.

The same behavior is seen when using the enlarged set of thirteen input variables, as it can be
seen in Fig.3.9 and Tab.3.7

Effects of BDT input variables. Since this correlation already appears when using the
reduced set of nine input variables (and is even more pronounced with thirteen input variables),
it’s among those nine variables that the one(s) causing this correlation must be found. The ones
which can give rise to the aforementioned correlation are the transverse momentum of the B
candidate, the minimum transverse momentum of the two muons, and the “polar angle”. These
variables are strongly correlated with mµµ as it is shown in Figs.3.10-3.11.

To test the effects of these variables on the output of the BDT classifier, three classifiers using
a set of eight input variables (obtained from the nine input variables set used for the previous
publication by removing, one at time, the minimum transverse momentum of the muons, the
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Figure 3.8: Average values of the output of different BDT classifiers using nine input variables
and the tuning parameters in the first row of Tab.3.4 except for the ”MaxDepth” tuning param-
eter as a function of mµµ for bb̄→ µµX MC generated events.
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Figure 3.9: Average values of the output of different BDT classifiers using thirteen input vari-
ablesand the tuning parameters in the first row of Tab.3.4 except for the ”MaxDepth” tuning
parameter as a function of mµµ for bb̄→ µµX MC generated events.

MaxDepth mµµ |mµµ −MB0
s
|

3 5.21 1.46
5 12.86 5.67
8 11.20 15.40

Table 3.7: Values (in %) of the BDT output correlations with mµµ for bb̄→ µµX MC generated
events for classifiers using thirteen input variables and differing only for the MaxDepth tuning
parameter values.
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Variable mµµ |mµµ −MB0
s
|

minpTµ 21.19 3.86
pT (B) 7.16 1.55
polar angle 0.4 0.29
|∆η| 2.13 0.54
|∆φ| 4.03 0.71

Table 3.8: Values (in %) of the correlations with mµµ for bb̄ → µµX MC generated events of
some of the BDT input variables.
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Figure 3.10: Average values of minpTµ (mu_minPT in the plot) and pT (B) (‘’B_PT” in the
plot) as a function of mµµ for bb̄→ µµX MC generated events.

58



htemp
Entries 90164
Mean 5292
Mean y 0.0003952
RMS 341.3
RMS y 0.5815

4800 5000 5200 5400 5600 5800 6000

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

htemp
Entries 90164
Mean 5292
Mean y 0.0003952
RMS 341.3
RMS y 0.5815

mu_polar:B_mass {4766<B_mass&&B_mass<5966}

Figure 3.11: Average value of the ‘’polar_angle” variable as a function of mµµ for bb̄ → µµX
MC generated events.

BDT mµµ |mµµ −MB0
s
|

BDT9 6.35 6.62
BDT8 (BDT9 without minpT (µ)) 0.41 0.34
BDT8 (BDT9 without pT (B)) 6.01 3.64
BDT8 (BDT9 without “polar angle”) 6.02 1.17

Table 3.9: Values (in %) of the BDT output correlations with mµµ for bb̄→ µµX MC generated
events for classifiers using nine and eight input variables.

transverse momentum of the B candidate and the polar angle) and the optimized BDT tuning
parameters listed in the second row of Tab.3.4 have been tested. The result of the test is shown
in Fig.3.12 and the values of the correlations with the invariant mass are reported in Tab.3.9.

59



htemp
Entries 90164
Mean 5292
Mean y 0.04004
RMS 341.3
RMS y 0.06614

4800 5000 5200 5400 5600 5800 6000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

htemp
Entries 90164
Mean 5292
Mean y 0.04004
RMS 341.3
RMS y 0.06614

BDT9

BDT9
BDT8 mu_minPT
BDT8 B_PT
BDT8 polar_angle

htemp
Entries 90164

Mean

5292
Mean y 0.04004
RMS 341.3
RMS y 0.06614

4800 5000 5200 5400 5600 5800 6000
0

0.01

0.02

0.03

0.04

0.05

htemp
Entries 90164

Mean

5292
Mean y 0.04004
RMS 341.3
RMS y 0.06614

BDT9

htemp
Entries 90164
Mean 5292
Mean y 0.04004
RMS 341.3
RMS y 0.06614

4800 5000 5200 5400 5600 5800 6000
0

0.01

0.02

0.03

0.04

0.05

0.06

htemp
Entries 90164
Mean 5292
Mean y 0.04004
RMS 341.3
RMS y 0.06614

BDT9

htemp
Entries 90164
Mean 5292
Mean y 0.04004
RMS 341.3
RMS y 0.06614

4800 5000 5200 5400 5600 5800 6000
0

0.01

0.02

0.03

0.04

0.05

htemp
Entries 90164
Mean 5292
Mean y 0.04004
RMS 341.3
RMS y 0.06614

BDT9

Mean 5292
Mean y 0.04004

RMS

341.3
RMS y 0.06614

Mean 5292
Mean y 0.04004

RMS

341.3
RMS y 0.06614

BDT9

BDT8 mu_minPT

Mean 5292
Mean y 0.04004
RMS 341.3
RMS y 0.06614

Mean 5292
Mean y 0.04004
RMS 341.3
RMS y 0.06614

BDT9

BDT8 B_PT

Mean 5292
Mean y 0.04004
RMS 341.3
RMS y 0.06614

Mean 5292
Mean y 0.04004
RMS 341.3
RMS y 0.06614

BDT9

BDT8 polar_angle

Figure 3.12: Average values of the output of BDT as a function of mµµ for bb̄ → µµX MC generated events for different classifiers using nine (in
black) and eight input variables. These are obtained by the set of nine by removing one at time the minimum transverse momentum of the two µ
(blue), the transverse momentum of the B candidate (red), and the polar angle (green). The peaking correlation obtained with nine input variables
disappears if the minimum transverse momentum of the two µ is removed, while it is still present as far this variable is used as a input of the BDT.
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Figure 3.13: Average values of the angular variables |∆φ| (green) and |∆η| (red) (on the y-axis)
as a function of mµµ (on the x-axis) for bb̄→ µµX MC generated events.

As far as the set of input variable is concerned, the peaking correlation is due to the minimum
transverse momentum of the two muons, since, when it is removed, the peak disappears. The
same happens when the enlarged set of input variables is used. In this case also the two new
variables |∆η| and |∆φ| as well are correlated with mµµ as Fig.3.13 shows. The effects of the
removal of such variables, as well as of the minpT (µ), from the set of thirteen input variables
are shown in Fig.3.14 and Tab.3.10.
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Figure 3.14: Average values of the output of BDT as a function of mµµ for bb̄→ µµX MC generated events for different classifiers using thirteen (in
black) and twelve input variables. These are obtained by the set of thirteen variables by removing one at time the minimum transverse momentum
of the two µ (blue), the |∆η| (red), and the |∆φ| (green). Also with the enlarged set of thirteen input variable, the peaking correlation disappears
if the minimum transverse momentum of the two µ is removed, while it is still present if this variable is used as a input of the BDT.
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BDT mµµ |mµµ −MBs |
BDT13 11.4 12.9
BDT12 (BDT13 without minpT (µ)) 5.43 0.98
BDT12 (BDT13 without |∆θ|) 8.15 7.44
BDT12 (BDT13 without |∆φ|) 11.45 8.52

Table 3.10: Values (in %) of the BDT output correlations with mµµ for classifiers using thirteen
and twelve input variables for bb̄→ µµX MC generated events.

mµµ |mµµ −MB0
s
|

BDT9 6.35 6.62
MLP9 5.49 0.58
BDT13 11.4 12.9
MLP13 5.38 0.53

Table 3.11: Values (in %) of the BDT output correlations with mµµ for classifiers using nine
and thirteen input variables for bb̄→ µµX MC generated events.

It’s important to stress that even though the peaking correlation disappears, when removing
the minimum transverse momentum of the two muons from the input variables, the output of
the classifier is still slightly linearly correlated with the invariant mass mµµ.

A final remark concerns the fact that the peaking correlation between the invariant mass
mµµ and the BDT classifier’s output appearing when the minpT (µ) is used as input variable
is peculiar of the BDT method. Indeed this correlation disappears when, instead of a BDT
operator, a Neural Network classifier is used. In this case, using nine or thirteen input variables,
the output of the MVA classifier is only linearly correlated with mµµ. The results are shown
in Figs.3.15 and 3.16 and the values of the correlation with the invariant mass are reported in
Tab.3.11. The Neural Network classifier does not feature the peaking correlation with mµµ, even
if the minpT (µ) variable is used in the training. Nevertheless, as it is shown in Figs.3.17-3.18
the signal background discrimination is not as good as for the BDT algorithm.

Conclusions. To summarize, the previous studies show that:

• the peaking correlation between the BDT output and the invariant mass of the di-muon sys-
tem is due both to variables correlated with the invariant mass mµµ (especially minpT (µ))
and to the BDT parameter MaxDepth. In particular, it has been shown that the pres-
ence of the minpT (µ) variable together with a high value (equal or greater than 5) of the
MaxDepth parameter make this correlation appearing. An important remark concerns the
fact that, even though the minpT (µ) was used in the BDT with nine input variables used
for the previous analysis, such classifier didn’t show such a correlation (as it is shown in
Fig.3.5). The reasons for that are mostly due to to the low value (equal to 3, see 3.4)
of the MaxDepth parameter, and to the smaller available statistics used to optimize the
tuning parameter of that classifier. A BDT with thirteen input variables, with the in-
clusion of the minpT (µ), and a low value of the MaxDepth parameter, turns out to have
the same performances of the classifier using twelve input variables and a higher value of
the MaxDepth parameter, but features a larger linear correlation of its output with the
invariant mass mµµ;

• the linear correlation is ”intrinsically” due to the other variables and it’s not an ”artifact”
of the classifier or its optimization process, being still present when using a Neural Network
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Figure 3.15: Average values of the output of a BDT and a Neural Network classifier (MLP)
using the same nine input variables as a function of mµµ for bb̄→ µµX MC generated events.
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Figure 3.16: Average values of the output of a BDT and a Neural Network classifier (MLP) using
the same thirteen input variables as a function of mµµ for bb̄→ µµX MC generated events.
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Figure 3.17: ROC curves of a BDT and a Neural Network (MLP) classifiers trained with the set
of nine input variables used for the previous round of the analysis.
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Figure 3.18: ROC curves of a BDT and a Neural Network (MLP) classifiers trained with the
enlarged set of thirteen input variables.
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nTrees EvtsMin MaxDepth nCuts β

1000 4500 6 30 0.5

Table 3.12: BDT parameters used to train the MVA classifier with twelve input variables.
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Figure 3.19: ROC curves of the BDT operators used for the previous B0
(s) → µµ analysis and

the new optimized operator with twelve input variables.

classifier.

3.2.4 The final BDT classifier

The final BDT classifier is then built up of twelve input variables:

• eight of the nine input variables used for the previous round of the analysis (minpT (µ)
being removed due to peaking correlation with the invariant mass),

• four additional “angular” variables introduced in the previous section (|∆η|, |∆φ|, ‘’other
B angle”, ‘’other B boost angle”).

The BDT tuning parameters have been optimized according to the performances found on
generic bb̄ → µµX Monte Carlo sample for the background and B0

s → µµ Monte Carlo sample
for the signal. A scan over the values of the tuning parameters listed in the previous section has
been done, and the set maximizing the value of the above mentioned FOM has been adopted to
train the final classifier. The best values of the tuning parameters are reported in Tab.3.12

The value of the FOM for this classifier is 32.6, to be compared with that of the BDT classifier
used for the previous publication which is equal to 18.6. The improvement in the performances
of the new classifier is also shown in the ROC curves of the two operators shown in Fig.3.19.

The values of the linear and peaking correlations of the classifier’s output with respect to
mµµ are reported in Tab.3.13. The correlation of B0

s → µµMC signal in the signal mass windows
(values in parenthesis) is negligible, while the correlation at low mµµ is due to radiative loss of
energy from the muons in the final state. The correlation for background events is negligible,
and the BDT value as a function of the invariant mass of the two muons is shown in Fig.3.20.
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Sample mµµ |mµµ −MB0
s
|

B0
s → µµ 5.3% (0.32%) 5.0% (0.26%)

bb̄→ µµX 1.2% 0.02%

Table 3.13: Values (in %) of the BDT output correlations with mµµ for the final BDT classifier
with twelve input variables. The correlation of B0

s → µµ MC signal in the signal mass windows
(values in parenthesis) is negligible.
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Figure 3.20: Average values of the output of the BDT classifiers trained with the new set of
twelve input variables (blue) and the set of the previous analysis (red) as a function of mµµ for
bb̄→ µµX MC generated events.
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Figure 3.21: 2 dimensional plane in the BDT output (x-axis) and the invariant mass mµµ (y-
axis). The orange and green lines indicate the B0

s and the B0 signal windows respectively.

3.3 Signal yield and limit extraction

Once the BDT classifier has been defined, the selected events are classified in a 2 dimensional
plane according to the output of the BDT classifier and the invariant mass mµµ, as shown in
Fig.3.21. Only candidates with an invariant mass higher than 4900MeV/c2 have been analyzed.
This lower boundary is chosen to exclude all backgrounds coming from the b cascade decays
b→ c(→ µX)µX ′.

The number of observed signal B0 → µµ and B0
s → µµ events in the dataset is extracted

through a simultaneous unbinned likelihood fit in the invariant mass projection in eight BDT
bins. In particular, for each BDT bin, the observed pattern of events is fitted with a function

ftot(mµµ) = NbkgFbkg(mµµ) +NB0FB0(mµµ) +NB0
s
FB0

s
(mµµ) , (3.13)

where Nbkg,B0,B0
s
and Fbkg,B0,B0

s
(mµµ) are the yields and the invariant mass PDFs of the back-

ground, the B0 → µµ, and B0
s → µµ events respectively. The functions Fbkg,B0,B0

s
(mµµ) are

normalized to one, i.e. ∫
Fbkg,B0,B0

s
(mµµ)dmµµ = 1 . (3.14)

To perform the fit, the knowledge of the functions Fbkg,B0,B0
s
(mµµ), as well of the event

fraction in each BDT bin, is required. In the following the definition and calibration of the BDT
and invariant mass PDFs will be shown, both for signal and the different sources of background.

The BDT binning has been optimized [89] in order to reach the highest sensitivity for the
SM signal. The eight BDT bins have the following boundaries:

0.0, 0.25, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

and are characterized by different signal purities, and the last bins will be the most sensitive
ones.

In each BDT bin, the invariant mass range [4900, 6000] MeV/c2 can be divided into four
regions
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B0 B0
s

µ 5284.90± 0.10stat ± 0.20syst MeV/c2 5371.85± 0.17stat ± 0.19systMeV/c2

σ 22.83± 0.07stat ± 0.42syst MeV/c2 23.24± 0.08stat ± 0.44systMeV/c2

α 2.065± 0.005stat ± 0.010syst
n 1.118± 0.013stat ± 0.038syst

Table 3.14: Crystall Ball parameters for the B0 and the B0
s modes.

• the left sideband defined by the range [4900 MeV/c2,mB0 − 60MeV/c2],

• the B0 signal mass window, defined as the region in the range [mB0 −MeV/c2,mB0 +
MeV/c2],

• the B0
s signal mass window, defined as the region in the range [mB0

s
−60 MeV/c2,mB0

s
+

MeV/c2],

• the right sideband defined in the range [mB0
s

+ 60 MeV/c2, 6000 MeV/c2].

3.3.1 Signal PDF calibration

The signals mass PDF is assumed to be a Crystal Ball function [90] (CB in the following), i.e.
a Gaussian function with an exponential left tail to take into account radiative loss of energy in
the final state:

CB(m) =


[
1 + α (m−µ)

nσ − α2

n

]−n
· e[−

1
2α

2] for m−µ
σ < −α

e−
1
2 (m−µσ )2

for m−µ
σ ≥ −α

. (3.15)

The Crystal Ball function is parametrized by 4 quantities:

• the central value µ of the gaussian component,

• the mass resolution σ of the gaussian component,

• transition point α between the gaussian and the exponential component in units of the
resolution σ,

• exponent n of the exponential component.

The central values µB0 and µB0
s
as well as the mass resolutions σB0 and σB0

s
for the B0 and

the B0
s modes respectively are obtained through a fit in the invariant mass distribution of the di-

hadronic decays B0
(s) → K+π−, B0 → π+π− and B0

s → K+K−. The values for the resolutions
have also been cross-checked interpolating the invariant mass resolution of charmonium and
bottomium resonances decaying in two muons, as shown in Fig.3.22.

The parameters α and n are obtained through simulated B0
(s) → µµ events and are assumed

to be the same for the B0 and the B0
s mode. The final results for the two Crystal Ball functions’

parameters are summarized in Tab.3.14.
Comparing the µ and σ values in Tab.3.14, it’s possible to see that the two B0 and B0

s masses
are well resolved.

The BDT PDF of the signal is calibrated on data using B0
(s) → h+h− candidates in data.

Indeed, as the BDT is build up of geometrical variables, the di-hadronic decays of B0
(s) well

reproduce the B0
(s) → µµ decay topological and kinematical features. To further reduce differ-

ences between the di-hadronic decays and the B0
(s) → µµ events due to the reconstruction and

selection process, only B → hh(′) events for which the two hadrons in the final state are also

69



]2c[MeV/m
4000 6000 8000 10000 12000

]2 c
[M
eV
/

σ

10

20

30

40

50

60

LHCb

µ+µ−

Figure 3.22: Invariant mass resolution as a function of the charmonium or bottomium resonance
mass. The red lines indicates the di-muons mass resolution at the value of the B0

s mass.

inside the Muon detector acceptance are used, and the BDT shape is corrected to take into
account differences due to µ-identification and trigger requirements between the two channels;
to further reduce discrepancies between the signal and the calibration sample, an additional
correction to the B → hh(′) BDT shape is added in order to take into account differences in the
lifetime acceptance of the BDT bins [91].

The number of B0
(s) → h+h− events in each BDT bin is extracted from data through a fit

in the di-hadron invariant mass mhh. To compute the invariant mass mhh a mass hypothesis
on the final state particles (kaons or pions) must be done. This has been done according to
the values of the PID variables ∆LLK−π. The invariant mass B0

(s) → h+h− signal shape is
described by a Crystal Ball function. The combinatorial background is parametrized through
an exponential, while background from partially reconstructed B decays is described by the
RooPhysBkg function defined as follows [92]:

f(m,m0, cp, σp) =N ·
∫ +∞

−∞
m′
(

1− m′2

m2
0

)
Θ(m0 −m′)e−cpm

′

· 1√
2πσ

e
− 1

2

(
m−m′
σp

)2

dm′

(3.16)

where N is a normalization factor and Θ is the step function.

3.3.2 Backgrounds PDF calibration

The most important source of background events in the invariant mass range is due to combi-
natorial reconstructed candidates. The invariant mass distribution of these candidates spans all
over the invariant mass range.

In addition to this source of background, other physical modes pollute the left invariant mass
sideband as well as the B0 signal windows. These sources of background can be divided into the
following three categories:

• B0
(s) → hh(′) with the two hadrons misidentified as muons. The main process responsible

for such a misidentification is the decay in flight of the two hadrons which take place
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outside the VELO. This background is not located in the B0
s mass windows, because of

the shift in mµµ due to the missing energy carried out by the two neutrinos. Nevertheless,
and just because of that shift, this source of background pollutes the B0 mass window,
representing the main obstacle for an observation of the B0 → µ+µ− mode.

• semileptonic B0
(s) decays with one misidentified hadron:

– B0 → π−µ+νµ. The BR of this mode is (1.44± 0.05) · 10−4 [93]. The presence of the
unreconstructed neutrino shifts both the invariant mass as well as the BDT output
towards lower values, because of the correlation of the pointing variable with the
invariant mass.

– B0
s → K−µ+νµ. The predicted BR of this mode is (1.27 ± 0.49) · 10−4 [95]. The

expected contribution of this mode is smaller than the previous one, because of the
larger mass shift and a lower hadronization probability fs

– Λb → pµ−ν̄µ. The BR of this mode was unknown at the time of the analysis presented
here and a theoretical estimation by [96] has been used:

BR(Λ0
b → pµ−ν̄) = 3.3+1.5

−1.2 · 10−4 ×
(

Vub
3.5 · 10−3

)2
. (3.17)

By inserting the latest average of Vub the following value is found to be:

BR(Λ0
b → pµ−ν̄) = (4.75± 2.11) · 10−4 . (3.18)

• semileptonic B0
(s) decays with two muons coming from the same vertex

– B0(+) → π0(+)µ+µ−. These decays are generated by FCNC. While the B+ →
π+µ+µ− decay has been observed with a BR(B+ → π+µ+µ−) = (2.3 ± 0.6stat ±
0.1syst) · 10−8 [97], the B0 → π0µ+µ− has not yet been observed. It’s expected to be
of the same order of the charged mode, and an extimation for its value is obtained us-
ing theoretically predicted values [95] for BR(B+ → π+µ+µ−)|theo = (1.95+0.61

−0.48)·10−8

and BR(B0 → π0µ+µ−)|theo = (0.91+0.33
−0.28) · 10−8 as follows:

BR(B0 → π0µ+µ−) = BR(B0 → π0µ+µ−)|theo
BR(B+ → π+µ+µ−)|theo

· BR(B+ → π+µ+µ−) (3.19)

– partially reconstructed B+
c → J/ψ(→ µµ)µ+νµ. Due to the larger mass of the Bc

meson this decay can in principle pollute the B0
s mass window. The hadronization

fraction of a b quark into a Bc meson is, even with a large uncertainty, two orders
of magnitude smaller than the one into a B meson. In addition, thanks both to
the unreconstructed neutrino and the extra charged muon track, the pointing and
isolation variables of such decay will be background like.

The invariant mass and BDT PDF of these exclusives modes are obtained using simulated data.
The expected yields are estimated by normalizing to the B0 → J/ψK+ decay. Even though
a lot of these backgrounds do not pollute the signal mass windows, being shifted in the left
invariant mass sideband, their contribution in this region can still spoil the evaluation of the
combinatorial background when extrapolating its shape interpolating the left and right invariant
mass sidebands.

The yields from the B0
(s) → hh(′) backgrounds doubly misidentified hadrons are obtained

directly by the explicit selection.The invariant mass and BDT shape are obtained with data
driven methods.

