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Introduction 

The most abundant energy resource on earth is “Solar Energy” which we receive every day 

for no cost. Despite of this fact, solar energy is not utilized to meet even 0.5% of world’s total 

energy demands and 80% of the world’s total energy is produced by non-renewable sources 

of energy. Figure below shows the statistics of world’s total energy consumption by source, 

and it is evident that contribution of solar energy towards world’s energy consumption is very 

low. 

 

Figure: Statistics of world energy consumption by source. Image courtesy: REN21 Renewables 

2014 Global Status Report 

Apart from huge availability of the resource, solar energy is not currently utilized to a large 

extent. The question is why? Answer is: It is mainly because of expensive installations, 

almost inexistent storage capacities and not very high conversion efficiencies of solar cells. 

The development and capitalization of solar cells require research progress towards better 

understanding of various materials properties and efforts in increasing their efficiency. 

Recently, thin film solar cells like Cu(In,Ga)(S,Se)2, CdTe, CZTS have shown to be of high 

efficiency even with ≈ 2 μm absorber thickness due to their very high absorption coefficient. 

Thin film solar cells contribute today around 9% of total PV market and the remaining share 

is mainly dominated by silicon. Due to its stability and good efficiency, CuInSe2 

semiconductors have gained importance in past years as a promising and potential material 

for solar cells. Ga addition to this compound demonstrated enhanced efficiency, making 

Cu(In,Ga)Se2 (CIGSe) the most efficient solar cell under thin film category with efficiency 

close to 22%. Efficiency of this device has continuously increased in past few years leading 
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to dominance of CIGSe in thin film PV. In 2013, CIGSe contributed to 2% of the total 

installed solar cell modules over the world. 

In this work we focus on the understanding of these thin film solar cells properties, namely: 

Copper Indium Gallium Selenide (CIGSe) solar cells. This work is performed in 

collaboration with IMN (Institut de Matériaux de Nantes), where synthesis and primary 

characterization of polycrystalline CIGSe thin films were performed under the supervision of 

Dr. Nicolas Barreau.  

It is known that polycrystalline CIGSe (7.5% Ga concentration) performs better than its 

monocrystalline counterpart due to beneficial effects of grain boundaries. To improve these 

cells further, we need to understand how grain boundaries (GBs) may affect these cells. Thus 

to understand the role of GBs which are few atomic layers thick, a technique able to resolve 

materials at the atomic scale is required. Hence Atom Probe Tomography (APT), a technique 

able to explore atomic distribution at sub nanometer resolution is utilized as the main tool in 

this research. APT is used here to investigate 3D atomic distribution of various elements in 

vicinity of GBs and to understand their important role in influencing device performance of 

CIGSe.  

The maximum efficiency of CIGSe to date (21.7%) is observed for 8% overall Ga 

concentration. However, despite of their optimum band gap value (Eg ≈ 1.4 eV) for solar 

energy conversion, wide band gap CIGSe cells (18% Ga) present lower efficiency (10%). 

This puzzle lead to debate for past two decades and various theories were proposed to explain 

poor efficiency of Ga rich (wide band gap) CIGSe. Recently some theories proposed that 

changes in GB properties could be the reason for poor performance of Ga rich CIGSe cells. 

In this work, APT is used to detect atomic level changes in vicinity of GBs (termed as GB 

chemistry) of CIGSe to understand their role in device performance. 

GB chemistry of CIGSe for various Ga/In concentration were investigated to understand 

properties of GBs. Experimental evidences were found in this work showing that GB 

chemistry is significantly modified as a function of Ga concentration which is the main 

reason for poor performance of Ga rich cells. 

The first chapter gives a brief explanation of physical principles of solar cells and essential 

solar cell parameters used in this work. An extensive survey of different experiments and 

theories which are developed in past years is discussed to explain beneficial effects of GBs in 

CIGSe. Various theories developed in past few years explaining poor performance of Ga rich 

CIGSe are also reviewed.  
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The second chapter illustrates physical principles of various instruments namely: APT, 

EBSD, EDX, SEM/FIB, and XRD which are used extensively in this work.  

The third chapter illustrates device performance of CIGSe, phase identification using XRD 

and explores grain distribution of CIGSe using EBSD at micrometer scale. Experimental 

optimizations for APT performed in this work are explained. 

The fourth chapter explores GB chemistry of CIGSe at various Ga contents using APT which 

explains degraded performance of wide band gap CIGSe cells. An experimental evidence of 

changes in GB chemistry for different Ga contents is provided. Various theories based on our 

results are developed and discussed.  

The fifth chapter explores some possibilities of improving Ga rich CIGSe based on our 

results. Performance of Ga rich CIGSe is hence improved by addition of some chemicals 

before thin film deposition. In the end a general conclusion and perspectives for future work 

are given. 
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1. Chapter One: Solar cells based on Cu(In,Ga)Se2 thin films 

 

Solar cell works on the principle of converting light energy to electrical energy, in other 

words photon energy is converted to directional motion of electrons. Photovoltaic effect was 

first observed by A.E. Becquerel in 1839 and more than 100 years later the first photovoltaic 

(PV) cell was developed at Bell laboratories in 1954 [1]. Since then research in photovoltaics 

picked a greater pace and interests realizing need for cleaner and cheaper source of energy. 

Initial research and development in solar cells were mainly performed on Silicon but different 

materials have been realized since then as listed in Figure 1.1 demonstrating steady 

improvement in performance of solar cells over years. Figure 1.1 shows evolution of different 

PV technologies with time. Considering thin film PV technologies (green color), remarkable 

improvement is evident for Cu(In,Ga)Se2 (CIGSe) solar cells in past two decades and today 

they are most efficient solar cells in thin film. Good stability and performance of CIGSe 

makes the material highly attractive and one of the most promising semiconductor for 

photovoltaic industry.  

 

Figure 1.1: Best research cell efficiency over years. Source: National Renewable Energy 

Laboratory (NREL) 

Key role of an efficient solar cell is to effectively generate and transport charge carriers 

formed during light illumination to produce current. Basic principles of solar cells are 
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discussed in this chapter considering Si solar cell model and present the case of CIGSe. 

Material properties of CIGSe thin films, crystal structure, phase diagram and other properties 

are discussed to understand the effects and importance of Ga content in the system. This 

chapter then gives an overview of research works performed on CIGSe thin films during past 

years to understand the material’s properties and their approaches towards improvement.  

1.1 Solar cells: Physics and Principles 

To convert light energy to electricity, one needs materials which can absorb light and convert 

photon energy to unidirectional motion of electrons. Semiconductors have optimum band gap 

and are best suited as absorber layers for solar cells. Reasons for preference of 

semiconductors over other materials are presented in this chapter.  

Three key processes are involved in functioning of a typical solar cell:  

1) Generation of electron hole pair after light absorption 

2) Separation of these carriers by pn junction  

3) Collection of carriers through external circuit 

1.1.1 Generation: Interaction of light and semiconductor 

Interaction of light and semiconductor mainly depends on material properties of 

semiconductor and energy of photons, different instances are discussed below. 

a) Absorption 

There are three possibilities after the incidence of photon on the surface of a material: 

reflection, absorption, transmission. For a photovoltaic device to operate, the photon is 

required to be absorbed to generate power. Absorbed photon may excite electron from 

valence band to conduction band depending on the energy of photon (Eph) and band gap 

energy (Eg) of the semiconductor. Semiconductors requiring assistance of phonon to be 

absorbed between conduction band minima (CBM) and valence band maxima (VBM) are 

called indirect band gap semiconductors such as Si. And the ones which can make a direct 

transition between VBM and CBM are called direct band gap semiconductors such as CIGSe, 

GaAs etc. Considering the case of direct band gap semiconductors, irradiation of photons on 

material’s surface results in any of the three consequences: 

1) Eph<Eg  Photon does not interact with semiconductor and passes through (except for 

less probable multi photon absorption). 
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2) Eph=Eg  Photon is efficiently absorbed and excites an electron from valence band to 

conduction band leaving behind a hole. 

3) Eph>Eg  Photons is strongly absorbed, in most cases remaining energy is wasted in 

thermal energy. In some cases, remaining energy may excite another electron from 

valence band to conduction band by Auger process. 

In addition some parameters specific to semiconductor materials plays a major role in 

performance of a solar cell and are: 

a) Absorption Coefficient: Quantifies the absorbing capability of semiconductor at a 

particular wavelength. Highly absorbing materials (such as CIGS) have high 

absorption coefficient and can efficiently absorb light even in few micrometers 

thickness. 

b) Absorption depth: As absorption coefficient is specific to wavelength, light with 

different wavelengths penetrate materials at different depths. Absorption depth is 

given by the inverse of absorption coefficient and measures distance from the surface 

where light intensity drops by a factor of 1/e. Figure 1.2b shows absorption 

coefficient of CuInSe2 (CIS) and other materials used for solar cells over wide 

spectral range demonstrating strong absorption properties of CIS which is beneficial 

for solar cells.  

Although CIS has high absorption quality, its lower band gap (≈1.0 eV) limits its device 

performance. Hence alloying with higher band gap material CuGaSe2 (≈1.67 eV) is expected 

to improve its performance [2,3] by forming quaternary alloy CIGS. One of the best 

advantages of using Cu(In,Ga)Se2 (CIGSe) solar cells is tunability of its bandgap by varying 

Ga/In compositions in CuIn1-xGaxSe2. Varying Ga to In ratio (named here as 

x=[Ga]/[In]+[Ga]), the band gap of CIGSe can be tuned co-linearly from 1.02 eV (x=0) to 

1.67 eV (x=1) [4].  

High efficient Si cells comprise of 100 μm of thickness have similar efficiency than few 

micrometers of CIGSe. Cost effectiveness with better efficiency makes CIGSe one of the 

most promising materials for solar cell preparation.  

Solar energy received on earth surface is in the form of electromagnetic waves released due 

to fusion reaction between hydrogen atoms forming helium. A part of solar energy is 

absorbed by sun and earth’s atmosphere and rest received on land is denoted in form of AM 

(Air Mass) spectrum. AM1.5G is the solar spectrum received on surface of earth (usually 
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used in latitudes near Europe, 1.5 correspond to 1.5 times more air atmosphere compared to 

direct sunlight on earth (which is AM0G) as shown in Figure 1.2a and is an important 

parameter to capitalize solar cells.  

 

Figure 1.2 (a) Solar irradiance as a function of wavelength. (b) Absorption coefficient of 

CuInSe2 and other materials as a function of photon energy and wavelength. 

b) Recombination 

All electron hole pairs generated due to light absorption may not be all used in generating 

electricity even in presence of intrinsic electric field. Electrons in the conduction band are in 

metastable state and can jump back to valence band before being collected. This jump back 

allows lowering their energy and stabilizing. Electron stabilizing to valence band is 

equivalent to pairing up with a hole, this process is called recombination. Recombination is 

detrimental to solar cell performance and is one of the major factors limiting the efficiency. 

There are typically three types of recombination: 
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a) Radiative recombination: Electron from conduction band releases energy in form of a 

photon and comes back to valence band. 

b) Auger recombination: Energy emitted due to electron hole recombination is absorbed 

by an electron in the conduction band raising its energy level to unstable state and 

eventually thermalizing back to conduction level. 

c) Shockley-Read-Hall recombination (SRHR): Defects in semiconductors give rise to 

defect states. Instead of directly relaxing to valence band from conduction band, 

electron can pass in between through defect levels completing the process in two 

steps. Pure semiconductors without any defects do not exhibit this type of 

recombination.  

c) Diffusion length 

Average distance from point of charge carrier generation to their point of recombination is 

called diffusion length of the carrier. Thus larger diffusion length increases lifetime of 

carriers and hence increase their chance of collection at the terminals. Efficient transfer of 

minority carriers is more important for a solar cell as they are very less in concentration as 

compared to majority carriers and hence their collection determines performance. Electrons 

are the minority carriers in p-type CIGSe hence diffusion length of electrons in CIGSe would 

be an important parameter to be considered. Thus diffusion length of minority carrier is 

considered as more important parameter. Diffusion length for monocrystalline silicon is 

around 100 – 300 μm [5], and 0.3 – 2 μm for polycrystalline CIGSe [6].  

1.1.2 Separation: pn junction 

pn junction forms the basis and heart behind operation of laser diodes, LEDs, transistors and 

also solar cells. For simplicity, a model of silicon (Si) is used here to explain doping in 

semiconductors. In a pure Si wafer, Si atoms are covalently bonded together such that each 

atom fulfils its octet to complete 8 electrons in their outermost shell as shown in Figure 1.3a. 

A boron (B) atom has 3 electrons (one e
-
 less than Si) in the outermost shell. If one Si atom is 

replaced by one B atom, a hole (no physical quantity, term used for absence of an electron) is 

formed as shown in Figure 1.3b. This intentional way of substituting elements is called 

substitutional doping. B doped in Si decreases overall electron concentration making the 

system positively charged and hence is called p-type doping. 
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Figure 1.3 Electronic structure of silicon for (a) undoped (b) p-type doped (c) n-type doped 

Similarly, Si can be doped with another atom with an additional electron in the outermost 

shell such as P, As, Sb (5 electrons in outermost shell). This type of doping leads to overall 

negative charge because of an extra free electron per Phosphorus atom and is called n-type 

semiconductor as shown in Figure 1.3c. Hence n-type (or p-type) doping increases the 

concentration of electrons (or holes) or in general, concentration of carriers is increased due 

to doping thereby increasing conductivity of the semiconductor. Hence majority carriers in p 

and n-type semiconductors are holes and electrons respectively; adjoining these two parts (p 

and n) forms pn junction with properties very different even if the bulk materials are 

identical. Similar explanation for doping is not possible in compound semiconductors like 

CIGSe. n-type or p-type doping of CIGSe semiconductors are believed to result from the 

intrinsic defects [6]. Twelve intrinsic point defects are reported in CISe semiconductors, 

among them six antisite defects: InCu,InSe, CuIn, CuSe, SeCu and SeIn. Three interstitials Sei, 

Cui and Ini and three vacancies VSe, VCu, VIn. CIGSe considered here is a p-type 

semiconductor containing free hole density typically around 10
16

 to 10
17 

cm
-3 

resulting from 

intrinsic defects. Ga addition in CISe further increases the number of defects as it will be 

discussed in section 1.3.4.  

 A pn junction is formed by joining p-type semiconductor to n-type semiconductor as shown 

in Figure 1.4a. Free electrons from n-type diffuse towards p-type and holes from p-type 

diffuse towards n-type, leading to the formation of depletion region at equilibrium. Due to 

this phenomenon, p-type side (in depletion region) becomes overall negatively charged and 

n-type side becomes overall positively charged, thus forming an intrinsic electric field 
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between the junctions in direction from n side to p side as shown in Figure 1.4a. At 

equilibrium, there is no net flux of charge carriers across the junction and the presence of the 

intrinsic electric field separates electron hole pairs preventing them to recombine. Light 

illumination generates electron hole pairs which are separated due to this electric field and 

can be collected at the terminals producing electric current; this is the basic principle of a 

solar cell.   

 

Figure 1.4: (a) Distribution of holes and electrons in p and n-type semiconductor, schematic 

image before and after forming pn junction. (b) Schematic energy level diagram for p and n-

type semiconductor & for pn junction at thermal equilibrium 

Fermi energy in an intrinsic semiconductor (Ei) is defined as the highest energy of electrons 

in the valence band at 0 K and is in the middle of the conduction and valence band for an 

intrinsic semiconductor in ideal conditions (absence of any defect). A semiconductor doped 

with p-type dopant results in reduction of electron concentration, hence the Fermi energy is 

lower than Ei and is closer to the valence band energy (EF,p), similarly for n-type doping, 

Fermi energy increases and shifts towards conduction band (EF,n) as shown in Figure 1.4b. 

After forming the pn junction, Fermi levels on the two sides match under thermal equilibrium 

(EF). Photons with energy greater than band gap get absorbed and generate electron hole pair. 

Electron is excited to conduction band which is then relaxed and moves towards n-type 

region. Similarly, hole is carried towards p-type. Spontaneous recombination of electron hole 

pairs is now prevented due to built-in potential. Hence connecting the two ends by a 

conducting wire, electricity is produced due to motion of electrons. Electron and hole would 
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eventually recombine when the circuit is completed but motion of these carriers along the 

circuit creates output electric current.  

1.1.3 Collection: Solar Cell structure 

A typical solar cell device consists of minimum four regions each contributing importantly in 

the production of output power. Four regions as shown in Figure 1.5 are front contact, 

emitter, base and back contact. Absorption of photons followed by generation of carriers 

takes place in emitter and base regions. Due to intrinsic electric field, generated electrons and 

holes are separated to n and p regions respectively and are then transported to the external 

circuit and collected via front and back contacts respectively. More details about carrier 

collection at different load voltages are described in next section.  

 

Figure 1.5: Schematic diagram of a typical solar cell consisting mainly of four different regions 

as shown: emitter, base, front and back contacts. 

Latest solar cell modules include anti-reflective coating to minimize reflection losses from 

surface of the solar cell; Si solar cell modules introduce surface texturization [7] for efficient 

absorption. Above solar cell design completes the basic pre-requisite for a solar cell to work. 

Advanced modules make use of more than one pn junction to absorb maximum solar 

spectrum, they are called multi-junction solar cells or tandem solar cells that will not be 

described here but explained in ref. [8]. 
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CIGSe solar cell structure 

Schematic representation of a typical CIGSe solar cell is shown in Figure 1.6a and respective 

energy levels of valence band, conduction band and Fermi energy at zero bias are presented 

schematically in Figure 1.6b. The preparation and elaboration of different layers involved 

here are described in chapter 2. Here CIGSe is the main absorber layer with p-type 

semiconducting nature. In Figure 1.6b an example is shown with CIGSe band gap value =1.2 

eV for x=0.32. Majority of collected carriers are generated in space charge region (SCR) as it 

closer to pn junction. And carrier collection due to quasi neutral region (QNR) is minor as it 

is far from intrinsic electric field region where recombination is dominant. n-type region 

consist of buffer layer CdS accompanied by n
+
 (heavily doped n-type) layer of ZnO.  

 

Figure 1.6 (a) Cross section SEM image (this work) of completed CIGSe solar cell (x=0.32) 

showing different layers involved. Schematic energy band diagram of a completed CIGSe solar 

cell at zero bias. SCR is space charge region and QNR is quasi neutral region.  
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CdS buffer layer is deposited on CIGSe to form effective pn junction and to prevent 

oxidation of CIGSe during ZnO deposition. Band gap of CdS is 2.4 eV and absorbs solar 

spectrum for wavelengths near UV. Transparent conducting oxide (TCO) on top of thin film 

solar cells is important for charge collection; here we use ZnO as TCO for CIGSe solar cells. 

ZnO layer acts as front surface and window layer with band gap 3.3 eV and allows majority 

of solar spectrum to pass through. pn junction is formed between p-type CIGSe and n-type 

CdS. At thermal equilibrium, p-type and n-type regions are aligned as shown in Figure 1.6. 

Due to difference in band gaps of the respective semiconductors band diagram in Figure 1.6 

is not continuous as observed in different conductive nature of same semiconductor shown in 

Figure 1.4. Molybdenum (Mo) is deposited on glass substrate before CIGSe deposition and 

serves as metallic back contact of the material. MoSe2 is formed between CIGSe and Mo 

[9,10] acting as quasi-ohmic contact and raising valence and conduction energy levels [11]. 

The remaining electron/hole dynamics is similar to as described previously. 

1.2 Electrical parameters of solar cells: Influence of band gap 

Energy of incoming photon must be equal to or greater than band gap energy of 

semiconductor in order to generate charge carriers; hence semiconductor selectively absorbs 

a part of solar spectrum. Electrical parameters play critical role in solar cell performance and 

vary systematically as a function of band gap. Thus it is important to study variation of solar 

cell parameters with changing band gap and this is described in this section.   

1.2.1 I-V Curve and efficiency 

I-V curve or current-voltage curve of a solar cell represents the value of output current 

measured at different load voltages. Current voltage measurements determine output power 

and efficiency and the most important parameters to characterize solar cell. For comparing 

cell modules and different cells, one compares their current densities (J) versus voltage 

curves which is commonly expressed as:  

In Dark:  

 
𝐽(𝑉) = 𝐽0. [exp (

𝑞𝑉

𝑛𝑘𝑇
) − 1] (1.1) 

Under Light: 

 
𝐽(𝑉) = 𝐽0. [exp (

𝑞𝑉

𝑛𝑘𝑇
) − 1] − 𝐽𝑝ℎ𝑜𝑡𝑜𝑛 (1.2) 
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The output power can be simply written as JxV 

 

Where, Jphoton = Light generated current 

J0 = Dark saturation current 

n = ideality factor 

T = temperature (K) 

q = charge of electron 

 

Plotting equations (1.1) & (1.2) one can obtain J-V curve under dark and under light and 

product of JV gives output power as shown in Figure 1.7.  

According to equation (1.2) for solar cells under light illumination, an additional current 

Jphoton is produced due to charge carrier generation at pn junction and forms the basis for 

output power generation in solar cells. As can be noticed from Figure 1.7, at zero voltage bias 

across the solar cell there is still some current flowing through circuit which is the current due 

to light illumination. Current running through the circuit even at zero external voltage is 

called short circuit current (Isc), in other words this is the current flowing when the device 

is short circuited. Current drops to zero at higher values of positive forward bias and change 

its direction when increased further. Maximum voltage which can be exploited from a solar 

cell is the open circuit voltage (Voc).  

 

Figure 1.7: Current density – voltage (J-V) curves of a solar cell under dark (black) and under 

light illumination (blue-dash). Power density is shown in red and is maximum at (VF,JF). 
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Voc is observed at zero circuit current and can also be explained as: output voltage obtained 

from solar cell when the circuit is open (not connected) and is due to generation of carriers 

under light.    

Voc and Isc correspond to maximum voltage and maximum current which can be obtained 

from the solar cell which occur at zero current and zero voltage respectively. Power obtained 

from a solar cell is given by the product of current and voltage and is zero at these extreme 

values. However, a term “fill factor” (FF) is used to determine maximum power output from 

a solar cell which occur at (VF, JF) corresponding to maximum area obtainable from 

coordinate axes. FF is given by the ratio of areas swept by JF,VF to Jsc,Voc. 

 
𝐹𝐹 =

𝐽𝐹𝑉𝐹

𝐽𝑆𝐶𝑉𝑂𝐶
 (1.3) 

Efficiency (η) of a solar cell determines how effectively the solar cell can convert light 

energy to electrical energy; it is the ratio of output power obtained from the solar cell to light 

energy incident on solar cell. It is the most general parameter to compare performances of 

different solar cells. Efficiency of a photovoltaic device can be measured from I-V curve of 

the cell. Efficiency is the most general term used to quantify solar cell performance and is 

given by:  

 
𝜂 =

𝐽𝐹𝑉𝐹

𝑃𝑖𝑛
 (1.4) 

Where, Pin is power (of photons) incident on solar cell. 

According to theory, if other parameters are kept equal, then the direct band gap value at 

which one should obtain the most efficient solar cell is around 1.4 – 1.5 eV [12]. Theoretical 

calculations in refs [13–15] demonstrates variation of efficiency, Jsc and Voc as a function of 

band gap of the material keeping other parameters constant of a typical solar cell under AM 

1.5G spectrum conditions.  

Open circuit voltage depends strongly on bandgap and can be written as: 

 
𝑉𝑜𝑐 =

𝐸𝑔

𝑞
−

𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐

𝐽0
) (1.5) 

Figure 1.8 shows variation of η, Jsc and Voc with band gap using theoretical calculations. It is 

observable from the figure that maximum theoretical efficiency must correspond to band gap 

of 1.4 eV (according to Green’s model) if other parameters are kept constant.  

 Band gap of CIGSe can be tuned with Ga/In ratio and if there is no major changes at 

microstructural and atomic level one must obtain most efficient CIGSe corresponding to band 
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gap 1.4 eV. However, this is not usually observed in the case of CIGSe solar cells and most 

efficient cells are observed for band gaps around 1.1eV to 1.2 eV (Ga poor cells) [16–21]. 

 

Figure 1.8: Efficiency, Jsc and Voc as a function of band gap from [13–15]. Red region 

correspond to band gap energy of 1.4 eV, indicating maximum theoretical efficiency. 

Figure 1.9 shows measured efficiency of CIGSe cells with different band gaps (different Ga 

ratio) observed by different laboratories. These results demonstrate the superiority of Ga poor 

cells. Comparing Figure 1.8 a) and Figure 1.9, highlighted region shows band gap 

corresponding to maximum theoretical efficiency. Jsc of CIGSe with different x is usually 

observed to be consistent with theoretical expectations [22].  
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Figure 1.9: CIGSe efficiency for different Ga content, Image source: Contreras et.al (2012) [22]. 
Red region represent band gap of 1.4 eV corresponding to maximum theoretical efficiency. 

Hence according to equation (1.3), VOC and/or FF must be the limiting factor degrading 

photovoltaic performance of Ga rich CIGSe. Experiments by above authors demonstrate the 

same as shown in Figure 1.10. Figure shows saturation of VOC after 1.3 eV bandgap. It is 

interesting to note that Voc and efficiency deviate from expectations after this band gap value. 

 

Figure 1.10: Open circuit voltage measured for different x in CIGSe, Image source [22]. 

Symbols follow according to Figure 1.9. 
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Different theories exist behind this observed deviation from theoretical expectations and are 

discussed in later sections of this chapter.  

I-V curves represent collective output power obtained from a solar cell under solar spectrum 

conditions containing all incident wavelengths. In order to check the solar cell behavior at 

specific monochromatic wavelengths we measure its quantum efficiency. 

1.2.2 Quantum Efficiency  

Quantum efficiency (QE) measures how efficiently light at a particular wavelength can 

generate carriers. QE is calculated for all wavelengths covering solar spectrum and shows the 

behavior of carrier generation at these wavelengths. QE can be sub classified in two types: 

External quantum efficiency (EQE) and Internal quantum efficiency (IQE). 

EQE takes into account all possibilities of photon interaction including reflection, absorption 

and transmission, hence given by:  

 
𝐸𝑄𝐸 =

𝑛𝑜.  𝑜𝑓 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙

𝑛𝑜.  𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑜𝑓 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑜𝑛 𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙
 (1.6) 

 

EQE can be obtained at all wavelengths of solar spectrum and is shown for CIGSe in Figure 

1.11.  

 

Figure 1.11: EQE of a typical CIGSe solar cell x=0.3 (this work). Different (colored) regions 

representing energy loss. 
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In the ideal case i.e. all incident photons generate charge carriers and all carriers are 

successfully collected by the solar cell, QE must be equal to 1 for photon energy greater than 

band gap of the semiconductor. However due to absorption in different regions, QE observed 

is never equal to 1 as shown in Figure 1.11 for CIGSe. 

Above figure is divided in different regions corresponding to losses observed in experimental 

EQE from ideal case and is described here: 

1) Reflection: Loss due to charge collection grids at the top surface and due to reflection 

from front surface which can be minimized by using anti reflection coatings. 

2) Unwanted absorption: Most of the incident energy is lost in first parts due to 

absorption in ZnO layer corresponding to high band gap material and absorbing high 

energy photons. Also, absorption in CdS buffer layer (band gap = 2.3 eV) drops QE 

for photon energy greater than 2.3 eV. 

3) The red region in Figure 1.11 corresponds to weak absorption of low energy photons. 

This region also suffers recombination at rear surface in quasi neutral region where 

recombining possibility is greater. EQE curve shows a tail in red region because 

photon energy lower than band gap (1.2 eV) are not absorbed, if the band gap is 

increased further the tail shifts further left and more photons are left unabsorbed. 

Similarly for lower band gap, tail shifts towards right resulting in more photon 

absorption. 

4) (Blue region) Photons with energy lower than the band gap of the material are not 

absorbed. 

Results discussed in later chapters deals with EQE, however one can calculate IQE using the 

following relation: 

 
𝐼𝑄𝐸 =

𝑛𝑜.  𝑜𝑓 𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙

𝑛𝑜.  𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑜𝑓 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑒𝑛𝑒𝑟𝑔𝑦 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑏𝑦 𝑠𝑜𝑙𝑎𝑟 𝑐𝑒𝑙𝑙
 (1.7) 

 

IQE does not take into account the reflected photons and is defined as ratio of number of 

carriers collected by solar cell to number of photons of a given energy absorbed by the cell. 

IQE is calculated from EQE by measuring and subtracting transmission and reflection losses 

from EQE.  

To understand CIGSe better one must know the material properties of CIGSe and their 

behavior under different compositions and preparation conditions.  
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1.3 Material properties of CIGSe thin films 

CIGSe is a I-III-VI2 semiconductor and is the main absorber layer used in CIGSe solar cells. 

Many different phases of this alloy exist depending on growth conditions. Major parameters 

affecting phases and properties of the alloy are: temperature during growth, flux of elements 

during growth, substrate used etc. CIGSe is usually most stable as p-type but can also be 

made n-type [6] by tuning the above factors. It is difficult to dope CIGSe as n-type for wider 

bad gap compounds [23], as we study CIGSe in this work for both narrow and wide band gap 

compounds it is convenient to form and discuss CIGSe with similar conductive nature. Hence 

here we discuss only on p-type CIGSe films prepared by the most common 3-stage and 

CuPRO processes, processes which will be detailed in the next chapter. 

1.3.1 Crystal structure  

CIGSe has a chalcopyrite crystal structure and its single unit cell can be considered as a 

composite of two sphalerite (zinc blende) unit cells. A typical unit cell of CIGSe is shown in 

Figure 1.12. 

 

Figure 1.12: Schematic representation of a Cu(In,Ga)Se2 unit cell. Lattice parameters are 

represented by a and c.  

Bonding between Cu and Se atoms here results from p-d hybridization of their respective 

orbitals [24]. The unit cell can be considered tetragonal which is made up of two cubic unit 

cells but with some tetragonal distortion i.e. c ≠ 2a in most cases. However, the difference 

between c and 2a is very small and is referred here as δ (i.e c – 2a = δ). Electronic charge 

distribution, as depicted in ref [25], indicates ionic character of Ga–Se, In–Se bond and 

covalent character of Cu-Se bond. Difference in characteristics of the two bonds leads to 

Cu
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different bond lengths and hence results in tetragonal distortion. As illustrated in Figure 1.13, 

the unit cell parameters (c,a) of CuIn1-xGaxSe2 vary linearly with Ga ratio (x). Thus lattice 

constants for any Ga ratio can be calculated from respective positions in the plot. Difference 

between c/2 and a as a function of x illustrates the tetragonal distortion (δ) in CIGSe. For 

CuInSe2, δ > 0, Ga addition decreases δ and at x=0.25 there is no tetragonal distortion (i.e. 

δ=0). Distortion then increases with Ga content till CuGaSe2 where it is maximum. Decrease 

in δ here is mainly due to lower radius of Ga as compared to In. A systematic variation of the 

tetragonal distortion is shown in Figure 1.13, where x=0.25 represent no tetragonal distortion 

and CGSe exhibit maximum tetragonal distortion. 

 

Figure 1.13: Lattice constants a and half of c for CuIn1-xGaxSe2. X is the Ga ratio. Source:  Suri 

et.al [26] 

1.3.2 Phase Diagram 

CIGSe involves interplay of mainly four elements and also impurities involving Na, or K 

[27,28], making the system a complex subject to study. Thin film growth of CIGSe depends 

strongly on flux of different elements, temperature of the substrate and type of substrate. 

Changes in one or more of these values may lead to significant variation in properties of the 

thin films. Growth process of thin films involves depositions at high temperatures (≈600
o
C) 

with variations in both temperatures and elemental fluxes making the system under non 

thermal equilibrium. However thermal equilibrium phase diagrams may help us understand 

the growth process of the thin films.  
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Pseudoternary phase diagram for quaternary compound CIGSe at room temperature was first 

described in ref. [29] and is shown in Figure 1.14. Single chalcopyrite phase “α” is known to 

produce high efficient CIGSe cells [30] and particular synthesis conditions are employed here 

to form this phase in CIGSe thin films. Figure 1.14 demonstrates wider domain of single α 

phase towards Ga rich side i.e. single α phase region widens with increasing Ga content. This 

means it is flexible (or easier) to form single phase Ga rich CIGSe than single phase Ga poor 

CIGSe. In other words less control over the molecular proportions is required to form single 

phase CGSe compared to formation of single phase CISe, regardless of preparation 

techniques [31].  

 

Figure 1.14: Pseudoternary phase diagram for CIGSe at room temperature ( Source: [29]). α  

Cu(In,Ga)Se2,  Cu(In,Ga)3Se5,  Cu(In,Ga)5Se8, Sph Sphalerite structure of Ga2Se3. 

