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Abstract

Robots are slowly entering our houses. But for them to perform more difficult
and interesting tasks, they need to have a richer knowledge of the different
objects and places present in a particular household. Building and using
such a complex knowledge is called semantic mapping and navigation, which
requires many different capabilities such as mapping, localization and object
recognition. Most of them have been thoroughly studied in the past but
often separately and in a different context. We propose a complete solution
to perform incremental and unsupervised semantic mapping working on
a real robot. Each aspect of the solution is discussed from the software
architecture to all the functionalities needed by the robot. Some already
existing techniques have been derived in the effort of integration, but more
importantly three different parts of the solution are original contributions.
The first one is the use of 2D laser range finder to perform object recognition
using multiple views of the objects. Numerous semantic mapping solutions are
using this sensor for mapping and obstacle avoidance, but we fully leveraged
it by developing techniques to use it in the entire process of semantic mapping,
showing that it is effective at recognizing up to 20 different objects in an
indoor scenario. Secondly we introduce the graph-of-views object modeling
method. In our effort to extend bag-of-views techniques to perform multi-
modal modeling of objects we derived an original formulation which is more
adapted to partial perception of objects. We applied this approach to object
recognition using both a laser range finder and a RGB-D camera, showing
that it is able to take advantage of both sensor strengths. Finally, while most
existing semantic mapping techniques rely on supervised learning of objects,
we present an original incremental and unsupervised learning algorithm. Our
technique was applied to the learning of multi-modal models of dynamic
objects that are encountered as the robot navigate an indoor environment
for an extended period of time, showing that it is able to produce consistent
models of these objects without human intervention.
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Résumé

Les robots entrent peu à peu dans nos maisons. Mais pour réaliser des tâches
plus difficiles et intéressantes, ils doivent posséder une connaissance riche des
différents objets et lieux présent dans une habitation particulière. Constru-
ire et utiliser une telle connaissance s’appelle la cartographie et navigation
sémantique et nécessite de nombreuses capacités comme la cartographie,
la localisation ou encore la reconnaissance d’objets. La plupart de celles-
ci ont été longuement étudiées dans le passé mais souvent séparément et
dans un contexte différent. Nous proposons une solution complète fonction-
nant sur un robot capable d’effectuer progressivement et sans supervision
la cartographie sémantique d’un lieu. Chaque aspect de cette solution est
examiné depuis l’architecture logicielle jusqu’aux fonctionnalités requises par
le robot. Certaines techniques déjà existantes ont été adaptées dans l’effort
d’intégration et trois parties différentes de la solution sont des contributions
originales. La première est l’utilisation de la télémétrie laser 2D pour effectuer
la reconnaissance d’objets en utilisant des vues multiples des objets. De
nombreuses solutions de cartographie sémantiques utilisent ce capteur pour
la cartographie et l’évitement d’obstacle, mais nous en avons pleinement
tiré profit en développant des techniques pour l’utiliser dans l’ensemble du
processus de cartographie sémantique, montrant qu’il est efficace pour recon-
nâıtre jusqu’à 20 objets différents dans un scénario d’environnement intérieur.
Deuxièmement, nous présentons une méthode de modélisation d’objets par
graphes de vues. Dans notre effort pour étendre les techniques de sac-de-vues
pour effectuer la modélisation multi-modale des objets, nous avons développé
une formulation originale qui est plus adapté à la perception partielle des
objets. Nous avons appliqué cette approche à la reconnaissance d’objets
en utilisant à la fois un télémètre laser et une caméra RGB-D, montrant
qu’elle est en mesure de tirer avantage des points forts des deux capteurs.
Enfin, alors que la plupart des techniques sémantiques de cartographie ex-
istantes reposent sur l’apprentissage supervisé des objets, nous présentons
un algorithme d’apprentissage incrémental et non supervisé original. Notre
technique a été appliquée à l’apprentissage de modèles multi-modaux des ob-
jets dynamiques présents dans un environnement intérieur pour une période
de temps prolongée, montrant qu’elle est capable de produire des modèles
cohérents de ces objets sans intervention humaine.
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Chapter 1

Introduction

1.1 Context: Semantic navigation

Figure 1.1: The robot Asimo bringing coffee to the table in a house. It
illustrates how having a robot butler could look like.

We had long dreamed of building or having a robot butler. It would be
fantastic to have one or more robots in our houses to take care of all the
household chores. This kind of robots is referred to as domestic robots or
personal service robots (fig.1.1).

According to the International Federation of Robotics, “in 2013, about 4
million service robots for personal and domestic use were sold, 28% more than
in 2012. The value of sales increased to US$1.7 billion”1. So far the available
personal robots are mostly floor cleaners, toys, social robots, surveillance or
telepresence robots (fig.1.2). It is a really good start, but they are still fairly

1quote from: http://www.ifr.org/service-robots/statistics/

1
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CHAPTER 1. INTRODUCTION

Figure 1.2: From left to right, Roomba a vacuum cleaner, Jibo a social robot,
Pleo a toy robot and Jazz a telepresence robot.

limited and we are still far away from a robot butler.

Nevertheless, due to the progress made in this area and robotics in
general, it has become more and more the concern of the scientific community,
governments and industries. Each year, an increasing number of investments
and fundings are made to support the development of service robots and
growth of the industry. The main reason is that they could be a potential
solution to many problems facing the modern society. For example, we
imagine that a service robot could provide assistance and care for the elderly.

Such a service robot requires many capabilities and functionalities. Many
of them have been addressed and solved with notable success since the
beginning of robotics. From the navigation perspective, the robot capabilities
include to be able to localize itself in the environment, to move smoothly
while avoiding obstacles and to recognize objects and places. Those issues
have resulted in many sub-domains addressing them such as SLAM, path
planning, object recognition and machine learning. In numerous scenarios
and applications, the techniques that have been developed in those domains
have proven to be efficient. However, as new techniques are developed, new
challenges appear. In general, we can say that the fundamental problem
is to improve the robots’ understanding of the environment. The more
unconstrained and dynamic the environment is, the more difficult the task is.
In order to progress in this direction, we will need richer and more abstract
representation of the world, as well as more efficient solutions to process
those representations.

A household is a very difficult environment to represent in details. It is
challenging to have a robot capable of navigating safely and efficiently in
such environment, or capable of performing orders like ”go fetch my keys” or
”clean the kitchen”. It requires that the robot can navigate while knowing
much about the different objects and places, and be able to reason about
them. The robot needs to know what a particular object looks like, where it

2



1.2

is able to find it and so on.

Constructing a representation of the environment which holds the nature
of objects and places as well as their positions is the purpose of semantic map-
ping. On the other hand, using such a representation to perform meaningful
navigation tasks is the concern of semantic navigation. In many senses they
are at the crossroad of classical navigation, object recognition and machine
learning.

1.2 Target application

The question we asked ourselves at the beginning of this thesis was the
following: what if I just bought a robot to help me in my house? What
should I expect? Here is the scenario and the considerations we came up
with.

Firstly, the robot has just been bought so it doesn’t know anything about
the owner or his house. What is the layout? What kind of objects and
furnitures does he have? What are his habits? The robot needs to learn
all of that. However the end user is not an expert, so training it should be
as easy as possible. Also the robot cannot possibly know all of that from a
previous training or learning because we don’t all have the same objects or
furnitures, and new ones are invented everyday. Finally, we could sometimes
move furniture or even change the layout of the house and the robot would
need to adapt smoothly without requiring to be extensively trained again.
In other words, the robot needs advanced adaptation or learning capabilities.
Those skills require to be unsupervised, incremental and real-time.

In this scenario, we can imagine that the robot would start by exploring its
surroundings and immediately start building a rich model of the environment.
It would then have to update and maintain this representation over time.
Then the robot could ask the owner the name of the different places or
objects it has identified, thus simplifying the teaching process. We could also
imagine the robot fetching information from the Internet. The things that
would typically be necessary to name are the places, like the kitchen or the
bathroom, and the objects present in the house.

When a new object, a new information or a new situation is perceived
by the robot while it is working, it should be able to gather that knowledge
and incorporate it, and take a decision right away without having to stop its
work. It would be better if the robot could adapt on the fly but it is possible
to imagine that later on, when it is in standby, it would go over the newly
acquired data and process it. Nevertheless, the user shouldn’t have to train
the robot for every new situation it encounters, and it shouldn’t block the
robot from doing its job.

Considering this, some of those problems already have efficient solu-
tions, and some others have partial solutions. For instance, simultaneous

3



CHAPTER 1. INTRODUCTION

Figure 1.3: Different semantic map representations. From left to right, an
occupancy grid where the room have been extracted and some object are
localized, a colored 3D map where the positions of the robot have been
annotated with the type of room it recognized, a 3D map where horizontal
surface have been segmented, a topological map where the type of room and
the positions of the doors have identified along the robot’s trajectory.

localization and mapping (SLAM) works very well in a fairly static environ-
ment. Given an efficient SLAM, many techniques exists for safely navigating.
However, the problem is that those techniques are based on representations
containing little information. Most of the time, the only represented charac-
teristic of a location is to be occupied or not. Thus one of the challenge is to
have richer environment representation.

In conclusion, our research goal is to obtain such rich representation of
the world. We want to be able to build it and maintain it over time, as much
as possible without supervision, incrementally and in real-time.

1.3 Related work

Our goal is to build semantic maps automatically and with as less a priori
knowledge as possible. We focused on system architecture, object recognition
and learning. Here is a brief analysis of related researches in these three
areas, aiming at positioning our contributions.

Semantic mapping is a rather new topic of research. A recent survey
(Kostavelis and Gasteratos 2014) provides a detailed state of the art. The
building of semantic maps is based on classical mapping and recognition
techniques. So, it is natural that different combinations of popular techniques
among those two subtopics were studied. We can therefore divide semantic
mapping studies on whether they use metric maps (Iocchi and Pellegrini
2007; Biswas et al. 2002; Nüchter and Hertzberg 2008; Liu and Wichert
2013), topological ones (Ranganathan and Dellaert 2007), or both of them
(Kostavelis and Gasteratos 2013; Pronobis, Sjöö, et al. 2010) (see fig.1.3).
We can also divide those studies on whether they were focused on place
recognition (Kostavelis and Gasteratos 2013), object (Ranganathan and
Dellaert 2007) recognition or both (Aydemir et al. 2011). The main purpose
of those studies being the finding of suitable representations to perform
semantic navigation.

In the literature, the use of different sensors have been studied. Some

4



1.3

work only uses one modality, the most popular one being RGB-D sensors
(Kostavelis and Gasteratos 2013), and other try to benefit from different
modalities (Iocchi and Pellegrini 2007; Pronobis and Jensfelt 2011).

To recognize objects or places, popular sensors are the one giving rich
information: color and RGB-D cameras, stereo vision, 2D and 3D laser
scanner. For navigation purposes on the other hand, more choices are
available: sonar range finder, 2D and 3D laser scanner, GPS, IMU, Wifi
sensor, different radar technologies and of course cameras. The most popular
ones are laser range finders and cameras.

For instance, in (Aydemir et al. 2011) they study the use of semantic
maps and cues to perform active visual search. They use a chain-graph
for representing object locations and relations. Using decision theory and
heuristics on this model they show that they can perform efficient object
search. The representation is adapted to reasoning purposes and can be built
incrementally without supervision, but the appearances of rooms and objects
categories are learned off-line with supervised techniques. In this study two
different sensors are used: a 2D laser range finder for navigation purposes
and a camera for room and object recognition.

In (Ranganathan and Dellaert 2007), they choose objects as the semantic
unit. Visual and geometric features are extracted from a stereo camera, from
which objects are recognized. Using those recognized objects, the places
are then modeled and recognized. In other words, objects are inferred from
visual features, and places are inferred from objects. The object models are
learned off-line from a dataset.

The main limitation of those studies is that the robot’s knowledge to rec-
ognize places or objects is principally acquired from a dataset in a supervised
learning setup (Aydemir et al. 2011; Ranganathan and Dellaert 2007). It is
a limitation because in spite of the powerful representations, the robot can
only operate with previously learned objects or places, and the process of
learning is rather laborious.

Some works were done on the acquisition of such knowledge with less
supervision. For example, in (Mason and Marthi 2012) by comparing different
runs of the robot and keeping track of the different planes in the environment
they segment objects and discover change or novelty. The semantic map is
represented as a 2D occupancy grid with 3D geometric models of the objects.
So this work provides a way to perform unsupervised object discovery but
doesn’t deal with the modeling part. In (Biswas et al. 2002) they proposed
an occupancy grid mapping algorithm to segment non-stationary objects
and represent them as local occupancy grid maps. The work of (Endres
et al. 2009) uses local shape descriptors with Latent Dirichlet Distribution
on 3D range data for object discovery. Their method is unsupervised but
not on-line and assumes knowledge of the number of objects in a scene.

However, in most of these works, the unsupervised learning is performed
off-line and constrained to certain type of objects, places or scenarios. Never-
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CHAPTER 1. INTRODUCTION

theless, incremental and unsupervised learning is the focus of many studies in
the computer vision, machine learning and developmental robotics communi-
ties. The idea is to build rich knowledge step by step, during operation of the
robot and without human intervention. Those studies are usually applied to
object recognition with regard to manipulation by humanoid robots (Natalya
Lyubova and Filliat 2012; Natalia Lyubova, Filliat, and Ivaldi 2013; Kemp
and Edsinger 2006; Montesano et al. 2008). Still a lot of those studies could
be applied to semantic navigation.

In conclusion, not much work has been done yet to apply incremental
and unsupervised learning with multiple modalities to semantic mapping,
which is an important practical goal (see section 1.2). We therefore focused
our work on these aspects as detailed in the next section.

1.4 Contribution summary

We propose a complete solution to perform incremental and unsupervised
semantic mapping working on a real robot. Each aspects of the solution are
discussed: the software architecture and all the functionalities needed by the
robot. Some already existing techniques have been derived in the effort of
integration, others are used as is, but more importantly three different parts
of the solution are original contributions:

1. The use of 2D laser range finder to perform object recogni-
tion. This type of sensor has some advantages over more popular ones
for object recognition such as camera, RGB-D camera and 3D laser
range finder. So far numerous semantic mapping solutions are using
this sensor for mapping and obstacle avoidance, some work used it to
characterize certain aspects of the environment, but we fully leveraged
this sensor by developing techniques to use it in the entire process of
semantic mapping.

2. Introducing the graph-of-views modeling method. In our effort
to extend bag-of-views techniques to perform multi-modal modeling of
objects we derived an original formulation which is more elegant and
powerful than the former on several aspects.

3. An original incremental and unsupervised learning algorithm.
While exploring existing clustering techniques we encountered several
limitations. We came up with a new solution to the problem of unsu-
pervised learning of object models.

Part of this work was published in three different publications:

• Jean-Christophe Baillie et al. (2011). “Software architecture for an
exploration robot based on Urbi”. In: Proceedings of the 6th National
Conference on Control Architectures of Robots, pp. 1–12

6



1.5

• David Filliat et al. (2012). “RGBD object recognition and visual
texture classification for indoor semantic mapping”. In: 2012 IEEE
Conference on Technologies for Practical Robot Applications, TePRA
2012, pp. 127–132

• Guillaume Duceux and David Filliat (2014). “Unsupervised and online
non-stationary obstacle discovery and modeling using a laser range
finder”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, pp. 593–599.

1.5 Outline

This work is structured into seven chapters, including the introduction and
is organized as follows.

Chapter 2 gives a thorough background on all the concepts and techniques
needed to fully understand this work. For each item, a state of the art review
is provided. The reading of this chapter is necessary for readers with limited
knowledge about semantic mapping but can be skipped or be used as reference
otherwise.

Chapter 3 will discuss the functional architecture of the robot. The
choices made will be explained and discussed. Although it is not a crucial
part of this work, it is an important aspect of the solution proposed and
necessary to fully understand the other parts of the work. Our studies of the
software and functional architecture of a robot for semantic mapping led to
two publications: (J.-C. Baillie et al. 2011), (Filliat et al. 2012).

Chapter 4 will present our solution to perform object recognition using
2D laser range finder. Two new descriptors are presented as well as experi-
mental results on recognition using them in bag-of-views models. Performing
semantic mapping using only a 2D laser range finder have been studied and
the work is presented in (Duceux and Filliat 2014).

Chapter 5 is about our original representation of object. It will discuss
the related techniques and show why and how our method is interesting.

Chapter 6 will present the incremental and unsupervised learning part.
It will explain the limitations we encountered using existing techniques and
how our original solution can solve them.

Finally, chapter 7 will summarize our achievements and discuss the
limitations and perspectives of this work.
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Chapter 2

Background

This chapter gives a short state of the art in all the areas exploited in our
work in order to provide context for the understanding of our architecture
described in chapter 3. Reading of this chapter is useful for readers with
limited knowledge about semantic mapping but can be skipped or be used as
reference otherwise. More specific state of the art related to our contributions
will be also presented in the following chapters.

2.1 Introduction

Semantic mapping and navigation have mainly one concern: integrating
place and object recognition in the navigation process. The central question
is how to represent the information so that it can be built, maintained and
used efficiently. The navigation tasks that require rich knowledge are for
example searching for a particular object, or adapting the behavior of the
robot with regard to its context. So a good representation, or semantic map,
is one that makes reasoning about places or objects easy. For instance, if the
end-user asks the robot to fetch the car keys, the robot needs information
such as the appearance of the object, where it has been seen last, where it
usually is or what other objects can be found near the keys. Once the robot
retrieves those information, it then needs to make an efficient plan to fetch
the keys, which involves where to look first and how to get there. Having
a smart autonomous robot therefore requires the ability to manipulate rich
and heterogeneous information about the environment.

Most of the underlying computation needed to acquire and manipulate
specific information about the robot and the environment have been already
extensively studied. Perhaps the most important is the localization of the
robot and the representation of its environment. This problem is known as
simultaneous localization and mapping (SLAM) and will be reviewed briefly
in the section 2.2. One solution to this problem provides an estimate of the
location of the robot and a rudimentary representation of the environment

9



CHAPTER 2. BACKGROUND

Figure 2.1: Diagram of the SLAM process. The inputs are proprioceptive
sensors(such as wheels encoders or a inertial measurement unit) and extero-
ceptive sensors (such as a camera or a laser range finder). The outputs are a
map of the environment and the location of the robot in the map.

suitable for basic navigation. On top of that, there is the problem of path
planning and obstacle avoidance described in the section 2.3 which makes
it possible to plan and adjust a safe trajectory towards a goal given a
localization of the robot, a map of the environment and a target location.
If the environment contains dynamic obstacles one might need a tracking
module (section 2.4) to estimate displacement and position of those obstacles.

Those techniques have been studied for a long time and efficient solutions
do exist, but they don’t provide any information about the nature of places
or objects. Those are the focus of object and place recognition described in
section 2.6 which often involves the detection and segmentation (section 2.5)
of the sensors output.

Semantic mapping aims to incorporate the nature of objects and places
in the navigation techniques as discussed in the section 1.3. In section 2.7,
we will discuss the informations stored in semantic mapping and how it is
represented as well as how it is used for robot tasks.

Finally, how to bring all those functionalities together in one robot is
difficult. It is the robot architecture problem which will be reviewed in
section 2.8.

2.2 Environment representation, robot localization
and mapping

Maybe the most fundamental problem in navigation is to know where the
robot is. In order to do that, the robot needs to localize itself with regard to
a certain representation of the world. But to build it the robot needs to keep
track of its location. This chicken-and-egg problem is famously known has
the “simultaneous localization and mapping (SLAM)” problem. It has been
studied for a long time and several efficient solutions exist. The essential and
classical ones are described with details in (Thrun, Burgard, and Fox 2005).
The figure 2.1 illustrates this process. We will not have space for an in-depth
review of SLAM, and we will therefore only detail a few approaches related
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Figure 2.2: A topological map. Each node represents the position and
appearance of a location. Each edge represents the relative displacement
between nodes. In this work appearance is coded via bag-of-words method
whose dictionary is represented on the right (Angeli et al. 2009).

to the map representation to introduce the simple metric representation that
has been used in our work.

There are mainly two different paradigms when representing the envi-
ronment: topological representations and metric representations. In the
first case, the environment is represented by a graph of discrete locations.
This can be very compact and distinctive, and it is easily embedded with
semantics. However, this kind of representation requires a high level of
abstraction of the raw data, and extracting those discrete locations reliably
and robustly is difficult. Figure 2.2 shows an illustration of such a map from
(Angeli et al. 2009). The metric representation on the other hand, represents
the environment using raw data (or features with a low level of abstraction)
in a metric space, which can result in a very precise representation. However
the required volume of data often scales very badly with the size of the
environment, and it is harder to embed with semantics. Recent works in this
field have produced various hybrid combinations of those two representations
(Tomatis, Nourbakhsh, and Siegwart 2003).

For this study, we used a metric representation called occupancy grid
(Elfes 1989) which is common when using a 2D laser range finder. An
occupancy grid (see figure 2.3) represents the environment as a grid of evenly
spaced cells memorizing the presence or not of an obstacle. Generally a cell
holds the probability of being occupied or not. Many SLAM algorithms
use this representation. Popular techniques for localization and mapping
using this representation are based on a particle filter (Hahnel et al. 2003) or
expectation maximization as reported in (Burgard et al. 1999). In a recent
popular SLAM (Kohlbrecher et al. 2011), they use an optimization algorithm
based on a fast approximation of map gradients and a multi-resolution grid
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Figure 2.3: An occupancy grid. White represents free cells, black are occupied
cells and gray are unexplored. This map was produced by our perception
pipeline using the HectorSlam algorithm (Kohlbrecher et al. 2011).

to perform fast localization. Overall, those techniques are efficient, robust
and are used in commercial products. They are usually used with laser-based
or sonar-based systems.

One limitation of this representation however is that it is based on the
assumption that the environment is static. Some studies provide solutions to
remove this limitation (Meyer-Delius, Beinhofer, and Burgard 2012; Mitsou
and Tzafestas 2007; Arbuckle, Howard, and Mataric 2002). In the first one,
their method represents both the occupancy grid and its changes in the
corresponding area. The dynamics are characterized by the state transition
probabilities of a Hidden Markov Process. Furthermore, they propose an
on-line learning technique to estimate the model parameters from data.
They have shown that their representation is more accurate and can be
used to improve SLAM and path-planning. In the second one (Mitsou and
Tzafestas 2007), for each cell of the occupancy grid, instead of only storing a
probability, they store a time index which holds efficiently a history of the
cells. They have shown that because they store all the information, it is
possible to use this representation to retrieve the static and dynamic areas
of the environment, as well as footprint of non-stationary objects. Finally in
the last one (Arbuckle, Howard, and Mataric 2002) they consider occupancy
over different time scales and show that it can be used as a tool for classifying
motion in an area.
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Figure 2.4: A possible diagram path planning and obstacles avoidance
processes. Given a representation of the environment and a destination, the
path planning process will compute a path that the robot will follow to reach
its target (similarly to a Global Positioning System). However, usually this
path doesn’t account for dynamic obstacles. Thus another module called
obstacle avoidance is used to follow the path while avoiding obstacles.

2.3 Obstacle avoidance and path planning

Path planning is the study of how to generate a series of actions so that a
robot can go from a given configuration to a target one. Obstacle avoidance
is concerned with how to ensure that a robot won’t collide with an unforeseen
obstacle. Those fields are closely related. The different techniques from these
studies strongly depend on the representation of the environment and the
available sensors. Figure 2.4 illustrates a commonly used diagram of such
processes.

