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A statistical and multi-wavelength study of star formation in galaxies

Corentin Schreiber

Chapter 1 Introduction 1.1 Studying star formation in galaxies: a problem of scales When I first met David, a couple of months before I started working on this thesis, I was surprised to see how little is presently known about how galaxies and stars are born, evolve, and then fade away. My field of expertise at that time was theoretical physics (quantum mechanics, general relativity, quantum gravity) and to me it felt natural that progress in these sub-branches of physics has always been slow. Indeed, these are pioneering theoretical works, often addressing questions that are hard, if not impossible, to connect to the observable world. Extra-galactic astrophysics, on the other hand, deals with objects that, however complex in their structure, are composed of well known elementary bricks: galaxies are made of dust, gas and stars, and each of these components is itself composed of different kinds of atoms, in different proportions and different thermodynamical states. We know how these atoms interact with each other through gravity, electromagnetism, and even quantum mechanics and general relativity, when they matter. Furthermore, these systems are easy to observe: galaxies are found everywhere in the sky, and they evolve on time scales large enough that we can in principle observe even the most distant and faint ones, should we invest enough telescope time. How comes, then, that there are still so many unanswered questions?

I soon realized how wrong my perspective was. First, this naive picture already starts to break apart if we consider what modern cosmology brings to the game: dark matter and dark energy. While the impact of the latter on individual galaxies is probably negligible, it is nowadays thought that all galaxies live in dark matter "halos" (Blumenthal et al. 1984). These are the descendants of the quantum fluctuations that were amplified during the inflation (Press & Schechter 1974;Peebles 1982), and whose imprint can be seen today on the cosmic microwave background (CMB). The nature of this dark matter, let alone its very existence (e.g., Milgrom 1983), is a matter of debate. However, it is generally assumed that these exotic particles, whatever they are, only interact with ordinary (or "baryonic") matter, i.e., what you and I are made of, through gravity. Since the standard model of cosmology predicts that about 84% of the mass in the Universe is made of this dark matter (e.g., Planck Collaboration et al. 2013), this invisible component is expected to dominate completely the gravitational potential at the largest scales, i.e., above tens of kiloparsecs (kpc) where baryonic processes (e.g., hydrodynamics of the gas, stellar winds, etc.) play little role. For this reason, most people believe that it is the dark matter that shapes the large-scale structures, the so-called "cosmological context" in which the individual galaxies evolve. The best example of this is probably the web-like structure that was found in the spatial distribution of galaxies around our Milky Way (e.g., Peacock et al. 2001). This dark matter can be of crucial importance, since the accretion of dark matter halos and the baryonic matter they contain can provide a regular flow of cold gas onto a galaxy, replenishing its gas reservoirs and allowing it to sustain relatively high levels of star formation activity over long periods of time (Dekel et al. 2009a). I will come back to this point later.
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CHAPTER 1. INTRODUCTION Second, even if we knew that dark matter existed and if we understood all its properties, it would still be a challenge to predict accurately the birth and evolution of a whole galaxy. Indeed, and contrary to theoretical physics, the complexity of the problem does not arise from unknown interactions, or unknown constituents: it is a problem of scales. It is easy to forget this fact, especially since we all work with logarithmic units, but studying galaxy evolution requires dealing with scales that span more than ten orders of magnitude (e.g., going from a star to a galaxy1 ). At the time of writing, the best numerical simulations attempting to describe a whole galaxy are only able to span about six orders of magnitude in spacial scales, reaching a resolution of about 0.1 pc (e.g., Renaud et al. 2013). Below this minimum scale, "sub-grid" recipes are used to emulate the complex physics that is supposed to take place: cooling the gas by interaction with dust grains, then collapsing this gas to form new stars, generating stellar winds, and eventually creating super-novae. On the other hand, other numerical simulations can tackle the aforementioned processes by using better resolution in smaller volumes, but then they lack the global context of the whole galaxy, i.e., the gas flows and the associated turbulence coming from the larger scales.

Third, scales are also a problem observationally. Not so much spatial scales as time scales. It is very convenient that galaxies evolve on long time scales, typically of the order of millions of years, because we can re-observe the same region of the sky in intervals of several years with different instruments, and still consider that we observe the same system. But this is also a huge issue: once we observe a galaxy in a given state, we can predict what its future could be, but we will never be able to see this future and confirm our prediction. Or at least not in a human lifetime. It is as if a detective had to solve a crime from a single photograph, shot possibly long after the criminal was gone. While that can be an interesting source of inspiration, it is not scientifically pertinent to ask ourselves what will become of a particular galaxy, because that is not an observable. The only way we can constrain the evolution of galaxies is therefore by studying populations of objects, and establish probable causality links. Thanks to the fact that the speed of light is finite, we can also observe the Universe at various epochs and link together populations of galaxies in terms of progenitors and descendants. We can also make the link between two properties of a given galaxy population, for example the star formation rate as a function of the stellar mass, and use models to see what we can learn from these observed relations. All of our work is therefore based on such statistical arguments.

A philosophical inconvenience emerging from this issue of scales is that we cannot make experiments in the scientific sense. We cannot "take" two galaxies and make them collide to see what happens. Or capture a galaxy and compress it to see if it suddenly forms more stars. Worse, we only have one Universe to study. If one day we observe the whole sky, and probe the entirety of the observable Universe, we will probably be able to find several complex enough models that will reproduce all these observations2 . Having no additional data to rule them out, we will not be able to learn anything more. Fortunately, this is not going to happen any time soon. But still, strictly speaking, and much like cosmology, it can be argued that extra-galactic astrophysics is not a science.

Does it mean that it is not worth spending time and money on these issues? Of course not. In a way, astrophysics is very close to archeology, in that we try to understand our past from what we see today. The fact that we cannot really manipulate or reproduce anything does not prevent us from learning much about how our Galaxy and our world came to be. And it goes even beyond this: it is through astrophysical observations that we have made among the most exciting breakthroughs of the last century. Not only by confirming the predictions of theories, with the existence of super massive black holes or gravitational lenses, but also with Figure 1.1 -Estimated star formation history (SFH) of the Milky Way (MW). On the y axis is the MW's star formation rate (SFR), in units of solar masses per year (M ⊙ /yr), and on the x axis is the lookback time in bilion years, i.e., today is on the left, and the Big Bang is on the right of the plot. The black solid line shows data from Cignoni et al. (2006), which cover a large time window with a poor resolution, and the red line comes from Hernandez et al. (2000), which focus on the last 3 Gyr with a significantly higher time resolution. Both data sets were published in arbitrary units, and are here renormalized to a common reference. The SFH of Cignoni et al. (2006) is rescaled so that integrating it over time yields a total stellar mass of 6.1 × 10 11 M ⊙ (Flynn et al. 2006), assuming no mass loss and no merger. The data of Hernandez et al. (2000) are rescaled so that the integral over time between 0 and 3 Gyr matches that of Cignoni et al. (2006). This simple approach is roughly consistent with the MW's present-day SFR of 4 M ⊙ /yr, as measured by Diehl et al. (2006).

completely unexpected discoveries, for example with the cosmic microwave background, the expansion of the Universe, or the need for dark matter, dark energy and/or modified gravity. Astrophysics allows us to look at ourselves in a wider context, with a broader perspective. It brings ingredients to physics that, without looking up at the sky, we would have never thought about.

These are the reasons that motivated me during the last three years, and that, hopefully, will keep on amazing me for the years to come.

The main questions

In this section, I introduce the specific questions I address in this thesis, what we have learned from previous studies, and what they left as unknown. I intentionally do not reveal my own results here, and instead describe the state of the art as it was before the work I have done in Saclay was published. Since this is not an epistemological study, I will not attempt to follow a chronologically rigorous path, nor to report all the previous dead ends that were explored and later abandoned. In the process, I will overlook a number of studies and be unfair to many researchers, all for the sake of clarity. For this, I hope they will accept my apologies.

Are star formation histories smooth or irregular?

One of the major goals of our field is to learn about the star formation history (SFH) of galaxies, or, in other words, the variations over time of the star formation rate (SFR), the rate at which each galaxy is forming new stars.

For example, it is known from detailed study of the properties of stars in our neighborhood that the Milky Way has experienced frequent variations of its star formation rate in the past, about every 500 Myr (Hernandez et al. 2000). These "bursts" seem to happen on top of a slowly varying, continuous activity that showed a peak about 3 Gyr ago (Cignoni et al. 2006), as shown in Fig. 1.1. One can also refer to the review of Wyse (2009) for further details. The mechanisms that shape this SFH are still poorly understood today. The regular bursts could be associated with merging events, i.e., the accretion of other smaller galaxies ("dwarf" satellites) on our Milky Way. Not only will these galaxies bring additional stars, they will also briefly destabilize the gas of the Galactic disk and allow it to collapse and form stars more efficiently (this process is discussed further in Section 1.2.2). Another explanation which is put forward in Hernandez et al. (2000) is that, since this SFH is estimated from the solar neighborhood only, i.e., a relatively small region compared to the whole Milky Way, these bursts could correspond to the regular passage of the spiral arms. Somewhat surprisingly, the spiral arms are nothing but density waves inside the disk: they are not representative of the motion of individual stars, but emergent patterns caused by different orbits around the Galactic center (Lindblad 1960). When this density wave reaches a given region of the disk, it creates local variations of the gravitational potential and also destabilizes the gas, perhaps in a less efficient way than mergers. This means that, if we were to estimate the SFH from a larger sample of stars not limited to the solar neighborhood (something that Gaïa will soon provide), these variations would vanish, and the SFH of the whole Galaxy would appear much smoother. However, a feature that is expected to remain would be the larger peak that happened 3 Gyr ago. This enhancement of star formation may instead be caused by a major merger, the collision of the Milky Way with another galaxy of similar mass, or by a more intense flow of gas coming from the intergalactic medium (IGM), through a process called "infall" (see, e.g., the discussion in Kennicutt 1983).

Indeed, our Galaxy must have received large quantities of gas from outside in its past, and probably does so even today. Its present-day star formation rate is currently estimated around SFR = 4 M ⊙ /yr (Diehl et al. 2006), while the mass of gas available to form stars is of the order of M gas = 2 × 10 9 M ⊙ (van den Bergh 1999). Therefore, at this rate the Milky Way would consume all its gas within 500 Myr (see van den Bergh 1957, where this problem was first reported). This latter quantity is known as the depletion timescale, t dep . Such short timescale is not specific to the Milky Way: except for a few exceptions which are not representative of star-forming galaxies (e.g., M31 with t dep = 5 Gyr, Pflamm-Altenburg & Kroupa 2009), the depletion timescales in the majority of galaxies is typically no more than 1 Gyr (see, e.g., Saintonge et al. 2011). This is probably the best evidence that galaxies routinely receive gas from the intergalactic medium.

The question is then, how do galaxies actually consume this gas? Is it mainly through merger events, with episodes of intense triggered star formation? Or rather in a more peaceful but steady way, similar to the density waves created by the spiral arms in the disk? While both channels are known to generate star formation in all galaxies, it remains uncertain today which one typically dominates the star formation histories of galaxies. Ideally, one would transpose the studies described above from the Milky Way to other galaxies, and build a statistically meaningful sample. However, this kind of analysis requires counting individual stars, and that is something we can only do in our closest environment for a handful of galaxies, using the Hubble Space Telescope (HST ).

A key element to answer this question was brought forward by the observation of large samples of galaxies for which we could obtain good estimates of the current SFR and the stellar mass (M * ), both today (Brinchmann et al. 2004) and at earlier epochs in the history of the Universe, e.g., 8 Gyr ago (Noeske et al. 2007;Elbaz et al. 2007). These observations aimed at studying the correlation between the SFR and the stellar mass. The connection with star formation histories becomes obvious once we consider that the stellar mass is the integral over time of the past star formation history 3 , t now 0 dt SFR(t), while the SFR is just SFR(t now ). In 3 Neglecting, for simplicity, the loss of stellar mass due to the death of stars. Assuming the stellar lifetimes of Bressan et al. (1993), this is 25-30% of the total mass after 1 Gyr for a typical star formation history, and up to 40% after 10 Gyr for an maximally old galaxy. These numbers were obtained assuming the Salpeter (1955) prescription for the mass distribution of newly born stars (the initial mass function, IMF).
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CHAPTER 1. INTRODUCTION * Figure 1.2 -The correlation between the star formation rate (SFR) and the stellar mass (M * ) of distant galaxies (z = 1), adapted from Elbaz et al. (2007). This is the so-called Main Sequence of star-forming galaxies. Points are colored according to the rest-frame (U -B) color of each galaxy, i.e., blue points for blue galaxies, and red points for red galaxies. This color is a proxy for the age of the stars: the redder the galaxy, the older are the stars it contains. Therefore, a red galaxy is supposed to have stopped forming new stars long ago (except if the galaxy contains dust, as discussed later in Section 1.2.3), while a blue galaxy must still be actively star-forming. The solid line indicates the best-fit power law of blue galaxies, and the dotted lines indicate the dispersion around this trend.

fact, the quantity of interest here is the specific star formation rate, which is the amount of star formation rate per unit stellar mass: sSFR ≡ SFR/M * . If one assumes that, at a given epoch, all galaxies have roughly the same age, then this sSFR is proportional to the birth rate parameter: b ≡ SFR(t now )/ SFR(t) (Kennicutt 1983), where SFR(t) is the average of the past SFR. This parameter can be used to estimate the typical "burstiness" of star formation histories. Indeed, if all galaxies were forming stars at a constant rate, by definition they would have b = 1, and at a given epoch they would all have exactly the same sSFR. If on the other hand the star formation histories are very bursty, then one would expect to see a wide distribution of b (or sSFR).

What was actually observed was a correlation between the SFR and M * (in logarithmic space), with more massive galaxies having higher rates of star formation, and most importantly with a relatively low scatter in SFR of about a factor of two at fixed stellar mass. An example is shown in Fig. 1.2. Since this scatter actually includes measurement errors, the intrinsic scatter is expected to be even lower. For this reason, this correlation was named the "Main Sequence" of star-forming galaxies (MS): as time goes, galaxies are growing in mass and "climb up" the sequence. Their star formation rate increases, until they stop forming stars and "fall down" (this process of shutting down star formation is discussed later in Section 1.2.4). This was a very strong step forward. The fact that, over about half the age of the present-day Universe, we observe variations of SFR of at most a factor of two from one galaxy to another places strong upper limits on the variations of the SFH within individual galaxies. This was immediately understood as a sign that these SFHs may be relatively smooth, and that mergers could only play a minor role in the whole star formation story (see in particular the discussion in the following section).

Since then, numerous studies have attempted to refine the measurement of the Main Sequence. Indeed, mostly because of the presence of dust, correctly estimating SFRs and stellar masses is not always an easy task depending on what data are available, and these estimates are often subject to systematic biases. In fact, many assumptions have to be made in order to derive these quantities, since the only thing we observe is the projected brightness of the galaxy at various wavelengths. It is reasonable to worry that these assumptions may lead to wrong conclusions because they oversimplify the situation; for example the real scatter in sSFR may actually be larger than we think. For this reason, the measurement is regularly revisited with deeper or more varied photometry. In particular, I present in Chapter 3 the results I have obtained during this PhD, building on the work of Elbaz et al. (2011), and taking advantage of the 9/260 deepest Herschel and Hubble data to study the spectra of galaxies from the ultra-violet (UV) to the far-infrared (FIR). In this study, we measure the most accurate stellar masses and SFRs, looking back in time as far back as 12 Gyr ago, where the Universe was barely 1 Gyr old, and probing for the first time such a wide time window in a consistent way across such a wide range of wavelengths. This is clearly not the end of the story though, because there are many regimes that we could not probe, especially the low-mass dwarf galaxies, or the first billion years of the Universe. This study is also not free of assumptions and biases, but I guess it is fair to say that this was, at the time, the best we could do. Further progress will surely emerge out of the new generation instruments that were recently (or will soon be) deployed: the Atacama Large Millimeter Array (ALMA), the James Webb Space Telescope (JWST), Euclid, ... For example, by observing a region of the sky for only a few minutes, ALMA is able to detect galaxies that are up to ten times fainter than what the deepest surveys Herschel could achieve by observing for about 200 hours 4 . Taking advantage of this incredible sensitivity, we have created a targeted survey with ALMA to study in more depth the young Universe. The data were received in early 2015, and are described in Chapter 7.

1.2.2 Why are some galaxies forming much more stars than others?

The existence of the Main Sequence does not nullify the impact that galaxy mergers can have on individual galaxies. It is clear that the most extremely star-forming galaxies in our neighborhood are actually pairs of merging galaxies (Sanders & Mirabel 1996) with very large sSFRs, indicating that they are likely short but intense phases in the lifetime of these galaxies. Indeed, in an isolated galactic disk, star formation is relatively inefficient because the gas in the disk is stabilized by the shear forces created by the differential rotation of the disk, i.e., the fact that the rotation speed is not the same at all radii (Toomre 1964). It was shown only recently in numerical simulations that mergers trigger additional instability of the gas through compressive tidal forces (see Renaud et al. 2014, and Fig. 1.3), effectively allowing a substantial fraction of this gas to collapse and form stars in short timescales (several hundreds of Myr).

Within the ΛCDM cosmological paradigm, it is relatively straightforward to predict the rate of such merging events. Since this is a purely gravitational problem, the baryonic physics does not play an important role, and one only needs to care about dark matter which is much simpler to model. For this reason, the predictions arising from numerical simulations or choke-andblackboard theory should be relatively robust. In fact, the general expectation is that mergers were much more frequent in the past, because the Universe was overall more homogeneous: today, most of the structures that could merge have already done so. For example, Hopkins et al. (2010a) predicts that major mergers (with a mass ratio of at least 1/3) happen on average every 40 Gyr per galaxy today, while this number would go down to every 4 Gyr if we consider the Universe as it was 10 Gyr ago, i.e., ten times more frequently. Similar trends were found in observations: Kartaltepe et al. (2007) reported that the fraction of bright paired galaxies is only 0.8% today, but was closer to 8% about 10 Gyr ago; a similar factor of ten difference. However, linking observed pair fractions with actual merger rates is difficult. While these numbers are corrected for chance projections, without precise velocity measurements it is unknown what fraction of these pairs will actually end up merging. Perhaps even more importantly, one also need to make assumptions on the observability timescale of a merging event. These uncertainties are such that a broad range of scenarios were reported in the literature, from strong to almost no evolution of the merger rate (see, e.g., the compilation of Lotz et al. 2011), but always with a tendency for a decrease with time.

The net consequence is that we expect galaxy mergers to have played a more important 10/260 The extended arc-like features, which inspired the name of this pair of galaxies, are called tidal tails.

These are made of gas and stars that were stripped from both galaxies through complex gravitational interactions. Copyright: SSRO, reproduced with permission. Right: Simulated star formation history of the Antennae, adapted from Renaud et al. (2014). This data comes from a full 3D model of the merger, with a maximum spatial resolution of 1.5 pc, including gas and stars (see the description of the simulation in Renaud et al. 2015). The evolution of the SFR with time is shown with a solid gray line. The green dotted line shows the energy in compressive turbulence, which is predicted by Renaud et al. (2014) to be the dominant way through which mergers densify the gas and trigger additional star formation. The red line indicates the instant where the simulation matches best the current observed state of the Antennae galaxies.

role in the past. Interestingly, and as was seen in the previous section, it was observed that star formation was also globally more intense at these epochs, by about an order of magnitude.

Could this be due to the larger merger rates? While this is a tempting explanation, the observed distributions of sSFRs are incompatible with this hypothesis (in the following I summarize the original discussion from Noeske et al. 2007). Assuming mergers play a negligible role today because they are rare, we can consider that the typical sSFR we observe in our neighborhood is that of isolated, non-interacting galaxies. Going back in time, as mergers were more frequent, we expect that some galaxies experience episodes of enhanced star formation, and have higher sSFR, while the rest of the population stays at the low sSFR of isolated galaxies. If mergers are predominantly responsible for the intense star formation activity in the distant Universe, a large number of galaxies should be found in this enhanced state and in the end we should see a double-peaked (or bimodal) distribution of sSFR: one peak created by bursty mergers with high sSFR, and another created by non-interacting galaxies with low sSFR. No such strong bimodality is observed among star-forming galaxies, as all galaxies appear to have the same sSFR within a factor of two (see previous section). Therefore, if mergers have any impact, it must be reasonably small, and in any case they cannot be responsible of setting the global star formation rate density in the Universe.

It is actually within this dispersion of a factor of two in sSFR that we think mergers may play their role. One could imagine that a fraction of the galaxies with sSFRs above the average are actually triggered by mergers. This is a path that was explored in several papers, e.g., Elbaz et al. (2011); Rodighiero et al. (2011); Sargent et al. (2012). In particular in Elbaz et al. (2011), David and his co-authors found that, on average, the galaxies that showed an excess sSFR were also showing a specific signature in their spectra (what they called IR8) that could be interpreted as an increased compactness of their star-forming regions. This compactness, in turn, may be a hint that a major merger event recently happened. Indeed, it is clear at least in the nearby Universe that mergers do generate very compact star-forming regions (e.g., Armus et al. 1987;Sanders et al. 1988). In the distant Universe, however, this is still a poorly explored territory.

Inspired by pioneering works done with the ISO satellite (Franceschini et al. 2001), Rodighiero 11/260

Figure 1.4 -Correlation between the surface density of star formation rate (Σ SFR ) and the surface density of hydrogen gas (Σ gas ), the socalled Schmidt-Kennicutt law, adapted from Daddi et al. (2010a). The red triangles, red circles, brown crosses, black triangles, and the shaded region at the bottom represent "normal" star-forming galaxies at various epochs in the history of the Universe. The black crosses, green diamonds and blue squares are ultraluminous galaxies, i.e., starburst galaxies (see the original paper for details). The black solid line is the best-fit power law to the normal galaxies, and the black dotted line is this same power law adapted for starbursting systems.

et al. ( 2011) and Sargent et al. (2012) analyzed the sSFR distributions in a deep Herschel survey, and found that these distributions could be well described by a simple two-component model, dubbed "Two Star Formation Mode" (2SFM, Sargent et al. 2012). In this framework, most galaxies are in the "Main Sequence" (MS) mode, with sSFRs varying by a bit less than a factor of two, and a small fraction are in the "Starburst" (SB) mode, with a systematic enhancement of their sSFR by about a factor of a few compared to Main Sequence galaxies. In practice, although the philosophy is radically different, this is conceptually very similar to the bimodal sSFR distribution introduced in the previous paragraph (Noeske et al. 2007). The main differences are that isolated galaxies and mergers are replaced by the anonymous "Main Sequence" and "Starburst" galaxies, and that these starbursts are a clear minority, both in numbers (3%) and star formation rate density (10%) so that no strong bimodality emerges, consistently with the argument of Noeske et al. (2007). This finding can be related to another scaling law, namely the Schmidt-Kennicutt (SK) law (Schmidt 1959;Kennicutt 1983), which is one of the most important building block of star formation as we know it. This scaling law tells us that the density of star formation in a given volume is directly connected to the density of hydrogen gas in the same volume 5 . The correlation is super-linear, meaning that gas is more efficiently converted into stars in denser environments. Recently, it was argued that this scaling law was subject to a bimodal behavior (Daddi et al. 2010a;Genzel et al. 2010), with a sequence of "disks" and a sub-population of "starbursts" with greatly enhanced star formation efficiency, see Fig. 1.4. Interestingly, these outliers to the SK law are also outliers to the SFR-M * relation, indicating that they are indeed growing in a different mode, which Daddi et al. (2010a) also suggested to be triggered by major mergers.

Once again, if major mergers are indeed the cause of these starbursts, then the number 5 In practice, it is more common in the literature to use surface densities instead of the probably more intuitive volume densities. This is actually what was done since the very beginning in the original paper by Schmidt (1959), where he considered star formation inside the disk of the Milky Way. While the disk is actually made of several components, a young thin disk, and an older thick disk, Schmidt assumed that this difference was simply caused by the passing of time, and that all stars were born in a disk of non-evolving width (between 200 and 800 pc, depending on the distance to the center of the Galaxy). For this reason, he averaged his observables along a direction perpendicular to the galactic plane, leading to surface densities of star and gas. Probably by convention, it has remained the standard ever since. When studying distant galaxies, it is questionable whether this choice makes any sense, since only a fraction of these galaxies actually have a clear disk structure (see, e.g., Labbé et al. 2003). However, from a more practical point of view, surface densities are model-independent observables, while volume densities cannot be measured without knowing the extent of the object about the third dimension, an information that is often missing and has to be assumed.

12/260 of such starbursts should have been larger in the past, where mergers were more frequent. Some studies have already reported such an evolution (e.g., Dressler et al. 2009), however it is important to note that these results are very sensitive to the exact definition of a "starburst".

In studies focusing exclusively on the local Universe, it is not uncommon to refer to a galaxy as a starburst if its sSFR (or, worse, its SFR) is larger than a given value. This definition breaks down as soon as one looks back in time, where the SFRs were globally higher, as it would imply that most galaxies in the distant Universe were starbursts. Because it lacks a proper reference point to anchor itself to, this definition is not very useful. An alternative, more interesting definition uses the birth-rate parameter b, introduced in the previous section.

One can define a starburst as a galaxy with b > N, i.e., a galaxy whose current SFR is at least N times more than its past average (with, e.g., N = 2 as in Heckman et al. 1990). While more physically motivated, such a definition also suffers from a bias, this time toward young galaxies, or equivalently, toward all galaxies in the young Universe. Indeed, being young, their SFR can only be rising, and their birth-rate parameter must consequently be larger than 1. This does not necessarily mean that they are evolving in a particular way, and for all we know, a young galaxy with b > 1 could be growing like any other young galaxy. Picking a threshold in b high enough should prevent this bias, but this precise threshold depends on the expected star formation history. For example, all star formation histories following the "delayed exponentially declining" functional shape, where SFR(t) ∝ t exp(-t/τ), start with b = 2 and only fall below b = 1 after t > ∼ 2 τ, i.e., when the galaxy has already formed more than half of its final mass. Instead, the definition I will be using in this thesis is the one that allows us to pinpoint unusual behaviors, galaxies whose star formation rates are different from that of other galaxies with otherwise similar properties observed at the same epoch in the history of the Universe. One way to achieve this is to define a galaxy as a "starburst" if its SFR is at least N times higher than the average SFR of galaxies of the same stellar mass, at the same epoch. Interestingly, this definition alone does not allow us to disentangle between two different scenarios, corresponding to different duty cycles, i.e., the time a given galaxy spends in the starburst mode. First, the enhancement of star formation could be rare, in the sense that it happens only in a few particular galaxies that will always be highly star-forming, while all the others will never experience it in all their lifetime. Second, the enhancement could be more common, but sustained over very short periods of times so that we only see a scant of starbursts at a given instant. Actually, it could very well be both at the same time. A funny picture I have in mind to illustrate this degeneracy is to consider the photograph of a pool filled with frogs, where a handful of these frogs are seen hanging in the air. What could be happening to them? We know that frogs tend to leap quite often, so a natural explanation is that the ones that are hanging in the air were just caught in the act of jumping, and that they will fall down a couple of seconds later. But that's on Earth. Now, what do you think would happen if instead the photograph was taken on the Moon6 ? It could very well be that most frogs preferred to stay safe in the water, while a few adventurous ones attempted to jump some time ago and remained hanging above the pool for several (long) hours, lacking sufficient gravity to fall back toward the pool. The fact is, from the picture alone, we cannot tell between these two alternatives. We need to bring additional information, i.e., on which planet the photograph was taken, to figure out what is actually going on. In the case of the starburts, it is the depletion timescale that helps us disentangling the different scenarios: as can be seen from Fig. 1.4, at fixed gas mass, starbursts are forming stars about ten times faster, therefore their depletion timescales are very low (of the order of 100 Myr, see, e.g., Daddi et al. 2010a). For this reason, we know that starbursts cannot remain starbursts for a long time, and unless their reservoirs are quickly replenished with enormous amounts of gas, their star formation activity has to fall down soon after they are observed. This is very well matching the expected behavior of a galaxy experiencing a major merger.

For this reason, in Chapter 3 (Section 3.4.6), I use this definition to study the time evolution of the starburst population observed in our deep Herschel surveys, and compare it to the trends expected for major mergers to learn more about this extravagant population.

1.2.3 Does the interstellar dust hide a significant portion of the star formation activity in the Universe?

The first estimate of the SFR density in the Universe was established by measuring the evolution of the UV luminosity of galaxies at different epochs (Lilly et al. 1996;Madau et al. 1996). Indeed, the sum of the UV light emitted by all the stars in a galaxy is a good tracer of the galaxy's current star formation rate (e.g., Kennicutt 1998b). In star-forming galaxies, the majority of the UV light is produced by very hot stars, which are at least five times more massive and several hundred times more luminous than our Sun. Because of these extreme masses, their gravitational potential is higher, the hydrogen gas they contain is heated to higher temperatures and therefore converted faster into helium. For this reason, massive stars have very short lifetimes of less than 100 Myr, compared to the estimated 10 Gyr of our Sun. Knowing this, one can use these stars as a signpost of "recent" star-formation, with a time resolution of about 100 Myr.

There is an issue though. This UV light is made of energetic photons, with wavelengths between 150 and 300 nm. This spatial scale happens to be smaller than the typical size of the dust grains that are present in the interstellar medium (ISM, see, e.g., Zubko et al. 2004). Therefore, whenever a UV photon intercepts the course of a dust grain, it has a non-negligible probability of being absorbed (or scattered) by this grain, and may never reach our telescope. Depending on the density of dust along the line of sight, only a fraction of the UV light of a galaxy actually manages to escape, and star formation rates can therefore be severely underestimated. An example of such a situation is shown in Fig. 1.5.

Fortunately, we know of different ways to recover this missing light. The most direct one is to look for the energy that was absorbed: since energy is always conserved, it has to come out of the dust grain one way or another. In fact, it does so through thermal radiation. When a grain absorbs a UV photon, in virtue of conservation of momentum, the energy it acquires is transmitted in the form of kinetic energy to the individual molecules that compose it. If the grain absorbs such photons at a high enough rate (which is the case for the biggest grains which have the largest cross-section), the grain itself thermalizes and reaches a temperature of a few tens of Kelvins. According to Planck's law, a black body of such temperature will radiate its energy by emitting photons at wavelengths of the order of 100 µm. This falls in the FIR domain, which is also commonly referred to as the "sub-millimeter" domain (the right hand side of Fig. 1.5). Therefore, if one can measure the luminosity of a galaxy in the FIR, and since the dust is transparent to these wavelengths, one can add it back to the observed UV luminosity to recover the intrinsic UV luminosity, and eventually measure an accurate SFR. In most starforming galaxies, dust attenuation is such that the FIR luminosity is usually much higher than the observed UV luminosity. For this reason, star formation rates obtained this way are usually dubbed "FIR-based".

The main issue with this approach is that measuring the FIR luminosity is not always easy, and for two reasons. The most important one is that our atmosphere is not transparent between 3 and 800 µm (the atmospheric transmission is poor), precisely because its temperature makes it also radiate at these wavelengths. Some observatories (like JCMT and ALMA) allow us to observe at 300-400 µm, but the observing times needed to detect anything but the brightest nearby objects are usually prohibitive. For this reason, most of what we know of this wavelength domain comes from space telescopes like Spitzer and Herschel (to name only the two most recent ones), which are obviously not bothered by the atmosphere. However, there comes the second issue: at these wavelengths, the angular resolution is two orders of magnitude worse than in the optical, because of the increased diffraction (which is proportional to the wavelength). This means that most of the distant galaxies observed by Hubble are nothing more than large "blobs" 14/260 Figure 1.5 -Spectral energy distribution (SED) of a typical star-forming galaxy similar to our Milky Way. I show here the intensity of the emitted light (in units of L ⊙ , our Sun's own luminosity) as a function of wavelength. The blue curve shows how the SED of the galaxy would look like in the absence of interstellar dust, using the Bruzual & Charlot (2003) stellar population models and a constant star formation history. The red curve shows the actual observed SED, where dust absorbs a non-negligible fraction of the stellar light (an attenuation of one magnitude in the V band, i.e., at λ ≃ 0.6 µm). The extinction law is taken from Calzetti et al. (2000), and the dust emission is produced using the models of Galliano et al. (2011). (a): This sharp decrease of the light intensity at λ ≃ 0.1 µm is called the Lyman break. Photons emitted at wavelengths shorter than this threshold have enough energy to fully ionize hydrogen atoms, regardless of their excitation state. They are therefore very easily absorbed, either within the galaxy, or somewhere along the line of sight in the intergalactic medium (IGM). The net consequence is that we receive essentially zero photons shortward of the Lyman break. (b): This second break in the SED at λ ≃ 0.4 µm is called the Balmer break. This is conceptually identical to the Lyman break, except that this time the photons just have enough energy to ionize an hydrogen atom if this atom is in its first excited state, or above. Because a good fraction of the hydrogen atoms are in their ground state, photons with wavelengths shorter than the Balmer break have a fair chance of not being absorbed. However, the Balmer break is almost coincident in wavelength with another feature, called the 4000 Å break. This break arises in the atmosphere of the stars themselves, and is the result of more complex opacity processes due to non-hydrogen atoms (e.g., calcium). (c): These prominent features in the mid-infrared between λ = 5 and 15 µm are created by a combination of numerous emission lines which are emitted by large carbonated molecules, called polycyclic aromatic hydrocarbons (PAHs). This is a peculiar type of dust grain typically found within star-forming regions. They are relatively fragile, and tend to be destroyed by too intense radiation fields. Their connection to physical processes inside galaxies are still not very well understood. (d): This is the emission of normal dust grains, re-emitting the stellar light that was absorbed. It is the sum of many gray bodies of different temperatures, ranging between a few tens to a hundred of Kelvins. I show here a typical such combination, but the shape of this part of the spectrum can vary significantly from one galaxy to another, depending on the geometry of the dust clouds and their position relative to young stars, but also on the physical composition of the dust (i.e., silicate versus carbonated grains, and the grain size distribution).

in FIR images: we cannot see their detailed structure, and worse, galaxies appear so big that they tend to overlap, making it difficult (if not sometimes impossible) to robustly attribute the observed flux to the right counterpart. This is called the problem of "confusion", and is illustrated in Fig. 1.6. The only way to reduce this diffraction is to use larger mirrors 7 . However, because of practical constraints during launch, the size of the mirror on these space telescopes Figure 1.6 -Left: A 30" × 30" region of the cosmological deep field GOODS-South, as observed by Hubble and shown here in false colors (F606W+F850LP+F160W, i.e., green, red, and near-infrared). These very deep observations allow us to detect many galaxies at varying distances. Right: The same region of the sky observed this time by Spiter (24 µm as blue) and Herschel (100 µm as green, and 160 µm as red). The most obvious detections are pinpointed with white circles, and reported on the Hubble image. These two pictures give an example of the fraction of galaxies for which we have a far-infrared detection.

is much smaller compared to that of their ground-based equivalents. For example, the mirror of Spitzer has a diameter of only 0.9 m, while that of Herschel, the largest ever launched, is 3.5 m wide. In comparison, the standard mirror size for optical telescopes nowadays is about 8 m, and up to 10 m for the largest ones. Sub-millimeter ground-based telescopes like the JCMT can reach even up to 15 m.

In the end, in a typical cosmological deep-field observed by Hubble, Spitzer and Herschel, we can measure the FIR luminosity of only 15% of the galaxies with stellar mass larger than 3×10 9 M ⊙ (see Section 3.2.6). The other ones are too faint to be detected in the FIR, even on the deepest Spitzer and Herschel images. There are of course many things to do with these 15%, and the study of these detections has provided a wealth of key results during the past ten years (e.g., Elbaz et al. 2007;Magnelli et al. 2009;Tacconi et al. 2010;Daddi et al. 2010a;Rodighiero et al. 2011;Elbaz et al. 2011;Magdis et al. 2012). In this thesis, I present in Chapter 3 (Section 3.4.6) new results about the evolution of the starburst population (introduced in the previous section) which are only based on this somewhat limited sample. Yet, we would definitely like to be able to measure SFRs for the remaining 85%, since Herschel and Spitzer detections only unveil about half of the star formation rate density of the Universe (see Section 3.4.5), or, equivalently, of the cosmic infrared background (CIRB, e.g., Leiton et al. 2015). This is actually possible by interpreting in a clever way the observed UV spectrum of the galaxy (Calzetti et al. 2000). We do not know a priori how bright is the intrinsic spectrum, i.e., what we would see without dust, but we do have a good idea of the shape of this spectrum, in particular its spectral slope β. The spectral slope characterizes the way the light intensity varies with wavelength. A "gray" slope means that the light has the same intensity at all wavelengths, a "blue" slope indicates that the galaxy is brighter in the short wavelengths, while a "red" slope means the opposite8 . It turns out that the intrinsic spectral slope of a star-forming galaxy between 0.1 and 0.3 µm is fairly blue (see Fig. 1.5). Then, because the strength of the dust absorption depends on the wavelength, the light at the shortest wavelengths will be more attenuated than the light at the longest wavelengths. In the end, dust will tend to make the observed spectral slope redder (again, see Fig. 1.5). By measuring this observed slope, we can estimate how much dust is present in the line of sight, and recover the intrinsic spectrum. This is informally known as the "β-slope" technique, and by opposition to the FIR-based SFRs introduced above, this method provides "UV-based" SFRs.

Measuring fluxes in the UV domain is much easier than in the FIR. This is especially true for distant galaxies, for which this emission in shifted by the cosmic Doppler effect into the optical domain, which is easily accessible from the ground. Thanks to this fact, we have access to the UV spectrum of essentially all the galaxies detected in cosmological deep fields, allowing us to derive star formation rates even for very faint galaxies. For this reason, UV-based SFR are very commonly used in the literature (e.g., Meurer et al. 1999;Steidel et al. 1999;Daddi et al. 2004a;González et al. 2010;Bouwens et al. 2011, to only cite a few of the most influential works).

The problem of this approach is that it requires quite a number of assumptions. At first sight, the most obvious one is the assumption about the spectral slope of the intrinsic spectrum. While it is true that all star-forming galaxies will have blue intrinsic spectral slopes (because their light is dominated by the young and massive stars), the precise value of the slope will depend on the star formation history of the galaxy: a recent burst will make the slope slightly bluer, while a declining star formation activity will make the slope slightly redder (Leitherer & Heckman 1995; see also Boquien et al. 2012). Other factors can have similar effects to some extent, like the stellar metallicity Z of the galaxy, which is the proportion of stellar baryons which are neither hydrogen nor helium (i.e., "metals": oxygen, iron, ...). But probably more problematic are the assumptions about the dust. The transition from the observed to the intrinsic slope is made using an extinction curve, which tells us exactly how efficient is a parcel of dust at absorbing photons as a function of wavelength. Observations of our neighborhood, either within the Milky Way (Witt et al. 1984) or peering inside its satellites like the Small Magellanic Cloud (SMC, Prevot et al. 1984), have shown that this curve is not universal (see, e.g., Gordon et al. 2003). In particular, it is expected to depend on a combination of factors, among which are the distribution of dust grain sizes and their chemical properties. Finally, building the effective extinction curve over the whole galaxy requires assumptions on the geometry of the dust cloud, i.e., how is the dust spatially distributed with respect to the stars. For example, the usual assumption is that the stars are located behind a uniform dust "screen" of variable width.

Another very common and similar technique is to use a model to interpret simultaneously the whole spectrum from the UV to the near-infrared (NIR), including the stellar emission and the dust absorption, which is known as "spectral energy distribution (SED) fitting" (see Silva et al. 1998;da Cunha et al. 2008;Kriek et al. 2009;Noll et al. 2009, where some of the most commonly used codes are described). While it may help to remove some degeneracies, e.g., with respect to the star formation history or the metallicity, it essentially boils down to the same mechanism to estimate the star formation rates, and therefore requires the same set of assumptions 9 .

It turns out that, in spite of all these (sometimes crude) assumptions, the end result is on average in good agreement with the more direct estimates obtained from the FIR luminosity of local galaxies (Meurer et al. 1999;Calzetti et al. 2000), although some correction were later published (Takeuchi et al. 2012). This puzzling agreement probably shows that although each galaxy is unique in its detailed properties and structure, most of the differences are washed out when averaging quantities over the whole volume of the galaxy10 . Most, but not all. While these dust corrections appear to be working for the majority of Main Sequence galaxies (e.g., Daddi et al. 2007b;Rodighiero et al. 2014), a number of studies have shown that these tech-niques tend to systematically underestimate the SFRs of the most actively star-forming galaxies (Goldader et al. 2002;Buat et al. 2005;Elbaz et al. 2007;Rodighiero et al. 2011;Wuyts et al. 2011a;Penner et al. 2012;Oteo et al. 2013), i.e., the "starburst" galaxies I introduced in the previous section. In other words, when using only UV-based SFRs, one will miss a fraction of the star formation happening in the Universe. Rodighiero et al. (2011) have estimated this fraction to be of the order of 10% when looking at the Universe as it was 10 Gyr ago, but we do not really know how this number evolves with time.

More worrisome, some recent studies have shown that the UV-based dust correction recipes described above seems to be failing globally, i.e., for all galaxies, in the very early Universe (more than 12 Gyr ago, Castellano et al. 2014;Pannella et al. 2015;Capak et al. 2015;Reddy et al. 2015). This illustrates the crucial fact that UV-based SFRs are only reliable in the regimes where they were demonstrated to work, i.e., by comparing them with FIR-based SFRs. This is mostly an issue for the first billion years of the history of the Universe, where too few galaxies are currently detected in the FIR 11 .

For this reason, I have pushed the current Herschel surveys to their limit and provide in Chapter 3 (Section 3.4.2) a FIR-based measurement of the average SFR of the most distant sample of Main Sequence galaxies, to check the consistency of the published UV-based estimates. This is achieved using a special image analysis technique called "stacking" (e.g., Dole et al. 2006), which can only tell us about the statistical properties of a given sample, without individually detecting all of the galaxies it contains. The next step is to use ALMA, and in particular analyze our survey that was recently observed (Chapter 7), where we targeted the very same galaxies, this time with the aim to measure their individual star formation rates, reaching FIR luminosities an order of magnitude lower than what Herschel could detect. This will allow us to check the robustness of the result I present in this thesis, and further study the evolution of dust in the distant Universe.

Interestingly, these ALMA data contained by chance two new galaxies that are too far and too attenuated to be detected with Hubble. Their distance from us is uncertain, but most likely very large, and only ALMA can help us determine it with precision through spectroscopy. Should these galaxies be as distant as their (admittedly poor) SEDs suggest they are, they will be the most distant massive and dusty galaxies ever known, observed when the Universe was less than a billion years old, an epoch when dust is currently assumed to be mostly absent. These two galaxies are described in Chapter 7 (Section 7.9).

Why do galaxies stop forming stars?

The existence of very massive galaxies that show little to no detectable star formation has been reported at nearly all epochs in the history of the Universe (e.g., Baldry et al. 2004;Daddi et al. 2004b;Williams et al. 2009;Straatman et al. 2014). These galaxies are therefore lying more than one order of magnitude below the Main Sequence of star-forming galaxies (Noeske et al. 2007). Although we know of several different ways of "quenching" a galaxy (i.e., making it stop forming stars), the exact physical mechanism that made these galaxies turn off is still uncertain. An example of such galaxy is shown in Fig. 1.7 (right).

The trend during the last decades has been to invoke "feedback" processes inside the galaxy. For example, when a galaxy hosts a very high density of SFR, it also harbors a large quantity of massive stars and exploding supernovae, which drive very strong stellar winds (Larson 1974): these stars are so massive and luminous that the light they emit is also pushing the surrounding gas away (via radiation pressure). By expelling and heating the hydrogen gas in which they were born, these massive stars can actually depress or even totally prevent future star formation Figure 1.7 -False color image of two galaxies (F606W+F814W+F160W, i.e., green, red, and nearinfrared). On the left, J02172899-0508264, a star-forming disk galaxy in the Ultra Deep Survey (UDS) located about 190 Mpc from us (z = 0.044). On the right, J100022.0+022326, a quiescent elliptical galaxy in the Cosmic Evolution Survey (COSMOS) located about 1 000 Mpc from us (z = 0.2206). Both galaxies are shown here with the same color bar. While they have roughly the same angular size, the elliptical galaxy is much more distant, and would be five times larger if it was brought back at the same distance. On the other hand, one can see from this picture that a large fraction of the light (hence, of the mass) of this elliptical galaxy is located very close to its center, while the light of the disk galaxy is more evenly spread. This difference is quantified in Fig. 1.8. Figuring out how this morphological transformation takes place is also a key to understanding the mechanisms that quench a galaxy. in the area. This is called a feedback mechanism because star formation regulates itself without requiring external influence. One can refer to, e.g., Hopkins et al. (2014) which describes the current state of the art in numerical simulations. However, Hopkins et al. (2014) also argue that this stellar feedback is not sufficient to prevent a whole galaxy from forming stars (except maybe for dwarfs, Dekel & Silk 1986). In fact, it is more commonly assumed today that this feedback mechanism only acts as a regulator of star formation, preventing it from being too efficient.

The hypothesis that is most commonly put forward nowadays is that the process responsible for quenching is yet another form of feedback, this time originating from supermassive black holes (SMBHs, Silk & Rees 1998). Although the existence of such black holes have only been unambiguously confirmed in the Milky Way (e.g., Gillessen et al. 2009) and a couple of other nearby galaxies, a number of indirect evidence suggest that most massive galaxies host an SMBH in their core (e.g., Hickox et al. 2014). Because black holes, by definition, do not emit any light, the only way to detect them is through the effect they have on their surroundings, for example gravitational attraction (as was done in Gillessen et al. 2009). Through these interactions, black holes can actually be the cause of extremely luminous events, and the region around them sometimes becomes brighter than the combination of all the stars present in the galaxy. Galaxies in which these events are occurring are said to harbor an active galactic nucleus (AGN). When the luminosity of the AGN becomes very large, by contrast the galaxy is almost invisible and all we can observe is a point source, looking very much like a star. For this reason, the most extreme cases are called quasi-stellar objects (QSOs, or quasars). The physical process behind these luminous events is thought to be the accretion of gas and/or stars onto the black hole (Lynden-Bell 1969). The closer this material orbits around the black hole, the stronger the friction force it feels. Right before crossing the horizon, this friction is so intense that a large fraction of the accreted mass is actually turned into thermal energy, 19/260 which is then radiated away in the form of light on a large variety of wavelengths from the UV to the IR. Through this so-called "radiative-mode", AGNs behaves very much like huge stars, in the sense that the radiation they emit can also drive away large amounts of gas (see the review of Cattaneo et al. 2009). This radiation is so intense that it should be able to channel the gas outside of the galaxy, and in fact there are recent evidence that this is indeed happening in some galaxies (Förster Schreiber et al. 2014). By expelling the gas away, the AGN is preventing further accretion onto the black hole, which is why this phenomenon is also categorized as a feedback process. But then, when a large fraction of the gas as been expelled, the accretion of matter onto the SMBH decreases, and the AGN switches off. At that point, it is only a matter of time for the expelled gas to cool down, fall back onto the galaxy, and form stars again (e.g., Gabor et al. 2011). To permanently prevent star formation in the whole galaxy, this gas and all future infall must be prevented from cooling down, and another process has to be invoked. This is supposedly the role of a second feedback mechanism associated with black holes, which is usually called the "radio-mode" (again, see Cattaneo et al. 2009). This time, the expelled gas is concentrated in a pair of collimated jets escaping from both poles of the black hole (Blandford & Begelman 1999). These jets are typically observed in the radio domain, hence the name of this mechanism, but they also emit in the X-ray and IR. Because they are mostly seen in those galaxies which are already not forming any star (also called "quiescent" galaxies, Dressel 1981), they are indeed good candidates for maintaining the hydrogen gas at high temperatures, thereby preventing further star formation (Nusser et al. 2006). The physical origin of the jet is not very well understood, and it is still not clear whether it originates from the black hole itself or from its accretion disk. Supposedly, jets appear in black holes with lower accretion rates.

Combined together, both these mechanisms have the necessary power to abruptly and permanently stop star formation in a previously gas-rich galaxy. However, these explanations currently lack direct observational support. It is true that "radiative-mode" and "radio-mode" AGNs appear to be more common among massive star-forming and quiescent galaxies, respectively, which makes them good candidates for shutting down star formation and maintaining it low, respectively. But we cannot rule out that the causality link goes on the other direction, i.e., that AGNs are merely consequences of whatever phenomenon acts to quench the galaxies, and that in spite of their strength they are relatively inefficient in affecting the galaxy. For example, using numerical simulations, Roos et al. (2015) recently predicted that "radiative-mode" AGNs should have no significant impact on the short-term star formation rates of gas-rich distant galaxies, where the disk is dense enough to shield itself from the radiation of the AGN (see also Gabor & Bournaud 2014).

In fact, there are other ways to prevent a galaxy from forming stars without invoking strong feedback mechanisms. The difficulty is to make galaxies stop at the right moment, before they grow too massive (indeed, we do not observe galaxies more massive than 10 12 M ⊙ , see for example Naab et al. 2007, for a scenario where too massive galaxies are produced). One can cite for example the so-called "morphological quenching" (Martig et al. 2009), which is connected to the presence of a massive stellar bulge. A bulge is a large concentration of old stars which cohabit with the disk of most massive galaxies, including our Milky Way. Their radial density profiles are very similar to that of quiescent elliptical galaxies, i.e., they show a pronounced overdensity in their core, together with a low density tail that extend much further than the disk (the de Vaucouleurs profile, de Vaucouleurs 1948), see Fig. 1.8. The idea behind the morphological quenching mechanism is that the large stellar mass in the center of the bulge generates additional turbulence that, in virtue of the Toomre criterion (Toomre 1964), should make it harder for the gas to fragment into clumps within the disk (see, e.g., Lehnert et al. 2015), therefore inhibiting star formation without actually expelling the gas out of the galaxy. This is supported by the recent finding that star formation seems to stop gradually from inside out (Tacchella et al. 2015), probably concurrent to the growth of the bulge with respect to the disk. It is also interesting to note that a tight correlation has been observed between the mass of the 20/260 Figure 1.8 -Radial light profile of the two galaxies of Fig. 1.7. The observed light profile of the disk and the elliptical galaxies are shown in shades of blue and red, respectively. These profiles were obtained by masking pixels contaminated by other galaxies, and are derived assuming that each galaxy's center is the brightest pixel of the image. These profiles are then fitted with idealized functions, ignoring for simplicity the smearing caused by the HST point spread function, and assuming that both galaxies are seen face-on. The disk galaxy is fitted with an exponential profile (Freeman 1970), while the elliptical is fitted with a de Vaucouleur profile (de Vaucouleurs 1948). It is clear that the later has a much denser core, and it is in fact similar to that of bulges, which are sometimes found within disk galaxies. These high concentration of stellar mass may have a significant impact on the dynamics of the gas, and therefore on star formation. bulge and that of the SMBH12 (Magorrian et al. 1998;Häring & Rix 2004). While the origin of this correlation is still unknown, it could explain why AGNs seem to be connected with quenching, since according to the morphological quenching mechanism quiescent galaxies are likely to host the most massive bulges, and therefore the most massive SMBHs.

At present, it is probably fair to say that the role played by AGNs and supermassive black holes in the growth of their host galaxy is still relatively unknown. During the past years, evidence has gathered for a coevolution of SMBH and galaxies, i.e., that whatever fuels and then regulates star formation in a galaxy also affects the growth of the central SMBH (see, e.g., the review of Brandt & Alexander 2015). The clearest evidence probably came from the observed correlations between the mass of the SMBH and the properties (either mass or velocity dispersion) of the bulge (see above), but additional clues comes from observations in the distant Universe, where an intriguing coincidence is observed between the activity of black hole accretion and the star formation rate, either in individual galaxies (e.g., Alexander et al. 2005) or as a whole within a given volume of the Universe (e.g., Aird et al. 2010;Ueda et al. 2014). Similarly, it was also found that AGNs follow their own "Main Sequence" in the L X -M * plane (where L X measures the rate of accretion onto the black hole), mimicking closely the trend of the SFR-M * Main Sequence (Mullaney et al. 2012). This connection between black hole accretion and star formation suggests that a fraction of the gas that fuels the galaxy manages to be channeled toward its center and fuel, in turn, the black hole. However, the sphere of influence of the SMBH is ridiculously small (e.g., a couple of parsecs in our Milky Way, Ferrarese & Merritt 2000) compared to the total size of a galaxy, and it is therefore a challenge to understand how such channeling could occur 13 . Lastly, it is sometimes advocated that the link between activity of the SMBH and star formation in galaxies should be approached in the opposite direction, in the sense that it would be the black hole that triggers the formation of stars in its host galaxy (e.g., Croft et al. 2006;Elbaz et al. 2009;Silk 2013). Although this phenomenon appears to be rare in the present-day Universe, it may have played a more important role in the earliest stage of galaxy evolution.

The last mechanism I will describe is called "halo quenching", or "gravitational quenching" (Birnboim & Dekel 2003;Dekel & Birnboim 2008). This approach considers that quenching is due to the accretion of gas from the intergalactic medium: when gas is channeled toward the galaxy, it cools down and form stars, while the energy that is released by the cooling process (whatever it is) is progressively transferred to the hydrogen gas that still resides in the dark matter halo. By receiving this energy, this gas progressively heats up, and it becomes harder for it to later reach the galaxy and form stars. It is expected that this quenching mechanism can only affect galaxies that receive enough accretion so that the gas in the halo heats faster than it cools down, and therefore, according to the ΛCDM cosmology, it should only happen in galaxies that live in dark matter halos typically more massive than 10 12 M ⊙ (corresponding to galaxies more massive than 10 10 M ⊙ , according to Behroozi et al. 2013). This would naturally explain why most of the quiescent galaxies are among the most massive structures we observe today.

There are, indeed, many processes that can act to prevent star formation in a galaxy. The question is then to find out which of the above-listed mechanisms is preponderant. To this end, we can use the same statistical tools that I introduced in Section 1.2.1, namely the SFR-M * correlation, or Main Sequence of star-forming galaxies. While this correlation is most often studied with star-forming galaxies only, the position of the quiescent galaxies with respect to the Main Sequence is also of interest. As stated above, quiescent galaxies are among the most massive galaxies in the Universe, yet they form little to no stars. Therefore, they have very small sSFR (which, I remind, is defined as SFR/M * ). The distribution of sSFR of massive galaxies, both star-forming and quiescent, can then be used to put constraints on the quenching mechanisms, by providing information on how galaxies evolve from the sSFRs typical of the Main Sequence down to the low levels of the quiescent galaxies.