Lines emerging from Cu2Se vertex represent constant [In]/[Ga] ratio along the respective line. 

Green and red lines represent Ga poor and Ga rich CIGSe respectively.  

Lines with constant [In]/[Ga] ratio can be drawn starting from Cu2Se vertex. Green line 

shown is for Ga poor CIGSe and red line correspond to Ga rich CIGSe. It can be noted from 

the figure that region corresponding to mixture of 3 phases α++Sph is more extended in Ga 

rich CIGSe compared to Ga poor demonstrating more possibility of multi-phase existence in 

Ga rich CIGSe. Formation of several phases in thin films are found to degrade performance 

of thin films [6], hence CIGSe films are developed to contain single phase throughout the 

layer.  

α
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1.3.3 Superiority of polycrystalline CIGSe 

Monocrystalline materials are solids consisting of a single crystal with well-defined crystal 

structure and orientation throughout the material. A polycrystalline material is a solid made 

up of many different sized crystallites oriented in random direction. These crystallites are 

called grains and the boundary between two different crystallites is called a grain boundary 

(GB). It is generally believed and observed that monocrystalline semiconductors exhibit 

better photovoltaic properties than their polycrystalline counterpart simply to avoid high 

probability of recombination at grain boundary. 

Contrary to conventional materials used for photovoltaics, efficiency and photovoltaic 

properties of CIGSe are proved to be much better in their polycrystalline form [17]. Highest 

single crystal efficiency reported for CuInSe2 is ~ 11% [33], whereas polycrystalline CuInSe2 

demonstrated ~ 15% [34]. This unexpected improvement of polycrystalline CIGSe is very 

interesting and is still under debate [35–42]. Many theories accounting for this improved 

performance are summarized in this section.  

a) Effect of Alkali impurities at Grain Boundaries: 

Hedstrom et.al [43] in early 90’s realized that alkali impurities such as Sodium (Na) when 

added during thin film preparation improves mainly the Voc and efficiency of the device with 

minor or no effect on short circuit current. Today most commonly CIGSe thin films are 

grown on soda lime glass substrate with glass acting as the source of Na. Whether added 

from external sources or from within the glass substrate, Na has shown to be a promising 

impurity when incorporated in optimal amounts [43,44] during preparation. However 

improvement due to Na is also still a matter of debate and various theories proposing 

different mechanisms can be summarized as follows: 

1) Sodium at grain boundaries: Various models described in refs. [45–47] propose 

segregation of Na at the GBs. Calculations by Persson and Zunger [37] show that the 

creation of charge neutral defect Na
0

Cu at grain surface (or GB) may act like hole 

barrier leading to improved photovoltaic properties. Combining SEM and SIMS 

analysis, segregation of Na at the GBs was suspected [44]. However planar 

segregation of Na atoms along GB was first illustrated using Atom Probe 

Tomography (APT) by Cadel et.al [48] confirming presence of Na at the GB 

experimentally.  
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2) Built-in potential due to Na at GB: scanning Kelvin Probe force measurements 

(SKPM) on CIGSe was performed by Yan et.al [41] on sodium free and sodium rich 

glass substrate demonstrating electrically benign character of GB for Na free CIGSe. 

They showed that the segregation of Na at GB formed charged defects resulting in a 

built-in potential at GB which is mainly due to presence of Na. The latter would repel 

holes and attracts electrons hence reducing recombination and enhancing carrier 

collection.  

3) Increased acceptor density: Due to reduction in donor density by an increase in point 

defect mobility, Na introduction is shown to increase p-type conductivity (or increase 

hole concentration) in p-type CIGSe [49][46].  

4) Texture modification: Na incorporation also plays vital role in modifying 

microstructural properties of CIGSe. <112> texture is strongly enhanced for the films 

grown on soda lime glass substrate [43] as compared to soda free substrate. However 

strong texture may not necessarily enhance photovoltaic properties of CIGSe but it is 

generally observed that both of these properties occur simultaneously. In fact, grain 

size is found to increase for thin films with Na [50,51] although the exact mechanism 

is still not yet known. 

 

b) Other effects at Grain Boundaries: 

Apart from beneficial effects of Sodium, some researchers also proposed that even GBs itself 

makes polycrystalline CIGSe better than monocrystalline counterpart due to following 

reasons: 

1) Cu depletion at grain boundary: Calculations by Persson and Zunger [37] show that 

Cu vacancy at the GB is the main reason for hole repulsion at GB. Valence band 

maximum (VBM) is lowered at GB due to Cu vacant sites, hence resulting in hole 

repulsion and better photovoltaic performance. Hetzer et.al [52] demonstrate 

significant removal of Cu atoms at GB (≈50% Cu compared to grain) which results in 

change in valence band levels between grain interior and GB, thus again resulting in 

hole repulsive GB and better carrier collection. APT results by Couzinie-Devy et.al 

[53,54] have already shown significant depletion of Cu at GB accompanied by In 

enrichment for Ga poor cells. 
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2) Type inversion at GB: Probst et.al [55,56] demonstrated that n-type ordered defect 

compounds (ODC) like CuIn3Se5 forms on surface of grain of p-type CIGSe. As GBs 

exhibit properties similar to grain surface, n-type CuIn3Se5 phase may form at GB and 

resulting in type inversion at GB. N-type GBs thus channels electrons towards n side 

(CdS) reducing recombination probability by effective transport of minority carriers. 

Also Scanning capacitance measurements by Sadewasser et.al [57] show existence of 

dark contrast at GBs indicating type inversion at GB.  

Presence of grain boundaries have shown to play an advantageous role towards CIGSe cell 

performance. In addition, device performance of CIGSe is also specific to its Ga content in 

and small changes in Ga ratio (x) reflect in its properties. Ga addition to CIS is shown to have 

positive impact on its device properties only up to certain level above which degradation is 

apparent. Following section discusses importance and influence of Ga content in CIGSe.  

1.3.4 Influence of Ga content in Cu(In,Ga)Se2 solar cells and theories 

behind limited performance of Ga rich CIGSe 

During 80’s and early 90’s it was realized that CuInSe2 is one of the most promising materials 

for thin film solar cells [3]. With extraordinary properties such as: low cost, high absorption, 

high efficiency (>14%), CuInSe2 was believed to be most appropriate semiconductor for solar 

cells [3]. Band gap of CuInSe2 is 1.0 eV, quite far from ideal value for maximum solar energy 

conversion value of 1.4-1.5eV [12]. Being a suitable material for photovoltaics it was 

recommended to alloy this material with Ga [2,58] in order to increase its band gap and adapt 

itself to incoming solar radiation. Ga additions were performed mainly by alloying (mixing) 

CuInSe2 with CuGaSe2 [43,59] and later by using precursor compounds like (Inx,Ga1−x )2Se3 

[60]. According to band gap modulation, Ga ratio corresponding to the most favorable band 

gap (1.4 eV) is around x = 0.7. However new world record CIGSe solar cells with ~21.7% 

efficiency contains overall ~8% Ga concentration (or x=0.32) [61]. However cells above this 

Ga concentration (x≈0.32) results in reduced photovoltaic properties [22,30] which is debated 

over last two decades. Major chemical and physical effects due to Ga addition in CISe are 

summarized as follows: 
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1) Increase in band gap: 

Main idea behind Ga addition is to increase band gap for maximum energy conversion. 

Stoichiometric form of CIGSe is usually written as a function of Ga ratio (x):           

CuIn1-xGaxSe2. Band gap, Eg(x) increases co-linearly as a function of Ga ratio (x) [4]: 

 

 𝐸𝑔(𝑥) = (1 − 𝑥)𝐸𝑔(𝐶𝐼𝑆) + 𝑥𝐸𝑔(𝐶𝐺𝑆) − 𝑏𝑥(1 − 𝑥) 
(1.8) 

Where Eg(CIS) = 1.0 eV, Eg(CGS) = 1.67 eV, b is the optical bowing coefficient with 

value b = 0.15 to 0.24 [62]. Record cells produced during past few years consist of Ga 

ratio x≈0.32 (Eg≈1.2 eV) [18,28,63]. Ga addition thus resulted in increase in band gap 

which in turn resulted in enhanced efficiency and increased Voc consistent with equation 

(1.5) and Figure 1.8 up to x ≈ 0.35-0.40. 

 

Figure 1.15: Band gap of Cu(In1-xGax)Se2 as a function of ‘x’ as plotted from equation (1.8).  

2) Stability in chalcopyrite phase 

As shown in Figure 1.14, the pseudo ternary phase diagram shows widening of α phase 

towards Ga rich compounds. This means it is relatively easier and flexible to synthesize 

pure chalcopyrite phase for Ga rich CIGSe as compared to Ga rich compounds [64] [31].  

3) Increase in hole concentration: 

Ga addition leads to a net increase in acceptor density and decrease in acceptor level 

depth as shown in refs. [65][55]. However no significant influence of Ga addition was 

observed in hole mobility [65] and it remains unaffected.  
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4) Microstructural changes 

Cross sectional analysis of CIGSe with different Ga content was performed using 

Electron back scattered diffraction (EBSD) analysis demonstrating major changes in 

microstructure by Abou-Ras et.al [66][67] as shown in Figure 1.16. Ga addition was 

found to increase grain size till x =0.23 and then decreased till CuGaSe2, CGS being the 

sample with smallest grain size [66] and least efficiency.  

 

Figure 1.16: Average grain size (in μm) of CIGSe and ratio of lattice constants c/a from ref. 

[26] (white circle) and [Schorr unpublished works] (white triangle) as a function of Ga ratio 

x. Image courtesy: Abou-Ras et.al [66]. 

However grain size could not be correlated directly to the photovoltaic properties, but 

very small grain sizes (< 0.5 μm) apparently result in degraded photovoltaic properties. 

However, grain sizes are known to increase with Cu rich growth [68] in polycrystalline 

CIGSe and hence a Cu rich step is generally used during 3-stage co-evaporation synthesis 

process [69].  

5) Interface recombination  

Formation of a stable n-type inverted surface is useful in reducing recombination at CdS-

CIGSe heterojunction in CIGSe [30] and is found to be absent in Ga rich CIGSe, hence 

increasing recombination in the latter case. Qualitative band diagrams by Bosio et.al [32] 

as shown in Figure 1.17 show that pn junction moves from CdS-CIGSe heterojunction 

towards buried in CIGSe surface due to formation of an n-type ordered defect compound 

(ODC) Cu(In,Ga)3Se5.  
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Figure 1.17 Energy band offset expected alignment for a typical CIGSe solar cell. Image 

courtesy: Bosio et.al. [32] 

Contreras et.al [22] demonstrated improved performance of Ga rich CIGSe and showed 

that Ga addition leads to detrimental effects in interfaces and increases interfacial 

recombination hence degrading cell performance. EBIC study on Ga rich CIGSe shows 

that major loss in carrier collection is due to presence of some grains with poor collection 

efficiency. These grains are termed as “dead grains” which is observed by Contreras et.al 

[22]. Open circuit voltage is observed independent of absorber band gap when 

considering interfacial recombination between buffer and absorber layer [70][71]. 

Gloeckler et.al [71] recommend replacement of conventional window layers and/or 

CIGSe surface modification for further improvement of wide band gap CIGSe. However 

Nadenau et.al [72] finds efficiency of Ga rich CIGS cells can also be increased with CdS 

buffer layer deposited at higher temperatures (80
o
C). Diffusion of CdS is enhanced at 

high temperature and leads to reduced tunneling rate.  

6) Bulk Recombination 

Electrical analysis by Rau et.al [73] showed that the recombination in space charge region 

(SCR) may explain degraded photovoltaic properties of Ga rich compounds and 

recombination increases with Ga content. The dominant recombination phenomenon in 

the space charge region is thus due to tunneling-enhanced recombination [74]. Hanna et.al 

[75] showed that the minimum bulk defect concentration (1.2×10
15

 cm
-3

) is obtained for 
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x=0.3 and that defects increase till CGS (5.6×10
15

 cm
-3

). This demonstrates that the 

presence of increased bulk defects may be a reason for limited performance of Ga rich 

CIGSe. Bulk volume defects increase as a function of Ga and minimum defects for x near 

most efficient cells x=0.28. Hence minimizing SCR, an increase in efficiency is observed 

by Nadenau et.al [72] and explained by a reduction in doping level and tunneling rate due 

to modified SCR. Hence for further improvement of Ga rich CIGSe one must understand 

influence of Ga on defect concentration of CIGSe [75]. It is observed that bulk defects 

can also be suppressed by alloying CIGSe with Sulphur (S) to form Cu(In,Ga)(Se,S)2 

resulting in consistently improvement of the device performance [73].  

7) Local potential at GB 

Jiang et.al [76] demonstrated presence of a local built-in potential at GB using KPFM 

(Kelvin probe force microscope), which shows that GBs in CIGSe are positively charged 

leading to better electron collection. Experiments on different Ga ratio CIGSe samples 

showed variations in local potential at GB with Ga content [77] as shown in Figure 1.18.  

 

Figure 1.18: (a) Local potential peak height at GB and (b) efficiency of CIGSe as a function of 

Ga content. Image courtesy: Jiang et.al [77] 
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Few hundreds of millivolts of potential were observed at GB for Ga poor cells however a 

sharp decrease in potential at GB is observed between x=0.28 to 0.38 and further 

increasing Ga ratio results in negligible potential at GB [77]. 

These findings indicate lowering in potential at GB may increase minority carrier 

recombination for Ga rich samples. However experimental findings by Baier et.al [78] 

demonstrate presence of both positive and negative potentials at GB and no effect of Ga 

addition were evidenced on properties of GBs.  

8) Band Offsets 

Valence band energy calculations performed by Wei et.al [62] and Turcu et.al [79] 

demonstrated that valence band energy levels of CIS and CGS are very close and there is 

hardly any influence of Ga addition on valence band energy levels.  

9) Other effects 

Phillips et.al [80] and Shafarman et.al [81] propose that degraded performance of Ga rich 

compounds are possibly due to a significant reduction in minority carrier diffusion length 

which is electron in this case.  

 

Many theoretical and experimental researches have been done in this field but no clear 

explanation has yet been demonstrated in order to explain limited performance of Ga rich 

CIGSe. Extensive research has been performed on CIGSe thin films and interfaces using 

electron microscopy. A comprehensive review has been made by Abou-Ras et.al [82] 

describing several electron microscopy techniques used in past years towards better 

understanding of CIGSe material properties and interfaces including use of following 

techniques: SEM, TEM, EBSD, cathodoluminescence, EDX (Energy Dispersive X-ray) 

spectroscopy, EBIC (Electron Beam Induced Current). In addition TEM-EELS (Electron 

Energy Loss Spectroscopy) has also been performed demonstrating composition changes at 

GB [83]. EELS give generally quantitative results for interfaces or layers with few nm width, 

however very low signal to background noise ratio makes EELS less reliable and less 

quantitative while measuring elemental changes at GB [84], in addition TEM specimen must 

be very thin and carefully prepared without any contamination due to external sources 

involved during TEM specimen preparation. However, despite of this large amount of work 
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no clear experimental evidence has been found yet explaining declined performance of 

CIGSe. 

Conclusions 

Key principle of functioning of a solar cell is efficient generation and collection of charge 

carriers. Polycrystalline CIGSe solar cells are observed to be more efficient than their 

monocrystalline counterpart and it is mainly due to segregation of Na atoms at the GB 

introduced during thin film preparation. Also many theories are discussed in this chapter 

demonstrating various phenomenons due to presence of Na and beneficial role of GBs in the 

material. Influence of Ga addition is also discussed in the chapter and raised the most obvious 

question of limited performance of Ga rich CIGSe. Plenty of research work has been done till 

date to explain poor performance of Ga rich CIGSe but still today it is the matter of debate 

which may open the door for much improved performance of this material.  

Technical limitations to explore this material are expressed, encouraging us to opt for 

techniques with higher resolution. Hence here we will make use of Atom Probe Tomography 

(APT), a technique able to explore 3D atomic composition with high resolution [85]. 

Previous works on CIGSe using APT demonstrated better quantitative chemical composition 

profile at GB [48,53,86] and at interfaces [88,89]. Therefore we use APT in here to focus on 

GB chemistry for different Ga contents in CIGSe materials. The next chapter focuses on 

preparation of CIGSe cells studied in this work and details of the characterization techniques. 
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2 Chapter Two: Synthesis of Cu(In,Ga)Se2 Solar Cells and 

Methods of Characterization 

This chapter details CIGSe solar cell preparation, characterization techniques and 

instrumentation used in the present work. Starting from deposition of molybdenum back 

contact, synthesis of CIGSe absorber layer using different processes and different 

compositions and completion of CIGSe solar cells are discussed. Deposition of buffer and 

window layers used in current study are also discussed.  

Physical principles of characterization techniques such as XRD, SEM, and EDX which are 

used in this study for primary characterization of the thin films are described in this chapter. 

Principles of APT, theory of field evaporation and sample preparation techniques involved in 

APT are thoroughly discussed in this chapter. 

2.1 Synthesis of CIGSe thin film solar cells  

Over the years mainly three different CIGSe synthesis processes are used namely:  

1. Co-evaporation: Deposition of thin films directly from evaporation of different 

elemental sources [1]. This technique provides better control of stoichiometry and 

hence provides high efficiency cells.  

2. Sequential process: Sputtered deposition of Cu, In and Ga followed by selenization 

[2] 

3. Ink based spray/spin coating: Oxides of Cu, In, Ga is heated and selenized under N2, 

H2Se gas to form CIGSe thin film [3].   

Many other processes like electrodeposition, chemical spray deposition etc. have also been 

used in past. Today, the co-evaporation synthesizing process is mostly used for CIGSe thin 

film preparation, and is used in this work to study CIGSe solar cells.  

2.1.1 Molybdenum as back contact 

 CIGSe here is grown on Molybdenum (Mo) coated on top of a standard soda lime glass 

substrate. Soda lime glass substrate used here is the only source of Na during thin film 

preparation, importance of Na in CIGSe is already discussed in chapter 1. Non-reactiveness 

and stability against CIGSe makes Mo one of the most preferred metals to serve as back 

contact of the material and is well known to control diffusion of elements from glass 
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substrate [4]. Also formation of MoSe2 is generally found to form between Mo and CIGSe [5] 

and serves as ohmic (resistive) contact between the two due to higher band gap (1.4 eV) than 

CIGSe and is beneficial for its photovoltaic performance [6]. Mo is coated using DC 

sputtering method using DC-magnetron Mo target (99.99% pure) of 8 inch in diameter. 

Environment argon gas pressure was maintained at 0.27 Pa with DC power 3 W/cm
2
. Mo is 

deposited up to 500 nm in thickness as shown in Figure 2.4. These standard conditions of Mo 

deposition on glass substrate were used for all the samples synthesized in this research.  

2.1.2 Co-evaporation techniques for deposition of CIGSe absorber layer 

Currently co-evaporation process is the mostly used to grow thin film CIGSe. Current world 

record of CIGSe cells are processed using this method [7]. In co-evaporation process, 

different elements involved (Cu, In, Ga, Se) are thermally evaporated from their pure element 

sources and intermixed on top of Mo coated glass substrate at high temperature (~600
o
C). All 

elements are mixed and react on top of substrate at high temperature where growth of the 

layer takes place. Variation of elemental flux during co-evaporation process is very critical to 

control thin film growth and to establish desired chalcopyrite phase. Different established 

processes have been used to obtain desired composition gradient of CIGSe composition using 

co-evaporation method and are described in this section. 

Schematic experimental set up is shown in Figure 2.1 along with image of instrument (from 

inside) used in this work.  

 

Figure 2.1: (Left) Schematic experimental setup of Co-evaporation technique for CIGSe 

deposition. (Right) Co-evaporation instrument at IMN (Institut de Matériaux de Nantes), 

Nantes (all syntheses were performed in this machine) Image courtesy: Dr. N. Barreau. 

PumpIn

Heated Mo coated Glass substrate
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Co-evaporation technique in itself is very flexible. Tuning evaporation flux of different 

elements results in modified properties of the films and are very critical for device 

performance, evaporation flux of different elements can be tuned by varying their respective 

source temperature. Thickness of thin films can be increased by increasing overall time of 

thin film deposition maintaining similar fluxes. Phase, composition profile, Ga gradient etc. 

change accordingly with the flux variation; hence plethora of different processes are possible 

to form CIGSe. Most of the APT research work performed here is based on cells synthesized 

using CuPRO (Cu poor-rich-off) process due to two main reasons: 1) to ensure homogeneity 

of the CIGS film (wherever is fabricated the Atom Probe Tomography sample in the film, the 

composition will be the same) and 2) to form small size grains of CIGSe in order to increase 

the probability of observing GB in APT analysis. However most efficient cells are prepared 

using 3-stage process, these two processes used in this work are described below.  

a) Three Stage Process 

Three stage (or 3-stage) process developed by Gabor et.al [8] is known to produce high 

efficient CIGSe cells [7,9,10] and the most efficient CIGSe solar cell today is synthesized 

using this process [7]. As the name suggests, 3 stage process involves three stages which are 

shown in Figure 2.2 for bithermal process. Flux of Selenium (Se) is kept constant throughout 

the process, whereas fluxes of other elements varied during the process. This is shown in 

terms of Cu/(In+Ga) ratio (y) in Figure 2.2b. [Ga]/ [In] flux ratio is generally kept constant 

throughout the process. 

 

Figure 2.2: (a) Elemental flow of 3-stage process with time.  (b) Time evolution of Cu content 

inside grain, (Vertical axis) y is the Cu ratio, above and below y=1 line represents Cu rich and 

Cu poor respectively.  
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3-stage process may or may not involve temperature variation of substrate during the process, 

each case producing different thin film characteristics. 3-stage process gives rise to Ga 

grading along the depth which is particularly known to have beneficial effect on CIGSe cells. 

However ratio of Ga/In being constant throughout the process, Ga gradient is formed without 

any forced alterations in stoichiometry and is mostly believed to be due to the self-assembly 

of the system itself.  

In those structures, Ga content increases towards the back contact and near pn junction. This 

is illustrated in Fig 2.3a which represents Ga grading and a minimum of Ga content is found 

at around 100 nm from pn junction as illustrated in the concentration profile measured using 

APT (this work) in Figure 2.3a. This type of grading is called double grading.  

 

Figure 2.3: (a) APT depth profile of Ga ratio (x) versus depth up to 600 nm from hetero 

junction for CIGSe prepared using bithermal 3-stage (this work). (b) Energy band diagram 

comparison for graded (dash) and ungraded (straight) band gap CIGSe (source: [11]). An 

additional electric field ξA is created in QNR assisting in better charge separation in the region 

leading to reduced recombination in QNR. 

As the band gap of CIGSe depends on the x ratio ([Ga]/[In]+[Ga]) (see equation (1.8)), band 

gap is also graded respectively with Ga content [12]. Band gap grading helps in better 

collection of the charge carriers due to potential gradient formed in the Fermi energy band 

diagram as shown in Figure 2.3b. An additional electric field ξA is created in QNR assisting 

in better charge separation in the region, hence leading to reduced recombination in QNR. 

QNR is the recombination dominant region and a better separation in this region significantly 

improves the device performance. Improvement in quantum efficiency in high wavelength 

region is observed by Lundberg et.al [11] due to Ga grading in the cell.  
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b) CuPRO process 

Isothermal Copper Poor Rich Off (CuPRO) process developed by Kessler et.al [13] 

demonstrated unique process to synthesize CIGSe layer with no compositional gradient 

across or with depth in the film. As a major part of researches performed here deals with 

Atom Probe Tomography (APT) allowing analyses of a maximum volume of ~ 50×50×500 

nm
3
, it is crucial to ensure the homogeneity of the grain composition in order to have a better 

reproducibility of the results. A comparison of grain size is shown in cross section SEM 

image in Figure 2.4 for similar overall Ga content.  

 

Figure 2.4: (This work) Cross-section SEM image of CIGSe thin film on Mo coated glass 

substrate synthesized using (a) CuPRO process and (b) 3-stage process 

The process consist of constant temperature and constant flux of Se, In and Ga throughout the 

process. The only parameter that varies during the process is the flux of Cu. As the name 

suggests Cu flux is initially kept low then high then off (zero flux). Time evolution of 

CuPRO process is shown in Figure 2.5.  

1 µm(a) CuPRO (b) 3-Stage

CIGS
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Figure 2.5: Process flow with time for CuPRO process. Left axis represents temperature of 

respective element sources. 

Temperature of Se source is kept at 300°C and substrate temperature is maintained at 600°C 

throughout the process. As evaporation flux of elemental sources is proportional to their 

source temperature, flux of elements can be controlled by controlling respective source 

temperature. Flux of In, Ga is kept constant by keeping their respective sources at constant 

temperatures. Ga content can be changed for different cells by changing temperatures of Ga 

and In. Temperature of the Ga source vary from chamber temperature (meaning pure In 

sample) to 1130°C (meaning pure Ga sample). Similarly the temperature of In source is 

varied from chamber temperature (pure Ga sample) to 1020°C (pure In sample). Temperature 

of Cu source varied from 1240°C to 1300°C to 30°C (heating off) for all samples to maintain 

appropriate Cu flux. Total of 8 CIGSe cells were processed with this technique with different 

Ga concentrations by varying Ga/In elemental flux during co-evaporation including CuGaSe2 

and CuInSe2. 

However cells grown using this method do not present high efficient devices but results in 

homogenous grain composition and narrower grains.  

Both of the processes form absorber layer of 2 μm to 3 μm, and 3-stage process  produces 

more high efficient cells. In both of the above processes, end point detection (EPD) method 

by Kessler et.al [14] is used to recognize Cu poor – Cu rich – Cu poor transition. Emissivity 
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of the compound depends on its respective composition and at the point of transition (Cu 

poor to rich or vice versa), there is overall change in emissivity which can be determined by 

tracking the output power of substrate heater keeping the substrate at constant temperature. It 

can be noticed that both of the above processes starts and ends with Cu poor process with a 

Cu rich stage in between. The main reasons are:  

1) Cu poor (or no Cu) step in the beginning: To avoid formation of Cu2-xSe at the back 

contact and to assist formation of MoSe2.  

2) Cu rich step: Cu rich CIGSe is known to have large sized grains. Indeed, very small 

grains are not desired for thin film solar cells due to active recombination at GBs, we 

use a Cu rich step to increase grain size via recrystallization [15]. 

3) Cu poor (or off) step in end: To avoid the formation of a Cu rich CIGSe surface which 

might degrade the film surface because of air oxidation that may form copper oxides 

on surface.  

There are numerous possibilities to vary elemental fluxes during thin film preparation to form 

CIGSe but only certain strategies as discussed above provide high efficient cells. Both of the 

above described processes are essential in order to obtain desired composition profile.  

2.1.3 Deposition of CdS, ZnO layers and completion of cell 

The thin film deposition is followed by deposition of a buffer layer and a front surface and 

collection grids. Each plays an essential role for a better collection of charge carriers. 

a) CdS buffer layer deposition 

The formation of n-type semiconductor starts with deposition of Cadmium Sulphide (CdS). 

Various processes exist for CdS deposition. Here we use a chemical bath deposition which is 

also used in record efficient cells [7]. Chemical bath contained solutions of Cadmium acetate 

(0.0026M), thiourea SC(NH2)2 (0.095M) and ammonia (1M) mixed together to form CdS 

which was then deposited at 60°C for 7 minutes. Experimental set up is demonstrated in 

Figure 2.6.  
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Figure 2.6: Chemical bath deposition of CdS on CIGSe. Image Courtesy: Dr. N. Barreau 

CdS deposition forms the pn heterojunction with CIGSe and also acts as the buffer layer. 

Better lattice match [16,17] and higher band gap (2.4eV,  figure 1.6) is the main reason for 

using CdS as n type semiconductor. Also Cd diffusion in first few nanometers of top surface 

of CIGSe is evidenced by [16,18,19] and is known to have beneficial effect on photovoltaic 

performance of the cells. Reaction forming CdS from precursors can be described as: 

 

 Cd(NH3)4
2+ + SC(NH2)2 + 2OH− → CdS + CN2H2 + 4NH3 + 2H2O (2.1) 

 

There are also some issues with CdS layer. Indeed, since it absorbs some part of solar 

spectrum (wavelengths up to 516 nm), respective part of solar spectrum is not utilized and 

does not contribute towards output power. Also CdS is a highly toxic material and dangerous 

for health, hence search for a better alternative buffer layer is always required for CIGSe 

cells. In2S3 is an alternative but does not provide high efficient cells. A review of materials 

used as buffer layers for CIGSe is available in [20].  

b) ZnO window layer deposition 

ZnO is deposited on top of CdS layer and serves as a transparent front contact surface due to 

its transparency and high band gap (~3.3 – 3.8 eV). Sequencing of ZnO-CdS-CIGSe also 

favors band gap alignment for better photovoltaic performance (figure 1.6). ZnO is deposited 

Temperature Controller

Water bath
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using RF sputtering by using ZnO as target material. Ar
+ 

ions collides on target material 

under vacuum and deposits ZnO on top. 200nm to 500nm of ZnO is deposited on top and act 

as front surface. ZnO is the best material as window layer but is not very conductive to pass 

the current effectively.   

c) Formation of Ni/Al contact grids 

Efficient transport of minority carriers (electrons here) is very important for generation of 

output power and can be best achieved with metallic contacts. Current collection to external 

circuit is supported by deposition of Ni/Al metallic grids on front surface. Metal grid is 

opaque and absorbs almost all the wavelengths, hence it is suggested to use minimum surface 

area of grid with maximum carrier collection. Cells of area 0.5 cm
2 

were used in this work to 

obtain J-V and EQE measurements. As Ni forms good contact with ZnO, it is deposited first 

on top layer containing ZnO in finger shaped grids and followed by deposition of Al which is 

better in forming electrical contacts. Both Ni and Al are deposited using electron beam 

evaporation applying grid mask.  

To obtain characteristics of developed thin films some primary characterization techniques 

were employed and are described in next sections.  

2.2 X-Ray diffraction: Principles and limitations 

X-ray diffraction (XRD) works on the principle of scattering of x-rays from lattice planes of 

the material and is used to identify phases of crystalline and polycrystalline materials. Our 

main study is focused on chalcopyrite phase of polycrystalline CIGSe, and identification of 

desired phases could be confirmed using XRD. A schematic diagram of principle of XRD is 

shown in Figure 2.7. Beam of x-ray is scanned at different incoming angles and detector 

measures the scattered radiation. X-ray beam source used here is Cu-kα radiation whose 

wavelength (λ) is known and is equals to 0.1540 nm. At specific incident angles, maximum 

scattered intensity is observed due to constructive interference between scattered waves from 

different planes occurring at integral values of n.  
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Figure 2.7: Schematic diagram explaining physical principles of XRD.  

Using this phenomenon lattice spacing can be determined from Figure 2.7 and is known as 

Bragg’s law:  

 2𝑑𝑠𝑖𝑛(𝜃) = 𝑛𝜆 (2.2) 

Where, λ is the wavelength of incoming radiation, d is the spacing between diffracting 

planes, θ is the angle of incoming beam. As wavelength of incoming radiation is known, thus 

using equation (2.2) and angles at which maximum intensity is observed, lattice spacing “d” 

can be determined. XRD is used in the present work to characterize the chalcopyrite phase 

and lattice properties of CIGSe absorber layer for various Ga concentration. As study here 

mainly deals with chalcopyrite phase of different Ga content in CIGSe, it is crucial to confirm 

presence of same phase for all samples to be studied. Figure 2.8 shows a typical XRD pattern 

of a CIGSe sample deposited using CuPRO co-evaporation process on a Mo coated glass 

substrate. Main diffraction peaks of CIGSe detected are (112), (204/220), (116/312) and of 

Mo (110). This XRD pattern is shown for CuIn0.83Ga0.17 sample and results of other samples 

are discussed in next chapter.   
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Figure 2.8: XRD pattern of a CIGSe sample (x=0.17) deposited using co-evaporation process on 

a Mo coated glass substrate.  

To get further characteristics of the film, like surface texture, cross section of the thin films, 

GB distribution and density of CIGSe thin films, electron microscopy techniques were used 

and are detailed in the next section.  

2.3 Electron Microscope and components 

2.3.1 Scanning Electron Microscope: 

Electron microscope is used because optical microscope cannot resolve materials with size 

below diffraction limit. Indeed, considering a 550 nm green light wavelength (lower 

wavelengths are not visible in optical microscope), the lowest resolvable size is around 200 

nm. Due to shorter wavelengths of electrons (λ=h/mv) one can use electrons to obtain images 

with a sub-nanometer resolution. Scanning electron microscope (SEM) is a type of electron 

microscope which scans the surface of sample with a beam of electrons focused using 

electro-magnetic focusing lens as shown in Figure 2.9a. 
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Figure 2.9: (a) Schematic diagram of working of SEM (b) different rays and electrons produced 

after interaction of electrons and material’s surface. 

