
ECOLE DOCTORALE

UNIVERSITÉ PARIS-SUD

ÉCOLE DOCTORALE : Sciences et Technologie de l’Information,
des Télécommunications et des Systèmes

Laboratoire des Signaux et Systèmes (L2S)
Centre de Robotique MinesParisTech (CAOR)

DISCIPLINE : Physique

THÈSE DE DOCTORAT

Présentée et soutenue publiquement par

Étienne SERVAIS

le 18 septembre 2015.

TRAJECTORY PLANNING AND CONTROL OF COLLABORATIVE SYSTEMS:
APPLICATION TO TRIROTOR UAVS.

Directeurs de thèse : Brigitte d’ANDRÉA-NOVEL Professeur (Mines ParisTech)
Hugues MOUNIER Professeur (Université Paris XI)

Composition du jury :
Rapporteurs : Tarek HAMEL Professeur (Université de Nice Sophia Antipolis)

Miroslav KRSTIĆ Professeur (Université de Californie à San Diego)

Examinateurs : Jean-Michel CORON Professeur (Université Pierre et Marie Curie)
Joachim RUDOLPH Professeur (Université de la Sarre)
Claude SAMSON Directeur de recherche (INRIA)

Membres invités : Silviu-Iulian NICULESCU Directeur de recherche (CNRS)
Arnaud QUADRAT Ingénieur (Sagem-DS)

Planification de trajectoire et contrôle d’un système collaboratif :

Application à un drone trirotor.

Résumé : L’objet de cette thèse est de proposer un cadre complet, du haut niveau au

bas niveau, de génération de trajectoires pour un groupe de systèmes dynamiques indé-

pendants. Ce cadre, basé sur la résolution de l’équation de Burgers pour la génération de

trajectoires, est appliqué à un modèle original de drone trirotor et utilise la platitude des

deux systèmes différentiels considérés.

La première partie du manuscrit est consacrée à la génération de trajectoires. Celle-ci est

effectuée en créant formellement, par le biais de la platitude du système considéré, des so-

lutions à l’équation de la chaleur. Ces solutions sont transformées en solution de l’équation

de Burgers par la transformation de Hopf-Cole pour correspondre aux formations voulues.

Elles sont optimisées pour répondre à des contraintes spécifiques. Plusieurs exemples de

trajectoires sont donnés.

La deuxième partie est consacrée au suivi autonome de trajectoire par un drone trirotor.

Ce drone est totalement actionné et un contrôleur en boucle fermée non-linéaire est pro-

posé. Celui-ci est testé en suivant, en roulant, des trajectoires au sol et en vol. Un modèle

est présenté et une démarche pour le contrôle est proposée pour transporter une charge

pendulaire.

Mots clés : Commande par platitude, génération de trajectoires, équation de Burgers’,

systèmes multi-agent, optimisation par essaims particulaires, drone, rotors inclinables,

commande non-linéaire, transport de charge pendulaire.

Trajectory planning and control of collaborative systems:
Application to trirotor UAVs.

Abstract: This thesis is dedicated to the creation of a complete framework, from high-

level to low-level, of trajectory generation for a group of independent dynamical systems.

This framework, based for the trajectory generation, on the resolution of Burgers equa-

tion, is applied to a novel model of trirotor UAV and uses the flatness of the two levels of

dynamical systems.

The first part of this thesis is dedicated to the generation of trajectories. Formal so-

lutions to the heat equation are created using the differential flatness of this equation.

These solutions are transformed into solutions to Burgers’ equation through Hopf-Cole

transformation to match the desired formations. They are optimized to match specific

requirements. Several examples of trajectories are given.

The second part is dedicated to the autonomous trajectory tracking by a trirotor UAV.

This UAV is totally actuated and a nonlinear closed-loop controller is suggested. This

controller is tested on the ground and in flight by tracking, rolling or flying, a trajectory.

A model is presented and a control approach is suggested to transport a pendulum load.

Keywords: Differential flatness, trajectory generation, Burgers’ equation, multi-agent

systems, particle swarm optimization, UAV, tilting rotors, non-linear control, pendulum

load transportation.

License

This work is, unless otherwise noticed, the sole work of its author and is released, unless otherwise
noticed, under the license Creative Commons Attribution-Non Commercial 4.0 International
(CC BY-NC 4.0).

As a consequence, you are free to:

Share — copy and redistribute this dissertation in any medium or format.

Adapt — remix, transform, and build upon the material released under this license.

As long as you conform to the three following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor, i.e. the author, endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

Respect of other licenses — You must conform to the licenses applicable to contents of this
dissertation created by other authors.

Please refer to this work as:

Servais, Étienne. Trajectory planning and control of collaborative systems: applications to
trirotor UAVs. PhD thesis, 2015, Université Paris-Sud (France).

https://creativecommons.org/licenses/by-nc/4.0/

Contents

License i

Contents iii

List of Figures vi

Remerciements ix

Introduction xi

Résumé étendu en français 1

I Trajectory planning for multi-agent systems 15

1 Motion planning for multi-agent systems, an overview 17
1.1 Different methods of managing a multi-agent system 19

1.1.1 Behavioral methods . 20
1.1.2 Methods based on Particle Swarm Optimization 22
1.1.3 Potential methods . 24
1.1.4 Graph based methods . 27
1.1.5 Methods based on Partial Differential Equations 28

1.2 Different problems of collaborative systems . 31
1.2.1 Deployment problems . 31
1.2.2 Cooperative transportation of a swinging load 35
1.2.3 Collision avoidance on determined paths . 38

2 Trajectory generation for PDE systems, existing works and available tools 41
2.1 Existing works: an overview . 41
2.2 Differential flatness and Gevrey functions . 47

2.2.1 Gevrey functions, definition and examples 47
2.2.2 Efficient computation of the derivatives of Φσ 49

3 Formal solutions to the heat equation 53
3.1 Rewriting the heat equation with formal differential operators of infinite order . 53
3.2 The heat equation with controls on both sides . 55

3.2.1 Objectives . 55
3.2.2 Formal derivation . 55
3.2.3 Computational implementation . 61

Contents

3.3 Various properties of the Tx operator . 62
3.3.1 Polynomial states and controls . 62
3.3.2 Application to the Weierstrass approximation theorem 66
3.3.3 Convergence of the Tx operator . 67
3.3.4 Application of Tx to exponential functions 69
3.3.5 The operator Tx and product of functions . 73

3.4 The Hopf-Cole transformation and Gevrey functions 79

4 PDE-based motion planning framework 81
4.1 Generating solutions to the heat equation . 81
4.2 Generating solutions to Burgers’ equation . 85

4.2.1 Optimization of the trajectories . 85
4.2.2 Leaders and followers . 87
4.2.3 Transition between successive steps . 87

4.3 Combining solutions to create trajectories . 89
4.4 Conclusion and perspectives . 91

II Modeling and control of a trirotor UAV 93

5 Unmanned Aerial Vehicles: a brief review 95
5.1 Flight dynamics . 95

5.1.1 Basics of flight . 95
5.1.2 The roll-pitch-yaw convention and aircrafts’ centers 97
5.1.3 Fixed-wing aircrafts . 98
5.1.4 Rotary-wing aircrafts . 100
5.1.5 Convertible airplanes and other VTOL aircrafts 104

5.2 A usual model, the quadrotor . 105
5.2.1 Design and basic model of a quadrotor helicopter 106
5.2.2 Control and applications for a quadrotor UAV 108

5.3 Tilting rotor multirotor UAVs . 115

6 The tricopter: an agile UAV 117
6.1 Design of the tricopter . 118

6.1.1 Mechanics design . 118
6.1.2 Electronics design . 120
6.1.3 The motion capture platform . 122

6.2 Mechanical model of the tricopter . 122
6.2.1 Formalism and assumptions . 122
6.2.2 Screws acting on the tricopter . 126
6.2.3 Equations of motion . 130

6.3 Introduction to flatness based control . 130

7 Various applications of the tricopter 133
7.1 Simulation platform, test trajectory and control approach 133

7.1.1 The simulation platform . 133
7.1.2 The test trajectory . 135

iv Revision: a466fdc (2015-10-14 23:06:42 +0200)

Contents

7.1.3 The control approach . 136
7.2 The rolling tricopter . 138

7.2.1 Motivations and mechanical modifications 138
7.2.2 Controlling the rolling tricopter, a flatness-based control approach 139
7.2.3 Admissible trajectories and open-loop simulations 142
7.2.4 Experiments . 145

7.3 The flying tricopter . 151
7.3.1 Position and attitude stabilization . 153
7.3.2 Altitude tracking . 154
7.3.3 Trajectory tracking . 155

7.4 Carrying a load . 159
7.4.1 The pendulum load . 159
7.4.2 Dynamics of the system . 161

7.5 Perspectives . 171

Conclusion 173

Bibliography 175

Revision: a466fdc (2015-10-14 23:06:42 +0200) v

List of Figures

1.1 Example of potential force. 25

2.1 The heated rod of [Laroche et al., 2000] . 42
2.2 Shock-like equilibrium profiles for Burgers’ equation 45
2.3 Normalized value of φσ(t) for various value of σ. 48
2.4 The basis function Φσ(t) for various values of σ. 49

3.1 First odd order Bernoulli polynomials used by the Tx operator and by T1−x 58
3.2 Evolution of a polynomial state, 3d view. 65
3.3 Evolution of a polynomial state, cross-sectional view. 66
3.4 Numerical evaluation of the first ak functions. 72
3.5 Numerical evaluation of the error according to γ. 73
3.6 Numerical evaluation of tγ(x). 74
3.7 The first dn(x) functions. 76
3.8 Numerical evaluation of |Φ(1)σ (t)Σ(x, t)|. 79

4.1 Example of controls. 84
4.2 Numerical resolution of the heat equation. 84
4.3 Time evolution of the cost for a team of four leaders. 88
4.4 Three return possibilities. 89
4.5 Two solutions to Burgers’ equation for 3 leading agents and 18 follower agents. 90
4.6 Trajectories in a plane of 3 leading agents and 18 follower agents. 90
4.7 Trajectories of the three leaders and of two chosen followers. 92

5.1 Aerodynamic forces: lift and drag on a foil (NACA4612) 96
5.2 Geometry of an airfoil (NACA4612) . 97
5.3 The roll-pitch-yaw convention. 98
5.4 The different elements of an aeroplane. 99
5.5 Dissymetry of lift. 101
5.6 Various helicopter configurations. 102
5.7 Bell Boeing V-22 Osprey. 105
5.8 Control of a quadrotor. 108

6.1 Tricopter geometry. 119
6.2 Axial view of the first nacelle. 119
6.3 The tricopter (courtesy of D. Kastelan). 121
6.4 Example of position and attitude estimate of a still laying object as seen by the

motion tracking system. 123

List of Figures

6.5 Delay of the motion tracking system. 123
6.6 Tricopter geometry and reference frames [Kastelan et al., 2015]. 124
6.7 The crane . 131

7.1 The graphical model of the tricopter developed for use in FlightGear Flight Simulator.134
7.2 Reference trajectories. 135
7.3 The reference path . 136
7.4 The rolling base used by the tricopter. 139
7.5 Influence of the choice of Tz on saturations. 146
7.6 Differentiation of noisy data . 147
7.7 Discrepancy of the derivation . 148
7.8 Evolution of the reference trajectories, their real values and the error. 149
7.9 Reference and real paths. 149
7.10 Evolution of velocity and acceleration of the rolling tricopter. 150
7.11 Yaw tracking on the ground . 151
7.12 Evolution of the controls of the rolling tricopter. 152
7.13 Position and attitude stabilization. 153
7.14 Controls for position and attitude flight stabilization. 154
7.15 Tracking an increase in altitude reference. 155
7.16 Tracking a trajectory in level flight. 156
7.17 Trajectory tracking in level flight: xy path. 156
7.18 Reference and experimental value of the yaw during level flight 157
7.19 Reference and experimental value of the roll and pitch angles 157
7.20 Controls for trajectory tracking in level flight. 158
7.21 The pendulum . 159
7.22 The load orientation measurement board. 161
7.23 Schematics of the Pendulum. 162
7.24 Validation of the parameters of the potentiometers. 162
7.25 Schematics of the tricopter carrying a pendulum load. 163
7.26 Axis-angle representation of the pendulum load. 165
7.27 Trajectory followed by the tricopter with pendulum load. 170
7.28 Feedforward for the thrusts and the tilt angles when flying the pendulum. 170

Revision: a466fdc (2015-10-14 23:06:42 +0200) vii

Remerciements

La soutenance de cette thèse est l’aboutissement de trois années de travail particulièrement
intense. J’ai conscience que cette réussite doit beaucoup à de nombreuses personnes et je tiens
ici à les remercier et leur rendre un hommage nécessaire.

Je tiens en tout premier lieu à remercier mon jury. Mes directeurs, Brigitte et Hugues, qui
m’accompagnèrent durant ces trois années, orientèrent mon travail, soutinrent mes idées et
mes efforts et me permirent ainsi d’accomplir plus que je ne croyais possible. J’ai la chance que
deux grands chercheurs, Miroslav Krstić et Tarek Hamel, acceptent de rapporter cette thèse.
J’eu le bonheur de les rencontrer à plusieurs reprises durant ces trois années et je leur sais
sincèrement gré et me sens particulièrement honoré de leurs rapports. Tous les membres de
mon jury m’honorent également en acceptant d’y siéger. Un grand merci donc à Jean-Michel
Coron, Silviu-Iulian Niculescu, Arnaud Quadrat, Joachim Rudolph et Claude Samson. Je tiens
parmi eux à remercier tout particulièrement Joachim Rudolph qui m’accueillit à l’occasion de
plusieurs séjours dans son laboratoire à Sarrebruck. Ces séjours me permirent de réaliser toutes
les expérimentations de la deuxième partie de cette thèse et peu aurait été possible sans cela. Je
tiens également à remercier toute l’équipe de son laboratoire pour l’accueil chaleureux et sa
gentillesse ; tout particulièrement David Kastelan, Matthias Konz et Frank Paulus-Rieth avec qui
je travaillai durant mes séjours.

En France, ma thèse était hébergée simultanément par deux laboratoires qui furent tous deux
importants à mes yeux. Au L2S, je tiens à exprimer toutes mon amitié et ma reconnaissance pour
ces années ensemble. Le hasard (et surtout l’occupation des bureaux à mon arrivée en cours
d’année) a voulu que je sois placé dans un bureau de la division ✓ Télécoms ✔ au sein de laquelle
je garde de nombreux amis. Je pense notamment à Pierre, Elsa et François dont je partageais le
bureau jusqu’à nos départs respectifs, à Olivier, Benjamin, Jean-François, qui m’introduisirent
au sein de l’équipe de foot. J’ai une pensée au sein de cette équipe pour les Momos – le Grand
et le Petit – pour Amir, Jérôme, Romaric, Djawad et tous ceux, trop nombreux pour être cités
ici, avec qui je jouais deux fois par semaine dans le ✓ cratère ✔. Merci aussi à Fred et Franck
pour leur aide alors que je sais ne pas être le plus facile des doctorants. Merci à Maryvonne pour
sa gentillesse, pour m’avoir placé dans ce bureau et avoir ensuite placé dans le bureau voisin
une super stagiaire et très bonne amie – et qui au passage me fit rencontrer, par ricochets deux
autres bonnes amies1.

Le CAOR représente une importance au moins égale à mon cœur. Certains m’y connaissaient
déjà de mes années dans le cycle ingénieur civil ou de mon activité au sein de Minotaure. Pour
autant, j’y rencontrai de très bons amis également. J’ai ainsi une pensée pour Sylvain avec qui
je partageais des thématiques de recherche proches et dont le quadrocoptère inspira certains
aspects de mon travail. J’ai une pensée également pour Vincent ; nous nous suivons depuis les
classes préparatoires et jouions ensemble dans la fanfare de l’École. Merci aussi à Éva – qui
me permit à plusieurs reprises de me rhabiller sur le compte de Dopamines. . .promis l’année
prochaine je paye ma cotiz. Et, dans le désordre, un grand merci à Axel, JE – promis, juré, je n’ai
pas emporté d’ordi DELL –, Jacky, David – tous deux m’apportent une aide depuis mes jeunes
années à Minotaure et ils savent que j’apprécie discuter avec eux –, Amaury, Joël – à qui je dois

1Oui, Rocío, Teresa, Elena, je parle de vous !

Remerciements

de savoir réparer la prototypeuse 3D du labo et d’être devenu ✓ expert ✔ en CharlyRobot, quelle
chance ! –, Arnaud, Séb – qui est peut être presque aussi chiant que moi, ce qui n’est pas peu
dire –, Yannick, Hassan, Cyril, Marie-Anne, Alexis, François, Christine et Christophe, Arthur, JF,
Jorge, Fabien, Bogdan – qui m’a appris à parler roumain, on verra bien si ce me sera utile. Merci
aussi à Alex et Kenzo, nous avons passé suffisamment de soirées avec vous pour que je vous
considère dans l’équipe ! Je tiens de plus à remercier tous les membres de l’École que j’ai croisés
durant toutes mes années passées dans les locaux. Je pense notamment à mes anciens profs, à
Franz et Bernard que je croisais presque tous les soirs et à la direction des études durant mon
cycle ingénieur, elle m’a permis de devenir ce que je suis.

Nombreux sont ceux qui savent que je me suis beaucoup investi, au cours de la rédaction de
ce manuscrit, sur des détails qui purent leur sembler futils mais qui permirent à la typographie
et, plus généralement, à la forme de ce document d’atteindre un niveau dont je tire une fierté
qui, je l’espère, est au moins en partie justifiée.

Je tiens en tout premier lieu à remercier Sophie pour sa relecture avisée. Elle a dû, je le crains,
remarquer que ma maîtrise de l’anglais n’était pas aussi parfaite que je ne le souhaite. J’en profite
pour remercier Macha, qui m’a soutenu durant ces trois années par son amitié constante et qui
a, j’en suis sûr, contribué aux corrections effectuées par sa fille. Je tiens à remercier Emmanuel
“Manu” à qui je dois une grande partie de la forme de ce manuscrit – notamment une bonne
partie de la typographie mathématique. Je savais depuis notre collaboration à l’École au sein de
Minotaure qu’il était bon, ses compétences typographiques sont, je m’en rends compte, toutes
aussi épatantes que ses qualités de mécanicien, bonne chance pour ta thèse jeune padawan. J’ai
eu aussi beaucoup recours à la communauté de tex.sx, merci à ses contributeurs, peu de mes
questions sont restées ouvertes grâce à eux. Je tiens aussi à remercier Till Tantau et Christian
Feursänger. Toutes les figures de ce manuscrit ont été réalisées grâce à pgf/tikz et pgfplots qu’ils
ont créés, merci à eux pour ces formidables outils.

En tout dernier lieu, et pour finir par ceux qui me sont le plus chers, je veux redire merci à
toute ma famille et leur répéter combien ils me sont importants. Papa Pierrot, je pense encore à
toi, à ce que tu m’as appris, aux livres que tu m’as offerts. Tu étais un super ingénieur et c’est
beaucoup à toi que je dois d’avoir eu cette passion. Je suis fier, quelque cinquante ans après
ta thèse réalisée, elle-aussi, en partie à Sarrebruck, de suivre tes pas. Merci aussi Pépé, je suis
heureux que tu sois encore à mes côtés pour assister à ma soutenance. Tu m’as énormément
apporté : cette thèse est aussi celle d’un petit garçon à qui tu as appris à skier, à nager, à travailler
le bois. Merci aussi à tous mes frères et sœurs, dans l’ordre : Élisabeth, Jacques, Bernard, Claire,
Marie, Agnès, Blandine, vous êtes à tout jamais dans mon cœur. Merci beaucoup à toi Odile, tu
m’as aidé tout du long de ma vie et notamment durant mes études, mon succès est en partie le
tien, tu es une super marraine ! Et pour finir par le plus important, merci maman, merci papa.
Vous m’avez toujours soutenu et je vous dois tout même si vous avez toujours refusé que je vois
les choses ainsi. Je n’ai qu’un mot suffisamment fort pour vous dire merci : je vous aime.

See you on the other side. . .

x Revision: a466fdc (2015-10-14 23:06:42 +0200)

Introduction

In the past few years, an intense fervor among customers in many countries has arisen for
helicopter models of a new type. Indeed while flying, mechanically evolved, and thus expensive
helicopter models were long a niche market for passionate hobbyists, technological advances have
opened this pastime to the general public in trading the mechanical complexity of swashplates
and hinges for the addition of motors. These allowed everyone to discover the passion of flying
and hovering.

Discovering the ability to hover, the former outdoor hobby models evolved into indoor toys.
The cost of entry level models is nowadays rather low and customers can choose from a broad
selection of models. Furthermore, embedded video cameras and high speed data connections
turned them into marvelous toys. And as they are small, light and reasonably stable, they can
be used by children inside rooms and are nowadays successful birthday and Christmas presents.

In addition to the general public, various professions – firemen, farmers, construction engineers,
policemen – have seen the emergence of these platforms as a great opportunity. They give the
user a quick overview of a situation which would have been difficult to monitor without these
models because of time, money or access constraints. However, in some cases, one may wish to
have more than one of these helicopters flying together. Having more than one UAV (Unmanned
Aerial Vehicle) is a great advantage to oversee a bigger area, to add redundancy to a system, or
to transport a load too heavy for a single helicopter.

In this context, this thesis has two goals. On the one hand, we propose a solution to let several
agents – e.g. helicopters, or any other type of agents moving in any number of dimensions, such
as wheeled robots, submarines, trains – move and complete tasks together. This is done by
proposing an algorithm generating trajectories for multi-agent systems. On the other hand, we
address the trajectory tracking problem and the load transportation problem for a novel type of
multirotor helicopter.

This work has been conducted during three years, starting in May 2012, both at the Laboratoire
des Signaux et Systèmes (L2S) in Gif-sur-Yvette under the supervision of Hugues Mounier and
at the Centre de Robotique of Mines ParisTech (CAOR) in Paris under the supervision of Brigitte
d’Andréa-Novel. The thesis was part of the project “EcceHomo” (for Estimation et contrôle

commande embarquée pour véhicules en formation – Estimation and embedded control for vehicles

in formation). EcceHomo is a joint project between L2S, CAOR, the Laboratoire d’Informatique
of École Polytechnique (LIX) in Palaiseau and the embedded systems department of École
Supérieure d’Ingénieur en Électricité et Électronique (ESIEE) and was supported by grants from
DIGITEO and Région Île-de-France.

During this time, I was lucky enough to be supported by a grant from the CNRS, a so-called
PEPS Projet Exploratoire Premier Soutien nick-named “Concorde” (standing for Contrôle Coopératif

de Drones et EDPs, Cooperative Control of UAVs and PDEs). This grant was awarded to a joint
project between L2S, CAOR, the Laboratoire Jacques-Louis Lions (LJLL) of the University of Paris
VI and the Lehrstuhl für Systemtheorie und Regelungstechnik (Chair of Systems Theory and
Control Engineering, short: LSR) of Saarland University in Saarbrücken (Germany). This grant
gave me the opportunity to visit the LSR a few times. I had, during these visits, the opportunity

Introduction

to develop a sensing module for embedded load state estimation and to conduct experimental
validations of my trajectory tracking algorithms on LSR’s multirotor UAV prototype, the Tricopter.

As a consequence of the two dimensions of the problem addressed in this work, the present
document is organized as follows:

Part I – Trajectory planning for multi-agent systems: The first part is dedicated to the prob-
lem of trajectory planning for multi-agent systems. We present the framework we created
based on solutions to Burgers’ partial differential equation.

• chapter 1 – Motion planning for multi-agent systems, an overview: In this first
chapter, we introduce the problem of motion planning. Firstly we present various
works originating from different fields of research – mostly from mobile robotics.
Then we study more specifically path planning solutions for multi-agent systems
based on Partial Differential Equations. We then present works based on two famous
equations: Burgers’ equation and the heat equation.

• chapter 2 – Trajectory generation for PDE systems, existing works and available
tools: In this chapter, we present various result on the control of Burgers’ equation
and its link to the heat equation. A short introduction to the theory of differential
flatness and Gevrey functions is given.

• chapter 3 – Formal solutions to the heat equation: In this chapter, we present the
contribution of this thesis in the field of motion planning for multi-agent systems. It
is based on the resolution of Burgers’ equation using Hopf-Cole transformation and
the differential flatness of the resulting heat equation.

• chapter 4 – PDE-based motion planning framework: In this last chapter of the
first part, we show that the framework developed in the previous chapter can be
efficiently used to generate trajectories. We give some numerical results and show
some sample of trajectories.

Part II – Modeling and control of a trirotor UAV: This second part is devoted to the descrip-
tion of a novel trirotor UAV. This trirotor helicopter is totally actuated and a flatness based
control approach is presented. This approach is applied to trajectory tracking and load
transportation.

• chapter 5 – Unmanned Aerial Vehicles: a brief review: In this first chapter, we give
a broad review of aerial vehicles. After a brief historical and technological review, we
concentrate on the current results in the field of control of multirotor helicopter UAV.
Several works on control of quadrotors for trajectory tracking, pendulum load and
inverted pendulum transportation are presented. The field of tilting rotor multirotor
UAV is finally introduced.

• chapter 6 – The tricopter: an agile UAV: Here we introduce the trirotor UAV
developed at LSR. We start by presenting the experimental platform and introducing
its mechanics and electronics design. Then we present the formalism adopted in this
thesis for equations of motions and elaborate a mechanical model of the drone.

• chapter 7 – Various applications of the tricopter: This chapter presents the various
experiments and results conducted with the drone. First, in the aim of reducing

xii Revision: a466fdc (2015-10-14 23:06:42 +0200)

Introduction

the energy consumption, the tricopter has to track a ground trajectory. This first
experiment allows to carefully test the platform and the chosen control approach.
We then present trajectory tracking in flight mode. Finally, we add a pendulum load
to the tricopter. We present the sensor developed for this new task and present a
complete model. We present then a flatness based open-loop controller and show its
pertinence in the transport of a pendulum load.

Conclusion: We draw a global conclusion to the work presented in this thesis. We outline the
coherence of the chosen approach relying on infinite and finite differentially flat systems
to perform, respectively, trajectory planning and tracking and give perspectives for future
works.

Revision: a466fdc (2015-10-14 23:06:42 +0200) xiii

Résumé étendu en français

Introduction

Au cours des dernières années, une intense ferveur est apparue parmi les consommateurs de
nombreux pays pour des maquettes d’hélicoptères d’un nouveau type. En effet, alors que les
maquettes volantes, évoluées mécaniquement et, par conséquent, coûteuses, d’hélicoptères ont
longtemps été un marché de niche pour des amateurs passionnés, des avancés technologiques ont
ouvert ce passe-temps au grand public en remplaçant la mécanique compliquée d’un hélicoptère
par l’addition de moteurs. Ceci permit à tout un chacun de découvrir la passion du vol contrôlé.

En acquérant la capacité d’effectuer un vol stationnaire, les maquettes qui étaient auparavant
cantonnées aux vols en extérieur se sont muées en jeux d’intérieur. Le prix des modèles d’entrée de
gamme est actuellement assez bas et les consommateurs peuvent choisir parmi une vaste gamme
de modèles. De plus, des appareils d’acquisition vidéo embarqués et les connexions de données
à haut débit les ont transformés en jouets merveilleux. Étant petits, légers et raisonnablement
stables, ils peuvent être utilisés par des enfants en intérieur et sont de nos jours des cadeaux à
succès pour les anniversaire ou les fêtes.

En plus du grand public, diverses professions – pompiers, exploitants agricoles, ingénieurs
des travaux publics, forces de sécurité – ont vu l’émergence de ces plateformes comme une
opportunité intéressante. Elles donnent à l’utilisateur un aperçu rapide d’une situation qui
aurait été difficile à observer en l’absence de ces modèles, faute de temps, d’argent ou d’un
accès aisé. Cependant, en certains cas, d’aucun peut souhaiter disposer de plus qu’un de ces
hélicoptères volant de concert. Avoir plus d’un de ces aéronefs sans pilotes (ASP, nous ferons
aussi communément usage des appellation drone et UAV suivant en cela l’usage anglo-saxon)
est un avantage important pour observer une zone plus grande, pour ajouter de la redondance à
un système ou pour transporter une charge trop lourde pour un hélicoptère seul.

Dans ce contexte, cette thèse a deux objectifs. D’une part, nous proposons une solution pour
permettre à plusieurs agents – par exemple des hélicoptères, ou tout autre agent se déplaçant en
un nombre arbitraire de dimensions, tels que robots à roues, sous-marins, trains – de se déplacer
et accomplir une tâche ensemble. Ceci est atteint en proposant un algorithme générant des
trajectoires pour des systèmes multi-agents. D’autre part, nous résolvons le problème du suivi
de trajectoire et du transport de charge pour un nouveau type d’hélicoptère à rotor multiples.

Ce travail a été réalisé durant trois années, débutant en mai 2012, simultanément au Labo-
ratoire des Signaux et Systèmes (L2S) à Gif-sur-Yvette sous la supervision d’Hugues Mounier
et au Centre de Robotique de Mines ParisTech (CAOR) à Paris sous la supervision de Brigitte
d’Andréa-Novel. La thèse faisait partie du projet ✓EcceHomo✔ (pour Estimation et Contrôle
Commande Embarquée pour véhicules en formation). EcceHomo est un projet commun au
L2S, au CAOR, au Laboratoire d’Informatique de l’École Polytechnique (LIX) de Palaiseau et
au département des systèmes embarqués de l’École Supérieure d’Ingénieur en Électricité et
Électronique (ESIEE) et a reçu le soutien financier de DIGITEO et de la Région Île-de-France.

Pendant ces trois années, j’ai eu la chance d’être supporté part un financement du CNRS,
en l’occurrence le PEPS (Projet Exploratoire Premier Soutien) ✓Concorde✔ (pour Contrôle

Résumé étendu en français

Coopératif de Drones et EDPs). Ce financement a été accordé à un projet joint entre le L2S, le
CAOR, le Laboratoire Jacques-Louis Lions (LJLL) de l’Université Pierre et Marie Curie (Paris
VI) et la Lehrstuhl für Systemtheorie und Regelungstechnik (Chaire de théories des systèmes
et des techniques de régulation, LSR) de l’Université de la Sarre à Sarrebruck (Allemagne).
Ce financement m’a donné l’opportunité de séjourner au LSR à plusieurs reprises. Durant ces
séjours, j’ai développé un module d’acquisition pour l’estimation d’état de la charge transportée
par le drone et de conduire des validations expérimentales de mes algorithmes de suivi de
trajectoire sur le prototype de drone multirotor développé par le LSR, le Tricoptère.

Conséquence des deux dimensions du problème traité dans ce travail, le présent document
est divisé en deux parties distinctes, dédiées d’une part à la planification de trajectoire pour
systèmes multi-agents et d’autre part à la modélisation et au contrôle d’un drone trirotor.

Partie I – Planification de trajectoire pour systèmes multi-agents

Chapitre 1 – Introduction à la planification de trajectoire pour systèmes multi-
agents

De 1985 à 1989, Michael Girard and Susan Amkraut réalisèrent l’un des premiers films d’ani-
mation représentant une nuée d’oiseau[Girard and Amkraut, 1990]. Ce court métrage de 3
minutes 45 seconde représentait une nuée d’une quarantaine d’oiseaux volant dans un temple
où elle rejoignait un groupe de danseur dans une chorégraphie commune. La trajectoire des
oiseaux était élaborée à partir d’un modèle physique. Chaque oiseau était en effet soumis à des
forces répulsives en provenance des autres oiseaux et des obstacles. Simultanément, les oiseaux
était attirés vers leurs objectifs prédéfinis par des forces attractives en spirales. La trajectoire de
chaque oiseau était ensuite évaluée comme la résolution numérique d’une équation différentielle
linéaire ce qui prenait alors environ douze minutes par image.

À la même époque, [Reynolds, 1987] rédigea l’une des premières approches théoriques du
problème de l’animation de nuées d’oiseau, de troupeaux ou de bancs de poissons. Il identifia tout
d’abord différentes limitations apparaissant lors de la résolution de tels systèmes multi-agents
basée sur des modèles de forces.

En effet, alors qu’il n’est pas inhabituel de rencontrer dans certaines régions du monde des
essaims de sauterelles contenant plusieurs milliards d’individus, l’une des limites des modèles
mathématiques est généralement leur non-scalabilité, ce qui signifie que la complexité de la
résolution numérique croît plus vite que le nombre d’agents, ce qui rend difficile la résolution
de problèmes avec un grand nombre d’agents. Dans le cas de [Girard and Amkraut, 1990], la
difficulté était vraisemblablement au moins quadratique attendu qu’il était nécessaire de calculer
pour chaque oiseau les interactions avec tous les autres oiseaux.

D’autres problèmes peuvent survenir durant l’évolution de tels systèmes multi-agents. La
formation peut collapser – tous les agents terminent en un point en raison de forces attractives
trop intenses – ou se scinder en raison de forces répulsives elles-aussi trop intenses, ce qui dans
les deux cas n’est pas désirable.

Reynolds identifie l’usage de forces non bornées pour l’évitement de collision comme l’une
des origines de ces problèmes. En effet, de telles forces agissent sans limite de distance même

2 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Résumé étendu en français

lorsque l’agent ne se dirige pas vers l’obstacle en question. Il énonce alors que le mouvement en
formation obéit aux trois règles suivantes, énoncées par ordre décroissant d’importance, que
l’on appelle aujourd’hui les trois règles de Reynolds et qui sont

• Éviter les collisions avec les voisins et les obstacles ;

• Apparier sa vitesse à celle de ses voisins ;

• Tant que possible, rester à proximité du centre du groupe.

Néanmoins, l’approche de Reynolds était dédiée à la simulation du monde animal. Tandis
que les systèmes multi-agents sont un champ de recherche très vaste recouvrant notamment les
grilles de capteurs ou les protocoles de communication, nous nous concentrons sur les systèmes
d’agents mobiles.

On peut distinguer parmi les algorithmes de planification deux classes différentes. D’une part,
il existe des algorithmes dit de planification de chemin qui résolve un problème géométrique
indépendant du temps. D’autre part, on parlera de planification de trajectoires quand l’évolution
dynamique du système est prise en compte. Dans ce travail, nous nous consacrons donc au
problème de planification coordonnée de trajectoires.

Pour le cas général des systèmes multi-agents, [Beard et al., 2001] ont classifié les méthodes
existantes en trois catégories différentes :

Meneur-suiveur : dans ces méthodes, les suiveurs suivent un meneur désigné. Ce meneur peut
être global ou local et peut être un meneur virtuel comme par exemple le barycentre de la
formation. Ces méthodes permettent aisément de déplacer la formation dans une direction
spécifique. Malgré sa simplicité, ces méthodes présentent un certain nombre de problème,
comme par exemple la nécessité pour chaque agent de connaître la position du meneur.

Méthodes comportementales : dans ces méthodes, tous les agents ont un rôle identique et
se comportent en fonction des informations provenant de leur environnement immédiat.
Ces méthodes sont généralement assez simples et décentralisées et par conséquent sont
généralement adaptées à de très grands systèmes. Néanmoins les propriétés générales du
groupe sont alors difficiles à prévoir.

Structures virtuelles : ces méthodes assignent les agents sur une structure virtuelle pré-établie.
Ceci permet de définir aisément un comportement de groupe et de définir des formations
choisies mais il est par conséquent difficile de changer la structure.

Cependant, comme nous le verrons dans l’étude suivante, des croisements entre ces différentes
techniques existent et certaines ne peuvent réellement se classer dans celles-ci.

Le reste du chapitre est divisé en deux sections. La première section étudie différentes méthodes
ayant été utilisées pour définir l’évolution de systèmes multi-agents. Il traite d’abord du cas des
méthodes comportementales. Nous étudions ensuite des méthodes basées sur l’optimisation par

essaims particulaires, un algorithme ou plusieurs agents collaborent pour trouver un ✓ point
optimal ✔. La troisième sous-section décrit les méthodes basées sur les champs de potentiels.
Une dernière sous-section présente diverses méthodes faisant usage d’équations aux dérivées

partielles pour décrire l’évolution d’essaims.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 3

Résumé étendu en français

Nous étudions dans la deuxième section trois classes de problèmes liées aux travaux de cette
thèse. Dans une première sous-section, nous étudions les problèmes de déploiement, c’est à dire
l’évolution planifiée d’une formation entre deux ensembles de points précis. Dans la section
suivante, nous étudions des solutions proposées au problème du transport de charge coopératif.
Enfin, dans la dernière sous-section, nous décrivons des algorithmes assurant l’évitement de
trajectoires pour des agents dont les trajectoires prédéterminées se croisent.

Cette partition est pensée pour donner un aperçu large des différentes méthodes introduites
dans la littérature et pour donner des fondements à nos travaux tout en montrant que les
problèmes traités peuvent être abordés par plusieurs des méthodes présentées.

Chapitre 2 – Génération de trajectoire pour systèmes d’équation aux dérivées par-
tielles, travaux existants et outils à disposition

De nombreux auteurs, comme nous l’avons montré au chapitre précédent, utilisent une solution à
une équation aux dérivées partielles pour générer des trajectoires appliquées à des systèmes multi-
agents. Dans ce chapitre nous présentons tout d’abord différents résultats sur la résolution de
l’équation de la chaleur et de l’équation de Burgers. Nous introduisons notamment le concept de
platitude pour les équations aux dérivées partielles. Dans un deuxième temps, nous introduisons
le concept des fonctions de classe Gevrey, une classe de fonctions largement utilisée pour générer
des solutions d’une équation aux dérivées partielles plates.

2.1 – États de l’art des méthodes existantes

L’exemple canonique de système plat régi par l’équation de la chaleur est la barre conductrice
introduite par [Laroche et al., 2000], présentée figure 2.1 page 42, isolée thermiquement à une
extrémité et contrôlée en flux à l’autre. Celle-ci peut être modélisée par le système présenté
en équation (2.1) page 41 où θ(x, t) représente la température à l’instant t à l’emplacement
x. Les auteurs proposent alors une méthode pour construire le contrôle u(t) à partir de θ(0, t).
Ils se basent sur les fonctions de classe Gevrey telles que définies en définition 2.1.1 page 42.
En utilisant des fonctions y(t) = θ(0, t) choisies dans une classe de fonctions Gevrey adaptée
(théorème 2.1.2 page 43), les auteurs montrent que les fonctions :

θ(x, t) =
∑

i¾0

y(i)(t)
x2i

(2i)!
, (1)

sont solutions du système défini par l’équation (2.1) page 41. Autrement dit, la donnée de
θ(0, t) définit intégralement l’évolution du système. La fonction θ(0, t) est alors appelée sortie
plate du système.

Nous présentons alors d’autres résultats, notamment les travaux de [Meurer and Krstić, 2011;
Frihauf and Krstic, 2011; Krstić and Smyshlyaev, 2008; Krstić et al., 2008], qui se basent sur
différents modèles d’équations aux dérivées partielles et sur l’équation de Burgers. L’équation de
Burgers est notamment connue pour la transformation de Hopf-Cole (théorème 2.1.3 page 44)
qui permet de la ramener, sous certaines conditions, à l’équation de la chaleur. Des profils à
l’équilibre obtenus par [Krstić et al., 2008] sont représentés figure 2.2 page 45. Deux résultats de
contrôlabilité sont alors donnés pour l’équation de Burgers en théorèmes 2.1.4 et 2.1.5 page 46
et page 47.

4 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Résumé étendu en français

2.2 – Platitude et fonctions Gevrey

Cette section introduit le concept de fonctions Gevrey (définition 2.2.1 page 47) qui sont des
fonctions indéfiniment dérivables, dont la série de Taylor peut diverger et dont les dérivées
vérifient une majoration de l’accroissement. Ces fonctions permettent de créer des fonctions
✓ bosses ✔(figure 2.3 page 48) ou permettant des transitions entre deux plateaux (figure 2.4
page 49). Elles sont utilisées notamment pour créer des solutions à des systèmes plats (propo-
sition 2.2.2 page 47). Différents exemples de fonctions Gevrey sont donnés (équations (2.29)
à (2.32) page 48 et page 49) et un algorithme de calcul efficace des dérivés de l’une de ces
fonctions est présenté (section 2.2.2 page 49).

Chapitre 3 – Solutions formelles à l’équation de la chaleur

Ce chapitre présente notre contribution principale à l’étude de l’équation de la chaleur avec des
contrôles aux deux extrémités. En nous basant sur un résultat bien connu de Holmgren, nous
dérivons l’expression d’un nouvel opérateur différentiel formel d’ordre infini et étudions son
impact sur certaines fonctions de base. Nous étudions son implémentation et sa convergence
numérique. Nous présentons finalement les contrôles Gevrey adaptés pour créer des solutions à
l’équation de la chaleur avec contrôles aux deux côtés permettant une transition en temps fini
entre deux états et présentons une solution pour générer ces contrôles.

3.1 – Réécriture de l’équation de la chaleur grâce aux opérateurs différentiels formels
d’ordre infini

L’utilisation du calcul opérationnel permet de réécrire le résultat obtenu en 1908 par Holmgren
(équation (3.6) page 54) en une expression concise utilisant des opérateurs différentiels formels
d’ordre infini (équation (3.17) page 55) où apparaissent les sorties plates ✓ naturelles ✔ de
l’équation de la chaleur que sont la température en x= 0, φ0(t) et le flux en cet endroit φx,0(t).

3.2 – L’équation de la chaleur avec contrôle aux deux bords

La sortie plate de l’équation de la chaleur considérée par [Laroche et al., 2000] apparaît comme
un choix naturel pour des problèmes de transferts de chaleur. Néanmoins, pour un problème
de planification de trajectoires pour un système multi-agents il semble plus raisonnable de
paramétrer l’équation de la chaleur en position aux deux bords et montrons comment exprimer
cette équation à partir de ces données.

La réécriture formelle de l’équation de la chaleur sous la forme de l’équation (3.20) page 56
fait apparaître un nouvel opérateur différentiel formel d’ordre infini Tx. Nous donnons en
proposition 3.2.1 page 56 une expression explicite de cet opérateur. Cette expression est obtenue
par une dérivation formelle présentée dans la preuve de cette proposition. En utilisant les
résultats suivants (proposition 3.2.2 et lemme 3.2.3 page 58 et page 59), nous démontrons
le théorème 3.2.4 page 60 qui prouve que l’équation de la chaleur admet également comme
sorties plates les températures aux deux bords φ0(t) et φ1(t). Nous présentons en dernier lieu
l’implémentation informatique réalisée pour évaluer l’opérateur Tx et notamment les nombres
de Bernoulli qui y apparaissent.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 5

Résumé étendu en français

3.3 – Différentes propriétés de l’opérateur Tx

Nous étudions dans cette section différentes propriétés de l’opérateur Tx précédemment introduit.
Nous étudions tout d’abord l’action de cet opérateur sur les polynômes réels. Cette étude nous
permet de formuler le théorème 3.3.2 page 65. Celui-ci, à partir d’un état de départ polynomial
donné, permet de créer des contrôles polynomiaux et de donner une solution explicite et
polynomiale à l’équation de la chaleur. Une illustration de ce résultat est donnée figures 3.2
et 3.3 page 65 et page 66. La section 3.3.2 page 67 montre ensuite, en utilisant le théorème
d’approximation de Weierstrass, qu’il est possible de construire de tels contrôles pour un état de
départ continu arbitraire.

Nous étudions ensuite la convergence de cet opérateur pour d’autres types de fonctions. La
proposition 3.3.6 page 68 montre que l’opérateur converge pour les fonctions Gevrey d’ordre 0
et de rayon suffisamment faible. Un exemple de telles fonctions est la fonction exponentielle.
L’opérateur lui est donc appliqué construisant ainsi des solutions à l’équation de la chaleur
pour des états de départs trigonométriques. Par la suite, des considérations sur la convergence
numérique de l’opérateur sont présentées. Finalement, nous donnons le théorème 3.3.9 page 77
qui permet de faire la transition en temps fini entre deux états polynomiaux et donc, par
densité, entre deux états continus. Néanmoins, une sommation classique pour l’opérateur
conduit à une divergence et un procédé de resommation devrait être employé pour obtenir
directement une expression de la solution à l’équation de la chaleur. Cette évaluation est obtenue
par une résolution aux éléments finis et nous permet de donner une évaluation du terme
✓ divergent ✔ (figure 3.8 page 79).

Chapitre 4 – Une solution de planification de trajectoires par résolution d’équa-
tions aux dérivées partielles

Dans le chapitre précédent, nous avons présenté une méthode formelle pour construire une
solution à l’équation de la chaleur avec contrôles aux deux bords. Dans ce chapitre nous
présentons une solution pour créer des trajectoires adaptées. Dans une première section nous
créons des solutions à l’équation de la chaleur. Dans une seconde section, nous utilisons la
solution précédemment évoquée pour générer des solutions à l’équation de Burgers. Différents
aspects de cette méthode sont évoqués et nous présentons une méthode adaptée à des systèmes
multi-agents composés de meneurs et suiveurs.

4.1 – Génération de solutions à l’équation de la chaleur

Nous considérons tout d’abord le problème de génération de contrôles entre deux états polyno-
miaux interpolant des formations de départ et d’arrivée unidimensionnelles d’agents. Disposant
de degrés de libertés, nous proposons de faire passer les agents aux bords par des points de
passage. Des contrôles sont alors générés (figure 4.1 page 84) sur lesquelles l’influence de
l’ordre Gevrey de la fonction de transition est montrée. Ceci permet de construire des solutions
à l’équation de la chaleur comme montré figure 4.2 page 84.

6 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Résumé étendu en français

4.2 – Génération de solutions à l’équation de Burgers

L’utilisation de la transformation de Hopf-Cole pour transformer une solution à l’équation de la
chaleur en une solution à l’équation de Burgers fait appel à une division et donc implique un
choix approprié de la solution à l’équation de la chaleur. Ce choix est assuré par une optimisation
des degrés de liberté disponibles en suivant une fonction de coût adaptée (équation (4.12)
page 85). Cette fonction de coût permet d’une part de s’assurer que la solution à l’équation de la
chaleur est strictement positive tout en assurant une amplitude minimale pour les agents aux
bords de la solution à l’équation de Burgers. Cette optimisation est réalisée par un processus
d’optimisation par essaims particulaires. Des scénarios de transition entre formations successives
(figure 4.4 page 89) sont donnés et étudiés et différents rôles d’agents, meneurs et suiveurs
sont introduits pour permettre de gérer des formations nombreuses sans affecter la complexité
numérique de la résolution.

4.3 – Créations de trajectoires

Les solutions créées dans la section précédente sont combinées pour créer des trajectoires en
plusieurs dimensions. Différentes représentations d’une trajectoire en deux dimensions avec
deux meneurs et dix-neuf suiveurs sont données pour illustrer cette méthode (figures 4.5 à 4.7
page 90 et page 92).

4.4 – Conclusions et perspectives

Dans cette première partie, nous avons tout d’abord présenté une méthode formelle, basée sur
la platitude de l’équation de la chaleur pour créer des solutions à celle-ci. Cette méthode est
appliquée, en utilisant un processus d’optimisation et la transformation de Hopf-Cole, pour créer
des solutions à l’équation de Burgers. Ces solutions sont utilisées comme base à une solution de
planification de trajectoires pour systèmes multi-agents.

Cette solution permet de créer des solutions pour un ensemble d’agents, soit meneurs (pour
lesquels une position finale peut être choisie arbitrairement), soit suiveurs (dont la position
finale est le résultat des positions finales des meneurs), évoluant dans un espace en dimension
arbitraire. Le problème de déploiements successifs est considéré et l’efficacité numérique de
l’optimisation de ces transitions est étudiée.

Cette solution apparaît efficace. Cependant, des travaux supplémentaires pourraient être
menés pour assurer l’évitement d’obstacles et de collisions entre agents. Ces objectifs pourront
être ajoutés à la fonction de coût du processus d’optimisation. Le suivi des trajectoires générées
doit être réalisé en boucle fermée par des contrôleurs implantés sur les différents agents. Un tel
problème va être considéré dans la partie suivante.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 7

Résumé étendu en français

Partie II – Modélisation et contrôle d’un drone trirotor

Chapitre 5 – Un court historique des aéronefs sans pilotes

Ce chapitre est dédié à une courte revue des différents concepts d’aéronefs avec une attention
particulière apportée aux aérodynes à voilure tournante sans pilotes.

5.1 – Dynamique du vol

Dans la première section, nous rappelons quelques concepts essentiels de la dynamique du vol. Un
historique du vol humain nous permet de présenter différentes classes d’aérostats et d’aérodynes.
Nous illustrons quelques concepts importants de l’aérodynamique des ailes et pales de rotor,
notamment, les forces aérodynamiques (figure 5.1 page 96) et leur géométrie (figure 5.2 page 97).
Nous introduisons également la convention d’orientation choisie – les axes ✓Nord-Est-Bas ✔ pour
décrire les angles de ✓ roulis-tangage-lacet✔ – dans ce travail (figure 5.3 page 98). Nous décrivons
rapidement l’histoire et l’évolution des aéronefs à voilure fixe, notamment leurs éléments
(figure 5.4 page 99) et l’apparition récente d’aéronefs militaires dit ✓ supermaneuvrables ✔. Nous
introduisons ensuite les différentes classes d’aéronefs à voilure tournante et décrivons leurs
caractéristiques techniques essentielles. Nous décrivons notamment le principe de dissymétrie de
la poussée qui apparaît spécifiquement sur les rotors d’hélicoptères (figure 5.5 page 101). Nous
donnons un rapide aperçu des aérodynes à voilure fixe, à voilure tournante et convertibles et
présentons différents modèles existants et comparons leurs caractéristiques. Dans une dernière
sous-section, nous introduisons les aéronefs considérés comme ✓ convertibles ✔. Ceux-ci, tel le
Bell Boeing V-22 Osprey (figure 5.7 page 105), peuvent appartenir successivement, en fonction
de leur mode de vol, à diverses catégories d’aéronefs.

5.2 – Un modèle usuel, le quadcoptère

Nous consacrons la deuxième section à l’étude des drones quadrirotors. Cette famille de drones
est la classe de petits drones multirotors la plus répandue. Sa configuration se rapproche de la
structure du drone étudié dans cette thèse. Nous illustrons son contrôle figure 5.8 page 108
et présentons différents travaux qui lui sont consacrés, notamment la modélisation introduite
par [Pounds et al., 2002]. Nous présentons ensuite différents travaux consacrés au suivi de
trajectoire, notamment par régulateur PID ou LQR sur des modèles linéarisés [Pounds et al.,
2002; Bouabdallah et al., 2004; Bouabdallah and Siegwart, 2005, 2007], par platitude [Cowling
et al., 2007; Konz and Rudolph, 2013] ou par commande sans modèle [Wang et al., 2011].

Nous présentons ensuite des travaux consacrés au transport de charge par quadcoptère, tout
d’abord dans le cas de charge fixe [Pounds et al., 2012; Palunko and Fierro, 2011; Mellinger et al.,
2013]. L’expérience tirée du contrôle de charge par grue peut aussi être utilisée, notamment
pour atténuer les oscillations d’une charge pendulaire [Bisgaard et al., 2009]. D’autres exemples
sont donnés pour permettre le transport de charge pendulaire [Palunko et al., 2012; Sreenath
et al., 2013] et peuvent être étendus au cas du transport coopératif [Sreenath and Kumar, 2013].

Le dernier exemple d’applications présenté est le cas du pendule inversé pour lequel des
exemples sont introduits [Hehn and D’Andrea, 2011; Lee et al., 2013; Figueroa et al., 2014].

8 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Résumé étendu en français

5.3 – Drones multirotors à rotors inclinables

Dans cette dernière section, nous étudions les travaux ayant été réalisés sur des drones multirotors
à rotors inclinables. Le premier exemple présenté est un quadcoptère dont les rotors sont tous
indépendamment inclinables [Ryll et al., 2012] conduisant, avec ses huit contrôles indépendants
à, un système suractionné. Le modèle ensuite présenté [Hua et al., 2012] évite cet écueil
en équipant un drone avec une poussée orientable et prouve en simulation la capacité d’un
tel aéronef à suivre des trajectoires arbitraires. Une solution est également apportée quand
les capacités du drone sont dépassées pour différencier et accomplir objectifs primaires et
secondaires. Le quadcoptère de [Thorel and d’Andréa-Novel, 2014] avec un axe inclinable est
utilisé au sol. Cette stratégie est utilisée pour permettre une exploration efficace énergétiquement
en environnement intérieur mais le modèle présente une singularité rendant sa stabilisation
compliquée. D’autres modèles, avec un nombre varié de rotors, sont présentés, notamment des
modèles trirotor [Escareño et al., 2008; Mohamed and Lanzon, 2012].

Chapitre 6 – Le tricoptère, un drone agile

Ce chapitre est dédié à la présentation du tricoptère, un drone multirotor à rotors inclinables
développé à la Chaire de théorie des systèmes et génie de la commande de l’Université de la
Sarre (Allemagne) sous la direction de Joachim Rudolph.

6.1 – Architecture du tricoptère

Dans cette première section, nous décrivons l’architecture du tricoptère. Nous commençons par
décrire l’architecture mécanique du tricoptère. Celui-ci se compose, comme illustré figure 6.1
page 119, de trois rotors disposés régulièrement à 120 ˚ dans un plan. Ainsi que le suggère
la figure 6.2 page 119, chaque bras peut s’incliner indépendamment autour de son axe grâce
à des servomoteurs offrant une amplitude d’environ 120 ˚. Les caractéristiques techniques
du tricoptère sont rassemblées tableau 6.1 page 120. Nous décrivons ensuite l’électronique
embarquée du tricoptère. Il faut notamment noter les capacités du microcontrôleur embarqué
dont les caractéristiques élevées permettent de faire, en temps réels, des évaluations numériques
précises. On pourra aussi remarquer que le contrôle en inclinaison et en rotation des rotors est
assuré par des contrôleurs en boucle ouverte. Les expérimentations sont conduites dans une
salle dotée d’un système de suivi de mouvement de marque Vicon dont les capacités en précision
et en latence sont illustrées respectivement figures 6.4 et 6.5 page 123, cette dernière figure
illustrant également les capacités d’un algorithme de fusion des données du système de suivi de
mouvement et de la centrale magnéto-inertielle embarquée sur le drone.