The navigation architecture is often divided into two layers (L. C. Wang,
Yong, and Ang Jr 2002). The first one is a deliberative layer which compute
a global plan to perform a certain task. This layer needs a complete and
accurate knowledge of the world, and the computation involved might be
time consuming. Because it is not possible to have a complete knowledge in
advance, a reactive layer is there to prevent collisions in case of unforeseen
obstacles. The reactive layer would control the robot until the deliberative
layer takes into account the new information. Solutions from the obstacle
avoidance field are used in the reactive layer, whereas path planning ones
usually fall into the deliberative layer.

Reactive behaviors for robots have been studied early. There are two ideas
behind the different techniques developed (Zohaib et al. 2013). The first one
is to turn around the obstacle when encountered, until some criteria are met.
This idea is the basis for the Bug algorithms family (Ng and Bräunl 2007).
They tend to be time consuming and have different practical limitations. The
second one is the potential field idea (Khatib 1986). The goal is modeled as
generating an attractive force and the obstacles are generating repulsive ones.
Applying the generated field to the robot makes it move toward the goal
while avoiding obstacles. Those methods are less time consuming than the
bug one but they get stuck in local minima. For instance U-shaped obstacles
are often a problem for potential field based solutions.

Some more deliberative methods are also popular for obstacle avoidance.
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Figure 2.5: Field D* planning through a potential field of obstacles (Ferguson
and Stentz 2007). Obstacles are represented in black. The curve line in the
middle is the path produced by the algorithm.

Those have a short-term memory world model to plan better and avoid the
shortcomings of reactive behaviors methods while being fast enough.

In the method called Vector Field Histogram (VFH) (Borenstein and
Koren 1991), a histogram grid of fixed size centered around the robot position
is maintained and updated with sensory information. This histogram grid
which represents a short-term memory world model is processed in two steps
to produce a velocity vector to command the robot. The first step consists in
transforming the histogram grid into a polar histogram around the robot’s
momentary location. Each sector of this representation describe the density
of obstacles in a certain direction. The second step compute a steering
direction and a velocity taking into account the previously computed obstacle
density the direction of the target.

Other popular approaches are derivatives of the Dynamic Window (Fox,
Burgard, and Thrun 1997). In those, the kinematic constraints of the robot
are taken into account by searching a solution into the velocity space of the
robot. The dynamic window contains the admissible velocities achievable
by the robot given the current acceleration and velocity. The admissible
velocities are the one that allow the robot to come to a stop before collision
with an obstacle. The command for the robot is selected by choosing the
one that maximizes an objective function which takes into account the goal
position and distances to obstacles. This method is improved in (Brock and
Khatib 1999), where a small occupancy grid is maintained centered around
the robot as in the VFH approach. This grid is used to compute a variant of
Dijkstra’s algorithm (Dijkstra 1959) which allows to favor direction towards
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Figure 2.6: Diagram of the Detection And Tracking of Moving Objects
(DATMO) process. Given an exteroceptive sensor, the DATMO system
detects objects of interest and estimates their displacements.

the goal free of local-minimum.

Those solutions are not adapted to control the robot toward a far away
goal, but they are efficient to avoid unforeseen obstacles while following a
path. This path is given by a path planning solution.

For mobile robots in indoor environment, given a representation of the
world, most of the time provided by a SLAM module, graph-based methods
are popular to find a path from the robot to a destination. The study of
those methods started with Dijkstra’s algorithm (Dijkstra 1959) up to the
current D*lite (Koenig and Likhachev 2002) and Field D* (Ferguson and
Stentz 2007) through successive improvement. The figure 2.5 illustrates a
path obtained from this method.

Dijkstra’s algorithm is the simplest algorithm to compute the shortest
path in a graph. It is usually sufficient when the search space is small, but is
limited when the environment grows. The first improvement over Dijkstra’s
algorithm was to use a distance heuristic to improve the search. This is
the A* algorithm (Hart, Nilsson, and Raphael 1968). The idea is that by
searching the nodes closer to the goal first based on the heuristic used, the
solution is found faster. Another improvement is to compute the graph from
the destination to the robot position. This way it is faster to compute a new
path when the robot moves or when newly perceived obstacles are added
to the representation, because the path only needs to be updated locally.
Finally, in the Field D* algorithm, interpolation is used to compute the
traversal cost of cells so that the overall path is computed in the continuous
space instead of the discretized one. This makes the resulting path smoother
and more realistic for the robot to follow.

2.4 Moving object tracking

Dealing with dynamic objects is essential for mobile robots in almost every
scenario. This problem is often referred to as Detection And Tracking of
Moving Objects (DATMO) (Pancham, Tlale, and Bright 2011). In short, it

15



CHAPTER 2. BACKGROUND

consists in estimating the position and the trajectory of detected dynamic
objects from the perception stream. Figure 2.6 illustrates this process.
This has been the major focus for video surveillance and automated car
applications. Recent works (C.-C. Wang et al. 2007) are integrating this
with SLAM (which is called SLAMMOT: Simultaneous Localisation And
Mapping with Multiple Object Tracking) to improve overall performance.
Here we will only discuss the tracking aspect since detection will be discussed
later in section 2.5.

There are two problems in the tracking process. The first one is the
data association problem: how to correctly associate the currently tracked
object states with the incoming perception of multiple detections. The
association has to account for newly perceived objects, those that are not
visible anymore, those coming close together and those splitting apart. In
the review (Pancham, Tlale, and Bright 2011) the popular data associations
techniques reported for SLAMMOT application are the Global Nearest
Neighborhood (GNN) (Blackman and Popoli 1999), the Joint Probabilistic
Data Association Filter (JPDAF) (Fortmann, Bar-Shalom, and Scheffe 1983)
and the Multiple Hypothesis Tracking (MHT) (Reid 1979). For a given
number of tracks and current measurements, a set of possible associations is
calculated for each track. This is referred to as gating. The GNN approach
keeps only the best possible association, whereas the JPDAF combines all
of the potential candidates for association to a track in a single statistically
most probable one. Those methods only keep a single hypothesis about
measurements received in the past. The MHT on the other hand consider
multiple associations hypotheses over time.

The second problem is filtering to correctly estimate the trajectory and
state of the objects. Popular techniques include Kalman Filters (KF) (Kalman
1960), Particle Filters (PF) (Gordon, Salmond, and Smith 1993) and Inter-
acting Multiple Models (IMM) (Blom and Bar-Shalom 1988). The KF is a
recursive method which keeps track of the estimated state of the system and
its uncertainties through a Gaussian model. Those are updated using a state
transition model and a new measurement. Particle filters use a sampling
approach to estimate the posterior density of the system state by applying
the Bayesian recursion equations. In their basic form they are susceptible to
a mismatch between the state transition model and the real motion of the
targets. A popular solution is the IMM which is an estimator using multiple
filters with different transition models.

2.5 Object detection, segmentation and discovery

Detection of unknown objects in robotics context can be made using differ-
ences between maps or world models constructed at different times, assuming
that the objects of interest will eventually move. The work in (Herbst et al.
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2011) is based on 3D maps represented as point clouds. They compare two
maps of the same environment by registering the 3D scenes together and
use the map differences as possible objects. A similar approach is used by
(Biswas et al. 2002) using 2D occupancy grid maps. They detect changes by
a straightforward comparison of occupancy grids. Connected components
of occupied cells in that difference are considered to be objects. Using the
expectation maximization algorithm, they reconstruct the models of the
different objects.

Others work directly with sensor data. For example, (Mason and Marthi
2012), (Filliat et al. 2012) and (Aydemir et al. 2011) use plane segmentation
based detection on depth images to discover or search for objects. The
objects are therefore supposed to stand out of flat surfaces such as the floor
or a table.

Another approach is to compare the current observation to a world model.
For instance, (Modayil and Kuipers 2004) uses a filtering method on range
data localized by a SLAM technique to discover novelty. Once the laser
reading has been registered, each endpoint either confirms or contradicts the
occupancy grid. If a group of endpoints conflict with the occupancy grid, it
is most likely caused by a non-stationary object.

Using those detections and segmentations, it is possible to perform object
discovery which is reconstructing models of unknown objects from partial
observations. In (Collet, Xiong, et al. 2013), the authors use a constraint
similarity graph. The graph’s nodes contain segmentations that represent
candidate objects. To generate a candidate, the approach described in (Collet,
Srinivasa, and Hebert 2011) is used. This method employs different cues
from color and range information to form a well structured region based on
a metric they developed. For each candidate they store color and geometric
information as well as meta-data (position, time, is it planar or not, seen on
a table or not, etc...). The edges of the graph are the similarities between
nodes computed from these various data. By clustering nodes in the graph
they can reconstruct the object models.

In computer vision, as the task of discovering objects without prior
knowledge is difficult, statistical methods are often used over large datasets
to find reoccurring patterns. A metric was proposed in (Tuytelaars et al.
2010), to compare different techniques. It was then used with popular
methods applied to two different public datasets. The datasets are composed
of images of objects from different categories. The images from the first
dataset contain only one object, while there can be multiple objects per
image in the second set. The images are represented as bag-of-words (Csurka
et al. 2004; Y. Zhang, Jin, and Zhou 2010). Two categories of methods were
tested: latent variable models and spectral clustering, showing that spectral
clustering performs better when a single object exist in each image, but that
latent variable models are better suited when objects appear in multiple
instances. In (Russell et al. 2006), they use a technique to obtain multiple
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segmentations from each image. Those segments are modeled as bag-of-words
and categories are discovered using Probabilistic Latent Semantic Analysis
and Latent Dirichlet Allocation following methods from the text analysis
community. Once the categories are discovered the segments are filtered to
extract the good ones. Thus they can jointly discover object categories and
segment them in the corpus. Spectral clustering is also used in (Fu et al.
2008). In this work they represent an image as a set of unordered features.
They produce a graph where each image is a node and where edges represent
the partial matching between images. Using different refining methods on
the graph they can extract meaningful set of features representing objects
across images.

2.6 Object modeling and recognition

There are mainly three ways to model and recognize objects using range
data, as will be done in our thesis.

The first way is to use registration or scan matching to generate and
recognize geometrical models. In (Herbst et al. 2011) and (Modayil and
Kuipers 2004), they align surfaces belonging to an object in 3D and 2D
range data respectively. By aligning those surfaces, they obtain a model of
the object consisting of a point cloud as it would be seen by the sensor if it
could see the entire object. Those approaches are very susceptible to noise
in sensor data, and are not well suited for modeling objects with changing
shapes like people.

The second approach is to extract invariant local features from observa-
tions and to differentiate objects based on the set of features they possess.
The work of (Endres et al. 2009) uses local shape descriptors with Latent
Dirichlet Distribution on 3D range data. Their method is unsupervised but
not on-line and assumes knowledge of the number of objects in a scene. An
object is represented in this case as a distribution of local surface shapes.
This kind of object model is more robust to noise in sensor data and change
in object appearance. They are usually faster and more efficient than geo-
metrical models to learn and to recognize. The use of local features has also
been widely studied by the computer vision community as will be reviewed
at the end of this section.

The third way is to create multi-view object models by regrouping the
views of an object from different viewpoints or different times. This approach
is used in (Natalya Lyubova and Filliat 2012), based on vision and takes
advantage of object manipulation by a robot to gather different views of the
objects. Using tracking techniques to put together different views have also
been used in (Modayil and Kuipers 2004) using laser scans. Views are usually
encoded using a descriptor or signature. Many of these exist in vision or
3D, but far fewer for 2D range data. Nevertheless, (Tipaldi and Arras 2010)
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shows that it is possible to use descriptors with laser range finder, applied to
place recognition in their case.

Among the numerous approaches existing in computer vision that we
will not be able to review here, extracting local features from images as
a first step to object recognition is very popular (Campbell and Flynn
2001). Most of the time, it requires the encoding of certain properties of the
appearance into descriptors, and the clustering of those properties. SIFT
(Lowe 2004) and SURF (Bay, Tuytelaars, and Van Gool 2006) are frequently
used to describe points of interest. Using local features, a popular way to
represent objects is as a set of local features. In particular the Bag-of-Word
representation (Csurka et al. 2004), which as been developed originally in
the text analysis community (Joachims 1998), is frequently used or derived.
Recently, due to the apparition of cheap RGB-D sensors, this approach has
gained in popularity and different descriptors and keypoint detectors have
been developed to work on this kind of data (Filipe and Alexandre 2014;
Rachmawati, Suwardi, and Khodra 2014).

2.7 Semantic mapping

Semantic Mapping studies are concerned with producing a world model not
only representing the appearance and spatial layout of the environment,
but also with places and objects identified, categorized and localized. The
aim is to add semantic knowledge to the classical navigation techniques
in order to overcome their shortcomings. Semantic mapping offers several
advantages such as simplifying information sharing about the environment
with a human operator. It also helps modeling possible interaction with
objects and their dynamics which is interesting because most computation
involved in navigation could be improved with such knowledge. For instance,
knowing about the floor properties can help having better estimate of the
robot displacement, or knowing about the location of different visible objects
can help with the localization. Semantic mapping is a promising direction
towards improving environment representations and robots autonomy.

Most of the proposed semantic map models in the literature are layered
representations containing metric, topological and conceptual information
(Pronobis and Jensfelt 2012; Galindo, Saffiotti, et al. 2005; Ranganathan
and Dellaert 2007; Vasudevan and Siegwart 2008). One of the first model
proposed by (Galindo, Saffiotti, et al. 2005) is a double parallel hierarchical
structure. The first structure is a spatial representation where the lower
level represents sensory readings, the second level contains a topological
map of the environment and the third level is a single node representing the
whole environment. The second structure represents the different concepts
of place and object and their relationship. The two structures are linked
by anchoring of concepts to spatial locations. One of the most complete
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Figure 2.7: The layered structure of the semantic map representation pro-
posed in (Pronobis and Jensfelt 2012). The conceptual layer comprises
knowledge about concepts (rectangles), relations between those concepts and
instances of spatial entities (ellipses). The categorical layer contains every
information necessary to recognize the different places and objects present
in the environment. The sensory layer contains an occupancy grid of the
environment. Finally, the place layer contains a topological map which links
the concepts to the different geometric locations.
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model for indoor environments is presented in (Pronobis and Jensfelt 2012).
It is a spatial representation with four layers (see figure 2.7). The first one
called sensory layer contains a metric map of the environment and represents
the lowest level of abstraction. Above, the place layer is a topological map
containing locations, paths and placeholders. The categorical layer is the
learned knowledge of the robot. It contains objects and places appearances
as well as models for recognition purposes. Finally the conceptual layer
represents the relationship between objects, places and their properties.

Another approach is to annotate metric maps with semantic information.
In (Nüchter and Hertzberg 2008) they proposed to annotate point clouds
produced with a 3D laser scanner. The solution contains three steps: 6D
SLAM, scene interpretation which extracts the ground, ceiling, walls and
doors from the point cloud and finally an object classifier to label the
remaining parts of the point cloud. The classifier is previously trained and
uses the ICP technique against a known 3D geometrical model to recognize
the objects. The information about walls and the ground are used to improve
the quality of the model by enforcing their perpendicularity.

Both approaches are used in the semantic map structure proposed in
(Drouilly, Rives, and Morisset 2014). Their map called Metric-Topological-
Semantic map (MTS-map) consists of 3-layered local sub-maps globally
connected to each other into different graph structure. The bottom layer of the
local sub-maps is an RGBD spherical view of the environment acquired with
a multi-cameras system. This layer represents the sensor view and provides
both metric and color information. The second layer is extracted from the
spherical views by labeling it pixel wise using a supervised classification
method. The top layer is a semantic-graph in which nodes are the different
consistent regions in the labeled image and edges represent the connection
between these regions. Those semantic sub-maps are used in three different
structure. Firstly, they are connected into a graph structure with edges
representing relative pose estimation between the sub-maps which forms
an hybrid metric-topological map of the environment. Secondly, they are
clustered according to their content similarity into a tree structure. With this
structure they can perform efficient relocation using semantic information at
a coarse level and sensor measurements at a fine level. Finally, they use a
conceptual graph to characterize non-spatial relations between categories.

One of the concern about semantic representation is how it can be used
to perform abstract tasks such as searching for objects. A popular approach
is to plan tasks using logical reasoning about objects, places and their spatial
relationship (Kunze et al. 2012; Galindo, Fernandez-Madrigal, et al. 2008;
Aydemir et al. 2011). In (Kunze et al. 2012) they propose a decision-theoretic
approach for fetch-and-delivery tasks. To do so, they extend the semantic
representation of (Tenorth et al. 2010) to handle large-scale environment
and multi-level building. The basic idea is to select the search location that
maximizes an expected utility function which is determined by the probability
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of success, travel costs and task context. The possible search location are
obtained through logic calculus on the conceptual layer of their world model.
They demonstrate their method with a robot system that successfully fetch
a sandwich within a multi-level building.

Another concern is to use semantic information to outperform existing
techniques solely based on metric information. Traditional path planning
optimize the path length and obstacle clearance. In (Drouilly, Rives, and
Morisset 2015), they use the MTS-map to perform path planning using
higher-level constraints. For instance, by taking into account the visibility of
the landmarks along the computed routes, they can compute a path which is
short in length, while ensuring that the robot will not get lost. Furthermore,
they propose a way to extract a high-level description of a computed route by
using semantic information. Finally, in (Drouilly, Papadakis, et al. 2014), they
propose to improve the mapping process by extrapolating the environment
based on extracted semantic information.

2.8 Robot architecture

Building a robot and programming it to perform tasks as complex as se-
mantic mapping and navigation is not an easy problem. There are many
considerations to take into account. At the very beginning, there is the
robot’s purpose: what do we want to accomplish with the robot. Then comes
the hardware: what kind of sensors or actuators can we use to accomplish
such goals, what processing power do we require. Once a purpose for the
robot is set, and the hardware has been decided, the robot needs to be
programmed. There are two sides of the robot software. Firstly, there is the
programming of the different functionalities and computations required by
the system, which are referred as the software components. Secondly, there
is the software architecture which is how the components are arranged and
how they interact together. All of this forms the robot architecture.

In the last decades, a lot of work was dedicated to the design of robot
architectures. There are mainly three paradigms for these architectures
(Nakhaeinia et al. 2011): deliberative, reactive and hybrid. In the deliberative
one, also called hierarchical, the robot gathers the data from its sensors into
a global world model and plans at each step the next action. The advantage
of this type of system is that it is possible to plan complicated tasks in
a top-down and long term fashion. The main disadvantages are that it’s
usually heavy on computation and obtaining an accurate model of the world
is difficult. In the reactive paradigm, the robot has multiple couples of sense-
action called behaviors which are independent of each other. Given a certain
situation, the robot will do a combination of behaviors following a set of
rules. For example, in the subsumption architecture (Brooks et al. 1986) the
behaviors are organized in layers with priorities depending on the situation.
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The main advantage is that it’s easier to obtain a fast reaction from the
robot because there is no need to process the newly sensed information into
a world model. Instead each component gets a small piece of more grounded
information and sends an action to the robot. The disadvantage is that
sometimes complex planning is required and designing a robot with this type
of architecture is then very difficult. Naturally, most of the architectures fall
into the third category, the hybrid paradigm, which is a combination of the
two first and exists in many variants.

For instance, the work of (Rosenblatt 1997) presents an architecture where
behaviors of the robot are distributed and all output votes for the possible
commands. One of them is selected through an arbiter. The behaviors can be
either of deliberative or reactive nature. This has the advantage of limiting
the need for sensor fusion or a monolithic world model. By distributing
behaviors and only coupling them in the command space, the architecture
can be easily updated and maintained. By distributing behaviors through
computers or independent processes, the whole system is more efficient and
reactive. However, in their solution, commands issued to the arbiter have
no semantic value which is limiting. Recent work on architecture tend to
perform command or action selection using a task planning functionality
(Scheutz et al. 2007; Hawes, Wyatt, and Sloman 2009). Another popular
approach to hybrid architecture is using a hierarchy of sub-architectures. In
(Connell 1992), they propose an architecture with three different layers called
servo, subsumption and symbolic. The first layer servo is performing the
initial sensor processing and the actuators control. The second layer is a
subsumption architecture receiving detected situations form the servo layer
and issuing commands to it. They are both reactive sub-architectures. The
subsumption layer communicates failures and achievements to the symbolic
layer through events which change the parametrization of the second layer
to adapt the behavior of the robot. This symbolic layer is a deliberative
one. The advantage of this solution is that it preserves the reactivity of
the system with low level reactive sub-systems and allows longterm and
complex reasoning with a deliberative layer. However, in this form the
overall architecture is very constrained.

Nowadays, as robots become more complex and computers more powerful,
the robot software architectures are often data-flows of concurrent and
distributed modules, with less considerations for which paradigm they fall in.

In (Scheutz et al. 2007) a generic architecture called DIARC is presented
and implemented on a real system. The system contains concurrent software
components divided in three layers: perceptual, central and action processing.
The perceptual layer is able to call for immediate action through high priority
actions ensuring the reactivity of the system when facing danger. Those layers
are further divided in 6 different modules running across three computers. In
their work, the action selection is done using priorities based on a cost-benefit
analysis and influenced by the perception of the environment. They stress the
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need to have mechanisms to recover from failure in such a complex system,
which is done in their work by monitoring the progress of on-going tasks and
modulating the priorities of the different tasks.

To facilitate the implementation of such architecture, the robotic commu-
nity has seen the emergence of efficient robot middleware. They simplify the
integration and maintenance of the robot by taking care of inter-components
communication and by providing tools to develop, debug, visualize and other
helpful utilities. For instance in this work both the Urbi (J.-c. Baillie et al.
2008) and ROS (Quigley et al. 2009) framework were used. Nevertheless,
theoretical and practical tools to efficiently engineer and design robots (Ra-
maswamy, Monsuez, and Tapus 2014) are still needed. Research on the
matter is recently gaining in importance.

The next chapter will present the hybrid architecture developed during
our work.

2.9 Conclusion

Performing semantic mapping is a complex task which involves computing
different types of representations in order to capture a rich knowledge of
the environment. In this chapter we have seen the different techniques
and representations commonly found in a semantic mapping solution, and
we briefly discussed the issue of integrating such techniques in a robot
architecture. After a thorough study of semantic mapping’s state of the
art, we found mainly three aspects of existing techniques which could be
improved. The solutions we came up with are tightly interconnected to
solving the three issues we identified.

Firstly, most of the studies use a camera to recognize the nature of
objects and places in the environment (Kostavelis and Gasteratos 2014).
Recognizing objects with a camera has been studied to a large extent by
the computer vision community and state of the art techniques can achieve
high performances. However, in a domestic robot setup, several limitations
remain. Cameras often have a limited field of view which can actually be
used to recognize objects. Moreover, the information they provide is very
rich and therefore hard to process in a timely manner, leading to processing
images that are taken from far away position when moving the robot. As a
result, a robot mostly takes arbitrary images of the environment to perceive
it, and in the majority of those images, objects are ill positioned in the
camera field of view which results in poor recognition results. To cope with
that, a solution is to ensure that the robot takes good pictures by moving it
in front of interesting objects. Popular solutions to that problem are visual
saliency techniques (Harel, Koch, and Perona 2006). However, since many
studies - including us initially - use a 2D horizontal laser range finder to
perform navigation and geometric mapping of the environment, we decided
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to solve this problem by using a laser range finder in order to enhance the
robot’s perception of objects. We were inspired by studies which show that
2D shape of objects are recognizable and that classical techniques can be
applied to a laser range finder (Modayil and Kuipers 2004; Tipaldi and Arras
2010). In chapter 3, we will present how our laser range finder is used to
detect objects and how it is integrated in our semantic mapping solution. In
the chapter 4, we study how we achieved object recognition using this sensor.