The first measurement of the BR of this mode has been obtained by the LHCb Collaboration [94] in 2015.
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The invariant mass shape of the combinatorial background is obtained by interpolating in
each BDT bin the left and right invariant mass sidebands with a simple exponential function.
In order to deal with the above mentioned sources of physical backgrounds in the extrapolation
of the combinatorial one, the following choices have been made:

• the B0
(s) → hh(′), B0 → π−µ+νµ and B0(+) → π0(+)µ+µ− modes have been added as

separate PDFs in the fit. Indeed, they represent the most important source of physical
background (∼ 81%) in the invariant mass range and high BDT region;

• the B0
s → K−µ+νµ mode mass shape is very similar to the one of the B0 → π−µ+νµ mode,

thus its contribution has just been added to that of this mode;

• the Λb → pµ−ν̄µ mode has just been taken into account as a systematic error in the fit;

• the B+
c → J/ψ(→ µµ)µ+νµ mode has a negligible yield with respect to the other channels

and its mass shape is quite well approximated by the exponential shape of the combinatorial
background.

The result of the fit to the invariant mass sidebands is shown in Fig.3.23.
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Figure 3.23: Invariant mass shape fit of combinatorial background in the eight BDT bins. The contribution from the peaking B0
(s) → hh(′) is the

dashed pink line, the one from B0
(s) → π+(K−)µ+νµ is the dashed black line, the one from B0(+) → π0,(+)µ+µ− is the dashed cyan line, and the fit

result is indicated by the continuous blue line.
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Figure 3.24: BDT PDF shapes for combinatorial background (blue circles) and signal (taken
from the B → hh′ control sample) (black squares).

The BDT shape is taken from events falling in the invariant mass sidebands and its distri-
bution, together with the one for signal taken from the B → hh′ control sample, is shown in
Fig.3.24.

3.3.3 Normalization

To translate the observed number of signal events into a value for the BR the total number of B0

and B0
s mesons produced must be known. As already mentioned in Sec.3.1 these numbers are

obtained through normalization channels of well known BR, for which the same relation (3.3)
holds. In particular, the normalization coefficient (otherwise called single event sensitivity) α(s)
is given by the following relation:

α(s) ≡
BRnorm
Nnorm

· f
f(s)
· ε

GEN
normε

REC&SEL|GEN
norm ε

TRIG|SEL
norm

εGENsig ε
REC&SEL|GEN
sig ε

TRIG|SEL
sig

. (3.20)

In the previous equation the efficiencies for signal and control channels have been factorized
as the products of three partial efficiencies related to different steps of the selection process:

• εGEN is the efficiency due to the detector acceptance (defined by a polar angle θ in the
range [10, 400] mrad). This efficiency is computed on samples of MC generated events and
its values are reported for different modes in Tab.3.15

• εREC&SEL|GEN is the efficiency to reconstruct and select events falling inside the detector
acceptance. This quantity depends on the detector acceptance, on the phase space of
the particles in the final state and on the efficiencies of the algorithm used to reconstruct
the tracks, and of the selection procedure. The ratio ε

REC&SEL|GEN
norm

ε
REC&SEL|GEN
sig

is computed using

B0
s → µ+µ− B+ → J/ψK+ B0 → K+π−

(17.75±0.09)% (15.78±0.08)% (17.73±0.09)%

Table 3.15: Detector acceptance efficiencies εGEN for signal and normalization channels
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Sample
ε
REC&SEL|GEN
B+→J/ψK+

ε
REC&SEL|GEN
B0

(s)→µµ

ε
REC&SEL|GEN
B0→K+π−

ε
REC&SEL|GEN
B0

(s)→µµ

2011 0.473±0.011 0.840±0.026
2012 0.478±0.009 0.847±0.024

Table 3.16: Values of the ratio of the reconstruction and selection efficiencies εREC&SEL|GEN for
normalization and signal events.

Sample
ε
TRIG|SEL
B+→J/ψK+

ε
TRIG|SEL
B0

(s)→µµ

ε
TRIG|SEL
B0→K+π−

ε
TRIG|SEL
B0

(s)→µµ

2011 0.937± 0.030 0.0587± 0.0024
2012 0.955± 0.020 0.0501± 0.0021

Table 3.17: Values of the ratio of the trigger efficiencies εTRIG|SEL for normalization and signal
events.

MC simulated samples and differences between data and MC are taken as systematic
uncertainties. The reconstruction process is affected by systematic effects and biases.
Even though a lot of them are strongly correlated for signal and normalization channels
(thus canceling in their ratio), there are still some residual discrepancies which must be
carefully estimated:

– the B+ → JψK+ channel is affected by the presence of an extra track in the final
state. Being a 3-body decay the kinematic of the event differs considerably from the
one of the signal;

– the B0 → π−K+ channel is affected by the different acceptances of the muon and
tracking system, and the Particle Identification (PID) requirements. To reduce the
effects of the different acceptance, only events where both hadrons in the final state
are inside the muon system acceptance are selected to compute the normalization
factor.

In Tab.3.16 the final values of the ratio of such efficiencies for signal and normalization
channels are reported.

• εTRIG|SEL is the trigger efficiency for events which have been reconstructed and selected.
This quantity is computed using a data-driven method [98]. In Tab.3.17 the values for
such ratios are reported.

The branching fractions of the normalization modes are reported in Tab.3.18
The remaining quantities appearing in the previous expression for α(s) are computed as

follows:

• the NNorm for the two normalization channels are extracted through a fit to the invari-
ant mass distribution after the selection procedure has been applied to the normalization

BR(B+ → J/ψ(→ µ+µ−)K+) BR(B0 → K+π−)
(6.025±0.205)·10−5 (1.94±0.06)·10−5

Table 3.18: Branching fraction of the normalization channels.
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Sample NB+→J/ψK+ NB0→K+π−

2011 355232± 608 10809± 439
2012 761122± 891 26749± 447

Table 3.19: Normalization channels’ yields.
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Figure 3.25: Invariant mass distribution for the B+ → J/ψK+ normalization channel events in
data, used to extract the yield NB+→J/ψK+ . The red line is the mass shape of the B+ → J/ψK+

events, the blue dashed line is the combinatorial background component.

channel samples. Fig.3.25 shows the result of the fit to the B+ → J/ψ(→ µ+µ−)K+

events, while the total numbers of observed normalization channels’ events are reported in
Tab.3.19

• the value for the ratio fs
fd

has been measured by LHCb in two ways [99, 100]:

– hadronic measurement: by comparing the relative abundances of B0
s → D−s π

+, B0 →
D−K+, and B0 → D−π+

– semileptonic measurement: using the B0
(s) → D(s)X decays

The value of the combination is

fs
fd

= 0.259± 0.015 . (3.21)

Using all previous inputs the normalization factors α(s) are computed for each normalization
mode in the 2011 and 2012 dataset. Results are reported in Tab.3.20

For each normalization channel the global normalization factor for the combined 2011 and
2012 dataset is obtained by the relation

NB0
(s)→µµ

= N2011
B0

(s)→µµ
+N2012

B0
(s)→µµ

=
( 1
α2011 + 1

α2012

)
· BR(B0

(s) → µ+µ−) (3.22)

from which it follows that
1
αx
≡
( 1
α2011
x

+ 1
α2012
x

)
. (3.23)

The final values for the normalization coefficients α and αs are taken as the weighted average
of the normalization factors for each normalization mode. The values for the B0 and the B0

s
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Sample 2011 2012
α
B+→J/ψK+

B0→µµ (×10−11) 7.74±0.36 3.51±0.18
αB

0→K+π−

B0→µµ (×10−11) 7.62±0.77 3.57±0.30

α
B+→J/ψK+

B0
s→µµ

(×10−10) 2.99±0.23 1.35±0.11
αB

0→K+π−

B0
s→µµ

(×10−10) 2.94±0.35 1.38±0.15

Table 3.20: Values for α(s) in the 2011 and 2012 datasets.

modes are the following:
α = (2.83± 0.09) · 10−11 (3.24)
αs = (8.93± 0.62) · 10−11 . (3.25)

Using the previous values for normalization coefficients α(s), the expected numbers of B0
(s) →

µ+µ− events in the Standard Model BR hypothesis and in the mass range [4900, 6000] MeV/c2

are
N exp
B0→µµ = 4.5± 0.4 (3.26)

N exp
B0
s→µµ

= 39.5± 4.2 . (3.27)

3.3.4 Results

The compatibility of the observed pattern of events with a given hypothesis for the BR is
quantified through the CLs method [101, 102]. This method relies on the measurement of the
CLs+b and CLb quantities which quantify the compatibility of the observed pattern of events
with the signal plus background and background only expectation, for a given BR hypothesis.
The BDT range and the invariant mass signal window are divided in 72 2D bins, the already
known 8 for the BDT and 9 for the invariant mass. The inputs for the computation of the CLs+b
and CLb values are the expected number of combinatorial and physical background events and
the signal fractions according to the BDT PDF.

The comparison of the distributions of the observed events and the expected background
events allows to calculate the p-value (i.e. 1−CLb) which is the probability that the observed
pattern of event is generated by a fluctuation of the background. The results for the B0 and B0

s

modes are:

• B0 → µ+µ−: p-value of 5.6% corresponding to a significance less than 3σ; the number of
observed events is then compatible with the background only expectation and an upper
limit on its BR is set with the CLs method. The distribution of the CLs as a function of
different BR hypothesis is shown in Fig.3.26
The final result for the Upper Limit at 95% confidence level is

BR(B0 → µ+µ−) < 7.4× 10−10 . (3.28)

• B0
s → µ+µ−: p-value of 1.4·10−4 corresponding to a significance of 4σ; in this case the

number of observed events is no more compatible with the background only hypothesis
and a value of the BR is then measured through an extended maximum likelihood fit
in the invariant mass projection in eight bins of the BDT variable. The background is
described by the PDF of the most relevant physical modes and an exponential, describing
the combinatorial components. The free parameters of the fit are the B0 → µ+µ− and
B0
s → µ+µ− branching fractions. The PDFs parameters as well as the event yields for each

exclusive mode are fluctuated around their central value with gaussian constraints. The
result of the fit in the eight BDT bins is shown in Figs.3.27 and 3.28.
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Figure 3.26: CLs as a function of different hypotheses on BR(B0 → µ+µ−). The dashed black
line is the median of the expected CLs distribution for the background only hypothesis, the
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Figure 3.27: Fit results in the eight BDT bins. The contribution from the peaking B0
(s) → hh(′) is the dashed pink line, the one from B0

(s) →
π+(K−)µ+νµ is the dashed black line, the one from B0(+) → π0,(+)µ+µ− is the dashed cyan line; the B0

s → µ+µ− signal is indicated in red, the
B0 → µ+µ− signal component in green, and the fit result is the continuous blue line.
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The measured values of the branching fractions are

BR(B0
s → µ+µ−) =

(
2.9+1.1
−1.0(stat)+0.3

−0.1(syst)
)
× 10−9 (3.29)

BR(B0 → µ+µ−) =
(
3.7+2.4
−2.1(stat)+0.6

−0.4(syst)
)
× 10−10 . (3.30)

3.4 Combination with the CMS result

The B0
(s) → µµ analysis presented here has been combined with the one from the CMS col-

laboration and has appeared in [49]. The common result has been obtained by combining the
dataset collected by the two experiments during the first Run of the LHC in order to fully ex-
ploit the statistical power of the data. The LHCb analysis has already been presented in the
previous sections. The CMS analysis follows the same strategy [103]: the B0

(s) → µµ candidates
are reconstructed in events where two opposite charge tracks, identified as muons, come from
a good vertex, well displaced with respect to any other primary vertex in the event. Then
a BDT algorithm trained using topological and kinematic variables is used to fight the com-
binatorial background and to classify events as signal or background-like. The rejection of
peaking backgrounds, coming from partially reconstructed b-hadron decays and requiring also
the misidentification of one or more particles as µ, is achieved applying PID algorithms.

The common dataset is divided into 20 categories according to the experiment (LHCb or
CMS) and the output of the BDT value. The dataset of CMS has in turn being splitted with
respect to the data taking period (2011 or 2012) as well and, because of the large variation of
the mass resolution with the angle between the µ-track and the beam axis, the µ-track detection
region (barrel or endcap). In total 8 categories come from the LHCb dataset and 12 from the
CMS one.

The yields of signal events are converted into a value of the BR using the B+ → J/ψ(→
µµ)K+ normalization channel. The yields of signal events are extracted from an extended
maximum likelihood fit to the invariant massmµµ of the two muons in the range [4.9, 5.8] GeV/c2

in all the 20 categories simultaneously. The common parameters in the fit are the branching
fractions of the two modes.

In Fig.3.29 the mµµ distributions of the selected candidates in each of the 20 categories are
shown, with superimposed the results of the fits.

In Fig.3.30 a weighted mµµ of the selected candidates in the whole dataset is shown: events
in the category i are weighted by a factor wi = Si/

√
Si +Ni, where Si is the expected number

of B0
s → µµ signals and Ni is the number of background events under the B0

s mass peak.
The results of the combined fit show an excess of events both at the B0

s and at the B0 mass
value with respect to the background only expectation. The significance of the observed excess
of events at the B0

s mass value is found to be 6.2σ, giving the first observation of the B0
s → µµ

decay; the corresponding measured value of the branching fraction is

BR(B0
s → µ+µ−) = (2.8+0.7

−0.6)× 10−9 . (3.31)

Concerning the B0 → µµ mode, the significance of the observed excess of events is found to
be 3.0σ (evaluated using the CLs method), which constitute the first evidence of the B0 → µµ
decay. The measured value of the branching fraction is found to be

BR(B0 → µ+µ−) = (3.9+1.6
−1.4)× 10−10 . (3.32)

In Fig.3.31 the likelihood contours of the BR(B0 → µ+µ−) versus the BR(B0
s → µ+µ−) are

shown. These contours are obtained by computing the −2∆ lnL test statistic, as the difference
in the log-likelihood function (lnL) between fits with fixed values of the two branching fractions
and the one from the nominal fit.
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Figure 3.28: Fit results for events falling in the most sensitive region with BDT>0.7. The
contribution from the peaking B0

(s) → hh(′) is the dashed pink line, the one from B0
(s) →

π+(K−)µ+νµ is the dashed black line, the one from B0(+) → π0,(+)µ+µ− is the dashed cyan
line; the B0

s → µ+µ− signal is indicated in red, the B0 → µ+µ− signal component in green, and
the fit result is the continuous blue line.
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Figure 3.29: Invariant mass mµµ distributions for events in all categories, with fit results super-
imposed.
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Figure 3.30: Weighted distribution of the invariant mass distribution mµµ for events in all
categories.
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Figure 3.31: Likelihood contours of the BR(B0 → µ+µ−) versus the BR(B0
s → µ+µ−) (a); one-

dimensional profile likelihood scan for BR(B0
s → µ+µ−) (b) and BR(B0 → µ+µ−) (c), obtained

by fixing only one of the two parameters of interest and allowing all the others to vary in the
fit. The dark and light cyan areas are the ±1σ and ±2σ regions. The SM prediction with its
uncertainty is indicated by the red vertical band.
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Figure 3.32: Test statistic −2∆ lnL as a function of R = BR(B0 → µµ)/BR(B0
s → µµ). The

dark and light cyan areas are the ±1σ and ±2σ regions. The SM prediction with its uncertainty
is indicated by the red line.

To better estimate the agreement with the SM prediction a fit where the parameters of
interests are the ratio of the branching fraction with respect to their SM predicted value, i.e.
the quantity

S
B0

(s)
SM ≡

BRmeas(B0
(s) → µµ)

BRSM (B0
(s) → µµ)

. (3.33)

The obtained results for these quantities are:

SB0
SM = 3.7+1.6

−1.4 (3.34)

SB
0
s

SM = 0.76+0.20
−0.18 (3.35)

The measured value of SB0
SM is 2.2σ away from the SM prediction, while SB

0
s

SM is at 1.2σ from
its SM prediction.

Finally, another relevant observable related to these modes is the ratio R of the branching
fraction

R = BR(B0 → µµ)
BR(B0

s → µµ) . (3.36)

This observable is relevant to constraint non Minimal Flavor Violating modes. In Fig.3.32
the one-dimensional likelihood scan is shown for this quantity.

The measured value for R is

R = 0.14+0.08
−0.06 (3.37)

which is compatible with its SM prediction at the 2.3σ level.

3.5 Interpretation of the results.

In this section the interpretation of the experimental results presented in the previous section
will be discussed. Firstly the direct constraints on the Wilson coefficients obtained using the
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Figure 3.33: 1σ and 3σ contours on the (CµS − C
µ′
S )-(CµP − C

µ′
P ) plane with the constraints in

eq.(1.57) obtained with the measured values in eqs.(3.31) and (3.31). CsµP,S and CdµP,S refer to the
Wilson coefficients related to the B0

s → µµ and B0 → µµ decays respectively. Picture from
Ref.[36].

measured values of the branching fractions of the B0
(s) → µ+µ− modes, will be shown. Then

the results of the global fits of the Wilson coefficients to the measured values of the BR(B0
(s) →

µ+µ−) and other b→ s`¯̀ transition related observables will be shortly reviewed.

Direct constraints on the Wilson Coefficients. The measured values for the BR(B0
(s) →

µµ) decays are both in good agreement with previous measurements [44]. The measured central
values still show slight deviations from the SM predictions presented in Sec.1.2.3. These devi-
ations are not strong enough to claim a statistically significant discrepancy, but, if confirmed
with more data, they can provide hints of possible NP scenarios to be explored. In particular, if
the measured central values for the branching fractions do not change with more statistics, the
following considerations are in order:

• the measured values hint a Quark Flavor Violating scenario, because the branching ratio
of the B0 and the B0

s modes are differently shifted with respect to the SM predictions;
in particular the branching ratio of the B0

s mode lies below its SM prediction, while the
branching ratio of the B0 decay is higher than the SM prediction of a factor ∼ 3.5;

• as a consequence of the previous point, the measured value of the ratio R, points toward
a non-MFV NP scenario, thus requiring new sources of flavor violation in addition to the
Higgs-fermions Yukawa interaction.

The constraints in the (CµS − C
µ′
S )-(CµP − C

µ′
P ) plane in the case where eq.(1.57) holds are

reported in Fig.3.33. In particular, these contributions are compatible with zero, and rule out
NP effects in the scalars or pseudoscalars Wilson coefficients. Concerning the axial current
operators, the measurements still leave rooms for a non vanishing contribution δCµ10 − δC

µ′
10. In

particular the following bounds can be obtained [16]:

• from B0
s → µµ: δCsµ10 − δC

sµ′
10 ' 0.5 ,

85



−1.0 −0.5 0.0 0.5 1.0
Re(CS+C'S)

−1.0

−0.5

0.0

0.5

1.0

R
e(
C
S
−
C
' S)

Figure 3.34: 1σ (dark) and 2σ (light) regions for the Re(CS −C ′S) and Re(CS +C ′S) allowed by
the measured values of the BR(B0

s → µµ) and the “flat term” FµH in the decay B0 → K?0µµ
(the reader is referred to Ref.[104] for its definition). The red regions are the 1σ (dark) and 2σ
(light) regions allowed by the combination. The SM value is the black diamond. Picture from
Ref.[104].

• from B0 → µµ: δCsµ10 − δC
sµ′
10 ' C

µSM
10 .

What is evident is that the measured values allow to rule out huge NP enhancements, unless a
fine tuning of the Wilson coefficients makes observable effects vanishing.

Global fit of Wilson coefficients from b → s`¯̀ observables. Of particular interest is
also the interplay between the constraints on the Wilson coefficients from the B0

(s) → µ+µ−

decays and the ones obtainable from other processes generated by b→ s`` transitions. As it has
been pointed out in Sec.1.2.2, the BR observable is sensitive only to the differences of the left
and right Wilson coefficients C(′)

10,S,P . Further constraints can be obtained from the observables
related to b→ s`` transitions, which are instead sensitive to the sum of the C(′)

i (i = 9, 10, P, S)
Wilson coefficients. For example, Fig.3.34 shows the constraints on the real part of the sum and
the difference of the scalar Wilson coefficients C(′)

S introduced in eqs.(1.51), (1.54) coming from
the BR(B0

s → µµ) and the co-called “flat-term” FµH entering the angular distribution of the
decay products in the B0 → K?µ+µ− (for its definition the reader is referred to Ref.[104]). The
measured values for the scalar Wilson coefficients are well compatible with the SM prediction.

The experimental results about the BR(B0
(s) → µµ) are also used as inputs of global fits to

constraints the effective operators entering the b → s`¯̀ transitions. In Ref.[105] a global fit of
the NP contribution δC9/C

SM
9 and δC10/C

SM
10 to the Wilson coefficients has been done (for the

observables used as inputs of the fit see caption of the Fig.3.35) and the allowed regions for these
parameters are shown in Fig.3.35. From the fit results the SM value seems disfavored by 2.3σ.
This discrepancy comes from the tension of the best-fit values of C9 which in turn is due to the
observed tensions in the b→ s`¯̀ transition related processes (notably the B0,± → K(?)±µ+µ−)
. Nevertheless this tensions is not enough significant to be interpreted as a clear sign of NP and
more data are needed in order to better interpret these results.

Fig.3.36 shows another global fit from Ref.[106] where the constraints from the BR and the
angular observables are separately shown, together with the combination. This fit shows that
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SM

Figure 3.35: 1σ and 3σ regions for the δC10 and δC9 shift in the value of the Wilson coefficients
allowed by the measured values of the BR(B0

(s) → µµ), RK , the differential branching fraction
of the exclusive modes B0,(+) → K0,?(+)µµ, the branching ratio of the B0 → K?ee decay, and
the branching ratios of the inclusive modes B0,(+) → Xsµµ and B0,(+) → Xsee. The red point
is the SM value. Picture from Ref.[105].

the main tensions between the experimental measurements of the observables and their SM
predictions come from the angular distributions.

3.6 LHCb prospects for the next Runs of the LHC

The data collected during the forthcoming Run II of the LHC will play a major role reducing
the statistical uncertainties on the B0

(s) → `¯̀ related observables that have been measured so
far. This will allow to enforce or alleviate the currently observed deviations from SM predic-
tions. Indeed the comparison between the theoretical predictions and the measured values of the
observables is still affected by the large experimental uncertainties. These are still dominated
by the statistical errors, as it can be seen from eqs.(3.29)-(3.30), and the larger data sample
collected during the forthcoming runs of the LHC will allow to reduce this error. The improve-
ment of the LHCb analysis due to the larger available statistics has been studied using MC toys
based on the current published analysis. In particular, at the end of the second run, where an
integrated luminosity of 5 fb−1 will be collected by LHCb, the errors on BR(B0

s → µ+µ−) and
BR(B0 → µ+µ−) will be decreased by a factor 2. These values are still a factor ∼ 2 and ∼ 10
for the B0

s and the B0 modes respectively, larger than the theoretical errors. The precision of
the measurements can be further improved by optimizing the current analysis, and some ideas
and tools to this extent will be presented in the next section.