6.2 – Modèle mécanique du tricoptère

Un modèle mécanique du drone est ensuite construit à partir du modèle de poussée et couple
présenté équation (6.2) page 124. Nous introduisons notamment le vecteur

#»

f a (équation (6.21)
page 127) dont sont tirés les contrôles (équation (6.22) page 127). Ceci nous permet d’obtenir
les équations du mouvement du tricoptère telles que données équation (6.42) page 130.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 9

Résumé étendu en français

6.3 – Introduction à la commande par platitude

Ce chapitre se termine par une introduction succincte à la théorie de la commande par platitude
en dimension finie. Nous rappelons la définition d’un système plat (définition 6.3.1 page 131) et
nous l’illustrons par un exemple classique de grue tiré de [Fliess et al., 1995] représenté par la
figure 6.7 page 131.

Chapitre 7 – Différentes applications du tricoptère

Dans ce chapitre, nous présentons différentes applications du tricoptère. Dans la première section,
nous présentons le simulateur et le contrôleur que nous avons développés pour le tricoptère.
Afin de tester le modèle réel, nous étudions ensuite le tricoptère au sol en tant que plateforme
roulante. Cette première expérience nous permet de tester l’ensemble de la plateforme ainsi que
le contrôleur. Nous étudions ensuite le vol autonome du tricoptère et des expériences de suivi
de trajectoire. Finalement, nous étudions l’utilisation du tricoptère pour le transport de charge
pendulaire.

7.1 – Plateforme de simulations, trajectoire de test et contrôle

Nous présentons tout d’abord la plateforme de simulations développées pour le tricoptère. Celle-
ci est composée de différents composants – contrôleur, intégrateur, générateur de trajectoire –
développés en C et sont liés par une interface en python. Cette interface permet notamment
d’envoyer les résultats de simulation vers un simulateur de vol : FlightGear Flight Simulator ce
qui est représenté figure 7.1 page 134. La trajectoire utilisée est représentée figure 7.3 page 136.
Elle a été choisie pour permettre des parcours répétés dans l’espace contraint disponible tout en
ayant un profil similaire à ceux obtenus dans la première partie de cette thèse. Nous étudions
ensuite des dynamiques d’erreur qui nous permettent, en nous servant des résultats de [Kastelan
et al., 2015] pour le contrôle de l’orientation, de proposer un contrôleur permettant le contrôle
des six degrés de liberté de l’appareil. Ce contrôleur est donné équation (7.18) page 138. Les
sections suivantes sont dédiées à l’application de celui-ci.

7.2 – Le tricoptère roulant

Suivant l’exemple de [Thorel, 2014], nous proposons de faire évoluer le tricoptère au sol. Ceci
permet de mettre en avant son caractère totalement actionné. Ceci permet également de tester
le système en déplacement avant les phases de vol et laisse entrevoir des gains en terme de
dépense énergétique, la poussée nécessaire étant réduite. Pour permettre ce déplacement, une
base roulante, représentée figure 7.4 page 139 avec les paramètres donnés tableau 7.1 page 139,
a été ajoutée au tricoptère. Dans cette configuration, le contrôleur du tricoptère se simplifie en
équation (7.30) page 141. Des simulations effectuées à partir du modèle simplifié de translation
(équation (7.40) page 145) montrent que la saturation des angles d’inclinaisons des rotors
surviennent, pour des poussées verticales faibles, pour des accélérations particulièrement faibles.
Cela permet de choisir une poussée verticale adaptée, en l’occurrence 4.3 N, soit environ un
tiers de la poussée verticale nécessaire au vol stationnaire.

10 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Résumé étendu en français

Ces premières expériences permettent également de mettre au point les outils d’analyse,
notamment la reconstruction, hors-ligne, des vitesses et accélérations effectives du drone. Celles-
ci s’obtiennent à partir des données de positions absolues, bruitées, et par l’algorithme de
régularisation de [Chartrand, 2011] dont l’efficacité est matérialisée par la figure 7.6 page 147
et dont les biais sont illustrés figure 7.7 page 148.

Nous réalisons ensuite l’expérience de suivi de trajectoire. Les résultats de suivi de position sont
satisfaisants (figure 7.8 page 149) avec une erreur en position constamment inférieure à 0.1 m.
Ces résultats sont matérialisés figure 7.9 page 149. La vitesse et l’accélération sont également
convenablement suivies même si des oscillations apparaissent lorsque l’on évalue la norme de
celles-ci (figure 7.10 page 150). Dans le même temps, l’angle de lacet, la vitesse et l’accélération
angulaire sont très bien suivis (figure 7.11 page 151). Les commandes ainsi que leurs prédictions
sont représentées figure 7.12 page 152. Ces premières suivent par moment correctement ces
dernières mais à de nombreux endroits, des pics non prévus dans les commandes apparaissent.
Ces pics peuvent trouver une explication dans des effets non modélisés, par exemple l’effet de
sol qui augmente l’efficacité des commandes en poussée.

7.3 – Le tricoptère volant

Le vol ajoutant deux degrés de liberté en orientation, la représentation par des angles et matrices
de rotation induit une ambiguïté. Nous adoptons, pour la résoudre, la représentation décrite par
l’équation (7.43) page 153.

Dans un premier temps, nous vérifions la stabilité du tricoptère en vol stationnaire. Les
résultats sont encourageants (figure 7.13 page 153) avec des erreurs statiques inférieures
respectivement à 1× 10−1 m et à 2× 10−2 rad et des écarts aux valeurs moyennes sur la fenêtre
de temps considérée inférieurs respectivement à 2× 10−2 m et 2× 10−2 rad. Les commandes
sont de l’ordre de grandeur des prédictions (figure 7.14 page 154) les rotors 2 et 3 présentant
cependant des valeurs inférieures en moyenne à la prédiction.

Le suivi d’une demande d’augmentation de l’altitude est représenté (figure 7.15 page 155)
pour deux essais différents. On remarque que durant les deux essais, la vitesse et l’accéléra-
tion verticales présentent des oscillations tandis que la position présente une erreur statique
importante.

Nous réalisons ensuite le suivi de trajectoire par le tricoptère. Les positions, vitesses et
accélérations sont convenablement suivies (figure 7.16 page 156), cependant une erreur statique
importante en x apparaît. Ceci se manifeste dans la représentation de la trajectoire parcourue
(figure 7.17 page 156) ; une fois l’erreur statique corrigée, le suivi apparaît convenable. Le suivi
en lacet (figure 7.18 page 157) et la stabilisation en tangage et roulis (figure 7.19 page 157)
sont également convenables. Les commandes (figure 7.20 page 158) suivent globalement la
forme donnée par les prédictions avec cependant un certain nombre d’écarts.

7.4 – Transport de charge

Cette section est consacré au transport d’une charge pendulaire par le tricoptère. Cette charge,
pesant 100 g, est attachée à l’extrémité d’un tube de carbone de longueur 20 cm, lui-même fixé
à l’axe d’un capteur industriel de type joystick. L’ensemble est représenté figure 7.21 page 159.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 11

Résumé étendu en français

Une carte d’acquisition (figure 7.22 page 161) a été développée pour effectuer l’acquisition de
donnée et sa transmission au tricoptère. Les résultats de l’identification des paramètres de l’unité
de mesure d’angle sont représentés figure 7.24 page 162.

La dynamique du drone a été modifiée pour aboutir au modèle des équations (7.44) et (7.45)
page 161 en se basant sur les nouveaux référentiels de la figure 7.25 page 163. Il est à noter
que dans ce modèle, la charge pendulaire est fixé à l’écart du centre de gravité du tricoptère et
implique donc une dynamique angulaire modifiée. Nous donnons ensuite les équations cinéma-
tiques de la charge, aboutissant à l’équation (7.49) page 163. La cinématique angulaire n’ayant
que deux degrés de liberté est également simplifiée pour aboutir aux équations (7.56) et (7.57)
page 164. En utilisant la dynamique du pendule (équation (7.60) page 165), nous aboutissons au
modèle global de l’équation (7.62) page 166. Nous démontrons que l’inertie réduite du système
global est inversible dans toutes les configurations du système (proposition 7.4.1 page 167).
Ceci nous permet d’aboutir à l’un de nos principaux résultats (proposition 7.4.2 page 168) qui
énonce que le système composé du tricoptère et de notre charge pendulaire est plat avec pour
sortie plate l’ensemble constitué de la position du pendule, le lacet du tricoptère et l’orientation
de la charge par rapport au tricoptère. Ce résultat nous permet de proposer des commandes en
boucle ouvertes (figure 7.28 page 170) afin de suivre avec la charge la trajectoire de référence
(figure 7.27 page 170).

7.5 – Perspectives

Dans ce chapitre, nous avons présenté un contrôleur en boucle fermée basé sur la platitude et des
applications de celui-ci au contrôle du tricoptère dans deux scénarios. La première application,
où le tricoptère doit suivre une trajectoire au sol en roulant sur des roues libres est une bonne
illustration du caractère totalement actionné de cette plateforme. Cela nous a permis de tester
et vérifier avec soin l’ensemble de la plateforme et, tout particulièrement, le contrôleur. De plus,
cette approche peut se révéler intéressante pour l’exploration en intérieur, lorsque le sol est
compatible avec la base-roulante. Cela apparaît en effet plus efficace en terme de déplacement.
Dans notre cas, nous avons utilisé le tiers de l’énergie nécessaire au vol. Le contrôleur s’est
montré efficace en terme de suivi de trajectoire, tant en orientation qu’en positon.

La seconde application est le cas ✓ naturel ✔ du vol. Le contrôleur a montré sa capacité
a correctement stabiliser le tricoptère. Certains défauts mineurs pourraient être néanmoins
corrigés dans le futur. Par exemple, l’ajout d’un terme intégral au suivi de position pourrait
aider à éliminer les différentes erreurs statiques. De plus, comme nos vols expérimentaux ont
été effectués dans une petite salle de test, le tricoptère a été particulièrement affecté par des
turbulences. Par exemple, le suivi en altitude a été particulièrement perturbé par l’effet de sol
dû à la proximité de celui-ci, ce qui a rendu impossibles les décollages autonomes. Une meilleur
compréhension et une correction des divers effets aérodynamiques entrant en jeu aideraient à
augmenter l’efficacité de notre contrôleur.

Dans le dernier scénario, le tricoptère est équipé d’une charge pendulaire. Un modèle précis est
introduit en prenant en compte l’influence de la charge sur le tricoptère. Un contrôleur en boucle-
ouverte basé sur la platitude du modèle est proposé pour suivre une position avec la charge.
Cette approche pourrait bénéficier de diverses améliorations et études ultérieures. Notamment,
la paramétrisation de la matrice de roulis-tangage dans la preuve de la platitude pourrait être
améliorée, par exemple en suivant ce qu’a proposé [Konz and Rudolph, 2013]. Le contrôleur en

12 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Résumé étendu en français

boucle-ouverte proposé pourrait être utilisé comme un premier pas en direction d’un contrôleur
en boucle fermée. De plus, d’autres trajectoires et applications pourraient être étudiées, par
exemple en faisant passer le tricoptère par une fenêtre moins haute que la longueur de la charge
pendulaire ou le transport coopératif par plusieurs tricoptères de la charge pendulaire.

Conclusion

Le but de cette thèse était d’étudier et de présenter un environnement de planification de
trajectoires et le contrôle de systèmes collaboratifs appliqués à un cas particulier : un nouveau
drone trirotor.

Dans la première partie de cette thèse, nous avons créé l’environnement pour générer des tra-
jectoires pour un système multi-agents. À l’issue d’une synthèse des diverses solutions existantes
de contrôle de systèmes collaboratifs, nous avons examiné le cas de la génération de solutions
pour certaines équations aux dérivées partielles.

Notre travail repose sur l’équation de Burgers, une équation unidimensionnelle non-linéaire
classique de la mécanique des fluides. Les solutions à l’équation de Burgers peuvent être trans-
formées à l’aide de la transformation de Hopf-Cole en solutions à l’équation de la chaleur. Nous
prouvons, sous certaines conditions, que l’équation de la chaleur avec contrôles aux deux extré-
mités est plate. Ainsi, nous pouvons créer des solutions à l’équation de la chaleur en choisissant
les trajectoire des agents aux extrémités de la formation. Nous prouvons divers résultats sur les
structures admissibles pour les contrôles et montrons que ces contrôles peuvent être utilisés pour
mener l’équation de la chaleur en temps-fini entre différents états arbitraires, et notamment
des états non-nuls. Dans un second temps, nous utilisons l’optimisation par essaim particulaires
pour optimiser les contrôles et créer des solutions adaptées à l’équation de Burgers. La solution
ainsi créée définit les trajectoires d’un système collaboratif. Ce système est composé de meneurs
(leaders) et de suiveurs (followers). Les positions des meneurs peuvent être choisies librement
et sont utilisées comme contraintes de l’optimiseur. Les positions des suiveurs sont la consé-
quence de la position des meneurs et des critères d’optimisation. Dans notre environnement,
les trajectoires sont construites de telle sorte que les trajectoires des meneurs soient les plus
courtes possibles. Nous combinons plusieurs trajectoires unidimensionnelles en une trajectoire
multidimensionnelle et montrons un exemple en deux dimensions pour deux meneurs et dix-neuf
suiveurs.

Dans la seconde partie de cette thèse, nous considérons le problème du suivi par des drones
des trajectoires générées. Après une courte introduction à l’aérodynamique avec une emphase
portée sur les drones multirotors, nous présentons plusieurs problèmes actuels dans le domaine
des drones tels que le transport de charge pendulaire et le transport coopératif de charge.

Notre travail est dédié au cas spécial d’un drone trirotor : le tricoptère. Ce modèle est le
résultat d’études conduites sous la supervision du Professeur Rudolph au LSR (Université de la
Sarre, Allemagne). Il a l’avantage spécifique de disposer de six contrôles indépendants. Il est par
conséquent complètement actionné et peut suivre n’importe quelle trajectoire raisonnable. Nous
présentons l’architecture du tricoptère et notre travail quant à la modélisation et à la simulation
de la plateforme. Un approche de contrôle est présentée basée sur la platitude de ce système
dynamique et un algorithme de suivi de trajectoire en boucle fermée est présenté.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 13

Résumé étendu en français

L’efficacité énergétique des drones est un problème ouvert. Une solution possible dans le cas
de l’exploration de bâtiments est de permettre au drone de rouler sur le sol pour économiser
la poussée verticale. Ceci est particulièrement facile à appliquer pour notre tricoptère, celui-ci
étant totalement actionné. Par conséquent, le contrôleur est tout d’abord testé au sol et suit une
trajectoire dans le plan. Le résultat de ces premières expériences est concluant et le tricoptère
est ensuite testé pour le suivi de trajectoires aériennes. Les performances du tricoptère sont
également concluants dans ce cas. Une dernière application est suggérée : le transport d’une
charge pendulaire. Nous prouvons que le tricoptère transportant une charge pendulaire est un
système plat. Nous présentons un contrôleur en boucle ouverte pour parcourir les trajectoires
voulues et présentons également le module de mesure d’orientation de la charge qui est nécessaire
au suivi en boucle fermée des trajectoires.

En conclusion, cette thèse présente une solution complète et cohérente pour des systèmes
collaboratifs. Un planificateur de trajectoires haut-niveau est introduit et complété avec le
contrôle des agents bas-niveau : un drone trirotor totalement actionné. Néanmoins, différentes
améliorations peuvent être envisagées. Par exemple, dans le cas du planificateur de trajec-
toire haut-niveau, l’optimiseur pourrait être adapté pour permettre l’évidement de collisions et
d’obstacles. De plus, la dynamique des agents pourrait être prise en compte, par exemple en
utilisant différentes viscosités (le paramètre µ) ou raideurs du contrôle (le paramètre γ) pour
les dynamiques verticale et horizontales.

Le contrôle des agents bas-niveau pourrait être également amélioré. Le décollage et l’at-
terrissage autonomes sont les améliorations les plus évidentes qui pourraient être apportées.
Ceci nécessiterait une meilleure compréhension et une meilleure modélisation de divers effets
aérodynamiques. Par exemple, l’effet de sol pourrait être pris en compte en utilisant le modèle
suggéré par [Johnson, 1994] :

T
T∞
=

1
1−α/z2

.

ou les modèles plus sophistiqués qui y sont proposés. De plus, un terme intégral pourrait être
ajouté à la partie translationnelle du contrôleur de position pour améliorer la qualité du suivi de
trajectoire en vol. Dernièrement, les dynamiques des servomoteurs et des rotors pourraient être
prises en compte dans le modèle. Ceci conduirait à un modèle dynamique de plus haut degré
qui décrirait le tricoptère de manière plus adaptée.

L’une des premières améliorations à apporter au système de transport de charge pendulaire
est la création d’un contrôleur en boucle fermée. Il serait également intéressant de proposer un
contrôleur pour un pendule inversé qui n’utiliserait que la dynamique en rotation du tricoptère
pour stabiliser le pendule tout en stabilisant le tricoptère en position. Ceci est possible avec notre
plateforme et est reflété par les équations du modèle dynamique du tricoptère. Ceci conduirait à
une amélioration intéressante par rapport aux travaux actuels sur la stabilisation de pendule
inversé par drone. Pour finir, proposer une solution de transport coopératif de charge utilisant le
tricoptère serait une avancé marquante.

14 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Part I

Trajectory planning for multi-agent
systems

CHAPTER 1

Motion planning for multi-agent
systems, an overview

Introduction

From 1985 to 1989, Michael Girard and Susan Amkraut worked on one of the first known
computer animation of a flock of birds [Girard and Amkraut, 1990]. The 3 minutes 45 seconds
long animation staged a flock of about forty birds flying in a temple where they by the end
join dancers in a mutual psychedelic choreography. The design of the birds’ trajectories was
elaborated on a physical model. Each bird was namely subjected to repulsive forces occurring
from the other birds and obstacles. The birds were simultaneously driven toward their preset
goals by spiral attracting forces. The trajectories of each bird were then computed as the
numerical integration of a linear differential equation. The numerical evaluation of each step
took then about twelve minutes. Using the trace and the discriminant of the linear equation
matrix, Girard&Amkraut were then able to classify the flow patterns – such as e.g. spirals, sinks,
sources, saddles and orbits – and to make changes to the matrix to drive the flock according to
these patterns.

In the meantime, [Reynolds, 1987] made one of the first theoretical approach toward the
problem of animating flocks of birds, herds of land animals and schools of fish. He first identified
various limitations appearing while solving such multi-agent systems with forces based models.
Indeed, while it is not unusual to encounter in certain region of the world swarms of locusts
containing billions of individuals, one of the limits of mathematical models is usually the lack
of scalability, meaning that the numerical complexity grows faster than the number of agents
making difficult to compute solutions to problems with a lot of agents. In the case of [Girard
and Amkraut, 1990], the difficulty was presumably at least quadratic, since for each bird it was
necessary to compute forces from all the other birds. Other problems might occur during the
evolution of such multi-agent systems. The swarm might either collapse – e.g. all the agents end
up in one point due to too intense and unrealistic attracting forces – or split – e.g. the agents
gather in several smaller groups, maybe even alone, because of too intense repulsing forces –
which is, in both case, not desirable.

Reynolds identifies the use of unbounded forces for collision avoidance as one of the origins
of these problems. As such forces act infinitely far, even if the agent is not heading toward the
obstacle, they might turn out to be too important when in the neighborhood of other agents. As
a consequence, if the global repulsion is too intense, the swarm might be led to split.

Reynolds states then that flocking comes from the three following rules, in decreasing prece-
dence, called today the three rules of Reynolds:

Chapter 1. Motion planning for multi-agent systems, an overview

Collision Avoidance: avoid collisions with nearby flockmates and obstacles.

Velocity Matching: attempt to match velocity with nearby flockmates.

Flock Centering: attempt to stay close to nearby flockmates.

Velocity matching is in fact already part of the collision avoidance task. Indeed, if all agents
moves at the same – vectorial – speed they avoid collisions. However it is more important to
avoid collision than to match the velocity of the neighborhood. If it appears necessary to turn to
avoid an obstacle, this should be more important than keeping the flock’s speed. Moreover, flock
centering is also important as it acts against the splitting of the system. However, being the less
important constraint, it won’t prevent the flock to split around obstacles when necessary.

Nevertheless, the approach of Reynolds was really specific to the animal world and was putting
efforts into reproducing the dynamical ability of animals and the limitations their narrow vision.

While multi-agent systems is a really wide topic of research spanning over different areas
such as sensor arrays or communication protocols, we will focus on systems of moving agents
such as the former birds appearing in computer animations or robots evolving in one, two or
three dimensions, such as, respectively, convoy of cars on a highway, mobile ground robots, or
aerial vehicles such as planes and helicopters.

In the following, we will equally use the terms swarms, flocks and formations as synonyms of
multi-agent systems. However, as explained in the survey [Gazi and Fidan, 2007], swarms and
flocks are usually used by most authors to describe a system that is sparsely structured with a
high number of agents and uncertain trajectories for each agent. Conversely, the term formation
is mostly used for well-structured systems with a relatively small number of agents having rather
well determined and precise trajectories.

One can distinguish among the planning algorithm, two different classes. On the first hand,
one can consider only path planning. That is the creation of a geometric function along which an
agent will evolve, the time dependency of this evolution being considered as another problem.
On the other hand, one can directly consider the problem of motion planning. That is the
creation of a time-constrained trajectory. Trajectory planning and motion planning are synonyms
but should not be confused with path planning which is not time constrained. In this work, we
will mostly focus on the problem of coordinated trajectory – or motion – planning for formations.
In this sense, we will consider the problem of giving a time determined path to each agent of a
multi-agent system while trying to follow the three rules of Reynolds.

For the general case of multi-agent systems, [Beard et al., 2001] classified the existing methods
into three different categories:

Leader-follower: in leader-follower methods, each agent follows a global leader, for example
an officer in a platoon. In more evolved implementations, each agent may follow another
agent, for example the previous agent which can be considered as a local leader, or another
mathematical point, for example the barycenter of the formation. Such methods make it
easy to move the formation in a specific direction assigning a specific trajectory tracking
problem to the leader. However, basic implementations of this methods are not resilient
in case of failure of the leader, provide no feedback among the system, and require every
agent to have knowledge of the leader’s state. The last condition can in fact be a real

18 Revision: a466fdc (2015-10-14 23:06:42 +0200)

1.1. Different methods of managing a multi-agent system

burden to the communication network. However, the simplicity of this method gives it a
great advantage.

Behavioral methods: in behavioral based methods, all the agents are considered equal and they
adopt behaviors built on informations coming from their only neighborhood. The behavior
of an agent is usually based on simple rules. Thanks to the feedback shared between
neighboring agents, these methods are following a decentralized approach making it easily
scalable. However, it is usually difficult to predict the group behavior, and the stability of
the formation is generally not easy to prove either.

Virtual structure: in virtual structure based methods, the agents are treated as elements of a
single structure. It is then easy to have a group behavior and to enforce the agents to
comply to a precise formation, but as a consequence the formation is constrained to a
specific structure which is not easy to change.

However, as we will see in the following survey, even if this classification is globally worthwhile,
crossovers between the different methods have been introduced. Moreover, some methods
cannot be totally related to one of these methods.

The chapter is split in two sections. The first section reviews some of the various methods
that have been used to design the evolution of multi-agent systems. It treats first the case of
behavioral methods, which relies only on local informations while being based on simple rules.
We review then methods relying on the Particle Swarm Optimization algorithm where several
robots cooperate to find a “best point”. The third subsection describes potential based methods,
a class of methods based on virtual forces and their potential fields. A final subsection presents
some method that make use of Partial Differential Equations to describe the evolution of swarms.

The second section reviews three classes of problems that are related to the present thesis.
In a first subsection we report on the deployment problem, that is the planned evolution of a
formation between two precise sets of points. In the following subsection, we review solutions to
the problem of cooperative transportation of a payload by flying agents. In a last subsection, we
describe some algorithms ensuring collision avoidance between agents moving on predetermined
concurring paths.

This partition is meant to give an insight in the various methods used in the literature and to
give a background to our research while showing that similar problems can be solved by means
of various methods stemming from the different subsections of the methods’ section.

1.1 Different methods of managing a multi-agent system

In this first section, we try to give an overview of some methods used to steer multi-agent
systems. Accross these sections, one may encounter methods that allow low-level control laws
for each agent of the system. One will also run into rather abstract methods handling high-level
coordination problems while deferring the control laws to be used to low-level controllers specific
to each agent – which may or may not be given by the respective authors.

However, as introduced earlier, the partition is not made on wether or not the suggested
methods give low-level control laws. This section rather gives a review of methods which were

Revision: a466fdc (2015-10-14 23:06:42 +0200) 19

Chapter 1. Motion planning for multi-agent systems, an overview

classified as follows: behavioral methods, Particle Swarm Optimization techniques, potential-
based methods, graph theory induced methods and partial differential equation descriptions of
swarms.

1.1.1 Behavioral methods

Behavioral methods are local motion-planning algorithms based on simple rules, which they
apply to single particles based on informations coming from the only neighborhood. These
methods are among the first to have been used in motion planning for multi-agent systems
as they are easily stated and generally efficiently scalable since their rules are supposed to be
implemented independently for each agent.

As a first example, [Vicsek et al., 1995] uses a set of agents evolving in a plane where each
agent is represented by its respective position xi. The speeds of the agents vi have a constant –
uniform among the swarm – absolute value v and orientation θi. At initial time the positions
and orientations are randomly distributed. The time is discretized, with discrete increment ∆t,
and the position of each agent is then updated at each time step tj as

xi(tj+1) = xi(tj) + vi(tj)∆t, (1.1)

and the steering angle of the speed vector of the i-agent is updated as

θi(tj+1) = 〈θi(tj)〉r +∆θ, (1.2)

where 〈·〉r is the average over a circle of radius r, including the i-th particle. ∆θ is a uniform
noise with ∆θ< η/2. The aim of these two rules is to obtain a group behavior conforming to
Reynolds’ second alignment rule. Indeed, there is no rule to handle collisions between agents.

A simple analysis of the limit cases shows that at low speed – v→ 0 – the particles do not
move and as a consequence the system does not evolve. At high speed – v→∞ – the system
is completely mixed between two updates. Based on numerical simulations, the authors show
that, setting a selected value of v, at low density and high noise, agents gather in small groups
evolving in random directions. At high density and low noise, swarming, i.e. alignment of the
agents in a unique group, appears. The authors explain this behavior with an analogy to the
phase transitions of certain physical systems. As we will see in the following, using analogies to
other domain of physics is a commonly used method.

Vicsek’s rules have been improved by several authors. For example, based on the previous
work, [Jadbabaie et al., 2003] introduces a graph based matrix representation of equation (1.2).
Instead of updating the steering angle based on the geometric neighborhood, the authors propose
to update it based on the network neighborhood of each agent. The update of the steering angle
vector is then given as

θ(ti+1) = Fσ(ti)
θ(ti), (1.3)

where θ is the vector containing the steering angles of all the agents, Fp = (I+Dp)
−1(I+ Ap),

with Dp the diagonal matrix whose j-th diagonal element is the valence of vertex j within the
graph p and Ap is the adjacency matrix of graph p. The application σ is chosen in a suitably

20 Revision: a466fdc (2015-10-14 23:06:42 +0200)

1.1. Different methods of managing a multi-agent system

defined subset of the set of simple graphs on n vertices. Selecting an appropriate switching
signal σ, not necessarily based on the geometric position of the agents, the authors prove the
convergence of the headings of the agents

lim
i→∞

θ(ti) = θss1, (1.4)

where 1 is the vector with all coordinates equal to 1 and θss depends only on θ(0) and σ. The
authors thus provide a general proof of the convergence of the headings observed by Vicsek
et al.. Based on this work, Jadbabaie et al. propose a feedback controller u(t)

u(t) = −G−1
σ(t)Lσ(t)θ(t), (1.5)

with Lp the Laplacian matrix of the graph and Gp a suitably defined, nonsingular, diagonal
matrix. Lσ(t)θ(t) = e(t) can be seen as the average heading error. By suitably choosing, the
matrix G, it is then possible to steer the system

θ(ti+1) = θ(ti) + u(t), (1.6)

to any desired angle. Using this open-loop controller and the previous results, a leader-
follower model is then introduced. A (virtual) leader moves at constant speed with constant
orientation. The authors then show that under certain assumptions all the agents will align with
the leader. The authors finally prove this result to be valid also in the continuous case for the
continuous-time model θ̇= u. However, as in the preceding work of Vicsek et al., the collision
avoidance between agents is not addressed.

Nonetheless, the rules may remain simple and there is no need for graph theory. For example
[Balch and Arkin, 1998] introduces a behavior based coordination scheme based on four different
vector forces, move-to-goal, avoid-static-obstacles, avoid-robots that are based on the previous
force and maintain-formation. The area of influence of each force is partitioned in three zones,
the ballistic zone above a certain distance, the dead zone below a certain distance and the
controlled zone in between. In the ballistic zone and the dead zone, the forces, both direction
and intensity are constant; they are linearly increasing – or decreasing – in the controlled zone.

This process is applied to four military automated vehicles travelling. The vehicles move
in four different formations originating from US military engagement rules: diamond-like,
wedge-like, line-like or column-like formations. The different vehicles are supposed to follow
either the platoon leader or the center of the formation. The authors show in simulations that
the formation accurately manages obstacles and stays in formation. However, the algorithm is
based on shared knowledge and regular exchange of GPS data, thus the algorithm experiences
a high latency due to the technological requirements at the time. The algorithm is therefore
not adapted to handle high speed of the vehicles. Moreover, due to the numerous factors – e.g.
gains, radii of the different spheres of influence – the authors couldn’t provide a thorough study
of the algorithm stability properties.

The approach adopted in [Turpin et al., 2012] differs in many aspects from the previous works
but can also be considered as a behavior-based method. The authors consider a tight formation
of quadrotors which is described for each pair of agents (i, j) by a shape vector si,j. Each agent
assigns a confidence coefficient ci,j to the relative estimate of the state of the j-agent. These

Revision: a466fdc (2015-10-14 23:06:42 +0200) 21

Chapter 1. Motion planning for multi-agent systems, an overview

weights are set such that
∑

j6=i ci,j = 1. The matrix of the confidence indexes, the confidence
matrix C, is thus by construction right stochastic. The authors design the shape vectors over t
so that collisions or interferences (for examples the downwash effect, a perturbation created
by the air stream from a propeller on another propeller) are avoided. In such conditions,
the desired position of each agent can be described by xd

i =
∑

j6=i ci,j(xj + si,j) where xj is the
state (position and pitch) of the j-agent. The error in the position can then be estimated as
ed

i =
∑

j 6=i ci,j(xi − xj − si,j).

One of the agents – potentially a virtual one – is defined as a leader and its trajectory is
computed based on the low-level method introduced in [Mellinger and Kumar, 2011]. Once the
trajectory is computed, the coefficients defining the leader’s trajectory are sent to all the other
agents, they can then compute their respective trajectories. This computation occurs inside an
optimization process and at each step of this process the coefficients describing their trajectories
are exchanged between the agents. Under certain assumptions given by the authors, this process
is shown to converge to a set of optimal trajectories adopted by the agents.

The authors prove this procedure to be relatively efficient and the experiments involving
a team of four quadrotors are relatively impressive as the formation follows a relatively ag-
gressive trajectory. The formation even remains stable in the case of the failure of one of its
members. However, the creation of the shape vector si,j is not particularly studied. Indeed, in
the experiments, a constant square formation is used and no obstacle avoidance is introduced.

1.1.2 Methods based on Particle Swarm Optimization

Particle Swarm Optimization (PSO) was introduced by [Eberhart and Kennedy, 1995; Shi and
Eberhart, 1998], who cited Reynolds flocking as an inspiration. It mimics the evolution of a
swarm of particles in an arbitrary number of dimensions to optimize nonlinear functions. In this
context, it can be seen as an application of a simple behavioral model to an abstract multi-agent
system. This optimization method is particularly appreciated as it makes no assumptions on the
function being optimized. Since the algorithm makes no use of the gradient of the function, it
does not need the function to be differentiable and can handle noisy data. However it is not
ensured that the algorithm will find an optimal solution – if there is one. The method is based on
an evaluation function f, on the knowledge by each agent of its own best position over time with
respect to the evaluation function and on the shared knowledge of the globally best position.

A simple version of the PSO algorithm – for which a pseudocode version is given in algo-
rithm 1.1 – can be described as follows:

Initialization: A set of particles is created with – uniformly distributed over [xmin,xmax] –
random positions over the solution space. The speeds of the particles are also initialized –
with uniformly distributed over [−|xmax − xmin|, |xmax − xmin|] – random speeds. The best
particle of each particle is initialized to its initial position while the global best particle is
searched among them.

Evolution: At each step of the evolution, the speed of each particle is updated based on its
current speed and position and on the knowledge of the best local and global particles.
The particles are then moved according to the new speed and evaluated.

22 Revision: a466fdc (2015-10-14 23:06:42 +0200)

1.1. Different methods of managing a multi-agent system

1: Data:
ω, φp, φg ⊲ Gains
n ⊲ Number of particles
function PSO

5: for i← 0,n− 1 do
xi← rand(xmin,xmax) ⊲ Initialization of the positions
pi← xi ⊲ pi is the local best
if f(pi)< f(g) then ⊲ f is the evaluation function

g← pi ⊲ g is the global best

10: vi← rand(−|xmax − xmin|, |xmax − xmin|) ⊲ Initialization of the speeds

while Termination criterion do ⊲ Either number of steps or quality of the result
for i← 0,n− 1 do

rp = rand(0,1) ⊲ Random local gain
rg = rand(0,1) ⊲ Random global gain

15: vi← ωvi +φprp(pi − xi) +φgrg(g− xi) ⊲ Update of the speed
xi← xi + vi ⊲ Update of the position
if f(xi)< f(pi) then

pi← xi ⊲ Update of the local best
if f(pi)< f(g) then

20: g← pi ⊲ Update of the global best

return g

Algorithm 1.1 – Particle Swarm Optimization

It is believed that the swarm will converge to the global optimum if it exists or, if not, converge
to a local optimum. However this convergence depends on the various parameters that can be
chosen and the swarm can, in some cases, diverge or oscillate. The choice of these parameters
has thus to be performed with great care whereas with a certain freedom.

We present Particle Swarm Optimization thoroughly because this algorithm will be used in
the present thesis – however in a different way, at a rather higher level – to optimize sets of
parameters in our motion planning algorithm. Nonetheless, some concrete low-level applications
to trajectory planning problems have been conducted, making the PSO a currently used motion
planner for multi-agent systems.

For instance, in [Pugh and Martinoli, 2007], the authors use wheeled robots to find an object
using PSO. The particles of the algorithm are matched one-to-one with the robots. The latter
detect the intensity of a signal emitted by the searched object. This intensity is used as the
evaluation function of the PSO, the evaluation function is thus rather sparse and the gradient
of the intensity would require more data to be evaluated. In comparison to basic PSO, the
authors adapt the algorithm to take into account the limited speed of the robots, their limited
acceleration and collision avoidance. In comparison to abstract PSO, the travel times are not
homogeneous and, at each step, the robots have to stop to synchronize. In a first version of the
presented algorithm , the robots have access to their own absolute position and have a global
data connexion allowing all the robots to know the exact position of the local and global best
position. In another more realistic version, the authors propose to allow the robots a short

Revision: a466fdc (2015-10-14 23:06:42 +0200) 23

Chapter 1. Motion planning for multi-agent systems, an overview

memory of the past bests, with only relative positioning and information sharing with the only
neighbors. Even in this simplified version, the search algorithms give good results and the robots
converge to the origin of the signal.

The authors of [Couceiro et al., 2011] built on the work of [Pugh and Martinoli, 2007]. They
improved the collision avoidance by adding an evaluation function for collision risks, based e.g.
on the output of distance sensors, for example infrared or ultrasound sensors. A term based
on the optimisation of this sensing function is added when updating the speed. The authors
also make use of the Darwinian PSO [Tillett et al., 2005], a modified version of PSO which was
shown to be less likely to be trapped in local extrema. This method pretends indeed to mimic
the Darwinian behavior of social groups. The swarm is split in several sub-swarms that represent
the social groups. Over the time, these sub-swarms reject the worst agents of their swarm and
integrate the best lone robots. Doing this, the sub-swarms may escape locale extrema thanks to
the knowledge of the integrated lone agents.

Such bio-inspired multi-agent algorithms are however diverse, as proves the work by [Turduev
et al., 2014] in which a decentralized and asynchronous version of PSO as well as other
biologically inspired optimization algorithm such as Bacterial Foraging Optimization and Ant
Colony Optimization are used to find a gas leak using mobile ground robots equipped with gas
sensors.

1.1.3 Potential methods

Back in 1992, [Rimon and Koditschek, 1992] tried to solve the problem of trajectory planning
and tracking for a single robot using a class of potential functions. The potentials were designed
to be high on obstacles and low on the chosen goals. The authors then suggested a control law
that leads the agent to follow down to the goal the decrease of the potential. This solution was
called the Navigation Function Method (NFM). However, this first step had several flaws. Since
the suggested potential had infinite span, the controller needed to know the position of all the
obstacles, thus requiring at every moment a global knowledge. Moreover, the agent runs the risk
to be trapped in one of the local minima, the solution to this risk being to find accurate gains for
the potentials. This solution is a computationally intensive task. Furthermore this work was not
planned for multi-agent systems and further work was needed to extend this method.

Building on [Rimon and Koditschek, 1992], [Leonard and Fiorelli, 2001] proposed a motion
planner for multi-agent systems. In addition to the real agents of the system, some virtual
agents were introduced. Collision avoidance between real agents and formation constraints
were obtained through artificial potentials which originated from both the real and the virtual
agents. In a decentralized manner, a global potential field is evaluated for each real agent. The
real agents are supposed to be totally actuated to follow the gradient of the global potential
field and, in this way, to converge to local minima, which are created by the virtual agents to be
the accurate positions in the formation. The potentials are proposed as

V =






α
�
ln(r) + d0

r

�
if 0< r¶ d1,

α
�
ln(d1) +

d0
d1

�
if r¾ d1,

(1.7)

as plotted, in one dimension, in figure 1.1a. The distance d0 is the optimal distance between

24 Revision: a466fdc (2015-10-14 23:06:42 +0200)

1.1. Different methods of managing a multi-agent system

two agents in the formation and d1 is the influence threshold above which two agents do not
influence each other. The forces, originating from these potentials, are of the form

f=

¨
∇V if 0< r¶ d1

0 if r¾ d1

(1.8)

for which a one dimensional example (thus with f = 1
r −

d0
r2) is plotted in figure 1.1b. The

0 1 2 3

−0.5

0

0.5

1 d1d0

r

f

(a) Potential example.

0 1 2 3

−1

0

1
d1d0

r

f

(b) Force example.

Figure 1.1 – Example of potential force with d0 = 0.25 and d1 = 2.

important point in figure 1.1a is the potential well found at r = d0. Another important point
seen in figure 1.1b is the steep gradient of the force around r = d0 and the infinite repulsive force
for collisions (which occur when r = 0). Errors in distance have thus an important contribution
around r = d0. They tend to constrain the agents to stay at the right distance each from another.
Furthermore, above r= d1 the agents have no influence on each other. This threshold makes
the resolution easier. Indeed, the potential field around an agent is the sum of the only agents
being close enough. Hence, the agents do not need the global knowledge of the positions of the
other agents but only of a subset of them.

The control for each real agent is chosen to be

ui = −
n∑

j=1
j6=i

fI(rij)
rij

‖rij‖
−

m−1∑

k=0

fh(hik)
hik

‖hik‖
+ fi, (1.9)

where rij is the vector from agent i to the real agent j and hik is the vector from agent i to the
virtual agent k. fI is the force between real agents. fh is the force between real and virtual agents.
fi is a dissipative force used to ensure stability of the system.

A Lyapunov function for this system is

Φ =
1
2

n∑

i=1



ṙi · ṙi +

n∑

j=1
j6=i

fI(rij)

rij
rij + 2

m−1∑

k=0

fh(hik)

hik
hik + fi



 , (1.10)

where ri is the position of the agent i. Using the control law suggested in equation (1.9), the

Revision: a466fdc (2015-10-14 23:06:42 +0200) 25

Chapter 1. Motion planning for multi-agent systems, an overview

derivative of the Lyapunov function is:

Φ̇ =

n∑

i=1

ṙi · fi. (1.11)

Based on this derivative, the authors propose to chose the force as fi = −aiṙi, ai > 0 to make
the system stable. However, even if a few simple examples with one, two or three agents are
shown and rules are given to build some simple geometric formations with more agents, several
problems arise. For example, generating trajectories for the virtual leaders to avoid collisions
with static obstacles, splitting or grouping the system, changing the shape of the formation are
left as open problems. The uniqueness of the formation for a given virtual agent distribution is
also not ensured. Moreover, the suggested force fi is based on the evaluation of the speed of the
agent which may be difficult to obtain for example in the case of UAVs.

[Chang et al., 2003] extend the NFM framework of [Rimon and Koditschek, 1992] to the
case of multi-agent systems. However, to avoid collision with obstacles, they replace the
repelling potentials introduced in the NFM framework by gyroscopic forces. These forces, acting
perpendicularly to the direction of motion, solve the problem that appears when agents move
exactly toward the obstacles. Indeed, in this case the agents were unable avoid the obstacle,
they were simply slowed down and repelled. The authors however add a braking force in case
of eventual collision to complete the effect of the rotation force. These two forces were chosen
because they don’t affect the potential field used to find the goal (in this case, a virtual leader)
and are closer, in comparison to repulsive forces, to the capabilities of usual ground vehicles.
Furthermore, these forces were set to act only at close distances thus decentralizing the problem
and making it scalable.

[Olfati-Saber, 2006] merges previous works on flocking – presented in [Olfati-Saber and
Murray, 2003] – and on consensus in networks of agents – presented in [Olfati-Saber and
Murray, 2004]. Consensus in a network of agents is the ability to converge to a common state,
here a common goal speed, with a sparse communication topology. The author introduces three
scalable flocking algorithms, the first two for agents evolving in free space while the last one
introduces obstacle avoidance. The author shows that these three algorithms respect the three
rules of Reynolds. The algorithms are based on three different types of agents, called α, β and
γ-agents.

The first algorithm is a gradient-based algorithm with velocity consensus protocol for regular
α-agents. This algorithm, which forms a basis for the following two, creates so-called α-lattices
– a regular structure similar to structures – in the flock, and is shown to respect the three rules of
Reynolds. The interactions between α-agents are short ranged so that the algorithm remains
decentralized. The following algorithms, building on this “Reynolds compatible” algorithm, are
also compatible with the rules of Reynolds. The second algorithm adds γ-agents which states
are known from all the α-agents and play the role of virtual leaders, thus assigning objectives to
the α-agents. One should note that in a flock the movement of which is based on the second
algorithm following a γ-agent, the speed of the flock does not necessarily equal the speed of the
virtual leader. The third algorithm introduces obstacle avoidance via the addition of β-agents.
These agents are repulsive agents evolving on the boundaries of obstacles (which are supposed
to be smooth and convex)

The suggested control is based on the contributions of each type of agents and is decomposed

26 Revision: a466fdc (2015-10-14 23:06:42 +0200)

1.1. Different methods of managing a multi-agent system

as follows

V(q) = cαVα(q) + cβVβ(q) + cγVγ(q), (1.12)

where q represents the configuration of the flock. Vα is the potential of the difference between
the perfect lattice and the current configuration, where local minima are perfect lattices. Vβ is
induced by the obstacle avoidance β-agents and Vγ comes from the goal defining γ-agents.

Simulations are run in two dimensions with a hundred and fifty agents for the three algorithms.
The split and rejoin maneuver is shown to work correctly for such a flock. Further runs are shown
in three dimensions with fifty agents. They show the pertinence of the suggested framework.
However, this framework is constrained by the lattice and by the fact that the knowledge of the
position of the γ-agents, the trajectories of which have to be independently planned, have to be
shared among the whole flock.

The condition on the γ-agents can be however lessened. For example, [Su et al., 2009]
propose an algorithm that does not need all the α-agents to know of the γ-agents, which are
not constrained to a constant speed as in previous works. The proposed algorithm will indeed
asymptotically track γ-agent speed.

Whereas the previous works are based on an idea originating from the field of potential
methods, which were originally developed for single-agent systems, they extensively use graph
theory. Methods based on graph theory are hence studied in the following subsection.

1.1.4 Graph based methods

In multi-agent systems, graph theory appears in many cases, for instance in the case of peer-to-
peer communication or maintaining formations, as a natural study tool.

[Desai et al., 2001] represent the control topology of a group of unicycles as a directed acyclic
graph. In this graph, every robot is a vertex and communication links are edges. All but one
have one or two incoming edges and are followers. The lonely agent is the leader. Based on
whether a robot has one or two leaders, it will be controlled respectively by a l−ψ controller –
maintaining a defined distance and angular offset to its preceding leader – or a l− l controller
– maintaining a defined distances to its two preceding leaders. Meanwhile, the global leader
follows an independently a defined trajectory. The authors evaluate the number of possible
formations and suggest a framework to change the topology of the graph and thus the shape of
the formation.

The graph of a formation can also represent the ability of the agents to sense each other. [Fax
and Murray, 2002] study a system of N agents where no absolute measurements are available
but where each agent can sense at least one other agent. The latter agent is not supposed to
sense the former thus making the graph not necessarily undirected. The authors identify the
role the Laplacian matrix of the graph plays in the analysis of the stability of the formation. The
Laplacian matrix has at least λ= 0 as an eigenvalue which can be seen to correspond to the
lack of knowledge of the agents’ absolute positions. The authors give a Nyquist criterion on the
stability of the formation according to the eigenvalue of the Laplacian matrix. Therefore, the
dispersion of the eigenvalues is equivalent to the information sharing rate. In complete graphs –
all the possible arcs exist and the information sharing is maximum – all, but one, eigenvalues are
at a single position while for a single directed cycle – the formation forms a circle and each agent

Revision: a466fdc (2015-10-14 23:06:42 +0200) 27

Chapter 1. Motion planning for multi-agent systems, an overview

senses only one other agent; the information sharing is minimal – the eigenvalues are maximally
dispersed on the border of the circle 1− ej(i−1)/2π , i ∈ [1, N] making it difficult to stabilize due to
the Nyquist criterion. Indeed, in the first case, the noise due to one of the agent is averaged by
the formation while in the second case, the noise is hardly averaged and propagates becoming
a periodic perturbation. The authors thus draw the conclusion that aperiodicity is a desirable
property of formation interconnection topologies.

One can also use graphs to define the shape of a formation and to determine controls based
on this shape. For example [Olfati-Saber and Murray, 2002] build on the potential functions
introduced in [Leonard and Fiorelli, 2001] and use a graph theoretical approach. Indeed
they consider the formation as a weighted undirected graph, where the weights represent
the distance that neighboring agents in the graph should maintain between them, and derive
potential functions from this graph. Thereby, they can show that if the graph representing the
formation is rigid and unfoldable the formation is unambiguous – unlike the formations proposed
in [Leonard and Fiorelli, 2001] where the agents could possibly have converged to any of the
formations that were left possible by the potential functions.

For a pair of neighboring vertices ε = (vi, vj) of the graph E with weight dij and position qi

and qj, the authors introduce the function φε(qi, qj) = ‖qi − qj‖ − dij and the vector function
Φ(q) = {φε|ε ∈ E}. This function Φ is called the structural constraint function. A configuration q̄
of the formation is an equilibrium of the formation if and only if Φ(q̄) = 0. It is shown – based on
Lyapunov analysis – that the control u =∇〈Φ(q),Φ(q)〉−D(q, q̇) where D(q, q̇) is some damping
force verifying certain assumptions, guarantees collision-free local asymptotic stabilization of
the vehicles formation to a intended undirected and unambiguous formation graph.

The idea of structural constraint functions appeared also, under the name of formation constraint

functions in [Egerstedt and Hu, 2001]. The authors used these functions, defined in a similar
way to [Olfati-Saber and Murray, 2002] to compute the desired path of each agent based on a
single virtual leader path. The tracking of the desired paths is then left to the controllers of each
agent. The authors propose to add obstacle avoidance to the agents by changing the low-level
controller rather than changing the high-level path. The cooperation of these two levels of
control is illustrated with the simulation of a formation of three unicycles in an equilateral
formation avoiding a circular obstacle.

The case of graph topologies varying with the state of the system has been studied in [Mesbahi,
2005] who introduces a concept of controllability for state-dependent graphs. The author proves
links between the controllability of the formation graph and the controllability of the underlying
multi-agent system exist. In another work, [Olfati-Saber and Murray, 2004] study the problem
of consensus among the agents of a formation, where the communication network between the
agents can have either fixed or switching topology, while potentially experiencing time-delays.

1.1.5 Methods based on Partial Differential Equations

Considering the formalism introduced in some of the previous works, using representations
originating from the theory of Partial Differential Equations (PDE) appears to be a convenient
tool to study large populations. Indeed, instead of considering each agent and its influence on its
neighbors separately, considering a swarm – which has, in our terminology, a high agent density –
as a continuous medium seems to be relevant. Thus, instead of considering a finite set of finite

28 Revision: a466fdc (2015-10-14 23:06:42 +0200)

1.1. Different methods of managing a multi-agent system

difference equations describing the motion of each agent, a single partial differential equation
of infinite order appears to bring some simplifications. However, this approach contains in itself
several difficulties, due notably to the difficulty of studying general PDEs. Some of the points
that will have to be studied with a particular interest are, for example, the evolution of the
boundaries of the swarm, the evolution of the population of the swarm or of its density and the
evolution over long time periods of the swarm.

As a first example, [Mogilner and Edelstein-Keshet, 1999] decide to represent the evolution
of a continuous swarm as the result to a diffusion-advection integro-differential equation. The
equation used is

∂ tρ= ∂x

�
D ∂xρ− vρ

�
, (1.13)

where x is a one-dimensional space coordinate, ρ(x, t) the density of agents in the swarm at point
x and time t, D a density independent diffusion coefficient and v a density dependent velocity.
The first term in the right-hand side of the equation is thus the effect of diffusion while the
second term represents the effect of advection. Convection is the sum of diffusion and advection
and is responsible for attraction, repulsion and macroscopic motion of the swarm. The velocity
is taken as a convolution in the form

v(ρ) = K ∗ ρ=
∫

Ω

K(x− x′)ρ(x′, t)dx′, (1.14)

where the normalized kernel K has a compact support over Ω and represents the effects of
the surrounding of a point on the velocity of this specific part of the swarm. The goal of this
work is to study the evolution of a square-shaped density distribution of the swarm where the
density has to remain constant at ρ0 inside the swarm. When K is an even kernel with a support
sufficiently small in comparison to the size of the swarm – velocities are influenced by a close
neighborhood in comparison to the swarm – and v = AeK ∗ ρ, the velocity can be approximated
to be

v(ρ) =






1
2Aeρ0 at the back edge of the swarm,

Aeρ0 inside the swarm, sufficiently far from the edges,
1
2Aeρ0 at the front edge of the swarm.

(1.15)

Thus, an even kernel initiates a drift proportional to the average density in the direction of
the sign of Ae. The boundaries travel at a lower speed, meaning that the back of the swarm
dislocates and the front of the swarm is taken over by the inside. In the case of an odd kernel
with “small” support and v= AoK ∗ f, the velocity can be approximated to be

v(f) =






1
2Aoρ0 at the back edge of the swarm,

0 inside the swarm, sufficiently far from the edges,

−1
2Aoρ0 at the front edge of the swarm.

(1.16)

Thus, an odd kernel leads the edges of the swarm to either converge to the center of the
swarm if A0 > 0 and to diverge if A0 < 0. These two observations lead the author to propose
the velocity of the swarm to be

v(ρ) = aeρ+
�
Aa −Arρ

�
(Ko ∗ ρ), (1.17)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 29

Chapter 1. Motion planning for multi-agent systems, an overview

Where aeρ is the drift term (the kernel is taken to be a Dirac distribution), Aa an attractive
term and Arf a repulsive term. The kernel is odd and is taken to be

Ko(x) =






1
2r −r¶ x< 0,

− 1
2r 0¶ x¶ r,

0 |x|> r,

(1.18)

where r is the maximum interaction distance. This term determines how far the agents influence
each other.

It is shown that with such a representation, the swarm is not stable as there will be agents
either at the rear or at the front of the swarm leaving it. This instability is due to the infinite
range of the diffusion, which is however necessary. Furthermore, the swarm breaks up when
moving too fast, i.e. if the advection becomes stronger than the aggregation – ae >

1
4Aa – or if

the diffusion is too high. However the swarm can still be locally stable for appropriate values
of the diffusion coefficient D. The authors however show that there exist band-like solutions
which can be stable for possibly long times.

[Topaz and Bertozzi, 2004] found their study on the kinematic of groups of bacteria-like
agents on the work of [Mogilner and Edelstein-Keshet, 1999]. They study the partial integro-
differential model introduced therein in the case of a bi-dimensional swarm. The population of
the swarm is supposed to be constant as births and deaths are supposed to occur in a negligible
quantity on the time scale of the swarming dynamics. As the movement of the swarm is supposed
to originate only from social interactions, which are supposed to be linearly decreasing with
distance, between pairs of agents, the velocity ~v of the swarm is taken to be a function of the
density of the swarm ρ(~x).