In particular, it is observed that the two populations are clearly segregated in sSFR, so that the overall distribution is strongly bimodal. Initially, it was first discovered through galaxy colors, which are simple proxies of the sSFR if attenuation by dust is neglected (e.g., Strateva et al. 2001;Baldry et al. 2004). For this reason, it is often said that star-forming and quiescent galaxies lie on the "blue" and "red cloud", respectively (see the discussion in the previous section about the spectral slope). On can see a recent visualization of this phenomenon in Renzini & Peng (2015). The presence of this bimodality has often been used to argue that the quenching mechanism must act on short timescales: indeed, if quenching is a slow process, we should see a large number of galaxies transiting from the blue cloud down to the red cloud (traversing the so-called "green valley"). This is why, in particular, AGN quenching is a popular scenario, because we expect it to be the fastest quenching mode.

On the other hand, a recent discovery may counter act this argument. Up until now, most studies which quantified the position and evolution of the Main Sequence have reported that this correlation had a fixed slope in logarithmic space. Many different values of this slope were reported, owing probably to a combination of selection effects and observational uncertainties (e.g., on the dust corrections for UV-based SFRs, see for example the recent compilation of Speagle et al. 2014). Interestingly, as data are becoming more accurate and statistic is building up, a couple of recent studies actually showed that modeling the sequence with a single slope may not be appropriate, and that a more accurate description would be to consider a varying slope at different stellar masses (e.g., Whitaker et al. 2012;Magnelli et al. 2014;Whitaker et al. 2014). I also revisit this observation in Chapter 3 (Section 3.4.3).

Several explanations have been put forward to account for this observation. In particular, it is possible to make a link with the quenching process. Indeed, the evolution of the slope is such that massive star-forming galaxies tend to have lower sSFRs than low mass galaxies, and this discrepancy is growing larger with time. This is strangely mimicking the evolution of the quiescent galaxies, which are predominantly found among massive galaxies, and grow more numerous as time goes. This could be understood as the fact that the whole population of massive star-forming galaxies is progressively dying on long timescales (see, e.g., the discussion 22/260 in Ilbert et al. 2015), which would instead favor mechanisms which are not linked to the AGN.

Alternatively, Abramson et al. (2014) have shown in the local Universe that the Main Sequence slope of massive galaxies could be brought back to that of low-mass galaxies by subtracting the mass of the bulge from M * , i.e., not considering the relation between SFR and M * , but between SFR and M disk (the mass of the disk). The underlying argument is that no star formation happens in the bulge, and it is therefore not relevant to compare its stellar mass to the present rate of star formation. To further investigate this issue, I review in Chapter 6 the observation of Abramson et al. (2014), applying their methodology to the distant Universe, where the slope of the Main Sequence is found to be different. The aim is to check if their result also holds at early epochs, and draw further conclusions on the link with quenching.

In Chapter 6 I also approach the study of this varying slope from another angle, by measuring directly the gas content in these galaxies to see whether the decrease of the SFR is caused by a reduction of the gas fraction f gas , or a lowered star formation efficiency (SFE). The SFE characterizes the speed at which the galaxy will exhaust all of its gas content, and it is actually defined as the inverse of the depletion timescale I introduced earlier. These represent the two possible ways for galaxies to turn off: indeed, a galaxy can become quiescent either if it ran out of gas (low f gas ), or if it became extremely inefficient at converting this gas into stars (low SFE). Knowing which of these two alternative is true would shed some light on the quenching mechanisms.
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Chapter 2

Summary of the work done in this thesis

During the three years that lasted my PhD, I have worked on several different projects that are described below. This work was done in collaboration with people in Saclay, as well as larger international collaborations including GOODS-Herschel (PI: D. Elbaz), CANDELS-Herschel (PI: M.E. Dickinson), CANDELS-HST (PIs: H. Ferguson, S. Faber) and ASTRODEEP (PI: A. Fontana). I also had the chance to present the results of my first paper in several international conferences through four talks and two posters.

My first project (Chapter 3) has been published with myself as first author in Schreiber et al. (2015). My second first authored paper (described in Chapter 6 and attached in Appendix B) has been submitted during the summer. At the time of writing this manuscript, I also have two other first-authored papers in preparation (Chapters 4 and 5) that I will circulate and possibly submit before the defense. The full list of my publications can be found in Chapter 9. In the following, I give a short description of the different projects I have worked on during the PhD, and finally describe my experience as an observer.

The Main Sequence of star-forming galaxies as seen by Herschel

This work, presented here in Chapter 3, has been published in Astronomy & Astrophysics (Schreiber et al. 2015), and was undertaken within the GOODS-Herschel, CANDELS-Herschel and CANDELS-HST collaborations. Our aim was to constrain the existence and relevance of the Main Sequence of star-forming galaxies (see Section 1.2.1), taking advantage of the new Herschel and Hubble data that were obtained in the CANDELS fields to probe higher redshifts and lower stellar masses than previous studies. Using FIR-based star formation rates (SFRs) and starting from a sample that is selected in the observed H band, hence that is complete in stellar mass (M * ) even at high redshift, we can get the best possible estimate of the locus and scatter of the SFR-M * relation. We also aim at studying further the population of galaxies that are found above the Main Sequence, i.e., with an enhanced star formation activity, to characterize the demographics of these galaxies and its evolution with time.

The photometric catalogs in the UV-to-NIR were produced by the CANDELS-HST team (and M. Pannella in GOODS-North), the MIR-to-FIR Spitzer and Herschel catalogs were built by the GOODS-and CANDELS-Herschel teams, and the photometric redshifts, stellar masses (M * ) as well as rest-frame optical colors were computed by M. Pannella. The rest of the analysis was performed by myself: I cross-matched and compiled these data into master catalogs, computed infrared luminosities by fitting SED models to the MIR-to-FIR photometry, estimated star formation rates, created realistic simulated Herschel maps, designed a new stacking technique (scatter stacking) to measure the intrinsic dispersion of a stacked sample, stacked the Herschel images (both real and simulated), fitted the resulting photometry, and finally ana-25/260 lyzed the results and wrote the paper. The last two steps were made in collaboration with the co-authors, who provided ideas, corrections and advices that improved the final quality of this work.

The conclusions of this paper are that most star-forming galaxies from z = 3 to z = 0 are found in a "Main Sequence" mode of star formation, where their star formation rate is tightly correlated to their stellar mass, so that at least 66% of the mass of present-day stars was formed in the Main Sequence. We find that the SFR dispersion at fixed stellar mass within the Main Sequence is constant at all the redshifts and stellar masses we could probe, and is as low as a factor of two. We also report that the fraction of galaxies with extraordinarily high SFRs, i.e., starburst galaxies, does not change significantly with time. These results converge toward a picture of galaxy evolution where most stars are formed in galaxies that are evolving secularly, with relatively smooth star formation histories, and with occasional bursts of star formation activity (possibly linked to merger events).

Modelling the integrated IR photometry of star-forming galaxies

In order to determine the SFR of galaxies and study the Main Sequence, I produced a set of complete FIR SEDs based on stacked measurements, in bins of redshift and stellar mass. This new set of SEDs is solving some issues found in existing libraries, and is calibrated on a wider range of mass and redshift range. Hence I decided to produce a study dedicated to this aspect, that will be the subject of a first-authored paper, and in which I started a collaboration with Frédéric Galliano (CEA Saclay) for the modelling of the dust emission. This modelling, presented in Chapter 4, brings a new insight on the evolution of the polycyclic aromatic hydrocarbon (PAH) mass fraction in galaxies as a function of redshift, and is also used in another study -presented in Chapter 6 -where I measure the star-formation efficiency of galaxies on the Main Sequence as a function of stellar mass.

These new model SEDs are based on the detailed dust model of F. Galliano (Galliano et al. 2011), that describes the dust emission as coming from a mixture of silicates and amorphous carbon grains (instead of the more commonly used graphites, which results in a lower dust mass-to-light ratio by a factor of about two). While the model of Galliano et al. (2011) is tailored to describe the dust emission of resolved regions within a galaxy, and has therefore many degrees of freedom to describe all the known spectral features, the library I introduce is only meant to describe the integrated light of a galaxy, which has a more universal spectrum. Consequently, the number of free parameter is reduced to three: the dust mass, the effective dust temperature (T dust ), and a varying contribution of polycyclic aromatic hydrocarbon molecules (PAHs) ( f PAH ).

I adjust the shape of the dust continuum SED to reproduce the stacked MIR-to-FIR photometry from Chapter 3, and use the resulting library to fit the observed SEDs of all the Herscheldetected galaxies in the CANDELS fields, deriving trends for both T dust and f PAH as a function of redshift and offset from the Main Sequence. In agreement with previous studies, I find that the dust temperature rises with redshift and also varies within the Main Sequence, so that galaxies with an enhanced SFR also have enhanced dust temperatures. I find the complete opposite trend for f PAH : high-redshift and/or starburst galaxies have a depressed PAH emission. While it is known that f PAH depends on the metallicity (for various possible reasons that are not yet fully understood), and while high-redshift galaxies do have lower metallicities, the drop of f PAH that I observe goes beyond what is expected solely from the metallicity trend. In his last paper, D. Elbaz suggested that an increase of the IR8 (which is defined as the ratio of the total IR luminosity to the luminosity at 8 µm, where the PAHs emit most of their light, and which is therefore a proxy for 1/ f PAH ) could be caused by a geometry effect if star-forming regions are densely packed. With this interpretation, my current conclusion echoes recent results found 26/260 from other approaches, in that the geometry of the star-forming regions was more compact in the early Universe.

gencat: an empirical simulation of the observable Universe

A good fraction of the work I have done in Chapter 3 was devoted to building realistic simulations of the Herschel images in order to test my stacking procedures. As part of the AS-TRODEEP collaboration1 , I developed these simulations further by writing a code, called gencat, that is able to generate arbitrarily large mock galaxy catalogs with realistic fluxes, colors, morphologies and sky distribution, at all wavelengths from the UV to the sub-millimeter (see Chapter 5). This code is used within ASTRODEEP to test new source extraction tools and methods that will eventually be made available to the whole astrophysics community, and will be published in the near future.

The process of generating the catalog is based on empirical prescriptions, where all physical quantities are derived from the redshift and the stellar mass, themselves generated from observed stellar mass functions. I derive most of these prescriptions myself using the galaxy catalogs from Chapter 3 (adding morphological parameters derived by A. van der Wel, van der Wel et al. 2012). These prescriptions include stellar mass functions, star formation rates, dust obscuration, dust temperatures, PAH mass fractions, optical half-light radii and axis ratios, optical colors and projected clustering. I wrote the code myself using the phy ++ library (Appendix A), with advices from H.C. Ferguson and his PhD student C. White to implement the clustering. The resulting catalogs are used by E. Merlin and M. Castellano to build realistic Hubble images, while I create the Spitzer and Herschel maps myself. The resulting flux distributions and map properties are in excellent agreement with the observations, which also confirms the reliability of the techniques I used throughout my PhD.

2.4

The slow downfall of star formation efficiency in massive galaxies during the last 10 Gyr This study is described in Chapter 6. It will be presented in a paper that I have submited for publication to A&A. The current draft is included in Appendix B. This work is essentially based on the same data set at that of Chapter 3, and focuses on one particular observation that I present there, namely that the (logarithmic) slope of the SFR-M * relation evolves with both redshift and stellar mass: while this slope is found to be close to one at z > 2, massive galaxies at lower redshifts tend to have lower SFRs, while low mass galaxies keep a slope of one, thereby flattening the relation at the massive end. This flattening, or bending, of the Main Sequence becomes more and more pronounced with time. Our aim is to investigate the origin of this flattening, figuring out if this is caused by an abnormally high stellar mass content (so that some region of the galaxy, e.g., the bulge, is uncorrelated to star formation while participating to the total stellar mass) or abnormally low SFRs (because the galaxy runs out of gas or forms stars inefficiently).

In this work, I use the same catalogs as in Chapter 3 but further refine the purity of our MIRto-FIR catalogs by identifying and excluding wrong flux associations inherent to the standard flux extraction strategy. I then analyze the optical light profile of galaxies, using morphological bulge-to-disk decompositions that are produced both by M. Pannella using the GIM2D software, and myself with the GALFIT software. As a cross check, I also ran GALFIT to fit single Sérsic profiles on each galaxy. Both of us tested our decomposition procedure on a set of simulated Hubble images that I produced. I then re-analyze the stacked MIR-to-FIR photometry of my first paper with a more detailed set of SED models that I created (and describe in Chapter 4), allowing me to measure the dust masses (M dust ) in our stacked samples. I then infer the mass of hydrogen gas present in these galaxies (M gas ) based on a prescription to estimate their gas-phase metallicity. I complement the analysis with a sample of z = 0 galaxies drawn from the Herschel Reference Survey, which were provided by L. Ciesla. She performed SED fitting on all of these galaxies to derive their stellar masses, SFRs, and dust masses.

The conclusion of this work is that the flattening of the Main Sequence at low redshifts is primarily caused by a reduced star formation efficiency (SFE), rather than a depleted gas content or because of the presence of an inert bulge. This is pointing toward a global and slow decline of the star formation activity in massive star-forming galaxies, that we call a "slow downfall" of star formation efficiency. We cannot yet identify what physical process is driving this reduced SFE, but we can quantify the amount of star formation that is consequentially lost by this effect. We find that it is comparable at z < 1.5 to the mass growth rate of the red sequence, showing that this is an important source of "quiescence" in the late history of the Universe, and that galaxies do not have to die exclusively through a rapid quenching.

Exploring the z = 4 Universe with ALMA

One of the limitations of the study I present in Chapter 3 is that Herschel is not sensitive enough to detect anything but the most extreme starbursts at z ≥ 4. Using stacking, I was able to partially overcome this limitation to determine both the normalization and dispersion of the sSFR up to z = 3.5. Above that redshift, even using stacking Herschel could only provide a constraint on the average SFR of the most massive galaxies (M * > 10 11 M ⊙ ) at z = 4. This determination is uncertain, as at z = 4 the peak of the FIR SED reaches the observed SPIRE 500 µm, which is the Herschel band that is most sensitive to the effects of galaxy clustering. To circumvent this limitation, we estimated with M. Pannella that we could gain a critical insight on the z = 4 Main Sequence with ALMA over slightly more than one decade in stellar mass in the range log 10 (M * /M ⊙ ) = 10.7 -12 with only 1min of integration per galaxy. We therefore decided to write a proposal with our Chilean collaborator R. Leiton to observe with ALMA the 870µm continuum at 0.7 ′′ resolution of all galaxies within 3.5 < z < 5 and M * > 5 × 10 10 M ⊙ for a total time of only 6 hours. The proposal was accepted and the data were received in early 2015. I present in Chapter 7 the work that I have done on this sample that will lead to a paper in the near future.

In this Chapter, I describe the work that I have done to reduce these data and measure the fluxes of our target galaxies, then show some preliminary results. I present the first insight on the dusty star formation view of the Main Sequence at z = 4 and for all stellar masses M * > 5 × 10 10 M ⊙ , extending our work on Herschel stacked measurements with direct individual detections in the rest-frame 170µm with ALMA. The observed trend confirms at first glance (although this work is still in progress) the SFR-M * relation that we inferred at the highmass end with Herschel. I note that a rather low detection rate of about 30% was reached, in comparison to the 80% we were expecting. This is likely a combination of the uncertainty in our sub-mm flux prediction, our choice to include the quiescent galaxies in the sample, some wrong photometric redshifts, and, lastly, the unknown normalization of the Main Sequence.

I also discuss three peculiar galaxies that I discovered in the data. One is a bright sub-mm and radio source that has no counterpart in the optical catalogs simply because it is found very close to a bright star (Section 7.8). Using GALFIT, I subtract the star and perform aperture photometry from the U band up to Spitzer IRAC to learn more about this galaxy. I find it to be a massive object at z ∼ 3, and confirm the presence of an AGN. The other two galaxies, described in Section 7.9, have no counterpart in any catalog and are only clearly detected in the Spitzer IRAC channels, suggesting that they are very high redshift dusty galaxies, possibly among the most distant objects of this class that have been discovered so far. I measure their photometry myself on the Hubble, Subaru, VISTA, Spitzer and Herschel images, and derive first constraints on their redshift. These constraints are loose, but already exclude with high 28/260 probability all z < 4, with a preference for z > 5. I describe below the observing program I proposed to determine their redshift through ALMA spectroscopy.

phy ++ : a fast and open source numerical analysis library for astrophysics in C++

In parallel to the scientific work described above, I have also developed a code library called phy ++ to allow user-friendly numerical analysis for astrophysics in C++. I have made its source code publicly available, and give a short overview of its purpose and capabilities in Appendix A.

Briefly, my aim is to replicate the ease of use and expressiveness of languages like python (+numpy) or IDL, while taking advantage of C++ and its optimal computing speed and increased code robustness. I have devoted a significant fraction of my spare time to this project so as to rapidly reach a framework stable enough to be used for science on a day to day basis. To give a sense of the size of this project, let me just say that it contains about 270 functions for a total of 29 000 lines of code. In the end, the vast majority of the scientific results presented in this manuscript were obtained with this library, although IDL was used to produce all the figures.

My contribution to studies as a co-author

I am also involved in the work undergone by other researchers, and have published papers as co-author. In particular, I provided notable contributions to a paper in preparation written by T. Wang, in which he describes a new technique to efficiently select z > 3 dusty star-forming galaxies that are usually missed by the usual selection techniques (e.g., using the Lyman break) but contribute significantly to the star formation activity of the Universe. My contribution to this work has been to stack his candidate high-redshift galaxies on the Herschel and Hubble images. We obtain their star formation activity from the stacked FIR fluxes, and check for the presence of breaks in their average SED and to measure their average size from the stacked HST images (which I did using GALFIT).

I have also contributed to a paper that was recently submitted by X. Shu on a new technique to identify high redshift galaxies based on their 500 µm Herschel emission and spectral deconfusion, as well as another paper in preparation by T. Wang that studies the optimal choice of priors for automatic source extraction in the Herschel images. Both works are undertaken as part of the ASTRODEEP program. I provided both X. Shu and T. Wang with my simulated Herschel catalogs and maps to test their methods.

Observing

In parallel, I have been involved in multiple observational projects, although I didn't have the chance (yet) to go observing at a telescope. Therefore, my contribution has been to write (or help write) observing proposals, prepare the observations, and reduce the data. I summarize below the proposals to which I have contributed significantly.

ALMA

The first proposal I contributed to was a 6 hours ALMA proposal to make a 870 µm continuum survey of all the z phot = 4 massive galaxies in the CANDELS fields (PI: R. Leiton). This proposal was essentially written by R. Leiton, M. Pannella and myself. The goal of this project is to push further the work that we have done in Schreiber et al. (2015) toward the z = 4 Universe, and get the first complete census of star formation in massive galaxies at these high 29/260 redshifts. It was approved on April 9th 2014, and we received the last bit of data on February 17th 2015. In Chapter 7 I describe how I reduced the data, and give a first glimpse of the results that will be published later this year.

As described above in Section 2.5, I found in these ALMA data two peculiar galaxies that have no counterpart in any image shortward of the Spitzer IRAC bands. To study these two objects further, I proposed during the last ALMA call a 3 hours program to perform a spectral scan and measure a spectroscopic redshift for each of these two "dark ALMA galaxies" (PI: C. Schreiber). I aim at detecting the [C ii] emission line, which is the brightest line in the FIR, at 5.3 < z < 6.8 (the preferred redshift interval from the available photometry). I designed the observing strategy and wrote the proposal myself, with the help of the co-investigators (R. Leiton, M. Pannella, D. Elbaz and T. Wang), and learned during the summer that this propostion was approved and ranked "A", i.e., within the 5% best proposition of this cycle. The details of the proposed observations are given in Section 7.9.4.

In the mean time, I was also co-investigator of a large program proposed to perform a blind survey of the GOODS-South field (PI: D. Elbaz). This program was proposed for the Cycle 2 for a total time of 40 hours, but was rejected. We re-proposed it for the last Cycle, revising the requirements down to 22 hours by targeting a smaller area. This program was also approved in August. Such a survey will provide a wealth of unmatched information on the dust content of galaxies around 1 < z < 2, and star formation at higher redshift. It will also allow a better understanding of the Herschel images thanks to the high angular resolution of ALMA, which will allow robust determination of the dust temperatures of bright galaxies as well as measuring the SFR of fainter objects thanks to the improved deconfusion. Lastly, the potential for serendipity is non-negligible, as demonstrated by the two dark galaxies we discovered in our z = 4 ALMA survey, that covers a ten times smaller (but biased) area.

KMOS

I am also co-investigator of two 20 hours KMOS programs aiming at measuring the spectroscopic redshift of dusty galaxies at 3 < z < 4.5 (PI: R. Leiton for both), using the H β , [O ii] and [O iii] lines in the H and K bands. The first program targets a sample of 2.9 < z < 3.5 galaxies drawn from the CANDELS fields, with a secondary goal of measuring metallicities, while the second targets the same galaxies as those observed with our z = 4 ALMA program to allow a better estimation of their physical properties. Both programs were approved, the first on July 2nd 2014, and the second very recently on July 2nd 2015, and were both ranked with "B" priority. For both programs, I was in charge of choosing the details of the observing strategy (Phase 2), which is a complex topic with KMOS owing to its unique capabilities: one has to find a configuration of the 24 arms that optimizes the number of observed science targets while still leaving room for observing the sky and stars of moderate luminosity to help the registration of the individual observing blocks (OBs). We started receiving the data for the first program in December 2014, but unfortunately only half of the galaxies were actually observed before the project was terminated at the end of the semester. I had the time to perform a first reduction of the data using the ESO pipeline and found that the "helper" stars of moderate luminosity were indeed detected, but I have not yet combined the individual OBs to produce the final spectral cubes of our science targets. Therefore I do not describe this program any further in this manuscript.

During the last call, another KMOS program of 4.5 hours was approved (PI: T. Wang) to get the spectroscopic confirmation of a candidate z = 2.5 cluster, which would be the most distant such structure known to date. I helped writing the proposal and choosing the proposed observing parameters, and I helped T. Wang prepare the Phase 2 at the end of July 2015. 

Sinfoni

In the ALMA data of a collaborator (J.R. Mullaney), we found an intriguing group of three close ALMA detections (within 7 ′′ ). Inspecting their photometry, we found that the three objects could be at the same redshift of z ∼ 2.5, together with a fourth quiescent galaxy and a fifth object detected in both the radio and the X-ray. This structure could be a dense protocluster, with an interesting combination of radio and X-ray emission suggestive of the presence of AGNs. We proposed (PI: M. Pannella) to confirm the membership of each galaxy with NIR spectroscopy (H+K), using the large field of view (FOV) of Sinfoni (indeed, the structure is too dense for KMOS to be used in an optimal way). I helped write the proposal, in which we asked for 10 hours of telescope time, but it was eventually rejected on the 2nd of July 2014. However, after learning this, I included these galaxies in the filler list of our accepted KMOS program and managed to schedule two of them to be observed. After the KMOS data is reduced, and if we do detect lines at the same redshift, we will be able to propose again the Sinfoni observation with a stronger case.
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Chapter 3

The Main Sequence of star-forming galaxies as seen by Herschel

In this chapter I present an analysis of the deepest Herschel images in four major extragalactic fields: GOODS-North, GOODS-South, UDS, and COSMOS. These images were obtained within the GOODS-Herschel, CANDELS-Herschel and PEP programs, and provide far-infrared detections for a total of 10 497 individual galaxies. I supplement this analysis by stacking these images using a mass-complete sample of 62 361 star-forming galaxies selected from the Hubble Space Telescope (HST) H band-selected catalogs of the CANDELS survey, and from two deep ground-based K s band-selected catalogs in the GOODS-North and COS-MOS fields. The goal is to obtain one of the most accurate and unbiased understanding to date of the stellar mass growth over the cosmic history.

One can obtain a robust and complete estimation of the SFR of a galaxy by combining the direct UV luminosity obtained with, e.g., HST, and the far-infrared reprocessed light provided by Herschel. I take advantage of this approach in this work to confirm that galaxies from z = 4 to z = 0 and of all stellar masses (M * ) follow a universal scaling law, the so-called Main Sequence of star-forming galaxies. I find a universal, close-to-linear slope of the log 10 (SFR)log 10 (M * ) relation, with evidence for a flattening at high masses (log 10 (M * /M ⊙ ) > 10.5) that becomes less prominent with increasing redshift and almost vanishes by z ≃ 2, where the slope becomes compatible with one. I investigate the origin of this change of slope in Chapter 6. The specific SFR (sSFR = SFR/M * ) of star-forming galaxies is found to decrease continuously from z = 4 to 0.

I introduce in this chapter a new method called "scatter stacking" and show, for the first time, that stacking also provides a powerful tool to determine the dispersion of a physical correlation. Using this tool, I measure within the Main Sequence a nonvarying SFR dispersion of 0.3 dex: at a fixed redshift and stellar mass, about 68% of star-forming galaxies form stars at a universal rate within a factor of two.

Finally, I discuss the implications of our findings on the cosmic SFR history and on the origin of present-day stars. Combining all these results, one can show that more than twothirds of present-day stars must have formed in a regime dominated by the "Main Sequence" mode. As a consequence I conclude that, although omnipresent in the distant Universe, galaxy mergers had little impact in shaping the global star formation history over the last 12.5 billion years.

Introduction

Most extremely star-forming galaxies in the local Universe are heavily dust obscured and show undeniable signs of an ongoing major merger, however such objects are relatively rare (Armus et al. 1987;Sanders & Mirabel 1996). They have been historically classified as Luminous and 33/260 CHAPTER 3. THE MAIN SEQUENCE OF STAR-FORMING GALAXIES AS SEEN BY HERSCHEL Ultra Luminous InfraRed Galaxies, LIRGs and ULIRGs, based on their bolometric infrared luminosity over the wavelength range 8-1000 µm, by L IR > 10 11 L ⊙ and > 10 12 L ⊙ , respectively. However, they make up for only 2% of the integral of the local IR luminosity function, the remaining fraction mainly produced by more typical isolated galaxies (Sanders & Mirabel 1996).

More recently, studies at higher redshift showed that LIRGs were the dominant population at z = 1 (Chary & Elbaz 2001;Franceschini et al. 2001;Le Floc'h et al. 2005), replaced by ULIRGs at z = 2 (Magnelli et al. 2013). This was first interpreted as an increasing contribution of gas-rich galaxy mergers to the global star formation activity of the Universe, in qualitative agreement with the predicted and observed increase of the major merger rate (e.g., Patton et al. 1997;Le Fèvre et al. 2000;Conselice 2003).

The discovery of the correlation between star formation rate (SFR) and stellar mass (M * ), also called the "Main Sequence" of star-forming galaxies (Noeske et al. 2007), at z ≃ 0 (Brinchmann et al. 2004), z ≃ 1 (Noeske et al. 2007;Elbaz et al. 2007), z ≃ 2 (Daddi et al. 2007b;Pannella et al. 2009a;Rodighiero et al. 2011;Whitaker et al. 2012) z = 3-4 (Daddi et al. 2009;Magdis et al. 2010;Heinis et al. 2013;Pannella et al. 2015) and even up to z = 7 (e.g., Stark et al. 2009;Bouwens et al. 2012;Stark et al. 2013;González et al. 2014;Steinhardt et al. 2014;Salmon et al. 2015) suggested instead a radically new paradigm. The tightness of this correlation is indeed not consistent with the idea that most stars are formed in frequent random bursts induced by processes like major mergers of gas-rich galaxies, and favors more stable star formation histories (Noeske et al. 2007).

Furthermore, systematic studies of the dust properties of the "average galaxy" at different redshifts show that LIRGs at z = 1 and ULIRGs at z = 2 bear close resemblance to normal starforming galaxies at z = 0. In particular, in spite of having star formation rates (SFRs) higher by orders of magnitude, they appear to share similar star-forming region sizes (Rujopakarn et al. 2011), polycyclic aromatic hydrocarbon (PAH) emission lines equivalent widths (Pope et al. 2008;Fadda et al. 2010;Elbaz et al. 2011;Nordon et al. 2012), [C ii] to far-infrared (FIR) luminosity (L FIR ) ratios (Díaz-Santos et al. 2013), and universal FIR spectral energy distributions (SEDs) (Elbaz et al. 2011). Only outliers above the SFR-M * correlation (usually called "starbursts", Elbaz et al. 2011) show signs of different dust properties: more compact geometry (Rujopakarn et al. 2011), excess of IR8 ≡ L IR /L 8 µm (Elbaz et al. 2011), [C ii] deficit (Díaz-Santos et al. 2013), increased effective dust temperature (Elbaz et al. 2011;Magnelli et al. 2014), and PAH deficit (Nordon et al. 2012;Murata et al. 2014), indicating that these starburst galaxies are the true analogs of local LIRGs and ULIRGs. In this paradigm, the properties of galaxies are no longer most closely related to their rest-frame bolometric luminosities, but rather to their excess SFR compared to that of the Main Sequence.

This could mean that starburst galaxies are actually triggered by major mergers, but that the precise mechanism that fuels the remaining vast majority of "normal" galaxies is not yet understood. Measurements of galactic gas reservoirs yield gas fractions evolving from about 10% in the local Universe (Leroy et al. 2008) up to 60% at z ≃ 3 (Tacconi et al. 2010;Daddi et al. 2010a;Geach et al. 2011;Magdis et al. 2012;Saintonge et al. 2013;Santini et al. 2014;Genzel et al. 2015, Béthermin et al. 2014, submitted). Compared to the observed SFR, this implies gas-consumption timescales that are much shorter than the typical duty cycle of most galaxies. It is thus necessary to replenish the gas reservoirs of these galaxies in some way. Large volume numerical simulations (Dekel et al. 2009a) have shown that streams of cold gas from the intergalactic medium can fulfill this role, allowing galaxies to keep forming stars at these high but steady rates. Since the amount of gas accreted through these "cold flows" is directly linked to the matter density of the intergalactic medium, this also provides a qualitative explanation for the gradual decline of the SFR from z = 3 to the present day (e.g., Davé et al. 2011).

This whole picture relies on the existence of the Main Sequence. However, actual observations of the SFR-M * correlation at z > 2 rely mostly on ultraviolet-derived star formation rates, which need to be corrected by large factors to account for dust extinction (Calzetti et al. 1994;Madau et al. 1998;Meurer et al. 1999;Steidel et al. 1999). These corrections, performed using the ultraviolet (UV) continuum slope β and assuming an extinction law, are uncertain and still debated. Although dust-corrected SFRs are able to match more robust estimators on average in the local Universe (Calzetti et al. 1994;Meurer et al. 1999) andbeyond (e.g., Pannella et al. 2009a;Overzier et al. 2011;Heinis et al. 2013;Rodighiero et al. 2014), it has been shown for example that these corrections cannot recover the full star formation rate of the most active objects (Goldader et al. 2002;Buat et al. 2005;Elbaz et al. 2007;Rodighiero et al. 2011;Wuyts et al. 2011a;Penner et al. 2012;Oteo et al. 2013). More recently, several studies have pointed toward an evolution of the calibration between the UV slope and UV attenuation as a function of redshift, possibly due to changes in the interstellar medium (ISM) properties (e.g., Castellano et al. 2014;Pannella et al. 2015) or even as a function of environment (Koyama et al. 2013). It is therefore possible that using UV-based SFR estimates modifies the normalization of the Main Sequence, and/or its dispersion. In particular, it could be that the tight scatter of the Main Sequence observed at high redshift (e.g., Bouwens et al. 2012;Salmon et al. 2015) is not real but induced by the use of such SFRs, thereby questioning the very existence of a Main Sequence at these epochs. Indeed, a small scatter is a key ingredient without which the Main Sequence loses its meaning.

Infrared telescopes allow us to measure the bolometric infrared luminosity of a galaxy (L IR ), a robust star formation tracer (Kennicutt 1998b). Unfortunately, they typically provide observations of substantially poorer quality (both in angular resolution and typical depth) compared to optical surveys. The launch of the ISO space telescope space telescope (Kessler et al. 1996), embarking the ISOCAM instrument (Cesarsky et al. 1996), was a huge step forward, opening for the first time to door to the distant dusty Universe, and showing that dust is a key component to study the evolution of galaxies (e.g., Franceschini et al. 2001;Chary & Elbaz 2001). The consequent launch of Spitzer (Werner et al. 2004) built on this success and allowed the detection of moderately luminous objects at high redshifts (z < 3) in the mid-infrared (MIR) thanks to the MIPS instrument (Rieke et al. 2004). It was soon followed by the Herschel space telescope (Pilbratt et al. 2010), which provided better constraints on the spectrum of the dust emission by observing in the FIR with the PACS (Poglitsch et al. 2010) and SPIRE instruments (Griffin et al. 2010).

Nevertheless only the most luminous star-forming objects can be detected at high redshifts, yielding strongly SFR biased samples (Elbaz et al. 2011). In particular, most galaxies reliably detected with these instruments at z ≥ 3 are very luminous starbursts, making it difficult to study the properties of "normal" galaxies at these epochs. So far only a handful of studies have probed in a relatively complete manner the Universe at z 3 with IR facilities (e.g., Heinis et al. 2014;Pannella et al. 2015) and most of what we know about normal galaxies at z > 3 is currently based on UV light alone (Daddi et al. 2009;Stark et al. 2009;Bouwens et al. 2012;Stark et al. 2013;González et al. 2014;Salmon et al. 2015).

Here we take advantage of the deepest data ever taken with Herschel in the Great Observatories Origins Deep Survey fields (GOODS, PI: D. Elbaz), covering the GOODS-North and GOODS-South fields, and the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields (CANDELS, PI: M. E. Dickinson) covering a fraction of the Ultra-Deep Survey1 (UDS) and Cosmic Evolution Survey (COSMOS) fields, to infer stricter constraints on the existence and relevance of the Main Sequence in the young Universe up to z = 4. To do so, we first construct a mass-selected sample with known photometric redshifts and stellar masses and then isolate star-forming galaxies within it. We bin this sample in redshift and stellar mass and stack the Herschel images. This allows us to infer their average L IR , and thus their SFRs. We then present a new technique we call "scatter stacking" to measure the dispersion around the average stacked SFR, taking nondetected galaxies into account. Finally, we cross-match our sample with Herschel catalogs to study individually detected galaxies.
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CHAPTER 3. THE MAIN SEQUENCE OF STAR-FORMING GALAXIES AS SEEN BY HERSCHEL (a) This is the sky coverage of our sample, and may be smaller than the nominal area of the detection image. (b) For the fields GS, UDS and COSMOS-CANDELS, the H-band coverage is highly nonuniform over the whole field.

Sample and observations

Here we conservatively quote the depth of the shallowest region. (c) These limiting depths are computed from the median uncertainty on the fluxes as reported in the Herschel catalogs of each field.

We use the ultra-deep H-band catalogs provided by the CANDELS-HST team (Grogin et al. 2011;Koekemoer et al. 2011) in three of the CANDELS fields, namely GOODS-South (GS Guo et al. 2013), UDS (Galametz et al. 2013), and COSMOS (Nayyeri et al. in prep.). With the GOODS-North (GN) CANDELS catalog not being finalized at the time of writing, we fall back to a ground-based K s -band catalog. To extend our sample to rarer and brighter objects, we also take advantage of the much wider area provided by the K s -band imaging in the COSMOS field acquired as part of the UltraVISTA program (UVISTA). In the following, we will refer to this field as "COSMOS UltraVISTA", while the deeper but smaller region observed by CANDELS will be called "COSMOS CANDELS".

Using either the H or the K s band flux as the selection criterion will introduce potentially different selection effects. In practice, these two bands are sufficiently close in wavelengths that one does not expect major differences to arise: if anything, the K s -band catalogs are potentially more likely to be mass-complete, since this band will probe the rest-frame optical up to higher redshifts. However these catalogs are ground-based, and lack both angular resolution and depth when compared to the HST H-band data. It is thus necessary to carefully estimate the mass completeness level of each catalog, and only consider mass-complete regimes in the following analysis.

All these fields were selected for having among the deepest Herschel observations, which are at the heart of the present study, along with high-quality, multi-wavelength photometry in the UV to NIR. The respective depths of each catalog are listed in Table 3.1. We next present the details of the photometry and source extraction of each field.

GOODS-North

GOODS-North is one of the fields targeted by the CANDELS-HST program, and the last to be observed. Consequently, the data reduction was delayed compared to the other fields and there was no available catalog when we started this work. We thus use the ground-based K sband catalog presented in Pannella et al. (2015), which is constructed from the deep CFHT WIRCAM K s -band observations of Wang et al. (2010). This catalog contains 20 photometric bands from the NUV to IRAC 8 µm and was built using SExtractor (Bertin & Arnouts 1996) in dual image mode, with the K s -band image as the detection image. Fluxes are measured 36/260 within a 2 ′′ aperture on all images, and the effect of varying point spread function (PSF) and / or seeing is accounted for using PSF-matching corrections. Per-object aperture corrections to total are provided by the ratio of the FLUX_AUTO as given by SExtractor and the aperture K s -band flux. This results in a 0.8 ′′ angular resolution catalog of 79 003 sources and a 5σ limiting magnitude of K s = 24.5.

The K s -band image extends over 0.25 deg 2 , but only the central area is covered by Spitzer and Herschel. We therefore only keep the sources that fall inside the coverage of those two instruments, i.e., 15 284 objects in 168 arcmin 2 . We also remove stars identified either from the SExtractor flag CLASS_STAR for bright enough objects (K s < 20), or using the BzK colorcolor diagram (Daddi et al. 2004a). Our final sample consists of 14 828 galaxies, 12 317 of which are brighter than the 5σ limiting magnitude, with 3 775 spectroscopic redshifts.

The Herschel images in both PACS and SPIRE were obtained as part of the GOODS-Herschel program (Elbaz et al. 2011). The source catalog of Herschel and Spitzer MIPS 24 µm are taken from the public GOODS-Herschel DR1. Herschel PACS and SPIRE 250 µm flux densities are extracted using PSF fitting at the position of MIPS priors, themselves extracted from IRAC priors. SPIRE 350 µm and 500 µm flux densities are obtained by building a reduced prior list out of the 250 µm detections. This procedure, described in more detail in Elbaz et al. (2011), yields 2 681 MIPS and 1 039 Herschel detections (> 3σ in any PACS band or > 5σ in SPIRE, following Elbaz et al. 2011) that we could cross-match to the K s -band catalog using their IRAC positions.

GOODS-South, UDS, & COSMOS CANDELS

In GOODS-South, UDS and COSMOS CANDELS we use the official CANDELS catalogs presented, respectively, in Guo et al. (2013) (version 121114), Galametz et al. (2013) (version 120720) and Nayyeri et al. (in prep.) (version 130701). They are built using SExtractor in dual image mode, using the HST H-band image as the detection image to extract the photometry at the other HST bands. The ground-based and Spitzer photometry is obtained with TFIT (Laidler et al. 2007). The HST photometry was measured using the FLUX_ISO from SExtractor and corrected to total magnitudes using either the FLUX_BEST or FLUX_AUTO measured in the H band, while the ground-based and Spitzer photometry is already "total" by construction. These catalogs gather 16 photometric bands in GOODS-South, 19 in UDS, and 27 in COS-MOS, ranging from the U band to IRAC 8 µm, for a total of 34 930 (respectively 35 932 and 38 601) sources, 1 767 (respectively 575 and 1 175) of which have a spectroscopic redshift. The H-band exposure in the fields is quite heterogeneous, the 5σ limiting magnitude ranging from 27.4 to 29.7 in 27.1 to 27.6 in UDS,and 27.4 to 27.8 in COSMOS, but it always goes much deeper than the available ground-based photometry. These extreme depths can also become a problem, especially when dealing with sources so faint that they are significantly detected in the HST images only. The SED of these objects is so poorly constrained that we cannot robustly identify them as galaxies, or compute accurate photometric redshifts. To solve this issue, one would like to only keep sources that have a sufficient wavelength coverage, e.g., imposing a significant detection in at least ten UV to NIR bands, but this would introduce complex selection effects. Here we decide to only keep sources that have an H-band magnitude brighter than 26. This ensures that the median number of UV to NIR bands for each source (along with the 16th and 84th percentiles) is 11 +3 -2 , 16 +3 -4 and 21 +5 -5 , respectively, as compared to 9 +4

-4 , 13 +5 -5 and 18 +7 -7 when using the whole catalogs. As for GOODS-North, we remove stars using a combination of morphology and BzK classification, and end up with 18 364 (respectively 21 552 and 24 396) galaxies with H < 26 in 184 arcmin 2 (respectively 202 arcmin 2 and 208 arcmin 2 ).

In both UDS and COSMOS, the Herschel PACS and SPIRE images were taken as part of the CANDELS-Herschel program (PI: M. Dickinson), and are slightly shallower than those in the two GOODS fields. The MIPS 24 µm images, however, are clearly shallower, since they reach a noise level of approximately 40 µJy (1σ), as compared to the 20 µJy in GOODS. In COSMOS, however, the MIPS map contains a "deep" region (Sanders et al. 2007) that covers roughly half of the COSMOS CANDELS area with a depth of about 30 µJy.

In those two fields, sources are extracted with the same procedure as in GOODS-North (Inami et al. in prep). These catalogs provide, respectively, 2 461 and 2 585 MIPS sources as well as 730 and 1 239 Herschel detections within the HST coverage. Since the IRAC priors used in the source extraction come directly from the CANDELS catalog, no cross-matching has to be performed.

The Herschel images in GOODS-South come from three separate programs. The PACS images are the result of the combined observation of both GOODS-Herschel and the PACS Evolutionary Probe program (PEP, Lutz et al. 2011), while SPIRE images were obtained as part of the Herschel Multi-tiered Extragalactic Survey (HerMES, Oliver et al. 2012). The PACS fluxes are taken from the public PEP DR1 catalog (Magnelli et al. 2013), and were extracted using the same procedure as in GOODS-North. To extract the SPIRE fluxes, B. Magnelli first produced the maps by downloading the individual level-2 data products covering the full ECDFS from the Herschel ESA archive2 and reduced them following the same procedure as the other sets of SPIRE data from GOODS and CANDELS-Herschel. He then performed the source extraction as in Elbaz et al. (2011). This catalog provides 1 875 MIPS and 1 058 Herschel detections within the HST coverage, which were cross-matched to the CANDELS catalog using their IRAC positions.

COSMOS UltraVISTA

Only a small region of the COSMOS field has been observed within the CANDELS program. For the remaining area, we have to rely on ground-based photometry. To this end, we consider two different K s -band catalogs, both based on the UltraVISTA DR1 (McCracken et al. 2012), and taken from Muzzin et al. (2013b) and Ilbert et al. (2013).

The first catalog, presented in Muzzin et al. (2013b), is built using SExtractor in dual image mode, with the K s -band image as detection image. The photometry in the other bands is extracted using PSF-matched images degraded to a common resolution of ∼ 1.1 ′′ and an aperture of 2.1 ′′ , except for the Spitzer bands and GALEX. Here, an alternative cleaning method is used, where nearby sources are first subtracted using the PSF-convolved K s -band profiles (u * band for GALEX), then the photometry of the central source is measured inside an aperture of 3 ′′ . In both cases, aperture fluxes are corrected to total using the ratio of FLUX_AUTO and aperture K s -band flux. In the end, the catalog contains 30 photometric bands ranging from GALEX FUV to IRAC 8 µm (we did not use the 24 µm photometry), for a total of 262 615 objects and a 5σ limiting magnitude of K s = 23.4. As for the CANDELS fields, stars are excluded using a combination of morphological and BzK classification, resulting in a final number of 249 823 galaxies within 1.6 deg 2 , 168 509 of which are brighter than the 5σ limiting magnitude, with 5 532 having spectroscopic redshifts.

The second catalog, presented in Ilbert et al. (2013), is very similar in that, apart from missing GALEX and Subaru g + , it uses the same raw images and was also built with SExtractor. The difference lies mostly in the extraction of IRAC fluxes. Here, and for IRAC only, SExtractor is used in dual image mode, with the Subaru i-band image as the detection image. Since the IRAC photometry was not released along with the rest of the photometry, we could not directly check the consistency of the two catalogs, nor use this photometry to derive accurate galaxy properties. Nevertheless, the photometric catalog comes with a set of photometric redshifts and stellar masses that we can use as a consistency check. These were built using a much more extensive but private set of spectroscopic redshifts, and are thus expected to be of higher quality. A direct comparison of the two photometric redshift estimations shows a constant relative scatter of 4% below z = 2. At higher redshifts, the scatter increases to 10% because of the ambiguity between the Balmer and Lyman breaks. This ambiguity arises because of the poor wavelength coverage caused by the shallow depths of these surveys, but it takes place in a redshift regime where our results are mostly based on the deeper, and therefore more robust, CANDELS data. We also checked that redoing our analysis with Ilbert et al.'s catalog yielded very similar results in the mass-complete regimes.

Finally, while the Spitzer MIPS imaging is the same as that in COSMOS CANDELS, the Herschel PACS images in this wide field were taken as part of the PEP program, at substantially shallower depth (Lutz et al. 2011). The Spitzer MIPS and Herschel PACS photometry are taken from the public PEP DR1 catalog3 , itself based on the MIPS catalog of Le Floc'h et al. (2009), yielding 37 544 MIPS and 9 387 PACS detections successfully cross-matched to the first K s band catalog.

Photometric redshifts and stellar masses

Photometric redshifts (photo-z) and stellar masses are derived by M. Pannella using the procedure described in Pannella et al. (2015). Briefly, photo-zs are computed using EAZY4 (Brammer et al. 2008) in its standard setup. Global photometric zero points are adjusted iteratively by comparing the photo-zs to the available spectroscopic redshifts (spec-z), and minimizing the difference between the two. We emphasize that, although part of these adjustments are due to photometric calibration issues, they also originate from defects in the adopted SED template library. To estimate the quality of the computed photo-zs, we request that the odds computed by EAZY, which is the estimated probability that the true redshift lies within ∆z = 0.2 × (1 + z phot ) (Benítez 2000), be larger than 0.8. A more stringent set of criteria is adopted in COSMOS CANDELS, because of the lower quality of the photometric catalog. To prevent contamination of our sample from issues in the photometry, we prefer to be more conservative and only keep odds > 0.98 and impose that the χ 2 of the fit be less than 100 to remove catastrophic fits. The median ∆z ≡ |z phot -z spec |/(1 + z spec ) is respectively 3.0%, 3.2%, 1.8%, 2.0%, and 0.8% in GOODS-North, GOODS-South, UDS CANDELS, COSMOS CANDELS, and COS-MOS UltraVISTA. We stress however that the representativeness of this accuracy also depends on the spectroscopic sample. In COSMOS UltraVISTA, for example, we only have spec-zs for the brightest objects, hence those that have the best photometry. Fainter and more uncertain sources thus do not contribute to the accuracy measurement, which is why the measured value is so low. Lastly, although we use these spec-zs to calibrate our photo-zs, we do not use them afterwards in this study. The achieved precision of our photo-zs is high enough for our purposes, and the selection functions of all spectroscopic surveys we gather here are very different, if not unknown. To avoid introducing any incontrollable systematic, we therefore decide to consistently use photo-zs for all our sample.

Stellar masses are derived using FAST5 (Kriek et al. 2009), adopting Salpeter (1955) IMF6 , the Bruzual & Charlot (2003) stellar population synthesis model and assuming that all galaxies follow delayed exponentially declining7 star formation histories (SFHs), parametrized by SFR(t) ∝ (t/τ 2 ) exp(-t/τ) with 0.01 < τ < 10 Gyr. Dust extinction is accounted for assuming the Calzetti et al. (2000) law, with a grid ranging from A V = 0 to 4. Metallicity is kept fixed and equal to Z ⊙ . We assess the quality of the stellar mass estimate with the reduced χ 2 of the fit, only keeping galaxies for which χ 2 < 10.

Rest-frame luminosities and star formation rates

Star formation rates are typically computed by measuring the light of young OB stars, which emit the bulk of their light in the UV. However this UV light is most of the time largely absorbed by the interstellar dust, and re-emitted in the IR as thermal radiation. To obtain the total SFR of a galaxy, it is therefore necessary to combine the light from both the UV and the IR.

Rest-frame luminosities in the FUV (1500 Å), U, V, and J bands are computed by M. Pannella with EAZY by convolving the best-fit SED model from the stellar mass fit with the filter response curves. The FUV luminosity is then converted into SFR uncorrected for dust attenuation using the formula from Daddi et al. (2004a), i.e., SFR UV = 2.17 × 10 -10 L UV [L ⊙ ] .

(3.1) I computed the infrared luminosity L IR , following the procedure of Elbaz et al. (2011). We fit the Herschel flux densities with CE01 templates, and compute L IR from the best-fit template. In this procedure, photometric points below 30 µm rest-frame are not used in the fit since this is a domain that is potentially dominated by active galactic nuclei (AGNs) torus emission, and not by star formation (e.g., Mullaney et al. 2011). We come back to this issue in Section 3.2.6. This IR luminosity is, in turn, converted into dust-reprocessed SFR using the formula from Kennicutt (1998b) SFR

IR = 1.72 × 10 -10 L IR [L ⊙ ] . (3.2)
The total SFR is finally computed as the sum of SFR UV and SFR IR . The above two relations are derived assuming a Salpeter (1955) initial mass function (IMF) and assume that the SFR remained constant over the last 100 Myr.

A substantial number of galaxies in this sample (50% in the CANDELS fields, 75% in COSMOS UltraVISTA) are detected by Spitzer MIPS but not by Herschel. Although for these galaxies we only have a single photometric point in the MIR, we can still infer accurate monochromatic SFRs using the original L IR calibration of the CE01 library. This calibration is valid up to z < 1.5, as shown in Elbaz et al. (2011), hence we only use MIPS-derived SFRs for sources not detected by Herschel over this redshift range. Although there exist other calibrations that are applicable to higher redshifts (e.g., Elbaz et al. 2011;Wuyts et al. 2011a), we do not know how they would impact the measurement of the scatter of the Main Sequence. We therefore prefer not to use them and discard the 24 µm measurements above z = 1.5. Galaxies not detected in the MIR (z < 1.5) or FIR have no individual SFR estimates and are only used for stacking. When working with detections alone (Section 3.4.6), this obviously leads to an SFR selected sample and is taken into account by estimating the SFR completeness.

Lastly, there are some biases that can affect our estimates of SFR from the IR. In particular, the dust can also be heated by old stars that trace the total stellar mass content rather than the star formation activity (e.g., Salim et al. 2009). Because of the relatively low luminosity of these stars, this will most likely be an issue for massive galaxies with low star formation activity, i.e., typically quiescent galaxies (see, e.g., Appendix 3.7 where we analyze such cases). Since we remove these galaxies from our sample, we should not be affected by this bias. This is also confirmed by the excellent agreement of IR-based SFR estimates with those obtained from the radio emission (e.g., Pannella et al. 2015), the latter not being affected by the light of old stars.

A mass-complete sample of star-forming galaxies

We finalize our sample by selecting actively star-forming galaxies. Indeed, the observation of a correlation between mass and SFR only applies to galaxies that are still forming stars, and not to quiescent galaxies. The latter are not evolving anymore and pile up at high stellar masses with little to no detectable signs of star formation. Nevertheless, they can still show residual IR 40/260 (a) Number of galaxies in our mass-complete NIR sample, removing stars from the Milky Way, spurious sources, and requiring Spitzer and Herschel coverage. (b) Final subsample of good quality galaxies classified as star-forming with the UV J criterion (see Section 3.2.6).

(c) Subsample of "SF" galaxies with a spectroscopic redshift (various sources, see catalog papers for references). (d) Subsample of "SF" galaxies with a detection in any Herschel band, requiring > 3σ significance in PACS or > 5σ in SPIRE (following Elbaz et al. 2011). emission due to the warm inter stellar medium (ISM). This cannot be properly accounted for with the CE01 library, and will be misinterpreted as an SFR tracer.

Several methods exist to exclude quiescent galaxies. The most obvious is to select galaxies based on their specific SFR (sSFR ≡ SFR/M * ). Indeed, quiescent galaxies have very low SFR by definition, and they are preferentially found at high M * . Therefore, they will have very low sSFR compared to star-forming galaxies. This obviously relies on the very existence of the correlation between SFR and M * , and removing galaxies with too low sSFR would artificially create the correlation even where it does not exist. On the other hand, selecting galaxies based on their SFR alone would destroy the correlation, even where it exists (Rodighiero et al. 2011;Lee et al. 2013). It is therefore crucial that the selection does not apply directly to any combination of SFR or M * . Furthermore, these methods require that an accurate SFR is available for all galaxies, and this is something we do not have since most galaxies are not detected in the mid-or far-IR. We must therefore select star-forming galaxies based on information that is available for all the galaxies in our sample, i.e., involving optical photometry only.

There are several color-magnitude or color-color criteria that are designed to accomplish this. Some, like the BzK approach (Daddi et al. 2004a), are based on the observed photometry and are thus very simple to compute, but they also select a particular redshift range by construction. This is not desirable for our sample, and we thus need to use rest-frame magnitudes. Color-magnitude diagrams (e.g., Ur versus r-band magnitude as in Baldry et al. 2004) tend to wrongly classify some of the red galaxies as passive, while they could also be red because of high dust attenuation. Since high mass galaxies suffer the most from dust extinction (Pannella et al. 2009a), it is thus likely that color-magnitude selections would have a nontrivial effect on our sample. It is therefore important to use another color to disentangle galaxies that are red because of their old stellar populations and those that are red because of dust extinction.

To this end, Williams et al. (2009) devised the UV J selection, based on the corresponding color-color diagram introduced in Wuyts et al. (2007). It uses the U -V color, similar to the Ur from the standard color-magnitude diagram, but combines it to the V -J color to break the age-attenuation degeneracy. Although the bimodality stands out clearly on this diagram, the locus of the passive cloud has been confirmed by Williams et al. (2009) using a sample of massive galaxies in the range 0.8 < z < 1.2 with little or no [O ii] line emission, while the active cloud falls on the Bruzual & Charlot (2003) evolutionary track for a galaxy with constant SFR. One can then draw a dividing line that passes between those two clouds to separate one population from the other. In this chapter we use the following definition, at all redshifts and stellar masses:

quiescent =          U -V > 1.3 , V -J < 1.6 , U -V > 0.88 × (V -J) + 0.49 . (3.3)
This definition differs by only 0.1 magnitude compared to that of Williams et al. (2009). Rest-frame colors can show offsets of similar order from one catalog to another, because of photometric coverage and uncertainties in the zero-point corrections. It is thus common to adopt slightly different definitions to account for these effects (see e.g., Cardamone et al. 2010;Whitaker et al. 2011;Brammer et al. 2011;Strazzullo et al. 2013;Viero et al. 2013;Muzzin et al. 2013b). In COSMOS UltraVISTA, we follow the definition given by Muzzin et al. (2013b). In Chapter 6, we will also use a slightly modified version of this diagram for z = 0 galaxies.