Figure 2.9b illustrates various phenomenon taking place upon interaction of electrons with a 

material. Formation of characteristic x-rays and ejection of secondary, Auger and 

backscattered electrons are because of interaction of electrons and material. First few 

nanometers of the sample surface produce Auger electrons; further few nanometers produce 

secondary electrons and are detected by electron detectors where image is processed and is 

the main detector of SEM. Backscattered electrons produce images using back scattered 

electron detector and may reveal grain size. Characteristic X-rays are produced from 1 to 3 

μm depth of the sample.  

2.3.2 Energy Dispersive X-ray spectroscopy (EDX) 

Characteristic X-ray is produced due to interaction of high energy incident electrons with 

atoms of the sample. As each element has different and unique atomic structure and orbitals, 

X-rays produced by each element will correspond to specific electron transitions. Typical 

electronic transitions in an atom are illustrated in Figure 2.10a. High energy incoming 

electrons kick-out electrons from the atom of the sample and are followed by subsequent 

transitions of electrons from higher energy shells to lower energy shells. Due to quantized 

energy of these shells (K, L, M..) only specific energy orbits are available. Hence for a 

typical atom Kα, K, Lα .. energy transitions are specific. Thus composition of different 

Sample

Focusing lens

Condenser 
lens

Electron 
source

Incident
electrons

Sample    surface

Auger e-Secondary e-

Backscattered e-

Characteristic X-ray

1-3μm

(a) (b)

e- detector



Chapter Two: Synthesis of Cu(In,Ga)Se2 Solar Cells and Methods of Characterization 

- 53 - 

 

 

elements can be measured using EDX spectrum by quantifying relative intensities of each 

elements present using any of the transition line.   

 

Figure 2.10: (a) Schematic atomic structure and possible transitions in a particular atom (b) a 

typical EDX spectrum of CIGSe, peaks originating due to different elements are illustrated. 

As different elements produce their specific characteristic peaks in x-ray spectrum, 

quantification and compositions of different elements present in the sample can be calculated 

using EDX. Here specific K lines are used to determine stoichiometry of CIGSe cell. Figure 

2.10b shows a typical EDX spectrum of CIGSe sample obtained in this work using INCA 

software installed in SEM/FIB - ZEISS-1530 XB. The final composition is calculated in 

atomic percent using the software and uncertainties also calculated by the software due to 

overlaps in peaks. Accurate compositions of respective elements are obtained using EDX 

within error limits calculated using the software which is given in Table 2-1. Eight different 

CIGSe samples were processed using CuPRO process with different Ga concentration. 

Compositions of respective elements of different samples as measured in this work by EDX 

are presented in Table 2-1. 
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Table 2-1: Compositions (in atomic %) of respective elements in CIGSe and Ga ratio x for 

different samples prepared. 

Sample# Cu (%) In (%) Ga (%) Se (%) 
x(Ga/In+Ga) 

(±0.10) 

1 24.8±0.9 26.5±1.3 0.0 48.3±1.4 0.00 

2 24.6±0.9 22.2±1.3 3.9±0.8 48.5±1.4 0.17 

3 24.8±0.8 17.5±1.0 9.9±0.8 47.8±1.4 0.39 

4 23.2±0.9 15.7±1.3 9.7±0.8 51.4±1.4 0.47 

5 23.4±0.9 14.6±1.3 11.1±0.8 51.0±1.4 0.56 

6 23.6±0.9 12.4±1.3 13.0±0.8 51.1±1.4 0.67 

7 24.5±0.9 4.5±1.0 20.7±1.0 50.3±1.4 0.84 

8 24.3±0.8 0.0 26.9±1.0 48.4±1.3 1.00 

2.3.3 Focused Ion Beam (FIB) 

FIB is generally equipped with SEM and is primarily used to sputter (or mill) the specimen, 

and to deposit materials at sub micrometer level. Here we use Zeiss FIB Nvision 40 equipped 

with a Kleindieck micromanipulator to make specific APT samples. FIB system makes use of 

Ga
+
 ions to physically ablate the material as shown in Figure 2.11. There are many reasons 

behind using Ga as the ion source such as: 

1) Low melting point (29.8°C): appropriate to work at room temperature 

2) Low volatility: promising longer source life 

3) Low surface free energy: better viscosity 

4) Excellent mechanical and electrical properties 

and many more useful properties of Ga  as described in the reference Giannuzzi et.al. [21]. 

Figure 2.11a shows direction of Ga ions relative to electrons. At cross-beam position iso-

position image can be obtained from both electrons and Ga ions and is located about 5 mm 

from pole piece for our instrument. Various currents and acceleration voltages are available 

to ablate the material accordingly. One example of selective sputtering using FIB to create 

CIGSe chunk is shown in Figure 2.11c. Higher currents ablate the specimen strongly and also 

form unwanted damages. These unwanted damages in the sample are apparent due to Ga 

contamination at high ion energy (30 kV, 6.5 nA).  
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Figure 2.11: Schematic diagram depicting (a) relative position of Ga ion source and electron 

source in SEM/FIB. (b) Various mechanisms upon interaction of high energy Ga ions with 

material. (c) CIGSe lamella prepared after sputtering surrounding region with Ga ions in FIB.  

Sample preparation techniques using FIB are discussed in later parts of this chapter. The 

instrument is also equipped with EBSD which is detailed in the next section. 

2.4 Electron Back Scattered Diffraction (EBSD) 

EBSD is a microstructural characterization technique used to study phase distribution, crystal 

orientation, defects of a crystalline or polycrystalline material. EBSD is a highly useful 

technique to characterize polycrystalline materials like CIGSe and can provide useful 

information like: crystallographic orientation of grains, misorientation between grains, grain 

size statistics, misorientation angle distribution, texture quality of different planes at 

micrometer levels. EBSD is used in this work to obtain grain size distribution, misorientation 
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between grains and to count number of GBs for CIGSe samples with different Ga 

concentration.  

2.4.1 EBSD technique: Experiments and Principles  

EBSD technique works on the principle of detection of Kikuchi lines and hence EBSP 

(Electron Back Scattered diffraction Pattern). An EBSP is created due to the interaction of 

high energy electrons (~20 kV) with specimen and is specific to respective crystal structure, 

crystal orientation, lattice parameters and composition. Kikuchi bands (pair of Kikuchi lines) 

are formed due to scattering of incoherent electrons from a sufficiently thick crystal material.  

As shown in Figure 2.12a, electrons from source are projected on a tilted specimen, due to 

presence of diffracting planes electrons are scattered and channeled systematically in forward 

direction depending on crystal structure of the specimen. Kikuchi patterns are detected on 

phosphorus screen on detector and are specific for every crystal structure. Pair of Kikuchi 

bands is also called EBSP. Image of an EBSP of CIGSe created with interaction of 20kV 

(accelerating voltage) electrons is shown in Figure 2.12a, revealing the Kikuchi lines. The 

latter are particular and fixed for a crystal system and hence can be used for indexing (Figure 

2.12b) and hence determining crystallographic system and orientation.  

 

Figure 2.12: (a) Schematic representation of formation of Kikuchi patterns when electrons are 

projected on diffracting planes (b) Kikuchi bands detected for CIGSe (c) indexing performed by 

the software  
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The experimental setup of EBSD instrument is shown in Figure 2.13. Experiment is generally 

performed in a SEM chamber equipped with EBSD detector. A view of the inside of the SEM 

chamber is shown in Figure 2.13b. Specimen is tilted at 70° with horizontal and is subjected 

to high energy electrons (20keV) from top as illustrated in Figure 2.13b.  

Oxford instrument’s AZtecHKL software is used to detect and index EBSP patterns produced 

by the sample an indexed EBSP is shown in Figure 2.12b. Electron beam is scanned over the 

surface of the specimen and subsequent EBSD pattern respective to points specified are 

imaged in the software. A particular grain gives the similar Kikuchi pattern and is changed 

when beam traverse from one grain to another grain. However at grain boundaries, Kikuchi 

pattern of two corresponding grains overlap and give a zero solution. Hence GBs are detected 

by lines containing zero solutions.  

 

Figure 2.13 (a) Schematic experimental setup for EBSD experiment (b) actual view inside the 

SEM chamber. 

EBSD is a very useful technique to obtain many statistics of a polycrystalline material; 

however it is unable to determine atomic distribution at grains or GBs. To obtain atomic 

distribution and atomic scale quantitative information we make use of atom probe 

tomography. 

2.5 Atom Probe Tomography 

Atom Probe Tomography (APT) is an instrument enabling analysis of materials at atomic 

scale. Using this technique, 3D visualization of atomic distribution, segregation and 

clustering of atoms, characterization of grain boundaries etc. at atomic level is now 

achievable. APT requires specimen in a sharp needle shape with an apex radius lower than 50 
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nm. The result of an analysis is the reconstruction in 3D of a volume up to 

50nm×50nm×200nm with atomic position and chemical identification.   

In 1935, E. Müller started to work on field electron emission microscope. In 1955 Field Ion 

Microscope (FIM) was developed demonstrating instrument’s capability to resolve single 

atoms. FIM uses imaging gas (H/He/Ne ..) to image surface atoms on the apex of the sample 

(with a tip shape). Individual atoms are seen in FIM but their chemical identity could not be 

known using this technique. It was later realized that by applying high enough voltage and 

creating electric field force at the surface may evaporate these surface atoms and project them 

onto detector. This phenomenon is due to evaporation of surface atoms due to applied DC 

voltage and can be activated by applying simultaneously voltage pulses or laser pulses. This 

technique of stimulated desorption of surface atoms is called field desorption microscopy 

(FDM). Inclusion of triggered field desorption enabled FDM combined with time of flight 

mass spectrometry, demonstrating its capability to identify elements present by measuring 

time of flight [22]. Cerezo et.al. [23] combined this technique with XY detection system, 

historically known as position sensitive atom probe to detect projection of evaportated atoms 

in XY dimensions. Later, third dimension calculations enabled reconstruction of data in three 

dimensions (XYZ) depicting 3D distribution of atoms at nanometer scale. 

APT was first used for metallic materials utilizing electrical pulses to trigger field 

evaporation. Femtosecond laser pulses were then used to analyse poor conducting materials 

like semiconductors and insulators using this technique [24].  

Herein, we use laser-assisted wide-angle tomographic atom probe (LAWATAP) [25] to 

perform analysis of CIGSe semiconductors. This section gives a brief introduction of the 

underlying principle, theories of field evaporation, sample preparation techniques, post 

analysis and functioning of laser assisted APT.  

2.5.1 Pulsed laser atom probe: Principles 

Atom Probe is an instrument which combines Field Desorption Microscope and time-of-

flight mass spectrometry with a position sensitive detector which provides a three 

dimensional reconstructed volume and identities of atoms present in the sample. A needle 

shaped fine tip of end radius <50nm is placed in an ultrahigh vacuum chamber (≈10
-10

 mBar) 

at 20K – 80K temperature. High positive voltage (V0 = 1 kV – 15 kV) is applied to the tip 

raising electric field up to 10
11

 V/m.  
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Voltage pulses or laser pulses (in this work) are now applied to the tip resulting in ejection of 

atoms in form of singly or multiply charged ions. Time of flight (Tof) is measured using the 

time difference between detection of ions at the microchannel plate and application of laser 

pulse. XY projection of atoms is detected on position sensitive detector as shown in Figure 

2.14. Position sensitive detection system used here is based on advanced delay line detection 

(ADLD) system developed by Da Costa et.al [26] to minimize multi hit detections. 

Atom by atom, layer by layers, the sample is evaporated and its constitutive elements 

detected on the detection system. GBs in CIGSe are decorated by planar segregation of Na 

atoms as depicted schematically in Figure 2.14. So atoms before, after and at GB are 

evaporated and detected respectively by detection system. 

 

Figure 2.14: Schematic diagram of a laseer assisted atom probe instrument (image not to scale) 

 At the end of analysis, data of each detected atom is saved, containing information of its 

evaporation voltage, Time of flight, XY spatial detection, number of detected ion. These 

informations are then used to reconstruct data in three dimensions using GPM3Dsoft software 

using protocols discussed in later sections. By selecting atomic peaks of Na (23 a.m.u.), GB 

can be identified by planar segregation of Na atoms in 3D volume.  

From sample preparation to APT analysis, various parameters are critical in order to obtain 

best quantitative results. All experiments performed here are carried out in laser assisted wide 

angle tomographic atom probe (LAWATAP). 

Vo : 0 - 14 kV

T : 50 K

+V

R < 50nm

Time (ns)

(Identity)
Space XY

(Position)

Microchannel

Plate

Laser Impulsions

Flight length 

(ns, 10 cm)

Mass spectra
= 0 to 15 kV

CIGSe

atoms

Na atoms

along GB

Se(tSe)

Cu(tCu)

65 70 75 80 85
10

1

10
2

10
3

10
4

C
o

u
n
ts

Mass to charge ratio

Cu Ga
Se

XY

Detector



Chapter Two: Synthesis of Cu(In,Ga)Se2 Solar Cells and Methods of Characterization 

- 60 - 

 

 

2.5.2 Theory of field evaporation 

Field evaporation is the underlying physical process operating in an atom probe. When atoms 

leave the surface in a single or multiple charge state under very intense electric field (around 

10-60 V/nm), the process is called field evaporation. Field at the surface of the tip apex 

depends on the applied voltage and shape and radius at tip apex. The Electric field (F) at the 

tip surface is given by: 

 
𝐹 =

𝑉0

𝑘𝑓𝑅
 (2.3) 

Where V0 is the voltage applied to the tip, R is the tip radius, kf is the field factor which 

accounts for tip shape (not perfectly hemispherical) and electrostatic environment around the 

tip [27] and varies linearly with the shank angle of the tip [28]. kf ranges from 2 to 8 [29]. 

Thus for very sharp tips (i.e. low R value) even few kV of voltage can produce a very high 

electric field. As CIGSe is a semiconductor, laser pulses are used to trigger field evaporation 

which is termed as laser assisted field evaporation. 

Laser assisted field evaporation 

Figure 2.15 shows different pulsing modes, i.e. one may increase field by tension pulses and 

the other one may increase temperature via laser pulses for successful field evaporation. 

 

Figure 2.15: Two different modes of pulsing (field and thermal) to trigger field evaporation. 

As the research here is focused on semiconductors, we discuss field evaporation mechanism 

triggered by laser pulses only. Laser pulses were first realized in 1970s to field evaporate 

specimens [31,32] and also semiconductors [33]. Potential energy diagram of ions are 
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modified under external electric field F making them more stable than atomic states in 

electric field. Field evaporation theories discussed in above section account activation energy 

“Qn” required for field evaporation in case of metal and is given by [34] : 

 𝑄𝑛 = 𝛬 + ∑ 𝐼𝑛 − 𝑛𝜑𝑒 − 𝑓(𝐹)

𝑛

 (2.4) 

Where Q = Desorption energy, Λ = sublimation energy, In= nth ionization energy, ϕ=work 

function, function f(F) is model specific. In metals, Fermi energy is very close to conduction 

electrons. Atoms at high electric field are subjected to laser pulses, laser energy is absorbed 

directly by electrons and subsequent relaxations to lattice atoms as thermal vibrations lead to 

successful ejection of surface atoms. Hence it is mostly believed that laser pulses act as pure 

thermal pulse to desorb atoms from surface of tip for metals [35, 36]. However in case of 

semiconductors Fermi energy level lies between valence band and conduction band, hence 

laser energy does not convert directly to thermal energy. Because of forbidden energy bands 

present in semiconductors, laser assisted field evaporation mechanism is more complicated 

when compared to metals [34]. Studies show that field evaporation of semiconductors 

depends strongly on band gap of material and properties of laser used. Previous studies were 

mostly based on Silicon due to its pure form, availability and large applications in 

photovoltaics and microelectronics industries. Different regimes of laser assisted field 

evaporation in silicon are summarized below [34].  

1) Photoionization regime 

Atoms residing on surface can absorb a photon to excite electrons from valence band to 

conduction band leading to eventual ionization. Hence surface atoms may evaporate by 

photoionization with evaporation rate proportional to ionization rate and hence laser intensity. 

Rate of evaporation was found linearly related to laser intensity for laser energy near to 

semiconductor’s band gap [37]. However for energies above band gap a non-linear behavior 

was observed by Kellogg and Tsong [35] which may be due to multi excitation process.  

2) Fast and slow evaporation regimes 

Thermally assisted field evaporation is shown to dominate over photoionization for high laser 

intensities [34]. For high laser intensities and high photon energy Si shows very fast 

evaporation and a slow evaporation due to delayed induction from rest of the tip. As shown in 
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Figure 2.16a changing wavelength does not affect the fast evaporation peak but duration of 

slow evaporation [38]. 

 

Figure 2.16: (a) Mass spectrum of Si
2+

 for different laser wavelengths source: [34] (b) Mass 

spectrum of Si
2+

 for IR laser at different laser intensities, Image courtesy: Ref. [38].  

Delayed (slow) evaporation is also observed at lower photon energies (than material’s direct 

band gap) and high laser intensities as shown in Figure 2.16b. This is mainly due to heating 

of tip far from tip apex and subsequent thermal induction towards apex after several 

nanoseconds. In a pulsed laser atom probe, thermal activation is the triggering process of 

field evaporation. High electric field and laser impulsions on the tip apex cause thermal 

agitation at the tip surface making them to vibrate and eventually leave the surface.  

Component of this vibration normal to the surface has a frequency ν, (ν0 ≈ 10
12

 to 10
13

 Hz 

and is temperature dependent [39] playing a significant role in field evaporation. Evaporation 

rate (Kn) is given as: 

 
𝐾𝑛 = 𝜈 ∙ 𝑒

−𝑄𝑛
𝑘𝐵𝑇  

(2.5) 

Where kB is the Boltzmann constant, Qn is the activation energy and T is temperature of the 

specimen. 

At present, direct calculation of evaporation rate from the specimen is not possible however 

we can measure detection rate in number of atoms per pulses. Detection rate ϕdetection is given 

by:  

 
𝜙𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 = 𝜂. 𝑁𝑎𝑡 . 𝑒

−𝑄(𝐹)
𝑘𝐵𝑇  

(2.6) 

Where, η is detection efficiency (0.63 for LAWATAP), Q(F) is the field dependent height 

barrier, Nat is the number of imaged surface atoms. From equation (2.5) and (2.6) we can 
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deduce that temperature and field dependent height barrier are key parameters deciding field 

evaporation. Higher temperature and low field barrier leads to increased evaporation. Thus 

parameters like temperature of the specimen, laser power must be optimized while 

performing atom probe experiment to obtain reliable results. Otherwise it may result in: 

Preferential retention or preferential evaporation as explained in Figure 2.17 for two different 

elements (A and B) with different evaporation fields (FA and FB) present in a sample. Black 

dots at point 1 and point 2 represent setting of field and temperature at which evaporation has 

to be controlled by controlling laser pulse. As laser pulse induce thermal impulsions it causes 

rise in temperature hence the arrows are shown horizontal. Traversing through right of the F-

T diagram leads to field evaporation of the respective specie. At point 1 none of the specie 

evaporates, after applying laser pulse it can be noticed that evaporation rate of B would be 

considerably higher than that of A leading to preferential retention of A. At point 2, field is 

high enough to evaporate specie B without laser impulsions which causes evaporation of 

specie B between laser pulses and hence is not controlled. This leads to underestimation of 

amount of specie B, this scenario is preferential evaporation of specie B. 

 

Figure 2.17: Electric field versus temperature (F-T) diagram for a compound having two 

elements A and B. ɸ1 and ɸ2 are evaporation rates of A and B. FA and FB represent evaporation 

field of A and B species. Two different scenarios are shown: 1: preferential retention of A and 2: 

preferential evaporation of B.  

Length of the arrow in Figure 2.17 is determined by laser power. To uniformly evaporate all 

species present in the sample, laser power and specimen temperature must be optimized.  
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Laser power and temperature are optimized for CIGSe to obtain uniform evaporation of all 

the specie present in CIGSe, which is described in next chapter.  

a) Identification of atoms: Mass-charge ratio 

One of the major features that distinguish APT from FIM is the calculation of mass to charge 

ratio using time-of-flight (t) mass spectrometry. Time-of-flight here is the time travelled by 

an ion from surface (at the application of laser pulse) of the tip to the micro-channel plates. 

The mass to charge ratio (m/n) can be calculated using energy conservation and assuming 

constant velocity throughout the course of travel. Potential energy of ion at the tip is 

converted to kinetic energy:  

 𝑚𝑣2

2⁄ = 𝑛𝑒(𝑉𝑑𝑐) (2.7) 

 𝑚

𝑛
= 2𝑒(𝑉𝑑𝑐) × (

𝑡

𝐿
)

2

 (2.8) 

Where m and n are the mass and ion charge state of the ion respectively, e is charge of single 

electron, L is the length of flight, Vdc is applied voltage and ν is velocity which is ratio of 

length of flight to time of flight.  

The above equation applies to atom probes utilizing laser pulse to field evaporate atoms. In 

case of electrical pulse atom probe, total V=Vdc +Vpulse where Vpulse is voltage due to 

electrical pulses. Here we use only equation (2.8) as we deal with laser pulses only to analyze 

semiconductors. Figure 2.18 represents a typical mass spectrum of CIGSe obtained after a 

successful APT analysis. As flight length is specific to atom probe and already known (in this 

case 10 cm) mass spectrum obtained only depends on time of flight of ions. As each of the 

elements (Cu, In, Ga, Se) have specific mass, time of flight of each element is different and 

specific following equation (2.8). As Cu has two isotopes with mass 63 a.m.u. and 65 a.m.u., 

peaks corresponding to 63 and 65 are visible in mass spectrum. In Figure 2.18 certain peaks 

are detected corresponding to multiply charged ions, that is n=2 following equation (2.8). 

Hence doubly charged Cu ions are detected at 31.5 and 32.5 respectively. Also certain 

elements may evaporate together from tip apex and appears in the mass spectrum as 

molecular ions. For example CuSe
+
 ions are detected at positions corresponding to sum of the 

masses of the two elements.  
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Figure 2.18: A typical mass spectrum of CIGSe (x=0.36). Left axis represents number of 

detected counts and bottom axis represents mass to charge ratio corresponding to detected ions. 

Chemical identity of ions detected corresponding to respective peaks is shown. 

b) Magnification in APT and Trajectory of ions 

To distinguish individual atoms it is necessary to magnify the surface of the specimen around 

million times, thus inventing an optical microscope of such capacity was impossible. Atoms 

are evaporated and XY position hits are recorded on detector. These hits on detector are their 

hit positions on detector and of course not the positions on the specimen itself. Hence 

determination of atomic distribution in the sample requires a projection formula using which 

we can back calculate the position of atoms from the XY distribution data obtained from the 

detector. A schematic diagram of ion trajectories during/after evaporation is shown in Figure 

2.19.  
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Figure 2.19: Schematic view of ion trajectory in an atom probe experiment. Image 

courtesy: Gault et.al. [40] 

As illustrated in the figure, the calculation of ion trajectories involves knowledge of the tip 

radius, distance between the tip and detector, curvature of tip. Red dot shown in the figure is 

the atom evaporated from the specimen tip surface at position (x’,y’) and detected on detector 

at position (x,y). Ɵ’ is the observed angle between the tip axis and the line joining (XD, YD) 

and (x’,y’), Ɵ is the angle between the tip axis and the line joining center of tip circle and 

(x’,y’). As can be seen from the figure, if we extrapolate the line joining (XD, YD ) and (x’,y’) 

to the tip axis, it intersects at point P which is the projection point and is same for all other 

trajectories. 

Using the point projection model, the compression factor and magnification can be calculated 

and are equal to [40]: 

 
𝜉 ≈

𝜃

𝜃′
 (2.9) 

 
𝑀𝑝𝑟𝑜𝑗 =

𝐷

𝑑
≈

𝐿

𝜉𝑅
=

𝐿

(𝑚 + 1)𝑅
 (2.10) 

Using this magnification formula, back calculation and distribution of atoms on the tip 

surface is possible. 
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c) Depth coordinates calculation:  

As APT tip is evaporated atom by atom, layer by layer, the surface of tip is continuously 

moved farther from detector. Third dimension of reconstruction use this evaporation 

sequence and assigns a depth z
(i)

 for the i
th

 detected ion which follows below relation: 

 𝑧(𝑖+1) = 𝑧(𝑖) + 𝑑𝑧 (2.8) 

Where dz is incremental shift and can be calculated using total analyzed volume which equals 

sum of individual volume (Ωi) of all ions. 

 

Figure 2.20: Depth coordinate model according to Bas et.al. protocol. Image courtesy Gault et.al 

[40]. 

dz can hence be calculated as: 

 
𝑑𝑧 =

𝛺

𝜂𝑤𝑣(𝑧)
 (2.9) 

Where η is the detection efficiency and Wv(z) is a function relating the increase in analyzed 

volume with depth and various methods are available calculating this function. Different 

approaches can be used to reconstruct volume in three dimensions which include: 1) Using 

SEM image of tip before analysis, 2) Using radius and shank angle of tip, 3) using EBeta value 

of material i.e. voltage required to maintain fixed flux at specific radius, 4) using Local 

magnification by known ratio (Mproj +1)/E. A summary of the latter can be found in ref. 29–

33. Thanks to GPM 3Dsoft reconstruction software which makes this tedious process quite 

easy and displays atomic distribution on the surface and also reconstructs it in third 

dimension depicting full information about the specimen.  
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Functioning of APT requires preparation of specimen in form of a very sharp tip which is of 

outmost importance since it defines the properties of the microscope. Hence specific 

procedures have been developed concerning sample preparation. 

2.5.3 Sample preparation techniques for atom probe: FIB lift out 

Electrochemical polishing is generally used for metallic specimens to chemically etch and 

sharpen tips. For semiconductors this method usually fails and we use FIB to prepare location 

specific atom probe tips. 

a) Standard lift out procedure 

Standard lift out technique is described in Miller et.al [46] using dual beam FIB. Using this 

technique tips are prepared perpendicular to the substrate as illustrated in Figure 2.21. This 

technique is best to analyze layers or interfaces parallel to substrate, for example CdS-CIGSe 

interfaces in this case. As grains of CIGSe are columnar in nature as shown in Figure 2.21, 

this technique is not the best to analyze GBs in this case. Preparing tips perpendicular to 

substrate reduce chance of observing GBs. Instead tips prepared in transverse direction i.e. 

parallel to substrate increase possibility to detect GBs because of columnar nature.  

 

Figure 2.21: (a) SEM cross section of CIGSe and approximate location of an APT tip for 

standard lift out method and for transverse method (b) An APT tip prepared by Std. lift-out 

b) Transverse lift out procedure 

Chance to detect GBs in atom probe is more in this case using transverse lift-out technique. 

GBs observed here are usually normal to analysis direction in APT due to columnar nature of 

1 μm(a) 200 nm(b)

Standard Transverse 
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grains. Also GBs normal to analysis direction is shown to give better results as studied by 

Blavette et.al [47]. Tips prepared using this method are prepared parallel to substrate and 

requires special preparation techniques described here. Figure 2.22 shows series of images 

captured during transverse lift out procedure and is explained using figure as follows: 

a) (SEM view) A thin Platinum (Pt) layer is deposited (15 μm × 2 μm) with Pt-carbon 

composite gas using GIS (gas injection system) on top of CIGSe at 30keV,150pA and 

milled sideways using high Ga currents (6.5nA 30keV), resulting in formation of 

CIGSe lamella. Bottom of the lamella is milled subsequently (Mo/glass substrate in 

this case) to detach from substrate. Right side of the lamella is milled as shown. 

b) (FIB view) micromanipulator is welded with Pt-carbon composite gas using GIS 

towards right side of lamella. Left side is now milled. CIGSe lamella is now only 

attached with micromanipulator and lifted upwards (downwards according to figure 

shown). In next step CIGSe material is removed from chamber and is replaced by 

chemically polished and sharpened Tungsten (W) tip in a horizontal SEM-tip holder. 

 

Figure 2.22: (a-g) SEM/FIB images captured during transverse lift-out. Scale bars in black are 

10 μm in width.  

c)  (FIB view) Apex of W tip is cleaned at some angles by milling at high Ga currents 

(6.5nA 30keV) up to 2μm width. W tips is then welded using Pt-C on left side and 3-5 
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μm of lamella is cut as shown in fig c resulting in formation of a chunk. Rest of the 

lamella may be used in repeating this process and making further chunks. 

d) (SEM view) Prepared chunk is positioned parallel to FIB gun. Different layers are 

identified in SEM due to difference in contrast as shown in fig d. Annular milling is 

then performed using feature mill option in FIB. Green circle in center of chunk 

represent approximate and desired region of interest of tip location. Chunk is milled 

annularly keeping green circle as center as shown. Initial steps involve higher probe 

current milling (30 keV, 700 pA). 

e) After first few steps of annular milling tip shapes in cone-cylindrical shape as shown 

in fig e. Probe current is now decreased in order to reduce Ga contamination from 

sideways. Choice of probe current during this step: 30keV, 10 pA to 150 pA. 

f) Steps of annular milling are stopped when apex radius is < 50 nm. As higher currents 

may have introduced Ga contamination final step involve cleaning of tip at low probe 

current and voltage (2keV 30 pA). 

g) Cleaning of tip also makes tip in conical shape as shown in figure. Tip is then 

transferred to APT chamber and is now ready to be analyzed in atom probe. Final 

SEM image of tip is saved and is very useful to reconstruct data in 3D during post 

analysis.  

Higher Ga currents used during tip preparation may also produce defects on tip, a typical case 

in CIGSe is formation of Cu agglomerates [48] due to reaction with Ga. Figure 2.23 

represents a case in this study illustrating formation of Cu agglomerates at higher Ga currents 

(30 kV, 700 pA) which is cleaned at low Ga currents (2kV, 30 pA) to minimize FIB 

contamination.  
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Figure 2.23: APT tip (a) before low Ga cleaning and (b) after low Ga cleaning (2kV, 30pA) 

While preparing tip for atom probe, most of the FIB contamination is apparently on the side 

surface of the tip, whereas analyzed volume in APT comes only from middle region of the tip 

thus avoiding a large part of contaminated region. However Ga contamination may still exist 

which is essential to be identified. As CIGSe contains Ga and also Ga ions are used in FIB 

during tip preparation, the presence of Ga in CIGSe makes it impossible to determine Ga 

contamination from FIB. Hence tip preparation process is first optimized for a NON Ga 

sample (CuInSe2).  

 

Figure 2.24: Reconstructed tip of CISe sample (left), and its mass spectra (right) showing mass 

range from 68 a.m.u. to 72 a.m.u. Ga atoms are shown blue in color and atomic counts in red 

region in mass spectrum correspond to background noise. 

Ga atoms distribution in a reconstructed tip is shown in Figure 2.24. Ga contamination is very 

less as compared to analyzed volume and is mainly concentrated on top and side surface of 

the tip which is not accounted during quantitative analysis in all measurements. For example, 

200 nm

(a) Before cleaning (b) After cleaning

Cu agglomerates
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selected red region does not contain any Ga atoms and atoms visible are just due to noise 

background.  

Conclusions 

This chapter detailed growth processes of CIGSe thin films and other required layers, which 

are important in obtaining desired composition, structure and other properties of thin films. 

Principles and working of different techniques used in this work are discussed. As research 

performed here mainly deals with APT, principle of this technique was described in more 

details here. Starting from basic principles and history of APT, some aspects of APT were 

given in this chapter including theories of field evaporation, 3D reconstruction and 

appropriate specimen preparing techniques. Optimization of parameters, data treatment and 

use of this technique for CIGSe is described in upcoming chapters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Two: Synthesis of Cu(In,Ga)Se2 Solar Cells and Methods of Characterization 

- 73 - 

 

 

References  

1.  R. A. Mickelsen and W. S. Chen, “Development of a 9. 4% efficient thin-film 

CuInSe//2/CdS solar cell,” in Proceedings of the 15th IEEE Photovoltaic Specialists 

Conference, pp. 800–804, 1981. 