Based on these assumptions, the authors assume the velocity and the density of the swarm to
be solutions of

ρt +∇ · (~vρ) = 0, (1.19)

which is a two-dimensional version of equation (1.13) where D – the diffusion coefficient –
is taken to be zero, thus cancelling the effects of diffusion. The velocity ~v is the result of the
convolution

~v= ~K ∗ ρ=
∫

Ω⊂R2

~K(|~x− ~y|)ρ(~y)d~y, (1.20)

where ~K is a spatially-decaying and isotropic kernel, which embodies the various assumptions
made by the authors on the social interactions of the swarm. The authors use Hodge’s decompo-
sition theorem to decompose the velocity and thus the kernel into

~K =∇⊥N+∇P, (1.21)

where P models the interaction pressure which is the motion due to the inhomogeneity in density
and their social consequences. N represents additional motions. The authors study both limit
cases ∇P = 0 and ∇⊥N = 0. The first case corresponds to incompressible motion. Injecting this
assumption in equation (1.19), we get the equation

30 Revision: a466fdc (2015-10-14 23:06:42 +0200)

1.2. Different problems of collaborative systems

ρt +∇ · (ρ∇⊥N ∗ ρ) = 0. (1.22)

The authors study the effect of N being a Gaussian interaction. In the two limit cases where
N is a Dirac distribution – which is the identity of the convolution – and where N is constant,
the left hand side of equation (1.19) simply reduces to ρt leaving the swarm invariant. Between
these two limit cases, it is shown that rotation in the sens of the sign of N is induced to the
swarm. Whatever the initial distribution is, numerical simulations show a tendency of the swarm
to aggregate in a galaxy-like distribution rotating with spiral arms, acquiring thus a rotational
symmetry.

In the case of potential motion – ∇⊥N = 0 – equation (1.19) reads

ρt +∇ · (ρ∇P ∗ ρ) = 0. (1.23)

The behavior of the solution to this equation depends on the sign of P. If P is negative, the
limit case where P is constant leads to a steady state ρt = 0. In the opposite, when P is a negative
Dirac distribution, equation (1.23) becomes Darcy’s law for flow in porous media showing
dispersion of the swarm. In-between, the swarm experiments both diffusion and convection
leading the swarm to disperse. In the opposite case, where P is positive, a linear stability analysis
shows aggregation of the swarm.

There are of course other ways to describe a flock by partial differential equations. [Toner
and Tu, 1998; Toner et al., 2005] develop a hydrodynamical model for multi-agent system. The
chosen model is in some way similar to Navier-Stokes equation for a simple compressible fluid.
However the model contains more terms than Navier-Stokes equation and lacks the conservation
of momentum which is a consequence of the authors’ choice for the system not to be Galilean
invariant. Unlike the previously cited works using PDEs, the authors, beside an isotropic model,
also provides an anisotropic model based on the fact that, e.g., birds prefer flying forward rather
than upward or laterally.

1.2 Different problems of collaborative systems

In the following section, we review how some of the previously detailed methods are used
when confronted to some of the problems we want to address in this thesis. Three different,
however related, classes of problems are reviewed. The first one is dedicated to the problems of
deployment, i.e. how to drive a formation to precise positions. The second class of problems
concerns the cooperative transportation of a load with the aim to transport a payload to a
precise position while adding dynamical coupling to the agents. The last subsection reviews the
problem of collision avoidance. Indeed, some of the methods used to solve the first two classes
of problems don’t bear collision avoidance in mind.

1.2.1 Deployment problems

In some cases, it is not sufficient to drive the global movement of a multi-agent system at a
high level, as it was done in the various works presented in the previous section. Indeed, some

Revision: a466fdc (2015-10-14 23:06:42 +0200) 31

Chapter 1. Motion planning for multi-agent systems, an overview

specific applications may require the various agents to be at the beginning in specific positions
and orientations and to move to precise successive states.

Inspired by earth based astronomical interferometers such as the Very Large Telescope1, the
Very Large Array2 or the Atacama Large Millimeter Array3, there have been plans to build
such a space based interferometer. For example, [Beard et al., 2001] suggested a coordination
architecture for a spacecraft formation dedicated to this mission. The suggested approach based
on the sharing of a dynamic coordination variable can be either centralized or decentralized. In
the first case, a central satellite broadcasts coordination variables describing the wanted goal
state. In the second case, every agent embeds an observer of the coordination variable. This
work is applied to a formation of three spacecrafts that have to perform data acquisitions in
different coordinated positions while respecting constraints on attitude, relative position and
energy minimization.

[Sultan et al., 2007] consider a similar problem for a fleet of spacecrafts which are supposed
to be point-mass double-integrators evolving in deep-space, where gravity can be neglected.
The aim of the authors is to determine a set of energy optimal trajectories passing through a
succession of way-points. These trajectories are shown to be cubic polynomials in time while
rational in the way-points times and linear in the way-points locations:

Lemma 1.2.1. Let {(tj, wj, vj), j ∈ {1, . . . , M + 2}} be a sequence of way-points specifying time,

position and spacecraft velocity, with tj < tj+1. Let r(t) denote C1 trajectories going through these

waypoints. Then the unique trajectory that minimizes the energy of the spacecraft is given by:

r(t) =
1
6

cj(t
3 − t3

j) +
1
2

dj(t
2 − t2

j)−
1
2

�
cjt

2
j − 2djtj − 2vj

�
(t− tj) +wj, tj ¶ t¶ tj+1, (1.24)

for j ∈ {1, . . . , M+ 1}, where

cj =
−12(wj+1 −wj) + 6(vj+1 + vj)(tj+1 − tj)

(tj+1 − tj)
3

,

dj =
vj+1 − vj

tj+1 − tj
+

tj+1 + tj

(tj+1 − tj)
3

�
6(wj+1 −wj)− 3(vj+1 + vj)(tj+1 − tj)

�
.

(1.25)

(1.26)

Collision avoidance between the spacecrafts is ensured ahead of the optimization process
by considering forbidden spheres around the agents. The trajectories are then optimized to
respect the collision constraints while minimizing the energy consumption. The obtained global
trajectories are a set of C1 piecewise polynomials in time. This framework is however particularly
specific to completely actuated agents with double-integrator dynamics. Moreover, the agents are
modelled as point-masses. Thus the suggested trajectories don’t take into account the attitude
of the spacecrafts. It might therefore be necessary to rotate the spacecrafts at the end in specific
directions, and thus to consume additional energy.

Another deployment problem is addressed by [Dunbar and Murray, 2006] for a team of robots.
Although the robots have decoupled dynamics, the robots’ states are coupled by a cost function

1Operated by the European Southern Observatory, the VLT, located in the Atacama desert, Chile, combines eight
telescopes of which four are moveable.

2Operated by the National Radio Astronomy Observatory, the VLA, located in New Mexico, USA, combines
twenty-seven independent moveable antennae.

3The ALMA is an international partnership located in the Atacama desert, Chile, combines sixty-six movable radio
telescopes.

32 Revision: a466fdc (2015-10-14 23:06:42 +0200)

1.2. Different problems of collaborative systems

which determines the wanted equilibrium state for the formation. However, while the cost
function is centralized, the control problem is distributed: each agent solves, and optimizes,
an independent Model Predictive Control (MPC) problem. For that purpose each robot has to
make assumptions on its neighbors’ trajectories at each time step of the MPC controller. While
the suggested solution can be considered as decentralized since the robots work on independent
assumptions without the need to communicate, the algorithm still needs the presence of a
central server for synchronization purposes. Nonetheless, if the receding horizon of the MPC is
sufficiently close – implying that the open-loop controllers do not deviate to much – the system
will converge to the chosen positions.

Building on the MPC controller used by Dunbar and Murray, [Prodan et al., 2011] add inter-
agent collision avoidance constraints. To do so they define around each agent i a convex safety
region as a convex polytope Si. The authors want the agents to come as close as possible to the
origin. As a consequence, they suggest an optimization of the function

min
xi

n∑

i=1

‖xi‖2, (1.27)

under the conditions

Si ∩ Sj = ;, i 6= j. (1.28)

However, the resulting optimization constraints are non-convex, making the problem difficult
to solve. The authors suggest to address this problem using Mixed-Integer Programming
techniques, which are known to be NP-hard – their complexity is increasing dramatically fast.
Nevertheless, the authors succeed – in comparison with the previous literature in the field
of optimization on non-convex problem – in formulating the problem with fewer variables,
reducing as a result the computational time, but not the complexity, of the problem.

Assuming the agents are interchangeable, and using the result of the aforementioned opti-
mization, the authors optimize the task assignment – who goes where ? – problem. Finally a
model predictive problem is optimized using the previous collisions constraints, while solving the
task assignment problem anew at each step of the MPC. This approach seems to be effective for
collision avoidance. However its high – exponential – complexity seems to make it unbearable
for systems with more than a few agents.

In comparison with the previous work, the environment in which the agents of [Turpin et al.,
2013] move, has obstacles. However, all of them are known to the planner. As previously, the
agents are identical and interchangeable. Once again, the planner is split into a high-level and
a low-level layer. The high level planner computes all the possible trajectories in a graph of
acceptable states – i.e. rejecting collisions – using Dijkstra’s algorithm. Using the costs evaluated
by this step, the task assignment problem is solved through the Hungarian Algorithm [Munkres,
1957; Kuhn, 1955]. The low-level distributed layer then elaborates trajectories adapted to the
agents, in this case quadroters, using specific algorithms, here the minimal snap trajectories
introduced in [Mellinger and Kumar, 2011].

The computational complexity of Dijkstra’s algorithm being quasilinear in the size of the
graph (linear in the number of edges, quasilinear in the number of vertices), the complexity of
the high-level planner is mainly due to the Hungarian algorithm which is cubic in the number
of agents. It might appear to be far better than the difficulty of, for example, the approach

Revision: a466fdc (2015-10-14 23:06:42 +0200) 33

Chapter 1. Motion planning for multi-agent systems, an overview

of [Prodan et al., 2011] but it should be pointed out that the state graph is supposed to be
precomputed, which is an acceptable hypothesis only if the test area is known beforehand.

To avoid this complication, the problem is addressed by [Panagou et al., 2014] not with a graph
approach, but using Lyapunov functions. Instead of having the graph beforehand, the agents,
which have only short-range communication ability, solve two Lyapunov problems successively.
First, when establishing a communication network with m other neighboring agents, the agents
share out among the members of the communication their current respective goals using the
Hungarian algorithm. The cost of the affectation is, in this case, the sum of the distances
between their current positions and their possible goals, which is a Lyapunov function. This
switched system has been proved to be globally asymptotically stable. The collision avoidance
and convergence toward the goals is then also ensured by a Lyapunov function.

In a recent paper, which greatly inspired the work presented in this thesis, [Meurer and Krstić,
2011] suggest a deployment solution based on Burgers’ equation. Unlike the models presented
in the subsection 1.1.5 – Methods based on Partial Differential Equations on pages 28 to 31
where the equations depended on ρ(x, t), where ρ was the density of agents at the position x of
space, the equation, now, depends on x(α, t) where x is a position in space and α is a continuous
index of the agents. The previous models were particularly well adapted to describe a group of
indistinguishable agents spanning over a defined volume of space. On the contrary, the model
suggested by Meurer and Krstić is built to describe a curve-like formation of distinguishable
agents.

Burgers’ equation is a famous partial differential equation originating from fluid mechanics.
It was chosen because, as a second order parabolic nonlinear equation, it offers a good trade-off
between simplicity to stabilize and the span of reachable equilibria by the existence of shock-like
equilibria, thanks to its nonlinear nature, allowing, for example, switchbacks and corner-like
shapes in the formation.

The agents in the group are referred to by their continuous index α ∈ [0, 1]. The authors call
the end agentsα = 0 andα = 1 respectively the anchor and the leader. The authors then compute
the trajectories of the real agents by finitely discretizing solutions obtained independently for
each dimensions.

The authors use a custom version of Burgers’ equation

xt(α, t) = axαα(α, t)− bx(α, t)xα(α, t) + c(t)x(α, t). (1.29)

It differs from the genuine Burgers’ equation by the addition of the term c(t)x(α, t). The equation
has the following inhomogeneous Dirichlet boundary conditions

¨
x(0, t) = u0(t)

x(1, t) = u1(t)
, (1.30)

and the initial condition

x(α, t0) = x0(α). (1.31)

As the authors wish for the system to be steady before the deployment – i.e. for t¶ t0 – and after
the deployment t¾ t1, the function c(t) should read for t¾ t1

c(t)x̄(α) = bx̄(α)x̄α(α)− ax̄αα(α), (1.32)

34 Revision: a466fdc (2015-10-14 23:06:42 +0200)

1.2. Different problems of collaborative systems

where barred values are time stable functions of α with
¨

x̄(0) = ū0

x̄(1) = ū1

. (1.33)

Since x̄(α) is not zero, taking the time derivative of equation (1.32) leads to the fact that
∂n

t c(t) = 0 while c(t) is not constant. The function c is consequently non-analytic at each steady
state t0 (start), t1 (finish) or at any intermediate desired equilibrium.

The authors search for a solution to equation (1.29) in terms of a formal power series

x(α, t) =
∑

n¾0

x̂n(t)
(α− α̂)n

n!
, (1.34)

with α̂ ∈ (0,1) fixed. Substituting this power series in equation (1.29) leads to the following
differential recursion equation

xn(t) =
1
a

n−2∑

i=0

�
n− 2

i

�
x̂n−2−i(t)x̂i+1(t)− c(t)x̂n−2(t) + ∂ tx̂n−2(t), n¾ 2, (1.35)

and ¨
x̂0(t) = y0(t)

x̂1(t) = y1(t)
. (1.36)

It is then shown that x(α, t), u0(t) and u1(t) can be written in terms of power series of the
functions y0 and y1 and of their time derivatives. The functions y0 and y1 are called flat outputs
of the system. This name of “flat outputs” stems from the theory of differentially flat systems
to which an introduction will be given in section 6.3 – Introduction to flatness based control.
The power series defining x(α, t), u0(t) and u1(t) are shown to be converging when y0, y1 and c
belong to a special class containing both analytic and non-analytic functions, the Gevrey class.
Under such circumstances, the authors determine the finite radius of convergence of the power
series of equation (1.34).

Since they are flat outputs, functions y0 and y1 are suggested to satisfy all the previous
conditions. In the opposite case, the power series are divergent, but the authors introduce a
resummation scheme that still allows trajectory generation. The functions y0, y1 and c, which
are of the form C1+C2φ(t) where C1 and C2 are constants and φ(t) is a smooth function allowing
the transitions between φ(t¶ t0) = 0 and φ(t¾ t1) = 1, are set to ensure the transition between
the two steady states. Various formations can be attained by varying the available parameters in
the suggested y0, y1 and c functions. The authors give numerical examples of deployments for
a system of twenty-five agents. For example, trajectories are given changing from a line-like
formation to a circle-like formation.

1.2.2 Cooperative transportation of a swinging load

The idea of using a UAV to transport a load, fixed to the UAV body or swinging at the end of
a cable, has been around for a long time. Almost all the rescue helicopters are equipped with
a hoist used, for instance, by coast guards to save castaways or disasters’ victims. This task,

Revision: a466fdc (2015-10-14 23:06:42 +0200) 35

Chapter 1. Motion planning for multi-agent systems, an overview

however, needs the pilots in manned helicopters to be experienced in order to maintain a stable
hovering position. The task’s complexity drastically increases if the pilot has to move the payload
at the end of the cable or if the aircraft cannot hover – e.g. in the case of a plane [Murray, 1996].
The problem is indeed difficult due to the limited controllability of the payload.

Using multiple agents tied to the payload is a solution to ensure a better control of the
charge. At the same time it is a simple way to increase the payload lift ability of a single agent.
Nevertheless, linking the agents to a common single payload introduces a new type of constraints
for the formation – in contrast to the literature we already reviewed – by dynamically coupling
the agents of the system.

Before trying to transport a load with UAVs, the problem of cooperative transportation was
first applied to ground robots. For instance [Ogren et al., 2001] use a virtual structure, enforced
by a Lyapunov function approach, to maintain a formation of ground robots. It is used to let two
robots carry a beam on a construction site. To do so, the robots have to maintain a strict distance
between them. Unfortunately, the virtual leader approach used to displace the formation – and
thus the beam – is not easily suited to control the orientation of the beam.

To transport a load in the air, more possibilities are available than when limited to displace-
ments parallel to the ground as it offers a higher degree of freedom. It is however possible
to constrain the aircrafts in a plane. [Mellinger et al., 2013] suggest, for example, a way to
transport rigid payloads with predefined shapes – namely line-, cross-, “T”- and “L”- shaped
– with quadrotor UAVs. Unlike usual aerial transportation techniques, the aircrafts are firmly
bound to the payload. The UAVs thus remain parallel during the entire flight which adds
constraints to the usual quadrotors controllers. To design the controller for the multiple agents,
they are all assumed to be parallel and to know their respective positions. That way, after
defining the trajectory of the payload, the authors can immediately compute the trajectories
and the controllers of the UAVs. In a sense, this solution is similar, and indeed it takes part of its
inspiration therein, to that of the Distributed Flight Array by [Oung et al., 2010] where several
instable monorotor UAVs assemble rigidly together in random patterns to create a distributed
stable aircraft.

However, linking the UAVs directly to the payload leads the transportation problem to be
greatly over-constrained. In comparison, transporting a load linked to UAVs with cables gives
more freedom in the set of reachable trajectories. However, path planning and control are more
difficult when adding degrees of freedom with cables.

For example, [Maza et al., 2010] use three middle scale model helicopters – 12.5 kg each –
to carry a 4 kg load – the maximum load for a single helicopter being 1.5 kg – linked to each
helicopter by 13 m ropes. The helicopters are simply constrained to move on the same height
in a triangular shape formation, 8 m apart. They have to translate the point-mass payload
smoothly, the payload being at the center of the projection on the ground of the formation. The
helicopters are controlled in a decentralized manner. Indeed, every helicopter is embedded with
a direction sensor made out of magnetic encoders, and a force sensor attached to the rope. Thus
the authors can get a precise estimate of the state of the load and implement their controller in
a decentralized way thanks to this feedback.

Inspired by the example of cooperative fixed cranes imposing poses – position and orientation
– to payloads thanks to variable rope lengths, [Michael et al., 2011] suggest to apply similar
methods to the aerial transportation of a payload. Instead of varying the lengths of the cables,

36 Revision: a466fdc (2015-10-14 23:06:42 +0200)

1.2. Different problems of collaborative systems

the authors use the agility of the quadrotors to act on the pose of the payload. The authors
focus on a system of three quadrotors and solve the two following problems: finding optimal
positions for the quadrotors in order to obtain a chosen pose of the charge and finding the
pose of the payload for specific quadrotor positions. The answer to the first problem is solved
using the Moore-Penrose inverse. The solution is not unique and for a precise pose, one can
choose for the quadrotors a solution that avoids collision while equalizing the tension in the
cables. The solution to the second – direct – problem is found thanks to an optimization-based
reformulation. Motion planning for the multi-agent system is solved using the computed set of
quadrotors’ positions suitable for a chosen payload pose. Unfortunately this approach is limited
by the inability to damp out oscillations of the payload leading the authors to move the payload
relatively slowly.

Another solution is adopted by [Sreenath and Kumar, 2013] by using the fact that – under
certain assumptions – the system formed by several differentially flat agents carrying a payload
suspended by cables is flat. The authors make the following assumptions:

• The cables are massless and do not stretch nor contract – it is partially equivalent to the
assumption that the cables are rigid.

• The cables are attached at the quadrotors’ center of mass, which is a common simplifying
assumption.

• Air drag on the quadrotors and the load is negligible, which again is a common assumption
at low speed.

Assuming that Ti is the tension in the i-th cable binding the i-th quadrotor to the payload and
that qi is the unit direction vector of the i-th cable, the system follows the kinematic relation

xi = xL − Liqi. (1.37)

where xi is the position of the i-th quadrotor and xL is the position of the load. With the notations
of Part II – Modeling and control of a trirotor UAV, the system follows, for a point-mass load in
the inertial frame, the following kinetic equations






miẍi = fiR
I

B
zB −migzI + Tiqi,

Mi = JiΩ̇i + S(Ωi)JiΩi,

mLẍL = −
∑

i

Tiqi −mLgzI .

(1.38a)

(1.38b)

(1.38c)

The authors introduce the following result

Lemma 1.2.2. (Differential-Flatness of the n quadrotor, point-mass load system, n¾ 1, [Sreenath

and Kumar, 2013]) Yn = (xL, Tiqi,ψj), for i ∈ {2, . . . , n}, j ∈ {1, . . . , n} is a set of flat outputs for

the n quadrotor, point-mass load system, where ψj is the yaw angle of the jth quadrotor.

Indeed, the dimension of the flat output is 3+ 3(n− 1) + n = 4n which matches the num-
ber of independent controls stemming from the n quadrotors ; T1 and q1 are obtained from
equation (1.38c) while the xi, i ∈ {2, . . . , n} are obtained from equation (1.37). Since simple

Revision: a466fdc (2015-10-14 23:06:42 +0200) 37

Chapter 1. Motion planning for multi-agent systems, an overview

quadrotors such as the one modeled here are known to be flat [Mellinger and Kumar, 2011]
with flat output (x,ψ), we obtain all the remaining quantities from (xi,ψi, Tiqi).

A similar lemma is shown for a rigid-body load, with orientation matrix RI

B
and inertia matrix

JL. The cables are attached to the body at the fixed points ri so that

xi = xL +RI

B
(ri − Liqi) (1.39)

Using again, as in [Michael et al., 2011] , the Moore-Penrose inverse, the authors introduce the
following lemma.

Lemma 1.2.3. (Differential-Flatness of the n quadrotor, rigid-body load system, n¾ 3, [Sreenath

and Kumar, 2013]) Yn = (xL, RI

B
,Λ,ψj), for j ∈ {1, . . . , n} is a set of flat outputs for the n quadrotor,

rigid-body load system, where Λ∈ R3n−6 satisfies

T = Φ+W+NΛ, (1.40)

with T, W defined as

T =





T1q1

T2q2
...

Tnqn



 , W = −
�

RB

I
(mL(ẍL + gzI))

JLΩ̇L + S(ΩL)JLΩL

�
, (1.41)

where Φ+, N are respectively the Moore-Penrose generalized inverse and the kernel of

Φ =

�
I I . . . I

S(r1) S(r2) . . . S(rn)

�
(1.42)

As explained by the authors, the flat vector Λ can be chosen after W to ensure, for instance,
that the tensions perform no isometric work. The output of the flatness generated trajectories is
then used as an input to the geometric controller presented in [Lee et al., 2013].

The authors then address the case when a cable goes from being slack to taut. They assume
there is a discrete change in the velocity of the system, which they model by a perfectly non-
elastic collision. In such conditions, at some discrete times, some agents may enter or leave the
system leading to different successive flat subsystems. They call this system a differentially-flat
hybrid system.

However, the set of flat outputs makes the trajectory planning problem rather untractable.
Even with the point-mass load, we cannot plan the trajectory of all the drones, but only the
relative positions of n− 1 of them with respect to the load. Moreover, the position of the first
drone is only a result of the trajectories of the load and of the other drones and thus cannot be
planned. As a consequence, in order to get an acceptable trajectory for this drone, the trajectory
for the load is simple – an ellipse parallel to the ground – and orientations and tensions of the
cables as constant as possible resulting in a similar trajectory for the first drone.

1.2.3 Collision avoidance on determined paths

In most cases, when planning trajectories, the agents are considered to be point-mass systems.
However, real agents occupy a determined volume and collision avoidance has to be ensured

38 Revision: a466fdc (2015-10-14 23:06:42 +0200)

1.2. Different problems of collaborative systems

between neighboring agents. This can be considered either during planning by ensuring that
the different paths are sufficiently far away. It can also be considered after the paths have been
determined – without taking into account collision avoidance – by adapting the way the agents
travel on the path. As explained by LaValle and Hutchinson, these two approaches are the two
opposites of a spectrum going from centralized to decoupled multi-agent motion planning.

Indeed, in [LaValle and Hutchinson, 1998], the authors suggest two algorithms – which are
exponentially difficult in time and space and thus not applicable to a lot of agents – to avoid
collision on paths and roadmaps – a set of paths on which agents can choose between different
paths at crossings – created by a decoupled planner. The problem is discretized in time and at
every step ∆t, the robots are either move at full speed, forward in the case of paths, forward or
backward in the case of roadmaps, or to stop and wait at their current position.

The trajectories are optimized based on a cost function evaluating an energy-like function,
which encompasses collision avoidance – for which the cost is either 0 or∞ – and the accom-
plishment of the goal – for which the cost is again either 0 or∞. The authors link it to the field
of noncooperative game theory by showing that the minimum of this cost function corresponds
to a Nash equilibrium. Indeed, the limit solution is not always optimal and there might be better
solutions for cooperative agents.

Along load transportation for multiple agents, [Maza et al., 2010] introduced a global frame-
work for task solving. This framework is built on successive steps. A certain number of tasks
are allocated to the agents – which are supposed to move only in straight line. This allocation
is equivalent to a trajectory planner without collision avoidance. After this planning step, a
framework suggesting sequential path grants and clearances is applied to avoid collisions. The
task allocation framework is established on market based algorithms developed by [Smith,
1980]. In a sense, since it is applied to allocate multiple waypoints, it is similar to a multi-agent
Travelling Salesman problem. The agents hold auctions on the different tasks, this leads this step
to be processed in a decentralized way. The solution to avoid collision during the completion of
the different tasks resembles the airports’ Air Traffic Control systems: the neighboring helicopters
simply exchange sequential path grants and clearances.

Another domain where the paths are pre-planned is the domain of road crossings. The cars and
trucks are bound to move on the tracks and know beforehand the direction they will choose while
ignoring their neighbors’ choices. Several works are conducted nowadays to create automated
vehicles driving autonomously. While this topic of research has already some applications in
highway traffic control, the problem of automatizing crossroads is still an open and challenging
problem. Crossroads are indeed a dangerous bottleneck of traffic at which the agents rarely
cooperate.

In [Gregoire et al., 2013], the authors decompose the crossroad management into two
subproblems. First, a discrete algorithm is in charge of the prioritization of the vehicles entering
the crossroad area. The set of vehicles in the area is represented as an acyclic priority graph:
vehicles entering the area are added to the graph as new vertices. The ranking in the updated
graph is not made on a first-come, first-served basis but on an optimization of the traffic at the
crossroad. Second, a continuous control law is suggested that allows the vehicle a maximal
acceleration while being robust to the maximal possible brake of other vehicles in the intersection.
The implementation of the two algorithms is however made in a centralized way and needs a
total collaboration of all the vehicles.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 39

CHAPTER 2

Trajectory generation for PDE systems,
existing works and available tools

Using the solution to a Partial Differential equations as a base for a trajectory planer is a method
used by several authors as was shown by the review in the previous chapter. In this chapter,
we present first various results on the resolution of the heat equation and of Burgers’ equation,
notably the concept of flat partial differential equation. Second, we introduce Gevrey functions,
a class of functions widely used to generate solutions to flat partial differential equation.

Contents
1.1 Different methods of managing a multi-agent system 19

1.1.1 Behavioral methods . 20

1.1.2 Methods based on Particle Swarm Optimization 22

1.1.3 Potential methods . 24

1.1.4 Graph based methods . 27

1.1.5 Methods based on Partial Differential Equations 28

1.2 Different problems of collaborative systems . 31

1.2.1 Deployment problems . 31

1.2.2 Cooperative transportation of a swinging load 35

1.2.3 Collision avoidance on determined paths . 38

2.1 Existing works: an overview

The notion of flatness, that will be presented and used in the second part of this thesis, appeared
as a convenient and constructive tool to plan motion for systems governed by ordinary differential
equations. This idea was later applied to distributed parameter systems. A distributed parameter
system is said to be flat if the system is entirely determined by a set of functions called flat outputs

of the system. A good example can be found in [Laroche et al., 2000] where a one-dimensional
rod – represented in figure 2.1 – following the heat equation is studied.

The rod is insulated at one end while heated at the other. The temperature of the rod θ(x, t)
is the solution of the heat equation:






θt(x, t) = θxx(x, t), x ∈ [0, 1]

θx(0, t) = 0

θx(1, t) = u(t)

(2.1)

Chapter 2. Trajectory generation for PDE systems

θx(1, t) = u(t)θx(0, t) = 0

θ(x, t)

0 x 1

Figure 2.1 – The heated rod of [Laroche et al., 2000]

The authors show that the function θ(0, t) completely determines the heat of the rod θ(x, t) and,
therefore, gives a way to create the open-loop controller u(t) = θx(1, t). A key notion for this
result is the notion of Gevrey function. Gevrey functions – introduced in [Gevrey, 1918] are a
way of estimating the divergence of the Taylor expansion of non-analytic functions.

Definition 2.1.1. Gevrey functions ([Laroche et al., 2000]) A smooth function t ∈ [0, T] 7→ y(t)
is Gevrey of order α if:

∃M, R> 0,∀m ∈ N, sup
t∈[0,T]

��y(m)(t)
��¶M

(m!)α

Rm
(2.2)

Gevrey functions are entire if α< 1, are analytic if α = 1 and have a divergent Taylor expansion
if otherwise. A Gevrey function of order β< α is also Gevrey of order α. The space of Gevrey
function of order α, Gα is stable by scaling, integration, addition, multiplication and composition.

The authors propose the solution in the form of:

θ(x, t) =
∑

i¾0

y(i)(t)
x2i

(2i)!
, (2.3)

where y(t) = θ(0, t). The function θ(x, t) is a solution of equation (2.1). This solution defines
the control:

u(t) =
∑

i¾1

y(i)(t)

(2i− 1)!
. (2.4)

These formal series may be written with the help of the formal differential operators of infinite
order (see e.g. [Rodino, 1993] for a complete introduction to these operators):

−Cx = cosh

�
x

√√d/dt
µ

�
(2.5)

and:

−Sx =

√√ µ

d/dt
sinh

�
x

√√d/dt
µ

�
(2.6)

These formal differential operators and their application to the function y have a sense in the
meaning of the following theorem:

42 Revision: a466fdc (2015-10-14 23:06:42 +0200)

2.1. Existing works: an overview

Theorem 2.1.2. [Laroche et al., 2000] When y(t) is Gevrey of order α < 2, the formal solution

stated in equation (2.3) is Gevrey of order α in t and order 1 in x (and in particular the formal

control introduced in equation (2.4) is Gevrey of order α).

When α= 2, the same result holds provided R> 4 where R is defined in definition 2.1.1.

The authors also introduce a motion planning framework and more generally study the linear
diffusion equation. A thorough study of flatness for ordinary differential equation as well as for
distributed parameter systems can be found in [Rudolph et al., 2003].

As was presented in subsection 1.1.5 – Methods based on Partial Differential Equations, PDEs
have been used extensively to represent swarms of agents. In these representations, the solution
u(x, t) to the PDE represents the density of agents at point x. While this can be a good method
to animate swarms of birds or locusts in computer animation it does not appear to be a good
choice for a system of numerable agents having precise objectives.

The work by [Meurer and Krstić, 2011] introduced in subsection 1.2.1 – Deployment problems,
suggests another solution: to let the solution u(x, t) to the PDE represent the position of the
agent x where x represents a topological – as opposite to geometric – position. The agents are
ordered based on an arbitrary choice at time t. However using PDEs for formation deployment is
challenging. Control and trajectory generation for PDEs is in many cases still an open problem.
We present in this section some recent works on this topic centered on Burgers’ equation and
flatness-based control of PDEs.

[Frihauf and Krstic, 2011] propose to use a simple linear reaction-advection-diffusion equation
of the form:

ut(x, t) = uxx(x, t) + bux(x, t) + λu(x, t), x ∈ [0, 1], t ∈ [0, 1] (2.7)

to generate two-dimensional deployment paths. Two approaches are proposed to generate the
trajectories, either by considering u, b and λ to be real values and to generate two independent
solutions for two independent one-dimensional problems or to consider them as complex-valued.
In this case, the equation is known as Ginzburg-Landau equation and coupling between the two
dimensions is introduced. In the first – real-valued – case, a classification of the basis functions
of the non-zero equilibria is made based on the respective values of b and λ. For example in
the case b2 > 4λ, the basis functions are of the type (eσ0x, eσ1x). Using the various solutions
introduced by this classification, one can generate a wide variety of equilibrium states for the
formation such as Lissajous curves. The problem is a bit more difficult in the complex-valued
case and only some specific cases are addressed.

The authors use the backstepping for PDEs approach (see e.g. [Krstić and Smyshlyaev, 2008]
for a complete course on backstepping designs for the boundary control of PDEs) to create
the controls for the anchor agent u(0, t) and for the leader u(1, t). This approach allows the
stabilization of the formation through feedback. The feedback needs information on the positions
of all the agents. An estimation of these positions can be obtained by an observer knowing only
the position of the leader, of its nearest neighbor – in terms of communication topology – and
eventually of the anchor agent.

Krstić et al. consider Burgers’ equation. Introduced in the thirties by the Dutch physicist Jan
Burgers, this equation is a one-dimensional PDEs that is used to model gas dynamics or traffic

Revision: a466fdc (2015-10-14 23:06:42 +0200) 43

Chapter 2. Trajectory generation for PDE systems

flows. For a given viscosity µ, Burgers’ viscous equation reads:

ut(x, t) = µuxx(x, t)− ux(x, t)u(x, t), x ∈ [0,1]. (2.8)

When the viscosity µ is null, the equations is called Burgers’ inviscid equation. However, this
equation has a completely different behavior than the viscous version and we will consider the
sole viscous equation in the following. An interesting point of Burgers’ equation is its low order
together with its nonlinear character that allows shock-like equilibrium profiles. Another key
point of this equation is the existence – used by the authors – of Hopf-Cole transformation, a
nonlinear transformation allowing to turn Burgers’ equation into the heat equation and which
can be stated as follows:

Theorem 2.1.3 (Hopf-Cole transformation ([Hopf, 1950] [Cole et al., 1951])). Let u(x, t) be a

solution to Burgers’ equation:

ut(x, t) = µuxx(x, t)− ux(x, t)u(x, t), x ∈ [0,1]. (2.9)

then the function v defined by u= −2µ vx
v is a solution to the heat equation:

vt(x, t) = µvxx(x, t), x ∈ [0,1]. (2.10)

Proof. We may rewrite equation (2.9) as:

ut = µuxx −
1
2
(u2)x (2.11)

We may then introduce ũx = u. The previous equation then reads:

ũxt = µũxxx −
1
2
((ũx)

2)x (2.12)

Integrating with respect to x (and omitting the integration constant) leads to:

ũt = µũxx −
1
2
(ũx)

2 (2.13)

Introducing v(x, t), a strictly positive function on the domain, so that ũ= −2µ ln v transforms
Burgers’ equation into the heat equation:

vt = µvxx (2.14)

together with:

u= −2µ
vx

v
(2.15)

44 Revision: a466fdc (2015-10-14 23:06:42 +0200)

2.1. Existing works: an overview

0 0.2 0.4 0.6 0.8 1

−20

0

20

x

U

σ = 3
σ = 8
σ = 15

Figure 2.2 – Shock-like equilibrium profiles for Burgers’ equation

The authors study the stabilization of “shock-like” equilibrium profiles – as plotted in figure 2.2
for different values of the parameter σ – of the form:

U(x) = −2σ tanh(σ(x− 1/2)),σ ¶ 0, (2.16)

with the use of the two control inputs:

ux(0, t) = ω0(t), ux(1, t) = ω1(t). (2.17)

The authors make use of Hopf-Cole transformation to transform the equation into a linear
reaction-diffusion equation.They then stabilize the resulting PDE using linear backstepping
which induces a nonlinear control for the original equation.

In a companion paper, [Krstić et al., 2009] study trajectory generation and tracking for the
same problem. The authors show explicit expression of the controls ω0 and ω1 so that the system
follows the reference trajectory ur(0, t) = b+ a sinωt. However, the open-loop controller is not
generally stable along the trajectory. The authors therefore introduce a nonlinear closed-loop
controller using the backstepping-based controller introduced in the companion paper.

We may recall here another article by [Meurer and Krstić, 2011] presented in subsection 1.2.1
– Deployment problems which showed a custom version of Burgers’ equation to be flat. This
enabled the authors to present a framework for the motion planning based on the broader class
of Gevrey functions.

There are other solutions to study Burgers’ equation. For example, [Gorguis, 2006] applies the
Adomian decomposition method and compares its results to those obtained through the Hopf-
Cole transformation on some simple illustrative examples. Applying Adomian decomposition
method to Burgers’ equation consists in rewriting the equation as:

u(x, t) = u(x, 0) + µL−1uxx(x, t)− L−1ux(x, t)u(x, t), x ∈ [0,1], t ∈ [0,1]. (2.18)

where L−1(·) =
∫ 1

0 (·)dt is the formal integration operator. The solution u(x, t) is replaced by the
decomposition series

u(x, t) =
∑

n¾0

un(x, t), (2.19)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 45

Chapter 2. Trajectory generation for PDE systems

while the nonlinear term uux is replaced by Adomain polynomials:

uux =
∑

n¾0

An. (2.20)

Identifying the components leads to the recursive problem:
¨

u0(x, t) = u(x, 0)

un+1(x, t) = L−1(un)xx − L−1An, n¾ 0
(2.21)

It is however important to consider the existence of the conditions we are searching for.
Indeed, it is not always ensured that controls can be found to match a desired final state. In this
work, we consider the system defined by Burgers’ equation and the initial state:

¨
ut(x, t) = µuxx(x, t)− ux(x, t)u(x, t)

u(x, 0) = u0(x)
, (2.22)

and we want to know if it is possible to find two controls:

¨
u(0, t) = v0(t)

u(1, t) = v1(t)
, (2.23)

so that at final time T we can achieve a desired state w(x):

u(x, T) = w(x) (2.24)

[Glass and Guerrero, 2007] consider the system defined by equations (2.22) to (2.23) and
show the exact global controllability to non-zero constant states. That is:

Theorem 2.1.4. Exact global controllability to non-zero constant states [Glass and Guerrero, 2007]

There is a constant α0 ¾ 1 such that for any M ∈ R\{0} there exists µ0 > 0 such that for any

u0 ∈ L∞([0, 1]), any time T > α0/|M| and any µ ∈ (0,µ0) there exist controls vµ0 and vµ1 satisfying

the following properties:

• ‖vµ0‖∞ and ‖vµ1‖∞ are uniformly bounded for µ ∈ (0,µ0), that is to say, there exists a

constant Cα0
such that:

‖vµ0‖∞ + ‖v
µ
1‖∞ ¶ Cα0

(‖u0‖∞ +M). (2.25)

• The solution u of equations (2.22) and (2.23) associated to v0 = vµ0 and v1 = vµ1 satisfies:

u(x, T) =M (2.26)

The first point is rather encouraging since the controls are finite. Furthermore, the theorem is
shown to hold for α0 = 9 and a corollary is given for µ= 1 that says that the result also holds
as long as M is large enough. As a consequence, to find controls to achieve a deployment to a
constant state, it can be necessary to consider changing the goal time. Indeed, [Coron, 2007]
shows another result using Hopf-Cole transfomation:

46 Revision: a466fdc (2015-10-14 23:06:42 +0200)

2.2. Differential flatness and Gevrey functions

Theorem 2.1.5. [Coron, 2007] For every T > 0, there exists M > 0 such that, for every C ∈ R
with |C| ¾ M, there exists y ∈ L2((0, T)× (0,1)) satisfying equation (2.22) with u0(x) = 0 and

such that:

uT(x) = C (2.27)

It is thus possible in a chosen time to perform transition from a null-state to a constant state
as long as this state is not too close to zero.

Indeed, [Guerrero and Imanuvilov, 2007] show that global null controllability for Burgers’
equation with two control forces defined by equations (2.22) and (2.23) does not hold, nor does
exact controllability. As a consequence, in the following we will try to find controls and final
deployment bearing these controllability results in mind.

2.2 Differential flatness and Gevrey functions

2.2.1 Gevrey functions, definition and examples

The class of Gevrey functions Γs [Gevrey, 1918] is a class of function naturally appearing in the
studies of the heat equation. Gevrey functions of order α are C∞ functions, which Taylor series
– in the case where α> 1 – do not converge.

Definition 2.2.1. Gevrey function [Laroche et al., 2000] A function φ ∈ C∞ over K is Gevrey
of order α¾ 1 if there exist M > 0, R> 0 so that for every n:

sup
t∈K
|φ(n)(t)|¶M

(n!)α

Rn
(2.28)

The class of Gevrey functions of order σ, Γσ is stable by scaling, integration, derivation, sum,
multiplication and composition.

Whereas analytic functions being constant on an open set have to be constant everywhere –
these functions are equal to their Taylor expansion and, indeed, all of their derivatives vanish
on the set – non-analytic functions – and especially Gevrey functions of order σ > 1 – can be
constant on an open set without being constant everywhere. As such, they are extensively used
to design transitions between constant states for differential systems of infinite order.

The stability of the Γσ class can also be used in the case of the formal differential operators of
infinite order Cx and Sx presented in equations (2.5) and (2.6) on page 42:

Proposition 2.2.2. [Laroche et al., 2000] When φ(t) is Gevrey of order σ < 2, Cxφ(t) is Gevrey of

order σ in t and order 1 in x.

When σ = 2, the same result holds provided R> 4 (R being the “Gevrey Radius” as defined in

definition 2.2.1)

Proof. The proof is given in [Laroche et al., 2000].

Revision: a466fdc (2015-10-14 23:06:42 +0200) 47

Chapter 2. Trajectory generation for PDE systems

Corollary 2.2.3. Proposition 2.2.2 also holds for Sxφ(t).

Proof. This result may either be proved using a computational proof similar to [Laroche et al.,
2000] or make the following statement: Since ∂xCx = ((d/dt)/µ)Sx and since the Gevrey
property is stable by scaling and derivation, if φ(t) is Gevrey, Cxφ(t) is also Gevrey and thus
Sxφ(t) is Gevrey of order α in t and order 1 in x.

A common example of basis Gevrey function is the “bump function”, used for example in
[Laroche et al., 2000; Crépeau and Prieur, 2008; Meurer and Krstić, 2011], depicted in figure 2.3:

φσ(t) =





exp

� −1
(t(1− t))σ

�
if ∈]0, 1[

0 elsewhere
(2.29)

0 1

0

1

t

φ
σ
(t
)

φ
σ
(0

.5
)

σ = 0.5
σ = 1.0
σ = 1.5
σ = 2.0

Figure 2.3 – Normalized value of φσ(t) for various value of σ.

This function is Gevrey of order σ = 1+ 1/σ whatever σ > 0. According to definition 2.2.1,
the following function – obtained as the integration of equation (2.29) – is also Gevrey of order
1+ 1/σ.

Φσ(t) =






0 if t¶ 0∫ t

0φσ(τ)dτ∫ 1

0 φσ(τ)dτ
if t ∈]0 ;1[

1 if t¾ 1

(2.30)

This function, represented in figure 2.4, allows for a C∞ finite time transition between two
constant states. It will be the base function of our solution. Other functions are commonly in
use to perform similar finite time C∞ transitions such as [Rudolph et al., 2003]:

48 Revision: a466fdc (2015-10-14 23:06:42 +0200)

2.2. Differential flatness and Gevrey functions

0 1

0

1

t

Φ
σ
(t
)

σ = 0.5
σ = 1.0
σ = 1.5
σ = 2.0

Figure 2.4 – The basis function Φσ(t) for various values of σ.

Φσ(t) =






0 if t¶ 0
1
2

�
1+ tanh

2(2t− 1)
(4t(1− t))σ

�
if t ∈]0 ; 1[

1 if t¾ 1

, (2.31)

or [Martin et al., 2014]:

Φσ(t) =






0 if t¶ 0
exp (−(1− t)σ)

exp (−(1− t)σ) + exp (−tσ)
if t ∈]0 ;1[

1 if t¾ 1

, (2.32)

These two examples of transition functions are Gevrey of order 1+ 1
σ and have various advantages.

The decision to choose the function defined in equations (2.29) and (2.30) was motivated by
the existence of the efficient algorithm for derivatives computation presented in the following.

2.2.2 Efficient computation of the derivatives of Φσ

Inspired by the method presented in [Rudolph et al., 2003] for the computation of their basis
function, we present an algorithm to efficiently compute the derivatives of the function we
selected. This calculation was already conducted by Pierre Rouchon and can be found in the
form of source code on the cdrom example provided with [Rudolph et al., 2003]. Nonetheless,
it is of interest to explicitly present this algorithm in this work. We consider the function:

Φσ(t) = exp
� −1
(t(1− t))σ

�
= y0 (2.33)

Where σ is a positive constant. We search for a way to efficiently evaluate, for each value of t:

Revision: a466fdc (2015-10-14 23:06:42 +0200) 49

Chapter 2. Trajectory generation for PDE systems

dn

dtn
Φσ(t) = yn (2.34)

In the following, we introduce the two sequences of functions:





a0 = (t (1− t))σ+1

ak+1 =
d
dt

ak, k¾ 0
(2.35)

And: 



p0 = t (1− t)

pk+1 =
d
dt

pk, k¾ 0
(2.36)

In terms of ak and pk, the function y0 reads

y0 = exp
�
−p0

a0

�
(2.37)

Differentiating once this relation reads:

a2
0y1 = (a1p0 − p1a0)y0 (2.38)

From the definition of ak, we find the following relation:

a1p0 = (σ + 1)p1a0 (2.39)

Thus, equation (2.38) reads:

a0y1 = σp1y0 (2.40)

Taking the n-th derivative of the previous equation leads to:

n∑

k=0

�
n
k

�
yn+1−kak = σ

n∑

k=0

�
n
k

�
yn−kpk+1 (2.41)

The only non-zero values of pi are for i¶ 2. Thus, the previous equation reads:

n∑

k=0

�
n
k

�
yn+1−kak = σp1yn + σnp2yn−1 (2.42)

To find a handy expression of ak, we take the k-th derivative of equation (2.39):

k∑

i=0

�
k
i

�
ak+1−ipi = (σ + 1)

k∑

i=0

�
k
i

�
ak−ipi+1 (2.43)

Keeping the only non-zero values of pi, this can be written as:

50 Revision: a466fdc (2015-10-14 23:06:42 +0200)

2.2. Differential flatness and Gevrey functions

p0ak+1 = (σ + 1− k)p1ak +

�
σ + 1− k− 1

2

�
kp2ak−1 (2.44)

This relation is used to efficiently compute the successive derivatives of a0. Considering equa-
tion (2.42), assuming we have all the necessary yk and ak for 0¶ k¶ n, we may compute yn+1

as:

yn+1a0 = (σp1 − na1)yn + n
�
σp2 −

n− 1
2

a2

�
yn−1 −

n∑

k=3

�
n
k

�
yn+1−kak (2.45)

This computation appears efficient considering both the computational effort and the needed
memory space. For each new degree only two terms are summed for ak+1 and k for yk+1 and
two new values, ak+1 and yk+1 are kept in memory.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 51

CHAPTER 3

Formal solutions to the heat equation

This chapter presents our main contribution to the study of the heat equation with controls on
both sides. Based on a famous work by Holmgren, we derive the expression of a new formal
differential operator of infinite order and study its effect on some simple basis functions. We
also study its computational evaluation and convergence. We present finally the Gevrey controls
used to generate solutions to the heat equation with controls on both sides allowing finite time
transition between two states and present a way to generate them.

Contents
2.1 Existing works: an overview . 41

2.2 Differential flatness and Gevrey functions . 47

2.2.1 Gevrey functions, definition and examples 47

2.2.2 Efficient computation of the derivatives of Φσ 49

3.1 Rewriting the heat equation with formal differential operators
of infinite order

In a note to the French Academy of Sciences, [Holmgren, 1908] studied the solution z(x, y)1 to
the heat equation

∂
2
xz− ∂yz= 0. (3.1)

on a domain Γ bounded by the arc AB of equation x= χ(y). Using the change of variable

ξ = x− χ(y)
η = y.

(3.2)

and introducing the two functions

(z)ξ=0 = φ(η)�
∂ξz
�
ξ=0
= ψ(η).

(3.3)

Holmgren proposed to study a series expansion of z and to identify the terms and showed
that it was absolutely convergent in the case:

|φ(n)(y)|< M(2n)!
ρn

, |ψ(n)(y)|< M(2n)!
ρn

(3.4)

1We use in the following Holmgren’s notations. The y variables is of course a time variable.

Chapter 3. Formal solutions to the heat equation

and regular if

|φ(n)(y)|< M(n(1+α))!
ρn

, |ψ(n)(y)|< M(n(1+α))!
ρn

, 0< α< 1 (3.5)

and that, in the special case where χ(x) = x0, this solution could be written:

z(x, y) =
∞∑

n=0

φ(n)(y)

(2n)!
(x− x0)

2n +

∞∑

n=0

ψ(n)(y)

(2n+ 1)!
(x− x0)

2n+1 (3.6)

Indeed, if we consider now the heat equation with respect to time and if we introduce the
conductivity term µ, the genuine heat equation simply reads:

∂ tφ(x, t) = µ ∂2
xφ(x, t), (3.7)

using operational calculus (a formal transformation similar to Laplace transform) leads to:

sφ̂(x, s) = µ ∂2
xφ̂(x, s), (3.8)

where s is equivalent to the partial time derivation operator Dt = ∂ t. The resulting equation
is an ordinary differential equation in x. Solving this differential equation results in the system:






bφ(x, s) = bCx
bλ1(s) + bSx

bλ2(s)
bCx = cosh

�
x
q

s
µ

�

bSx =
q

µ
s sinh

�
x
q

s
µ

� . (3.9)

Reverting the formal transformation of Dt into s, we get:

φ(x, t) = Cxλ1(t) + Sxλ2(t), (3.10)

where:

Cx = cosh

�
x

√√d/dt
µ

�

Sx =

√√ µ

d/dt
sinh

�
x

√√d/dt
µ

� (3.11)

are differential operators of infinite order [Rodino, 1993]. Using the Taylor expansion of cosh
and sinh, these operators may be equivalently written as series of the form:

Cx =
∑

k¾0

1
µk

x2k

(2k)!
dk

dtk
,

Sx =
∑

k¾0

1
µk

x2k+1

(2k+ 1)!
dk

dtk
.

(3.12)

When evaluating these operators in x= 0, equation (3.12) reads:

C0 = 1

S0 = 0 .
(3.13)

54 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.2. The heat equation with controls on both sides

Furthermore, differentiating both operators with respect to x leads to:

∂xCx =
d/dt
µ

Sx ,

∂xSx = Cx .
(3.14)

If we take the partial derivative of equation (3.10) with respect to x, φx reads:

φx(x, t) =
1
µ

d
dt
(Sxλ1(t)) +Cxλ2(t). (3.15)

Evaluating equations (3.10) and (3.15) in x= 0 then leads to:

¨
φ(0, t) = λ1(t),

φx(0, t) = λ2(t).
(3.16)

We can then replace the functions λ1 and λ2 by their respective values in equation (3.10).
This leads us to the expression:

φ(x, t) = Cxφ0(t) + Sxφx,0(t) (3.17)

The heat equation is thus said to be flat with (φ0,φx,0) being one of the possible flat output
whereφ0(t) stands forφ(x = 0, t) andφx,0(t) stands for (∂φ/ ∂x)(x = 0, t). Flatness of differential
systems of infinite order is an extension of the concept of flatness for differential systems of
finite order which will be used in the second part of this work.

3.2 The heat equation with controls on both sides

3.2.1 Objectives

The flat output of the heat equation and conditions considered in [Laroche et al., 2000] appears
as a natural choice for a problem of heat transfer. In the case of a motion planning problem
for a multi-agent system based on the heat equation, it seems reasonable to parametrize the
trajectories in terms of positions of the agents. Our choice is to find an expression of the
trajectories of the whole formation as the output of the trajectories of two agents. This leads us
to investigate the expression of the heat equation based on the temperatures at both ends.

3.2.2 Formal derivation

The set of flat outputs used in equation (3.17) may be a reasonable choice in some applications
(as for example in [Laroche et al., 2000]) but not in our case. Indeed, we want to control the
trajectories of our agents on both sides of the equation.

The idea of our transformation is then to move the natural flat output in equation (3.17)
constituted of the heat φ0 and the flux φx,0 on one side to an expression based on the heat on
both sides. To do so, we evaluate equation (3.17) in x= 1.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 55

Chapter 3. Formal solutions to the heat equation

φ1(t) = C1φ0(t) + S1φx,0(t). (3.18)

The functions φ0(t) and φ1(t) are our control inputs. In order to express φ in terms of φ0 and
φ1 we want to express φx,0 in term of these functions and to use the obtained expression in
equation (3.17). We may formally invert the S1 operator in equation (3.18) to obtain:

φx,0(t) = (S1)
−1
�
φ1(t)−C1φ0(t)

�
. (3.19)

Injecting equation (3.19) into equation (3.17) leads to:

φ(x, t) =
�
Cx − Sx(S1)

−1C1

�
φ0(t) + Sx(S1)

−1φ1(t). (3.20)

The operator (S1)
−1 is formally defined by:

(S1)
−1
r

d/dt
µ csch

�r
d/dt
µ

�
(3.21)

where csch is the cosecant hyperbolic function. Its series expansion is [Abramowitz and Stegun,
1965, 4.5.65 p. 85]

(S1)
−1 = −

∑

k¾0

1
µk

2(22k−1 − 1)B2k

(2k)!
dk

dtk
(3.22)

where B2k is the 2k-th Bernoulli number. Then, we propose to introduce the formal differential
operator of infinite order Tx = Sx(S1)

−1 and study its properties. We may first give an explicit
expression of this operator:

Proposition 3.2.1. The differential operator Tx = Sx(S1)
−1 can be expressed as:

Tx =
∑

k¾0

1
µk

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

�
dk

dtk
(3.23)

where Bk(x) is the k-th Bernoulli polynomial defined by [Abramowitz and Stegun, 1965, p. 804

23.1.1]:

text

et − 1
=
∑

k¾0

Bk (x)
tk

k!
, |t|< 2π (3.24)

Proof. Using the formal series expression of the operator Sx given in equation (3.12), the
operator Tx can be written as:

Tx = −
∑

k¾0

1
µk

x2k+1

(2k+ 1)!
dk

dtk

�∑

l¾0

1
µl

2(22l−1 − 1)B2l

(2l)!
dl

dtl

�
(3.25)

This can be also written as:

Tx = −
∑

k¾0

∑

l¾k

1
µl

x2k+1

(2k+ 1)!