The corresponding diagram in bins of mass and redshift for the CANDELS fields is shown in Fig. 3.1. Here we also overplot the location of the galaxies detected by Herschel; because of the detection limit of the surveys, the vast majority of Herschel detections have high SFRs. We therefore expect them to fall on the UV J "active" region. This is indeed the case for the vast majority of these galaxies, even when the majority of optical sources are quiescent as is the case at z = 0.5 and log 10 (M * /M ⊙ ) > 10. In total, only 5% of the galaxies in our Herschel sample are classified as passive, and about a third of those have a probability larger than 20% 42/260 to be misclassified because of uncertainties in their UV J colors. The statistics in COSMOS UltraVISTA are similar.

The number of galaxies with reliable redshifts and stellar masses (see Section 3.2.4) that are classified with this diagram as actively star-forming are reported in Table 3.2. These are the galaxies considered in the following analysis. As a check, we also analyze separately the quiescent galaxies in Appendix 3.7.

Finally, we do not explicitly exclude known AGNs from our sample. We expect AGNs to reside in massive star-forming galaxies (Kauffmann et al. 2003;Mullaney et al. 2012;Santini et al. 2012;Juneau et al. 2013;Rosario et al. 2013). While the most luminous optically unobscured AGNs may greatly perturb the optical photometry, and therefore the measurement of redshift and stellar mass, they will also degrade the quality of the SED fitting because we have no AGN templates in our fitting libraries. This can produce an increased χ 2 , hence selecting galaxies with χ 2 < 10 (see Section 3.2.4) helps remove some of these objects. Also, their point-like morphology on the detection image tends to make them look like stars, which are systematically removed from the sample. The more common moderate luminosity AGNs can still be fit properly with galaxy templates (Salvato et al. 2011). Therefore, several AGNs do remain in our sample without significantly affecting the optical SED fitting and stellar masses. Still, obscured AGNs will emit some fraction of their light in the IR through the emission of a dusty torus. To prevent pollution of our FIR measurements by the light of such dusty AGNs, we only use the photometry at rest-frame wavelengths larger than 30 µm, where the contribution of the AGN is negligible (Mullaney et al. 2011). Indeed, while the most extreme AGNs may affect mid-to-far IR colors, such as 24-to-70 µm color, their far-IR colors are indistinguishable from that of star-forming galaxies (Hatziminaoglou et al. 2010). By rejecting the most problematic cases, and mitigating against AGN contribution to the IR, we aim to remove severe contamination while retaining a high sample completeness. Catalog z = 0.5 1.0 1.5 2.2 3.0 4.0 GN 8.9 9.3 9.8 10.1 10.5 10.7 CANDELS a 8.3 8.7 9.0 9.4 9.9 10.3 COSMOS UVISTA 9.1 9.6 10.1 10.6 10.9 11.3 (a) These values are valid for GOODS-South, UDS, and COSMOS CANDELS, keeping all sources with H < 26.

Completeness and mass functions

The last step before going through the analysis is to make sure that, in each stellar mass bin we will work with, as few galaxies as possible are missed because of our selection criteria. The fact that we built these samples by starting from an NIR selection makes it much simpler to compute the corresponding mass completeness: the stellar mass of a galaxy at a given redshift is indeed well correlated with the luminosity in the selection band (either H or K s ), as illustrated in Fig. 3.2, the scatter around the correlation being caused by differences of age, attenuation, and to some extent flux uncertainties and k-correction. From our sample, we can actually see by looking at this correlation with various bands (H, K s , and IRAC channels 1 and 2) that this scatter is minimal (0.14 dex) when probing the rest-frame 1.7 µm, but it reaches 0.4 dex in the rest-frame UV (3500 Å). While this value is of course model dependent, it stresses the importance of having high-quality NIR photometry, especially the Spitzer IRAC bands (observed 3-5 µm). To estimate the mass completeness, we decided to use an empirical approach, where we do not assume any functional form for the true mass function. Instead, we directly compute the completeness assuming that, at a given redshift, the stellar mass is well estimated by a power law of the luminosity (measured either from the observed H or K s band), i.e., M * = C L α , plus a Gaussian scatter in log space. We fit this power law and estimate the amplitude of the scatter using the detected galaxies, as shown in Fig. 3.2. Using this model (red solid and dotted lines) and knowing the limiting luminosity in the selection band (orange horizontal 44/260 lines), we can estimate how many galaxies we miss at a given stellar mass, using, e.g., a Monte Carlo simulation. At a given stellar mass, we generate a mock population of galaxies with uniform redshift distribution within the bin and estimate what would be their luminosity in the selection band by using the above relation and adding a Gaussian scatter to the logarithm of the luminosity. The completeness is then computed as the fraction of galaxies that have a luminosity greater than the limiting luminosity at the considered redshift. We consider our catalogs as "complete" when the completeness reaches at least 90%.

The same procedure is used on COSMOS UltraVISTA and GOODS-North separately, and the estimated completeness levels are all reported in Table 3.3. We compared the values obtained in GOODS-North with those reported in Pannella et al. (2015), where the completeness is estimated following Rodighiero et al. (2010) using a stellar population model. The parameters of the model chosen in Pannella et al. (2015) are quite conservative, and their method consistently yields mass limits that are on average 0.3 dex higher than ours. In COSMOS Ul-traVISTA, we obtain values similar to that of Muzzin et al. (2013a).

Finally, we build stellar mass functions by simply counting the number of galaxies in bins of redshift and stellar masses in the three CANDELS fields that are H-band selected, and normalize the counts by the volume that is probed. These raw mass functions are presented in Fig. 3.3 as dashed lines. Assuming that the counts follow a Schechter-like shape (Schechter 1976), i.e., rising with a power law toward low stellar mass, the incompleteness of our sample is clearly visible. We then use the estimated completeness (top panel in Fig. 3.2) to correct the stellar mass functions. Here, we limit ourselves to reasonable corrections of at most a factor two in order not to introduce too much uncertainty in the extrapolation. The resulting mass functions are shown as solid lines in Fig. 3.3, with shaded areas showing the Poisson noise. The obtained mass functions are in good agreement with those already published in the literature (e.g., Ilbert et al. 2013).

Deriving statistical properties of star-forming galaxies

Because of the limitations of the Herschel surveys (the result of photometric or confusion noise), we cannot derive robust individual SFRs for all the sources in our sample (see Section 3.2.5). Indeed, the fraction of star-forming galaxies detected in the FIR ranges from 80% at M * > 3 × 10 10 M ⊙ and z < 1, to almost 0% for M * < 10 10 M ⊙ and z > 1. Above z = 1, the completeness in FIR detections reaches better than 60% only above M * = 10 11 M ⊙ and up to z = 2.5. Below this mass and above that redshift, the FIR completeness is lower than 20-30%.

We overcome these limitations by stacking the Herschel images. Stacking is a powerful and routinely used technique that combines the signal of multiple sources at various positions on the images, known from deeper surveys (see, e.g., Dole et al. 2006, where it was first applied to FIR images). This effectively increases the signal to noise ratio of the measurement, allowing us to probe fainter fluxes than can be reached by the usual source extraction. The price to pay is that we lose information about each individual source, and only recover statistical properties of the considered sample. Commonly, this method is used to determine the average flux density of a selected population of objects. We will show in the following that it can also be used to obtain information on the flux distribution of the sample, i.e., not only its average flux, but also how much the stacked sources scatter around this average value.

This scatter is a crucial information. If we measure an average correlation between SFR and M * , as has been measured in several other studies at different redshifts, this correlation cannot be called a "sequence" if the sources show a large dispersion around it.

Several studies have already measured this quantity. Noeske et al. (2007) and Elbaz et al. (2007) at z = 1 reported a 1σ dispersion in log 10 (SFR) of around 0.3 dex from Spitzer MIPS observations of a flux-limited sample. At z = 2, Rodighiero et al. (2011) reported 0.24 dex, using mostly UV-derived SFRs, while Whitaker et al. (2012) reported 0.34 dex from Spitzer MIPS observations. These two studies tested the consistency of their SFR estimator on average, 45/260 Figure 3.4 -Redshift and stellar mass bins chosen for stacking. We display in each bin (from top to bottom) the total number of star-forming H or K s -band galaxies that are stacked in the CANDELS fields, and the fraction of galaxies individually detected with Herschel. The bins where we do not detect any stacked signal are shown with a gray background. but we do not know how they impact the measure of the dispersion. The variation found in these two studies suggests that this is indeed an issue (see for example the discussion in Speagle et al. 2014). On the one hand, UV SFRs have to be corrected for dust extinction. If one assumes a single extinction law for the whole sample, one might artificially reduce the dispersion. On the other hand, MIPS 24 µm at z = 2 probes the rest-frame 8 µm. While Elbaz et al. (2011) have shown that it correlates well with L IR , this same study also demonstrates that it misses a fraction of L IR that is proportional to the distance from the Main Sequence. This can also have an impact on the measured dispersion.

Here we measure for the first time the SFR-M * Main Sequence and its dispersion with a robust SFR tracer down to the very limits of the deepest Herschel surveys to constrain its existence and relevance at higher redshifts and lower stellar masses.

Simulated images

All the methods described in this section have been extensively tested to make sure that they are not affected by systematic biases or, if they are, to implement the necessary corrections. We conduct these tests on simulated Herschel images that we set up to be as close as possible to the real images, in a statistical sense. In other words, we reproduce the number counts, the photometric noise, the confusion noise, and the source clustering. The algorithms, the methodology, and the detailed results are described fully in Appendix 3.8.

The stacking procedure

We divide our star-forming galaxy sample into logarithmic bins of stellar mass and redshift, as shown in Fig. 3.4, to have a reasonable number of sources in each bin. We then go to the original Herschel images of each field and extract N × N pixel cutouts around each source in the bin, thus building a pixel cube. We choose N = 41 for all Herschel bands, which is equivalent to 8 times the full-width at half maximum (FWHM) of the PSF, and N = 61 for Spitzer MIPS (13 × FWHM), as a substantial fraction of the Spitzer flux is located in the first Airy ring. Since the maps were reduced in a consistent way across all the CANDELS fields, we can safely merge together all the sources in a given bin, allowing us to go deeper while mitigating the effects of cosmic variance.

In parallel, we also stack the sources of the COSMOS UltraVISTA catalog in the wider but shallower FIR images. These stacked values are mostly used as consistency checks, since they do not offer any advantage over those obtained in the CANDELS fields: the shallow Herschel exposure is roughly compensated by the large area, but the mass completeness is much lower.

In the literature, a commonly used method consists of stacking only the undetected sources on the residual maps, after extracting sources brighter than a given flux threshold. This removes most of the contamination from bright neighbors, and thus lowers the confusion noise 46/260 for the faint sources, while potentially introducing a bias that has to be corrected. Detected and stacked sources are then combined using a weighted average (as in, e.g., Magnelli et al. 2009). We prefer here to treat both detected and undetected sources homogeneously in order not to introduce any systematic error tied to either the adopted flux threshold or the details of the source extraction procedure. Although simpler, this procedure nevertheless gives accurate results when applied to our simulated images. Indeed, the contribution of bright neighbors is a random process: although it is clear that each source suffers from a varying level of contamination, statistically they are all affected in the same way. In other words, when a sufficient number of sources are stacked, the contribution of neighbors tends to average out to the same value µ gal on all pixels, which is the contribution of galaxies to the Cosmic InfraRed Background (CIRB). But this is only true in the absence of galaxy clustering (Béthermin et al. 2010b). When galaxies are clustered, there is an increased probability of finding a neighbor close to each stacked galaxy (Chary & Pope 2010), so that µ gal will be larger toward the center of the stacked image. Kurczynski & Gawiser (2010) proposed an alternative stacking technique (implemented by Viero et al. 2013, in the SIMSTACK code) that should get rid of most of this bias, and that consists of simultaneously fitting for the flux of all sources within a given volume (i.e., in a given redshift bin). It is however less versatile, and in particular it is not capable of measuring flux dispersions. Béthermin et al. (2015b) also show that it can suffer from biases coming from the incompleteness of the input catalog. The next step is to reduce each cube into a single image by combining the pixels together. There are several ways to do this, the two most common being to compute the mean or the median flux of all the cutouts in a given pixel. The advantage of the mean stacking is that it is a linear operation, thus one can exactly understand and quantify its biases (e.g., Béthermin et al. 2010b). More specifically, it can be shown that the mean stacked value corresponds to the covariance between the input source catalog and the map (Marsden et al. 2009). Median stacking, on the other hand, has the nice property of naturally filtering out bright neighbors and catastrophic outliers and thus produces cleaner flux measurements. On the down side, we show in Appendix 3.8.1 that this measurement is systematically biased in a nontrivial way (see also White et al. 2007). Correcting for this bias requires some assumptions about the stacked flux distribution, e.g., the dispersion. Since this is a quantity we want to measure, we prefer to use mean over median stacking. An example of a mean stacked cutout from the SPIRE 250 µm images is shown in Fig. 3.5 (left). However, in two bins at low masses and high redshifts (z = 1.5 and log 10 (M * /M ⊙ ) = 9.75, as well as z = 3.0 and log 10 (M * /M ⊙ ) = 10.25), the mean stacked fluxes have signal to noise ratios that are too low and thus cannot be used, while the median stacked fluxes are still robustly measured. To extend our measurement of the Main Sequence SFR, we allow ourselves to use the median stacked fluxes in these particular bins only. This is actually a regime where we expect the median stacking to most closely measure the mean flux (see Appendix 3.8.1), hence this should not introduce significant biases. Lastly, we are interested in the mode of the Main Sequence, which is not strictly speaking the mean SFR we measure. We calibrated the difference between those two quantities with our simulations, and in all the following we refer to the SFR of the Main Sequence as the mode of 47/260 the distribution. For example, for a log-normal distribution of σ = 0.3 dex, this difference is about 0.1 dex.

To measure the stacked flux, we choose to use PSF fitting in all the stacked bands, using a simple linear solver. In all fields, we use the same PSFs as those used to extract the photometry of individual objects, and apply the corresponding aperture corrections8 . This method assumes that the stacked image is a linear combination of: 1) a uniform background; and 2) the PSF of the instrument, since none of our sources is spatially resolved. The measured flux is then obtained as the best-fit normalization factor applied to the PSF that minimizes the residuals. In practice, we simultaneously fit both the flux and the background within a fixed aperture whose radius is 0.9 times the FWHM of the PSF. The advantage of this choice is that although we use less information in the fit, the background computed this way is more local, and the flux measurement is more robust against source clustering. Indeed, the amplitude of the clustering is a continuous function of angular distance: although a fraction of clustered sources will fall within a radius that is much smaller than the FWHM of the PSF and will bias our measurements no matter what, the rest will generate signal over a scale that is larger than the PSF itself, such that it will be resolved. Estimating the background within a small aperture will therefore remove the contribution of clustering coming from the largest scales.

We quantify the expected amount of flux boosting due to source physical clustering using our simulated maps. We show in Appendix 3.8.2 that it is mostly a function of beam size, i.e., there is no effect in the PACS bands but it can boost the SPIRE fluxes by up to 25% at 500 µm. We also compare our flux extraction method to other standard approaches and show that it does reduces the clustering bias by a factor of 1.5 to 2.5, while also producing less noisy flux measurements. The value of 0.9 × FWHM was chosen to get the lowest clustering amplitudes and flux uncertainties.

To obtain an estimate of the error on this measure, we also compute the standard deviation σ RES of the residual image (i.e., the stacked image minus the fitted source) and multiply it by the PSF error scaling factor

σ IMG = σ RES × |P 2 | - |P| 2 N pix -1/2 , (3.4)
where N pix is the number of pixels that are used in the fit, |P| is the sum of all the pixels of the PSF model within the chosen aperture, and |P 2 | the sum of the squares of these pixels. This is the formal error on the linear fit performed to extract the flux (i.e., the square root of the diagonal element corresponding to the PSF in the covariance matrix), assuming that all pixels are affected by a similar uncorrelated Gaussian error of amplitude σ RES . In practice, since the PSFs that we use are all sampled by roughly the same number of pixels (approximately twice the Nyquist sampling), this factor is always close to 0.5 divided by the value of the central pixel of the PSF. Intuitively, this comes from the fact that the error on the measured flux is the combination of the error on all the pixels that enter in the fit, weighted by the amplitude of the PSF. It is thus naturally lower than the error on one single pixel. In other words, using PSF fitting on these stacks allows for measuring fluxes that are twice as faint as those obtained when using only the central pixel of the image. Simple aperture photometry yields σ APER = σ RES × N pix + N pix 2 /N bg /|P|, where N bg is the number of pixels used to estimate the background (e.g., within an annulus around the source). If N bg is sufficiently large ( N pix ), this error is lower than that obtained with our PSF fitting technique because the background is estimated independently of the flux. The price to pay is that this background is not local, hence the aperture flux will be most sensitive to clustering. Finally, if there is no clustering, PSF fitting will give the lowest errors of all methods, provided the full PSF is Figure 3.6 -Stacked SEDs of our star-forming mass-selected samples in bins of redshift (horizontally) and stellar mass (vertically). Stacked points are shown as empty circles, and the best-fit CE01 template is shown as the solid red curve. Gray data points were not used in the fit because they are probing rest-frame wavelengths below 30 µm. The data points have been corrected for the contribution of galaxy clustering (see Table 3.5). In the bins where the signal is too low (typically < 5σ), we plot 3σ upper limits as downward triangles.

used in the fit. The optimal strategy is therefore always to use PSF fitting, varying the aperture within which the fit is performed depending on the presence of clustering.

To be conservative, we compute an alternative error estimate using bootstrapping: we randomly discard half of the sources, stack the remaining ones, measure the stacked flux, and repeat this procedure 100 times. The error σ BS is then computed as the standard deviation of the measured flux in these 100 realizations, divided by √ 2, since we only work with half of the parent sample. Using our simulated images, we show in Appendix 3.8.3 that accurate error estimates are obtained by keeping the maximum error between σ IMG and σ BS . For the SPIRE bands, however, the same simulations show that both error estimates are systematically underestimated and need to be corrected by a factor of ∼ 1.7. We demonstrate in Appendix 3.8.3 that this comes from the fact that the error budged in the SPIRE bands is mostly generated by the random contribution of nearby sources rather than instrumental or shot noise. In this case, the error on each pixel is largely correlated with that of its neighbors, and the above assumptions do not hold.

We apply the above procedure to all the redshift and stellar mass bins of Fig. 3.4 and stack all the MIR to FIR images, from MIPS 24 µm to SPIRE 500 µm. Using the measured mean fluxes, we build effective SEDs9 in each bin, shown in Fig. 3.6. We fit the Herschel photometry with CE01 templates, leaving the normalization of each template free and keeping only the best-fit, and obtain the mean L IR . As for the individual detections, we do not use the photometry probing rest-frame wavelengths below 30 µm (see Section 3.2.5). The MIPS 24 µm photometry is used as a check only. Converting the measured L IR to SFR IR with the Kennicutt (1998b) relation and adding the mean observed SFR UV (non-dust-corrected contribution), we obtain the mean total SFR in each bin.

Figure 3.7 -Median absolute deviation (MAD) computed by solving Eq. 3.5 numerically for a log-normal distribution of S = 1 as a function of the chosen σ. The solid line is the best-fit of Eq. 3.7 to the numerical solutions, and the dashed line is the one-toone correlation.

Measuring flux dispersion with scatter stacking

To measure the flux dispersion, we introduce a new method called "scatter stacking". The idea is to come back to the pixel cube and build a dispersion image by measuring the scatter of each pixel around its average value. Stacked pixels away from the center measure the background fluctuations (the combination of photometric noise and random contribution from nearby sources), while pixels in the central region show enhanced dispersion due to flux heterogeneities in the stacked population, as in Fig. 3.5. In particular, if all the stacked sources had the same flux, the dispersion map would be flat.

Again, this can be achieved in different ways. Computing the standard deviation of pixels is the most straightforward approach, but it suffers from similar issues as mean stacking with respect to bright neighbor contamination, in a more amplified manner because pixels are combined in quadrature. Our simulations also show that this method is not able to reliably measure high dispersion values. We thus use the median absolute deviation (MAD), which is more effective in filtering out outliers while providing the same information.

The MAD is formally defined as the half-width of the range that is centered on the median flux S and contains 50% of the whole sample. In other words

φ ( S + MAD) -φ ( S -MAD) = 1 2 , (3.5)
where φ is the cumulative probability distribution function of the flux.

To interpret this value in terms of more common dispersion indicators, we will convert the MAD to a log-dispersion σ assuming that fluxes follow a Gaussian distribution in log 10 (S ), i.e., a log-normal distribution in S . There are two reasons that justify this choice: 1) it allows for direct comparison of our measured dispersions to the data from literature that quote standard deviations of log 10 (SFR); and 2) log-normal distribution are good models for describing sSFR distributions in the regimes where we can actually detect individual sources (see, e.g., Rodighiero et al. 2011;Sargent et al. 2012;Gladders et al. 2013;Guo et al. 2013, and also Section 3.4.6). For this family of distributions,

φ(S ) = 1 2 erfc         - log 10 S S √ 2 σ         , (3.6)
where erfc is the complementary error function. In this case there is no analytical solution to Eq. 3.5, but it can be solved numerically. It turns out that one can relate the MAD and 50/260 S directly to σ (see Fig. 3.7) via the following equation, which was fit on the output of the numerical analysis10 (for σ ∈ [0.05, 1.0] dex):

MAD S ≃ 1.552 σ 1 + 0.663 σ 2 , (3.7) 
with a maximum absolute error of less than 0.01. This relation can, in turn, be inverted to obtain σ. Defining the "normalized" median absolute deviation NMAD ≡ MAD/ S , and only keeping the positive solution of Eq. 3.7, we obtain

σ ≃ 1.171 NMAD          1 -1 - NMAD 0.953 2          .
(3.8)

Therefore, measuring the MAD allows us to obtain the intrinsic log-normal flux dispersion σ of the stacked sample. To do so, we perform PSF fitting on the squared images (since the dispersion combines quadratically with background noise) and fit a constant background noise plus the square of the PSF on all the pixels within a fixed radius of 0.6 × FWHM. Here we do not use the same 0.9 × FWHM cut as for the flux extraction, since the MAD does not fully preserve the shape of the PSF when its pixels are low in signal to noise (see below). We thus restrain ourselves to a more central region to prevent being dominated by these faint pixels. Again, this value was chosen using the simulated maps in order to produce the least biased and least uncertain measurements.

Even then, the dispersion measured with this method is slightly biased toward higher values, but this bias can be quantified and corrected in a self-consistent way with no prior information using Monte Carlo simulations. For each source in the stack, we extract another cutout at a random position in the map. We then place a fake source at the center of each random cutout, whose flux follows a log-normal distribution of width σ MC , and with a mean flux equal to that measured for the real sources. We apply our scatter stacking technique to measure the dispersion on the resulting mock flux cube, and compare it to σ MC . We repeat this procedure for different values of σ MC (from 0.1 to 0.7 dex), and derive the relation between the intrinsic Figure 3.9 -Dispersion of the ratio L IR /νL ν as a function of wavelength in bins of redshift and for the five Herschel bands in the four CANDELS fields. The wavelength is normalized here to the "peak" wavelength, where the FIR SED in νL ν reaches its maximum (calibrated from our stacked SEDs, Fig. 3.6). The L IR is computed by fitting all the available Herschel bands (we require a minimum of three) together with CE01 templates, while νL ν is the flux in a single Herschel band converted to rest-frame luminosity. Open symbols denote measurements where νL ν comes from MIPS 24 µm. Error bars come from simple bootstrapping. The contribution of photometric errors was statistically removed. The red line shows a fit to the data points to guide the eye. and measured dispersion. Examples are shown in Fig. 3.8. To average out the measurement error, we repeat this procedure 20 times for each value of σ MC . In practice, this correction is mostly negligible, except for the lowest measured mass bins at any redshift where it reaches up to 0.1 dex.

SFR dispersion from scatter stacking

The procedure described in the previous section allows us to measure the log-normal flux dispersion, while we are interested in the dispersion in SFR.

The first step is to obtain the log 10 (L IR ) dispersion σ IR . Using detected sources, we observe that the dispersion in L IR of a population of galaxies having the same flux at a given redshift depends on the rest-frame wavelength probed, as illustrated in Fig. 3.9. The data points in this figure are produced by looking at multiple bins of redshift, and measuring the scatter of the correlation between L IR , measured by fitting all available FIR bands, and the flux in each Herschel band converted to rest-frame luminosity (ν L ν ). By spanning a range of redshift, the five Herschel bands will probe a varying range of rest-frame wavelengths, allowing us to observe the behavior of the L IR scatter with rest-frame wavelength. The smaller dispersions are found at wavelengths close to the peak of the SED, in which case the dispersion drops as low as 0.05 dex. This is due to galaxies showing a variety of effective dust emissivities and temperatures that both influence the shape of the FIR SED, respectively longward and shortward of the peak.

Therefore, to obtain σ IR , we simply measure the flux dispersion of the Herschel band that is the closest to the peak. We thus first measure the peak wavelength λ peak from the stacked SEDs (Fig. 3.6), and interpolate the measured log-normal flux dispersions at λ peak . By construction, this also tends to select Herschel measurements with the highest signal to noise ratio.

One then has to combine the dispersion in L IR with that in L UV , since we combine both 52/260 tracers to derive the total SFR. This is not straightforward, as the two quantities are not independent (i.e., at fixed SFR, more attenuated objects will have higher L IR and lower L UV ). In particular, we see on individual detections that the dispersion of SFR = SFR IR + SFR UV is actually lower than that of SFR IR alone.

To address this issue, we choose to work directly on "SFR stacks". First, we use our observed FIR SEDs to derive L IR monochromatic conversion factors for all bands in each of our redshift and stellar mass bins. Second, in each stacked bin, we convert all cutouts to SFR IR units, using the aforementioned conversion factor and the Kennicutt (1998b) relation. Third, we add to each individual cutout an additional amount of SFR equal to the non-dust-corrected SFR UV , as a centered PSF. Finally, to correct for the smearing due to the width of the redshift and mass bins, we also use our observed relation between mass, redshift, and SFR (given below in Eq. 3.9) and normalize each cutout to the reference mass and redshift of the sample by adding SFR MS (z ref , M * ,ref ) -SFR MS (z, M * ). This last step is a small correction: it reduces the measured dispersion by only 0.02 to 0.03 dex.

We stack these cutouts and again run the dispersion measurement procedure, including the bias correction. Interpolating the measured dispersions in the five Herschel bands at λ peak as described earlier, we obtain σ SFR . As expected, the difference between the flux dispersion at the peak of the SED and the SFR dispersion is marginal, except for the lowest mass bins where it can reach 0.05 dex. This is mainly caused by the increasing contribution of the escaping UV light to the total SFR, as SFR IR /SFR UV approaches unity in these bins.

A remaining bias that we do not account for in this study is the impact of errors on the photo-zs and stellar masses. As pointed out in Section 3.2.4, the measured few percent accuracy on the photo-zs only applies to the bright sources, and we do not know the reliability of the fainter sources. We measure statistical uncertainties on both these quantities, but this does not take systematic errors coming from the library or gaps in the photometry into account. Intuitively, one can expect these errors to increase the dispersion, but this would be true only if the true error was purely random. It could be that our SED fitting technique is too simplistic in assuming a universal IMF, metallicity, and SFH functional form for all galaxies, and as such erases part of the diversity of the population. This could in turn decrease the measured dispersion (see discussion in Reddy et al. 2012). It is therefore important to keep in mind that our measurement is tied to the adopted modeling of stellar mass.

Results

The SFR of main-sequence galaxies

The first results we present concern the evolution of the Main Sequence with redshift, as well as its dependence on stellar mass. In Section 3.4.2 we start by describing the redshift evolution of the sSFR ≡ SFR/M * , and we then address the mass dependence of the slope of the Main Sequence in Section 3.4.3.

These results are summarized in Fig. 3.10 where, for the sake of visualization, we also run our full stacking procedure on sliding bins of mass, i.e., defining a fine grid of M * and selecting galaxies within mass bins of constant logarithmic width of 0.3 dex. The data points are not independent anymore, since a single galaxy is included in the stacked sample of multiple neighboring points, but this allows us to better grasp the evolution of the Main Sequence with mass. These "sliding averages" of the SFR are displayed as solid colored lines, while the points obtained with regular mass bins are shown as filled circles.

By fitting these points (filled circles only), we parametrize the SFR of main-sequence galaxies with the following formula, defining r ≡ log 10 (1 + z) and m ≡ log 10 (M * /10 9 M ⊙ ):

log 10 (SFR MS [M ⊙ /yr]) = m -m 0 + a 0 r -a 1 max(0, m -m 1 -a 2 r) 2 ,
(3.9)
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Figure 3.10 -Evolution of the average SFR of star-forming galaxies with mass and redshift. Our results from stacking are shown as colored filled circles, the colors corresponding to the different redshifts as indicated in the legend. We complement these measurements by stacking sliding bins of mass (see text) for visualization purposes only to better grasp the mass dependence of the SFR. In the background, we show as light gray curves our best-fit relation for the Main Sequence (Eq. 3.9).

Figure 3.11 -Evolution of the average sSFR of star-forming galaxies with redshift. Left: comparison of our results at M * = 2 × 10 11 M ⊙ (red curve) to published values in the literature (filled and open symbols). Filled symbols compile various results that were derived from mass-complete samples with SFRs computed either from the IR (Daddi et al. 2007b;Noeske et al. 2007;Elbaz et al. 2007;Magdis et al. 2010;Reddy et al. 2012;Heinis et al. 2014;Magnelli et al. 2014;Pannella et al. 2015) or the radio (Pannella et al. 2009a(Pannella et al. , 2015)). When possible, these were rescaled to a common stellar mass of 2 × 10 11 M ⊙ using the corresponding published SFR-M * relations. Results from stacking have been corrected by -0.1 dex to reach the mode of the Main Sequence (see discussion in Section 3.3.2). Open symbols show results from the literature that make use of the Lyman break selection technique (LBGs) and where the SFRs are obtained from the UV light alone (Daddi et al. 2009;Stark et al. 2009Stark et al. , 2013;;González et al. 2014;Salmon et al. 2015). These samples are mostly composed of galaxies of much lower stellar mass, typically 3 × 10 9 M ⊙ , so the extrapolation to 10 11 M ⊙ is more uncertain. We therefore simply quote the published values. The gray arrow shows how the open symbols would move if we were to apply a mass correction assuming the z = 4 Main Sequence slope of Bouwens et al. (2012). When necessary, data from the literature have been converted to a Salpeter IMF. Right: same figure showing our other stacked mass bins with different colors.
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with m 0 = 0.5 ± 0.07, a 0 = 1.5 ± 0.15, a 1 = 0.3 ± 0.08, m 1 = 0.36 ± 0.3 and a 2 = 2.5 ± 0.6. The choice of this parametrization is physically motivated: we want to explicitly describe the two regimes seen in Fig. 3.10 and explored in more detail in Section 3.4.3, namely a sequence of slope unity whose normalization increases with redshift (first terms), and a "bending" that vanishes both at low masses and high redshifts (last term). The precise functional form however is arbitrary, and was chosen as the simplest expression that accurately reproduces the bending behavior. This SFR will be used in the following as a reference for the locus of the Main Sequence.

3.4.2 Redshift evolution of the sSFR: the importance of sample selection and dust correction

We show in Fig. 3.11 the evolution of sSFR (≡ SFR/M * ) as a function of both redshift and stellar mass. Our results at z ≤ 3 are in good agreement with previous estimates from the literature, showing the dramatic increase of the sSFR with redshift. At z = 4, we still measure a rising sSFR, reaching 5 Gyr -1 , i.e., a mass doubling timescale of only 200 Myr. At this redshift, however, our measurement is substantially higher than UV-based estimates (Daddi et al. 2009;Stark et al. 2009). More recent results (Bouwens et al. 2012;Stark et al. 2013;González et al. 2014) seem to be in better agreement, but it is important to keep in mind that these studies mostly focus on relatively low mass galaxies, i.e., typically 3 × 10 9 M ⊙ . Therefore the quoted sSFR values only formally apply to galaxies in this range, i.e., to galaxies a factor of 10 to 100 times less massive than those in our sample. Extrapolating their measurements to match the mass range we are working with requires that we know the slope of the sSFR-M * relation. In their study, Bouwens et al. (2012) measured this slope from M * = 10 8 to 10 10 M ⊙ at z = 4 and found it to be around -0.27. Assuming that this holds for all masses, this means that we should reduce the sSFR by about 0.4 dex to be able to compare it directly to our result. This is illustrated by the gray arrow in Fig. 3.11.

Previous observations of the sSFR "plateau" (Daddi et al. 2009) could be the consequence of two key issues. First, selection effects: these studies are based either on Lyman break galaxies (LBGs) or rest-frame FUV-selected samples that, while less prone to lower redshift contaminants, are likely to miss highly attenuated and thus highly star-forming galaxies. Our sample is mass-complete, so we do not suffer from such biases. Second, failure of dust extinction correction: UV-based SFR estimates are plagued by uncertainties in dust attenuation. Most studies rely on observed correlations between UV SED features and dust attenuation that are calibrated in the local Universe, such as the IRX-β relation (Meurer et al. 1999). Recent studies tend to show that these correlations are not universal and evolve with redshift, possibly due to subsolar metallicity (Castellano et al. 2014), ISM conditions, or dust geometry (Oteo et al. 2013;Pannella et al. 2015).

Mass evolution of the SFR and varying slope of the Main Sequence

It is also worth noting the dependence of the SFR on stellar mass from Fig. 3.10. Low mass bins (M * < 3 × 10 10 M ⊙ ) are well fit with a slope of unity. Many studies have reported different values of this slope, ranging from 0.4 to unity (Brinchmann et al. 2004;Noeske et al. 2007;Elbaz et al. 2007;Daddi et al. 2007b;Santini et al. 2009;Pannella et al. 2009a;Rodighiero et al. 2011). A slope of unity can be interpreted as a signature of the universality of the star formation process, since it implies a constant star formation timescale τ ≡ 1/sSFR at all stellar masses, with M * (t) ∼ exp(t/τ). As suggested by Peng et al. (2010), it is also a necessary ingredient for explaining the observed shape invariance of the stellar mass function of star-forming galaxies.

We find however that the SFR of the highest mass bin (M * ∼ 2 × 10 11 M ⊙ ) falls systematically below the value expected for a linear relation, effectively lowering the high mass slope of the SFR-M * relation to 0.8 at high redshift, down to an almost flat relation at z = 0.5. Other studies obtain similar "broken" shapes for the SFR-M * sequence (Rodighiero et al. 2010; 55/260 We compare these to the typical scatter of the SFHs in the numerical simulation of Hopkins et al. (2014) shown as a solid purple line. Whitaker et al. 2012;Magnelli et al. 2014). Our results are also in very good agreement with Whitaker et al. (2014), who used a very similar approach, albeit only using MIPS 24 µm for stacking.

The reason for this bending of the slope is still unknown. Abramson et al. (2014) showed that the relation between the disk mass M disk and SFR has a slope close to one with no sign of bending at z ≃ 0, suggesting that the bulge plays little to no role in star formation. We investigate if this explanation holds at higher redshifts in Chapter 6.

Mass evolution of the SFR dispersion around the Main Sequence

We present in Fig. 3.12 the evolution of the measured SFR dispersion σ SFR as a function of both redshift and stellar mass. We show our measurements only from stacking Herschel bands. Spitzer MIPS is more sensitive and thus allows measurements down to lower stellar masses, but it is less robust as an SFR indicator. This is mostly an issue at z ≃ 2, where the 24 µm is probing the rest-frame 8 µm. Elbaz et al. (2011) have shown that the 8 µm luminosity L 8 correlates very well with L IR (0.2 dex scatter), except for starburst galaxies. Inferring SFR from 8 µm thus has the tendency to erase part of the starburst population, effectively reducing the observed SFR dispersion. We checked that our results are nevertheless in good agreement between MIPS and Herschel, with MIPS derived dispersions being smaller on average by only 0.03 ± 0.02 dex.

As a sanity check, we also show an estimation of σ SFR from individual Herschel detections. We select all galaxies in our Herschel sample that fall in a given bin of redshift and mass, and compute their offset from the Main Sequence R SB ≡ SFR/SFR MS , where SFR MS is the average SFR of "Main Sequence" galaxies given in Eq. 3.9. Following Elbaz et al. (2011), we call this quantity the "starburstiness". Because of the sensitivity of Herschel, this sample is almost never complete, and is biased toward high values of R SB : since this sample is SFR selected, all the galaxies at low mass are starbursts. To avoid completeness issues, we remove the galaxies that have R SB < 1, i.e., galaxies that are below the Main Sequence, and compute the 68th percentile of the resulting R SB distribution. By construction, this value does not need to be corrected for the width of the redshift and mass bins. However, it is only probing the upper part of the SFR-M * correlation, while the stacked measurements also take undetected sources below the sequence into account. In spite of this difference, the values obtained are in very good agreement with the stacked values. There is a tendency for these to be slightly higher by 0.03 dex on average, and this could be due to uncertainties in the individual SFR measurements. We conclude that the SFR distributions must be quite symmetric. This however does not rule 56/260 Figure 3.13 -Evolution of the cosmic star formation rate density ρ SFR with redshift. The orange dashdotted line traces the SFR density inferred from individual Spitzer MIPS (for z < 1.5) and Herschel detections alone. The solid purple line represents the contribution of stacked sources with significant signal (> 5σ), and the dotted line is the extrapolation of the stacked SFR down to M * = 3 × 10 9 M ⊙ assuming constant sSFR and using the mass functions of Fig. 3.3. The green line shows the fraction of ρ SFR in regimes where we have probed the existence of the Main Sequence. The lines are slightly offset in redshift for clarity. Light shaded regions in the background show the corresponding 1σ statistical errors. We compare these to the literature compilation of Madau & Dickinson (2014), shown as open triangles, with their best-fit plotted as a solid gray line. out a "starburst" tail, i.e., a subpopulation of galaxies with an excess of star formation. Indeed, simulating a log-normal distribution of R SB with a dispersion of 0.3 dex and adding 3% more sources with an excess SFR of 0.6 dex (following Sargent et al. 2012) gives a global dispersion measured with MAD of 0.309 dex, while the 68th percentile of the R SB > 1 tail is 0.319 dex, a difference of only 0.01 dex, which is well within the uncertainties.

Implications for the existence of the Main Sequence

Probably the most striking feature of Fig. 3.12 is that σ SFR remains fairly constant over a large fraction of the parameter space we explore, only increasing for the lowest redshift bin and at high stellar masses. This increase is most likely caused by the same phenomenon that bends the sequence at high stellar mass (see Section 3.4.2, e.g., a substantial population of bulge-dominated objects that blur the correlation). On average, Herschel stacking thus gives σ SFR = 0.30 +0.06 -0.06 dex, with a random error of 0.01 dex, and can be considered almost constant. Doing the same analysis in COSMOS UltraVISTA consistently yields σ SFR = 0.33 +0.03 -0.03 dex, with a random error of 0.01 dex, showing that this result is not tied to specifics of our input H-band catalogs.

More importantly, this value of 0.3 dex means that, at a given stellar mass, 68% of actively star-forming galaxies have the same SFR within a factor of two. This confirms the existence of the Main Sequence of star-forming galaxies for all of the stellar mass range probed here and up to z = 3, i.e., over more than 80% of the history of the universe. A more illustrative picture is shown later in Fig. 3.16, and we discuss the implication of this finding in Section 3.5.1.
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Figure 3.14 -Contribution to the total ρ SFR (purple dotted line in Fig. 3.13) as a function of redshift for the various sub-samples of Fig. 3.13. Background colors represent how galaxies of different stellar masses contribute to the total ρ SFR (from top to bottom: log 10 (M * /M ⊙ ) = 11.2, 10.8, 10.2 and 9.8), lighter colors indicating regions where ρ SFR is extrapolated. The colored lines are defined as in Fig. 3.13: the solid purple line shows the contribution of stacked sources with significant signal, the green line shows the contribution of galaxies in the regimes where we have probed the existence of the Main Sequence, and the orange line is the contribution of individually detected FIR sources.

Figure 3.15 -Predicted evolution of the cosmic stellar mass density ρ * with redshift. The lines show the inferred mass density by extrapolating our stacked SFRs down to M * = 3 × 10 9 M ⊙ and out to z = 6 using the trend from Madau & Dickinson (2014) and integrating as a function of time. Stellar lifetimes are accounted for, and the mass of stellar remnants is included in ρ * (see text). Colors are the same as in Fig. 3.13: the solid purple line shows the contribution of stacked sources with significant signal, the green line shows the contribution of galaxies in the regimes where we have probed the existence of the Main Sequence, and the orange line is the contribution of individually detected FIR sources. Shaded regions in the background show the corresponding 1σ statistical errors. We compare these results to the literature compilation of Madau & Dickinson (2014) shown as open triangles.

58/260 3.4.5 Contribution of the Main Sequence to the cosmic SFR density Using our stacked SFRs, we can infer the contribution of each of our stacked bins to the cosmic star formation rate density ρ SFR (Lilly et al. 1996;Madau et al. 1996). To this end, we use the stellar mass functions described in Section 3.2.7 and extrapolate our results to obtain a prediction for the total ρ SFR , assuming a main-sequence slope of unity for low mass galaxies, and integrating the mass functions down to M * = 3 × 10 9 M ⊙ (i.e., ∼ 0.03 M ⋆ ). The results of this analysis are presented in Figs. 3.13 and 3.14,and compared to the literature compilation of Madau & Dickinson (2014) (where luminosity functions are integrated down to 0.03 L ⋆ , and should thus match our measurements to first order).

We also infer the total stellar mass density ρ * by integrating ρ SFR as a function of time. At each time step, we create a new population of stars whose total mass is given by ρ SFR , and let it evolve with time. We account for stellar mass loss using the Salpeter (1955) IMF to model the population, allowing stars to evolve and die assuming the stellar lifetimes of Bressan et al. (1993) for solar metallicity. As stars die, some of the matter is left in the form of stellar remnants that are traditionally also included in ρ * , i.e., neutron stars and white dwarfs. We parametrize the masses of these remnants following Prantzos & Silk (1998). The contribution of these remnants continuously rises with time to reach about 12% of the stellar mass at z = 0. The result is presented in Fig. 3.15.

One can see from these figures that individual Herschel detections in the ultra-deep GOODS and CANDELS surveys (orange dash-dotted line) unveil about 50% of the star formation budget below z = 2, but less than 10% at z = 4. In total, and over the redshift range probed here, these galaxies have built 49% of the mass of present day stars, and are thus to be considered as major actors in the stellar mass build up in the Universe. Stacking (purple line) allows us to go much deeper, since we reach almost 100% of the total ρ SFR at z < 2, and accounts for 83% of the mass of present day stars. Extrapolating our observations to lower stellar masses using the mass functions and to z = 0 using the best-fit ρ SFR of Madau & Dickinson (2014), we obtain an estimate of the total amount of star formation in the Universe (purple dotted line). Integrating it to z = 0 gives ρ * (z = 0) = (5.3 ± 0.1) × 10 8 M ⊙ Mpc -3 , consistent with the value reported by Cole et al. (2001) and Bell et al. (2003) (our error estimate being purely statistical).

Although the range in redshift and stellar mass over which we are able to probe the existence of the Main Sequence is limited, it nevertheless accounts for 66% of the mass of present day stars. This number climbs up to 73% if we take other studies that have observed a tight correlation down to z = 0 (Brinchmann et al. 2004) into account. We show in the next section that starburst galaxies make up about 15% of the SFR budget in all the redshift and mass bins that we probe with individual detections, and that the remaining fraction is accounted for by a single population of "Main Sequence" galaxies. Subtracting these 15% from the above 73%, we can say that at least 62% of the mass of present day stars was formed by galaxies belonging to the Main Sequence. In other words, whatever physical phenomenon shapes the Main Sequence is the dominant mode of star formation in galaxies.

3.4.6 Quantification of the role of starburst galaxies and the surprising absence of evolution of the population

An overview of the Main Sequence

We summarize the previous results in Fig. 3.16. Here we show the distribution of individually detected galaxies on the SFR-M * plane at various redshifts. The locus of our stacked SFRs (solid blue lines) may not appear to coincide with the average of the detections because of the SFR detection limit, symbolized by the horizontal dashed line. We discuss later on (in Fig. 3.17) the distribution of these detected sources and confirm that the stacks and the detections are in perfect agreement. We also show for reference the z = 0 sample taken from the Sloan Digital Sky Survey 59/260 2), and the green lines above and below show the 1σ dispersion obtained with scatter stacking (Section 3.4.4). Both of these were performed on sliding bins of mass for the sake of visualization, and for this figure only. The SFR detection limit of each sample is indicated with a solid orange line. We also show the sliding median and percentiles of the SDSS distribution with purple and yellow lines, respectively, to emphasize that both the SFR tracer and the sample selection are different (see text). This correlation, observed in the local Universe, is reproduced as a gray line on each panel. The density of individual detections is shown in gray scale in the background, except for the two highest redshift bins where we show the individual galaxies as gray filled circles.

(SDSS DR4, Brinchmann et al. 2004) as presented in Elbaz et al. (2007). In this data set, actively star-forming galaxies are selected according to their rest-frame U -V colors only (i.e., what is usually referred to as the "blue cloud"), and SFRs are estimated from the dust-corrected H α line. These differences of observables and sample selection are likely to affect the shape of the Main Sequence. In particular, it is clear that the bending at high mass is less pronounced in the SDSS sample, and this is likely due to the selection. Therefore, the comparison of this z = 0 data set with our own sample should be done with caution. This nevertheless resembles our own results quite closely and allows us to paint a consistent picture from z = 0 to z = 3.

"Starburstiness" distributions

Although the depth of the Herschel surveys is limited, there is still a lot to be learned from the individually detected sources, in particular for the bright starburst galaxies. Now that we have a good definition of the Main Sequence, we can study these galaxies in more detail.
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Figure 3.17 -Starburstiness (R SB ≡ SFR/SFR MS ) histograms of individual Herschel and Spitzer MIPS (for z < 1.2) detections in each of our redshift and stellar mass bins. The blue and orange lines correspond to the counts in the CANDELS and COSMOS 2 deg 2 fields, respectively. We also show the incomplete counts in light colors in the background. The green curve shows our best-fit to the combined data set, and is the same for all bins except for the normalization, which is set by the mass function. The black vertical line shows the locus of the Main Sequence. Error bars indicate Poissonian noise. Rodighiero et al. (2011) have used similar data in COSMOS and found that the distribution of star-forming galaxies on and off the Main Sequence is bimodal: a population of normal starforming galaxies shapes the Main Sequence with a log-normal distribution of sSFR at a given mass, while another smaller population of "starbursts" boosts the high sSFR counts. Their work was restricted to z = 2 because of the BzK selection, so we want to extend it here to a mass-complete sample over a wider range of redshifts to see what we can learn about the starburst population.

In Fig. 3.17 we show the distributions of "starburstiness" R SB , defined as the ratio between the actual SFR of each galaxy and SFR MS , the SFR they would have if they were exactly following the Main Sequence defined in Eq. 3.9. We analyze these distributions in the same bins that were used for stacking, to make the comparison simpler. Since the CANDELS fields have a relatively similar depth, we group them together into a single distribution (blue curve), and following Rodighiero et al. (2011) we keep the COSMOS UltraVISTA sources apart (orange 61/260 CHAPTER 3. THE MAIN SEQUENCE OF STAR-FORMING GALAXIES AS SEEN BY HERSCHEL curve) where the catalog is mass-complete.

As was the case for the stellar mass functions discussed in Section 3.2.7, these distributions are affected by completeness issues. To correct this, we use a procedure very similar to that used for the mass functions. We assume that the total L IR of a galaxy at a given redshift is well modeled from the rest-frame monochromatic luminosity in each Herschel band by a power law plus a Gaussian scatter in logarithmic space. In each bin of redshift and stellar mass, we select galaxies that are detected in at least three Herschel bands, fit this power law and measure the dispersion as in Fig. 3.2. In this case, this dispersion is mainly due to differences in dust temperature, and is found to be minimal at the peak of the FIR emission (see Fig. 3.9). Then, for each Herschel band, in each redshift and mass bin, we then generate a mock population of 10 000 galaxies with uniform redshift and mass distribution within the bin and attribute a starburstiness with uniform probability to each mock galaxy. We multiply this starburstiness by the SFR MS of the galaxy computed from its redshift and mass, subtract the average observed SFR UV in this bin (we assume no scatter in SFR UV for simplicity), convert the remaining SFR IR into L IR , and finally the L IR into monochromatic luminosity in the considered Herschel band, adding a random logarithmic scatter whose amplitude is given by the dispersion measured earlier. The completeness is then given as the fraction of mock galaxies with simulated monochromatic luminosity larger than the limiting luminosity at the corresponding redshift.

Since we include in our sample all sources provided that they are detected in at least one Herschel band, we then take the maximum completeness among all bands. In Fig. 3.17 In all fields, the low R SB counts at z < 1.2 come from MIPS derived SFRs. Since the MIPS imaging in COSMOS UltraVISTA is only half as deep as the deepest CANDELS fields (see Section 3.2.3 and Table 3.1), the two curves probe almost similar ranges of R SB . At z ≥ 1.2 (i.e., starting from the bin at z = 1.5) MIPS is not used any more, and the difference in depth of the Herschel surveys becomes quite obvious. Reassuringly, we see very good agreement between the two data sets where they overlap.

Evolution of the fraction of starbursts

From these distributions, we can derive interesting statistical properties of our star-forming galaxy sample. In particular, Rodighiero et al. (2011) reported that only 2 to 3% of the galaxies in their z = 2 sample were in a "starburst" mode, with an SFR increased by more than a factor 4 (or 0.6 dex) compared to the Main Sequence (i.e., R SB > 4). Using our data set, we are able to measure this fraction at different redshifts and look for an evolution of this population. To do so, we select in each redshift bin all star-forming galaxies more massive than 5 × 10 10 M ⊙ (this mass threshold is chosen to avoid SFR completeness issues), and compute the fraction of objects for which the observed SFR is at least a factor X SB above the Main Sequence. Following Rodighiero et al. (2011), we choose X SB = 4. However, to make sure that our results are not affected by this somewhat abritrary choice, we also do this analysis with X SB = 3 and 2.5. By lowering this threshold, the number of objects increases and the statistics become more robust, at the price of having a higher number of nonstarburst contaminants scattering from the Main Sequence. We could have overcome this problem by fitting the observed counts, decomposing the total SFR distribution as coming from two populations: a main-sequence component and a starburst component, as was done in Sargent et al. (2012). While such a deconvolution provides a more physical definition of a "starburst", it is also dependent on the model one choses to describe the starburst population. Also, except in a few low redshift bins, our data do not probe a wide enough range to be able to robustly perform this decomposition. We therefore choose this simpler approach of a fixed R SB threshold for now, and will come back to the decomposition later. The results are presented in Fig. 3.18. Between z = 0.5 and 62/260 Figure 3.18 -Evolution of the observed "starburst" fraction with redshift, where starbursts galaxies are defined as having an SFR enhanced by at least a factor X SB compared to the SFR on the Main Sequence. Our results are shown for X SB = 4, 3 and 2.5 as diamonds (black, gray, and white, respectively), slightly offset in redshift for clarity. Only points where the starburst sample is complete are shown, and error bars are estimated using bootstrapping. We also show the value observed by Rodighiero et al. (2011) at z = 2 as a filled red star, which was obtained with X SB = 4. These figures are compared qualitatively to the observed pair fraction reported by Kartaltepe et al. (2007) as open blue triangles, and the range of major merger fractions predicted by Hopkins et al. (2010a) is shown with dashed purple lines. It is clear that, both in observations and simulations, the merger fraction evolves significantly faster than the observed starburst fraction, the latter remaining almost constant regardless of the precise definition of what is a "starburst". z = 4 and for X SB = 4, we measure a roughly constant value ranging between 2 and 4%, and no clear trend with redshift emerges. We discuss the implication of this fact in Section 3.5.2.

Quantifying the contribution of starbursts to the total SFR budget

We now normalize the counts by the integral of the stellar mass function in all bins and, supported by our findings on the constant width of the Main Sequence (Fig. 3.12) and on a constant starburst fraction (Fig. 3.18), we assume that the R SB distribution does not vary. With this same assumption of an unvarying distribution, Sargent et al. (2012) managed to reconstruct the IR luminosity function at various redshifts. With the increased statistics, we are now able to perform a two-component decomposition of the whole distribution. We thus fit all the counts simultaneously with a double log-normal distribution following Sargent et al. (2012). The chosen parametrization for the fit is

φ R SB (x) = 1 -f SB -f miss √ 2 π σ MS exp - log 10 (x/x 0 ) 2 2 σ MS 2 + f SB √ 2 π σ SB exp - log 10 (x/B SB ) 2 2 σ SB 2 , (3.10)
where σ MS and σ SB are the widths of the Main Sequence and starburst distributions, respectively, f SB is the fraction of starbursts, and B SB is the median multiplicative SFR boost of starburst galaxies. We also introduce f miss as the fraction of star-forming galaxies that are neither "Main Sequence" nor "starburst" galaxies (e.g., "green valley" galaxies), and x 0 the 63/260 median R SB of main-sequence galaxies. By construction, the latter two parameters should be close to 0 and 1, respectively, but we allow them to vary to check for the consistency between the detections and the stacks.

The result is shown in Fig. 3.19. Leaving all parameters free, the fit of the starburst population is highly uncertain, so we decided to fix σ SB = σ MS , and fit the logarithm of the counts. We obtain σ MS = 0.31 ± 0.02 dex, f SB = 3.3% ± 1.5%, B SB = 5.3 ± 0.4, f miss = 0% ± 2%, and x 0 = 0.87 ± 0.04.

These numbers depend heavily on the chosen parametrization of the starburst population. For example, not imposing σ SB = σ MS would change the values of B SB considerably, hence the measured values should be used with caution. The integrated contribution of the starburst population is however well constrained (Sargent et al. 2012). Taking these numbers at face value, we reach a similar conclusion as Rodighiero et al. (2011) and Sargent et al. (2012), i.e., that starbursts are rare and happen in only about 3% of galaxies at a given instant. However, they form stars on average ∼ 5 times faster than their main-sequence counterparts, and thus contribute to ∼ 15% of the SFR budget. It is worth noting that the bimodality, if any, is not clearly apparent in our data, and the high R SB counts can also be fit with a single power law (with a slope close to -2). While our goal is not to demonstrate the validity of this bimodal decomposition, we want to stress that the absence of a "gap" in the distribution between the peaks of the two components does not rule out the bimodal hypothesis.

The main-sequence distribution, on the other hand, is very well constrained and both its average and the measured σ MS are in agreement with the stacked value. The fact that f miss is close to zero means that we are able to recover essentially all the star-forming galaxies with this model. More precisely, if there is another population of star-forming galaxies, we can say with 70% probability that it can only make up for less than 2% of the counts.