Secondly, many studies use only one property or modality to recognize
objects. However, an object can be described in terms of many properties
such as its shape, color, texture, functionality and so on. A solution to
recognize objects which would use different properties should achieve higher
performance and robustness. Furthermore, we have discussed how a laser
range finder could be used to improve a camera based object recognition
system. We therefore need a solution that can use both sensors information
to represent an object. Last but not least, as we will discuss in the next
paragraph, we want to incrementally learn models of objects. To solve those
three issues, we developed an original object representation which is detailed
in the chapter 5. This work was inspired by (Mei, Sibley, and Newman
2010) which extends the bag-of-words technique in a meaningful way. The
representation we came up is similar in nature but used in a very different
way. We will show how we can use our representation to represent and
recognize objects based on various sensors and modalities, and how it can be
used to incrementally learn objects’ models.

Finally, most of existing semantic mapping solutions use supervised
machine learning techniques to learn and recognize objects. We believe
for several reasons that it is not a pragmatic solution for domestic robots.
Households have a limited number of objects but they come in many flavors.
It is therefore impossible to store a dataset of objects’ models on a robot
which would cover every possible object it could encounter. Besides, if a
robot is to stay in a particular environment, the most obvious and efficient
solution is for the robot to store only representations of objects present in
this particular environment. We can imagine the robot downloading from a
cloud dataset the models it needs (Waibel et al. 2011). This is probably a
good solution since most robot use cameras to recognize objects. However,
sensors and households come in many different flavors and evolve over time.
Maintaining such a database would be a great undertaking. On the other
hand, adapting to an environment might be achieved through unsupervised
learning techniques. If such learning were to be successful, robots would
acquire models with their own sensors and only useful knowledge. This
could lead to more reliability and efficiency in the robot’s perception of
its environment. We believe both solutions are complementary. However,
little study have been made yet on using unsupervised techniques in a
semantic mapping context. We pursued this idea and developed an original
unsupervised learning technique which is detailed in the chapter 6.
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Chapter 3

Robot architecture for
semantic navigation

In this chapter, we will describe the two robot architectures that we developed
during our work. While we do not propose theoretical contributions in the
development of these architectures, we want to emphasize the importance
of these architectures and the large amount of work represented by their
development. We also think that some of the design choice made could be of
interest for future developments.

3.1 Introduction

As mentioned in the introduction, we aim at making a robot able to fulfill
the scenario presented in section 1.2. In order to do so, the robot must
possess many capabilities, some of which have already been the focus of
numerous studies with notable success. From the navigation perspective
those capabilities are dealing with moving objects, appearance variations and
other dynamic changes of the environment. Some of those needs to be solved
using machine learning, which might add the difficulty of having to learn
with minimum supervision from a non-expert human. Putting the different
solutions together means integrating them in a coherent architecture. We
should also consider that in practice we would need solutions that can be
easily maintained and updated.

During our thesis, we elaborated two robot architectures for the integra-
tion of these functionalities. The first architecture was developed in order
to participate to the Défi CAROTTE (J.-C. Baillie et al. 2011; Filliat et al.
2012). The goal of this challenge was to have a robot autonomously explore
an unknown environment and produce a semantic map containing rich infor-
mation usable by a human. The second architecture is an adaptation of it to
support the contributions this work, in particular the capability to discover
and model dynamic objects autonomously as described in the next chapters.
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Figure 3.1: A photo of the robot used during Défi CAROTTE.

In this chapter, these two architectures will be presented and all the
functionalities will be introduced at least briefly, while some of them which
were the subject of our main contributions will be detailed in the following
chapters.

3.2 Hardware

We participated to a challenge called ”Défi CAROTTE” which stand for
”Cartographie par Robot d’un Territoire” organized by the French Defense
Procurement Agency (DGA) and financed by the french National Research
Agency (ANR). The goal of the challenge was to explore an unknown en-
vironment and produce a semantic map of it. The map had to contain
information about the different rooms, floors, walls and objects present in
it. The environment included difficult obstacles like mirrors, windows and
gravels.

The robot used during this work was a Pioneer 3 dx mounted with a
camera looking down used for the floor classification, a RGB-D camera
(Kinect) for object recognition, walls classification and obstacle avoidance,
a sonar belt for obstacle avoidance (especially windows and mirrors) and a
2D laser scanner for the SLAM (see fig. 3.1). The laser scanner used is an
hokuyo utm-30lx. It has a precision of 0.03m from 0.1m to 10m, an angular
resolution of 0.25 degrees and an angle of view of 270 degrees. The kinect
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Figure 3.2: An illustration of the software architecture for the Défi
CAROTTE.

is a RGB-D camera with a 57 degree horizontal field of view, a 43 degree
vertical field of view and range sensing from 1.2m to 3.5m. After 3.5m the
accuracy of the depth sensor degrades quickly. It has a resolution of 640*480
pixels with 30fps frame rate.

3.3 Participation to the Defi CAROTTE

3.3.1 Software Architecture

For the Défi CAROTTE, the task at hand was the exploration of an unknown
environment in order to build a semantic map usable by a human. A software
architecture was realized (Fig. 3.2) for this purpose, following the hybrid
architecture paradigm (see section 2.8). This architecture was executed on a
laptop computer and the low-level control of the actuators and emergency
stop were performed by a dedicated micro-controller.

The many required functionalities were implemented as independent
processes or modules and organized in a data-flow manner. For instance, the
SLAM module would receive laser scanner readings and odometry and provide
with a position and an occupancy grid, which would be then be received by
other modules such as the global path planning. This is a paradigm popular
in the robotic community as it as many advantages. However, since modules
are designed as black boxes to perform specific tasks, it is not well suited to
handle failures or to encode the strategies and behaviors of the robot because
it often requires knowledge of the whole architecture. Thus, the software
architecture contains a supervisor process.

The first assumption made is that all modules may fail under certain
circumstances. For example, the global path-planner would fail if the target
destination given as input is unreachable from the robot position, or if there
is an error in the robot position or the map. Because all modules may fail,
the supervisor is connected to all of them. A module would send event
signal upon detected error. The behaviors responding to certain events are
implemented as a state-machine with a set of goal-condition-action rules. For
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instance one of the rule is: if the mission is in progress and the global path
planning failed, then try to find another target in a different place.

Secondly, some errors may not be detected by the modules, such as
disconnection of one of them, or a run-time error which would cause a
process to crash. Thus, the supervisor is also monitoring the states of the
module to detect such event. This is implemented as a set of watchdogs
which are independent co-routines monitoring the modules and other states
of the robot by checking periodically. For example a watchdog would check
that a module is responding every second and if its not, restart it and trigger
the appropriate behavior. Another watchdog would check the time remaining
for the mission, and change the goal of the robot from exploring to going
home when the time is up.

For safety reason, a special care was attributed to the module interacting
with the micro-controller unit (MCU). The MCU contains the servoing of
the actuators, monitoring of the current drawn to detect stalls, the battery
status and the sonar belt readings. A stall situation could happen if the
robot tried to cross an unseen obstacle. It is important for safety that danger
can be detected and motors be stopped at once. So the module interacting
with the MCU would discard new command under certain condition (stall or
close obstacle in the direction asked) and report it to the supervisor along
with the underlying cause. The behavior retained in this case was to make
the robot backtrack a little and add the current area to the obstacles list.

The modules retained for the Défi CAROTTE were a metric SLAM,
a local path planning, a module for global path planning and exploration
target computation, floor classification, wall classification, kinect based object
segmentation, object recognition, and the semantic map generation. The
SLAM used was a 3rd party software call Karto from SRI international based
on laserscan matching. The floor and walls classification was realized using
the random forest classifier proposed in (Maree et al. 2005). The semantic
map generation used a line detector to segment the occupancy grid into rooms
and produce a topological map and a Kalman filter to estimate the position
of the different objects. It also integrates the recognitions of wall and ground
textures. The other modules, in which we were more specifically involved or
which are used in our contributions, will be detailed in the following sections.

Concerning the behaviors of the robot during a mission, five global states
or phase were retained: initialization, idle, exploration, going-home and
result generation. During initialization, all sensors and actuators are started
and software modules launched. Upon completion, the robot is in the idle
state, waiting for the start signal which change it to the exploration state.
During exploration, the general strategy adopted was to perform a loop
which decide for a goal and try to reach it while detecting objects and
mapping the environment. In case of problems reaching the goal, we stopped
the robot when an unexpected obstacle was detected, backtrack a little if
necessary, incorporate the obstacle in the world model, and try to carry on
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Figure 3.3: Example of an hierarchical state machine controlling our robot
in the Gostai Studio software. The nodes displayed in yellow are the ones
currently activated.
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Figure 3.4: Exemple of kinect detection and segmentation.

by calculating a new exploration target and the path to reach it. When the
exploration is completed, the robot goes to the going-home state. If the robot
encounters difficulty to go back to the starting point, then it would try to
get as close as possible until the situation was unlocked. When the starting
point is reached, or if the robot remains blocked, the result generation is
executed where the robot generates all the semantic information required
by the competition. The software architecture was implemented using the
Urbi framework (J.-c. Baillie et al. 2008). The modules are written in C++
and the supervisor in UrbiScript through a graphical user interface (Gostai
Studio) designed to generate finite state machines (see fig. 3.3).

3.3.2 RGB-D object segmentation and recognition

The segmentation used in this work is the one described in (Caron, Filliat,
and Gepperth 2014) and (Dubois et al. 2013). When a kinect reading comes
in, the floor is removed by finding the biggest horizontal plane in the RGBD
image. Then the perpendicular planes are removed if they meet some criterion
in order to remove walls. Then by successive transformation and parallel
plane detection the kinect reading is segmented into clusters of points (see
figure 3.4). A cluster of points represent an object view.

The object recognition was realized with a neural-network based machine
learning technique as proposed in (Caron, Song, et al. 2014). The neural-
network was trained on a dataset composed of several segmented views of
the different objects. Its inputs is a set of different descriptors extracted
from an object segmentation. The descriptors used are a bag-of-words of
SIFT keypoints (Lowe 2004), a color histogram called TBGR and a 3D shape
descriptor called surflet (see details in (Caron, Song, et al. 2014)). The surflet
is a concatenation of histograms of angles and distances considering pair
of points and normal vectors in a point cloud. It therefore encodes the 3D
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Figure 3.5: Example of an exploration target computation. The image on
the left represents the area already observed by the kinect sensor. The image
on the right shows the candidate targets in green, the former positions and
path of the robot in blue, the selected target and the potentially discovered
region in red.

shape of the object view. The TBGR which stands for Transformed Blue
Green Red, is an histogram of the pixel value where each channel of the
image is separately normalized to zero mean and unit variance. It therefore
encodes the contrast in the three image channels, thus reducing the color
information to enhance robustness. We will use the surflet and the TBGR
features for our object recognition presented in chapter 5.

3.3.3 Exploration target and multi-modal path planning

For an exploration task, the robot needs to calculate a relevant target
destination to explore the environment efficiently. Targets are relevant if
they allow the robot to discover a lot of space, find new objects and if they
do not make the robot waste time by going back and forth. This time
can be estimated by the global path planner using the current map of the
environment, but this path has little chance to be precisely executed because
of unknown or dynamic obstacles. For this reason, we separated global path
planning using the global map produced using the laser scanner and a local
planner that take additional sensors (the kinect and sonars) into account
for executing this path. This is important because, for example, mirrors
and windows are difficult to detect using light based sensor but are easily
detected using a sonar. Upon detection of such obstacles, they are integrated
in the global map so as to plan a new global path around them.

In (Filliat et al. 2012) the global path and exploration targets are com-
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Figure 3.6: Example of a smoothed global path. The white represents
traversable cells and black forbidden ones. The computed path is represented
by the red line.

puted by the same software module. To do so, the detections from the
different sensors are projected into a single occupancy grid, and the Dijkstra
algorithm is used to compute the reachable areas by the robot. To calculate
exploration targets, random positions are drawn from all the accessible posi-
tions and the best one according to a function cost is kept (see figure 3.5 and
(Jebari, Bazeille, and Filliat 2011) for details). The function cost is a score
based on how much space the robot might uncover from the target and how
far it is from the robot. The first criteria favors positions from which the
robot would have clear view with the kinect of an unseen place and discover
new areas using its laser sensor. However, this alone is not enough because
the robot might tend to go back and forth between too far apart areas of the
environment, which is why the second criteria enforce the robot to explore
close areas first. This way the robot will prefer to explore an entire area in
an efficient way before moving on to the next one.

Once a target as been selected, a global path is computed to reach the
goal using the same Dijkstra’s algorithm output. The classical version of this
algorithm compute the shortest path between two positions which tend to
make the path go near obstacles when circling them. To reduce this limitation
a common solution is to add a cost to cells in the graph near obstacles. The
cost is correlated to how close the path is to the obstacle. Because the path
is computed in a discretized representation of space, the result is often not
smooth. Since the robot has a certain dynamic, following such a path would
result in jitters. To solve this, a final step to the computation was added
to render the path smoother. To filter the path, going from the robot to
the goal, the path is iterated through to find parts of the path that can
be replaced by a straight line. For this, we use the Dijkstra’s graph cost
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Figure 3.7: Example of a local path computation. The image represents a
kinect frame projected on the floor plane. The black color are cells where
there is no information or an obstacle. The white cells are the ones too close
to an obstacle for the robot to go. The gray cells are traversable cells. The
portion of the global path present in the field of view is drawn as a green
line. In this example, the robot is about to reach the target. The red line
represents the local path computed.

obtained previously to see if all the cells along lines approximating the path
are unoccupied and sufficiently far from any obstacles. This way the path
obtained tend to stay away from obstacles but in a smoother way (see figure
3.6).

Once a global path is obtained and the robot is moving towards the
destination, for every kinect image received, a local path is computed. A
local path needs to be computed firstly because the robot may drift away
from the path due to actuators and perception noise, and secondly because
unforeseen obstacles that have not been detected by the laser scanner might
be present on the path. The local path tries to rejoin the global path from
the current position while avoiding obstacles. To do so, the kinect point cloud
is projected onto a 2D occupation grid as well as the relevant portion of the
global path. Then using A* algorithm, a local path is computed to reach the
end of the visible portion of the global path. We didn’t use the laser scanner
in this process because it wouldn’t bring more information. In fact, the
kinect perceives the same thing as the laser and additionally perceives below
and above. Furthermore, since this process is repeated frequently, the narrow
field of view of the kinect is sufficient in this context. Nevertheless, many
obstacles could still be missed by this sensor and this local path planning
solution, so in parallel the sonar belt and the downward camera are processed
to detect obstacles on the floor and those not visible by the kinect. If an
obstacle is detected this way, the robot is stopped, the obstacle is added to
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the occupancy grid and a global planning is done to resume the exploration.

3.3.4 Limitations of the architecture

We got notable success using this architecture during the Défi CAROTTE.
The experimental results are presented in the section 3.5. Nevertheless, in
the context of this work different shortcomings have been identified and
addressed. Firstly, this architecture only purpose is the exploration of an
unknown environment but we want a domestic robot functioning day after
day in the same environment. Secondly, the kinect sensor is suited for
recognizing objects because of the rich information it provides, but it is
inefficient for many tasks of an everyday life due to its narrow field of view.
For instance, searching for a particular object is tedious with only this sensor
because the robot would take an important amount of time to cover a large
area. Finally, in this architecture, all objects present in the environment
are learned off-line using a tedious process which is not satisfactory for a
domestic robot. In the next section, we present how the architecture was
modified to address those limitations.

3.4 Unsupervised and incremental semantic map-
ping

3.4.1 Software Architecture

The architecture proposed before was developed for the exploration of un-
known environments. It contains many of the required functionalities for
long-term semantic navigation in households, but it needs to be adapted
and extended for this purpose. Furthermore certain shortcomings have been
identified and addressed. Thus, we propose a different perception pipeline
suitable for unsupervised semantic mapping.

The first thing we noticed is that the exploration of the environment is
a good first step, but the robot needs to be able to localize itself later on
in the world model obtained and update it overtime. To do so, the solution
retained was to replace the SLAM module by what we called an incremental
SLAM module. The purpose of this module is to localize the robot in the
known environment and to produce incrementally an occupancy grid that
contains only static information. The details of this module are given in the
following section.

The second shortcoming identified is that objects are recognized based on
a single view and a voting scheme is used to select an identity out of different
recognition results. This solution has two drawbacks: it can not handle
moving objects correctly and the recognition result is not always stable. In
this architecture, we studied the use of a tracking module to accumulate the
consecutive views of an object in order to perform the object recognition on
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sequence of views, and therefore improve the temporal coherency of object
detection results.

Thirdly, objects are only recognized using the RGB-D camera which
has a narrow field of view, which makes it rather inefficient when searching
for objects. We investigated how to improve that by adding the 2D laser
scanner in the whole object recognition pipeline. To do so, we developed
two laser-based detection algorithms, two laser descriptor extractors and an
object representation suitable for multiple sensors.

Finally, in the exploration architecture, objects, walls and floors categories
are learned off-line with a method that require a strong expertise. This is
not suitable for a household environment since the objects present may
vary overtime and it would be difficult to provide a robot with a model of
all possible objects. The user cannot be expected to know how to train a
classifier and it would be a burden for the company providing the robot to do
the training anew every time a model needs to be added. Last but not least,
data acquired by the robot in the target environment are often better learning
example than those in datasets. For those reasons we have investigated the
use of unsupervised and incremental learning of object models.

In the remainder of this chapter, the incremental SLAM, the laser-based
object detections and the tracking approaches will be detailed. The rest of
the perception pipeline is presented briefly and is the focus of the following
chapters.

3.4.2 Incremental static occupancy grid

In order to improve performances of classical navigation techniques and
to separate clearly the static and dynamic aspects of the environment, we
investigated the use of what we call a static map. It is an occupancy
grid which is constructed and maintained overtime to contain only static
information of the environment.

In this occupancy grid, each cell can be occupied, free or unknown as
in the standard approach. However, occupied cells in this context means
locations that have always been seen as occupied (walls or heavy furnitures
that never move). Free cells represent locations that have been seen at least
one time as free. Unknown cells represent locations for which the robot has
no information.

Assuming the pose of the robot is known, obtaining or updating this
occupancy grid is similar to classical SLAM techniques with one slight
adjustment. Cells that have been classified as free before, with a certain
level of freeness, are locked and cannot change states (see figure 3.8). An
exception is made for free cells that are close to an occupied cell. Without
this exception, the errors in localization tend to make the walls in the map
shrink or shift.

Localization on the other hand becomes more difficult than usual because
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Figure 3.8: A map of a room after a first arbitrary run of the robot, the
same static map after several runs.

Figure 3.9: Flow chart of the global slam process. TF (in the ROS framework)
represent the relative position of two elements
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the map tends to contain only walls and heavy furnitures, so the part
of a laser reading that can be matched to the map becomes smaller in
comparison to the part caused by non-stationary obstacles. In order to solve
this problem, a local1 SLAM is performed to have a robust and reliable
localization regarding the current state of the environment, and the output of
this SLAM is localized in the static map by a slower technique using several
sensors output. The figure 3.9 shows a detailed data-flow process diagram
of this functionality. The SLAM used in this work as the local SLAM is
called HectorSlam (Kohlbrecher et al. 2011). The global localization process
takes as input the static map and several consecutive laser scanner readings
localized by the local SLAM. The output is the transform between the static
map and the local map origins. To do so, for each new laser readings, a fix
amount of points is randomly picked in the set of past laser end-points and
in the new ones. Doing this instead of simply using the last laser reading
increase the performance for two reasons: more points are considered and
since they are more distant (possibly), the localization is less susceptible to
local minima. Once the laser points are picked, two set of random particles
or position hypotheses are drawn. They represent the possible positions
of the local map origin in the frame of static map, or said differently, the
possible transforms from the static map to the local map. The first one is a
set of uniformly distributed positions in the static map. The motivation of
this set is to initialize the localization and eventually escape a local minima.
The second one is a set of normally distributed positions around the current
best one. For each transform hypothesis, using a likelihood field model (as
in (Thrun, Burgard, and Fox 2005)), a matching score is computed and
the best one is kept for the next iteration. In order to compute the score,
for each laser points previously picked, we apply the transform hypothesis
to obtain the point in the static map frame, and we compute a likelihood
of this point based on how close it is to an occupied cell using a distance
transform algorithm. Each point’s likelihood is summed to obtain a score
representing how well the local map and the static map match according to
one hypothesis. Since the transform doesn’t change because the two origins
are fixed relative to each other (as long as the local SLAM is not restarted),
once enough precision is achieved, the localization process can be stopped.

3.4.3 Novelty detection using laser readings

Given the static map of the environment, we are now interested in the
detection of potential objects in the environment in order to ultimately
model and recognize them using the laser sensor (see algo. 1 and figure
3.10). The localization provides a set of laser endpoints localized in the
map reference frame that are noted li. An endpoint can either correspond

1Here, local refer to time, i.e. a SLAM limited to the information gathered by the robot
during a particular run in the environment
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Algorithm 1 Novelty detection algorithm

Input: static map the occupancy grid representing the static obstacles of
the environment

Input: L a set of laser endpoints
Output: C a set of clustered points

1: outliers := φ, inliers := φ, C := φ
2: for all li ∈ L do
3: dist = distance to closest obstacle in static map of li
4: if dist > distance threshold then
5: add li to outliers
6: else
7: add li to inliers
8: end if
9: end for

10: for all pt ∈ outliers do
11: clustered = false
12: for all cj ∈ C do
13: dist = distance from pt to center of cj
14: if dist < radius then
15: add pt to cj and update center of cj
16: clustered = true
17: break
18: end if
19: end for
20: if not clustered then
21: create cluster c with pt and add to C
22: end if
23: end for
24: for all cj ∈ C do
25: for all li ∈ inliers do
26: dist = distance from li to center of cj
27: if dist < radius then
28: add li to cj
29: end if
30: end for
31: if |cj | < size threshold then
32: remove cj from C
33: end if
34: end for
35: return C
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Figure 3.10: Example of novelty detection using our laser range finder. The
black and grey colors represents respectively the occupied and free cells of
the static map. The green arrow correspond to the robot’s pose. The red
dots are the laser range finder endpoints. The blue disks shows the detections
obtained with our algorithm.

to something static (wall, static furniture), or to a moving object (chair,
human, door). Points belonging to known static objects (mainly walls) should
have a small distance to occupied cells, depending on the localization error.
Whereas points belonging to dynamic objects usually have big distances to
occupied cells. To separate them, the distance of each endpoint to the closest
occupied cell in the map is computed using a distance transform algorithm. A
static distance threshold (distance threshold) is used on di to detect points
belonging to a non-stationary object. The detected points are then clustered
together given that they are at a certain distance radius of a cluster center.
To do so, we iterate over all the detected points to compute the cluster
they belong to and update the corresponding cluster center position. If no
cluster is found for a particular point, we start a new cluster with it. This
process is performed to group points belonging to different non-stationary
objects. Once the clusters are formed, non-detected points are added to the
them with the same radius criterion but without updating the center this
time. The reason for this is that a non-stationary object near a wall might
be ill detected using distance threshold causing some of its border to be
undetected and the remainder correctly detected. Thus, adding non detected
point to the found clusters increase the chance to detect those correctly.
Finally, some clusters might contain not many points because of noise in the
sensor, occlusion or object seen from afar. They are filtered based on their
size (size threshold).
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Figure 3.11: Example of a laser reading segmentation. The points in red
represent the laser points, the points in blue represent the detections, the
axes represent the robot position.