2(22(l−k)−1 − 1)B2(l−k)

(2(l− k))!
dl

dtl
(3.26)

56 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.2. The heat equation with controls on both sides

Exchanging the two sum operators in the previous equation leads to:

Tx = −
∑

l¾0

1
µl

22l+1

(2l+ 1)!

l∑

k=0

�
2l+ 1
2k+ 1

�
B2(l−k)

�
x2k+1

22k+1
− x2k+1

22l

�
dl

dtl
(3.27)

We recognize here two odd parts of the B2k+1 Bernoulli polynomial [Abramowitz and Stegun,
1965, p. 804 23.1.2 and 23.1.7]:

Bn(x) =
k∑

l=0

�
k
l

�
Bk−lx

k (3.28)

Indeed:

l∑

k=0

�
2l+ 1
2k+ 1

�
B2(l−k)

�
x2k+1

22k+1
− x2k+1

22l

�
=

1
2

�
B2l+1

�x
2

�
− B2l+1

�
−x

2

�
− 1

22l
(B2l+1 (x)− B2l+1 (−x))

�
(3.29)

However, Bernoulli polynomials have the following property [Abramowitz and Stegun, 1965,
p. 804 23.1.9]:

(−1)nBn(−x) = Bn(x) + nxn−1, n¾ 0 (3.30)

Thus:
−B2l+1(−x) = B2l+1(x) + (2l+ 1)x2l

−B2l+1

�
−x

2

�
= B2l+1

�x
2

�
+ (2l+ 1)

�x
2

�2l

And thus, equation (3.29) reads:

l∑

k=0

�
2l+ 1
2k+ 1

�
B2(l−k)

�
x2k+1

22k+1
− x2k+1

22l

�
= B2l+1

�x
2

�
− 1

22l
B2l+1 (x) (3.31)

However, this can be further simplified using Raabe’s multiplication theorem [Abramowitz and
Stegun, 1965, p. 804 23.1.10]:

Bn(mx) =mn−1
m−1∑

k=0

Bn

�
x+

k
m

�
, n¾ 0, m¾ 1 (3.32)

This allows us to write:

B2k+1(x) = 22k
1∑

k=0

B2k+1

�
x
2
+

k
2

�

= 22k
�

B2k+1

�x
2

�
+ B2k+1

�
1+ x

2

��

which, used in equation (3.31) gives:

l∑

k=0

�
2l+ 1
2k+ 1

�
B2(l−k)

�
x2k+1

22k+1
− x2k+1

22l

�
= −B2l+1

�
1+ x

2

�
(3.33)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 57

Chapter 3. Formal solutions to the heat equation

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

x

B n
� 1
+

x
2

�

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

x

B n
� 1
−

x 2

�

n 3 7 11
1 5 9 13

Figure 3.1 – First odd order Bernoulli polynomials used by the Tx operator (left) and by T1−x

(right).

Using this result in equation (3.27) leads to:

Tx =
∑

k¾0

1
µk

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

�
dk

dtk
(3.34)

This ends the proof.

Bernoulli polynomials are omnipresent in numbers theory and in the study of affiliated
functions such as the Riemann Zeta function. They have among other specificities, the remarkable
particularity of having a constant number of solutions on the unity axis. Above order one, even
order Bernoulli polynomials have exactly two zeros on the unity axis while odd order ones
have three at the extremities and in the middle of the unity axis. The first odd order Bernoulli
polynomials are represented in figure 3.1.

In equation (3.20), the control on the two sides play similar roles. It is therefore tempting to
find a symmetric (in φ0 and φ1) expression of the solution. A good guess could, for example, be:

φ(x, t) = T1−xφ0(t) + Txφ1(t) (3.35)

To prove this hypothesis, we further need in equation (3.20) an expression of Cx−TxC1. Bearing
this in mind, we search for an analytical expression of this formal differential operator and state
the following result:

Proposition 3.2.2. The operator TxC1 can be written under the form:

TxC1 = Cx +
∑

k¾0

1
µk

22k+1

(2k+ 1)!
B2k+1

�x
2

� dk

dtk
(3.36)

58 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.2. The heat equation with controls on both sides

Proof. Applying the operator Tx given in proposition 3.2.1 to the operator C1 as given by
equation (3.12), we can state:

TxC1 =
∑

k¾0

∑

l¾0

1
µk+l

22k+1

(2l)!(2k+ 1)!
B2k+1

�
1+ x

2

�
dk+l

dtk+l
(3.37)

This expression can be rewritten as:

TxC1 =
∑

k¾0

∑

l¾k

1
µl

22k+1

(2(l− k))!(2k+ 1)!
B2k+1

�
1+ x

2

�
dl

dtl
(3.38)

Exchanging the two sum operators leads to:

TxC1 =
∑

l¾0

1
µl

22l+1

(2l+ 1)!

�
l∑

k=0

�
2l+ 1
2k+ 1

�
B2k+1

�
1+ x

2

�
1

22(l−k)

�
dl

dtl
(3.39)

Using the expansion property of Bernoulli Polynomials [Abramowitz and Stegun, 1965, p. 804
23.1.7]:

Bn(x+ h) =
n∑

k=0

�
n
k

�
Bk(x)h

n−k, n¾ 0 (3.40)

We can state:

l∑

k=0

�
2l+ 1
2k+ 1

�
B2k+1

�
1+ x

2

�
1

22(l−k)
=

1
2

�
B2l+1

�
1+

x
2

�
− B2l+1

�
1− x

2

��
(3.41)

However, we can deduce from the differences and symmetry properties of Bernoulli polynomials
that:

B2l+1

�
1− x

2

�
= −B2l+1

�x
2

�

B2l+1

�
1+

x
2

�
= B2l+1

�x
2

�
+ (2l+ 1)

�x
2

�2l (3.42)

And thus:

TxC1 =
∑

l¾0

1
µl

22l+1

(2l+ 1)!
B2l+1

�x
2

� dl

dtl
+
∑

l¾0

1
µl

x2l

(2l)!
dl

dtl
(3.43)

Which ends the proof.

Lemma 3.2.3. Since B2k+1(x) Bernoulli polynomials are odd around x = 1
2 , we can write ([Abramowitz

and Stegun, 1965, p. 804 23.1.8]):

B2l+1

�
1− x

2

�
= −B2l+1

�x
2

�
(3.44)

And equation (3.43) can thus be written as:

Cx − TxC1 =
∑

l¾0

1
µl

22l+1

(2l+ 1)!
B2l+1

�
1− x

2

� dl

dtl
(3.45)

Or, equivalently:

Cx − TxC1 = T1−x (3.46)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 59

Chapter 3. Formal solutions to the heat equation

The results of proposition 3.2.1 and lemma 3.2.3 allow us to rewrite equation (3.20) in the
asserted form and to state our first major theorem:

Theorem 3.2.4. The function φ(x, t) formally defined by:

φ(x, t) = T1−xφ0(t) + Txφ1(t) (3.47)

where

Tx = Sx(S1)
−1 =

∑

l¾0

1
µl

22l+1

(2l+ 1)!
B2l+1

�
1+ x

2

�
dl

dtl
(3.48)

is a solution to the heat equation:

φt(x, t) = µ2φxx(x, t) (3.49)

with the boundary conditions: ¨
φ(0, t) = φ0(t)

φ(1, t) = φ1(t)
(3.50)

The meaning of this formal definition and, notably the convergence in the usual sense of
the series is investigated in the following. As will be indicated, this definition can be extended
beyond the usual sense with the help of other summation processes. We first start by verifying
two results on the formal differential operator Tx:

Lemma 3.2.5. The formal differential operator Tx verifies:

T0 = 0

T1 = 1
(3.51)

Proof. While these results seem obvious from the definition of Tx as Tx = Sx(S1)
−1, we show

that the explicit formulation of Tx given in proposition 3.2.1 also leads to this result. Indeed, we
have in x= 0 the relation:

T0 =
∑

k¾0

1
µk

22k+1

(2k+ 1)!
B2k+1

�
1
2

�
dk

dtk
(3.52)

and we know that Bernoulli polynomials of odd order are null at 1/2:

B2n+1

�
1
2

�
= 0 (3.53)

In x= 1, we have equivalently:

T1 =
∑

k¾0

1
µk

22k+1

(2k+ 1)!
B2k+1 (1)

dk

dtk
(3.54)

60 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.2. The heat equation with controls on both sides

and we know from [Abramowitz and Stegun, 1965, p. 804 23.1.2] that:

Bn(0) = Bn

Bn(1) = (−1)nBn

(3.55)

(3.56)

(3.57)

and that, all odd Bernoulli numbers but the first are zero [Abramowitz and Stegun, 1965, p. 804
23.1.3]:

B2n+1 =

¨
−1

2 k= 0

0 k> 0
(3.58)

Thus the announced results.

Lemma 3.2.6. The formal differential operator Tx verifies:

∂2

∂x2
Tx =

1
µ

Tx
d
dt

(3.59)

Proof. This result could again be considered as a consequence of the definition of Tx as Tx =

Sx(S1)
−1 since Sx verifies this property. The expression of Tx in proposition 3.2.1 is however

consistent since Bernoulli polynomials have the following property [Abramowitz and Stegun,
1965, p. 804 23.1.5]:

B′n(x) = nBn−1, n¾ 1 (3.60)

This property makes, by definition, Bernoulli polynomials an Appell sequence. Applying this
property to the definition of Tx reads:

∂2

∂x2
Tx =

∑

k¾1

1
µk

22k−1

(2k− 1)!
B2k−1

�
1+ x

2

�
dk

dtk
(3.61)

Changing k for k+ 1 gives the announced result.

Proof of theorem 3.2.4. The announced result is a direct consequence of lemmas 3.2.5 and 3.2.6.

The result provided in theorem 3.2.4 however does not provide a proof of convergence of the
series or a method to construct adapted controls. We therefore study some of these properties
in the following section.

3.2.3 Computational implementation

Practical use of the Tx operator requires evaluation of Bernoulli polynomials up to a high order.
Solutions to compute these numbers have been long investigated. It was the subject of one of
the first computer algorithms written by Ada Lovelace for Charles Babbage Analytical Engine (to
be found in [Menabrea and Lovelace, 1843, see Note G]. Since then, more efficient algorithms

Revision: a466fdc (2015-10-14 23:06:42 +0200) 61

Chapter 3. Formal solutions to the heat equation

have appeared. For example, the author of [Harvey, 2010] presents an algorithm that was used
to compute Bk for k= 108.

In our implementation we rely on Akiyama-Tanigawa algorithm which was conjectured in
[Akiyama and Tanigawa, 2001]. This algorithm, presented in algorithm 3.1, can be seen as a
special version of “Pascal triangle” which was introduced to compute binomial coefficient.

1: Data: n ⊲ positive integer
function AKIYAMA-TANIGAWA ALGORITHM:

for i← 0,n do
ai← 1

i+1
5: for j← i, 1 do

aj−1← j(aj−1 − aj)

return a0 ⊲ a0 is Bn

Algorithm 3.1 – The Akiyama-Tanigawa algorithm for Bernoulli number calculation.

However, a basic implementation of this algorithm rapidly diverges due to the “low” precision
of the computer usual storage for numbers: ❞♦✉❜❧❡. In this representation, the numbers stored
occupy 64 bit of which 52 bit are used for the mantissa (the precision). This is not enough to
evaluate Bernoulli numbers with Akiyama-Tanigawa past the few first numbers. For this reason,
the implementation of the various evaluation presented in this chapter is performed using the
GNU MPFR library. MPFR stands for Multiple Precision Floating-Point Reliably. This is a C library
for arbitrary precision computation. Using this library, it is possible to specify the length of
the mantissa. In the following, most of the computations are performed with a precision of
512 bit. This level of precision was chosen to be far above the minimal precision necessary for
our computations. Every evaluation in this chapter was performed in less than a second. Hence,
the use of this library does not represent a significant drawback on this account.

3.3 Various properties of the Tx operator

3.3.1 Polynomial states and controls

The case of polynomial functions is of particular interest to see that the operator Tx is convergent
for some functions. Indeed, since the number of terms in the expression of Tx is then finite, it is
ensured that the operator Tx is defined. We may thus state the following proposition:

Proposition 3.3.1. Let RN[t] be the space of polynomial of degree N with real coefficients. The

application:

Tx : RN[t] −→ RN[t]×R2N+1[x] (3.62)

defines an injective application.

Proof. This result is a direct consequence of the definition of Tx and the fact that its restriction
to RN[t] reads:

Tx =

N∑

k=0

1
µk

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

�
dk

dtk
(3.63)

62 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.3. Various properties of the Tx operator

And has thus a finite number of terms. The term of highest order in x comes from B2N+1

�
1+x

2

�

which is of order 2N+ 1.

The operator Tx being defined, we want to explicitly construct solutions to some special cases.
Hence, let f be a polynomial in R[x] such that:

f(x) =
2N−1∑

l=0

pl
xl

l!
=

2N−1∑

l=0

ql
(1− x)l

l!
, pl, ql ∈ R (3.64)

We want to find controls φ0 and φ1 such that:

(T1−xφ0 + Txφ1)(t= 0) = f(x) (3.65)

That is, we want to create a solution to the heat equation with controls on both sides so that the
initial state of the solution is f. Differentiating φ = T1−xφ0 + Txφ1 according to x leads to:

�
∂2k

∂x2k
φ

�
(x= 0, t= 0) = f(2k)(0)

�
∂2k

∂x2k
φ

�
(x= 1, t= 0) = f(2k)(1)

(3.66)

Using lemma 3.2.6, this leads to the equations:

1
µk

�
T1−xφ

(k)
0 + Txφ

(k)
1

�
(x= 0, t= 0) = f(2k)(0)

1
µk

�
T1−xφ

(k)
0 + Txφ

(k)
1

�
(x= 1, t= 0) = f(2k)(1)

(3.67)

Since T0 = 0 and T1 = 1, this is equivalent to:

φ
(k)
0 (0) = µ

kp2k

φ
(k)
1 (0) = µ

kq2k

(3.68)

Initially, we assume that the controls are entire functions. As such, they match their Taylor
series expansion. The previous equations then uniquely define two polynomial controls:

φ0(t) =
N−1∑

k=0

µkp2k
tk

k!

φ1(t) =
N−1∑

k=0

µkq2k
tk

k!

(3.69)

The advantage of flat systems is that the flat outputs entirely define the system. Therefore, φ
is entirely defined by φ0 and φ1 and we have an efficient way to find a formal expression of the
solution. Indeed:

Txφ1(t) =
N−1∑

k=0

N−1−k∑

l=0

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

�
µlq2(k+l)

tl

l!
(3.70)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 63

Chapter 3. Formal solutions to the heat equation

Exchanging the two sums leads to:

Txφ1(t) =
N−1∑

l=0

µl t
l

l!

N−1−l∑

k=0

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

�
q2(k+l) (3.71)

As a direct consequence of equation (3.64), we have:

(−1)kqk =

2N−1−k∑

l=0

pl+k

l!
(3.72)

And:

Txφ1(t) =
N−1∑

l=0

µl t
l

l!

N−1−l∑

k=0

2N−1∑

m=2(k+l)

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

�
pm

(m− 2(k+ l))!
(3.73)

After inverting the two inner sums, the equation reads:

Txφ1(t) =
N−1∑

l=0

µl t
l

l!

2N−1∑

m=2l

pm2m+1−2l

(m+ 1− 2l)!

m
2 −l∑

k=0

�
m+ 1− 2l

2k+ 1

�
1

2m−2(k+l)
B2k+1

�
1+ x

2

�
(3.74)

The inner sum can be identified – as was done in the previous section – to as the odd part of the
Bernoulli polynomial Bm+1−2l

�
1+ x

2

�
and thus:

Txφ1(t) =
N−1∑

l=0

µl t
l

l!

2N−2l−1∑

m=0

pm+2l2
m+1

(m+ 1)!
1
2

�
Bm+1

�
1+

x
2

�
− Bm+1

�
1− x

2

��
(3.75)

And using the fact that ([Abramowitz and Stegun, 1965, p. 804 23.1.6 and 23.1.8]):

Bm+1

�
1+

x
2

�
= Bm+1

�x
2

�
+ (m+ 1)

�x
2

�m

Bm+1

�
1− x

2

�
= (−1)m+1Bm+1

�x
2

� (3.76)

And dividing the sum according to the parity of m, we have:

Txφ1(t) =
N−1∑

l=0

µl t
l

l!

2N−1−2l∑

m=0

pm+2l
xm

m!
+

N−1∑

l=0

µl t
l

l!

N−l−1∑

m=0

p2m+2l

(2m+ 1)!
22m+1B2m+1

�x
2

�
(3.77)

Where we recognize the second term in terms of derivatives of f and the second as −T1−xφ0(t)
(since B2m+1

�
x
2

�
= −B2m+1

�
1− x

2

�
), and thus:

T1−xφ0(t) + Txφ1(t) =
N−1∑

l=0

µl t
l

l!
f(2l)(x) (3.78)

This relation allows us to state our next result:

Theorem 3.3.2. Given a function f of the form:

f(x) =
2N−1∑

k=0

pk
xk

k!
=

2N−1∑

k=0

qk
(1− x)k

k!
(3.79)

64 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.3. Various properties of the Tx operator

0 0.2 0.4 0.6 0.8 1 0

0.2

0.40.5

1

1.5

x
t

φ

Figure 3.2 – Evolution of a polynomial state (f(x) = 1− 1
6x+ x2 − 2x3) where the polynomial

controls (φ0(t) = 1+ µt, φ0(t) = 1− µt) have been built after theorem 3.3.2 (µ = 1.0), 3d view.

The two controls defined by:

φ0(t) =
N−1∑

k=0

p2kµ
k tk

k!
(3.80)

And:

φ1(t) =
N−1∑

k=0

q2kµ
k tk

k!
(3.81)

Define a solution:

T1−xφ0(t) + Txφ1(t) = φ(x, t) (3.82)

Which verifies:

φ(x, 0) = f(x) (3.83)

And which can be expressed as:

φ(x, t) =
N−1∑

l=0

µl t
l

l!
f(2l)(x) (3.84)

An illustration of this solution, evaluated based on equation (3.82), is given in figures 3.2
and 3.3. On low order polynomials the difference between solutions evaluated based on
equation (3.82) and equation (3.84) is computationally insignificant. Indeed, only the very first
Bernoulli numbers have to be evaluated, this is done without any problems. The computational
efficiency and precision of equation (3.82) in term of convergence speed will be discussed in
section 3.3.4.2. Since non constant polynomials are diverging, the controls, and thus the
solution to the heat equation created by this solution are bound to diverge with time unless the
initial state is linear (in which case the controls are constant).

This theorem can also be used to construct a solution having f as final state at t = 1 as stated
in the following corollary:

Revision: a466fdc (2015-10-14 23:06:42 +0200) 65

Chapter 3. Formal solutions to the heat equation

0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1

1.1

1.2

1.3

x

φ

t= 0.00
t= 0.05
t= 0.10
t= 0.15
t= 0.20
t= 0.25

Figure 3.3 – Evolution of a polynomial state (f(x) = 1− 1
6x+ x2 − 2x3) where the polynomial

controls (φ0(t) = 1+ µt, φ0(t) = 1+ µt) have been built after theorem 3.3.2 (µ = 1.0), cross-
sectional view.

Corollary 3.3.3. Given the same function f, the two controls defined by:

φ0(t) =
N−1∑

k=0

p2kµ
k (t− 1)k

k!
(3.85)

And:

φ1(t) =
N−1∑

k=0

q2kµ
k (t− 1)k

k!
(3.86)

Define a solution:

T1−xφ0(t) + Txφ1(t) = φ(x, t) (3.87)

Which verifies:

φ(x, 1) = f(x) (3.88)

And which can be expressed as:

φ(x, t) =
N−1∑

l=0

µl (t− 1)l

l!
f(2l)(x) (3.89)

Proof. The proof is similar to the proof of theorem 3.3.2.

3.3.2 Application to the Weierstrass approximation theorem

The preceding result allows us to give a generalization of our result. Indeed, it is known from:

66 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.3. Various properties of the Tx operator

Theorem 3.3.4. Weierstrass approximation theorem, (see e.g. [Rudin, 1976, p. 159 theorem 7.26])

If f is a continuous real function on [a, b], there exists a sequence of real polynomials Pn such that

lim
n→∞

Pn(x) = f(x) (3.90)

uniformly on [a, b].

Moreover, there exist explicit methods to constructs these polynomials such as, for example,
Bernstein polynomials. This allows us to state another result:

Proposition 3.3.5. Let f(x) be a continuous real function over [0, 1]. It is possible to construct two

sequences of real functions φ0,n(t) and φ1,n(t) such that:

∀ε> 0,∃N ¾ 0,∀n¾ N, sup
x∈[0,1]

|f(x)−φn(x, 0)|< ε (3.91)

Where

φn(x, t) = T1−xφ0,n(t) + Txφ1,n(t) (3.92)

is a solution to the heat equation with

φn(0, t) = φ0,n(t)

φn(1, t) = φ1,n(t)

(3.93)

(3.94)

(3.95)

Proof. Through Weierstrass approximation theorem we know that there exists a sequence of
polynomials fn such as:

∀ε> 0,∃N ¾ 0,∀n¾ N, sup
x∈[0,1]

|f(x)− fn(x, 0)|< ε (3.96)

Such a sequence can be constructed, for example using Bernstein polynomials. From theo-
rem 3.3.2, we can construct two sequences of functions φ0,n, φ1,n from fn that give the wanted
result.

This result, however, does not ensure that the φ0,n and φ1,n functions converge in the usual
sense nor that the solution φn(x, t) does. Therefore we will study in the next subsection the
problem of convergence of Tx for arbitrary functions.

3.3.3 Convergence of the Tx operator

As can be seen from figure 3.1, the maxima of Bernoulli polynomials increase rapidly. The
convergence of the Tx polynomials, is established for polynomial functions because they require
a finite number of Bernoulli polynomials. This convergence has to be studied for other classes
of functions. A study of the absolute convergence of the operator and properties on the maxima
of Bernoulli polynomials on the unity axis allow us to state the following result.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 67

Chapter 3. Formal solutions to the heat equation

Proposition 3.3.6. Let a, b > 0, R< µπ2 be three strictly positive coefficients and φ0(x), φ1(x)
two functions over [0, 1] with the following property:

sup
t∈[0,1]

|φ(k)0 (t)|¶ aRk

sup
t∈[0,1]

|φ(k)1 (t)|¶ bRk

(3.97)

(3.98)

Then, the solution to the heat equation defined in equation (3.47) is convergent. Furthermore, the

resulting solution to the heat equation is Gevrey of order 0 in both x and t.

Proof. To prove this assertion, we search for an upper bound for the general term of φ(x, t):

|ck(x, t)|= 1
µk

22k+1

(2k+ 1)!

����B2k+1

�
1+ x

2

�
φ
(k)
1 (t) + B2k+1

�
1− x

2

�
φ
(k)
0 (t)

����

¶
1
µk

22k+1

(2k+ 1)!

�����B2k+1

�
1+ x

2

�
φ
(k)
1 (t)

����+
���B2k+1

�
1− x

2

�
φ
(k)
0 (t)

���
�

(3.99)

(3.100)

(3.101)

[Lehmer, 1940] determines that for x ∈ [0,1], Bernoulli polynomials of odd order are uni-
formly bounded by:

sup
x∈[0,1]

|B2k+1(x)|<
2(2k+ 1)!
(2π)2k+1

, k¾ 0 (3.102)

This allows us to rewrite the bound as:

|ck(x, t)|¶ 1
µk

2
π2k+1

����φ(k)1 (t)
���+
���φ(k)0 (t)

���
�

(3.103)

(3.104)

Using the bound of the derivatives given in equations (3.97) and (3.98), we can bound the
general term by:

|ck(x, t)|¶ 2
π

Rk

µkπ2k
(a+ b) (3.105)

(3.106)

Applying Cauchy’s criterion test to this general term gives:

k
Æ
|ck(x, t)|¶

k
√√2 (a+ b)

π

R
µπ2

(3.107)

(3.108)

And thus:

lim sup
k→∞

k
Æ
|ck(x, t)|¶ R

µπ2
< 1 (3.109)

(3.110)

68 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.3. Various properties of the Tx operator

which gives the announced convergence. To show that this solution is Gevrey, we derive the
general term of T0φ1(t) for any given order n and m:

∂n+m

∂nx ∂mt
ck(x, t) =

1
µk

22k+1

(2k+ 1)!

�
∂n

∂nx
B2k+1

�
1+ x

2

��
φ
(k+m)
1 (t)

=
1
µk

22k+1−n

(2k+ 1− n)!
B2k+1−n

�
1+ x

2

�
φ
(k+m)
1 (t)

(3.111)

(3.112)

where we used the fact that the Bernoulli polynomials form an Appell sequence. For any order,
we bound the Bernoulli polynomials by the following:

sup
x∈[0,1]

|Bk(x)|<
2k!
(2π)k

ζ(2), k¾ 0 (3.113)

where ζ is the Riemann zeta function. We may then bound the general term by:

����
∂n+m

∂nx ∂mt
ck(x, t)

����¶
1
µk

2
π2k+1−n

ζ(2)bRk+m (3.114)

Cauchy’s criterion apply as well and there exists a constant M such that:
����
∂n+m

∂nx ∂mt
Txφ1(t)

����¶MπnRm (3.115)

A similar proof can be given for the second term. The sum of these two terms is also Gevrey of
the same order, this finishes the proof.

Remark. The given bound on φ0 and φ1 is equivalent to say that this functions are Gevrey of
order 0 with radius R< 1/(µπ2). The proof developed for proposition 3.3.6 however does not
seem to extend well to Gevrey functions of strictly positive order.

3.3.4 Application of Tx to exponential functions

3.3.4.1 Convergent case

An example of non-polynomial function respecting the conditions of proposition 3.3.6 is φ(t) =
exp(λt) with |λ|< µπ2. Consider two linear combinations:

φ0(t) =
n∑

i=0

aie
λit

φ1(t) =
n∑

i=0

bie
γit

(3.116)

(3.117)

With |λi|, |γi|< µπ2. The heat equation being a linear equation, we can consider a single term
(thus the index i will be omitted) of this linear combinations. On the one hand, we have:

Txφ1(t) = beγt
∑

k¾0

γk

µk

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

�
(3.118)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 69

Chapter 3. Formal solutions to the heat equation

Expanding the Bernoulli polynomial around 1/2, one gets:

Txφ1(t) = beγt
∑

k¾0

γk

µk

22k+1

(2k+ 1)!

2k+1∑

l=0

�
2k+ 1

l

�
Bl

�
1
2

��x
2

�2k+1−l
(3.119)

However we know that([Abramowitz and Stegun, 1965, p. 805 23.1.21]):

Bn

�
1
2

�
= −(1− 21−n)Bn, n¾ 0 (3.120)

Which implies that:

B2n+1

�
1
2

�
= 0, n¾ 0 (3.121)

And thus:

Txφ1(t) = −beγt
∑

k¾0

γk

µk

k∑

l=0

(22l − 2)B2l

(2(k− l) + 1)!(2l)!
x2k+1−2l (3.122)

Inverting the two sums leads to:

Txφ1(t) = −beγt
∑

l¾0

γ l

µl

(22l − 2)B2l

(2l)!

∑

k¾0

γk

µk

x2k+1

(2k+ 1)!
(3.123)

Where we recognize the series expansion of the hyperbolic sine and cosine sinh and csch which
is convergent for |

p
γ/µ|< π. We may therefore write the previous equation as:

Txφ1(t) = −beγt csch

�√√γ

µ

�
sinh

�√√γ

µ
x

�
(3.124)

Similarly, we have:

T1−xφ0(t) = −aeλt csch

�√√ λ

µ

�
sinh

�√√ λ

µ
(1− x)

�
(3.125)

And then:

φ(x, t) = beγt sinh

�√√γ

µ
x

�
csch

�√√γ

µ

�
− aeλt sinh

�√√ λ

µ
(1− x)

�
csch

�√√ λ

µ

�
(3.126)

If we set γ = λ and c = −a = bexp−
p
γ/µ, we find the following obvious solution to the heat

equation:

φ(x, t) = cexp

�
γt+

√√γ

µ
x

�

φ0(t) = cexp
�
γt
�

φ1(t) = cexp

�
γt+

√√γ

µ

�

(3.127)

(3.128)

(3.129)

70 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.3. Various properties of the Tx operator

Furthermore, when changing γ for −γ (γ > 0), the hyperbolic functions transform in their
circular equivalents and leads to the two following solutions to the heat equation, either






φ(x, t) = ce−γt cos

�√√γ

µ
x

�

φ0(t) = ce−γt

φ1(t) = ce−γt cos

�√√γ

µ

� (3.130)

Or: 




φ(x, t) = ce−γt sin

�√√γ

µ
x

�

φ0(t) = 0

φ1(t) = ce−γt sin

�√√γ

µ

� (3.131)

The condition
p
γ/µ< π required for the resulting Txφ0 function to be convergent implies

that the unity axis can contain only less than half a period of the cosine (resp. sine) function. It
is therefore of interest to study the possibility to use greater values of γ.

3.3.4.2 Numerical study of the convergence

In the previously presented solutions to the heat equation, it seems reasonable to consider values
of γ such that |γ| ¾ µπ2. Indeed, the corresponding solutions do exist ! To understand the
problem of divergence of the operator Tx, we define the general term:

ak(x) =
1
µk

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

�
(3.132)

The functions ak are plotted in figure 3.4 for the first values of k. It confirms the geometric
decrease of the function. We introduce the function tγ(x) defined as:

tγ : x 7→
∑

k¾0

γkak(x), |γ|< µπ2 (3.133)

We may interpret tγ(x) as:

tγ : x 7→ lim
t→0

�
exp−γt Tx expγt

�
(3.134)

In the case of positive γ, it can be seen that the series defining the function tγ(x) is an alternat-
ing series. Indeed, [Abramowitz and Stegun, 1965, p. 805 23.1.14] states that (−1)k+1B2k+1(x)>
0, n¾ 1, x ∈ (0, 1

2). Together with [Abramowitz and Stegun, 1965, p. 804 23.1.8] which gives
B2k+1

�
1+x

2

�
= −B2k+1

�
1−x

2

�
, we may stated that B2k+1

�
1+x

2

�
is of the sign of (−1)k. Then an

approximation of the convergence of the series is given by:

|tγ(x)−
n−1∑

k=0

γkak(x)|¶ γn|an(x)| (3.135)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 71

Chapter 3. Formal solutions to the heat equation

0 0.2 0.4 0.6 0.8 1

10−6

10−5

10−4

10−3

10−2

10−1

100

x

|a k
(x
)|

k= 0
k= 1
k= 2
k= 3
k= 4
k= 5

Figure 3.4 – Numerical evaluation of the first ak functions (µ= 1).

which gives us the following approximate upper bound of the absolute error ([Abramowitz and
Stegun, 1965, p. 805 23.1.14])

|tγ(x)−
n−1∑

k=0

γkak(x)|¶
2
π

�
γ

µπ2

�n � 1
1− 2−2n

�
(3.136)

Hence, the convergence of the series is in this case geometric. To get an approximate value of
tγ with an error of at least ε, we have to estimate at most nε terms where nε verifies:

nε ¾
lnεπ − ln 2

ln γ

µπ2

(3.137)

The evolution of the error is represented in figure 3.5. As was foreseen from the error evaluation,
the closer γ is to π2, the slower the convergence is. With γ really close to its upper bound it
even becomes computationally unpractical to get an appropriate evaluation of tγ(x).

For negative values of γ, we bound the terms by the geometric approximation
2
π

�
γ

µπ2

�n
. This

gives the error bound:

|tγ(x)−
n−1∑

k=0

γkak(x)|¶
2
π

� |γ|
µπ2

�n



 1

1− |γ|
µπ2



 (3.138)

The decrease of this upper bound of the error appears to be somewhat slower – by a factor
1/(1− |γ|

µπ2) – than in the positive case. This decrease is nevertheless in the same range. The
function tγ(x) is then evaluated for n = 40 for various positive and negative values of γ and
various values of the viscosity µ. The results are represented in figure 3.6. The functions are
shared according to the sign of γ on both side of the t0(x) = x function. Functions with negative
γ are above t0 and are concave while function with positive γ are below t0 and are convex.

72 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.3. Various properties of the Tx operator

4 6 8 10 12 14 16
10−21

10−17

10−13

10−9

10−5

10−1

number of iterations

m
ax

im
um

ab
so

lu
te

er
ro

r

γ = 0.1π2

γ = 0.3π2

γ = 0.5π2

γ = 0.7π2

γ = 0.9π2

Figure 3.5 – Numerical evaluation of the error ε according to the number of terms calculated for
chosen values of γ (µ= 1).

With increasing viscosity – which corresponds by a change of variable to a decrease in γ – the tγ
functions get closer to the identity. However, usual summation for values of γ/µ> π2 diverges.
For such values, other summation processes should be used [Malgrange and Ramis, 1992; Lutz
et al., 1999; Meurer, 2005]. However, such studies are outside of the scope of the present work.

Remark. [Nörlund, 1922] proved that the (only) zero of B2n(x) between 0 and 1
2 (more precisely,

the only zero of B2n(x) between 0 and 1
4 which is the only lying between 0 and 1

2) tends to 1
4 with

n. [Ostrowski, 1960] improves this result by showing that this zero convergences monotonically.
By symmetry, the zero of B2n(x) on the other half of the unit axis tends to 3

4 . As a consequence,
recalling that B′2n+1(x) = (2n+ 1)B2n(x), the position of the maximum of B2n+1

�
1+x

2

�
tends to 1

2 .

3.3.5 The operator Tx and product of functions

3.3.5.1 Product with exponential functions

Based on sections 3.3.1 and 3.3.4, our first goal is to create, for any real continuous function
f(x) over [0, 1] two sequences of real functions φ0,n(t) and φ1,n driving the heat equation from
state f(x) at t= 0 to zero in infinite time. For this purpose, we first show the following result:

Proposition 3.3.7. Consider the following function:

φ1,n(t) =
tn

n!
e−γt, n> 0,µπ2 > γ > 0 (3.139)

Then, the function:

(x, t) ∈ [0,1]×R+ 7→ Txφ1,n(t) (3.140)

is defined and converges to zero:

lim
t→∞

Txφ1,n(x, t) = 0 (3.141)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 73

Chapter 3. Formal solutions to the heat equation

0

2

4

6

t γ
(x
)

0

0.2

0.4

0.6

0.8

1

1.2

t γ
(x
)

Value of γ −0.6π2 0 0.6π2

−0.9π2 −0.3π2 0.3π2 0.9π2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

t γ
(x
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x

t γ
(x
)

Figure 3.6 – Numerical evaluation of tγ(x) for various values of γ and various viscosities (from
top to bottom, from left to right respectively µ= 1.0, µ= 2.0, µ= 4.0, µ= 8.0).

74 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.3. Various properties of the Tx operator

Proof. Applying the formal differential operator of infinite order Tx to this function reads:

Txφ1,n(t) =
∑

k¾0

1
µk

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

�
dk

dtk

�
tn

n!
e−γt

�
(3.142)

Applying the formula for the derivative of products reads:

Txφ1,n(x, t) =
n∑

k=0

1
µk

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

� k∑

l=0

�
k
l

�
tn−l

(n− l)!
(−γ)k−le−γt

+
∑

k>n

1
µk

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

� n∑

l=0

�
k
l

�
tn−l

(n− l)!
(−γ)k−le−γt (3.143)

Inverting the sums leads to:

Txφ1,n(x, t) = e−γt
n∑

l=0

tn−l

(n− l)!

∑

k¾l

(−γ)k−l

µk

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

��
k
l

�
(3.144)

To bound the general term

dk,l(x) =
(−γ)k−l

µk

22k+1

(2k+ 1)!
B2k+1

�
1+ x

2

��
k
l

�
(3.145)

of the inner sum, we use the bound introduced in equation (3.102) and the following bound for
the binomial product: �

k
l

�
¶

kl

l!
(3.146)

Then the general term dk,l(x) is bounded by:

|dk,l(x)|¶
γk

µk

1
(π)2k

kl

l!γ l
(3.147)

Applying Cauchy’s criterion test to this general term gives:

k
q
|dk,l(x)|¶

γ

µπ2

k

√√√ kl

l!γ l
(3.148)

And thus:

limsup
k→∞

k
q
|dk,l(x)|¶

γ

µπ2
< 1 (3.149)

Then the inner sum
∑

k¾l dk,l(x) converges. We call this limit dl(x). We have then the following
expression:

Txφ1,n(x, t) = e−γt
n∑

l=0

tn−l

(n− l)!
dl(x) (3.150)

This expression is clearly defined for all n and converges to zero (γ is chosen strictly positive)
with respect to time. This gives the announced result.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 75

Chapter 3. Formal solutions to the heat equation

0 0.2 0.4 0.6 0.8 1
10−6

10−5

10−4

10−3

10−2

10−1

100

x

d n
(x
)

|d0|
|d1|
|d2|
|d3|
|d4|
|d5|
|d6|
|d7|

Figure 3.7 – The first dn(x) functions (γ = 1.0, µ= 1.0).

At time t= 0, we have:

Txφ1,n(x, 0) = dn(x) (3.151)

By definition, d0(x) = tγ(x). The function is depicted in figure 3.7. Despite their similar shape,
the function dn are not directly linked to the general term an depicted in figure 3.4, d6 is of the
order of a4. In future works, it could be interesting to prove that the successive dn functions are
linearly independent. This would allow to construct approximating polynomials matching any
starting state. This is not the chosen solution since [Laroche et al., 2000] suggest a solution
based on the function introduced in equation (2.30) allowing finite-time transitions. We present
this method in the following.

3.3.5.2 Product with the non-analytic Φσ function

Using non-analytic functions such as the Gevrey functions introduced in section 2.2.1 allows the
transition to be performed in finite time. Therefore we present the following result:

Proposition 3.3.8. Consider the following function:

φ1,n(t) =
tn

n!
(1−Φσ(t)), n> 0 (3.152)

where Φσ is the Gevrey function defined in equation (2.30) on page 48. Then, assuming this

definition has a meaning, the function, :

(x, t) ∈ [0, 1]×R+ 7→ Txφ1,n(t) (3.153)

verifies:

Txφ1,n(x, 0) = Tx
tn

n!
(x, 1)

Txφ1,n(x, 1) = 0
(3.154)

76 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.3. Various properties of the Tx operator

Proof. The function Φσ(t) is differentially flat in t = 0 and t = 1. In these points, the derivatives
of φ1,n(t) verify:

lim
t→0

dk

dtk
φ1,n(t) =

dk

dtk

tn

n!
(3.155)

And:

lim
t→1

dk

dtk
φ1,n(t) = 1 (3.156)

However, it is not ensured that the function Txφ1,n exists over since the convergence of the
series can not be established by simple analytic means. Numerical simulations tend to accredit
the hypotheses that these series, taken in the usual sense, are divergent in non-trivial cases. In a
similar case, [Laroche et al., 2000] suggest to use a least-term summation. In the following, we
assume that a suitable summation scheme exist that give a meaning to the operator Tx. We can
then give a generalization of theorem 3.3.2:

Theorem 3.3.9. Given a function f of the form:

f(x) =
2N−1∑

k=0

pk
xk

k!
=

2N−1∑

k=0

qk
(1− x)k

k!
(3.157)

The two controls defined by:

φ0(t) = (1−Φσ(t))
N−1∑

k=0

p2kµ
k tk

k!
(3.158)

And:

φ1(t) = (1−Φσ(t))
N−1∑

k=0

q2kµ
k tk

k!
(3.159)

Define a solution:

T1−xφ0(t) + Txφ1(t) = φ(x, t) (3.160)

Which verifies:

¨
φ(x, 0) = f(x)

φ(x, 1) = 0
(3.161)

Proof. This result is a direct consequence of theorem 3.3.2 and proposition 3.3.8.

Following corollary 3.3.3, we can state this useful corollary:

Corollary 3.3.10. Given the same function f, the two controls defined by:

φ0(t) = Φσ(t)
N−1∑

k=0

p2kµ
k (t− 1)k

k!
(3.162)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 77

Chapter 3. Formal solutions to the heat equation

And:

φ1(t) = Φσ(t)
N−1∑

k=0

q2kµ
k (t− 1)k

k!
(3.163)

Define a solution:

T1−xφ0(t) + Txφ1(t) = φ(x, t) (3.164)

Which verifies:
¨
φ(x, 0) = 0

φ(x, 1) = f(x)
(3.165)

The formal differential operator of infinite order Tx is linear. This enables us to state this
final corollary which will be the base of the functions used in the frame of our motion-planning
framework:

Corollary 3.3.11. Given two function f0 and f1 of the form:

f0(x) =
2N−1∑

k=0

pk
xk

k!
=

2N−1∑

k=0

qk
(1− x)k

k!

f1(x) =
2N−1∑

k=0

rk
xk

k!
=

2N−1∑

k=0

sk
(1− x)k

k!

(3.166)

The two controls defined by:

φ0(t) = (1−Φσ(t))
N−1∑

k=0

p2kµ
k tk

k!
+Φσ(t)

N−1∑

k=0

r2kµ
k (t− 1)k

k!
(3.167)

And:

φ1(t) = (1−Φσ(t))
N−1∑

k=0

q2kµ
k tk

k!
+Φσ(t)

N−1∑

k=0

s2kµ
k (t− 1)k

k!
(3.168)

Define a solution:

T1−xφ0(t) + Txφ1(t) = φ(x, t) (3.169)

Which verifies:
¨
φ(x, 0) = f0(x)

φ(x, 1) = f1(x)
(3.170)

Following theorems 3.3.2 and 3.3.2, we may write the solution to the heat equation given in
the previous corollary as:

φ(x, t) = (1−Φσ(t))
N−1∑

l=0

µl t
l

l!
f(2l)
0 (x) +Φσ(t)

N−1∑

l=0

µl t
l

l!
f(2l)
1 (x) +Σ(x, t,Φ(1)σ ,Φ(2)σ , . . .) (3.171)

78 Revision: a466fdc (2015-10-14 23:06:42 +0200)

3.4. The Hopf-Cole transformation and Gevrey functions

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

5

tx

|Φ
(1
)

γ
(t
)F
(x

,t
)|

Figure 3.8 – Numerical evaluation of |Φ(1)σ (t)Σ(x, t)| (γ = 1.5,µ= 1).

Where Σ is a function containing the remaining of the successive derivatives of Φ(1)σ . However,
the two first derivatives are linked by equation (2.38), thus the previous equation may be written
as:

φ(x, t) = (1−Φσ(t))
N−1∑

l=0

µl t
l

l!
f(2l)
0 (x) +Φσ(t)

N−1∑

l=0

µl t
l

l!
f(2l)
1 (x) +Φ

(1)
σ (t)Σ(x, t) (3.172)

The rest term Φ(1)σ (t)Σ(x, t) may be evaluated by comparing the result of a finite element
computation of the heat equation and the first explicit term of the formal computation suggested
previously. This allows to find the rest depicted in figure 3.8. In the following, we assume that
computing the solution to the heat equation by means of finite differences is equivalent to least
term summation of the formal solution suggested previously.

In the next chapter, we will see how the previous formal approach and this assumption allow to
build trajectories for a multi-agent system. We will explain how we manage to respect geometric
constraints either for the heat equation or for Burgers’ equation.

3.4 The Hopf-Cole transformation and Gevrey functions

In the proposition 3.3.6 on page 68 we prove that the solutions to the heat equation generated
by the Tx operator from Gevrey functions of order 0 in t are Gevrey of order 0 in both t and
x. Even if we were not able to extend this result to Gevrey functions of greater order, it is of
interest to study the effect of the Hopf-Cole transformation to Gevrey functions.

Proposition 3.4.1. If φ(x, t) is a Gevrey of order respectively α and 1 in t and x and if there exists

c > 0 such as ∀x ∈ [0,1],∀t ∈ [0,1],φ(x, t) > c then u = φx/φ is Gevrey of order respectively α

and 1 in t and x.

Proof. Let v(x, t) = lnφ(x, t). Since the logarithm function ln is analytic on [c,∞[, it is Gevrey
of order 1. By composition, the function v(x, t) is Gevrey and has same order as φ as long as

Revision: a466fdc (2015-10-14 23:06:42 +0200) 79

Chapter 3. Formal solutions to the heat equation

the orders are greater than (or equal to) 1 (see on this the various results of composition of
Gevrey functions given in [Yamanaka, 1989]). Since u= vx, and since Gevrey orders are stable
by derivation, u is Gevrey and has same order as v and thus, as φ.

This results proves that strictly positive solutions to the heat equation generated by the
operator Tx from Gevrey functions of order 0 in t result, after applying the Hopf-Cole transform,
in analytic solutions to Burgers’ equation.

80 Revision: a466fdc (2015-10-14 23:06:42 +0200)

CHAPTER 4

PDE-based motion planning
framework

In the previous chapter, we presented a formal way to construct a solution to the heat equation
with control on both side. In this chapter we present the framework we created to generate
acceptable trajectories. In a first section we create solutions to the heat equation. In a second
section, we present how to use the aforementioned method and Hopf-Cole transformation to
generate solutions to Burgers’ equation. Various aspects are discussed on how to generate
trajectories for a multi-agent system constituted of leader and follower agents based on this
solution.

Contents
3.1 Rewriting the heat equation with formal differential operators of infinite order . 53

3.2 The heat equation with controls on both sides . 55

3.2.1 Objectives . 55

3.2.2 Formal derivation . 55

3.2.3 Computational implementation . 61

3.3 Various properties of the Tx operator . 62

3.3.1 Polynomial states and controls . 62

3.3.2 Application to the Weierstrass approximation theorem 66

3.3.3 Convergence of the Tx operator . 67

3.3.4 Application of Tx to exponential functions 69

3.3.4.1 Convergent case . 69

3.3.4.2 Numerical study of the convergence 71

3.3.5 The operator Tx and product of functions . 73

3.3.5.1 Product with exponential functions 73

3.3.5.2 Product with the non-analytic Φσ function 76

3.4 The Hopf-Cole transformation and Gevrey functions 79

4.1 Generating solutions to the heat equation

In the previous chapter, corollary 3.3.11 gives an explicit way to solve a transition in finite time
between two polynomial states f0 and f1. This trajectory is a solution of the heat equation and
is unidimensional. Suppose a state in dimension d described by fi = (f

0
i , . . . , fd−1

i), i¾ 0 where

Chapter 4. PDE-based motion planning framework

fi = f(Ti). The times Ti are strictly increasing with respect to i and describe the time of the
successive imposed states. As a matter of simplification, we consider in the following the only
state at T0 = 0 and T1 = 1. A transition between two successive states fi and fi+1 is described by
d equations similar to those described in corollary 3.3.11.

Considering a single dimension, and following the formalism used in the controls and states
described in corollary 3.3.11, the states:

f0(x) =
2N−1∑

k=0

pk
xk

k!

f1(x) =
2N−1∑

k=0

rk
xk

k!

(4.1)

represent 4N degrees of freedom. The controls are strictly equivalent to these states. Our goal
is to create trajectories for N agents. The trajectory of each of these agents is described by the
trajectory of a point αi of the heat equation φ(αi, t). In this case, the positions of the agents at
time t0 and t1 are equivalent to 2N of these degrees of freedom. The remaining 2N degrees of
freedom may be used in different ways. In the following, we suggest to use them as waypoints
for the left-most and right-most agents.

We write r0 (resp. s0, p0, p1, q0 and q1) the vector (r2i) (resp. (s2i), (p2i), (p2i+1), (q2i) and
(q2i+1)), F0 and F1 the upper-triangular matrices of generic terms 1/(2(j− i))! and 1/(2(j− i)+1)!.
Based on equation (3.166) we get the relations:

¨
r0 = F0p0 + F1p1

s0 = F0q0 + F1q1
(4.2)

Let the respective index of every agent be i/(N− 1), 0≤ i< N. Let ds = (ds
i) (resp. df = (df

i))
be the initial (resp. final) formation, so that f0(i/(N− 1)) = ds

i (resp. f1(i/(N− 1)) = df
i). We

denote by A the invertible Vandermonde matrix of generic term ((i/N− 1)2l)0≤i,l<N and J0 (resp.
J1) the diagonal matrix of generic term (1/(2i)!) (resp. (1/(2i+ 1)!)) and H the diagonal non
invertible matrix of generic term (i/(N− 1)). We have:

¨
ds = AJ0p0 +HAJ1p1

df = AJ0q0 +HAJ1q1
(4.3)

This sets the 2N equations for the positions. Introducing the matrices Q = J−1
0 A−1, which is

invertible and R= HAJ1 (which is not), we get the following relations between odd and even
coefficients: ¨

p0 = Q (ds −Rp1)

q0 = Q
�
df −Rq1

� (4.4)

Therefore, the even coefficients of the states fi depend on the chosen positions and on the odd
coefficients. This odd coefficients are determined as follows.

We task the left trajectory (resp. right trajectory) with going, in this order, through the
successive points (e0

i)0≤i<N (resp. (e1
i)0≤i<N) at time (t0

i)0≤i<N (resp. (t1
i)0≤i<N). Since the

82 Revision: a466fdc (2015-10-14 23:06:42 +0200)

4.1. Generating solutions to the heat equation

positions of the left- and right-most agents at time t = 0 and t = 1 are already known, we
take 0 < t0

i , t1
i < 1. Let t0

i = t1
i = (i+ 1)/(N+ 1). Let P be the anti-diagonal matrix of generic

term 1 (with PP = I). Let Φ be the diagonal matrix of generic term (Φγ(t
0
i))0≤i<N. Since

Φγ(1− t) = 1−Φγ(t), we have (I−Φ) = PΦP. Let V (resp. T) be the Vandermonde matrix of
generic term ((t0

i)
j)0≤i,j<N (resp. ((t0

i − 1)j)0≤i,j<N). Let B be the diagonal matrix of generic term

((−1)i)0≤i<N (notice we have BB= I). Since tj
i = 1− tj

N−1−i, j ∈ {0,1}, we have V = PTB. Let G
be the diagonal matrix of generic term (1/(i!))0≤i<N. We get, using the definition of the controls
in equations (3.167) and (3.168):

�
e0 = PΦPVGp0 +ΦPVGBq0

e1 = PΦPVGr0 +ΦPVGBs0
(4.5)

Using relation equation (4.2) in the latter and writing D= PΦPVG and E= ΦPVGB (which are
both invertible matrices), we get:

�
e0 = Dp0 + Eq0

e1 = D(F0p0 + F1p1) + E(F0q0 + F1q1)
(4.6)

Using equations equation (4.4) in the previous equations, writing Q̂ = Q−1D−1 and Q̃ =
Q−1F−1

0 D−1 – which are both invertible – we get the global system:






p0 = Q (ds −Rp1)

q0 = Q
�
df −Rq1

�

Q̂e0 = ds −Rp1 + K(df −Rq1)

Q̃e1 = ds −Rp1 + Q̃DF1p1 + L0(df −Rq1) + L1q1

(4.7)

Where K = Q̂EQ, L0 = Q̃EF0Q and L1 = Q̃EF1, are invertible matrices. Subtracting the third line
to the fourth, we get:






p0 = Q (ds −Rp1) ,q0 = Q
�
df −Rq1

�

Q̂e0 = ds −Rp1 + K(df −Rq1)

Q̃DF1p1 = Q̃e1 − Q̂e0 + (K− L0)df + ((L0 − K)R− L1)q1

(4.8)

Then, injecting the fourth line in the third, we get an expression of q1 depending only on e0,
e1, ds and df. Assuming the matrix RF−1

1 D−1Q̃−1((L0 − K)− L1) + KR is invertible, we get an
exact expression of q1. Using the three other equations, we get the three other vectors. The
four remaining vectors r0, r1, s0 and s1 are found using equation (4.2).

Therefore, it is possible, using equation (4.8), to construct a set of coefficient for the controls.
The computed solution to the heat equation matches at the different time steps the chosen
positions of the agents and the waypoints of the left-most and right-most agent. This is illustrated
by figure 4.1 for four agents and the consequent four waypoints. All the trajectories pass, as
expected, through the given waypoints, up to the computational inaccuracy. It appears that the
smaller the “stiffness” γ of the basis transition function is, the higher is the “aggressiveness” of
the trajectory. The corresponding solution for a chosen value of γ is depicted in figure 4.2. It
matches the given start and end formations and gives as a result four smooth trajectories for the
four agents.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 83

Chapter 4. PDE-based motion planning framework

0 1

3

5

x

φ
1
(t
)

0 1

1

3

x

φ
0
(t
)

γ = 1.20 γ = 1.75 Waypoints
γ = 1.65 γ = 1.90

Figure 4.1 – Example of controls for defined waypoints for various values of γ (µ= 1.0).

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

3

6

tx

φ(x, t)

Figure 4.2 – Numerical resolution of the heat equation (γ = 1.2, µ = 1.0) for given start and
end states (depicted by blue dots) and given waypoints (depicted by pink dots) .

84 Revision: a466fdc (2015-10-14 23:06:42 +0200)

4.2. Generating solutions to Burgers’ equation

4.2 Generating solutions to Burgers’ equation

In the previous section, we showed how solutions to the heat equation can be produced. These
solutions use half of the available degrees of freedom to so that the left-most and right-most
agent pass through preset waypoints. In this section, we show how this method can be adapted
to construct solutions to Burgers’ equation.

4.2.1 Optimization of the trajectories

It is possible to turn a solution θ to the heat equation constructed in the previous sections into
a solution φ to Burgers’ equation. This is done thanks to Hopf-Cole transformation that was
recalled and proved in theorem 2.1.3:

φ = −2µ
θx

θ
(4.9)

Creating an appropriate solution is thus a two-sided problem. On the one hand, the solution to
the heat equation θ has to be of strictly constant sign. We may see in the sample controls depicted
in figure 4.1 that adding waypoints create some “overshoot” between these waypoints. This
can lead the solution to cross the origin. On the other hand, the solutions to Burgers’ equation
obtained from the Hopf-Cole transformation should follow a determined set of conditions. This
two-sided problem is solved by means of optimization.