2.  Liang H, Liu W, Lee S, Van Duren J, Franklin T, Patten M, Nijhawan S. High 

efficiency CIGSe solar cells by combinatorially sputtered Cu(In,Ga) followed by 

selenization. in 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), 003102–

003107. DOI: 10.1109/PVSC.2012.6318237 

3.  Kapur VK, Bansal A, Le P, Asensio OI. Non-vacuum processing of CuIn1−xGaxSe2 

solar cells on rigid and flexible substrates using nanoparticle precursor inks. Thin Solid 

Films 2003; 431–432: 53–57. DOI: 10.1016/S0040-6090(03)00253-0 

4.  Ma X, Liu D, Yang L, Zuo S, Zhou M. Molybdenum (Mo) back contacts for CIGS solar 

cells. in, 906814–906814–11. DOI: 10.1117/12.2053498 

5.  Wada T, Kohara N, Negami T, Nishitani M. Chemical and Structural Characterization 

of Cu(In,Ga)Se2/Mo Interface in Cu(In,Ga)Se2 Solar Cells. Jpn J Appl Phys 1996; 35: 

L1253. DOI: 10.1143/JJAP.35.L1253 

6.  Kohara N, Nishiwaki S, Hashimoto Y, Negami T, Wada T. Electrical properties of the 

Cu(In,Ga)Se2/ MoSe2/Mo structure. Solar Energy Materials and Solar Cells 2001; 67: 

209–215. DOI: 10.1016/S0927-0248(00)00283-X 

7.  Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier TM, Powalla M. 

Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. phys 

stat sol (RRL) 2015; 9: 28–31. DOI: 10.1002/pssr.201409520 

8.  Gabor AM, Tuttle JR, Albin DS, Contreras MA, Noufi R, Hermann AM. High‐
efficiency CuInxGa1−xSe2 solar cells made from (Inx,Ga1−x)2Se3 precursor films. 

Applied Physics Letters 1994; 65: 198–200. DOI: doi:10.1063/1.112670 

9.  Chirilă A, Reinhard P, Pianezzi F, Bloesch P, Uhl AR, Fella C, Kranz L, Keller D, 

Gretener C, Hagendorfer H, et al. Potassium-induced surface modification of 

Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nat Mater 2013; 12: 1107–1111. 

DOI: 10.1038/nmat3789 

10.  Herrmann D, Kratzert P, Weeke S, Zimmer M, Djordjevic-Reiss J, Hunger R, Lindberg 

P, Wallin E, Lundberg O, Stolt L. CIGS module manufacturing with high deposition 

rates and efficiencies. in Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th, 

2775–2777. DOI: 10.1109/PVSC.2014.6925505 

11.  Lundberg O, Edoff M, Stolt L. The effect of Ga-grading in CIGS thin film solar cells. 

Thin Solid Films 2005; 480–481: 520–525. DOI: 10.1016/j.tsf.2004.11.080 

12.  Wei S-H, Zunger A. Band offsets and optical bowings of chalcopyrites and Zn‐based II‐
VI alloys. Journal of Applied Physics 1995; 78: 3846–3856. DOI: doi:10.1063/1.359901 



Chapter Two: Synthesis of Cu(In,Ga)Se2 Solar Cells and Methods of Characterization 

- 74 - 

 

 

13.  Kessler J, Chityuttakan C, Lu J, Schöldström J, Stolt L. Cu(In,Ga)Se2 thin films grown 

with a Cu-poor/rich/poor sequence: growth model and structural considerations. 

Progress in Photovoltaics: Research and Applications 2003; 11: 319–331. DOI: 

10.1002/pip.495 

14.  Kessler J, Scholdstrom J, Stolt L. Rapid Cu(In,Ga)Se2 growth using “end point 

detection”. in Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists 

Conference, 2000, 509–512. DOI: 10.1109/PVSC.2000.915883 

15.  Barreau N, Painchaud T, Couzinié-Devy F, Arzel L, Kessler J. Recrystallization of 

CIGSe layers grown by three-step processes: A model based on grain boundary 

migration. Acta Materialia 2010; 58: 5572–5577. DOI: 10.1016/j.actamat.2010.06.025 

16.  Nakada T, Kunioka A. Direct evidence of Cd diffusion into Cu(In, Ga)Se2 thin films 

during chemical-bath deposition process of CdS films. Applied Physics Letters 1999; 

74: 2444–2446. DOI: 10.1063/1.123875 

17.  Nakada T. Nano-structural investigations on Cd-doping into Cu(In,Ga)Se2 thin films by 

chemical bath deposition process. Thin Solid Films 2000; 361–362: 346–352. DOI: 

10.1016/S0040-6090(99)00767-1 

18.  Hiepko K, Bastek J, Schlesiger R, Schmitz G, Wuerz R, Stolwijk NA. Diffusion and 

incorporation of Cd in solar-grade Cu(In,Ga)Se2 layers. Applied Physics Letters 2011; 

99: 234101. DOI: 10.1063/1.3665036 

19.  Cojocaru-Mirédin O, Choi P, Wuerz R, Raabe D. Atomic-scale characterization of the 

CdS/CuInSe2 interface in thin-film solar cells. Applied Physics Letters 2011; 98: 

103504–103504–3. DOI: doi:10.1063/1.3560308 

20.  Hariskos D, Spiering S, Powalla M. Buffer layers in Cu(In,Ga)Se2 solar cells and 

modules. Thin Solid Films 2005; 480–481: 99–109. DOI: 10.1016/j.tsf.2004.11.118 

21.  Giannuzzi LA, Stevie FA. Introduction to focused ion beams: instrumentation, theory, 

techniques, and practice. New York: Springer 2005; 

22.  Kelly TF, Miller MK. Atom probe tomography. Review of Scientific Instruments 2007; 

78: 031101–031101–20. DOI: doi:10.1063/1.2709758 

23.  Cerezo A, Godfrey TJ, Smith GDW. Application of a position‐sensitive detector to atom 

probe microanalysis. Review of Scientific Instruments 1988; 59: 862–866. DOI: 

10.1063/1.1139794 

24.  Oberdorfer C, Stender P, Reinke C, Schmitz G. Laser-Assisted Atom Probe 

Tomography of Oxide Materials. Microscopy and Microanalysis 2007; 13: 342–346. 

DOI: 10.1017/S1431927607070274 

25.  Deconihout B, Vurpillot F, Gault B, Da Costa G, Bouet M, Bostel A, Blavette D, Hideur 

A, Martel G, Brunel M. Toward a laser assisted wide-angle tomographic atom-probe. 

Surf Interface Anal 2007; 39: 278–282. DOI: 10.1002/sia.2491 



Chapter Two: Synthesis of Cu(In,Ga)Se2 Solar Cells and Methods of Characterization 

- 75 - 

 

 

26.  Da Costa G, Vurpillot F, Bostel A, Bouet M, Deconihout B. Design of a delay-line 

position-sensitive detector with improved performance. Review of Scientific Instruments 

2004; 76: 013304–013304–8. DOI: doi:10.1063/1.1829975 

27.  Gomer R, Swanson LW. Theory of Field Desorption. The Journal of Chemical Physics 

1963; 38: 1613–1629. DOI: doi:10.1063/1.1776932 

28.  Larson, D.J., Russell, K.F., Miller, M.K. Effect of specimen aspect ratio on the 

reconstruction of atom probe tomography data. Microscopy and Microanalysis 

1995;930–1. 

29.  Mulvey T. Atom Probe Field Ion Microscopy M K Miller, A Cerezo, M G Hetherington 

and G D W Smith. Measurement science & technology 1997; 8: 689. 

30.  Müller EW. Field Desorption. Phys Rev 1956; 102: 618–624. DOI: 

10.1103/PhysRev.102.618 

31.  Tsong TT, Block JH, Nagasaka M, Viswanathan B. Photon stimulated field ionization. 

The Journal of Chemical Physics 1976; 65: 2469–2470. DOI: doi:10.1063/1.433338 

32.  Nishigaki S, Drachsel W, Block JH. Photon-induced field ionization mass spectrometry 

of ethylene on silver. Surface Science 1979; 87: 389–409. DOI: 10.1016/0039-

6028(79)90537-5 

33.  Viswanathan B, Drachsel W, Block JH, Tsong TT. Photon enhanced field ionization on 

semiconductor surfaces. The Journal of Chemical Physics 1979; 70: 2582–2583. DOI: 

10.1063/1.437726 

34.  Vella A. On the interaction of an ultra-fast laser with a nanometric tip by laser assisted 

atom probe tomography: A review. Ultramicroscopy 2013; 132: 5–18. DOI: 

10.1016/j.ultramic.2013.05.016 

35.  Kellogg GL, Tsong TT. Pulsed‐laser atom‐probe field‐ion microscopy. Journal of 

Applied Physics 1980; 51: 1184–1193. DOI: doi:10.1063/1.327686 

36.  Lee MJG, Reifenberger R, Robins ES, Lindenmayr HG. Thermally enhanced field 

emission from a laser‐illuminated tungsten tip: temperature rise of tip. Journal of 

Applied Physics 1980; 51: 4996–5006. DOI: 10.1063/1.328379 

37.  Mazumder B, Vella A, Gilbert M, Deconihout B, Schmitz G. Reneutralization time of 

surface silicon ions on a field emitter. New Journal of Physics 2010; 12: 113029. DOI: 

10.1088/1367-2630/12/11/113029 

38.  Mazumder B, Vella A, Vurpillot F, Martel G, Deconihout B. Surface carrier 

recombination of a silicon tip under high electric field. Applied Physics Letters 2010; 

97: 073104–073104–3. DOI: doi:10.1063/1.3473816 

39.  Kellogg GL. Measurement of activation energies for field evaporation of tungsten ions 

as a function of electric field. Phys Rev B 1984; 29: 4304–4312. DOI: 

10.1103/PhysRevB.29.4304 



Chapter Two: Synthesis of Cu(In,Ga)Se2 Solar Cells and Methods of Characterization 

- 76 - 

 

 

40.  Gault B. Atom probe microscopy. New York: Springer 2012; Available at: 

http://dx.doi.org/10.1007/978-1-4614-3436-8 [Accessed August 20, 2013] 

41.  Gault B, Haley D, De Geuser F, Moody MP, Marquis EA, Larson DJ, Geiser BP. 

Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 2011; 

111: 448–457. DOI: 10.1016/j.ultramic.2010.11.016 

42.  Gault B, Moody M, Marquis EA, De Geuser F, Geiser BP, Larson DJ, Kelly TF, Ringer 

SP, Smith GDW. Tomographic Reconstruction in Atom Probe Microscopy: Past, 

Present... Future? Microscopy and Microanalysis 2009; 15: 10. DOI: 

10.1017/S1431927609092988 

43.  Vurpillot F, Gault B, Geiser BP, Larson DJ. Reconstructing atom probe data: A review. 

Ultramicroscopy 2013; DOI: 10.1016/j.ultramic.2013.03.010 

44.  Blavette D, Sarrau JM, Bostel A, Gallot J. Direction et distance d’analyse à la sonde 

atomique. Revue de Physique Appliquée 1982; 17: 435–440. DOI: 

10.1051/rphysap:01982001707043500 

45.  Bas P, Bostel A, Deconihout B, Blavette D. A general protocol for the reconstruction of 

3D atom probe data. Applied Surface Science 1995; 87–88: 298–304. DOI: 

10.1016/0169-4332(94)00561-3 

46.  Miller MK, Russell KF, Thompson GB. Strategies for fabricating atom probe specimens 

with a dual beam FIB. Ultramicroscopy 2005; 102: 287–298. DOI: 

10.1016/j.ultramic.2004.10.011 

47.  Blavette D, Duval P, Letellier L, Guttmann M. Atomic-scale APFIM and TEM 

investigation of grain boundary microchemistry in Astroloy nickel base superalloys. 

Acta Materialia 1996; 44: 4995–5005. DOI: 10.1016/S1359-6454(96)00087-0 

48.  Abou-Ras D, Marsen B, Rissom T, Frost F, Schulz H, Bauer F, Efimova V, Hoffmann 

V, Eicke A. Enhancements in specimen preparation of Cu(In,Ga)(S,Se)2 thin films. 

Micron 2012; 43: 470–474. DOI: 10.1016/j.micron.2011.11.004 

 

 

 

 

 

 

 

 



Chapter Three: Characterization of Cu(In,Ga)Se2 solar cells: Influence of Ga concentration 

- 77 - 

 

 

3 Chapter Three: Characterization of Cu(In,Ga)Se2 solar cells: 

Influence of Ga concentration 

Both experimental and theoretical explanations of changes in device performance due to Ga 

addition in CuInSe2 have been discussed in chapter 1. This chapter details our experimental 

research on the modifications in CIGSe microstructure and its performance with varying Ga 

concentration for cells prepared with CuPRO process. Electrical and microstructural 

characterization techniques discussed in the previous chapter are employed here to 

investigate modifications in CIGSe. Indeed, before moving on to atomic scale studies, it is 

important to know whether the desired CIGSe properties and composition, phase and 

structure are formed. In this chapter, we examine accurately the desired compositions, phase 

and grain structure of CIGSe. 

3.1 Device performance as a function of Ga content 

Due to modifications in the band gap value and other properties of CIGSe as a function of Ga 

content, variations in the device performance are expected. Variations in current voltage (J-

V) and External Quantum Efficiency (EQE) measurements as a function of Ga content are 

presented here. 

3.1.1 Current-Voltage measurements 

Eight CIGSe cells with different Ga ratios (x=0.00, 0.17, 0.39, 0.47, 0.56, 0.67, 0.84, 1.00) 

are prepared by controlling Ga/In flux during co-evaporation.  Compositions of CIGSe films 

were determined using EDX spectrum. Electrical measurements, J-V and EQE, were 

performed at IMN, University of Nantes under the supervision of Dr. Nicolas Barreau. J-V 

measurements were experimentally measured on cells at room temperature (25°C), with a cell 

surface area of 0.5 cm
2

 and under the AM 1.5G solar spectrum. J-V measurements for cells 

with different x values (Ga ratio, from zero up to one) are presented in Figure 3.1. These 

curves clearly follow the J(V) equation under light illumination. 

 
𝐽(𝑉) = 𝐽0. [exp (

𝑞𝑉

𝑛𝑘𝑇
) − 1] − 𝐽𝑝ℎ𝑜𝑡𝑜𝑛 (3.1) 

 J-V curves under light illumination vary significantly with light absorption properties of 

semiconductor. As discussed earlier, band gap strongly affects light absorption in 

semiconductor and is one of the important parameter to transform J-V curve via parameter 
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Jphoton. As illustrated in Figure 3.1, significant variation in J-V curves with different x values 

(Ga content) is observed which is mainly due to band gap modulation. Intercepts on Y-axis 

(J) are currents observed at zero biased voltage which is Jsc (short circuit current) and vary as 

a function of x as shown in figure. Intercepts on X-axis are voltage observed at zero current 

and is called open circuit current (Voc). From Figure 3.1 it can be noticed that up to x=0.47, 

Voc is increasing and saturates for x above 0.47. All the values of Jsc, Voc, FF (fill factor) and 

efficiency for different x values are summarized in Table 3-1. 

 

Figure 3.1: J-V curve for Cu(In1-xGax)Se2 cells with different Ga ratios 

Table 3-1: Representative photovoltaic parameters of prepared CIGSe cells with various Ga 

ratio ‘x’. 

x Eg (eV) Voc [mV] Jsc [mA/cm
2
] FF Efficiency [%] 

0.0 1.04 462 38.1 0.68 11.9 

0.17 1.11 581 34.9 0.72 14.6 

0.39 1.22 665 31.0 0.72 14.9 

0.47 1.28 720 27.8 0.73 14.5 

0.56 1.34 748 25.9 0.69 13.4 

0.67 1.40 750 21.0 0.70 11.0 

0.84 1.54 780 16.2 0.67 8.5 

1 1.67 734 11.8 0.67 5.8 
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Under ideal conditions of band gap modulation (i.e. varying only band gap with no change in 

materials properties), Jsc varies with Eg [1] according to following relation as discussed in 

Singh et.al [2]: 

 

𝐽𝑠𝑐 = 𝑞 ∫
𝑑𝑁𝑝ℎ

𝑑ℎ𝜈

∞

ℎ𝜈=𝐸𝑔

𝑑(ℎ𝜈) 
(3.2) 

Where Nph is the photon flux and depends on illuminated spectral conditions, ν is the 

frequency of light. Following equation (2.1), an increase in band gap would lead to a decrease 

in Jsc as increasing band gap reduces amount of absorbed photons resulting a linear decrease 

in Jsc with band gap. 

Figure 3.2 represents measured Jsc values as a function of x in CuIn1-xGaxSe2 compared with 

theoretical expectations [1]; A non-linear monotonic decrease in Jsc from x=0 to x=1 is 

observed which is consistent with equation (3.2). As experimental Jsc is consistent with 

theoretical expectations, we investigate next on variation in efficiency and Voc with Ga 

content. 

 

Figure 3.2: Variation of short circuit current (Jsc) as a function of Ga ratio ‘x’ in CuIn1-xGaxSe2 

as (a) measured in this work and (b) compared with theoretical calculations in ref. [1]. Top axis 

represents band gap values of respective CIGSe composition.  

The efficiency (η) can be extracted from J-V curve using equation (3.3) for various Ga 

concentrations, where JFVF represent current and voltage coordinate in JV curve 

corresponding to fill factor and Pin is input power equal to 100 mW/cm
2
. 

 
𝜂 =

𝐽𝐹𝑉𝐹

𝑃𝑖𝑛
 (3.3) 
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Variation of η as a function of band gap (Ga content) is plotted in Figure 3.3(a) obtained in 

this work for CIGSe samples and compared with theoretical expectations in Figure 3.3(b) 

from refs [1,3,4]. All three theoretical models presented in Figure 3.3(b) predict maximum 

efficiency for band gap (Eg) = 1.4 eV. However, experimentally observed efficiency of the 

device increases with band gap till Eg = 1.2 eV (x=0.4) and then a drop in efficiency is 

observed till Eg = 1.67 eV (x=1.0). Some changes at atomic or microstructural level are 

expected behind this deviation in observed efficiency. Study in this research is dedicated to 

explain possible reasons behind this deviation.    

 

Figure 3.3: (a) Efficiency obtained in this work as a function of band gap for CIGSe samples (b) 

theoretical calculations performed for calculation of efficiency as a function of band gap in refs. 

[1,3,4]. Highlighted region (green) indicate maximum efficiency theoretically predicted in all the 

models.  

Figure 3.4 represent efficiency of CIGSe for various band gaps (Ga ratio) obtained in this 

work (on CuPRO process synthesized samples) compared with observations made by other 

groups (3-stage processed samples) summarized in Contreras et.al [5]. Results obtained in 

this work are consistent with observations obtained by other groups and similar variations in 

efficiency are observed as a function of band gap. In all the cases, efficiency of the device 

increases with band gap till Eg ≈ 1.2-1.3 eV and then a drop in the efficiency is observed for 

wider band gaps. It can also be noted that efficiency observed in this work is relatively less 

when compared to other groups and is mainly due to CuPRO process employed in this work. 

CuPRO process produces CIGSe thin films with no Ga gradient and hence produces less 

efficient cells due to absence in electric field in QNR as described in chapter 2. Indeed, it is 

remarkable to note that the variation in efficiency as a function of band gap is not dependent 

on the synthesis process.  

Eg (eV)

E
ff
ic

ie
n

c
y
 (

%
)

(a) (b)

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

6

9

12

15

 

 

E
ff
ic

ie
n
cy

 (
%

)

E
g
 (eV)



Chapter Three: Characterization of Cu(In,Ga)Se2 solar cells: Influence of Ga concentration 

- 81 - 

 

 

 

Figure 3.4: Efficiency (η) versus band gap for CuPRO processed CIGSe samples studied in this 

work (red squares), and compared with results obtained by other groups (on 3-stage process 

samples). Highlighted regions (green) correspond to expected theoretical efficiency. Results 

from other groups are adapted from following refs. NREL-SCHOTT, [Contreras et al. 2005], 

IEC [Shafarman et al. 1996], [Hanket et al. 2009], ZSW [Jackson et al. 2011] [Jackson et al. 

2015], HZB [Eisenbarth et al. 2009], HZB [Merdes et al. 2011]. Refs: [5–11] 

As the variation of Jsc with x is consistent with theoretical expectations, reasons for the 

decrease in efficiency are expected to be due to limitations in VOC. VOC varies with Eg as:  

 
𝑉𝑜𝑐 =

𝐸𝑔

𝑞
−

𝑛𝑘𝑇

𝑞
ln (

𝐽𝑠𝑐

𝐽0
) (3.4) 

Figure 3.5 represents the observed variation in VOC as a function of the Ga content (x) and is 

compared to the theoretical expectations developed for band gap increment according to 

equation (3.4). Here, assumptions for theoretical curve are: ideal pn junction with ideality 

factor n=1, 25°C temperature (kT= 25meV), n=1. Variation in VOC for low x values follows 

expectations (blue dot) and increases with x till x=0.4. However after this threshold value, 

VOC deviates from the theoretical curve and saturates for high ‘x’ values. For x=0.67, 

deviation in Voc from theory is 136 mV and the deviation increases till 400 mV for x=1.0.  
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Figure 3.5: Theoretical Voc (blue) and Observed Voc (red) versus Ga ratio ‘x’ in CuIn1-xGaxSe2. 

Line at x=0.4 represent emergence of deviation of observed Voc from theoretical calculations. 

It is satisfying to note that variation in VOC observed here as a function of x is consistent with 

findings observed by other groups as represented in Figure 3.6. Figure 3.6 represents 

variation of Voc as a function of band gap measured in references [5–11] on 3-stage processed 

CIGSe samples. CuPRO process has been used in present work and shows consistency with 

results obtained by other groups. An apparent behavior of Voc with band gap is shown in the 

figure which shows deviation in Voc after band gap ≈1.28 eV. It can be observed that 

regardless of the deposition processes used, Voc deviates after this band gap. These 

deviations from theoretical predictions must be due to changes in microstructure, grains, 

grain boundaries, interfaces or other factors.  
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Figure 3.6: Voc as a function of band gap measured in this work (red square) from CuPRO 

processed samples is compared with results obtained by other groups on 3-stage process. 

Apparent pattern of Voc is a guide for eye. Data adapted from Contreras et.al [5]. Results from 

other groups are adapted from following refs. NREL-SCHOTT, [Contreras et al. 2005], IEC 

[Shafarman et al. 1996], [Hanket et al. 2009], ZSW [Jackson et al. 2011] [Jackson et al. 2015], 

HZB [Eisenbarth et al. 2009], HZB [Merdes et al. 2011]. Refs: [5–11] 

These results presented here are performed on AM 1.5G incoming radiation consisting of 

majority of all wavelengths received on earth’s atmosphere. However understanding the cell 

performance at specific wavelengths could be beneficial in order to improve cells by 

measuring their quantum efficiency. This will be discussed in the next section. 

3.1.2 External Quantum Efficiency 

As Ga addition in CuInSe2 induces significant changes in band gap, major changes in QE are 

expected. EQE is measured for CIGSe cells with different x and is presented in Figure 3.7. 

As solar cells do not absorb incoming radiations with energy below optical band gap of its 

respective semiconductor, EQE of CIGSe with different ‘x’ would be significantly different 

due to variation in their band gap. Poor EQE in ultra-violet region is due to absorption 

followed by strong recombination in ZnO front layer. In the visible region at wavelengths 

around 512 nm, a small hump is observed which correspond to CdS band gap (2.42 eV) and 

indicates maximum absorption in CdS layer in this regime. Due to the increase in band gap 

from x=0 (1.04 eV) to x=1 (1.67 eV), tail of the EQE curve is blue shifted with increasing x 

as expected. In visible wavelength region from 500 nm to 700 nm, Ga poor cells have high 
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EQE (close to 0.90), representing better conversion efficiency of Ga poor cells within their 

respective domains of band gap. In ideal case of band gap modulation (i.e. change in band 

gap with no change in other parameters of the material), the region within domain of absorber 

band gaps must provide high QE even for Ga rich cells.  

As can be noticed from Figure 3.7, a systematic decline in EQE is observed as a function of x 

for high Ga samples, i.e. a significant decrease in QE is observed for cells with x above 0.5, 

which means increased recombination of electrons and holes in CIGSe for Ga rich cells. 

 

Figure 3.7: External Quantum efficiency for Cu(In1-xGaxSe2) cells with different x (Ga ratio), 

small arrows on each curve indicate their respective band gap values which are listed on right.  

For example, considering EQE curve for x=1.0 having band gap Eg=1.67ev (λ=742nm), EQE 

is less than 0.7 between wavelengths 520 nm (above CdS) and 742 nm. However Ga poor 

cells exhibited high EQE (≈0.9) demonstrating lower ‘photon to carrier conversion’ for Ga 

rich CIGSe cells. It can be noticed that decline in EQE in wavelength region 520 nm to 742 

nm is observed for x higher than 0.5 which explains degradation in J-V curve for Ga rich 

cells. 

Hence it is important to investigate changes in the material at atomic and microstructural 

level to identify factors limiting the efficiency and performance of the cells, finding which 

one can enhance and improve cells. Deviation in device performance may arise from 

formation of undesired phase in thin films. Hence we use XRD to confirm formation of same 

phase for cells prepared with various Ga contents. 
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3.2 X-Ray diffraction studies for different x in CuIn1-xGaxSe2 

XRD measurements are used to identify the formation of desired phases, as the presence of 

an undesired phase may change properties of CIGSe. XRD measurements were performed on 

all CIGSe cells using X-rays produced by Cu Kα radiation (wavelength=0.15406 nm) at 

atmospheric pressure and room temperature. Samples were scanned from θ to 2θ angles 

(Bragg mode) and patterns from 2θ = 25° to 55° are shown for five CIGSe samples to 

demonstrate evident trend in XRD spectrum in Figure 3.8a. for Ga ratios x=0, 0.17, 0.39, 

0.84, 1.0 processed using CuPRO method.  Major peaks corresponding to different atomic 

planes are shown in the figure and peaks corresponding to lattice planes identified are [112], 

[211], [204]-[220], [116]-[312].  

Peaks at 40.4 degrees are observed for all cells which correspond to Mo back contact and is 

obviously same for all cells as similar conditions were used to deposit Mo on glass substrate 

to serve as back contact. A systematic shift of [112] peak and [204] [220] doublet peak 

towards higher angles is observed for higher ‘x’ samples. This mainly arises due to change in 

relative Ga content. Indeed peaks are shifted towards higher angles due to the decrease in 

lattice constants with Ga content following Bragg’s law (equation 2.1). As atomic radius of 

Ga is smaller than In, Ga rich cells have lower values of lattice constant, hence lattice spacing 

is reduced in Ga rich samples leading to diffraction peak shift towards higher angles. 

Figure 3.8b represents a typical XRD pattern obtained by Kodigala et.al [12] for CIGSe 

samples with x=0.0 and x=0.25 prepared using 3-stage co-evaporation process. XRD 

diffraction diagram observed here are compared with results from Kodigala et.al [12] . In this 

work they show that samples are formed of a single chalcopyrite phase. It can be noticed 

from XRD patterns of different samples that a single chalcopyrite CIGSe phase exists for all 

samples with their respective overall composition. 
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Figure 3.8: (a) XRD spectra obtained in this work for CuPRO process synthesized samples. (b) 

XRD spectra of CIGSe for x=0.0 and x=0.25 (Image courtesy: Kodigala et.al [12])  

Figure 3.9a represents the ratio of [112] / [220][204] peak intensities observed for different 

‘x’ values in CIGSe. As can be noted from Figure 3.8 and Figure 3.9a, CIGSe cells 

demonstrate strong [112] texture (selective crystallographic orientation) for cells under x=0.3 

(Ga poor). Figure 3.9b represents FWHM (Full Width at Half maximum) of [112] peak for 

different Ga contents. FWHM for CIS and CGS samples (i.e. at x=0 and x=1) is minimum 

and is equal to instrumental width of XRD (width below this is not measureable in the 

instrument). Broadening of peak is more pronounced for middle values of x as compared to 

extreme points (x=0 or 1). This is attributed to higher quality of CuInSe2 and CuGaSe2 phase 

and chemical inhomogeneity in quaternary compounds [13].  
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Figure 3.9: Comparison of (a) Integrated Intensity ratio of 112 peak and doublet 220/204 peaks 

and (b) FWHM (in degrees) of 112 peak for different Ga content x. 

Although CuPRO process is used in this work, XRD spectrum shows the formation of the 

desired chalcopyrite phase of CIGSe. Indeed, our results match considerably well with results 

obtained in previous years as described in Figure 3.8a [12]. From results discussed above, 

XRD patterns hence confirm the formation of a solid solution composed of a single 

chalcopyrite phase throughout the layer. XRD provided information about crystal lattice and 

phase; to have an actual insight of a material at micrometer level SEM analyses were 

performed.  

3.3 SEM cross-section analysis  

SEM cross section analysis is performed here to identify the grain size distribution with 

depth. Before analyzing at atomic scale it is important to know approximate expectancy of 

analyzing GB in atom probe. APT’s detection limit is within 1μm in analysis direction, which 

is actually very rare and in a successful analysis of CIGSe tip one usually obtains a typical 

atomic volume of 40×40×200 nm
3 

(on the average in the present study) for around 17 million 

detected ions. Hence smaller grains are preferred, usually less than 1μm to increase chance 

and to analyze more GBs. In worst case not even one GB is detected even with 50 million 

detected atoms. Hence for higher grain sizes it is thus recommended to perform correlative 

EBSD-APT or correlative TEM-APT on side of the APT sample (tip) to know the location of 

the GB. Knowing the position of GB on tip, one can sputter the tip at low energy of Ga
+
 ions 

in FIB to localize GB within few nanometers from tip apex. EBSD/TEM analysis involve 

projection of high energy electrons (>20 kV) for some time on tip surface which usually 
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contaminates the surface of the tip and may even make the tip brittle for APT analysis. 

Correlative EBSD-APT experiments were performed on some tips which resulted in tip 

rupture after few minutes of experiment which might happen due to tip embrittlement while 

performing EBSD on 100 nanometer thick tip at high voltages. Hence, correlative EBSD-

APT experiments were not performed in this work. This is an apparent observation and no 

detailed study of this behavior has yet been performed. As Na atoms accumulate on GBs, GB 

identification in this work was based on detection of planar segregation of Na atoms.  

CIGSe solar cells were mechanically cleaved at representative regions using diamond pen 

glass cutter. Grains of the thin films are thus expected to cleave without dissection (breaking 

of a grain in two). Cross sections of thin films can now be scanned using secondary electron 

detectors in SEM by placing substrate parallel to the electron gun. Figure 3.10 shows the 

microstructure of grains in CIGSe for different Ga concentrations grown using CuPRO 

process.  

The following conclusions can be drawn from Figure 3.10: 

1) CIGSe grains are narrow and columnar in nature regardless of Ga concentration. This 

means grains are longer in depth as compared to width and hence size of grains with 

depth are referred to grain length. This is due to the CuPRO process used in this work 

in order to improve the chance of localizing GB in APT tip. 

2) Grain length observed is maximum for x=0.17 (1.5 μm), however it is also found in 

ref. [14] that maximum grain length for CIGSe correspond to x=0.23 for 3-stage 

process. It may be the same for the CuPRO process and the maximum may be 

between x = 0.17 and x = 0.39. No samples were prepared between these two values 

of x so we do not know the exact Ga ratio corresponding to maximum grain length. 

3) Grain length decreased with Ga content after x=0.17 (1.5 μm) and minimum grain 

size (0.3 μm) is observed for CuGaSe2. 

4) Homogenous grain size distribution along the depth of the film for these samples is 

observed. This is apparently due to the absence of Ga grading.  
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Figure 3.10: SEM cross section images of CIGSe with different Ga ratios x as noted on top left 

corner of each cells. Scale bars (black) are 1μm in width. 

Cross section SEM provided a good idea of grain distribution as a function of depth but could 

not give sufficient quantitative statistics of grain distribution laterally to substrate. To analyze 

distribution of grains on surface and to obtain more statistical information on grain size and 

misorientation between grains we perform (Electron Back Scatter Diffraction) EBSD 

analysis.  

0.0 

0.56 0.67

0.84

0.17

0.470.39

1 



Chapter Three: Characterization of Cu(In,Ga)Se2 solar cells: Influence of Ga concentration 

- 90 - 

 

 

3.4 Microstructural characterization of grains in CIGSe using 

EBSD 

Transmission Electron Microscopy (TEM) analysis can be used to identify grain orientation 

and to calculate misorientation between two grains. Statistically TEM is not good in this 

aspect and is limited to analyze only a small part of the thin film. Additionally specimen 

preparation for TEM is time consuming. SEM analyses as shown in the previous section, 

show the grain shape and size distribution along the cross section of the sample. However it 

could not provide orientation of grains and misorientation profile between different grains. 

EBSD is one of the best techniques to characterize polycrystalline materials providing 

distribution of grain size, GB misorientation profiles etc. with relatively sufficient statistics.  