We set radius to 0.5m because most of the dynamic objects being
considered are not wider than 1m. The distance threshold parameter is set
according to the static map resolution and the precision the localization. We
set it to 0.20m We set size threshold to 5 to have a chance of detecting thin
objects up-close. However, laser descriptors (described in 4) extracted from
clusters with few points are more noisy.

3.4.4 Laser readings segmentation

The previously presented novelty detection is used to detect non-stationary
objects. However it fails to catch all the objects in a scene when the static map
is not yet finished and it can not be used when exploring a new environment.
For those reasons, another laser-based detection is used which can operate in
every scenario (see figure 3.11). There are mainly three steps for this process,
the first one is to split the laser reading based on discontinuity. Objects that
are apart or corners will cause successive points in the reading to be more
distant from each other than with other neighbors. So the reading is split
using a threshold on the distance between successive points. The second
step is to filter the split. Noise in the range reading tend to cause splits
containing only few points. Again a threshold is used to remove the small
splits. Finally, the third step is to filter the splits based on occlusion in order
to keep only plain views of objects. The splits containing the end-points of
the laser reading are first removed. Since they are perceived at the limit of
the field of view they are clearly not plain views. Then all the splits that
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are behind a successive or a previous split from the robot perspective are
removed. To do so we compare the distance between the robot and the splits’
end-points. Splits that are behind others are occluded views of an object or
a wall.

Compared to novelty detection, this segmentation is able to detect more
objects in more situations. However it gives also more false positives and the
objects detected are not always non-stationary ones. For those reasons the
novelty detection is a more reliable source for the object learning process,
and the laser segmentation is better suited for active object search.

3.4.5 Object Tracking

Object tracking is important in a realistic navigation scenario as we mentioned
before (see 2.4). In this study however, we focused on using object tracking
as part of the object modeling process. In fact we see the tracking as a way
to solve a temporal correspondence problem between new and past object
detections. Thus, the object recognition we will describe in the next chapter
doesn’t operate on single views of objects as it is often the case, but on a
stream of successive views. To do this, it is within the tracking process that
views or detections of the same object from different sources are put together.

Because this study wasn’t focused on solving the tracking problem in
difficult situations, we didn’t use a state of the art algorithm to effectively
compute the tracking. We used a simple threshold based algorithm in which
upon new detection input, the closest currently tracked object is retrieved
and, depending on a time and distance threshold, it is viewed as from the
same object or not. This solution was sufficient to track effectively one or
two humans passing by and of course static objects, which was enough for
this study. However, in a more realistic scenario, a more advanced tracking
solution should obviously be used.

In the remaining of our work, we will call tracker the set of perceptions of
an object gathered from its first perception to the point where the tracking
of this object is lost.

3.4.6 Object modeling, recognition and learning

So far, we have presented a perception pipeline containing the detection
of dynamic objects with a 2D laser scanner and a RGB-D camera and a
tracking system to accumulate observations of one object. The sequence of
views obtained out of the tracking system contains segmentations from our
two sensors in temporal order of their perception. For each segmentations,
different descriptors are extracted and sparse coded using dictionaries. The
extraction of descriptors for the laser readings will be detailed in chapter 4.
How we use dictionary learning to recognize the descriptors is also described
in chapter 4. In chapter 5, we will explain how we model and recognize
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Figure 3.12: View of our robot in the arena during the CAROTTE competi-
tion.

objects using the sequence of descriptors obtained after the sparse coding.
The sequence of views thus obtained represent partial observations of objects.
In fact, most of the time, the robot is only passing by objects and do not
observe it from many different point-of-view. In chapter 6, we will explain
how the robot can learn new objects incrementally and without supervision
by grouping and filtering these partial observations.

In conclusion, our perception pipeline contains means to discover and
learn new objects autonomously as well as to detect and recognize objects
thus learned. By using two sensors and several descriptors representing
different properties, it is strongly relying on multi-modal information and
thus robust to many perception problems.

3.5 Experimental results

In this section, we report a few qualitative results illustrating the overall
behavior of our robot architecture on the two addressed problems. More
detailed and quantitative results concerning our main contributions on object
modeling and recognition will be given in the next chapters.
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Figure 3.13: Map produced by our system (see text for details).

3.5.1 Défi CAROTTE

In the context of this work, we participated to the Défi CAROTTE of
which the goal was to develop a robot capable of autonomously exploring
an unknown environment and producing a semantic map containing rich
information usable by a human (see figure 3.12). Figure 3.13 presents a map
produced by our system in an 40m2 indoor environment that contains nine
known objects (2 folding seat, drawers, 2 bottles, 1 chair, 1 red ball, 1 potted
plant, 1 paper box). The top part shows the 2D map produced by the 2D
laser scanner, along with the obstacles detected by Kinect and by the gravel
detection algorithm (grey polygons). Green and blue numbers indicate the
positions of the detected ground and wall type. In this environment, only
lino is present and ground type is correctly identified in all image except
one, recognized as tiling. The wall categories are mostly correct, with some
confusions between the 3 categories that are filtered out when integrating
detections in the rooms. The bottom part shows the result of the room
segmentation and the mean position of the detected objects inside each room.
Seven objects out of nine present in the environment have been detected.
The two objects have been missed because they do not appear completely in
any image taken during exploration. The positions of the detected objects
are within 20 cm of their true positions. The error is larger for bigger objects
as it is more difficult to estimate a correct object position from a partial view
of these objects.

While our team was not successful during the competition, the proposed
software architecture worked well on many different situations. In particular,
the robot’s behavior when facing difficult to perceive obstacles was satisfactory.
The multi-modal navigation was efficient and failure often recovered from
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successfully. With the architecture the robot wouldn’t get stuck in a difficult
situation. Finally, the robot was able to complete its mission most of the
time (not during the final, though).

There was three main reasons for the robot to fail which the architecture
couldn’t handle. The worst of them was the overload of the CPU and memory
resources. In case of lack of resources the system would start to lag and drop
messages between modules. This would cause most of the modules to fail
or perform poorly. Nevertheless, for safety reason, the reactive layer was
implemented on a dedicated computer and would stop the robot when the
last command received was too old. Because the reactive layer had is own
resources, it wasn’t affected by this problem and safety was ensured. Apart
from improving each module computationally, this situation could have been
managed with a mechanism of priority in the allocation of the resources.

The second issue was the failure of the SLAM system. The SLAM is the
only module giving an estimation of the position of the robot, and most of
the other computations involved require a good estimation. Thus, when the
SLAM fails, the system is fairly compromised. A solution to this problem
might be to detect the failure and reset the SLAM system.

Finally the last problem that the architecture has difficulty to handle is
when an obstacle avoidance module is sending repetitive false positive obsta-
cles messages. This was particularly problematic when the floor recognition
system would have difficulty to recognize a certain type of floor and would
randomly guess the correct category or mistake it for an obstacles. In this
case the robot would start to back-out and discard this module messages
to try to get out of the situation, but it wouldn’t succeed all the time. A
possible solution to this problem could be to use different recognition system
to increase the robustness.

3.5.2 Unsupervised Semantic Mapping

The perception pipeline for unsupervised semantic mapping, including the
modules for multi-modal object learning and recognition using a laser and a
RGB-D camera that will be presented in the next chapters, was implemented
on the robot and runs in real-time. The incremental SLAM module was
validated by producing a static map of two rooms and a corridor and was then
used in the other experiments (see figure 3.8). To evaluate the perception
pipeline, we recorded the behavior of the system on 8 different trajectories
in the same environment containing 8 objects that were moved in between.
The figure 3.14 illustrates this experiment.

Concerning the long term localization and mapping, the system success-
fully build a static map of our environment and the localization took at most
several seconds in our experiments. However, it could become very slow on
larger environments.

Concerning the laser based object segmentation modules, the experiments
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Figure 3.14: Capture of the experiment on one of the 8 trajectories. Three
objects have been correctly classified: clim, box and desk. An object tem-
porarily recognized as a chair is being tracked and evaluated even though
no kinect information are available. A trash is being recognized as a trash.
A definitive label is given to observations only when the tracking is over or
when the recognition result is sufficiently high.
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Localizer 50 ms

Detector 0.7 ms

Tracking 0.1 ms

Object learning and recognition 21.6 ms with 114 models

Total 72.4 ms after 10 runs

Table 3.1: Table of computation times.

indicate that they are able to detect objects as soon as the robot enters a
room and largely before the objects are in the kinect field-of-view. However,
there are several small limitations. Doors can be detected but only when
open. Only big objects can be successfully detected when against a wall.
Cluster of non-stationary objects are interpreted as one. Small or thin objects
can only be detected when close to the robot because otherwise not enough
laser points hit the object. However, the laser scanner field-of-view being
wider than the kinect one, the perception of those objects is still slightly
improved. Wide objects such as sofa or desks can be detected but not in
their entirety.

The tracking and the detection modules used were sufficient to track
and accumulate views of interesting objects (including humans) and to test
our recognition system. However, they couldn’t handle properly groups of
detected objects. For instance, if a human and an object are detected, and
if the human go to the object and push it around, the moment when the
human and the object become close enough, they are treated by the system
as a single different object.

For each implemented module, the mean computation time was recorded
(table 3.1). The code was written in C++ without particular optimization.
The computation times are bounded for each modules except the object
learning and recognition ones (which are the focus of the following chapters
and therefore are not detailed here).

In conclusion, using the laser scanner and tracking, the robot perceives
objects sooner and during a longer time period than when using the kinect
only. Thus, more information is gathered for the recognition and learning.
The incremental mapping and localization system is able to build occupancy
grids containing only static information for environments the size of common
houses or lofts. Furthermore, computation time are reasonable for our
application. Overall, the modification we made to the first architecture are
an improvement for the domestic robots we envision.
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3.6 Discussion and Conclusion

In this chapter, a robot architecture for semantic mapping of an unknown
environment was proposed, followed by an extension of its perception pipeline
to perform longterm unsupervised and incremental semantic mapping. Both
the robot architecture and the perception pipeline proposed present a lot of
advantages and some drawbacks.

First of all, at this level of complexity, which is far from a theoretical robot
able to do house-chores, the robot seems to have a will to get in situations
unexpected by the developers and to find all the bugs in the software. As
such, considering possible failure is not an option but a requirement. Most
of the difficulties encountered during this work was about the robot general
robustness. Much work has been done regarding this, but a lot remains to
be done.

From a practical point of view, having a data-flow of separate rather
generic modules running in separate processes makes the development of
the robot easier. Those modules represent most of the code running on the
robot (maybe 80 %). Our team comprised eight people at the time of the
competition. It was easy to separate the work and maintain or upgrade the
system once the requirements for each module was set. This is the reason
why this solution is so popular.

The behavior of the robot was coded using a script language as a hierar-
chical state machine. Using a script language made it easy to develop and try
new scenarios very efficiently. Because this part is the less generic of all the
system it makes sense to separate it from the rest. However, monitoring all
the modules in one place means this process is really demanding in resources
which in our case was not always a good thing. Perhaps, this layer would
benefit from being separated into subsystems.

The separate reactive layer has proven necessary for safety reasons. It
was designed to take precedence over the rest but communicates with the
control system so that the robot could plan how to get out of a difficult
situation. This proved very effective in avoiding some dangerous situations.

From the components perspective, the functionalities presented here are
common across mobile robots. A special care was dedicated to multi-modal
obstacle avoidance and path planning. The solution retained was satisfactory
and the robot was able to take effectively into account different sensors and
sources of information. Moreover, the perception pipeline extension improves
the semantic information extraction. The robot field of view is enlarged by
using the 2D laser scanner in the object detection and recognition processes.
The quality of the recognition is improved by using different sensors and by
performing it on an accumulation of view as will be shown in the following
chapters.
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Chapter 4

Object recognition using
laser range finder

This chapter will present our first contribution on the use of a laser range
finder to recognize objects while a robot is navigating an indoor environment.

4.1 Introduction

Many semantic navigation solutions use 2D laser range finder to perform
SLAM, and rely on another sensor, generally a camera, to perform object
recognition. Some studies use a 2D laser scanner to perform place recognition
but few work has been done on object recognition. The main reason is that
2D laser scanners don’t provide much information on objects compared to
cameras. However, a laser range finder has a much bigger field of view which
means that it starts perceiving objects before cameras can. Since it is used for
navigation, the objects it senses are highly relevant in this context. Finally,
because this sensor represents far less data to process and a high rate, we
can suppose that it would be fast to have an object recognition response.

For those reasons, we believe that a laser range finder could be used to
improve an object recognition system by giving a quick and good prior. In
this chapter we present our solution to recognize objects using only this type
of sensor. To do so, given a set of one object’s laser segmentation taken
at different point of view, we model the object by a bag-of-view (i.e., an
unordered set of laser scans of the object) where a view is represented by a
descriptor extracted from the segmentation. In our architecture, the input of
this system is given by the laser detection and tracking algorithm presented
previously in chapter 3.

This work is structured as follows: first we will present a review of related
works in the section 4.2, then we will present two different laser descriptor
computations and the object modeling process in the section 4.3, then a
thorough evaluation is given in section 4.4, and finally we will conclude in
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section 4.5.

4.2 Related work

In (Modayil and Kuipers 2004), object recognition using 2D laser range
finder relies on geometric representations produced by accumulating localized
segmentation of the objects. However, using this representation, it is not
possible to model objects that might change shape overtime (such as humans),
or objects that are ill perceived. Moreover, it heavily relies on a good
localization of the robot, tracking of the object (if it is moving) and/or
matching of few 2D points, which is a hard task.

Using techniques based on descriptors on the other hand reduces those
difficulties. That is why we choose to study this solution to solve the problem
of modeling objects with 2D range data. Moreover, since computer vision
have had great success in recognizing objects based on points of interest and
descriptors, it seems worth trying to do the same on 2D range data and thus
taking benefits of the related techniques already developed.

Far less work has been done on describing segments of 2D laser range
finder data than for images or 3D point clouds. Nevertheless, some work on
describing binary images can be extended to describing 2D laser range data
such as shape contexts (Belongie, Malik, and Puzicha 2002) and spin images
(Johnson 1997). The shape context is a way of describing shapes in order to
measure similarity and recover point correspondences. The idea is to pick n
points of the shape and for each of them to encode their shape context using
the relative distributions of the remaining n − 1 points. This distribution
is approximated by a uniform log-polar histogram of the relative positions.
The spin image is a surface representation technique which is used for surface
matching and object recognition in 3D scenes. For a given oriented point (3D
point with a surface normal), a cylindrical coordinate system is defined and
the surrounding surface is encoded using an histogram of the neighbor points
expressed in that system. Note that both techniques use relative positions
between points to encode geometrical information.

It has also been shown in (Tipaldi and Arras 2010) that it is possible to
use descriptors with laser range finder, applied to place recognition in their
case. They developed a technique to compute interest points and describing
those using laser range finder. They have shown that it can be used to
perform loop-closure, place recognition or global localization. However, this
descriptor is meant for place recognition and so it is variant to point of view,
which is not desirable for object recognition.
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4.3 Contribution

We describe now two different descriptors that have been developed and our
approach to multiple view object modeling using these descriptors. The first
descriptor has been used in our work (Duceux and Filliat 2014). We call it
pair-of-points based laser descriptor (PPLD for short). The second one is
called triangle based laser descriptor (TLD) and was derived from the first
one in order to improve its discriminative power.

4.3.1 Pair of points based descriptor

Figure 4.1: Illustration of the pair-of-points based laser descriptor building
steps.

It is rather impractical to compare directly two sets of few points. This is
why a descriptor is computed for every view in order to compare them. Using
a descriptor provides a quicker way to compare views, and a certain level of
robustness regarding noise. Its efficiency is a critical part of the system.

To be able to recognize non-stationary objects, invariance from point of
view is required. This means that if the robot sees the same part of an object,
the resulting descriptor should be the same, independent of where the robot
sees it. To achieve that, several steps are involved in the construction of the
descriptor. Fig. 4.1 illustrates those steps. To construct the descriptor, we
followed ideas from (Belongie, Malik, and Puzicha 2002) and (Johnson 1997).

The detection provides a set of points representing a part of an object
boundary. However, as the robot gets further from the objects, fewer laser
points will hit the object, and they will be more separated. The first step is
therefore to re-sample the points with a fixed inter-distance in order to be
invariant to the object distance. For each pair of successive points, we use a
linear interpolation to generate new points at regular intervals, which leads
to having almost the same amount of points when the object is seen from
afar than up close.

For each pair of points in this set, the vector that goes from one point to
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Figure 4.2: Illustration of the couple (rho, theta) computed for each triangle
considered.

the other is computed in polar coordinates (r, θ). The θ coordinate of those
vectors is dependent on the rotation of the object in the map reference frame.
In order to achieve rotational invariance, a reference angle is computed as
the maximum argument of the histogram of the θ coordinates distribution.
This technique has been used in (Rofer 2002) to match laser scan and gave
slightly better results than computing an axis of reference with Principal
Component Analysis, or by using the endpoints of the detection. For every
vector, a new θ coordinate is computed relative to that angle of reference.

Finally, the descriptor is computed as an histogram of the polar coordi-
nates of these vectors normalized by the number of points. The histogram is
parametrized by the number of divisions of both the angular coordinate (in
[−π, π]) and the distance coordinate (in [0, 1]m). Those parameters have an
important role in the performance of the system.

To compare two descriptors, the Symmetric Chi-Square metric is used. A
comparison of popular metrics (Cha 2007) has shown slightly better results
in our case with this one. The distance is expressed as follows:

dχ2(I, J) =
1

2

∑
i

(Ii − Ji)2

Ii + Ji
(4.1)

with I and J two descriptors, Ii and Ji the i-th element of the descriptor
I and J respectively.

4.3.2 Triangle based descriptor

We propose a second solution to construct descriptors of laser data. Compared
to the previous one, this solution is an improvement for our application. The
problem with the previous one is that it is dependent on an angle of reference,
which is difficult to obtain for some shape and can cause variations. To avoid
those variations, some symmetries are added to the descriptor which makes
it less discriminative. In this solution, triples of points are considered. For a
given point belonging to a triangle, the angle at this point and the norm of
the opposed side are computed (see figure 4.2). Both are invariant to point
of view and don’t depend on a point or angle of reference. However, as the
number of points grows, computing all the possible triangles doesn’t scale
well because the complexity is too high (O(n3))). That is why a way to select
relevant points is necessary.
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(a) raw data (b) up-sampled (c) smoothed

(d) down-sampled (e) triangle space (f) polar histogram

Figure 4.3: Illustration of the descriptor building steps. From top-left to
bottom-right: the input laser points, the signal up-sampled, then smoothed,
down-sampled, the triangles in polar representation and finally the polar
histogram which is the descriptor.

Two solutions are possible: draw a desired number of points randomly, or
sub-sample the signal. We retain the sub-sampling solution by taking evenly
spaced points.

The figure 4.3 illustrates the construction steps of this descriptor. As
before, the building process starts by up-sampling the input signal (fig. 4.3b).
This is a way to take into account the distance of perception. Since less
points are going to be selected than in the previous descriptor, this solution
is more susceptible to noise in the sensor. That is why the up-sampled signal
is smoothed (fig. 4.3c). To smooth the signal, we compute the average point
with a sliding window of 2 ∗ n neighboring points. During this process of
smoothing, the borders are cut which is acceptable because they are often
noisy. Then the signal is down-sampled to pick a desired number of points
that are uniformly distributed (fig. 4.3d). For all the triples from left to
right, the angle at the middle point and the norm of the opposed side are
computed, which gives a couple (rho, theta)(see figure 4.2 and (fig. 4.3e)).
Those values are then transformed into a polar histogram (fig. 4.3f). We use
a spreading scheme to add the points in the histogram, which means when a
cell is hit, the neighboring cells are incremented too to lessen the effect of
the quantization.
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The resulting descriptor is a slight variation of the previous one, which
tends to be more discriminative and robust. We used the same distance 4.1
to compare two descriptors.

4.3.3 Descriptor clustering

Algorithm 2 On-line dictionary

Input: D a descriptor
Input: W the dictionary
Output: a view label

1: Begin
2: find closest view wi to D in W
3: dmin = distance wi to D
4: if dmin < threshold then
5: return label of wi
6: else
7: add D to W
8: return label of D
9: end if

10: End

In order to have a compact representation of the objects, we follow the
bag-of-views approach as described in the next section. For this, we need
to compute a dictionary of descriptors obtained by clustering the perceived
descriptors. We used the incremental method presented in (Filliat 2007). In
this method (algorithm 2), a distance threshold is fixed to decide whether
to create a new view in the dictionary or not, when a new descriptor is
perceived. If the descriptor is far enough from all the views, it is used as the
center of a new view.

4.3.4 Object modeling

Objects are represented as bag-of-views, i.e., as histograms of occurrences of
the different views in a tracker (see section 3.4.5). An important problem is
that the sampling of the views around the object will depend on the robot
trajectory around it. As we want to construct the models on-line and be able
to recognize objects with partial information, i.e., seen from only one side,
we need to enforce a sampling of the views that will limit the dependency
on the particular robot trajectory. To do so we filter descriptors during the
construction of the model to increase chances of having similar models.

The filter comprises a condition on the relative position between the
object and the robot and on the view being perceived. Indeed, since some
objects might change shape, we can’t filter only on the position. Therefore,
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Figure 4.4: The 22 different objects in the database and their associated
label for supervised tests. Two spiral trajectories around an object have
been recorded for each one.

we only add a view to the model if it is different from the previous one or if
the relative position of the object has moved more than a given distance (we
use 10cm).

Two objects descriptions are compared using histogram intersection:

d∩(I, J) =
∑
i

min(Ii, Ji) (4.2)

with I, J two histograms (bag-of-views) being compared. Note that an
object histogram is normalized by its number of elements. A comparison
between popular similarities and distances metrics (Cha 2007) has shown
that although the difference is slight, the intersection gave the best results.

4.4 Experimental results

In order to assess the quality of our object representation, we built a dataset
consisting of 22 objects (see figure 4.4). They have been chosen following
several critera. Firstly, most of the objects are commonly laid on the
ground and can influence the navigation (chairs, stool, human, wicker basket,
vacuum, fan, trashes, shopping cart) which makes them interesting for our
work. Secondly, since ours descriptors are encoding the shape and the size
of the objects, we selected a few with similar ones (blue and black chairs,
boxes) in order to assess their performance. Thirdly, our sensor is based
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Figure 4.5: Regions with the same color represent where the robot has seen
the same view in the dictionary using PPLD. The number represents the
object label. The regions formed are consistent with the invariances expected
from the descriptor, except when laser data is too noisy for certain objects.

on infrared light emission which is susceptible to dark color and reflective
areas, therefore some objects are purposely hard to perceive (black screen,
armchair and luggage). Finally, some object have a dynamic shape which
can make them difficult to describe accurately (human, shopping cart).

To construct the database we moved the robot around the objects and
recorded the trajectory and the laser data. Two trajectories were recorded
by objects to ensure a separate training and test set. With this database, we
performed experiments to set the different parameters using grid search and
to evaluate the performances in an ideal case. The parameters were selected
by optimizing the recognition precision with partial models and are given in
the sections 4.4.1 and 4.4.4.