Formally, we may define our goals as follows. First, we want the solution to the heat equation
to be strictly positive. We define c, the minimum of φ(x, t) on the unity square (e.g. A =
{(x, t), 0 ¶ x, t ¶ 1}). Thanks to the minimum principle (see e.g. [Logan, 2008, part. 7.2.1,
p. 353]), this minimum is located on the border of the unity square (e.g. A− �A where �A is the
interior of A: �A= {(x, t), 0< x, t< 1}). This minimum can be found as:

c=min
n

inf
0¶x¶1

f0(x), inf
0¶x¶1

f1(x), inf
0¶t¶1

φ0(t), inf
0¶t¶1

φ1(t)
o

, (4.10)

Second, if the first condition is verified, i.e. if c> 0, we may evaluate the solution to Burgers’
equation using the Hopf-Cole transformation. This solution u(x, t) on A is evaluated using a
finite difference scheme. Doing this, we want the function u(x, t) to meet specific requirements.
These requirements can depend on the objectives of the system. In the case of trajectories in
space, these objectives may encompass collision avoidance. In the following, we will minimize
the lengths of the paths of the leader and the anchor. This length is evaluated as:

〈u〉(x) =
∫ 1

0

|ut(x, s)|ds− |u(x, 1)− u(x, 0)|. (4.11)

The overall cost function is then defined as:

〈f0, f1〉=
¨

c if c¶ 0

1/(〈u〉(0) + 〈u〉(1)) if c> 0
. (4.12)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 85

Chapter 4. PDE-based motion planning framework

A convenient way to find extrema of certain functions is to use Particle Swarms Optimization
(short PSO, see subsection 1.1.2 – Methods based on Particle Swarm Optimization). An
advantage of PSO over other optimization frameworks, is that it does not need derivations of
the cost function. Therefore, this process is adapted to optimization in high dimension or with
noisy data. A simple description of the PSO algorithm can be given in two steps as follows:

Initialization: A set of n particles – called the swarm – is created with random positions. These
positions are uniformly distributed over the solution space [xmin,xmax]

n. The speeds of
the particles are randomly initialized. This initialization is done with value uniformly
distributed over [−|xmax − xmin|, |xmax − xmin|]n. The local best position of each particle is
initialized to the particle’s initial position while the global best particle is searched among
them.

Evolution: At each step of the evolution, the speed of each particle is updated based on its
current speed and position and on the knowledge of the best local and global particles.
The particles are then moved according to the new speed and evaluated.

It is believed that the swarm will converge to the global optimum if it exists or, if not, to a local
optimum. However this convergence depends on the various parameters that can be chosen
and the swarm can, in some cases, diverge or oscillate. The choice of these parameters has thus
to be performed with care whereas with a certain freedom.

Inspired by the way the coefficients for the state representations f0 and f1 were found, we
search for a way to find these coefficients using the Hopf-Cole transformation. We may write,
for each of the agent of index xk,:

u(tj, xk)

−2µ
fj(xk) = f′j(xk) (4.13)

We search for an appropriate matrix Mj so that:

pj
1 =Mjp

j
0, (4.14)

Where pj
i corresponds either to pi or qi in the preceding. We write Uj the diagonal matrix of the

scaled positions (−u(xj
k, tj)/2µ)0¶k<N of the N agents at time tj. We write Aj the matrix of generic

term ((xk)
2l/(2l)!)0≤k<N,0≤l<N and Bj the matrix of generic term ((xk)

2l+1/(2l+ 1)!)0≤k<N,0≤l<N.
D is the derivation matrix :

D=





0 1 0 . . . 0
.. .

...

··
··
· · · · · · · ·

· · · · ·
0
1

0 · · · · · 0




(4.15)

Equation (4.13) can be written as:

Uj(Ajp
j
0 + Bjp

j
1) = BjDpj

0 +Ajp
j
1, (4.16)

which can be put in the form

86 Revision: a466fdc (2015-10-14 23:06:42 +0200)

4.2. Generating solutions to Burgers’ equation

(UjBj −Aj)p
j
1 = (BjD−UjAj)p

j
0, (4.17)

During the optimization process, the particles are chosen in the N-dimensional space of pj
0 (or

2N-dimensional space of pj
0 and pj+1

0 as will be explained in the following). The odd coefficient
are then computed based on the positions of the agents and on the particles. Algorithm 1.1
is then adapted and applied to this system. As a result, it outputs a possibly optimal set of
coefficients for the state representation f0 and f1. This is adapted as explained in the following
subsections.

4.2.2 Leaders and followers

In our framework, we distinguish two types of agents: leaders and followers. The agents
introduced in the previous section for which a start and an end state can be imposed are leaders.
Their positions are determined and chosen at all the desired transition states. As a consequence
of the adopted formalism, a function fi in equation (3.166) represents a formation of N leaders.

In addition to these leaders, another class of agents is introduced: followers. This class is
inspired by the agents used in [Meurer and Krstić, 2011]. Their positions in the start and end
states are a result of the position of the leaders. The number of followers is not limited by the
representation chosen in equation (3.166). These followers are described by indices chosen
between the indices of the leading agents. This choice can represent a specific topology.

The status of leaders and followers can be changed between successive deployments and
the number of leaders is not fixed. A system of three leaders and two followers during a
deployment can be turned in any system with two to five leaders in the following deployment.
However, changing the organization of the system impacts the complexity and the efficiency of
the optimization problem.

4.2.3 Transition between successive steps

Let there be three successive states of a formation of N leaders and M followers at time t0, t1

and t2. These three formations are described by sets of N ordered positions s0, s1 and s2. The
first transition from s0 to s1 is obtained by optimizing the functions f0 and f1 of the form given
in equation (3.166) on page 78 representing respectively s0 and s1.

To create the transition from state s1 to state s2, two approaches are considered. The first
solution consists in evaluating only the best possible representation f2 of the state s2 by keeping
the representation f1 of the state s1. This reduces the size of the optimization space by a factor
two and is compatible with the use of followers. Since the representation of the state is kept,
the position of the followers is coherent. However, the resulting solution is not the best possible
solution and can result in longer trajectories.

The second solution consists in evaluating again the representation f1 and f2 of the states s1

and s2. This solution leads to better optimized trajectories at the cost of a wider optimization
space. Moreover, as the representation of the start state changes, the starting positions of the
followers is not coherent with their ending position at the previous step. An error is induced
that has to be corrected by the closed-loop controllers of the followers.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 87

Chapter 4. PDE-based motion planning framework

0 2 4 6 8 10

101

102

t

〈u
〉(0
)
+
〈u
〉(1
)

optimizing f1
keeping f1

Figure 4.3 – Time evolution of the cost for a team of four leaders (average on 50 runs with fixed
points, γ = 1.65,µ= 1.0).

The difference in optimization time and efficiency between these two solutions is represented
in figure 4.3 for a team of four leaders. In our configuration, the optimization of both the start
and the final representations (depicted in light blue, dashed) gives better results than optimizing
the only final representation (depicted in dark blue), provided the optimizer has enough time.
In the case where a solution is needed in the shortest possible time, keeping the representation f1
is the best solution. Advantages and drawbacks of these two methods are gathered in table 4.1

keeping fi optimizing fi
resolution speed + -
optimized - +

adapted to followers + -

Table 4.1 – Comparison of the two suggested methods for state representation optimization.

These methods are illustrated in figure 4.4 on the next page where the final state of the second
deployment is the start state of the first deployment (s2 = s0). Three possible return methods are
presented. The first deployment from s0 to s1 is drawn in light blue. As it is the first deployment,
both the start and end formation representations have been optimized. This results in short and
smooth paths.

For the way back, the first possibility, drawn in dark bluein figure 4.4 on the facing page, has
been obtained by optimizing again both the start and end representations. This results in equally
short and smooth paths whereas different from the direct way. This is a sign of the nonlinearity
of Burgers’ equation as the trajectories between two points is not the same depending on
the sense of travel. The second possibility, drawn in light green, was obtained by keeping
the representation of the final formation of the previous deployment as the representation of
the new start formation and optimizing the representation of the new final formation. This
results in a path longer than in the previous case but was obtained in notably less time. A last

88 Revision: a466fdc (2015-10-14 23:06:42 +0200)

4.3. Combining solutions to create trajectories

0 0.2 0.4 0.6 0.8 1

−0.2

0.1

0.4

t, 1− t

u(
0,

t)
,u
(1

,t
)

s0→ s1
s1→ s0 optimizing f1
s1→ s0 keeping f1
s1→ s0 with f1↔ f0

Figure 4.4 – Three return possibilities (γ = 1.65,µ= 1.0).

possibility, that is not ensured to work, is given as the dark green dashed line. This is obtained
by only exchanging the role of the previous start and final formation representation. Due to the
definitions of the controls in equations (3.167) and (3.168) (and notably due to the choice of
powers of t−1 instead of powers of 1− t), the systems is not invariant by the change of variable
t← 1− t. In the case where the resulting solution to the heat equation is strictly positive, it is
still possible to compute a solution to Burgers’ equation that matches the given start and end
formation. However, this solution undergoes no optimization process and the resulting solution,
as in the case depicted in figure 4.4, is not optimal at all.

4.3 Combining solutions to create trajectories

The generation of solutions presented in the previous sections was presented in only one
dimension. Trajectories in more dimensions are created by combining solutions created in one
dimension into solutions for a higher dimensional space.

As a matter of illustration, an example in two dimensions with three leaders and eighteen
followers is created. First, two solutions on the two dimensions are computed. They are created
to ensure the transition between the starting formation and the final formation given in table 4.2.
They result in the coefficients given in table 4.3. The resulting trajectories, for each dimension,
are presented in the two subfigures of figure 4.5. Then, these trajectories are combined into
the two-dimensional trajectories depicted in figure 4.6. The thick solid lines represent the
trajectories of the three leaders while the other thin lines represent, horizontally, the state of
the formation at time t and, vertically, the trajectories of the agents. In the right subplot of
figure 4.5, a contraction of the formation is observed. This does not lead to collisions in the
final trajectory due to the distance among the agents in the other dimension. However, a more
careful optimization could be needed to ensure the absence of collision due to the non-zero size
of the agents.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 89

Chapter 4. PDE-based motion planning framework

0 0.9

0

1

x

t

0.4 0.9

0

1

y

t

Figure 4.5 – Two solutions to Burgers’ equation for 3 leading agents (thick solid lines) and 18
follower agents (γ = 1.5,µ= 1.0).

0.4
0.6

0.8
0

0.2
0.4

0.60.8

0

0.5

1

y
x

t

Figure 4.6 – Trajectories in a plane of 3 leading agents (thick solid lines) and 18 follower agents
(γ = 1.5,µ= 1.0).

90 Revision: a466fdc (2015-10-14 23:06:42 +0200)

4.4. Conclusion and perspectives

index of the agent 0 0.5 1
starting formation (0.2,0.3) (0.7, 0.7) (0.8,0.9)

final formation (0.2,0.4) (0.4, 0.6) (0.5,0.7)

Table 4.2 – Starting and Final formations for the leaders used in the simulation.

First dimension: x

0 1 2 3 4 5
pi 66.623 −6.662 −43.940 57.574 57.518 −172.555
ri 48.545 19.418 13.635 −28.815 −115.037 172.555

Second dimension: y

0 1 2 3 4 5
pi 10.318 −1.548 −4.235 1.593 17.517 −30.274
ri 7.396 3.328 1.071 −3.973 −12.757 30.274

Table 4.3 – Coefficients (rounded to the third decimal) describing the formations for both
dimensions.

The paths in the (x, y) plane of the three leaders and of two chosen followers are shown in
figure 4.7. Whereas some of these paths intersect, this is not the case of the trajectories. This
can be visually checked in figure 4.6. This representation shows that there are no collisions
between the different agents.

4.4 Conclusion and perspectives

In this first part, we presented, first, a formal method based on the flatness of the heat equation
to create solutions to the heat equation. This method is applied, using an optimization process
and the Hopf-Cole transformation, to create solutions to Burgers’ equation. These solutions are
used as the base of a framework to plan trajectories for a multi-agent system.

This framework allows to create solutions for a set of agents, either leaders (for which a final
position can be precisely set) or followers (for which the final position is a result of the final
positions of the leaders), evolving in a space of arbitrary dimension. The problem of successive
deployments are considered and computational efficiency of optimizing these transitions is
studied.

The framework appears efficient. However, more work would be necessary to ensure obstacle
and collision avoidance. These objectives could be, in future works, added to the cost function
used during the optimization process. The tracking of these trajectories is supposed to be
performed by closed-loop controllers implemented on the various agents. Such a problem will
be considered in the following part.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 91

Chapter 4. PDE-based motion planning framework

0 0.2 0.4 0.6 0.8

0.4

0.6

0.8

1

x

y

Figure 4.7 – Trajectories of the three leaders (dark blue) and of two chosen followers (light
blue) in the (x, y) plane. Starting positions are indicated by circles, final positions by arrows
(γ = 1.5,µ= 1.0).

92 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Part II

Modeling and control of a trirotor UAV

CHAPTER 5

Unmanned Aerial Vehicles: a brief
review

This chapter is dedicated to a brief review on aerial vehicles with an emphasis on control of
Unmanned Aerial Vehicles (UAVs). In the first section we review some basics on flight dynamics.
We then present various classes of aerostats and aerodynes and give a short overview on fixed-
wing, rotary-wing, and convertible aircrafts as well as present various models. We devote the
second section to the study of the quadrotor UAV. This family of UAVs is the most spread class of
small scale multirotor UAVs. Its configuration approaches the structure of the UAV studied in
this thesis. We present a brief survey of works conducted to control quadrotors and to perform
load transportation with them. In the last section, we review the existing works that have been
conducted on multirotor UAVs equipped with tilting rotors.

Contents
4.1 Generating solutions to the heat equation . 81

4.2 Generating solutions to Burgers’ equation . 85

4.2.1 Optimization of the trajectories . 85

4.2.2 Leaders and followers . 87

4.2.3 Transition between successive steps . 87

4.3 Combining solutions to create trajectories . 89

4.4 Conclusion and perspectives . 91

5.1 Flight dynamics

5.1.1 Basics of flight

The world of man-made aerial vehicles is separated since the beginning into two categories,
aerostats and aerodynes. Aerostats are lighter-than-air aircrafts. They derive the necessary lift
to fly from buoyancy. They are called aerostats since they can fly without airflow on their bodies.
Aerodynes, on the contrary, are heavier-than-air aircrafts. They derive the necessary lift from a
dynamic air flow.

5.1.1.1 Aerostats

There are two ways for an aerostat to get buoyancy. The first way is by filling the aerostat’s
envelope with warm air. Warm air is indeed lighter than the – fresher – ambient air. The aerostat

Chapter 5. Unmanned Aerial Vehicles: a brief review

air flow

Center of pressure

lift

drag

total aerodynamic force

Figure 5.1 – Aerodynamic forces: lift and drag on a foil (NACA4612)

needs to carry a burner and propellant to heat the gas, either to control the flight altitude or
to compensate heat losses. The first recorded manned untethered free flight in history was
conducted by Jean-François Pilâtre de Rozier and François d’Arlandes on November 21, 1783.
They flew a distance of about 9 km in about twenty-five minutes taking off in front of king Louis
XVI from the Château de la Muette, now near the Porte de la Muette, Paris, and landing on
the Butte aux Cailles, now in the south-eastern XIIIth arrondissement of Paris, at a maximum
estimated altitude of thousand meters.

The other solution was developed at the exact same time. It consists in filling a closed envelope
with a lighter than air gas. On December 1, 1783 , Jacques Charles and Nicolas-Louis Robert
made a two hours flight covering thirty-six kilometers from the Tuileries Garden in the center
of Paris to Nesles-la-Vallée, north-west from Paris. Their balloon was inflated with hydrogen
obtained by the reaction of sulphuric acid on iron. Other lifting gases can either be helium,
ammonia, methane or coal gas – which has been historically widely used for that purpose. Gas
balloons face several problems e.g. the very high price of helium, the extreme inflammability of
hydrogen, methane or coal gas, the permeability of usual envelopes to hydrogen and helium.

Theses two classes of aircrafts are called balloons and are designated respectively as hot air
and gas balloons. Balloons have several advantages such as very long endurance or very high
ceiling – indeed, in 2002, a balloon reached the altitude of fifty-three kilometers [Yamagami
et al., 2004], the highest altitude ever reached by an atmospheric vehicle. However they lack
controllability and move with the surrounding air flow. The lack of controllability can be partially
solved by adding propellers and adopting an aerodynamic envelope creating rigid airships, such
as zeppelins, equipped with a rigid structural framework, semi-rigid airships, which have a
partial structural framework, or blimps, which have no structural framework.

5.1.1.2 Aerodynes

Aerodynes are heavier-than-air vehicles. In order to produce lift they have to create aerodynamic
forces to compensate their weight. Indeed a fluid, either liquid or gaseous, flowing past a surface
exerts a force on the surface, respectively called hydrodynamic and aerodynamic forces. These
forces are decomposed, as illustrated in figure 5.1, in a normal component, the lift, and a parallel
component, the drag. The depicted air flow illustrates the velocity and orientation of the flow at
infinity, that is without the influence of the airfoil.

A wing or a blade of a propeller produces therefore aerodynamic lift and drag. These forces
greatly depend on the geometry of the foil – the cross section of the wing or blade. They also

96 Revision: a466fdc (2015-10-14 23:06:42 +0200)

5.1. Flight dynamics

air flow

angle of attack
chord line

Figure 5.2 – Geometry of an airfoil (NACA4612)

depend on the angle – called the angle of attack – between the oncoming flow and the chord line
– the imaginary line joining the leading and trailing edges of the foil as depicted in figure 5.2.
Works are conducted to propose mathematical models of these forces, for example by [Pucci
et al., 2011].

A simple explanation of the origin of the aerodynamic force can be found in considering a
finite volume of air. The trajectory of this element is deflected along the wing. As such, the
celerity of the element is changed, hence an acceleration does occur. This acceleration is caused
by a force which, summed over the wing, gives the total aerodynamic force. This force is applied
to the center of pressure. The position of the center of pressure evolves with the flight parameters
such as the angle of attack and the air velocity.

As can be deduced from the previous model, a symmetric airfoil will produce zero lift when
parallel to the airflow. The drag and the lift of the airfoil will then evolve with the angle of attack.
The lift and drag forces induced by the airfoil are studied through wind tunnel experimentations
or, increasingly, through numerical simulations. Each foil has a best angle of attack, the critical
angle of attack, where the produced lift is maximum. As such, the profile of the foil is chosen to
match its typical service conditions. The critical angle of attack depends however on the relative
air speed. It is said to be critical since, past this limit, the lift rapidly decreases because of the
greater flow separation induced by the foil. This situation, called stall, is to be avoided in usual
flight conditions and was the cause of many accidents such as the flight AF447 Rio-Paris in 2009.

There are two ways to induce air flow on a wing – independently of wind – to produce lift. One
can either have wings fixed to the aircraft’s body and move the whole aircraft or let the wings
move with respect to the body. Aircrafts belonging to the first category are called fixed-wing

aircrafts while the others are called rotary-wing aircrafts.

5.1.2 The roll-pitch-yaw convention and aircrafts’ centers

In the following, we are led to describe the position and attitude of an aircraft. We call the three
rotation angles described in figure 5.3 respectively roll (about the body longitudinal axis, chosen
to be the x axis), pitch (about the body lateral axis, chosen to be the y axis) and yaw (about the
body vertical axis, chosen to be the z axis). Mathematical model of aerodynes commonly use
rotation matrices to describe the attitude. It is the choice we made in this work. The sequence
of rotations chosen is the x− y− z sequence, meaning the attitude is obtained first by the roll
angle, then by the pitch angle and then by the yaw. Since we chose a z axis pointing downwards,
this convention is usually called the North-east-down convention.

Usually, the origin of the body-fixed frame is chosen at the center of mass of the aircraft.
The center of mass and the center of pressure usually do not coincide. However the aircrafts
are commonly designed so that, in normal conditions, these two points are on the symmetry

Revision: a466fdc (2015-10-14 23:06:42 +0200) 97

Chapter 5. Unmanned Aerial Vehicles: a brief review

x

y

z

(a) On an airplane.

x

y

z

(b) On a helicopter.

Figure 5.3 – The roll-pitch-yaw convention.

plane of the aircraft so that the plane remains stable around the roll and the yaw axes. Before
the advent of automatic control, the aircrafts were also designed so that the aircraft remained
stable around the pitching axis. The inherent stability of such aircrafts is needed for civilian
applications where the aircrafts need to remain steerable even in the case of autopilot failure.
However, inherent stability can be a disadvantage for military aircrafts. They usually need a
greater maneuverability brought by their inherent instability.

The pitch angle should however not be confused with the angle of attack. The pitch angle is
defined with respect to the Earth while the angle of attack is defined with respect to the air flow.
Indeed, planes can do acrobatics such as looping without exceeding the critical angle of attack.

5.1.3 Fixed-wing aircrafts

One usually distinguishes three classes of fixed-wing aircrafts: kites, gliders and aeroplanes.
Kites are aircrafts tethered by one or more rope lines to a point. The rope lines are essential
for the kite, they provide control and traction forces, for example as a power source for kite
surfing or to lift an observer or payload like a human observer or meteorological instruments.
However, kites require a sufficient wind which is not always available. Gliders are aircrafts
whose free flight does not depend on an engine. To take-off, they need either to be towed by
another aeroplane, by a car, or by a stationary winch rapidly winding a cable. Some gliders can
take off using a retractable engine which is not used during the flight.

Aeroplanes are powered aircrafts. They use the thrust from a jet-engine, a propeller or a rocket
to gain forward speed and experience aerodynamic lift. Aeroplanes can experience gliding flight,
either as a test of their flight properties during design period, as a normal operation for example
for rocket powered aeroplanes1 or after a technical failure such as fuel exhaustion2 or the loss
for any other reason of the thrust.

An example of the structure of an aircraft is shown in figure 5.4. Every aircraft is built around
a body (in red) called the fuselage 3 and wings (in grey). Throughout the history of aeroplanes,

1Such as the World War II German interceptor Messerschmidt Me 163 or the two reusable spacecrafts, the US
American Space Shuttle and the Soviet Buran.

2As did occurr to a Boeing 767 of Air Canada, nicknamed “Gimli Glider” on July 23, 1983 which landed after
gliding about 70 km at Gimli.

3Some planes such as the North American F-82 Twin Mustang, which saw service in the United Stated Air Force
from 1946 to 1953, were built around a twin fuselage.

98 Revision: a466fdc (2015-10-14 23:06:42 +0200)

5.1. Flight dynamics

Figure 5.4 – The different elements of an aeroplane.

there have been several wing configurations. Designs have been used with one or more wings
which can be mounted at various heights of the fuselage. Furthermore many different wing
designs have been used. Additional small lifting surfaces are usually added either at the rear of
the aircraft, called the tailplane (in light blue), or at the front, called the canard plane (in green).
They are used as horizontal stabilizers. A vertical structure, called the fin (in blue) provides
stability in rotation around the vertical axis. Fin and tailplane form the empennage. The wing,
as well as the other additional surfaces embeds movable surfaces used as controls.

The propulsion of aeroplanes can be done through different methods. At the beginning of
aviation history, the only available motors were steam engines. Clement Ader powered his Éole
with such low-power engines and is reported to have taken off in 1890 for an uncontrolled flight
on a distance of about thirty to fifty meters. The development of inner combustion engines
combined with the development of piston engines allowed the Wright brothers to be the first
pilots of humankind. Their Whight Flyer was a lightweight controlled glider equipped with a
straight-four pistons engine achieving 9 kW. Since then, the development of new propulsion
technologies such as turboprops, in the family of shaft engines, or, in the family of reaction
engines, turbines, ramjets and rockets, made possible the development of a broad spectrum of
airplanes. Each of these technologies have dedicated use for specific aircrafts and applications.

The increase in power of the engines led to the advent of post-stall – or supermaneuverable –
combat aircrafts. Enjoying a high thrust to weight ratio and the ability to vector this thrust, these
aircrafts can perform maneuvers such as Pugachev’s Cobra4, the Kulbit5 or Herbst maneuver6.
These air combat maneuvers do not rely on the plane’s control surfaces nor on the aerodynamic
forces described previously7. Instead, the execution of these maneuvers heavily relies on thrust
vectoring. Therefore, while performing these maneuvers, the dynamics of the airplane changes
considerably.

4In this maneuver, an airplane in slow level flight rapidly rises its nose far above the critical angle of attack, pitch
and angle of attack reach values of about 90 to 120 degrees, before lowering the nose back and resuming normal
flight.

5A very tight looping starting as Pugachev’s Cobra.
6A very tight U-turn at a very high angle of attack.
7If we do not consider the internal aerodynamics of the engines

Revision: a466fdc (2015-10-14 23:06:42 +0200) 99

Chapter 5. Unmanned Aerial Vehicles: a brief review

Aircraft name max. take-off weight max. speed range service ceiling

MiG-31 46 200 kg Mach 2.83 3300 km 24 200 m
Concorde 185 100 kg Mach 2.23 6200 km 18 300 m

Airbus A380 575 000 kg Mach 0.96 15 700 km 13 000 m

Table 5.1 – Typical characteristics of emblematic fixed-wing aircrafts

Fixed-wing aircrafts have several advantages. They are energy efficient for displacement.
Indeed, they can even fly without motors: kites and gliders are un-powered fixed-wing aircrafts.
On a powered fixed-wing aircraft, the motors have, in normal mode, simply to compensate the
drag force. This is necessary to maintain a sufficient speed and to experience enough lift. The
ratio between lift and drag is called the lift-to-drag ratio. A higher ratio at usual conditions
is usually sought as it reduces fuel consumptions and improves performances such as climb
performance and glider performance. Fixed-wings aircrafts can therefore experience high take-
off load, high speed, high endurance and high cruising altitude. Some information is gathered
in table 5.1 for some emblematic airplanes showing typical values of these characteristics.

Nevertheless, fixed-wing aircrafts also have drawbacks. They can, in normal operational
mode, only move in the direction imposed by the wings and the motors. They are, hence, unable
to translate in the two other directions. Furthermore, since it is usually needed to avoid stall, a
minimum speed has to be observed with respect to the wind and thus, planes can’t usually hover.
Because of this minimum speed, planes also usually need a rather long runway for take-off and
landing.

5.1.4 Rotary-wing aircrafts

Besides fixed-wing aircrafts, another way to produce lift is using a rotary wing. As in the case of
airplanes, rotary wing aircrafts can take several forms. The most widespread form of rotary-wing
aircrafts is helicopters. However the first successful flight of a stable rotary-wing aircraft was
accomplished on an autogyro, created by Juan de la Cierva. An autogyro relies on a propeller
providing forward thrust and on the lift induced by the autorotation of an unpowered and
free-spinning rotor. Rotors are made of blades which are long airfoils. As for propellers, the
blades of a usual rotor are linked at one end to a central rotating mast. Autorotation is the state
of a rotor spinning as a consequence of the air flow moving through the said rotor.

The success of Cierva’s design is due to him understanding the problem of dissymetry of lift.
This effect appears when the airflow respective to the aircraft body is not zero – typically in
forward flight or under harsh wind conditions. In such a case, the tip of the blade advancing
toward the airflow has a speed greater than the tip of the opposite – retreating – blade as
illustrated by figure 5.5. Since, in the usual service domain, the blades are designed to produce
more lift when the speed of the airflow increases, this leads to the advancing blade producing
more lift than the retreating one. This dissymmetry of lift is avoided by letting the blade “flap”.
The blades are designed to be flexible, they lift and twist up when advancing – the angle of attack
decreases thus producing less lift – and down when retreating – the angle of attack increases thus
producing more lift. This can also be done by increasing the pitch of the blades differentially
on the cycle. However, when the air speed is very high, two problems occur. On the one hand,

100 Revision: a466fdc (2015-10-14 23:06:42 +0200)

5.1. Flight dynamics

Incom
ing

air
flow

R
et

re
at

in
g

bl
ad

e

Advanci
ng

bl
ad

e

least effective most effective

Figure 5.5 – Dissymetry of lift. The blade is more effective in the red area than in the blue area.

the speed of the advancing blade can attain or exceed the speed of sound, the aerodynamic
capacity of the blade then radically change. On the other hand, if the blade has to flap highly to
compensate, the angle of attack of the retreating blade can exceed the critical angle of attack.
Then, the retreating blade do not produce lift anymore. This is known as retreating blade stall
and is one of the main limiting factors to the speed of rotating wing aircrafts and especially
helicopters8.

Juan de la Cierva’s first successful autogyro, the C.4 resembled the aircrafts of that time. It
was built on the fuselage of a contemporary monoplane with a tractor propeller on which a
free-spinning rotor was mounted. Autogyros were developed as a means for airplanes to fly at
very low speed. The roll and the pitch of autogyros are controlled by rotor cyclic-tilting while
yaw control is ensured by a rudder. Since the main rotor is freely rotating, it does not transmit
torque to the aircraft body. Thanks to its secondary propeller and to its inclined main rotor, an
autogyro can travel at level flight with nearly zero pitch. However, a forward minimal speed
is needed both to ensure the autorotation of the main rotor and therefore a minimal lift. This
minimal speed is also needed to allow the control of the yaw. Unpowered autogyros have also
been developed, under the name of rotor kites. They are usually towed into the air by cars or

8Autogyro and compound helicopters often include stub wings producing most of the lift. They can therefore
exceed this limit

Revision: a466fdc (2015-10-14 23:06:42 +0200) 101

Chapter 5. Unmanned Aerial Vehicles: a brief review

(a) Coaxial configuration: Kamov Ka-27. (b) Tail rotor configuration: Airbus EC225.

(c) Tandem configuration: Boeing CH-47 Chinook. (d) Synchropter configuration: Kaman K-MAX.

Figure 5.6 – Various helicopter configurations (aircrafts not to scale). Ka-27 orthographical image
(excerpt) by FOX 52 is licensed under CC BY-SA 4.0, K-1200 orthographical image (excerpt) by
FOX 52 is licensed under CC BY-SA 3.0, EC 225 Line Drawing (excerpt) and CH-47 Line Drawing
(excerpt) by Jetijones are licensed under CC BY 3.0)

ships9 to give them the necessary forward speed.

Soon after the development of autogyros, the idea of powering the main rotor arose. This
allows the rotor to ensure lift even without forward speed. Thus the aircraft gains the ability
to hover. This led in 1936 to the maiden flight of the first helicopter, the German Focke-Wulf
Fw 61. It had, just as the first autogyros did, the shape of an airplane but was equipped
with two horizontal counter-rotating rotors at the end of two outriggers on each side of the
fuselage. Indeed, rotors and propellers create a torque due to aerodynamic effects: the sum
of the aerodynamic drag on the blades is zero but the moment is important. This torque is
transmitted to the aircraft body in most configurations. While airplanes and autogyros can
use control surfaces – namely the rudder – since they always have a minimum forward speed,
helicopters are designed to hover. Without air flow on the aircraft body, the control surfaces are
ineffective and the aerodynamic torque of the rotors, when transmitted to the body, has to be
compensated by an anti-torque design feature to allow the control of the aircraft over the yaw
axis.

The most widespread anti-torque solution is the addition of a small tail rotor as for the Airbus
EC225 illustrated in figure 5.6b. This design is well suited for small helicopters but the tail rotor
is a severe weakness of these helicopters. To overcome this weakness, while preserving the
overall configuration of the helicopters, solutions have been developed using a fan. This fan can
either be in place of the tail rotor or inside the tail. In this last configuration, the yaw control is
ensured by the air flow at the end of the tail.

Similar to the Focke-Wulf Fw 61, some helicopters made the choice of having two counter-
rotating main rotors in a configuration called tandem. This configuration allows greater lift
capacities, for example the CH-47 Chinook depicted in figure 5.6c. Most of today’s recreational or
professional Unmanned Aerial vehicles make use of this configuration and feature two (quadrotor

9The best known autogyro is the German Focke-Achgelis Fa 330 Bachstelze which was used as an observation
platform by German U-boats during World War II.

102 Revision: a466fdc (2015-10-14 23:06:42 +0200)

https://en.wikipedia.org/wiki/File:Ka-27_orthographical_image.svg
https://commons.wikimedia.org/wiki/User:FOX_52
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://commons.wikimedia.org/wiki/File:K-1200_orthographical_image.svg
https://commons.wikimedia.org/wiki/User:FOX_52
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:EC_225_Line_Drawing.svg
https://commons.wikimedia.org/wiki/File:CH-47_Chinook_Line_Drawing.svg
https://commons.wikimedia.org/wiki/User:Jetijones
https://creativecommons.org/licenses/by/3.0/deed.en

5.1. Flight dynamics

configuration) or three (hexrotor configuration) pairs of rotors in tandem. If the two main
rotors share the same rotation axis, the rotors are said to be coaxial, such as for the Kamov
Ka-27 of figure 5.6a. Coaxial rotors have a complex mechanical design in comparison to tandem
helicopters and complex aerodynamics due to the downwash of the upper rotor on the lower
rotor. However, they are rather compact compared to their lift capacities. Some models, such as
the Kaman K-MAX depicted in figure 5.6d, have intermeshing rotors. Their rotors are on two
different but very close axes. That way, the mechanical design of the rotors is almost as simple as
for a tandem helicopter and the design is as compact as for a coaxial helicopter. However, since
the two rotors are intermeshed, the helicopter needs an accurate synchronisation mechanism of
the two rotors. This unusual configuration led to giving these aircrafts the name of “synchropter”.
Another implemented solution is to use tip-jets. Indeed, the transmission of power by a shaft
between the engine – located in the helicopter’s fuselage – and the rotor places torque on the
main body. In tip-jets helicopters, the rotor is self-powered. While other designs have been
studied or used in prototypes, the only tip-jet helicopter to have been put in production, the
French SNCASO Djinn, used a compressor to inject compressed air in the hollow blades. The air
stream puts the rotor in movement when ejected at the tip nozzles.

Along with the usual “flat” rotor shape, cycloidal rotors have also been developed. These
rotors resemble the shape of paddle wheels – although different in concept. These rotors are
used in aircrafts called “cyclogyros” which belong to the family of helicopters. The rotors rotate
around a horizontal axis and provide both thrust and lift. In order to achieve this, since the
rotor has a rotational symmetric shape, the axis of rotation and the axis of the rotor are distinct.
Due to the difficulty of the mechanical design, no prototype has been known to be successful
until recently [Tanaka et al., 2007; Adams et al., 2013].

In order to take advantage of both the autogyro and the helicopter concepts, some prototypes
– called compound helicopters – have been designed. They rely on a main rotor which can be
powered during take-off and landing – otherwise autorotating – and on propellers or jets to
provide forward thrust and compensate the main rotor’s torque. This design allows the aircraft
to both hover and be very effective in forward speed. The X3 by Eurocopter for example, reached
the speed of 472 km h−1 in level flight on June 7, 2013.

When compared to fixed-wing aircrafts, rotary-wing aircrafts have some drawbacks. As
can be seen from the data gathered in table 5.2, they are less efficient in level flight, have a
lower maximum speed, are particularly noisy, have a limited range, have limited load capacity
and a limited ceiling. However, rotary-wing aircrafts, especially helicopters, have some great
advantages. Indeed autogyro have a low minimal speed and have low take-off and landing
requirements. Helicopters on the contrary are the only heavier-than-air aircraft able to hover10.
They are particularly agile as they can move laterally, vertically and backwards. As such, they
are able to take-off from and to land on particularly small platforms and can be used in a large
choice of applications.

10Some airplanes such as the Soviet Antonov An-2 have a very slow stall speed and can even fly backwards in
mild headwind. It can’t however be considered as hovering since this situation is strongly dependent on the wind
conditions.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 103

Chapter 5. Unmanned Aerial Vehicles: a brief review

Aircraft name max. take-off weight max. speed range service ceiling

Kamov Ka-27 12 000 kg 270 km h−1 980 km 5000 m
Airbus EC225 11 200 kg 275 km h−1 857 km 5900 m
Boeing CH-47 22 680 kg 315 km h−1 741 km 5640 m
Kaman K-MAX 5443 kg 185 km h−1 495 km 8875 m

Bell-Boeing MV-22B 27 400 kg 565 km h−1 1527 km 7620 m

Table 5.2 – Typical characteristics of rotary-wings and convertible aircrafts

5.1.5 Convertible airplanes and other VTOL aircrafts

By the end of World War II, most of German airfields had been bombed and were unsuitable for
airplanes to take-off and land. The Germans – who had already developed the first helicopters –
put the concept of powered-lift11 together to overcome these difficulties. These aircrafts were
to take-off and land vertically, thus gaining the ability of a helicopter and the name of Vertical
Take-Off and Landing (VTOL) aircrafts, a class of aircrafts which contains both such powered-lift
aircrafts and rotorcrafts as the helicopter. After taking-off, those were then thought to convert
into airplanes and enjoy the advantages in speed, payload and ceiling of airplanes. The German
engineers then designed projects for two different aircrafts, the Focke-Achgelis Fa 269 and the
Focke-Wulf Triebflügel. The first was thought to be a conventional airplane fitted with two tilting
rotors driven by a fixed engine. The latter was supposed to take off sitting on its tail and then
be tilted down in level flight. It had a rather unconventional design: the fuselage was inside a
propeller powered by ramjets12.

These two aircrafts laid the bases of two designs of powered-lift, the tiltrotor and the tailsitter.
No tailsitter ever entered production partially due to the hazardous transition between the
vertical mode and the horizontal mode. This transition has been solved and performed by the
Bell Boeing V-22 Osprey. It is the only tiltrotor yet to have reached production and is extensively
used by the United States Marine Corps as a replacement to the medium-lift tandem rotor
helicopter Boeing Vertol CH-46 Sea Knight (a helicopter similar to the CH-47 of figure 5.6c).

As illustrated in figure 5.7a, the V-22 (here depicted in its version for the US Marine Corps
MV-22) can have its rotors tilted vertically and then behaves like a helicopter. It can also have its
rotors tilted horizontally and behaves then as an airplane as illustrated in figure 5.7b. Usually,
for take-off and landing, the rotors are tilted vertically and the V-22 can then ascend vertically
as a helicopter. However, if the payload is too important, the rotors can be tilted to smaller
angles. The rotors then provide the aircraft with forward speed: the wings produce lift and the
aircraft takes-off over a short distance. However, due to the large size of the rotors, the V-22
cannot take-off as a normal airplane with its rotors tilted horizontally. The aircraft is thus bound
to operate the transition between the helicopter mode and the airplane mode. In helicopter
mode, the aircraft is controlled using helicopter mechanics in the rotors while in airplane mode,

11Which is, according to the Part 1 Sec. 1.1 of the Code of Federal Regulations of the US Federal Aviation
Administration, a heavier-than-air aircraft capable of vertical takeoff, vertical landing, and low speed flight that
depends principally on engine-driven lift devices or engine thrust for lift during these flight regimes and on nonrotating
airfoil(s) for lift during horizontal flight.

12Thanks to the ramjets the propeller was not linked to the fuselage. There was thus no need for anti-torque
control.

104 Revision: a466fdc (2015-10-14 23:06:42 +0200)

5.2. A usual model, the quadrotor

the aircraft is controlled using the control surfaces. During the transition between the aircraft
modes, the two control modes gradually replace each other. The rotation of the nacelle – the
housing of the engine and rotor – is not used as a control.

(a) Bell Boeing V-22 Osprey: helicopter configuration.

(b) Bell Boeing V-22 Osprey: airplane configuration.

Figure 5.7 – The Bell Boeing V-22 Osprey tiltrotor. (MV-22 Osprey Line Drawing by Jetijones is
licensed under CC BY 3.0)

The hybrid characteristics of convertible airplanes are nowadays considered by other operators
for example to establish offshore gas and oil platforms further than the operational range of
current helicopters. Due to the lower noise produced by convertible aircrafts in airplane mode,
they are also studied for business connections over urban areas. Indeed, a civil aircraft based on
the technologies developed for the V-22 Osprey is currently being developed by the Anglo-Italian
helicopter company AgustaWestland under the name AW609.

Other powered-lift VTOL (or STOL for Short Take-Off and Landing) designs include tiltwing
aircrafts which are similar to tiltrotors but where the wings tilt together with the nacelles. This is
(in the drawings) more efficient in helicopter mode than the tiltrotors – since with tiltrotors, part
of the thrust is lost on the wing – but has never made it beyond the prototype. Aircrafts equipped
with vectorable nozzles – where the thrust of a jet engine is ducted downwards – are represented
by the Harrier ground-attack aircraft family. Other designs include additional engines such as
the Soviet prototype Kamov Ka-22 which had propellers in both orientations or the aircraft
carrier-based Soviet Yakovlev Yak-38 which had two additional vertical turbojet engines along
with vectorable nozzles.

5.2 A usual model, the quadrotor

As early as the First World War, military engineers have tried to make aircrafts fly without pilots.
Charles Kettering developed in 1918 for the US Army an “aerial torpedo” prototype designed to

Revision: a466fdc (2015-10-14 23:06:42 +0200) 105

https://commons.wikimedia.org/wiki/File:MV-22_Osprey_Line_Drawing.svg
https://commons.wikimedia.org/wiki/User:Jetijones
https://creativecommons.org/licenses/by/3.0/deed.en

Chapter 5. Unmanned Aerial Vehicles: a brief review

fly autonomously as far as 120 km. This torpedo was a simple and cheap airplane guided along
a straight line by a gyroscope. The distance to the target was evaluated by the servants and
converted into a number of engine cycles. When over the target, the wings were dropped and
the fuselage of the torpedo fell to the ground. This idea was later used by the Germans during
World War II to design their extensively used flying bomb V1 and led to the development of
cruise missiles – unmanned airplanes the only purpose of which is to hit a target and explode.

The improvements in technology – e.g. in electronics, sensors, avionics, communication, en-
gines, automatic control, global positioning (thanks to the GPS satellite constellation), batteries –
led engineers to use unmanned aircrafts for other purposes than flying bombs. Unmanned air-
crafts, first used by military operators, gradually replaced surveillance “spy” airplanes, bombers
and are now thought to become the future of air superiority fighters. At the same time , they
are being developed to be put on the civilian market where they could be used for various tasks,
such as, sport cinematography, building diagnoses (e.g. thermal, structural analyses) or in a
possibly near future to become delivery drones.

The very first unmanned aircrafts, the various flying torpedos, were to fly without external
guidance as advanced technologies for remote control weren’t available. Now, thanks to the
various data channels available, most of the UAVs are remotely controlled by human operators13.
However, autopilot systems exist that give UAVs a certain degree of autonomy and work is
conducted to enhance this autonomy.

While the first UAVs used technologies stemming from the “real world” of aircrafts (e.g. similar
sizes, similar engines, similar flight dynamics), the major improvements over the past years
achieved in the areas of batteries, Brushless Direct Current electric motors (BLDC motors)
– which are by far lighter than brushed motors of equivalent torque – and microelectronics led to
the developments of new small scale models. Furthermore, the development of BLDC motors
driving propellers generating more thrust than their own weight made it possible to build small
scale electric helicopters.

Over the past years several multirotor small-scale unmanned helicopter models appeared and
were put on the civilian – professional and recreational – market. Multirotor UAVs use propellers
without mechanical controls – as they exist on real-scale helicopters – and are controlled simply
by the rotational speed of their motors. The simplest and most widespread design includes two
pairs of tandem rotors and are called quadrotors14.

This section is dedicated to a survey of the control of quadrotors. In a first section we review
existing work in the control of quadrotors and the application of these results to trajectory
tracking. A second subsection is dedicated to the study of load transportation using quadrotors.
In the third section we review a specific case of slung load: the inverted pendulum.

5.2.1 Design and basic model of a quadrotor helicopter

The quadrotor helicopters studied in this review are small scale helicopters equipped, as illus-
trated in figure 5.8, with two pairs of counter-rotating propellers with fixed direction of rotation.
These rotors are usually set at the end of perpendicular arms of equal lengths. The clockwise
and counter-clockwise rotors are commonly located on the same axes. One of these axes is

13In fact,mainly due to legal issues.
14The designations quadcopter and quadrotor helicopters also appear.

106 Revision: a466fdc (2015-10-14 23:06:42 +0200)

5.2. A usual model, the quadrotor

arbitrarily chosen to be the xB axis, the other being yB. The quadrotor are usually designed so
that the center of mass lies as close as possible to the geometrical center O of the quadrotor or
at least on the OzB axis.

Each rotor produces a thrust and a drag moment which depend on the angular velocity. It is
often considered (e.g. [Pounds et al., 2002; Bouabdallah et al., 2004; Tayebi and McGilvray,
2006; Alexis et al., 2010; Mellinger and Kumar, 2011; Mellinger et al., 2012; Thorel and
d’Andréa-Novel, 2014]) that thrust and drag are proportional to the square of the angular
velocity of the propeller and that they are along the rotation axis zB. However, other authors
use more sophisticated models including aerodynamic effects such as the dissymmetry of lift
(e.g. [Martin and Salaun, 2010; Omari et al., 2013]) induced by the quadrotor displacement.

As illustrated in figure 5.8a, the control of the quadrotor on its vertical axis is done by setting
an appropriate equal thrust on all propellers. The yaw control of the quadrotor is performed
based on the aerodynamic drag produced by each pair of rotors. As illustrated in figure 5.8b,
each pair rotating in the same direction produces a torque rotating the frame in the opposite
direction. Roll and pitch control – coupled with a necessary displacement – is achieved by
balancing the thrusts of a selected pair of rotors as illustrated in figures 5.8c and 5.8d. Therefore,
the quadrotor is underactuated: it cannot move along its xB and yB axes and a rotation around
those axes implies a translation.

Quadrotors usually embed an inertial measurement unit (IMU), an electronic device evaluating
the quadrotors orientation and acceleration. This data is used by an on-board microprocessor to
set appropriate angular velocity to the rotors. Other sensors can be used such as barometers,
ultra-sound range sensors, GPS, or external position tracking systems.

As expressed, for example in [Pounds et al., 2002], a simple model for the translational and
rotational dynamics of a quadrotor is:

m #̇»v +mS(
#»

Ω)#»v =
#»

T +mRB

I

#»g

J
#̇»

Ω + S(
#»

Ω)J
#»

Ω =
#»

Γ
, (5.1)

where
#»

T is the total thrust produced by the quadrotors propellers and
#»

Γ the total torque pro-
duced. The tables 5.3 and 5.4 summarize the notations used throughout this work. Furthermore,
the following kinematic relations hold:

d
dt

#»r = RI

B

#»v

d
dt

RI

B
= RI

B
S(

#»

Ω)

. (5.2)

The model presented in equation (5.1) contains only the forces stemming from the rotors.
Indeed, on can point out that no additional term , for example accounting for the aerodynamic
forces acting on the quadrotor body – notably the drag – is present. This is usually justified by
the low speed of the quadrotor.

Of course, other designs exist. Some models – similar in shape to the quadrotor – use four
pairs of counter-rotating coaxial rotors (see e.g. [Chamseddine et al., 2014]) instead of single
rotors. The direction of the global aerodynamic drag of coaxial propellers is defined by the

Revision: a466fdc (2015-10-14 23:06:42 +0200) 107

Chapter 5. Unmanned Aerial Vehicles: a brief review

•

#»z B•#»x B
#»y B

(a) No rotation.

•

#»z B•#»x B
#»y B

(b) Rotation around zB.

•

#»z B•#»x B
#»y B

(c) Rotation around yB.

•

#»z B•#»x B
#»y B

(d) Rotation around xB.

Figure 5.8 – Control of a quadrotor. Arrows’ density indicates the angular velocity of the rotor.

faster rotating one and can thus be set by an appropriate choice of respective angular velocity.
Therefore, while they can be controlled by similar tools, the controls have to be adapted.

5.2.2 Control and applications for a quadrotor UAV

5.2.2.1 Control and trajectory tracking

In [Pounds et al., 2002], which dates back to the beginning of quadrotor UAVs, the authors
suppose that when the quadrotor is at rest, the thrust and the drag produced by each rotor is
along #»z B and are proportional to the square of the angular velocity:

¨
#»

Ti = αω
2
i

#»z B

#»

Γi = κω
2
i

#»z B

(5.3)

where α and κ are aerodynamic constants depending on the propeller. However, in case of
angular displacement of the quadrotor, the authors add a gyroscopic torque applied by the
rotation of the rotor to the frame:

108 Revision: a466fdc (2015-10-14 23:06:42 +0200)

5.2. A usual model, the quadrotor

I = {OI , #»x I , #»y I , #»z I} An inertial reference frame
B = {OB, #»x B, #»y B, #»z B} A North-East-Down body-fixed frame

~r= x#»x I + y#»y I + z#»z I = {x, y, z} Position of OB expressed in the inertial reference frame
RB

I
Rotation matrix from frame I to frame B

#»

ξ = {φ,θ,ψ} A set of Euler angles describing the quadrotor attitude
#»

Ω = T
#»

ξ Angular velocity of the drone expressed in B

S(
#»

Ω) The skew-symmetric matrix of Ω
#»v = RB

I

#̇»r Velocity of the drone expressed in its body-fixed frame

Table 5.3 – Notations used for kinematic data.

m Mass of the quadrotor
l Length of an arm
J Inertia matrix of the drone
Jr Inertia matrix of a rotor
#»

T i Thrust generated by rotor i
#»

T Total thrust generated by the quadrotor i
#»

Γ i Torque generated by rotor i
#»

Γ Total torque generated by the rotors in OB

ωi Angular velocity of rotor i

Table 5.4 – Notations used for dynamic data.

#»

Γ g,i = (−1)iωiJrS(
#»

Ω)#»z B. (5.4)

The authors also take into consideration the dissymetry of lift induced by the displacement of
the drone and add the additional torque:

#»

Γ a,i = (−1)iωiγaS(#»v)#»z B, (5.5)

where γa is a constant based on the geometry of the propeller. The terms of equation (5.3) and
these additional terms give the global thrust and torque as:

�
#»

Γ

T

�
=

�∑
i
#»

Γ g,i +
#»

Γ a,i

0

�
+





0 0 l −l
l −l 0 0

κ/α κ/α −κ/α −κ/α
1 1 1 1









T1

T2

T3

T4



 (5.6)

Nevertheless, the authors linearize the model described by equations (5.1), (5.2) and (5.6)
around hovering as:

Revision: a466fdc (2015-10-14 23:06:42 +0200) 109

Chapter 5. Unmanned Aerial Vehicles: a brief review






#̇»r = #»v

#̇»v = g




0 −1 0

0 0 1

0 0 0




#»

ξ

#̇»

ξ =
#»

Ω

#̇»

Ω = J−1




0 0 l −l

l −l 0 0

κ/α κ/α −κ/α −κ/α









T1

T2

T3

T4





, (5.7)

with the additional condition:

T1 + T2 + T3 + T4 =mg (5.8)

meaning that the total thrust shall compensate the gravity. One can note that the model of
equation (5.7) forms two cascade of four integrators for the lateral dynamics, a zero dynamics
for the vertical dynamics and a second integrator for the yaw dynamics. An inner loop is
suggested to control the dynamics of the propellers. The outer loop is then controlled by a
simple proportional feedback loop. This however does not allow the quadrotor to fly. Indeed,
the chosen DC motors, batteries and controllers are not able to lift the aircraft. It is however an
interesting first attempt to control such a rotorcraft.

On a similar near-hover model, [Bouabdallah et al., 2004], showed that a PID controller for
the orientation stabilization behaves well in ideal conditions. While no integral term was needed
in simulations, this term was included for the real system to damp out a steady-state error. The
authors also show the importance of a closed-loop speed control on each rotor.

The authors apply a Linear Quadratic control using a linearization around each attitude state.
While in simulation Sage-Eisenberg method shows better results than Pearson method and
in average better than the PID, the results for the experiments were in advantage of the PID
controller.

Besides PID, the authors in [Bouabdallah and Siegwart, 2005] also applied backstepping
and sliding mode techniques on the quadrotor to control the attitude of their quadrotor. Both
the techniques could be used for position stabilisation as was demonstrated by the authors in
simulations but this couldn’t be performed due to the lack of an accurate position feedback.
A combination between PID and backstepping, the so-called Integral Backstepping was then
proposed for a slightly more complete model in [Bouabdallah and Siegwart, 2007].

A similar approach is used in [Mellinger et al., 2012]. Three simple PID controllers are
suggested for attitude control, hover control and 3D path following. To obtain the hover
controller – and thus the 3D path following controller – the model is linearized near hovering.
This still allows the quadrotor to perform aggressive attitudes and trajectories, through iterative
learning.

[Cowling et al., 2007] use the flatness of the {x, y, z,ψ} variables – which can be deduced from
equations (5.1) and (5.2) when considering the thrust and torque model of equation (5.3) – to
perform trajectory tracking. As in the former, an LQR controller is used. The linearization of
the system is done near hovering and thus the generated trajectories have to respect a given

110 Revision: a466fdc (2015-10-14 23:06:42 +0200)

5.2. A usual model, the quadrotor

numerical condition on roll and pitch for the linearization to remain approximately valid. The
authors however show that such a simple model presents singularities when the drone is in free
fall and thus constraining the space of reachable states.

A similar approach is chosen by [Chamseddine et al., 2012]. Trajectories based on Bézier
polynomials are generated and used as a feedforward for an LQR controller designed near-
hovering. To accommodate the conditions on actuator saturations and to ensure the stability of
the linearized model – instability appears between twenty-five and thirty degrees in roll and
pitch – the authors suggest to simply tune the final time of the trajectory.

Flatness based trajectory tracking can also be performed with other flat outputs. Indeed [Konz
and Rudolph, 2013] avoid the absolute singularity introduced by any Euler angle representation
– which occurs at a specific roll, pitch or yaw according to the chosen sequence, independently
from the two other angles – by basing their quasi-static feedback controller on a moving reference
frame. The singularity is still present but only with respect to the moving reference frame and
occurs only when encountering really large tracking errors. This allows the authors to perform
loopings and other aggressive maneuvers. Analogous geometric algorithms are proposed and
successfully implemented for example in [Lee et al., 2010; Mellinger and Kumar, 2011].