Last but not least, the accuracy of the fit in all the bins (as shown in Fig. 3.17) confirms the validity of our hypothesis of a universal R SB distribution.
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Discussion

Connection of the main-sequence dispersion with feedback processes

The nonevolution of the main-sequence dispersion, as described in Section 3.4.4, is intriguing. Indeed, this dispersion can originate from several completely different processes. On the one hand, the scatter within the star formation history (SFH) of individual galaxies, i.e., bursts of star formation due to minor or major merging and feedback from AGNs or supernova winds, will naturally broaden the distribution of SFR. On the other hand, the scatter may also be due to one or more missing variables, such as age, metallicity, geometry, or environment. For example, Salmi et al. (2012) found, using 24 µm based SFRs at z ≃ 1, that the dispersion of the Main Sequence could artificially be reduced to about 0.15 dex by introducing the rest-frame U -V color as well as z-band clumpiness as extra variables. This also shows that most of the observed scatter of the Main Sequence is physical and not due to measurement errors. Hopkins et al. (2014) have computed the expected scatter of SFH from a set of numerical simulations, and found it to be a strong function of halo mass, and thus of stellar mass. Performing abundance matching using their M * -M halo relation, one finds that they predict a variation of the SFR (averaged over 200 Myr, hence comparable to the timescale of our FIR SFR tracer) of about 0.1 dex at M * > 10 11 M ⊙ , rising up to 0.4 dex as stellar mass decreases down to 10 8 M ⊙ . They also find that this evolution is coming predominantly from the rising importance of stellar feedback, and not from merging or global gravitational instabilities. Intuitively, the smaller the galaxy, the more sensitive it is to the impact of stellar winds and super novae, since the characteristic length scale over which these phenomena tend to heat and blow away the gas is more or less constant. Since there are other components that add up to the total scatter in SFR (age, environment, metallicity, etc.), this prediction should be considered as a lower limit.

The predicted values of Hopkins et al. (2014) are shown as the purple line in Fig. 3.12. The dependence of their prediction on stellar mass is clear, yet we seem to measure a constant value. Even though there are other sources of scatter at play, it would be a strange conspiracy for them to exactly counterbalance the evolution of the scatter within the SFH to maintain a constant main-sequence scatter (see however Sparre et al. 2015). Our interpretation is thus the following.

Stellar feedback is a necessary ingredient in numerical simulations. Without it, galaxies would consume their gas too efficiently, and with the amount of infalling gas they receive from the inter-galactic medium, they would end up today with extremely high stellar masses that are not observed. The real strength of the stellar feedback is poorly constrained, so it is usually considered as a free parameter and fine-tuned to reproduce the local stellar mass density. However, our observations show that it cannot be arbitrarily high. Other processes can be considered to either decrease the star formation efficiency of galaxies, or reduce the amount of infalling gas they receive (e.g., Gabor & Bournaud 2014).

Connection between starbursts and mergers

We have shown in Section 3.4.6 that the starburst population is not evolving, both in relative numbers and SFR excess with respect to the Main Sequence. This is intriguing in many aspects. Both observations (Le Fèvre et al. 2000;Kartaltepe et al. 2007;Lotz et al. 2011, and references therein) and numerical simulations (e.g., Somerville et al. 2008;Hopkins et al. 2010a) predict an increase of the major merger rate with increasing redshift, typically proportional to (1 + z) m . Although the slope m of the evolution of the merger fraction is quite uncertain (see discussion in Kampczyk et al. 2007) and sometimes found to be flat, most studies report positive values, ranging from m ≃ 0 up to m ≃ 6. For example, Kartaltepe et al. (2007) analyzed the fraction of close pairs from z = 0 to z = 1.2, and found m = 3.1 ± 0.1. Their z = 0 value of 0.7% ± 0.1% is comparable to our observed starburst fraction with X SB = 4, however extrapolating this relation 65/260 to z = 2 would predict a pair fraction of about 50% (20% if we consider instead the numerical simulation of Hopkins et al. 2010a). If all or a constant fraction of those pairs do lead to gasrich major mergers, this would have a huge impact on the number of starburst, at odds with our observations.

On the other hand, Perret et al. (2014) ran several numerical simulations of mergers of z = 2 clumpy galaxies, and found little to no impact of the merger on star formation when compared to isolated galaxies. Their point is that by z = 2 star formation is already fairly active in isolated galaxies and actually close to a saturation point due to feedback processes. When the merger happens, it therefore cannot increase the total SFR by a large amount because star formation is already at its maximum. So even if mergers were more frequent in the past, they were also less efficient at triggering bursts of star formation, and this could explain why we are not seeing a huge increase in the number of starburst galaxies. This goes in the same direction as the results of Hopkins et al. (2010b) who found in their simulations that merger-driven bursts contribute to the same fraction (5-10%) of the IR luminosity function at all redshifts, but it does not explain why the fraction of such bursts remains constant over time.

Although the most extreme starburst events are unambiguously associated with major mergers in the local Universe (e.g., Armus et al. 1987), another interpretation of our results is that the situation may be different at earlier epochs, and that some other phenomena may be responsible for such bursts of star formation, such as large scale dynamical instabilities (e.g., Dekel et al. 2009b).

Conclusions

We have put together a catalog of star-forming galaxies that is mass-complete above 2×10 10 M ⊙ and extends up to z = 4, using the deep UV to NIR observations in the CANDELS fields. By stacking the Herschel images at the positions of these galaxies, using bins of mass and redshift, we measured their average star formation rates in a dust-unbiased way. We then derived a new technique called "scatter stacking" to measure the scatter in SFR around the average stacked value. We also analyzed sources individually detected on the Herschel images to study the SFR distribution in more detail over a more limited range of redshift and stellar mass.

We observe a continuously rising sSFR ≡ SFR/M * up to z = 4, with no clear sign of a saturation or plateau at the highest redshifts. Previous observations of this type of saturation are mostly based on LBG samples that lack observations in the FIR to reliably constrain the dust extinction. Earlier results are likely due to a combination of selection effects and biases in the dust extinction correction. It is therefore mandatory to have mass-complete samples and rest-frame MIR or FIR data to provide reliable constraints on the star formation activity of actively star-forming galaxies.

We find that the slope of the SFR-M * relation is close to unity, except for high mass galaxies (M * 10 10.5 M ⊙ ), where the slope is shallower. Furthermore, the high mass slope is evolving from ∼ 0.8 at high redshifts down to almost 0 at z ∼ 0.5. One possible explanation is the increasing contribution of the bulge to the stellar mass of these galaxies, while the star formation rates come mostly from the disk (Abramson et al. 2014).

At fixed mass and redshift, the scatter around the average SFR appears to be constant and close to 0.3 dex from M * = 3 × 10 9 M ⊙ to 2 × 10 11 M ⊙ , with no clear redshift dependence. We therefore confirm the existence of the "Main Sequence" of star-forming galaxies over a large range of mass and redshift with a robust star formation rate tracer. We show that at least 66% of present day stars were formed in main-sequence galaxies. Consequently, whatever physical process produces the Main Sequence is the dominant mode of stellar growth in galaxies.

The nonevolution of the SFR scatter with mass can be connected to the expected strength of stellar feedback. State-of-the-art numerical simulations indeed predict that stellar feedback generates additional scatter in the star formation histories of galaxies, a scatter whose amplitude is strongly anticorrelated with halo mass and thus galaxy mass. Our observations provide useful 66/260 constraints for numerical simulations where stellar feedback is often used as an efficient star formation regulator. We show here that it cannot be arbitrarily high.

Refining the above analysis with individual Herschel detections, we look for starburst galaxies whose SFRs are systematically larger than those of main-sequence galaxies. In agreement with Sargent et al. (2012) and extending their analysis to higher redshifts and more complete samples, we find that the fraction of these starburst galaxies does not evolve with time. This questions the usual interpretation of starburst as the consequence of triggering by major mergers. Several studies, both of simulations and observations, indeed show that the fraction of mergers was substantially higher in the past. An alternative explanation is that mergers may be less efficient at creating bursts of star formation within high redshift galaxies.

We have pushed Herschel as far as possible to study the Main Sequence of star-forming galaxies, but it is still necessary to dig deeper than that, i.e., probing higher redshifts or lower stellar masses. Most of what we know at present about the high redshift Universe (z > 4) comes from rest-frame UV-based studies, and we have shown here that dust extinction plays an important role even at these redshifts. Therefore it will be necessary to explore these epochs of the Universe with an independent and more robust SFR tracer to confirm the pioneering results obtained with the UV light alone. Probing lower stellar masses will also be an important challenge since, owing to their small sizes, low mass (M * < 3 × 10 9 M ⊙ ) galaxies are probably most sensitive to smaller scale physics, e.g., stellar or AGN feedback.

Valuable insights already come from the study of lensed galaxies. This technique allows us to observe galaxies about an order of magnitude fainter than the nominal instrument depths, either by chance in blank fields (e.g., the Herschel ATLAS, Eales et al. 2010), or by explicitly targeting large galaxy clusters (e.g., the Herschel Lensing Survey, Egami et al. 2010). Studying these regimes on statistically relevant samples and with a dust-unbiased SFR tracer will only be possible with a new generation of instruments. The most promising candidate available today for the high redshift Universe is certainly the Atacama Large Millimeter/submillimeter Array (ALMA), and interesting science is already on its way. In particular, we are now waiting for the completion of Cycle 2 observations targeting a mass-complete sample of z = 4 star-forming galaxies down to log 10 (M * /M ⊙ ) = 10.7. With only a few minutes of on-source integration, these data will allow us to probe SFRs about five times lower than those available with the deepest Herschel surveys. As for the low mass galaxies, substantial progress is likely to happen in a few years thanks to the exceptional MIR capabilities of the James Webb Space Telescope (JWST).

Appendix: The UV J selection

To further test the reliability of the UV J selection technique, we have separately stacked the galaxies classified as quiescent. The result is presented in Fig. 3.20. On this plot we show what the location of the quiescent galaxies would be on the SFR-M * plane assuming that all their IR luminosity is coming from star formation. This is certainly wrong because in these massive galaxies dust is mostly heated by old stars, so the SFR we derive is actually an upper limit on the true star formation activity of these galaxies. However, even with this naive assumption, the derived SFRs are an order of magnitude lower than that of the star-forming sample. We also observe that the effective dust temperature, inferred from the wavelength at which the FIR emission peaks, is lower and this is expected if dust is indeed mainly heated by less massive stars.

Appendix: Tests of our methods on simulated images

To test all of these procedures, we build a set of simulated images. We design these to be as close as possible to the real images in a statistical sense, i.e., the same photometric and 67/260 3.16, this time also showing the location of UV J passive galaxies. In each panel, the blue line shows the average stacked SFR (Section 3.4.2), and the green lines above and below show the 1σ dispersion obtained with scatter stacking. The orange horizontal line shows the detection limit of Herschel in SFR. The red line shows the stacked SFR of UV J passive galaxies, naively assuming that all the IR light comes from star formation. This is a conservative upper limit, since in these galaxies dust is predominantly heated by old stars, and the effective dust temperature inferred from the FIR SED is much colder than for actively star-forming galaxies of comparable mass. confusion noise, and the same number counts.

To do so, we start from our observed H-band catalogs, knowing redshifts and stellar masses for all the galaxies. Using our results from stacking Herschel images, we can attribute an SFR to each of these galaxies. We then add a random amount of star formation, following a lognormal distribution of dispersion 0.3 dex. We also put 2% of our sources in starburst mode, where their SFR is increased by 0.6 dex. Next, we assign an FIR SED to each galaxy following the observed trends with redshift (no mass dependence) and excess SFR (Magnelli et al. 2014). Starburst galaxies are also given warmer SEDs.

From these simulated source catalogs, we generate a list of fluxes in all Herschel bands. Given noise maps (either modeled from RMS maps assuming Gaussian noise, or constructed from the difference between observing blocks), we build simulated images by placing each source as a PSF centered on its sky position, with a Gaussian uncertainty of 0.45 ′′ and a maximum offset of 0.9 ′′ . We randomly reposition the sources inside the fields using uniform distributions in right ascension and declination, to probe multiple realizations of confusion. These simulated images have pixel distribution, or P(D) plots, very close to the observed images, and are thus good tools to study our methods. An example is shown in Fig. 3.21 for the GOODS-South field at 100 µm.

We produce 400 sets of simulated catalogs and images, each with a different realization of 68/260 photometric noise, confusion noise and SFR. We then run our full stacking procedure on each, using the same setup as for the real images (i.e., using the same redshift and mass bins), to test the reliability of our flux extraction and the accuracy of the reported errors.

Mean and median stacked fluxes

For each of the 400 realizations we compare the measured flux densities using both mean and median stacking to the expected mean and median flux densities, respectively. The results are shown in Fig. 3.22 for the PACS 100 µm band. The other bands show similar behavior. Although less noisy, median fluxes are biased toward higher values (at most by a factor 2 here). This is because the median is not a linear operation, so it is not true in general that a + b = a + b , where . denotes the median. In particular, this means that if we compute the median of our noisy stacked image and subtract the median value of the noise, we do not exactly recover the median flux density. We will call this effect the noise bias in what follows. White et al. (2007) show that this bias arises when: 1) the signal to noise ratio of stacked sources is low; and 2) the distribution of flux is skewed toward either faint or bright sources. The latter is indeed true in our simulations, since we used a log-normal distribution for the SFR. Correcting for this effect is not trivial, as it requires knowledge of the real flux distribution. Indeed, Fig. 3.23 shows the amplitude of this bias for different log-normal flux dispersions, the highest dispersions producing the highest biases. White et al. (2007) argue that the median stacked flux is still a useful quantity, since it is actually a good measure of the mean of the distribution, but this is only true in the limit of low signal to noise ratios. In their first example, a double normal distribution, the measured median reaches the true mean for SNR < 0.1, but correctly measures the true median for SNR > 3.

Of course these values depend on the distribution itself, as is shown in Fig. 3.23. In particular, for a log-normal distribution with 0.3 dex scatter, the mean is reached for SNR < 0.4, and the median for SNR > 3. Theoretically, the difference between the mean and the median for a log-normal distribution is log(10) σ 2 /2 dex. In our simulations, the typical 100 µm flux 69/260 Figure 3.22 -Comparison of measured stacked flux densities from the simulated images with the real flux densities that were put into the 100 µm map (the other wavelengths behave the same). The stacked sources were binned in redshift and mass using exactly the same bins as those that were used to analyze the real images. Left: mean stacked flux densities, right: median stacked flux densities. Each point shows the median S output /S input among all the 400 realizations, while error bars show the 16th and 84th percentiles of the distribution. Filled circles indicate measurements that are individually significant at > 5σ on average, i.e., those we would actually use, while open circles indicate measurements at < 5σ to illustrate the trend. On each plot, gray circles show the values obtained with the other method (i.e., median and mean) for the sake of direct comparison. It is clear that mean fluxes are more noisy, while median fluxes exhibit a systematic bias.

Figure 3.23 -Monte Carlo analysis showing evidence for a systematic bias in median stacking. These values have been obtained by computing medians of log-normally distributed values in the presence of Gaussian noise of fixed amplitude (σ noise = 1 in these arbitrary flux units, so that the input flux is also the S /N).

dispersion within a stacking bin is ∼ 0.45 ± 0.1 dex, which yields a mean -to-median ratio of ∼ 1.7 +0.5 -0.2 , in agreement with the maximum observed bias of Fig. 3.22. To see how this affects the measured L IR in practice, we list in Table 3.4 the ratio of the median to mean measured L IR in each stacked bin, as measured on the real images. We showed in Section 3.4.4 that the dispersion in L IR is about 0.3 dex. Therefore, assuming a log-normal distribution, we would theoretically expect the median-to-mean L IR ratio to be close to 0.78. In fact, the L IR is likely not going to follow this prediction, since we do not measure directly the mean (or median) L IR , but estimate this values from a set of mean (or median) stacked fluxes, each suffering from a different bias. It is indeed clear from Table 3.4 that we do not measure this 0.78 ratio in practice: the median is usually (but not always) much closer to the 70/260 mean than expected for a noiseless situation. Therefore, the median stacked L IR are often not measuring the median or the mean L IR , but something in between. Since correcting for this bias requires assumptions on the flux distribution, we prefer (when possible) to use the more noisy but unbiased mean fluxes for this study.

Clustering correction

Table 3.5 -Clustering bias in simulated Herschel images.

Method 100 µm 160 µm 250 µm 350 µm 500 µm

A 0% +7% -7% 3% +9% -8% 8% +12% -8% 13% +12% -10% 25% +19% -18% B 0% +8% -12% 3% +13% -12% 19% +17% -11% 33% +27% -19% 58% +54% -31% C 0% +8% -7% 7% +11% -9% 14% +14% -9% 22% +19% -14% 39% +22% -23%
These values were obtained by computing the ratio of measured mean stacked fluxes to the expected mean fluxes in simulated images using our flux extraction method (see Section 3.3.2). Median stacked fluxes are affected the same way, after removing the noise bias described in Appendix 3.8.1. We also show the 16th and 84th percentiles of the bias distribution. The methods are: A, using our own flux extraction procedure (Section 3.3.2); B, same as A, but using the full PSF; and C, using only the central pixel.

Among our 400 random realizations, the measured mean fluxes do not show any systematic bias. However these simulations do not take the flux boosting caused by source physical clustering into account, because we assigned random positions to the sources in our catalog. To test the effect of clustering, we regenerate a new set of 200 simulations, this time using the real optical positions of the sources and only varying the photometric noise and the SFRs of the sources.

If galaxies are significantly clustered in the image, then the measured fluxes will be boosted by the amount of light from clustered galaxies that falls inside the beam. Since the beam size here is almost a linear function of the wavelength, we expect SPIRE bands to be more affected than PACS bands. Since the same beam at different redshifts corresponds to different proper distances, low redshift measurements (z < 0.5) should be less affected. However, because of the flatness of the relation between redshift and proper distance for z > 0.5, this should not have a strong impact for most of our sample. Indeed, we do not observe any significant trend with redshift in our simulations. No trend was found with stellar mass either, hence we averaged the clustering signal over all stacked bins for a given band, and report the average measured boost 71/260 CHAPTER 3. THE MAIN SEQUENCE OF STAR-FORMING GALAXIES AS SEEN BY HERSCHEL in Table 3.5 ("method A") along with the 16th and 84th percentiles. Although we limited this analysis to fluxes measured at better than 5σ, the scatter in the measured bias is compatible with being only caused by uncertainties in flux extraction. Here we correct for this bias by simply deboosting the real measured fluxes by the factors listed in Table 3.5, band by band. The net effect on the total measured L IR is reported in Table 3.6.

By construction, these corrections are specific to our flux extraction method. By limiting the fitting area to pixels where the PSF relative amplitude is larger than 10%, we absorb part of the large scale clustering into the background level. If we were to use the full PSF to measure the fluxes, we would measure a larger clustering signal (see Section 3.3.2). We have re-extracted all the fluxes by fitting the full PSF, and we indeed measure larger biases. These are tabulated in Table 3.5 as "method B". An alternative to PSF fitting that is less affected by clustering consists of setting the mean of the flux map to zero before stacking and then only using the central pixel of the stacked cutout (Béthermin et al. 2012). Because of clustering, the effective PSF of the stacked sources will be broadened, and using the real PSF to fit this effective PSF will result in some additional boosting. Therefore, by only using the central pixel, one can get rid of this effect. We show in Table 3.5 as "method C" how the figures change using this alternative method. Indeed the measured boosting is smaller than when using the full PSF, and is consistent with that reported by Béthermin et al. (2015b), but our method is even less affected thanks to the use of a local background.

Error estimates

We now study the reliability of our error estimates on the stacked fluxes. We compute the difference between the observed and input flux for each realization, ∆S . We then compute the median ∆S , which is essentially the value plotted in Fig. 3.22, i.e., it is nonzero mostly for median stacked fluxes. We subtract this median difference from ∆S , and compute the scatter σ of the resulting quantity using median absolute deviation, i.e., σ ≡ 1.48 × MAD(∆S -∆S ). We show in Fig. 3.25 the histograms of (∆S -∆S )/σ for the mean and median stacked PACS 100 µm fluxes in each stacked bin. By construction, these distributions are well described by a Gaussian of width unity (black curve).

We have two error estimates at our disposal. The first, σ IMG , is obtained by measuring the RMS of the residual image (after the stacked fluxes have been fitted and subtracted), and multiplying this value by the PSF error factor (see Eq. 3.4). The second, σ BS , is obtained by bootstrapping, i.e., repeatedly stacking half of the parent sample and measuring the standard deviation of the resulting flux distribution (again, see Section 3.3.2). Each of these method provides a different estimation of the error on the flux measurement, and we want to test their accuracy.

In Fig. 3.25, we show as red and blue lines the predicted error distribution according to σ IMG and σ BS , respectively. When the predicted distribution is too narrow or too broad com-Figure 3.24 -True error σ on the stacked flux measurements as a function of the instrumental white noise level σ inst. that is put on the image (here normalized to a "PSF" noise in mJy, i.e., the error on the flux measurement of a point source in the absence of confusion). We generated multiple simulations of the 250 µm maps using varying levels of white noise, and compute σ from the difference between the measured fluxes and their expected values. Left: evolution of the average total noise per source σ tot. = σ × √ N stack where N stack is the number of stacked sources. This is the total error when extracting the flux of a single source on the map. When the instrumental noise (red line) is high, it dominates the error budget over the confusion noise. However, when reaching too low values, the measured total noise is dominated by the confusion noise σ conf. (blue line). We fit this evolution as pared to the observed distribution (black curve), this means that the estimated error is respectively too low or too high.

σ 2 tot. = σ 2 inst. + σ 2 conf. ( orange 
For median stacked fluxes, it appears that σ BS is accurate in all cases. It tends to slightly overestimate the true error on some occasions, but not by a large amount. On the other hand, σ IMG dramatically underestimates the error when the measured S /N of stacked sources is high (or the number of stacked sources is low).

The situation for mean stacked fluxes is quite different. The behavior of σ IMG is the same, but σ BS show the completely opposite trend, i.e., it underestimates the error at low signal to noise and high number of stacked sources. This may be caused by the fact that bootstrapping will almost always produce the same confusion noise, since it uses the same sources. The reason why this issue does not arise for median stacked fluxes might be because the median naturally filters out bright neighbors, hence reducing the impact of confusion noise.

The results are the same for the PACS 70 and 160 µm band. Therefore, keeping the maximum error between σ IMG and σ BS ensures that one has an accurate error measurement in all cases for the PACS bands.

The SPIRE fluxes on the other hand show a substantially different behavior. We reproduce the same figures in Fig. 3.26, this time for the SPIRE 350 µm band. Here, and except for the highest mass bin, the errors are systematically underestimated by a factor of ∼ 1.7, regardless of the estimator used. We therefore use this factor to correct all our measured SPIRE errors in these bins.

We believe this underestimation of the error is an effect of confusion noise. Indeed, it is clear when looking at the stacked maps at these wavelengths (e.g., Fig. 3.5) that there is a substantial amount of large scale noise coming from the contribution of the neighboring bright 73/260 sources. The main issue with this noise is that it is spatially correlated. This violates one of the assumptions that were made when deriving the error estimation of Eq. 3.4, which may thus give wrong results. The reason why only the SPIRE bands are affected is because the noise budget here is (by design) completely dominated by confusion. This is clear from Fig. 3.24 (left): when putting little to no instrumental noise σ inst on the simulated maps, the total error σ tot on the flux measurements is completely dominated by the confusion noise σ conf (blue line), and it is only by adding instrumental noise of at least 10 mJy (i.e., ten times more than what is present in the real maps) that the image becomes noise dominated. By fitting

σ tot = σ 2 conf + σ 2 inst , (3.11) 
we obtain σ conf = 4.6 mJy. This value depends on the model we used to generate the simulated fluxes, but it is in relatively good agreement with already published estimates from the literature (e.g., Nguyen et al. 2010, who predict σ conf. = 6 mJy).

We then show in Fig. 3.24 (right) that the error underestimation in the SPIRE bands, here quantified by the ratio σ/σ IMG , goes away when the image is clearly noise dominated, meaning that this issue is indeed caused by confusion and the properties of the noise that it generates.

Note that the confusion noise we measure here is a global quantity, averaged over the whole SPIRE maps. Elbaz et al. (2011) have shown that it is possible to measure fluxes below this limit if the local source density is low. However, limiting the stacked sample to these "clean" regions would dramatically reduce the size of our sample, hence we do not attempt it here. 
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Chapter 4

Modelling the integrated IR photometry of star-forming galaxies

In this chapter, I introduce a new set of template SEDs to model the dust emission of starforming galaxies. These SEDs are based on the dust model of Galliano et al. (2011), and can be considered as an extension of the SEDs recently introduced by Magdis et al. (2012) and Béthermin et al. (2015b). The advantage of this new library is twofolds: first, the shape of the dust continuum is tuned to reproduce the Chary & Elbaz (2001) library (which is known to model correctly a large number of observed SEDs with only four different templates) while providing a finer control on the effective dust temperature (T dust ); and second, the mass fraction of PAH molecules is a free parameter, allowing a finer modeling of the MIR photometry around 8 µm. This last point will be particularly important in the James Webb Space Telescope (JWST) era, when we will routinely observe galaxies in deep MIR surveys. These SEDs will be published together with gencat, a code that I developed within the ASTRODEEP program and that is described in Chapter 5. The aim of this code is to simulate a patch of the sky with realistic galaxy distributions, to be able to test photometric codes and other image-based techniques like stacking. The corresponding papers are still in preparation, and the two following chapters are essentially borrowed from the current drafts.

Introduction

A number of dust SED libraries have been published during the last years, among which are the Chary & Elbaz (2001) (CE01) library, calibrated in L IR from local galaxies, the Dale & Helou (2002) library, calibrated in FIR colors, or the Magdis et al. (2012) library, calibrated in intensity of the interstellar radiation field U (or, equivalently, in dust temperature T dust ).

More complex models, like that of Draine & Li (2007) or Galliano et al. (2011), provide a finer description of the dust content, allowing for example to fine tune the dust chemical composition and build composite spectrum with arbitrary temperatures distributions. However, properly constraining most of these parameters require exquisite SEDs with good wavelength sampling, which is a level of quality that is rarely achieved outside of the Local Universe. Therefore, the simpler libraries quoted above (CE01, etc.) are often preferred.

Here we are seeking for an additional level of control over the SED: we aim to be able to choose different effective dust temperatures T dust and to change the relative contribution of the polycyclic aromatic hydrocarbon molecules (PAHs) f PAH . There are two reasons for this choice: first, these are the two parameters that are the easiest to measure without FIR spectroscopy (which is only available for very few selected objects), and are those that affect the most the shape of the SED; and second, PAHs emit the bulk of their light around the rest-frame 8 µm, which is a domain that will be routinely accessed by the James Webb Space Telescope in the near future, and there will be a need for a properly calibrated library to exploit 77/260 CHAPTER 4. MODELLING THE INTEGRATED IR PHOTOMETRY OF STAR-FORMING GALAXIES these data together with ancillary Herschel or Spitzer observations. Therefore, we introduce in Section 4.2 a new SED library in which both T dust and f PAH are free parameters. In Section 4.2.1 we calibrate the redshift evolution of both parameters using the MIR to FIR stacks of Schreiber et al. (2015) (hereafter S15, and see previous chapter), to which we add stacks of the Spitzer IRS 16 µm imaging (Teplitz et al. 2011) to better constrain the PAH features (available in GOODS-North and South only). This calibration is revisited in Section 4.2.2 using individual Herschel detections to constrain the scatter on these parameters, and also to calibrate how they are modified for those galaxies that are offset from the Main Sequence.

Lastly, in Section 4.4 we further describe how the library can be used to derive infrared luminosities even when a single photometric band is available. The accuracy of such measurements is quantified in the next Chapter (Section 5.7).

In the following, we assume a ΛCDM cosmology with H 0 = 70 km s -1 Mpc -1 , Ω M = 0.3, Ω Λ = 0.7 and a Salpeter (1955) initial mass function (IMF), to derive both star formation rates and stellar masses. All magnitudes are quoted in the AB system, such that M AB = 23.9 -2.5 log 10 (S ν [µJy]).

A new far infrared template library

Since it was published, the CE01 library has been used routinely to derive infrared luminosities, and therefore star formation rates, for large samples of galaxies at various redshifts. In S15, we found that, in spite of the relatively small number of different SEDs it contains, it is able to fit relatively well our stacked Herschel photometry from z = 0.5 to z = 4. However, the behavior of these SEDs at 8 µm, which was calibrated from the local Universe, is peculiar. Daddi et al. (2007a) found that it is inadequate to measure star formation rates from the rest-frame 8 µm at z = 2, and it was later shown in Elbaz et al. (2011) that this was caused by an improper calibration of the IR8, the ratio between the total infrared luminosity L IR and the luminosity at 8 µm, L 8 . This illustrates how critical it is to properly describe the 8 µm features, and in particular the emission of PAHs.

Apart from this wavelength regime, the rest of the FIR continuum of the CE01 library is a solid reference. Therefore, when building our new library, we try to reproduce the same shape of the continuum, and only change the position of the peak of the SED to vary T dust .

To do so, we use the dust continuum model of Galliano et al. (2011). This model can output the mid-to far-IR spectrum emitted by a dust cloud of mass 1 M ⊙ , composed of a mixture of carbonated and silicate grains of different sizes (split in "small" and "big" grains), under the influence of a radiation field of integrated intensity U (taken here in units of the Mathis et al. (1983) interstellar radiation field). For our templates, we use the Milky Way mass-fraction of small vs. big grains and carbonated vs. silicate grains (Zubko et al. 2004). We then generate the final composite templates by adding together the emission of different dusty regions, heated by different radiation intensities. Following Dale et al. (2001), we assume that the distribution of radiation intensity follows a power law in dU/dM dust = U α , where M dust is the mass of dust, and integrate this distribution from U = U min to U = U max . The main parameter that allows us to tune the effective dust temperature here is U min or, equivalently, U (with the U distributions we assume here, the final SED is relatively insensitive to the precise value of U max , provided it is high enough). Therefore, we generate a logarithmic grid of U min ranging from 10 -1 to 10 4 with 200 samples, and take U max = 10 6 . With this model, the shape of the FIR continuum of the CE01 library from 15 to 70 µm is reproduced using a power-law slope of the U distribution of α = 2.6.

The model of Galliano et al. (2011) can also produce the associated PAH emission, assuming that a fraction f PAH of the total mass of dust is found in PAH molecules. We will assume that these molecules are subject to the same U distribution as the other dust grains, although this choice has very little consequence since the PAH molecules are not thermalized. We also . We add to these data new stacks of the Spitzer 16 µm images in the GOODS fields, and overplot the best fit template from our library with colored solid lines. Fainter empty triangles in the background show the expected broadband flux from the best-fit template, to illustrate any offset with the observations. For the last redshift bin (bottom-right panel), we fixed f PAH and T dust (see Appendix 4.4) because there is no data to constrain the PAH region and the Rayleigh-Jeans tail of the dust continuum.

choose not to follow the Milky Way fraction of neutral vs. ionized PAH molecules (50%) and use instead a value of 10%: this fraction will change the relative strength of the 8 vs. 12 µm PAH features. When both these wavelength ranges are observed with broad band photometry (i.e., with Spitzer IRS 16 µm and MIPS 24 µm at z = 1, see Fig. 4.1), we find this choice to provide a better description of the observed data than the CE01 library, in which the 12 µm feature is stronger. Using these parameters, we generate PAH templates with the same U distributions as for the dust continuum.

The final library is therefore composed of two sets of templates: dust continuum on one side, and PAH emission on the other. We show in Fig. 4.1 how the resulting SEDs fit to the 79/260 Figure 4.2 -Cartoon picture of how the FIR SED library works. The total SED is shown with a black solid line, while the dust continuum and PAH components are shown with a solid orange and blue lines, respectively. We also show how the shape of the SED varies with dust temperature T dust by displaying several templates of different T dust in orange lines of varying intensity. The orange and blue arrows illustrate how the SED is modified by increasing T dust and f PAH , respectively. stacks of S15, to illustrate the variety of SED shapes that can be reproduced with this library, and how well it is able to match the observed features. As shown in Fig. 4.2, the relative amplitude of each component can be freely adjusted, effectively changing the total dust mass M dust and the PAH fraction f PAH . The dust temperature T dust is obtained from the best-fitting dust continuum template, and the other quantities of importance, in particular the total infrared luminosity L IR , can be obtained from the combined SED (continuum+PAH).

Using these SEDs, we have the following relations between T dust , L IR , M dust and U :

U = T dust 17.5K 5.54 (4.1) L cont IR [L ⊙ ] = 185 × (1 -f PAH ) × (M dust [M ⊙ ]) × U (4.2) L PAH IR [L ⊙ ] = 307 × f PAH × (M dust [M ⊙ ]) × U 0.98 (4.3) L IR = L cont IR + L PAH IR (4.4)
Note that we actually provide two dust temperatures per template in this library. The first, and the one we use in this thesis, is computed by applying Wien's law to each elementary template of Galliano et al. (2011) (of unique U, and taking into account the emissivity β = 1.7), then weighting the obtained values by the dust mass associated to each such template. It is therefore a mass-weighted average. The second is computed by applying Wien's law to the peak of the final dust template, and is therefore a light-weighted average. In practice, the difference between the two is simply a constant factor, with

T mass dust = 0.91 × T light dust (4.5)
but T light dust is less stable because the summed dust template is broader, making it harder to locate accurately the position of the peak.

We also have the following relation between f PAH and IR8 ≡ L IR /L 8 for T dust < 50 K: 2012) (computed from their SEDs). Both were converted from IR8 to f PAH using our SEDs. For reference, we also give the median f PAH value measured in local galaxies by Galliano et al. (2008).

IR8 = L IR L 8 = 1 + 0.627 × f PAH 0.0429 + 4.64 × f PAH , (4.6) 80/260
where L 8 is the luminosity in the rest-frame IRAC channel 4 (8 µm) broadband. For T dust > 50 K, the contribution of the dust continuum to the 8 µm luminosity becomes non-trivial and the relation is more complex.

In the next section, we analyze in more details the fits of this library to the stacks of S15 and derive redshift trends for both T dust and f PAH .

Calibration on stacked photometry

Compared to our previous fits with the CE01 library, we find very similar values of L IR , except for the lowest redshift bin where we obtain value that are systematically 0.1 dex lower. This is caused by a peculiar feature of the adopted best-fit template from the CE01 library around the rest-frame 30 µm. This particular SED (ID 40) shows an enhanced flux in this wavelength range compared to our library. Without any data to constrain this feature, we cannot say whether it is real or not, although we tend to favor the result of the new SED library which has a consistent shape at all T dust .

In Fig. 4.3 we show the best-fit values we obtain for T dust and f PAH on the stacked SEDs of S15. Errors bars are derived by perturbing the measured photometric points within their estimated uncertainties and redoing the fit 100 times, then computing the standard deviation of each parameter among all 100 realizations (see Section 4.4). Consistently with what was previously reported, e.g., by Magdis et al. (2012), Magnelli et al. (2013) or Béthermin et al. (2015b), we find that the dust temperature increases continuously with redshift, at least up to z = 3. The lack of data points on the Rayleigh-Jeans tail of the SED at z = 4 prevents us from drawing any conclusion at that redshift, and there T dust was fixed to the extrapolated value from lower redshifts (again, see Section 4.4). The trend we find is in very good agreement with that of Béthermin et al. (2015b) (after converting their U values into T dust using Eq. 4.1). At z ≥ 2, we tend to find warmer dust temperatures, but this is mostly affecting the low-mass bins which are the most uncertain, and we prefer to trust the trend observed in the two most massive bins. We therefore calibrate the evolution of the average dust temperature with the following 81/260 CHAPTER 4. MODELLING THE INTEGRATED IR PHOTOMETRY OF STAR-FORMING GALAXIES equation:

T MS dust [K] = 20.2 × (1 + z) 0.44 for z ≤ 2 26.3 × (1 + z) 0.2 for z > 2 (4.7)
This can also be compared, e.g., with the result of Magnelli et al. (2014), who found T dust = 26.5 × (1 + z) 0.18 . The normalization of this relation is higher than the one we report here, which may be linked to the fact that Magnelli et al. (2014) measured the T dust with modified black body fits1 , and therefore that their dust temperatures are light-weighted. Correcting for this difference using Eq. 4.5, as was done in Fig. 4.3, these values are fully consistent with the ones we measure here.

We also find a trend for f PAH to decrease with redshift, and therefore for IR8 ≡ L IR /L 8 to increase. Elbaz et al. (2011) propose that a unique value of IR8 = 4.9 holds for all Main Sequence galaxies, however it can be seen already from their data that the average IR8 is closer to 8 at z = 2. Nevertheless, this finding does not affect the conclusions of Elbaz et al. (2011), which we revisit in Section 4.2.2. Interestingly, we do find a systematic trend in the lowest mass bin (M * ≃ 5 × 10 9 M ⊙ ) for noticeably lower f PAH , at least at z < 2 where we can measure it. We come back to these results in Section 4.3, and for now we simply parametrize the evolution of the average f PAH with

f MS PAH = 0.04 + 0.035 × (1 -0.85 × clamp(z, 1, 2)) , (4.8)
where "clamp" is defined as

clamp(x, x 0 , x 1 ) =          x for x 0 < x < x 1 x 0 for x < x 0 x 1 for x > x 1 . (4.9)

Calibration on individual detections

We now use the above library to fit all the FIR-detected galaxies in the CANDELS fields. For now, we discard galaxies that have a poor wavelength coverage, i.e., those that have less than 3 photometric points to constrain the shape of the dust continuum (to measure T dust ), or those that are not detected simultaneously in the FIR and rest-frame 8 µm (to measure f PAH ). The case of these galaxies is discussed in Section 4.4. We also exclude fits of poor quality, by rejecting galaxies whose T dust is uncertain by more than 2 K or that were fitted with a χ 2 larger than 10, indicative of issues in the photometry and/or counterpart identification. Our goal in this section is to measure the typical scatter of both T dust and f PAH about the average values we obtained in Section 4.2.1, as well as to calibrate how these quantities are modified in starburst galaxies, i.e., those galaxies that have an excess SFR at a given stellar mass compared to the Main Sequence. To quantify this excess, we use the "starburstiness" (Elbaz et al. 2011) which is defined as R SB ≡ SFR/SFR MS , so that galaxies with R SB = 1 are on the Main Sequence, and those with R SB > 1 are located above the sequence.

In Fig. 4.4 (top) we show the measured dust temperatures for individual Herschel detections. The redshift evolution of the average temperature is well matching that seen in the stacked SEDs, although at z > 1.5 the sliding median of the detections is found below our stacked trend. This can be explained by a selection effect: by requiring a robust measurement of T dust , we essentially require a detection in the Herschel SPIRE bands, which will in turn favor the inclusion of cold SEDs in the sample, at the expense of warmer SEDs. We then subtract this redshift-dependent average from the measured T dust , and quantify how the remainder correlates with the offset from the Main Sequence. Such a trend was first observed in Elbaz et al. (2011), and later quantified by Magnelli et al. (2014) who stacked galaxies at various locations of galaxies individually detected with Herschel in the CANDELS fields. For the T dust measurement, we consider only those galaxies with at least 3 measured photometric points in the dust continuum so that the dust temperature is relatively well constrained. For the f PAH measurement, we use only those galaxies with at least one measured photometric point around the rest-frame 8 µm and at least one point in the dust continuum. We overplot the trends found in stacking (Section 4.2.1) with solid black lines, as well as the sliding medians on the detection with solid red lines. Middle: Calibration of the evolution of T dust (top) and f PAH (bottom) with the offset from the Main Sequence (R SB , see text). The legend is the same as for the plot on the left, except that here the black solid line shows our best-fit linear relation to the data. Right: Distribution of T dust (top) and f PAH (bottom) after removing the redshift evolution as well as the starburstiness trend. The scatter of this distribution, measured with 1.48 × median|∆X|, where X is either T dust or log 10 ( f PAH ), is shown in inset.

on the SFR-M * plane. They reported a linear relation between T dust and log 10 (R SB ) (which they call ∆ log(sSFR)) with a slope of 6.5 K, which is very similar to the value we measure here of 6.6 K. In the right panel of Fig. 4.4 (top), we finally show the T dust distribution after removing the redshift and starburstiness trends, and find a residual dispersion of 4.4 K (4.2 K after subtracting the measurement and redshift uncertainties, assuming ∆z/(1 + z) = 5%), with no dependence on L IR . We therefore parametrize the dust temperature of a galaxy with the following equation:

T dust [K] = T MS dust + 6.6 × log 10 (R SB ) . (4.10)
where T MS dust is defined in Eq. 4.7, with a Gaussian scatter of 4.2 K. In Fig. 4.4 (bottom) we apply exactly the same procedure for f PAH . Consistently with the results of Elbaz et al. (2011), we find an anti-correlation between f PAH and log 10 (R SB ), meaning that starburst galaxies have depressed PAH emission, which Elbaz et al. (2011) also interpret as a sign of increased compactness of the star-forming regions (we discuss this interpretation in Section 4.3). We find that the f PAH of individual galaxies can be well described by (4.11) where f MS PAH is defined in Eq. 4.8, with a log-normal scatter of 0.28 dex. 83/260 4.3 On the redshift and stellar-mass dependence of f PAH It is known, at least in the Local Universe, that the strength of the PAH features is well correlated with the gas-phase metallicity, with more metal-rich galaxies having more pronounced PAH emission (e.g., Galliano et al. 2003;Ciesla et al. 2014). One plausible explanation is that a metal-poor ISM blocks less efficiently the UV radiation of young stars, and makes it harder for PAH molecules to survive (e.g., Galliano et al. 2003). Other scenarios have been put forward, suggesting either that low metallicity objects are just too young to host enough carbon grains to form PAH complexes (Galliano et al. 2008), or that this is instead caused by a different filling factor of molecular clouds in metal poor environments (Sandstrom et al. 2012). Metallicity, in turn, is positively correlated with the stellar mass through the mass-metallicity relation (Lequeux et al. 1979;Tremonti et al. 2004), and this relation has been found to evolve with time, so that galaxies were more metal-poor in the past (e.g., Erb et al. 2006). One therefore expects to find the strongest PAH features within massive low-redshift galaxies, which is indeed what we observe in Fig. 4.3.

f PAH = f MS PAH × R -0.47 SB ,
To ease the comparison, we show in Fig. 4.5 the relation between our stacked f PAH measurements and the average metallicity of the stacked galaxies. Because we do not have individual metallicity measurements for all these galaxies, we follow Magdis et al. (2012) and estimate the average metallicity (more precisely, the oxygen abundance 12+log 10 (O/H)) using the Fundamental Metallicity Relation (FMR, Mannucci et al. 2010) and the average measured stellar masses and star formation rates. We then compare our results to the Local Universe relation reported by Galliano et al. (2008),

log 10 ( f PAH ) z=0 = -1.3 + 0.8 × log 10 (Z/Z ⊙ ) , (4.12)
where we assume Z ⊙ = 0.017 (Grevesse & Sauval 1998) and 12 + log 10 (O/H) ⊙ = 8.69 (Allende Prieto et al. 2001). We first consider the galaxies more massive than 10 10 M ⊙ . The values we measure in the two lowest redshift bins (0.3 < z < 1.2) are in agreement with the z = 0 trend. A tension starts to appear at 1.2 < z < 1.8, and at z > 1.8 we find values that are systematically below the fiducial relation by a factor of about two. Such a discrepancy could be caused by uncertainties in the metallicity of high-redshift galaxies, since most metallicity measurements at z > 2 are based on indirect tracers like N ii (e.g., Erb et al. 2006). However, the mass fraction we measure at z = 2, f PAH = 1%, would imply an oxygen abundance of 7.8 using the relation of Galliano et al. (2008), as compared to the 8.4 we inferred from the FMR. Such an offset of 0.6 dex is substantially larger than the known systematics in the metallicity calibration (e.g., Kewley & Ellison 2008), and we can therefore rule out this interpretation. That being said, it could also be that the FMR is not applicable to z > 2 galaxies. This possibility was recently explored by Béthermin et al. (2015b), who introduce a "broken" FMR with a redshift dependence. This alternative prescription predicts metallicities at z > 1.7 that are systematically lower than the original FMR, and increasingly so with increasing redshift. As can be seen from Fig. 4.5, this modification goes indeed in the right direction, as our z = 3 measurements become consistent with the z = 0 trend using this alternative FMR. On the other hand, the z = 2 values remain systematically offset, suggesting the existence of a real physical difference at z = 2.

This can be put in perspective with the work of Elbaz et al. (2011), who argue that the large IR8 (and therefore the low f PAH ) observed in starbursting galaxies is caused by an increased compactness of the star-forming regions. PAH molecules are indeed expected to survive and shine mostly within H ii regions. If the star-forming regions are more tightly packed, the H ii regions tend to percolate, and the volume in which PAHs can survive is reduced. The same interpretation can be invoked for our z = 2 measurements, in particular since high-redshift galaxies are known to be more compact than their low-redshift equivalents (e.g., Ferguson et al. 2004). Observed differences in the dust attenuation properties of high-redshift Main Sequence galaxies also suggest such a change of geometry (Pannella et al. 2015).

However, one important caveat of the present analysis is that f PAH is in fact degenerate with two other unrelated phenomenas. First, buried AGNs are known to emit the bulk of their light in the mid-IR (e.g., Mullaney et al. 2011), and can therefore largely perturb the measurement of f PAH . Bright AGNs are not very common and can be easily identified, e.g., from their IRAC colors (Donley et al. 2012) or X-ray luminosity. Elbaz et al. (2011) found however that these AGNs have the same IR8 distribution as normal galaxies. Lower luminosity AGNs could be more numerous, and significantly harder to detect, but their impact on the MIR luminosity, if any, should be even more subtle. Second, another way to increase the 8 µm luminosity is to increase the number of very small dust grains, which are heated at several hundreds to thousands of Kelvins.

Both these phenomena could contribute to some extent to the 8 µm continuum. With MIR spectroscopy, as was provided by Spitzer IRS, the contribution of PAHs can be determined accurately, but unfortunately very few galaxies in our surveys have IRS spectra. More progress will be possible as soon as JWST is launched.

Appendix: Recipe for optimal FIR SED fitting

Contrary to the standard FIR libraries from the literature (e.g., CE01), the one we introduce here has one more degree of freedom: the PAH mass fraction f PAH . This parameter can only be constrained if observations in both the rest-frame 6 to 15 µm and 20 to 200 µm are available. If this criterion is not satisfied, the fit is degenerate, and the best we can do is to fix f PAH to its most probable value. On the other hand, T dust can only be constrained if the dust continuum is probed with a sufficiently large wavelength range, e.g., with at least 3 Herschel bands, and especially if the available photometry covers the peak of the FIR emission (which, as can be seen in Fig. 4.1, is not the case at z ≥ 4). Similarly, the best thing we can do in this case is to fix this parameter to our most accurate prediction. Using only the knowledge of the galaxy's redshift, the procedure we recommend is described in the following.

Selection of free parameters.

• If the number of S /N > 3 measurements probing the rest-frame 15 µm to 3 mm is less than 3, or if the measurements do not cover both λ < 80 µm and λ > 80 µm, fix T dust = T MS dust from Eq. 4.7. In all other cases, let T dust vary to all the values permitted by the library.
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• If no S /N > 3 measurement probes the rest-frame 5 to 15 µm, or if all measurements are within this range, fix f PAH = f MS PAH from Eq. 4.8. Else, let f PAH vary from 0 to 1. Fitting the observed photometry.

• If all parameters are free, iterate over all the U in the library. For each value, fit to the observed photometry a linear combination of the dust continuum and PAH template associated to this given U :

S model ν = M cont dust S cont ν + M PAH dust S PAH ν , (4.13)
where the two free parameters are highlighted in blue, and compute the χ 2 . Among all the templates in the library, pick as the best-fit solution the U value which produced the smallest χ 2 . If this solution has a negative M cont dust or M PAH dust , start over by fixing f PAH = f MS PAH and then f PAH = 0 and pick the best χ 2 . Else, the dust mass is computed as

M dust = M cont dust + M PAH dust .
The PAH mass fraction is computed as the ratio between M PAH dust and M dust . The dust temperature can be read directly from the library using the index of the bestfit U . Finally, the infrared luminosity is computed by summing up the L IR associated to both the dust continuum and PAH templates in the library (which are given per unit M dust ), weighted by their respective dust mass:

L IR = M cont dust L cont IR + M PAH dust L PAH IR . (4.14)
• If f PAH is fixed, iterate over all the U in the library. For each value, compute the combined template by summing together the dust continuum and the PAH templates associated to this U , fit this single template to the observed photometry:

S model ν = M dust (1 -f PAH ) × S cont ν + f PAH × S PAH ν , (4.15) 
where the only free parameter is highlighted in blue, and then compute the χ 2 . Similarly to the procedure above, choose as the best-fit solution the value of U that produced the smallest χ 2 . Then let M cont dust = (1 -f PAH ) M dust and M PAH dust = f PAH M dust , and derive the other quantities as described above.

• If both T dust and f PAH are fixed, locate the U that corresponds to the chosen T dust in the library. Combine both dust continuum and PAH templates as described above, and follow the rest of the procedure by only considering the unique template.

• In all cases, if the χ 2 of the best-fit is larger than 10 and the fit used photometry below 30 µm rest-frame, then remove these measurements, fix f PAH = f MS PAH or f PAH = 0, do the fit again, and pick the best χ 2 . If this new χ 2 is smaller than the old one, consider this new fit as the best. Else, fall back to the original fit. One would expect the χ 2 to be systematically lower, because there are fewer points to fit, but it should also be taken into account that fixing f PAH will remove one degree of freedom, and can thus make the fit worse. This step takes care of contamination by AGNs, and also uncertain redshifts that make PAH emission lines appear where the library doesn't expect them to.

Computing uncertainties on best-fit parameters.

• Add a random perturbation to each measured photometric point, as a Gaussian scatter of amplitude set by the estimated measurement uncertainty. Then redo the fit as described above.

• Repeat the procedure 100 times and, for each fit parameter, the uncertainty is given by the RMS of the difference between the best-fit value measured on the real photometry and the best-fit value of each 100 noise realizations.

If only a single photometric band is available, the accuracy of monochromatic L IR or M dust measurements is quantified using a simulated galaxy catalog in Chapter 5, Section 5.7.

Chapter 5 gencat: an empirical simulation of the observable Universe

Introduction

The following work was undertaken as part of the ASTRODEEP collaboration. Briefly, AS-TRODEEP is an FP7-SPACE project lead by the PI A. Fontana (INAF, Rome) and the Co-Is D. Elbaz, J. Dunlop (Royal Observatory, Edimbourg), S. Derrière (CDS, Strasbourg), M.E. Dickinson (NOAO, Tucson), H. Ferguson (STScI, Baltimore) and S. Faber (UCO-Lick, Santa Cruz). One of the main goal of ASTRODEEP is to design tools to robustly measure the photometry of galaxies in a variety of images, ranging from the UV-optical to the far-IR. For example, the first product of this collaborative effort is the T-PHOT code (Merlin et al. 2015). This program is meant to be a replacement for TFIT (Laidler et al. 2007), which was used, e.g., to extract the UV-to-NIR photometry in all the CANDELS fields (Guo et al. 2013;Galametz et al. 2013). T-PHOT is more versatile though, since it can also be used to extract FIR fluxes on the Herschel images (see, in particular, Wang et al. in prep.).

The performance and accuracy of such a code has to be properly characterized before applying it to real images, to check not only the robustness of the flux measurements, but also the quality of the error estimates. Furthermore, the main challenge when extracting photometry in FIR images is not so much the details of the flux extraction itself, but rather the proper choice of the prior selection strategy. For this reason, a second goal of ASTRODEEP is to provide the astrophysics community with realistic simulations of the sky at different wavelengths, and with different angular resolutions, so that we can test our procedures and tools and quantify their efficiency.

A first rendition of these simulations was based on the SkyMaker1 program (E. Bertin), in order to produce realistic high resolution "HST-like" images. In input, this program requires a simulated galaxy catalog, containing morphologies and fluxes, which can be produced by the Stuff2 program (also created by E. Bertin). The quality of the simulated catalogs generated by Stuff is not optimal though. In particular, the distribution of the simulated fluxes in some bands (in particular the U band, but not only) differ substantially from those that are observed, leading to simulated images that are not representative of the real products we are working on. Unfortunately, both SkyMaker and Stuff are poorly documented, and we cannot easily remedy this problem by editing the codes.

For this reason, I have extended the simulations that are described in Chapter 3 (Section 3.8) and developed a new tool to generate simulated galaxy catalogs, called gencat 3 , that I designed and wrote in C++ using the phy ++ library (see Appendix A). The main ideas behind the procedure are summarized in this Chapter.

This new tool can generate catalogs in the format required by SkyMaker, and therefore can be used as a "drop-in" replacement for Stuff. Using this tool I am able not only to generate fluxes in all the photometric bands from 3000 Å to 8 µm, like Stuff, but I also merge in my technique to simulate far-IR fluxes from 8 µm to 3 mm (see Chapter 3, Section 3.8), essentially covering, in a single tool, the whole wavelength range where stellar and dust emission dominate.

The quality of the generated catalogs has greatly improved compared to original catalogs built with Stuff. As can be seen in Section 5.6, we are now able to produce flux distributions that are indistinguishable from the real, observed flux distributions, in all bands from U to SPIRE 500 µm. The simulated images, both at Hubble-and Herschel-like resolution, have very good statistical properties. This will allow us to perform more accurate tests of our methods, and also to deliver high quality simulations to the community.

Sample description

We base this analysis on the sample and data described in Schreiber et al. (2015) (hereafter S15, see Chapter 3). In this section, we make a brief summary of these observations.

Multi-wavelength photometry

The catalogs we use in this work are based on the CANDELS (Grogin et al. 2011;Koekemoer et al. 2011) Hubble Space Telescope (HST) WFC3 H band images in the four CANDELS fields that are covered by deep Herschel PACS and SPIRE observations, namely GOODS-North (Barro et al. in prep.), GOODS-South (Guo et al. 2013), UDS (Galametz et al. 2013) and COSMOS (Nayyeri et al. in prep.). Each of these fields is about 150 arcsec 2 and they are evenly distributed on the sky to mitigate cosmic variance.

The ancillary photometry varies from one field to another, being a combination of both space-and ground-based imaging from various facilities. The UV to near-IR wavelength coverage typically goes from the U band up the Spitzer IRAC 8 µm, including at least the HST bands F606W, F814W, and F160W and a deep K (or K s ) band, and all these images are among the deepest available views of the sky. These catalogs therefore cover most of the important galaxy spectral features across a wide range of redshifts, even for intrinsically faint objects.