4.4.1 Pair of points based laser descriptor evaluation (PPLD)

The first experiment was to control the efficiency of the descriptor regarding
the invariance we were expecting. In order to do that, we generate a map of
the views obtained as a function of the position of the robot.

Fig. 4.5 has been made with a dictionary threshold of 0.03. The descrip-
tors have 6 bin on distances and 11 on angles. The up-sampling step is done
with a resolution of 3mm. The figure shows that the expected invariances
are achieved on objects with good response to laser sensor: objects 1, 7, 9,
18. Problems arise when far from an object, as too few points are obtained
from it, which limits the distance at which we can perceive it. Also, certain
objects are not well perceived by laser range data, such as black colored
objects and objects having hard edges. In the latter case, a smaller variation
in the position of the robot produce different views, so a descriptor can still
be computed and used in the recognition process but with less robustness.
For this type of object, the model needs to contain views coming from several
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Figure 4.6: Confusion matrix for object recognition with complete models.

readings at the same place. That is why filtering of the repartition of views
are made based on both relative position and the value of the view obtained.
Finally, some objects are really noisy, such as object 8 in figure 4.5 which is
a moving human. But even in this case we will see that the corresponding
bag-of-views is specific enough to recognize it.

With this set of parameters, computing the PPLD on our robot’s laptop
took on average 28ms per view. This calculation time, given a fix set of
parameters, varies mainly depending on the number of points to process
which depends directly on the size of the object.

4.4.2 Recognition with complete models using the PPLD

In a second experiment, we evaluated the performance of the recognition
when seeing the objects completely, i.e., from all possible viewpoints. We
constructed a set consisting of eight complete models of each object. In
order to perform cross-validation, the set was randomly divided ten times
into a training and a validation set. Each time, one model by object was
randomly picked to go in the training set. The remaining models were put
in the validation set. Each time a confusion matrix was computed. All the
results were accumulated in a final confusion matrix shown by Fig. 4.6. The
global recognition rate obtained was 89% .

Results show that the method works well with complete models. The
false recognitions are explained by the fact that some objects are perceived
as having very similar shape and size with a laser range finder. For instance,
the two chairs are more often confused and so are the box 18 with the box
5. However, most of the time the differences in size and shape are sufficient
to avoid confusion. Lastly, the most misinterpreted object was the moving
person. In fact, when moving, people’s legs appearance is highly variable for
the laser sensor. This in turn causes high variation in the resulting models,
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Figure 4.7: Recognition rate as a function of the length of the trajectory.

hence more confusion.

4.4.3 Recognition with partial models using the PPLD

In a real application though, the robot should be able to recognize objects
with partial models without performing a full circle around the object. In
order to assess this in a controlled setup, we computed the recognition rate as
a function of the length of the trajectory sampled from the same database. In
this experiment, the training set still consists of one complete model for each
object. The test set consists of randomly generated trajectories of varying
length.

Fig. 4.7 shows the recognition results with two different criteria. For
the first one (in red), we have considered an object as being recognized if
the most similar object is the correct one. As expected, the more an object
is perceived, the better it is recognized. Note that around 4 meters the
recognition rate is already strong, which correspond to seeing about half of
the object. This corresponds to trajectories that the robot would have when
avoiding an obstacle or passing by it. It suggests that recognition during the
robot motion for another task could perform well.

In the second criteria (in green), we considered a recognition being
successful if the right answer was in the three best score. The performances
are clearly improved with a perfect recognition above 6 meters. This suggests
that when the system is wrong on the identity of an object, it is not far
off. For instance, when recognizing the black chair, we have seen that the
system often confuses it with the blue one, but the similarity with the black
chair would still be high. This result indicates that we could rely on this
recognition as a good prior for mixing it with another algorithm using a
different modality.
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Figure 4.8: Regions with the same color represent where the robot has seen
the same view in the dictionary using the TLD descriptor. The regions formed
are consistent with the invariance expected from the descriptor, except when
laser data is too noisy for certain objects.

4.4.4 Triangle based laser descriptor evaluation (TLD)

As before, to evaluate the use of this descriptor, we mapped the views
obtained when perceiving the object with the position of the robot.

Figure 4.8 has been made with a dictionary threshold of 0.2. The
resolution for up-sampling is 1mm. The size of the window for the filtering
is 100 points. The smoothed points are down-sampled to 50 points. The
number of bin on the angle is 12 and the size of the bin for the norm is
0.1m. The trajectories selected are the same than in section 4.4.1. We can
see that the behavior of this descriptor is similar to the previous one. The
classification results will show that it is more robust.

With this set of parameters, computing the TLD on our robot’s laptop
took on average 5ms per view. This is faster than the PPLD as reported on
section 4.4.1. However, this difference in computation time depends heavily
on the parameters chosen. In fact, the TLD’s computation time grows
rapidly with the increase of the selected points during the down-sampling
step. Nonetheless, in our application using TLD is faster for a higher rate
of recognition (see the next section) which makes it an improvement over

61



CHAPTER 4. OBJECT RECOGNITION USING LASER

Figure 4.9: Results obtained by averaging over 5 different trials for each
threshold setup. First row: from left to right: the recognition precision, the
average number of views by model and second row: the size of the resulting
dictionary.

PPLD.

4.4.5 Recognition with complete models using the TLD

The figure 4.9 shows the result obtained during the recognition using partial
models in the same conditions as in section 4.4.2. We can see that the de-
scriptor performs much better than the PPLD when the dictionary threshold
is around 0.1. With this setup, the average precision obtained is around 97%,
the average number of views by model is about 55 and the average size of the
dictionary is near 980. With a threshold of 0.1 it takes about twenty seconds
to process all the data (which represent 54012 descriptors) and to obtain
the results (see table 4.1). We can see that a dictionary threshold around
0.2 gives approximately the same results than in section 4.4.2. With this
threshold the resulting bag-of-views and dictionary are about the same size
but since the TLD is faster to extract, the whole process is quicker. So, in
conclusion we have shown that the TLD descriptor is an improvement over
the PPLD, being able to achieve higher recognition rate, and being faster at
the same level of recognition.

The figure 4.10 shows some confusion matrices obtained during this
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TLD PPLD

dictionary threshold dictionary size recognition rate dictionary threshold dictionary size recognition rate

0.1 982 97 0.01 2119 92

0.2 351 88 0.02 678 91

0.3 184 82 0.03 331 89

0.4 111 75 0.04 196 87

Table 4.1: A comparative table of the results obtained using the parameters
given in 4.4.1 and 4.4.4. The first column represent the dictionary threshold,
the second one is the number of views (or size) in the dictionary and the
third one correspond to the recognition rate obtained. The results given
for the size and recognition rate are average over ten trials. PPLD with a
threshold of 0.03 correspond to the results given in 4.4.2.

Figure 4.10: From left to right, the confusion matrices obtained with a thresh-
old of 0.1, 0.2 (first row) and 0.3 (second row) respectively by accumulating
the scores over 10 trials.
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experiment for several dictionary thresholds. We can see that there is a
strong confusion between the object 17 and 19 (as it was also the case with
PPLD), which can be easily explained by the fact that they have the same
shape and a small difference in size. The other confusions are less obvious
and might be caused by noise in the sensor readings, especially for black
or small objects. However, it has to be noted that during this test only
the dictionary is a cause for variation in the precision result because the
descriptors and tracks are not recomputed. The dictionary is rebuilt every
time by feeding all the descriptors from all objects in a random order.

4.5 Conclusion

In this chapter we presented two novel 2D range data descriptors and we used
them in bag-of-views models to recognize objects in a supervised manner.
The results show good performance in the recognition tasks, and that the
descriptors have the intended invariance. Since 2D range data are far less
complex than images or point cloud, the recognition power is also lessened.
But such data are easier and faster to process, and a laser range finder usually
has a larger field of view than a camera. Moreover, in a navigation task,
most of the objects involved are perceived by this sensor, and that is why it
has been used intensively in the past. With this limitation, we have shown
that it is possible to distinguish between a reasonable number of objects
sufficient for common household setups and to perform recognition.

Those reasons make the use of 2D laser range finder for object recognition
in a navigation context worth studying furthermore.
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Chapter 5

Multi-modal object modeling

This chapter describes our contribution on multi-modal object modeling
using the graph-of-views approach in order to extend the methods of the
previous chapter to object recognition with multiple sensors.

5.1 Introduction

In chapter 4, objects were modeled by histograms of views obtained with
the laser readings following the bag-of-views approach. Those models rep-
resented a distribution of possible views for an object. In the case of an
unsupervised and on-line learning, the models obtained would be partial and
highly dependent on the trajectory of the robot. So, in order to obtain a
complete model from the partial ones, it would be necessary to merge the
distributions which is difficult considering that they do not represent the
same aspects of the object. The figure 5.1 illustrates this problem.

One possible approach to reduce this problem is to use a binary histogram,
meaning it’s not the number of times an element as been seen that is stored
but just whether it has been seen or not. In this case, it is possible to
easily merge the partial models. However, using this method with the laser
descriptor is not very efficient because its discriminative power is too limited.

To improve the discriminative power of local descriptions, a common
solution is to use pairs or even lists of descriptors as histogram elements. The
combination of views being more rare it gives more discriminative power.

Another direction of work in order to be more discriminative and robust in
our situation is to use different sensors and/or types of descriptors. This raises
the question of how to combine those inputs of different nature. They could
be processed independently and their recognition results could be merged,
but a better solution would be to take advantage of the co-occurrences of all
those data.

Studying these problems, we came up with an original formulation to
represent the objects that we call graph-of-views. This is the focus of this
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Figure 5.1: An object with a blue side and an orange side. If the robot
were to see the object from all possible point-of-views, it would observe a
distribution of color of 50% blue and 50% orange. However, when the robot
perceive the object partially (only on trajectory 1 and 2), the distribution
observed can be very different.

chapter.

5.2 Related work

Using graphs to represent a scene or an object in a recognition tasks has
already been studied many times. However, there are many different ways to
represent something with a graph which leads to representation with very
different properties.

Our graph-of-view model presented in the next section resembles aspect
graphs (Cyr and Kimia 2004). Given a certain viewpoint of a camera, an
object is perceived as having a certain 2D appearance. An aspect is a
partition of the viewpoint space where the 2D appearance is invariant. The
aspects are the nodes of the graph and the edges represent the visual events
of changing aspect when rotating around an object. This representation is
efficient to perform object recognition but is very expensive to construct and
to store for complex objects. Also in the formalization, there is no study on
how to handle various kind of appearances coming from different sensors.

In (Mei, Sibley, and Newman 2010) they replace bag-of-views scene
representation by co-visibility graphs for loop closure. The graphs represent
the different features that are visible in the same frame or at the same
robot location. By exploiting this co-visibility explicitly they improved loop
closure solutions because it depends less on the discretization of space. If our
work resembles this in spirit by replacing bag-of-views by a graph-of-views
representation, the semantic of their graphs is slightly different from ours
and they are used very differently.

A graph of view representation is used in (Liang et al. 2014). They propose
a method to learn and model object simultaneously. Their method however is
based on Visual SLAM techniques and the purpose is to reconstruct RGB-D
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Figure 5.2: Different modeling of an object. See text for details.

point clouds for objects and their results are shown using only three different
objects that are fairly different. Our representation is not aiming at such
complete and precise metric object models and is therefore computationally
more efficient. It also handles different appearance properties.

Concerning the fusion of different appearance properties, (Caron, Song,
et al. 2014) propose to use a Neural Network to learn models of objects
with different features extracted. This representation can not be updated
incrementally and the learning can not be unsupervised. However, they do
propose to fuse different features and show an increase in generalization and
performance when recognizing objects in everyday scene. The features they
used were tested with our model as will be described in this chapter.

Finally, in computer vision, some studies see the different features from
a single image as a graph and try to recognize objects from the image by
matching the graphs obtained with different images. This is known as the
graph matching problem (Caetano et al. 2009). This is a difficult problem
when there is no unambiguous correspondence between nodes and edges
of the graph which we didn’t study in depth. Instead, the correspondence
between our features is learned by the dictionaries, and we use different
similarity metrics to compare the graph structures.
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5.3 Graph-of-view object model

5.3.1 Representation

The graph-of-views is an extension of the bag-of-views representation where
we consider relations between the perception of different views. Figure 5.2
illustrates the graph-of-views model and the difference with the bag-of-views.
The top of the figure represents a given object which is passed by a robot. On
its course, the robot perceives different aspects of the object depending on
its point of view. The problem is then how to represent those observations of
objects so that the robot can compare and identify them. The bag-of-views
approach idea is to represent the object by the distribution of descriptors
perceived. In other words, a bag-of-views model stores how many times the
different descriptors have been perceived. A variant of this representation is
the binary bag-of-views in which only the presence of a certain descriptors is
retained. In the graph-of-views approach, each node of the graph represents
the presence of a view descriptor. The edges represent spatial and temporal
relations. It means that when the robot perceives one node of the graph,
the edges represent what other nodes it could perceive next or at the same
time. So, the graph-of-views representation extends the binary bag-of-views
by adding information about the relationship between the perception of the
different descriptors.

For example, if an object has one side blue and the other one orange as
in figure 5.2, when the robot turns around the object, it is going to perceive
the change. In this case, the graph would be a node ”blue”, a node ”orange”
and an edge between ”blue” and ”orange” because the robot perceived that
particular transition. In this case, the edge is a temporal relation between
perception of the same kind. But edges can also represent spatial relations
between perceptions of different kind. Suppose the robot has a shape sensor
and a color sensor and the object perceived is rectangle-shaped, then the
resulting graph would contain a node ”rectangle”, a node ”blue” and an edge
between ”rectangle” and ”blue” because it has perceived both of them at the
same time and location.

Figure 5.3 shows a real observation of a box taken by our robot using
a laser and an RGDB camera and several features for each sensor. Figure
5.1 and 5.4 show the corresponding bag-of-view and graph-of-view model
respectively. A model derived from such observation is a partial model of
the object because the robot didn’t perceive it from all possible points of
view. When two partial models have been identified as being from the same
object, we would like to derive a more complete model. As we said earlier,
since the bag-of-views are distributions, deriving another model from two
partial observations would be difficult. However, using binary bag-of-views
or graph-of-views, merging two observations is straightforward: it suffices
to take the union of the two models. In the section 5.4.5, experiments will
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Figure 5.3: A sequence of views perceived by the robot on a particular
trajectory around a box. Each disk represents a robot position where a view
was extracted. Disks of same color are the same view perceived at different
places, disks at the same height are views of the same descriptor type. Note
that descriptors extracted from the laser scanner are more numerous due to
larger angle of view and higher sensor frequency.

type id frequency type id frequency type id frequency

TLD 0 131 TLD 1 36 TLD 2 56

TLD 3 7 TLD 4 15 TLD 5 16

TLD 6 3 TLD 7 1 TLD 8 1

TLD 9 1 size 0 62 size 1 110

size 2 40 size 3 15 size 4 17

size 5 12 size 7 1 size 8 1

size 9 1 size 10 1 size 11 1

color 0 2 color 2 1 color 1 4

surflet 0 4 surflet 1 1 surflet 2 1

surflet 3 1 tbgr 0 3 tbgr 1 4

Table 5.1: The bag-of-view model corresponding to the sequence of figure 5.3
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show the utility of merging models to improve performances.

5.3.2 Definition

In this section we will define more formally our graph-of-view representation
and introduce the notations used for defining graph comparison metrics.

A graph-of-view I is a pair I = (NI , EI) comprised of a set NI of nodes
together with a set EI of edges.

A node n ∈ NI is a word taken from one descriptor dictionary among
the various modalities used for object recognition (e.g. colors from a RGB-D
camera, TLD from a laser sensor). Two nodes are equal if and only if they
are the same word from the same dictionary. An edge e ∈ EI is an unordered
pair of nodes (e = (n1, n2)). Two edges are equals if they contain the same
two nodes.

The intersection of two graph-of-views is the graph-of-view defined as:
I∩J = (NI∩NJ , EI∩EJ), i.e., the set of nodes and edges that are common to
the two graphs. Similarly, the union of two graph-of-views is a graph-of-views
defined as: I ∪ J = (NI ∪ NJ , EI ∪ EJ). Note that in this last operation,
there are no considerations about the origin or nature of the visual words
contained in the graphs. Finally, we define the size of a graph-of-view as:
|I| = |NI |+ |EJ |.

5.3.3 Comparison one to one

In order to perform object recognition using our graph-of-view representation,
different similarity functions have been tested to compare two graphs.

The first one and the most obvious is to calculate the size of the inter-
section. It represents the number of nodes and edges that two graphs have
in common. Let I = NI , EI be a graph-of-views constituted of NI its set of
nodes, and EI its set of edges. Let J = NJ , EJ be another graph-of-views.
Then, the intersection size similarity function is written as follows:

intersection size(I, J) = |I ∩ J | = |NI ∩NJ |+ |EI ∩ EJ | (5.1)

This similarity function is fast to compute and gave good results so it
was often used in the following studies. Since it doesn’t take into account the
type of view (i.e. the particular sensors and feature they are derived from) or
connectivity constraints, it is available as soon as the robot gets information
on an object. Note that when counting the edges in common, the nodes
attached by it are also counted. This means that |NI ∩NJ | and |EI ∩EJ |
are not independent. It is tempting to think that one only need to count the
edges in common. However, we will see in section 5.4.2 that it doesn’t result
in better performance. This is explained by the fact that in our problem
and in practice, two graphs of the same object can have the same nodes but
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with different edge structures. Which means that the nodes intersection is a
relevant information and is not the same as the edges intersection.

Derivatives of the intersection have been tested, namely the degree of
inclusion and the intersection divided by the union. The degree of inclusion
is written as follows:

inclusion degree(I, J) =
|I ∩ J |
|I|

(5.2)

It is an interesting similarity function because if inclusion degree(I, J)
is equal to 1, we know that I is completely explained by J . This means that
I doesn’t provide any new information, which can be useful when learning
objects as we will see in chapter 6. It is a normalized measure which is helpful
when classifying models in a setup where the different labels are represented
by models with different sizes.

The intersection divided by the union measure is written as follows:

intersection over union(I, J) =
|I ∩ J |
|I ∪ J |

=
|I ∩ J |

|NI ∪NJ |+ |EI ∪ EJ |
(5.3)

This measure is interesting because it is normalized and that it is equal to
1 when the two models are exactly the same. This is useful when comparing
complete models to each other to measure the similarity between the objects.

Sometimes the intersection between two models would be composed of
different connected components, so we tried to use the size of the biggest
connected components in the intersection as a measure. The idea behind it
is that in certain conditions the intersection of models of similar objects can
result in a graph of big size but not very connected. In this case it might be
interesting to measure how well the intersection is connected to obtain better
results. We define the function Comp(G) which gives the set of connected
components of G, then the measure can be written:

max component(I, J) = max
C∈Comp(|I∩J |)

|C| (5.4)

Until now, all the similarity measures proposed did not explicitly take
into account the different modalities. The drawback is that the measure do
not exploit multi-modality information that could be useful to differentiate
objects that are similar in some modalities. For example, imagine the robot
has three observations to compare. The first observation is of an object with
a circle shape and the color blue, the second is an object with a circle shape
and the color red and the third is an object with a circle shape but the color
is not available. In this example, the first and second observation have the
same intersection than between the first and third observation even though
they contain different colors and thus cannot be the same objects, while the
first and third do not have conflicting information. In this case, the measure
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could be improved by taking into account explicitly the different modalities
present in the models.

To do so, we define the function

number of(t, G) = |{e ∈ G : type of e is t}|

which gives the number of times a modality or feature type occurs in a
graph-of-view. Similarly we define the function modalities number(G) which
returns how many different modalities are present in G. For example, let E
be a graph composed of one shape (noted s) view and two color (noted c)
views as follows:

E = ((s, 0)− (c, 0)− (c, 1))

In this case we would obtain:

number of(s, E) = 1

number of(c, E) = 2

number of(s− c, E) = 1

number of(c− c, E) = 1

modalities number(G) = |{s, c, s− c, c− c}|
= 4

Using those functions, different measures were found interesting. The
first measure is the number of modalities for which there is at least one node
or edge in common between two models and can be written as follows:

modalities match(I, J) = modalities number(I ∩ J) (5.5)

We found that this measure is a very relevant information because it
tells how many modalities are involved in a similarity between two objects.
However, on its own it doesn’t yield good results because in practice dissimilar
objects can have few nodes or edges of different types in common. To solve
this, we tested measures that combine both information of how much two
models match and across how many modalities.

In the joint modalities intersection, the number of modalities is multi-
plied by the intersection size:

joint modalities intersection(I, J) = modalities match(I, J) ∗ |I ∩ J |
(5.6)

The normalized version of this measure is written:

normalized jmi(I, J) =
joint modalities intersection(I, J)

max modalities ∗ |I|
(5.7)
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Note that the number of modalities is normalized by max modalities
which is the maximum number of modalities considered in the system. The
reason for that is because otherwise the measure would lose its power to
distinguish between models with different modalities and models with fewer
modalities available, which is recurring when comparing partial models
against complete ones.

Finally, the function per modalities inclusion(I, J) measures per modali-
ties how much is included. With it, we want to have a more quantitative mea-
sure of how many modalities are in common than withmodalities match(I, J).
It is written as follows:

per modalities inclusion(I, J) =
∑

t∈types

number of(t, I ∩ J)

number of(t, I)
(5.8)

Imagine we use a system with three modalities: color, texture and shape.
Object A and B both have 15 descriptors of shape, 10 of color and 5 of
texture. A is equals to B in shape, has half of its color descriptors in common
with B and is completely different in texture. Then they have 1.5 modalities
in common out of 3 (per modalities inclusion(I, J) = 0.5). Note that this
measure is different from the inclusion degree(I, J) = 0.66 which would give
20 elements in common out of 30.

In the following section 5.4.4 a comparison of all those measures is given
along with the measures one to many presented in the next section.

5.3.4 Comparison one to many

In the previous section we presented the different similarity measure studied
to compare graph-of-views against one another. However, knowing several
objects brings additional information like the frequency of each feature across
the different type of object. It is possible to exploit that additional knowledge
by using a measure that takes into account all the known models. In this
work, we tested two different solution: the first one is known as TF-IDF,
which stands for term frequency and invert document frequency, and the
second one is an original measure that we developed and called modalities
consensus.

TF-IDF at the origin is a measure used in text retrieval which have
been popularized by (Sivic and Zisserman 2003) for object matching using
visual features. It has been used in numerous studies with success. The idea
behind this method is to give different weight to a view, or visual feature,
depending on their frequency in the document, or model, being compared,
and their frequency across the labeled documents. The goal is to reduce the
importance of views that are too common because they are less informative.
In our case, a model is a graph-of-view and we apply this technique to both
nodes and edges. We write it as follows:

74



5.4

tf idf(I, J,M) =
∑
e∈I

tf(e, J).idf(e,M) (5.9)

In this equation I represent the queried model, the one being classified,
M represent the set of known models and J the one being considered for
comparison such that J ∈ M . tf(e, J) is the term frequency of e in J , e
being an element of I either node or edge. Since we don’t considerer views
frequencies in the construction of our models, we can simply write:

tf(e, J) = 1 if e ∈ J or 0 otherwise (5.10)

We write the idf term as follows:

idf(e,M) = log
|M |

|{m ∈M : e ∈ m}|
(5.11)

This means that the idf term is the logarithm of the size of M divided
by the number of models m in M that the element e appears in. So the more
a node or edge is present in different categories, or common, the less weight
it gets.