3.4.1 In-situ sample preparation techniques for EBSD 

As EBSD technique works on detection of Kikuchi patterns formed by forward scattered 

electrons. The surface of the sample needs to be very smooth at nanometer level. However 

surface of CIGSe is very rough as shown in Figure 3.11a. Thus some in-situ techniques are 

employed to smoothen the surface. Smoothening of CIGSe surface was carried out in 

NVision40 SEM/FIB chamber using a technique developed for this work and Figure 3.11 

shows series of different SEM images captured during sample preparation.  

(a) Shows very rough surface of top layer of CIGSe solar cell (ZnO) which is highly 

inappropriate for EBSD measurements, also this layer needs to be removed to reveal pure 

CIGSe part  

(b) A representative part of sample is chosen and using mechanical cutting we locate it near 

to the edge of the SEM stub. As illustrated in Figure 3.11b, 15-25 μm width of sample are 

milled using high currents (30keV 11 nA) in FIB by positioning sample normal to the FIB 

column. (c) Sample is positioned now parallel to FIB column and around 300-500 nm from 

top surface is milled using high currents (30keV 6.5nA) and then cleaned using low currents 

(30keV 0.15nA) to avoid formation of Cu droplets on the surface. Image shows very smooth 

surface appropriate for EBSD measurements, also it is evident that only 10-15 % of CIGSe 

top surface is removed. However some curtailing lines are visible in figure (c) which is 

produced due to FIB milling on surface. Presence of these curtailing lines may not give the 

best results but EBSD experiments show very little difference due to these thin lines. Thick 
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curtailing lines do not provide promising results due to irregular scattering of electrons from 

rough surface. 

(d) Shows SEM/EBSD image after a successful EBSD analysis. This image is just to 

demonstrate the good capability of our applied technique.  

 

Figure 3.11: SEM images after different steps during sample preparation (a) surface SEM 

image of CIGSe, (b) edge cleaned using FIB, (c) around 200 nm surface cleaned using FIB for 

(d) successful EBSD experiment. Scale bars (black) shown are 2μm in length.  

Space-charge region (SCR) of CIGSe solar cells is in the first 500 – 800 nm below the CdS-

CIGSe heterojunction. Hence first half of grain statistics is more important and critical factor 

in deciding fate of device’s performance. Therefore in this work we cleaned up to 300 nm 

from CdS-CIGSe junction in order to perform EBSD in SCR. Hence all the EBSD 

measurements in this work are performed in direction parallel to substrate. 

3.4.2 Optimizations and corrections in EBSD 

Oxford instrument’s AZtecHKL software is used here to perform continuous detection and 

indexing of EBSPs for CuInSe2 tetragonal system with lattice constants: a=5.78 c= 11.61. 

(a) (b)

(c)(d)
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Specimen was titled on a horizontal SEM holder at 70°. Secondary electron imaging mode 

was used for EBSD analysis at 20 kV (Extra High Tension) voltage. 2×2 binning mode is 

used during analysis with 43 milli-second exposure time, automatic background corrections 

and static background corrections were performed to better resolve EBSPs. As grain sizes 

(diameter) of CIGSe is particularly small (0.3μm to 3μm as seen in SEM), we choose small 

area and small point to point scanning distance for appropriate results. Scanning area chosen 

is from 100 μm
2 

to 300 μm
2
, point to point scanning distance is kept 50 nm as also suggested 

in ref. [15] for CIGSe.  

 

Post processing 

Data obtained after analysis is in OIP (Oxford software) format and is converted to CPR 

(channel project report) format which is compatible to CHANNEL 5 post processing 

software. Due to poor indexing and/or low quality of EBSPs, noise appears as a form of 

clustered unidentified pixels which couldn’t be identified by the software. By ‘extrapolating 

zero solutions’ option, unidentified pixels (black) are filled with information of their 

neighboring pixels and thus performs noise correction as shown in Figure 3.12. A tetragonal 

CIGSe unit cell can be considered as composite of two sphalerite structures as discussed in 

section 1.3.1. Hence c/a ratio deviates from 2 which is attributed as pseudosymmetry [16]. 

Hence pseudosymmetry is an important issue to be considered while quantifying grains and 

grain boundaries statistics. This issue has been accounted by correcting the inappropriate 

indexing performed by the software. Pseudosymmetric issues in EBSD were found for 

various axes and were removed by disregarding them up to a maximum deviation of 5 

degrees. An example is shown in Figure 3.12 where mis-indexed pixels in the grains are 

corrected by performing pseudosymmetric correction.  
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Figure 3.12: Image obtained after EBSD analysis of CIGSe sample, (a) Before pseudosymmetric 

and noise correction (b) after pseudosymmetric and noise correction. 

Neglection of pseudosymmetric correction may consider collection of few misinterpreted 

points as different grains. Hence pseudosymmetric corrections are essential to obtain accurate 

grain size distribution. 

3.4.3 Grain size distribution  

Figure 3.13 shows the distribution of grains and their orientation relationship for different Ga 

ratio in CIGSe. Scanning area chosen for EBSD analysis was within 150 μm
2 

to 300 μm
2
 

however only ≈150 μm
2
 area is shown in Figure 3.13 in order to compare grain size 

distribution from different samples. In order to get a quantitative idea of grain size variation 

we analyze only five samples of CIGSe including extreme concentrations (x=0, 1) in order to 

observe changes in microstructure with Ga ratio. As depicted from Figure 3.13, grain shapes 

and size of CIGSe are homogenously distributed for all samples with their respective Ga 

ratios. However significant changes in size and orientation of grains are evident while 

comparing different Ga content samples.  

(112) oriented grains are shown in magenta and (220) oriented grains are shown in blue color. 

It can be noticed that orientations of grains are not randomly distributed rather they show a 

more (112) texture for Ga poor samples. EBSD results are found consistent with XRD 

measurements as grain orientation along (112) is strongly enhanced for Ga poor cells and 

(220) orientation is enhanced in Ga rich cells as marked in EBSD maps by blue color. 

(a) Before correction (b) After correction
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Figure 3.13: Orientation distribution maps (Inverse pole figure color maps) combined with back 

contrast image of CIGSe with different Ga contents grown using CuPRO process, scale bars (in 

black color) is 5μm in width. Color legend is shown for reference.  

Grain distribution maps shown in Figure 3.13 are scanned over cleaned surface of CIGSe 

(50-200 nm from CdS) which correspond to space charge region of CIGSe solar cell. Hence 

distribution of grains in this region matters most for device performance. The size of grain 

here is determined by calculating the diameter of a disk whose area is equivalent to that of the 

grain. Grain size here is represented for width of the grain in direction parallel to substrate 

(not to be confused with grain length which is used previously for length of grain along cross 

section). While quantifying size distribution, it is important to obtain statistics with minimum 

possible errors. Experimental parameters for EBSD used in study are discussed in chapter 2 

where we used 50 nm point to point distances. As discussed in Refs. [15,17], to obtain 

accurate results, one must consider the least accountable area of atleast ten measuring points. 

As point to point distance is 50 nm, area containing ten measuring points is around 0.025 μm
2
 

corresponding to diameter (or grain size) of about 0.16 μm. Hence to have accurate results 

only grains with size greater than 0.16 μm are considered in this study. Grain size distribution 

of CIGSe for different samples is shown in Figure 3.14 illustrating systematic distribution 

and variation in grain size of CIGSe as a function of Ga content. Maximum average grain 

size is observed for x=0.39 and minimum is observed for x=1 (CuGaSe2). Our results are 

consistent with cross-sectional EBSD analysis performed by Abou-Ras et.al [14] who also 

observed minimum grain size for x=1 and maximum for x=0.23. However we observed 

x=0 x=0.39

x=0.67

x=0.47

x=1.0

Legend

112
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maximum average grain size for x=0.39 and following the distribution (Figure 3.14f) the 

actual maximum may be anywhere between x= 0 and x= 0.47.  

 

Figure 3.14: (a-e) Grain size  distribution of CIGSe for different Ga concentration, (f) Mean 

grain size Vs Ga content x.  

Apparently it seems that grain size follow close correlation with efficiency; however it has 

been demonstrated in Figure 3.15 from ref. [14] that the maximum grain size does not 

coincide with cell of maximum efficiency. Figure 3.15 shows that the maximum efficiency of 

CIGSe film is observed for 0.6 μm grain size and a sharp decrease in efficiency is apparent 

for grain sizes below 0.45 μm. As discussed earlier we expected maximum efficiency around 

x=0.7 and EBSD results show that grain size for x=0.67 is 0.5 μm which suggests decreased 

efficiency is not due to grain size. 

Also recent studies by Jackson et.al. [18] presented very low or minimum effects of grain size 

on preparation of high efficiency Cu(In,Ga)Se2 solar cells for Ga poor compounds. Hence 

less effect of grain size is expected on device performance, provided the grain size is not very 

small (< 0.45 μm).  
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Figure 3.15: Solar cell efficiency for different grain size of CuIn1-xGaxSe2. Image reference: 

Abou-Ras et.al [14] compared with results in this work (blue dots). 

As illustrated in Figure 3.14f, average grain size distribution follows a pattern similar to 

efficiency where maximum is approximately from x=0.2 to x=0.4. As already discussed in 

Chapter 1 about beneficial effects of GBs in CIGSe, such as existence of Cu-poor GBs acting 

as hole barrier, a decrease in grain size to some extent (up to 0.5 μm) must improve device 

quality accounting diffusion length of minority carriers in CIGSe (≈ 0.4 μm). Hence 

considering appropriate grain size and optimum band gap, one would expect highest 

efficiency for x=0.7 provided there is no element/phase change in the grains or at GBs with 

Ga content.  

EBSD and XRD studies revealed there is no major change in phase of the grains. Hence 

reasons for this drop in efficiency is maybe due to one or more of the following reasons: 

1. Elemental or phase changes at GBs from Ga poor to Ga rich cells. 

2. Change in defect physics of CIGSe. 

3. Change in interfacial chemistry of CdS-CIGSe heterojunction from Ga poor to Ga 

rich cells. 

4. Change in interfacial chemistry of CIGSe-Mo from Ga poor to Ga rich cells which 

may decimate MoSe2 formation. 

Contreras et.al [5] observed changes in electrical properties of grains with Ga content and 

hence suggested that during transition from Ga poor to Ga rich CIGSe a change in GBs must 

be the origin of degraded performance of Ga rich CIGSe.  
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3.4.4 Misorientation between grains 

Interface or boundary between two adjacent grains or crystallites is called a grain boundary. 

Grain boundaries are mostly referred to as defects in the material and are expected to degrade 

electrical properties of a semiconductor. Different grains in a polycrystalline material have 

their respective grain (crystal) orientation. The rotation required to rotate crystal axes of grain 

1 to match that of grain 2 keeping reference frame fixed is called the misorientation between 

these two grains. A schematic interpretation of grains separated by grain boundaries is shown 

in Figure 3.16. In other words misorientation between two grains is the difference in their 

respective crystallographic orientation [19].  

 

Figure 3.16: Schematic representation of a typical grain boundary. Image courtesy: [20] 

There are various types of GBs separating two grains. GBs having misorientation angle lower 

than 15° are classified as low angle GBs and GBs with higher misorientation angles are 

called high angle GBs. Some ‘special boundaries’ are also present in polycrystalline materials 

whose interfacial energy is lower than high angle grain boundaries. Figure 3.17 represents a 

Tilt boundary, when axis of rotation is parallel between the two grains and twist boundaries 

when axis of rotation is perpendicular to the grain boundary plane.  

Grain 1
Grain 2

Grain boundary

Grain boundary



Chapter Three: Characterization of Cu(In,Ga)Se2 solar cells: Influence of Ga concentration 

- 98 - 

 

 

 

Figure 3.17: Schematic representation of a tilt boundary and twist boundary between two 

grains. Plane in red is the GB plane separating two grains in blue and green. Image courtesy: 

[21] 

Misorientation between grains can be measured using electron diffraction pattern in TEM. 

However the process is time consuming and in order to have large statistics TEM is not a 

suitable technique. Thanks to modern hardware and software tools of EBSD which can 

provide sufficient statistics in relatively short time duration, it takes only few hours of 

analysis. CHANNEL5 post-processing software tool has been used in this study to obtain 

misorientation angle distribution and is illustrated in Figure 3.18 for different Ga ratios. It 

must be mentioned that these measurements were performed after performing 

Pseudosymmetric corrections as described previously. Figure 3.18 shows that misorientation 

angles between grains are not randomly distributed. Indeed misorientation at 60° and 71° are 

evident and significantly higher than other angles.  

Tilt boundary

Twist boundary
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Figure 3.18: Misorientation angle distribution for respective CIGSe samples with different Ga 

ratio. Misorientation angles of 60° and 71° across <221> and <110> respective axes were found 

most prominent.  

These two misorientations are particular to CIGSe chalcopyrite structure and have also been 

observed in previous studies [16] which attributes to 60° misorientation across <221> and 

71° misorientation across <110> axis respectively as shown in Figure 3.19. 60° 

misorientation across <221> axis is shown in Figure 3.19 (a) and (b) with different 

perspectives in (a) viewing normal to (112) plane and (b) viewing parallel to (112) plane. Cu, 

In/Ga occupy cation sites and Se occupies anion sites in CIGSe, coincidence sites (larger 
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circles) are observable. 71° misorientation across <110> axis is shown in Figure 3.19 (c) and 

(d) with different perspectives in (a) viewing normal to (220) plane and (b) viewing parallel 

to (220) plane. Figure 3.19 shows that these grain boundaries are twin boundaries of (near) 

Σ3 type and identified as rotation of 60° and 71°, which is also well demonstrated in ref. [15]. 

 

Figure 3.19: Schematic representation of 60° and 71° misorientation angle across GBs in CIGSe, 

Cu and In/Ga occupy the cation sites and anion sites are occupied by Se. (a) two superimposed 

grains of (112) plane are oriented in [221]tet direction with a misorientation angle of 60°, sites 

shown in larger circles are coincidence sites. (b) Same case as in (a) viewed from (220) plane, 

(112) plane is horizontal and axis of rotation <221> is vertical. (c) Two superimposed grains of 

(220) plane are oriented in [110]tet direction with a misorientation of 71°. (d) Same case as in (c) 

viewed in perpendicular direction with axis of rotation <110>. Image source: Abou-Ras et.al 

[15].  
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It is interesting to note that misorientation angle distribution is similar for all samples with 

different Ga content. This shows that CIGSe compound with various Ga/In concentration 

exhibit similar chalcopyrite microstructure with specific misorientations independent of its 

Ga content. This is important to check before APT studies because changes in misorientation 

angles might modify CIGSe microstructure properties.  

3.4.5 Counting no. of GBs 

EBSD analysis gives a lot of quantitative information in polycrystalline samples. As this 

study is based on characterization of GBs, it is useful to know approximate number of GBs in 

a selected area, in order to quantify amount of Na segregation in thin films. To calculate the 

total no. of GBs in a given area it is essential to know the number of grains neighboring a 

single given grain. Thanks to advanced software techniques in CHANNEL 5 post processing 

software, the neighboring grain distribution (NGD) can be obtained. NGD for five CIGSe 

samples with different Ga contents are shown in Figure 3.20 . It is interesting to note that 

irrespective of the Ga content, NGD is similar for all samples and hence mean number of 

neighboring grains around a single grain is same for all the samples. However there is a 

significant change in grain size and orientation despite this, number of their neighboring 

grains is same. 
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Figure 3.20: Neighboring grain distribution for respective CIGSe samples with shown Ga 

content. (top right) typical EBSD pattern (bottom right) statistics for respective samples. 

Utilizing information obtained from Figure 3.20 and grain size information from Figure 3.14, 

total number of grain boundaries (NGB) can be calculated in a fixed area (A) using the 

following relation.  

 
𝑁𝐺𝐵 =

𝐴


×

𝛺

2
 (3.5) 

Where, Ω is the mean number of neighboring grains and  is the mean surface-size of a grain, 

both for respective Ga content. Factor of 2 comes due to repetitive counts of one GB. As Ω is 

the same for all samples, it is obvious that total number of GBs in a fixed area follows inverse 

relation of the mean surface size of grain (). Figure 3.21a represents mean surface size of 

grains in CIGSe as a function of x and Figure 3.21b shows NGB versus x. As already 

discussed in chapter 1, GBs in CIGSe are Na enriched which is beneficial for device 

performance and increase in number of GB was expected to improve device performance 

further. An increase in number of GBs would mean an increase in amount of Na in thin films 

provided similar amount of Na segregation at GB. Amount of Na atoms segregating at GB 

could be measured using statistical APT calculations. This has been measured for CIGSe 
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samples with various x in next chapter which shows similar amount of Na segregation at GB 

regardless of its x value. Hence an increase in number of GBs indicates an overall increase in 

Na in thin films, which mainly comes from soda lime glass substrate used. It is interesting to 

note that amount of Na in thin films is not same for all samples regardless of their similar 

preparation conditions. Reasons behind this are unknown and are beyond the scope of present 

work.  

 

Figure 3.21: (a) Mean surface size of grains (in μm) and (b) number of GBs per unit area 

(NGB/μm
2
) as a function of x.  

As GBs are one-two atomic planes thick, exploring and quantifying GBs properties is very 

difficult and requires high resolution instrumentation techniques. Herein we use Atom probe 

tomography (APT) to explore GBs in CIGSe for different Ga contents. But first in order to 

calibrate the instrument, we examine distribution of atoms in grains using APT in next 

section. Characterization of GBs is discussed in next chapter. 

3.5 Atom Probe Tomography  

To investigate grains and grain boundaries of CIGSe at atomic level we employ APT. 

Analysis in APT requires various experimental parameters and post processing optimizations 

to obtain accurate results, here we detail this technique for CIGSe. 
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3.5.1 Pulsed laser atom probe: Optimizations for CIGSe 

a) Optimization of experiment parameters  

Major tunable parameters involved during APT experiment are temperature of specimen, 

applied voltage, detection flux, laser type and laser power. These parameters are specific for 

each kind of materials and hence must be optimized in this work for CIGSe to ensure reliable 

and reproducible data. CIGSe compounds consists mainly of four elements Cu, In, Ga, Se, 

having different field evaporation properties. Hence temperature of the specimen and laser 

parameters must be optimized to ensure a homogeneous evaporation of all elements avoiding 

chances of preferential retention or preferential evaporation [22].  

1) Laser Optimization: 

Laser options in LAWATAP are wavelengths of 1030 nm, 515 nm and 343 nm 

corresponding to IR, Green and UV respectively. APT analyses were performed using the 

three laser modes and mass spectrums obtained are respectively presented in Figure 3.22 for 

x=0.36. ; 

 

Figure 3.22: Mass spectrum obtained for CIGSe sample x=0.36 using IR, Green and UV laser. 
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Background noises mainly arise from evaporation of atoms between pulses and 

contamination in analysis chamber. IR laser demonstrates high background noise and very 

low signal to background ratio. For example considering signal to background ratio of In in 

IR laser is ≈300 and in UV and green laser, signal to background ratio is ≈ 1000. Green and 

UV present better signal to background ratio and is optimum for analyses. Band gap (Eg) of 

CuIn0.64Ga0.36Se2 is 1.22 eV which is higher than IR energy (1.20 eV) and lower than that of 

green (2.40eV) and UV (3.60 eV) and may explain high background noise observed in IR. 

More studies on wavelength dependence of incident laser on field evaporation can be found 

in Ref. [23] which suggests laser with energy higher than optical band gap must be employed 

to obtain accurate results. Hence in this case Green or UV laser could be considered optimum 

for APT analysis.  

2) Laser Power and temperature optimization 

Field evaporation in atom probe depends on element’s respective evaporation fields. 

Evaporation field of an element A represents electric field at which A starts evaporating. For 

example, elements in CIGSe in their purest form exhibit different evaporation fields, for Cu, 

In, Ga it is 30, 12, 15 V/nm respectively and Se is sensitive to desorption (evaporates in 

vacuum). Due to higher evaporation field of Cu than other elements, it is probable to observe 

preferential retention of Cu due to its high evaporation field and preferential evaporation of 

Se due to its desorption properties.  

Because of preferential retention of Cu or preferential evaporation of Se, chemical 

compositions obtained from APT mass spectrum are biased and require alternate 

measurements to calibrate laser power and specimen temperature. EDX measurements were 

performed to extract accurate chemical compositions of different CIGSe cells prepared and 

were used to calibrate APT experiment parameters. EDX provides chemical composition 

using signals from specimen volume of 1 μm
3
, however this could not be used to obtain 

atomic compositions with nanometer scale precision. As GBs are few nanometers thick, APT 

is used to measure compositions with nanometer scale resolution.  

Composition measured in EDX is compared with composition measured in APT by varying 

specimen temperature and laser power and is illustrated in Figure 3.23. Figure 3.23 is a 

ternary composition diagram with three vertices as concentration of Se, Cu and In. 

Composition measured by EDX (red box) is used as calibration point which measures 

stoichiometric ratio of Cu:In:Se =  1:1:2 as in CuInSe2, hence composition of elements are 
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Cu=25%, In=25% and Se=50%. Green boxes and blue boxes represent compositions 

measured using APT by varying laser power and specimen temperature respectively.  

To optimize laser power, power of the laser is varied from 1.20 mW to 0.08mW during 

analysis keeping constant detection flux in APT (0.0010 ± 0.0002 atoms per pulse) and 

constant specimen temperature (70 K). Higher laser power (1.2 mW) results in higher Se 

concentration measured by APT (62 at %). Decreasing laser power results in decrease in Se 

concentration and optimum Se concentration (50 at. %) is observed for laser power = 0.1mW.  

Using specimen temperature 50 K and laser power 0.1 mW composition of CuInSe2 obtained 

using APT matches with EDX. Increase in laser power indicates preferential evaporation of 

Se, hence laser power is lowered to obtain quantitative results.  

Similarly, to optimize specimen (tip) temperature in APT, Temperature is varied during 

analysis (80 K to 50 K) keeping constant detection flux in APT (0.0010 ± 0.0002 atoms per 

pulse) and constant laser power (1.0mW). Specimen temperature is decreased from 80 K to 

50 K resulting in change in composition as shown in Figure 3.23. Higher specimen 

temperature (80 K) reflects in decreased Cu concentration (18 at. %) and decreasing till 50 K, 

composition of Cu reaches 25% and matched with EDX value. Higher tip temperature 

reflects in decreased Cu concentration due to preferential retention of Cu and is shown in 

Figure 3.24. 

 

Figure 3.23: Ternary diagram of Cu, In, Se concentration. Composition measured by EDX is 

shown in red box and composition measured using APT at different specimen temperatures and 

different laser powers are shown in blue box and green box respectively.  

0.25 0.50 0.75

0.25

0.50

0.75
0.25

0.50

0.75

 Temperature Variation

 Laser power variation

 EDX measured composition

 

 

In
2
Se

3

In Cu

Se

Cu
2
Se

1.2 mW

PLaser Decrease

x
x
x

x
X

××
×
×
×

××

x

x
x

×
× 80K

50K

0.08 mW
EDX



Chapter Three: Characterization of Cu(In,Ga)Se2 solar cells: Influence of Ga concentration 

- 107 - 

 

 

High laser power was found to detect more Se atoms than other elements. This may be due to 

more evaporation of Se atoms due to high temperature rise at high laser power; hence lower 

laser power is recommended in this case. In this work LAWATAP (laser assisted 

tomographic atom probe) is used for APT studies. LAWATAP contained an inbuilt option to 

decrease laser power of green mode by a factor of 10 using optical density (OD) in front of 

laser. Hence due to low power capability and high signal to background ratio, green laser has 

been used in current work for all the APT analysis. 

Figure 3.24 shows field-temperature (F-T) diagram for CIGSe. Starting point (points on left) 

represent the electric field at the tip apex and at respective temperature. In order to evaporate 

atoms from tip, laser pulses in form of thermal impulsions trigger field evaporation. 

Traversing from left to right side of the F-T diagram represent successful field evaporation.  

Considering CIGSe system as containing two types of elements 1) High evaporation field 

elements (Cu) and 2) Low evaporation field elements (In, Ga, Se). As we utilize laser pulses 

for field evaporation, triggering pulses in figure are in horizontal direction considering pure 

thermal nature of field evaporation.    

Figure 3.24 shows field evaporation behavior of different elements in CIGSe containing three 

possibilities: 

1) High temperature: At high temperature (T1) thermal pulses are not efficient enough to 

uniformly evaporate all elements and preferential retention of Cu is apparent, as also 

observed in Figure 3.23. 

2) Moderate temperature: Keeping thermal pulses similar to previous case, at 

temperature T2 (<T1) still there is fair possibility to preferentially retain Cu. As figure 

illustrate, field must be increased further to field evaporate Cu but may result in 

evaporation of other elements at point 2 without use of triggering pulses.  

3) At low temperature T3 (< T2) the two F-T curves are closer and with the same 

thermal pulse we can homogeneously evaporate all species. However at low 

temperature, high electric field is required for field evaporation and it increases the 

chances of tip rupture during analysis. Also, referring to equation (2.2), low 

temperature results in lower evaporation rate and hence voltage must be increased to 

maintain optimum flux. The best possible regime is hence between point 2 and point 

3.  
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Figure 3.24: Schematic Field-Temperature (F-T) diagram for CIGSe. 

Our schematic F-T model thus explains results observed in Figure 3.23. Hence the best 

condition here is to use low laser power and low temperature to ensure uniform field 

evaporation. Parameters thus optimized for CIGSe are temperature=50K and laser 

power=0.1mW with a maximum flux of 0.0050 atoms per pulse.  

b) Mass Spectrum optimization 

First step of post analysis starts with optimization of mass spectrum. As discussed in 2.5.4a) 

mass spectrum obtained depends on two major parameters: Mass of the ion and voltage at 

which it is evaporated, as length of flight is kept constant during the whole analysis and is 

about 10 cm in LAWATAP. Voltage corrections and average mass correction of a known 

mass peak (in this case Cu-63) is performed to obtain better resolved mass peaks. As radius 

of the tip is increased with amount of evaporated atoms, applied voltage is also increased to 

maintain proper detection flux which spreads mass spectrum following equation 2.8. 

Similarly according to figure 2.19 trajectory of ions towards detector may follow shortest or 

longest or in between path to detector depending on tip curvature. Due to difference in length 

of these trajectories, spread in mass spectrum is obvious following equation 2.8 and is 

corrected via Pythagoras correction. Voltage and mass corrections are important to resolve 

peaks better and improve accuracy of results. Two atomic species may also travel together 

resulting in additional peaks in the mass spectrum and can be identified by calculating total 

isotopic mass. A typical mass spectrum for CIGSe (x=0.36) after optimization is shown in 
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Figure 3.25a. Mass spectrum of CIGSe as shown is complex due to presence of four different 

elements. The presence of Na is mainly observed at GBs and also found in some cases 

uniformly distributed in grains in very low concentration. As certain elements naturally exist 

with different isotopic masses, they are respectively detected in proportion to their isotopic 

abundance. For example, Cu naturally exists with two isotopes (63 a.m.u. and 65 a.m.u.), so 

that two different peaks at 63 and 65 mass to charge ratio appear. Figure 3.25b shows isotopic 

abundance of Cu, Ga and In which match considerably well with APT results. To explore 

isotopic abundance of Se, mass ranges from 73 a.m.u. to 83 a.m.u. are selected.  

 

Figure 3.25: (a) Mass spectrum of CIGSe (x=0.36), different peaks corresponding to elements 

and molecular ions are shown. (b) Natural isotopic abundance (in %) of Cu, Ga and In. 

Peaks from 73 a.m.u. to 83 a.m.u. are plotted with additional details in Figure 3.26a. Peaks 

here correspond to Se
+
 and Se2

++
 which is confirmed by correlating the calculated isotopic 

distribution of Se in Figure 3.26b. Using known isotopic mass and their respective 
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abundance, total counts of Se atoms are calculated by addition of both respective ionic 

species. Se isotopes do not contain 79 a.m.u. peak and is present due to combination of 78 & 

80 and 76 & 82 a.m.u. peaks. Similarly 83 a.m.u. peak is due to presence of molecular ions of 

Cu and H2O and is written as Cu(H2O)
+
 and 81 a.m.u. peak is due to overlap of Se

+ 
and 

Cu(H2O)
+
. 

Figure 3.26b shows natural abundance of Se2
++

 and Se
+
 ions considering equal amount of Se

+
 

and Se2
++

. However ionic species detected in atom probe do not contain both ions in 1:1 ratio 

and appropriate calculations are performed to obtain the total number of ions.  

In Figure 3.26b, peak corresponding to 79 a.m.u. include only isotopes of Se2
++

 and contain 

25.23 % of total Se2
++

 ions using isotopic abundance calculations. Hence total number of 

Se2
++

 ions can be calculated using 79 a.m.u. peak.  

Similarly total number of Cu(H2O)
+
 ions can be calculated using isotopic abundance 

calculation considering 83 a.m.u. peak which contain 30.85 % of Cu(H2O)
+
 ions. Hence Se

+
 

ions can be calculated by subtracting amount of Se2
++

 and Cu(H2O)
+
 ions from observed 

spectra in Figure 3.26a. Thanks to isotopic abundance calculations, total number of Cu atoms 

can be calculated by accounting peaks corresponding to Cu
+
, CuSe

+
, Cu2Se

+
 and Cu(H2O)

+
 

similarly all Se atoms can be measured by accounting Se
+
, CuSe

+
, Cu2Se

+
 and Se2

++
 ions.  

 

Figure 3.26: (a) Mass spectrum of CIGSe from 73 a.m.u. to 83 a.m.u., (b) Isotopic abundance of 

Se
+
 and Se2

++
. 

In some cases, peaks corresponding to CuSe2
+
 are also observed and are also accounted in 

calculations, however these peaks are not always present in mass spectrum and reasons for 

appearance or disappearance of these peaks is not known. Due to background noise in mass 
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calculated as ratio of background noise around the element to the total number of detected 

ions. For elements in CIGSe, detection limits calculated are provided in Table 3-2.  

Table 3-2: Detection limits of elements present in CIGSe. 

Element Detection limit (in ppm) 

Cu 80 to 150 

In 80 to 100 

Ga 100 to 120 

Se 50 to 80 

Na 8 to 20 

 

Due to lower atomic mass of Na (23 a.m.u.) as compared to majority of atoms, detectability 

of Na atom is very high when compared to other elements and is very beneficial for studies 

here. 

3.5.2 Atom Probe Tomography of CIGSe Grains 

As APT is a destructive technique, atomic distributions are obtained after 3D reconstruction 

procedures providing typical analyzed volume of 50×50×200 nm
3
. 3D atomic scale 

distribution obtained from an analyzed atom probe tip of CIGSe (x=0.84) is reconstructed 

and is shown in Figure 3.27. This particular analyzed volume did not contain any GB (and 

thus no sodium) and shows distribution of Cu, In, Ga, Se atoms inside the grain. As 

illustrated, APT is capable of analyzing atomic distribution in three dimensions which 

enables this technique to obtain useful statistics at sub nanometer resolution. Statistics such as 

clustering, composition depth profile, GB composition profile, nearest neighboring 

distribution etc. can be obtained from statistical analysis in atom probe. Previous works have 

already shown tremendous capability of this instrument to understand photovoltaic cells at 

atomic scale [24–26]. Depth concentration profile of CIGSe (x=0.84) along tip is shown in 

Figure 3.27, as thin films were processed by CuPRO process, we observe no gradient in 

Ga/In concentration with depth and demonstrates capability of APT to quantify accurate 

composition profile at nanometer level with atomic level fluctuations. From Figure 3.27, it 

can be noted that atomic composition of all elements is uniform with small statistical 

fluctuations. Statistical analysis also showed that distribution of atoms in APT atomic volume 
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is homogenous without indication of any atomic clusters or biased composition. This is 

explained using pair correlation function in appendix A for case of CIGSe.   

 

 

Figure 3.27: Reconstructed 3D APT image of CIGSe with x=0.84. Colors of respective elements 

are shown. Composition depth profile is shown in atomic % for respective elements.   

Calculating Ga ratio (x) from Figure 3.27 measures x = 0.84 ± 0.02 which is in very well 

agreement with composition observed by EDX. Composition of all samples measured using 

APT is compared with EDX value in Table 3-3. Compositions of Cu, In, Ga and Se inside 

grains of CIGSe measured using APT for different CIGSe samples are shown. Comparison 

with EDX values shows well applicability of APT to measure compositions in sample 

regardless of their difference in Ga/In compositions. Also ‘x’ calculated using APT is 

compared with EDX values and the two results shows good consistency. This indicates well 

applicability of APT in analyzing CIGSe, provided optimized parameters. 
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Table 3-3: Atomic compositions measured using APT inside grains of CIGSe for respective 

different samples. Compositions measured using EDX are also shown to compare with APT. 