In [Martin and Salaun, 2010], the authors revisit the usual model resulting from the model
introduced in equation (5.1) with the simple thrust and torque models from equation (5.3).
Indeed, in this usual model, the acceleration measured by the embedded inertial measurement
unit #»a = m #̈»r − #»g is collinear to #»z B. Hence the lateral and longitudinal acceleration of the
drone are zero. However, when considering additional aerodynamic terms in the expression of
the rotor generated thrust and drag, Newton’s equation reads:

m #̇»v +mS(
#»

Ω)#»v =mRB

I

#»g − l
�∑

ω2
i

�
#»z B − λ

�∑
ωi

�
#»v ⊥, (5.9)

where λ is a positive constant linked to the dissymetry of lift and #»v ⊥ is the projection of #»v
onto the {OB, #»x B, #»y B} plane. In this revised model, the lateral and longitudinal accelerations
measured by the IMU are now −λ

�∑
ωi

�
#»v ⊥. The authors show that such a model better suits

the real experimental measurements. The authors propose a two-level PD controller and show
that the accelerometer feedback then better accounts, in systems without speed feedback, for
the proportionality between longitudinal (resp. lateral) and pitch (resp. roll) angle. But, as
explained by the authors, the revised model is just an improvement and does not reject the
simple model which was shown to work.

However, most of the works don’t take wind into account. [Alexis et al., 2010] use Constrained
Finite Time Optimal (CFTO) control to accommodate the effect of wind gusts on the attitude
dynamics of a quadrotor. The authors linearize the system in various operating points. An affine
term is added to account for the wind gusts. The authors then solve an optimal control problem
on a given prediction horizon respecting various input and output constraints.

The given controller seems to correctly stabilize the system under moderate wind gusts.
However, the suggested scheme does not stabilize the deviation due to the wind. Furthermore,
the computational effort to solve the CFTO problem is particularly intense and the authors chose
to limit the prediction horizon to one time step, thus reducing the smoothness of the controller.

A better understanding of the aerodynamic effect as in [Hoffmann et al., 2011] can also be
used to model both the thrust efficiency with respect to the air flow and the blade flapping.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 111

Chapter 5. Unmanned Aerial Vehicles: a brief review

The authors used the obtained simplified model as a feedforward for their PIDD to reject these
disturbances. This feedforward seems to be relatively efficient in simulation, notably when
encountering sudden changes in angle of attack. However, in actual flight, the quadrotor
experiments a transient, that the authors are unable to explain. Therefore, this feedforward is
not used for trajectory tracking and the aerodynamic effects are treated as other disturbances.
This feedforward compensation seems promising.

In a complementary way, [Hua et al., 2009] group all the external forces in a vector
#»

F e on
which the three following assumptions are made. First, it is supposed that this vector depends
only on the vehicle’s linear velocity #̇»r and on time t. It is further assumed that there exist

four positive real numbers such that ‖#»

F e‖¶ c1 + c2‖ #̇»r ‖2 and #̇»r
T #»

F e ¶ c3‖ #̇»r ‖ − c4‖ #̇»r ‖3. These
assumptions are used to build a nonlinear controller robust to aerodynamic perturbations which
greatly impacts such systems at high-velocities.

However, a good understanding of these effects is not required. As suggested in [Wang et al.,
2011], model-free control (see e.g. [Fliess and Join, 2013] for an extensive introduction) can be
used on bad or partially known system. For example, one can write the altitude dynamics in the
inertial reference frame as:

mz̈= (cosφ cosθ)u1 + Fz, (5.10)

where u1 is the total thrust and Fz stands for the various badly known effects and encompasses,
notably, gravity. The unknown part can therefore be estimated as:

F̂z =mˆ̈z(tk)− (cosφ cosθ)u1(tk−1), (5.11)

where hatted value are estimates. This leads to the following i-PID15:






u1(tk) = u1(tk−1) +
m

cφ cθ

�
ˆ̈e+ k1ė(tk) + k2e(tk)

�

ˆ̈e(tk) = z̈r(tk)− ˆ̈z(tk)

ė(tk) = żr(tk)− ż(tk)

e(tk) = zr(tk)− z(tk)

, (5.12)

where zr is the reference trajectory. Therefore this control can be applied to the system with
little knowledge of the real system. The simulation results compare well with usual PID. Indeed,
the i-PID is rematched at every time-step while usual PID won’t adapt to inaccuracies of the
system.

To overcome the difficult modelisation of aerodynamic effects on the control of the altitude,
[Waslander et al., 2005] propose to use either, a sliding mode controller or reinforcement
learning. Integral sliding mode control applied to the altitude dynamics makes it possible to
reject perturbations as long as they are below a certain limit. On the contrary, reinforcement
learning control aims to approximate the system as a stochastic Markov process using an iterative
weighted linear regression based on real flight data. The model is then searched for an optimal
control policy adapted to the tasks to be accomplished. Both controllers give good results.
However the perturbations in sliding mode control have to remain under the foreseen boundary
and the reinforcement is particularly sensitive to disturbances it was not trained for. Therefore,
it needs intense computations prior to the flight to construct the model.

15Where the “i” stands for intelligent.

112 Revision: a466fdc (2015-10-14 23:06:42 +0200)

5.2. A usual model, the quadrotor

5.2.2.2 Slung load transportation

Multirotor UAVs are often used in civil applications to carry removable payloads. While some
of the possible payloads, for example cameras, can be embedded in the model, it might not be
desirable in other cases such as in delivery drones. There are different methods to carry the
payload. Some authors consider bounding the payload directly to the UAV. For example, [Pounds
et al., 2012] study the performances of PIDs to reject the perturbations implied by an additional
mass. First, the payload changes the overall mass of the UAV implying a greater thrust. Second,
as the center of mass of this payload does not always align with the thrust axis – parallel to the
thrust, through the center of mass of the empty UAV – the mass may also considerably change
the rotational dynamics of the UAV. Furthermore, the payload can even slip. [Palunko and Fierro,
2011] study the adaptive control of an unbalanced quadrotor experiencing dynamic changes in
its center of gravity. This can be for example the consequence of a displacement of the payload
during the flight. On the contrary [Mellinger et al., 2013] study the cooperative grasping and
transportation of a rigid lightweight payload. Having all the quadrotors grasp the same object
leads to additional constraints for all the quadrotors and lessens their abilities. Most of the
controllers presented in the previous section would be unable – without any specific change – to
handle the added constraint of an additional payload. In the following, we will however focus
on slung loads which allow a greater maneuverability .

Indeed, the addition of a swinging load adds two degrees of freedom to the system while the
system still has only four independent controls. This topic of research recalls former results
on the control of systems such as gantry cranes (see e.g. [d’Andréa-Novel et al., 1992; Petit
and Rouchon, 2001; d’Andréa-Novel and Coron, 2000]) or on the transport of slung loads by
usual helicopters (see e.g. [Bisgaard et al., 2009] for an example of oscillation damping using a
delayed feedback) but is nonetheless very interesting.

In [Palunko et al., 2012], the authors consider the load as a point mass spherical pendulum with
a massless cable of constant length. A simple modeling allows to find the absolute acceleration
of the mass. This adds a force and a moment – the suspension point is away from the center
of gravity of the quadrotor – to the usual quadrotor dynamic model. To handle this dynamic
change, the authors suggest to use an adaptive controller. An open-loop strategy is suggested to
generate trajectories for the swinging load that damp the residual oscillations out. An initial
cubic polynomial trajectory is optimized using dynamic programming. The suppression of the
residual oscillations is obtained by the addition of a penalty weight to the objective function in
charge of minimizing the load-displacement angles and angular velocities.

On the contrary, [Sreenath et al., 2013] builds, with a similar model for the payload, a closed
loop controller that lets the load undergo large swings while being able to experience free fall
during finite durations. This is motivated by the fact that the system quadrotor-load may need to
go through an opening shorter than the cable’s length. For this purpose, the authors use flatness.
Indeed, when the load experiences free fall, it is a flat system and a quadrotor is known to be
flat with position and yaw as a flat output. When the cable is taught, the authors show that the
position of the load and the yaw of the quadrotor form a set of flat outputs. The system thus forms
a differentially-flat hybrid system. This work was enhanced to allow cooperative transportation
in [Sreenath and Kumar, 2013]. However, the choice of the flat output, being constrained by the
number of available controls, makes the position of the quadrotor a consequence of the position
of the load, limiting the maneuverability of the system.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 113

Chapter 5. Unmanned Aerial Vehicles: a brief review

The cable can also be studied as a heavy chain. This has been already partially done by
[Murray, 1996] to generate certain trajectories for the free end of the cable. The stabilization of
such a heavy chain was also done for cart systems for example by [Knüppel and Woittennek,
2010].

As such, [Goodarzi et al., 2013] suggest to stabilize a chain of pendulum carrying at its free
end a payload. This chain is mounted on a quadrotor and stabilized using a linear controller
– an LQR – from a totally-actuated cart model. The control input required by the cart to stabilize
the links is used as an input for the quadrotor’s controller. [Dai et al., 2014] suggest adding a
retrospective cost adaptive controller to make the controller more robust to uncertainties on the
payload mass.

5.2.2.3 An application: flying an inverted pendulum

The problem of inverted pendulum is an interesting nonlinear problem. It has been studied
for various systems. For example, [Lozano et al., 2000] study a simple pendulum – with one
degree of rotational liberty – mounted on a cart while [Lenoir et al., 1998] introduce a spherical
pendulum fixed to a “juggling” robot with three rotational degrees of actuation. The authors show
that the system is flat and suggest trajectories to steer the pendulum from its lower equilibrium
to the upper equilibrium. During such a trajectory, a pendulum necessarily experiences free fall
which is a point of singularity for the control and is over-come by time-scaling.

[Hehn and D’Andrea, 2011] had the idea of using a quadrotor and its high maneuverability to
carry and control an inverted pendulum. The model is however rather simple as the dynamic
impact of the pendulum on the quadrotor is neglected. Furthermore, the pendulum is supposed
to be attached directly to the mass center of the quadrotor. This allows for considerable
simplifications in the system’s equations. The authors identify two equilibria, the first one
static – the pendulum standing vertically above the quadrotor – and the second one dynamic
– the quadrotor performing a circular trajectory while the pendulum also performs a circular
trajectories whose characteristics are defined by the drone trajectory. The dynamics of the system
are linearized around these nominal trajectories and an LQR controller is used to stabilize the
system. The suggested approach seems effective but can not handle other trajectories than the
two identified. Neither is it designed to recover from important errors.

While designing a geometric controller to perform cooperative load transportation with
quadrotors, [Lee et al., 2013] suggested to apply the developed model – which encompasses the
effect of the load on the quadrotors – and a nonlinear controller to the case of a single quadrotor.
Equipped with a rigid link mounted above the quadrotor, the authors show in simulations that
the suggested controller is able to track any arbitrary trajectory for the pendulum with the mass
starting upright.

On the other hand, [Figueroa et al., 2014] suggest to control the pendulum using Reinforce-
ment Learning. They use a model similar to [Hehn and D’Andrea, 2011] but decompose the
tasks in two subtasks to which a reinforcement learning is applied. The first subtask is to bring
the pendulum from an arbitrary state to the upright state without condition on the quadrotor
state. This is performed for initial angles up to 34°. The second subtask is to maintain the
pendulum upright while keeping the quadrotor as close to hovering as possible. Both subtasks
are then combined to get the quadrotor to stabilize the system from an arbitrary angle. This

114 Revision: a466fdc (2015-10-14 23:06:42 +0200)

5.3. Tilting rotor multirotor UAVs

task is performed in usually less than 5 s. However, due to the underactuation of the system,
this stabilization implies a drift on the quadrotor that can be as big as a few meter.

5.3 Tilting rotor multirotor UAVs

A good way to overcome the inherent underactuation of the quadrotor design is to use a design
involving tilting rotors. Using tilting rotors instead of usual helicopter mechanics makes it
possible to keep using fixed-pitch blades. This way, tilting rotors can be used to reduce the
number of rotors while preserving the simple blade mechanics.

[Ryll et al., 2012] suggest to fit a quadrotor with four independent tilt axis. The rotors are
at the end of arms which can be tilted with independent input rotational speeds. Since the
quadrotor keeps its four independent rotor angular velocities as inputs – the system has eight
independent control inputs while having only six degrees of freedom – it is overactuated. The
authors use dynamic feedback linearization to track trajectories. In this process, the inputs are
obtained via a system inversion which relies on a Moore-Penrose pseudo-inverse. During this
inversion, the angular velocities of the rotors are minimized – while kept above a minimal speed
in order to maintain flight – allegedly to minimize energy consumption. However, controlling
the rotor tilts through angular velocities rather than angles requires to compute the third-order
dynamical model to perform the inversion. A simulation of a flip upside-down of the quadrotor
is given where the rotor axis have to be tilted 180°. Nonetheless, no experimental realization is
suggested and the mechanics seems difficult to carry out.

Another example is introduced by [Hua et al., 2012]. The authors study the case of a quadrotor
where the rotors remain parallel but can be globally tilted with two degrees of freedom. That
way, the quadrotor is not overactuated. The authors bear in mind maximum tilt angles and the
suggested strategy introduces control saturation. The Lyapunov-like approach allows decoupling
of attitude and position under certain conditions. The controller objectives are split in primary
and secondary objectives to handle saturation. Indeed, simulations are given where the quadrotor
follows an eight-shaped trajectory while having zero attitude over the trajectory. Nonetheless,
when traveling faster on this trajectory at a point where saturation is encountered, the secondary
objective of maintaining zero attitude can not be achieved due to saturation. The primary
objective however remains fullfilled.

In [Thorel and d’Andréa-Novel, 2014] another modified quadrotor is presented. It is equipped
with ball casters and a single tilting axis tilting one of the rotor pairs. The aim of the authors
is to control the quadrotor on the ground to spare energy. A trajectory tracking solution is
suggested based on flatness and dynamic feedback. But the design reveals a major difficulty: it
presents a singularity when the tilt axis angle passes through zero. This makes braking difficult.
Thus point-stabilization becomes a challenging problem. The resemblance to the unicycle is
used to suggest a time-varying point stabilization control law which requires passing through
the singularity. The authors combine both control laws to stabilize the drone at the end of the
flatness-based trajectories. This interesting design lacks however sufficient control to which the
tilting of the transverse axis might prove an interesting enhancement.

Inspired by some real-scale successful designs, [Kendoul et al., 2005] suggested a model with
only two propellers. The two propellers are mounted on two servomotors and can therefore tilt

Revision: a466fdc (2015-10-14 23:06:42 +0200) 115

Chapter 5. Unmanned Aerial Vehicles: a brief review

laterally and longitudinally. However, the design is limited to only five independent controls
as the lateral tilts are imposed to be exactly opposed. Indeed, the lateral tilts are used for the
gyroscopic moment such a rotation creates on the pitch axis. Furthermore, the center of mass of
the UAV is located below the tilting axes of the propellers. This design choice allows control
of the pitch and adds a residual term to the roll moment. The resulting model is however
highly coupled and presents high nonlinearities. A backstepping procedure is then suggested to
perform stabilization of the aircraft and trajectory tracking.

The model was later used by [Sanchez et al., 2008] and a successful decoupling strategy
was demonstrated. [Amiri et al., 2011] suggest to lessen the assumption on the lateral tilting
angles. These are no more required to have opposite values. This enables a sixth independent
control ideally allowing total control of the aircraft. Using a similar aircraft (with an additional
small tail rotor) equipped with fixed wings for forward flight, [Fan et al., 2010] demonstrated a
controlled transition – based on a backstepping approach – between rotary-wing and fixed-wing
modes.

It is also possible to build a multirotor equipped with three rotors instead of an even number of
rotors. Due to the odd number of rotors, the drag torques can no longer be self-compensated by
pairs of counter-rotating rotors and different control strategies for the yaw have to be introduced.
[Salazar-Cruz et al., 2008] presented a three-rotor aircraft where the three rotors are at the end
of a “T”-shaped body. In this design, only the tail rotor can be tilted around its axis. The control
of the rolling dynamics is performed by the two main rotors, the control of the pitching dynamics
by the tail rotor thrust and the control of the yawing dynamics by the tail rotor inclination. This
architecture simplifies the yaw control since it is controlled by the thrust of the tail rotor rather
than by the differential aerodynamic drag such as on quadrotors. However, this introduces a
strong translation-rotation coupling and does not improve the capacities of quadrotors. However,
the three-level – attitude, altitude, horizontal – control strategy respects the tilting constraints
and seems to perform well.

A similar architecture is used in [Yoo et al., 2010] and stabilization is also achieved. An
additional symmetric architecture is presented where all the rotors are replaced by coaxial rotors.
However, this design, by eliminating the induced drag, does not need thrust tilting anymore for
the stabilization purposes presented.

A symmetric design is introduced in [Escareño et al., 2008] and called “Delta” after the shape
of their aircraft. In this configuration, the three rotors are designed to tilt about their respective
axis. The authors however only present a simple strategy to stabilize the attitude of the aircraft.
As a consequence, the authors assume all the tilting angles are equal.

[Mohamed and Lanzon, 2012] take full advantage of this design by using the tilt angles of the
three rotors as three independent controls. As such, the aircraft has six independent controls and
has therefore full authority over torque and force vectoring. The authors can thus partially, as in
[Hua et al., 2012] – under constraints from the actuators saturation – independently control the
attitude and position of the aircraft and this with only three rotors despite the system coupling
along with the nonlinearity. The suggested strategy uses input-output feedback linearization
and H∞ loop shaping design and performs simultaneous stabilization of all the outputs.

116 Revision: a466fdc (2015-10-14 23:06:42 +0200)

CHAPTER 6

The tricopter: an agile UAV

Multirotor helicopters with tilting propellers form an increasing field of research among multiro-
tor UAVs. This growing interest is due partially to the increased agility that might be inferred by
the additional controls. The previous survey introduced and described various models developed
by different institutions over the world.

Under the direction of Prof. Rudolph, the team at the Chair of Systems Theory and Control
Engineering (short CSTCE) of Saarland University (Saarbrücken, Germany), performs research,
among other topics, in the field of mobile robotics and control of dynamical systems. In 2012,
the development of an experimental platform with a new propeller configuration started on
the occasion of the stay of a visiting engineering student of the École Centrale de Lille ([Pillu,
2012]) and resulted in a first development version of a trirotor helicopter with tilting propellers
[Kastelan et al., 2015]. CSTCE’s tricopter was born. This project was conducted along with the
advanced development by Dipl.-Ing. Matthias Konz of his quadrotor helicopter. The design of
the tricopter evolved into a second version profiting from the improvements brought by Matthias
Konz’ quadrotor. This second version was first assembled by myself during a stay at CSTCE in
June 2014.

This chapter is dedicated to the presentation of this platform, introducing its mechanic and
electronic conception and its environment. A model of the tricopter is then presented and, in
the last section, a short introduction is given to finite dimensional differential flatness. This
special case of the flatness theory is the main tool used throughout this part for the control of
our systems.

Contents
5.1 Flight dynamics . 95

5.1.1 Basics of flight . 95

5.1.1.1 Aerostats . 95

5.1.1.2 Aerodynes . 96

5.1.2 The roll-pitch-yaw convention and aircrafts’ centers 97

5.1.3 Fixed-wing aircrafts . 98

5.1.4 Rotary-wing aircrafts . 100

5.1.5 Convertible airplanes and other VTOL aircrafts 104

5.2 A usual model, the quadrotor . 105

5.2.1 Design and basic model of a quadrotor helicopter 106

5.2.2 Control and applications for a quadrotor UAV 108

5.2.2.1 Control and trajectory tracking . 108

5.2.2.2 Slung load transportation . 113

5.2.2.3 An application: flying an inverted pendulum 114

Chapter 6. The tricopter: an agile UAV

5.3 Tilting rotor multirotor UAVs . 115

6.1 Design of the tricopter

The tricopter has been built on the knowledge acquired over the years by the team of Prof.
Rudolph, notably during the development of quadrotors and other propeller driven mobile
robots. For example, the chair developed a ballbot, a robot balancing on a ball, stabilized and
actuated by four perpendicular propellers based on the components of Matthias Konz’ quadrotor.
As a consequence, the tricopter shares most of its actuators, sensors and electronic software
libraries with the quadrotor concurrently developed. However, it differs from this design by the
addition of the nacelle tilting capability. It is, in its shape and concept, related to other designs
such as the “Delta” by [Escareño et al., 2008] or the trirotor helicopter presented in [Mohamed
and Lanzon, 2012].

In this section, we first introduce the overall design of the tricopter. In a second subsection,
we briefly sketch the embedded electronics components of the tricopter and present in a last
subsection the flight test area of CSTCE.

6.1.1 Mechanics design

The tricopter is – as inferred by its name – a trirotor helicopter. As can be seen from the top-view
of the tricopter drawing presented in figure 6.1, its arms – of equal length d – are disposed 120°
apart, forming an equilateral triangle. They belong to a plane that defines the horizontal plane
of the tricopter which is, at rest, parallel to the ground. The center of mass of the tricopter is
supposed to belong to this plane and to be centered at the intersection of the three arm axes. As
was earlier introduced, the main characteristic of the tricopter is the tilting ability of its arms
which confers this platform its superb agility. Indeed, the three arms are mounted on rolling
bearings and can be independently tilted by servomotors around their respective longitudinal
axes. In the following, we call αi the tilt angles of the respective arms. Due to limits of the
servomotors in angular range, the tilt angle is bound and the tricopter cannot invert its thrust1.

A BLDC motor is located at the end of each arm and drives a fixed-pitch propeller. We call
nacelle2 the element formed by the union of a motor, its fastening and the associated propeller.
The nacelles are fastened to the arms and such rotates with them. We call rotor the part formed
by the rotor of the motor and the propeller, it is the rotating part of the nacelle. Each rotor rotates
with angular velocity ωi around an axis #»z i (see figure 6.2 for an illustration of these rotation
axes) perpendicular to the nacelle rotation axis. The overall configuration of the different axes is
represented in figure 6.2. Each rotor has a dedicated sense of rotation designated as εi = ±1. A
positive sense of rotation designates a counterclockwise rotation around the axis3 and conversely
a negative sense of rotation designates a clockwise rotation.

1The rotation angle would be anyway limited by the power wirings of the motors housed in the arms which
oppose the rotation.

2By analogy with airplanes nacelles which host the engines.
3When facing the nacelle as in figure 6.1, the nacelle vertical axis is pointing downwards, such that clockwise

becomes counterclockwise and vice-versa.

118 Revision: a466fdc (2015-10-14 23:06:42 +0200)

6.1. Design of the tricopter

x

y

2π
3

π
3

π
3

1

2 3

Figure 6.1 – Tricopter geometry.

Unlike multirotor configurations with an even number of rotors such as quadcopters, hexa-
copters or octocopters, the aerodynamic torque created by the rotating propellers is not naturally
compensated by an equal, yet opposite, contribution of the counter-rotating rotors. This torque
is compensated by tilting the propellers. Indeed the horizontal component of the global thrust
adds a torque along the vertical axis of the body and is used to compensate the aerodynamic
torque from the propellers.

In the following we will use the letter m to designate the mass of the tricopter and

J=




Jxx Jxy Jxz

Jxy Jyy Jyz

Jxz Jyz Jzz



 (6.1)

#»z

#»y

#»z B1

#»y B1

α1

Figure 6.2 – Axial view of the first nacelle. Green elements are the servomotor and its linkage.
The BLDC motors are depicted in blue. The part depicted in red is the battery.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 119

Chapter 6. The tricopter: an agile UAV

to designate its inertia matrix. Some of the essential data of the tricopter is gathered in table 6.1.
Due to imprecision in the realization of the model or, for example, when using another battery
than the one the tricopter was designed with, these values may vary. The controllers have thus
to be robust to these uncertainties. Notably the battery moves the center of mass downwards
which is therefore significantly below the arms plane.

m= 1.23 kg
Jxx = 1.3× 10−2 kg m2

Jyy = Jxx

Jzz = 2.4× 10−2 kg m2

Jxy = 1.1× 10−6 kg m2

Jxz = 2.5× 10−4 kg m2

Jyz = 4.2× 10−8 kg m2

d= 0.245 m
αi ∈ [−1.0 ; 1.0] rad
Ti ∈ [2.0× 10−1 ; 8.0]N

Fxy ∈ [−3.0 ; 3.0]N
Fz ∈ [0 ; 18.0]N

Txy ∈ [−4.0× 10−1 ; 4.0× 10−1]N m
Tz ∈ [−2.0× 10−1 ; 2.0× 10−1]N m

[ε1,ε2,ε3] = [−1,+1,+1]
kT = 1.42× 10−5 N s2 rad−2

σ = 3× 10−2 m

Table 6.1 – Tricopter physical parameters.

The tricopter body is mounted on a landing gear. It has proved its utility and efficiency as a
kinetic energy absorber on the occasion of several less controlled and harsh landings and has
kept marks of these rough events. A 750 mm large security ring is mounted in the arms plane.
Its utility is twofold. On the one hand it plays the part of – poor – protection to operators and to
the propellers during lateral translations such as during ground rolling phases. On the other
hand it is particularly useful to materialize the spatial extension of the propellers, which are
almost invisible to the naked eye when rotating. The final assembled tricopter can be seen in
figure 6.3.

6.1.2 Electronics design

We can summarize the various tasks of the electronics as follows:

Computing the controls: This is done by the brain of the tricopter, a 32 bit microcontroller by
Atmel. This microcontroller, namely the AT32UC3C2512C, has floating point operation
capability unlike several other less powerfull microcontroller. It can work at a frequency
of up to 66 MHz. This microcontroller also manages all the other functions. It is mounted
on a printed circuit board (in short PCB) developed at the CTSCE which interfaces the
central electronics to all the other components of the tricopter.

120 Revision: a466fdc (2015-10-14 23:06:42 +0200)

6.1. Design of the tricopter

Figure 6.3 – The tricopter (courtesy of D. Kastelan).

Communication with the ground: Either to receive data from the base computer (e.g. position
measures, reference trajectories) or to send data (e.g. to register or plot online parameters),
the tricopter uses a ZigBee module. ZigBee modules are wireless modules designed for low
energy consumption communications. In the used configuration, it works on the 2.4 GHz
radio band which allows a communication range of about ten meters with a theoretical
data rate of about 250 Kibit s−1. In our application, we were decided to send to the ground
193 bit of data every 50 ms while the ground was sending 58 bit of data every 30 ms. The
risk of packet mixing prevented us to increase the data rate.

Communication with the remote control: Either to fly the tricopter per hand or to dispose of
an emergency switch when flying autonomously, the tricopter embeds a receiver connected
over serial to the microcontroller and attached to a seven channels Futaba remote control.

Motor control: The three BLDC motors are each driven by an open-loop controller, on-board a
control PCB developed and sold by the German UAV company Mikrokopter. The micro-
controller periodically sends through an I2C link reference speeds to the three controllers.
This control is however open-loop and a closed-loop controller board is therefore currently
being developed at CSTCE to replace it in the future.

Orientation and acceleration sensing: The tricopter is embedded with an inertial measure-
ment unit (in short IMU) which gives access to estimations of the attitude of the tricopter,
of angular rates and acceleration. However some of the data presents flaws. Notably
the estimation of the heading, which is given with respect to the magnetic north, drifts
over the time and can’t be reliably used. However the IMU gives updated estimation
values at each controller loop (every 5 ms) and is therefore faster than the motion capture
platform. A filter is thus embedded to make the most of the high data-rate of the IMU and
the accuracy of the motion capture platform.

Tilting the arms: The three servomotors are controlled by embedded controllers. The main
microcontroller simply sends the reference value over a digital output as a pulse-width
modulated signal (in short PWM). This reference value is encoded into 10 bit and allows
a precision on the order of the tenth of a degree. The dynamics of the servomotors is
neglected in the following but is currently under investigation at CSTCE.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 121

Chapter 6. The tricopter: an agile UAV

Providing efficient power supply: As the tension of the battery varies with time and is not by
default at the level needed by the various components, the tricopter is embedded with a
voltage regulator PCB developed at CSTCE.

The dynamics of the tricopter is particularly fast and needs fast responding electronics and
controls. Therefore, the microcontroller runs no operating system to ensure its real-time character.
The microcontroller runs only the binaries of the developed code the execution time of which
can be accurately evaluated. The code is written in C but the team at CSTCE ported some C++
libraries, notably Eigen – a library for linear algebra – to be used on the microcontroller.

6.1.3 The motion capture platform

A room at CSTCE is dedicated to flight experiments. It is roughly three times five meters and
has four motion tracking cameras by Vicon fixed at each corner and spanning over almost the
entire flight space.

Motion tracking systems has been developed first for use in the film industry for special effect.
They were first used to capture the motion of actors to overcome the difficulty of giving a natural
walk to the computer animation of a human. They work as follows. The body which has to be
tracked is fitted with several markers: small spheres reflective to the infrared. These spheres
define a solid body with position and orientation. The cameras illuminate the markers at a
constant rate with infrared LED. Using several cameras, it is possible to convert these snapshots
to the current orientation and position of the solid body.

As illustrated in figure 6.4, the precision of this tracking is of the order of the tenth of a
millimeter and of the thousandth of a radian (about 0.06°). It has the advantage of experiencing
no drift over time and to give an absolute measure with respect to the room. In our configuration,
we were able to perform this evaluation and send it to the tricopter over ZigBee at about 30 Hz.
However, this whole process induces a delay between the acquisition of the real position and the
transmission to the tricopter of as much as 65 ms. This can be seen by comparing the angular
data acquired by the IMU to the angular data acquired by the motion tracking system as has
been done in figure 6.5. This delay is significant and creates difficulties when flying aggressive
trajectories. To overcome this problem, a filter is included in the tricopter that performs fusion
of the angular velocity measured by the IMU and of the position and orientation measured by
the motion tracking system. This fusion algorithm allows to compensate the delay in attitude
and position in the motion tracking system data. Furthermore in the frequent case of a motion
tracking system packet loss, the algorithm interpolates the data.

6.2 Mechanical model of the tricopter

6.2.1 Formalism and assumptions

To develop a dynamic model of the tricopter, we have to identify the various forces and moments
the tricopter is subject to. The first two obvious forces are gravity and the thrusts of the propellers.
All the other forces and notably gyroscopic effect induced by the rotation of the rotors and
servomotors and aerodynamic forces such as air drag, constant wind, wind gusts and turbulences

122 Revision: a466fdc (2015-10-14 23:06:42 +0200)

6.2. Mechanical model of the tricopter

2.44
2.46
2.48
2.50
2.52

x
[m

m
]

29.25

29.30

29.35

y
[m

m
]

127.40

127.45

127.50

z
[m

m
]

10 11 12
−5.05

−5.00

−4.95

−4.90
·10−2

time [s]

ya
w
[r

ad
]

10 11 12

−1.60

−1.50

−1.40
·10−2

time [s]

pi
tc

h
[r

ad
]

10 11 12

−5.00

−4.00

−3.00

·10−3

time [s]

ro
ll
[r

ad
]

Figure 6.4 – Example of position and attitude estimate of a still laying object as seen by the
motion tracking system.

1.65

1.75

1.85

53 53.2 53.4 53.6 53.8 54

0.60

0.70

0.80

time [s]

ya
w
[r

ad
]

Figure 6.5 – Delay of the motion tracking system. The blue solid line represents the yaw measured
by the IMU, the red line represents the yaw measured by the motion tracking system while the
black line represents the filtered yaw. The blue dashed line represents the data measured by the
IMU corrected by the yaw offset.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 123

Chapter 6. The tricopter: an agile UAV

α2

#»z 2

#»z 3

#»z 1

#»x 1

#»r

d

d

d

#»y B

#»z B

#»x B

#»y I

#»z I

#»x I
OI

OB

O1

O2

O3

Figure 6.6 – Tricopter geometry and reference frames [Kastelan et al., 2015].

will be neglected. This is a common hypothesis (see e.g. section 5.2 and the references therein)
and will help greatly in establishing a model simple enough to be controlled.

In the following, the thrust created by propeller i is written
#»

T i while the aerodynamic torque
is called

#»

Γ i. A common model for these two values is:

#»

T i = −kTω
2
i

#»z i,
#»

Γ i = εiσ
#»

T i (6.2)

The rather unusual negative thrust is due to the choice of a downward-pointing vertical axis.
This model holds rather well in ideal conditions, that is without wind or displacement of the
propellers and far enough from the ground. The kT and σ parameters are aerodynamic constants
depending mainly on the propeller geometry. This model has been verified experimentally at
CSTCE and the parameters for the propellers used on the tricopter have been experimentally
identified. The values used in the following may be found in table 6.1 on page 120.

To establish the model of the tricopter, we adopt the following formalism. We use six-
dimensional pseudo-vectors called tensors to describe generalized forces. This formalism is
sometimes described as the “screw theory”, the pseudo-vector is then called a screw. The first
three components of a screw represent the force, and thus a translation, while the three later
represent the moment, that is a rotation. Screws depend on the point they are evaluated at and
the reference frame they are expressed in. In this formalism real forces are such that there exists
a point where the three later components of the pseudo-vector are null. Pure moments on the
contrary always have null first components. Euler-Newton equations describe the motion of
solid bodies and are best expressed using such screws. This is the choice made to establish the
equations of motion of the tricopter.

The various points and reference frames used thereafter are illustrated in figure 6.6 and the

124 Revision: a466fdc (2015-10-14 23:06:42 +0200)

6.2. Mechanical model of the tricopter

notations are gathered in table 6.2. The attitude of the tricopter is described by the rotation
matrix RB

I
which sends a vector u expressed in the reference frame I into the reference frame B.

Since I = (OI , #»x I , #»y I , #»z I) and B = (OB, #»x B, #»y B, #»z B) are both chosen right handed, we have
the following properties:

RI

B
= RB

I

T
, RB

I
RI

B
= I, detRB

I
= 1 (6.3)

The angular velocity
#»

Ω of the tricopter is defined by:

#»

Ω =
�
RB

I
ṘI

B

�∨
(6.4)

where the vee operator (·)∨ is the inverse of the skew operator S(·) : #»u 7→ S(#»u). The skew-matrix
of a vector #»u = (u1, u2, u3)

T is the matrix:

S(#»u) =




0 −u3 u2

u3 0 −u1

−u2 u1 0



 (6.5)

It is an equivalent to the cross-product × such that for two vectors #»u and #»v , we have the
relation:

S(#»u)#»v = #»u × #»v (6.6)

The vee operator is hence defined as:

(S(#»u))∨ = #»u (6.7)

We have then the following equalities:

RB

I
ṘI

B
= S(

#»

Ω), ṘI

B
= RI

B
S(

#»

Ω) (6.8)

We define the velocity #»v of the tricopter as:

#»v = RB

I

#̇»r (6.9)

Newton-Euler equations make use of the acceleration. Using the previous definitions, differenti-
ating the velocity according to time leads to:

RB

I

#̈»r = #̇»v + S(
#»

Ω)#»v (6.10)

Finally, each nacelle has a body-fixed frame Bi = (Oi,
#»x i,

#»y i,
#»z i) that is centered in the center

of mass of the nacelle. We assume that this center of mass is located in the plane Oi
#»x B

#»y B and
is therefore located on the arm rotation axis. The angle between #»z i and #»z B is called αi. As
stated in the hypotheses, we neglect gyroscopic effects. Hence, the model depends only on the
angles αi and not on their derivatives. Furthermore, we assume that the inertia matrix of the
tricopter J does not depend on the angles αi.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 125

Chapter 6. The tricopter: an agile UAV

I = (OI , #»x I , #»y I , #»z I) Inertial reference frame
B = (OB, #»x B, #»y B, #»z B) Tricopter body-fixed frame

RB

I
Rotation matrix from frame I to frame B

#»r = (x, y, z)T Position of the tricopter expressed in the inertial reference frame
#»

Ω Angular velocity of the tricopter with respect to the inertial reference frame
#»v Velocity of the tricopter expressed in its body-fixed frame

Bi = (Oi,
#»x i,

#»y i,
#»z i) Frame fixed to the i-th nacelle
#»

T i Thrust produced by the i-th propeller
#»

Γ i Aerodynamic moment produced by the i-th propeller
ωi Angular velocity of propeller i with respect to the i-th nacelle

Table 6.2 – Dynamic and kinematic notations used in the model of the tricopter. Bold upright
values are matrix, slanted values with upper arrows are vectors.

6.2.2 Screws acting on the tricopter

Following the chosen formalism, we want to find the global screw applied to the tricopter in
its center of mass. Following our simplifying assumptions, this screw is the sum of the gravity
screw and of the screws from the three propellers. We will apply Euler-Newton equations in
the tricopter body-fixed frame and in its center of mass and thus need an expression in this
frame and point. We may first express the screw of the gravity at the center of mass OB in the
reference frame I as:

{G}
OB I

=

�
m#»g

0

�

OB I

=

�
mg#»z I

0

�

OB I

(6.11)

This screw can be expressed in the body-fixed frame B and reads then:

{G}
OB B

=

�
mgRB

I

#»z I

0

�

OB B

(6.12)

The screw of a propeller at point Oi in the reference frame Bi of the i-th nacelle is:

{Θi}Oi Bi
=

�
#»

T i
#»

Γ i

�

Oi Bi

=

�
−Ti

#»z i

−εiσTi
#»z i

�

Oi Bi

(6.13)

In the reference frame Bi, the center of mass of the tricopter is located at −d#»x i. We neglect the
possible offset in #»z i as it creates no additional torque. By the definition of the torque, known
in French under the name of “Varignon’s rule”, this screw expressed in the center of mass OB

reads:

{Θi}OB Bi
=

�
−Ti

#»z i

−εiσTi
#»z i − dTiS(

#»x i)
#»z i

�

OB Bi

(6.14)

We have S(#»x i)
#»z i = −#»y i, the previous screw then reads:

{Θi}OB Bi
=

�
−Ti

#»z i

−εiσTi
#»z i + dTi

#»y i

�

OB Bi

(6.15)

126 Revision: a466fdc (2015-10-14 23:06:42 +0200)

6.2. Mechanical model of the tricopter

This screw can then be expressed in the body-fixed frame B as:

{Θi}Oi B
=

� −TiR
B

Bi

#»z i

−εiσTiR
B

Bi

#»z i + dTiR
B

Bi

#»y i

�

Oi B

(6.16)

The rotation RBi
B

is obtained as a rotation of angle αi around axis #»x i. The vector #»x i might be
expressed as the rotation by an angle βi ∈ {−π,−π3 , π3 } around #»z B of the basis vector #»x B. It
is thus the product of two rotations and reads (see [Diebel, 2006] for the adopted rotation
formalism):

RB

Bi
=




1 0 0
0 cosαi sinαi

0 − sinαi cosαi








cosβi sinβi 0
− sinβi cosβi 0

0 0 1



 (6.17)

Hence, the three rotation matrices read respectively:

RB

B1
=




−1 0 0
0 − cosα1 sinα1

0 sinα1 cosα1



 (6.18)

together with:

RB

B2
=




1
2

p
3

2 cosα2 −
p

3
2 sinα2

−
p

3
2

1
2 cosα2 −1

2 sinα2

0 sinα2 cosα2



 (6.19)

and:

RB

B3
=




1
2 −

p
3

2 cosα2

p
3

2 sinα2p
3

2
1
2 cosα2 −1

2 sinα2

0 sinα2 cosα2



 (6.20)

To get a simple expression of the global screw, we introduce the vector:

#»

f a = (T1 cosα1, T2 cosα2, T3 cosα3, T1 sinα1, T2 sinα2, T3 sinα3)
T (6.21)

The six controls can be obtained from this vector as:

¨
αi = atan2(fi+3

a , fia)

Ti =
Æ
(fia)

2 + (fi+3
a)

2
(6.22)

where the function atan2 is prolonged in (0,0) and is therefore defined as:

atan2(x, y) =






arctan y
x x> 0

arctan y
x +π y¾ 0, x< 0

arctan y
x −π y< 0, x< 0

+π2 y> 0, x= 0

−π2 y< 0, x= 0

0 y= 0, x= 0

(6.23)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 127

Chapter 6. The tricopter: an agile UAV

Using the control vector
#»

f a, the three screws can be written {Θ1}O1 B
=Wi

#»

f a where the matrices
Wi read:

W1 =





0 0 0 0 0 0
0 0 0 −1 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
−d 0 0 −ε1σ 0 0
−ε1σ 0 0 d 0 0




(6.24)

together with:

W2 =





0 0 0 0
p

3
2 0

0 0 0 0 1
2 0

0 −1 0 0 0 0

0
p

3
2 d 0 0

p
3

2 ε2σ 0
0 1

2d 0 0 1
2ε2σ 0

0 −ε2σ 0 0 d 0





(6.25)

and:

W3 =





0 0 0 0 0 −
p

3
2

0 0 0 0 0 1
2

0 0 −1 0 0 0

0 0 −
p

3
2 d 0 0 −

p
3

2 ε3σ

0 0 1
2d 0 0 1

2ε3σ

0 0 −ε3σ 0 0 d





(6.26)

The total screw applied by the propellers to the tricopter is then:

{Θ}
OB B

=

3∑

i=1

{Θi}OB B
=W

#»

f a (6.27)

where W=W1 +W2 +W3 is the matrix:

W=





0 0 0 0
p

3
2 −

p
3

2
0 0 0 −1 1

2
1
2

−1 −1 −1 0 0 0

0
p

3
2 d −

p
3

2 d 0
p

3
2 ε2σ −

p
3

2 ε3σ

−d 1
2d 1

2d −ε1σ
1
2ε2σ

1
2ε3σ

−ε1σ −ε2σ −ε3σ d d d





(6.28)

Different versions of this matrix were introduced in [Kastelan et al., 2015; Servais et al.,
2015a,b]. They differ in signs due to the various conventions adopted in these works. A formal
evaluation of the determinant of this matrix reads:

detW= −3
4

d
�
2(ε2

1 + ε
2
3 + ε

2
2 − ε1ε2 − ε1ε3 − ε2ε3)σ

2 + 9d2
�

(6.29)

which can be written:

detW= −3
4

d(9d2 + 2µσ2) (6.30)

128 Revision: a466fdc (2015-10-14 23:06:42 +0200)

6.2. Mechanical model of the tricopter

together with the following coefficient µ:

µ=
∑

i

ε2
i −

∑

i>j

εiεj (6.31)

Which is found by identification to take the two only possible values:

µ=

¨
0 if ε1 = ε2 = ε3

4 otherwise
(6.32)

In both cases, the matrix W is invertible. It is therefore possible to find a control vector
#»

f a for
any desired screw. In the case ε1 = ε2 = ε3 = 1, the matrix reads:

W(1,1, 1) =





0 0 0 0
p

3
2 −

p
3

2
0 0 0 −1 1

2
1
2

−1 −1 −1 0 0 0

0
p

3d
2 −

p
3d
2 0

p
3σ
2 −

p
3σ
2

−d d
2

d
2 −σ σ

2
σ
2

−σ −σ −σ d d d





(6.33)

Due to the simpler expression of the determinant of the matrix in this case, the invert of this
matrix has a simpler expression and reads:

3
2

dW−1(1, 1,1) =





0 σ −d
2 0 −1 0

−
p

3σ
2 −σ2 −d

2

p
3

2
1
2 0p

3σ
2 −σ2 −d

2 −
p

3
2

1
2 0

0 −d −σ2 0 0 1
2p

3d
2

d
2 −σ2 0 0 1

2

−
p

3d
2

d
2 −σ2 0 0 1

2





(6.34)

The configuration of the tricopter can be obtained as the product of the two matrics:

W(−1,1, 1) = Q(−1,1, 1)W(1,1, 1) (6.35)

With:

Q(−1, 1,1) =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0 −4σ
3 −2σ2

3d 0 1 2σ
3d

0 4σ2

3d −2σ
3 0 −4σ

3d 1





(6.36)

Which invert reads:

Q−1(−1,1, 1) =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0
4σ(3d2+2σ2)

9d2+8σ2
2dσ2

9d2+8σ2 0 9d2

9d2+8σ2 − 6dσ
9d2+8σ2

0 4dσ2

9d2+8σ2

2σ(3d2+4σ2)
9d2+8σ2 0 12dσ

9d2+8σ2
9d2

9d2+8σ2





(6.37)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 129

Chapter 6. The tricopter: an agile UAV

The invert of the matrix W(−1,1,1) in the chosen configuration can thus be obtained as the
product of two simple inverts as:

W−1(−1,1, 1) =W−1(1, 1,1)Q−1(−1,1, 1) (6.38)

And reads:

W−1(−1, 1,1) =





0 − 3d2σ
9d2+8σ2 −3d(3d2+4σ2)

18d2+16σ2 0 − 9d2

9d2+8σ2
6dσ

9d2+8σ2

−
p

3σ
2

3d2σ
18d2+16σ2 −3d(3d2+2σ2)

18d2+16σ2

p
3

2
9d2

18d2+16σ2 − 3dσ
9d2+8σ2p

3σ
2

3d2σ
18d2+16σ2 −3d(3d2+2σ2)

18d2+16σ2 −
p

3
2

9d2

18d2+16σ2 − 3dσ
9d2+8σ2

0 −3d(3d2+2σ2)
9d2+8σ2 − 3d2σ

18d2+16σ2 0 6dσ
9d2+8σ2

9d2

18d2+16σ2p
3d
2

3d(3d2+4σ2)
18d2+16σ2 − 3d2σ

18d2+16σ2 0 6dσ
9d2+8σ2

9d2

18d2+16σ2

−
p

3d
2

3d(3d2+4σ2)
18d2+16σ2 − 3d2σ

18d2+16σ2 0 6dσ
9d2+8σ2

9d2

18d2+16σ2





(6.39)

Using the physical values given in table 6.1 on page 120, an approximation of the matrix
W−1(−1,1, 1) can be given as (for clarity, units are not given but are all SI units):

W−1 =





0 −0.0269 −0.336 0 −2.69 0.219
−0.0707 0.0134 −0.332 2.36 1.34 −0.11
0.0707 0.0134 −0.332 −2.36 1.34 −0.11

0 −0.664 −0.0134 0 0.219 1.34
0.577 0.336 −0.0134 0 0.219 1.34
−0.577 0.336 −0.0134 0 0.219 1.34




(6.40)

6.2.3 Equations of motion

Applying Newton-Euler equations to the flying drone in the body-fixed frame reads:

{Θ}
OB B

+ {G}
OB B

=

�
mI 0
0 J

��
RB

I

#̈»r
#̇»

Ω

�
+

�
0

S(
#»

Ω)J
#»

Ω

�
(6.41)

where I is the identity matrix. Using the notations introduced previously, we may write this as
�

mRB

I

�
#̈»r − #»g

�

J
#̇»

Ω + S(
#»

Ω)J
#»

Ω

�
=

#»

f b =W
#»

f a, (6.42)

These six independent equations totally define the motion of the tricopter. In the following
section, we introduce the concept of differential flatness. This concept will apply, throughout
the different applications of the tricopter, to the various models developed thereafter.

6.3 Introduction to flatness based control

Flatness of dynamic systems was introduced in the early nineties by Fliess et al. and introductory
examples were given in [Rouchon et al., 1993; Fliess et al., 1995; Murray et al., 1995]. The
formal definition of a differentially flat system was given as:

130 Revision: a466fdc (2015-10-14 23:06:42 +0200)

6.3. Introduction to flatness based control

D

#»g

T

m

R

x

z

θ

Figure 6.7 – The introductory example of flat systems: the crane [Fliess et al., 1995]. Inputs are
written in blue, unknowns in red.

Definition 6.3.1 (Differentially flat systems [Fliess et al., 1995]). The system defined by ẇ=
f(w, u), w ∈ Rn, u ∈ Rm, is said to be flat if there exist a function h : Rn × (Rm)n+1→ Rm, and
functions f : (Rm)r→ Rn and g : (Rm)r+1→ Rm such that:

v= h(w, u, u̇, . . . , u(r))

w= f(v, v̇, . . . , v(r−1))

u= g(v, v̇, . . . , v(r)).

then v is called a flat output of the system.

A simple form of this definition is given by Murray et al. in [Murray et al., 1995]:

Roughly speaking, a system is differentially flat if we can find a set of outputs
(equal in number to the number of inputs) such that all states and inputs can be
determined from these outputs without integration.

This is best explained by the following example. A simple crane, depicted in figure 6.7 consists
of a trolley controlled in position D along the x axis and of a massless rigid rope of length R.
These two functions of time are the inputs of our system. The system has four unknowns, the
position (x, z) of the load of mass m, the angle θ between the rope and the vertical axis and the
tension T in the rope. The whole system is supposed to move in the xz plane only. The equations
of motion of the system read:






mẍ = −T sinθ

mz̈ = −T cosθ+mg

x = Rsinθ+D

z = Rcosθ

(6.43)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 131

Chapter 6. The tricopter: an agile UAV

We may rewrite these equations to express the two inputs with two of the unknows, x and z,
which are the flat output of the system. The two inputs read:

(
D = x− ẍz

z̈−g

R2 = z2 +
�

ẍz
z̈−g

�2 (6.44)

The two remaining unknowns in equation (6.43) may be obtained from the two first equations:

¨
T2 =m2(ẍ2 + (z̈− g)2)

θ = atan2(ẍ, z̈− g)
(6.45)

Equation (6.44) gives immediately an open-loop controller to follow any arbitrary choice
of the flat output. Therefore, showing a system is flat is a convenient way to start building
a controller. This approach has been extensively used for finite differential systems (see for
example chapter 5 and the numerous references therein). It was also extended to infinite
differential systems as was shown in the first part of this thesis. Differential flatness will be used
in the following of this work thanks to the following result:

Proposition 6.3.2. The tricopter modeled in equation (6.42) is flat with flat output (#»r ,RB

I
).

Proof. Based on equation (6.30), for each of the eight choices of configuration (εi)1,2,3 ∈
{−1;+1}3, the matrix W is invertible. Equation (6.22) defines inputs for all possible values
of the control vector

#»

f a and thus for all possible value of
#»

f b which is defined by the only flat
outputs and their derivatives.

132 Revision: a466fdc (2015-10-14 23:06:42 +0200)

CHAPTER 7

Various applications of the tricopter

In this chapter we present various applications of the tricopter. In a first section, we present the
simulator and the control approach that have been developed for the tricopter. To test the real
model, we study then the tricopter on the ground as a rolling platform. This first experiment
allows to test the complete platform and the controller. Next, autonomous flight control of the
tricopter is studied and trajectory tracking experiments are presented. Finally, the application of
the tricopter to pendulum load transportation is studied.

Contents
6.1 Design of the tricopter . 118

6.1.1 Mechanics design . 118

6.1.2 Electronics design . 120

6.1.3 The motion capture platform . 122

6.2 Mechanical model of the tricopter . 122

6.2.1 Formalism and assumptions . 122

6.2.2 Screws acting on the tricopter . 126

6.2.3 Equations of motion . 130

6.3 Introduction to flatness based control . 130

7.1 Simulation platform, test trajectory and control approach

7.1.1 The simulation platform

We developed during the thesis a simulator of the tricopter. This simulator was used for both
application cases, flight and drive. The platform consists of various modules written in C code
managed by an interface written in Python. This interface allows various online data plotting
and is also interfaced with a flight-simulator, flightgear. A computer model was graphically
animated and imported into flightgear and can be used as an output to the simulator platform.

The various components of the simulation platform can be summarized as:

The controller: This module consists of the controller running on the tricopter. It is written
in C and performs at time t the evaluation of the controls as given by the closed-loop
controller presented in equation (7.30).

Chapter 7. Various applications of the tricopter

Figure 7.1 – The graphical model of the tricopter developed for use in FlightGear Flight Simulator.

The integrator: This module performs the integration between two time steps of the model
given in equation (6.42). It is written in C and uses the numerical integration procedures
of the GNU Scientific Library. This module currently uses the “Explicit embedded Runge-
Kutta (2, 3) method” stepping function which accuracy proved to be sufficient while being
computationally less intensive in comparison to more precise stepping functions such as
the available “Explicit embedded Runge-Kutta Prince-Dormand (8, 9) method” which is
the default in several other ODE solvers1.

The trajectory generator: This module returns online the reference positions, speeds and
accelerations at time t. It is written in C and can use either a trajectory chosen among a
set of predefined trajectories or be replaced by inline data.

The bindings: All the above mentioned C modules have python bindings. These bindings define
for every accessible functions a python procedure calling the C function and converting
the arguments.

The interface: This is the core of the simulation platform. It interfaces the three modules
together. Noise and delay are added by this interface which also allows to save the data,
plot it using the python matplotlib library or send it to an external viewer.

The simulation viewer: An optional viewer has been added to the simulation platform. It uses
the free and open-source FlightGear Flight Simulator as an external viewer. The module
performs online conversion and sending over a network connexion of the model data to
FlightGear’s server. A graphical model of the tricopter, illustrated in figure 7.1, has been
created, animated, and imported into FlightGear. Using FlightGear’s capacities, we have
been able to simulate and represent two tricopters2 flying in formation.

1Prince-Dormand methods are the default in Matlab, GNU Octave and Simulink.
2Unfortunately, the architecture of the multi-player system does not allow to fly more than two aircrafts at a time.

134 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.1. Simulation platform, test trajectory and control approach

0
0.5

1
1.5

x r
ef
[m
]

−0.5

0

0.5

y r
ef
[m
]

0 1 2 3 4

−0.5

0

0.5

time [s]

ψ
re

f[
ra

d]

Figure 7.2 – Reference trajectories with x in the upper part, y in the middle part and ψ in the
lower part with γ = 1.1,ν = 1.0.