The idea behind modalities consensus is to measure how well modalities
agree on a category given a queried model. It is computed as the sum of the
intersection per modalities normalized over the existing models. It is written
as follows:

modalities consensus(I, J,M) = modalities number(M)−1∗∑
t∈types

number of(t, I ∩ J)

max
m∈M

(number of(t, I ∩m))

(5.12)

In this equation I, J and M represent the same things as previously.
The function number of was defined in the previous section 5.3.3 which
returns the number of times a certain type occurs in a graph-of-views. So
number of(t, I ∩ J) is the size of the intersection when considering only the
descriptor or pair-of-descriptor of type t, and maxm∈M (number of(t, I∩))
is the maximum obtained across all labeled models. This means that the
fraction is equal to 1 when J is the best match in M according to the modality
t. By summing over the types we compute how much modalities agree on
J being the best match. The sum is normalized over the total number of
modalities in M to have a similarity measure comprised between 0 and 1.

In the following section 5.4.4 a comparison of those measures is given
along with the measure one to one.
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Figure 5.5: Images of the 25 objects of the dataset extracted from the
recorded point-clouds.

5.4 Experimental results

5.4.1 Dataset

To evaluate this representation we performed similar experiments as in
chapter 4 using another dataset (see figure 5.5) which is more realistic in
what the robot would experience in our scenario (see section 1.2). In this
setup, two sensors are used and recorded: a 2D laser scanner (hokuyo utm-
30lx) and a RGB-D camera (kinect). For 25 different objects, 6 different
trajectories are recorded. Each trajectory represents the robot going toward
an object from a different angle and then getting around it. The goal is
to record realistic trajectories that correspond to what the robot would do
when avoiding the object or when going towards it to recognize it. As an
example, figure 5.6 shows the trajectories recorded for the black armchair.

For the experiments on this dataset, five type of descriptors were used.
Two of them were computed from the laser: the TLD as described in chapter
4 and a size descriptor which is the measure of the most distant two points
in a laser segmentation. It is approximately the perceived diameter of
the object. Three descriptors were computed from the RGB-D images: a
3D shape descriptor called surflet (see section 3.3.2), a contrast descriptor
called TBGR (see section 3.3.2) and a color opponent histogram. The color
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Figure 5.6: Sample of 4 trajectories for the black armchair from the dataset.
Regions with the same color represent the same view from the TLD dictionary.
They are placed where the robot has perceived them. We can see that the
trajectories share resemblances, and that it could be possible to recognize
the object with a few of them as references.

opponent descriptor is an histogram of the pixels of an image where the RGB
values have been transformed to the color opponent color space.

Some of the objects are purposely difficult to perceive or differentiate
using only one sensor or type of descriptor. The black armchair and the
screen are difficult to perceive by the laser because they have a reflecting
black color which adds a lot of noise to the sensor reading. The others
objects (the chairs, the luggage, the metal fan, the stool, the tripod and
the turtlebot) are difficult to perceive because the portion seen by the laser
scanner is very thin. The objects difficult to perceive by the RGB-D camera
are the metal fan and the turtlebot because their surface are reflective and
thin. This makes the metal fan the hardest object in the dataset to recognize
because both sensors have difficulties to sense it. The pair black armchair and
red armchair have exactly the same shape, so they are difficult to recognize
using only this type of sensor. The black chair and the blue chair have a
similar shape and the same color in the back. The human has been recorded
while moving which makes it difficult for shape descriptors. Finally, the
color descriptors can be disturbed by the variance in illumination. Thus, the
objects in the dataset are difficult to recognize using a single sensor and/or
a single descriptor.

The extracted models for the experiments were all obtained using the
pipeline presented previously (see section 3.4): the global slam, the 2D
laser and RGB-D segmentation, the tracking, the descriptors extractors and
the dictionaries presented in section 4.3.3. No intervention were performed
to correct the output. The experiments were repeated ten times with a
dictionary initialized using a random subsample of the descriptors in the
dataset. Reported values are the mean over these 10 experiments.
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Figure 5.7: Confusion matrix using bag-of-views (left) and graph-of-views
(right) representation based only on the Triangle Laser Descriptor. The
graph-of-views one yields slightly better results.

5.4.2 Graph-of-Views versus Bag-of-Views

With laser descriptor only

Using this dataset we compared the precision obtained using bag-of-views
and graph-of-views modeling. In this experiment only the TLD descriptor
was used. The TLD dictionary threshold was set to 0.1. For each object, a
model of each representation was built for each different trajectories. A truth
set was selected by choosing for each object the model containing the most
views, the models left were use as test set. The precision obtained are 71%
using bag-of-views and 75% using graph-of-views. The figure 5.7 shows the
corresponding confusion matrices. Graph-of-Views performs slightly better
because it is more stable across the trajectories. This is partly because the
distribution of views depends on the robot path and thus bag-of-views are
less robust when comparing partial models. This experiment was done using
the intersection metric (given in section 4.3 by equation 4.2 for bag-of-views,
and in section 5.3.3 by equation 5.1 for graph-of-views) for both types of
representations.

Influence of the dictionaries

To further investigate the difference between bag-of-views and graph-of-views,
we performed the same experiment as previously (still using the intersection
measure) but with all the descriptors described in the previous section and
with two different dictionaries setup. Indeed, while working on the laser
descriptor using bag-of-views (see chapter 4), we found it was difficult to fine
tune the dictionary and that the system was very susceptible to its parameters.
With this experiment we investigate how sensitive both representations are
by performing the recognition using two setup of dictionaries. The first setup
that we call coarse dictionaries is using high threshold for each descriptor types
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Dictionary thresholds Precise Coarse

TLD 0.05 0.1

Surflet 0.04 0.05

TBGR 0.05 0.1

Color opponent 0.5 1.5

Size 0.0025 0.01

Table 5.2: Table of the dictionaries thresholds.

Setup Bag-of-Views Graph-of-Views

Using only TLD 71% 75%

Coarse dictionaries 59% 72%

Precise dictionaries 72% 81%

Table 5.3: Comparison of the recognition rate using bag-of-views or graph-
of-views in different situations.

meaning a low number of views in the dictionaries and less discriminative
power. The other setup called precise dictionaries uses a fine tuned threshold
for each descriptor.

To obtain those setups, we recorded the average precision score and
average number of views in the models given a dictionary threshold and
one descriptor. This was done over a large range of thresholds and for each
descriptor. We then selected the best possible thresholds while keeping a
similar average number of views across the descriptors to obtain the precise
dictionaries setup. The coarse dictionaries were obtained with the same
procedure but selecting thresholds with worse precision results (see table
5.2).

The table 5.3 shows the resulting performances. We can see that the
graph-of-views outperforms the bag-of-views in every setup, and furthermore
it degrades less when using coarse dictionaries.

Several things are worth noting here. First of all, the bag-of-views
precision doesn’t improve much between using only the TLD and using
all the descriptors. This is due to the fact that laser readings are much
more frequent than the RGBD camera ones. This results in distributions
dominated by laser descriptors in the representation and so other descriptors
don’t have much influence with the measure used. To overcome this would
mean using a weighting-based measure which would be less flexible and
difficult to fine tune. Since graph-of-views only count the presence or the
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Setup Bag-of-view Graph-of-view nodes only edges only

Coarse dictionaries 59% 72% 62% 72.5%

Precise dictionaries 72% 81% 80% 76%

Table 5.4: Comparison of performances using the bag-of-views, the full
graph-of-views, only nodes and only edges of this graph with the intersection
metrics.

absence of the different views, it is not susceptible to this and thus using
different sources of information bring more improvement to the precision.

Influence of edges

We now look at the contribution of the edges and nodes in the intersection
similarity measure (see table 5.4). It is worth reminding that counting only
the nodes is equivalent of using a binary bag-of-views. We can see that the
nodes only perform better than the classic bag-of-views which confirms that
using the distribution of views perceived in the trajectories is not efficient.
We can also note that the nodes are more affected by the precision of the
dictionary, but that in the case of a precise one they constitute most of the
final precision score. However, using a coarse dictionary, the edges which are
less affected become a more reliable source of information. In conclusion,
both information are relevant in a practical case, and the graph-of-views
model captures more than bag-of-views and is more suited to our application.

5.4.3 Modalities contributions

Another question we wanted to answer is how much does each descriptor
contribute. Using the same experiment setup as previously, we computed the
recognition precision with different rules. For each descriptor, we computed
the precision when considering only this type of descriptor and when consid-
ering all of them without it. However, sometimes because models are partial,
no intersection was present between the model being recognized and the set
of labeled models for a particular descriptor. In this case the classification is
not possible. In order to best assess the contribution of each descriptor, we
computed two different precisions. The first one called real precision is the
total precision including when classification is not possible. The second one
called apparent precision is computed only when classification was possible.

We can see from the table (see table 5.5) that none of the modalities
can perform better than the complete model on their own, especially with
the coarse dictionaries where the individual precision are low. Removing
one of the camera descriptor doesn’t affect the total precision in the precise
dictionaries setup, but the precision is always affected in the other setup.
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Figure 5.8: The confusion matrices obtained with different descriptors using
the precise dictionaries.
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Precise Dictionaries Coarse Dictionaries

Rule real precision apparent precision real precision apparent precision

complete graph-of-views 80.8 80.8% 71.7 71.7%

only node 80% 80% 61.7 61.7%

only edge 75.8% 75.8% 72.5 72.5%

only TLD 73.3% 75.2% 57.5 58.5%

only surflet 29.2% 94.6% 25 30%

only tbgr 20.8% 86.2% 22.5 26.2%

only size 52.5% 53.4% 37.5 38.1%

only color 23.3% 65.1% 25.8 34.1%

without TLD 65.8% 65.8% 63.3 63.3%

without surflet 80.8% 80.8% 70.8 70.8%

without tbgr 80.8% 80.8% 70 70%

without size 79.2% 79.8% 63.3 63.3%

without color 80.8% 80.8% 68.3 68.3%

Table 5.5: The precision obtained when considering only one descriptor or
when removing it. Two setup are shown, one with a precise dictionary for
each descriptor and another with a coarse dictionary. Real precision is the
total objective one, apparent precision is when cases with no match at all
are discarded (see text for details).

Finally some camera descriptors’ apparent precisions are higher than the
complete model in the precise dictionaries setup. For these reasons we can
see that if the descriptor and dictionaries are already very good, the graph-
of-views doesn’t add much, however, it can cope very well with the loss of
precision in the dictionaries and the loss of information, which makes it a
strong representation for multi-modal learning.

We see also from table 5.5 that the surflet is very discriminating when
using a precise dictionary. It is often not possible to classify using only this
one (29.2% of real precision), but when it is possible the classification is
almost always correct (94.6% of apparent precision). The reason for this low
real precision score can mostly be explained by the lack of overlap between
the trajectories of an object and the small frequency of our RGB-D camera
perception pipeline. The TLD descriptors is the most important descriptor in
our system with the highest score in real precision when used alone (73.3%)
and the highest loss when removed (loss of 15%). The less powerful descriptor
appears to be the size computed from laser. However, even thought it is a
very simple descriptor compared to the others, and that it doesn’t capture
much information about the objects, it is still useful to the system since there
is a loss of precision without it. Alone it has a honorable score all things
considered. Concerning our two color based descriptors, they show good
results on their own and contribute to the recognition precision especially
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Similarity function Precision (%)

modalities consensus 83.5

tf idf 83.3

joint modalities intersection 83.2

normalized jmi 83.2

intersection size 82.2

inclusion degree 82.2

per modalities inclusion 80.8

intersection over union 78.3

max component 67.8

modalities match 53.6

Table 5.6: Comparison of the similarity functions.

using the coarse dictionary.

Looking at the confusion matrices (see figure 5.8), we see that the confu-
sions caused by our descriptors are very different which would explain why
they all contribute to the recognition. However, some of the objects not
classified by some descriptors are also confused by the other descriptors. For
instance, it is the case for object 6 (cart) and 13 (black crate). This appears
to be where the recognition results are the worst.

5.4.4 Comparison of different similarity measures

In this experiment we looked at the difference between the similarity mea-
sures described earlier in the sections 5.3.3 and 5.3.4. We use the precise
dictionaries, and perform a similar experiment than previously only using
different comparison functions.

From the table 5.6, we can see that our two one to many similarity
functions performs better than the one to one similarity functions. This is
the expected result since those functions take into account the additional in-
formation of knowing several objects. They are well suited for a classification
context. The measure with the highest score is the modalities consensus
which is slightly better than the tf idf .

The best one to one measure is the joint modalities intersection and
is only slightly below the tf idf . Note that joint modalities intersection
and normalized jmi are exactly the same in this classification context, only
the second one is normalized. This also true for intersection size and
inclusion degree.
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Figure 5.9: The confusion matrices obtained with the different similarity
measures.
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Number of models per label 1 2 3 4 5

Setup Merged Not Merged Not Merged Not Merged Not

normalized jmi 79.0 89.2 88.1 91.6 89.3 95.6 93.0 96.8 93.2

inclusion degree 78.4 89.4 89.4 91.4 88.9 94.6 93.3 96.8 93.7

tf idf 78.0 89.2 89.2 91.8 89.1 95.6 94.3 96.3 94.2

modalities consensus 78.4 87.6 86.7 89.7 89.3 94.6 92.4 96.3 93.2

Table 5.7: The precision obtained with different measures when merging
models or not when more than one model is present per label in the truth
set.

We can see in the confusion matrices (see fig. 5.9) that some similarity
functions have similar confusions and some others very different. In particular
the functions intersection size and modalities match don’t confuse many of
the same objects and combining both of them in joint modalities intersection
yields better results.

5.4.5 Merging study

In the previous experiment, there were only one model per type of object
being considered when performing classification. In this experiment we study
how the classification improve when more models are given per real object.
We computed a classification score when one model per label is given, then
two and so on up to five. Each time the labeled models are selected randomly.
The results given are an average over ten iterations. When more than one
model per label is present, we computed a classification score both when the
models were merged and not. In both cases, to perform the classification we
simply find the most similar labeled model to the candidate one and take
this label as the candidate category. The results are reported in the table
5.7.

As expected, the more there are labeled models per real object, the better
the results are whether the models are merged or not. We can see that the
classification using merged models is always better or equal to using separate
models. With two labeled models per real object, the different is slight (up
to 1.1% with normalized jmi), but is significant with five labeled models (up
to 3.6% with normalized jmi). Those results indicate that merging partial
models to obtain a complete one is beneficial for the object recognition
performances.

Finally, in this experiment, there is no similarity function that always
performs better than the others and the one to many functions don’t appear
to be the best anymore. In this experiment, with five merged labeled models
(which correspond to the best classification), the difference between the
similarity function’s results is at most 0.5%. In the previous experiment,
the difference between the same four functions was at most 1.3% (see table
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5.6). Those differences are not important and it is not clear which of those
similarity function is in fact better.

5.5 Conclusion

In this chapter we presented an original representation that we call graph-of-
views to perform multi-modal object recognition. To assess its performance we
created a dataset which contains 6 different trajectories of the robot avoiding
25 different objects. Some objects need both shape and color information
to be differentiated and some are difficult to perceive with the sensors. So,
from each trajectory in the dataset an object model or representation can be
extracted but the information is only partial.

Using this dataset we have shown that our representation performs better
than bag-of-views to recognize the objects from partial information, which
means it generalizes more across the trajectories. This is very important in
a robot because sometimes datasets are not available for supervised learning
and perception of objects through sensor during a navigation tasks is almost
always partial.

Furthermore, we have shown that using our representation it is possible
to perform multi-modal object recognition in a very easy and robust way.
To do so we perform different experiments on the dataset using 5 descriptors
extracted from two different sensors.

Adding a descriptor in our representation only means choosing a threshold
and a distance to produce a dictionary (assuming the one presented in chapter
4 is used), which is not much overhead compared to other methods, showing
its simplicity. Also, we have shown in our experiment that the recognition
can benefit from a new descriptor (such as the size) even if its dictionary or
itself are not very precise, demonstrating the robustness of our representation.
Finally, we have shown that the graph-of-views works very well even when
one of the sensors or descriptors are not available, which means not only the
representation works well when only one side of an object has been perceived,
it also works well when it is ill-perceived by one of the sensors in use.
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Chapter 6

Unsupervised and
incremental object learning

This chapter describes our contribution to the unsupervised and incremental
object learning using the graph-of-views approach presented in the previous
chapter.

6.1 Introduction

In chapter 1, we argued that a domestic robot should have the capacity to
learn and adapt to the environment continuously without expert human
supervision. It entails that a new situation should not prevent the robot
from performing its tasks and that the robot has to handle the situation on
the fly without waiting for human intervention. A simple solution could be
to record the new events for further processing, but, as the robot will operate
continually, it can not simply record everything because the amount of data
would eventually be too high. Therefore, the robot should have the capacity
to only record relevant events, i.e., events that bring new information about
the objects of the environment.

In order to illustrate this, let’s say that the owner bought a completely
new object. The robot should understand that it is a new object, record its
particular perception of it and memorize its model. Later observations of
the object should also be recorded and incorporated to its model if necessary
in the case the initial model is not complete. This scenario can be solved by
a fast unsupervised and incremental learning process that we are going to
define more precisely.

Firstly, unsupervised learning (specifically clustering in our case) can be
seen as finding a hidden structure in unlabeled data. It can also be defined
as categorizing data without ground truth or human given examples. It
is therefore distinct from supervised learning because there is no labeled
examples and from reinforcement learning because there is no reward to
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Figure 6.1: Flow chart of the learning process. The classification takes as
input the model of newly perceived object and the categories present in
memory, and outputs how well the object is recognized. The learner use the
recognition results to incorporate the new model in its memory.

guide the learning. Secondly, incremental learning is the idea of gradually
learning when samples are perceived while adjusting what has been learned
according to this new observation. Finally, by fast we mean compatible with
the operation time scale of the robot, i.e., that the robot should take at most
a few seconds to issue a response when encountering a new situation.

In order to perform fast, unsupervised and incremental learning, our
approach can be split into two distinct functionalities and be represented by
the flow chart shown with figure 6.1. The first functionality is classification:
it takes as input a partial model of an object being perceived, and a set
of representatives models of the different already known categories. The
output is the possible category of the object being perceived with a score
of confidence. The second functionality is learning: it takes as input the
perceived model and the result of the classification. It refines the different
categories if needed by incorporating the information if it is considered new,
and returns a new set of representatives models. An important feature is that
our model should be capable of adding new categories automatically when a
new object appear in the environment, without requiring the information
that this is indeed a new object.

6.2 Related work

The clustering problem has been addressed in many contexts and many
different techniques exist. An extensive review is given in (Jain, Murty,
and Flynn 1999) in where they present a survey of the different families of
clustering methods and gives a clear definition of the most popular ones.
When confronted with a clustering problem, different aspects of the data and
the problem itself will decide which kind of clustering can be used. Those
aspects or constraints are principally the observation representation, the
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similarity measure, the cluster representation and of course the amount of
data to be processed. When those constraints are defined, the remaining
concerns when choosing a clustering algorithm are its stability, its plasticity,
its complexity and its order-dependence (in case of incremental clustering).
Since our problem is to perform incremental clustering, in the following we
will only review this type of clustering algorithms.

The data mining community has to deal with huge datasets that don’t
fit in a computer memory so incremental algorithm is an important focus
in this community. A popular algorithm is Birch (T. Zhang, Ramakrishnan,
and Livny 1996) which can summarize the dataset in a tree incidentally
with a linear complexity. It is efficient but the entire clustering process
supposes a finite dataset with some refinement steps, so it can not be used
continuously in an open-ended fashion, which is not suitable for us. In
(Young et al. 2010), they proposed a clustering algorithm that employs the
”winner-take-all” paradigm and that can continuously update centroids. The
algorithm is modest in resources and can as such deal with large amounts
of data efficiently. However, the number of centroids is fixed which is an
important limitation for us.

The most closely related work is (Paul, Rus, and Newman 2012). Their
purpose is to have a robot capable of summarizing long periods of visual
perception. They use the star clustering algorithm (Aslam, Pelekhov, and
Rus 2004) to compute a topic-driven organization of the robot’s image
collection. This paper and the star clustering algorithm met most of our
criteria. It doesn’t assume the number of clusters is known, it is incremental
and efficient enough to be performed on-line. However, some differences made
us study another solution. They want to summarize the whole perception
when we only want to record observation of new experiences. They compare
images and cluster them into topics for further processing but no output is
readily available for the robot to take decisions. In our problem, the robot
perceives objects partially, and needs to group those partial observations to
form models so that the objects can be recognized. Not only do we want to
extract the most relevant information during the robot working cycle, we
also want it to learn from this information directly.

6.3 Unsupervised object learning

As explained above, there are two different functionalities in our unsupervised
object learning approach: classification and learning. The classification takes
as input the model of newly perceived object and the categories present in
memory, and outputs how well the object is recognized. The learner use the
recognition results to incorporate the new model in its memory.

In order to formalize these algorithms, let O be the set of real objects
being observed by the robot. Let M be the set of all partial models mi in
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memory. In this context mi is a bag-of-views or a graph-of-views as described
in chapter 5. Let note C a set of clusters cj with a cluster being a set of
models: cj = {m0, ...,mk}. Finally, let note g a newly perceived partial
model which we will be referred as the candidate.

Given that, the goal of learning is to produce C such as each cj ∈ C is
only composed of models from a single real object oi, and such that there is
only one cluster per real object. On the other hand the goal of classifying
is to find cj such as g and cj are both representing the same real object
oi, or to detect that g comes from a newly observed object if no cluster is
representing it. We will now detail our proposition for these two tasks.

6.3.1 Classification

Our approach to perform classification is quite simple and general and rely
on solving the following equation:

class of g = arg max
j

(similarity(g, cj))

score = max
j

(similarity(g, cj))
(6.1)

The similarity measure that we used is the inclusion of g with the union
of all mi of cj , which we can write as follows:

inclusion(g, cj) =
|g ∩ (

⋃
mi∈cj mi)|
|g|

(6.2)

In the case where the known object models are complete and not am-
biguous, this approach will recognize the current object or determine that
the object is new if the score is low. However, since in our scenario all the
models are considered partial and the amount of knowledge on the objects
is unknown, there isn’t much that can be said from this score alone. If the
score is low it doesn’t necessarily means the robot is perceiving a new object
it hadn’t seen yet, it could be that it is perceiving new aspects of an already
known object. It is also possible to obtain several objects with high score in
the case that several objects share a similar appearance from a given point
of view and that their models are not complete.

These two examples show that it is not efficient to base the learning
on this classification result alone. We however tested a simple approach
based on this idea (see next section), but we developed a second approach
using more information (see section 6.3.3). So in our classification algorithm,
instead of computing only the most similar model, we return the ordered set
of models based on their similarity to the candidate (see algorithm 3). This
result will be used in the learning algorithm described later, but, at a given
point in time, the best classification we can obtain on a particular object
being perceived remains the identity of the most similar model in memory
as defined previously.
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Algorithm 3 Classification

Input: g the candidate partial model
Input: C the current set of clusters
Output: the class of g
Output: the score of the classification

1: function classify(g, C)
2: result := φ
3: for all cj ∈ C do
4: append {cj , inclusion(g, cj)} to result
5: end for
6: sort result based on inclusion
7: return result
8: end function

6.3.2 Sequential Clustering Algorithms

Our first attempt to solve the problem of incremental unsupervised learning
was to use a simple sequential clustering algorithm (see algorithm 4). In this
algorithm, when a new candidate model is acquired, the classification score
is computed. If the score is high, then the model is recognized and is used to
update the corresponding cluster, otherwise the model is new information
and lead to the creation of a new cluster.