 Compositions measured by APT 

Sample Cu (at %) 

±0.1 

In (at %) 

±0.1 

Ga (at %) 

±0.1 

Se (at %) 

±0.2 

Ga ratio (x) 

1 23.7 26.1 0.0 48.9 0.00 

2 24.5 21.0 4.8 49.6 0.18 

3 24.8 18.1 10.9 46.0 0.37 

4 25.0 14.3 13.1 46.5 0.48 

5 24.9 10.6 16.9 47.2 0.61 

6 24.8 10.1 19.4 45.0 0.66 

7 22.9 5.2 23.8 47.2 0.82 

8 23.0 0.0 27.2 48.8 1.00 

 

 Compositions measured by EDX 

Sample Cu (at %) In (at %) Ga (at %) Se (at %) Ga ratio (x) 

1 24.8±0.9 26.5±1.3 0.0 48.3±1.4 0.00 

2 24.6±0.9 22.2±1.3 3.9±0.8 48.5±1.4 0.17 

3 24.8±0.8 17.5±1.0 9.9±0.8 47.8±1.4 0.39 

4 23.2±0.9 15.7±1.3 9.7±0.8 51.4±1.4 0.47 

5 23.4±0.9 14.6±1.3 11.1±0.8 51.0±1.4 0.56 

6 23.6±0.9 12.4±1.3 13.0±0.8 51.1±1.4 0.67 

7 24.5±0.9 4.5±1.0 20.7±1.0 50.3±1.4 0.84 

8 24.3±0.8 0.0 26.9±1.0 48.4±1.3 1.00 

 

Applicability of APT for Ga poor CIGSe was already shown by Cadel et.al [24], hence the 

above example is illustrated for Ga rich CIGSe with similar experiment parameters. Well 

applicability of results in Figure 3.27 and Table 3-3 shows the technique is suitable for 

CIGSe with different Ga contents while using optimized pre analysis and post analysis 

parameters.  
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3.5.3 Presence of Defects 

In present study, various CIGSe samples were analyzed in atom probe and repetitive 

measurements were performed on each sample to have better statistics. A large number of 

experiments were performed and Na distribution in CIGSe can be classified in four 

categories: 

1. No Na in grains: Na was found absent in CIGSe grains, as discussed in Figure 3.27. 

2. Na uniformly distributed in grains: In few cases (≈ 5% cases) Na was found 

homogenously distributed in CIGSe grains.  

3. Na segregated along defects: Na was also found present in form of clusters, and also 

along linear and planar dislocations. As shown in Figure 3.28, Na is found to be 

present in form of clusters which can be due to point defects present in CIGSe grains 

and also in few cases Na was found linearly segregated which can be attributed to 

linear dislocations in CIGSe. Figure 3.29 shows a rare case (only 1 observed in this 

work) of decoration of Na along planar dislocation. It is interesting to note that 

composition of various elements vary in vicinity of dislocation as shown in Figure 

3.29b for x=0.36. Similar results were obtained for GB composition profile (detailed 

in next chapter) for x=0.36. Recently Couzinie-Devy et.al [28] explored Na 

distribution in CIGSe and concluded that composition profile along these defects is 

similar to their GB composition profile, which is also observed independently in this 

work.  

 

Figure 3.28: Distribution of Na atoms (shown in dots) present in CIGSe in form of (a) clusters, 

and decorated along (b) linear dislocations. 
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Figure 3.29: (a) 3D reconstructed APT volume depicting distribution of Na atoms along a 

planar dislocation present in CIGSe (x=0.36), volume is rotated to visualize dislocation. (b) 

Composition profile across dislocation, Na enrichment indicates position of dislocation.  

4. Na segregated along GBs: In most of the results obtained here (80 % results), Na was 

found segregated along GBs which is thoroughly discussed in next chapter. 

Conclusions 

This chapter discussed characterization of CIGSe photovoltaic cells prepared with different 

Ga concentration fabricated using CuPRO process. Device performance test namely J-V and 

EQE measurements were performed to check device quality of CIGSe cell performance. 

Microstructural characterization techniques were performed by means of XRD, SEM, EBSD 

to ensure appropriate grain size distribution and orientation of the grains. These techniques 

demonstrated that cells processed here were genuine CIGSe cells with proper phase and 

composition. Electrical measurements and microstructural characterizations were important 

first, to ensure proper electrical nature of CIGSe absorber layer before analyzing in time 

consuming high resolution techniques like APT. It is also further demonstrated here that APT 

is well applicable for CIGSe with different Ga content subject to standardized experiment 

parameters and is appropriate for GB characterization. 

In this study, we make an attempt to explore the microstructure and atomic distribution of 

CIGSe films for various Ga contents to explain deviation in device properties of CIGSe with 

a strong emphasis on grain boundaries as discussed in next chapter.  
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4 Chapter Four: Influence of Grain Boundary Chemistry on 

Device Performance of Cu(In,Ga)Se2 

In this chapter we investigate grain boundaries (GBs) in APT for different samples of CIGSe 

with varying Ga concentration. APT is a promising technique to analyze GB at atomic level 

resolution and to measure GB composition profile. GB chemistry of CIGSe is presented in 

this chapter illustrating atomic level variations across GB for various grain concentration of 

CIGSe.  

4.1 Atomic scale characterization of grain boundaries in APT 

As discussed previously, correlative EBSD-APT or TEM-APT on tip is not the best technique 

due to embrittlement of tip at high voltages. Hence we require a reference to identify location 

of GB after successful APT analysis. It is well known that Sodium (Na) atoms accumulate at 

GB which can be used to visualize GB interface in 3D atom probe volume. Being beneficial 

for device performance of CIGSe, Na is also helpful in our case in identifying the exact GB 

position and interface. Additionally, atomic mass of Na (23 a.m.u.) is far lighter than other 

elements (Cu, In, Ga, Se) keeping it far from background noise and providing high resolved 

signal of Na.  

Grain boundary is hence identified here as planar accumulation of Na atoms. Atomic mass 

peak at 23 a.m.u. in mass spectrum is explicit to Na element and sometimes atomic mass 

peaks at 39 is also evident in mass spectrum which may correspond to Na + O or K 

(Potassium). Presence of other isotope of K (41 a.m.u.) confirms the presence of K, otherwise 

39 a.m.u. peak is only due to NaO molecular specie. When atomic mass peak is observed at 

41 a.m.u. (6 % K isotopic abundance) the total amount of K and Na atoms that are present 

can be calculated. Absence of 41 a.m.u. peak indicates absence of K and hence all atoms 

present are Na atoms.  

A typical reconstructed APT volume of CIGSe is shown in Figure 4.1, SEM image of tip 

before analysis is shown on left side. Each dot in the 3D volume represents an atom of the 

element corresponding to color reference. Relative percentage of atoms of Cu, In, Ga, Se 

shown is in fewer amounts (2%) than Na (100%) to better visualize the GB. As shown in 

Figure 4.1, planar segregation of Na atoms is visible and signifies presence of GB interface in 

that position. To indicate GB interface clearly, 3D volume is rotated showing planar 

accumulation of Na atoms along GB interface which separates two different grains. 
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Figure 4.1: SEM image of CIGSe APT tip (left) before analysis and respective reconstructed 

volume after APT analysis containing one GB. APT volume is rotated along analysis direction 

to better visualize GB interface.  

Optimized experimental parameters ensured uniform field evaporation of Cu, In, Ga, Se 

atoms, but at GB additional elements like Na are present which may perturb trajectory of 

atoms due to what is called Local Magnification (LM) effect [1,2]. LM effects arise due to 

the fact that elements/phase at GB might have field evaporation higher or lower than 

constituent phase/compound. Two cases of LM are shown in Figure 4.2: 

a) Low-field GB: In this case, when field evaporation of GB is lower than the matrix, the 

GB is field evaporated preferentially than neighboring phase/compound, forming an 

inside curvature. Trajectory of ions in GB hence converges due to inside curvature 

resulting in higher density of ions at the GB. 

b) High-field GB: In this case, when field evaporation of GB is higher than 

corresponding matrix, phase/compound at matrix is field evaporated preferentially 

than GB. This leads to formation of an outside curvature, hence trajectory of ions at 

GB diverges outside resulting in low density of ions at the GB. 
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Figure 4.2: Schematic representation of trajectory of ions in a low field GB and high field GB. 

Trajectory of atoms in low field GB is converging and atomic density detected in APT is more at 

GB. For high field GB, trajectory of atoms is of diverging nature which results in fewer atoms at 

GB. 

Here Na is found to segregate at GB. This element has a field of evaporation lower than other 

constituent elements as presented in Table 4-1 leading thus to a low field GB. Apart from Na, 

enrichment/depletion of other elements or formation of different phases at GB may also 

decide the type of GB (high field or low field which is discussed in next sections).  

In order to minimize the possible LM effects during APT experiments, it is recommended to 

localize GB plane normal to analysis direction. However, alignment of GB exactly normal to 

APT analysis direction is statistically improbable and in most cases GB is located with a 

given angle with the analysis direction.  

Table 4-1: Field evaporation of different elements in CIGSe as measured for singly charged ion. 

Data source: Gault et.al [3] 

Elements Field evaporation 

Copper 30 V/nm 

Indium 12 V/nm 

Gallium 15 V/nm 

Selenium - 

Sodium 11 V/nm 
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As typical analyzed volume in APT is of the order of 50×50×200 nm
3
, most of the volumes 

can contain only one GB. However in fortunate cases more than one GB is observed. An 

example is shown in Figure 4.3 where three grains separated by a triple junction  are 

observed. This is a very rare observation involving three grain boundaries localized on top of 

a tip. As the triple junction is not in the center, GB between grain 1 and grain 2 is very close 

to the surface of the analyzed region, hence due to high statistical fluctuations and also due to 

Ga contamination at tip surface, GB1/2 and GB1/3 are not taken into consideration in the data 

set in the following results. Therefore only GB2/3 is considered here for statistical analysis.  

 

Figure 4.3: Reconstructed volume of an analyzed CIGSe APT tip containing a triple junction 

(crossing of three GBs). (Right) atomic distribution near bottom of analyzed volume 

demonstrating three grains separated by three GBs. 

As APT involves experiments at high electric field, materials with a low resistance under the 

stress generated by the electric field may not sustain at high voltages due to increase in field 

at tip apex. Moreover polycrystalline samples are expected to be more prone to tip failure due 

to increase in stress at GB. Nevertheless, it is impressive to note that analyzed tip in Figure 

4.3 was still active (not ruptured) even at high voltage (~10 kV) and containing three GBs. 

This shows CIGSe is able to withstand high electric fields, which is crucial to perform APT 

experiment.  
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4.2 Measurement of grain boundary composition profile 

An example of analyzed 3D atomic volume of Ga poor CIGSe (x=0.39) containing a GB is 

shown in Figure 4.4a. As concentration of Na is particularly low (0.5 to 3 %) it is shown in a 

higher amount (100%) and larger size as compared to other atoms (5% shown in figure) for a 

better visualization of GB interface. A representative 3D volume box is extracted, containing 

GB for further analyses and composition calculations. Figure 4.4b shows the distribution of 

various elements in vicinity of the GB. All atoms accumulate at GB which can be quantified 

by measuring the atomic density profile across GB.  

Figure 4.4c represents the number of atoms of respective elements distributed in vicinity of 

GB. It can be noticed that number of atoms of all species increase at GB which is basically 

due to local magnification effect as described in case of low field GB in Figure 4.2a. The low 

field characteristic in this case may be due to the lower evaporation field of Na or also due to 

formation of a low evaporation field phase at GB. The GB chemistry in this case is shown in 

Figure 4.4d illustrating Cu depletion at GB. From Table 4-1, Cu has a relatively higher 

evaporation field than other elements, hence in this case of Cu depletion at GB (Figure 4.4d) 

we expect a ‘low evaporation field’ phase at GB. Therefore increase in atomic density at GB 

can be due to the effect of Na or to a Cu poor phase at GB or both.  

However the profile, Figure 4.4c could not reveal change in atomic composition. 

Composition profile (in atomic %) across GB is calculated to quantify concentration of 

various elements at grains and GBs. Sampling box with size of 1 nm width is moved by 0.1 

nm along perpendicular to GB interface to measure GB chemistry has shown in Figure 4.4d 

for x=0.39. GB chemistry shows concentration profile of various elements in vicinity of GB. 

As in Figure 4.4d GB is identified by Na increment which is accompanied by Cu depletion 

and In enrichment, whereas no appreciable change is observed in Ga and Se concentration. 

Error bars in Figure 4.4d are due to statistical sampling error calculated during APT analysis 

with standard deviation 2σ where σ is given by: 

 

𝜎 (𝑖𝑛 %) = 100 × √
𝐶(1 − 𝐶)

𝑁
 

(4.1) 

Where C is the concentration of solute and N is the number of detected ions in the sampling 

box. To illustrate, the error in Cu composition in Figure 4.4d is obtained as follows: sampling 

width is chosen to be 1nm wide (with a surface area of 600 nm
2
), thus containing N=20,000 

atoms in the sampling box, C for Cu is here 0.24 (24%). Solving equation (4.1) for Cu yields 
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σ = 0.3 at. %. Hence Cu concentration is measured as = 24 % ± 0.6 % (at.). Similar 

calculations are performed for other elements and represented in Figure 4.4d. Figure 4.4d 

shows an apparent difference between Na enrichment maximum and Cu depletion minimum 

which mainly arise from local magnification effects. However an evident trend of increase or 

decrease in composition can be extracted using APT.  

As there is no appreciable change in concentrations of Se and concentration of In, as Ga will 

vary from one sample to another and as Na is always present on crystalline defects, we 

characterize the GB by its Cu variations. Hence variation in Cu concentration (ΔCu) will be 

calculated by subtracting Cu concentration at GB by Cu concentration in grain, or 

mathematically: 

 
∆𝐶𝑢 (%) =

[𝐶𝑢]𝐺𝐵 − [𝐶𝑢]𝐺𝑟𝑎𝑖𝑛

[𝐶𝑢]𝐺𝑟𝑎𝑖𝑛
 (4.2) 

Hence ΔCu is negative for Cu depletion and positive for Cu enrichment at GB. GB chemistry 

is thus characterized for all the samples providing atomic scale information in vicinity of GB. 

For Figure 4.4, ΔCu is calculated and is equal to -16.7 % which represents 16.7% decrease in 

Cu concentration at GB. 

It is better to use equation (4.2) for change in Cu concentration at GB instead of using 

Gibbsian Interfacial excess (discussed in next section) as the latter is a better statistical 

method for solutes having low concentration. 

Figure 4.4 illustrates GB chemistry for Ga poor CIGSe; similar measurements are performed 

on Ga rich CIGSe and are shown in Figure 4.5.  
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Figure 4.4: (a) Reconstructed 3D volume after APT analysis of CIGSe (x=0.39), Na atoms shown 

is in higher amount than other elements (5%). GB position is shown (b) Individual atoms 

mapped from extracted volume in box in (a). (c) GB chemistry of CIGSe for x=0.39, right axis 

represent concentration of Na and left axis shows concentration of other elements. (d) Number 

of atoms of respective elements versus distance. Right axis represents Na atomic density. An 

increase in atomic density at GB is apparent.  
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Figure 4.5a represents a reconstructed 3D APT volume of CIGSe (x=0.84), each dot 

representing an atom. For better visualization, Na atoms are shown in higher amount (100% 

Na) than other elements (2% Cu, In, Ga, Se). In contrary to the previous case of Ga poor 

CIGSe, a decrease in atomic density at GB is evident in Figure 4.5b.  Figure 4.5c shows an 

overall decrease in number of atoms at GB indicating higher evaporation field at GB. 

Formation of high field GB can be due to the formation of a higher field phase at GB. GB 

chemistry as shown in Figure 4.5c shows Cu enrichment at GB indicating Cu rich phase at 

GB. As Cu possesses high evaporation field, Cu enriched GB turns into high field phase 

resulting in formation of outside curvature and diverging trajectory, following Figure 4.2b. 

Hence due to enrichment of Cu at GB, atomic density is reduced at GB. As similar to the 

previous case, Na is enriched at GB. The low field GB in Ga poor CIGSe and high field GB 

in Ga rich CIGSe is clearly explained by the difference in Cu content at GB in the two 

different cases.  

Figure 4.5d represents GB chemistry measured for x=0.84. Significant changes in atomic 

distribution are observed for Ga poor and Ga rich cell when comparing Figure 4.4 and Figure 

4.5. Ga depletion accompanied by Cu enrichment is observed in this case. However no 

significant change in Se and In concentration is observed. This shows that Cu amount at GBs 

shifts from depletion to enrichment while switching from Ga poor CIGSe to Ga rich CIGSe.  
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Figure 4.5: (a) Reconstructed 3D volume after APT analysis of CIGSe (x=0.84), Na atoms shown 

is in higher amount and size. (b) Individual atoms mapped from extracted volume in box in 

figure (a). (c) GB chemistry of CIGSe for x=0.84, right axis represent Na concentration and left 

axis shows concentration of other elements. (d) Atomic density in vicinity of GB, right axis 

represents Na atomic density. A decrease in atomic density at GB is apparent.  
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In all the analyses performed in this study, Cu poor GBs are always associated to increased 

atomic density and Cu rich GBs always resulted in decreased atomic density at GB. This is 

due to the high evaporation field of Cu and to its large variations at GB. 

Increase or decrease in atomic density as measured by APT is mainly due to local 

magnification artifact in APT. Hence compositions at GB are mainly quantified by measuring 

composition profile across GB (or GB chemistry). 

These results show that GB chemistry in CIGSe depends on its grain concentration and 

significant changes are observed for different ‘x’. Two examples were shown for Ga poor and 

Ga rich compounds. Cu depletion is observed for Ga poor samples whereas Cu enrichment is 

observed for Ga rich samples. In order to inspect the point of transition where nature of GBs 

is converted from Cu poor to Cu rich type we investigate various CIGSe samples with 

different Ga contents.  

4.3 Grain boundary investigation of CIGSe at various Ga/In 

concentration 

4.3.1 Quantification of Na segregation at grain boundary 

Beneficial effects of Na at GBs of CIGSe are known for years and thoroughly discussed in 

chapter 1. Soda lime glass substrates are known to produce high efficient CIGSe cell, due to 

segregation of Na atoms along GB. However one may argue that difference in Na 

concentration at GB for different samples may also be a potential reason for degraded 

performance of Ga rich CIGSe. Figure 4.6 shows variation of Na concentration at GB for 

different ‘x’. From Figure 4.6 it can be noticed that Na concentration at GB is restricted 

within 0.4 to 3 atomic percent. Significant variations in Na concentration are observed even 

with same ‘x’. However as a function of Ga content there is no specific pattern observed. Na 

concentration is found to be quite randomly distributed irrespective of Ga content as depicted 

from Figure 4.6.  
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Figure 4.6: Na concentration at GB (at. %) as a function of x in CuIn1-xGaxSe2 measured in this 

work. 

No significant effect of Ga/In concentration is observed on GB concentration of Na.  

However instead of measuring in atomic %, it is suggested to quantify segregation of solute 

species at GB using Gibbsian Interfacial Excess (Г), a thermodynamic quantity [4] defined as 

number of segregated solute atoms per unit interfacial area. Calculation of Gibbsian 

Interfacial excess is thoroughly discussed in appendix B. Previous works have demonstrated 

ГNa (Gibbsian interfacial excess of Na) at different stages of thin film deposition in ref. [5], 

here we explore ГNa of CIGSe at GB as a function of ‘x’. 

Figure 4.7 represents ГNa measured in present work for CIGSe samples with various ‘x’ 

processed using CuPRO process. Results are compared with measurements on 3-stage 

processed samples in previous studies by Couzinie-Devy et.al [5] and Cojocaru et.al [6]. 

Figure 4.7 illustrates that ГNa varies from 0.5 atoms/nm
2
 to 6.5 atoms/nm

2
. No significant 

variation or pattern in Na segregation is observed in this study for different Ga contents and 

an average value of Gibbsian interfacial excess of Na (ГNa) is measured as ≈2.2 atoms/nm
2
. 
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Figure 4.7: ГNa for various Ga content in CIGSe compared with results obtained by Couzinie-

Devy et.al [5] and Cojocaru et.al [6] on 3-stage processed samples.  

Amount of Na atoms at GB are thus found almost similar for all the samples (the difference is 

not very high). Therefore, the limited performance of Ga rich CIGSe cells is certainly not due 

to difference in Na levels at GB. In addition, it must be noted that GB misorientation is not 

taken into account in present study and hence not related with amounts of Na at GB 

segregation, which may be an important factor to decide amount of Na at grain boundaries.  

Figure 4.8 represents number of GBs (per sq. μm) as a function of x calculated using EBSD 

results in chapter 3. Correlating Figure 4.7 (Na coverage at GBs is almost same for all 

samples) with Figure 4.8 (number of GBs increase as a function of x), it can be concluded 

that amount of Na at GBs is not dependent on total number of GBs and amount of Na at GB 

does not explain limited performance of wide band CIGSe. 
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Figure 4.8: Number of GBs per unit area (NGB/μm
2
) as a function of x, calculated using EBSD 

measurements as described in chapter 3.  

Hence in the following section, composition profiles of various elements are presented and 

discussed.  

4.3.2 Composition profiles of Cu, In, Ga, Se and Na at GB 

A systematic study of GB chemistry for different CIGSe grain concentration is presented here 

to determine transitions between two natures of GB: Cu poor and Cu rich and also variation 

in concentration of other elements at GB for different ‘x’. All results presented in this work 

are based on measurement of random GBs. That is, we do not have any information on the 

misorientation angle of the GB before APT analysis and hence it is unknown that whether the 

GB is a twin boundary or a non-twin boundary. As GBs are identified by Na enrichment, 

composition profile of Na is shown to represent GB interface and is marked by distance from 

GB=0 nm in the composition profile.  

Eight different prepared samples were divided into three regimes according to their Ga ratio 

(x), namely: Ga poor (x<0.4), Ga intermediate (0.4< x <0.7) and Ga rich (x>0.7). 

Compositions of different elements at GB for three regimes are presented in this section: 

1) Ga Poor (x < 0.4): GB chemistries for Ga poor cells are presented in Figure 4.9 for     

x = 0.0, 0.17 and 0.39.  

Figure 4.9 represent GB chemistry for CIGSe cells having Ga concentration less than 12%.  

As it can be noticed from Figure 4.9, Na concentration at GB (right axis) is between 0.4 and 3 

at% and is not specific to Ga ratio as discussed earlier.  
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Cu depleted GBs are observed for all samples in this regime which is accompanied by In  and 

Se enrichments. Hence ΔCu is always negative in this case for all the GB chemistry. This 

point will be discussed in the next section. 

Ga concentration is found unaffected at GBs for all Ga poor samples. It can be noticed from 

Figure 4.9 that full width at half maximum (FWHM) of the segregation peak for Na and Cu is 

similar for all samples. This is due to the fact that GB’s planes are always observed to be 

tilted at 9 degrees up to 20 degrees with respect to the tip axis. With variations in tilt angles 

of GB, FWHM of Na may vary significantly according to the relation given in the work of 

Blavette et.al [2] where it is shown that FWHM for GBs normal to analysis direction is 

minimum and maximum for GBs along analysis direction.   

 

Figure 4.9: GB chemistry for Ga poor CIGSe cells. Composition profile in vicinity of GB is 

shown for various elements in CIGSe for x=0, 0.17, 0.39. Position of maximum Na concentration 

indicates GB interface. Right axis and Left axis are concentrations in at. % for Na and other 

elements respectively.  
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2) Ga intermediate (0.4 < x < 0.7): GB chemistry for intermediate regime is presented in 

Figure 4.10 for x=0.47, 0.56 and 0.67.  

Samples with intermediate values of Ga ratio i.e. x between 0.4 and 0.7, exhibit two families 

of Cu GBs. Each of the Ga content (x=0.47, 0.56 & 0.67) demonstrates existence of both Cu 

depleted GBs and Cu enriched GBs. It is also interesting to note that Cu depletion is always 

accompanied with In and Se enrichment at GB. Again here, no appreciable change in Ga is 

observed when GBs are Cu depleted. 

However in case of Cu enriched GBs, Cu enrichment at GB is always accompanied by Ga 

depletion and no change in Se and In content is observed at GB. These results are particularly 

new and have never been observed by any other groups. This strongly suggests the formation 

of CuGa defect at GBs, which is not yet addressed previously in CIGSe using theoretical 

calculations.  

 

Figure 4.10: GB chemistry for intermediate values of ‘x’ = 0.47, 0.56, 0.67. Right axis and Left 

axis is concentration in at. % for Na and other elements respectively. Position of maximum Na 

concentration indicates GB interface. 
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3) Ga rich (x>0.7): GB chemistry for Ga rich regime is presented in Figure 4.11 for 

x=0.84 and x=1.0.  

All GBs in Ga rich CIGSe were found to be Cu enriched and accompanied by Ga depletion. 

However no appreciable change/pattern in Se and In concentration at GB is observed for Ga 

rich samples. As suggested above, the presence of Cu enriched and Ga depleted GBs indicate 

occupancy of Cu over Ga sites.  

 

Figure 4.11: GB chemistry for Ga rich CIGSe cells, x=0.84, 1.0. Right axis and Left axis is 

concentration in at. % for Na and other elements respectively. Position of maximum Na 

concentration indicates GB interface. 

Based on these results, the following conclusions are apparent: 

1) From the three regimes, it is evident that Na concentration at GB does not follow any 

pattern and its segregation level range between 0.4 to 3 at. % whatever is the value of 

x (Ga level). The average Na coverage is 2.2 at/nm
2
.  

2) GBs are always observed to be In enriched or Ga depleted. In depleted and/or Ga 

enriched GB are never observed and perhaps do not exist in CIGSe. 

3) Cu segregation or depletion at GBs is found to be lower than -10% or higher than 

+10% with no intermediate values. This suggests the absence of chemically neutral 

GBs (no change in Cu and/or other elements at GB). 
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4) Cu behavior at GB is found to be modified according to the grain concentration. 

Indeed, Cu is always depleted at GBs for Ga poor cells and always enriched for Ga 

rich ones. However intermediate values of grain concentration demonstrated the 

presence of both Cu rich and Cu depleted GBs.  

5) From the three regimes it is also evident that tendency of elements segregating at GB 

follows as: In > Cu > Ga. In other words In is preferred over Cu and Cu over Ga to 

accumulate at GB.  

For Ga poor samples, Cu depletion accompanied by In enrichment at GB is also found in refs. 

[5,7–9] shown in Figure 4.12 which is well supported theoretically by Zhang et.al [10] who 

also predicted InCu defect for Ga poor p-type CIGSe cells (more discussed in section 4.7). Cu 

depletion is observed irrespective of substrate used and is also observed for mild steel 

substrates by Choi et.al [8] for Ga poor cells. Results in Figure 4.12 were obtained on 3-stage 

processed samples which are in good correlation with present work on CuPRO processed 

samples. 

 

Figure 4.12: GB chemistry observed in refs. (a) Couzinie-Devy et.al [7], (b & c) Choi et.al [8] for 

glass substrate and steel substrate respectively, (d) Auger electron spectroscopy (AES) across 

GB performed by Hetzer et.al. [9].  

(a) (b)

(c) (d)
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Comparing results obtained in the present work with research performed by different groups 

on random GBs shows strong consistency. However TEM results obtained by Abou-Ras et.al 

[11] on grain boundaries with different symmetries showed the presence of Cu enriched GB 

for a random non-twin GB.   

Reasons for the presence of both Cu enriched and Cu depleted GBs at same values of Ga 

content for intermediate cells is not clearly known and may also be due to different 

misorientation angle between grains. In later parts of this chapter an attempt is made to find 

reasons behind these elemental changes at GB for different CIGSe samples.  

As misorientation angle and crystalline indexation of planes cannot be easily measured and 

identified using APT, chemical properties of GB could not be correlated with GB 

misorientation angle in this study. This requires correlated TEM or EBSD analysis on tip 

before APT analysis. Correlative TEM-APT or EBSD-APT is extremely time consuming and 

also involves projection of high energetic electrons which embrittle APT tip leading to their 

rupture in APT. Correlative analyses were thus not performed in this study.  

4.4 Evolution of Cu composition at Grain Boundaries 

In this section we quantify the Cu behavior at GB for the three regimes. The results 

representing ΔCu at GB are shown graphically in Figure 4.13. A pattern is evident from 

Figure 4.13 depicting ΔCu at GB for all samples (different x values). Line ΔCu=0 represent 

no change in Cu concentration at GB, positive ΔCu represents Cu rich GB and vice versa. For 

Ga poor and Ga rich domains one specific nature of GB is observed, leading to the presence 

of an empty region (white color) meaning the absence of GBs with such characteristics. As 

also illustrated earlier, intermediate grain concentration (0.4 to 0.7) shows presence of both 

types of GBs. The Figure 4.13 suggests that the transition between Cu rich and Cu poor GB 

domains is not an abrupt transition but a gradual transition. Emergence of first Cu enriched 

GB is observed just after x=0.4 and both types of GBs exists till x=0.67.  

On increasing Ga concentration further, almost all GBs become Cu rich. Considering 

following statistics, domain of Ga ratio (x) in regime 1 is almost two times more than in 

regime 3 depicting biased variation of ΔCu towards Cu poor GB. It is also notable from 

Figure 4.13 that intermediate region contain more Cu depleted GBs than Cu enriched GBs 

hence the variation is not symmetric rather it is biased towards Cu poor GB. Figure 4.13 

shows that 63% of total number of GBs is Cu depleted which indicates that polycrystalline 

CIGSe favors more Cu poor GB than Cu rich. 
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Figure 4.13: ΔCu as a function of Ga ratio (x). ΔCu below zero represents Cu poor GB and vice 

versa. Three regimes are highlighted containing specific type of GBs. 

GB characterization of Ga poor cells have also been obtained in previous studies [5,8,12]  on 

3-stage processed CIGSe and are compared with results obtained in this work in Figure 4.14.  

As shown in this figure, results obtained in previous works also show presence of Cu poor 

GB for Ga poor cells which is consistent with our results. It is interesting to note that 

regardless of preparation process (CuPRO or 3-stage) Ga poor cells always exhibit Cu poor 

GBs. However, GB characterization of Ga rich CIGSe has not yet been performed by any 

other group using APT and is presented in this research for the first time.  
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Figure 4.14: ΔCu as a function of x, comparing results obtained in current works (CuPRO 

CIGSe) with results obtained by Choi et.al [8] and Couzinie-Devy et.al [5,12] on 3-stage 

processed CIGSe samples.  

Current statistics presented for Ga rich CIGSe show Cu rich GB, however due to less 

statistics it is unsure that all GBs are Cu rich for high Ga CIGSe. But sufficient statistics are 

available for Ga poor CIGSe demonstrating maximum amount of Cu depleted GBs.  

It must also be noted that CIGSe cells prepared here are Cu poor cells i.e. overall Cu grain 

concentration is slightly less from Cu stoichiometry in Cu(In1-xGaxSe2). Change in GB 

chemistry is well evidenced by Couzinie-Devy et.al [5] for 3-stage process when the grain 

concentration shifts from Cu-poor to Cu-rich. And even Ga poor cells may exhibit Cu rich 

GBs if overall grain concentration is Cu rich. May be this is one of the possible reason for 

lower performance of Cu rich CIGSe and hence CIGSe are always made Cu poor in overall 

composition.  

A conclusion of Cu behavior for different regimes of Ga ratio (x) is presented in Figure 4.15 

depicting schematically nature of GBs at different x. GBs in blue and red color represent Cu 

poor and Cu rich GB respectively.  
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Figure 4.15: Schematic representation of modifications in Cu concentration at GB in CIGSe.  

GB model for (a) Ga poor CIGSe, (b) Ga intermediate CIGSe and (c) Ga rich CIGSe.  

Figure 4.15 is further used in next section to explain photovoltaic properties of CIGSe.  

4.5 Comparison of APT results with solar cell performance 

Atom probe results presented in the previous section demonstrated significant modifications 

at GB with Ga content. Device performance of CIGSe solar cells are compared here with 

atom probe results by correlating their respective variations. Photovoltaic results in Figure 3.4 

and APT results in Figure 4.13 are combined and illustrated in Figure 4.16. 

Figure 4.16 represents variation of the cell efficiency and measured ΔCu as a function of x. 