We complement these catalogs with mid-IR photometry from Spitzer MIPS and far-IR photometry from Herschel PACS and SPIRE taken as part of the GOODS-Herschel (Elbaz et al. 2011) and CANDELS-Herschel programs (PI: M. Dickinson, Inami et al. in prep.).

Redshifts and stellar masses

Photometric redshifts and stellar masses are computed by M. Pannella following Pannella et al. (2015). We use EAZY (Brammer et al. 2008) to derive the photometric redshifts from the CAsDELS catalogs, allowing slight adjustments of the photometric zero points by iteratively comparing our photo-zs against the available spec-zs. The stellar masses are then computed using FAST (Kriek et al. 2009) by fixing the redshift to the best-fit photo-z and fitting the observed photometry up to the IRAC 4.5 µm band using the Bruzual & Charlot (2003) stellar population synthesis model, assuming a Salpeter (1955) IMF and a Calzetti et al. (2000) extinction law.

Galaxies with an uncertain photometric redshift (redshift odds less than 0.8) or bad SED fitting (reduced χ 2 larger than 10) are excluded from our sample. We estimated in S15 the evolution of the stellar mass completeness (90%) of these catalogs at all redshifts, and in the present study we only consider galaxies above this limit. For example, at z = 1 the completeness is as low as 5 × 10 8 M ⊙ . 
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z φ ⋆ 1 log 10 (M ⋆ 1 ) α 1 φ ⋆ 2 log 10 (M ⋆ 2 ) α 2 dex -1 Mpc -3 log 10 (M ⊙ ) dex -1 Mpc -3 log 10 (M ⊙ ) 0.3-0.7 1.04 × 10 -3 [11] [-1.37] 0 [11] [0.5] 0.7-1.2 7.77 × 10 -4 [11] [-1.37] 1.72 × 10 -4 [11] [0.5] 1.2-1.8 7.14 × 10 -4
[11] [-1.37] 6.56 × 10 -5

[11] [0.5] 1.8-2.5 3.87 × 10 -4

[11] [-1.37] 1.2 × 10 -4

[11] [0.5] 2.5-3.5 2.77 × 10 -4

[11] -1.44 4.95 × 10 -5

[11] [0.5] 3.5-4.5

3.4 × 10 -5

[11] -1.83 1.01 × 10 -5

[11] [0.5] Lastly, the rest-frame U, V and J magnitudes are computed by M. Pannella for each galaxy using EAZY, by integrating the best-fit galaxy template from the photo-z estimation. These colors are used, following Williams et al. (2009), to separate galaxies that are "quiescent" from those that are "star-forming". We use the same selection criteria as those described in S15, i.e., a galaxy is deemed quiescent if its colors satisfy

quiescent =          U -V > 1.3 , V -J < 1.6 , U -V > 0.88 × (V -J) + 0.49 , (5.1)
otherwise the galaxy is considered as star-forming.

Stellar properties

Redshift and stellar mass

The initial purpose of gencat is to simulate a deep field similar to the GOODS-South field. Therefore, we compute the stellar mass function in this field only, in order to most closely 89/260 mimic is properties (including, in particular, cosmic variance). To do so, we use the procedure described in S15, which we now briefly recall.

z φ ⋆ 1 log 10 (M ⋆ 1 ) α 1 φ ⋆ 2 log 10 (M ⋆ 2 ) α 2 dex -1 Mpc -3 log 10 (M ⊙ ) dex -1 Mpc -3 log 10 (M ⊙ ) 0.3-0.
The whole GOODS-South catalog is cut at H < 26 to ensure high quality photometry for all galaxies and to reduce the effect of the Eddington bias. We then make multiple redshift bins from z = 0.3 to z = 4.5, and within each of these bins, we compute the mass distribution of both sub-samples of star-forming and quiescent galaxies separately, according to the UV J color-color selection (see Section 5.2.2). We apply completeness corrections as estimated from the observed scatter in the M * to L H/(1+z) ratio. Then, we fit a double Schechter law to each distribution:

d 2 N(z) d log 10 M * dV = S (M * , φ ⋆ 1 , M ⋆ 1 , α 1 ) + S (M * , φ ⋆ 2 , M ⋆ 2 , α 2 ) , S (M * , φ ⋆ , M ⋆ , α) ≡ log(10) φ ⋆ M * M ⋆ α+1 exp - M * M ⋆ .
(5.

2)

The results are shown in Fig. 5.1, and the best-fit parameters are summarized in Table 5.1 and Table 5.2. Our goal is only to find a functional form that describes well the observed data. We thus attribute no physical origin to each component of the double Schechter law, and because the fit is quite degenerate, we allow ourselves to arbitrarily fix some of the fit parameters. These are surrounded by brackets in the tables.

We estimated that our catalog is not complete to assess the mass function of z = 4 passive galaxies, and therefore do not attempt to fit it. Instead, we use the same parameters as that obtained at lower redshifts and only adjust φ ⋆ to have a fraction of passive galaxies equal to 15% (for M * > 4 × 10 10 M ⊙ ), the extrapolation of the trend we observe at lower redshifts. This is consistent with what was previously reported by, e.g., Muzzin et al. (2013a). However, Straatman et al. (2014) suggested recently that this fraction could be substantially higher, since they found 34% of passive galaxies at z = 3.7 using ZFOURGE, a deep medium-band NIR survey. In any case, this will not change dramatically the quality of our simulated catalogs, because the number density of these objects is still very low, and also because they would only be detectable in the NIR images, where they would have a negligible impact. In contrast, this is not true for z ≥ 4 star-forming galaxies, which can be among the brightest sources in a sub-mm image.

To reach higher redshifts, we use the recent results of Grazian et al. (2015) for 4.5 < z < 7.5. Since their stellar mass functions are not split between star-forming and quiescent galaxies, here we assume that the double Schechter function we observe at z = 4 also holds at z > 4, and we simply decrease the integrated stellar mass density to mimic the evolution observed by Grazian et al. (2015), keeping a constant quiescent galaxy fraction of 15%. We then extrapolate these trends to reach up to z = 9. On the other hand, the z = 0 mass function 90/260 is adapted from Baldry et al. (2012), but this should be of little importance since we are aiming for pencil-beam surveys containing almost no local galaxies. Extrapolating these combined mass functions toward the low-mass end, assuming that the low-mass slope is not varying, we can generate galaxies of all stellar masses in an arbitrary volume between z = 0 and z = 9.

Star formation rate and obscuration

Given the redshift and the stellar mass, we can attribute a star formation rate (SFR) to each galaxy by following the Two Star Formation Mode model (2SFM, Sargent et al. 2012). This model is based on the Main Sequence of star-forming galaxies, i.e., the observed correlation between the SFR and the stellar mass of actively star-forming systems (Noeske et al. 2007;Elbaz et al. 2007). This approach has been applied in Béthermin et al. (2012) to successfully reproduce the observed flux distribution from the MIR to the sub-mm and even the radio. Building on this strength, we use here a similar prescription where the model parameters are updated to our latest measurements.

Using the SFR(z, M * ) equation published in S15, we associate a "Main Sequence" star formation rate to each star-forming galaxy with

log 10 (SFR MS [M ⊙ /yr]) = m -9.5 + 1.5 r -0.3 max(0, m -9.36 -2.5 r) 2 , (5.3)
where m ≡ log 10 (M * [M ⊙ ]), and r ≡ log 10 (1 + z)

We then apply a log-normal scatter of 0.3 dex to reproduce the observed width of the Main Sequence, which was found in S15 to be constant both as function of stellar mass and redshift. In addition, 3% of the galaxies are randomly chosen and placed in a "starburst" mode, where their SFR is enhanced by a factor of ∼ 6, following the observed distribution of SFRs about the Main Sequence in S15. Sargent et al. (2012) showed that this last step is necessary to correctly capture the bright-end of the IR luminosity functions. We parametrize both the starbust component and the scatter of the Main Sequence using the "starburstiness" R SB :

R SB ≡ SFR SFR MS = 1
for Main Sequence galaxies 5.24 for starburst galaxies , (5.4)

to which we add a log-normal scatter of 0.3 dex.

For quiescent galaxies, we use the IR stacks presented in the Appendix of S15 (Chapter 3, Section 3.7), where it was reported that quiescent galaxies do show some IR emission, typically a factor of ten fainter than star-forming galaxies of the same mass. This light may be caused either by residual star formation, or by dust heated by old stars, or by incorrect classification of some star-forming galaxies. Although this is an interesting question, its answer is irrelevant for our purposes, and we choose to model this faint emission by interpreting it as residual star-formation. Therefore, quiescent galaxies are attributed an SFR following log 10 (SFR QS [M ⊙ /yr]) = 0.5 m + r -6.1 ,

(5.5)

to which we add a log-normal scatter of 0.45 dex.

To prepare the ground for the treatment of dust, we then decompose these SFRs into a dustobscured component, which re-emerges in the FIR, and dust-free component, which emerges in the UV. To do so, we use the observed relation between stellar mass and dust obscuration (e.g., Pannella et al. 2009a;Buat et al. 2012;Heinis et al. 2014), which we calibrate here in terms of the infrared excess IRX ≡ log 10 (L IR /L UV ) (Meurer et al. 1999) following Heinis et al. (2014). Using the stacked L IR from S15, we find that the relation between IRX and M * can be described by IRX = (0.45 min(3.0, z) + 0.35) × (m -10.5) + 1.2 .
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Figure 5.2 -Observed axis-ratio distribution of disk-dominated (n < 1.5, blue) and bulge-dominated (n > 2.5, red) galaxies. These values are taken from the Sérsic profile fits produced by van der Wel et al. (2012). We also show the distributions for the subsamples at z < 0.7, in dotted lines of the same colors.

This formula is very similar to that reported by Heinis et al. (2014), save from the fact that our relation is found to be redshift dependent. This is consistent with the finding of Pannella et al. (2015), who found that the typical MS galaxy at z = 2 is sensibly different from its analog at z ≤ 1, which they argue is because of modifications in the geometry of the star-forming regions. We also add a scatter of 0.4 dex to this relation: although it has a negligible impact on the generated IR luminosities, Bernhard et al. (2014) showed that this is a necessary ingredient to properly reproduce the bright-end of the UV luminosity function.

Optical morphology

Following the approach of Stuff and SkyMaker, we consider here that galaxies are mostly made of two components: a bulge (Sérsic index n = 4) and a disk (Sérsic index n = 1). Each of these components is described by a number of morphological parameters, including the position angle θ, the axis ratio b/a, and the half-light radius R 50 . Also, the fraction of the stellar mass that goes into one or the other component is dictated by the bulge-to-total ratio (B/T ). In the following, we present how we calibrate each of these parameters.

The bulge-to-total ratio is estimated following the results of Lang et al. (2014) who conveniently measured the average B/T as a function of stellar mass for both UV J quiescent and star-forming galaxies in the CANDELS fields at different redshifts. While they found the bulge fraction to increase with stellar mass for both populations, they did not observe any significant difference with redshift between z = 1 and z = 2, so we chose to make the B/T simply depend on mass following log 10 (B/T ) active = -0.7 + 0.27 × (m -10) and log 10 (B/T ) passive = -0.3 + 0.1 × (m -10) ,

(5.7)

to which we add a log-normal scatter of 0.2 dex in order to reproduce the width of the distribution reported by Lang et al. (2014). The final B/T is limited to be no more than 1. Note that this value is a mass-weighted bulge-to-total ratio, therefore we can directly use it to compute the stellar mass inside the disk and the bulge. Estimating the contribution of each component to the light of the galaxy is done in Section 5.3.4. Then, we attibute a uniformly random position angle to each galaxy, and assign this same angle to both the bulge and the disk components. To calibrate the other morphological parameters of both bulges and disks, we use the morphological catalogs of van der Wel et al. ( 2012) who fit single Sérsic profiles of varying index n to all galaxies in the CANDELS fields using 92/260 Figure 5.3 -Observed relation between the half-light radius R 50 and redshift of disk-dominated galaxies (left) and bulge-dominated galaxies (right). Different stellar mass bins are shown with different colors as indicated in the legend. The median values over all CANDELS fields are shown with solid colored lines, and the prescription adopted in this work is displayed with a dotted line in the background. Empty triangles at z = 0.1 are the values obtained by Shen et al. (2003) in the SDSS, converted from the Kroupa to Salpeter IMF, and multiplied by a factor 1.4 to correct for the fact that their radii are measured in circularized apertures (Dutton et al. 2011). We also show how the size of the HST H-band PSF (0.2") translates into proper distance with a long dashed line. Measuring sizes below this line is difficult, and we expect this to cause biases in the measured median radii (as is probably happening for the low-mass bulge-dominated galaxies). Finally, for bulge-dominated galaxies, we also display the size measurements of Newman et al. (2012), which were obtained by selecting passive galaxies based on their sSFR from SED fitting. Their values are reported as R 50 /M 0.57 11 , which we renormalize to the stellar mass of our highest mass bin.

the Galfit software (Peng et al. 2002) on the HST H-band images. In the following, we will consider two sub-samples: first, galaxies with n < 1.5 and M * > 10 9 M ⊙ , second, galaxies with n > 2.5 and M * > 3 × 10 10 M ⊙ . The cut in stellar mass is used to select galaxies bright enough that the Sérsic fit are reliable, and to prevent our trends to be dominated by the numerous lowmass galaxies. We use these sub-samples to calibrate the morphology of the disk and bulges, respectively. Indeed, for galaxies with n < 1.5 the presence of a bulge can be neglected so that the measured properties can be attributed to the disk alone (see, e.g., the Appendix of Lang et al. 2014), and conversely for n > 2.5. This latter sample of n > 2.5 galaxies is probably less pure though, since high Sérsic indices can be produced either by a dominant bulge, or by a minor bulge that has a much smaller half-light radius than the disk, as shown in the Appendix of Lang et al. (2014). However these extreme cases are relatively rare, and the majority of n > 2.5 galaxies are indeed bulge dominated.

For each sub-sample, we start by measuring the axis ratio distribution (Fig. 5.2). We find, as expected, that bulge-dominated galaxies have more circular shapes, their b/a distribution peaking at 0.8, while disk-dominated galaxies are more elongated, with a peak b/a of 0.3. We consider that these distributions hold for all masses and all redshifts. van der Wel et al. (2014) reported that the b/a distribution of UV J star-forming galaxies at z = 1.7 shows a clear mass evolution from 10 9 to 10 11 M ⊙ : while the low-mass distribution is very similar to our disk-dominated distribution, the high-mass distribution is found to be bimodal. Without attempting to demonstrate it, we argue here that this trend is likely the result of the increase of the B/T with stellar mass among star-forming galaxies (Lang et al. 2014). On the one hand, low-mass galaxies are preferentially bulgeless, and should therefore follow the trend of puredisks of Fig. 5.2. On the other hand, high-mass galaxies are more complex systems with a varying mixture of bulges and disks; among those, we expect to find both bulge-and disk-93/260 dominated systems, and this would explain the bimodal distribution observed by van der Wel et al. (2014). However, by comparing their z = 1.7 result to a similar analysis in the Sloan Digital Sky Survey (SDSS, z = 0), van der Wel et al. (2014) showed that these distributions are also redshift dependent. One possible explanation for this would be that the redshift invariance of the B/T -M * relation found by Lang et al. (2014) may not hold at z < 1, indicating that galaxies in the local Universe have more prominent bulges at fixed stellar mass. As shown in Fig. 5.2, we do find a similar trend at z < 0.7 (blue dotted line), but the difference is small enough that it can be safely neglected for our purposes.

The next step is the calibration of the half-light radius. It is known that the proper size of a galaxy correlates with its stellar mass (i.e., the mass-size relation), and also that galaxies where overall smaller (hence more compact) in the past (e.g., Ferguson et al. 2004). For this reason, we bin our two sub-samples in stellar mass and observe the evolution of the median half-light radius with redshift. The observed trends are reported in Fig. 5.3. We parametrize these relations with the following equations, for disks:

log 10 (R 50,disk [kpc]) = 0.45 + 0.2 × (m -9.35) + F z ,
(5.8)

with F z = -0.3 × r for z ≤ 1.7 -0.7 × r + 0.17 for z > 1.7 , and for bulges:

log 10 (R 50,bulge [kpc]) = 0.9 + 0.56 × (m -11.25) -1.3 × r , (5.9) 
to which we add a log-normal scatter of 0.25 dex. Although this latter value is smaller than what was reported, e.g., by Shen et al. (2003) or Dutton et al. (2011), we find that it is sufficient to reproduce the observed scatter in the mass-size relation, where the actual half-light radius of the whole galaxy (i.e., combining both bulge and disk components) is approximated as (5.10) where α = 0.8 for (R 50,bulge /R 50,disk ) < 1, and α = 2 otherwise. This empirical relation was obtained by computing numerically the half-light radius of simulated double Sérsic profiles (n = 1 and n = 4) of varying sizes and relative flux.

R 50,total = R 50,disk × 1 -(B/T ) α + R 50,bulge × (B/T ) α ,
To preserve the normalization of the mass-size relation in composite systems, we use the total mass M * to derive each component's respective size. However, although the above R 50,bulge provides a good description of bulge-dominated objects, we find that using this same prescription for the bulges of disk-dominated galaxies leads to total sizes that are systematically smaller than what is observed. Instead, adopting the prescription of R 50,disk for these bulges gives a perfect fit. This would mean that the bulges found in disk-dominated galaxies are substantially different, and in particular less compact, than those found in bulge-dominated galaxies. Alternatively, it could also mean that the reported bulge fractions among star-forming galaxies reported by Lang et al. (2014) are overestimated.

Optical spectral energy distribution

Once the main physical properties are generated, we can associate an optical SED to both the disk and bulge component of every galaxy. Instead of basing our approach solely on physical arguments, e.g., stellar age and dust content, we choose a simpler effective prescription where the SED is chosen based on the position of the galaxy on the UV J diagram. Indeed, this colorcolor diagram is a good way to describe a wide range of spectral types, in particular "blue and star-forming", "red and dead" and "red and dust-obscured".

Our first goal is therefore to find a recipe to generate U -V and V -J colors for every galaxy, with realistic statistical properties. Since galaxies are segregated into two groups (or "clouds") 94/260 Figure 5.4 -Left: UV J diagram of all galaxies in the CANDELS fields more massive than 10 10 M ⊙ (background gray scale). The redshift evolution of the median U -V and V -J colors of star-forming galaxies in different stellar mass bins is shown with colored lines. They all fall along a single line we dub the "UV J sequence", which is illustrated by a dotted line. Finally, the adopted dividing line between quiescent and star-forming galaxies is shown with a long dashed line. Right: projection of each individual track on the UV J sequence. Low values indicate bluer colors. We show in the background the prescription adopted in this work.

of quiescent and star-forming galaxies, we will treat each population separately, starting from the star-forming galaxies.

To this end, we consider all the UV J star-forming galaxies in the CANDELS catalogs and split this sample in bins of redshift and stellar mass. In each of these bins, we compute the median U -V and V -J colors, and display the resulting tracks on the UV J diagram in Fig. 5.4 (left). One can see that, at a given stellar mass, both colors go from blue to red as redshift decreases, and same trends could already be seen in S15. We interpret this as a combination of varying dust content (see previous section and Pannella et al. 2015) and age. Interestingly, we find here that all the tracks seem to follow a single straight line that we call the "UV J sequence" (see also Labbé et al. 2007 where such a sequence is found among blue galaxies in a color-magnitude diagram). In Fig. 5.4 (right) we show the projection of the tracks on this line, to illustrate more clearly the trend with redshift. Massive galaxies seem to always show the same very red colors, while less massive galaxies were substantially bluer in the past.

We parametrize the evolution both with mass and redshift of the projection A using the following equations:

A = A 0 + A s × z , (5.11) with A 0 = 0.58 × erf(m -10) + 1.39 ,
and

A s = -0.34 + 0.3 × max(0, m -10.35) ,
and add a Gaussian scatter of 0.1 magnitudes. The resulting value is limited to be at most 2 to prevent nonphysical extremely red colors. Finally, to recover the U -V and V -J colors, we use the definition of the UV J sequence:

(V -J) active = A × cos(θ) , (U -V) active = 0.45 + A × sin(θ) .
(5.12) with θ = arctan(0.65), and we add a Gaussian scatter of 0.12 magnitudes to reproduce a wider variety of colors than what is allowed by this simple prescription. This scatter is most likely caused by variations of star formation histories or specific star formation rates (see, e.g., Arnouts et al. 2013), but we do not attempt to dissect its origin here.
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CHAPTER 5. GENCAT: AN EMPIRICAL SIMULATION OF THE OBSERVABLE UNIVERSE For quiescent galaxies, the prescription is relatively simpler, since they are mostly found within a small region of the UV J diagram, the so-called red cloud. We use the same approach as for star-forming galaxies, this time selecting the UV J quiescent galaxies in the CANDELS catalog, and compute the median U -V and V -J colors in bins of redshift and mass. We find no significant redshift trend, and choose to only model the observed distribution with a mass dependence and some random scatter. We consider that all quiescent galaxies cluster around U -V = 1.85 and V -J = 1.25, and that within the red cloud, more massive galaxies are redder (probably because they are older). This mass dependence is encoded into the reddening B defined as

B = 0.1 × (m -11) ,
(5.13)

to which we add a Gaussian scatter of 0.1 magnitudes, and which is clamped to the range B ∈ [-0.1, 0.2]. The final UV J colors are obtained using

(V -J) passive = 1.25 + B , (5.14) (U -V) passive = 1.85 + 0.88 × B , (5.15)
combined with a Gaussian scatter of 0.1 magnitudes.

We use these relations to derive the colors of the disk and bulge components of each galaxy. To do so, we consider that all disks are "active" and obtain their colors from Eq. 5.12. Similarly, we consider that all bulges of bulge-dominated galaxies (B/T > 0.6) are "passive" and described by Eq. 5.15. However, bulges in other galaxies are randomly chosen to be "active" or "passive" with uniform probability to simulate both bulges and pseudo-bulges.

The last step is to associate a detailed SED to each UV J color, i.e., build an optical SED library. To reach this goal, we bin the UV J plane into small buckets of 0.1 mag, and compute the average rest-frame SED of all the observed galaxies that fall inside each bucket, regardless of their redshift and stellar mass. The rest-frame SED of each galaxy is taken to be the best-fit SED produced by M. Pannella with FAST when fitting for the stellar mass (Section 5.2.2). We discard the buckets containing less than 10 galaxies, and end up with a library of 345 SEDs, all normalized per unit stellar mass, and each corresponding to a given position in the UV J diagram. Because it is built out of observed galaxies, this library does not cover the whole UV J plane. Therefore, if a simulated galaxy has colors that fall outside of the covered region (which will be rare by construction, but can still happen), it is attributed the SED of the closest non-empty bucket.

Since these SEDs are given per unit stellar mass, the final optical SED of each component is obtained by multiplying its stellar mass to the chosen SED from the UV J diagram.

Sky position

The simplest approach to generate the position on the sky of each galaxy is to draw these positions uniformly on the sphere, within the region of the sky that is covered by the simulated survey. The stellar mass functions we used in Section 5.3.1 ensure that we will get a correct sky density of object over the whole simulated area.

However, within the ΛCDM cosmology, we expect galaxies to form large-scale structures by following the merging history of their dark matter halos. In other words, galaxies tend to cluster on the sky, and we need to simulate this effect to generate realistic sky positions. In S15 (see also Béthermin et al. 2010b), we showed that clustering can have a significant impact on the statistical properties of confused, long-wavelength images from Spitzer and Herschel: it will tend to increase the contrast compared to a uniform position distribution, i.e., creating overdense and underdense regions within the survey area. On the other hand, we expect this to be no more than a cosmetic change for the high-resolution HST images, which do not suffer from confusion.

The procedure we use here is to aim at reproducing the observed angular two-point correlation function, i.e., the excess probability of finding a galaxy at a given distance from another, as compared to a uniform position distribution. The first step is therefore to measure this two-point correlation function in the real GOODS-South field. To do so, we bin the whole catalog in redshift slices, and only two mass bins because the statistics is limited (M * = 10 9 to 3 × 10 10 M ⊙ , and M * = 3 × 10 10 to 10 12 M ⊙ ), and we do not attempt to further refine the sample by separating different galaxy types. We then use the Landy & Szalay (1993) estimator to compute the two-point correlation function of each sample, and observe a significant clustering signal between 1" and 100" which is well described by a single power law of index -0.5. As in S15, we find no significant trend with redshift between z = 0.3 and z = 4, consistent with the results of Béthermin et al. (2015b), but we do find that massive galaxies are on average twice more clustered.

Before proceeding to generating the positions, it is important to note that the measured twopoint correlation function is affected by the uncertainties on the photometric redshifts (photozs). Indeed, within each adopted redshift bin, there is a chance that we miss some galaxies that scattered out of the bin, and another chance that we are contaminated by some galaxies scattering into the bin. The net result is that we observe a clustering amplitude which is lower than the intrinsic one. This effect can be simulated (and we do so in the following) once the uncertainty on the redshift is known. To measure this uncertainty, we cross-matched our GOODS-South catalog to that provided by 3DHST (DR1, Skelton et al. 2014). While the two catalogs are based on the same raw observations, the data reduction and photometry are completely independent. On the other hand, the photo-zs are estimated with the same code, so we will likely underestimate the true uncertainty. We chose not to use spectroscopic redshifts (spec-zs) for this experiment for two reasons: first, the photo-zs have been "trained" to most closely match the available spec-zs, so the agreement may be good only for this particular set of galaxies while not being representative of the true uncertainty; and second, spec-zs are only available for relatively bright and therefore biased samples. We thus measure the distribution of redshift differences between the two catalogs, and take into account that what we observe is the combination of uncertainties coming from both catalogs (i.e., assuming they are independent, √ 2 higher than that of a single catalog). We find that the redshift uncertainty in ∆z/(1 + z) is well described by the combination of two zero-mean Gaussians: a first distribution of width 2% that describes 80% of galaxies, and a second distribution of width 7% that describes the remaining 20%.

To produce sky positions that resemble these observations, I interacted with H. Fergusson and C. White who advised me to use the Soneira & Peebles (1978) algorithm, which is one of the few known algorithms that are able to produce a two-point correlation function with a power-law shape. The algorithm is designed so that the slope of the power law can be chosen easily: we use L = 4 and choose η and λ to match both the requested number of simulated positions N sim and the power law index γ = 0.5, i.e.,

η = N 1/L sim , (5.16) λ = η 1/(2-γ) .
(5.17)

To prevent instabilities in the algorithm when N sim is too small, we generate twice more positions than needed (with a minimum of 1 000), and randomly pick among the generated positions the ones we need, which preserves the two-point correlation function.

Using this method, we can produce a catalog of clustered positions with the right powerlaw slope. However, we still have to tune the amplitude of this clustering. We chose here a simple approach where we use the Soneira & Peebles (1978) algorithm only for a given fraction f of the simulated galaxies, and use uniformly distributed positions for the remaining fraction. We choose this fraction by first generating a set of positions with f = 100%, apply the above procedure to measure the correlation function, and compare it to the observed one. The difference of amplitude then tells us by how much we need to reduce the simulated clustering. We stress that it is important here to take into account the redshift uncertainties that affect the observed relation. To do so, we measured the two-point correlation function in the simulation using "wrong" redshifts, which were taken from the "true" redshifts of the simulation and then perturbed within the uncertainty described above. After taking this into account, we find that f = 40% for M * < 3 × 10 10 M ⊙ , and f = 70% for more massive galaxies.

To double check, we also compute the angular correlation function of the whole catalog above M * > 10 10 M ⊙ , mixing all redshifts all together. Doing so, we get rid of the issue of the redshift uncertainty, and find also a very good agreement with the observations.

Dust properties

In Section 5.3.2, we have generated SFRs for all the galaxies in the simulation, and we have estimated what fraction of the associated light is supposed to come out in the FIR. Knowing this, all we need to predict FIR fluxes is a suitable FIR SED library with various adjustable parameters that can be used to reproduce accurately the observed counts. A number of such SED libraries have already been published, among which are the Chary & Elbaz (2001) (CE01) library, calibrated in L IR from local galaxies, the Dale & Helou (2002) library, calibrated in FIR colors, or the Magdis et al. (2012) library, calibrated in U (or, equivalently, in dust temperature T dust ).

Here we are seeking for an additional level of control over the SED: we aim to be able to choose different effective dust temperatures T dust and to change the relative contribution of the polycyclic aromatic hydrocarbon molecules (PAHs) f PAH . There are two reasons for this choice: first, these are the two parameters that are the easiest to measure without FIR spectroscopy (which is only available for very few selected objects), and are those that affect the most the shape of the SED; and second, PAHs emit the bulk of their light around the rest-frame 8 µm, which is a domain that will be routinely accessed by the James Webb Space Telescope in the near future, and there will be a need for a properly calibrated library to exploit these data together with ancillary Herschel or Spitzer observations. Therefore, we introduced in Chapter 4 a new SED library in which both T dust and f PAH are free parameters. We calibrate the redshift evolution of both parameters using the MIR to FIR stacks of S15, to which we add stacks of the Spitzer IRS 16 µm imaging (Teplitz et al. 2011) to better constrain the PAH features (available in GOODS-North and South only). This calibration was refined in Section 4.2.2 using individual Herschel detections to constrain the scatter on these parameters, and also to calibrate how they are modified for those galaxies that are offset from the Main Sequence. We use these prescriptions to generate the FIR SED of each galaxy in the simulation, which then allows us to predict their MIR to submm fluxes.

The parametrization for T dust is given by:

T MS dust [K] = 20.2 × (1 + z) 0.44 for z ≤ 2 26.3 × (1 + z) 0.2 for z > 2 and T dust [K] = T MS dust + 6.6 × log 10 (R SB )
, with a Gaussian scatter of 4.1K, and where R SB = SFR/SFR MS (see Section 5.3.2).

The parametrization for f PAH is:

f MS PAH = 0.04 + 0.035 × (1 -0.85 × clamp(z, 1, 2)) ,
and 

f PAH = f MS PAH × R -0.

Generating a light cone

With all these recipes, we can now generate a complete catalog of galaxies, each with its own UV-to-submm SED. In this section, we summarize the procedure that is implemented in gencat to produce a final flux catalog.

Given the area of the mock survey, the first step is to choose the number of galaxies that will be generated. Since we use the stellar mass function as a starting point, this amounts to choosing the lowest stellar mass that we will generate. This threshold can be chosen to be constant, e.g., down to M * = 10 8 M ⊙ , but this is in fact quite inefficient: in the real GOODS-South field, which is a flux limited survey, we do detect galaxies that are less massive than 10 8 M ⊙ at low redshifts, while the smallest measured stellar mass at z > 2 is closer to 10 9 M ⊙ . Therefore, this approach can result either in a catalog that is incomplete (if the mass threshold is too high and we miss detectable galaxies at low redshift), or bloated (if the threshold is too low and we generate galaxies that will never be observed).

A more efficient approach is to use a redshift dependent threshold, so that galaxies are generated down to very low stellar mass at low redshifts, and then increase this threshold to generate fewer and fewer galaxies at higher redshifts. To do so, we first choose a "selection band", e.g., the HST F160W or the VISTA K s band, and a magnitude limit, e.g., H < 29, above which the catalog will be at least 90% complete. We then build a redshift grid, and for each redshift in that grid we compute the distribution of mass-to-light ratios in the selection band for all the optical SEDs in the library. We pick the 10th percentile of this distribution, and use it to compute the minimum stellar mass that is associated to the chosen magnitude limit at this redshift.

Once the stellar mass and the redshift are generated from the mass functions, we use the method described in Section 5.3.5 to place these galaxies on the sky. Note that, at this point, it is also possible to feed gencat with an existing catalog of redshifts, stellar masses, starforming/quiescent flags, and positions (e.g., coming from a real catalog).

We then apply all the above recipes to generate the SFR, the L IR and other dust related parameters (T dust and f PAH ), the UV J colors, and the morphological parameters (B/T , R 50 , b/a).

Then, the optical SED is chosen based on the stellar mass and the generated UV J colors (Section 5.3.4), and the FIR SED is chosen from the L IR , T dust and f PAH . The two SEDs are co-added to form a single, panchromatic SED that ranges from the FUV up to the submm (the radio domain is not yet implemented). The last step is then to integrate this SED multiplied by the response curve of each broadband filter for which we want to generate the flux.

Results

Comparison to the observed GOODS-South field

Fig. 5.5 is showing the the total (bulge+disk) magnitude distributions in multiple bands as produced by the simulation. These are compared to the observed distributions in GOODS-South, splitting the field into two parts: the HUDF, which is deeper, and the rest of the field. The agreement is found to be very good in the NIR. Since these wavelengths are most closely correlated to the stellar mass of the galaxies, and since the mock catalog was built to reproduce exactly the stellar mass function in GOODS-South, this should not come as a surprise. Still, this shows that the procedure works well. Generating the optical (F435W and F606W) fluxes is more complex, because these bands actually trace the emerging UV light coming from star formation. Nevertheless, the agreement here is also very good. 2011) using AzTEC 1.1 mm are reported with open diamonds and triangles, respectively. Note that these observations were not done in GOODS-South. The counts predicted by our simulation are shown with a solid line, similarly to the plot on the left. Contrary to the other bands, the 1.2 mm is indeed a prediction, since our library and recipes were not explicitly calibrated to match these observations. Figure 5.7 -Pixel value distributions of the 16 µm to 500 µm maps, in µJy/beam for 16 and 24 µm and mJy/beam otherwise. We show the observed distribution in GOODS-South in red, and compare this reference to 100 simulated catalogs generated with different random realizations. The median of these 100 realizations is shown with a solid black line, while the range covered by the 16th and 84th percentiles is shaded in gray in the background. Each map is median-subtracted, and the pixel values displayed here are scaled using the hyperbolic arcsine function (asinh). This is very similar to a logarithmic scale, except that it behaves linearly close to zero, allowing proper treatment of negative pixel values. We show the location of the median of the map with a vertical solid black line, and the 3σ point-source detection limit with a vertical blue dotted line.

(two sources are combined into a single one), which tends to produce more bright fluxes than there actually is in the real Universe. By analyzing the map statistics directly, one gets rid of this issue of the counter part identification. This comparison also takes into account the clustering, which will tend to increase the contrast of the map without actually changing the 101/260 Figure 5.9 -The panchromatic cosmic background predicted by the simulation (blue solid line). We compare this against extragalactic background light measurements from the literature: the COBE-FIRAS observations from (Lagache et al. 1999, gray shaded region), COBE-DIRBE from (Finkbeiner et al. 2000, open squares), the COBE-DIRBE measurements of (Gorjian et al. 2000, open diamonds) and (Wright 2001, open circle). We display with a striped histogram the upper limits provided by Stanev & Franceschini (1998) by modeling the photon-photon interaction in the line of sight of the blazar MKN501. Lastly, we also show the summed light of resolved galaxies in the UV-to-optical from (Madau & Pozzetti 2000, filled circles) and the revision of these measurements by (Bernstein et al. 2002, filled squares), the ISOCAM measurement at 16 µm from (Elbaz et al. 2002, asterisk), the stacked Spitzer MIPS measurments at 24, 70 and 160 µm of (Dole et al. 2006, filled triangles) and the Herschel measurements at 100, 160, 250, 350 and 500 µm of individual detections from (Leiton et al. 2015, filled diamonds). Note that the values at 160 µm of Dole et al. (2006) and Leiton et al. (2015) have been slightly offset for clarity. All the measuremets in this last series are to be considered at lower limits, since only the light of individually detected galaxies is taken into account. Two other galaxy models are shown for comparison: the panchromatic model of (Franceschini et al. 2008, green solid line) and the infrared model of (Béthermin et al. 2011, red solid line). matches the observed cosmic background at all wavelengths. Our estimation in the optical is also close to that of Franceschini et al. (2008), within 50%, although we predict a different farinfrared background by a factor of two. However, in this wavelength regime, we are in better agreement with the model of Béthermin et al. (2011) and the COBE-FIRAS observations of Lagache et al. (1999).

Appendix: Efficiency of monochromatic FIR measurements

The FIR SED library we introduced in Chapter 4 has more degrees of freedom than the other libraries released in the literature, and is therefore capable of reproducing a larger variety of real SEDs. However, the critical point is actually when too few measurements are available (typically, only one band), and we need to fix either f PAH or T dust (or both) to their redshiftaverage value (see Section 4.4). In this case, the accuracy of the derived quantities (i.e., L IR and M dust ) depends largely on the proper choice of both f PAH and T dust , but assessing this accuracy with real galaxies is difficult without additional data. See, for example, the "midinfrared excess" problem that was found in Daddi et al. 2007b when extrapolating L IR from the MIPS 24 µm flux at z = 2. It was shown several years later in Elbaz et al. 2011 to be caused essentially by a inadequate choice of f PAH for z = 2 galaxies (i.e., the f PAH of local ULIRGs chosen in the CE01 library is not appropriate for z = 2 ULIRGs).

Assuming that the right average value is known, another issue that is seldom discussed or 103/260 quantified is the uncertainty on the fit parameters resulting from the arbitrary choice of the SED (i.e., here, the choice of f PAH and T dust ). For example, if we have a sample of z = 2 galaxies, each with a single measured flux in the PACS 160 µm, and if we assume a unique T dust = 37K to derive their L IR , what is the uncertainty on this L IR ? In this section, we take advantage of the simulated catalogs introduced earlier in this Chapter to quantify this uncertainty.

Figure 5.10 -Top left: Predicted evolution of the uncertainty in L mono IR , i.e., the L IR inferred from a single broadband photometric measurement, each band corresponding to a different color and line style (see legend). This uncertainty is derived by measuring the standard deviation of the difference between the true L IR that was put in the simulation and the observed rest-frame luminosity. This is an optimal uncertainty, assuming 1) no error on the measured flux, 2) knowledge of the best average L IR /L ν conversion factor, 3) perfect subtraction of the stellar component (which only matters for 16 and 24 µm at high-redshift), and 4) no contamination from AGNs. We also show with a black solid line the scatter between L IR and M dust . Top right: Predicted systematic error on the L IR of starburst galaxies (selected here with R SB > 2) normalized to the galaxies' offset from the Main Sequence. In other words, a value of x on this plot means that the L IR will be wrong on average by a factor R x SB . Bottom left & right: Same as top, but for M mono dust .

Indeed, because our simulation is built to reproduce most of the observed sources of scatter in the parameters that affect the shape of the FIR SED, we can use it to estimate a lower limit on the accuracy of a monochromatic L IR measurement. In Fig. 5.10 (top left) we show the optimal uncertainty on the derived L IR and M dust if only a single photometric point is available, assuming: no error on the measured flux; perfect knowledge of the best average conversion factor between the flux and L IR (i.e., perfect knowledge of the average f PAH and T dust at a given redshift); perfect subtraction of the stellar component (for 16 and 24 µm at high redshifts); and 104/260 no contamination from AGN torus emission (affecting mostly rest-frame wavelengths below 30 µm, e.g., Mullaney et al. 2011). These relations were obtained with a simulated catalog of 10 deg 2 and selecting galaxies more massive than M * = 10 10 M ⊙ at all redshifts.

There are several interesting features that come out of this figure. First, one can see that, when measuring fluxes on the dust continuum, the L IR is best measured when the photometric point is close to the peak of the FIR SED, i.e., around 80 µm rest-frame: the optimal band goes from 100 µm at z < 0.1, 160 µm at 0.1 < z < 1.5, 250 µm at 1.5 < z < 3, and 350 µm at z > 3.5. This is caused by variations of T dust , which at fixed L IR leave the 80 µm flux almost unchanged. Leftward of the peak, the uncertainty rises significantly when probing the restframe ∼ 8 µm, i.e., for 16 µm at 0.5 < z < 2 and 24 µm at 1.5 < z < 3. This, in turn, is caused by variations of f PAH . However, outside of these ranges, the shortest wavelengths are almost always the best tracers of L IR . While this accuracy obviously depends on the contribution of the very small grains to the continuum, this would be a priori very useful for studying highredshift galaxies. In practice however, the typical fluxes are very low and out of reach of even the deepest Spitzer surveys. A second drawback is that we also expect AGNs and the stellar continuum to contribute significantly at these wavelengths, which is a problem that we do not address here. Finally, rightward of the peak, the uncertainty rises continuously as the wavelength increases, since rest-frame wavelengths beyond 250 µm are rather tracing the dust mass (see below).

Using a single photometric point, and therefore fixing f PAH and T dust to their redshiftaverage, one expects to be systematically biased against those galaxies which have unusual f PAH and / or T dust compared to other galaxies at the same redshift. As shown in Section 4.2.2, this is in particular the case for starburst galaxies. For this reason, we also display on Fig. 5.10 (top right) the predicted value of this systematic bias for galaxies with R SB > 2 (i.e., at least one sigma away from the Main Sequence). The trend is for measurements leftward of the peak to barely overestimate the L IR by no more than R 0.2 SB , while measurements rightward of the peak can reach systematic underestimation by a factor of R 0.4 SB . Similarly, bands which are dominated by emission of PAH molecules can underestimate the L IR by about R 0.2 SB (because PAH emission is depressed in starburst galaxies, Daddi et al. 2007b;Elbaz et al. 2011). While these systematic errors will tend to bring starburst galaxies closer to the Main Sequence than what they are in reality, they are not sufficient to "erase" completely the starburst nature of these galaxies: for this, one would need to reach a bias close to R -1 SB . However, this will affect any attempt at measuring the dispersion of the Main Sequence with a single MIR or FIR band.

We also present similar figures for M dust in Fig. 5.10 (bottom panel) for sub-millimeter bands. The most striking fact to take out of this plot is that the uncertainty rises steadily width redshift, for all bands. This is simply caused by the redshift itself, which moves the observed wavelengths closer to the peak of the dust emission. As we showed above, this wavelength domain is measuring L IR very accurately, and therefore is not suitable for measuring M dust . This is only partly compensated for by the increase of the dust temperature with redshift (Eq. 4.7), which shifts the peak toward shorter wavelengths, but this shift is not large enough to counterbalance the effect of redshift. On the other hand, the systematic bias for starburst galaxies is relatively constant with redshift, and most importantly never reaches zero. For these galaxies, we predict a systematic overestimation of the dust masses by a factor of R 0.1 SB at best.
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Chapter 6

The downfall of massive star-forming galaxies during the last 10 Gyr

In this chapter I discuss in more detail one of the observation that was reported in Chapter 3 (Schreiber et al. 2015). By measuring the correlation between the SFR and the stellar mass (M * ) (a.k.a. the Main Sequence) of a mass-complete sample of galaxies, I found that the slope of the correlation was evolving with both redshift and stellar mass. At high redshift, this relation is well described by a single power law of slope unity, i.e., a linear correlation. The same is true at low redshift, but only for galaxies of relatively low stellar mass (typically less than a few 10 10 M ⊙ ). Above this stellar mass threshold, the SFR-M * correlation flattens: as the mass increases, the corresponding enhancement of SFR becomes less and less pronounced. Because this study was based exclusively on star-forming galaxies, i.e., I have removed from the sample those galaxies that show little to no sign of recent star formation activity, this change of slope suggests that this is in fact the whole population of massive star-forming galaxies that is forming stars at a decreased rate. This observation has been reported in several independent studies (Magnelli et al. 2013;Whitaker et al. 2014;Lee et al. 2015), using different star formation rate indicators, different data sets, or different fields, and can therefore be considered as robust.

One way to interpret this fact is to consider that we are witnessing a slow downfall of star formation in this population. In other words, that there is a physical process that either decreases the mass of gas available to form stars (e.g., outflows), or lowers the efficiency with which this gas is transformed into stars. Another interpretation was put forward in Abramson et al. (2014), in which the authors argue that it is not really the SFR that is going down, but rather that the stellar mass is abnormally large owing to the presence of a quiescent bulge at the center of most massive galaxies. This has been recently revisited by Guo et al. (2015), who reached different conclusions.

In this chapter, I investigate these hypotheses using the data set introduced in my first paper. In collaboration with Maurilio Pannella, I perform a bulge-to-disk decomposition of the light profile of thousands of galaxies at z = 1, using high-resolution NIR HST imaging from the CANDELS program. To validate the robustness of our results, I compare the efficiency of two well known codes for morphological analysis: I was in charge of using GALFIT, while M. Pannella used GIM2D. Using a large set of simulated galaxies that I created, we test our respective tool by trying to recover the intrinsic profile of the simulated galaxies (in particular, M. Pannella did not know how the simulation was built, nor the assumptions I used to build them). I find that the results of GIM2D tend to be more reliable, although the code is substantially slower. I therefore use the result of this tool to analyze the contribution of bulges to the stellar mass, and test the hypothesis of Abramson et al. (2014). I find that the bulge masses of z = 1 galaxies are overall too small to fully explain the change of slope of the Main Sequence, and argue that another process is required.

I then use the Herschel stacked photometry obtained in Schreiber et al. (2015) to measure the dust masses in different stellar mass bins, and infer from these values the mass of hydrogen 107/260 CHAPTER 6. THE DOWNFALL OF MASSIVE STAR-FORMING GALAXIES DURING THE LAST 10 GYR gas, assuming that a fixed fraction of the metals are locked into dust grain (as in, e.g., Magdis et al. 2012). I find that the shallow slope of the Main Sequence at high stellar mass is mostly the result of a lower star formation efficiency, and further confirm this trend using local galaxies from the Herschel Reference Survey (HRS), kindly provided by Laure Ciesla with their stellar masses, star formation rates and dust masses.

I end this Chapter by quantifying the amount of star formation that is lost because of this reduced star formation efficiency, and conclude that this is a major effect at z < 1.5, reaching similar level as the growth of the quiescent population. This provides evidence for a slow downfall of the star formation activity in massive Main Sequence galaxies, acting in parallel with the rapid quenching process that builds the red sequence.

Introduction

The discovery of a relation between the star formation rate (SFR) and the stellar mass (M * ) of galaxies, also called the "Main Sequence" of star-forming galaxies (Noeske et al. 2007), at z ≃ 0 (Brinchmann et al. 2004;Elbaz et al. 2007), z ≃ 1 (Noeske et al. 2007;Elbaz et al. 2007), z ≃ 2 (Daddi et al. 2007b;Pannella et al. 2009a;Rodighiero et al. 2011;Whitaker et al. 2012) z = 3-4 (Daddi et al. 2009;Magdis et al. 2010;Heinis et al. 2013;Schreiber et al. 2015;Pannella et al. 2015) and even up to z = 7 (e.g., Stark et al. 2009;Bouwens et al. 2012;Stark et al. 2013;González et al. 2014;Steinhardt et al. 2014;Salmon et al. 2015) suggested a radically new paradigm for star formation. The tightness of this correlation is indeed not consistent with the frequent random bursts induced by processes like major mergers of gasrich galaxies, and favors more stable, long-lasting episodes of star formation (Noeske et al. 2007).

Most studies focusing on this Main Sequence have measured the slope (in logarithmic space) of this correlation, and many different values were reported. A thorough compilation was recently published in Speagle et al. (2014), summarizing most measurements obtained so far. In particular, we can distinguish three kinds of measurements. First, measured slopes close to unity (e.g., Elbaz et al. 2007;Daddi et al. 2007b;Pannella et al. 2009a;Peng et al. 2010). Second, slopes shallower than unity, typically 0.8, and as low as 0.6 (e.g., Noeske et al. 2007;Karim et al. 2011;Rodighiero et al. 2011;Bouwens et al. 2012;Steinhardt et al. 2014;Speagle et al. 2014;Pannella et al. 2015). And finally, more recently a third group of studies actually advocate a broken power-law shape, or continuously varying slopes, where low-mass galaxies are well fitted with a slope of unity, and high mass galaxies exhibit much shallower (if not flat) slopes (e.g., Whitaker et al. 2012;Magnelli et al. 2014;Whitaker et al. 2014;Ilbert et al. 2015;Schreiber et al. 2015;Lee et al. 2015;Gavazzi et al. 2015). This latter, more refined description could actually explain the diversity of slope measurements that were obtained so far. Indeed, depending on the stellar mass range covered by the sample, which is usually limited, as well as the chosen redshift window, fitting a single power law will yield different best-fit slopes.

A tempting interpretation of this broken power law is that low mass galaxies evolve with a unique star formation efficiency, as shown by their universal specific SFR (sSFR ≡ SFR/M * ) (see, e.g., the discussions in Ilbert et al. 2015;Lee et al. 2015). Higher mass galaxies on the other hand depart from this universal relation and show a reduced star formation activity, probably gradually declining toward a quiescent state. This picture is somehow in contradiction with the idea that massive galaxies must quench rapidly (e.g., Peng et al. 2010), a process that often involves violent episodes in the lifetime of the galaxy, e.g., strong active galactic nucleus (AGN) feedback (Silk & Rees 1998). Instead, such a slow decline toward the red cloud could be more consistent with less abrupt processes like "radio-mode" AGN feedback (Croton et al. 2006;Bower et al. 2006) or "halo quenching" (Gabor & Davé 2012), where the infalling gas is heated up and prevented from forming stars. One can also invoke the "morphological quenching" mechanism (Martig et al. 2009), where the drop of efficiency is caused by the presence of a massive and dense stellar bulge that increases differential rotation 108/260 within the disk, and prevents gas from fragmenting.

Recently, Abramson et al. (2014) put forward another possible explanation for this "bending" of the Main Sequence. They claim that this change of slope is not due to a reduced star formation efficiency. Instead, because of the presence of a bulge, they argue that the total stellar mass has become a poor proxy for the mass of gas available. Therefore, their argument is that one should rather expect the star formation rate to correlate with the mass of the disk instead, since this is where the star-forming gas is located. To support their claim, they used bulge-to-disk decompositions of the observed light profiles of thousands of local galaxies in the Sloan Digital Sky Survey (SDSS), and estimated their disk masses. They found indeed that the slope of the Main Sequence was put back to unity at all masses (at least for M * > 10 10 M ⊙ ) if the disk mass was substituted to the total stellar mass (see, however, Guo et al. 2015 where a conflicting result is obtained using the same data set).

In Schreiber et al. (2015) (hereafter S15), we have reported that the high-mass slope of the Main Sequence is gradually increasing with increasing redshift, approaching unity at z > 2 (see also Whitaker et al. 2014;Lee et al. 2015). In particular, at z = 1 we observed a less pronounced (but still significant) bending than what is reported at lower redshifts. Our goal in this paper is to test if the bending of the Main Sequence disappears when the disk mass is substituted to the total stellar mass at z = 1, similarly to what was found by Abramson et al. (2014) at z = 0.

Thanks to the very high angular resolution provided by the Hubble Advanced Camera for Surveys (ACS) imaging, it is possible to perform the morphological analysis of the stellar profile of distant galaxies out to z = 1, either through non-parametric approaches (e.g., Abraham et al. 1996;Conselice 2003;Ferguson et al. 2004;Lotz et al. 2004), profile fitting (e.g., Bell et al. 2004;Ravindranath et al. 2004;Barden et al. 2005;McIntosh et al. 2005;Pannella et al. 2006;Häussler et al. 2007;Pannella et al. 2009a), or decomposition of this profile into multiple components (e.g., Simard et al. 1999Simard et al. , 2002;;Stockton et al. 2008). The advent of the WFC3 camera on board Hubble has recently allowed studying the rest-frame near-IR (NIR) and optical stellar profiles toward higher redshifts (e.g., van der Wel et al. 2012;Newman et al. 2012;Bruce et al. 2012Bruce et al. , 2014;;Lang et al. 2014). In particular, Bruce et al. (2012) have performed bulge-to-disk decomposition on the CANDELS H-band imaging in the UDS field, focusing of massive galaxies (M * > 10 11 M ⊙ ) from z = 1 to z = 3, and finding a clear trend of decreasing bulge-to-total ratio (B/T ) with redshift. However, later on Lang et al. (2014) pushed the analysis down by one order of magnitude in stellar mass in all five CANDELS fields. By fitting stellar-mass maps estimated through resolved SED-fitting, they derived the relation between M * and B/T for active and passive galaxies, and found very little evolution of this relation with redshift. Both these observations are contradictory, and would potentially lead to different conclusions when trying to link the bulge mass to the Main Sequence bending.

In this paper, we therefore revisit the bulge-to-disk decomposition, carefully computing disk masses of z = 1 galaxies in Section 6.3.3, and analyzing the change of slope between the SFR-M * and SFR-M disk relations in Section 6.5.1.

In parallel, we explore an alternative route where we directly quantify the mass of gas present in these galaxies (M gas ), to see if the bending is caused by a variation of gas fraction or a variation of the star formation efficiency (SFE ≡ SFR/M gas ). To this end, we follow the approach of Magdis et al. (2012) and Magnelli et al. (2012b) and employ the far-infrared (FIR) stacks of S15 to measure dust masses in Section 6.4. Assuming that a fixed fraction of the metals (∼ 26%, as discussed in Section 6.4.2) condenses to form dust grains, and with the knowledge of the gas-phase metallicity, one can infer the gas mass from the dust mass (Franco & Cox 1986) and derive the SFE. This approach has been used extensively in the recent literature to measure gas masses in a wide variety of samples from z = 0.3 to z = 4 (e.g., Magdis et al. 2012;Santini et al. 2014;Scoville et al. 2014;Béthermin et al. 2015a). We apply it in Section 6.5.2 to look for an evolution of both the gas fraction ( f gas ) and the SFE along the Main Sequence at z = 1, and complement this analysis with local galaxies drawn from the 109/260 CHAPTER 6. THE DOWNFALL OF MASSIVE STAR-FORMING GALAXIES DURING THE LAST 10 GYR Herschel Reference Survey (HRS, Boselli et al. 2010).

In the following, we assume a ΛCDM cosmology with H 0 = 70 km s -1 Mpc -1 , Ω M = 0.3, Ω Λ = 0.7 and, unless otherwise specified, a Salpeter (1955) initial mass function (IMF) to derive both star formation rates and stellar masses. All magnitudes are quoted in the AB system, such that M AB = 23.9 -2.5 log 10 (S ν [µJy]).

Sample selection and galaxy properties

Figure 6.1 -Stellar mass distribution of the various samples at z = 1 that we consider for the morphological decomposition. The black solid line shows the distribution of our parent sample, as used in S15, and containing all the galaxies at 0.7 < z < 1.3 with M * > 2 × 10 10 M ⊙ . The blue solid line is our "H-sample", after removing close pairs and IRAC powerlaw AGNs from the parent sample. The red solid line is our "IR-sample", requiring a clean Spitzer MIPS or Herschel detection. The dotted lines indicate the number of galaxies that we manage to correctly decompose with GIM2D within each sample.