At the same time, the increased statistics will allow to measure new observables that are
complementary with the branching ratios, such as the effective lifetime defined in eq.(1.65).
Indeed, as it has been pointed out in Ref.[37], this observable can still show up NP effects even
though the measured branching ratio is in agreement with the SM prediction. The feasibility
of the effective B0

s → µ+µ− lifetime measurement with the dataset collected by LHCb during
the second and third runs of the LHC has been carefully studied (for more details the reader is
referred to Ref.[107]). In the dataset collected during the first run ∼ 30 B0

s → µµ (∼ 39 in the SM
hypothesis BR, see eq.(3.27)) are observed. By extrapolating from these values (i.e. assuming a
scenario where no improvements in the analysis are done), in the dataset collected at the end
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to the C10 and C9 Wilson coefficients from the measured values of the b→ s`¯̀ transitions. The
allowed values from the BR (green) and the angular observables (pink) are separated, and their
combination is the blue region. The black star denotes the SM case. Picture from Ref.[106].

of the Run II ∼ 50 B0
s → µµ events (∼ 65 in the SM hypothesis) are expected. This statistics

can already allow to measure the effective lifetime with a precision, computed using MC toys,
of ∼ 15%. After the Run III (assuming an integrated luminosity of 50fb−1) ∼ 500 signal events
will be available (∼ 650 in the SM BR hypothesis) and the lifetime measurement can be done
with an estimated precision (computed using MC toys), of ∼ 8%.

3.7 Preparing current analysis improvements

In the present section two preliminary studies concerning the definition of a new isolation variable
and a further optimization of the final BDT classifier will be presented. These studies aim to
improve the previous analysis in view of a re-analysis of the 3.1fb−1 collected during the first
run of the LHC.

Among the input variables of the final BDT classifier, one of the most discriminating between
signal and background is the isolation of the two muons (hereafter referred as “iso5”). Exploiting
a topological vertex algorithm (“ZVtop” in the following) [109] another “independent” isolation
variable has been defined and studied. Practically speaking, several variables related to the
isolation of the muons, can be sorted out using the ZVtop algorithm. But in order to exploit
all the discriminating power of these variables, they have been combined using a MVA operator.
In the following the definition of these variables related to the muon isolation will be presented,
followed by their combination into a unique and more discriminating variable through a BDT
algorithm.

3.7.1 The ZVtop algorithm

The main idea of the topological vertex algorithm is to consider the reconstructed tracks in the
event as a probability tube in three dimensions. The 3D probability density associated to the
i-th track in the event is:
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fi(~x) ≡ e−
1
2 (~x−~p)TV −1(~x−~p) (3.38)

where ~p is the point of closest approach of a tracks with respect to a generic space-point ~x and
V is the covariance matrix of the track at the point ~p.

The main object of the ZVtop algorithm is the so-called Vertex Function (“V f” hereafter)
defined as the sum of all probability functions fi associated to the N tracks in the event, i.e.

V f(~x) ≡
N∑
i=1

fi(~x)−
∑N
i=1 f

2
i (~x)∑N

i=1 fi(~x)
(3.39)

The V f defined above is such that its value is close to n if n + 1 tracks make a common
vertex at a given space point ~̄x. The maxima of V f represent candidate decay vertexes. In order
to avoid (obvious) large maxima in correspondence of the primary interaction points, the tracks
used to build up V f are selected through a cut on their IPχ2 with respect to any PV.

Usually, even if three or more tracks are very close each other at a given point, it’s very
unlikely that they perfectly overlap at that point. For this reason, the maxima of V f are
usually two-tracks vertexes, eventually quite close each other. The ZVtop algorithm performs
thus a “clustering” of all the two-tracks reconstructed maxima into bigger vertexes. After this
clustering, the algorithm attaches to each reconstructed vertex the tracks in the event, in order
to build a candidate. One important feature of that algorithm is that a given track can be
attached to only one reconstructed vertex.

For a more detailed description of the ZVtop algorithm, the reader is referred to Refs.[109,
110].

3.7.2 Definition of Isolation Variables using ZVtop

The variables related to the isolation of the muons that have been studied can be divided in two
categories:

• Type-I isolations: variables making use only of the Vertex Function

• Type-II isolations: variables exploiting the vertex finder algorithm as well.

Some of these variables compare the ‘’results” found with the standard reconstruction with
the ones obtained with the ZVtop algorithm.

The Vertex Function is built up with tracks satisfying a certain selection criteria on the IPχ2,
IP, Ghost Probability; analogously the set of tracks that will be attached to the V f maxima
are also selected through a cut on the same parameters. In addition other parameters enter the
ZVtop algorithm, e.g. those related to the maximum finder algorithm.

The ones that have been optimized for the definition of the isolation variables are the fol-
lowing:

• ”Cut_Vf_IPS” by which the tracks that are used to calculate the V f are selected,

• ”Cut_IPS” by which the tracks that must be attached to the vertexes found are selected,

• ”Cut_max_VF” which is the threshold above which the V f has a maximum. This pa-
rameter is meant to reject fake vertexes which can arise from wiggles in the V f generated
e.g. when two tracks get too close without crossing each other.

For the studies presented here the optimal values for these three parameters are reported in
Tab.3.21.

These variables have been defined for the first time in [110].
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Cut_Vf_IPS Cut_IPS Cut_max_VF
20 30 0.5

Table 3.21: List of parameters together with their final value that have been optimized for the
definition of the ZVtop-based isolation variables.

Type-I isolations. The most important Type-I variable is the sum of the numbers of the V f
vertexes found along each muon track after the removal of the other muon.

Let track(µ+) and track(µ−) be the two muon tracks. Being “good” tracks they are often
selected in the set of tracks used to build the V f . By definition of the vertex function, if
track(µ+) and track(µ−) cross each other then the V f has a maximum at the crossing point.
The idea is to look for extra maxima of the V f along the muon tracks track(µ+) and track(µ−)
in addition to the one they form at the B candidate position. The counting of these extra
vertexes is done as follows:

• starting considering track(µ+), the V f is computed removing track(µ−) from the set of
tracks

• a scan of the V f values along the track(µ+) (from −3 cm up to +5 cm with respect to
the position of the B candidate decay vertex) is perfomed and the number n+ of maxima
is found ;

• considering the second track(µ−), the V f is computed again removing the other track(µ+)
from the set of tracks,

• a scan of the V f values along the track(µ−) (from −3 cm up to +5 cm with respect to
the position of the B candidate decay vertex) is performed and the number n− of maxima
is found ;

• the final isolation variable is the sum: Ntot = n+ + n−.

For signal this value must be peaked at zero, while for background this does not necessarily
happen.

In addition to the previous one, other variables can be defined:

• value of the V f at the B candidate position (“Vf_B”);

• value of the absolute maximum of the V f along all muons tracks (“Vfmax_Muons”) and
its position (“Position_Vfmax_Muons”);

• value of the absolute maximum of the V f along the muons tracks in the downstream
region (with respect to B decay vertex) (“Vfmax_Muons_DownStream’) and its position
(“Position_Vfmax_Muons_DownStream”);

• value of the absolute maximum of the V f along the muons tracks in the upstream region
(with respect to B decay vertex) (“Vfmax_Muons_UpStream’) and its position (“Posi-
tion_Vfmax_Muons_UpStream”).

These variables and their discriminating power depend only on two of the three parameters
listed above: the IPχ2 of tracks used to build the Vertex Function (Cut_IPS_VF) and the value
of the V f threshold value above which the V f has a maximum (Cut_max_Vf).

In Figs.3.37-3.38 the distributions of the previous variables for the B0
s → µµ signal and for

the generic bb̄→ µµX Monte Carlo background events are shown.
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Figure 3.37: Isolation related variables computed with the topological vertexing algorithm. Top-left: the sum of the number of peaks of the V f
along the two muon tracks when the other track is removed; top-right: value of the V f at the B candidate decay vertex position. In the bottom
figures maximum value of the V f along the two muon tracks (left) and its position in the z direction (right). In blue is the signal, in red the generic
bb̄→ µµX background.
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Type-II isolation variables. The Type-II variables make explicit use of the ZVtop algorithm,
by which a selected set of tracks is attached to the vertexes of the V f . For this reason the signal-
background separation of these variables depends also on the third parameter introduced above,
the Cut_IPS.

The type-II isolation variables are the following:

• “mu_zv_same” defined as follows:

– 0 if the two µ tracks come from two different ZVtop-reconstructed vertexes (i.e.
ZVtop finds two different origin vertexes for the 2 tracks)

– 1 if the two µ tracks come from the same ZVtop-reconstructed vertex with only two
tracks attached (i.e. ZVtop reconstructs the same standard-reconstructed vertex)

– 2 if the two µ tracks come from the same ZVtop-reconstructed vertex with more than
two tracks are attached

For signal this variable must peak at 1, while for bb̄ → µµX events the ZVtop algorithm
should attach the two tracks to different vertexes.

• “mu_zv_nvtx”: total number of vertexes found by the algorithm

• “Mum_zv_ipall”: min IP of the µ− with respect to any other vertex found by ZVtop
different from the one which is our candidate (and analogously for µ+)

• “Mum_zv_ipsall”: min IPχ2 of the µ− with respect to any other vertex found by ZVtop
different from the one which is our candidate (and analogously for µ+)

• “Mum_zv_chi2”: the χ2 of the ZVtop-reconstructed vertex closest to the µ− track (and
analogously for µ+)

• “Mum_zv_dist”: the distance of the ZVtop-reconstructed vertex closest to the µ− track
from the primary vertex (and analogously for µ+)

• “Mum_zv_proba”: the V f value at the position of the ZVtop-reconstructed vertex closest
to the µ− track (and analogously for µ+)

• “Mum_zv_proba_close”: the V f value at the point of closest approach of the µ− track
to the ZVtop-reconstructed vertex closest to the µ− track (and analogously for µ+)

Figs.3.39-3.40 show the distributions of the previous variables for the B0
s → µµ signal and

for the generic bb̄→ µµX Monte Carlo background.
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Figure 3.39: Distribution of the Type-II isolation variables for signal (blue) and generic bb̄ → µµX background (red). For the description of the
variables the reader is referred to the text.
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Combination of ZVtop related isolation variables: ZViso. A subset of the variables
defined above have been combined into a unique isolation variable using a BDT operator. This
variable, called “ZViso”, will be tested as an extra input variable for the final BDT classifier.

Even though the BDT operator used for the classification could gain from the correlation of
each of these isolation variables with the remaining twelve, the choice to combine the isolation
variables defined here into a unique one before being used for the final classification appeared
more suitable. This because it allows to deal with a reasonable number of isolation variables in
the final BDT classification, and at the same time the signal-background discrimination of the
ZViso will be much higher than the one of each single input variables used for its definition.

The ZVtop-based variables defined above are correlated with each other. The ZVtop based
isolation variables used as input for the ZViso BDT training have been chosen to be as much
as possible uncorrelated with each other (linear correlation less than ∼ 70%). Variables more
strongly correlated have still been used if their correlation was significantly different in signal
and background. For example, the “zv_ipsall”, “zv_ipall”, “zv_proba”, “zv_proba_close” are
linearly correlated at more than 98% level with each other and equally for signal and background
hence only the first one, ”zv_ipsall”, has been used as input variable of the ZViso BDT. Finally
the set of input variables for the ZViso BDT is the following one

• Nb_Vf_Peak_Muons

• Vf_B

• mu_zv_same

• mu_zv_nvtx

• zv_ipsall≡Mum_zv_ipsall+Mup_zv_ipsall

• zv_chi2≡Mum_zv_chi2+Mup_zv_chi2

• zv_dist≡Mum_zv_dist+Mup_zv_dist

• Vfmax_Muons

• Position_Vfmax_Muons

• Vfmax_Muons_DownStream

• Position_Vfmax_Muons_DownStream

• Vfmax_Muons_UpStream

• Position_Vfmax_Muons_UpStream

Figs.3.41,3.42 show the linear correlations between the previous variables.

3.7.3 Combination of isolation variables

In view of the improvement of the B0
(s) → µµ analysis, another isolation variable (called here

“isoBDT”) has been defined in Ref.[108], and will be briefly summarized in the following.
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Figure 3.41: Linear correlation coefficients of the input variables of the ZViso for signal MC.
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Figure 3.42: Linear correlation coefficients of the input variables of the ZViso for bb̄→ µµX MC
generated background.
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Figure 3.43: Distribution of the three isolation variables available for the B0
(s) → µµ analysis

optimization: standard isolation (top), isoBDT (center), and ZViso (bottom). In blue is the
signal, in red the bb̄→ µµX MC generated background.

BDT based isolation. The main idea of the isoBDT variable is to replace the cut based se-
lection of non-isolating tracks presented in Appendix A by a BDT based selection. In particular,
this new variable is defined by assigning to each track in the event the output of a BDT operator
trained to discriminate the “non-isolating” tracks (considered as signal) against the “isolating”
ones (considered as background) with respect to each of the two µ in the final state. In this way,
two values (that are the output of the BDT classifier) are assigned to each track in the event and
quantify how likely the considered track is non-isolating for the µ+ and the µ−. Then, the sum
of the BDT values of the most likely non-isolating track with respect to the µ+ and the µ− is
computed and used to quantify the isolation of the B0

s → µ+µ− candidate. The BDT algorithm
has been trained using the generic sample of bb̄→ µµX MC, by using as a proxy for signal and
background the non-isolating and the isolating tracks for the B0

s → µµ candidate respectively.
The distributions of the three isolation variables are shown in Fig.3.43, while their linear

correlations are shown in Fig.3.44 (for signal MC) and Fig.3.45 (for bb̄ → µµX MC generated
background).

Isolations combinations. In order to exploit as much as possible the signal-background
discrimination of these three variables, they have been combined into one unique variable through
a BDT algorithm. The distribution of these variables is shown in Fig.3.46, while the comparison
of the performances through the ROC curves are shown in Figs.3.47-3.48. By looking at the
ROC curves, the following considerations are in order:

• the standard isolation (“iso5”) and the new “ZViso” variable have similar performances;
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Figure 3.44: Linear correlation coefficients of the three isolation variables for signal MC.
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gorithm, the standard isolation, the isoBDT, and the ZViso isolation variables. In blue is the
signal, in red the bb̄→ µµX MC generated background.

• isoBDT variable performs better than the other two;

• the combination of the three is the most discriminating variable. This is a clear indication
that these three variables are not fully correlated each other.

From these considerations it follows that, a-priori, a possible gain in performances of the
final BDT classifier can be obtained by using the combination of them or all of them as input
variables of the final classifier.

3.7.4 BDT classifier with new isolation variables

The effects of the previous BDT variables on the final BDT classifiers have been tested by
training five BDT classifiers. Four of them use different sets of twelve input variables, differing
only for the isolation variable used. The last one uses all the three isolations as separate input
variables of the classifier. The comparison of the signal-background discrimination of these four
algorithms are reported in Fig.3.49-Fig.3.50

These ROC curves show that the most discriminating BDT classifier is the one trained by
replacing the standard muon isolation with the isoBDT one. In addition, no improvement is seen
when using the combination of the three isolation variables into a unique one. The reasons of
the saturation of the performances of the BDT classifier when using the isoBDT muon isolation
variable can be due to the correlation of this variable with the other isolations.

To test that, the distribution of the values of the ZViso variable as a function of the isoBDT
one has been studied for those combinatorial background events selected by different cuts on
the output of the BDT trained with the isoBDT variable. The results are reported in Fig.3.51
and Tab.3.22. In the queue of the BDT distribution (especially the last four selected events)
both the ZViso and the isoBDT variables are signal-like, being at high values of the ZViso and
isoBDT variable. This correlation could justify why the use of the ZViso combined with the
isoBDT does not improve the performances of the final classifier.

Another reason for the saturation of the performances can be due to the correlation of the
ZViso variable with one of the remaining eleven input variables of the final BDT. In particular,
being the ZViso sensitive to the overlap of the two muon tracks, it can be correlated with the
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Figure 3.47: ROC curves of the four isolation variables. The standard isolation variable (here
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Figure 3.48: ROC curves of the four isolation variables. Zoom in the low signal efficiency region.

BDTD # bkg evts εbkg (×104) εsig (%)
0.30 15+8+ 3+ 4 6 49.8
0.33 8+ 3+ 4 3 44.4
0.40 3+ 4 1.4 32.2
0.43 4 0.8 27.2

Table 3.22: Number of selected background events, the efficiency on background and on signal
for different cuts on the output of the BDT classifier trained with the isoBDT muon isolation
variable.
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Figure 3.50: ROC curves of the four final BDT classifiers trained with different muon isolation
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those events removed by different cuts on the output of the final BDT trained with the isoBDT
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distance of closest approach of the two muons (DOCA(µ)). This is actually what happens, as
Fig.3.52 shows. This is not the case for the isoBDT variable though, as Fig.3.53 shows.

These two correlations of the ZViso with the isoBDT and the DOCA(µ) variables are the
most likely reasons of the saturation of the performances of the final BDT classifier trained with
the isoBDT muon isolation variable.

3.7.5 Study of the background composition of events falling in last BDT bin

In order to further improve the signal-background discrimination of the final BDT classifier, the
particular composition (i.e. in terms of the physical decays) of the combinatorial background
bb̄→ µµX MC generated events which fall in the very high BDT region (of the BDT used for the
latest published analysis) has been studied. In particular the ten events with the higher BDT
value have been examined. The following kind of events (in order of importance) are found to
be the most signal like:

• 6 B → D(→ µν)µν,

• 2 B0 → K0µµ ,

• 1 B+ → K+µµ ,

• 1 non MC truth matched event.

A first comment concerns the fact that all these events are generated by the decay of only
one of the two B mesons in the event; in principle, indeed, there could also be “purely” combina-
torial candidates reconstructed from the final state particles of the decays of the two b-hadrons
produced in the event. In addition, the first two categories, which are the most abundant, have
the common feature that the final state is characterized by the presence of the two muon tracks
and several neutral unreconstructed particles. For this reason, the values of their isolation vari-
ables are signal-like and this explains why the improvement in the discrimination power of the
isolation variables is not reflected in an improvement of the discriminating power of the final
classifier.

The study of the combinatorial background composition of events at high BDT value, still
gives some hints concerning the introduction of new input variables for the BDT classifier. In
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particular, the presence of neutral tracks in the final state will make the dimuon system total
momentum not aligned with the B candidate momentum. This property can be exploited using
the pointing-related variables. In the BDT with twelve variables the pointing was taken into
account by the impact parameter of the B candidate. Now also the arccosine of the angle between
the direction of the di-muon system momentum and the direction formed by the primary vertex
and the B candidate decay vertex has been studied. This variable, here called “acos(DIRA)”,
has already been used in the first BDT for the selection.

3.7.6 Pointing related variables

The effects of this new input variable (when used together with the above defined isolation vari-
ables) on the performances of the classification BDT have been tested by training several BDT
operators using the standard set of eleven variables plus several combinations of the isolation and
pointing variables. Figs.3.54-3.55 show the comparisons of the signal-background discrimination
performances of these classifiers.

From the ROC curves of these classifiers, the following conclusions can be inferred:

• the use of the ZViso and the standard muon isolation variables together with the pointing
related variable improves the performances of the final BDT classifier;

• the BDT classifier trained with the isoBDT variable is still the best performant even when
the pointing related variable is used.

A final attempt to improve the performances of the BDT classifier has been done by replacing
the impact parameter of the B candidate with respect to the candidate origin vertex (“IP(B)”)
with the IPχ2(B) variable. The ROC curves showing the performances of classifiers trained
with these input variables are shown in Figs.3.56-3.57. The improvement of this classifier with
respect to the one used for the latest published result (which uses the standard isolation variable
and the IP(B)), and to the operator trained by replacing the standard muon isolation with the
“isoBDT” one is reported in Tab.3.23.

From these ROC curves the following conclusions can be obtained:
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Figure 3.55: ROC curves of BDT classifiers trained using the basic set of 11 input variables plus
the combinations shown in the plot. “iso5” is the standard isolation variable, “acos(DIRA)” is
one of the two pointing related variables. Zoom in the low signal efficiency region.
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Figure 3.56: ROC curves of BDT classifiers trained using the basic set of 11 input variables plus
the combinations shown in the plot. “iso5” is the standard isolation variable, “acos(DIRA)” is
one of the two pointing related variables.
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Figure 3.57: ROC curves of BDT classifiers trained using the basic set of 11 input variables plus
the combinations shown in the plot. “iso5” is the standard isolation variable, “acos(DIRA)” is
one of the two pointing related variables. Zoom in the low signal efficiency region.

εSig
εBkg(iso5)−ε?Bkg

εBkg(iso5)
εBkg(isoBDT )−ε?Bkg

εBkg(isoBDT )
60 % (69 ± 3)% (40± 6)%
40 % (83 ± 10)% (66 ± 30)%

Table 3.23: Improvement in the background rejection of the classifier using the “isoBDT” and the
“IPχ2(B)” input variables for different signal efficiencies (first column) with respect to the classi-
fier used for the latest publication (second column), and to the classifier using only the “isoBDT”
isolation variable (third column). εSig is the efficiency on the signal, εBkg(iso5, isoBDT ) are the
efficiencies on the background of the two classifiers using the two different isolation variables,
ε?Bkg is the efficiency on the background of the classifier using the “isoBDT” isolation and the
“IPχ2(B)” input variables
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• the replacement of the “IP(B)” with “IPχ2(B)” improves the performances of the BDT
classifier, even of the one trained with the isoBDT isolation variable. At a signal efficiency
of 40% the improvement in the background rejection is of 80% if compared with the
classifier used for the latest analysis, and of 65% if compared with the improved version of
the BDT which uses the isoBDT variable;

• the pointing related variable “acos(DIRA)” does not seems to improve the performances,
even when used in the training of a classifier with the above mentioned replacement of the
IP(B) variable.