Theoretical maximum efficiency correspond to a band gap energy close to 1.4 eV (x=0.7) as 

shown in the blue region in Figure 4.16. However observed efficiency is increased till x=0.39 

and then decreased monotonically till x=1.0. Point of deviation of efficiency (red region) 

coincides with emergence of first Cu enriched GBs and further increase in amount of Cu rich 

GBs seems to further decrease the efficiency. Here we find that amount of Cu rich GBs is 
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consistent with degradation of device performance. Hence for Ga rich cells, efficiency could 

be minimum due to the presence of a maximum of Cu enriched GBs. 

 

Figure 4.16: Efficiency (%) and ΔCu as a function of ‘x’. Blue and red highlighted region 

correspond to theoretical maximum and experimental maximum efficiency of CIGSe 

respectively.  

As discussed previously, Jsc varies according to expectations for CIGSe cells and hence the 

decline in efficiency is due to limitations in Voc. 

Figure 4.17 represents variation of Voc (experimental and theoretical) and ΔCu as a function 

of ‘x’. Figure 4.17 depicts that the variation of the experimental Voc is consistent with 

theoretical expectations till x=0.4. However deviation of experimental Voc from theoretical 

expectations is observed after Ga ratio x=0.40 where Voc starts saturating. It is interesting to 

note that the emergence of the first Cu enriched GB is observed at x=0.47 i.e. just after x=0.4 

coinciding with the emergence of Voc deviation. The amount of Cu rich GBs increases with 

Ga content and illustrates more deviation of Voc from expectations for higher ‘x’. It is 

apparent from Figure 4.17 that presence of Cu poor GB is beneficial whereas Cu rich GBs 

have a negative influence on output voltage.  
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Figure 4.17: ΔCu (Relative change in Cu concentration at GB compared to Grain interior) and 

VOC Vs Ga ratio (x). Experimental VOC is shown in filled squares and compared with theoretical 

Voc (filled circles).  

The comparison of GB quantification results from APT and device performance results has 

presented strong correlation. Results from APT and device performance show that  GB 

chemistry notably affects device properties.  

4.6 Reasons for limited performance of wide band gap CIGSe 

APT results show that modifications at GB apparently tune the electrical properties of 

photovoltaic cells. We will try to give here and discuss some explanations: 

4.6.1 Hole Barrier theory: 

Figure 4.18 explains schematically hole barrier theory in (a) Cu poor GBs acting as hole 

barriers and repels hole from GB thereby making GB carrier specific and overall less 

recombination. (b) Cu rich GBs does not act as hole barriers hence not carrier specific and act 

as active recombination center for all carriers.  
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Figure 4.18: Schematic explanation of hole barrier theory for (a) Ga poor and (b) Ga rich cell, 

with their respective band gap energy diagrams below. Cu poor GBs (blue) act as hole barrier 

thus repulsing holes and prevents recombination. This property is absent in Cu rich GBs which 

makes GBs as active recombination centers.  

As already predicted by Persson and Zunger [13] using theoretical calculation, all GBs in 

CuInSe2 are Cu depleted, this removal of Cu atoms from GB reduces p-d repulsion (Se ‘p’ 

orbitals and Cu ‘d’ orbitals). This leads to lowering of valence band maxima (VBM) at GB as 

compared to GI and thus repels hole as shown in Figure 4.18. Thus Cu depleted GBs can act 

as hole barrier and thus improves carrier collection by preventing recombination. Our results 

are hence consistent with this theory for Ga poor cells where all GBs are Cu poor. GBs acting 

as hole barrier thus minimize carrier recombination and hence improve collection and output 

voltage. However Cu rich GBs cannot act as hole barrier leading to increased recombination 

at GB as shown in Figure 4.18b and detrimental photovoltaic properties. When all (or 

maximum) GBs are Cu rich, there is maximum carrier recombination and worst photovoltaic 

performance. Ga intermediate cells exhibit presence of both types of GBs and possess both 

beneficial properties of Cu depleted GBs and detrimental properties of Cu enriched GBs. 

Contrarily to this explanation, Hafemeister et.al. [35] shows benign behavior of GBs for Ga 
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rich CIGSe. Hence there is no strong evidence explaining this phenomenon and other 

possibilities must be checked. 

4.6.2 Formation of dead grains 

EBIC analysis on CIGSe cells with various Ga contents was performed by Contreras et.al in 

ref. [14]. Some random grains were found in CIGSe to be electrically inactive, which could 

not contribute towards carrier collection. These electrically inactive grains do not produce 

current and are referred in ref. [14] as “dead grains” as shown in Figure 4.19. Formation of 

these dead grains increases in depth for a cell and also increase with Ga content as observed 

in [14]. Reasons behind formation of these dead grains are however not properly understood 

and following our work is may be due to an increase in the Cu enriched GBs. If all GBs 

surrounding a grain are Cu rich, then maximum carriers generated in that grain recombines at 

GBs resulting in poor collection thus making the grain electrically dead. Reasons for active 

grains in upper half can be due to type inversion of grain surface at CIGSe-CdS 

heterojunction. As also grain size is much smaller for higher Ga samples, formation of 

maximum number of dead grains is expected.   

 

Figure 4.19: (a) Cross section SEM image (top), EBIC map (bottom) reprinted from [14] for 

Eg=1.4eV. (b) Schematic CIGSe solar cell model depicting formation of dead grains due to 

presence of Cu rich GBs. 

EBIC measurements presented above were performed on different CIGSe samples, but our 

results might explain the origin of dead grains in CIGSe. To have better correlative studies it 

is thus suggested to perform correlative APT-EBSD-EBIC study on CIGSe samples with 

different Ga contents to verify above hypothesis.  

CIGSe (x≈0.7)(b) 

Cu rich GB

(a) CIGSe (x≈0.7)

Dead grains
Cu poor GB
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4.6.3 GBs acting as shunt paths 

Figure 4.20 represents a schematic solar cell circuit model for CIGSe and the role of shunt 

resistance in modifying its electrical properties. Due to difference in GB composition and 

properties with respect to grain, shunt resistance of grain and GB might not be the same. GBs 

with excess in Cu (metal) concentration may have higher conductivity than grain interior. If 

conductive enough, GBs may act as shunt paths in the device by delivering an alternate path 

for current as shown in Figure 4.20. Cu excess at GB may form Cu2Se phase or may co-exist 

as individual atoms with other phase like chalcopyrite CIGSe. In both cases there is a chance 

of formation of conductive GB. Grains in this case are mostly columnar. Hence conductive 

GB will shunt the device and J-V equation in [equation 1.2] will modify as follows:  

 
𝐽(𝑉) = 𝐽0. [exp (

𝑞𝑉

𝑛𝑘𝑇
) − 1] − 𝐽𝑝ℎ𝑜𝑡𝑜𝑛 +

𝑉

𝑅𝑆ℎ
 (4.3) 

Where RSh is the shunt resistance. 

Fill factor (FF) changes accordingly as: 

 
𝐹𝐹𝑆ℎ = 𝐹𝐹0 (1 −

1

𝑅𝑆ℎ
) (4.4) 

Above equation is plotted in Figure 4.20c showing significant effect of shunt resistance on FF 

and hence efficiency can be largely affected even due to small changes in shunt resistance.  

 

Figure 4.20: (a) Solar circuit model for CIGSe, (b) schematic electric structure of cell, (c) Fill 

factor versus shunt resistance for an ideal solar cell. Resultant shunt resistance is given by 

equation. 
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Shunt resistance in polycrystalline CIGSe can be considered to be composed of individual 

contributions from grain interior (GI) and from GB. If resistors are in parallel, resultant is 

given by reciprocal law as shown in figure. However this may not be correct as grain 

boundaries are adjacent to grains but this gives an idea of formation of shunt due to GB. Due 

to conductive nature of Cu, its excess at GB reduces RGB, following above relation for low 

RGB, RSh=RGB. Hence shunt paths created by GBs may significantly degrade efficiency. 

4.6.4 Type inversion at grain boundary 

From Figure 4.9, Figure 4.10, Figure 4.11, concentration of Cu, In and Ga at grains and at 

GBs can be measured for all samples. Calculating ratio of [Cu]/[In]+[Ga] in grain interior 

provides the chalcopyrite desired phase along the region (yellow) as shown in Figure 4.21. 

This method can give an idea of possible phases at GB too, but is not very reliable due to 

absence of evidence. Since this phase diagram is established for bulk CIGSe it may not be 

relevant to consider the same for GBs which are few atomic planes thick. Nevertheless it 

must be noted that these attempts of identifying phases are unusual and hazardous and it is 

shown here just to demonstrate another possibility.  

Due to compositional changes at GB, phase at GB might not be the same as phase in grain 

interior and can be estimated from APT composition profiles. Figure 4.21 shows the 

quaternary phase diagram adapted from ref. [15] for CIGSe with chalcopyrite (α) phase 

region in yellow. Experimental data from APT provide GB composition and corresponding 

phase can be estimated using this information. Approximate phases forming at GB are 

represented in Figure 4.21, dotted lines represent constant Ga ratio and stars represent Cu 

ratio (CGI) = [Cu]/[In]+[Ga] at GB for respective x. Blue and Red stars represent Cu poor 

and Cu rich GB respectively. 
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Figure 4.21: Quaternary phase diagram of CIGSe adapted from Ref. [15]. Stars represent phase 

at GB obtained from APT calculations performed here. Yellow highlighted region represents 

pure chalcopyrite phase of CIGSe. Sph represent sphalerite phase of CIGSe. Lines originating 

from Cu2Se vertex represent constant Ga ratio along respective lines.  

As Cu depletion is accompanied with In enrichment, CGI for Ga poor cells at GB is much 

lower than for α phase at grains. Hence GBs for x<0.4 are of (CuIn3Se5),  or sphalerite 

phase containing the four elements. 

It is proposed in previous studies that CuIn3Se5 is an n-type ordered defect compound 

forming at surface of CIGSe grain leading to buried pn junction at heterojunction. 

Considering similar properties of grain surface and GBs,  phase may form at GB leading to 

type inversion at GB [16–18]. Type inversion at GB would here mean n-type GBs in p-type 

CIGSe. As electrons are minority carriers, efficient transport of electrons along GB (n-type) 

would result in greatly reduced recombination and better photovoltaic properties.  Referring 

to above figure, formation of  phase at GB is very probable in case of Ga poor CIGSe and is 

difficult to form in Ga rich CIGSe. Hence type inversion at GB may also be a reason for 

better performance of Ga poor CIGSe. If this theory is correct, then formation of pure  phase 

GBs in pure α phase CIGSe would present better efficiency, regimes of the two pure phase 

are shown clearly in Figure 4.22. Theoretically one must obtain maximum efficiency of 

CIGSe at x=0.7. However according to phase diagram in Figure 4.22, x=0.7 line does not 
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pass through  phase. Hence it would be impossible to have pure  phase GB in α phase 

CIGSe.  

 

Figure 4.22: Quaternary Phase diagram of CIGSe adapted from ref. [15]. Highlighted region in 

yellow represent pure α (chalcopyrite) CIGSe phase and in blue represent pure β (ordered 

defect compound) CuIn3Se5 phase. Position of point of deviation (x=0.4) and theoretical 

maximum (x=0.7) is shown.  

Therefore if this theory is correct then one would never obtain maximum CIGSe efficiency 

for x=0.7 including only four elements namely Cu, In, Ga, Se. This is one of the hypotheses 

supporting superiority of Ga poor CIGSe, instead some works have shown the absence of 

type inversion at GB [19,20] due to some potential differences at GB.  

4.6.5 Further possible reasons 

Apart from CIGSe absorber layer properties some issues are not discussed here such as 

modification in interfaces for CIGSe cells prepared with different Ga content [14]. Difference 

in CIGSe-CdS heterojunction may result in altered pn junction and SCR. Difference may also 

arise on Mo-CIGSe interface modifying properties of MoSe2 formed in between the two 

layers. MoSe2 is known to have a beneficial effect on CIGSe cell performance and may 

degrade with alterations in its properties.  
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4.7 Reasons for modifications in grain boundary segregation with 

Ga content 

 Experimental results performed previously indicate that grain boundary segregation depends 

principally on composition of CIGSe. As grain boundaries (GB) acts as defects in the 

material we expect change in defect physics of CIGSe with varying Ga content. To 

understand defect physics in CIGSe for various Ga concentrations, it is important to develop 

a model which can explain major factors leading to changes in GB composition. 

Development of a model will thus help to understand and enhance CIGSe thin film solar cell. 

As CIGSe is a quaternary compound involving interplay of four main elements (Cu, In, Ga, 

Se), developing a well suited model is time consuming. Hence an attempt is proposed to 

explain our results by the help of existing calculations performed in previous studies on 

CIGSe. There are different approaches to computationally model CIGSe, some results 

obtained in previous studies are compared with our observations and are presented in this 

section.   

 

1) Phase stability after mixing of CIS-CGS (CuInSe2-CuGaSe2) binary alloy: 

CIGSe can be considered as a pseudobinary alloy (A1-xBx) and CuIn1-xGaxSe2 can also be 

written as (CuInSe2)1-x(CuGaSe2)x. An interesting work has been performed by Xue et.al [22] 

combining several methods to study the phase diagram of CIS-CGS pseudobinary system. 

Methods used by Xue et.al [22] are namely: special quasirandom structures (SQS) [21], ab-

initio DFT and thermodynamic calculations. They studied the phase stability of CIS-CGS 

which is described here. In their calculations it was accepted that physical properties of a 

binary alloy are mainly governed by the interactions of their neighboring atoms, which could 

be accurately calculated by arranging atoms in small supercells, which are termed as SQS 

[21,23]. Thus CIGSe can be considered as a random mixture of two ternary compounds CIS 

and CGS and Gibb’s free energy (at constant temperature) for mixing of CIGSe can given as 

[22]: 

 

 ∆𝐺𝑚𝑖𝑥 = ∆𝐻𝑚𝑖𝑥 − 𝑇∆𝑆𝑚𝑖𝑥 (4.5) 

Where, ΔHmix (mixing enthalpy) and ΔSmix (mixing entropy) according to Bragg-Williams 

approximation can be written as: 
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 ∆𝐻𝑚𝑖𝑥 = 𝑥(1 − 𝑥)𝛺(𝑥) 
(4.6) 

 ∆𝑆𝑚𝑖𝑥 = −𝑘𝐵[𝑥 𝑙𝑛𝑥 + (1 − 𝑥) ln(1 − 𝑥)] (4.7) 

Where kB is the Boltzmann constant and Ω(x) is the interaction parameter [22] which mainly 

depends on x. At 0 K, Ω(x) can be written as using Redlich-Kister formalism [24]: 

 
Ω(𝑥) = ∑ 𝐶𝑖(1 − 2𝑥)𝑖

𝑛

𝑖=0

 
(4.8) 

Where Ci is the model (best fit) parameter and calculations were performed by using n=2 as 

given in Xue et.al [22]. 

Mixing enthalpy can be calculated by using equation 4.2 and 4.4 for different Ga ratio (x) and 

are illustrated in Figure 4.23.  

 

Figure 4.23: Mixing enthalpy as a function of Ga content (x) calculated using ab initio 

calculations (square dots) and fitted by Redlich-Kister formalism. Image courtesy: Xue et.al 

[22]. 

As noticed from Figure 4.23, except for the extreme compositions (x=0, x=1) mixing 

enthalpy of CIGSe is always positive which means that solid solution becomes unstable for 

intermediate values of x and stabilizes towards extreme compositions. Also, mixing enthalpy 

is apparently biased towards higher ‘x’ leading to skewness in curve. Two compositions 

x=0.25 (near to most efficient CIGSe observed) and x=0.75 (corresponding to most efficient 
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CIGSe expected) can be compared which shows better stability of Ga poor samples as 

compared to Ga rich samples.  

 

2) Intrinsic Defects 

CIGSe prepared and discussed in this work is of p-type conductive nature with typical free 

hole densities of 10
16

 – 10
18

 cm
-3 

[25,26] at 25°C. As discussed in chapter 1, emergence of 

doping densities arises from 12 intrinsic defects in CIGSe. Grain boundaries can be thought 

as defects present in the material. Hence defect physics at intrinsic defects can be used to 

understand GB physics. An overview of formation energy of different intrinsic neutral 

defects for two extreme values of ‘x’ i.e. CuInSe2 and CuGaSe2 is presented in Table 4-2. It 

can be noticed that the formation enthalpy of VIn > VGa, CuIn > CuGa, InCu > GaCu which 

indicates formation of In poor GB and/or formation of Ga rich GB is not energetically 

favorable and hence less probable. This explains our APT findings which demonstrated 

absence of In poor and/or Ga rich GB in any of the sample. Moreover the formation enthalpy 

of CuIn > CuGa which explains the presence of Cu rich GBs accompanied by Ga depletion for 

CGS as observed using APT.   

Table 4-2: Formation enthalpy of 12 possible intrinsic neutral defects in CuInSe2 (CIS) and 

CuGaSe2 (CGS). Adapted from ref. [20] with values from refs. [27–30]. Type A and D represent 

acceptor and donor types respectively. III indicate In or Ga. 

 

Point defect Type ΔHCIS [eV] ΔHCGS [eV]

VCu A 0.60 0.66

VIII A 3.04 2.83

VSe D 3.00 -

Cui D 2.88 3.38

IIIi D 9.1 -

Sei A 22.4 -

CuIII A 1.54 1.41

IIICu D 3.34 4.22

CuSe A 5.4 -

SeCu D 6.0 -

IIISe A 5.0 -

SeIII D 5.2 -

Vacancy

Interstitial

Antisite
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Table 4-2 also shows very less formation enthalpy of copper vacancy which explains overall 

high number of Cu depleted GBs (as discussed in previous sections). However above table 

fails to explain absence of In depleted Cu enriched GB. 

 

3) Segregation tendency 

APT results on CIGSe on various Ga compositions demonstrate Cu poor GB for Ga poor 

cells accompanied with In and Se enrichment and Cu enrich GB for Ga rich cells 

accompanied with Ga depletion. No experimental evidences in this study were found to 

contain In depleted and / or Ga enriched GB for any CIGSe sample. Hence our results show 

that tendency of various elements to segregate at GB in CIGSe follow as In > Cu > Ga. As 

involvements of four elements are complicated, we consider the extreme concentrations (CIS 

and CGS) to explain respective differences in their GB chemistry. There may be a variety of 

different driving forces leading to selective segregation of elements which are discussed here: 

a) Site effect: 

In this case of multi element alloys, mutual interactions between neighborhood atoms are 

complex and hence site competition presents an important role. Cohesive (or Binding) energy 

plays an important role in deciding segregation of a certain element in a solid solution. 

Elements with low cohesive energy are expected to segregate more at GB due to their 

relatively less binding nature. Hence in a quaternary compound like CIGSe, there is a 

competition among respective four elements (Cu, In, Ga, Se). Table 4-3 provides cohesive 

energies of Cu, In, Ga and Se in eV/atom and follow the trend Se < In < Ga < Cu. This 

suggests that, due to the more cohesive nature of Cu, it may not preferentially segregate and 

hence Cu poor GBs are observed for Ga poor cells (CIS) accompanied by In and Se 

enrichment at GB. Higher formation enthalpy of GaCu in CGS as compared to InCu in CIS is 

mainly due to larger cohesive energy of Ga than In [27] and explains formation of Cu poor In 

rich GB is more energetically favorable.  

Table 4-3: Cohesive energy of Cu, In, Ga, Se. Data source: Kittel C. [31] 

Element Cohesive energy (eV/atom) 

Cu 3.5 

In 2.52 

Ga 2.81 

Se 2.46 
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However cohesive energy trend fails to explain Cu segregation and Ga depletion at GB for 

higher Ga samples, indicating dominance of other effects.  

 

b) Size effect: 

Energy of segregation (ES) [32] plays an important role in GB segregation phenomenon and 

atoms with low energy of segregation are expected to segregate at GB. It was found in Sutton 

et.al [32] that in the case of bismuth (Bi) and silver (Ag) solute atoms in a Cu matrix, ES is 

principally governed by the size of the solute species and elements with higher ionic radii are 

found to segregate more. Hence Ag due to its higher ionic radii was found to be energetically 

more favorable to segregate. Comparing ionic radius of various elements as shown in Table 

4-4 for CIGSe, the following sequence appears: ESe > EIn > ECu > EGa. GB sites are known to 

better accommodate bigger atoms as in case of Bi and Ag in Cu [33]. In our case, ionic radius 

of Ga is the smallest; it is thus not expected to segregate at GB as compared to other 

elements. Hence size effect may explain why Ga is never found to be enriched at GB. Size 

effect predicts maximum segregation of Se for all samples; however Se concentration is 

almost constant at grains and GBs for Ga rich samples. Hence size effect may explain why In 

is preferred over Cu over Ga but could not correctly determine Se.  

Table 4-4: Ionic radius of Cu, In, Ga, Se. Data source: Ref [34] 

Elements Ionic radius (pm) 

Cu 73 

In 80 

Ga 62 

Se 198 

Both site effect and size effect explain the segregation of In and Se accompanied by Cu 

depletion at GB for CIS. For CGS, size effect suggests preference of Cu over Ga and hence to 

some order explains results obtained in this work. CIGSe is most efficient for quaternary 

compound CuIn0.7Ga0.3Se2 however due to band gap effects it was expected that 

CuIn0.3Ga0.7Se2 must present highest efficiency. Hence to understand GB segregation in more 

details and to explain findings obtained in this work, advanced theoretical computation is 

required.  
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Conclusions 

In this chapter, grain boundary chemistry of CIGSe cells for various ‘x’ was investigated. 

Amount of Na at GB is found to be independent of ‘x’ despite of the fact that number of grain 

boundaries increase with ‘x’. Hence, Na is not expected to degrade efficiency with ‘x’. Cu is 

always found depleted at GB for Ga poor samples and enriched at GB for Ga rich samples. 

Samples with intermediate Ga content contained both Cu poor and Cu rich GBs. Cu depletion 

is always accompanied with In and Se enrichment with no change in Ga and Cu enrichment is 

always accompanied with Ga depletion with no change in In and Se. It was interesting to find 

that all GBs were either Cu rich or Cu poor. Efficiency and Voc was compared with change 

in Cu concentration at GB and good correlation was found. Cu rich GBs is shown to degrade 

device performance. Higher Ga samples (x>0.7) contained maximum amount of Cu rich GBs 

and demonstrated worst efficiency. Possible phenomenons were discussed in this chapter 

which may affect CIGSe performance due to presence of Cu rich GBs. An attempt to explain 

observed changes in GB composition at different ‘x’ is made in the end of this chapter. 

However due to complexity of the system, accurate explanations could not be given and is 

kept as future perspectives. Hence we explained that limited performance of wide band gap 

CIGSe arises due to increased amount of Cu rich GBs. Next chapter discusses on possible 

strategies and some attempts made in this work to rectify this issue.  
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5 Chapter Five: Towards the improvement of Ga rich CIGSe 

The results presented in the previous chapter demonstrated clearly the importance of GB 

chemistry on CIGSe cell efficiency. It was shown that the presence of Cu enriched GBs is 

suspected to be the main reason for hindered performance of Ga rich CIGSe. In this chapter, 

we highlight possible strategies to improve Ga rich CIGSe cell performance and detail some 

approaches performed in this work. An approach towards improvement of wide band gap 

CIGSe solar cells is discussed in this chapter. 

5.1 Strategies for improving Ga rich CIGSe: 

As discussed previously, according to band gap modulation, x=0.7 (Ga rich) cell must present 

a maximum efficiency. Modifications in GBs as a function of Ga content are shown 

responsible for degraded performance of wide band gap solar cells. Thus, to improve device 

performance of wide band gap cells, two options are apparent: 

1. Increase band gap of Ga poor CIGSe: this option seems rather impossible as band gap 

is a characteristic (or intrinsic) property of the material and is specific to Ga/In 

concentration in CIGSe. 

2. Supply other element to favor Cu-poor GB : Cu enrichment at GB is the main reason 

for limited performance of Ga rich CIGSe. Indeed as already shown, chemical 

segregation tendency at GB is in the order: In > Cu > Ga. Thus for Ga rich CIGSe Cu 

tends to segregate more at GB replacing Ga. Hence if introduction of other elements 

modifies GB properties resulting in Cu poor boundaries then it is possible to achieve 

further higher efficiency of CIGSe most probably at x=0.7. This is only possible if 

GB properties of CIGSe can be manipulated! In order to form Cu poor GB one must 

look for an element whose tendency is to segregate more at GB and induce defect 

sites as compared to Cu. Recently Cojocaru-Mirédin et.al [1] demonstrated a Cu 

depleted and Cd enriched region at the surface of CIGSe and also at GBs connected to 

CdS near to surface of CIGSe [2]. Cd takes over Cu sites (CdCu) at GB demonstrating 

higher tendency of Cd to segregate at GB. In order to test this hypothesis, doping 

CIGSe with Cd by adding a CdS layer early in the process has been carried out to 

study the evolution of GB chemistry especially for high Ga content. 
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5.2 Introduction of Cadmium Sulphide before growth process  

Usually equipment used for CIGSe synthesis does not have a direct or indirect source to add 

Cd or CdS during thin film growth. Hence CdS is deposited here before thin film growth on 

top of Mo using standard CdS chemical bath deposition. Thickness of CdS deposited is few 

nanometers and is followed by a 3-stage deposition process (CIGSe). Preparation of CdS 

chemical bath is the same as the one used for buffer layers and the modified cell contains 

CdS on top of Mo/SLG before thin film growth. A reference cell contains only Mo/SLG. For 

accurate results, we inserted the two samples 1) Mo coated SLG (Reference sample) and 2) 

CdS chemical bath deposition on Mo coated SLG (modified sample) adjacently to deposit 

CIGSe thin films using co-evaporation. This avoids possibility of minor changes which might 

occur if prepared separately. 

The 3-stage process is mostly known (see chapter 2) for producing high efficient CIGSe, 

hence here we use 3-stage deposition process to compare photovoltaic device properties and 

correlate it with modifications in grain and GB properties. Six samples were prepared with 3 

reference samples and corresponding 3 modified with CdS. Summary of the composition of 

cells prepared are described in Table 5-1. 

Table 5-1: Composition in at.% (measured using EDX) for reference and modified cells of 

CIGSe. 

Samples Cu In Ga Se 
x 

(EDX) 

CIS Reference 25.2 25.7 0 49.0 0 

CIS Cd Modified 23.7 27.2 0 49.1 0 

CIGS, x=0.5 Reference 25 11.3 13.8 49.9 0.55 

CIGS, x=0.5 Modified 25.2 11.1 13.1 49.6 0.55 

CIGS, x=0.7 Reference 24.4 7.5 19.1 49 0.72 

CIGS, x= 0.7 Modified 24.4 7.7 19 49 0.71 
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EDX results confirm that composition of CIGSe in reference and modified cells are almost 

the same for all the prepared samples with minor variations which show the accuracy of the 

method used.  

5.3 Improvement in device performance of Ga rich CIGSe 

CIGSe device performance was measured for cells modified with CdS and compared with 

reference samples (without CdS) in Figure 5.1. Figure 5.1a represents J-V curve for reference 

cells and CdS modified cells for x=0.5 and x=0.7. Figure 5.1b represents EQE for reference 

and modified cells which shows improvement in EQE for CdS modified cells. Figure 5.1 c 

and d represent Voc and FF (fill factor) respectively for reference and CdS modified cells for 

x=0.7. Significant improvement in Voc, Jsc and fill factor is observed for CdS modified cells 

while comparing to reference cells. 

Introduction of CdS before thin film growth thus demonstrates significant improvement in 

photovoltaic properties of CIGSe. Results here are shown for Ga rich CIGSe, however 

similar experiments were performed also on pure In sample CuInSe2 and no improvement in 

device performance was observed. Following conclusions can be drawn from Figure 5.1: 

1. Modified cells show improved efficiency, FF, QE, Voc and Jsc as compared to 

reference cells. 

2. Higher Ga cells (x=0.7) presented more improvement in photovoltaic properties as 

compared to lower Ga cell (x=0.5). 

The addition of impurities in a semiconductor usually leads to degraded device performance 

however in this case we found that the addition of a substantial amount of CdS before the thin 

films growth improved the CIGSe performance. 
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Figure 5.1: (a) JV curve, (b) EQE of CIGSe cells for x=0.5 and x=0.7 for reference cells and cells 

modified with CdS. (c) Voc and (d) Fill factor (FF) for modified and reference cells of x=0.7. 

These results are impressive and need to be understood more deeply as they may open new 

perspective for improvements in wide band gap CIGSe solar cells.  

5.4 Microstructural characterization using EBSD 

To understand improvements due to CdS addition, modifications occurring due to CdS were 

studied both at microstructural level and at atomic scale by performing EBSD and APT on 

reference and modified cells.  As the grain size plays an important role in tuning efficiency of 

a polycrystalline solar cell, it is crucial to explore grain distribution. Similar methods as used 

in chapter 3 are used here to explore grain distribution in modified and reference cells using 

EBSD. Figure 5.2 represents EBSD orientation distribution maps of reference and CdS 

modified CIGSe cells for x=0.0, 0.5 and 0.7. Individual grain orientations can be extracted 

from color legend shown in the figure.  
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Figure 5.2: Orientation distribution maps (Inverse pole figure color maps) combined with back 

contrast image for reference and CdS modified cells with Ga ratios x=0.0, 0.50, 0.70. Scale bar 

(black) is 5μm in width.  

Figure 5.2 demonstrates that the difference caused by CdS addition for CISe (x=0.0) is hardly 

noticeable. Also for x=0.5 there is no significant difference observed. 

For higher Ga cells (x=0.7) it can be noted that the reference cells contain a higher number of 

grains oriented along (220) which is apparently not the case in the modified cells. Also a 

minor increment in grain size is observed for higher Ga cells (x=0.7) as also shown in grain 

size distribution in Figure 5.3, referring to Figure 5.2. This small increase is mainly due to 

errors in EBSD measurements resulting from elongation of grains along downward direction 

as can be seen in Figure 5.2.  
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Figure 5.3: Size distribution for reference and CdS modified CIGSe cells with Ga ratios x=0.0, 

0.50, 0.70. 

From the two figures, it is observed that apparently there is no effect of CdS addition on grain 

size and distribution.  

Misorientation angle distribution 

Misorientation between grains can be measured using EBSD for scanned area and is 

presented for the six different cases in Figure 5.4. Following conclusions can be drawn from 

the determined misorientation distributions: 

1. Comparing reference and CdS modified samples for x=0.0 and x=0.5: As observed in 

the case of the CuPRO samples, GBs at misorientation angles 60° and 70° are more 

prominent and are Σ3 twin boundaries. Also GB misorientation at 60° is higher than 

70° misorientation, this was also observed for all CuPRO samples. 

2. Comparing Figure 3.18 and Figure 5.4, it is impressive to note that the misorientation 

angle distribution is apparently similar for CuPRO samples and 3-stage samples. This 

shows the presence of similar microstructural properties of CIGSe regardless of thin 

film deposition process. 

3. For x=0.7, apparently more misorientations are observed at 70° as compared to 60°. 
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Figure 5.4: Misorientation angle distribution for reference and CdS modified CIGSe for 

different Ga ratios x=0, 0.5 and 0.7. 

A significant increase in the amount of “70° misorientation” between grains may be 

attributed to microstructural changes occurring at atomic level. Main reasons behind these 

changes are beyond the scope of EBSD, hence APT is used in this study to detect atomic 

level changes at GB. 
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5.5 Atomic scale characterization using Atom Probe 

Tomography  

In this part, the investigation of modifications in CIGSe grains or at GBs in modified cells is 

studied using APT in order to understand Cd role on cell improvement. This might be due to 

the addition of CdS before synthesis. APT is again realized as one of the best techniques to 

investigate atomic level modifications in CIGSe grains or GBs.  

5.5.1 Specific sample preparation 

APT is used here to explore the atomic distribution of CdS in CIGSe and to detect if there are 

any changes in GB chemistry for reference and modified cells. Sample preparation 

techniques for this study is slightly modified, as CdS is deposited on Mo before thin film 

preparation, more CdS is expected in the lower half of thin film. Hence APT tips prepared in 

transverse direction are made with apex towards lower half as shown in Figure 5.5. Final 

APT tip prepared in this study is more localized towards lower half of thin film, keeping apex 

of the tip in vicinity of yellow circle region as shown in the figure. 

 

Figure 5.5: Chunk of CIGSe deposited on a W tip. Yellow circle shows approximate location of 

final prepared APT tip.  

As thin films are prepared using 3-stage process, Ga grading is expected throughout the 

sample. In these samples Ga concentration is increased with thin film depth as shown in 

Figure 5.6. As EDX measurement is performed on top surface and APT measurements are 
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performed on lower half of thin films, concentrations of elements measured by the two 

techniques may not match. Similar tip location is used for all reference and modified samples.  