In this work we investigate the change of slope of the Main Sequence from two different angles. On the one hand, we measure the gas content inside Main Sequence galaxies to look for a decrease of either the gas fraction or the star formation efficiency. To do so, we use the stacked Herschel SEDs of S15 at z = 1 in the CANDELS fields (see Section 6.2.3), and complement the analysis with a z = 0 sample of Main Sequence galaxies from the HRS (see Section 6.2.4). On the other hand, we extract a subsample of massive galaxies from our z = 1 sample and perform the morphological decomposition of the HST light profile. Among these, we will also consider the galaxies with an individual IR detection in order to derive robust SFRs. The description of this subsample is given in Section 6.2.5.

Multi-wavelength photometry

The z = 1 catalogs we use in this work are based on the CANDELS (Grogin et al. 2011;Koekemoer et al. 2011) Hubble Space Telescope (HST) WFC3 H-band images in the four CANDELS fields that are covered by deep Herschel PACS and SPIRE observations, namely GOODS-North (Barro et al. in prep.), GOODS-South (Guo et al. 2013), UDS (Galametz et al. 2013) and COSMOS (Nayyeri et al. in prep.). Each of these fields covers about 150 arcsec 2 and they are evenly distributed on the sky to mitigate cosmic variance.

The ancillary photometry varies from one field to another, being a combination of both space-and ground-based imaging from various facilities. The UV to near-IR wavelength coverage typically goes from the U band up the Spitzer IRAC 8 µm, including at least the HST bands F606W, F814W, and F160W and a deep K (or K s ) band, and all these images are among the deepest available views of the sky. These catalogs therefore cover most of the important galaxy spectral features across a wide range of redshifts, even for intrinsically faint objects.

We complement these catalogs with mid-IR photometry from Spitzer MIPS and far-IR photometry from Herschel PACS and SPIRE taken as part of the GOODS-Herschel (Elbaz 110/260 et al. 2011) and CANDELS-Herschel programs (PI: M. E. Dickinson, Inami et al. in prep.).

The UV to NIR photometry for the HRS galaxies is compiled from various sources, and this dataset is fully described in Boselli et al. (2010). The Herschel PACS and SPIRE observations were taken as part of the Herschel Reference Survey and the fluxes were extracted by Ciesla et al. (2012) for SPIRE and Cortese et al. (2014) for PACS.

Redshifts, stellar masses and star formation rates

Photometric redshifts and stellar masses for our z = 1 sample are computed by M. Pannella following Pannella et al. (2015). He uses EAZY (Brammer et al. 2008) to derive the photometric redshifts from the CANDELS catalogs, allowing slight adjustments of the photometric zero points by iteratively comparing our photo-z's against the available spec-z's. The stellar masses are then computed using FAST (Kriek et al. 2009) by fixing the redshift to the best-fit photo-z and fitting the observed photometry up to the IRAC 4.5 µm band using the Bruzual & Charlot (2003) stellar population synthesis model, assuming a Salpeter (1955) IMF and a Calzetti et al. (2000) extinction law.

Galaxies with an uncertain photometric redshift (redshift "odds" less than 0.8) or bad SED fitting (reduced χ 2 larger than 10) are excluded from our sample. We estimated in S15 that the stellar mass 90% completeness at z = 1 was as low as 5 × 10 8 M ⊙ , i.e., almost one order of magnitude below the lowest stellar mass used in the present study (2 × 10 10 M ⊙ for the morphological decomposition, 10 9 M ⊙ for stacking).

I estimate star formation rates (SFRs) of individual galaxies are estimated only for the galaxies with a MIR or FIR detection. I fit the observed MIR to FIR photometry is fit with Chary & Elbaz (2001) templates, and the IR luminosity L IR (from 8 to 1000 µm) is obtained from the best-fit SED. Since our study focuses exclusively on the z ∼ 1 Universe (see next section), galaxies only detected by Spitzer MIPS 24 µm are also used in this analysis. For these objects, I use the original Chary & Elbaz (2001) L IR calibration. I then use the Kennicutt (1998b) and Daddi et al. (2004a) relations to convert this L IR and the observed L UV (1500 Å, non-dust-corrected) into SFR IR and SFR UV , respectively. The total SFR of a galaxy is then computed as the sum SFR = SFR IR +SFR UV , although for all our galaxies with a FIR detection the contribution of SFR UV is negligible.

Lastly, the rest-frame U, V and J magnitudes are computed by M. Pannella for each galaxy using EAZY, by integrating the best-fit galaxy template from the photo-z estimation. These colors are used to separate star-forming from quiescent galaxies using the UV J classification scheme as introduced in Williams et al. (2009). This classification will be used in the following to study separately the behavior of both populations.

For HRS galaxies, stellar masses and star formation rates are derived by L. Ciesla using CIGALE (Noll et al. 2009, with the modifications of Burgarella et al. and Boquien et al. in prep.), which fits template SEDs to the available UV to FIR photometry simultaneously, in a consistent way. Since all galaxies of the HRS have Herschel coverage, the resulting SFRs are therefore based on both the observed far-UV and far-IR fluxes. These fits are described in more detail in Ciesla et al. (in prep.). She then computes the U-, V-and J-band rest-frame magnitudes from the best-fit template.

CANDELS sample for the gas mass measurements at z = 1

For the gas mass measurements at z = 1, we use the stacked Herschel photometry presented in S15. In this work, we showed that the bending of the Main Sequence is more pronounced at lower redshifts, and almost absent by z > 2. To study the origin of this bending, we therefore need to focus on low redshifts, where the bending is most significant. On the other hand, the area covered by the CANDELS fields is relatively small, and consequently we cannot afford to reach too low redshifts, say z < 0.5, without being affected by limited statistics and cosmic variance. Furthermore, our estimation of the gas mass is based on the dust mass (see Section 111/260 CHAPTER 6. THE DOWNFALL OF MASSIVE STAR-FORMING GALAXIES DURING THE LAST 10 GYR 6.4.2), and at z > 1.5 Herschel does not probe the Rayleigh-Jeans tail of the dust SED (λ rest > 250 µm), which would prevent accurate determination of the dust mass (Scoville et al. 2014).

For these reasons we choose to base our analysis on galaxies at 0.7 < z < 1.3, and use the same sample as in S15, namely selecting all the galaxies in this redshift window that are classified as UV J star-forming:

UV J SF =          U -V < 1.3 , or V -J > 1.6 , or U -V < 0.88 × (V -J) + 0.49 . (6.1)
This selection is shown in Fig. 6.5. As discussed in S15, more than 85% of the Herschel detections are classified as UV J star-forming. The UV J selection is therefore an efficient tool to pinpoint star-forming galaxies, even when MIR or FIR detections are lacking. However, it affects more strongly the galaxies at high stellar mass. In particular, between 10 11 and 3 × 10 11 M ⊙ , about half of our galaxies are classified as UV J quiescent. Since the precise definition of Eq. 6.1 can affect our results, we discuss its impact a posteriori in Section 6.8.

HRS sample for the gas mass measurements in the Local Universe

For the z = 0 sample, we define the dividing line between "star-forming" and "quiescent" galaxies as follows:

UV J SF (HRS) =          U -V < 1.6 , or V -J > 1.6 , or U -V < 0.88 × (V -J) + 0.79 . (6.2)
In practice, this is equivalent to making a cut in sSFR > 6 × 10 -3 Gyr -1 , i.e., about one dex below the z = 0 Main Sequence. Different UV J dividing lines have been adopted in the literature, reflecting a combination of both zero point offsets in the photometry and physical evolution of the colors caused by the evolution of the sSFR. For example, Williams et al. (2009) used different UV J classifications depending on the redshift, with a 0 < z < 0.5 criterion that is different from Eq. 6.2 by only 0.1 magnitudes, and a 1 < z < 2 criterion identical to our Eq. 6.1.

In the following, we use all the galaxies from the HRS survey that satisfy the UV J criterion given above, regardless of their morphological type. In practice, the UV J selection naturally filters out all the early-type galaxies (E-S0-S0/Sa), and about half of the H i-deficient galaxies (Boselli et al. 2010).

However, it is important to note that, although the HRS is a purely K-band selected sample, the volume it spans is relatively small and this field is thus subject to cosmic variance. Furthermore, because one of the science goals of the HRS is to study the influence of the environment on the star formation activity, the sample also contains the Virgo cluster, a strong overdensity that encloses 46% of the galaxies in the whole HRS (and 39% of UV J star-forming galaxies). This is a very biased environment, and although clusters are more common in the Local Universe, the HRS is known to be particularly deficient in gas mass, likely because of the inclusion of Virgo (Boselli et al. 2010). To ease the comparison with our z = 1 sample described in the previous section, we therefore exclude from the HRS all the galaxies that belong to Virgo (149 galaxies out of 323). Combined with the UV J selection, this excludes 80% of the H i-deficient galaxies, and yields a final sample of 131 galaxies. We note however that our results would be essentially unchanged if we were to keep the Virgo galaxies in our sample.

CANDELS sample for the morphological decompositions at z = 1

For the morphological analysis, we consider the same redshift window as for the gas mass measurement at z = 1, following the same motivations. In addition, limiting ourselves to z = 1 112/260 ensures that the HST H band probes the rest-frame i band, where mass-to-light ratios are weakly varying (e.g., de Jong 1996). However, to obtain reliable morphological decompositions, we further select galaxies more massive than 2 × 10 10 M ⊙ , corresponding roughly to an H-band limited sample at these redshifts, with no galaxy fainter than H = 22.5 (see Section 6.3.2 where we justify this choice using simulated images). Unfortunately, this stellar mass cut will prevent us from performing the morphological decomposition in the regime where the Main Sequence is linear. However, it is known that disk-dominated galaxies dominate the low-mass galaxy population, both in the Local Universe (e.g., Bell et al. 2003) and at higher redshifts (e.g., Pannella et al. 2009a;Lang et al. 2014;Bluck et al. 2014). Therefore we will assume in the following that most galaxies below our mass threshold are disk-dominated, with M * ≃ M disk , and only consider changes in Main Sequence slope above this threshold. We also remove 6 IRAC power law AGNs (Donley et al. 2012).

To prevent systematic effects in the morphological analysis due to strong galaxy blending (either due to mergers or chance projections), we also need to remove from our sample the galaxies that have too close bright neighbors in the H-band image. Deblending can be done, to some extent, by fitting the profiles of multiple objects simultaneously, e.g., with GALFIT (Peng et al. 2002), but this is often adding more instability in the fit, and should be done with great caution. We will not attempt it here. Therefore, I flagged the galaxies that have at least one companion within 2 ′′ with a total flux that is no less than 10% fainter. This flags out ∼ 410 galaxies, and our final "H-sample" consists of ∼ 2 440 galaxies. The impact of these selections on the stellar mass distribution of our sample is shown in Fig. 6.1.

Then, among these, we also consider the galaxies with a MIR or FIR detection (> 5 σ), i.e., with a robust SFR estimate coming from Spitzer or Herschel observations. To do so, I start from the same IR catalogs as those introduced in Chapter 3, but here I further revisit the catalogs to solve an issue that, although irrelevant to the results I presented earlier, can have important consequences for the present study. Briefly, I flag the Spitzer MIPS detections that are wrongly associated to UV J passive H-band counterparts because of the adopted source extraction procedure. The details of this procedure are described in the next section. In total I flag no more than 5% of the MIPS detections as wrong or uncertain associations 1 . Two thirds of these are UV J passive galaxies.

The final "IR-sample" contains ∼ 1 010 galaxies, and therefore about 44% of the galaxies of the "H-sample" have a robust SFR estimation (see Fig. 6.1). This number rises to 63% if we only consider UV J star-forming galaxies. For consistency checks, we do perform the morphological detection on the whole H-sample, but only use the IR-sample to derive the slope of the Main Sequence, meaning that we will work with a sample that is both mass and SFR selected. This is not an issue for our purposes: even with an SFR selection, the change of slope of the Main Sequence can be seen as long as the SFR detection limit is low enough, which is the case here.

Cleaning the 24 µm catalogs

I focus here on the association of a Spitzer MIPS 24 µm flux to the galaxies in the H-band catalog. The procedure that was used to build the 24 µm flux catalog (see Magnelli et al. 2009) is based on IRAC 3.6 µm position priors: sources are extracted on the 24 µm map (and then, sequentially on the Herschel images) at the position of bright 3.6 µm sources. If two priors are too close to be deblended on the MIPS image, only the brightest 3.6 µm source is kept in the prior list. Because the IRAC bands are good tracers of the stellar mass, and because the stellar mass correlates with the star formation rate, this approach is very effective for extracting reliably the vast majority of the MIR and FIR sources. But it will fail in a few rare cases that will be particularly important for our study (see also Mancini et al. 2015). Indeed, one expects the method to be biased as soon as some objects deviate from the SFR-M * correlation.

1 If I had not previously removed close galaxy pairs from the parent H-sample, this number would rise to 8%.

113/260 CHAPTER 6. THE DOWNFALL OF MASSIVE STAR-FORMING GALAXIES DURING THE LAST 10 GYR For example, it will happen that a massive, quiescent galaxy lies within a few arcseconds of a smaller mass (or slightly higher redshift) star-forming galaxy. The quiescent galaxy, being very massive, is most likely the brightest emitter in the IRAC 3.6 µm image, however it is not expected to shine much in the MIR because it is not forming any stars. The nearby star-forming galaxy on the other hand can be fainter in the IRAC image, but will contribute to most, if not all, of the MIR emission. In this situation, the typical outcome is that the star-forming galaxy is removed from the prior list, since it has the faintest IRAC flux, while the quiescent galaxy is given all the IR flux. The end result is that we do have in our catalogs a few massive quiescent galaxies with bright 24 µm emission that are obvious mismatches. I emphasize that the issue does not affect the 24 µm fluxes listed in the published catalogs, but rather the association of these fluxes to counterparts in the higher-resolution HST images.

I therefore eyeballed every galaxy of the H-sample that was attributed a counterpart in the MIPS image, looking for this kind of problematic cases. To identify quiescent galaxies, I rely on the UV J classification introduced in the previous section. In total, I find 40 clearly wrong associations over the four CANDELS fields, based on a combination of the UV J classification and the presence of a likely star-forming candidate nearby, or by significant off-centering of the MIPS emission. Because this approach is hard to replicate and translate to other surveys, I introduce here a systematic and objective procedure to identify this kind of issues that does not require eyeballing every galaxy. It also allows me to further refine the flagging and discard not only galaxies that are clearly wrong associations, but also those that are uncertain, so that we work with a sample that is as clean as possible.

For each UV J star-forming galaxy in the H-sample, I derive their expected "Main Sequence" star formation rate from their redshift and stellar mass, i.e., the SFR they would have if they were exactly following the Main Sequence as defined in Chapter 6. From this SFR I subtract the observed, non-dust-corrected SFR UV , and use the Kennicutt (1998b) relation to convert the remaining obscured SFR into L IR . I then use the best-fit IR SEDs of Chapter 4 to estimate their 24 µm flux. For UV J passive galaxies, I follow a similar procedure where the total SFR is instead taken from the stacking of UV J passive galaxies, as described in the Appendix of Chapter 6. This SFR is typically a factor of ten below the Main Sequence at all stellar masses2 .

Using this procedure I am able to obtain a rough prediction of the MIR output of all the galaxies in the H-band parent sample. Then, for each galaxy with a 24 µm detection, I estimate the reliability of the MIR association. To do so, I take all the galaxies that 1) lie within 4 ′′ of the detection, 2) have a predicted 24 µm flux that is at least a tenth of that predicted for the detection, and 3) have no measured 24 µm (or below 3σ) in the catalog. I then sum all their fluxes, weighted by the MIPS PSF amplitude at their corresponding distance, and divide this sum by the predicted flux of the detection. The resulting value gives an estimation of the fraction of the measured flux that can be contaminated by neighboring sources that were excluded from the prior list.

As expected, the vast majority of the sources in the MIPS catalog are classified as robust identifications: 80% of them have an estimated contamination of zero. In the following, we only use the individual SFRs of galaxies for which this contamination fraction is below 30%. This criterion recovers 27 of the 40 wrong associations I identified by eye, the remaining 13 galaxies are either not properly deblended on the HST image, or their neighbors have wrong photometric redshifts and their contamination is underestimated. I therefore also exclude these 13 galaxies from our sample.

Note that this flagging does not apply to the sample we use to make the gas mass measurements. Indeed, the gas masses are measured by stacking H-band selected galaxies, and therefore do not rely on the 24 µm catalogs. 

Measuring disk masses in distant galaxies

The bulge to disk decomposition

The bulge-to-disk decomposition is performed by M. Pannella, following Pannella et al. (2009b). He uses the software GIM2D (Simard et al. 2002) on the HST H-band images (0.06 ′′ /pixel resolution). To carry out a proper parametric modeling of the galaxy two-dimensional light distribution, it is of fundamental importance to obtain a careful estimate of the local background level. An extended disk or the low surface brightness wings of a high Sérsic index galaxy can easily fool the fitting code and hence retrieve the wrong galaxy model (e.g., Häussler et al. 2007;Pannella et al. 2009a;Barden et al. 2012). In order to avoid this issue, we run SExtractor (Bertin & Arnouts 1996) on the public CANDELS H-band images in "cold" mode. This allows to us to better minimize the artificial source splitting and maximize the number of pixels assigned to each object. Our newly extracted H-band catalog is then cross-matched to the original CANDELS photometric catalog so that every entry is assigned a redshift and a stellar mass. Less than 10% of the original sample is actually not retrieved by our cold source extraction. For the most part, these are blended objects for which a bulge-to-disk decomposition would be both impractical and uncertain, and we do not consider these in the following. For every galaxy, we then we extract a cutout in both the original image and our SExtractor segmentation map, the size of which depends on the actual galaxy angular dimensions. This ensures that GIM2D is able to properly fit for the image background and recover accurate galaxy parametric modeling.

Using these image and segmentation cutouts, we fit a combination of two Sérsic profiles: an exponential disk (n = 1) and a de Vaucouleur profile (n = 4), both convolved with the "hybrid" WFC3 PSFs from van der Wel et al. (2012). An example of such decomposition in given in Fig. 6.2.

Although the fit generally settles to physically reasonable solutions, there are cases where the effective radius of either component converges to zero, meaning that the component is essentially unresolved. In this case, there is no way to disentangle an exponential disk from a de Vaucouleur profile, and this unresolved component could be either an AGN, a nuclear starburst, or just the badly-fit core-component of a bulge. Fortunately such cases are rare (5% 115/260 of our sample), so we decided to consider them as bad fits and exclude them from the following analysis.

When defining our sample, we took care to exclude close galaxy pairs that would cause blending issues (see previous section). However, while analyzing the results of the decomposition, we also found that there are a few galaxies which are not even properly deblended in the CANDELS catalogs to begin with, e.g., because the two galaxies are too close and SExtractor considered the pair as a single object. These galaxies cannot be fitted with our procedure, and typically show large χ 2 . To filter out these catastrophic failures, we therefore impose a maximum value of χ 2 < 2. This also removes remaining catastrophic fit failures, and galaxies with too irregular morphologies. This cut excludes 10% of the sample. Finally, we also exclude galaxies that are fit with extremely small component sizes, i.e., less than a fifth of a pixel, indicating that the code would have rather fitted a point source instead of an extended component. Because we cannot reliably attribute this flux either to the disk or the bulge, we choose not to use these fits in the present analysis (4% of the sample).

To make sure that our results are not strongly biased by our decomposition approach, I also run in parallel the same decomposition using GALFIT (Peng et al. 2002). The same images and segmentations are used, the only difference is that I can allow for some small position offset between the bulge and the disk. The minimization procedure is also different between both codes, and therefore different results are usually obtained for the same data, providing an estimation of the uncertainty on the decomposition. Since GALFIT requires an initial guess of the fit parameters, I used the single-component morphological parameters measured by van der Wel et al. ( 2012) who fit a single Sérsic profile to the H-band image of each galaxy in the CAN-DELS catalogs of GOODS-South, UDS and COSMOS. I complement these measurements by running myself similar fits in GOODS-North 3 . These parameters are used to set the initial size, axis ratio and position angle of both the disk and the bulge components, while the initial flux of each component is set to half the total flux of the galaxy (i.e., an initial B/T = 0.5). I then run GALFIT, leaving free every parameter including the position of each component, with a maximum offset between both components of 10 pixels (in practice, the results are essentially the same if I do not allow for such offsets).

We have checked that our conclusions are not affected if we only keep the galaxies for which the two codes agree (variation of B/T smaller than 0.15), or if we used only the decomposition provided by GALFIT. In the end, we prefer to used the results provided by GIM2D since this code does not require choosing starting conditions, which are known to influence strongly the final result of GALFIT owing to the presence of local minima in the χ 2 (Lang et al. 2014).

We do not further select galaxies based on their measured morphological parameters. Abramson et al. (2014) only used face-on galaxies in their z = 0 analysis (axis ratio larger than 0.8), arguing that the decomposition is less reliable for edge-on objects. We could not find any such trend in our simulations (see section 6.3.2), and we also checked that no systematic trend emerges in the real data if we only use face-on galaxies. Because our sample is much smaller to start with, and since only 22% of our galaxies pass this axis ratio cut, we therefore decide to use all galaxies regardless of their inclination.

For each galaxy that was properly fit, we now have an estimation of how the H-band flux is distributed between the disk and the bulge. From this decomposition, we can compute a light-weighted B/T , and we assess in the next section the robustness of this estimation. We will discuss in Section 6.3.3 how to convert this value into a mass-weighted ratio, to finally obtain the stellar mass of the disk.
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Figure 6.3 -Comparison between the simulated B/T and that measured by GIM2D, for galaxies with H < 22.5. The median measured B/T are shown with empty red diamonds, and the error bars give the 16th and 84th percentiles of the distribution. The dotted line in the background gives the expected one-to-one relation.

Simulated galaxies

To test the robustness and quality of our morphological decomposition, we create a large set of simulated galaxies of known profiles and B/T , and try to measure their properties in the presence of photometric noise. To do so, we use GALFIT to model 5 000 idealized double Sérsic profiles (n = 1 and n = 4) of varying sizes, axis ratios, position angles, and fluxes, and place these models on empty regions of the real HST images. We then run both GALFIT and GIM2D trying to find back the input parameters.

We find that the total magnitude of the galaxy is always well recovered, except in the case of some catastrophic failures which happen almost exclusively with GALFIT. Enforcing that the measured total magnitude is close to that chosen in input effectively gets rid of most of these poor fits. For the real galaxies, we choose to compare the measured total magnitude to that quoted in the CANDELS catalogs, and discard GALFIT runs for which the difference is more than 0.5 magnitudes.

We also find that the bulge-to-disk decomposition is usually hopeless at H > 23, as the measured B/T are either very noisy or systematically biased toward roughly equal partition of the flux. For galaxies brighter than H = 23, we show in Fig. 6.3 the comparison between the B/T we put in the simulation, and the ones that are recovered by GIM2D. We find that the code is able to identify disk dominated galaxies with great accuracy, while bulge-dominated galaxies and intermediate systems show a slight systematic underestimation: given the choice, GIM2D will tend to put more flux in the disk component than in the bulge. This effect is small however, and we checked that our conclusions are not affected if we correct for it by adding 0.05 to the B/T > 0.5. We also observe that the uncertainty on the flux of the disk depends on B/T , with brighter bulges leading to more uncertain disk fluxes. For example, assuming constant massto-light ratio, for M disk ≃ 2 × 10 10 M ⊙ , the error on M disk is 0.04 dex for B/T ≃ 0, and 0.07 dex for B/T > 0.3. It should be noted that these simulations are only able to capture the ability of the codes to recover what was put on the simulated image, i.e., idealized profiles with realistic photometric noise and neighbor contamination, but it does not allow us to say how reliable is the decomposition in the case of perturbed, irregular or clumpy galaxies, nor does it hint about actually measuring a disk mass (which is done in the next section), e.g., it does not contain varying mass to light ratios. Therefore the real uncertainties on the measurements are probably larger. Still, even doubled, the errors we estimate here are low enough for our purposes.

Estimating the disk mass

Figure 6.4 -Relation between the total stellar mass (M * ) and the measured luminosity from the HST H band flux (without k-correction) for a sample of disk-dominated galaxies (B/T < 0.2, left) and bulgedominated galaxies (B/T > 0.8, right). Individual galaxies are shown with filled colored circles. The best-fit relation is shown with a straight line, and the dispersion around this relation is shown with light solid lines on each side. The global dispersion is given in the top-left corner of each plot, and is computed from the median absolute deviation (MAD) using 1.48 × MAD(∆M * ). Figure 6.5 -Location of z = 1 and M * > 2 × 10 10 M ⊙ galaxies with varying B/T on the UV J diagram (left: B/T < 0.2, middle: 0.2 < B/T < 0.6, right: B/T > 0.6), using the total magnitudes of each galaxy. The dotted line shows the dividing line between the star-forming and quiescent populations, as defined in S15 and adapted from Williams et al. (2009). It is clear that both bulge-and disk-dominated galaxies occupy very different regions of the diagram, illustrating the good agreement between the colors and the morphology. However, intermediate galaxies with roughly equal mass in the disk and bulge (middle panel, B/T = 0.4) are spread over the two regions, with a tendency for being preferentially in the quiescent region.

Once the flux of both the bulge and disk are measured, the last step is to measure the stellar mass of the disk. Both components have different mass-to-light ratios, since bulges are mostly made of old stars and will typically have higher mass-to-light ratios compared to the star-forming disks. In practice, since we are doing the decomposition in the H band (rest-frame 118/260 i band at z = 1), the variation in mass-to-light ratio is supposed to be minimal (e.g., de Jong 1996). Yet, to prevent any bias in our results, we will nevertheless correct for this effect. The ideal way to treat this issue is to perform the decomposition on multiple photometric bands, and use the colors to infer accurate mass-to-light ratios as in Abramson et al. (2014), or even complete SED fitting similar to what was done in Bruce et al. (2014). However this is only possible for the brightest objects (e.g., Bruce et al. 2014 only focused on galaxies with M * > 10 11 M ⊙ ).

Here we use a simpler approach where we assume an average mass-to-light ratio for the bulge components, infer the bulge masses, and subtract them from the total stellar masses. Doing so, we do not make any assumption on the mass-to-light ratio of the disk, and take best advantage of the robust stellar masses obtained by fitting the total photometry.

To determine the average mass-to-light ratio of bulges, we build a sample of "pure bulge" galaxies (B/T > 0.8) and compare their 1.6 µm (observer frame) luminosity against the stellar mass that was measured on the whole multi-wavelength photometry. Since these galaxies are clearly bulge-dominated, we can neglect the disk mass and assume that the observed mass-tolight ratio is representative of that of a bulge. The corresponding relation is shown in Fig. 6.4 (right). We derive the average trend by performing a linear fit to the running median in logarithmic space and obtain

M bulge M ⊙ = νL ν,bulge 3.25 L ⊙ 1.09 , (6.3)
with a constant residual scatter of about 0.1 dex. We then use this relation for all the other galaxies that are not bulge-dominated to estimate M bulge , and subtract this value from M * to obtain M disk . The main advantage of this approach is that, although we perform the bulge-todisk decomposition in a single band, we take advantage of the accurate mass-to-light ratio that was derived by fitting the total photometry of the galaxy, using a large number of photometric bands.

However, we rely here on the low scatter of the mass-to-light ratio in bulges. It is true that this ratio is less variable in bulges than in star-forming disks (see, e.g., Fig. 6.4, left), because the latter can display a wider variety of star formation histories. Still, bulges are expected to show some variation of their dust content and metallicity, and this will not be taken into account here. In particular, one possibility we cannot account for is that bulges in composite or disk-dominated galaxies may have different colors than pure bulges. Lastly, another downside of this empirical approach is that, since we do not measure the colors of each individual bulge, we cannot flag out the "blue bulges", which are not bulges but likely compact nuclear starbursts. These are supposed to be rare though, and if anything, this population would end up substantially above the Main Sequence in the SFR-M disk relation and bias the slope toward higher values.

To make sure that our results are not significantly biased by the adopted mass-to-light ratio calibration, we have tried several other methods for estimating the disk mass, e.g., assuming the same mass-to-light ratio for the bulge and the disk, or measuring also the average massto-light ratio in star-forming pure disks (Fig. 6.4, left) and combine it with the bulge mass-tolight ratio to estimate a mass-weighted B/T . These alternative estimations did not change our conclusions. It should be noted however that the typical dispersion observed when comparing these different disk masses is of the order of 0.2 dex. The crudest approach would be to assume the average M/L ratio of disks and apply it to the measured disk luminosity, without using the information provided by the total M * . In this case the scatter rises to 0.3 dex, suggesting that this is a poor approach. Regardless, a typical scatter of 0.2 dex means that there is little hope of seeing the dispersion of the Main Sequence becoming smaller by using the disk mass, because the latter is too uncertain. However, the absence of systematic shifts in the derived stellar masses suggests that any modification of the slope of the Main Sequence will be correctly captured.
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In Fig. 6.5, we show on the UV J diagram the location of galaxies that are either diskdominated (B/T < 0.2), intermediate (0.2 < B/T < 0.6), and bulge-dominated (B/T > 0.6) according to our mass-weighted bulge-to-total ratios. Reassuringly, the disk-dominated galaxies populate preferentially the UV J active branch, while the bulge-dominated galaxies pile up in the passive cloud, although there is some overlap between the two populations close to the dividing line. Intermediate objects are preferentially in the passive region, but are also widely spread in the tip of the active branch. It should be noted that the relations we find between total stellar mass and B/T for UV J star-forming and quiescent galaxies are consistent with those derived in Lang et al. (2014).

Measuring gas masses

The star formation efficiency (SFE) is defined as the galaxy's current star formation rate divided by the mass of hydrogen gas found within the galaxy (M gas ). While we have robust estimates of the SFRs, measuring gas masses is notoriously difficult, especially among distant galaxies. We choose here to infer the gas masses from the dust masses (M dust ), which themselves can be measured from the dust continuum emission in the FIR. This approach has been used extensively in the recent literature to constrain the SFE of distant galaxies (e.g., Magdis et al. 2011;Magnelli et al. 2012a;Magdis et al. 2012;Santini et al. 2014;Scoville et al. 2014;Béthermin et al. 2015a) and is based on the observed anti-correlation between the gas-to-dust ratio M gas /M dust and the metallicity Z in the Local Universe (e.g., Leroy et al. 2011;Rémy-Ruyer et al. 2014).

In this section, we describe the measurement of dust masses (Section 6.4.1) from the FIR to submm photometry, and then detail the derivation of the associated gas masses (Section 6.4.2). Accurate dust masses can only be derived from FIR measurements down the Rayleigh-Jeans tail of the dust continuum, meaning at z = 1 that we need to measure the observer-frame emission of galaxies at λ ≥ 400 µm. While Herschel does provide deep imaging at 500 µm, the poor angular resolution prevents measuring the 500 µm flux of most galaxies, since finding the right counterpart to the fluxes measured on these maps is challenging (see, e.g., Shu et al. in prep.). This issue can be avoided by stacking the image, since the contribution from neighboring sources averages out to form a constant background. However, there still remain 120/260 a source of uncertainty which is the contribution of galaxy clustering (e.g., Béthermin et al. 2010a). In the presence of clustering, the contribution of neighboring sources will not average out to a uniform value, and instead will tend to produce more flux toward to the position of the stacked galaxies. In S15, we implemented an empirical correction to remove this flux boosting, which was derived from a set of realistic simulated images. The stacked 500 µm fluxes in the simulation were found to be boosted by 20% on average, and we therefore de-boosted the observed fluxes by that same amount4 . After this factor is taken into account, no remaining bias was found in the stacked fluxes. We also considered stacking longer wavelength submillimeter data from AzTEC or LABOCA, however these are only available for a few fields5 hence reducing significantly the number of stacked sources. Combined with the fact that, at z = 1, the expected flux in these bands is fairly low, we could not detect any significant signal. These upper limits are consistent with the rest of Herschel photometry at the 1 to 2σ level.

Dust masses

For our z = 1 sample, we therefore use the stacked SEDs of S15, which are reproduced here in Fig. 6.6. These SEDs were built by stacking all the UV J star-forming galaxies in the four CANDELS fields at 0.7 < z < 1.3 and in four bins of stellar mass: log 10 (M * /M ⊙ ) = 9.5 to 10, 10 to 10.5, 10.5 to 11 and 11 to 11.5. As described above, a correction for clustering is also applied.

We then fit the stacked photometry with a library of template SEDs built from the amorphous carbon dust model of Galliano et al. (2011). This new library is presented in Chapter 4, and is introduced to extend the Chary & Elbaz (2001) SED library (hereafter CE01), with the aim to provide a wider and finer grained range of dust temperatures (or, equivalently, L IR /M dust ) and finer control on the PAH mass-fraction (or, equivalently, IR8 ≡ L IR /L 8 ). If the contribution of PAHs is neglected (n.b.: they represent only 4% of the total dust mass), the following relation links together the dust mass M dust , the total infrared luminosity L IR , the mass-weighted average dust temperature T dust , and the mass-weighted average intensity of the radiation field U :

L IR L ⊙ = 185 M dust M ⊙ T dust 17.5K 5.54 = 185 M dust M ⊙ U . (6.4)
Each SED in the library is calibrated per unit M dust , and therefore the dust mass is trivially obtained from the normalization of the best-fit template. Here, we allow the dust temperature to vary between 15 and 50 K, while the PAH mass-fraction is left free to vary between 0 and 1.

The best-fit values we obtain are referenced in Table 6.2.

The infrared luminosities we derive with this library are in perfect agreement with those obtained in S15 using the CE01 library. As a cross check, we also fit this photometry with the CIGALE SED fitting code, using the Draine & Li (2007) dust SED library. We recover identical L IR , but M dust values that are systematically higher by a factor of two. Systematic differences in the dust masses are typically found by comparing the results of two different approaches, e.g., comparing the results from the Draine & Li (2007) library against simple modified black bodies (as is shown in Magdis et al. 2012 andMagnelli et al. 2012a), or different chemical compositions of dust grains within the same model (e.g., graphite and silicate versus amorphous carbon grains, as in Galliano et al. 2011). The factor of two we observe here is consistent with the value reported by Galliano et al. (2011), who argue that dust masses derived by models using graphite (like, e.g., the models of Draine & Li 2007) instead of amorphous carbon grains are overestimated by a factor of 2.6. They also claim that this overestimation creates a tension with the measured metallicity of the Large Magellanic Cloud by violating the element abundances, and therefore advocate instead the use of amorphous carbon grains in dust models. Independently of this choice, we do not expect that galaxies at different stellar masses host dust grains of radically different chemical composition, hence we argue that if our measurements are biased because of the assumption on dust composition, this bias only affects our dust mass estimates globally. This is of no consequence for the present work, since it will not affect the relative evolution of the SFE. On the other hand, it also emphasizes that without precise knowledge of the detailed chemical composition of dust, the absolute value of the dust masses should be taken with a grain of salt.

For galaxies in the HRS, angular resolution is not an issue, and the Herschel photometry of each galaxy can be obtained and fitted individually. The dust mass is estimated directly by CIGALE, when fitting the photometry to obtain the stellar mass and the SFR (see Ciesla et al. 2014 and Ciesla et al. in prep.). As written above, CIGALE uses the Draine & Li (2007) SEDs to model the dust emission. To homogenize this sample with our z = 1 dust mass measurements that are obtained with the models of Galliano et al. (2011), we therefore correct the dust masses given by CIGALE down by a factor of two.

Gas masses

The idea behind the conversion from M dust to M gas is that a universal fraction f d of all the metals in the galaxy are locked into dust grains, while the remaining fraction remains mixed with the gas (Franco & Cox 1986). With this assumption and a measurement of the dust mass, one just needs to know the gas-phase metallicity (Z) to infer the gas mass:

M gas = 1 Z 1 -f d f d M dust . (6.5)
The value of f d is unknown, but it can be inferred empirically from observations where both the dust and the gas masses are known. In these cases, the gas mass is usually inferred by adding together 21 cm measurements of the neutral atomic hydrogen, and estimates of the molecular hydrogen mass, which are typically obtained from the carbon monoxide (CO) emission lines (since, indeed, molecular hydrogen is extremely hard to observe directly). This latter step implies yet another uncertainty on the conversion factor from CO intensity to molecular gas mass (α CO ). To alleviate this problem, Leroy et al. (2011) performed a resolved analysis of local galaxies, inferring jointly the gas-to-dust ratio and α CO from combined dust, 21 cm and CO observations. Assuming that the gas-to-dust ratio remains constant throughout each galaxy, they observed a relation between M gas /M dust and metallicity, and found a dependence that is consistent with Eq. 6.5.

Once the dust masses are measured (see previous section), the second step is therefore to estimate the metallicity. Since only half of the galaxies in the HRS have individual metallicity measurements (Hughes et al. 2013), and almost none of the galaxies in our z = 1 sample, we need to use empirical recipes to estimate the metallicities. Following Magdis et al. (2012), Santini et al. (2014) and Béthermin et al. (2015a), we estimate the metallicity from the Fundamental Metallicity Relation (FMR, Mannucci et al. 2010 2003) IMF (i.e., divided by 1.8 from the Salpeter values). For our z = 1 sample, we use the average stellar mass and SFR obtained in the stacks, and for the z = 0 HRS galaxies without metallicity measurement we use their respective M * and SFR. We checked that using this prescription or estimating the metallicity from the mass-metallicity relation (e.g., Zahid et al. 2011) would not change our conclusions (+0.12 dex metallicity shift at z = 1, after accounting for the different calibration). It is also worth noting that Béthermin et al. (2015a) argue for an additional redshift-dependence of the FMR, i.e., that Eq. 6.6 may not hold in the distant Universe. However, this is not an issue for the present study since, first, the difference proposed by Béthermin et al. (2015a) is a constant shift of the metallicity at 122/260 all stellar masses, and second, it only takes place at z > 1.7. On the other hand, Kewley & Ellison (2008) showed that there exists substantial systematic differences of metallicity measurements, depending both on the available observables used to derive the oxygen abundance, and the calibration that is used. For example, the FMR was derived using the Kewley & Dopita (2002) (KD02) calibration, while the metallicities of Magdis et al. (2012) are obtained with the prescription of Pettini & Pagel (2004) (PP04). According to Kewley & Ellison (2008), the difference between these two metallicity estimates is roughly constant and equal to about 0.25 dex (at least in the metallicity range considered in this paper), with a scatter of only 0.05 dex: it is only a global shift of the absolute metallicity, and will not affect the relative trends. To derive accurate dust-to-gas ratios, it is nevertheless important to make sure that the same metallicity calibration is used consistently in all calculations. For this reason, since we are going to use the data of The measured metallicities of the HRS galaxies are already in this scale, and needed no conversion. For galaxies with a metallicity measurement, comparing the latter to the metallicity derived from the FMR, we find a median offset of 0.08 dex and a scatter of 0.1 dex. Since these latter values are low, and to avoid mixing together metallicities that are directly observed and those that are inferred from the FMR, we decide to use the FMR-based metallicities for all galaxies in the HRS. We checked that our results are not affected by this choice.

The last missing ingredient to estimate gas masses is the gas-to-dust ratio or, equivalently, f d in Eq. 6.5. Here we use the gas-to-dust ratios measured by Leroy et al. (2011), that we multiply by 2 to account for systematic differences in the dust mass measurements between the dust model that we used and that of Draine & Li (2007) (see previous section). Then, to relate these measurements to metallicity, we refer to Magdis et al. (2012) who have conveniently converted all the measurements of Leroy et al. (2011) to a uniform metallicity scale (PP04), and found a best-fit relation of log 10 (M gas /M dust ) = 10.54 -0.99 × (12 + log 10 (O/H)), i.e., with a metallicity dependence very close to that of Eq. 6.5. Taking into account the systematic difference in the dust masses, and re-fitting the data by assuming the functional form of Eq. 6.5 (i.e., using a slope of -1 for the metallicity), we get log 10

M gas M dust = (10.92 ± 0.04) -(12 + log 10 (O/H)) PP04 , (6.8)

Assuming a solar oxygen abundance of (12 + log 10 (O/H)) ⊙ = 8.69 (Allende Prieto et al. 2001) and a solar metallicity of Z ⊙ = 0.017 (Grevesse & Sauval 1998), this leads to the equivalent expression

M gas M dust = (170 ± 16) × Z ⊙ Z , (6.9)
which is consistent with the gas-to-dust ratio of the Milky Way (M gas /M dust ) MW = 158 (Zubko et al. 2004). This prescription is therefore equivalent to assuming that 26% of the metals are locked into dust 6 . For our z = 1 sample, this yields gas-to-dust ratios between 145 and 387 (the precise values we obtain are listed in Table 6.2), while it ranges from 145 to 494 for the z = 0 HRS galaxies (which cover a wider metallicity range).

6 Using the dust masses from the Draine & Li models would increase this fraction to 41%.

123/260 CHAPTER 6. THE DOWNFALL OF MASSIVE STAR-FORMING GALAXIES DURING THE LAST 10 GYR Applying Eq. 6.8 to the measured dust masses, we can infer the total gas mass in each stacked bin at z = 1, and for each HRS galaxy.

To check if our results depend on the way redshifts, stellar masses and UV J classifications were derived in S15, we also run the same analysis using the "official" photometric redshifts and stellar masses of the CANDELS team, which were obtained by combining together the results of different fitting codes (Dahlen et al. 2013;Santini et al. 2015), as well as the 3DHST catalogs (Skelton et al. 2014). We find that using the CANDELS fits yield the same conclusions, but using the 3DHST catalogs changes substantially the measured SFEs. To investigate this issue, we analyze the intersection of our sample and that of 3DHST, i.e., galaxies that satisfy the selection criteria in both catalogs simultaneously. This reduces the analysis to about half of the initial sample, and yields SFEs that are comparable to those presented in this paper. We therefore conclude that our results are robust against catalog changes, and that there is probably an issue in the 3DHST catalogs. Investigating this latter issue any further goes out of the scope of this paper.

Lastly, as a consistency check for the HRS, we compare our gas masses against those estimated from the combination of 21 cm and CO emission line fluxes (using data from Boselli et al. 2014), with a constant α CO = 3.6 M ⊙ /(K km/s/pc 2 ) (Strong et al. 1988). The latter are found to be systematically larger by 30%, with a scatter of 0.2 dex. Since the vast majority (90%) of the M * > 10 10 M ⊙ star-forming galaxies are detected in both atomic and molecular surveys, we also do the following analysis with these alternative gas mass estimates. We find that our conclusions remain unchanged, save for this global shift of the gas masses by a factor of 1.3. In the end, we prefer to use the dust-based estimates in order to preserve the homogeneity of our analysis.

Results

The SFR-M disk relation at z = 1

Having measured the disk masses, we can now see if the SFR-M disk relation is universal and linear by comparing the slopes of the Main Sequence using either the total stellar mass M * or the disk mass M disk . To be able to measure this slope on our whole sample at once, and because our redshift window is relatively large, we correct for the redshift evolution of the Main Sequence by renormalizing the SFR of each galaxy to a common redshift of z = 1. To do so, we use the redshift evolution measured in S15, taking the trend of low-mass galaxies where the bending of the Main Sequence is negligible. This correction is typically of the order of 0.05 dex, and no more than 0.1 dex.

In Fig. 6.7, we show the resulting SFR-M * (top) and SFR-M disk (bottom) relations of our sample. Each panel focuses on a different range of B/T , starting from disks-dominated galaxies on the left, then increasing progressively the contribution of the bulge. In the rightmost panels, we show all galaxies regardless of their B/T . We show the running median on the measurements in each plot, either considering all the galaxies (purple lines) or only the UV J star-forming galaxies (blue lines), and compare them to the stacked Main Sequence of S15. In the top-rightmost panel, this running median overlaps with the stacked relation, which indicates that we are not strongly affected by the SFR selection of our sample. However, we can see from the top-leftmost panel that disk-dominated galaxies do not populate a particularly different region of the SFR-M * diagram: they cluster around the stacked relation of S15, and follow a sequence of slope 0.67 ± 0.07 (from M * = 3 × 10 10 to 3 × 10 11 M ⊙ ). Even after subtracting the bulge mass, which is by definition very low in these systems, the measured slope is 0.65 ± 0.08, i.e., clearly not unity. For the other galaxies, we do find a trend for some of the lowest sSFR objects to be brought back toward the Main Sequence by removing the bulge mass, but they constitute a very small fraction of the whole sample (in fact, a good fraction of these are classified as UV J passive), and cannot counterbalance the bending observed in disk-dominated 124/260 Figure 6.7 -Upper panel: Location of galaxies with varying B/T on the SFR-M * plane, using the mass and star formation rate (IR+UV) of the whole galaxy. On all plots, the vertical dotted line shows our adopted stellar mass cut, the horizontal dotted line is the 90% completeness in SFR, and the solid black line shows the locus of the z = 1 Main Sequence as observed through stacking in S15, while the solid gray line shows the extrapolation of the low-mass trend assuming a slope of unity, as observed at lower stellar masses. In each column, galaxies of different B/T are plotted, either as plain circles for UV J active galaxies, or open circles for UV J passive galaxies. In the rightmost panel, we show all galaxies regardless of their B/T . The solid colored lines show the running median of the sample, either taking all galaxies (purple line) or only the UV J active ones (blue line). Lower panel: Same as upper panel, but on the SFR-M disk plane. galaxies. In the end, the slope of the SFR-M disk relation as measured on the whole sample (bottom-rightmost panel) is 0.60±0.05, and therefore we do not find that the SFR-M disk relation is universal.

In their z = 0 study, Abramson et al. (2014) only considered galaxies with B/T < 0.6, arguing that galaxies above this threshold cannot be fitted reliably (we show indeed in Section 6.3.2 that disk masses measured in bulge-dominated galaxies are the most uncertain). We therefore tried to reject galaxies with B/T > 0.6, and did not find any significant difference. In fact, most of them do not show any measurable IR emission (83%, compared to 46% for galaxies with B/T < 0.6), and are likely genuine bulge-dominated objects.

To make sure that our results are not caused by an uncertain bulge-to-disk decomposition, we show in Fig. 6.8 how the SFR-M * diagram is populated by galaxies of varying effective Sérsic index n (van der Wel et al. 2012, and our own fits in GOODS-North, see Section 6.3.1). While the Sérsic index alone is not well suited for measuring the disk masses of composite systems, it is a robust way of identifying disk-dominated galaxies. Indeed, the fit is intrinsically simpler and therefore more stable, and the presence of a significant bulge component will rapidly make the effective Sérsic index depart from 1, the nominal value for pure disks (see Appendix A of Lang et al. 2014). We find that disk-dominated galaxies (n < 1.2) follow a slightly steeper slope of 0.75 ± 0.05, consistent with that found in Salmi et al. (2012), but this is still not unity. These slope measurements are summarized in Table 6.1.

Gas fraction and star formation efficiency at z = 1

We show in Fig. 6.9 (left) the behavior of the SFE as a function of the stellar mass in our stacked z = 1 sample. These values are also reported in Table 6.2. From this figure, one can see that the SFE of galaxies at M * < 10 11 M ⊙ rises steadily with stellar mass, following

SFE [1/Gyr] = SFR M gas = 9.30 × 10 -6 M * M ⊙ 0.5
. (6.10) However, our data point with the highest gas mass, i.e., corresponding to the stellar mass of 2 × 10 11 M ⊙ where the bending of the Main Sequence is most pronounced, has an SFE that is a factor of 2 lower than that predicted from this scaling law. Our data clearly favor two regimes of SFE: low stellar mass galaxies follow a universal relation, and high stellar mass galaxies drop below this trend.

In contrast, the gas fraction (Fig. 6.9, right) is found to decrease continuously with stellar mass (similarly to what was found in Magdis et al. 2012 andSantini et al. 2014). This is the expected behavior if the Main Sequence has a linear (or sublinear) slope while the SFR-M gas law (the so-called integrated Schmidt-Kennicutt law) is superlinear with a power-law slope of n > 1 (e.g. Daddi et al. 2010a;Sargent et al. 2014;Santini et al. 2014). Indeed, if SFR ∼ M * and SFR ∼ M n gas , then M gas ∼ M 1/n * and the gas fraction has to decrease. By fitting the M gas -M * 126/260 Figure 6.9 -Left:Relation between the SFE = SFR/M gas and the gas mass (M gas ) for Main Sequence galaxies at z = 1. Colored diamonds show the measured SFRs and M gas of our sample, the color being associated to the stellar mass as in Fig. 6.6. The best-fit power law to our measurements, excluding the most massive point, is given with a black solid line (Eq. 6.10). Right: Gas fraction ( f gas ≡ M gas /(M gas + M * )) as a function of the stellar mass (M * ) for Main Sequence galaxies at z = 1. The legend is the same as in the left figure, and here the solid black line gives the value of f gas computed using the best-fit M gas -M * relation, also excluding the most massive point in the fit. The resulting expression of f gas is given in Eq. 6.11. We also show the measured gas fractions by Magdis et al. (2012) at z = 2 with a dashed gray line. relation for galaxies with M * < 10 11 M ⊙ , we get

M gas M ⊙ = 2.38 × 10 6 M * M ⊙ 0.37 , f gas = 1 1 + M * 1.32×10 10 M ⊙ 0.63 .
(6.11)

For galaxies with M * > 3×10 10 M ⊙ , we measure a constant value of f gas ≡ M gas /(M gas + M * ) ∼ 26%, so that galaxies with M * > 10 11 M ⊙ actually have larger gas fractions than expected from the above trend. This can be explained if these galaxies also had lower SFEs in the past, suggesting that we are witnessing a process that acts on long timescales. We also find that the overall decrease of gas fraction cannot be explained solely from the growing mass of the bulges. Indeed, if we substitute the disk mass to the total stellar mass, using the average B/T measured in each mass bin and assuming that galaxies of M * < 10 10 M ⊙ are pure disks, the gas fraction in the disk is also found to decrease, albeit with a slightly shallower slope. Similar results are obtained if we use the B/T -M * relations of Lang et al. (2014).

It should be noted that the SFE and f gas we measure in high-mass galaxies are consistent with the z = 1 value reported by Béthermin et al. (2015a), who applied the same methodology to a single mass bin around M * ∼ 10 11 M ⊙ using galaxies from the larger COSMOS field. On the other hand, similar measurements were performed in Santini et al. (2014), in the same field as Béthermin et al. (2015a), finding smaller gas masses by about a factor of 3. The discrepancy appears to come from different calibrations of the dust-to-gas ratio, and therefore should only result in a systematic shift. In any case, owing to the shallow depths of the COSMOS survey, Santini et al. (2014) could only focus on galaxies more massive than 3 × 10 10 M ⊙ , i.e., they do not probe the linear Main Sequence regime (as is illustrated in Fig. 6.9, right).
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Figure 6.10 -Ratio between the dust mass (M dust ) and the total infrared luminosity (L IR ) as a function of the stellar mass for stacked galaxies at z = 1. Colors are the same as in Fig. 6.9. We overplot a linear fit (in log space) of the first three mass bins with a dotted black line. We also perform a second fit by imposing a flat slope, shown here with a gray dotted line, and following the trend observed by Magdis et al. (2012). This shows that the data at low stellar mass is roughly consistent with being flat, as reported in Magdis et al. (2012), in which case the drop in the highest mass bin would be less pronounced but still significant (4σ).

M * M dust L IR T dust f PAH SFR 10 10 M ⊙ 10 7 M ⊙ 10 10 L ⊙ K % M ⊙ /yr 0.56 2.1 +0.9 -0.5 2.4 +0.2 -0.2 24.5 +1.3 -1.4
0.8 +0.9 -0.5

5.5 Table 6.2 -Average physical properties of the galaxies in the stacked z = 1 sample. The quoted errors indicate the uncertainty on the average, not the intrinsic spread of the population. These uncertainties are derived through bootstrapping half of the full sample, recomputing all quantities for each bootstrap realization separately, then measuring the standard deviation among all realizations. The gas-to-dust ratio is randomized within the allowed statistical uncertainty (Eq. 6.8). The resulting values are then divided by √ 2 to take into account that only half of the initial sample was used in each bootstrap realization.

Lastly, to see how the assumptions about metallicity and gas-to-dust ratio affect our result, we show in Fig. 6.10 the L IR /M dust ratio, which is a direct observable. The behavior of this quantity is very similar to that of the SFE, namely there is a steady rise with stellar mass, and then a sudden drop at M * > 10 11 M ⊙ . This should not come as a surprise, knowing that our estimated gas-to-dust ratio ends up being a simple power law of the stellar mass (see Section 6.4), and that the SFRs in this sample are largely dominated by the dust-obscured, IR-luminous component.
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Figure 6.11 -Left:Relation between the specific SFR (sSFR = SFR/M * ) and the stellar mass (M * ), at various redshifts. Our z = 1 stacked measurements from S15 are shown with empty diamonds, and the average values of the star-forming HRS galaxies are shown with empty circles (see Ciesla et al. in prep.). The associated error bar is the error on the mean, not the dispersion of the sample. We compare these measurements to the z = 2 values obtained by Magdis et al. (2012) for star-forming BzK galaxies. Right: Same as left, but replacing the sSFR by the star formation efficiency (SFE = SFR/M gas ). The diamonds and circles use the gas mass estimated in this paper, while the empty squares come from Magdis et al. (2012), and were computed with the same method.

A progressive decrease of the SFE with time

In Fig. 6.11 (right) we put together our SFR and M gas measurements at both z = 1 (previous section) and z = 0 using galaxies from the HRS survey to display the evolution of the SFE with stellar mass and redshift. The values in the HRS are obtained by binning galaxies in stellar mass, and computing the mean SFE in each bin, since all the HRS star-forming galaxies are individually detected by Herschel, and therefore have individual gas masses estimates. These results are compared to that of Magdis et al. (2012), who performed a similar analysis in the GOODS fields, stacking galaxies in different bins of stellar mass from M * = 10 10 to 3 × 10 11 M ⊙ , but focusing on z = 2 BzK galaxies 7 . The selection effects inherent to the BzK classification are not very well understood, and it is known that this selection tends to affect the shape of the Main Sequence (Speagle et al. 2014). With this caveat in mind, we proceed comparing these results to our data at z = 0 and z = 1.

Similarly to our z = 1 sample, the most massive galaxies in the HRS (M * > 10 10 M ⊙ ) are also found to have a reduced SFE, thereby confirming the trend observed in the previous section. However, Magdis et al. (2012) observe a fairly different picture than the one we present here, since their galaxies of all stellar mass are found to lie on the same SFR-M gas relation, i.e., following a universal star formation law.