This method was used with some success in (Duceux and Filliat 2014)
with the bag-of-views and the PPLD laser descriptor (see chapter 4). The
details of the experiments conducted are given in the section 6.4. However,
some limitations were encountered that lead us to develop a new approach.

Algorithm 4 Sequential Clustering Algorithm

Input: g the candidate partial model
Input: C the current set of clusters
Output: the updated set of clusters C

1: res := classify(g, C)
2: if res > recognition threshold then
3: add g to res.cluster
4: else
5: create a new cluster cg with g
6: add cg to C
7: end if
8: return C

This kind of algorithm usually works well when the purpose is to sepa-
rate simple samples into categories. However, in our case, we have partial
observations that we want to regroup into complete models of object. In this

91



CHAPTER 6. UNSUPERVISED OBJECT LEARNING

situation, as mentioned in section 6.3.1, a very low score (near 0) doesn’t
necessarily occur when the perceived object was never seen before, and a
very high score does not only happen for the correct object if the models are
incomplete or ambiguous. This lead to two types of errors.

We named the first type of error duplicate clusters when two clusters
represent the same objet. For example, let o be an object with a complex
shape. Imagine the first time the robot perceives the object o, it only perceives
the front of the object. This leads to a model front which is clustered into
a cluster cfront. Then, imagine the robot sees the same object o but from
the back this time, giving it a model back. Since the object has a complex
shape, it could happen that there is no similarity between front and back,
in which case another cluster cback would be created, leading to two different
clusters representing the same object. Thus, a low classification score can
mean either the robot sees a new object, or a new side of a previously seen
object. There is no way to know which one it is using only an appearance
similarity measurement.

The second kind of error is called corrupted clusters and happens when
models of two different objects are grouped together. Because of noise, a
threshold is set to tolerate a certain difference between a model and a cluster
to allow for recognition (line 2 of algorithm 4). However, some objects are
fairly similar in nature, like a red chair and a blue chair of the same model
and their similarity could be above the selected threshold. Thus, a high
classification score doesn’t ensure that we can safely add a model to a cluster.

In sight of that, given this kind of algorithm, the recognition threshold
must be carefully set to avoid any errors and to not limit the learning
capacities. If the threshold is too high, then the algorithm will create many
duplicate clusters and fail to update correctly the ones in memory.On the
other hand, if the threshold is too low then the algorithm will corrupt clusters
in memory and fail to create new clusters when new objects are encountered
(see results in section 6.4).

However, there is a silver lining. Duplicate clusters are not a big problem
because usually one of them eventually gets bigger than the others and take
over. This means that it should be possible to filter the memory after a
while to remove the its small duplicates. Moreover, using this method with
active perception could ensure better results and could diminish some of the
limitations. For instance if the robot gets a low classification score, instead
of creating a possibly duplicate cluster, a possible behavior would be to
get a closer look at the object and build a stronger model of it. Then the
classification score of this richer model would have more meaning.

Regarding the corruption of clusters, we envisaged to develop an off-line
method to post-process the clusters. Since an off-line method wouldn’t have
to be incremental and fast, maybe it would be possible to perform a better
clustering and thus ensuring the robustness of the robot overtime. However,
instead of developing such an algorithm, we came up with another line of

92



6.3

reasoning and a better incremental algorithm, which is presented in the next
section.

6.3.3 Graph clustering approach

We have seen in the previous section the difficulties related to our problem
of clustering partial models into complete ones. In the development of a new
solution to this problem based on a graph clustering approach, we considered
two general ideas and made two assumptions.

Firstly, since it is difficult to disambiguate between observing a new object
or perceiving a new aspect of an already seen one, duplication errors are
inevitable. Likewise, corruption errors are also inevitable because different
objects can share strong similarities between themselves, and often enough
objects are ill-perceived. Thus, the solution needs to be flexible and take only
soft decisions that can be changed when new information appears. In other
words, it necessitates the capacity not only to update clusters but also to
merge, split or modify them. The assumption made here is that eventually, as
the robot observes many times the different objects and increase the models
completeness, observed similarities between models from same object will
become stronger than the similarities between models of different objects.

Secondly, given a long time period, some of the partial models acquired
would contain fairly complete information about the objects, especially if
the robot performs active perception. Those larger models would be better
than models obtained from a clustering of smaller ones, because less prone to
errors and noise. Moreover, as it would be inefficient to keep in memory all
observations ever made of one object, those larger models could be preferred
over the smaller ones. So our idea is, instead of focusing on the clustering,
to concentrate on selecting the good models and removing the bad ones. We
choose to implement such a solution by constraints on its memory footprint
and by filtering models as new one comes. We therefore make the assumption
that at some point in time, the robot will be able to represent all its knowledge
about an object by a small set of large (even if still partial) models.

Based on these two assumptions, our idea is to maintain and update a
graph of strong similarities between observations where clusters are formed by
the disconnected part of the graph (see figure 6.2). To update the similarity
graph, we compare the new observation to a subset of selected 1 models in
memory, update the links between models and filter them (see algorithm 5
and figure 6.3).

Each time the similarity between a new observation and a model is
sufficiently high, a potential link is added between the two of them (lines
16 and 17). Then, the links of the two models are filtered to keep only
the max edges threshold best ones (lines 18 and 19). This way, a new

1How we select this subset will be explained later
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Figure 6.2: Illustration of a graph of similarity. The different drawings
(the blue squares, red circles and green triangles) represent observations of
different real objects. They constitute the nodes of the graph. The number in
the nodes identify them for clarity. The robot don’t know which real object
each observation represent, it needs to cluster them using the similarity
between the models. A link between two drawings represent an edge of the
graph and the similarity between the models. The number attached to it
represent how much they are similar. In our graph of similarity, only the
strongest similarities are kept. The disconnected parts of the graph constitute
the clusters. In this example there are four clusters. Cluster 1 and 4 are
correct. The cluster 2 is a corrupted one since it contains models of two
different real objects and cluster 3 is a singleton since it contains only one
observation. Cluster 3 and 4 are a duplication because they represent the
same real object.

Figure 6.3: Illustration of the graph of similarity updating algorithm. A new
observation is made (model 8) which is compared against cluster 1 and 2. As
a result two links are created with model 1 and 2. The links of the affected
nodes are then filtered according to the threshold max edges threshold
(which is two in this example) by removing the worst one when the limit is
reached. In this example the link between model 2 and 4 is thusly removed.
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Algorithm 5 Similarity graph updating

Input: g the candidate partial model
Input: G = (N,E) the similarity graph
Input: M the subset of models to be compared
Output: an updated similarity graph

1: function update similarity graph(g, G, M)
2: add g to G
3: for all m ∈M do
4: if inclusion(g,m) > high inclusion threshold then
5: discard g
6: attach all models linked to g to m
7: filter edges(m, G, max edges threshold)
8: return G
9: end if

10: if inclusion(m, g) > high inclusion threshold then
11: discard m
12: attach all models linked to m to g
13: filter edges(g, G, max edges threshold)
14: continue
15: end if
16: if similarity(g,m) > low similarity threshold then
17: add edge g −m with weight similarity(g,m) to E
18: filter edges(g, G, max edges threshold)
19: filter edges(m, G, max edges threshold)
20: end if
21: end for
22: end function

23: function filter edges(m, G, threshold)
24: edges := {∀e ∈ E,∀mi ∈ N |e = m−mi}
25: while |edges| > max edges threshold do
26: remove arg min

e∈edges
(e.weight) from E and edges

27: end while
28: end function
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observation can bind two clusters and remove a duplication or ”steal away” a
model from a cluster and reduce corruption. By limiting the amount of links
between models and the number of models per cluster to max models per
cluster threshold (as will be explained later), the similarity graph will self
organize into stable clusters that contains large models that are strongly simi-
lar. After different trials we found that the best limit of edges per node is the
maximum number of models per cluster minus one: max edges threshold =
max models per cluster threshold − 1. This number of edges is exactly
the required number to form fully connected components (or cluster) of the
similarity graph. Using this threshold makes the clusters more stable and
hence the graph too. This graph representation offers the kind of flexibility
we mention earlier as a first requirement. By adapting the structure of the
graph locally with each new observation, we modify the clusters in memory
by merging, splitting or modifying them.

When updating the similarity graph, an interesting special case may
occur: we could find an observation completely included in another (line
4 in algorithm 5). In this case there is no doubt that such an observation
provide no added information to the graph and can be discarded. When
doing so, all the edges attached to the node being discarded are added to
the other node (line 6) and then filtered (line 7) to avoid loosing valuable
information. This is actually helpful to remove short observations containing
a small amount of views or with simple objects. It is more rare otherwise to
have a model in memory included in a new perception (line 10) due to noise
and the unlikeliness of observing exactly a portion of a sequence already in
memory with complex objects and long trajectories.

Algorithm 6 Cluster reduction

Input: G the similarity graph
Input: c = (MC , EC) a cluster and subgraph of G

1: if |MC | > max models per cluster threshold then
2: remove arg min

e∈EC

(e.weight) from G and c

3: res = compute resulting clusters
4: for all c ∈ res do
5: reduce cluster c
6: end for
7: end if

As said previously, it would be inefficient to keep in memory all obser-
vations ever made of one object. Instead we want to keep only the best of
them. To do so, we limit the number of models contained in one cluster to
max models per cluster threshold. When the graph of similarity has been
updated, the disconnected components of the graph form our clusters. For
each cluster that have been updated with the arrival of a new observation, if
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Figure 6.4: Illustration of the cluster reduction algorithm. In this example
a cluster contains more model than the limit which is 3. We successively
remove the weakest link until all resulting clusters are small enough. In this
case, first the link between the model 2 and 3 is removed producing two
clusters. Then the link between 2 and 8 is removed. The result is three
smaller clusters. In this example, the mechanism removed a corruption but
created a duplicate singleton.

the limit of models is reached, the cluster have to be reduced.

Our initial idea was to remove a selected model. To do so, different
approach were envisaged. We tried removing the model the least included
in the cluster (i.e., the one with the weakest edges to the other models) but
we found that, even though it is a good criterion to remove models causing
corruption, if the cluster is valid it tends to remove model providing much
valuable information (i.e., information different from the other models) about
the object thus ”weakening” the cluster. The opposite is also true: removing
the model the most included in the cluster is a good criterion to reduce a
correct cluster but tends to fail on corruption. The other idea we tried was
to remove the shortest observation, i.e. the one made along the shortest
trajectory and thus containing less information than the others. This solution
is actually quite good at the beginning of the learning to retain interesting
models. However, this solution is not efficient to choose between models of
good quality and tends to discriminate objects that are difficult to perceive.

Finally, the solution which gave the best results was simply to remove
the weakest links in the cluster until it splits and that all resulting clusters
where under the limit (see algorithm 6 and figure 6.4). This solution was
found better than the others mainly because it tends to make the learning
process more stable. Most of the time, reducing cluster like that will produce
singletons (models with no links) by rejecting one model of the cluster. We
do not remove the new singletons right away because it would prevent newly
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Figure 6.5: Illustration of the singletons reduction algorithm. In this example
the graph contains two singletons: model 2 and 5. The maximum number of
singletons is reached (which is 1 in our example), so a singleton is removed.
We remove the one containing the less information (noted in red in the figure):
model 2. To measure how much information is contained in a model, we
record the length of sequence originally observed. In this case the model 2
was observed over a trajectory of 2 meters, and model 5 over 4 meters which
means model 5 contains more information than model 2.

observed objects to be learn correctly. Instead we developed a mechanism to
handle singletons which we will detail after. Reducing the cluster size answers
partially the second requirement of constraining the size of the memory
because it prevent clusters from growing arbitrarily large and because most
singletons will eventually be discarded. However, the number of cluster
itself is not limited so that the number of objects our algorithm can learn is
theoretically not limited.

There are two reasons why limiting the number of model per cluster
is a valid choice. Firstly, our unsupervised learning system is supposed to
function on a domestic robot days after days. So, eventually a new object
in the environment will be observed correctly many times, especially if the
robot can use active perception and a subset of these correct observation
will correctly represent the object. Secondly, we have shown in chapter 5
good recognition results with only five models merged per object which were
extracted from common trajectories. Thus, it is reasonable to think that
a small number of good observations per object is enough to model them
completely.

Algorithm 7 Singletons reduction

Input: G the similarity graph
Input: S the set of singletons

1: while |S| > max singletons threshold do
2: remove arg min

s∈S
(length of observation) from G and S

3: end while

As explained before, when reducing a cluster, our algorithm can produce
a singleton. Noisy observations may also result in an unbounded amount

98



6.3

of singletons which needs to be filtered. However, they can not be imme-
diately discarded because they might be the first observation of a newly
seen object. So a mechanism to handle the number of singletons overtime is
required. The solution we found is to tolerate a certain amount of singletons
(max singletons threshold), and when the limit is reached, select one for
removal (see algorithm 7 and figure 6.5). Remember that, at the origin of
our models, we have sequences of perceptions. A simple measure of the
importance of this perception can be derived from the length of this sequence,
the longer sequences being potentially more informative. We therefore choose
to remove the singleton corresponding to the shortest sequence, which are
more likely to be noisy observations or to contain less information.

Algorithm 8 Unsupervised and incremental object learning

1: Find the k closest clusters to candidate model m (classify)
2: if highest score near 1 then
3: add m to the corresponding cluster, update it and reduce it
4: else if highest score near 0 then
5: add m to the graph as a singleton
6: else
7: For those k clusters, update the graph structure with the new model
8: For all singletons, update the graph structure with the new model
9: Perform a new clustering on the models concerned

10: Reduce new clusters if necessary
11: end if
12: Reduce the number of singletons if necessary

Let’s now detail the overall algorithm that integrate a new model in the
graph using the previously defined algorithms. When a new observation is
made, three cases are possible (see algorithm 8). The simplest one (line 4) is
if there is no similarity between the new observation and any of the current
cluster. In that case there is nothing else to do but to create a new cluster
with the observation by adding it in the similarity graph with no edges.

The second case (line 2) is when the new observation is totally included
in a cluster. A naive idea would be to consider this observation of no value
since it brings no new descriptors into the cluster and simply discard it.
However, there are two good reasons for not doing that. Either the new
observation could be of better quality than one contained in the cluster, or,
the cluster could be a corrupted one and the new observation could help
solve the problem. So, in this case the best choice to add the observation to
the cluster (see algorithm 5) and then remove the worst one from the cluster
(see algorithm 6).

The last case (line 6) is when none of the above applies. Then the
observation is used to update the similarity graph (see algorithm 5), the
resulting new clusters are computed (see algorithm 9) and reduced (see
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algorithm 6). As the number of models in the graph is not limited, this
computation can become expensive as the graph grows. That is why the
new observation is only compared to the k most similar clusters and all the
singletons.

Using the classification result to select which models are to be compared
significantly improve the computational performance of our approach. In
the worst case, a new observation is compared against all cluster (which
are merged models so the comparison is the same cost as a model), then
against the maximum number of model per cluster multiplied by k, and
finally against the maximum number of singletons allowed.

Algorithm 9 Cluster extraction

Input: M a set of partial models
Input: E the set of weighted edges between models
Output: a clustering C of models

1: function compute clusters(M , E)
2: C := {}
3: queue := create queue from M
4: while |queue| > 0 do
5: c := create new cluster
6: m := first of queue
7: recursive add to cluster(m, c, E, queue)
8: add c to C
9: end while

10: return C
11: end function

12: function recursive add to cluster(m, c, E, queue)
13: if m ∈ c then
14: return
15: end if
16: add m to c
17: remove m from queue
18: for all e|m−mj ∈ E do
19: recursive add to cluster(mj , c, E, queue)
20: end for
21: end function

The role of the last algorithm required by our approach is to retrieve a
cluster from the graph or a subgraph. To do so we use a recursive depth-first-
search algorithm (see algorithm 9). At the beginning, all models (belonging
to the updated clusters) are in a queue to be processed. For each model we
create a new cluster and add recursively all model linked to it, until all model
are assigned a cluster. Then for all the newly created cluster, we merge all
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models contained in it and output it for the classification algorithm (see
algorithm 3).

To summarize (see figure 6.6), when a new model is acquired, we first
compute the classification score. If the score is good, then we only update
the most similar cluster. If the score is low, we add the model to the graph as
a singleton and then filter them. If the score is in-between, then we update
the graph by comparing the new model to the k most similar cluster. Then
each affected cluster is reduced if necessary and the singletons are filtered.
Finally, the clusters a recomputed and merged into a single model for the
next classification .

If our hypotheses are right, our algorithm deals with corruption (as
illustrated in figure 6.6) and duplication errors, it doesn’t require to know
how many real objects have been observed, it doesn’t limit the number of
real objects that can be learned while keeping only a few best observations
for each real object. Furthermore we tried to make the algorithm efficient
and its complexity is linear in the number of cluster. Experimental results
are given in section 6.4.2 and a comparison with the sequential algorithm is
given in section 6.4.3.

6.4 Experimental results

6.4.1 Sequential clustering on Bag-of-views using the PPLD
descriptor

Sequential clustering on Bag-of-views

In this section, we will first present the results we obtained with the
simple sequential clustering algorithm presented in section 6.3.2 that have
been published in (Duceux and Filliat 2014).

Incremental learning

For this first experiment, we tested incremental learning using trajectories
sampled from the database presented in section 4.4 in order to have a ground
truth on the object identity and be able to assess the quality of the resulting
clusters. In order to set the threshold for integration in a cluster, we studied
the behavior of the clusters in memory when varying this threshold. Figure
6.7 shows that when the threshold is low, few clusters are created and they
are mostly corrupted, i.e., they contain models from different real objects.
On the other hand, when the threshold is too high, every tracking results
into a cluster being added to the memory, and few clusters are updated.
From these results, we set the threshold to a value of 0.8 to optimize the
number of correct cluster while minimizing the number of corrupted ones.

In order to see the resulting distribution of clusters in memory, we
constructed figure 6.8. The database was split into 85 trackers with varying
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Figure 6.6: Illustration of a complete learning step. In this example, a new
observation (in blue) added to the graph is able to remove the corruption
from cluster 2 and improve the quality of cluster 1.
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Figure 6.7: Number of clusters as a function of the merging threshold. In red
the total number of clusters in the memory. In blue, the number of clusters
that have been updated successfully. In green, the number of corrupted
clusters (cluster containing models coming from different objects).

Figure 6.8: Number of clusters in the memory by real objects identity and
their size.
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size (between 1 and 80 according to the live experiments, see section 6.4.1).
The matrix was built by picking randomly one tracker from the dataset,
and clustering it as explained in section 6.3.2, until the dataset was empty.
For clarity reasons, the resulting set of clusters was ordered. In this case,
we obtained 51 clusters with a single model and 13 clusters with multiple
models, with 1 corrupted. Some objects resulted in few clusters in the
memory (objects 1, 7, 9, 10, 11, 15, 19 and 20). Which means that the first
time the object was seen, the resulting model was a good representation
and that the object is easy to recognize. Other objects are more difficult to
recognize from partial models and result in several clusters in the memory.

Live experiment

As explained in the section 3.5.2, the system was implemented on the robot
in real-time. To evaluate it, we recorded the behavior of the system on
8 trajectories in a room containing 8 different objects that were moved
between the robot trajectories. The system resulted in 125 different models,
resulting in 16 clusters, among which 2 were corrupted. This result shows
that our algorithm is efficient at grouping together models of the same object,
dividing by almost 8 the total number of models, while limiting the number
of corruptions.

On the trajectories that we studied we obtained a maximum of 81 views
and an average of 16 views in each model, depending on the duration of the
tracking of the objects. Figure 6.9 shows an example of a trajectory with
the associated views recorded with two different objects.

Figure 6.10 show two pure clusters of models constructed for two different
objects. The views of each objects are plotted on the trajectory of the robot
during its creation in order to show the diversity of the trajectories that
make it possible to recognize an object.

6.4.2 Graph clustering on multi-modal Graph-of-views

In this section, we now report experiments performed with the graph cluster-
ing approach described in section 6.3.3.

Preliminary results

One of the hypothesis for our graph clustering to work is that even though
it is not possible to find a suitable threshold to separate all models, most
observations of the same objects will tend to be more similar than observations
from different objects. In order to confirm this hypothesis, we constructed
the maximum spanning tree of all the models of the second dataset (see
section 5.4.1) using the joint modalities intersection similarity (see section
5.3.3). Figure 6.11 shows the obtained graph. In the ideal case, this graph
should contain a minimum of 24 edges between different labels since there
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Figure 6.9: Example of trajectory and models obtained. The green line
represents the trajectory, the blue points are the laser readings on the
considered object, the circles represent where the robot registered a view in
the model for the object, the colors represent which view it is.

Figure 6.10: Example of clusters obtained. On the left, three models coming
from an armchair, on the right three models coming from a stool.
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Figure 6.11: A maximum spanning tree where nodes are models from the
second dataset and edges are their similarity. The color indicates which real
object the models represent for more visibility. We can see with this tree that
our assumption about observations being more similar when representing the
same real object is correct because nodes of the same color are in majority
linked together and form branches of the tree.
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Figure 6.12: Evolution of the learning for a simulated experiment (see text
for details).

are 25 different labels in the dataset. Furthermore, edges between the same
labels should all have a higher value than edges between different labels if
we were to separate them based on a threshold. In this graph there are in
fact 37 edges between different labels out of 162 which roughly rounds up
to 8% of incorrect edges. The values of edges between different labels are
in the range 1 to 328 with a mean of 151. The values of edges between
equal labels are in the range 1 to 1292 with a mean of 787. Those values
confirm that it is not possible to find a threshold to cluster correctly the
labels on similarity between models but that our hypothesis is validated:
observations representing the same real object do tend to be more similar
than observations representing different objects.

Simulation

In order to develop our graph clustering method, we conducted experiments
on simulated datasets. The datasets were generated by producing random
sequences of integer in order to create the ground truth models. Each
sequence represent an object, while each integer represent a view identity
from all the viewpoints around the object. Those sequences were generated
such as they would share some parts and some views to varying degrees so we
can simulate the resemblance between objects. In order to produce partial
models, sub-sequences where randomly picked with varying length. On those
sequences random noise is added to simulate errors in the perception of the
robot. Finally graph-of-views were constructed from those and processed by
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the clustering system to assess its performance.

Figure 6.12 shows the evolution of the learning during one of the sim-
ulations. In this simulation, the system has to learn ten different objects
with at most fifty percent of resemblance between the source sequences. Two
thousands partial models were generated with a maximum length of thirty
percent of the original sequence. For each partial model, the noise added
to the sub-sequence was five percent of its total length. We can see on this
experiment that the system perfectly learns the ten objects by producing
ten non-corrupted clusters. What is interesting in this experiment is that we
show the potential of this method to overcome the shortcomings observed
in the sequential clustering algorithm. Firstly, we can see in the early stage
of the learning the presence of duplicates and corrupted models that are
overcame afterwards. Secondly, the system stops learning at some point
by not modifying clusters anymore, and so the execution time per queries
becomes constant and proportional to the number of clusters.