Effects of data-MC agreement. All the studies shown in this section have been done using
the generic bb̄→ µµX MC generated sample. The results shown could still depend on how well
the MC reproduces the variables on data. For instance, the BDT used to classify a track as
being isolating or non-isolating has been trained using the aforementioned MC sample. Now, it
is known that the distribution of some of the variables related to the tracks (that are shown in
Appendix B) are not well reproduced by the MC simulation; for that reason it can happen that on
the true data a non-isolating track can be mis-classified as an isolating one (and vice versa), thus
causing a worsening of performances both of the isoBDT and of the final BDT classifier variables.
In order to reduce the effect of this data-MC disagreement the shape of the final BDT variable
is taken from control samples in data, both for signal and for combinatorial background, as
already explained in Sec.3.3. In order to further reduce the impact of the disagreement between
the variables in MC and in data of the isoBDT input variables, the use of a control sample in
data as a proxy for the combinatorial background in the training of the final BDT classifier is
also planned to be considered for the analysis update.

3.7.7 Conclusions

The studies presented in this this chapter aimed to improve the signal background separation
of the BDT classifier used for the signal search. Some hints for a further improvement of the
signal-background separation of this variable have been obtained and can be summarized in the
following points:

• the new isolation variable isoBDT improves the background rejection of the final BDT
classifier;

• this rejection is further improved if the “IP(B)” variable is replaced with the “IPχ2(B)”.

Some of the presented results still need to be investigated in more details. In particular
further studies are required to fully exploit the information contained in the µ isolation variables
presented in this chapter. Indeed, in principle, by looking at the combination of the three
isolations (see e.g.Figs.3.47-3.48) an improvement of the signal-background separation of the
final BDT classifier is expected when the “isoBDT” and the “ZViso” (or even their combination)
are used as input. Nevertheless this is not observed and more studies are needed to better
understand why this does not happen. One possible reason of this behavior can be in the
correlation between the ZViso variable and the DOCA(µ), so that a part of the additional
information contained in the ZViso variable is already contained by some of the other input
variables of the final BDT. Likely an optimized choice of the input variables of the ZViso, as
well as an optimization of the tuning parameters, would allow to reduce its correlation with
the remaining input variables of the final BDT classifier and improve at the same time the
signal-background separation of the classifier.
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3.8 Conclusions

In this chapter the B0
(s) → µµ search with the 3fb−1 dataset collected in proton-proton collisions

with the LHCb detector during the first run of the LHC has been presented. One of the main
improvements of this analysis comes from the optimization of the BDT classifier used, together
with the invariant mass of the two muons, as discriminating variables for the signal search. In
particular, the optimization of the tuning parameters and the set of input variables of the BDT
classifier has been done taking care of avoiding any peaking correlation between the output of
the algorithm and the invariant mass of the two muons. Such a correlation would indeed create a
false peak in the signal mass windows due to background. The optimization of the performances
of the BDT classifier has been estimated to be the major source of improvement of the published
LHCb analysis with respect to the previous ones [87].

The LHCb dataset used for the analysis presented here has also been combined with the one
from the CMS collaboration. A common fit of the two datasets obtained the first observation
of the B0

s → µ+µ− and the first evidence for the B0 → µ+µ− decays. The measured branching
fraction for the two modes are in quite good agreement with the SM, and rule out huge NP
effects. Nevertheless, the central value of the B0 mode deviates a bit from the SM expectation,
being slightly larger than expected (2.2σfrom the SM prediction). The combined analysis has
also measured the ratio R = BR(B0→µ+µ−)

BR(B0
s→µ+µ−) which turns to be consistent with the SM predicted

value within 2.3 standard deviations.
In view of a future analysis improvements, aiming to improve the sensitivity for the B0 mode,

new isolation variables for the muons have been defined and the improvement of the performances
of the final BDT classifier trained with those variables has been tested. The variable presented
in this chapter exploits an inclusive topological vertex reconstruction algorithm, called “ZVtop”.
A combination of these new variables into a unique more discriminating isolation has been
presented. To better understand the composition of the most signal-like background events and
have hints about further input variables for the final BDT classifier, a study of the physical
decays composition of the combinatorial background falling in the high BDT region has been
done using a sample of generic bb̄→ µµX MC generated events. The particular composition of
these events, consisting of exclusive modes with only two muons and additional neutral particles
in the final state, suggests to give more importance to variables related to the pointing of the
B candidate. This has been done by introducing a new variable, the cosine between the B
candidate momentum and the direction given by the PV and its decay vertex, and by replacing
the IP of the B candidate (already used for the previous analysis) with the IPχ2 variable. While
the use of the first variable does not improve the signal-background discrimination the second
choice does give a significant improvement in the background rejection. In particular, at a signal
efficiency of 40%, an improvement in the background rejection up to 80% with respect to the
classifier used for the latest published analysis seems possible using new muon isolation and
pointing variables.
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Chapter 4

B0
(s)→ τ+τ−

In the present chapter a preliminary analysis strategy for the B0
(s) → τ+τ− search is presented.

The main challenge of any experimental analysis studying decays containing τ leptons in the
final state lies on the fact that τ cannot be directly detected and must be then reconstructed
from their daughter particles. This is not a problem in itself if each τ daughter could be directly
detected or indirectly reconstructed. The problem arises because of the presence of at least a ντ
(and possibly other neutral particles) for each τ decay. Since only charged tracks are precisely
detectable, the reconstruction of the τ momenta and of the whole kinematic of the decay, as well
as the invariant mass mττ of the di-τ system, is quite challenging. Fig.4.1 shows what happens
in a typical B0

(s) → τ+τ− event.
For the above-mentioned reason, the analysis of the di-τ final state is quite different from

the one with two muons, presented in the previous chapter. Indeed, while the µ travel all along
the detector and can then be directly detected, the τ must be reconstructed from their daughter
particles.

The lack of information coming from the partially reconstructed final state leads to a “degra-
dation” of the discriminating power of each kind of variables related to the topology and kine-
matic of the decay, (for instance the mττ or the B0

(s) candidate decay time), and thus in a loss
of sensitivity.

Nevertheless, in the final state where each of the two τ decay into two three charged pions
(plus the ντ ), it is possible, by imposing topological and mass constraints (as it will be shown
in Sec.4.5), to fully reconstruct the two τ four-momenta.

In principle the di-τ final state offers the possibility to access the lepton’s polarization as well
by looking at the angular distributions of their daughter particles (which is not possible in the
di-µ case). Nevertheless, some preliminary estimation (see Sec.4.4) gives an expected number
of observed signal events (in the entire 3.1 fb−1 RunI dataset) smaller than one. Hence the
possibility of performing an angular analysis is not realistic and the only measurable observable
is (an Upper Limit on) the BR.

The only available result so far is from the BABAR collaboration, and consists of an upper
limit on the BR(B0 → τ+τ−) using a sample of (232 ± 3) × 106 Υ(4S) → BB̄ events. The B0

s

di-τ decays have never been studied so far. As it will be shown in Sec.4.6.2, the signal search in
the analysis presented here will be based on a discriminating variable not able to discriminate
between the B0 and the B0

s modes. For this reason the measured UL will be on a combination
of the BR of the two modes.

4.1 B0
(s) → τ+τ− at LHCb

In the analysis performed by the BABAR collaboration, the two τ are reconstructed in the one
prong channel with a charged (hadronic or leptonic) track.
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B 0s

τ+

τ−

Figure 4.1: Schematic representation of a typical B0
(s) → τ+τ− event: a B0

(s) meson is produced
at the interaction point of the two proton beams. In the LHCb kinematic regime, it travels
approximately for ∼ 1cm (black line), then it decays into two τ , which travel for ∼ 3mm (blue
lines) before decaying into detectable (red lines) and neutral (orange lines) tracks.

At LHCb, the search for the B0
(s) → τ+τ− channel is performed analyzing two different final

states: the (3π, 3π) and the (3π, µ) final state.

The “(3π, 3π)” final state. This corresponds to the case where each τ decays into a 3-prong
vertex with 3 charged π and a ντ . In this final state there are only two ν, which is the minimal
number in presence of two τ decays. The possibility to reconstruct the two τ decay vertices and
the B0

(s) production vertex (PV), makes it possible to reconstruct the plane of the decay. This
allows to impose kinematic constraints and to reconstruct the component of the momentum of
each of the two ν orthogonal to the decay plane. In Fig.4.2 the reconstructible quantities of the
(3π, 3π) final state are schematically shown.

The BR of the three-prongs τ hadronic decay, suppresses the process by a factor [8] (BR(τ →
3πν))2 = (9.32%)2 with respect to the starting BR(B0

(s) → τ+τ−) reported in eq.(1.75) , ending
up with an effective BR to be measured of

BR(B0
s → τ+(→ (3π)+ντ̄ )τ−(→ (3π)−ντ )) ' 6.7 · 10−9. (4.1)

This BR is of the same order as the one of B0
s → µ+µ−.

However the requirement of six charged tracks in the detector acceptance as well as the lack
of a dedicated trigger selection make the efficiency for the reconstruction and selection quite low
(as will be shown later). The signal search is also complicated by the high level of background
coming from different sources and related to the different steps of the candidate reconstruction
algorithm, as will be explained in more details in Sec.4.5.

The “(3π, µ)” final state. This corresponds to the case where one of the two τ undergoes an
hadronic decay into 3 charged π (as in the previous case), while the other τ decays leptonically
into a µ and two ν, i.e. τ± → µ±ντνµ. This channel benefits of a higher trigger and acceptance
efficiency (with respect to the full hadronic final state), thanks to the requirements of ‘’only” four
charged tracks (among which a µ) in the detector acceptance. In addition, the higher branching
fraction of the purely leptonic decay of one τ (BR(τ → µνµντ = 17.41%) enhances the total
BR of the whole B0

(s) → τ+(→ (3π)+ντ̄ )τ−(→ µν̄µντ ) decay chain with respect to the one of
the (3π, 3π) final state by a factor ∼ 2. Indeed, the total branching fraction of the whole decay
chain is:

BR(B0
s → τ+(→ 3π+ντ̄ )τ−(→ µνµντ )) ' 1.25 · 10−8. (4.2)
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Figure 4.2: Schematic representation of how a B0
(s) → τ+(→ (3π)+ντ̄ )τ−(→ (3π)−ντ ) decay is

reconstructed with the LHCb detector: only the B production vertex and the two three-prongs
τ decay vertices can be directly reconstructed.

Figure 4.3: Schematic representation of how a B0
(s) → τ+(→ (3π)+ντ̄ )τ−(→ µν̄µντ ) decay is

reconstructed with the LHCb detector: in this case the B production vertex and the decay
vertex of the τ which goes into three charged pions can be directly reconstructed, as well as the
µ track coming from the leptonic decay of the other τ .

The disadvantage of this final state is that the presence of three neutrinos and the impos-
sibility to reconstruct one of the two τ decay vertices make it impossible to impose kinematic
and geometrical constraints. In Fig.4.3 the reconstructable quantities of the (3π, µ) final state
are schematically shown.

4.1.1 The τ → 3πντ decay

The τ → 3πντ decay proceeds mainly through two hadronic resonances [111], the a1(1260) and
the ρ0(770):

τ± → a±1 ν̄τ → ρ0π±ν̄τ → π+π−π±ν̄τ . (4.3)

In Tab.4.1 the properties of those two intermediate resonances are reported.
The existence of such intermediate resonances will be exploited during the selection of the

candidates. Indeed the two dimensional distribution of the invariant masses mπ+π− of the
opposite sign pions from each τ decay (i.e. the Dalitz plane of the three pions) “peaks” at the

Resonance Mass (MeV/c2 ) Γ (MeV/c2)
a1(1260) 1230 ± 40 [250-600]
ρ0(770) 775.26 ± 0.25 149.1±0.8

Table 4.1: Values of the masses and widths (Γ) of the intermediate resonances for the τ → 3πντ
decay [8].
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Figure 4.4: Dalitz plane of the mπ+π− variables for pions coming from a τ → 3πν decay.

values mπ+π− = mρ0 , while the invariant mass m3π of the 3π system “peaks” at the value of ma1 .
Due to the narrow width of the ρ0 resonances the selection criteria based on the distribution of
the Dalitz plane will be more efficient for τ selection with respect to selection criteria related to
the invariant mass of the whole 3-π system, as it will be shown quantitatively in the following
section.

The distribution of mπ+π− for MC generated τ decay events is reported in Fig.4.4

4.1.2 The (3π, 3π) final state analysis

In this chapter the analysis chain for the (3π, 3π) final state is presented. The main issue is
the understanding and characterization of the background sources polluting the sample where
the signal search is performed. For this purpose, a data driven method has been defined and
validated using background MC generated samples (see Sec.4.2.2).

Due to the constraints coming from the reconstruction of the decay plane, a method for the
reconstruction of the two τ momenta has been studied, and the most discriminating variables
obtained have been used (together with others) as input for the final MVA classifier used as the
final discriminating variable for the signal search. At this stage of the analysis the knowledge
of the shape of the MVA output for background events is required in order to extract the signal
yield in the dataset through a fit to the output of the MVA classifier. The conversion of the
signal yield into a value of the BR will be done using the normalization channel B → D+D−(s).

After an introduction about the reconstruction and preselection stages in Sec.4.2, the data
driven method will be presented (in Sec.4.2.3) followed by the signal candidate selection in Sec.4.3
and the computation of the normalization factor in Sec.4.4. Then a method for a complete
reconstruction of the signal will be presented in Sec.4.5, and the variable used for the signal
search will be defined in Sec.4.6. Finally, two strategies currently under study for the calibration
of the shape of the MVA output for background events will be presented in Sec.4.7.
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4.2 Candidate reconstruction

B0
(s) → τ+τ− candidates are reconstructed in events having at least six charged π tracks in the

detector acceptance with a total net charge equal to zero. In particular, the reconstruction of
the B0

s → ττ candidates proceeds in two steps:

• The τ candidates are built with three charged tracks identified as π coming from the same,
well defined vertex (with a low χ2 value), well displaced with respect to any other PV in
the event and with an invariant mass of the 3π system (m3π) compatible with the mass of
the a1 resonance. An approximate momentum, equal to the sum of the momenta of the
3π tracks, is associate to each τ candidate.

• The B0
(s) → ττ candidates are reconstructed using the two reconstructed τ candidate. In

particular, their approximate momenta are used to reconstruct the (approximate) position
of the B0

(s) candidate decay vertex. An approximate momentum, equal to the sum of the
momenta of the six pions, is also associated to the B candidate.

Multiple candidates. The τ reconstruction algorithm looks for all possible combinations of
three charged tracks forming a common vertex with a net charge e = ±1.

The topology of the selected B0
(s) → τ+(→ 3πν̄)τ−(→ 3πν) candidates can give rise to the

appearance of more than one reconstructed candidate per event (usually referred as “candidate
multiplicity”). Indeed the opening angle of the decay triangle, defined by the B candidate
production vertex and the two τ decay vertexes, is very narrow, hence the two τ decay vertices
are usually almost collinear. Thus, a track originating at one vertex can be reconstructed as
coming from the other one. For this reason, the same six tracks can be arranged in several ways
in groups of three, thus making the (τ+, τ−) pair candidates multiplicity greater than one.

This candidate multiplicity is further increased if one or more extra charged tracks are close
enough to the τ candidates’ decay vertices. In this case, those tracks enter as well in the
combinatorics, thus increasing the candidate multiplicity.

As it will be shown in the following, to deal with multiple candidates, only events in which
only one candidate has been reconstructed are analyzed.

4.2.1 Preselection

A preselection of potentially interesting events is performed as part of the candidate reconstruc-
tion process. In particular, the following requirements are applied on tracks used to make the τ
candidate:

• quality requirements: χ2/ndf , ghost probability, and PID;

• geometrical requirements: on the impact parameter (with respect to any of the recon-
structed primary vertex) expressed in units of its uncertainty IPχ2, in order to remove
tracks coming directly from the collision point;

• kinematical requirements: applied on the momentum, p, and transverse momentum, pT ,
of each track.

On the τ candidates the following cuts are applied:

• quality requirements: τ decay vertex χ2;

• geometrical requirements: the Flight Distance length (FDρ), its projection along the beam
axis (FD∆Z), and the FDχ2 with respect to the approximated B decay vertex;
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Variable applied on value
B0
s → τ+(3π)τ−(3π)

track χ2/ndf π <3
ghost prob < 0.3

IPχ2 >4
pT > 0.25 GeV/c
p > 2 GeV/c

ProbNNπ >0.55
at least 1 π with pT τ/D >0.8 GeV/c

DOCAMAX <0.2mm
Vχ2 <16
M [500-2000]MeV

FDχ2 >16
FDρ >0.1 mm
FDρ <7 mm

FD∆Z >5.0 mm
cos(DIRA) >0.99

pT >1 GeV/c
pT B(s) > 2 GeV/c
M [2-7] GeV/c

M corr
B <10 GeV/c

Vχ2 <90
cos(DIRA) >0.99
FDχ2 >225
FD <90

max pT of D/τ >4 GeV/c
max IPχ2 of D/τ >150
min IPχ2 of D/τ >16

max(min IPχ2 τ+ ,min IPχ2 τ−) >20
max pT of K/π >2 GeV/c
sum pT of K/π >7 GeV/c

max IPχ2 of K/π >16
Hlt2Topo

Table 4.2: Selection criteria for B0
s → τ+(3π)τ−(3π) ; DOCA is the distance of closest approach

between the two tracks, Vχ2 is the χ2 of the vertex, and DLL the combined PID likelihood
to discriminate different particle hypotheses. The corrected mass of the B candidate M corr

B is
defined in sec.4.3.

• kinematical requirements: on the τ candidate approximate pT , the pT of its daughters and
its invariant mass.

Finally on the B candidate the following requirements are applied:

• quality requirements on the B approximated vertex χ2;

• geometrical requirements on the pointing angle, the B candidate approximated FD and
FDχ2, and on the IPχ2 of the daughter particles;

• kinematical requirements on the B candidate approximate p, pT , and invariant mass and
transverse momentum of the daughter particles.

The complete list of selection criteria is reported in Tab.4.2.
In order to characterize the background (see Sec.4.2.2), also a sample of Same Sign (SS)

events has been selected. This sample is obtained by reconstructing (unphysical) B±± → τ±τ±,
i.e. by requiring two τ three prong vertices of the same electric charge and with exactly the same
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Year OS SS (prescaled 50 %)
2011 4680 1470
2012 8550 2750

Table 4.3: Yields (per pb−1) of reconstructed OS and SS B0
(s) → ττ events. In the current

analysis only half the events selected in the SS combination are retained (“prescaled 50%”).

kinematical and topological properties of the ones required to make the Opposite Sign (OS)
combination.

The yields (per pb−1) in data for OS and SS reconstructed events are reported in Tab.4.3.
The rate of SS events is lower than the one of the OS events by a factor ∼ 0.62. This can be
motivated through combinatoric arguments. Indeed, using the same set of tracks, there are more
combinations giving an OS than a SS candidate.

4.2.2 Background composition after preselection

Due to the B0
(s) → ττ candidate reconstruction algorithm, several processes can mimic the

various stages of the decay chain, both for the τ → 3πντ and the B0
(s) → τ+τ− decays.

To illustrate the various sources of backgrounds, the two steps of the candidate reconstruction
algorithm will be followed.

τ → 3πντ fake events. The two sources of background which can mimic a τ → 3πντ decay
are the following:

• three random π tracks making a common vertex, referred to in the following as “purely
combinatoric” τ ;

• D(0,±)
(s) → 3π±X, (X = π0, ...) meson decays. These physical decays represent the most

important source of background for the τ → 3πντ selection. Indeed D
(0,±)
(s) mesons are

the most abundant decay products of b-hadrons decays, because of the high b → cW−

transition rate. In addition, the behavior of the π0 is very similar to the one of the ντ for
the τ 3-prong decay. For this reason, even though the D(0,±)

(s) meson masses are slightly
higher than that of the τ , the presence of the neutral π shifts the reconstructed invariant
mass of the 3 charged pions towards lower values. In the following this kind of background
will be referred to as “misidentified D(s)”.

The majority of these “purely combinatorial” τ are removed by the requirements on their vertex
χ2, on the 3π invariant mass, and on the Dalitz variables. On the other hand, the removal of
the misidentified D

(0,±)
(s) → 3πX background events is more difficult. Indeed the requirements

on the three π tracks common vertex χ2 is not useful (being the three tracks originating from
the same vertex). The criteria on the invariant masses of the 3π and the Dalitz variables
remove most of the background from D±s decays but not the one from the D(0,±), which proceed
exactly through the same resonances as the τ → 3πντ decay. The “handle” to discriminate the
background coming from misidentified D is the lifetime. Indeed, as shown in Tab.4.4, D meson
have longer lifetimes with respect to the τ .

This is due to the fact that the s-quark in the Ds meson doesn’t allow to form an a1 and, subsequently, the
ρ resonances. This is instead possible for the D meson, thanks to the presence of a first generation constituent
quark.
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Mass (MeV/c2) τ (10−15 s ) Spin
τ 1776 290 1/2
D 1869 1040 0−
Ds 1968 500 0−

Table 4.4: Masses, lifetimes, and spins of the τ , D, and Ds mesons.

B0
s → τ+(3π)τ−(3π) fake events. Due to the high number of tracks and the abun-

dance of D(s) mesons in the final state there are several processes that can fake the B0
s →

τ+(3π)τ−(3π) signal. They can be categorized as follows:

• B0
(s) → ττ candidates made up of two purely combinatorial τ ;

• genuine combinatorial background generated by two true τ coming from the semileptonic
decay of the b-hadron in the event (as the combinatorial background for the B0

(s) → µµ

mode),

• random combinations of τ and misidentifiedD(s) mesons coming from two different hadronic
or semileptonic decays of the b-hadrons in the event;

• physical backgrounds generated by the semileptonic decay of a B meson either into a true
τ and a misidentified D(s), or into two misidentified D(s) mesons.

Most of the background coming from purely combinatorial τ is removed by the requirements
on the τ lifetime and the additional cuts on quantities related to the B reconstructed candidate.
In the same way, all the events generated by combinatorics are mostly removed by the require-
ments on the B reconstructed candidate. The most difficult background to remove comes from
by the exclusive decays of B0,±

(s) mesons. In this case the presence of τ and D(s) mesons coming
from the same parent particle reduces the efficiencies of the selection on the B candidate vertex
quality and of the kinematical requirements applied on masses.

4.2.3 Background characterization

The large variety of potential background sources makes a dedicated characterization using
generic MC samples (as it has been done, for instance, for the B0

(s) → µµ analysis to characterize
the combinatorial background) inefficient and unreliable. For this reason, a data driven method
has been defined. The main handle to characterize the background both from combinatoric
reconstruction and (as it will be shown in the following) physical decays is the above mentioned
Same Sign (SS) sample.