7.1.2 The test trajectory

To test the tracker, we constructed a trajectory inspired by the trajectories created in part I. This
trajectory is from rest to rest and consists of an almost straight corner from which the tricopter
starts and finishes and a portion of a circle driven at constant speed. The global trajectory,
depicted in figure 7.2, resembles a drop. This offers variety in the trajectory profile with a simple
parametrization. The suggested trajectory, defined with respect to the normalized time τ = t/T,
is:

xref =






τ3P(τ) 0¶ τ < 1

d
p

2− dsin
�

3π
4
τ

�
1¶ τ < 3

(4− τ)3P(4− τ) 3¶ τ < 4

(7.1)

yref =






τ3Q(τ) 0¶ τ < 1

d
p

2− dcos
�

3π
4
τ

�
1¶ τ < 3

−(4− τ)3Q(4− τ) 3¶ τ < 4

(7.2)

where P and Q are polynomials of second order chosen to ensure a C2 transition between the
starting point at (0,0) and the arc. Thanks to the τ3 factor (resp. (4− τ)3), initial and final
speeds and accelerations are null. These trajectories are plotted in figure 7.2 while the resulting
path can be seen in figure 7.3.

The reference yaw is defined as:

Revision: a466fdc (2015-10-14 23:06:42 +0200) 135

Chapter 7. Various applications of the tricopter

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

x[m]

y[
m
]

Figure 7.3 – The reference path used as a test to the tricopter. The arrows represent the reference
heading of the tricopter.

ψref =






−π4Φγ
�τ
ν

�
0¶ τ < 1

−π4
�

2Φγ

�
τ − 1

2

�
− 1

�
1¶ τ < 3

π
4Φγ

�
4− τ
ν

�
3¶ τ < 4

(7.3)

together with the tuning parameter ν ∈ (0,1] used to set the transition time and Φγ(t) the
transition function

Φγ(t) =






0 if t¶ 0

1 if t¾ 1
1
2

�
1+ tanh

�
2(2t− 1)
(4t(1− t))γ

��
elsewhere

(7.4)

This trajectory is plotted in the lower part of figure 7.2. The use of the Φγ(t) Gevrey function
gives an example of infinitely differentiable trajectory with constant states.

7.1.3 The control approach

The model of the flying tricopter was previously established in section 6.2, equation (6.42). We
showed in proposition 6.3.2 that the tricopter is flat with a possible flat output (#»r ,RB

I
). This

allows to develop the following controller.

For this purpose, we define a reference position #»r r and a reference attitude RR

I
. We call

(#»r r,R
R

I
) the reference trajectory of our system. Based on this reference trajectory, we define the

position error #»r e and the attitude error Re as:

#»r e =
#»r − #»r r (7.5)

136 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.1. Simulation platform, test trajectory and control approach

and:

Re = RR

B
= RR

I
RI

B
(7.6)

The derivation of the attitude error reads:

Ṙe = RR

I
ṘI

B
+ ṘR

I
RI

B
(7.7)

using the definition of the angular velocity, this reads:

Ṙe = RR

B
S(

#»

Ω)− S(
#»

Ωr)R
R

B
(7.8)

We may then evaluate:

RT
e Ṙe = S(

#»

Ω)−RT
e S(

#»

Ωr)R
R

B
(7.9)

This finally reads:

RT
e Ṙe = S(

#»

Ω −RT
e

#»

Ωr) (7.10)

We define the angular velocity error as:

#»

Ωe =
#»

Ω −RT
e

#»

Ωr (7.11)

or equivalently:
#»

Ωe =
�
RT

e Ṙe

�∨
(7.12)

where the so-called vee operator is such that (S(
#»

Ω))∨ =
#»

Ω. Furthermore, we define the angular
velocity

#»

Ωd as:
#»

Ωd =
#»

Ω − #»

Ωe = RT
e

#»

Ωr (7.13)

Deriving equation (7.13) with respect to time reads:

#̇»

Ωd = RT
e

#̇»

Ωr − S(
#»

Ωe)R
T
e

#»

Ωr (7.14)

or, using equation (7.11):
#̇»

Ωd = RT
e

#̇»

Ωr − S(
#»

Ω)RT
e

#»

Ωr (7.15)

Based on the nonlinear attitude controller presented in [Konz and Rudolph, 2013] and applied
first in [Kastelan et al., 2015] to the case of the trirotor, we suggest the following error dynamics:

�
#̈»r e

J
#̇»

Ωe + S(
#»

Ωe)J
#»

Ωe

�
=

� −Kt
d

#̇»r e −Kt
p

#»r e

−Ka
d

#»

Ωe −
�
S
�
Ka

pRe

��∨
�

(7.16)

Where the matrices Kt
p, Kt

d, Ka
p and Ka

d are gain matrices and the skew operator S is defined

for matrices as S (R) = 1
2

�
R−RT

�
. For appropriate choices of the gain matrices, these error

dynamics can be shown to converge exponentially to zero for a large set of initial conditions.
For the translational gain matrices Kt

p and Kt
d, we simply choose a time constants λ1 and λ2

and set Kt
p = Diag{λ2

1,λ2
1,λ2

2} and Kt
d = Diag{2λ1, 2λ1, 2λ2}. For the rotational gain matrices,

[Bullo and Murray, 1999] show in lemma 9 that with Ka
d a positive definite matrix and Ka

p
a symmetric matrix with eigenvalues {k1, k2, k3} such that ki + kj > 0 for i 6= j, there exist
a Lyapunov function exponentially converging to zero for a certain set of initial conditions

Revision: a466fdc (2015-10-14 23:06:42 +0200) 137

Chapter 7. Various applications of the tricopter

increasing with mini6=j(ki + kj). Using, the expressions of equation (7.13), the error dynamics of
equation (7.16) reads:

�
#̈»r

J
#̇»

Ω + S(
#»

Ω)J
#»

Ω

�
=

�
#̈»r r −Kt

d
#̇»r e −Kt

p
#»r e

J
#̇»

Ωd + S(
#»

Ω)J
#»

Ω − S(
#»

Ωe)J
#»

Ωe −Ka
d

#»

Ωe −
�
S
�
Ka

pRe

��∨
�

(7.17)

And, based on equation (6.42), we suggest the following controller:

#»

f b =

mRB

I

�
#̈»r r −Kt

d
#̇»r e −Kt

p
#»r e − #»g

�

J
#̇»

Ωd + S(
#»

Ω)J
#»

Ω − S(
#»

Ωe)J
#»

Ωe −Ka
d

#»

Ωe −
�
S
�
Ka

pRe

��∨

!
(7.18)

In the following, we present three applications of this controller. The first application allows
to test the controller rolling on the ground, the second application is the main dedication of this
controller: the flying tricopter. The third and last application is the transport of a pendulum
with the flying tricopter.

7.2 The rolling tricopter

7.2.1 Motivations and mechanical modifications

Sylvain Thorel in his thesis [Thorel, 2014] studied the ground control of a quadrotor mounted
on ball casters having a tilting axis. This UAV was thought for indoor exploration. The ground
control was justified by the fact that rolling requires less thrust upwards (ideally, no thrust at
all) and that the autonomy might then been improved. However, the control of this rolling
UAV proved itself to be particularly difficult as it wasn’t able to brake and was thus difficult to
stabilize at a chosen point. Furthermore the trajectories had to be built with a particular care
since the resulting rolling robot was not totally actuated and resembled a hovercraft.

The tricopter, on the contrary, is totally actuated. We therefore suggested to build on the
idea introduced in Sylvain Thorel’s work. On the first hand, we benefit from the advantages
enumerated for the quadrotor, namely the greater autonomy for indoor exploration. On the
other hand, it appears to be an efficient and safe way to test the tricopter together with the
trajectory generation and tracking before flying. Indeed, we will focus on level flights and will
track a trajectory that had been tested on the ground.

To allow the tricopter to roll, we designed and manufactured a rolling gear that is presented
in figure 7.4. It was designed to be easily removable to allow for easy reconfiguration between
the rolling mode and the flying mode. Indeed, whereas the addition in mass and inertia around
the vertical axis as given in table 7.1 is acceptable when rolling, even without changing the
model, the change in inertia matrix seemed to be too important to fly safely and efficiently.

This second mode for the tricopter induces however a limitation. With the landing gear and
the rolling gear, the arms of the tricopter are at about 110 mm height while the radius of the
propellers is 130 mm. In order to avoid the propellers to hit the ground, the tilt angles are
limited to αi ∈ [−0.5 ; 0.5] rad.

138 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.2. The rolling tricopter

180 mm

Figure 7.4 – The rolling base used by the tricopter. The yellow plate was carved out from PVC to
host the tricopter landing gear. The balls (grey) are omni-directional ball casters.

mb = 0.22 kg
Jb

zz = 1× 10−3 kg m2

Table 7.1 – Parameters of the rolling gear.

Finally, the complete actuation of our model allows a much simpler control strategy. The
quadrotor with tilting propellers of Sylvain Thorel was proved to be flat but presented a singular-
ity, time varying control was thus used in [Thorel and d’Andréa-Novel, 2014]. In the following,
we show a simple way relying only on flatness-based control to perform trajectory tracking and
point stabilization for a rolling UAV.

7.2.2 Controlling the rolling tricopter, a flatness-based control approach

The tricopter is rolling on the ground. As a consequence the pitch and roll angles as well as
altitude of the tricopter remain constant to zero. We may then adapt the model presented in
equation (6.42) by taking these constraints into account and updating the tricopter physical
parameters. We define the yaw angle ψ as the angle between the heading of the tricopter #»x B

and the reference “north” #»x I . We distinguish between positive and negative angles using the
atan2 function and the definition:

ψ= atan2(‖S(#»x B)
#»x I‖, #»x B · #»x I) (7.19)

where ‖ · ‖ is the euclidean norm. The attitude of the tricopter may be represented with the use
of the rotation matrix:

RB

I
=




cψ sψ 0
− sψ cψ 0

0 0 1



 , (7.20)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 139

Chapter 7. Various applications of the tricopter

The velocity of the tricopter then reads:

#»v =




cψ ẋ+ sψ ẏ
− sψ ẋ+ cψ ẏ

0



 (7.21)

and its angular velocity is obtained as:

#»

Ω = (RB

I
ṘI

B
)∨ =




0
0
ψ̇



 (7.22)

Finally, the model of the rolling tricopter can be simplified, using the appropriate matrix to select
only the wished dynamics, to:

RB

I




m′ẍ
m′ÿ
J′zzψ̈



 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1



 #»

f b (7.23)

where
#»

f b = (f
i
b, 1¶ i¶ 6) =W

#»

f a, together with, m′ =m+mb = 1.45 kg, the total mass of the

m′ = 1.23 kg
J′zz = 2.4× 10−2 kg m2

αi ∈ [−0.5 ; 0.5] rad
Tz = 4.3N

Table 7.2 – Updated physical parameters of the rolling Tricopter.

tricopter and J′zz = Jzz+ Jb
zz = 2.5× 10−2 kg m2, the total inertia of the tricopter about its vertical

axis. The coefficient fib, 3¶ i¶ 5 may be chosen freely. These three degrees of freedom could
be optimized in order to reduce the energy consumption as was done by the authors of [Ryll
et al., 2012]. On the contrary, we simply choose to set the three remaining degrees of freedom
to constant values: 





f3b = −Tz

f4b = 0

f5b = 0

(7.24)

The coefficient Tz corresponds to the vertical component of the total thrust of the tricopter. Tz

is chosen to be positive, the negative sign is due to the choice of a downward pointing vertical
axis. This force is composed by summing the vertical thrusts of the three propellers. Due to
various limitations, this coefficient cannot be set to zero. Furthermore, it should not make the
tricopter take-off. An appropriate value will be determined by simple open-loop simulations in
the following section. As a consequence of these choices, the generalized-body-forces vector

#»

f b

can be put into the form:

#»

f b =





m′(cψ ẍ+ sψ ÿ)
m′(− sψ ẍ+ cψ ÿ)

−Tz

0
0

J′zzψ̈




(7.25)

140 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.2. The rolling tricopter

or:

#»

f b =

�
RB

I
0

0 I

�





ẍ
ÿ
−Tz

0
0

J′zzψ̈




(7.26)

The corresponding control vector
#»

f a is:

#»

f a =W−1 #»

f b (7.27)

This six controls on the tilt angles and the propeller thrusts can then be found using equa-
tion (6.22). We therefore dispose over a simple way to construct open-loop controls to track an
assigned trajectory. Indeed, for a chosen trajectory ξref(t) parametrized as:

ξref(t) =




xref(t)
yref(t)
ψref(t)



 (7.28)

We can compute reference velocity and acceleration ξ̇ref(t) and ξ̈ref(t). From ψref(t), a refer-
ence orientation matrix RB

I ref can be computed. An appropriate open-loop controller can be
constructed from the trajectory as:

#»

f b =

�
RB

I ref 0
0 I

�





m′ẍref

m′ÿref

−Tz

0
0

J′zzψ̈ref




(7.29)

This reference open-loop controller is however not sufficient to track the assigned trajectories.
Due to various inaccuracy in the model it is necessary to use a closed-loop controller. We make
the assumption that the orientation controller is fast enough so that the hypothesis RB

I ref = RB

I

is reasonable. Considering the constrained attitude of the tricopter, the controller introduced in
equation (7.18) can be simplified to:

#»

f b =

�
RB

I
0

0 I

�





m′
�
ẍref + k1,d(ẋref − ẋ) + k1,p(xref − x)

�

m′
�
ÿref + k1,d(ẏref − ẏ) + k1,p(yref − y)

�

−Tz

0
0

J′zz

�
ψ̈ref + k2,d(ψ̇ref − ψ̇) + k2,p(ψref −ψ)

�




(7.30)

where k1,p, k1,d, k2,p and k1,d are properly chosen positive terms. Due to the symmetry of the
system, the gains for the longitudinal and lateral dynamics are set equal. To ensure the safe
operation of the tricopter, either in open-loop or in closed-loop, the force vector

#»

f b is updated
after computation. The force vector undergoes the simple saturation procedure presented in

Revision: a466fdc (2015-10-14 23:06:42 +0200) 141

Chapter 7. Various applications of the tricopter

algorithm 7.1 using the bounds given in table 6.1. This is the very same procedure as used for
the flying case. As presented in algorithm 7.2, the body-forces vector

#»

f b is then inverted to find
the control vector

#»

f a. The angles and thrusts are computed using equation (6.22). The controls
are afterwards checked for saturations using the values for the specific case of the rolling drone
given in tables 6.1 and 7.2.

1: Data:
#»

f b ⊲ body-forces vector
#»

f max = (Fxy,max, Fxy,max, Fz,max,Γxy,max,Γxy,max,Γz,max) ⊲ Upper bounds for forces and torques
#»

f min = (−Fxy,max,−Fxy,max, Fz,min,−Γxy,max,−Γxy,max,−Γz,max) ⊲ Lower bounds for forces and
torques

5: function SATURATE BODY FORCES

for i← 1, 6 do
if fib > fimax then ⊲ fib, fimax, fimin are the i-th components of

#»

f b,
#»

f max,
#»

f min

fib← fimax

if fib < fimin then
10: fib← fimin

return
#»

f b

Algorithm 7.1 – Saturation of the body forces.

7.2.3 Admissible trajectories and open-loop simulations

7.2.3.1 Saturations and admissible trajectories

A first step into performing accurate simulations of our system and into performing real ex-
periments is to design admissible trajectories. We define an admissible trajectory as a function
ξref = (xref(t), yref(t),ψref(t))

T such that the ideal tricopter modeled by equation (7.23) using
the open-loop controller introduced in equation (7.29) follows the reference trajectory. The
only obstacles appearing when simulating an ideal model hindering the tracking of the designed
trajectories are the two levels of saturations. Two different parameters play a role in these
saturations. The first is the aggressiveness of the trajectory, i.e. the longitudinal, lateral and
rotational acceleration needed to follow the path in the allotted time. The aggressiveness can be
reduced by increasing the allotted time. The second parameter is the chosen resulting vertical
thrust Tz.

Indeed, in the controller introduced previously, it is important to choose a viable vertical
thrust Tz. This component has to verify two important conditions. First, due to the possible
ranges for the tilt angles and the thrusts, the tricopter always experiences a non zero vertical
thrust. Second, as we do not want the tricopter to take-off, this component has to be bounded
from above. These bounds read:

3cosαmaxTmin < Tz <m′g, (7.31)

The value of the vertical thrust, that has to be determined with the help of the first simulations
and experiments, is therefore in the range:

142 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.2. The rolling tricopter

1: Data:
#»

f b, W−1 ⊲ body-forces vector
Tmin, Tmax, αmax ⊲ Upper bounds for thrusts and tilt angles
function SATURATE ACTUATORS

5:
#»

f a←W−1 #»

f b

for i← 1,3 do
Ti←

Æ
(fia)

2 + (fi+3
a)

2 ⊲ Computing the thrust
if Ti > Tmax then ⊲ Saturating the thrusts

Ti← Tmax

10: if Ti < Tmin then
Ti← Tmin

αi← atan2(fi+3
a , fia) ⊲ Computing the angle

if αi > αmax then ⊲ Saturating the angles
αi← αmax

15: if αi < −αmax then
αi←−αmax

return
#»

f a

Algorithm 7.2 – Saturation of the actuators.

5.3× 10−1 N< Tz < 1.4× 101 N, (7.32)

7.2.3.2 Point stabilization

The first condition for the selected value of the vertical thrust is to allow for point stabilization
in the case of rotating propellers. This corresponds obviously, following equation (7.29), to the
generalized body-forces vector:

#»

f b =





0
0
−Tz

0
0
0




(7.33)

This vector is independent of the sense of rotation of the propellers. On the contrary, the control
vector

#»

f a depends on this choice because of the control matrix W. In the chosen layout, using
the matrix given in equation (6.40) on page 130, we find the control vector:

#»

f a =
Tz

(9d2 + 8σ2)





3d2 + 4σ2

3d2 + 2σ2

3d2 + 2σ2

dσ
dσ
dσ




(7.34)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 143

Chapter 7. Various applications of the tricopter

Using equation (6.22), we can compute the formal values of the angles and thrusts:






α1 = atan2(dσ, 3d2 + 4σ2)

α2 = atan2(dσ, 3d2 + 2σ2)

α3 = atan2(dσ, 3d2 + 2σ2)

T1 =

p
d2σ2+(3d2+4σ2)2

9d2+8σ2 Tz

T2 =

p
d2σ2+(3d2+2σ2)2

9d2+8σ2 Tz

T3 =

p
d2σ2+(3d2+2σ2)2

9d2+8σ2 Tz

(7.35)

It should be noticed that the rest angles do not depend on the chosen vertical thrust but only on
the length of the arm and on the ratio between thrust and moment generated by a propeller.
The rest angles and thrusts can be numerically evaluated to be:






α1 = 4.00× 10−2 rad

α2 = 4.04× 10−2 rad

α3 = 4.04× 10−2 rad

T1 = 0.336× Tz

T2 = 0.333× Tz

T3 = 0.333× Tz

(7.36)

To respect the minimal thrust condition given in table 6.1 on page 120, we should choose Tz so
that:

Tz >
9d2 + 8σ2

p
d2σ2 + (3d2 + 2σ2)2

Tmin = 6.0× 10−1 N (7.37)

which appears to be a greater lower bound than the one found in equation (7.32).

7.2.3.3 Translations

We mentioned previously that the aggressiveness of the chosen trajectory plays a role in the
saturation of the actuators. We suggest to study simple translations, i.e. with constant yaw.
Without loss of generality, we suppose that the yaw is null. The generalized-body-forces vector
reads:

#»

f b =





m′ẍ
m′ÿ
−Tz

0
0
0




(7.38)

144 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.2. The rolling tricopter

Therefore, the control vector formally reads:

#»

f a =
Tz

(9d2 + 8σ2)





3d2 + 4σ2

3d2 + 2σ2

3d2 + 2σ2

dσ
dσ
dσ




−
p

3
3

m′ẍ





0
σ
d
−σd
0
−1
1




− m′ÿ
(9d2 + 8σ2)





2dσ
−dσ
−dσ

2
�
3d2 + 2σ2

�

−
�
3d2 + 4σ2

�

−
�
3d2 + 4σ2

�




(7.39)

It appears there clearly that the first rotor does not bring any contribution to forward translations.
The translation contributes (i.e. in the absence of the Tz and ÿ terms) to the two other rotors
same thrusts and opposite angles. To simplify the analysis, we perform numerical evaluations of
the different terms based on the values given in table 6.1 on page 120 and table 7.2 on page 140.
These are:

#»

f a = ẍ





0
−0.0707
0.0707

0
0.577
−0.577




+ ÿ





−0.0269
0.0134
0.0134
−0.664
0.336
0.336




+ Tz





0.336
0.332
0.332

0.0134
0.0134
0.0134




(7.40)

Numerical evaluations, as given for the second propeller during a forward acceleration in
figure 7.5, show that a low value of Tz leads to saturations of the tilt-angle even for low
accelerations. This calls for a rather high value of Tz in contradiction with the objective of energy
saving. The choice was then made to set Tz = 4.3 N. This allows to perform accelerations as
high as 1 m s−2 with the third of the energy consumption of the flying tricopter.

7.2.4 Experiments

7.2.4.1 Differentiation of noisy data

The data gathered during the experiments come from different sources with a non constant
time step which is a multiple of 0.05 s due to packet losses and come with noise. Position data,
for example, are particularly noisy, and it appears to be difficult to evaluate the real speed and
acceleration of the tricopter by simple computational means. Figure 7.6 shows in blue in the
left-hand column the values obtained through finite differences.

It is common knowledge that this process does not apply well to noisy data. Indeed, while
giving appropriate results for the speed, with the presence of various peaks, the peaks due to
the noise make the acceleration computation useless.

The controller suggested in equation (7.18) on page 138 makes use only of the velocity data.
On-line, the tricopter uses a simple finite differences scheme to access to an evaluation of its
velocity.

To obtain, after the experiments, a more accurate evaluation of the velocity, the scheme
suggested by [Chartrand, 2011], was applied. It relies on a total-variation regularization which
uses gradient descent to minimize a functional equation penalizing irregularities in the output

Revision: a466fdc (2015-10-14 23:06:42 +0200) 145

Chapter 7. Various applications of the tricopter

0 0.5 1 1.5 2
0

1

2

3

4

ẍ[m s−2]

T 2
[N
]

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

ẍref[m s−2]

α
2
[r

ad
]

Value of Tz 2.8 N 6.5 N 1.0× 101 N
1.0N 4.7 N 8.3 N 1.2× 101 N

Figure 7.5 – Influence of the choice of Tz on saturations. Open-loop controls are represented
for the second nacelle for given longitudinal accelerations in the case of null lateral and yaw
dynamics for various choices of Tz.

function and discrepancy between the data and the computed solution. That is, the derivative u
of the function f is computed as the minimum of the functional equation:

F(u) = α

∫ L

0

|u′|+ 1
2

∫ L

0

|Au− f|2 (7.41)

whereα balances the importance of the two terms and Au(x) =
∫ x

0 u is the operator of integration.
This process needs the whole data to be available and is computationally intense and may thus
be applied only offline. The methods assumes constant steps in the data. Therefore, missing
data points are recreated using linear interpolation. An example of applying this method is
given in figure 7.6, along with the derivatives obtained through finite differences. The derivative
obtained by this process is plotted in green in the right-hand column.

Chartrand’s derivation presents none of the peaks appearing with finite differences and
matches elsewhere the finite differences derivation. As was explained in [Chartrand, 2011],
this process might induce a discrepancy of the derivative. This contrast loss appears in our
application at narrow peaks. We may observe this effect using the angular data given by the
IMU. Indeed, the IMU outputs both the angular velocity of the tricopter and its attitude. We
compare in figure 7.7 the angular velocity obtained by the IMU (in blue) and the angular velocity
obtained by differentiating the angular data output of the IMU using Chartrand’s derivation (in
green). There is no discrepancy on the “broad” extremum of the lower-right figure but there is
some occurring at the narrow extrema of the lower-left figure.

In the remaining of this chapter, every time noisy data has to be differentiated, the differentia-
tion is performed using Chartrand’s regularization scheme and is plotted in green: . In this

146 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.2. The rolling tricopter

−0.5

0

0.5

ẋ
[m

s−
1
]

−0.5

0

0.5

226 228 230 232 234 236

−20

0

20

40

time [s]

ẍ
[m

s−
2
]

226 228 230 232 234 236

−0.4

−0.2

0

0.2

time [s]

Figure 7.6 – Differentiation of noisy data, using finite differences in the left-hand column, and
Chartrand’s derivation [Chartrand, 2011] in the right-hand column.

different cases, we should keep in mind the aforementioned discrepancy on narrow maxima
and be careful when analyzing tracking of sharp changes in velocities or accelerations. Data
obtained directly from the various data acquisition tools are plotted in blue: . Reference
data are plotted in red: .

7.2.4.2 Experimental results

During the experiments, we made the tricopter follow repeatedly the trajectory presented in
section 7.1.2. The travel time of T = 3 s was chosen. This leads the tricopter to complete the
trajectory in 12 s and reaching in the curve a speed of 5.9× 10−1 m s−1 (about 2 km s−1). It is
the maximum possible speed for the rolling tricopter. It appeared that for greater speeds the
tricopter leans and nearly takes-off. This unexpected behavior can be at least partially explained
by the ground effect. Indeed, the thrust of a propeller increases at constant power with ground
proximity. A simple model in hover is [Johnson, 1994, 3.6 p. 124]:

T
T∞
=

1
1− (R/4z)2

(7.42)

Where T∞ is the thrust of the propeller for the given power in an infinite volume,R is the radius
of the propeller and z the altitude of the rotor. In our case the ratio between propeller radius
and altitude is around 1 and the ground proximity is supposed to increase the efficiency of each
propeller by 7 %. [Powers et al., 2012] showed that this model is relevant for for quadrotors
flying near the ground and can be used, with an accurate measurement of the altitude, to
map the ground. In our case, a greater efficiency of one or more of the rotors is a pertinent
explanation of the inclination of the tricopter. Anyway, as will be shown in the following, the
quality of our experimental results show that the suggested model for the rolling tricopter is
accurate. Ground effect can thus be neglected at the chosen power level.

The x and y trajectories followed by the tricopter are presented in figure 7.8 and are compared
with their respective reference trajectories. The errors, plotted in the lower row, are mostly due
to the delay. Static error is low and the tracking error is anyway lower than 1× 10−1 m. The
resulting path is depicted in figure 7.9. It can be seen on this figure that the path traveled by

Revision: a466fdc (2015-10-14 23:06:42 +0200) 147

Chapter 7. Various applications of the tricopter

220 224 228 232 236 240 244 248

−1

−0.5

0

0.5

time [s]

ψ̇
[r

ad
s−

1
]

223 224 225 226 227

−1

−0.5

0

time [s]

ψ̇
[r

ad
s−

1
]

229 230 231 232 233
0

0.2

0.4

0.6

time [s]
ψ̇
[r

ad
s−

1
]

Figure 7.7 – Discrepancy of the derivation induced by Chartrand’s regularization. The reference
trajectory is red, the output of the IMU is blue and the velocity obtained by applying Chartrand’s
derivation to the yaw angle given by the IMU is green. The discrepancy induced by Chartrand’s
derivation can be seen at the various extrema of the reference on the lower -left plot.

148 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.2. The rolling tricopter

0
0.5

1
1.5

x[
m
]

−0.5

0

0.5

y[
m
]

210 220 230 240 250 260
−0.1

0

0.1

time [s]

x
−

x r
ef
[m
]

210 220 230 240 250 260
−0.1

0

0.1

time [s]

y
−

y r
ef
[m
]

Figure 7.8 – Evolution of the reference trajectories (red), their real values (blue) and the error
(orange) with x in the left-hand column and y in the right-hand column.

0 0.5 1 1.5

−0.5

0

0.5

x[m]

y[
m
]

Figure 7.9 – Reference (red) and real (blue) paths. The straight line in the lower-right part of
the path is due to a data loss and was not really traveled.

the rolling tricopter is really close to the wanted path. The performance of the controller on the
translations can thus be considered as satisfying.

The velocity of the tricopter is represented in the left-hand column of figure 7.10. The
controller tracks well the reference velocity on the x axis and y axes. However, it does not
reach the peak velocities and the little “bumps” seen on the reference y velocity are damped
out. The computation of the norm of the velocity, that is depicted in the lower left graph, makes
an oscillation appear that is not obvious on the separate axis-velocities. This oscillation starts
after overshooting the reference speed on the circular section of the curve where the norm of
the velocity should be constant.

The acceleration of the tricopter represented in the right-hand column of figure 7.10 gives
an explanation of this undesired behavior. The peaks and “bumps” of the acceleration on the x
and y axes are damped out. While this damping could be partially explained by the discrepancy

Revision: a466fdc (2015-10-14 23:06:42 +0200) 149

Chapter 7. Various applications of the tricopter

−0.5

0

0.5

ẋ[
m

s−
1
]

−0.5

0

ẍ[
m

s−
2
]

−0.5

0

0.5

ẏ[
m

s−
1
]

−0.5

0

0.5

ÿ[
m

s−
2
]

210 220 230 240 250 260
0

0.2

0.4

0.6

time [s]

‖ẋ
+

ẏ‖
[m

s−
1
]

210 220 230 240 250 260
0

0.2

0.4

0.6

time [s]

‖ẍ
+

ÿ‖
[m

s−
2
]

Figure 7.10 – Evolution of the velocity (left-hand column) and acceleration (right-hand column).
References are plotted in red, values obtained by Chartrand’s derivation of the Motion tracking
data are plotted in green. The first row represents the values on the x axis, the second row
represents the values on the y axis, the last row represents the evolution of the norm.

induced by Chartrand’s derivation, oscillations are clearly to be seen on the constant sections of
the reference total acceleration. This unwanted behavior can be explained by the choice of only
twice differentiable reference trajectories. Indeed, the dynamics of the actuators (servomotors
and BLDC motors) were not considered while establishing the model of the tricopter. Taking
these dynamics into account would lead to a higher order model. Smoother reference trajectories
could be thus enhance the quality of the trajectory tracking.

During the presented set of experiments, we choose to set the coefficient ν to 0.5 in equa-
tion (7.3). The tricopter turns then twice as fast and in the first (resp. last) half of the allowed
time from (resp. to) zero heading at the start (resp. end) of the trajectory. It has thus to remain
longer with constant attitude −π4 (resp. π

4) than in the default reference yaw trajectory as plotted
figure 7.2. As can be seen from in figure 7.11, the angular velocity obtained by Chartrand’s
derivation of the IMU angular data (in green) almost perfectly matches the reference angular
velocity in the “sombrero”-like section of the angular velocity reference. In the narrow peaks,
Chartrand’s derivative of the angle, experiences the aforementioned discrepancy in the narrow
extrema in comparison with the angular velocity measured by the IMU. Simular observations
might be done for the angular acceleration. The controller appears thus to be particularly
efficient on the angular dynamics as well.

The thrust and tilt angles controls during the experiment are plotted in figure 7.12. The
controls based on the sole feedforward term are plotted in black above the actual controls.
We may first notice that the feedforward terms and the actual controls have similar shapes.
However, the thrusts and the tilt angles present several not predicted peaks. These are mostly
located during the circular section with constant acceleration of the trajectory as is outlined by
the vertical dashed lines. These peaks seem to correspond to the oscillations found in the norm

150 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.3. The flying tricopter

−0.5

0

0.5

ψ
[r

ad
]

−1
−0.5

0
0.5

ψ̇
[r

ad
s−

1
]

210 220 230 240 250 260
−4
−2

0
2
4

time [s]

ψ̈
[r

ad
s−

2
]

Figure 7.11 – Reference and experimental value of the yaw (upper graph) with reference (red)
and real value (blue), velocity (middle graph) with reference (red) and real value as given
by the IMU (blue) and acceleration (lower graph) with reference (red) and real value (green)
obtained by differentiation of the angular velocity. The “bump” in angular acceleration at 239 s
is a computational artifact due to data loss.

of the acceleration seen in figure 7.10. They are systematic and are thus the proof of unmodeled
effects. These unmodeled effects might be explained first by ground effect or static and dynamic
friction of the ball casters. Static friction, for example, is clearly impacting the tricopter. With
the sole feedforward term, the applied thrust is not sufficient to over come the static friction of
the ball casters and the tricopter is not able to start.

As a conclusion, it appears that using the tricopter as a ground robot allows the platform
to be reliably used as an indoor exploration platform. A first flatness-based controller was
implemented and tested. The results of this trajectory tracking experiment are particularly
conclusive and lead us to the second milestone of our applications: trajectory tracking for the
flying tricopter.

7.3 The flying tricopter

In the previous section, we tested the tricopter with a first application. The tricopter proved
itself to be reliable enough to track autonomously a trajectory when rolling on the ground. In
this section, we apply the controller suggested in equation (7.18) to flights. We tested various
aspects of the controller: Position and attitude stabilization, altitude control and the tracking of
the trajectory presented in the previous sections.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 151

Chapter 7. Various applications of the tricopter

1.4

1.6

1.8

T 1
[N
]

−0.5

0

0.5

α
1
[r

ad
]

1.4

1.6

1.8

T 2
[N
]

−0.5

0

0.5

α
2
[r

ad
]

210 220 230 240 250 260

1.4

1.6

1.8

time [s]

T 3
[N
]

210 220 230 240 250 260
−0.5

0

0.5

time [s]

α
3
[r

ad
]

Figure 7.12 – Evolution of the controls along the trajectory. The thrusts are represented in the
left-hand column while the tilt angles are represented in the right hand side. The first row
(in red) corresponds to the controls of the first arm, the second row (in green) to the second
arm and the third row (in blue) to the third arm. The nominal value obtained by the sole
feedforward term is represented in black. The graph sketched atop the whole figure is the norm
of the reference acceleration. Dashed vertical lines outline the limits of the circular section of
the trajectory.

152 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.3. The flying tricopter

0.1
0.12
0.14
0.16

x[
m
]

−0.04

0

0.04

φ
[r

ad
]

−0.1
−0.08
−0.06
−0.04

y[
m
]

−0.06

−0.02

0.02

θ
[r

ad
]

66 68 70 72 74

0.97
0.99
1.01
1.03

time [s]

z[
m
]

66 68 70 72 74
−0.01

0.03

0.07

time [s]

ψ
[r

ad
]

Figure 7.13 – Position and attitude stabilization. The dashed red line represents the mean of
the value during the time window, the area filled in red represents the standard deviation. The
reference position is (0m, 0m, 0.9m, 0 rad, 0 rad, 0 rad,).

7.3.1 Position and attitude stabilization

Taking-off autonomously is a hazardous task for a helicopter. Indeed, the model adopted for the
thrust in equation (6.2) does not take into account the proximity of the ground which induces
the so-called “ground effect”. As a consequence, the first experiments were conducted after
manual take-off, i.e. using the remote control. The first experiment we perform, after a manual
take-off, is to maintain the position and attitude of the tricopter. In the following we describe the
attitude of the tricopter by the roll-pitch-yaw angles, respectively represented by the variables φ,
θ and ψ. We adopt the z− y− x convention (also called Cardan or nautical angles). The angles
are then defined such that the following equality holds:

RB

I
=




1 0 0
0 cosφ sinφ
0 − sinφ cosφ








cosθ 0 − sinθ

0 1 0
sinθ 0 cosθ








cosψ sinψ 0
− sinψ cosψ 0

0 0 1



 (7.43)

The position and attitude of the tricopter are plotted in figure 7.13. On the one side, the static
error in position is of the order of 1× 10−1 m and the standard deviation around this mean
value is of the order of 2× 10−2 m. On the other side, the static error in attitude is of the order
of 2× 10−2 rad (about 1°) and the standard deviation around this mean value is of the same
order. We can thus assert that the controller is reliable to maintain attitude and position. The
static error could however been corrected by the addition of an integral term. This could be a
future axis of research.

The analysis of the controls show an unexpected behavior. The thrust controls for the second
and third rotors, i.e. the clockwise rotating propellers, are slightly below the predicted value.
This behavior has been observed by the team at CSTCE during parameter identification but this

Revision: a466fdc (2015-10-14 23:06:42 +0200) 153

Chapter 7. Various applications of the tricopter

3.8

4

4.2

T 1
[N
]

−0.2

−0.1

0

α
1
[r

ad
]

3.7

3.9

4.1

T 2
[N
]

−0.1

0

α
2
[r

ad
]

66 68 70 72 74 76

3.7

3.9

4.1

time [s]

T 3
[N
]

66 68 70 72 74 76
−0.1

0

0.1

time [s]

α
3
[r

ad
]

Figure 7.14 – Evolution of the controls during position and attitude flight stabilization. The
thrusts are represented in the left-hand column while the tilt angles are represented in the right
hand side. The first row (in red) corresponds to the controls of the first arm, the second row
(in green) to the second arm and the third row (in blue) to the third arm. The nominal value
obtained by the only feedforward term is represented in black.

effect was not taken into account in our model and the same thrust coefficient kT has been used
for both sort of propellers.

7.3.2 Altitude tracking

We describe by altitude tracking the tracking of a vertical trajectory. This task is conceptually
similar to horizontal trajectory tracking but differs in an important aspect: the ground effect
introduced in the previous section. Assuming the horizontal dimensions of the flight area are
much greater than the vertical dimension, ground effect plays a more significant role in tracking
vertical trajectories than in tracking a trajectory parallel to the ground.

We present in figure 7.15 two sets of the position, speed and acceleration of the tricopter
on an altitude increase step of 0.75 m. In both cases, the altitude presents a static error in
the beginning. The shape of the reference is accurately followed by the tricopter. However, in
both cases, the real increase in altitude is only about 0.5 m. It would be necessary to confirm
this experience in a greater flight area with a higher ceiling. This would allow to perform the
transition far from the ground and from the ceiling. Indeed, the latter also has an influence on
the performance of the propellers, though lower than the ground.

Anyway, the controller proved itself to be efficient enough to maintain altitude. Therefore,
we perform in the next section trajectory tracking in level flight.

154 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.3. The flying tricopter

0.5

1

1.5

z[
m
]

0.5

1

1.5

z[
m
]

0

0.1

ż[
m

s−
1
]

0

0.1

ż[
m

s−
1
]

325 330 335 340 345
−0.1

0

0.1

time [s]

z̈[
m

s−
2
]

325 330 335 340 345
−0.1

0

0.1

time [s]

z̈[
m

s−
2
]

Figure 7.15 – Tracking an increase in altitude reference. The position red dashed line is scaled
and translated from the reference trajectory. Each column represents a different experiment.

7.3.3 Trajectory tracking

After successively showing the ability of the tricopter to stabilize in flight and to follow a trajectory
on the ground, we perform the last experiment of this section: trajectory tracking in level flight.
The reference trajectory used in the experiment is the one that has been tested on the ground.

As shown by figure 7.16, the tricopter follows accurately the reference velocities and accelera-
tions. The shape of the trajectory is appropriately followed. Again, the static error in position
is in the order of 10−1 m. The path traveled by the tricopter is illustrated figure 7.17. After
correcting the important static offset in x, the path (in dashed blue line) follows properly the
reference path. It has to be noticed that the flown circle is smaller than the reference circle.
Indeed, the real trajectory of the tricopter in y does not reach the two positive “peaks” of the
reference trajectory in figure 7.16 top right. As no other precise data on this discrepancy are
at hand, this could be, for example, explained by an asymmetry of the test room resulting in a
higher repulsive thrust in positive y than in negative y due to different proximities of the walls.

The tracking of the attitude is illustrated for the yaw in figure 7.18 while the stabilization
of the roll and pitch angles is illustrated in figure 7.19. The performance of the controller is
satisfying in both cases. The tricopter accurately follows the reference yaw angle while decently
stabilizing the roll and pitch angles.

The controls along the trajectory are illustrated in figure 7.20. The feedforward terms for the
angles are adequately followed by the controller but, again, the feedforward overestimate the
needed thrust. The thrusts follow the feedforward term but are lower by an average of 0.1 N.

This last experiment finishes to prove the performance of the proposed controller for trajectory
tracking purposes in flight condition. The static error is higher in such conditions than when
rolling on the ground but the tricopter tracks accurately the assigned trajectories. It is to

Revision: a466fdc (2015-10-14 23:06:42 +0200) 155

Chapter 7. Various applications of the tricopter

0

1

2

x[
m
]

−0.5

0

0.5

y[
m
]

−0.5

0

0.5

1

ẋ[
m

s−
1
]

−0.5

0

0.5

ẏ[
m

s−
1
]

45 50 55 60 65 70 75
−0.5

0

0.5

time [s]

ẍ[
m

s−
2
]

45 50 55 60 65 70 75

−0.5

0

0.5

time [s]

ÿ[
m

s−
2
]

Figure 7.16 – Tracking a trajectory in level flight with position (upper graph) with reference
(red) and real value (blue), velocity (middle graph) with reference (red) and real value as given
by the IMU (blue) and by differentiation (green) and acceleration (lower graph) with reference
(red) and real value (green) obtained by differentiation of the angular velocity.

0 0.5 1 1.5 2 2.5

−0.5

0

0.5

x[m]

y[
m
]

Figure 7.17 – Trajectory tracking in level flight: xy path. Reference is red while the real path
obtained while flying is blue. The dotted blue path is obtained by subtracting the x offset as a
comparison.

156 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.3. The flying tricopter

−0.5

0

0.5

1
ψ
[r

ad
]

−0.5

0

0.5

ψ̇
[r

ad
s−

1
]

45 50 55 60 65 70 75
−1
−0.5

0
0.5

1

time [s]

ψ̈
[r

ad
s−

2
]

Figure 7.18 – Reference and experimental value of the yaw during level flight (upper graph)
with reference (red) and real value (blue), velocity (middle graph) with reference (red) and
real value as given by the IMU (blue) and acceleration (lower graph) with reference (red) and
real value (green) obtained by differentiation of the angular velocity.

−0.1

0

0.1

φ
[r

ad
]

45 50 55 60 65 70 75
−0.1

0

0.1

time [s]

θ
[r

ad
]

Figure 7.19 – Reference and experimental value of the roll (upper graph) and pitch (lower
graph) angles with reference (red) and real value (blue).

Revision: a466fdc (2015-10-14 23:06:42 +0200) 157

Chapter 7. Various applications of the tricopter

3.6

4

4.4

T 1
[N
]

−0.2

0

0.2

α
1
[r

ad
]

3.6

4

4.4

T 2
[N
]

−0.2

0

0.2

α
2
[r

ad
]

45 50 55 60 65 70 75
3.6

4

4.4

time [s]

T 3
[N
]

45 50 55 60 65 70 75

−0.2

0

0.2

time [s]

α
3
[r

ad
]

Figure 7.20 – Evolution of the controls during trajectory tracking in level flight. The thrusts are
represented in the left-hand column while the tilt angles are represented in the right hand side.
The first row (in red) corresponds to the controls of the first arm, the second row (in green) to
the second arm and the third row (in blue) to the third arm. The nominal value obtained by the
only feedforward term is represented in black. The drop in thrust at the end of the trajectory is
due to a landing maneuver.

158 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.4. Carrying a load

Figure 7.21 – The pendulum. The load orientation PCB is on the left side of the basis. One of
the potentiometers is on the right side of the basis. The other is hidden, on the side opposite to
the PCB.

noticed that the controller was tested in particularly harsh conditions. Indeed, the flight area is
particularly small. Therefore, the tricopter was flying in presence of constant turbulences. Next,
we present the premises of a future application: pendulum load transportation.

7.4 Carrying a load

In comparison with usual quadrotor UAVs, the tricopter has six independent controls. As was
presented in the review, various works are conducted to perform pendulum load transportation
with such quadrotor UAVs. In the following, we show how using the tricopter allows for more
control on this class of underactuated compound systems. We present first the orientation
measurement unit that we designed to achieve this task. We present then a flatness-based
control approach achieving pendulum load transportation.

7.4.1 The pendulum load

7.4.1.1 The load orientation measurement unit

The goal of this chapter is to use the tricopter to carry a pendulum load. The load we want to
carry is a steel cylinder weighting mL = 100g. We want to link the load to the tricopter using a
carbon rod of length l= 20 cm weighting 2 g. To attach it to the tricopter, we made the choice
of using an industrial joystick, namely the M31L-0-M1P by CH-Products. The whole pendulum
load set is to see in figure 7.21. This choice relies on various aspects of this joystick:

Revision: a466fdc (2015-10-14 23:06:42 +0200) 159

Chapter 7. Various applications of the tricopter

• It is ready to use and affordable ;

• It is easily integrated to either the top or bottom plate of the tricopter by its fastening
screws ;

• Its “core” weights only 55 g and is thus easily integrable to the tricopter with a total
additional weight to the tricopter of 157 g ;

• It has two rotation axes that can be set parallel to #»x B and #»y B. Thus the pendulum can
move in a cone of 60° opening ;

• It works on the same current levels as the tricopter ;

• It provides a direct measure of the angles by two potentiomenters with reasonable noise
level and linearity.

The last point is the most important. Indeed, to the best of our knowledge, most previous works
(with the exception of [Maza et al., 2010]) used motion tracking systems to measure the position
of the load. As was seen in the previous section, such systems are pertinent for position control.
For its orientation, the tricopter needs accurate data at a higher rate. This is the role of the
IMU. The potentiometers of the joystick play this role and we can get a precise measure of the
position of the load with respect to the tricopter.

To perform this measure, we developed a dedicated PCB. This PCB, depicted in figure 7.22 is
built around the same microcontroller used on the main tricopter board. Therefore, our custom
designed board works on the same power level as the main board and can communicate over its
various communication buses. As illustrated on figure 7.22, we made the choice to communicate
with the main board over the available I2C bus. This bus is fast enough for the few data we need
to send and needs only two wires. The maximal volume of data can be evaluated at 32 bit – eight
floating point numbers – every 5 ms – a tick on the main board. This represents a maximal data
throughput of 6.25 Kibit s−1 easily accommodated by I2C. In our implementation, only 11 bit are
sent. They correspond to the two angles, the number of samples and a parity bit.

The load PCB uses two Analog-to-Digital-Converters (short ADC) to convert the power levels
of the potentiometers –,the measures of the angular positions – to digital values. The analog
values are first passively filtered by hardware low-pass filters and then digitally averaged by the
microprocessor. In the 5 ms between two transmissions, 17 samples are taken. This step could
be improved using another filtering scheme to get a more precise evaluation of the angles at the
exact time of the transmission.

7.4.1.2 Parameter identification

The power output of the potentiometers is proportional both to the power input and to the
angular rotation of the potentiometer. This linearity is said, quoting the information of the
manufacturer, to be in the limits of ±1%. To test this assertion, we compare the outputs of the
potentiometers to absolute orientation data evaluated by our motion tracking system.

On the one hand, the motion tracking system outputs the orientation as unit quaternions. On
the other hand, the potentiometers measure two voltages. We convert them to angle assuming a

160 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.4. Carrying a load

Microprocessor
I2C interface
DC interface
LED interface
Programer interface
ADC interface
Low-pass filters

Figure 7.22 – The load orientation measurement board. The board is 1”×1.5” (about 25.4 mm×
31.8 mm).

linear dependency. These angles are given with respect to fixed axes as depicted in figure 7.23.
To investigate the validity of the linear hypotheses, we converted the quaternions from Vicon to
these two absolute angles. The result of this comparison is shown in figure 7.24 and validate
the linearity of the potentiometers. The apparent errors may have as origin both an inaccurate
choice of the parameters for the potentiometers or an imprecise evaluation of the offset e used
by the motion tracking system. This imprecisions could be solved in the future by a more careful
study of the system.

7.4.2 Dynamics of the system

7.4.2.1 Modified dynamics of the tricopter

The addition of the load modifies the dynamics of the tricopter presented in 6.42. Indeed the
load adds both a force term and a torque term that we will not neglect. This departs from
other works (see e.g. [Sreenath et al., 2013]), where this influence was neglected in order to
simplify the model. This unusual assumption is justified by the total actuation of our tricopter:
the orientation and the position of the load are decoupled. Hence it seems possible to stabilize
the pendulum load acting on the attitude of the tricopter while keeping a constant position.

The additional load is described by a point mass load of mass mL, at position #»p , linked to the
tricopter by a massless rigid rod. This rod is linked to the tricopter by a frictionless joint. This
joint has only two degrees of freedom, rotations around #»x B and #»y B axes. The orientation of
the load with respect to the tricopter body RP

B
can thus be parametrized by only two degree of

freedoms. We assume that the force exerted by the link on the tricopter is of the form #»s = s#»z P .
This force is applied in −eRB

P

#»z P and adds a torque eS(#»z B)sR
B

P

#»z P to the angular dynamics
of the tricopter. The general layout of this system is depicted in figure 7.25. Following these
assumptions, the modified dynamics of the tricopter 6.42 reads:

mRB

I

�
#̈»r − g#»z I

�
=

#»

T + sRB

P

#»z P

J
#̇»

Ω + S(
#»

Ω)J
#»

Ω =
#»

Γ + esS(#»z B)R
B

P

#»z P

(7.44)

(7.45)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 161

Chapter 7. Various applications of the tricopter

#»x
B

O

#»z
B

C

b

B

β

n

#»y B

α
m

A Pc a

α′
l

β
′

#»z P

Figure 7.23 – Schematics of the Pendulum. The angles α and β (in green) are the angles
measured by the potentiometers. The sequences (α,β′) and (β,α′) are possible Euler rotation
sequences.

−0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Angles (in radian) measured by potentiometers

A
ng

le
s

(i
n

ra
di

an
)

ob
ta

in
ed

fr
om

vi
co

n
da

ta

Linearity of potentiometers data

α 1.05 · x+ 5.4 · 10−3 (R2 = 0.9997)

β 0.99 · x+ 2.07 · 10−2 (R2 = 0.9983)

Figure 7.24 – Validation of the parameters of the potentiometers.

162 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.4. Carrying a load

#»x I

#»y I

#»z I , #»z C

#»x C

#»y C

#»x P

#»y P

#»z P

l

e

#»x B

#»y B

#»z B

#»x C

#»y C

#»z C

#»p

#»r

Figure 7.25 – Schematics of the tricopter carrying a pendulum load. The frame depicted in blue
corresponds to the intermediate yaw frame.

7.4.2.2 Kinematics of the pendulum

The position of the load is first constrained by the length of the rod. This condition reads:

#»p = #»r + eRI

B

#»z B + lRI

P

#»z P (7.46)

We find an expression of #̈»r with respect to the chosen states by successive derivations of
equation (7.46). For this we define the angular velocity of the load with respect to the tricopter
#»ω as ṘB

P
= RB

P
S(#»ω). We rewrite equation (7.46) as:

#»p = #»r +RI

B
(e#»z B + lRB

P

#»z P) (7.47)

The first time derivative of equation (7.47) reads:

#̇»p = #̇»r +RI

B
S(

#»

Ω)(e#»z B + lRB

P

#»z P) + lRI

P
S(#»ω)#»z P (7.48)

The second derivative of equation (7.47) reads:

#̈»p = #̈»r +RI

B
(S2(

#»

Ω) + S(
#̇»

Ω))(e#»z B + lRB

P

#»z P)

+ lRI

P
(S2(#»ω) + S(#̇»ω))#»z P + 2lRI

P
S(RP

B

#»

Ω)S(#»ω)#»z P (7.49)

Second, the rotation of the load with respect to the tricopter RP

B
has only two degrees of liberty.

We express this constraints based on a quaternion representation of the rotation. As depicted in
figure 7.26, the position of the pendulum load can be expressed as a rotation of angle δ around

the axis ŷ=
#»z P∧

»

OP
‖ #»z P∧

»

OP‖ (as long as δ 6= 0) of the vector #»z B. Following the formalism defined in

[Diebel, 2006], this convert to the quaternion:

q=

�
cos 1

2δ

ŷ sin 1
2δ

�
(7.50)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 163

Chapter 7. Various applications of the tricopter

or, writing ŷ as ŷ= (− sinγ, cosγ, 0), this quaternion reads:

q=





cos 1
2δ

− sinγ sin 1
2δ

cosγ sin 1
2δ

0



 (7.51)

This is equivalent to the rotation matrix [Diebel, 2006, eq. 125]:

RP

B
=




sin2 γ + cos2 γ cosδ − sinγ cosγ(1− cosδ) − sinδ cosγ
− sinγ cosγ(1− cosδ) cos2 γ + sin2 γ cosδ − sinδ sinγ

sinδ cosγ sinδ sinγ cosδ



 (7.52)

Using this formalism allows to find an appropriate expression of the angular velocity of the load
with respect to the tricopter #»ω. Diebel gives a formula for the angular velocity of the pendulum:

#»ω = 2




−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0



 q̇ (7.53)

Introducing the matrix:

Q=




sinγ sin 1

2δ cos 1
2δ 0 − cosγ sin 1

2δ

− cosγ sin 1
2δ 0 cos 1

2δ − sinγ sin 1
2δ

0 cosγ sin 1
2δ sinγ sin 1

2δ cos 1
2δ



 (7.54)

the angular velocity reads:

#»ω

2
= Q





−1
2 δ̇ sin 1

2δ

−γ̇ cosγ sin 1
2δ− 1

2 δ̇ sinγ cos 1
2δ

−γ̇ sinγ sin 1
2δ+

1
2 δ̇ cosγ cos 1

2δ

0



 . (7.55)

This may finally read:

#»ω =




−δ̇ sinγ − γ̇ cosγ sinδ
δ̇ cosγ − γ̇ sinγ sinδ

γ̇(cosδ− 1)



 (7.56)

Writing #»ω as #»ω = (ωx,ωy,ωz), we may express ωz as:

ωz = tan
1
2
δ(cosγωx + sinγωy) (7.57)

Remark. In the case where γ̇ = 0, the angular velocity reads:

#»ω =




−δ̇ sinγ
δ̇ cosγ

0



 = ŷδ̇

which is the expected result.

164 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.4. Carrying a load

#»x
B

γ

δ

#»z
P

x̂
ŷ

O

#»z
B

#»y B

Figure 7.26 – Axis-angle representation of the pendulum load. The pendulum load rotates
around axis ŷ.