Two main source of error were observed during these experiments. First,
the system could not learn an object if the partial models were too small.
The limit was found around twenty percent but varies with different sources
of noise. This limitation is not surprising and is not a real issue in practice
if the robot performs long enough trajectories, and even less if it uses active
perception to learn objects. Second, if the true objects are very similar or
the noise in the partial models is too important, the system has difficulty
to distinguish between the objects. Again this limitation is comprehensible.
Using multiple modalities should in practice lessen this limitation.

Real Dataset

In order to assess the performance of the graph clustering algorithm on real
data, we experimented it on the second dataset described in section 5.4.1.
To do so, the partial models are computed using the precise dictionaries and
the descriptors used in the experiments of chapter 5. The partial models are
given in a random order to the graph clustering system and the evolution
of the learning is recorded. The low similarity threshold signifying models
don’t belong together was set to 0.01 and the high inclusion threshold to
0.95. The limit of edges per node was set to 4. The maximum number
of models per cluster was set to 5. The two most similar cluster given by
the classification and the singleton were updated for each new model. The
maximum number of singletons allowed was set to 30.

The figures 6.13 and 6.14 represent the final clustering. There are 4
corrupted clusters and 12 duplications which are mostly singletons. All
categories of object have at least one consolidated cluster. The figure 6.15
represent the evolution of the graph clustering system while learning. As we
can see, at the early stage several clusters are corrupted and duplicated but
the number is reduced afterwards as new models are processed. However,
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Figure 6.13: Final clustering obtained on the second dataset using graph-
of-views models and the graph-clustering approach. The figure shows the
final state of the similarity graph. Each color represents a real object. The
corresponding names are written on the nodes. The edges between nodes
represent their similarity. The first number is the modalities match, and
the second is the joint modalities intersection. The corrupted clusters are
circled in red.
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Figure 6.14: Number of clusters in the memory by real objects identity and
their size using the graph-clustering approach on our second dataset.

the number of models in the dataset is too small to see a convergence of the
learning like in the simulation.

In practice, for each category of objects, the dataset contains 6 trajectories
which means at least 6 observations2. Those trajectories were processed
by our perception pipeline without our intervention other than labeling the
observations as a ground truth for evaluation. This way we could ensure that
our dataset was processed by the graph learning system as closely as possible
as in a real situation. In light of this, having clusters of 5 observations plus
a singleton in the resulting graph for some of the objects is a good result, as
it is the best that can be achieved given the constraints on the cluster size.
The singletons were not discarded because the limit was not reached in this
experiment.

6.4.3 Comparison of sequential and graph clusterings

In order to compare both clustering approaches, we conducted the same
experiment than in section 6.4.1, but using the second dataset with graph-of-
views models as in the previous section.

We first had to select the threshold for the incremental clustering on
this dataset. The figure 6.16 represents the result of the learning with the
incremental clustering approach on this dataset, depending on the threshold
set. We compared all similarity functions and the one with the best result was
the joint modalities intersection. The threshold was set to 0.2 in the system,
as a good tradeoff between consolidated and corrupted clusters. We then
recorded the evolution of the sequential clustering and the final label/cluster
matrix obtained for comparison with the graph clustering.

2For some objects, the trajectories resulted in more than 6 observations due to momen-
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Figure 6.15: Evolution of the learning. In red the number of clusters, in
green the ones containing more than one observation and not corrupted, in
blue the corrupted clusters, in magenta the number of duplicates (cluster
representing an object already represented by another one), in cyan the
singletons (clusters containing only one observation), in yellow the number
of objects represented by at least one non corrupted cluster.

Figure 6.16: Number of clusters as a function of the merging threshold with
the incremental clustering. In red the total number of clusters in the memory.
In blue, the number of clusters that have been updated successfully. In
green, the number of corrupted clusters (cluster containing models coming
from different objects). The similarity function used is the normalized joint
modalities intersection.
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Figure 6.17: Evolution of the learnings for comparison of the sequential
clustering (left) and of the graph clustering (right). We can see that early
on, the graph clustering produce less clusters but more corrupted ones.
That is because it tolerates less similarity between models inside a cluster.
Nevertheless, the corrupted clusters are slowly corrected to finish with a
number of 4 (3 for the sequential algorithm). Furthermore, the final result
for the graph clustering contains less clusters, less duplicates, less singletons
and approximately the same amount of correct clusters.

Figure 6.18: Number of clusters in the memory by real objects identity and
their size for the sequential clustering (left) and for the graph clustering
(right). We can see that the sequential algorithm failed to learn the object
12 and produced many duplicates. On the other hand, the graph clustering
produced less clusters (10 less) and less duplicates.
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Figures 6.17 and 6.18 show the results from both clustering methods.
We can see that the graph-clustering approach produces a better clustering
than the incremental clustering: all but one categories have at least one
consolidated cluster, there is approximately the same amount of corruption
and correct clusters and less clusters, duplications and singletons are present.
More precisely, for the incremental clustering, seven object resulted only
in singletons or cluster containing two models, showing that these objects
have been badly learned. However, eleven objects resulted in strong clusters
with at most one duplicate. For the graph clustering, almost all real objects
resulted in a correct cluster merging several models without corruption, with
the exception of the object 1 which only resulted in singletons. Sixteen
objects resulted in a correct cluster with at most one duplicate. Note also
that since the sequential algorithm have no mechanism to remove duplicates
or corruption, this result also indicates that the graph clustering should
perform much better on a longer period of time.

6.5 Conclusion

In this chapter we presented two unsupervised clustering method to learn
models of objects from partial observations. The first one is a simple se-
quential clustering, but the study of this method revealed that when a new
partial observation is made by the robot, certainty about its true identity
is rare if the object is unfamiliar. So when learning a new object, even
though the method will eventually produce a good consolidated model of
the object, it has a tendency to produce duplications and some corrupted
models. Our conclusion is that in those cases, the clustering method should
take soft decision in order to minimize corruption and duplication of models.
It should also minimize the amount of data retained so that the memory can
scale to a day long of processing. In fact we proposed that during the robot
normal functioning, a clustering method should be more about filtering the
perception to gather only information with high value and quality. For this
reason, we presented an original graph-clustering method which takes soft
decision when there is no certainty and constraints its underlying memory
structure so that only the best information is kept.

Using simulation, we performed experiments to ensure the scalability and
behavior of the method. We showed very encouraging results on this regard.
We then tested it on our dataset to assess the quality of the clustering. We
showed that the algorithm is able to learn models of all the objects even in
presence of ill-perceived and similar ones. Its performance are very encour-
aging since it was able to form models from only a small number of partial
observations with low overlap. Furthermore, we showed an improvement over

tary ill-perceptions and interruption of the tracking.
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the first method on our dataset, but we didn’t had enough time to show the
graph-clustering working in a real situation over a long time period.

Going from there, three different directions could be interesting to in-
vestigate. Firstly, we would like to see how using active perception could
benefit the learning and the behavior of the robot. We could imagine the
robot trying to gather pertinent observation when an object is difficult to
classify, thus improving its learning capabilities. Secondly, we would like
to effectively process long hours of perception and see if an off-line method
could then refine the learning. We believe such dual mechanism could yield
very good results. Finally, we would like to extend the algorithm so that it
can be used in a semi-supervised fashion. Thus, using human cues or on-line
resources to group together observations of the same object could improve
further the learning process without losing its flexibility.
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Chapter 7

Discussion, future work and
conclusion

In this final chapter, we will first discuss several aspects of our work, on
which our approaches have proposed contributions and in which future work
could be envisaged, before summarizing our work and concluding.

7.1 Long term semantic mapping and navigation

We presented a complete software architecture for semantic mapping. It is
composed of many modules to perform specific computations such as SLAM,
path planning or object recognition, and of a state machine communicating
with the different modules to plan robustly the exploration of an unknown
environment.

In order to have a robust and safe solution, existing techniques have
been used to perform the navigation using different types of sensors. We
have shown that we are able to explore an environment and produce a
semantic maps of it representing the layout of the rooms and the objects
inside. However, the architecture could be improved in many different ways.
In particular, an important weakness of this architecture is that only one
technique is used per task. For instance, there is only one SLAM module
present in the architecture and many other computations rely on its output.
Upon its failure, it is very difficult for the robot to recover from it. It would
be interesting to see how robustness and safety could be improved by using
concurrent techniques for the same sub tasks along with a process selection
mechanism, as proposed for example in (Dalgalarrondo and Luzeaux 1999).

In order to have a long term semantic representation, we proposed that it
should be split into two problems: maintaining a representation containing
only static information of the environment, and a representation containing
the dynamic aspects. In this work, a SLAM technique was derived to
incrementally produce an occupancy grid containing only static information.
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This is an interesting idea because many existing navigation techniques use
occupancy grids but make the assumption of a static world. It is adapted
for a global path planning technique whereas the dynamic part could be
handled more naturally by a local obstacle avoidance. Furthermore, once
this static representation is fully converged, detecting the dynamic objects in
the environment is easier and we have shown that it then makes it possible
to learn and recognize them. The results shown are promising, however a
more thorough study is required to fully understand the implication of such
representations: for example how to properly handle the influence of the
dynamic part on the global path, when an unexpected obstacle forces to
completely change the plan.

Using our system we have shown that non-stationary obstacles could be
detected and recognized from afar using sensors that provide little information
as the laser scanner. We have also shown that the robot can to a certain
extent learn new objects incrementally and without supervision. However,
we didn’t study how to use the recognition and how to represent properties
of the object such as possible locations to perform active object search.
Nevertheless existing techniques could be integrated to our system.

Future work on the problem of long term semantic mapping and navigation
could be also to extend our architecture so that it can perform other tasks
like active object search. A possible solution to this problem could be the use
of a task planning technique along with a representation holding the possible
location of objects, as was proposed for example in (Pronobis, Jensfelt, et al.
2010).

7.2 Fast saliency and prior recognition

In this work, we proposed to use a 2D laser scanner in the entire process
of object recognition. On the one hand, we argued that popular sensors
for object recognition such as RGB-D cameras have a narrow field of view
and involve demanding computation. This would eventually lead to poor
and inefficient behavior from the robot when accomplishing certain tasks
such as search for a particular object in a large environment. A possible
improvement is to have a saliency and prior recognition mechanism which
can perceive objects afar in order to prune the search space. On the other
hand, using 2D laser scanner has shown its efficiency in the past to perform
mapping and navigation for mobile robots. Many existing solutions use this
sensor as such. Its advantages are a wide field of view, a good precision over
a long distance and a small amount of data to process. Furthermore, this
sensor is not affected very much by illumination and can work in the dark.
For those reasons it is a very good choice to perform saliency or some level
of object recognition.

To do so, we have developed two different object detection algorithms.
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The first one is based on the comparison of the registered scan with the static
occupancy grid. This algorithm is interesting for the learning process because
it ensures the robot is perceiving a non-stationary obstacle if the localization
is correct. The second one is based on the segmentation of the sensor output
directly. It is interesting because it can detect objects when no localization
is available or when the static occupancy grid hasn’t converged yet. However
it is more prone to false positive. Using both detections, we have shown
that the robot can detect the objects when entering a room long before our
camera could sense them. The computations involved are not demanding
which means we can perform fast saliency with the 2D laser scanner. The
main drawback of this process is that it can not handle cluttered objects.

To be able to recognize the objects detected by the 2D laser scanner, we
developed two different shape descriptor extractors. Their input is a set of
points belonging to one object and representing a fragment of its 2D contour
as perceived by the sensor. To ensure that the robot can recognize an object
correctly, the descriptors must be invariant to point-of-view. To achieve
that, both extractor require an oversampling step of the initial set of points
in order to remove the variance regarding the distance between the robot
and the object. To encode the shape, the first extractor uses information
about pairs of points. The results obtained show that this extractor has
low computational costs and can be effectively used to recognize different
objects. However, the step of its computation that extract a reference angle
was found lacking robustness and reliability on certain category of objects,
which lessens its discriminative power. A slightly different extractor was
developed which uses information about points triplets. The reason is that
the triangles formed by the points triplets are completely invariant to the
robot point-of-view and do not require the computation of a reference angle.
The results obtained show that this second extractor is more robust and
discriminative on a wider range of objects, but that it is slightly more costly
to compute.

Using a tracking system, we accumulate the descriptors extracted from
one object into a bag-of-views model. With this process, we have shown
that we could recognize up to 22 different objects. We have also shown good
recognition results even when the robot just started to see an object. This is
interesting for two reasons.

First, we have shown that a 2D laser scanner can be used in the whole
perception process: from mapping to object recognition. Existing works have
already shown that this sensor could also be used to perform room or place
recognition (Tipaldi and Arras 2010). It means that using this sensor alone,
it should be possible to improve existing service robot solution by adding
semantic information about the rooms and the objects.

The second reason is that this process could be used to perform prior
recognition to improve a camera based system, for example by using active
perception where the camera could be directed toward difficult to recognize
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objects for the laser sensor. It can also be useful to reduce sensibility to
ill-perception and appearance variation as will be discussed more in detail in
the next section.

7.3 Robustness to appearance variations and ill
perception

Recognizing objects and dealing with the problem of appearance variations
is still an open problem and the focus of many studies from different domains
(computer vision, machine learning, robotics). Many difficult challenges
surround this problem.

Firstly, the appearance of objects, either geometric or visual, are subject
to many variations. Secondly, depending on the context, an object can be
occluded or in a clutter. It can also be ill perceived by a sensor. It means
that multi-modal perception is a necessity to reach higher level of robustness.
Finally, in a robot, the memory and computation resources are limited, so
the perception of objects needs to be fast and efficient. In the perception
pipeline proposed in this work, some of these issues have been addressed.

For the detection of objects, we used two different sensors and three
different algorithms. We have shown that our system was able to detect and
recognize to a certain extent objects that are not well perceived by one of
the sensors. To do so we performed our experiments on different objects
(38 in total) which vary in difficulty to be perceived or to be differentiated.
We believe we made our case for a large amount of possible obstacles in a
household, with the exception of two categories: very small objects (tennis
ball) and very large ones (furnitures). Another limitation of our system is that
we discard detected objects that are occluded and we can not segment clutter
of objects. The main reason for those limitations is that our descriptors work
on plain views of objects. A possible partial solution would be to incorporate
the use of local visual features in the whole pipeline. Indeed, our detection
is made in the geometric space only, considering also the color space would
be interesting and could result in better performance. Furthermore, adding
local visual features in our modeling and recognition processes should be
possible.

When an object has been detected, the robot tracks it. Having a tracking
system in a service robot is very important in order to perform robust obstacle
avoidance and navigation. However, in this particular case, the tracking is
used as a robust way to identify and group detections as being from the
same object. In other words, using tracking techniques, the robot constructs
the sequence of views that it sees of an object from the moment it detects
it until it disappears from its field of view, even if the object is moving, if
its appearance is changing or if multiple sensors are used. Those sequence
of views obtained by the robot are in fact the raw information about the
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objects that we need to compare. Comparing sequence of views rather than
single views has in theory many benefits. This improves temporal coherence
while operating the robot, and this should be more robust and give better
recognition results since more information is taken into account. However,
one difficulty is that the content of the sequence varies depending on the
robot trajectory relative to the object.

In order to compare those sequences, we extracted different descriptors
from the views. Using a dictionary learning technique, the sequences are
sparse coded into sequence of discrete views. They are then transformed
into a graph-of-views and compared using a similarity function. This object
modeling process has several advantages.

Firstly, using descriptors of views allows us to use different sensors and to
capture different properties of the object in a single model. This is important
for having a robust object recognition system because different sensors have
different limitations. For instance, a color camera can’t sense in the dark but
an infrared based sensor can. Furthermore, many objects share properties
whether it is the same color, or shape or texture. So it is also important to
capture as many properties as possible of an object in order to have a precise
and robust object recognition. In this work we used two different sensors
and five different descriptors. It would be very interesting to see how this
system behaves as more sensors and descriptors are added.

Secondly, because the objects are modeled with view-descriptors and
temporal events, the process offers a certain robustness to appearance varia-
tions. For instance, it doesn’t require a precise localization or an accurate
perception as long as the descriptor is stable to small variations in the point
of view. It also doesn’t require that the object be static when perceived.
However, in certain cases a model of an object could grow very large. For
instance a soft object like a curtain observed in different lighting and wind
conditions would probably result in a huge graph-of-views model. How our
system would cope to very large models is unclear and should be investigated.

Finally, our modeling process allows us to compare models containing
different amounts of information. It is possible to have a recognition result at
the first glimpse of an object, or when a sensor or descriptor is not available.
Furthermore, since the comparison is not based on a single view but on the
integration of a sequence of views, the recognition result is improved as the
object is perceived longer. This should be very helpful in an active perception
scenario. For instance, it could be used by a top-down system to filter what
objects the robot should focus on depending on its tasks.

As we said before, the principal drawback of our modeling process is that
partial occlusions and clutter of objects are not processed. We suggested
that a possible solution would be to use local visual features. This would
mean some modification to the graph-of-views model. In its current form,
the nodes represent properties extracted from a view of an object, and the
edges represent some relations between those properties. Two are considered:
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an edge exists between properties extracted from the same frame of a same
sensor, and an edge exists between consecutive properties. In the case of
using local features, a node could represent a local property and edges could
represent close properties in space and time. Unfortunately, our first attempt
to do so showed that it is not straightforward. It results in more computation
time, in larger models and in an unbalanced amount of the different properties.
Another possible direction could be to add a step in the modeling process
and recognize object views not based on a single view-descriptor but on a
set of local-descriptors.

7.4 Unsupervised and incremental objects learn-
ing

On the path of having robots able to adapt to a new environment smoothly,
we believe a requirement is to achieve efficient learning with the minimum
supervision possible. To do so, the robot should be able to gather pertinent
information while it is functioning and to learn from it as much as possible.
When inactive, the robot could use for example an on-line database to
improve its learning or perhaps ask the user for cues.

In this line of thinking, we have researched pure unsupervised object
learning without prior knowledge. Details of the contributions are presented
in chapter 6. Specifically, we studied how to recognize objects seen in the
past from a current partial perception, and if possible incorporate the newly
seen information in the global knowledge of the robot. This functionality
is to be used while the robot is performing other tasks and thus should be
efficient.

We started our study by using a basic sequential algorithm. Upon
perceiving an object, the robot would decide if it is confident it recognized
the object, and either consolidate its model or start a new one. This study
revealed several aspects and requirements of unsupervised learning in presence
of partial knowledge.

Firstly, few decisions are certain at the early stage of the learning. For
instance, observing new information can either mean the robot discovered
a new object, or just a new aspect of an object already observed before.
Secondly, because the quality of the perception varies with the situation or
the object being observed, it is difficult to find absolute criterion about the
similarity between object. Finally, in a realistic scenario, the robot would be
active for long hours at once observing multiple times the same object but
with great variation in the quality of the observation. Sometimes the robot
could perceive an object just in glimpses, sometimes it could take the time
to observe it from all angles.

To solve this problem, the requirements for the learning system is not
to cluster and make use of every observation, but rather extract the best
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observations in terms of quality and take hard decisions only when absolutely
certain to preserve the memory.

With this line of thinking, we developed an original graph clustering
method which maintains a constrained graph of observations and their
similarities. We designed the method so that only the best observations
of an object are kept and so that it scales gracefully with the number of
objects and time. We obtained promising results. Using a simulation we have
shown that the method scales correctly with the number of objects, that the
memory converges towards a stable state and that the method presents good
resilience to noise in the observations. Using our dataset, we have shown
that the method can indeed learn difficult objects without prior knowledge.
However, the method should be further tested on real data for longer periods
of time and with many more objects.

Once the robot has an efficient unsupervised learning system, it would
be interesting to study the use of active perception to improve the learning.
When the robot observes an object which it can not classify, using active
perception, the robot could try to obtain a richer information in order to
accelerate its learning or recognition. For example a strategy could be to first
get closer and make sure the robot gets an unobstructed view of the object
with its camera, and perhaps then turn around the object to get different
point of views. This kind of behavior could be very useful and adequate when
the robot explores its new environment for instance. Another interesting
direction is to combine the robot unsupervised learning capabilities with
external supervised classifier. For instance the robot could take picture of
the objects it sees and try to label its observation using an on-line tool to
perform object recognition. How those information should be handled to
improve the robot knowledge should be an interesting study.

7.5 Conclusion and future work

The presented work addresses the semantic mapping problem as a whole
and in a pragmatic spirit. The envisioned scenario is that upon buying a
service robot, it would have to first explore the environment exhaustively and
with some prior knowledge in order to be operational, and then continuously
adapt to the environment without requiring expert intervention (see section
1.2). The purpose of this work was to produce a solution to this scenario
from a navigation perspective. In order to do so, four main difficulties were
identified and addressed in this work.

The first problem is how to integrate all the existing techniques into
a service robot. We presented in chapter 3 a full system able to explore
the environment and produce a semantic representation of the environment.
Then an extension of this system was given so that the robot could maintain
and improve the semantic representation over time. This system represents
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an interesting starting point toward achieving a more accomplished service
robot solution.

Secondly, we identified that many existing solutions based their object
recognition solely on cameras and that it is not satisfactory. The reason is
that those type of sensors often have a narrow field of view and require an
expensive computation before producing a valid result. This would cause
the robot to be inefficient while searching for an object for example. To
address that, we proposed to use a 2D laser scanner in the entire process of
object recognition. We presented in chapter 4 how we use such sensor to
perform object recognition. The results obtained showed that using a 2D
laser scanner is a valid option to perform object detection and fast prior
recognition which could be used to improve existing systems.

The third problem addressed is that of robust object recognition. Consid-
ering the possible objects present in a household it is obvious that it is not
possible to differentiate them easily. Many objects are similar in terms of size,
shape, color or texture. Many of them can have variation of appearance over
time. And finally in many situations it is not possible to perceive them fully.
As such, to obtain a robust and efficient recognition system, it is natural
to consider using different sensors and multiple kind of attributes, and a
system able to cope with partial information. In the chapter 5, we propose an
original solution to combining different sensors and modalities into a single
object representation. Doing so is often cumbersome and we tried to keep
the solution as simple and easy to deploy as possible. The results show that
this solution is suitable to multi-modal object recognition even in case of
partial observation.

Finally, most existing semantic mapping solutions use supervised learning
and don’t address the problem of continuously adapting to the environment.
Other studies offer solutions to discover new objects but they can’t be applied
on the fly while the robot is working. For the robot to react gracefully to a
new situation like encountering a new object, it needs to take an appropriate
decision, which could be processed more thoroughly later on. Regarding this
problem, specifically in the case of a new object, we studied in chapter 6
the use of unsupervised and incremental techniques to give the robot the
capabilities of gradually learning new object.

In conclusion this work proposes the foundations toward a semantic
mapping system which can adapt gradually and without supervision to its
environment. It opens interesting research perspectives regarding the robots
capability to apprehend their environment. The first direction is in the
integration of active perception not only for performing complex tasks that
require a rich knowledge of the environment, but in the robot learning process
as well so that it can adapt to its changing environment efficiently. Secondly,
another interesting study would be to combine unsupervised and supervised
learning techniques. The robot could be gathering and filtering information
while active using an unsupervised approach and improving its knowledge
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while unused using on-line tools. Finally, perceiving objects through several
sensors to capture their different aspects and properties raise the question of
how to exploit the information hidden in their similarities and dissemblance.
We could for example imagine a system that could produce a hierarchical
clustering of the objects, separating the most dissimilar objects first in order
to be able to concentrate on more subtle but important differences if required.
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