The general composition of this sample is the following:

• purely combinatorial B0
(s) → ττ , i.e. two true τ coming from two different semileptonic B

meson decays

• two purely combinatorial reconstructed τ , i.e. six charged π tracks forming two three-prong
vertices

• physical decays of B0,±
(s) with more than six charged tracks in the final state. Indeed the

extra charged tracks can be used, while doing the combinations, to make a same sign
candidate.

The fact that the SS sample can be used for the characterization of the background in the
OS sample is not evident a-priori and a validation study of its composition in terms of physical
decays must be performed.
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(3π, 3π) OS SS (prescaled 50%)
evts 283 88
cand 505 165
evts matching an exclusive 241 (85%) 68 (77%)

Table 4.5: Number of selected events (first row), reconstructed candidates (second line), and
(third row) selected events where a B → ττ candidate has been reconstructed from tracks coming
from the same parent particle (in parenthesis the fraction of events with respect to the total
number of selected events) for the OS (left column) and SS (right column) combinations for the
(3π, 3π) final state. In the current analysis only half the events selected in the SS combination
are retained (“prescaled 50%”).

(3π, µ) OS SS (prescaled 50%)
evts 320 55
cand 378 69
evts matching an exclusive 277 (87%) 42 (76%)

Table 4.6: Number of selected events (first row), reconstructed candidates (second line), and
(third row) selected events where a B → ττ candidate has been reconstructed from tracks coming
from the same parent particle (in parenthesis the fraction of events with respect to the total
number of selected events) for the OS (left column) and SS (right column) combinations for the
(3π, µ) final state. In the current analysis only half the events selected in the SS combination
are retained (“prescaled 50%”).

The study of the composition of the SS sample is done using an inclusive sample of 4 millions
MC generated bb̄ events. This is a generic sample obtained by simulating the bb̄ production,
the hadronization of each of the two b-quarks and the subsequent b-hadron decay in any known
channel with their respective BRs.

In this sample, B → ττ candidates have been reconstructed in both the OS (τ+τ−) and the
SS (τ±τ±) combinations using the selection criteria presented in Sec.4.2.1. Then the selected
events have been analyzed in term of the physical decays in each event, using the information
from the MC truth.

The results of the reconstruction are reported in Tabs.4.5-4.6 for the (3π, 3π) and the (3π, µ)
final states respectively. The following considerations are in order:

• both the OS and the SS samples are populated mostly by physical background events,
i.e. events where the six charged tracks used to reconstruct the B → ττ candidate have a
common parent particle,

• the fraction of the physical background candidates in the OS and the SS is similar,

• the (3π, 3π) and the (3π, µ) final states have similar behaviors, as it is shown in Tab.4.6.

In addition, the fraction of exclusive decays in the SS and OS samples has been studied as a
function of the number of charged tracks in their final states. The results for the (3π, 3π) final
state are reported in Tab.4.7. The composition of the SS sample is very similar to the OS except
for channels with only six charged tracks in the final state. Indeed to have a SS combination at
least seven charged tracks in the decay final state are needed.

The main hypothesis on which the analysis strategy is based is that the SS and OS sample
have a similar composition in terms of background events and the differences are mostly due
to the presence in the OS sample of exclusives channels with only six charged tracks in the
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ntrackscharged bb̄ OS (241 evts) bb̄ SS (68 evts)
6 34 (14%) ?
7 60 (25%) 14 (21%)
8 88 (37%) 29 (42%)
9 32 (13%) 13 (19%)
10 19 (8%) 10 (15%)
11 4 (2%) 2 (3%)
12 4 (2%) –

Table 4.7: Number of selected events where a B → ττ candidate has been reconstructed from
tracks coming from the same parent particle as a function of the number of charged tracks in
the exclusive mode final state.

final state (which cannot be reconstructed in the SS combination). For this reason, the data
SS sample can provide a reliable description of backgrounds (physical and combinatorial) in OS
provided the final multivariate analysis reduces as much as possible the dependence on variables
sensitive to the number of tracks (e.g. isolation and pointing variables).

4.2.4 Analysis strategy

Starting from the assumptions presented in the previous section, the signal search is organized
as follows:

• after the preliminary selection, a tight selection is done to remove as much as possible
exclusive background candidates with more than six charged tracks in the final state. To
do that, the selection is tuned in order to select the B0

s → τ−τ+ signal MC while rejecting
the SS-like background reconstructed on data. The main goal of the tight selection (in
addition to reduce the dataset at a manageable level) is to exploit as much as possible
the discrimination of variables quite powerful to separate the signal against the SS-like
background but which are, at the same time, too sensitive to the differences in background
composition between the SS and the OS samples;

• train a BDT operator using variables that are not able to discriminate between the SS
and OS samples, but are still useful to discriminate the B0

s → τ−τ+ signal against the
background contained in the SS sample;

• the signal yield (or its UL) is extracted through a fit to the BDT output. The BDT PDF
shape for signal events is taken from MC simulation, while the one for background is taken
from the SS sample. Finally the contribution of the exclusives modes with only six charged
tracks in the final state are added as a separate component in the fit.

4.2.5 Signal MC generated samples

The characterization of the B0
(s) → τ+τ− signal is done using MC generated samples. For the

analysis presented here, the signal MC samples are

• Sig1 : B0
s → τ+(→ 2π+π−ν̄τ )τ−(→ 2π−π+ντ ),

• Sig2 : B0 → τ+(→ 2π+π−ν̄τ )τ−(→ 2π−π+ντ ),

• Sig3 : B0
s → τ+(→ 2π+π−π0ν̄τ )τ−(→ 2π−π+ντ ).
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The event selection presented in the next section has been tuned using only the B0
(s) → τ+(→

2π+π−ν̄τ )τ−(→ 2π−π+ντ ) mode. Nevertheless, as it will be shown in Tab.4.10 the efficiencies
for the first two modes are compatible with each other. Only the last mode will have a lower
efficiency. Moreover, although the training of the final BDT used for the signal search is done
to discriminate only the Sig1 mode against the SS background sample, a-posteriori is seen that
the output variable is equally distributed also for the other two modes Sig2 and Sig3.

4.3 Tight selection

As already mentioned, the preliminary selection described in Sec.4.2.1 is followed by a tight
selection based on kinematic and isolation variables. The goal of this selection is to remove
as many background events as possible, thus reducing the size of the dataset to a manageable
level. The selection is tuned in order to select the signal MC while rejecting the SS-like events.
The tight selection criteria are reported in Tab.4.8. Each of them helps fighting some particular
background source:

• L0Hadron and Hlt1TrackAllL0 triggers;

• Dalitz plane and m3π of each τ : selection criteria based on these quantities aim to reject
the events which does not proceed through the a1 and the ρ0 resonances;

• invariant mass of the six π in the final state (M6π), of the (3π)± systems M(3π)± , the
difference between the two ∆MB−ττ ≡ M6π −M(3π)+ −M(3π)− , and the corrected mass
of the B candidate M corr

B defined as the invariant mass of the six π plus the sum of the
modulus of the components of the neutrino momenta perpendicular to the decay plane.
These requirements are meant to reject candidates generated by combinations of true τ
and D(s) mesons coming from two different hadronic or semileptonic b-hadron decays;

• τ lifetimes, in order to reject unphysical candidates where the τ decay vertices are down-
stream with respect to the approximate reconstructed B decay vertex;

• isolations removing candidates where the 3 π tracks used to make the τ candidate come
from a vertex with one or more extra charged tracks. Isolation variables can be classified
into three categories:

– candidate multiplicity (ncand). This variable is the number of reconstructed B0
(s) → ττ

candidates in the selected event. If more than six charged tracks are in the B meson
final state or the two τ candidates decay vertices are very close to each other, it is
likely that, due to the combinatoric search, more than one candidate per event be
reconstructed; this requirement allows to select candidates where the two τ decay
vertices are well separated each other;

– vertex isolations variables. These variables are defined by the τ or B0
(s) candidates

vertices (Vτ,B), adding to them, one by one, the other tracks in the events that are
then fitted together into another vertex (V?τ,B) . More precisely the following variables
have been used:
∗ “NumVtxWithinChi2WindowOneTrack”: number of particles generating a vertex
V?τ,B with a χ2

V?τ,B
< 9

∗ “SmallestDeltaChi2MassOneTrack”: invariant mass of the tracks coming from
the vertex V?τ,B, obtained from the one of the reconstructed τ or B candidates by
adding the track giving the smallest ∆χ2 defined as ∆χ2 ≡ χ2

Vτ,B − χ
2
V?τ,B

∗ “SmallestDeltaChi2MassTwoTracks”: invariant mass of the tracks coming from
the vertex V??τ,B obtained from V?τ,B defined above by adding the track giving the
smallest ∆χ2.
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Variable Selection
L0Hadron true
Hlt1TrackAllL0 true
m(ρ(1,2)) [591.6,900] MeV/c2

M3π [1000,1350] MeV/c2

M6π > 2400 MeV/c2

∆MB−ττ ≡M6π −m3π+ −m3π− > 600 MeV/c2

M corr
B > 3000 MeV/c2

τχ2
B,τ± > 0

ττ± ττ± > 0
ncand == 1
B_NumVtxWithinChi2WindowOneTrack < 1
B_SmallestDeltaChi2MassOneTrack > 3200 MeV/c2

Tau_NumVtxWithinChi2WindowOneTrack ≤ 3
Tau_SmallestDeltaChi2MassTwoTracks > 2000 MeV/c2

sum_iso_Taus < 1
sum_iso_allPions < 4
sum_isoBDT1_Taus_v1 < 7
sum_isoBDT1_Taus_v2 < 3
sum_isoBDT1_Taus_v3 < 3
sum_isoBDT2_Taus > -0.5
sum_isoBDT3_Taus > -0.5
sum_isoBDT1_allPions_v1 < 10
sum_isoBDT1_allPions_v2 < 6
sum_isoBDT1_allPions_v3 < 5
sum_isoBDT2_allPions > −1
sum_isoBDT3_allPions > −1

Table 4.8: List of trigger, kinematical, and candidate multiplicity cuts applied in the tight
selection

– track isolations.

Fig.4.5 shows the Dalitz plane of the τ− candidates for signal MC, data SS and OS events;
Fig.4.6 the decay time distributions of the τ+ candidates reconstructed in MC signal, data SS,
and data OS samples. Figs.4.7-4.8 show the tracks isolation variables for the τ and π for signal
MC and data SS.

The efficiency for each selection criteria for signal MC, data SS, and data OS events has been
studied in details and the results are reported in Tab.4.9. The selection criteria based on Dalitz
variables play a mayor role in removing background events, being a factor ten more efficient for
signal events than for background. Moreover, the high suppression level of this selection (also
for signal events) is due to the fact that the daughter products of both τ candidates must satisfy
these requirements. The selection efficiencies for MC signal and exclusive modes are reported in
the summary table 4.14.

Tab.4.11 reports the tight selection efficiencies εsel and the absolute yields of the selected MC
generated signal events, data SS and OS, as well the selected number of SS and OS candidates in
bb̄MC events. After the tight selection no events are left in the generic bb̄ sample, both in the SS
and in the OS combination. Hence, with the available statistics, it is not possible to characterize
the background events passing the selection, as it has been done after the preliminary selection.
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Figure 4.5: Dalitz plane of the τ− candidates reconstructed in signal MC, data SS, and data OS
samples.
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Figure 4.6: Distribution of the decay time for τ+ candidates reconstructed in the signal MC,
data SS, and data OS samples.
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Figure 4.7: Distribution of isolation variables used in the selection for signal MC (blue), and
data SS (red).

Figure 4.8: Distribution of isolation variables used in the selection for signal MC (blue), and
data SS (red).
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Selection efficiencies (in %) εn
εn−1

Selection Sig1 Sig2 Sig3 SS OS Sig1 Sig2 Sig3 SS OS
Trigger 87.78 87.55 86.12 81.18 80.52 — — — — —
m(ρ(1,2)) 17.60 19.18 4.53 1.27 1.51 0.20 0.19 0.04 0.015 0.02
m3π 14.12 14.76 3.04 0.60 0.75 0.80 0.77 0.67 0.47 0.50
M6π & MB−ττ & M corr

B 14.08 14.72 3.01 0.27 0.40 0.99 0.99 0.98 0.45 0.53
τχ2

B,τ± 14.08 14.72 3.01 0.24 0.35 1.00 1.00 1.00 0.92 0.87
τB,τ± 11.94 12.26 2.52 0.10 0.14 0.85 0.83 0.83 0.41 0.40
ncand 11.81 12.08 2.47 0.03 0.06 0.99 0.98 0.97 0.30 0.43

Table 4.9: Efficiencies of the requirements on trigger, kinematic, lifetime, and candidate multiplicity variables when applied in sequence for signals
MC (Sig1: B0

s → τ(→ 3πντ )τ(→ 3πντ ), Sig2: B0 → τ(→ 3πντ )τ(→ 3πντ ), Sig3: B0
s → τ(→ 3ππ0ντ )τ(→ 3πντ ) ), data SS, and data OS

candidates. ncand is the total number of candidates reconstructed in each event. In the right part of the table the ratio of the efficiencies of two
subsequent selections are reported. The efficiencies of the selection criteria based on isolation variables are not included.
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Event BR (×109) εgen (×102) εpre−sel (×102) εsel (×102) εtot (×106) ε (×1011)
Sig1 6.70 ± 0.50 2.85 0.70 ± 0.04 9.80 ± 0.26 19.55 ± 1.53 (1.30 ± 0.23) ·10−2

Sig2 (1.92 ± 0.19)·10−1 3.12 0.71 ± 0.06 8.47 ± 0.42 19.00 ± 2.50 (1.40 ± 0.34) ·10−3

Sig3 3.32 ± 0.28 2.58 0.64 ± 0.06 1.57 ± 0.24 4.14 ± 0.78 (1.37 ± 0.37) ·10−3

Table 4.10: Branching fraction, generator, pre-selection, and selection efficiencies, for the three generated MC signal samples (Sig1: B0
s → τ(→

3πντ )τ(→ 3πντ ), Sig2: B0 → τ(→ 3πντ )τ(→ 3πντ ), Sig3: B0
s → τ(→ 3ππ0ντ )τ(→ 3πντ ) ). ε ≡ BR · εtot · fq/fs, εtot ≡ εgen · εstrip · εsel;

fd/fs = 3.86± 0.06 [99, 100].
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Type cand after preselection cand after selection εsel

Sig1 13960 1344 9.61%
Sig2 4934 418 8.47 %
Sig3 6665 105 1.57 %
bb̄ MC SS 165 0 < 6 · 10−3

bb̄ MC OS 505 0 < 2 · 10−3

data SS 12 261 735 610 5.00·10−5

data OS 33 505 876 5700 1.67·10−4

Table 4.11: Absolute event yields for signals MC events (Sig1: B0
s → τ(→ 3πντ )τ(→ 3πντ ),

Sig2: B0 → τ(→ 3πντ )τ(→ 3πντ ), Sig3: B0
s → τ(→ 3ππ0ντ )τ(→ 3πντ ) ), SS and OS in bb̄

MC events, SS and OS sample in data (the yields for the SS data correspond to an integrated
luminosity of 2.77fb−1, while the one for OS to 2.68fb−1).

4.4 Normalization

The number Nsig of the observed B0
(s) → ττ signal events (or its upper limit) extracted from

the dataset is converted into a value of the BR (or its upper limit) by multiplying it with a
normalization factor α. This takes into account the whole reconstruction, trigger, and selection
efficiency as well as the total number NB(s) of B(s) mesons in the collected dataset. In particular,
the following relation holds:

BR(B(q) → τ+(3πν)τ−(3πν)) =
Nobs
sig,q

εsigNB(s)

≡ α(q) ·Nobs
sig,q. (4.4)

By inverting the previous relation and taking into account the BR(τ → 3πν), the total
number of observed Nsig,(s) signal events is given by

Nsig,(s) = NB(s) · εsig · [BR(τ → 3πν)]2 · BR(B(s) → ττ) . (4.5)

The total number NB(s) of B0
(s) mesons in the collected dataset is computed using eq.4.4

applied to the normalization channel B0 → DDs with the D decaying into two charged π and a
K, while the Ds goes into a pair of charged kaons and a charged π. The same number of charged
tracks in the final state as well as the same geometry of the signal allow a partial cancellation of
systematic uncertainties in the reconstruction, trigger, and selections when computing the ratio
of those efficiencies. The value of the trigger, reconstruction, and selection efficiencies for the
normalization channel have been computed on MC simulated events and a value of

εDDs = (4.19± 0.04)× 10−4 (4.6)

has been found.
The normalization fractions are computed through the following relation:

αq = εDDstot · BR(B0 → DDs) · BR(D → ππK) · BR(Ds → πKK)
εsigtot ·Nobs(B0 → DDs) · [BR(τ → 3πντ )]2

· fd
fq
. (4.7)

Using the values of the signal efficiency in Tab.4.10 and the PDG values for the BR appearing
in eq.4.7, the following value for the normalization factors αs is found:

αs = (3.79± 0.60)× 10−5 . (4.8)

Assuming the SM branching ratio for B0
s → τ+τ− the expected number of signal events is

N exp
sig (B0

s ) = 0.020± 0.009.
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Figure 4.9: Schematic representation of the one-dimensional case.

4.5 Full reconstruction ofB0
(s) → τ+(→ 2π+π−ν̄τ)τ−(→ 2π−π+ντ)

events

In this section a method for a complete reconstruction of the τ four-momenta in the B0
(s) →

τ+(→ 2π+π−ν̄τ )τ−(→ 2π−π+ντ ) decay chain will be presented. In particular it will be shown
that by exploiting the geometrical information from measurable quantities, and by imposing all
the mass constraints (i.e.B, τ , and ν) it is possible to completely reconstruct the decay chain.

In Fig.4.2 a typical B0
(s) → τ+(→ 2π+π−ν̄τ )τ−(→ 2π−π+ντ ) event is shown. In particular,

in the selected events the following quantities can be measured:

• the B production vertex ~rB and τ± decay vertexes ~rτ± that allow to reconstruct the 3D
sides of the decay triangle ~w± ≡ ~rτ± − ~rB ,

• four-momenta q±µ of the (3π)± system

q±
µ ≡

(
E±

~q±

)
≡

√m2
3π± + ~q±

2

~q±

 (4.9)

where m3π± is the invariant mass of the 3π± system.

Now, the relevant question is: assuming that the observed pattern is generated by the
B0

(s) → τ±τ∓ → (3π±ντ )(3π∓ντ ) decay chain, is it possible to reconstruct the two τ± can-
didates momenta?

4.5.1 The one-dimensional case

A case already known and studied in the literature is the one (here referred to as the ”one-
dimensional” case) where a τ flies between its reconstructible production and decay vertexes.
There it decays into a visible system and a neutrino (Fig.4.9). This is the case of the Z → τ+τ−,
H → τ+τ−, or B → K?τ+τ− (schematically shown in Fig.4.10) where the τ origin vertex is
reconstructible.

In this case it is possible to write down the following proportionality relation between the
(unknown) four momentum of the τ and the four-vector w whose spatial component is given
by the spatial separation between the τ decay and production vertexes and whose temporal
component is the time interval between the τ decay and its production:

w = hpτ (4.10)

being the Lorentz-invariant parameter h defined as

h ≡ ττ
mτ

. (4.11)
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Figure 4.10: Schematic representation of the B → K?τ+τ− (left) and Z0, H → τ+τ− (right)
decays. In both cases the τ production vertexes are reconstructible thanks to the K? decay prod-
ucts (for the first case) and to the knowledge of the H,Z production vertex (which corresponds
to their decay vertexes).

In this particular case four unknowns must be fixed, which are the components of the τ
momentum pµτ . This can be done by exploiting the information on the τ flight direction p̂τ
(which fixes two unknowns), the mass shell condition for the τ p2

τ = M2
τ (one unknown) as

well as the momentum conservation in the τ → 3π + ν decay, i.e. (pτ − p3π)2 = p2
ν = 0 (one

unknown), where p3π ≡ (E3π, ~p3π) and pν are the four-momenta of the 3π system and the ν
respectively. With these constraints the modulus p of the τ space momentum is defined up to a
twofold ambiguity, being the solution of the following second degree equation (see e.g.Ref.[112]):

p2
(

1− |~p3π|2

E2
3π

)
− p

(
~p3π
E3π
· p̂τ

)
M2
τ + p2

3π
E3π

+M2
τ +

(
M2
τ + p2

3π
2E3π

)2

= 0 . (4.12)

4.5.2 The real case

The B0
s → ττ → (3πν)(3πν) case is quite different, because the τ production vertexes are not

known (due to the fact the B0
s meson flies before decaying) and the two τ four-momenta cannot

be reconstructed independently, as it was possible in the one-dimensional case. For this reason,
the B0

s → ττ will be referred in the following as a “two-dimensional” case.
A first attempt to reconstruct the decay has been presented in [113, 114]: expressing the two

τ momenta in cartesian coordinates in 3D space (which represents a non covariant approach)
and imposing:

• B, τ , ν mass constraints,

• momentum conservation in Bs → ττ and planarity of the decay,

the solution of the problem is (one of) the roots of a 8th degree polynomial.
This method shows that reconstruction of the τ momenta is achievable. Nevertheless this

approach still presents some issues:

• there are no analytic solutions,

• numerical methods to solve the equation suffer of a certain instability,

• empirically there exists only zero, two or four real solutions but it is not clear why (being
in principle up to eight),

• no variables related to the invariant mass are left to discriminate the signal against the
background: only the Bs and τ± decay time.
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4.5.3 A new approach

In this work, a different method is proposed, differing from the previous one by the following
points:

• keep manifest Lorentz covariance,

• different choice of unknown momenta.

In particular, the guiding principle of this method is to reduce the two-dimensional problem to
two one-dimensional one.

Let be:
wµ± ≡ (w0

±, ~w±) (4.13)
(being w0

± the time interval between the B production and the τ± decay, i.e. the ”temporal”
side of the triangle) and the 2-dimensional vectors

W ≡
(
wµ+
wµ−

)
, P ≡

(
pµ+
pµ−

)
. (4.14)

Using momentum conservation in Bs → τ+τ− and the definition of the four-velocity, the follow-
ing relation between W and P is found:

W = H · P (4.15)
with

H ≡
(
τ̂B + τ̂+ τ̂B
τ̂B τ̂B + τ̂−

)
= τ̂B ·

(
1 + t+ 1

1 1 + t−

)
(4.16)

being τ̂i ≡ τi
mi

and t± ≡ τ̂±
τ̂B

.
Equation (4.15) is a (formal) relation of proportionality between four-vectors through the Lorentz
scalar H, and is formally equal to the one obtained for the one-dimensional case in eq.(4.10). It
must be noted that in the limit where the ratio τB

MB
goes to zero, the H matrix became diagonal

and the problem is trivially equivalent to two one-dimensional cases (this is actually the case of
the H,Z0 → τ+τ−).