In fact, this is fully consistent with the observed evolution of the high-mass slope of the Main Sequence (see, e.g., the comprehensive analysis of Gavazzi et al. 2015), since at z = 2 the SFR-M * relation is found to be almost linear (see S15 and Fig. 6.11,left), indicating that whatever process drives this change of slope has not yet taken place. On the other hand, at z = 0 the bending of the Main Sequence is more pronounced, in agreement with the more 7 They did stacked galaxies at z = 1, but did not separate them in different stellar mass bins. Also, since the BzK selection only selects star-forming galaxies at z = 2, they had to use another method to discard quiescent galaxies at z = 1. To do so, they used a cut in Sérsic index of n < 1.5 (see e.g., Wuyts et al. 2011b, and Fig. 6.8). Because the associated selection effects are not obvious to determine, we prefer not to consider this data point in the present analysis, although the gas fraction they report is compatible with the one we measure here.
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6.6 Discussion 6.6.1 Quantifying the "quenching" and "downfall" rates Figure 6.12 -Evolution of the mass-weighted quenching and downfall rate densities with redshift. The red curve shows the time derivative of the stellar mass density of UV J quiescent galaxies, which we assume are produced by a "fast quenching" mechanism. The blue curve shows the star formation density that is lost because of the lowered SFE in massive galaxies, which we call the "slow downfall" rate. The shaded regions in the background give the uncertainty on both measurements.

We find that the bending of the Main Sequence cannot be caused by abnormally low gas fractions, but is instead resulting from a progressive decrease of the star formation efficiency, as shown in Figs. 6.9 and 6.11. These observations converge toward a "slow downfall" of star formation, where massive galaxies gradually decrease their star formation activity while staying on the Main Sequence. While staying on the Main Sequence, these galaxies become gradually less efficient in their star formation activity instead of abruptly turning off though a "fast quenching". Because the SFE is going down with time, these galaxies do not grow too massive by z = 0, as shown in Leja et al. (2015) who simulate the evolution of the observed stellar mass function using a Main Sequence of varying slope. The downfall of the star formation rate in massive Main Sequence galaxies may lead to the death of galaxies if, e.g., the gas surface density falls below the critical density that is necessary to switch on the Schmidt-Kennicutt relation, but our analysis does not allow us to make any firm claim favoring or disfavoring a scenario in which this downfall feeds the red sequence. Instead, we propose here to quantify the "downfall rate" of this slow process, and compare it to the fast quenching rate associated with the growth of the red sequence.

As shown, e.g., in Muzzin et al. (2013a) and Tomczak et al. (2014), the stellar mass density of UV J quiescent galaxies increases monotonously with time, illustrating the progressive buildup of the red sequence. The time derivative of this quantity, neglecting stellar mass loss and residual star formation, is a measure of the quenching rate of galaxies (see, e.g., Peng et al. 2010). Here, we make the hypothesis that all the UV J quiescent galaxies were quenched by a 130/260 CHAPTER 6. THE DOWNFALL OF MASSIVE STAR-FORMING GALAXIES DURING THE LAST 10 GYR fast process, and set

ρ quench = dρ Q * dt , (6.12)
where ρ Q * is the stellar mass density of UV J quiescent galaxies. We parametrize this latter quantity by fitting the redshift evolution reported in the CANDELS fields by Tomczak et al. (2014), accounting for the different choice of IMF:

ρ Q * M ⊙ /Mpc 3 = (2.6 ± 0.7) × 10 8 exp(-z) . (6.13)
To estimate the downfall rate associated to the slow process that lowers the SFE of massive star-forming galaxies, we compute the difference between the observed SFR density (ρ SFR ) and the density that would be observed if there was no drop of SFE, therefore if the Main Sequence had a slope of unity at all stellar masses (ρ unity SFR ). This is a measure of the amount of star formation that was lost because of the reduced SFE within the Main Sequence. We estimate both SFR densities using the stellar mass functions of star-forming galaxies introduced in S15 (that we complement toward z = 0 using the mass function from Baldry et al. 2012), and integrate these mass functions weighted by the SFR. For the observed ρ SFR , we use the SFR-M * relation given in S15. Defining r ≡ log 10 (1 + z) and m ≡ log 10 (M * /10 9 M ⊙ ), this relation reads

log 10 (SFR MS [M ⊙ /yr]) = m -m 0 + a 0 r -a 1 max(0, m -m 1 -a 2 r) 2 , (6.14) 
with m 0 = 0.5 ± 0.07, a 0 = 1.5 ± 0.15, a 1 = 0.3 ± 0.08, m 1 = 0.36 ± 0.3 and a 2 = 2.5 ± 0.6. For ρ unity SFR we use this same equation excluding the last term (which is used to describe the bending), i.e.: Since these equations were not calibrated at z < 0.5 in S15, we use the observed Main Sequence from the HRS galaxies for these redshifts. The downfall rate is then defined simply as

ρ downfall = ρ unity SFR -ρ SFR . (6.16)
The resulting evolution of both ρ quench and ρ downfall is shown in Fig. 6.12. One can see from this figure that the fast quenching mode clearly dominates at all z > 1.5, while the slow downfall rapidly catches up to reach similar rates from z = 1.5 to the present day, i.e., over ∼ 70% of the history of the Universe.

Two conclusions can be drawn from this observation. First, the fact that both the quenching and downfall rates reach similar values at all z < 1.5 implies that the downfall is a quantitatively important effect that should be considered alongside the growth of the red sequence. Second, it is clear that the two modes act at different epochs in the history of the Universe. While the fast quenching appears to hold a steady rate all the way from z = 4 to the present day, the slow downfall becomes a significant source of SF suppression only at z < 2. This suggests that the buildup of the red sequence and the change of slope of the Main Sequence are in fact related to two separate physical processes. This is discussed further in the next section.

Identifying the actors that regulate the SFE and the gas content

The idea that the specific star formation rate of galaxies is universal when computed over the disk rather than total mass of galaxies (as proposed by Abramson et al. 2014) is natural since bulges do not form stars. Yet, it would contradict another concept linked to the Main 131/260 CHAPTER 6. THE DOWNFALL OF MASSIVE STAR-FORMING GALAXIES DURING THE LAST 10 GYR Sequence, namely the fact that galaxies are fed by the infall of extragalactic matter, which is in turn proportional to the total mass of galaxies, including dark matter (e.g., Dekel et al. 2013). Hence the fact that our results from Section 6.5.1 refute this mechanism may not be surprising, and possibly even expected when accounting for the large-scale context of infall. This echoes the result obtained more recently in the SDSS by Guo et al. (2015), who also found a sublinear slope for z = 0 pure disk galaxies, in conflict with the result of Abramson et al. (2014).

We observe instead in Section 6.5.2 that the star formation efficiency is decreasing in massive galaxies, leading to a slow downfall of star formation. This suggests the existence of an active process that impacts the star formation activity, although the question remains to figure out exactly what this process could be. We cannot definitely address this question with the present data alone, but we review in the following the known mechanisms in light of our results.

We may already state that feedback from supernovae is not the favored solution, for it would affect more efficiently galaxies with a low gravitational potential, and therefore with low stellar masses, oppositely to our finding. Interestingly, the range in redshift and galaxy mass where the Main Sequence flattens corresponds to the regime where theory predicts group formation to be most effective, hence suggesting that structure formation or the membership to massive haloes may affect the rate of gas infall and the energetics regulating star formation (disk rotation and turbulence, see, e.g., Hennebelle & Chabrier 2008). Gravitational heating (Birnboim & Dekel 2003;Dekel & Birnboim 2008), i.e., the injection of energy into the dark matter halo from gas accretion itself, only depends on the mass of this halo, and can therefore act also in isolated galaxies. According to Dekel & Birnboim (2008), this can completely stop star formation in halos more massive than ∼ 6 × 10 12 M ⊙ (corresponding to a stellar mass of ∼ 2 × 10 11 M ⊙ , Behroozi et al. 2013). This halo mass is the threshold above which natural cooling cannot counterbalance the energy brought into the halo by accretion, but in fact this energy is always there, even below this mass threshold, and can affect less massive halos more moderately. Lastly, we cannot rule out the action of the "radio-mode" AGN feedback, where jets heat the gas in the surroundings of galaxies, that may also be more common in massive galaxies.

Over the last years, the emphasis was put mostly on violent quenching mechanisms to explain the low baryonic fraction per unit dark matter halo mass, switching off the growth of galaxies by supernovae and AGNs at low and high masses, respectively (see, e.g., Silk & Mamon 2012;Behroozi et al. 2013;Behroozi & Silk 2015). We present here evidence that a slow downfall of the star formation efficiency should also be considered as a key mechanism.

Conclusions

We addressed here the origin of the change of slope of the Main Sequence of star-forming galaxies at z < 1.5, where high-mass galaxies exhibit a lower sSFR ≡ SFR/M * than what one would extrapolate from low-mass galaxies (e.g., Whitaker et al. 2012;Magnelli et al. 2014;Whitaker et al. 2014;Ilbert et al. 2015;Schreiber et al. 2015;Lee et al. 2015;Gavazzi et al. 2015).

It was reported in the Local Universe that the SFR-M disk relation is linear, suggesting that it is the bulge that creates most of the change of slope of the Main Sequence (Abramson et al. 2014). This claim was recently questioned by Guo et al. (2015) at z = 0, who reported that the slope of the SFR-M disk relation is in fact sublinear.

We performed the bulge-to-disk decomposition of a sample of ∼ 1 000 galaxies at z = 1 in the CANDELS fields, with robust SFRs measured from their mid-to far-IR photometry. We find that, as for the SFR-M * relation, the high mass slope of the SFR-M disk relation remains substantially shallower than unity. Such shallow slope is also observed among pure disk galaxies, selected either from their decomposed bulge-to-total ratio, or from their effective Sérsic index (see also Salmi et al. 2012 for a similar result at z = 1). This implies the existence of 132/260 CHAPTER 6. THE DOWNFALL OF MASSIVE STAR-FORMING GALAXIES DURING THE LAST 10 GYR a physical mechanism at play even within the disks of massive galaxies, uncorrelated to the presence or absence of a bulge.

We then used Herschel stacking to derive jointly the average SFR and dust mass of starforming galaxies in four bins of stellar mass in the same redshift range. Deriving the gas-phase metallicity from the Fundamental Metallicity Relation, we inferred the total gas mass, assuming that a fixed fraction of the metals are locked into dust, and analyzed the relation between the SFE ≡ SFR/M gas and the gas fraction in bins of stellar mass. We found that the most massive galaxies with M * > 2 × 10 11 M ⊙ show a significantly reduced SFE by about a factor of 2 to 3 when compared to extrapolations from lower stellar masses, while the gas fraction remains constant. We measured gas masses in Local galaxies from the Herschel Reference Survey and found a similar behavior, reinforcing this finding. There, the drop of SFE happens at lower stellar masses, in agreement with the redshift evolution of the slope of the Main Sequence (see S15).

Combined together, these results point toward the existence of a slow downfall mechanism that impacts the SFE of massive star-forming galaxies. We showed that this phenomenon is quantitatively important at z < 1.5, and is likely disconnected from the fast quenching phenomenon that builds the red sequence. We argue that both mechanisms should be considered on the same footing when exploring the latest stages of galaxy evolution.

Leads for future research include studying the variation of the SFE above and below the Main Sequence, at fixed stellar mass. In this paper we show evidence that variations of SFR at high stellar masses are caused by variations of the SFE rather than gas mass. Since we have only been able to probe this through stacking and with relatively uncertain selection effects at z = 1, it would certainly be interesting to confirm these trends for individual objects. This kind of analysis can only be accomplished using a statistically complete sample of SFR and dust mass measurements at different stellar masses (ideally with direct metallicity estimates from emission lines). While SFRs and metallicities are currently within our reach, ALMA observations remain the only way to derive individual dust mass measurements for non-starbursting systems. A statistical sample with such measurement can be obtained either through dedicated pointed observations, or using a blind continuum survey, which will soon become possible with ALMA.

Appendix: Impact of the UV J selection

It has been shown that the properties of the SFR-M * relation, i.e., its slope but also its scatter, are very sensitive to the sample selection (e.g., Speagle et al. 2014). In the present paper, we have used the standard UV J color-color diagram to isolate quiescent galaxies, and although this selection has been widely used in the recent literature (e.g., Whitaker et al. 2012;Muzzin et al. 2013a;Bruce et al. 2014;Whitaker et al. 2014;Lang et al. 2014;Straatman et al. 2014;Pannella et al. 2015), its reliability can still be questioned. Indeed, while the quiescent and star-forming clouds can be easily identified on this diagram (see, e.g., Fig. 6.5), there is a non-negligible amount of galaxies in between, populating what is often referred to as the "green valley". The dividing line defined by Williams et al. (2009) goes arbitrarily through this population, and it would be unwise to consider blindly that a "green valley" galaxy slightly above that line is quiescent, and that a similar galaxy slightly below the line is star-forming.

One way to circumvent this issue is not to apply any selection of star-forming galaxies in the first place, and identify the Main Sequence as the ridge (or mode) of the distribution of galaxies on the SFR-M * plane. This was done, e.g., in Magnelli et al. (2014) and Renzini & Peng (2015). However this approach is only feasible in samples that are not SFR-selected. Building such a sample requires using SFRs that are not fully based on the FIR, and that are therefore potentially unreliable (one exception is the deep H α data of the SDSS, as in Renzini & Peng 2015, but translating this study to the distant Universe is currently out of our reach). Of course, this is also not applicable to stacking analyses, for which the SFR is only determined a 133/260 Figure 6.13 -Same as Fig. 6.9, but here black diamonds show the measured SFRs and M gas of our chosen sample, while blue (respectively red) diamonds show how these values change if we shift the UV J dividing line toward the star-forming (respectively quiescent) region by 0.1 magnitude.

posteriori.

Coming back to the UV J selection, there are two ways our study could be affected by this arbitrary dividing line. On the one hand, the selection may be too strict, and we could actually discard from our sample some galaxies that are still forming stars at non-negligible rates, but have colors similar to that of quiescent galaxies because of peculiar combination of star formation history and dust content. On the other hand, the selection may be too loose, and our "star-forming" sample could actually contain a number of quiescent galaxies. We expect both effects to take place mostly for the most massive galaxies, where dust is more abundant and where most quiescent galaxies are found. The first alternative can be addressed by looking at Fig. 6.7, on which we show the position of both UV J star-forming and UV J quiescent galaxies in the SFR-M * plane. One can see that there are indeed a few genuinely star-forming galaxies that are classified as UV J quiescent. However, as can be seen from the running median, these galaxies tend to have systematically lower star formation rates compared to UV J star-forming galaxies. Therefore, including these mistakenly identified galaxies in our sample would likely flatten the Main Sequence even more. Consequently, it is also unlikely that this would change dramatically the average SFE. The second alternative is probably more worrisome, as the drop of the SFE we observe in massive galaxies could be created by quiescent galaxies polluting our sample. One interesting observation to make out of Fig. 6.7 (and that can be made more quantitatively by studying the distribution of SFR around the median value, Ilbert et al. 2015;Schreiber et al. 2015) is that the mode of the SFR distribution at a given stellar mass (approximated here by the running median) coincides with the average value obtained from the stacked measurements. This means that, although our sample is SFR-selected, the amount of galaxies below our SFR detection limit is small enough that their impact on the average trend is marginal. In fact, for galaxies more massive than 5 × 10 10 M ⊙ , where the bending of the sequence is most pronounced, 79% of the UV J star-forming galaxies are detected in the FIR. Therefore, the contamination of genuinely quiescent galaxies to the UV J star-forming sample in this stellar mass range must be reasonably small (i.e., a maximum of 20%).

Nevertheless, in an attempt to quantify how our results are influenced by the choice of the UV J dividing line, we replicate our SFE measurements by stacking two different additional samples which are built by slightly shifting the UV J dividing line by ±0.1 magnitude. The resulting SFE and f gas are shown in Fig. 6.13. As can be seen from this figure, moving the dividing line further into the quiescent cloud (red points) or further into the star-forming cloud (blue points) does not impact f gas in any statistically significant way. In both cases, we still observe a drop of SFE, although the amplitude of this drop does vary, in this case mostly because of a change of SFR.

This can be put in perspective with the work of Arnouts et al. (2013), who found that the sSFR of a galaxy could be inferred from its position on the NrK diagram, which is conceptually similar to the UV J diagram 8 , with an sSFR that is continuously increasing as a function of the distance to the dividing line. According to Arnouts et al. (2013), using a stricter UV J selection should bias our sample toward galaxies with a higher sSFR, hence, at fixed mass, with a higher SFR, which is what we observe for the most massive bin. In this context, the fact that the gas mass does not change substantially is particularly interesting, and is another hint that the mechanism responsible for the downfall, whatever it is, is mostly impacting the SFE, and not the gas supply.

8 By using rest-frame wavelengths that are further apart, this diagram has a larger dynamic range and will separate quiescent and star-forming galaxies more clearly than the UV J diagram. The downside is that measuring the rest-frame K band is particularly difficult at high redshifts, while the near-UV is hardly accessible at low redshift. Reaching the distant Universe with ALMA

Introduction

In my first published paper (Schreiber et al. 2015, see also Chapter 3), we were able to measure FIR-based star formation rates for a large sample of galaxies, thanks to the deep Herschel surveys that were observed during the lifetime of the satellite. This allowed us to put new constraints on the properties (and existence) of the Main Sequence of star-forming galaxies, from z = 4 to the present day. However, as can be seen from Fig. 3.13, most of our results at z = 4 are based on extrapolations of a single measurement, obtained by stacking the most massive galaxies (M * > 3 × 10 11 M ⊙ ). In fact, we were able to probe only a tenth of the total SFR density at these epochs: having reached the limits of what Herschel alone can provide, learning more about the z ≥ 4 Universe calls for more powerful tools.

To this end, we have proposed with Roger Leiton, Maurilio Pannella and David Elbaz (together with other collaborators1 from the United States and Chile) an ALMA program to specifically target z = 4 galaxies that were too faint to be unambiguously detected by Herschel. Our goal with this proposal was to spend no more than 2 minutes of observing time on each galaxy to detect the dust continuum emission at an observed wavelength of 870 µm (band 7), i.e., targeting the rest-frame 170 µm which can be related to the star formation rate of the galaxy with an error of about 50% (because the dust temperature is unknown and cannot be constrained with a single FIR photometric measurement). Even with this modest integration time, ALMA can detect z = 4 galaxies with SFRs of the order of 150 M ⊙ /yr, i.e., ten times lower than what Herschel was able to reach.

With such a data set, one could precisely constrain the normalization and the dispersion of the Main Sequence at z = 4, being affected neither by the uncertain clustering corrections that plague stacked Herschel measurements, nor by the poorly constrained dust-corrections that need to be applied to UV-based SFRs. Current cosmological models of gas accretion (e.g., Davé et al. 2011) predict that this normalization should rise continuously with redshift. On the other hand, observations of the z > 4 Universe tend instead to show a normalization that saturates at the z ∼ 4 value (Stark et al. 2009;González et al. 2010;Bouwens et al. 2011), although recent studies Stark et al. (2013); Salmon et al. (2015) argue for a rise after correcting for the contamination of emission lines to the stellar mass estimates of z > 5 galaxies. Still, all these determinations are based on the UV light alone, using dust-correction recipes that were established in the Local Universe (Meurer et al. 1999;Calzetti et al. 2000). Without a direct measurement of the dust content of these high-redshift galaxies, there is indeed no better choice available, but our ALMA survey could provide valuable constraints on the relation between the observed UV spectrum and the dust extinction.

Our proposal was accepted on April 9th 2014, and we received all the data on February 17th 2015. In this chapter, I describe the way our sample was built (Section 7.2), give an overview of the observations (Section 7.3.2), describe how I reduced the images (Section 7.4) and then measured the fluxes (Section 7.5), and finally introduce some preliminary results (Section 7.6). I also report the detection of several other galaxies that happened to be in the field of view of our observations, but that were not part of our proposed sample. These are mostly massive galaxies at z = 1 to 3 (Section 7.7), except for two peculiar objects that are not detected in any HST image, and only show up in the Spitzer IRAC bands (Section 7.9). These two galaxies are among the brightest ALMA detections in our data, and a first determination of their redshift, based on the available photometry, would place them at z > 4.

Sample selection

Our main sample consists of 113 galaxies found within the three CANDELS fields observable by ALMA, i.e., GOODS-South, UDS and COSMOS. These galaxies were selected from the catalogs introduced in Chapter 3 for having a photometric (or spectroscopic) redshift within 3.5 < z < 5.0 and a stellar mass larger than 5 × 10 10 M ⊙ , as derived respectively by EAzY and FAST. We decided to observe all the galaxies satisfying these criteria, regardless of their UV J classification (see Section 3.2.6), since at these redshifts the rest-frame J band falls in the IRAC channel 3, which is too shallow (at least in the UDS and COSMOS fields) to detect these distant objects. Furthermore, the number of massive quiescent galaxies in this sample is expected to be low: extrapolating the trend from z < 4 yields a quiescent fraction of about 20% (see however Straatman et al. 2014, who report a substantially larger fraction of 35%).

Using the stacked SED from Chapter 3 (Section 3.3.2), we predicted the 870 µm flux for each galaxy, assuming that they are all star-forming and that their SFR (and therefore, with a simple conversion factor, their L IR ) is following the Main Sequence from Eq. 3.9 with a scatter of 0.3 dex (see Section 3.4.4). The mean predicted flux was ∼ 2 mJy, and we aimed for an RMS of 0.2 mJy so as to detect 80% of the sample. To optimize the integration time, groups of objects that were close enough were combined into a single pointing.

Among the three CANDELS fields, GOODS-South was found to contain significantly fewer z = 4 galaxies. This could be explained either by cosmic variance, or from the fact that the GOODS-South photometry is of higher quality, and therefore that a significant fraction of the z = 4 galaxies in the other fields are spurious. Indeed, with this program we are pushing photometric redshifts to their limits, in a regime (massive and dusty distant galaxies) which is poorly sampled by spectroscopic campaigns to date. For this reason, we have proposed the spectroscopic follow-up of these z = 4 galaxies to confirm their redshift with the KMOS instrument on the VLT. This 20 hours program was recently approved, on July 2nd 2015. Coming back to the ALMA program, we decided to compensate for this lack of z = 4 massive galaxies in GOODS-South by adding 13 spectroscopically confirmed galaxies of lower stellar mass. The chances of detecting these objects in the continuum are slim, but these observations will nevertheless provide useful upper limits on their dust content. Also, by tuning the receptor frequency, we allow for the possibility to detect the [C ii] emission line for some of them. These galaxies are in the "secondary sample", and at the time of writing this thesis, their data have not yet been analyzed.

Description of the observations and data

Notes on interferometric imaging

Since ALMA is an interferometric facility, the angular resolution of an observation does not depend on the seeing, but on the configuration of the 36 antennae during the data acquisition: 138/260 Figure 7.1 -Left: Coverage in the (u, v) plane of one of the galaxies we observed in the GOODS-South field. One can see that this plane is only sparsely sampled, and that due to the short integration time, we are missing some information about the object. Indeed, using longer integration times would have increased the (u, v) coverage without moving the antennae thanks to the rotation of the Earth around itself. Right: Beam (or PSF) of the corresponding image. This beam shows a number of negative features (blue) and secondary lobes (orange), which are the result of the sparse sampling of the (u, v) plane. These features make it hard to interpret a raw imaging of the (u, v) visibilities. It is possible, to some extent, to deconvolve this so-called "dirty beam" from the raw image, for example using the CLEAN algorithm, to improve the visual quality of the image and allow direct flux measurements.

the most compact configuration (where the antennae are the closest to one another, i.e., at most 160 m apart) corresponds to the worst angular resolution of about 2 ′′ , while the most extended configuration (with a maximum distance of 10 km) allows reaching angular scales as small as 0.02 ′′ , i.e., less than a pixel of the best HST images (see, e.g., the impressive observations of a lensed galaxy in ALMA Partnership et al. 2015). This value is inversely proportional to the longest baseline (i.e., the longest distance between two antennae within the configuration), and this is due to the fact that an interferometer provides observations in the Fourier domain, which is also called the "(u, v) plane" (see, e.g., Wilson et al. 2009). Instead of observing directly the intensity of the light in a pixel corresponding to at a given position of the sky, like any conventional imager, the measured signal in each pair of antennae is combined and yields the light intensity of a given scale defined by the physical distance between the two antennae. To recover the emission at all scales in a given region of the sky, one has to cover the whole (u, v) plane, i.e., observe with all possible combinations of antennae distances and relative positions. Of course, this is infeasible, as it would necessitate either an infinite number of antennae or an infinite integration time with varying antenna configurations. Therefore, any interferometric observation only covers a fraction of the (u, v) plane (see, e.g., Fig. 7.1, left), and consequently not all the angular scales of the target object are properly recovered. As written above, the longest baseline defines the angular resolution of the observations, but in fact this sparse sampling also implies the existence of a largest recoverable scale, which is defined instead by the shortest baseline. For example, in the most extended configuration (in which the shortest distance between two antennae is 250 m) one cannot recover structures that are more than 0.4 ′′ wide (versus 8 ′′ in the most compact configuration). This means that if one observes an extended object with a too sharp resolution, part of the flux will be irremediably lost, or "resolved out", and the total intensity of the source will be underestimated.

Even if the flux is not resolved out, using a too high angular resolution at fixed integration time can have an impact on the final signal to noise ratio (S /N) of the measurement. Indeed, if the galaxy is spatially resolved, the signal will be split among the various observable scales. Consequently, compared to a coarser resolution observation, a smaller fraction of the data is 139/260 used to constrain the emission of the galaxy on its main angular scale, and the signal to noise ratio of the total flux will be lower. This is why, when preparing an ALMA proposal, one requests a given sensitivity at a given angular scale. If the observations have been obtained with a better angular resolution than that requested (which happens regularly due to the observatory's practical constraints2 ), achieving the requested S /N will require longer integration time, and one can later apply some filtering on the received data to remove (or down-weight) the high resolution measurements. This last step is called "tapering", and is conceptually equivalent to picking the right aperture size to measure a flux, avoiding too large apertures that would add more noise than signal.

As can be seen from Fig. 7.1 (right), the point spread function (PSF) reconstructed from a limited (u, v) coverage is complex, and contains both positive and negative features. In fact, the integral of this PSF is zero, reflecting the fact that interferometric images have no background. This PSF is called the "dirty beam". The most common technique to get rid of these sidelobes is the CLEAN algorithm (Högbom 1974). Briefly, the algorithm locates the brightest peak in the image a subtracts the dirty beam, rescaled to a fraction of the measured peak flux (e.g., 10%). The procedure is repeated until the brightest peak falls below a given flux threshold (e.g., half the requested RMS). The resulting image is called the "residual map", and is dominated by noise. Then, each subtracted peak is added back to the map, replacing the dirty beam by a Gaussian ellipsoid which is usually fit to the core of the dirty beam, so as to preserve the angular resolution. This ellipsoid is called the "restoring beam", and the resulting image is called the "clean image". This procedure has been used extensively in radio astronomy, and is also the standard imaging technique for ALMA.

One last point I will describe here is the existence of the primary beam, which is essentially the interferometric equivalent of the field of view of a conventional telescope. This primary beam is independent of the antenna configuration, and is in fact the PSF of each individual antenna. As such, it is a roughly Gaussian profile whose width scales with observed wavelength. In our case, the FWHM is about 18 ′′ . This means in particular that the output level of a source of fixed flux is not uniform within a given pointing: it is maximal in the center, and drops by a factor of ten for sky positions that are 15 ′′ away from it. In a typical data reduction run, images are produced as seen by the antennae, i.e., the noise level is constant across the whole image (which is good to find the detections), but the absolute flux of each pixel is attenuated by the primary beam (which is bad for flux measurements). Therefore, one has to apply a "primary-beam correction" to the image (i.e., simply divide the raw image by the profile of the primary beam): the pixel values are then directly measuring the intrinsic flux, but the noise level becomes highly non-uniform.

General properties of our data

Our only aim was to measure the integrated flux of each galaxy, and therefore we only needed a resolution good enough that the emission can be unambiguously attributed to each target. The high resolution HST images show that the typical angular size of these objects in the rest-frame UV is about 0.3 ′′ , although some are substantially more extended. It is not obvious that the FIR sizes are in any way correlated to the UV sizes, as both usually come from totally different regions of the galaxy. Still, the measured UV sizes can be used as lower limits, and to be safe we requested that the target sensitivity be achieved on a spatial scale of 0.7 ′′ , i.e., using almost the most compact configuration.

Our proposed sample was observed for a total of 5.9 hours of telescope time, including overheads, for an average observing time of 1 minute and 19 seconds per object. All our targets were observed, but the quality of the data varies from one field to another. I will therefore Figure 7.2 -Zoom on the core of the dirty beams of GOODS-South (left, after tapering), UDS (middle) and COSMOS (right). All three images are shown with the same intensity scale, and correspond to a 8 ′′ × 8 ′′ area. The contours indicates the region where the amplitude of the beam is larger than half of the peak value (yellow solid line) and a tenth (yellow dotted line), and negative by more than a tenth of the peak value (red dotted line). This diversity illustrates how the shape of the beam can vary depending on the coverage of the (u, v) plane: the GOODS-South beam has the strongest sidelobes and negative features because of the tapering, while UDS has the weakest variations thanks to the fact that the field was observed twice and at different elevations.

describe each field separately, and provide a summary in Table 7.1.

In the following, the angular resolution is determined by fitting a Gaussian profile to the core of the dirty beam (where the amplitude is at least half that of the peak) using GALFIT (Peng et al. 2002). A comparison of these beams in the three different fields is shown in Fig. 7.2. The RMS is measured individually for each pointing using the median absolute deviation of the non-primary-beam-corrected image.

GOODS-South

This field was observed in July 2014, with a total telescope time of 1 hour and 10 minutes, and an on-source integration time of 1 minute and 15 seconds per target. All targets were observed in one scheduling block, and were visited twice: first with a 50 seconds pointing, and about 40 minutes later for an additional 25 seconds. It turned out that the array was in a relatively extended configuration when the observations were undertaken, so that the achieved resolution is 0.36 ′′ × 0.31 ′′ with a uniform RMS of 0.13 mJy/beam. Although the noise is about twice lower than the one we requested, most galaxies will be resolved at that resolution. To optimize the detection rate, I therefore imaged the data using a tapering of 0.7 ′′ so as to recover the requested angular resolution. By testing different values, I found that 0.7 ′′ was providing the best compromise between signal-to-noise ratio and peak flux. After this step, the RMS increases to 0.22 mJy/beam (min: 0.17 mJy, max: 0.31 mJy), and three more objects are detected (a detailed description of the detections is provided below).

The calibration was based on the quasars J0334-401, J0348-2749 and J0522-3627.

UDS

The UDS was observed twice: 1 hour and 23 minutes in June 2014, and 1 hour and 20 minutes in December 2014, for a total of 2 minutes and 31 seconds of on source integration per target. Both runs have used the same observing strategy as for GOODS-South, i.e., visiting each target twice in a single scheduling block. The first observing run was taken in an extended configuration, with a resolution of 0.43 ′′ × 0.34 ′′ , and an RMS of 0.25mJy/beam. This angular resolution is similar to that of GOODS- South, but the achieved RMS is substantially higher. It is likely that the observers on site judged that this run was not of good enough, and decided to schedule another one later.

The second observing run was acquired in a compact configuration, so that the angular resolution is substantially coarser and reaches 1.48 ′′ × 0.69 ′′ , for an RMS of 0.23 mJy/beam (min: 0.20 mJy, max: 0.25 mJy).

On its own, this last run satisfies our requested criteria. However, to optimize the sensitivity, in the following I combine the data from both runs (this step is described in more detail in the next section). The resulting resolution is 0.58 ′′ × 0.43 ′′ , i.e., still substantially smaller than that requested. Also, the core of the beam is not Gaussian and these numbers do not really make justice to its real profile. I therefore taper the scales below 0.5 ′′ to recover a more uniform beam that is 0.92 ′′ × 0.73 ′′ , i.e., similar to that of the second observing run but with an axis ratio closer to unity. The resulting RMS is 0.21 mJy/beam (min: 0.19 mJy, max: 0.23 mJy). This additional data allows the detection of several more objects above the 3σ level.

The calibration for the first run was based on the quasars J0215-0222, J0241-0815 and J2258-279, while that for the second run was based on the quasars J0108+0135 and J0217+0144, as well as Neptune.

COSMOS

The COSMOS field was observed for 1 hour and 45 minutes, with 1 minutes and 25 seconds of on-source integration. Here the sources were observed for 43 seconds twice, each time within a separate scheduling block. The angular resolution reaches 1.14 ′′ × 0.70 ′′ for a uniform RMS of 0.15 mJy/beam (min: 0.14 mJy, max: 0.16 mJy), i.e., 25% smaller than requested.

For the first scheduling block, the calibration was based on the quasars J1010-0200, J1058+0133 and J1058+015. For the second scheduling block, the last quasar was replaced by Callisto.

Data reduction

ALMA data are received pre-reduced by an astronomer on site, which is very convenient to get a quick overview of the achieved sensitivity and detection rate. However, the quality of these pre-reductions turned out to be mixed, from ok to quite poor. In the following sections I describe the modifications I made to the pre-reduction in each field.
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GOODS-South

In GOODS-South, the person in charge of the reduction noticed that the resolution was higher than requested, and therefore used tapering on one of the targets to measure the effective RMS at the 0.7 ′′ resolution. However, he/she did not re-reduce the other targets, which were shipped at the highest resolution. Since the reduction script is also provided with the data, I could easily do it myself. The high-resolution images are not used in the following analysis.

UDS

The pre-reduced data in UDS were of good quality. However, as written in the previous section, the UDS field was observed twice at very different period of the year, resulting in two scheduling blocks (SBs) of about one hour each. The pre-reduction used data from the last SB only, disregarding all the data from the first SB. Therefore, I reduced by myself the data from this first SB, running the automatic pipeline. After several hours of computations, the pipeline delivered a calibrated "Measurement Set" (MS) that is ready to be used for imaging.

For testing purposes, I chose one of the bright source from the second SB and tried to image the corresponding pointing using data from the first SB only. The resulting image was of poor quality, with a very high RMS of about 1 mJy and pronounced striped patterns, so the source was hardly visible. Within casa, I used plotms to manually browse through the visibility data, looking for anomalous features. I noticed a small group of visibilities with amplitudes systematically higher by a factor of 200 compared to the rest of the data. I flagged these outliers and relaunched the imaging, only to notice that the image quality did not improve much. Inspecting the visibilities again, I could not find any other striking feature.

Using another angle of approach, I tried imaging this same source only using data from a reduced frequency range, in particular imaging each of the four sidebands individually. I realized that the issue came from the second sideband, and that the other three were behaving properly. Disabling this faulty sideband, i.e., trashing 25% of the data, the final imaging quality was good, and the RMS went down to 0.24 mJy/beam. I then tried to refine further the frequency selection within the faulty sideband to see if part of the data could be used, but it appears that the whole sideband is corrupted. This could be an issue of calibration, and should be investigated further.

I then merged the two scheduling blocks together to form a single measurement set. I first used the split procedure to discard the second sideband from the first scheduling block, then the procedure concat to create the new merged measurement set. Since the first data set was observed at relatively high angular resolution, I also used tapering to remove the scales below 0.5 ′′ . To do so, I used the same script as in GOODS-South, and imaged all the targets.

COSMOS

Finally, in COSMOS the provided reduction was extremely poor. There was a typo in the imaging script that made all the reduced images invalid (all pixels where "not a number"). The person in charge of the reduction did not notice this, and reported zero detections. On top of this, only one of the two scheduling blocks was used in the imaging process, leading to suboptimal sensitivity. Therefore I merged the two scheduling blocks (using the casa procedure concat), fixed the typo in the script, and relaunched the imaging process.

Flux measurement and detection rate

If a target is point-like, its flux can be read directly from the pixel value of the corresponding peak in the primary-beam-corrected clean image. This measured flux is called the "peak flux". This image-based measurement is the simplest way to estimate the flux of an object, and it has the nice advantage that it allows blind detections of all the sources in the field of view, simply by locating all the pixels of the map that lie above a chosen confidence threshold. For this preliminary analysis, I used SExtractor (Bertin & Arnouts 1996) to identify all the pixels above a 3 σ threshold, then cross matched the resulting "detection" list to our target list. Detections which where more than 1.5 ′′ away from any target were rejected as being either likely spurious (SNR < 5) or real but unrelated to our targets (SNR > 5), while those between 0.5 and 1.5 ′′ were kept only if their SNR was higher than 4. The resulting number of detections are summarized for each field in Table 7.1.

Overall, we detect 34 of our primary targets with this method, with a fairly low detection rate of 30%. Considering only the UV J star-forming galaxies, the detection rate is slightly higher and reaches 39%, although 9 of our detections are classified as UV J quiescent galaxies. The measured peak fluxes are found to be on average about a factor of ∼ 2.7 (median: 1.8) below our predictions.

The main drawback of using peak fluxes is that they will underestimate the total flux of extended objects. Analyzing the HST images, we found that the typical angular size of our targets was about 0.3 ′′ . At the resolution achieved in our observations, these sources should be barely resolved, and the peak flux should be a good first approximation. On the other hand, we cannot exclude that the extent of these galaxies is larger in the FIR domain, because dust is usually not physically correlated with the UV bright regions that HST reveals. Some of our targets are also clearly extended in the HST images, and we expect the peak flux to fall short significantly for these objects. This could explain part of the disagreement with the prediction, and therefore we need a more refined flux measurement that takes into account this possible spatial extension.

With non-interferometric data, the simplest way to measure the flux of an extended structure is to use aperture photometry. If the aperture is large enough, the total flux of the object is recovered by summing up the pixel values within a chosen aperture (which is usually circular). If the aperture is too small (which is often the case if one wants to avoid excessive contamination from neighboring sources), one can extrapolate the total flux of the object by assuming some profile or simply using the growth curve of the PSF. With interferometric data, this is probably not be the best approach. As written in the introduction, the integral of the dirty beam is zero, and therefore the flux of any source measured within an infinite aperture will also be zero. Now, this is true only if the flux is measured on the dirty image. If the cleaned image is used, the result will depend on the details of how the image was cleaned: down to which flux threshold, with which technique, etc. For example, a typical threshold to stop cleaning is twice the image RMS, since choosing a lower threshold may prevent the cleaning algorithm from converging. All the flux that falls below this threshold will not be cleaned, and cannot be measured by aperture photometry. Hence, while it is possible to measure a flux within an aperture directly from the map, it is not trivial to determine the proper aperture correction that takes care of both the flux that falls out of the chosen aperture and the flux that was not cleaned.

To prevent these issues, the most reliable way to measure the flux of an extended object is to perform a profile fitting directly in the (u, v) plane, without using the reduced imaging at all. In particular, the resulting fluxes do not depend on the CLEAN algorithm, and tapering is not necessary since the model knows its own extents and handles the various measured scales correctly3 . The casa pipeline provides this functionality through the uvmodelfit procedure, which is essentially a crippled version of GALFIT that understands interferometric data. Only one profile can be fitted at a time, and a limited number of models are provided: a point source, elliptical Gaussian profiles, and elliptical disks. More evolved procedure have been published (e.g., uvmultifit, Martí-Vidal et al. 2014), but these were not considered for this preliminary analysis. On can refer to Martí-Vidal et al. (2014) for a comparison of existing alternatives, and their respective capabilities.

For each source detected with the first method, I used casa and uvmodelfit to fit a Gaussian profile to each detection, which is the most physically plausible model available (it should be noted that a Gaussian profile is equivalent to a Sérsic profile of index n = 1/2). I used as starting position the location derived from the peak flux, an angular size of 0.5 ′′ , a total flux of 0.8 mJy, and an axis ratio of 1. Together with the position angle, all these parameters were left free to vary in the fit, and a total of six fitting iterations were performed for each source (the total flux is usually stable after the fourth or fifth iteration). The resulting fluxes are found to be larger than the peak fluxes in 90% of the case, with a median increase of 37% (31, 37 and 47% in GS, UDS and COSMOS respectively) and a flux that is more than doubled for 8 galaxies. For three objects the integrated flux is actually smaller by 10 to 20%, but these differences are comparable to the RMS of the image. This suggests that most our galaxies are substantially resolved in the FIR, even at 0.7 ′′ resolution: the median measured size is 0.3 ′′ (min: 0 ′′ , max: 1.6 ′′ ), which is consistent with the size estimate from the HST images (although there is little correlation on a galaxy to galaxy basis).

The uvmodelfit procedure returns uncertainties on the derived parameters, in particular on the total flux measurement. These are found to be systematically larger than the RMS of the map by a factor of 2 on average, suggesting that they are not severely underestimated, but simulations have to be made to assess the reliability of these uncertainties. This can be done by creating visibility data for mock galaxies of varying shapes, e.g., with the casa simulator simobserve, and using uvmodelfit to recover the input flux. This is still work in progress.

Using these improved flux measurements, the tension with the prediction is reduced. The measured fluxes are still on average a factor of 1.9 lower, although the median factor is now consistent with unity (1.03).

To confirm the accuracy of these measurements, I used our target "0-23751" from the GOODS-South field. This galaxy has already been observed by ALMA within the ALESS program (PI: I. Smail, Cycle 0). It was targeted as one of the brightest sub-mm source in the Extended Chandra Deep Field South (ECDFS), which contains GOODS-South. The quality of the ALESS data for this object ("ALESS-13") is poorer than our observations: the RMS is 0.42 mJy/beam, and the beam is much larger (1.36 ′′ × 1.15 ′′ ). Still, this independent measurement can be used as a consistency check.

In Hodge et al. (2013), the total flux of this source as measured by ALMA is reported as 8.0 ± 0.6mJy, and is consistent with the single-dish LABOCA flux of 8.8 ± 1.2mJy. To measure this total flux, Hodge et al. (2013) used the casa procedure imfit which fits a galaxy profile on the reconstructed clean image. Here, using the (u, v) plane fitting, I measure 7.7 ± 0.4mJy. The tension between these measurements is less than 1σ, and I therefore consider them as compatible.

I list all the measured fluxes for the galaxies in our main sample in Table 7.2, and for the other galaxies within the field of view in Table 7.3. 2015) was substantially colder compared to this prescription, with a temperature of about 31K (lower than that measured at z = 3). Obviously, measuring a dust temperature at z = 4 with Herschel photometry only is daring, as the longest accessible wavelength, 500 µm, is actually at the peak of the SED, and no photometry constrains the Rayleigh-Jeans tail. In this situation, any uncertainty on the measured 500 µm flux translates 145/260 7.2 -Galaxies from our main samples that were detected with a significance higher than 3σ on the ALMA maps. The "name" column contains the ID of each object: the first number is the identifier of the field (0: GOODS-South, 1: UDS, 2: COSMOS), and the second number is the CANDELS ID.

into a larger uncertainty for the predicted 870 µm flux. For this stacked SED, a substantial part of this uncertainty comes from the clustering correction. The fact that the z = 4 best-fit SED is found to be colder than expected suggests that the prescription we adopted in Schreiber et al. (2015) was inadequate, and underestimated the amount of flux boosting caused by clustering. This uncertainty was in fact one of the main motivations for this ALMA survey.

Using the warmer SED (36K), the stacked Herschel photometry yields an L IR that is essentially identical (3% difference), but a predicted 870 µm flux that is a factor of 20% lower. Conversely, if this is really the average temperature of z = 4 galaxies, it means that each of our measured ALMA fluxes correspond to an L IR that is 20% higher than initially predicted.

Using the fluxes derived in the previous section, and the 36K dust SED, I extrapolate the total L IR from the observed 870 µm flux, disregarding any photometry in the Herschel bands for now. Using the prescription of Kennicutt (1998a), I convert this L IR into a star formation rate, neglecting the unobscured contribution from the UV. The stellar masses are taken directly from the catalogs introduced in Schreiber et al. (2015), and were computed by M. Pannella.

7.6.2

The SFR-M * relation I show in Fig. 7.3 the resulting z = 4 Main Sequence, as seen by ALMA. Although this is still work in progress, we can already see at first glance that the galaxies in our sample follow roughly the relation we derived in Schreiber et al. (2015). However, before interpreting this observation any further, a number of concerns should be voiced.

First, we have in this sample some extremely massive galaxies, with M * ∼ 6 × 10 11 M ⊙ , and one (2-20877) that is as massive as 10 12 M ⊙ . Because these galaxies are faint and usually detected only in a handful of NIR broadbands, their redshift is not extremely well constrained, 147/260

Figure 7.3 -The z = 4 Main Sequence, as seen by ALMA. SFRs are derived from the observed 870 µm continuum. Our detections are shown with filled circles, colored according to their respective UV J classification (blue: star-forming, red: quiescent). For non-detections, I only show 3σ upper limits derived from the RMS of the map, scaled up by a factor of 1.6 to account for the typical spatial extent that is measured in the detections. The gray line in the background shows the SFR-M * relation from Schreiber et al. (2015), and the scatter measured at lower redshifts (0.3 dex) is shown with dotted lines. The large error bars in the top-left corner display the typical uncertainty on the stellar mass (horizontal bar) as estimated by comparing our masses to that of the 3DHST catalog for these same objects, and the SFR (vertical bar) assuming a T dust scatter of 4K. and there is generally a secondary peak of the redshift probability distribution around z = 2. If a massive and highly obscured z = 2 galaxy is mistakenly put at z = 4 because of this uncertainty, its stellar mass will reach unreasonable levels, as we observe here (see also Section 7.9). Therefore, there is a chance that some of our targets are actually at lower redshifts. For example, the most problematic case, 2-20877, has a z phot = 4.61. In the 3DHST catalogs, this galaxy is placed at an even higher redshift, with z phot = 5.22. However, the CANDELS redshift compilation instead gives a substantially closer solution with z phot = 2.86, and a more reasonable stellar mass around 2 × 10 11 M ⊙ . Therefore, instead of being more than a factor of two below the z = 4 Main Sequence, it would be on top of the z = 2.8 Main Sequence. The same argument may hold for the other massive galaxies that we find systematically below the Main Sequence.

The only way to unambiguously disentangle the two possibilities is to spectroscopically confirm the redshift. Usually, spectroscopic confirmation of z ∼ 4 galaxies is obtained from the Ly α line (λ rest = 0.1216 µm), which is redshifted into the optical domain, and is therefore "easily" accessible with reasonable integration times. However, being emitted in the rest-frame FUV, the intensity of this line is extremely sensitive to the presence of dust. For this reason, most spectroscopic detections at these redshifts consist of galaxies that are essentially dust-free (and, in virtue of the correlation between stellar mass and attenuation, of relatively low stellar mass). Apart from Ly α , the other bright emission lines usually found in star-forming galaxies are the H α (λ rest = 0.6563 µm), H β (λ rest = 0.4341 µm), [O ii] (λ rest = 0.3727 µm) and [O iii] (λ rest = 0.5007 µm) lines. At z = 4, these lines are shifted into the near-infrared. Observing in this wavelength domain is quite challenging, owing to the many emission lines emitted by our atmosphere (OH lines), but it is now routinely achieved with NIR spectrometers like KMOS (at the VLT) or MOSFIRE (at Keck). So far, these instruments have been used mostly to study galaxies at z = 2 to 3, measuring star formation rates and extinction from the H α and H β lines. At z > 2.5 however, H α is out of the reddest observable window (the K band), and the brightest observable lines are [O ii] and [O iii].

During my PhD, we have proposed a KMOS program using these lines to get the redshifts of massive dusty galaxies at z = 2.8 to 3.9 (PI: R. Leiton). This program was accepted, although with a moderate ranking, and half of our proposed targets have been observed. We received the data in early 2015, and the reduction is still in progress. During the last ESO call, we have also proposed a similar program to target specifically our ALMA detections, and are now waiting for the deliberation of the TAC. If we do obtain spectroscopic confirmation of our targets, not only will this allow us to clean our sample from low redshift contaminants, but it will also reduce significantly the uncertainty on the stellar mass estimates, which is currently of the order of 0.2 dex. However, it is clear that even then, the stellar mass will remain our dominant source of uncertainty (see Buat et al. 2014), since most of the photometry (including the first two Spitzer IRAC bands) probes the rest-frame UV-to-optical which is sensitive to dust extinction, but also because the star formation history of these high redshift galaxies is poorly understood.

The second caveat associated to this z = 4 Main Sequence is the uncertainty on the dust temperature of each individual galaxy. Assuming a scatter of 4K, similar to what is observed at lower redshifts (see Chapter 4), our SFRs are about as uncertain as the stellar masses, i.e., about 0.2 dex. This uncertainty can be greatly improved by using the information from the shorter FIR wavelengths, as given by Herschel. Thanks to the high angular resolution of ALMA, we are now in a better position to properly extract the Herschel fluxes and decompose them into multiple counterparts. This is however quite time consuming, and is therefore still in progress. As a case study, I use such an approach to constrain the FIR SED of three ALMA detections in Section 7.8 and Section 7.9.

Other galaxies in the field of view

Within the field of view of our ALMA observations, I detected a total of 19 source at a significance of > 5σ that were not in our target list, 10 of which have a clear counterpart in the deep HST and/or Spitzer IRAC imaging, and 7 of which can be identified to a galaxy in the CANDELS catalogs. The remaining 9 objects with no detectable counterpart are considered to be likely spurious, and are not considered in the following.

As can be read from Table 7.3, for the 7 objects that were successfully crossmatched to the CANDELS catalogs, the average redshift is z = 2.04, and the average stellar mass is M * = 1.6 × 10 11 M ⊙ . This is consistent with the typically properties of sub-mm galaxies (e.g., Béthermin et al. 2015b), and suggests that these are mostly real detections. However, the measured ALMA flux of AZ4-G1, 12 mJy, is well above what would be expected by extrapolating the Herschel photometry (about 0.3 mJy) and the pixel value of the LABOCA map (-1.5 ± 1 mJy). This galaxy is also at z spec = 0.515, which is relatively low and unexpected for a sub-mm detection. All these hints suggest that, although the ALMA emission coincides very well with the HST image, this source must be spurious. I performed a similar inspection of the other detections, and did not find any other such inconsistency.

This leaves a small sample of 6 ALMA detected galaxies at 1.5 < z < 3.1. At these redshifts, the ALMA measurement is tracing the dust mass, and it can be used to estimate the gas mass of each of these galaxies (see Chapter 6).

Then, there remains 3 detections that have no counterpart in any catalog. The two brightest, AZ4-C5 and AZ4-C6, are detected only in Spitzer IRAC, and are discussed in Section 7.9. The third one, AZ4-C4, was not extracted in the CANDELS catalogs because of its proximity to a bright (H = 14.3) star, and is discussed in the next section.

7.8 A massive z = 3 galaxy hidden behind a bright star AZ4-C4 is a 5.3σ ALMA detection that is located 9.8 ′′ away from the phase center. It has no counterpart in any known catalog because of its extreme proximity with a bright star. Furthermore, it has a clear detection in the radio with a peak flux of 0.157 mJy (Schinnerer et al. 2007), suggesting that it hosts an AGN. In this section, I present the method I used to measure the photometry of this object, the stellar population modeling that was used to estimate both its photometric redshift and stellar properties, and the interpretation of the Herschel and ALMA fluxes to derive its star formation activity. c) have a very comparable photometry, both in terms of flux and shape, and are fitted with young blue stellar populations at z ∼ 1, although the redshift is poorly constrained owing to the lack of a clear break in the SED. Both are clearly detected in the U band, indicating that they must be mostly dust-free galaxies at z < 2.
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Because of the neighboring star, standard blind source extraction techniques like SExtractor tend to fail and do not detect this object. The method I have chosen to solve this issue is to mask the galaxies from the image, fit a PSF at the position of the star, and subtract it from the image. Owing to the large dynamic range between the flux of the star and that of the galaxy (about 10 magnitudes), a proper characterization of the PSF is crucial here, since a small uncertainty on this PSF will translate in a large error for the fainter galaxy. Also, the PSF of most instruments is varying across the whole COSMOS field, and it is important to use a local PSF that has at least the same orientation to properly subtract the spikes.

I extract the photometry on the images observed in the following broadbands: CFHT-U, Subaru-B, HST F606W, F814W, F125W, F140W and F160W, Vista-K s and Spitzer IRAC channels 1 and 2. The first step is to build the PSF. For each image, I build a sample of 30 to 50 bright stars (about 17 to 14 magnitudes), and extract a large cutout (10 to 30 ′′ , depending on the image) for each star. I then discard those that are either saturated, are close to another bright star, or have a different orientation than the star I want to subtract. Finally, I normalize each 150/260 cutout by the value of the central pixel (i.e., the peak of the corresponding star), and combine them using median stacking to produce a high signal-to-noise PSF.

The second step is to subtract the PSF from the image. To do so, I first build a mask to filter out the pixels that contain flux from other sources, in particular from AZ4-C4, so that they do not influence the fit. I also mask the core of the star, so that the fit operates mostly on the more extended features, which are the ones I want to subtract with most care. Using this mask and the PSF that was built earlier, I use GALFIT to find the best-fit flux and position of the star, and obtain a residual map where the contribution of the star was subtracted. To set the background level to zero, I identify empty regions on the map where the residuals of the star are low, and that are far away enough from AZ4-C4. I compute the median pixel value of these regions, identify this value as the background of the image, and subtract it from each pixel. The uncertainty of this background value is taken into account in the error budget later on.

By inspecting the residual images, which are reproduced in Fig. 7.4, I can see that there are in fact three galaxies behind this star. One is AZ4-C4, another is a compact galaxy that is even closer to the star, and the third is a very diffuse galaxy that is found substantially further. AZ4-C4 appears to have two components in the H-band image, one of them being more compact and brighter than the other. In the light of the radio detection, this could be another signpost of AGN activity. It is however almost undetected in any image shortward of the J band, indicating that it must be at relatively high redshifts. As for the other two galaxies, although they differ in morphology, their colors appear to be similar. They are both visible clearly in the U-band image, indicating that they are most likely low-redshift and dust-free young galaxies.

The last step is now to extract the photometry. For each of these galaxies, I draw circular apertures of varying diameters, which are chosen to encompass most of the flux of each object, and compute the sum of the pixel values that fall inside each aperture. Using the PSFs derived above, I correct this flux measurement for the flux outside of the aperture assuming that the sources are point-like (which they are not, in fact, and therefore the true flux could be slightly higher). The uncertainty on the flux of each object is estimated from the RMS in empty regions of the image, assuming that pixel values are not correlated (which is also wrong in most images, and the actual uncertainty should be slightly higher). To account for the errors in the PSF subtraction and the flux calibration, the signal-to-noise ratio of each measurement is limited to 10. The resulting photometry for AZ4-C4 is shown in Fig. 7.4.

With Tao Wang, we then use FAST (Kriek et al. 2009) to fit this data with Bruzual & Charlot (2003) templates that were built with an exponentially declining star formation history, the Salpeter (1955) IMF, allowing the age to vary between 0.1 and 10 Gyr, the attenuation to vary between A V = 0 to 6, fixing the metallicity to the solar value, and scanning redshifts between z = 0 and 8. With these assumptions, AZ4-C4 is found to be at z = 3.05 +0.04 -0.45 , with a tail extending toward z = 2.5. At the best-fit redshift, it is attributed a large stellar mass of 7 × 10 11 M ⊙ , but a relatively low SFR = 22 M ⊙ /yr, i.e., a factor of ∼ 40 below the Main Sequence. The best-fit stellar population is therefore relatively old, although the code also needs to put an extinction of A V = 0.7 to reproduce the observed data. Owing to the lack of any strong break in their photometry, the redshift of the other two galaxies should be poorly constrained. The compact one is found at z = 1.23, while the extended one is found at z = 0.83, both with fairly low stellar masses of the order of ∼ 10 9 M ⊙ . These are not particularly interesting, and will not be discussed any further.