 

Figure 5.6: Ga ratio (x) as a function of thin film depth for CIGSe sample x=0.5 prepared using 

3-stage process. This measurement is performed in APT by preparing tip parallel to thin film 

growth direction. 

5.5.2 Atomic scale analysis of grains and grain boundaries 

3D atomic distributions of all elements are explored for modified cells and reference cells. A 

small amount of Cd is observed in CuInSe2, as illustrated in APT mass spectrum in Figure 

5.7a. Different isotopic peaks of Cd are observed, namely 110, 111, 112, 114 a.m.u. and 

compared with natural isotopic abundance of Cd. Other peaks (113 and 116 a.m.u.) could not 

be resolved as they are obscured by In peaks at 113 and 115 a.m.u. respectively and hence are 

under detection limit of APT. Other isotopes of Cd namely 106 and 108 a.m.u. were under 

the detection limit of the atom probe. Isotopic ratio of resolved Cd peaks observed is 

consistent with natural abundance thus demonstrating these atomic peaks definitely 

correspond to Cd. The total amount of Cd can be calculated by using isotopic abundance 

calculations considering 112 a.m.u. peak of Cd. 
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Figure 5.7: Mass spectrum of CdS modified CuInSe2 illustrating atomic peaks from 109 a.m.u. 

to 114 a.m.u..  

Atomic distributions corresponding to these peaks are displayed in Figure 5.8. 3D atomic 

distribution of Na and Cd atoms are shown in the figure with each dot corresponding to single 

atom. Cadmium is found to be uniformly distributed in grains of CIS with some local 

fluctuations around 0.08 at%. Cd in the grain has a maximum concentration of 0.1at.% and an 

average concentration of about 0.08 atomic %. Concentration profile of Cd along whole 

atomic volume shown is illustrated in Figure 5.8 demonstrating local fluctuations in Cd 

concentration; composition profile shows that Cd is not preferentially segregated in grains or 

GBs.  
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Figure 5.8: Atomic distribution of atoms of Na and Cd in Cd modified CIS. Below is 

concentration profile of Cd in atomic % along tip. 

Cd is thus found to be distributed inside CIS grain and may act as an impurity degrading the 

device. Distribution of all atoms in vicinity of GB for modified CIS cell is shown in Figure 

5.9. As usual Na and In enrichment accompanied with Cu depletion is observed for Ga poor 

CIGSe cell. Figure also illustrates that Cd distribution is unaffected in vicinity of GB and is 

uniformly distributed. If CdS is added before the thin film deposition, only Cd isotopes were 

found and Sulphur (S) is absent in grains and at GBs. This may be due to higher diffusion 

coefficient of S (3×10
-10

 cm
2
/s) [8] at high temperatures (520°C), which accounts an average 

diffusion length of 850 μm for 40 minutes (deposition time). 
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Figure 5.9: (a) Atomic distribution of elements in vicinity of GB for, (b) GB chemistry for 

corresponding volume. 

The above results illustrate the pure In sample (no Ga x=0) and no appreciable changes were 

observed in GB chemistry comparing with previous results. Similar measurements were 

performed on Ga intermediate (x=0.5) and Ga rich (x=0.7) cells and Cd was found to be 

absent throughout the atomic volume including grains and grain boundaries and hence was 

under detection limit of APT. Figure 5.10 shows mass spectrum for Cd modified CIGSe 

x=0.7, unlike Figure 5.7 (for x=0) in this case (x=0.7) we found absence of Cd throughout the 

volume. None of the isotopes of Cd were identified or were under the detection limit of the 

atom probe. Figure 5.10 represent the mass spectrum for x=0.7, similarly to modified CIGSe 

x=0.5, no presence of Cd was observed.  
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Figure 5.10: Mass spectrum of Cd modified cells for x=0.7 shown in mass range 108 to 117 

a.m.u.. 

After performing repeated analysis on many atom probe tips, we conclude that Cd is not 

present in modified CIGSe for x=0.5 and x=0.7 or the concentration is very low and is under 

the APT detection limit.  

The presence of Cd in grains in CIS sample and its absence in CIGSe sample can be due to 

the higher diffusion coefficient of Cd in CIGSe as compared to CIS as shown in Figure 5.11. 

Cadmium diffusion measurements are adapted from refs. [3,4] for CIS and CIGSe 

respectively and represent significantly the high diffusion capability of Cd in CIGSe as 

compared to CIS. Hence Cd is out diffused to grain surface for CIGSe due to high diffusion 

coefficient of Cd in CIGSe plus high temperature (≈900 K for 40 minutes) during thin film 

deposition (diffusion length ≈ 150 μm). In case of CIS, a small amount of Cd is retained in 

CIS and is suspected to be due to a lower diffusion coefficient of Cd in CIS (diffusion length 

≈ 1.5 μm).  
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Figure 5.11: Cadmium diffusion (D measured in cm
2
s

-1
) for CIS thin films provided by Kumar 

et.al [3] and in CIGSe provided by Hiepko et.al [4] as a function of temperature.  

Notable changes in GB chemistry is observed comparing modified and reference samples for 

x=0.5 and x=0.7. As we observed difference in Cu behavior at GB for different Ga samples, 

we focus here essentially on the composition profile of Cu across GB.   

5.5.3 Influence of modification on grain boundary and correlation with 

device performance 

GB chemistry of CIGSe cells with various ‘x’ present an increased amount of Cu rich GBs as 

a function of Ga content as discussed in chapter 4. No effect on GB chemistry for Cd-

modified Ga poor CIGSe cells was observed and always a Cu depletion is observed at GB. 

An example is already shown in Figure 5.9.  

However a significant effect on GB for Cd-modified Ga rich cell is observed and presented in 

Figure 5.12 (high Ga samples, x=0.7). Atom probe analyses were carried out at about 100 nm 

from Mo back contact as shown in Figure 5.5. Because these cells were prepared using 3-

stage process, Ga grading is present in the sample and is increased towards back contact. 

Hence Ga concentration is higher than the average in the APT analyzed region as observed in 

Figure 5.12. As seen in previous cases, here also we observed the presence of Cu rich GB for 

Ga rich reference cell, but it is interesting to note that for cells modified with CdS before thin 

film deposition, GBs are observed Cu depleted which is apparently accompanied by In 
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enrichment as shown in Figure 5.12. This case is described for two different GBs, to have 

large statistics more experiments were performed.  

 

Figure 5.12: GB chemistry for x=0.7 CIGSe for (a) Reference and (b) CdS modified cells. 

Many experiments were further performed to increase statistics and behavior of Cu at GB is 

summarized in Figure 5.13. 

Figure 5.13 illustrates the change in Cu concentration at GB for reference and modified cells 

for x=0.5 and x=0.7. From this, the following conclusions can be made: 

1. Presence of Cu rich GBs is observed for reference cells, which was also present in 

CuPRO samples for this level of Ga content.  

2. Hence GB chemistry is found similar for 3-stage samples and CuPRO samples, whit a 

significant number of Cu rich GBs.  

3. For cells modified with CdS before thin film preparation, all GB chemistries observed 

were Cu depleted and after repeated APT experiments we conclude that some/most of 

Cu enriched GBs are converted to Cu deprived. 

-8 -6 -4 -2 0 2 4 6 8

0

10

20

30

40

50

0

1

2

3

4

5

N
a

 C
o

n
c
e

n
tr

a
ti
o

n
 (

%
)

Distance from GB (nm)

-8 -6 -4 -2 0 2 4 6 8

0

10

20

30

40

50

 

 

C
o

n
c
e

n
tr

a
ti
o

n
 (

%
)

Distance from GB (nm)

(a) Reference (b) Modified

Se

Ga

In

Cu

Na



Chapter Five: Towards the improvement of Ga rich CIGSe 

- 172 - 

 

 

 

Figure 5.13: Grain boundary chemistry of Cu for x=0.5 and x=0.7 for reference and CdS 

modified cells. Red & Blue represent Cu rich and Cu poor GB respectively.  

This conversion of GBs from Cu rich to Cu poor is apparently due to the occupation of Cu 

sites by Cd atoms (CdCu) during thin film preparation and discussed in later parts of this 

chapter.  

Cu behavior from Figure 5.13 is summarized in Figure 5.14 explaining significant amount of 

GBs are converted from Cu rich to Cu poor after modification of CIGSe cells. From 

presented analyzed dataset, only one GB was observed to be Cu enriched for reference 

CIGSe x=0.5, however almost half of the GBs were Cu enriched for reference CIGSe x=0.7. 

It is impressive to note that after modifications with Cd, all GBs are observed Cu deprived 

and is possibly due to modifications in GBs during thin film preparation.  
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Figure 5.14: ΔCu (relative change in Cu composition in %) as a function of Ga ratio (x) for 

reference and modified cells.  

Comparing Figure 5.1 and Figure 5.14, the improvement in performance of CIGSe can be 

directly correlated to the increased amount of Cu depleted GBs in Ga rich cells and is 

explained as follows: 

1.  Figure 5.1 illustrates that Cd modification impacts more on Ga rich samples as 

compared to ones with less Ga.  

2. Hence, as Ga concentration is increased improvement from its reference is much 

important, i.e. x=0.7 modified cells presented more improvement than x=0.5. 

3. Figure 5.14 shows that higher amount of Cu rich GBs are converted to Cu poor for 

x=0.7, whereas there were only few Cu rich GBs in reference samples which are now 

converted to Cu poor. 

As Cu poor GBs are shown to have much better influence on CIGSe device performance, 

higher Ga samples showed much improvement due to more conversion of Cu poor GBs from 

Cu rich GBs. These improvements observed due to CdS modification are observed for first 

time and opens up new perspectives for future developments of CIGSe cells.  
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5.5.4 Cadmium diffusion in CIGSe 

Results discussed in the previous section predicted the occupation of Cu sites by Cd atoms at 

GB. To verify this hypothesis, we performed the analysis of a p-n junction between CIGSe 

and CdS by exploring the heterojunction. This may not explain actual phenomenon occurring 

during thin film deposition but can give an idea of CdS-CIGSe interaction at room 

temperature. 

This junction is shown in Figure 5.15 for a standard CIGSe sample (x=0.15). This 

concentration has not been explored in previous section; however it can provide useful 

information in vicinity of CdS-CIGSe interface. Figure 5.15a shows the 3D atomic 

distribution in vicinity of CdS-CIGSe heterojunction. For a better visualization, only Cd and 

Se atoms are shown. Higher amount of S than Cd in Figure 5.15 is apparently due to the 

overlapping of O2
+
 (32 a.m.u.) peaks with S

+
 (32 a.m.u.).  

 A 3D volume is selected normal to the heterojunction and the associated concentration 

profile is plotted in Figure 5.15b. As compared to other elements, Cu is depleted few 

nanometers earlier while scanning towards CdS. Moreover Cd atoms are observed to enrich 

few nanometers ahead suggesting replacement of Cu atoms by Cd. Cu depletion near 

heterojunction (highlighted in grey) is observed and marked in the profile which is occupied 

by Cd atoms marked in the profile. This confirms the presence of a Cu poor CIGSe grain 

surface and is accompanied by diffusion of Cd in the first few atomic layers of CIGSe. This 

can be explained by occupation of Cd atoms over Cu atoms which is also evidenced in ref. 

[1,4,5]. Research in previous works proposed formation of CdCu i.e. accommodation of Cd on 

Cu-sublattice is possible due to similar ionic radii of Cd
2+

 (0.097 nm) and Cu
+
 (0.096 nm) [1]. 

Nakada et.al [5] have shown that Cd is diffused in the first few nanometers (using TEM 

imaging) occupying Cu sites. Similar results were obtained by Hiepko et.al [4] for x=0.30. 

Considering these results we can expect the same behavior for higher Ga samples. 
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Figure 5.15: (a) 3D atomic distribution in vicinity of CdS-CIGSe heterojunction for x=0.15 

depicting distribution of Cd and Se for better visualization. (b) Composition profile of various 

elements along direction shown in sampling box. 

As GBs are also grain surface, the formation of CdCu at GBs during thin film growth is 

expected.  

5.5.5 Previous works on different stages of thin film deposition 

Above results indicate formation of Cu poor grain surface at the end of thin film preparation. 

Cu poor GB is shown to be beneficial for solar cell performance; hence it is necessary to 

understand the origin of Cu rich GBs. Formation of Cu rich GBs is well explained in studies 

performed by Couzinie-Devy et.al [6] which is detailed here to answer some questions. 

Couzinie-Devy et.al [6] studied GB chemistry of CIGSe for different stages of 3-stage 

process and presented change in GB chemistry for different stages as illustrated in Figure 

0 2 4 6 8 10 12 14 16 18

0

10

20

30

40

50

C
o

n
c
e

n
tr

a
ti
o

n
 (

%
)

Distance in nm

 Na

 Ga

 Se

 Cd

 S

 In

 Cu

Se

Cd
10 nm(a)

(b)
S

Cd

Se

In

Cu

Ga

X= 0.15



Chapter Five: Towards the improvement of Ga rich CIGSe 

- 176 - 

 

 

5.16. Elemental flow during 3-stage process is shown in Figure 5.16 representing change in 

composition of Cu as a function of process time when overall composition switches from Cu 

poor (point A) to Cu rich (point B) to Cu poor (point C). Three points A, B and C are chosen 

as shown in the figure to explore their respective GB chemistry. Results show that GB 

chemistry is tuned from Cu poor to Cu rich to Cu poor for CIGSe composition at A (Cu 

poor), B (Cu rich) and C (Cu poor) respectively. It is apparent that Cu rich stage leads to 

formation of Cu rich GBs.  

 

Figure 5.16: (top left) deposition process flow for 3-stage process and GB chemistry measured 

using APT during different stages (A, B, C) as marked in diagram. Image courtesy: Couzinie-

Devy et.al [6].  

Hence, at the end of the thin film deposition, overall CIGSe composition is maintained Cu 

poor.  

However considering our case, for Ga rich cell we observed presence of Cu rich GBs even 

for overall Cu poor CIGSe composition. Hence we expect that for Ga rich CIGSe, while 

traversing from point A to B, GBs are converted Cu rich, but while traversing from B to C 

maximum GBs are retained Cu rich and DO NOT convert back to Cu poor. This phenomenon 

is expected for Ga rich cells as there is very few In concentration to occupy all the defect sites 

and maintain chalcopyrite phase. To confirm this hypothesis, atom probe investigations are 
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required for reference and modified cells between different stages of thin film deposition. 

This part is not performed in the framework of this PhD work and is reserved for future 

perspectives.  

Therefore when CdS is added before thin film deposition, it prevents Cu enrichment at GBs 

(or grain surfaces) and maintains Cu depleted GBs till the end of the process. A part may also 

diffuse out to/from grain surface at high temperatures. Regarding Sulphur (S), no S atoms 

either in grains or at GBs of any of the modified samples were observed and must be due to 

high diffusion coefficient of S. 

There is no proof of this hypothesis and much more physics is involved which requires 

further detailed study to confirm or to develop another theory to explain conversion of Cu 

rich to Cu poor GBs due to addition of CdS before thin film preparation. As the theoretical 

calculations of quaternary system (CIGSe) is itself complicated, inclusion of two more 

elements Cd, S leads to interplay of overall six main elements (without counting Na) making 

the system even more complex to study.  

Conclusions 

In this chapter, possible strategies to improve Ga rich CIGSe cells are discussed. It is 

proposed that Ga rich CIGSe cells can be improved by addition of CdS before thin film 

preparation and improvement is observed more for higher Ga concentrations. It is illustrated 

that due to CdS addition before CIGSe deposition, a large amount of GBs are Cu deprived 

which was previously demonstrated to be beneficial for GBs properties and cell efficiency. 

As higher Ga samples contained higher amount of Cu rich GBs, more improvement in Ga 

rich cells is observed. Studies presented here show the formation of Cu poor GB at Cu rich 

step for modified samples which was however absent in reference samples and proved to be 

beneficial for cell performance. Although CdS is used in this work before thin film 

preparation, it is recommended that other elements or compounds with occupancy over Cu 

sites must be tested, for example ZnS. This is also better as Cd is not a recommended 

chemical element. 

Hence it is still an open question to explain the conversion of nature of GBs due to addition 

of different elements. However, it opens new perspectives towards the improvement of wide 

band gap CIGSe as shown in this work. 
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6 Conclusion and General Perspectives 

This thesis is dedicated to understand the limited performance of wide band gap 

Cu(In,Ga)Se2 (CIGSe) solar cells. Polycrystalline CIGSe is known to have a better efficiency 

than its monocrystalline counterpart, mostly supposed to be attributed to the beneficial effects 

of grain boundaries (GBs). In this work, the study of these GBs has been undertaken at the 

atomic scale in order to investigate the atomic distribution of solute atoms and impurities in 

vicinity of these important defects, namely the grain boundary (GB) of CIGSe photovoltaic 

cells. In order to achieve this goal, these intrinsic defects were explored by means of high 

resolution microscopic techniques of the GPM group. In addition to XRD, SEM and TEM, 

the 3D atom probe tomography (APT) is utilized as the main tool for the atomic scale 

characterization. APT is the only technique able to detect atomic fluctuations in close vicinity 

of GB which as it will be seen explains CIGSe device performance.  

The band gap of CIGSe can vary co-linearly from 1.04 eV (CuInSe2) to 1.67 eV (CuGaSe2) 

by tuning the Ga/In concentrations. The possibility to play with the band gap of CIGSe gives 

this compound a better adaptability towards the solar spectrum. The record efficiency cells, 

till today, contain 8 at.% of overall Ga concentration. However due to its optimum band gap 

regarding solar conditions (1.4 eV), Ga rich CIGSe with 18% Ga was expected to have a 

better efficiency than the Ga poor CIGSe. But, results obtained in this work and in previous 

works found a poor efficiency for higher Ga cells. This disagreement has led to debate over 

the years suggesting some important changes in GBs being the main reason. Thus, the aim of 

the current work was to find any particular changes in GB for Ga rich CIGSe which might 

hinder their performance. As GBs are few atomic layers thick, we used the atomic probing 

technique “APT” to investigate their chemistry. Due to its limited analyzing capability (50 × 

50 × 100 nm
3
), thin films are first characterized at microscopic scale. Microscopic scale 

characterization is important to confirm that changes in device performance are not due to 

modifications in their microstructures.  

After generalities on CIGSe cells given in chapter one, Chapter 2 focusses on physical 

principles of all the microscopic analytical techniques namely: SEM, EBSD, EDX and XRD. 

Details of CIGSe synthesis process used in this work and completion of solar cell circuit are 

also well explained. Eight CIGSe samples were prepared using the CuPRO (Cu poor-rich-off) 

process for various “x” or Ga ratio (x = [Ga]/[In]+[Ga]). This process was intentionally used 

in order to prepare CIGSe layer with homogenous composition. A homogenous chemistry in 

grains is necessary to compare the APT results and to avoid a possible overall composition 
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effect. Sample preparation techniques, physical principles and reconstruction procedures 

involved in APT are critical for any analysis, thus their optimizations were first performed to 

obtain accurate results.   

The chapter 3 discusses changes in various properties and characteristics of CIGSe for the 

different compositions studied in this work. Significant differences in J-V curves, efficiency 

and quantum efficiency were observed for different samples. Efficiency of the device was 

found to be maximum for x=0.39 and was significantly lower for x=0.7, which was expected 

to be most efficient, according to band gap modulations. Increase in band gap with Ga 

content explained linear decrease in short circuit current with Ga content in CIGSe, but could 

not explain saturation of open circuit voltage (Voc) for Ga rich samples. Hence to understand 

unexpected decline in device performance for higher x, structural and chemical investigation 

were undertaken. EDX allows to accurately determine CIGSe composition and hence used to 

calibrate experimental parameters involved in APT instrument. XRD results confirmed the 

formation of a single chalcopyrite phase in all samples. This simple result approves that the 

difference in the device performance is not due to the formation of undesired phases. EBSD 

was used to investigate grain size distribution and the statistical distribution of GB 

misorientation angles for various x values. . These characteristics (grain size, GB 

misorientation) were again here unable to explain the reasons for the poor performance of the 

Ga rich CIGSe cell. This showed that modifications at atomic level are the main reason 

behind the degraded performance of CIGSe cell. To that point APT was realized. 

Optimizations of various parameters (laser characteristics, specimen temperature) necessary 

for APT experiments were calibrated to ensure obtaining accurate results. 

In the chapter 4 APT investigations on CuIn1-xGaxSe2 with various Ga ratio (x) are discussed. 

This work showed that GB chemistry is largely dependent on respective compositions of 

CIGSe and three ranges of Ga concentration were identified giving similar GBs composition 

profiles. In the first regime, x < 0.4, all GBs were found Cu depleted and In enriched which is 

also consistent with previous studies and theoretical calculations reported in the literature. In 

the second regime, where 0.4 < x < 0.7, two different types of GBs are observed in the film: 

i) Cu depleted and In enriched and ii) Cu enriched and Ga depleted. In the third regime, x > 

0.7, Ga rich cells contained only Cu rich GBs and were found to be the less efficient cells. 

The highest efficiency of CIGSe film in this work was found for x=0.39. It is remarkable to 

note that after this value of x, the efficiency decreases, which is consistent with the presence 

of Cu rich GBs. Further decrease in efficiency was consistent with the increasing number of 
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Cu rich GBs and a correlation between both was evident. Hence, the defect’s physics at GBs 

for Ga poor cells would be different from that of Ga rich cells, which finally reflects their 

device performances. Some possible explanations were provided in order to explain the 

physical phenomenon behind the beneficial effect of Cu poor GB and detrimental effect of 

Cu rich GB. Some previous studies suggested that Cu poor GB act as hole barriers thus 

preventing carrier recombination. Cu rich GB may increase recombination leading to poor 

performance. Contreras et.al, on his side, explained that the formation of dead grains (grains 

which do not contribute in carrier collection) in Ga rich cells may degrade their performance. 

Results in this work may explain that these dead grains, probably surrounded by Cu rich GBs, 

are due to poor electronic activity in vicinity of Cu rich GBs. Some more possible 

phenomenons were proposed, such as formation of shunt paths due to Cu rich GB and/or 

formation of undesired phases at GB, which explain possible reasons for their limited 

performance. Hence it was concluded that Cu rich GB hinders CIGSe performance. However 

a particular physical phenomenon at the origin of this is not clearly detected and proved. In 

addition, it was interesting to note that GB chemistry is largely dependent on the overall grain 

concentration. Cu can either be enriched at GB (accompanied with Ga depletion) or depleted 

at GB (accompanied with In enrichment) depending on the overall grain concentration. The 

possible driving forces leading change in GB chemistry with Ga content, or in other words 

leading to thermodynamic solute segregations, were proposed such as: mixing segregation 

enthalpy, intrinsic defect physics and segregation tendency due to size effect or site effect. As 

the system involves the interplay of four elements (excluding impurities, Na…), calculation 

of interactions among them is very complicated. A clear explanation to these observations is 

an open question and should be a (numerical modeling) perspective. In addition, for 

intermediate Ga contents (0.4 < x < 0.7) both Cu rich and Cu poor GBs are observed, which 

can be due to different misorientation angles between the GBs. An immediate explanation to 

this is not yet found. This could be achieved by performing correlative EBSD or TEM 

measurements on APT tip before analysis, this work is also reserved as future perspective.

  

In chapter 5, some efforts were made to improve GBs properties of CIGSe. As Cu poor GB is 

found beneficial, some strategies were attempted to convert Cu rich GB to Cu poor GB. It 

was found that incorporation of Cd which is found to occupy Cu sites is beneficial. In order 

to achieve this, a CdS layer was deposited before the CIGSe thin film deposition. This 

process shows an improvement of the device properties but only for high Ga content. 



Conclusion and General Perspectives 

- 182 - 

 

 

Microstructural investigations using SEM/EBSD did not revealed any significant changes due 

to CdS addition. However, investigation of GBs for reference and CdS modified cells 

demonstrated the conversion of Cu rich GBs to Cu poor GBs for higher Ga cells. Hence 

improve in efficiency was attributed to changes in GB chemistry. Cd atoms are thought to 

occupy Cu sites during thin film deposition thus preventing Cu to segregate at GBs. It was 

interesting to note that besides acting as an impurity, incorporation of CdS improves the 

device. Accurate explanation of this phenomenon is not yet clearly understood also because 

of the complex elaboration process (copper poor/copper rich). The perspective in this aspect 

is to understand the beneficial effects of CdS addition and to try elements other than Cd and 

S, Cd being not recommended.  

In summary, due to their high efficiency and good stability, CIGSe thin films are promising 

candidates for future development of solar cells. Limited efficiency of Ga rich CIGSe is a 

major concern and the main reasons of this are thoroughly described in this work. As CIGSe 

is a quaternary compound, the development of accurate theoretical models to explain GBs 

solute segregation and properties will need time but will find in this work a large data base to 

be compare and / or reproduce tendencies.  
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7 Appendices 

Appendix A: 

Checking Homogeneity using pair correlation function. 

 

Atom probe tomography (APT) provides 3D atomic distribution of all elements in CIGSe as 

discussed previously. In order to test whether the technique provides homogeneous atomic 

distribution and does not bias the results, we perform pair correlation statistical test. Figure 1 

shows a typical reconstructed APT volume of CIGSe. Considering a volume V as shown in 

figure 1, if Ni is the number of an atomic specie “i” in a volume V, its atomic density can be 

written as ρi=Ni/V. Probability density to find an atom “j” from atom “i” at a given distance is 

given by the radial distribution function Gij [1].  

 

Figure 1: Reconstructed 3D atomic volume of a CIGSe grain with Ga ratio=0.84. Selected 

volume ‘V’ is used for further calculations.  

Gij at a distance ‘r’ from atom “i” can be calculated by taking into account the number of 

atoms between spherical shell r and r + dr. Gij equals volume of the shell multiplied by the 

atomic density and multiplied by the correction factor gij which accounts the deviation from 

random distribution. 

 𝐺(𝑟)𝑖𝑗 = 𝑔(𝑟)𝑖𝑗𝜌𝑗4𝜋𝑟2𝑑𝑟 
(1) 

The correcting factor g(r)ij is the correlation function for the pairs i-j. This function can be 

deduced from above equation and can be written as: 
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𝑔(𝑟)𝑖𝑗 =

𝐺(𝑟)𝑖𝑗

𝜌𝑗4𝜋𝑟2𝑑𝑟
 (2) 

 

Three cases of pair correlation function g(r)ij is evident: 

1) Greater than 1: Positive correlation, tendency to cluster 

2) Less than 1: Anti-correlation, tendency to order  

3) Equal to 1: Random distribution, homogenous.  

Pair-correlation tests can be performed from inbuilt option in post processing software 

GPM3Dsoft, by selecting any element present in the volume. Pair-correlation tests have been 

performed in this case for a CIGSe grain which is shown in figure 2 for the volume ‘V’ 

obtained from figure 1. Figure 2 represents selected 3D volume of Ga atoms and Se atoms, on 

their respective right side is shown the pair correlation function of Ga-Ga atoms and for Se-

Se atoms. It is clear from the figure that the pair correlation function for the two species is = 

1±0.03. This shows that the obtained atomic distribution is very homogenous without 

presence of any clusters. Below results are shown for Ga and Se and similar results were 

obtained for Cu and In (not shown here). These results show that APT experiment does not 

bias the results obtained and gives an accurate representation of atomic distribution for 

CIGSe.  
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Figure 2: Selected 3D volume from figure 1 depicting atomic distribution for (a) Ga and pair 

correlation function for Ga atoms and (b) Se and pair correlation function for Se atoms. 
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Appendix B: Calculation of Na Gibbsian Interfacial Excess in CIGSe 

grain boundaries (GBs). 

 

Gibbsian Interfacial Excess of Na (ГNa) provides number of Na atoms segregated per unit of 

interfacial area [1]. Thanks to atom probe tomography (APT) which can provide 3D 

distribution of Na atoms along GB. Statistical information from APT data can be used to 

calculate ГNa. Figure3a shows decoration of Na atoms along GB of a typical CIGSe sample, 

extracted 3D volume in (b) can be used to plot cumulative distribution between Na atoms and 

total number of atoms as shown in (c). Cumulative distribution is then used to calculate ГNa. 

 

Figure 3: (a) 3D reconstructed APT volume of an analyzed CIGSe tip depicting distribution of 

only Na atoms. A 3D box is extracted in vicinity of GB to quantify Na distribution. (b) Extracted 

3D volume, 1 Å wide sampling box is moved perpendicularly to GB in steps of 1 Å. (c) Integral 

profile measured for Na from selected 3D volume.  

 

Figure 4 shows integral profile of Na decorated in between two grains G1 and G2. NNa(G1) 

and NNa(G2) represents number of Na atoms in G1 and G2 respectively. Number of Na atoms 

in excess can be measured then directly using the relation: 

 
Г𝑁𝑎 =

𝑁𝑁𝑎(𝑡𝑜𝑡𝑎𝑙) − 𝑁𝑁𝑎(𝐺1) − 𝑁𝑁𝑎(𝐺2)

𝜂𝐴
=

𝑁𝑁𝑎(𝑒𝑥𝑐𝑒𝑠𝑠)

𝜂𝐴
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where, η is detection efficiency of atom probe (0.63 in this case), A is interfacial area used 

for integral profiling (25 nm in this case). 

 ГNa is then calculated from above equation and is equal to 2 atoms per nm
3
. 

 

Figure 4: Integral profile of Na traced perpendicular to GB between grain 1 (G1) and grain 2 

(G2).  
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Abstract 

With efficiency more than 21%, polycrystalline Cu(In,Ga)Se2 (CIGSe) semiconductors present 

maximum efficiency among thin film solar cells, making them a promising material to develop 

solar cell modules. Most efficient CIGSe cells produced till date are Ga poor cells (≈7.5% Ga) 

having band gap (Eg) =1.2 eV, however cells with optimum band gap (according to solar 

spectrum) 1.4 eV (≈18% Ga) presented much lower efficiency. This degraded performance of 

wide band gap CIGSe lead to scientific debates for many years suggesting various theories 

behind its decline in performance. Beneficial properties of Grain boundaries (GBs) are one of 

the main reasons for high efficiency of CIGSe and modifications in GBs could be the reason 

for hindered performance of Ga rich cells. In order to detect changes in chemistry of GBs, a 

technique able to resolve materials at atomic scale is employed in this research, known as atom 

probe tomography (APT).  Exploring GB chemistry, we found that Ga poor cells always 

exhibit Cu deprived GBs which are known beneficial for cells due to their hole barrier 

properties, however Cu enriched GBs emerges for Ga concentration higher than 7.5%. This 

composition surprisingly coincides with decline in CIGSe performance and further increase in 

Ga concentration results in increase in Cu enriched GBs followed by degraded CIGSe 

performance. This suggests modifications in GBs can alter device’s performance, hence to 

retain GB properties some propositions and experiments are illustrated in the end. 

Résumé 

Avec une efficacité de plus de 21%, le matériau polycristallin semiconducteur Cu(In,Ga)Se2 

(CIGSe) présente le maximum d’efficacité pour les cellules solaires dites à couches minces. 

Les cellules CIGSe les plus efficaces produites jusqu'à ce jour sont des cellules pauvres en Ga 

(≈7.5% Ga) et ayant une largeur de bande interdite (Eg) de 1,2 eV. Cependant, les cellules 

avec une largeur de bande optimale d’ 1,4 eV (≈18% Ga) présentent une efficacité beaucoup 

plus faible. Cette dégradation des performances des cellules à large bande interdite CIGSe 

conduit à des débats scientifiques depuis de nombreuses années ayant mené à diverses théories 

pour expliquer le déclin des performances de ces cellules avec l’augmentation de Ga. Les 

propriétés bénéfiques des joints de grains (GB) sont l'une des principales raisons de rendement 

élevé du CIGSe et les modifications de la chimie des GB pourraient être la raison de la 

performance limitée des cellules riches en Ga. Afin de détecter des changements dans la 

chimie des GB, une technique capable d’imager des matériaux à l'échelle atomique est 

employée dans ce travail : la sonde atomique tomographique (APT). L’exploration de la 

chimie des GB nous a permis de constater que les cellules pauvres en Ga présentent toujours 

une déplétion en Cu. Cette chimie semble bénéfique pour les cellules en raison de leurs car les 

GB agissent alors comme barrière pour trous, évitant ainsi les recombinaisons aux joints de 

grain. Cependant pour des concentrations de Ga supérieures à 7,5%, un enrichissement en Cu 

est observé. Cette composition coïncide étonnamment avec la baisse de la performance des 

cellules CIGSe. Cela suggère que des modifications dans les joints de grains peuvent altérer les 

performances de l'appareil. Donc, pour améliorer les propriétés des joints de grains, de 

nouvelles pistes sont envisagées à la fin du document. 

 

 