In the ideal (though non realistic) case where the 0-th components of the 4-vectors wµ± , w0
±,

can be measured, the four-momenta pµ± can be fixed in two steps. First the three parameters τ̂B
and t± are fixed using the following equality

WW T = HP (HP )T = HPP TH (4.17)

and imposing the constraints p2
± = m2

τ and p+ ·p− = M2
B−2m2

τ

2 . The three independent equations
in eq.(4.17) represent quadratic constraints on the elements of H. The solution of this equation
is given (in a matricial form) by

H = (PP T )−1[PP TWW T ]
1
2 (4.18)

with the two additional constraints {
det(H) > 0
tr(H) > 0 . (4.19)

In terms of equations between the components of matrices in eq.(4.17), the relevant ones are
those involving only t±, being τ̂B an overall factor that can be fixed once the previous ones are
found. In particular, the relevant equations for t± are the following ones:

m2
τ t

2
± − k±(p+ · p−)t+t− +M2

B

[
t± −

k±
2 (t+ + t−)

]
+M2

B(1− k±) = 0 (4.20)

130



being k± = w2
±

w+·w− .
The system (4.20) admits only one solution for the pair (t+, t−) in the physical region t+ ≥ 0,

t− ≥ 0. The expression for τ̂B as a function of (t+, t−) is

τ̂B =
√√√√ w+ · w−
t+t−(p+ · p−) + M2

B
p+p−

(t+ + t−) +M2
B

. (4.21)

Once the parameters of the H matrix are fixed, the momenta pµ± are found through the (lin-
ear) equation (4.15). The knowledge of the three parameters (t+,t−,τB) represents the maximal
information that can be extracted from the measured quantities. An estimation of the improve-
ment of the signal-background discrimination when these three variables are used with other
standard variables is reported in Appendix C. It is worth to notice that nothing about the final
state of the τ is assumed, except for the fact that the τ decay vertexes must be known. Using the
measured four-momenta of the two 3π systems the invariant mass of the undetected τ daughters
can be reconstructed separately for each τ . In the case under study these are distributed as a
delta around 0 (being such the invariant mass of the neutrino), giving thus two peaking variables
for the signal.

In the real case, nevertheless, it is not possible to measure the w0
± components and the four-

momenta p± must be fixed through a different procedure, replacing the constraints from w0
± with

the information from the subsequent τ decays, and by using linear and quadratic constraints, as
is shown in the following.

H is a real 2× 2 symmetric matrix diagonalized in the form:

H = R(θ) ·Dλ ·R−1(θ) (4.22)

being

Dλ ≡ τ̂B ·
(
λ+ 0
0 λ−

)
, R(θ) ≡

(
cos θ − sin θ
sin θ cos θ

)
(4.23)

We find for the eigenvalues λ± and for the rotation parameter cos θ

λ± = 2 + ∆±
√

4 + δ2

2 = 1 + ∆
2 ±

√
1 + δ2

4 (4.24)

cos θ =

1 +

√1 + δ2

4 −
δ

2

2

− 1

2

(4.25)

being
∆ ≡ t+ + t− , δ ≡ t+ − t− (4.26)

It is interesting considering some particular cases, in order to understand what is the physical
”meaning” of the three Lorentz invariant parameters (θ, λ+, λ−):

• if t+ = t− ≡ t the following set of values (θ = π
4 , λ+ = 2 + t, λ− = t) is found. A particular

case is obtained when t = 0: in this case H is not invertible: both τ are created and decay
immediately (because the triangle degenerates to a line)

• if t+ 6= t− but still t+ ' t− (i.e. δ << 1) the following approximation for cos(θ) is found:

cos(θ) = cos(π4 ) + 1√
32

(t+ − t−) +O
(
(t+ − t−)2

)
. (4.27)
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Figure 4.11: Distribution of the θ angle for MC generated signal events.
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Figure 4.12: Distribution of the λ+ (violet) and λ− (purple) eigenvalues for MC generated signal
events.

The distributions of θ and the two eigenvalues λ± for Monte Carlo generated signal events
are shown respectively in Fig.4.11 and 4.12.

cos θ is sensitive only to the difference t+ − t−, hence it measures the asymmetry of the
triangle in the proper time of each of the two τs.

Fig.4.13 shows the distribution of δ2 (which is the relevant parameter to linearize the expres-
sion (4.24) for λ±) and cos(θ)− cos(π4 ) as a function of δ and |δ| (for the convention on the sign
see the figure caption).

In the ”rotated” basis:

W̃ (θ) ≡ R−1(θ) ·W =
(
w̃µ+
w̃µ−

)
=
(

cos θwµ+ + sin θwµ−
− sin θwµ+ + cos θwµ−

)
(4.28)

P̃ (θ) ≡ R−1(θ) · P =
(
p̃µ+
p̃µ−

)
=
(

cos θpµ+ + sin θpµ−
− sin θpµ+ + cos θpµ−

)
, (4.29)

the following relation holds (using eqs.(4.15), (4.22)):

W̃ (θ) = Dλ · P̃ (θ) (4.30)

With the choice (4.28) of the unknown momenta there are no more mixed terms τ+ − τ−,
being {

w̃µ+ = 1
σ+
p̃µ+

w̃µ− = 1
σ−
p̃µ−
⇒
{

~̃w+ = 1
σ+
~̃p+

~̃w− = 1
σ−
~̃p−

. (4.31)
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Figure 4.13: Top: distribution of δ2 . Bottom: dependence of θ − π
4 as a function of δ.

where, from eq.(4.31), the Lorentz invariant unknown σ± are defined as:

σ± ≡
1

τ̂Bλ±
. (4.32)

By imposing the two (θ-dependent)

• mass-shell condition for p̃2
±:

p̃2
± ≡M2

± = m2
τ ± sin(2θ)s , (4.33)

where m2
τ is the τ mass and s ≡ p·+p− (for signal events s = M2

B−2m2
τ

2 );

• constraint on the direction of ~̃p±:

~̃p± ∝ ˆ̃w± ; (4.34)

and the (θ independent)

• constraint on pµ± · q±µ (assuming p2
ν = 0):

p± · q± ≡ m2
± =

m2
τ +m2

3π±

2 , (4.35)

being m2
3π± the invariant mass of the 3π± system

a system of two equations of second degree in two unknowns σ± is found (see next section for
the proof and for the explicit expression of the equations):

P(2)
± (σ±, θ) = 0 (4.36)

It’s important to stress the fact that these two equations linearly depend on the four product
s = p+ · p−, because of the constraint in eq.(4.33).
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The coefficients of the eq.(4.36) depend only on the parameter θ, and, once it is fixed, exact
solutions are obtained. In principle, this parameter can be determined by using the additional
constraint

p+ · p− = M2
B − 2m2

τ

2 . (4.37)

Once this constraint is imposed it is possible to completely reconstruct the event by solv-
ing the system of three equations in three unknowns. Nevertheless, this strategy requires the
resolution of a highly complex trigonometric equation to fix θ, and has been left aside so far.
Instead some approximation of θ, that will be presented in Sec.4.5.6, have been used to solve the
system of equations (4.36). With this strategy several discriminating variables have been sorted
out and used for the signal search (see Sec.4.5.7).

At present, a different strategy aiming to fully exploit the kinematic equations (4.36),(4.37)
is under study. This new approach will allow to leave the s quantity a free two-body peaking
variable (for signal) and more details will be presented in Sec.??.

4.5.4 Calculations

In this section the relevant equations to solve for the τ unknown momenta will be obtained.
Let be

q±
µ ≡

(
E±

~q±

)
(4.38)

the four-momenta of the two 3π system from the τ± decay;
by using the constraints in eqs.(4.33,4.34), the four-vector p̃± can be written as

p̃µ± ≡
(√

M2
± + | ~̃w±|2σ2

±
σ± ~̃w

±

)
. (4.39)

By using the following intermediate quantities:

C3π ≡
(
~q+ · ~w+ ~q+ · ~w−
~q− · ~w+ ~q− · ~w−

)
, (4.40)

(
a+
a−

)
≡ R(−θ)

(
m2

+/E
+

m2
−/E

−

)
, (4.41)

(
b+
b−

)
≡
[(

cos2 θ sin2 θ
sin2 θ cos2 θ

)
◦ [C3πR(θ)]T

](
1/E+

1/E−

)
, (4.42)

(
c+
c−

)
≡ sin θ cos θσ1[C3πR(θ)]T

(
−1/E+

1/E−

)
, (4.43)

being σ1 ≡
(

0 1
1 0

)
, the constraints in eq.(4.5.3) give the following equation√

M2
± + | ~̃w±|2σ2

± = a± + b±σ± + c±σ∓ . (4.44)

Taking the square of the previous two equations the following equalities are obtained

(b2± − | ~̃w±|2)σ2
± + 2c±b±σ+σ− + c2

±σ
2
∓ + 2a±b±σ± + 2a±c±σ∓ + a2

± −M2
± = 0 . (4.45)

The ◦ product between matrices denotes the Hadamard product. It is defined, for two generic n×m matrices
A and B as (A ◦B)ij ≡ AijBij .
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The determinant of the quadratic part of eq.(4.45) is equal to −| ~̃w±|2c2
±, which is always

negative. Thus, the two equations (4.45) describe two hyperbolas in the (σ+, σ−) plane. It is
important to stress the fact that this result does not depend on the value of θ; nevertheless, the
existence, the number, and the position of the solutions of the system do depend on θ. Being the
possible number of common points of intersection between two conics equal to 0,2,4 this justifies
what was found in [113, 114].

Finally, the solution of the problem is equivalent to finding the roots of a 4th degree polyno-
mial:

P(4)(ξ) =
4∑
i=0

a(i)(θ)ξi = 0 . (4.46)

The explicit expressions for the coefficients a(i)(θ) as well as the definition of the unknown ξ
are shown in the Appendix D.

4.5.5 Choice of the ”right” solution

The solutions of the fourth degree equation are in the form

ξ1 = a− ib , ξ2 = a+ ib , ξ3 = c− id , ξ4 = c+ id (4.47)

with a, b, c, d ∈ C.
For each of these solutions a pair of four-momenta p̃±(θ, ξi) is found and the modulus of their

spatial components are given by ~̃p±(θ, ξi) = σ±(θ, ξi) ~̃w±(θ).
Being these solutions related to the physical observables σ±, at least two of them must be

real for signal events. In order to study the behavior of these solutions, eq.(4.46) has been
solved for a sample of Monte Carlo generated signal events, using the true value of θ. Results
are summarized in the following and in Fig.4.14:

• the first two solutions are real for 95.58% of events (meaning that b = ib̃ , a, b̃ ∈ <),

• for 1.24% of events the last two are real as well,

• due to numerical resolution, complex solutions can appear also when using the true value
of the θ parameter; nevertheless complex solutions are considered ”good” if their imagi-
nary part is smaller than 5% the real one. The appearance of this small imaginary part
(even though the true values for the θ parameters is used) could be due to the fact that
the equations are non linear, so that a small initial uncertainty (due essentially to approx-
imations in the input quantities like momenta and lengths) can propagate non linearly,
ending up to a sizable final effect.

• apparently there is no way to choose a-priori the correct one among them. Nevertheless,
as shown in Fig.4.15 the distribution of the first two solutions well reproduce the one of
the true value (in agreement with what was already observed in [113, 114]), while the last
two are very differently distributed with respect to the true one.

In the “real-life” case, the true value of the angle θ is not known and it must be estimated
through measurable quantities (see following sections). For this reason, and due also to

• final state radiation emitted by charged particles,

• detector resolution,

In the sense that the imaginary part is only due to numerical approximation.
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Figure 4.14: Behavior of the solutions of eq.(4.46) solved using the true value of θ. Top-left:
fraction of events as a function of the number of real solutions for eq.(4.46); top-right: for
events for which eq.(4.46) admits only two real solutions, fraction of events as a function of the
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a ”non-trivial” imaginary part for the true solution appears.
The appearance of an imaginary part for the solution is due to the violation of some con-

straints assumed while deriving the equations. It is, in some sense, a measure of how much the
starting hypothesis that the observed pattern is generated by the decay chain Bs → τ+τ− is
incorrect. For this reason, even if its meaning is not evident (depending on the various deter-
minants which the solutions of the equation depend on) it nevertheless carries an information
which is physical. For this reason, these imaginary parts can also be used as discriminating
variables as it will be discussed in Sec.4.5.7.

4.5.6 θ approximation

To deal with the dependence on θ of the coefficients of eq.(4.45), the following options have been
considered:

• substitute θ with its average value θ = π
4 (i.e. assuming the same decay time of the two τ);

• find a better approximation of θ which relies on measurable quantities.

The first option relies on the fact that even if this approximation is not optimal for the
signal, it will be still less correct for the various resonant backgrounds, where there are usually
D particles (that have lifetime quite different from τ).

Nevertheless, finding a method to get for each event a more reliable approximation of θ
seemed to be the best way to be pursued. Indeed, being θ a ”measure” of the asymmetry of the
triangle, it might be possible to express it as a function of the difference between ~w+ and ~w−. In
particular, a function of (spatial) quantities measured in the laboratory frame which is Lorentz
invariant, being such θ, must be found.

The method presented here to approximate θ̄, consists in finding a matrix H̄ whose elements
are functions of measurable quantities and which feature the same “structure” of the matrix H
in eq.(4.16)

H =
(

1 + t+ 1
1 1 + t−

)
(4.48)

being t± functions of (~w+, ~w−). In this way, the θ angle parameterizing the rotation matrix R(θ)
which diagonalizes H can be a reliable approximation of the true θ angle.

In analogy with the H matrix defined in eq.(4.16), the matrix H̄ must satisfy the following
properties :

• H must transform as H for exchange (+↔ −), i.e.H11 ↔ H22,

• the functions t±(~w+, ~w−) must be adimensional and

• Lorentz invariant (at least at first order in a power expansion of the boost γB of the Bs)

In the following, two possible parameterizations for the H matrix will be presented.

Approximation through the triangle sides. The functions

t± ≡
|~w±|

α|~w+ + ~w−|
(4.49)

satisfy all these conditions (for γB � 1).

The reason for the introduction of the α parameter lies on the fact that for the H matrix
the following relation holds: H11 − H22 = δ, while H11 − H22 = 1

α
|~w+|−|~w−|
|~w++~w−| = 1

α · δW , where
δW ≡ H̄11 − H̄22 . Now, to make these two expressions similar, α must be set equal to the
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Figure 4.16: Top: δW as a function of δ; bottom: distribution of the ratio between δW and δ
whose mean can be used as a rough estimation of their ratio.
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Figure 4.17: Top-left: for α = 1 distribution of θ (red) and θ (blue); top-right: θ− π
4 (y axis) vs

θ− π
4 (x axis); bottom-left: distribution of (θ− π

4 )/(θ− π
4 ), whose mean can be used as a rough

estimation of the coefficient between θ and θ.

coefficient between δW and δ. This parameter depends on the masses and the emission angle of
the τs in the B rest frame and thus it must be estimated empirically (see e.g. Fig. 4.16).

By diagonalizing the H̄ matrix a rotation angle θ is found, whose distribution and correlation
with the θ angle are shown for two different values of α in Figs.4.17-4.18.

In Tab.4.12 are reported the efficiencies for finding a real solution with different approxima-
tions of θ.

The estimation of θ through θ̄ improves the efficiencies by a factor greater than 50% with
respect to the case where the approximation θ = π

4 is used. In Figs.4.19(a),4.19(b) the quantity
2 (|ξbest|−|ξtrue|)
|ξbest|+|ξtrue| is reported for different approximations of θ. This shows that the precision of the

closest solution as well is improved using the estimation of θ through θ̄. In particular the residual
is distributed symmetrically with respect to zero in all the α-dependent θ̄ approximations, while
it is manifestly asymmetric and biased towards negative values if the approximation θ = π

4 is
used.

As far as the choice of the value of the α parameter is concerned, α = 1 has been taken.
Indeed, even if the approximation of the θ angle is worse than in the case of α = 0.2 (see
Figs.4.17-4.18), the efficiency to find a real solution of eq.(4.46) is higher (see Tab.4.12) and,
at the same time, the precision on the reconstructed solution closest on the the true one are
compatible with each other, as it is shown in Fig.4.19(a).
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Figure 4.18: Top-left: for α = 0.2 distribution of θ (red) and θ (blue); top-right: θ − π
4 (y axis)

vs θ − π
4 (x axis); bottom-left: distribution of (θ − π

4 )/(θ − π
4 ), whose mean can be used as a

rough estimation of the coefficient between θ and θ.

θtrue θ = π
4 θ(θα=1) θ(θα=0.2)

99.90 21.40 31.00 29.30

Table 4.12: Efficiencies (in %) to find a real solution (including complex solutions with Im(ξ)
Re(ξ) <

2%) with different approximations of θ.
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Figure 4.19: Precision on the reconstructed solution whose value is closest on the true one
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|ξbest|+|ξtrue| ) found for different approximations of θ.
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Figure 4.20: Top: δIP ≡ b+−b−
b++b− as a function of δ; bottom: distribution of the ratio between δIP

and δ whose mean can be used as a rough estimation of their ratio.

Approximation through the (3π)± system impact parameters. Another possible form
for the functions t± has been tested

t± ≡
b±

α(b+ + b−) , (4.50)

being b± the impact parameter of the 3π± system with respect to the Bs PV.

In this case, as well, it is easy to see that the functions in eq.(4.50) satisfy the requirements
on the H̄ matrix elements.

Nevertheless, in this case the result is not as good as the one obtained with the previous
approximation. This is due to the fact that, when using the impact parameters, an information
which is not related to the decay triangle structure only (i.e. the direction of the 3π system)
is introduced. Instead, in the previous case, the t̄± function are quantities which ”genuinely”
describe the asymmetry of the triangle. The way to exploit the information about the impact
parameter as well is not as straightforward as in the other case.

Ideas about an improved recursive approximation. In this section a recursive method
aiming to improve the approximation of θ together with the ‘’quality” of the solution is presented.

The θ angle can always be expressed in the following form

θ = θ? + δθ (4.51)

being θ? any approximation for θ, for example through θ̄ or θ? = π
4 and | δθθ? | << 1.

To fix θ the general relation between s̃ and s:

s̃(θ) = s cos 2θ (4.52)

can be exploited.
By developing both sides of the previous equation around θ? the following relation is found:

s̃(θ? + δθ) = s̃(θ?) + δθ
ds̃

dθ
‖θ? = s(cos2 θ? − sin2 θ? − 4δθ cos θ? sin θ?) , (4.53)

where the quantities on the left hand side are meant to be computed by solving eq.(4.46).
The value of ds̃

dθ‖θ? must be evaluated numerically, by solving the fundamental equation with
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Figure 4.21: Top-left: distribution of θ (red) and θ (blue); top-right: θ − π
4 (y axis) vs θ − π

4 (x
axis); bottom-left: Distribution of (θ− π

4 )/(θ− π
4 ), whose mean can be used as a rough estimation

of the coefficient between θ and θ.

θ = θ? ± dθ and for each of these two values computing the value s̃(θ? ± dθ) and then the
incremental ratio s̃(θ?+dθ)−s̃(θ?−dθ)

2dθ .
From the previous equation, it follows that

δθ = s(cos2 θ? − sin2 θ?)− s̃(θ?)
4s cos θ? sin θ? + ds̃

dθ‖θ?
. (4.54)

While doing this computation the value of dθ must be chosen smaller than the expected
value of the correction δθ, and once a value is chosen for dθ and δθ has been evaluated, this
condition must be checked a-posteriori.

The procedure can be iterated n times up to a chosen convergence criterium is satisfied. In
particular, the maximum number of iteration has been fixed to 20. The dθ parameter has been
taken of the form dθn = 0.01

2n , and the convergence criteria are:

• |δθn+1| > 0.66 · |θ̄n| ,

• |δθ| < 10−4 ,

• ||θn − θn−1| − |θn − θn−2|| < 10−3 .

The improvement in the approximation of the θ angle and, as consequence, of the solution ξ
is summarized in Fig.4.22 and in Tab.4.13.

4.5.7 Discussion about discriminating variables

The approximated value of the θ parameter is used to compute the coefficients of the polynomial
in eq.(4.46) and to solve for the unknown ξ. Once the correct solution is chosen among the
possible four, the two (approximate) τ momenta can be reconstructed as well as the topology of
the decay. The knowledge of the τ momenta allows to reconstruct their common origin vertex
as well as the B candidate momentum. Thus, from a strictly conceptual point of view, the only
variables that can be computed to discriminate signal against background are the decay times
of the two τ and of the B candidate (which are the elements of the matrix H). Indeed, all the
kinematic variables such as the masses of the τ and the B, as well the ones of the two ν have
already been imposed as external constraint in the derivation of the equations.
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Figure 4.22: Top-left: fraction of events as a function of the difference between the values of the
true angle θ and the first approximation θ̄ (blue) and the improved one θ̄improved (red); top-right:
fraction of events as a function of the ratio θ−θ̄improved

θ−θ̄ . The peak at 1 corresponds to all those
events for which the iteration fails at the first step, so that the zero order approximation θ̄ is
used to approximate θ; bottom-left: fraction of events as a function of the difference between
the first (blue) and improved (red) approximated and true solution with respect to this last
one; bottom-right: fraction of events as a function of the ratio Im(ξ̄)

Re(ξ̄) for the first (in blue) and
improved (in red) approximation of θ. The distribution in the first bin is out of the y-axis scale.

eff. in % solutions θtrue θ̄ θ̄imp

Real
2 95.6 (98.7) 26.60 (100.00) 48.35 (99.97)
4 1.2 (1.3) 0.00 (0.00) 0.01 (0.03)

2⊕ 4 96.8 26.60 48.36

Complex
good 3.06 (96.7) 0.30 (0.40) 1.50 (2.86)
bad 0.10 (3.35) 73.10 (66.60) 50.15 (97.14)

good ⊕ bad 3.17 73.4 51.64

Table 4.13: Efficiencies (in%) for finding real or imaginary solutions for eq.(4.46) using the
true value of θtrue, its zero order approximation θ̄, and the improved approximation using the
iterative method θ̄imp. In the first block the efficiencies to find two (first row) or four (second
row) real solutions are reported; last row is the sum of the previous two. In the second block the
efficiencies to find complex solutions are reported; complex solutions are considered “good” (first
row) if the imaginary part smaller than 2% the real one (i.e. Im(ξ)/Re(ξ) < 2%). The values in
parenthesis refers to the fraction of events with respect to the Real or Complex categories only;
for each block (“Real” or “Complex”) last row is the sum of the previous two.
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Nevertheless, in the various steps of the reconstruction algorithm, several variables which
are functions of observables quantities can be sorted out and used to discriminate signal against
background. These variables do not have an evident physical meaning, being much more related
to the mathematics needed to derive the relevant equations. In more details, these variables are:

• the coefficients of eqs.(4.45-4.46);

• the four complex solutions of eq.(4.46) (no matter which the true one is);

• the four possible complex values for the s and s̃ variables;

• the approximation of θ, λ±.