Remark. Considering figure 7.23, γ and δ might be obtained as:

¨
tanγ = a

c

tanδ =
p

a2+c2

b

(7.58)

or, expressed with the angles α and β measured by the potentiometers:





tanγ =

tanα
tanβ

tanδ =
p

tan2α+ tan2 β
(7.59)

7.4.2.3 Dynamics of the pendulum

Newton equation applied to the load in the inertial reference frame reads:

mL(
#̈»p − #»g) = −sRI

P

#»z P (7.60)

The angular equivalent of this equation might be found using vectorial product:

S(RI

P

#»z P)(
#̈»p − #»g) = 0 (7.61)

Revision: a466fdc (2015-10-14 23:06:42 +0200) 165

Chapter 7. Various applications of the tricopter

7.4.2.4 Global model of the system

The dynamics of the system is constituted of equations (7.44), (7.45), (7.60) and (7.61) and
reads: 





mRB

I

�
#̈»r − #»g

�
=

#»

T + sRB

P

#»z P

mLRB

I

�
#̈»p − #»g

�
= −sRB

P

#»z P

J
#̇»

Ω + S(
#»

Ω)J
#»

Ω =
#»

Γ + esS(#»z B)R
B

P

#»z P

S(RI

P

#»z P)(
#̈»p − #»g) = 0

(7.62)

We first try to eliminate the tension s in the expression of the system. Using the second line, we
may rewrite the model as:






RB

I

�
m #̈»r +mL

#̈»p
�

=
#»

T +RB

I
(m+mL)

#»g

mLRB

I

�
#̈»p − #»g

�
= −sRB

P

#»z P

J
#̇»

Ω + S(
#»

Ω)J
#»

Ω =
#»

Γ − emLS(#»z B)R
B

I
(#̈»p − #»g)

S(RI

P

#»z P)(
#̈»p − #»g) = 0

(7.63)

In the preceding system, only the first, third and fourth equations are needed to describe the
model. The second equation gives only an expression of the tension. The model is totally
described by the system:






RB

I

�
m #̈»r +mL

#̈»p
�

=
#»

T +RB

I
(m+mL)

#»g

J
#̇»

Ω + S(
#»

Ω)J
#»

Ω =
#»

Γ − emLS(#»z B)R
B

I
(#̈»p − #»g)

S(RI

P

#»z P)(
#̈»p − #»g) = 0

(7.64)

Nonetheless, this description is implicit. Therefore, we try to make the equations explicit. Using
equation (7.49), the first line of equation (7.63) reads:

MRB

I

�
#̈»p − #»g

�
=

#»

T +m(S2(
#»

Ω) + S(
#̇»

Ω))(e#»z B + lRB

P

#»z P)

+mlRB

P
(S2(#»ω) + S(#̇»ω))#»z P + 2mlS(

#»

Ω)RB

P
S(#»ω)#»z P (7.65)

where M =m+mL is the total mass of the tricopter together with its pendulum load. We used
also the relation:

S(R#»u) = RS(#»u)RT (7.66)

for any rotation matrix R and vector #»u . The two angular equations – the second and the third –
can be written in term of angular variables only. Multiplying equation (7.65) to the left by S(#»z B)

leads to :

S(#»z B)R
B

I

�
#̈»p − #»g

�
=

1
M

S(#»z B)
#»

T +
m
M

S(#»z B)(S
2(

#»

Ω) + S(
#̇»

Ω))(e#»z B + lRB

P

#»z P)

+
ml
M

S(#»z B)R
B

P
(S2(#»ω) + S(#̇»ω))#»z P + 2

ml
M

S(#»z B)S(
#»

Ω)RB

P
S(#»ω)#»z P (7.67)

and the second line of equation (7.64) reads:

J
#̇»

Ω + S(
#»

Ω)J
#»

Ω + e
mmL

M
S(#»z B)(S

2(
#»

Ω) + S(
#̇»

Ω))(e#»z B + lRB

P

#»z P) =
#»

Γ − e
mL

M
S(#»z B)

#»

T

− el
mmL

M
S(#»z B)R

B

P
(S2(#»ω) + S(#̇»ω))#»z P − 2el

mmL

M
S(#»z B)S(

#»

Ω)RB

P
S(#»ω)#»z P (7.68)

166 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.4. Carrying a load

Going back to equation (7.65), the third line of equation (7.64) reads:

mlωzS(
#»z P)

#»ω +mlS2(#»z P)
#̇»ω = S(#»z P)R

P

B

#»

T

+mS(#»z P)R
P

B
(S2(

#»

Ω) + S(
#̇»

Ω))(e#»z B + lRB

P

#»z P) + 2mlS(#»z P)S(R
P

B

#»

Ω)S(#»ω)#»z P (7.69)

We may notice that S3(#»z P)
#»u = −S(#»z P)

#»u , so that:

mlS(#̇»ω)#»z P = S2(#»z P)R
P

B

#»

T −mlωzS
2(#»z P)

#»ω

+mS2(#»z P)R
P

B
(S2(

#»

Ω) + S(
#̇»

Ω))(e#»z B + lRB

P

#»z P) + 2mlS2(#»z P)S(R
P

B

#»

Ω)S(#»ω)#»z P (7.70)

We introduce the matrix B = S(#»z B) + S(#»z B)R
B

P
S2(#»z P)R

P

B
. Injecting the previous equation into

equation (7.68) leads to:

J
#̇»

Ω + S(
#»

Ω)J
#»

Ω + e
mmL

M
B(S2(

#»

Ω) + S(
#̇»

Ω))(e#»z B + lRB

P

#»z P) =
#»

Γ − e
mL

M
B

#»

T

+ el
mmL

M
S(#»z B)R

B

P

�
ωzS

2(#»z P)
#»ω − S2(#»ω)#»z P

�
− 2el

mmL

M
BS(

#»

Ω)RB

P
S(#»ω)#»z P (7.71)

We notice that:

�
S(#»z B) + S(#»z B)S

2(RB

P

#»z P)
�
S(RB

P

#»z P) = BS(RB

P

#»z P) = 0 (7.72)

So that the previous equation can be written as:
�
J− e2 mmL

M
BS(#»z B)

�
#̇»

Ω + S(
#»

Ω)J
#»

Ω + e
mmL

M
BS2(

#»

Ω)(e#»z B + lRB

P

#»z P) =
#»

Γ − e
mL

M
B

#»

T

+ el
mmL

M
S(#»z B)R

B

P

�
ωzS

2(#»z P)
#»ω − S2(#»ω)#»z P

�
− 2el

mmL

M
BS(

#»

Ω)RB

P
S(#»ω)#»z P (7.73)

Therefore, we introduce the inertia of the global system and prove the following result:

Proposition 7.4.1. The inertia of the global system:

J(RP

B
) =

�
J− e2 mmL

M

�
S2(#»z B) + S(#»z B)S

2(RB

P

#»z P)S(
#»z B)

��
(7.74)

is invertible for any orientation RP

B
of the pendulum load and for any mass mL and offset e.

Proof. Using the formalism of equation (7.52), when #»z P is aligned with #»z B, the angle δ is
null and RP

B
= I. The additional inertia term is then null and the inertia matrix is invertible.

Furthermore, there exists a neighborhood of δ= 0 where J(RP

B
) is invertible. For any values of

δ and γ, the varying term of the inertia matrix depends on:

S2(#»z B) + S(#»z B)S
2(RB

P

#»z P)S(
#»z B) = sin2 (δ)




− sin2

�
γ
�

sin
�
γ
�

cos
�
γ
�

0
sin
�
γ
�

cos
�
γ
�

1 0
0 0 0



 (7.75)

This matrix is real symmetric. The new inertia matrix J(RP

B
) is then also real symmetric and

thus diagonalizable. We notice that this additional matrix is diagonal for γ ∈ {0,±π2 ,π}. To
ease the analysis, we neglect the non-diagonal terms of the matrix J and study the matrix in

the xy plane. Then the eigenvalues of the upper left block of the inertia matrix J(RP

B
)
#̇»

Ω are
{Jxx + e2 mmL

M sin2 (δ) , Jxx}. The first eigenvalue does not depend on γ and is always strictly

Revision: a466fdc (2015-10-14 23:06:42 +0200) 167

Chapter 7. Various applications of the tricopter

positive. When considering the non-diagonal terms, the two first eigenvalues of the inertia
matrix are:

Jxx +
κ

2
sin2 (δ)±

√√
J2

xy − 2Jxyκ sin2 (δ) sin
�
γ
�

cos
�
γ
�
+
κ2

4
sin4 (δ) (7.76)

where κ = e2 mmL
M . The term under the square root verifies:

J2
xy − 2Jxyκ sin2 (δ) sin

�
γ
�

cos
�
γ
�
+
κ2

4
sin4 (δ)< J2

xy + 2Jxyκ sin2 (δ) +
κ2

4
sin4 (δ)

<

�κ
2

sin2 (δ) + Jxy

�2
(7.77)

This leads to eigenvalues λ1,λ2 between Jxx − Jxy < λ1,λ2 < Jxx + Jxy + e2 mmL
M sin2 (δ) which is

in any case positive. Therefore, the matrix J(RP

B
)
#̇»

Ω is always invertible.

Finally, we may introduce the functions Ψ,Φ,Ξ to write the system in the form:






#̇»

Ω =Ψ(
#»

Γ ,
#»

T ,RP

B
, #»ω,

#»

Ω)
#̇»ω = Φ(

#»

Γ ,
#»

T ,RP

B
, #»ω,

#»

Ω)
#̈»p = Ξ(

#»

Γ ,
#»

T ,RP

B
, #»ω,RB

I
,
#»

Ω)

(7.78)

In this form, the system reminds us of flat systems. When building a flat output, it appears
from equation (7.78) that the position of the pendulum #»p only appears as its second derivative
in the third equation. The position of the pendulum load should then be chosen as a part of the
flat output. The remaining components of the chosen flat outputs are given in the following
result:

Proposition 7.4.2. The system composed of the tricopter with the pendulum load described by

equation (7.78) is flat with a flat output given by (#»p ,RP

B
,RC

I
) where RP

B
has two degrees of freedom

(the angles γ and δ in figure 7.26) and RC

I
has one (the yaw angle as depicted in figure 7.25).

Proof. The tension in the link is first obtained based on equation (7.60) as:

mL‖ #̈»p − #»g ‖= |s| (7.79)

In the following, we admit that s is strictly positive. That is, we assume that the load never
experiences free fall. In this case, both the load and the tricopter are independent flat systems
forming a differentially flat hybrid system [Sreenath et al., 2013]. The case where s is strictly
negative is similar to the positive case. We define the two following vectors, first:

#»t = RC

I

#̈»p − #»g

‖ #̈»p − #»g ‖
(7.80)

According to equation (7.60), we have:

#»t = RC

P

#»z P (7.81)

168 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.4. Carrying a load

mL = 2.5× 10−1 kg
l = 2.0× 10−1 m
e = 5.0× 10−2 m

Table 7.3 – Pendulum load parameters used in the open-loop simulations.

In other words, #»t represents the position of the pendulum load expressed in the yaw reference
frame but depends only upon RC

I
and #»p . The second vector is:

#»u = RB

P

#»z P (7.82)

which is the position of the load in the reference frame of the tricopter. These two vectors are
linked by equation (7.60). Using the previously introduced vectors, this equation reads:

#»t = RC

B

#»u (7.83)

In other words, we have the same vector (#»z P) expressed in two different bases (C and B) and
we want to construct a compatible rotation matrix RB

C
. The first lemma in [Piovan and Bullo,

2012] states that every solution to this equation in RC

B
is written as:

R= exp(βS(#»t))exp(αS(#»v)) (7.84)

where exp(αS(#»v)) is a rotation of angle α around axis #»v . The angle β is arbitrary in [−π,π[
and the angle α ∈ [0,π] and the unit-length vector #»v are defined by:

α= atan2(‖#»t × #»u ‖, #»t T #»u),

#»v =

¨ #»t × #»u
‖ #»t × #»u ‖ if #»t × #»u 6= 0,

any unit-length vector ⊥ #»t , otherwise

(7.85)

The degree of liberty β can be uniquely determined for example as in [Konz and Rudolph,
2013] to minimize a chosen value. This allows to compute RC

B
. Using the knowledge of RB

P
,

RC

B
and RI

C
and considering equation (7.47), one can compute #»r . The angular velocity

#»

Ω is

obtained as (RB

I
ṘI

B
)∨. The controls

#»

T and
#»

Γ can then be computed.

Remark. In comparison to the flat output proposed in [Sreenath et al., 2013], the orientation
of the link with respect to the UAV is added resulting in the creation of trajectories compatible
with the link mechanism.

This flat output allows to compute open-loop controls for the tricopter. We show this possibility
by computing such controls for the following application. The pendulum has to track the
trajectory of figure 7.3 with the tricopter tracking the same yaw. The pendulum load has to
remain vertical with respect to the tricopter (i.e. RB

P
= I) with the parametrization β= 0 and

the physical parametres given in table 7.3. This result in the trajectory depicted in figure 7.27.

The corresponding open-loop controls are given in figure 7.28. It appears that these controls
are compatible with the actuators saturations as they do not exceed the maximum values given
in table 6.1 on page 120. This open-loop feedforward shall be completed by a closed-loop

Revision: a466fdc (2015-10-14 23:06:42 +0200) 169

Chapter 7. Various applications of the tricopter

0.5
1

1.5 −0.5

0

0.5

0

1

x[m]

y[m]

z[
m
]

Figure 7.27 – Trajectory followed by the tricopter with pendulum load. The orientation of the
tricopter is given by the blue axis (yaw), green (roll), red (pitch). The load is symbolized by the
grey circle. (timestamp: ∆t= 1.0× 10−1 s).

4.8

4.85

4.9

th
ru

st
[N
]

45 50 55 60 65 70

0

0.1

time [s]

ti
lt
[r

ad
]

Figure 7.28 – Feedforward for the thrusts (upper part) and the tilt angles (lower part) when
flying the pendulum on two revolutions of the trajectory depicted in figure 7.27. The controls
for nacelle 1 are plotted in red, green for nacelle 2 and blue for nacelle 3.

170 Revision: a466fdc (2015-10-14 23:06:42 +0200)

7.5. Perspectives

controller to correct the deviations from the model. However, this closed-loop controller is
still to be constructed. Furthermore, a better construction of the parameter β, for example to
minimize the inclination of the tricopter with respect to the ground, could prove to be useful. In
the example depicted in figure 7.27, this parametrization results in an appropriate attitude. With
more aggressive trajectories, this parametrization could prove to be unsatisfying. Nonetheless,
the reasonable open-loop controls validate the chosen approach.

7.5 Perspectives

In this chapter, we presented a flatness-based closed-loop controller and its application to the
control of the tricopter in two scenarios. The first application, where the tricopter had to follow
a trajectory on the ground rolling on ball casters is a great illustration of the total actuation of
the platform. It has allowed to carefully test the platform and, especially, the controller for any
defaults. Furthermore, this approach is interesting for indoor exploration, when the ground is
compatible with the ball casters, as it appears to be particularly efficient in term of displacement.
In our case, we used the third of the energy needed in the case of flight. The controller has
proved to be efficient in terms of trajectory tracking, both in term of orientation as in term of
position.

The second application is the “natural” case of flight. The controller proved to correctly
stabilize the tricopter but some minor flaws could be corrected in the future. For example,
adding an integral term to the position tracker could help eliminating the steady-state error.
Furthermore, as our test flights were conducted in a small test room, the tricopter was particularly
affected by turbulences. Notably, the altitude tracker was perturbed by the ground effect and
autonomous take-off was not possible. A better comprehension or correction of these various
aerodynamic effects would help increasing the efficiency of the control approach.

In the last scenario, the tricopter is equipped with a pendulum load. A precise model is
introduced taking into account the influence of the load on the tricopter. A flatness-based
open-loop control approach is suggested for the load to track an absolute reference trajectory
with respect to the ground while tracking a reference trajectory relative to the tricopter. This
approach could benefit from various improvements and studies. Notably, the parametrization of
the roll-pitch matrix of the tricopter could be improved in the proof of the flatness of the system,
following what was done for example by [Konz and Rudolph, 2013]. The open-loop controller
could be used as a first step toward a closed-loop controller. Furthermore, other trajectories
and application cases could be studied, for example going through a window smaller than the
pendulum length or the cooperative transportation of the pendulum load.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 171

Conclusion

The aim of this thesis was to investigate and present a trajectory planning framework and the
control of collaborative systems applied to a special case: a novel trirotor UAV.

In the first part of the thesis, we created a framework to generate trajectories for multi-agent
systems. After a review of various existing solutions of control of collaborative systems, the case
of solution generation for certain partial differential equation was examined.

Our work relies on Burgers’ equation, a classical one-dimensional and nonlinear equation of
fluid dynamics. Solutions to Burgers’ equation might be transformed with the help of Hopf-Cole
transformation into solutions to the heat equation. We prove, under certain assumptions, that
the heat equation with control on both sides is flat. Therefore, we may create solutions to the
heat equation by choosing the trajectories of the two agents on the formation edge. We prove
various results on the admissible structure of the controls and show that these controls can
be used to drive the heat equation in finite time between various states, notably, to null-state.
In a second time, we use particles swarm optimization to optimize the controls and create an
adapted solution to Burgers’ equation. This solution defines the trajectories of the collaborative
system. This system is composed of leaders and followers. The positions of leaders can be freely
chosen and set as constraints of the optimizer. The positions of followers are consequences of
the positions of the leaders and of the optimization criteria. In our framework, the trajectories
are constructed such that the trajectories of the leaders are the shortest possible. We combine
several one-dimensional trajectories into multi-dimensional trajectories and show an example in
two dimensions for two leaders with nineteen followers.

In the second part of the thesis, we consider the problem of tracking the generated trajectories
by UAVs. After a review of aerodynamics with a special emphasis on multirotor UAVs, we
present various current problems in the field of UAVs such as pendulum load transportation and
cooperative transportation.

Our work is dedicated to the special case of a trirotor UAV: the tricopter. This design is the
result of studies conducted under the supervision of Prof. Rudolph at CSTCE (Saarland University,
Germany). It has the particular advantage of six independent controls. Therefore, it is totally
actuated and may track any reasonable trajectory. We present the architecture of the tricopter
and our work in modeling and simulating this platform. A control approach is presented based
on flatness of this dynamical system and a closed-loop trajectory tracker is presented.

Energy efficiency of UAVs is an ongoing problem. A possible solution in the case of indoor
exploration is to let the UAV roll on the ground to spare vertical thrust. This is particularly easy
for our totally-actuated tricopter. Thus, the controller is first tested on the ground and tracks a
determined path and yaw angles. The results of the experiments are conclusive and the tricopter
is then tested with the tracking of aerial trajectories. The controller performs accurately in this
case also. A last application is suggested with the transportation of a pendulum load. We show
that the tricopter carrying a pendulum load is flat. We present an open-loop controller to travel
the desired trajectories and present the load-orientation measurement unit that will be necessary
to perform closed-loop tracking of the trajectories.

In conclusion, this thesis presents a complete and coherent framework for collaborative

Chapter 7. Various applications of the tricopter

systems. A higher-level trajectory planner is introduced and completed with the control of the
lower-level agent: a totally-actuated trirotor UAV. Nonetheless, various improvements might be
foreseen. For example, in the case of the higher-level trajectory planner, the optimizer could
be adapted to allow collision or obstacle avoidance. Furthermore, the dynamics of the agents
could be taken into account, for example using different viscosities (the µ parameter) or control
stiffnesses (the γ parameter) for vertical dynamics and lateral dynamics.

The control of the lower-level agent could also be improved. Autonomous takeoff and landing
is one of the most obvious improvements that could be added. That would necessitate a better
investigation and modeling of various aerodynamic effects. For example, the ground effect could
be taken into account, using the model suggested by [Johnson, 1994]:

T
T∞
=

1
1−α/z2

.

or the more sophisticated models suggested therein. Moreover, an integral term could be added
to the position tracker to improve the quality of the tracking in flight. Last but not least, the
dynamics of the servomotors and propellers could be taken into account in the model. This
would lead to a higher order dynamical model that would more accurately describe the tricopter.

Regarding the problem of pendulum load transportation, one of the first improvements is
to suggest a closed-loop controller. It could be also interesting to propose a controller for an
inverted pendulum that would use only the rotational dynamics of the tricopter while stabilizing
the position. This is possible with our platform and is reflected in the equation of motion
of the model. This would be an interesting improvement over the current UAVs carrying an
inverted pendulum. Ultimately, suggesting a cooperative load transportation framework using
the tricopter would be an impressive breakthrough!

Le vent se lève, il est temps de vivre. . .

174 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Bibliography

Abramowitz, M. and Stegun, I. A. (1965). Handbook of mathematical functions: with formulas,
graphs, and mathematical tables, vol. 55,. Dover publications. Cited on pages 56, 57, 59, 61,
64, 70, 71 et 72.

Adams, Z., Benedict, M., Hrishikeshavan, V. and Chopra, I. (2013). Design, Development, and
Flight Test of a Small-Scale Cyclogyro UAV Utilizing a Novel Cam-Based Passive Blade Pitching
Mechanism. International Journal of Micro Air Vehicles 5, 145–162. Cited on page 103.

Akiyama, S. and Tanigawa, Y. (2001). Multiple zeta values at non-positive integers. The
Ramanujan Journal 5, 327–351. Cited on page 62.

Alexis, K., Nikolakopoulos, G. and Tzes, A. (2010). Design and experimental verification of
a Constrained Finite Time Optimal control scheme for the attitude control of a Quadrotor
Helicopter subject to wind gusts. In Robotics and Automation (ICRA), 2010 IEEE International
Conference on pp. 1636–1641, IEEE. Cited on pages 107 et 111.

Amiri, N., Serrano, A. R. and Davies, R. (2011). Modelling of opposed lateral and longitudinal
tilting dual-fan unmanned aerial vehicle. In 18th IFAC World Congress vol. 28, pp. 2054–2059,.
Cited on page 116.

Balch, T. and Arkin, R. C. (1998). Behavior-based formation control for multirobot teams.
Robotics and Automation, IEEE Transactions on 14, 926–939. Cited on page 21.

Beard, R. W., Lawton, J., Hadaegh, F. Y. et al. (2001). A coordination architecture for spacecraft
formation control. IEEE Transactions on control systems technology 9, 777–790. Cited on
pages 3, 18 et 32.

Bisgaard, M., la Cour-Harbo, A. and Bendtsen, J. (2009). Guidance, Navigation, and Control
and Co-located Conferences chapter Swing Damping for Helicopter Slung Load Systems Using
Delayed Feedback. American Institute of Aeronautics and Astronautics. Cited on pages 8
et 113.

Bouabdallah, S., Noth, A. and Siegwart, R. (2004). PID vs LQ control techniques applied to an
indoor micro quadrotor. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings.
2004 IEEE/RSJ International Conference on, vol. 3„ pp. 2451–2456, IEEE. Cited on pages 8,
107 et 110.

Bouabdallah, S. and Siegwart, R. (2005). Backstepping and Sliding-mode Techniques Applied
to an Indoor Micro Quadrotor. In Robotics and Automation, 2005. ICRA 2005. Proceedings of
the 2005 IEEE International Conference on pp. 2247–2252, IEEE. Cited on pages 8 et 110.

Bouabdallah, S. and Siegwart, R. (2007). Full control of a quadrotor. In Intelligent robots and
systems, 2007. IROS 2007. IEEE/RSJ international conference on pp. 153–158, IEEE. Cited
on pages 8 et 110.

Bullo, F. and Murray, R. M. (1999). Tracking for fully actuated mechanical systems: a geometric
framework. Automatica 35, 17–34. Cited on page 137.

Bibliography

Chamseddine, A., Li, T., Zhang, Y., Rabbath, C. A. and Theilliol, D. (2012). Flatness-based
trajectory planning for a quadrotor Unmanned Aerial Vehicle test-bed considering actuator
and system constraints. In American Control Conference (ACC), 2012 pp. 920–925,. Cited on
page 111.

Chamseddine, A., Theilliol, D., Sadeghzadeh, I., Zhang, Y. and Weber, P. (2014). Optimal
reliability design for over-actuated systems based on the MIT rule: Application to an octocopter
helicopter testbed . Reliability Engineering & System Safety 132, 196–206. Cited on page 107.

Chang, D. E., Shadden, S. C., Marsden, J. E. and Olfati-Saber, R. (2003). Collision avoidance for
multiple agent systems. In Decision and Control, 2003. Proceedings. 42nd IEEE Conference
on IEEE. Cited on page 26.

Chartrand, R. (2011). Numerical differentiation of noisy, nonsmooth data. ISRN Applied
Mathematics 2011. Cited on pages 11, 145, 146 et 147.

Cole, J. D. et al. (1951). On a quasi-linear parabolic equation occurring in aerodynamics. Quart.
Appl. Math 9, 225–236. Cited on page 44.

Coron, J. M. (2007). Some open problems on the control of nonlinear partial differential
equations. In Perspectives in Nonlinear Partial Differential Equations: In Honor of Haim
Brezis (Henri Berestycki, Michiel Bertsch, Bert Peletier and Laurent Véron eds.) vol. 446, pp.
215–243. American Mathematical Society. Cited on pages 46 et 47.

Couceiro, M. S., Rocha, R. P. and Ferreira, N. M. F. (2011). A novel multi-robot exploration
approach based on Particle Swarm Optimization algorithms. In Safety, Security, and Rescue
Robotics (SSRR), 2011 IEEE International Symposium on pp. 327–332,. Cited on page 24.

Cowling, I. D., Yakimenko, O. A., Whidborne, J. F. and Cooke, A. K. (2007). A prototype of an
autonomous controller for a quadrotor UAV. In European Control Conference pp. 1–8,. Cited
on pages 8 et 110.

Crépeau, E. and Prieur, C. (2008). Approximate controllability of a reaction-diffusion system.
Systems & Control Letters 57, 1048–1057. Cited on page 48.

Dai, S., Lee, T. and Bernstein, D. S. (2014). Adaptive Control of a Quadrotor UAV Transporting a
Cable-Suspended Load with Unknown Mass. In 19th IFAC World Congress, Cape Town. Cited
on page 114.

Desai, J. P., Ostrowski, J. P. and Kumar, V. (2001). Modeling and control of formations of
nonholonomic mobile robots. Robotics and Automation, IEEE Transactions on 17, 905–908.
Cited on page 27.

Diebel, J. (2006). Representing Attitude: Euler Angles, Unit Quaternions and Rotation Vectors.
Technical report Stanford University Stanford, California 94301-9010. Cited on pages 127,
163 et 164.

Dunbar, W. B. and Murray, R. M. (2006). Distributed receding horizon control for multi-vehicle
formation stabilization . Automatica 42, 549–558. Cited on pages 32 et 33.

176 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Bibliography

d’Andréa-Novel, B., Boustany, F. and Conrad, F. (1992). Control of an overhead crane: Stabi-
lization of flexibilities. In Boundary Control and Boundary Variation, (Zoléesio, J., ed.), vol.
178, chapter Lecture Notes in Control and Information Sciences, pp. 1–26. Springer Berlin
Heidelberg. Cited on page 113.

d’Andréa-Novel, B. and Coron, J. M. (2000). Exponential stabilization of an overhead crane with
flexible cable via a back-stepping approach. Automatica 36, 587–593. Cited on page 113.

Eberhart, R. C. and Kennedy, J. (1995). A new optimizer using particle swarm theory. In
Proceedings of the sixth international symposium on micro machine and human science vol. 1,
pp. 39–43,. Cited on page 22.

Egerstedt, M. and Hu, X. (2001). Formation constrained multi-agent control. Robotics and
Automation, IEEE Transactions on 17, 947–951. Cited on page 28.

Escareño, J., Sanchez, A., Garcia, O. and Lozano, R. (2008). Triple tilting rotor mini-UAV:
modeling and embedded control of the attitude. In American Control Conference, 2008 pp.
3476–3481,. Cited on pages 9, 116 et 118.

Fan, P., Wang, X. and Cai, K.-Y. (2010). Design and control of a tri-rotor aircraft. In Control and
Automation (ICCA), 2010 8th IEEE International Conference on pp. 1972–1977,. Cited on
page 116.

Fax, J. A. and Murray, R. M. (2002). Graph Laplacians and stabilization of vehicle formations.
In World Congress vol. 15, pp. 88–88,. Cited on page 27.

Figueroa, R., Faust, A., Cruz, P., Tapia, L. and Fierro, R. (2014). Reinforcement learning for
balancing a flying inverted pendulum. In Proc. The 11th World Congress on Intelligent Control
and Automation. Cited on pages 8 et 114.

Fliess, M. and Join, C. (2013). Model-free control. International Journal of Control 86,
2228–2252. Cited on page 112.

Fliess, M., Lévine, J., Martin, P. and Rouchon, P. (1995). Flatness and defect of nonlinear systems:
Introductory theory and examples. International Journal of Control 61, 1327–1361. Cited on
pages 10, 130 et 131.

Frihauf, P. and Krstic, M. (2011). Leader-enabled deployment onto planar curves: A PDE-based
approach. Automatic Control, IEEE Transactions on 56, 1791–1806. Cited on pages 4 et 43.

Gazi, V. and Fidan, B. (2007). Coordination and control of multi-agent dynamic systems: Models
and approaches. In Swarm Robotics, (Şahin, E., Spears, W. and Winfield, A. T., eds), pp.
71–102. Springer Berlin Heidelberg. Cited on page 18.

Gevrey, M. (1918). Sur la nature analytique des solutions des équations aux dérivées partielles.
Premier mémoire. In Annales Scientifiques de l’École Normale Supérieure vol. 35, pp. 129–
190,. Cited on pages 42 et 47.

Girard, M. and Amkraut, S. (1990). Eurhythmy: Concept and process. The journal of Visualiza-
tion and computer animation 1, 15–17. Cited on pages 2 et 17.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 177

Bibliography

Glass, O. and Guerrero, S. (2007). On the uniform controllability of the Burgers equation. SIAM
Journal on Control and Optimization 46, 1211–1238. Cited on page 46.

Goodarzi, F. A., Lee, D. and Lee, T. (2013). Geometric Stabilization of Quadrotor UAV with
a Payload Connected by Flexible Cable. In American Control Conference, 2014. Cited on
page 114.

Gorguis, A. (2006). A comparison between Cole–Hopf transformation and the decomposition
method for solving Burgers’equations. Applied Mathematics and Computation 173, 126–136.
Cited on page 45.

Gregoire, J., Bonnabel, S. and de La Fortelle, A. (2013). Priority-based coordination of robots.
arXiv preprint arXiv:1306.0785 1. Cited on page 39.

Guerrero, S. and Imanuvilov, O. Y. (2007). Remarks on global controllability for the Burgers
equation with two control forces. In Annales de l’Institut Henri Poincare (C) Non Linear
Analysis vol. 24, pp. 897–906,. Cited on page 47.

Harvey, D. (2010). A multimodular algorithm for computing Bernoulli numbers. Mathematics
of Computation 79, 2361–2370. Cited on page 62.

Hehn, M. and D’Andrea, R. (2011). A flying inverted pendulum. In Robotics and Automation
(ICRA), 2011 IEEE International Conference on pp. 763–770,. Cited on pages 8 et 114.

Hoffmann, G. M., Huang, H., Waslander, S. L. and Tomlin, C. J. (2011). Precision flight control
for a multi-vehicle quadrotor helicopter testbed . Control Engineering Practice 19, 1023–1036.
Cited on page 111.

Holmgren, E. (1908). Sur l’équation de propagation de la chaleur. Ark. Mat. Astr. Fys. 4, 1–28.
Cited on page 53.

Hopf, E. (1950). The partial differential equation ut + uux = µuxx. Communications on Pure
and Applied Mathematics 3, 201–230. Cited on page 44.

Hua, M.-D., Hamel, T., Morin, P. and Samson, C. (2009). A Control Approach for Thrust-
Propelled Underactuated Vehicles and its Application to VTOL Drones. Automatic Control,
IEEE Transactions on 54, 1837–1853. Cited on page 112.

Hua, M.-D., Hamel, T. and Samson, C. (2012). Control of VTOL Vehicles with Thrust-Tilting
Augmentation. In IFAC World Congress. Cited on pages 9, 115 et 116.

Jadbabaie, A., Lin, J. and Morse, A. S. (2003). Coordination of groups of mobile autonomous
agents using nearest neighbor rules. Automatic Control, IEEE Transactions on 48, 988–1001.
Cited on pages 20 et 21.

Johnson, W. (1994). Helicopter Theory. Dover Books on Aeronautical Engineering Series, Dover
Publications. Cited on pages 14, 147 et 174.

Kastelan, D., Konz, M. and Rudolph, J. (2015). Fully Actuated Tricopter with Pilot-Supporting
Control. In ACNAAV 15, Sevilla. Cited on pages vii, 10, 117, 124, 128 et 137.

178 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Bibliography

Kendoul, F., Fantoni, I. and Lozano, R. (2005). Modeling and control of a small autonomous
aircraft having two tilting rotors. In Decision and Control, 2005 and 2005 European Control
Conference. CDC-ECC’05. 44th IEEE Conference on pp. 8144–8149,. Cited on page 115.

Knüppel, T. and Woittennek, F. (2010). Flatness Based Control Design for a Nonlinear Heavy
Chain Model. In Nonlinear Control Systems pp. 701–706,. Cited on page 114.

Konz, M. and Rudolph, J. (2013). Quadrotor tracking control based on a moving frame. In
9th IFAC Symposium on Nonlinear Control Systems, Toulouse vol. 1, pp. 80–85,. Cited on
pages 8, 12, 111, 137, 169 et 171.

Krstić, M., Magnis, L. and Vazquez, R. (2008). Nonlinear stabilization of shock-like unstable
equilibria in the viscous Burgers PDE. Automatic Control, IEEE Transactions on 53, 1678–1683.
Cited on pages 4 et 43.

Krstić, M., Magnis, L. and Vazquez, R. (2009). Nonlinear control of the viscous burgers equa-
tion: Trajectory generation, tracking, and observer design. Journal of Dynamic Systems,
Measurement, and Control 131, 021012. Cited on page 45.

Krstić, M. and Smyshlyaev, A. (2008). Boundary Control of PDEs: A Course on Backstepping
Designs. Advances in Design and Control, Society for Industrial and Applied Mathematic.
Cited on pages 4 et 43.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval research logistics
quarterly 2, 83–97. Cited on page 33.

Laroche, B., Martin, P. and Rouchon, P. (2000). Motion planning for the heat equation. Interna-
tional journal of robust and nonlinear control 10, 629–643. Cited on pages vi, 4, 5, 41, 42,
43, 47, 48, 55, 76 et 77.

LaValle, S. M. and Hutchinson, S. A. (1998). Optimal motion planning for multiple robots having
independent goals. Robotics and Automation, IEEE Transactions on 14, 912–925. Cited on
page 39.

Lee, T., Leoky, M. and McClamroch, N. H. (2010). Geometric tracking control of a quadrotor UAV
on SE (3). In Decision and Control (CDC), 2010 49th IEEE Conference on pp. 5420–5425,.
Cited on page 111.

Lee, T., Sreenath, K. and Kumar, V. (2013). Geometric control of cooperating multiple quadrotor
UAVs with a suspended payload. In Decision and Control (CDC), 2013 IEEE 52nd Annual
Conference on pp. 5510–5515,. Cited on pages 8, 38 et 114.

Lehmer, D. H. (1940). On the Maxima and Minima of Bernoulli Polynomials. The American
Mathematical Monthly 47, 533–538. Cited on page 68.

Lenoir, Y., Martin, P. and Rouchon, P. (1998). 2kπ, the juggling robot. In Decision and Control,
1998. Proceedings of the 37th IEEE Conference on vol. 2, pp. 1995–2000,. Cited on page 114.

Leonard, N. E. and Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated
control of groups. In Decision and Control, 2001. Proceedings of the 40th IEEE Conference
on vol. 3, pp. 2968–2973,. Cited on pages 24 et 28.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 179

Bibliography

Logan, J. D. (2008). An introduction to nonlinear partial differential equations, vol. 89,. John
Wiley & Sons. Cited on page 85.

Lozano, R., Fantoni, I. and Block, D. J. (2000). Stabilization of the inverted pendulum around
its homoclinic orbit . Systems & Control Letters 40, 197–204. Cited on page 114.

Lutz, D. A., Miyake, M. and Schäfke, R. (1999). On the Borel summability of divergent solutions
of the heat equation. Nagoya Mathematical Journal 154, 1–29. Cited on page 73.

Malgrange, B. and Ramis, J.-P. (1992). Fonctions multisommables. Ann. Inst. Fourier (Grenoble)
42, 353–368. Cited on page 73.

Martin, P., Rosier, L. and Rouchon, P. (2014). Null Controllability of the 1D Heat Equation Using
Flatness. In 19th IFAC World Congress, Cape Town. Cited on page 49.

Martin, P. and Salaun, E. (2010). The true role of accelerometer feedback in quadrotor control.
In Robotics and Automation (ICRA), 2010 IEEE International Conference on pp. 1623–1629,.
Cited on pages 107 et 111.

Maza, I., Kondak, K., Bernard, M. and Ollero, A. (2010). Multi-UAV cooperation and control for
load transportation and deployment. Journal of Intelligent and Robotic Systems 57, 417–449.
Cited on pages 36, 39 et 160.

Mellinger, D. and Kumar, V. (2011). Minimum snap trajectory generation and control for
quadrotors. In Robotics and Automation (ICRA), 2011 IEEE International Conference on pp.
2520–2525,. Cited on pages 22, 33, 38, 107 et 111.

Mellinger, D., Michael, N. and Kumar, V. (2012). Trajectory generation and control for precise
aggressive maneuvers with quadrotors. The International Journal of Robotics Research 31,
664–674. Cited on pages 107 et 110.

Mellinger, D., Shomin, M., Michael, N. and Kumar, V. (2013). Cooperative grasping and transport
using multiple quadrotors. In Distributed autonomous robotic systems pp. 545–558. Springer.
Cited on pages 8, 36 et 113.

Menabrea, L. F. and Lovelace, A. K. C. o. (1843). Sketch of the analytical engine invented by
Charles Babbage, Esq. Richard and John E. Taylor. Cited on page 61.

Mesbahi, M. (2005). On State-dependent dynamic graphs and their controllability properties.
Automatic Control, IEEE Transactions on 50, 387–392. Cited on page 28.

Meurer, T. (2005). Feedforward and feedback tracking control of diffusion-convection-reaction
systems using summability methods. PhD thesis, Universitätsbibliothek der Universität
Stuttgart. Cited on page 73.

Meurer, T. and Krstić, M. (2011). Finite-time multi-agent deployment: A nonlinear PDE motion
planning approach. Automatica 47, 2534–2542. Cited on pages 4, 34, 43, 45, 48 et 87.

Michael, N., Fink, J. and Kumar, V. (2011). Cooperative manipulation and transportation with
aerial robots. Autonomous Robots 30, 73–86. Cited on pages 36 et 38.

180 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Bibliography

Mogilner, A. and Edelstein-Keshet, L. (1999). A non-local model for a swarm. Journal of
Mathematical Biology 38, 534–570. Cited on pages 29 et 30.

Mohamed, M. K. and Lanzon, A. (2012). Design and control of novel tri-rotor UAV. In Control
(CONTROL), 2012 UKACC International Conference on pp. 304–309,. Cited on pages 9, 116
et 118.

Munkres, J. (1957). Algorithms for the assignment and transportation problems. Journal of the
Society for Industrial & Applied Mathematics 5, 32–38. Cited on page 33.

Murray, R. M. (1996). Trajectory generation for a towed cable system using differential flatness.
In IFAC world congress pp. 395–400,. Cited on pages 36 et 114.

Murray, R. M., Rathinam, M. and Sluis, W. (1995). Differential flatness of mechanical control
systems: A catalog of prototype systems. In ASME International Mechanical Engineering
Congress and Exposition. Cited on pages 130 et 131.

Nörlund, N. E. (1922). Mémoire sur les polynômes de Bernoulli. Acta Mathematica 43, 121–196.
Cited on page 73.

Ogren, P., Egerstedt, M. and Hu, X. (2001). A control Lyapunov function approach to multi-agent
coordination. In Decision and Control, 2001. Proceedings of the 40th IEEE Conference on
vol. 2, pp. 1150–1155,. Cited on page 36.

Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory.
Automatic Control, IEEE Transactions on 51, 401–420. Cited on page 26.

Olfati-Saber, R. and Murray, R. M. (2002). Distributed cooperative control of multiple vehicle
formations using structural potential functions. In IFAC World Congress pp. 346–352,. Cited
on page 28.

Olfati-Saber, R. and Murray, R. M. (2003). Flocking with obstacle avoidance: Cooperation with
limited communication in mobile networks. In Decision and Control, 2003. Proceedings. 42nd
IEEE Conference on vol. 2, pp. 2022–2028,. Cited on page 26.

Olfati-Saber, R. and Murray, R. M. (2004). Consensus problems in networks of agents with
switching topology and time-delays. Automatic Control, IEEE Transactions on 49, 1520–1533.
Cited on pages 26 et 28.

Omari, S., Hua, M.-D., Ducard, G. and Hamel, T. (2013). Nonlinear control of VTOL UAVs
incorporating flapping dynamics. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on pp. 2419–2425,. Cited on page 107.

Ostrowski, A. M. (1960). On the zeros of Bernoulli polynomials of even order. L’Enseignement
Mathématique 6. Cited on page 73.

Oung, R., Bourgault, F., Donovan, M. and D’Andrea, R. (2010). The Distributed Flight Array.
In Robotics and Automation (ICRA), 2010 IEEE International Conference on pp. 601–607,.
Cited on page 36.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 181

Bibliography

Palunko, I., Cruz, P. and Fierro, R. (2012). Agile load transportation: Safe and efficient load
manipulation with aerial robots. Robotics & Automation Magazine, IEEE 19, 69–79. Cited on
pages 8 et 113.

Palunko, I. and Fierro, R. (2011). Adaptive control of a quadrotor with dynamic changes in the
center of gravity. In Proceedings 18th IFAC World Congress vol. 18, pp. 2626–2631,. Cited
on pages 8 et 113.

Panagou, D., Turpin, M. and Kumar, V. (2014). Decentralized Goal Assignment and Trajectory
Generation in Multi-Robot Networks: A Multiple Lyapunov Functions Approach. In Proc. of
the 2014 IEEE Int. Conf. on Robotics and Automation, Hong Kong, China. Cited on page 34.

Petit, N. and Rouchon, P. (2001). Flatness of heavy chain systems. SIAM Journal on Control and
Optimization 40, 475–495. Cited on page 113.

Pillu, H. (2012). Conception, commande et contrôle d’un tricoptère. Master’s thesis École
Centrale de Lille. Cited on page 117.

Piovan, G. and Bullo, F. (2012). On Coordinate-Free Rotation Decomposition: Euler Angles
About Arbitrary Axes. Robotics, IEEE Transactions on 28, 728–733. Cited on page 169.

Pounds, P., Mahony, R., Hynes, P. and Roberts, J. (2002). Design of a four-rotor aerial robot. In
Australasian Conference on Robotics and Automation pp. 145–150,. Cited on pages 8, 107
et 108.

Pounds, P. E., Bersak, D. R. and Dollar, A. M. (2012). Stability of small-scale UAV helicopters and
quadrotors with added payload mass under PID control. Autonomous Robots 33, 129–142.
Cited on pages 8 et 113.

Powers, C., Mellinger, D., Kushleyev, A., Kothmann, B. and Kumar, V. (2012). Influence of
Aerodynamics and Proximity Effects in Quadrotor Flight. In Proceedings of the International
Symposium on Experimental Robotics. Cited on page 147.

Prodan, I., Olaru, S., Stoica, C. and Niculescu, S. I. (2011). Predictive control for tight group
formation of multi-agent systems. In Proceedings of the 18th IFAC World Congress, Milano,
Italy pp. 138–143,. Cited on pages 33 et 34.

Pucci, D., Hamel, T., Morin, P. and Samson, C. (2011). Nonlinear control of PVTOL vehicles
subjected to drag and lift. In Decision and Control and European Control Conference (CDC-
ECC), 2011 50th IEEE Conference on pp. 6177–6183,. Cited on page 97.

Pugh, J. and Martinoli, A. (2007). Inspiring and modeling multi-robot search with particle
swarm optimization. In Swarm Intelligence Symposium, 2007. SIS 2007. IEEE pp. 332–339,.
Cited on pages 23 et 24.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model. In ACM
SIGGRAPH Computer Graphics vol. 21, pp. 25–34,. Cited on pages 2 et 17.

Rimon, E. and Koditschek, D. E. (1992). Exact robot navigation using artificial potential functions.
Robotics and Automation, IEEE Transactions on 8, 501–518. Cited on pages 24 et 26.

182 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Bibliography

Rodino, L. (1993). Linear partial differential operators in Gevrey spaces. World Scientific
Publishing Company Incorporated. Cited on pages 42 et 54.

Rouchon, P., Fliess, M., Lévine, J. and Martin, P. (1993). Flatness, motion planning and trailer
systems. In Decision and Control, 1993., Proceedings of the 32nd IEEE Conference on pp.
2700–2705,. Cited on page 130.

Rudin, W. (1976). Principles of mathematical analysis. Third Edition edition, McGraw-Hill New
York. Cited on page 67.

Rudolph, J., Winkler, J. and Woittennek, F. (2003). Flatness Based Control of Distributed
Parameter Systems. Shaker Verlag edition. Cited on pages 43, 48 et 49.

Ryll, M., Bulthoff, H. H. and Giordano, P. R. (2012). Modeling and control of a quadrotor
UAV with tilting propellers. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on pp. 4606–4613,. Cited on pages 9, 115 et 140.

Salazar-Cruz, S., Kendoul, F., Lozano, R. and Fantoni, I. (2008). Real-time stabilization of a small
three-rotor aircraft. Aerospace and Electronic Systems, IEEE Transactions on 44, 783–794.
Cited on page 116.

Sanchez, A., Escareno, J., Garcia, O. and Lozano, R. (2008). Autonomous hovering of a noncyclic
tiltrotor UAV: Modeling, control and implementation. In Proc. of the 17th IFAC Wold Congress
pp. 803–808,. Cited on page 116.

Servais, E., d’Andréa-Novel, B. and Mounier, H. (2015a). Ground control of a hybrid tricopter.
In Unmanned Aircraft Systems (ICUAS), 2015 International Conference on pp. 945–950,.
Cited on page 128.

Servais, E., d’Andréa-Novel, B. and Mounier, H. (August 24-27, 2015b). Trajectory tracking of
Trirotor UAV with Pendulum Load. In MMAR’2015, Amber Baltic Hotel, Międzyzdroje, Poland.
Cited on page 128.

Shi, Y. and Eberhart, R. (1998). A modified particle swarm optimizer. In Evolutionary Computa-
tion Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE
International Conference on pp. 69–73,. Cited on page 22.

Smith, R. (1980). Communication and Control in Problem Solver. IEEE Transactions on
computers 29, 12. Cited on page 39.

Sreenath, K. and Kumar, V. (2013). Dynamics, Control and Planning for Cooperative Manipulation
of Payloads Suspended by Cables from Multiple Quadrotor Robots. In Robotics: Science and
Systems vol. 1,. Cited on pages 8, 37, 38 et 113.

Sreenath, K., Michael, N. and Kumar, V. (2013). Trajectory generation and control of a quadrotor
with a cable-suspended load - A differentially-flat hybrid system. In Robotics and Automation
(ICRA), 2013 IEEE International Conference on pp. 4888–4895,. Cited on pages 8, 113, 161,
168 et 169.

Su, H., Wang, X. and Lin, Z. (2009). Flocking of Multi-Agents With a Virtual Leader. Automatic
Control, IEEE Transactions on 54, 293–307. Cited on page 27.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 183

Bibliography

Sultan, C., Seereram, S. and Mehra, R. K. (2007). Deep space formation flying spacecraft path
planning. The International Journal of Robotics Research 26, 405–430. Cited on page 32.

Tanaka, K., Suzuki, R., EMaru, T., Higashi, Y. and Wang, H. O. (2007). Development of a cyclogyro-
based flying robot with variable attack angle mechanisms. Mechatronics, IEEE/ASME
Transactions on 12, 565–570. Cited on page 103.

Tayebi, A. and McGilvray, S. (2006). Attitude stabilization of a VTOL quadrotor aircraft. Control
Systems Technology, IEEE Transactions on 14, 562–571. Cited on page 107.

Thorel, S. (2014). Design and construction of an autonomous hybrid ground/air drone for
indoor applications. PhD thesis, Ecole Nationale Supérieure des Mines de Paris. Cited on
pages 10 et 138.

Thorel, S. and d’Andréa-Novel, B. (2014). Hybrid Terrestrial and Aerial Quadrotor Control. In
19th IFAC World Congress, Cape Town vol. 19, pp. 9834–9839,. Cited on pages 9, 107, 115
et 139.

Tillett, J., Rao, T., Sahin, F. and Rao, R. (2005). Darwinian particle swarm optimization. In Proc.
Indian Int. Conf. Artif. Intell. pp. 1474–1487,. Cited on page 24.

Toner, J. and Tu, Y. (1998). Flocks, herds, and schools: A quantitative theory of flocking. Physical
review E 58, 4828. Cited on page 31.

Toner, J., Tu, Y. and Ramaswamy, S. (2005). Hydrodynamics and phases of flocks . Annals of
Physics 318, 170–244. Cited on page 31.

Topaz, C. M. and Bertozzi, A. L. (2004). Swarming patterns in a two-dimensional kinematic
model for biological groups. SIAM Journal on Applied Mathematics 65, 152–174. Cited on
page 30.

Turduev, M., Cabrita, G., Kırtay, M., Gazi, V. and Marques, L. (2014). Experimental studies on
chemical concentration map building by a multi-robot system using bio-inspired algorithms.
Autonomous agents and multi-agent systems 28, 72–100. Cited on page 24.

Turpin, M., Michael, N. and Kumar, V. (2012). Trajectory design and control for aggressive
formation flight with quadrotors. Autonomous Robots 33, 143–156. Cited on page 21.

Turpin, M., Mohta, K., Michael, N. and Kumar, V. (2013). Goal Assignment and Trajectory
Planning for Large Teams of Aerial Robots. In Robotics: Science and Systems. Cited on
page 33.

Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. and Shochet, O. (1995). Novel Type of Phase
Transition in a System of Self-Driven Particles. Phys. Rev. Lett. 75, 1226–1229. Cited on
pages 20 et 21.

Wang, J., Mounier, H., Cela, A. and Niculescu, S.-I. (2011). Event driven intelligent PID
controllers with applications to motion control. In 18th IFAC World Congress, Milan. Cited on
pages 8 et 112.

184 Revision: a466fdc (2015-10-14 23:06:42 +0200)

Bibliography

Waslander, S. L., Hoffmann, G. M., Jang, J. S. and Tomlin, C. J. (2005). Multi-agent quadrotor
testbed control design: integral sliding mode vs. reinforcement learning. In Intelligent Robots
and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on pp. 3712–3717,.
Cited on page 112.

Yamagami, T., Saito, Y., Matsuzaka, Y., Namiki, M., Toriumi, M., Yokota, R., Hirosawa, H. and
Matsushima, K. (2004). Development of the highest altitude balloon . Advances in Space
Research 33, 1653–1659. Cited on page 96.

Yamanaka, T. (1989). A new higher order chain rule and Gevrey class. Annals of Global Analysis
and Geometry 7, 179–203. Cited on page 80.

Yoo, D.-W., Oh, H.-D., Won, D.-Y. and Tahk, M.-J. (2010). Dynamic Modeling and Stabilization
Techniques for Tri-Rotor Unmanned Aerial Vehicles. International Journal of Aeronautical
and Space Science 11, 167–174. Cited on page 116.

Revision: a466fdc (2015-10-14 23:06:42 +0200) 185

	License
	Contents
	List of Figures
	Remerciements
	Introduction
	Résumé étendu en français
	I Trajectory planning for multi-agent systems
	Motion planning for multi-agent systems, an overview
	Different methods of managing a multi-agent system
	Behavioral methods
	Methods based on Particle Swarm Optimization
	Potential methods
	Graph based methods
	Methods based on Partial Differential Equations

	Different problems of collaborative systems
	Deployment problems
	Cooperative transportation of a swinging load
	Collision avoidance on determined paths

	Trajectory generation for PDE systems, existing works and available tools
	Existing works: an overview
	Differential flatness and Gevrey functions
	Gevrey functions, definition and examples
	Efficient computation of the derivatives of

	Formal solutions to the heat equation
	Rewriting the heat equation with formal differential operators of infinite order
	The heat equation with controls on both sides
	Objectives
	Formal derivation
	Computational implementation

	Various properties of the Tx operator
	Polynomial states and controls
	Application to the Weierstrass approximation theorem
	Convergence of the Tx operator
	Application of Tx to exponential functions
	The operator Tx and product of functions

	The Hopf-Cole transformation and Gevrey functions

	PDE-based motion planning framework
	Generating solutions to the heat equation
	Generating solutions to Burgers' equation
	Optimization of the trajectories
	Leaders and followers
	Transition between successive steps

	Combining solutions to create trajectories
	Conclusion and perspectives

	II Modeling and control of a trirotor UAV
	Unmanned Aerial Vehicles: a brief review
	Flight dynamics
	Basics of flight
	The roll-pitch-yaw convention and aircrafts' centers
	Fixed-wing aircrafts
	Rotary-wing aircrafts
	Convertible airplanes and other VTOL aircrafts

	A usual model, the quadrotor
	Design and basic model of a quadrotor helicopter
	Control and applications for a quadrotor UAV

	Tilting rotor multirotor UAVs

	The tricopter: an agile UAV
	Design of the tricopter
	Mechanics design
	Electronics design
	The motion capture platform

	Mechanical model of the tricopter
	Formalism and assumptions
	Screws acting on the tricopter
	Equations of motion

	Introduction to flatness based control

	Various applications of the tricopter
	Simulation platform, test trajectory and control approach
	The simulation platform
	The test trajectory
	The control approach

	The rolling tricopter
	Motivations and mechanical modifications
	Controlling the rolling tricopter, a flatness-based control approach
	Admissible trajectories and open-loop simulations
	Experiments

	The flying tricopter
	Position and attitude stabilization
	Altitude tracking
	Trajectory tracking

	Carrying a load
	The pendulum load
	Dynamics of the system

	Perspectives

	Conclusion
	Bibliography