The justification behind their use for the signal-background discrimination lies in the facts that
they are functions of measurable quantities in the event, and of the approximated value of the θ
angle as well, which turn out to have different distribution for signal and background events. In
particular, different approximations of θ can result in slightly different distributions of the same
variable and the above-mentioned quantities have been computed with three approximations of
θ: θ = π

4 , θ = θ̄ and the estimation θ? obtained with the iterative method.
Among the above-mentioned variables, the most discriminating are found to be the following

ones:

1. Re_x_3: Re(|~̃p+(θ = θ̄, ξ3)|);

2. Im_x_1_ar: Im(|~̃p+(θ = θ?, ξ1)|);

3. Im_stildepm_1_ar: Im(p̃+(θ = θ?, ξ1)p̃−(θ = θ?, ξ1));

4. Im_stildepm_3_ar: Im(p̃+(θ = θ?, ξ3)p̃−(θ = θ?, ξ3));

5. Re_stildepm_1_Pi4: Im(p̃+(θ = π/4, ξ1)p̃−(θ = π/4, ξ1));

6. Re_xi_1_ar: Re(ξ1);

7. theta_bar_W: θ̄;

and their distributions are shown in Fig.4.23 for signal MC events and the SS data sample
after the analysis selection presented in Sec.4.3.

These variables are analog, for instance, to the output of a MVA classifier. In this case the output variable is
a function of the input quantities that does not have an evident physical meaning but it is differently distributed
for signal and background events.
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Figure 4.23: The most discriminating variables from the τ reconstruction algorithm presented in this section. The number of each variable refers to
the ordering defined on page 144.
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4.5.8 Conclusion and prospects

In this section, a method for a full reconstruction of the τ four-momenta in the decay chain
B0

(s) → τ+(→ 2π+π−ν̄τ )τ−(→ 2π−π+ντ ) has been presented. It has been shown, in particular,
that a full reconstruction of the event is possible if:

• the four-momenta of the two three-pions systems and the lengths of the two sides of the
decay triangles (given by the B candidate production vertex and the two τ decay vertexes)
are measured,

• kinematical constraints using the masses of the B, τ , and ν are imposed.

The relevant equations depend on only one Lorentz invariant event-dependent parameter θ,
which is proportional to the differences of the decay times of the two τ . Even though it is
possible, in principle, to exactly determine this parameter, a different approach has been used
so far, because of the high complexity of the trigonometric equations that fix it. In particular
some approximation of the true value of this parameter have been presented and have been used
to (approximately) reconstruct the momenta of the two τs and to define some discriminating
variables that will be used for the signal search.

The studies presented in this section set the basis for further development of the reconstruc-
tion method, some of them presented in Appendix E. In particular, other estimations of the true
value of the θ parameter are being studied, as well as the possibility of combining the information
from the different approximations to obtain an improved estimation of the true value of θ. In
addition, also a different use of the kinematical constraints is being explored. This new strategy
can allow, in principle, to leave the invariant mass of the B candidate a free variable (which
peaks for signal events) that can be then used for the signal search.

4.6 BDT classification

In order to discriminate the signal against the background in the selected sample, the events
are classified through a BDT algorithm. This variable is the one used for the signal search. As
already explained in Sec.4.2.4, the BDT classifier is trained using variables similarly distributed
between the SS and the OS samples, but that are still discriminating between signal and SS
sample. In particular, from the background characterization studies presented in Sec.4.2.3,
these are the variables with a weak dependence on the number of charged tracks in the final
state. The input variables used for the training of the BDT are the seven introduced in Sec.4.5.7
plus the following ones:

• Min(Tau_DistZ): minimum of the projection along the beam axis of the flight distance of
the τ candidates with respect to the approximate B candidate decay vertex ;

• Min(Tau_TAU) : minimum of the decay time of the two τ candidates;

• M corr
B : corrected mass of the B candidate;

• Min(Tau_NumVtxWithinChi2WindowOneTrack): minimum of the
“NumVtxWithinChi2WindowOneTrack” variable for the two τ ;

• Max(Tau_ENDVERTEX_CHI2): the maximum of the χ2 of the τ decay vertices;

• ICDF (B): CDF isolation for the B candidate (see definition on page 52).

Fig.4.24 shows the distributions of these variables for signal MC and data SS candidates.
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Figure 4.24: Input variables of the BDT classifier (used together with the ones shown in Fig4.23)
used for the signal search.

BDT training strategy. The available number of candidate events that can be used to train
and test the BDT classifier is of 610 for background (data SS) and 1344 for the B0

s → ττ signal
(as reported in Tab.4.11). Because of the limited numbers of events, a simple minded twofold
division of the samples to get a test and training samples is not suitable. With so few events
the training process is indeed dominated by statistical fluctuations. To overcome this problem
and increasing the dimension of the training sample the following strategy is adopted (known
also as “k-folding” technique [115]):

• both signal and SS sample are split into ten parts,

• for each of the two categories (signal and background) the training samples are made of
nine of these ten subsamples; the resulting BDT operator is then applied to the remaining
one,

• a cyclical permutation is done in order to apply the BDT classifier to each of the ten
subsamples.

The limited statistics available for the training of the BDT also affects the signal-background
discrimination because of the low value of the depth reachable in the decision trees. This is a
consequence of the small number of cuts that can be applied before the minimum number of
events in each leaf is reached. For this reason, the discriminating power of the input variables of
the classifier is not fully exploited, because some of them could not be used at all in the decision
process even though they are still able to discriminate the signal against the background. An
improvement in the signal-background discrimination is thus expected once a larger training
sample will be available (see e.g. Sec.4.7.2).

Application of the BDT operator. The “k-folding” technique leads to ten BDT operators,
one for each pair of signal and background subsample not used for the training. The application
of these classifier to the signal and data SS subsamples is unambiguous, in the sense that each
of those classifiers can be applied to the unique pair of signal and SS subsamples that have not
been used in the training of the BDT.

The distributions of the ten classifiers on the respective signal and data SS subsample are
reported in Figs.4.25-4.26 respectively.
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Figure 4.25: Distribution of the BDT values of each of the ten classifiers and their average
(continuous histogram, “htot”) on the respective test subsample for signal.
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Figure 4.26: Distribution of the BDT values of each of the ten classifiers and their average
(continuous histogram, “htot”) on the respective test subsample for SS events.
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To obtain the BDT distribution of the whole signal and SS samples the BDT distributions
of each subsample must be added together. Nevertheless, a simple minded merging of the
ten subsamples to get the distribution of the whole sample is not suitable. The reason is the
following: the shape of the output variable of a BDT does not have an absolute meaning. Indeed,
even though the same tuning parameters and input variables are used in the training, the output
shape of the BDT for signal and background events can vary depending on the training samples
(essentially due to statistical fluctuations). Nevertheless what is really significant in the BDT
output distributions is the overall separation between the signal and the background samples.
This separation should not vary too much, no matter the particular shapes of the signal and
background samples. In other words, the statistical fluctuations in the training samples affect
not only the overall signal-background separation of the output variable (which is a “natural”
effect of statistical fluctuations), but also the shapes of the output variable for the two samples
(which is, instead, an artifact of the learning machine). For that reason the output distributions
for the ten signal and background subsamples are “normalized” to the same shape before being
added together.

Such “normalization” of the BDT output shape can be achieved, for instance, through the
flattening transformation

x→
∫ x
xmin

fsig(y)dy∫ xmax
xmin

fsig(y)dy , (4.55)

that has already been used for the B0
(s) → µ+µ− search. Such transformation does not change

the overall signal-background separation and, at the same time, makes each signal distribution
flat, no matter of the prior BDT output shape. Once the BDT shapes for each of the signal and
SS subsamples are compatible with each other they can be added together and their sum can
be used to describe the BDT output shape for the whole signal and data SS samples.

The evaluation of the BDT operator on the OS sample is not so straightforward as for the
signal and SS sample. This is just because there are ten possible classifiers that can be used and
a choice on how to combine them must be made. The computation of the BDT variable on the
OS sample is done as follows:

• for each OS event all ten classifiers are evaluated,

• for each of the ten classifiers, the BDT value is transformed according to the flattening
with respect to the corresponding signal distribution,

• the average of the 10 BDT values after flattening is computed and assigned to the candi-
date.

4.6.1 BDT distributions

The distribution of the BDT output for the SS data and the three generated MC signal samples
is reported in Fig.4.27.

The following considerations are in order:

• the shapes of three MC generated signal samples are compatible within statistical un-
certainties, even though the BDT has been trained to discriminate between the B0

(s) →
τ+(→ 2π+π−ν̄τ )τ−(→ 2π−π+ντ ) and the data SS, (see Sec.4.2.5). For this reason the
analysis presented here is equally sensitive to the sum of the B0

s → τ+τ− and B0 → τ+τ−

branching fractions. This last point will be discussed in more details in Sec.4.6.2;

• the region at high values of the BDT has a high sensitivity to the signal. In terms of
absolute event yields only one SS candidate falls in this region.
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Figure 4.27: Distribution of the BDT variable for B0
(s) → τ+(→ 2π+π−ν̄τ )τ−(→ 2π−π+ντ )

MC signal events (red), B0 → τ+(→ 2π+π−ν̄τ )τ−(→ 2π−π+ντ ) MC signal events (green),
B0

(s) → τ+(→ 2π+π−π0ν̄τ )τ−(→ 2π−π+ντ ) signal MC events(black), and SS data (blue). All
the distributions are normalized such that their integral all over the BDT range is equal to 1.
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The comparison between the distribution of the BDT outputs for the SS and the OS data
samples is shown in Fig.4.28(a)-4.28(b). The distribution of the OS sample has been blinded
in the most signal sensitive region, i.e. for BDT>0.7, in order to avoid any bias in the analysis.
The distribution of the SS dataset seems to reproduce quite well the shape of the OS sample.
Nevertheless, due to the limited statistics, the knowledge of the SS shape is affected by a relatively
large error, if compared to the one on the OS shape. The largest discrepancy between the two
shapes is found in the first BDT bin, i.e. for BDT<0.1, which is also the one less sensitive to
signal.

The discrepancies between the SS and OS BDT shapes are mostly due to the presence, in
the latter, of the exclusives modes with only six charged tracks in the final states. How to deal
with such modes is still under study at the present and some ideas will be presented in Sec.4.7.

4.6.2 Discussion about the observables

The shapes of the BDT outputs are similarly distributed and compatible within uncertainties
for the B0

s → ττ and B0 → ττ signals. For this reason the only quantity that can be measured
using this variable is the sum Ntot of the yields NB0

s
and NB0 for the B0

s → ττ and B0 → ττ
signals respectively (from now on, with the expression “observed yield of signal events”, the sum
of the two signals yields will be meant). This total yield Ntot is given by a linear combination
of the branching fractions of the two modes. In particular, using the definition in eq.4.4 the
observed yield of signal events as a function of their branching fraction is given by the following
expression

Ntot ≡ NB0
s

+NB0 = BR(B0
s )

αs
+ BR(B0)

αd
. (4.56)

The previous equation can be arranged in several ways depending on the quantity that has
to be measured. If the quantity of interest is the BR(B0

s ), the following relation holds:

BR(B0
s ) = αs ·Ntot −

αs
αd
BR(B0). (4.57)

In this way, measuring the total signal event yield and using the available experimental result
on the BR(B0 → ττ) it is possible to constrain BR(B0

s → ττ).
The ratio αs

αd
is approximately equal to the ratio fd

fs
, and corrections arise from differences in

the efficiencies for the B0
s and B0 signals.

4.7 BDT PDF calibration

The flattening transformation of the output of the final BDT makes the signal BDT PDF shape
being constant over the whole BDT range and the SS background BDT PDF peaking at zero.
While the BDT PDF for signal is taken from the MC sample, the calibration of the BDT PDF
shape for the background in the OS is less trivial and requires careful understanding of the
background sources in the final selected dataset. In the following sections two methods for the
background PDF calibration, still under study at the present, will be presented. The first one
relies on the use of the data SS sample and MC generated samples accounting for the presence of
exclusive decays with six charged tracks in the final state, that are not present in the former; the
second method relies instead on the use of control regions in the OS sample to have an inclusive
description of the background.

4.7.1 Calibration with the SS sample

Thanks to the choice of the input variables of the BDT classifier, the shape of the SS and OS
data samples are by construction quite similar, hence the BDT PDF shape of the SS sample
can be used to describe the background in the OS sample, modulo the presence, in the latter, of
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Figure 4.28: Distribution of the BDT variable for SS (blue) and OS (black) data. The two
distributions have the same normalization. The distribution of the OS sample has been blinded
in the most signal sensitive region, i.e. for BDT>0.7, in order to avoid any bias in the analysis.
Fig.4.28(b) is a zoom of Fig.4.28(a).
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physical decays with six charged tracks in the final state. The effect of these six charged tracks
exclusive modes must then be estimated using MC generated samples.

Monte Carlo generated exclusive background samples. Tab.4.14 lists the branching
fractions and the selection efficiencies for the most relevant modes (i.e. the ones with the highest
rates) generated, mostly with six charged tracks in the final state. This list of modes is not
exhaustive and other decays can still contribute to the six tracks final state background in the
OS. In Fig.4.29 the BDT distributions for those modes are shown together with the one of the SS
sample for comparison. From these distributions it is evident that the data SS cannot efficiently
take into account such modes. Indeed, even though they peak at zero as the SS does, their
shapes are different.

The expected yields of these generated modes in the whole 3.1fb−1 OS dataset, according
to the values in Tab.4.14, is (730± 250) events. Nevertheless, this estimation does not take into
account the presence of other modes, and some more work is still required to correctly estimate
the yields of these modes.

In order to include the effects of the six charged tracks modes in the background BDT PDF,
the weighted sum of them (the weight of each mode being given by the total efficiency ε reported
in Tab.4.14) is added as an independent component in the fit. The OS dataset will be modeled
by three PDFs, one for signals, one from the SS dataset, and another for the exclusive modes
with six charged tracks. Then the total yield of these modes can be fixed to its expectation or
can be extracted from the fit (as a nuisance parameter) by constraining it to its expectation and
allowing it to vary within its uncertainty.

No matter which of the previous strategies are used, the use of the MC generated samples
for the BDT PDF calibration present some limitations:

• first of all, the list of available MC generated modes is not exhaustive of all the possible
dangerous modes that can pollute the sample. Even though each of these decays can be
representative of a class of similar modes with respect to topology or kinematics properties,
a full characterization of the exclusive modes with six charged tracks through MC simulated
samples is quite challenging and some extrapolation and assumption will have to be made;

• systematic errors due to the specific MC decay model have to be taken into account.
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Event BR (×105) εgen (×102) εpre−sel (×102) εsel (×102) εtot (×106) ε (×1011)
B0
s → D

(?)+
s (→ 3ππ0, τν)D(?)−

s (→ 3ππ0, τν) 14.00 ± 6.32 0.29 0.610 ± 0.003 3.09 ± 0.10 0.54 ± 0.02 7.56 ±3.70
B0
s → D−s (→ τ−ν̄)τ+ν 11.24 ± 10.8 2.33 0.300 ± 0.005 4.36 ± 0.38 3.04 ± 0.31 34.16 ± 36.31

B0
s → D−s (→ τ−ν̄)3π 3.25 ± 0.72 3.31 0.550 ± 0.007 2.76 ± 0.21 5.02 ± 0.44 16.31 ± 5.05

B0
s → Ds(→ 3ππ0(π0))3π 35.10 ± 10.6 3.08 0.720 ± 0.008 0.00 ± 0.01 0.00 ± 0.02 0.00 ± 0.80

B0 → D(?)−τ+ν 1.67 ± 0.34 0.38 0.610 ± 0.004 0.70 ± 0.05 0.16 ± 0.01 1.03 ± 0.30
B0 → D?−(→ D−π0)ω(→ π+π−π0)π+ 0.89 ± 0.17 2.54 0.440 ± 0.007 0.09 ± 0.04 0.10 ± 0.05 0.34 ± 0.24
B0 → D?−(→ D−π0)3ππ0 6.10 ± 1.46 2.60 0.420 ± 0.005 0.26 ± 0.05 0.28 ± 0.06 6.59 ± 3.10
B0 → D?−(→ D−π0)3π 2.43 ± 0.48 3.14 0.570 ± 0.005 1.10 ± 0.10 1.90 ± 0.20 17.82 ± 5.67
B0 → D−3π 7.23 ± 1.30 3.20 0.600 ± 0.005 1.15 ± 0.10 2.20 ± 0.20 61.40 ± 17.57
B0 → D−(→ (3π)−K0)3π 19.96 ± 2.88 2.43 0.670 ± 0.008 1.70 ± 0.16 2.76 ± 0.30 212.65 ± 57.10
B+ → D?0(→ D0(→ K−3π+)π0)3π 51.53 ± 9.70 3.23 0.690 ± 0.008 0.26 ± 0.01 0.57 ± 0.03 113.37 ± 29.07
B+ → D?0(→ D0(→ K−3π+π0)π0)3π 26.82 ± 7.00 2.72 0.660 ± 0.007 0.01 ± 0.01 0.02 ± 0.02 2.07 ± 2.64
B+ → D??(→ D?0(→ D+π−)π0)τ+ν 0.27 ± 0.35 2.64 0.330 ± 0.004 0.45 ± 0.08 0.39 ± 0.07 0.40 ± 0.61

Table 4.14: Branching fraction, generator, pre-selection, and selection efficiencies, and expected number of events, for the MC generated exclusives
decay modes. ε ≡ BR · εtot · fq/fs, εtot ≡ εgen · εstrip · εsel; fd/fs = 3.86± 0.06 [99, 100]. D mesons decay as D → 3ππ0, τ leptons as τ → 3πντ .
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Figure 4.29: Distribution of the BDT values for the twelve generated exclusive decays for which at least one event passes the whole selection chain.
All distributions are normalized such that their integral all over the whole BDT range be equal to 1.
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4.7.2 Control regions in OS

An alternative method under study is based on the definition of control regions in the OS
sample which are reasonably free of signal and can thus be used to calibrate the BDT PDF.
The advantage of this method is that it allows an inclusive characterization of the background,
without the distinction between modes with six or more charged tracks that is required when
using the SS sample together with the MC generated modes. In addition, more events can
be used to calibrate the background PDF, thanks to higher statistics in the OS sample with
respect to the SS one; this allows reducing the statistical uncertainty on the BDT shape of the
background, and also better modeling of the queue of the background distribution in the most
sensitive signal region, which is poorly described by the SS sample due to the lack of statistics.

The main point of such method is the definition of the control region in the OS sample. This
can be done by inverting some of the selection requirements presented in Sec.4.3. The one which
seems most promising is the inversion of the Dalitz plane requirements. In this case the “signal”
region for one τ is defined by the requirements reported in Sec.4.3. The control region is defined
by requiring one τ candidate inside and the other one outside the signal region in the Dalitz
plane. Fig.4.30 shows the definition of the signal and control regions in the Dalitz plane of one
τ .

The distribution of the BDT output for OS events in these two regions is shown in Fig.4.31.
The distribution of events in the signal region in the Dalitz plane of the τ has been blinded in
the high BDT region. From this comparison it seems that the BDT shape of the events in the
control region in the Dalitz plane well reproduces the one of the events in the signal region, at
least for events with a BDT smaller than 0.8; as a consequence the BDT distribution of events in
the control region can be used as a reliable description of the background in the dataset selected
for the signal search.

As a prospect, the use of the control region in the OS data sample could allow to define a
more discriminating BDT variable by using it as background sample in the training of the MVA
operator. Indeed, in this case, the available statistics is higher than the one in the SS, thus
allowing to exploit the information of variables that, because of the lack of events, cannot be
used when training on the SS sample. In addition, there is no need to use only those variables
similarly distributed between SS and OS, so that new inputs, that have not been used so far
because too sensitive to the different number of tracks in the final state of events selected in the
two samples, can be used for the training of the BDT.

.

4.8 Conclusions and prospects

In this chapter an analysis strategy for the B0
(s) → τ+τ− search with the LHCb detector has been

presented. In this chapter the analysis of the final state where each τ decays into three charged
π and a neutrino has been presented. Another possible final state, where one of the τ goes into
a µ and two neutrinos, has been considered also for the signal search. Each of these modes
presents some advantages and disadvantages. The (3π, 3π) final state allows to reconstruct the
two τ decay vertices and thus to impose more kinematical constraints but suffers of the lower
acceptance of the detector (because of the presence of six charged tracks) and of a smaller BR;
the (3π, µ) final state has a higher detector acceptance thanks to the presence of only four tracks
among whom there is a muons which increase also the trigger efficiency but the impossibility of
reconstructing one τ decay vertex does not allow to impose kinematical constraints.

A new method for the τ four-momenta reconstruction has been presented. It has been
shown that a complete reconstruction of the two τ four-momenta is possible by i) imposing
kinematical constraints on the masses of the B, τ , and ν, and ii) by exploiting the geometrical
and kinematical information obtainable from the quantities that can be measured directly, i.e. the
four-momenta of the two three-pions systems and the length of the sides of the decay triangle.
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The relevant equations depend on a the Lorentz invariant parameter θ, which is a function of the
difference of the decay times of the two τ . Even if this parameter is, at least in principle, exactly
determinable as the solution of a trigonometric equation, so far its true value has been estimated
from observable quantities, and has been used to find the approximate momenta of the two τ .
Different approximations for θ have been presented, and some discriminating variables have
been sorted out and used in the experimental search. Currently new ideas are being explored
in order to improve the approximation of the θ parameter and to define a different strategy for
the resolution of the kinematical equations. This last point allows, in principle, to leave the
invariant mass of the two τ (so far used as an external kinematical constraint) as a free peaking
variable that can be used for the signal search.

Concerning the experimental search, the main challenge of the analysis is the control of the
background. For its description and characterization a sample of unphysical B → τ±τ± candi-
dates has been selected in data. The use of such sample for the description of the backgrounds
(coming from B decays with at least seven charged tracks in the final state) is done using a
MC generated sample. After the candidate reconstruction, the analysis strategy is based on a
selection aiming to reject as much as possible background events, followed by a classification
of the selected events through a BDT operator whose output is used for the signal search. In
particular, the definition of the BDT variable is strictly related to the BDT PDF calibration
strategy, and two possible strategies are under study at present.

Even though some work is still required before a result can be obtained, the ideas presented
in this chapter constitute the basis of the current analysis as well as the starting point for further
improvements.
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Chapter 5

Conclusions and Prospects

The Standard Model of elementary particle physics provides the most accurate description of na-
ture available so far. Nevertheless, this model is believed to be only a low-energy approximation
of a more fundamental underlying theory.

As in the past, flavor observables can provide useful hints to understand the features of
possible New Physics Scenarios. In particular the comparison between the measured values of
flavor observables with their Standard Model predictions, can shed light on the pattern of the
New Physics.

One of the “golden” modes are the rare dileptonic B0
(S) → `¯̀ decays. These modes are

generated by a Flavor Changing Neural Current and are thus loop suppressed. In addition they
receive, in the Standard Model, an additional suppression due to helicity conservation. They
offer a wide range of observables, such as the branching ratio or the effective lifetime τ`¯̀. The
theoretical prediction for these processes includes electromagnetic and QCD corrections up to
the order O(αem) and O(α2

s) respectively. The major source of uncertainty in these predictions
is given by the knowledge of the B0

(s) decay constant and of the VCKM matrix elements.

B0
(s) → µ+µ−. Experimentally the modes with two muons are very clear and thanks to a

dedicated detector design, the first evidence for the B0
s → µµ has been obtained in 2012 (after

a search last thirty years) by the LHCb Collaboration analyzing a dataset of 2fb−1 integrated
luminosity. This analysis has been updated in 2013 with the whole 3fb−1 collected by LHCb
during the first LHC Run, and the dataset has been used, together with the one collected by the
CMS collaboration, for a combined analysis, resulting in the first observation of the B0

s → µµ
mode and the first evidence of B0 → µµ in 2015. The measured branching fraction are:

BR(B0
s → µ+µ−) = (2.8+0.7

−0.6)× 10−9 , (5.1)
BR(B0 → µ+µ−) = (3.9+1.6

−1.4)× 10−10 . (5.2)

The branching ratio of the B0
s mode is slightly below the Standard Model prediction (1.2σ) while

the one of the B0 is above of a factor ∼ 3 (2.2σ). The combined LHCb and CMS analysis has
also provided the first measurement of the ratio of the two branching fractions R:

R = 0.14+0.08
−0.06; . (5.3)

This parameter is relevant to set constraints on MFV scenarios and is compatible with the
Standard Model prediction at the 2.3σ level.

The measured branching fractions for the two modes, as well as their ratio, allow to exclude
huge New Physics enhancements to those quantities, even if they sill leave some room for non-
Standard Model contributions. In particular some deviations from the predicted values are
observed even though none of them is significant enough to be interpreted as a clear signal of
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New Physics. In this contest, the new data recorded in the coming years, during the second
LHC Run, will allow to strengthen or alleviate the above-mentioned discrepancies. Surely, the
study of the B0

(s) → µµ modes is moving from a simple discovery regime, up to few years ago,
to a precision measurement era. In particular the next analysis which will be performed with
the new datasets available in the future will focus on the improvement of the sensitivity for the
B0 mode, and the measurement of the effective lifetime τµµ. This last observable can still show
up New Physics effects even though the branching fraction is in agreement with the Standard
Model prediction.

B0
(s) → τ+τ−. The modes with two electrons or two taus in the final states are much more

challenging experimentally. The former is out of the experimental reach in the near future,
because of its small predicted branching fraction. The modes with two τ have a higher branching
fraction, because of a smaller helicity suppression. Nevertheless they are quite challenging under
the experimental point of view, because of the missing energy carried away by the ντ in the
secondary τ decays, which does not allow for a full reconstruction of their momenta. In addition,
the higher level of background with respect to channels with the two µ in the final states increase
the complexity of the search. For this reason these modes are largely unexplored, made exception
for an upper limit from the BABAR collaboration on the B0 → ττ mode, still four orders
of magnitudes above the predicted value in the Standard Model. Despite the experimental
difficulties, these modes are triggering an increasing interest in connection to hints of Lepton
Flavor Universality New Physics scenarios. In addition, correlations between the branching ratio
and other flavor observables related to the B0

(s) − B̄
0
(s) mixing, notably the ratio ∆Γ(d,s)/Γ(d,s),

have been pointed out in the past; deviation from the Standard Model in these branching ratios
could also help to accommodate the anomalous like-sign dimuon asymmetry observed by the
D‰ and CDF collaboration at Tevatron.

The work presented in this thesis represents the first attempt to set up an analysis chain
for the B0

s → τ+τ− search. This is performed with the LHCb detector, by looking at the
final state where each of the two τ goes into three charged pions and a neutrino. The main
issues of the analysis are the reconstruction of the signal, made challenging by the presence of
two undetectable neutrinos in the final state, and the understanding and characterization of the
sources of background. On both sides a huge effort has been done and is still going on to optimize
the signal selection and reconstruction. A discriminating variable has already been defined for
the signal search and can already be used to have at least a preliminary result. Even though
some work is still required to understand and model the most dangerous sources of background,
a measurement of a non trivial value of the upper limit (i.e. smaller than the ones obtained from
indirect constraints) is expected. In addition new ideas concerning the signal reconstruction
method as well as the characterization of the background leave room for further improvements
in the future.

A final remark concerns the fact that the B0(s) → τ+τ− decays are considered among the
most interesting modes to be studied in the future high luminosity e+e− machines currently un-
der study, e.g. the Future Circular Collider e+e− (FCC-ee). The high statistics sample collected
with such facilities together with the particularly clean environment of a leptonic machine will
allow the observation of the signal and the measurement of angular observables related to the
final state particles coming from the decay of the two τ . A measurement of the τ polarization,
for example, is then feasible allowing the study of several additional observables not accessible
with the di-muon or di-electron final states.
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Appendix A

Muons isolation variables

Among the variables most discriminating between signal and background there are the so-called
isolation variables. These variables measure the activity in terms of other particles in the vicinity
of the two muons or their displaced vertices. In a signal event, indeed, there shouldn’t be any
track close to one µ, except for the other µ used to make the B0

(s) → µµ candidate; instead,
in a combinatorial background event, where the two µ’s used to make the B0

s → µµ candidate
originate from two different b-hadron decays, is more likely that other tracks, in addition to the
other µ, are close to each of the two µ’s.

In more details, the standard isolation of the two muons used in the analysis presented here, is
defined as the number of long tracks making a “good” vertex with each of the two muons from the
B0

(s) → µµ candidate [85]. To compute it, for each long track in the event the vertex TV that it
forms with the µ± tracks is found. The TV is defined as the point of equal and minimal distance
between the two tracks. Then, for each of the two muons µ± from the B0

(s) → µµ candidate, the
number n± of tracks selected by a set of rectangular cuts on the following quantities:

• pvdis ≡ (~rPV − ~rTV ),

• svdis ≡ (~rSV − ~rTV ),

• DOCA between track and µ,

• the IPχ2 of the track with respect to the PV,

• angle between the track and the µ,

• fc defined, for each pair of a muon and a generic tracks, as

fc = |~Pµ + ~Ptr| · αµ+tr,PV

|~Pµ + ~Ptr| · αµ+tr,PV + PTµ + PTtr
(A.1)

where

– ~Pµ, ~Ptr are the spatial momenta with respect to the beam axis of the µ and the track,
– PTµ, PTtr are the transverse momenta with respect to the beam axis of the µ and the

track,
– αµ+tr,PV is the angle between the sum of the momentum of the µ and the track and

the direction defined by the PV and the common vertex between the µ and the track.

By definition fc→ 0 if ~P (track + µ) points toward the PV,

• ghost prob of the track (the reader is referred to pag.33),

• track χ2
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Figure A.1: A combinatorial background event: the two b-hadrons (black lines) produced in the
event, together with other isolating tracks (in green), decay semileptonically giving two µ’s (in
blue), which are reconstructed as a B0

(s) → µµ candidate (in red), and other non-isolating tracks
(in violet).

is found.
The requirements are tuned on generic bb̄ MC in order to discriminate two kinds of tracks

(see also Fig.A.1):

• non-isolating tracks which share an ancestor with the µ± from the B0
(s) → µµ

• isolating tracks defined as the all “non-isolating”

Computing the muon isolation consist in selecting and counting the number n± of non-
isolating tracks for each µ.
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Appendix B

Data-MC comparison for isolation
inputs

red: genericMC
blue: right data SB
black: signalMC

red: genericMC
blue: right data SB
black: signalMC

red: genericMC
blue: right data SB
black: signalMC

Figure B.1: Distribution of input variables used to train the isoBDT on which the MC simulations
(both for signal and for the generic bb̄ → µ+µ−X) does not well reproduce the distribution in
data (taken from the high di-muon invariant mass sideband). Top-left: track χ2; top-right: the
logarithm of the IPχ2 of the tracks; bottom-left: the logarithm of the ghost probability of the
track.
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Appendix C

Impact of H related variables on
signal-background discrimination.

In this appendix the improvement in the signal background discrimination when the maximal
information coming from the knowledge of the parameters of theH matrix introduced in eq.(4.15)
is shown.

A MC generated sample of B → D?τν is considered as background for the B → ττ signal.
The detector acceptance and resolution effects have not been taken into account, and no selection
requirements have been applied.

The signal-background discrimination is evaluated looking at the output of several BDT
algorithms using different sets of input variables. In particular the following three sets of variables
have been used:

• Geometrical (Vert ⊕ IP):

– the maximum and minimum lengths of the sides of the triangle
– maximum and minimum of the IP of the 2 (3π)± systems with respects to the B0

origin production vertex

• Kinematic (Masses):

– maximum and minimum invariant mass of the two (3π)± systems
– maximum and minimum of the corrected mass of the two τ± candidates
– invariant mass of the 6π system
– corrected mass of the 6π system
– sum and difference of the ν momentum components orthogonal to the decay plane

• H variables (H):

– τ̂B, τ̂±
– t±

– λ±

Several BDT algorithms have been trained on a sample of 50000 events both for signal and
for background (and tested on an equivalent set), using different sets of input variables:

• Vert ⊕ IP

• H

• Masses
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Figure C.1: ROC curves obtained with the output variables of several BDT classifiers trained
with different sets of input variables. A statistically significant improvement is observed (pink
line) when the elements of the H matrix are added to the set of the input variables of the
classifier.

• (Vert ⊕ IP) ⊕ Masses

• (Vert ⊕ IP) ⊕ H

• (Vert ⊕ IP) ⊕ Masses ⊕ H

and the resulting ROC curves are reported in Fig.C.1-C.2
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Figure C.2: ROC curves obtained with the output variables of several BDT classifiers trained
with different sets of input variables. A statistically significant improvement is observed (pink
line) when the elements of the H matrix are added to the set of the input variables of the
classifier. Zoom of Fig.C.1 in the low signal efficiency region.
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Appendix D

Solution of the system for
B0

(s)→ τ+τ− signal reconstruction

With the following definitions:



A ≡ b̄2+ − 1
B ≡ b̄+c̄+
C ≡ c̄2

+
D ≡ ā+b̄+
E ≡ ā+c̄+

F ≡ ā2
+ −M2

+

P ≡ b̄2− − 1
Q ≡ b̄−c−
R ≡ c̄2

−
S ≡ ā−b̄−
T ≡ ā−c̄−

U ≡ ā2
− −M2

−

(D.1)

where ā± ≡ a±
| ~̃w±|

, b̄± ≡ b±
| ~̃w±|

, and c̄± ≡ c±
| ~̃w±|

(a±, b±, and c± defined in eqs.(4.41-4.43), and

x ≡ σ+| ~̃w+| , y ≡ σ−| ~̃w−| (D.2)

the eq.(4.45) can be written as:{
Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0
Px2 + 2Qxy +Ry2 + 2Sx+ 2Ty + U = 0 (D.3)

with AC −B2 < 0 and PR−Q2 < 0.
To solve the system in eq.D.3 the coordinates of a point on the first hyperbola are parametrized

as a function of a parameter ξ as follow:
{
Ax2 + 2Bxy + Cy2 + 2Dx+ 2Ey + F = 0
y = y0 + ξ(x− x0) (D.4)

being Ax2
0 + 2Bx0y0 + Cy2

0 + 2Dx0 + 2Ey0 + F = 0 (i.e. (x0, y0) ∈ C1).

Is found that
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Ax2 + 2Bxy0 + 2Bxξ(x− x0) + Cy2
0 + 2Cy0ξ(x− x0)

+ Cξ2(x− x0)2 + 2Dx+ 2Ey0 + 2Eξ(x− x0) + F = 0
Ax2 −Ax2

0 + 2Bxy0 − 2Bx0y0 + 2Bxξ(x− x0) + 2Cy0ξ(x− x0)
+ Cξ2(x− x0)2 + 2Dx− 2Dx0 + 2Eξ(x− x0) = 0
A(x2 − x2

0) + 2By0(x− x0) + 2Bxξ(x− x0) + 2Cy0ξ(x− x0)
+ Cξ2(x− x0)2 + 2D(x− x0) + 2Eξ(x− x0) = 0
A(x+ x0) + 2By0 + 2Bxξ + 2Cy0ξ + Cξ2(x− x0) + 2D + 2Eξ = 0

(D.5)

giving the following expressions: x(ξ) = Cξ2x0−2Cy0ξ−2Eξ−2D−Ax0−2By0
p2(ξ)

y(ξ) = −Cξ2y0+2Bx0ξ2+2Eξ2+2Dξ+2Ax0ξ−Ay0
p2(ξ)

(D.6)

being
p2(ξ) ≡ Cξ2 + 2Bξ +A . (D.7)

Now, a starting point (x0, y0) must be chosen as a function of the parameters of the conic C1.
To do that, a generic point (x0, y0) satisfying the equation defining C1 is considered:

Cy2
0 + 2Bx0y0 + 2Ey0 +Ax2

0 + 2Dx0 + F = 0 (D.8)

from which it follows, solving for y0,

y0 =
−(Bx0 + E)±

√
B2x2

0 + 2BEx0 + E2 −ACx2
0 − 2CDx0 − CF

C
. (D.9)

To make this y0 meaningful, x0 must be chosen in such a way that the argument of the
square root be positive, i.e.

P(x0) ≡ (B2 −AC)x2
0 + 2(BE − CD)x0 + E2 − CF > 0 . (D.10)

P(x0) is the equation of a parabola in x0 with second derivative positive (being such the
coefficient of x2

0). Moreover, using eqs.D.1 it can be shown that the following relations hold

BE − CD = 0 ,

E2 − CF = c2
+M

2
+ > 0

so that the parabola P(x0) is even for exchange x0 → −x0 and has its minimum (which is
positive!) for x0 = 0.

As starting point (x0, y0)

(0,
√
E2 − CF − E

C
) (D.11)

can be chosen.
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Setting 

a ≡ Cx0
b ≡ −(2Cy0 + 2E)
c ≡ −(2D +Ax0 + 2By0)

d ≡ −(Cy0 + 2Bx0 + 2E)
e ≡ −(2D + 2Ax0)
f ≡ Ay0

l ≡ C
m ≡ 2B
n ≡ A

(D.12)

it is found that
x(ξ) = aξ2 + bξ + c

lξ2 +mξ + n
, y(ξ) = dξ2 + eξ + f

lξ2 +mξ + n
. (D.13)

Inserting these expressions in the second equation of system D.3 the following equation for
ξ is obtained:

Γξ4 + Φξ3 + Ψξ2 + Ωξ + i = 0 (D.14)

being

Γ ≡ Pa2 + 2Qad+Rd2 + 2Sal + 2Tdl + Ul2 ,
Φ ≡ 2Pab+ 2Qae+ 2Qbd+ 2Rde+ 2Sam+ 2Sbl + 2Tdm+ 2Tel + 2Ulm ,

Ψ ≡ Pb2 + 2Pac+ 2Qaf + 2Qbe+ 2Qcd+Re2 + 2Rdf + 2San+ ,
2Sbm+ 2Scl + 2Tdn+ 2Tem+ 2Tfl + Um2 + 2Uln ,

Ω ≡ 2Pbc+ 2Qbf + 2Qce+ 2Ref + 2Sbn+ 2Scm+ 2Ten+ 2Tfm+ 2Umn ,
i ≡ Pc2 + 2Qcf +Rf2 + 2Scn+ 2Tfn+ Un2.

(D.15)
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Appendix E

Latest developments of the full
reconstruction of the
B0

(s)→ τ+τ− events

In this section the latest developments of the method for the signal reconstruction will be pre-
sented. In particular two main “directions” have been pursued:

• improve the approximation of the θ parameter,

• exploit in a more efficient way the kinematic equations (4.36), (4.37).

It will be clear in the following that these two aspects are correlated each other.

θ approximation. An improved approximation of the θ parameter is based on eq.(4.18). In
particular that relation has been used by:

• using the spatial components of the w± and p3π± four-vectors (being the w0
± components

not known),

• approximating the four-momenta of the τ±, p±, with the four-momenta p3π± of the 3π±
system.

In this way a matrix H3π is found and the rotation angle θ3π that diagonalizes it can be used
as an approximation of the true value of θ. The comparison between the distribution of the true
value of θ and the approximation θ3π for MC generated signal events is shown in Fig.E.1, while
Fig.E.2 shows the correlation between the two quantities.

Kinematic equations. In order to fully exploit the available information encoded in the three
kinematic equations (4.36), (4.37), these equations have been rearranged as follows (s ≡ p+ ·p−):

• two s independent equations: S±(σ±, θ) = 0,

• one s linearly dependent equations: s = S0(σ±, θ).

Also in this case the three equations S±,0(σ±, θ) = 0 represent the equations of hyperbola,
independently of the value of θ.

Once the equations are re-arranged in this form, it is possible to find σ± by solving the system
of the two s-independent equations S±(σ±, θ) = 0 where θ is replaced by an approximation
(e.g. θ3π or θ̄); then the s quantity can be expressed as a function of θ and σ±. The main
advantage of this strategy lies in the fact that s is distributed for signal as a Dirac peak (for the
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Figure E.1: Distribution of the θ angle (blue) and the θ3π approximation (red) for MC generated
signal events.

Figure E.2: θ angle (on the y-axis) as a function of θ3π (x-axis) for MC generated signal events.
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Figure E.3: Distributions of the four possible values of s, approximated through θ3π, for signal
MC generated events (orange) and B0 → D̄τ+ντ background MC generated events (light blue).

B0
s at the value 11.24GeV 4

c2 ) and for that reason is more discriminating than the decay times of
the B0

s and τ± that are accessible after the full reconstruction of the event.
Being the σ± the solutions of a system of second degree in two unknowns, four possible

solutions can exist and so four possible values for s, whose distributions, for signal MC and the
B0 → D̄τ+ντ background is shown in Fig.E.3.

A criteria to choose the correct solutions among the possible four is not known at present and
further studies are needed to understand if it is possible to determine it a-priori. In addition,
because of the approximation of θ, imaginary solution can appear. In the studies presented here
only those events for which at least a real solution exists are considered and, if more than one
real solution exists, the one which gives the value of s closest to the one of the signal (11.24GeV 4

c2 )
has been used to reconstruct to invariant mass of the B0

s .
All the results presented in the following have been obtained by approximating the θ param-

eter through θ3π.
Fig.E.4 shows the distribution of the reconstructed invariant mass of the B0

s candidate for
signal and the B0 → D̄τ+ντ background. Remarkably, the choice of the solution corresponding
to the value of s closest to the one of signal does not create a false peak of the background at
the signal value.

The effect of the detector resolution and of the emission of radiation from particles in the
final state does not change the position of the peak for the signal, while it just spreads the
distribution of the reconstructed invariant mass of the B0

s candidate around the peak position,
as it is shown in Fig.E.5.

Finally, Fig.E.6 shows the comparison between the distribution of the reconstructed invariant
mass of the B0

s candidate for signal MC simulated signal events (where the simulation includes
also the detector resolution and the radiation emission from charged particles in the final state
of the decay) and for data SS.
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Figure E.4: Distribution of the “best” reconstructed invariant mass of the B0
s candidate

(i.e.whose value is closest to the nominal one) for MC generated signal events (orange) and
the B0 → D̄τ+ντ background (light blue).
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Figure E.5: Distribution of the “best” reconstructed invariant mass of the B0
s candidate

(i.e.whose value is closest to the nominal one) for MC simulated signal events (orange) and
MC simulated signal events which take into account the effects of the resolution of the detector
and of the radiation emission from charged particles in the final state (light blue).
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Figure E.6: Distribution of the “best” reconstructed invariant mass of the B0
s candidate

(i.e.whose value is closest to the nominal one) for MC generated signal events (orange) and
the background from the data SS sample (light blue).

Conclusions. In this appendix the latest developments of the signal reconstruction method
have been presented. The new ideas and methods will allow, in prospect, to define more dis-
criminating variables to be used for the signal search.

The main idea of this new approach is to use the approximation of the θ parameter, together
with the kinematic constraints (in the form of the eqs.(4.36), (4.37)), to estimate the invariant
mass of the B0

s candidate, that is left as a free variable. In this framework the approximation
of this angle became more and more important and a new way has been studied. Further
improvements, not yet studied, can be obtained by combining the different approximation of θ
(e.g. θ̄ and θ3π) using Multivariate Analysis Algorithms, such as Regression Trees (for a detailed
introduction to this method the reader is referred to ref. [116]).

Still some aspects of the approach presented in this part needs to be investigated in more
details. The most important concerns:

• choice of the correct solution in case of multiple solutions,

• how to deal with the events for which only imaginary solutions exist.

The possibility to approximate the invariant mass of the B0
s candidate, with a width of ∼ 200

GeV/c2, will allow to optimize and redesign some of the steps of the experimental analysis and
to increase its sensitivity.
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