I now come back to AZ4-C4 to see what can be learned from the ALMA detection. Assuming a redshift of z = 3 and the typical FIR SED of that redshift (T dust = 34K, see Chapter 4), the measured ALMA flux translates into an SFR = (441 ± 100) M ⊙ /yr, i.e., about a factor of two below the Main Sequence. This SED, which is reproduced in Fig. 7.5, seems to match the observed PACS photometry, although the signal-to-noise ratio of these measurements is quite low. On the other hand, it predicts a flux of about 9 mJy at the tip of the SED, which corresponds to SPIRE 350 µm. This value is above the 3σ detection limit of 7.2 mJy from Elbaz et al. (2011), but actually this limit only applies to galaxies that are "clean", i.e., free from 151/260 Figure 7.5 -Left: MIR and FIR photometry of AZ4-C4. Detections are shown with empty red circles, while downward gray arrows list the 3σ upper limits, in the absence of a detection. Note that these upper limits in the SPIRE bands are only valid for "clean" sources, and are probably too low since AZ4-C4 lies in a crowded environment. The typical FIR SED of z = 3 galaxies is adjusted to the observed ALMA flux and reproduced with a solid orange line; the stellar continuum estimated from the UV-NIR photometry (Fig. 7.4) is shown with a solid blue line; and the sum of the two is shown with a solid black line. Right: Herschel imaging of AZ4-C4. Here the contribution of the star is negligible, and I assume that all the flux at this position can be attributed to AZ4-C4. The green square shows a 50 ′′ ×50 ′′ region around AZ4-C4. There is a tentative detection in the PACS image, and possibly also in the SPIRE 250 µm map, but the other images are too confused to reliably extract the flux of this galaxy. contamination from their neighbors. In this region of the SPIRE map, it is clear that there are a number of such neighbors, and decomposing the observed flux proves difficult. To see if the chosen SED is indeed consistent with the available SPIRE data, I tried to subtract the extrapolated fluxes from the observed maps, and looked at the residuals, which do not reveal any hint of an over-subtraction. Hence this SED can be considered as compatible with the Herschel data.

However, the Spitzer MIPS detection appears in clear excess compared to this SED. Combined with the radio detection, this is probably another sign that this galaxy hosts a strong AGN. In fact, now that we know the redshift, we can also see what we can learn from the radio emission. It turns out that, if one was to assume that all the radio flux comes from star formation, and therefore that it obeys the radio-FIR correlation (as given in Pannella et al. 2015), the measured radio flux would correspond to an infrared luminosity that is ten times larger than that derived from ALMA. This is true even if we perturb the redshift within its allowed confidence interval, and therefore demonstrates the presence of an AGN. If I subtract the 24 µm flux predicted by the best-fit FIR SED, the residual flux is around 100 µJy. Using the relation of Lutz et al. (2004) that links the rest-frame 6 µm luminosity to the X-ray luminosity for AGNs, this flux would correspond to an intrinsic L X ∼ 10 44 cgs which is above (but close to) the detection limit of the Chandra 2Ms survey (6 × 10 43 cgs at z = 3). The fact that the galaxy is not detected in the X-ray image suggests either that the AGN is obscured (as is the case for most submm host galaxies, Alexander et al. 2005), or that the excess at 24 µm originates from another source (e.g., another close-by galaxy that I could not deblend).

In Fig. 7.6 I show a zoom-in on AZ4-C4 to better grasp the light distribution. The fact that both the radio and the ALMA emission originate from only one of the two "clumps" seen in the HST H-band image is intriguing. One possibility is that this is a merger of two galaxies, one being gas-rich and star-forming (clump A), and the other one being old and quiescent (clump 152/260 Figure 7.6 -Zoom in on AZ4-C4, after subtraction of the nearby star. The background false-color image is the HST H-band image (rest-frame 0.4 µm), the yellow contours show the radio emission as measured by the VLA, and the green contours show the locus of the ALMA flux. Neither the radio nor the submm are resolved (the elongated shape of the ALMA profile is just caused by the ellipticity of the beam). This is the same figure as the inset in Fig. 7.4, with the contrast modified so as to better grasp the light distribution from the HST imaging. The two "clumps" that compose this galaxy are dubbed "clump A" and "clump B", and are indicated with arrows. Although "clump B" appears much brighter, it is actually just more concentrated. The same amount of light is emitted by "clump A", but on a more extended scale B). Both clumps appear to have the same colors in the HST images, which would be consistent with this scenario if the star-forming galaxy is also strongly reddened by dust. Another (maybe more exotic) possibility is that the radio emission originates from of a jet, emitted from an AGN that resides in clump B. This jet would turn out to be oriented toward clump A, where it compresses the gas and triggers a starburst (e.g., Elbaz et al. 2009). This hypothesis could be tested by resolving the radio emission, since the current beam of the radio observations in COSMOS is too large to allow any morphological analysis. For reference, at z = 3, the proper distance between the two clumps is 3.8 kpc.

Discovery of two new high-redshift dusty galaxies

In this section, I report the discovery of two unexpected 20 σ ALMA sources close to some of our targets in the COSMOS field (AZ4-C5 and AZ4-C6). Surprisingly, these two galaxies have no counterpart in any catalog, and in fact there is little to no detectable emission the deep optical-to-NIR broadband images, except in the first two Spitzer IRAC channels (3.6 and 4.5 µm) where both galaxies are clearly detected (see Fig. 7.7). Together with the other coinvestigators, we dubbed these objects the first "dark ALMA galaxies". They are interesting in many aspects, in particular for the fact that they could be the most distant massive and dusty star-forming galaxies ever detected. However, this claim can only stand if their redshift is spectroscopically determined. For this reason, I have proposed to use the "spectral scan" capabilities of ALMA to locate the [C ii] emission line, which is the brightest line in the FIR. This proposal has been accepted and highly ranked, and will be observed sometime during the coming year. In the following, I review the interesting properties of these two objects, and try to constrain the redshift with the little amount of information currently available.

Optical to NIR photometry

The UV to NIR fluxes of both objects are obtained in a similar fashion as for AZ4-C4 (see previous section), using aperture photometry. Here also, the IRAC images were first deconfused by fitting the bright neighbors using GALFIT, subtracting their best-fit profiles, and performing the aperture photometry on the residual map. For the other bands, the contamination from these neighbors is negligible, and the photometry is performed on the observed maps directly.

Unfortunately, none of these galaxies is covered in the HST-ACS images (except for the shallow F814W imaging that covers the whole COSMOS field), and the optical photometry is therefore purely ground based. On top of this, one of the two galaxies, AZ4-C6, is actually 153/260 AZ4-C5 AZ4-C6 The first three images are smoothed with a Gaussian kernel to reveal the extended and faint structures that would otherwise be undetectable. On each image, I show a green contour corresponding to the 1 mJy level of the ALMA emission. located close to the edge of the HST-WFC3 chip, where the noise is larger than usual. Therefore, to obtain the best possible constraints, I also perform the photometry on the ground-based UltraVISTA Y, J and H bands. Finally, to help deriving the photometric redshift, I add to the list the IRAC channels 3 and 4. While these images are quite shallow in COSMOS and do not provide very stringent constraints, every bit of information is useful when deriving the redshift of a galaxy that is only clearly detected in two broad bands.

In then end, the two galaxies (AZ4-C5 and AZ4-C6, respectively) are detected at 4.6 and 8.1σ in the IRAC 3.6 µm channel, and 9.9 and 10.9σ in the 4.5 µm channel. AZ4-C5 is also 154/260 CHAPTER 7. REACHING THE DISTANT UNIVERSE WITH ALMA weakly detected at 3.2σ in the 8 µm channel. As for the shorter wavelength, AZ4-C5 turns out to be non-detected in all bands, while AZ4-C6 has in fact a 5.8σ detection in the K s band and tentative 3σ detections in the HST J and H bands. The reason why it was not included in the CANDELS and K s -band based catalogs of Muzzin et al. (2013b) and Ilbert et al. (2013) is probably because it appears to be substantially extended, and therefore has a surface brightness low enough to fall below the detection threshold.

Near AZ4-C6 is another galaxy that is faint in the HST imaging, but also seen in IRAC and ALMA, albeit with a lower signal-to-noise ratio for the latter. This is our main target "2-38011", which was attributed a z phot = 4.23 and a flux at 870 µm that is half that of AZ4-C6 (with a substantial spatial extension of 0.78 ′′ ). A third source is tentatively detected in the ALMA image, to the left of 2-38011, but it has no counterpart in any other band. 

MIR to FIR photometry

While there is a clear signal in the SPIRE bands at the position of both galaxies, the number of other possible counterparts for this emission is large, and therefore the FIR fluxes cannot be accurately associated to our two dropouts. This is especially true for AZ4-C6, since our primary target (2-38011) is detected on this image: we therefore have a z = 4 galaxy very close to another galaxy of unknown redshift, making it impossible to properly decompose the observed flux. The simplest thing to do would be to extract the SPIRE fluxes assuming that they are produced by a single source, and use the resulting values as upper limits. However, these constraints are not very stringent, in particular for AZ4-C6 where S 500 < 40 mJy. For the present work however, we do not need to bother with the SPIRE measurements, as the fluxes in both MIPS and PACS (essentially non-detections) already bring significant pieces of information and can be measured straightforwardly.

The situation of AZ4-C5 is a bit more complex, owing to the presence of a nearby z = 0.46 bright star-forming galaxy. This galaxy is so bright that one can see the secondary lobes of the MIPS and PACS PSFs. If these are not properly reproduced in the model PSF, part of the flux in the sidelobes will be attributed to the surrounding galaxies. Therefore, I have built a custom 155/260 PSF from the Herschel observations of Vesta4 , resampling it to the pixel size of our maps, and rotating it to match the actual orientation of the satellite when this image was obtained.

A first estimate of their physical properties

Figure 7.9 -Derived physical quantities of both dropouts (top: AZ4-C5, bottom: AZ4-C6). Left: Redshift probability distribution inferred from the reduced χ 2 of the best-fit SED, either using only the U to IRAC photometry (blue dashed line) or all the photometry including the FIR (solid green line). Middle: Best-fit attenuation (A V , purple solid line) and light-weighted stellar age (green solid line) as a function of the redshift. Right: Best-fit stellar mass (M * , blue solid line) and total infrared luminosity (L IR , orange solid line) as a function of redshift. I also show the expected L IR based on the measured stellar mass, assuming that the galaxy lies exactly on the Main Sequence and that most of the SFR is obscured (orange dashed line).

Back in April, when we proposed the ALMA spectral scan, I did a first quick estimation of the redshift and stellar mass of these two objects. I extracted the IRAC fluxes using PSFfitting, and assumed non-detection in the other bands at the 5σ level. I derived a first redshift estimation by looking for an observed SED in the CANDELS catalogs that, properly redshifted, would match this photometry. This told me that the redshift could be either around 1.5 < z < 2.5, or at z > 4 with a peak around z = 7. At the time, we claimed that the z = 2 solution was ruled out from the fact that the galaxies are not detected by Spitzer MIPS or Herschel. Indeed, a galaxy at this redshift with a 870 µm flux of 3 mJy would be very bright in the mid-to far-IR, substantially above the detection limit in all Spitzer and Herschel bands. In this section, I review these estimations and claims with a more careful and quantitative data analysis.

Using FAST, I fitted the updated UV to NIR photometry, similarly to AZ4-C4, and taking into account the non-detections. Since I allow extreme attenuations (0 < A V < 6), the code can actually find a suitable fit at all z > 1.5. The resulting P(z) and best-fit parameters are shown in Fig. 7.9.

For AZ4-C5, all the solutions below z = 4 require A V > 4 and an age larger than 1 Gyr. This is a very peculiar and unlikely combination. At z > 4, the needed attenuation is still fairly high, and never drops below A V = 3, while the age falls below 1 Gyr only beyond z > 5. With such a large amount of extinction, the stellar mass is in fact very large: the best fit M * already reaches 10 11 M ⊙ at z = 2.5, and 10 12 M ⊙ at z = 6. It is therefore possible that this galaxy hosts a buried AGN that makes the IRAC colors redder (Donley et al. 2012) and forces FAST into using unrealistically large attenuations. If this is true, then obtaining the redshift from this photometry is simply hopeless. One argument against this hypothesis is that, at z ≥ 5, the ratio of the UV to IR luminosity is extremely low (see later in Section 7.9.5), and would be even lower if the contribution of a putative AGN is removed from the optical SED. Another possibility is that the IRAC photometry is inaccurate, although I tend not to favor this explanation since the measured color is perfectly consistent with the nondetection in the K s band, and the tentative detection at 8 µm. Lastly, it could also be that the 4.5 µm flux is contaminated by strong emission lines, as shown, e.g., in Labbé et al. (2013). H α +[N ii], the brightest line, would imply 5.1 < z < 6.6, but then the 3.6 µm band should also be contaminated by [O iii]. To reach the red IRAC color we observe ([3.5] -[4.5] = 1), one would have to consider [O iii]+H β at 6.97 < z < 9. However this interpretation would create a tension with the measured 8 µm flux, which is fairly high. Furthermore, since the dropouts are strong submm emitters, one can reasonably expect that they are substantially obscured, and therefore that emission lines should be strongly attenuated. Similarly, one can also interpret the non-detection in the K s band as the signature of the Balmer break, in which case the resulting constraints on the redshift would be 5.5 < z < 9. But here again, the Balmer break is probably not a significant spectral feature in dust-rich galaxies. In fine, several hints point toward z > 5, but the precise redshift remains elusive.

Although AZ4-C6 has a more complete photometry, the absence of any break in the measurements also leads to a poorly constrained redshift probability distribution. However, here the fit parameters are more reasonable. The attenuation stays constant at A V = 2 all the way from z = 2 to 9, and rises rapidly at z < 2 to reach A V = 4 at z = 1. On the other hand, the best-fit age is found around 1 Gyr at z < 3.5, and then rapidly drops to 100 Myr at z > 4.5. Except at z < 2, none of these values are particularly intriguing. The stellar mass also behaves reasonably, being equal to 10 10 M ⊙ at z = 1.5 and 10 11 M ⊙ at z = 7.5. In the end, the available photometry does not give very strong constraints on the redshift, although here also z > 4.5 would be preferred.

It turns out that the most stringent constraints on the redshift are provided by the combination of the strong detection in ALMA together with the weak (or non-) detections in the Spitzer MIPS and Herschel PACS images. To derive these constraints, I assume that the dropouts do not have atypical dust properties, and therefore that the effective temperature of their dust SED is close to the average value at a given redshift (Chapter 4). This can be wrong and influence the best-fit redshift in both directions, since an SED that is well fitted by a given T dust at a given redshift can be equally well described by a colder T dust at a lower redshift, or a warmer T dust at higher redshift5 . Since these two dropouts are among our brightest ALMA detections, they are more likely to be starbursting systems, which are known to show warmer T dust than the average (Elbaz et al. 2011;Magnelli et al. 2014;Béthermin et al. 2015b). Therefore the redshift constraints I derive here could be biased toward lower redshifts, but I prefer to remain conservative and assume standard T dust values. Then, at each redshift in the grid created by FAST, I normalize the dust SED to the observed ALMA flux, and combine it with the best-fit stellar template from FAST to build a full SED from the UV to the FIR. The contribution of the stellar component to the MIR and FIR fluxes is usually negligible, except at high redshifts where it starts to be the dominant source of the observed 24 µm. I finally measure the χ 2 dust by comparing the model SED against the observed MIPS and PACS fluxes (or non-detections), and add it to the χ 2 stellar originally produced by FAST using the UV to NIR photometry. Finally, I compute the redshift probability distribution with exp(-χ 2 dust -χ 2 stellar ). The result is overplotted in Fig. 7.9. In both cases, the constraints from the dust emission exclude all the solutions at z < 3.5 and tend to favor z > 5. This is also illustrated in Fig. 7.10 where I show the resulting fit at three different redshifts: z = 2 where the fit is definitely poor, AZ4-C5 AZ4-C6 z = 4 where the fit becomes good, and z = 7.5 to show that it remains acceptable even at extremely high redshifts.

Therefore, with this more detailed and precise analysis, I confirm that the two dropouts are most likely to be massive galaxies at z > 4, with a preference for z > 5. The precise redshift remains to be determined though, reinforcing the need for the spectroscopic scan I describe in the next section.

Measuring the redshift with ALMA

Since both objects are very faint in the observed optical and NIR, and also because they probably host large amounts of dust, getting a spectroscopic redshift from the usual optical emission lines (Ly α , H α , [O ii], etc.) would require unreasonable integration times. Our best chance to get a redshift is to target instead one of the many luminous lines in the far-IR.

The most convenient way of determining FIR redshifts is the so-called "CO-ladder". These lines are produced by rotational de-excitation of the CO molecule, e.g., CO(5-4) for the transition from the rotational quantum level J = 5 to J = 4, and the flux of each line relative to the CO(1-0) line is determined by the Spectral Line Energy Distribution (SLED). Depending on a number of factors, in particular the strength of the current star formation and also the geometry of the molecular clouds, this SLED will vary greatly from one galaxy to another (see, e.g., the review of Carilli & Walter 2013). In fact, high-J CO lines luminosities are well correlated with the total infrared luminosity, and are therefore good tracers of star formation. Low-J CO lines, on the other hand, and in particular the CO(1-0) line, are good tracers of the molecular gas mass (e.g., Daddi et al. 2010a). The greatest advantage of these lines is that they are relatively 158/260 close to one another, and it is therefore easy to have at least two such lines covered within a given submm band (see Table 7.4), thereby unambiguously establishing the redshift.

There are tools available to prepare such scans with ALMA6 that can automatically prepare the spectral setup to cover a given redshift range and guess the line fluxes to estimate the necessary integration time. Alternatively, one can estimate the lines fluxes using published scaling relations (e.g., Daddi et al. 2014), knowing, e.g., the L IR , and prepare the spectral setup manually in the ALMA Observing Tool (AOT).

For our dropouts, the optimal strategy for a CO spectral scan is to observe in band 3, and target the CO(5-4) and CO(6-5) lines, covering 3.2 < z < 5.9. However, with M. Pannella, we estimated the line flux to be of the order of 1 mJy, with a relatively large uncertainty owing to the unknown CO SLED. Reaching a 5σ significance for a line of that flux would require about 6 hours of ALMA time (including calibration, which is the most time consuming part of a spectral scan), which we judged was too expensive and unlikely to be observed. In fact, so far, CO spectral scans of z > 4 galaxies have only been obtained for lensed galaxies (e.g., from the SPT survey, Weiß et al. 2013).

Instead, I decided to go for another strategy and target the [C ii]-158 µm line in both band 7 and band 6. This line is the brightest in the FIR, and is well correlated with the total IR luminosity, with a scatter of a factor of two (Stacey et al. 1991;Helou et al. 2001). However, there is a known saturation of this correlation (Graciá-Carpio et al. 2011), and starburst galaxies tend to show a [C ii] deficit compared to Main Sequence galaxies of similar L IR (Díaz-Santos et al. 2013), and this has to be taken into account. Although only a single line would be observed, the redshift determination would still be unambiguous because the chosen sensitivity will not permit the detection of any other line in these bands. In fact, within band 7 and 6, the only other observable bright lines would be the high-J CO ladder at z < 2.5, which is a domain I already ruled out with the FIR photometry.

After discussion with the other co-investigators (D. Elbaz, M. Pannella, T. Wang and R. Leiton), and based on the first crude photometric redshift estimation, we decided to scan the redshift range 5.3 < z < 6.8. To do so, I configured 8 spectral setups, divided into two contiguous spectral scans: one at the end of band 7 (covering 5.3 < z < 5.9), and one at the beginning of band 6 (covering 5.9 < z < 6.8). This is illustrated in Fig. 7.11. I thought of adding an additional spectral scan at the other end of the band 7 to cover the range 4.3 < z < 4.7 (the redshift window between z = 4.7 and 5.3 in hardly accessible with [C ii] because of a substantial drop of atmospheric transmission within the band 7, as shown in Fig. 7.11). However that would have requested too much observing time (about 6 hours). Also, at the time of writing the proposal, the redshift probability distribution was more peaked toward higher redshifts than what I derived in the previous section. If the proposal gets accepted, I may reconsider the chosen spectral setups and maybe move the band 6 scan back into the band 7 to cover z ∼ 4.5.

To estimate the necessary integration time, I based the estimation of the flux on the recent observations of z = 5-6 Lyman Break Galaxies from Capak et al. (2015), in particular on their brightest galaxy, HZ10. It is found at z = 5.657 with a continuum flux at 870 µm of 1.3 mJy, i.e., about a third of the flux of our dropouts. Its [C ii] line flux is 1.57 Jy km/s with a line width of 127 km/s, corresponding to a peak flux of about 7 mJy. I then assume that both HZ10 and our dropouts are in the regime where the [C ii] line flux is saturated (which appears to be the case at least for HZ10, from Fig. 4 in Capak et al. 2015). Therefore, although our dropouts have three times larger L IR , I conservatively assume that they will have roughly the same [C ii] flux as HZ10, with some error margin to take into account the dispersion of the [C ii]-L IR correlation. I therefore settled for a sensitivity of 1 mJy per spectral element with a resolution of 32.6 km/s (or 31.3 MHz, just enough to get about 3 spectral element over the FWHM of the line). The total integration time needed to achieve this sensitivity in both scans is 3 hours, including overheads. The proposal, which has been accepted and ranked "A" (i.e., within the top 5% of all submitted proposals), can be found in Appendix C.

Potential scientific outcome

For these proposed ALMA observations, I requested a sharper angular resolution than what we got in our Cycle 2 data. Indeed, a by-product of the two spectral scans is that we will reach extreme signal-to-noise ratios on the continuum (S /N ∼ 70), which will enable precise size measurements should the beam size be small enough. Note however that this is a dangerous game, since the [C ii] profile is known to often be substantially more extended than the galaxy itself. To prevent complications in the [C ii] flux measurements, we should therefore avoid observing these galaxies with a too high angular resolution. We thus decided to settle on an angular resolution of 0.5 ′′ , i.e., a factor 1.5 better than the resolution achieved for the continuum measurement, where both galaxies were found to be unresolved (or barely resolved). By measuring the size of the star-forming region, we will derive the SFR surface density. Knowing the redshift, a natural and quick follow up with either ALMA of PdBI will deliver the CO luminosity, which will in turn give us access to the molecular gas mass. Having access to both this quantity and the SFR surface density will provide a unique measurement of the star formation efficiency in a very high redshift galaxy.

Lastly, the faint optical to NIR fluxes of both objects translate into a strong lower limit on the InfraRed eXcess, IRX = log 10 (L IR /L UV ). AZ4-C6 is found to have IRX > 3 at all z < 5, and IRX > 2 at z > 5, while AZ4-C5 has IRX > 5 at z < 4.5 down to a minimum of IRX = 3 at z = 9. These values are much higher than what was recently reported for the z = 5 LBGs of Capak et al. (2015), who found at most IRX = 0.5 and argued for a strong change of the dust content at these redshifts. If our dropouts are indeed confirmed to be at z > 5, they will 160/260 complement this latter sample and show that there exists dusty galaxies with ISM properties similar to z = 2-4 star-forming galaxies, even up to z ∼ 6. This is expected especially among the most massive systems, which are known at z < 4 to be the most dusty (e.g., Pannella et al. 2009a;Buat et al. 2012;Heinis et al. 2014), and less likely to be selected in LBG samples (Wang et al. in prep.) 

Conclusions and perspectives

In this thesis, I presented a variety of results related to the study of galaxy evolution. Using the best estimates available today of stellar masses and unbiased FIR-based star formation rates, I revisit the correlation between these two quantities, the Main Sequence of star-forming galaxies, and extend it from z = 2 to z = 3.5 (Schreiber et al. 2015). Then, using preliminary data from our ALMA survey, I extend further the study of this relation up to z ∼ 4, in a regime that could not be probed by the Herschel satellite. At all z < 3 and at least for M * > 3×10 9 M ⊙ , I measured the dispersion of SFRs around this relation and found it to be relatively small, reinforcing the idea that the majority of the star formation in the Universe is happening through a steady, secular process that has yet to be clearly identified.

Motivated by the high-quality IR SEDs that I obtained in this first work, I designed a new library of model SEDs to provide a fine description of the dust continuum average temperature and PAH mass fraction, and calibrated the evolution of both quantities using the observed Herschel stacked SEDs. The resulting library will be published together with the following analysis in a paper to be submitted. I found that the average dust temperature in these Main Sequence galaxies is going down with cosmic time, confirming already published trends. I also report for the first time an evolution of the PAH mass fraction that exceeds the expected trend from the varying metallicity. Both observations suggest that the ISM properties of Main Sequence galaxies were actually evolving through time, possibly because distant galaxies were forming their stars in more compact regions, with higher gas fractions.

I then used this new library to interpret the SED of z = 1 galaxies of varying stellar mass, and measure their dust content. Using this measurement to estimate the gas content (via the metallicity), I showed that Main Sequence galaxies at this redshift and M * > 5 × 10 10 M ⊙ are evolving with significantly lower star formation efficiencies compared to galaxies of lower stellar mass. This decrease of SFE actually goes together with a reduced slope of the Main Sequence, and becomes more pronounced toward z = 0. This suggests that massive starforming galaxies are in a state of global decline starting from z = 1.5, experiencing a slow downfall of their star formation activity. Here as well, the precise mechanism that drives this evolution is elusive, although several candidates are known and discussed. This work will be submitted to A&A in August.

Finally, at higher redshifts (z > 5), I reported the discovery of two massive and dusty starforming galaxies in the early Universe that are seen by ALMA but missed by Hubble because of their extreme distance and dust content. The mere existence of these objects, if confirmed to be at the right redshift, would add more variety to the known z = 5-6 Universe and show that dust is still a key ingredient to properly characterize star-forming galaxies beyond the Lyman Break population. I will wait for the result of the spectroscopic confirmation I proposed before publishing this analysis.

All of these results beg for further investigation. In my opinion, there is still much progress to be made on the observational side to provide the last bricks necessary to reconstruct the evolution of galaxies from their birth to their death.
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Star formation rates based on the dust emission are scarce, and while Herschel is now resting in peace somewhere in the solar system, we have yet to extract all the information present in the fantastic images it produced. I believe some of this information can be recovered today by optimizing our interpretation of the images (see, e.g., Section A.2 where I describe a method to go further than traditional flux catalogs), but it is also clear to me that a larger fraction will be unlocked by follow-up MIR-to-radio observations with better spatial resolution and depth, either from ALMA, the JVLA, or JWST-MIRI. I illustrate this point in Fig. 8.1, where I show a simulated patch of the sky as observed by current and future facilities. These simulated images are built from a catalog produced by gencat, a code that I developped and describe in Chapter 5, and that I will present in a paper to be submitted in the coming months. In this figure, look in particular at the two rightmost images that show the comparison between what we have today with Herschel and what ALMA will eventually provide after sufficient time investment1 . While the observed wavelength is obviously different, ALMA can provide accurate "anchors" in the Raleigh-Jeans tail of the FIR SED. This is a priceless piece of information: not only does it allow direct measurement of dust (and gas) masses which, as shown in Chapter 6, are key quantities to study the way galaxies consume their gas content, but it can also be used together with MIR data (from either Spitzer or, soon, JWST-MIRI) to better interpret the Herschel images by pin-pointing which galaxies are the most likely counterpart of a given Herschel blob.

Star formation rates are only half of the story though. As written in Chapter 7, at high redshifts (z > 3) the dominant source of uncertainty is probably the stellar mass, owing to the poor coverage of the rest-frame near-IR which is redshifted into the Spitzer IRAC bands. While the most massive galaxies are indeed seen on these images, low mass galaxies are too faint to be detected. This is also illustrated in Fig. 8.1 (middle panel), where I compare the Spitzer IRAC image against a typical JWST-NIRCAM image (the depth of which, a 5σ limit of 26.5 mag in 1 ′′ aperture, is estimated from the JWST website 2 assuming an integration time similar to that of Hubble in GOODS-South). The gain in precision, both in terms of depths and confusion, is substantial. I show here the NIRCAM-F444W image, but JWST is in fact equipped with a large array of filters that will provide good wavelength sampling of the NIR up to very high redshifts. Furthermore, the spectroscopic capabilities of the NIRSPEC instrument will allow for the first time the detection of H α at z > 2.5. Not only will this eliminate the uncertainty linked to the photometric redshift and provide independent measures of the SFR, this will also provide direct quantification of the strength and equivalent width of these emission lines, which can heavily contaminate the broadband photometry at high redshifts (typically at z > 5), hence bias the stellar mass estimates.

Both ALMA and JWST can therefore provide (directly or indirectly) better measurements of the SFR and M * of galaxies at higher redshift than what Herschel and Hubble allowed me to do in this thesis, but also at intermediate redshift (say, z = 1) and lower stellar masses (M * < 5 × 10 9 ). This will allow us to explore further and more thoroughly the properties of the Main Sequence. At low redshifts, one important question that I could not address in a definite way in Chapter 3 is the connection between feedback and the scatter of the Main Sequence. Indeed, numerical simulations predict that supernova-driven feedback should have a large impact on low-mass galaxies (owing to their shallow gravitational potential) and create a substantial scatter in their SFR. However, this signature can only be observed in galaxies of very low stellar masses, which are difficult to observed today. JWST (and to some extent, ALMA) will change that.

Yet, it is true, measurements of this SFR-M * correlation are abundant in the literature, and while it proved to be a useful tool to study the global history of star formation in the Figure 8.1 -Simulated images created from a catalog produced by gencat (Chapter 5). On all images, the colored circles show z > 2 galaxies, smaller circles being for galaxies less massive than 3 × 10 10 M ⊙ . The color is chosen randomly for display purposes and has no specific meaning. Left: Hubble WFC3-F160W (H band, 1.6 µm) at the depth of GOODS-South. Image created with SkyMaker. Top, middle: Spitzer IRAC ch2 (4.5 µm) at the depth of GOODS-South. Image created with SkyMaker. Top, right: Herschel PACS 160 µm at the depth of GOODS-South. Bottom, middle: James Webb NIRCAM-F444W (4.4 µm) with a similar exposure time as the Hubble image (depth estimate according to the JWST website), an image quality that will be obtained soon after the launch of the satellite (if only in limited regions of the sky). Image created with SkyMaker. Bottom, right: ALMA 1.2 mm at a depth three times better than that achieved (or proposed) by current surveys. The image was created with SkyMaker and smeared by the observed ALMA beam from our ALMA survey in UDS (Chapter 7). I then added the noise manually by convolving a random Gaussian field with the corresponding dirty beam.

Universe, deeper answers are now to be found elsewhere, by studying more than just these two parameters that are the SFR and the stellar mass. For example, a natural follow-up of the work I presented in Chapter 6 is to study the variation of gas content and star formation efficiency not only along but also within the Main Sequence. Why is a galaxy found above the MS? We know that strong starbursts do have different star formation efficiencies (e.g., Daddi et al. 2010b;Genzel et al. 2010;Béthermin et al. 2015a), but what about weak starbursts? Are they just the interpolation between the Main Sequence and the strong starburst regime? Or is there really a bimodal process that only triggers strong starbursts? Is the answer varying with stellar mass, so that low-mass starburst are fundamentally different from their high-mass equivalent? And what about galaxies that are actually slightly below the Main Sequence? We have provided some hints in Chapter 6 that the SFE is the varying factor for massive galaxies, but what about less massive galaxies?

Nevertheless, to address these questions, it remains important to have a solid reference point, hence the need to properly calibrate the normalization and scatter of the Main Sequence, as well as using robust SFR and M * measurements.

Lastly, a key question that cannot be addressed directly by observing the Main Sequence is to figure out how galaxies leave this sequence and die. The detection of massive quiescent galaxies has been reported as far back as z = 4 (e.g., Straatman et al. 2014), and the process 165/260 though which these galaxies quench is not clearly identified. Many suspects are known, but the killer is still on the run.

One way to address this issue is to study the quiescent galaxies and look for clues of their recent past, e.g., by measuring their metallicity, morphology and gas content, and try to link these observations with the known profile of the suspects. For example, in our z = 4 ALMA survey, we targeted all the massive galaxies we could find, regardless of whether they are starforming or quiescent. A good fraction ended up being non-detected. While it is likely that some of these are just not at the right redshift, there is also a good chance that we did observe some genuinely quiescent z = 4 objects. The NIR spectroscopy we will obtain with KMOS will help us disentangle between these two possibilities (see Chapter 2). From there, there are several paths that one could follow. One could use ALMA to provide upper limits on the dust (and gas) content to see if these galaxies were quenched either by blowing out the gas or by preventing its fragmentation. Alternatively, one could use JWST-NIRCAM to obtain detailed morphologies that even Hubble-WFC3 could not provide since these galaxies are often extremely compact. The interesting properties of z = 4 quiescent galaxies is that they must have quenched soon before they are observed, simply because of the age of the Universe (1.5 Gyr) and the time it takes to build a massive galaxy (1 Gyr to reach M * = 2 × 10 11 M ⊙ with an exponentially rising star formation history of τ = 500 Myr). Studying these objects can bring additional information that was lost in present-day elliptical, after several billion years of merging and subsequent relaxation. user to write a loop to iterate over its elements and apply the operation. This leads to very concise code that easy to write and read. Unfortunately, IDL suffers from a number of problems. I will start with the political and ethical problems.
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• It is a proprietary, mostly6 closed-source program. This means that IDL is a black box and that people using it have no choice but to rely on the IDL developers for writing accurate code. While there is an extensive documentation, the algorithms used by the procedures are not always described. This is hardly acceptable for scientific code.

• IDL, like C++, combines several languages into one: a functional language and an object-oriented language. It also contains a huge support library providing many features (having used IDL for more than two years, I could not list them all). For this reason, and because it is proprietary, maintaining this language and adding new features costs a lot of money to its owner, Exelis. This money, in turn, is provided by science labs all around the world, who pay a yearly fee for a bunch of IDL licenses. This is totally fine in itself, but the fact is that most IDL users I have seen only make use of a small sub-set of IDL, one that has barely evolved in twenty years. In this context, the price that is paid is not justified.

• On top of that, the licensing model is that of floating licenses: only a fixed, maximum number of simultaneously running IDL instance is allowed in the whole lab. With the now common budget restrictions in research, labs typically buy fewer licenses than there are users. Even worse, it is often needed to run multiple instances of IDL on a single computer, e.g., when working on two projects simultaneously. This will consume two licenses, even though there is a single user. This leads to silly situations, typically when approaching specific deadlines (e.g., deadlines for requesting observing time on large telescopes) where everyone needs to use IDL at the same time, but there is not enough license available. Even worse, we have seen cases in our lab of users being unable to run IDL on their new shiny computer because of incompatibility, not with IDL itself, but with the licensing software. Lastly, it should be noted that this licensing model relies on having network connection with a license server. This means that one cannot use IDL while traveling unless a proper SSH tunneling is in place.

These issues can be solved by switching to one of the free and open-source alternatives, like GDL. The downside is that these implementations are lacking behind IDL in terms of features, as some useful functions are still to be implemented. Worse, some functions cannot legally be implemented because they would violate IDL's copyright.

But that's only half of the story. Indeed, IDL and GDL also suffer from technical issues. I will list below the most important ones.

• Designed in the 1970s, IDL was born in an era where the available RAM was scarce, and that great care had to be taken to consume as few bytes of memory as possible. For this reason, the default integer type in IDL is a short, i.e., it occupies only two bytes in memory, while most languages (including some that are older than IDL itself) encode their integers on four bytes by default. The biggest issue with this choice is that the largest number one can store in a short is 32768. Being the default integer type, this creates quite a few surprises to the unexperienced user, and will fool even the expert from time to time.

• IDL is an interpreted language, meaning that the code you write is continuously read and interpreted by the IDL executable. While this is not an issue if you make good use of vectorization (the art of writing IDL code), performances are severely degraded once you write loops explicitly, because the content of the loop has to be interpreted and then executed on each iteration. And this is sometimes unavoidable.

• Like many interpreted languages, IDL is dynamically typed. This means that the type of a variable can change from one line to another, and that a variable containing a string can be assigned a number. While sometimes convenient, this comes at a cost: performance.

Most IDL programs I have seen do not use this feature, yet they have to pay for it anyway.

• But worse than dynamic typing, and this is my main concern, variables in IDL are not declared before they are used. This means that if you do a typo in the name of one of your variables, chances are that the code will still run. Indeed, IDL cannot know that this was not intended, and will think that you want to create or modify a new variable. It will then do its best to carry on, and the result will be unpredictable. This, together with the fact that variables are almost not scoped (i.e., a variable created inside a for loop is still valid outside of the loop) makes it very easy to write confusing and buggy code. The most frightening part is that, in a good fraction of the cases, the output will be meaningful, and you can go on with your calculation never realizing that something went wrong. And publish that.

Avoiding the aforementioned issues is possible, but it requires coding with a fair amount of rigorousness and self discipline. My limited experience with astronomers taught me that these are not particularly common character traits in the field, probably because we are all self taught programmers, but also because most of the code we write never goes out of our own computer and therefore does not get the chance to be reviewed an corrected by someone else. My conclusion is that, when it comes to checking the validity of a code, as much work as possible has to be done by the language itself (or its compiler), e.g., by being designed so that some errors cannot even be made, and that most of the remaining ones are identified before running the program and reported to the programmer so that he/she can fix them.

Switching to more modern interpreted languages like python or Julia7 would solve a few of these issues, in particular the first one. But the other items on this list are unfortunately inherent to most interpreted languages8 . To avoid these traps, the only solution today is to use statically typed, compiled languages, like C++. Now, there are already some libraries in C++ that are addressing the topic of vector data manipulation. One can cite Eigen9 or the more recent blaze-lib10 . These are powerful libraries that have inspired phy ++ in some way, but their issue is that they are more oriented toward algebra, meaning that they have vectors and matrices, but no data type for arrays of higher dimensions (i.e., tensors11 ).

Therefore, seeing that a gap had to be filled, phy ++ was created.

A.1.3 Why C++?

There are many different compiled languages that offer similar or better performances than C++. In particular, the most famous ones are Fortran and C. C is impractical to use because it has not been developed with user-friendliness in mind, and no mechanism exist to improve that. This is a system language, and it does that perfectly, but not much more. Fortran is known as the fastest of all, and it is particularly well suited for numerical analysis. While few languages as harder to read than Fortran 77, things have become much better since since Fortran 90 (which is not used as often as it should be). However, Fortran is relatively bad at doing anything else than numerical analysis, which is annoying the moment you want to do something that is a bit off the tracks. C++ on the other hand, with all its disadvantages, is probably the best fit thanks to its almost unlimited capacity for adaptation. And it also happens to be the language I am most familiar with. Since the beginning, C++ has always been good at performances, first because it is a language that compiles directly into assembly, but also thanks to its philosophy: "you only pay for what you ask for". But its main disadvantage is its complexity: it contains almost the whole C language, plus all the layers that were added on top of it, one year after another, starting from classes, exceptions, then templates. The end result is that it is a challenging task to master all the aspects of this language.

But the good news is: you do not have to master all of C++, and for your sanity you probably should not. Indeed, there is a number of sub-languages made out of a subset C++ that are completely self-sufficient, i.e. you can use them to write any program. In other words, there are multiple, very different ways of writing the same program in C++. Typically, modern programs only use a small fraction of the whole language, e.g., leaving aside most of what was inherited from C (arrays, raw pointers, explicit memory management, etc.). A special class of such sub-languages are those that are tailored specifically to address a given task, as opposed to being open to any purpose. These are called domain-specific languages (DSL), and only require learning a few of C++'s rules and concepts, plus the rules introduced by the sub-language itself. The phy ++ library is an example of such domain-specific languages, its domain being vector data manipulation.

In short, although C++ is a very complex language, it is only necessary to learn a fraction of it to be able to use phy ++ correctly. Of course, the more one knows about C++, the more one will be able to take advantage of all the features of phy ++ in an optimal way.

A.1.4 Documentation

In this thesis, I do not include the library's full documentation. I figured this would be pointless for one major reason: the library, although fairly mature, is still being conceived. New functions and features are added on a regular basis. Therefore, the documentation is still very much unstable, and if I was to include it here, it would become obsolete several months after the publication of this manuscript. Because it currently consists of more than a hundred pages, I realized this would be a waste of time and resources.

If you are interested, you can of course read the current, updated and full12 documentation online. It is available either in a web-oriented format13 or as a compiled PDF document14 . I give in Fig. A.1 a screenshot and description of the web interface.

A.2 Application: pixfit and gfit

Using the phy ++ library, I have written most of the important codes involved in this thesis, for example the gencat tool that I introduce in Chapter 5. In this section I describe two other codes that I have written at the end of my PhD.

Most of the galaxies that we detected with ALMA (see Chapter 7) should be relatively bright in the Herschel SPIRE images. However, because of the poor angular resolution, interpreting these images is challenging. To obtain more precise flux estimations, I developed two programs, pixfit and gfit. These are still in the process of being tested, and I did not have time to reach a stable solution at the time of writing this manuscript. Still, I hope to be able to publish the codes in the near future. In the following, I give a brief description of the philosophy behind this novel approach, and postpone a more detailed assessment of the performances and robustness to a future work. github.io/phypp/doc/category_support_01_intro.html). Three main areas are highlighted on this screenshot: (a) the category menu, where the functions of the library are grouped by themes and sub-themes to ease the discovery of new functions; (b) the alphabetical menu, which lists all the functions of the library by alphabetical order to allow quick access to the documentation of a known function; and (c) the central panel where the documentation is displayed, giving the signature of the function (i.e., what arguments it expects), a short descriptive text, and a code sample to illustrate the usage of the function.

Conventional tools used to extract FIR fluxes (like FASTPHOT, Béthermin et al. 2010a) perform point-source fitting at various pre-determined positions of the image simultaneously using linear algebra, assuming that the noise of the image is Gaussian. If there is no strong overlap between two extracted objects (or, alternatively, if the positions of the emitting sources are known perfectly), the resulting fluxes and error estimates have been shown to be reliable (see, e.g., Wang et al. in prep.). However, extracting fluxes in the highly confused SPIRE maps remains a challenge, since most objects are blended. In Wang et al. (in prep.), the situation is improved by bringing additional prior information on the expected fluxes of the faintest galaxies, but this comes at a price: the output flux catalog becomes model dependent. Even then, the number of SPIRE 500 µm sources extracted in a typical Herschel deep field does not exceed a hundred, compared to the thousands of MIPS 24 µm detections that we know are 187/260 contributing, to some extent, to the observed 500 µm emission.

The approach that I chose with these new tools is to think of the flux catalog as only an intermediate product in the chain of data analysis: what we have in input is an observed map, and what we want in output is a catalog of SFR, L IR , or M dust . In fact, the flux catalog is only a translation of the observed map into a format that is easier to manage, but the issue is that this translation, as I argue above, is not unique. In most cases, we do not know what fraction of a given 500 µm flux should be attributed to this or that galaxy, and building a flux catalog requires making assumptions (e.g., "the brightest galaxy at 24 µm will be the brightest at 500 µm"). Each open circle, whether green or red, is a prior position used to extract the fluxes. Green circles are galaxies that have an individual flux measurement, while red circles show galaxies that where grouped with their neighbors for being too closely packed. A yellow contour indicates the extent of the corresponding flux group, and the area that is used to perform aperture photometry.
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However, if we give up on the idea of building a conventional flux catalog, where each galaxy has either its own flux or no flux at all, one can get rid of these assumptions. For example, the idea behind pixfit and gfit is the following: for galaxies that are too close to one another on a given image (e.g., the SPIRE 500 µm map), I give up measuring their individual fluxes, and combine them into a single "flux group", for which I can measure the total flux accurately (e.g., with aperture photometry after subtracting the neighboring sources). In this case, "too close" can be defined arbitrarily, for example by choosing a given fraction of the width of the PSF, or a fraction of pixels on the rasterized image15 . The measured flux is then stored into a separate list, and each galaxy that belongs to the group is linked to this measurement. This first task of extracting the fluxes and making the flux groups is performed by pixfit on each FIR image independently. In particular, this means that two galaxies can be grouped in one image, where the angular resolution is poor, but not in another, where the resolution is sharper. This is made in a fully automatic way, by just specifying in input a list of prior positions, and defining the distance threshold below which two sources must be grouped. An example is show in Fig

. A.2.
The output of this procedure is very similar to a conventional flux catalog, since each galaxy can have its individual flux extracted from each image, provided that it was not grouped with any other galaxy. If this is not the case, then for each band there is an additional column that indicates the ID of the flux group that contains the flux of this galaxy, and a second catalog is built to store these flux groups. It contains four columns: the group ID, a reference to the image this group was extracted from, the extracted flux and the associated uncertainty.

The next step is to properly interpret this data. Standard SED fitting codes assume that one has access to individual flux measurements in all bands, and these codes do not know how to deal with the flux groups I introduced above. Some particular codes can be given upper limits in case of a non-detection, but treating these in a statistically correct way is not trivial, and requires non-linear fitting algorithms. Indeed, while the likelihood associated to a measurement is a Gaussian, that associated to an upper limit is an error function. Therefore, the contribution of an upper limit to the χ 2 is:

χ 2 = - 1 2 log 1 2 1 + erf limit -model error √ 2 , (A.1)
where limit is the estimated upper limit, model is the attempt at modeling the corresponding flux, and error is the uncertainty on the upper limit 16 . If a galaxy is grouped in an image, the flux of the corresponding group can be used as an upper limit. As written at the beginning of this section, not only is this suboptimal, but this approach is also incorrect since each galaxy will be fitted independently. Indeed, while the upper limit will ensure that no individual model goes above the flux present on the map, there is no constrain on the sum of all the model fluxes: if the measured flux on the map is 20 mJy, and we use this value as an upper limit for two galaxies that lie in this region, then each galaxy can reach 20 mJy individually, for a combined flux of 40 mJy that will clearly overshoot what is observed.

That is where the gfit tool comes in. This program understands the catalogs produced by pixfit, and can perform SED fitting of multiple galaxies simultaneously. In particular, if two galaxies have some of their flux grouped, the program will model these fluxes individually, sum them up, and compare the result to the measured flux of the group in the χ 2 , like any regular measurement. The fit can then be made using linear algebra, and is therefore very fast. This main feature of performing simultaneous SED fitting is a double-edged sword though. The major downside is that if I have 100 templates in my SED library (e.g., corresponding to different values of T dust ), finding the optimal χ 2 requires testing each and every possible combination of templates for all the galaxies in the group, and each additional galaxy increases the computation time by a factor of 100. Obviously, this means that the problem can become computationally prohibitive. To avoid this, I first sample the parameter space of the library with a coarse grid, say of only 10 templates. I locate the combination of SEDs that produces the best χ 2 , and refine the grid around this region with 10 more templates. With this approach, the accuracy on the best-fit parameters is unchanged, but the complexity drops from 100 N to 2 × 10 N . Without a super computer, this can still be too much if the prior density is too large. In practice though, I never had to fit more than 6 galaxies simultaneously in a given group, although I have only applied this method to a handful of cases. This problem can also be tackled with more sophisticated algorithms for global minimization, but I have not investigated this path any further.

At present, both tools are written and are feature complete. I have tested them on some of our ALMA detections, trying to better constrain their SEDs. The results seemed reasonable, but these tools really have to be tested on simulated images before any output can be trusted. I will do this later, when time permits.

Below is a excerpt from the code of pixfit, to illustrate how the phy ++ library looks like in a "real world" situation.

// [...] // First build the masks of each group. // We want to make sure that the same pixels are not counted twice in different // groups, so we have to exclude the regions where two (or more) groups overlap. for (uint_t i : range(group_cat.ra)) { if (group_cat.fit[i]) { // This is a 'group_fit' // We don't need to care about it any more. continue; } // Locate the sources that are part of this group vec1u id = where(old_cat.group_aper_id == group_cat.id[i]); phypp_check(!id.empty(), "aper group ", group_cat.id[i], " is empty. ing major merger, however such objects are relatively rare (Armus et al. 1987;Sanders & Mirabel 1996). They have been historically classified as Luminous and Ultra Luminous InfraRed Galaxies, LIRGs and ULIRGs, based on their bolometric infrared luminosity over the wavelength range 8-1000 µm, by L IR > 10 11 L ⊙ and > 10 12 L ⊙ , respectively. However, they make up for only 2 % of the integral of the local IR luminosity function, the remaining fraction being mainly produced by more typical isolated galaxies (Sanders & Mirabel 1996). More recently, studies at higher redshift showed that the LIRGs were the dominant population at z = 1 (Chary & Elbaz 2001;Le Floc'h et al. 2005), replaced by ULIRGs at z = 2 (Magnelli et al. 2013). This was first interpreted as an increasing contribution of gas-rich galaxy mergers to the global star formation activity of the Universe, in qualitative agreement with the predicted and observed increase of the major merger rate (e.g. Patton et al. 1997;Le Fèvre et al. 2000;Conselice et al. 2003).

The discovery of the correlation between star formation rate (SFR) and stellar mass (M * ), also called the "main sequence" of star-forming galaxies (Noeske et al. 2007), at z ≃ 0 (Brinchmann et al. 2004), z ≃ 1 (Noeske et al. 2007;Elbaz et al. 2007), z ≃ 2 (Daddi et al. 2007;Pannella et al. 2009;Rodighiero et al. 2011;Whitaker et al. 2012) z = 3-4 (Daddi et al. 2009;Magdis et al. 2010;Heinis et al. 2013;Pannella et al. 2014) and even up to z = 7 (e.g. Stark et al. 2009;Bouwens et al. 2012;Stark et al. 2013;González et al. 2014;Salmon et al. 2014;Steinhardt et al. 2014) suggested instead a radically new paradigm. The tightness of this correlation is indeed not consistent with frequent random bursts induced by processes like major mergers of gas-rich galaxies, and favors more stable star formation histories (Noeske et al. 2007).

Furthermore, systematic studies of the dust properties of the "average galaxy" at different redshifts show that LIRGs at z = 1 and ULIRGs at z = 2 bear close resemblance to normal starforming galaxies at z = 0. In particular, in spite of having starformation rates (SFRs) higher by orders of magnitude, they appear to share similar star-forming region sizes (Rujopakarn et al. 2011), polycyclic aromatic hydrocarbon (PAH) emission lines equivalent widths (Pope et al. 2008;Fadda et al. 2010;Elbaz et al. 2011;Nordon et al. 2012), [C ii] to far infrared (FIR) luminosity (L FIR ) ratios (Díaz-Santos et al. 2013), and universal FIR spectral energy distributions (SEDs) (Elbaz et al. 2011). Only outliers above the SFR-M * correlation (usually called "starbursts", Elbaz et al. 2011) show signs of different dust properties: more compact geometry (Rujopakarn et al. 2011), excess of IR8 ≡ L IR /L 8 µm (Elbaz et al. 2011), [C ii] deficit (Díaz-Santos et al. 2013), increased effective dust temperature (Elbaz et al. 2011;Magnelli et al. 2014) and PAH deficit (Nordon et al. 2012;Murata et al. 2014), indicating that these starburst galaxies are the true analogs of local LIRGs and ULIRGs. In this paradigm, the properties of galaxies are no longer most closely related to their rest-frame bolometric luminosities, but rather to their excess SFR compared to that of the main sequence.

This could mean that starburst galaxies are actually triggered by major mergers, but that the precise mechanism that fuels the remaining vast majority of "normal" galaxies is not yet understood. Measurements of galactic gas reservoirs yield gas fractions evolving from about 10% in the local Universe (Leroy et al. 2008) up to 60% at z ≃ 3 (Tacconi et al. 2010;Daddi et al. 2010;Geach et al. 2011;Magdis et al. 2012;Saintonge et al. 2013;Santini et al. 2014;Genzel et al. 2014, Béthermin et al. 2014, submitted). Compared to the observed SFR, this implies gas-consumption timescales that are much shorter than the typical duty cycle of most galaxies. It is thus necessary to re-plenish the gas reservoirs of these galaxies in some way. Large volume numerical simulations (Dekel et al. 2009a) have showed that streams of cold gas from the intergalactic medium can fulfill this role, allowing galaxies to keep forming stars at such high but steady rates. Since the amount of gas accreted through these "cold flows" is directly linked to the matter density of the intergalactic medium, this also provides a qualitative explanation for the gradual decline of the SFR from z = 3 to the present day (e.g. Davé et al. 2011).

This whole picture relies on the existence of the main sequence. However, actual observations of the SFR-M * correlation at z > 2 rely mostly on ultraviolet-derived star formation rates, which need to be corrected by large factors in order to account for dust extinction (Calzetti et al. 1994;Madau et al. 1998;Meurer et al. 1999;Steidel et al. 1999). Such corrections, performed using the UV continuum slope β and assuming an extinction law, are uncertain and still debated. Although dust-corrected SFRs are able to match more robust estimators on average in the local Universe (Calzetti et al. 1994;Meurer et al. 1999) and beyond (e.g. Pannella et al. 2009;Overzier et al. 2011;Rodighiero et al. 2014), it has been shown for example that such corrections cannot recover the full star formation rate of the most active objects (Goldader et al. 2002;Buat et al. 2005;Elbaz et al. 2007;Rodighiero et al. 2011;Wuyts et al. 2011;Penner et al. 2012;Oteo et al. 2013;Rodighiero et al. 2014). More recently, several studies have pointed toward an evolution of the calibration between the UV slope and UV attenuation as a function of redshift, possibly due to changes in the ISM properties (e.g. Pannella et al. 2014;Castellano et al. 2014), or even as a function of environment (Koyama et al. 2013). It is therefore possible that using UV-based SFR estimates modifies the normalization of the main sequence, and/or its dispersion. In particular, it could be that the tight scatter of the main sequence observed at high redshift (e.g. Bouwens et al. 2012;Salmon et al. 2014) is not real but induced by the use of such SFRs, thereby questioning the very existence of a main sequence at these epochs. Indeed, a small scatter is a key ingredient without which the main sequence looses its meaning.

Infrared telescopes allow us to measure the bolometric infrared luminosity of a galaxy (L IR ), a robust star formation tracer (Kennicutt 1998). Unfortunately, they typically provide observations of substantially poorer quality (both in angular resolution and typical depth) compared to optical surveys. The launch of the Spitzer space telescope (Werner et al. 2004) was a huge step forward, as it allowed us to detect for the first time moderately luminous objects at high redshifts (z < 3) in the mid-infrared (MIR) thanks to the MIPS instrument (Rieke et al. 2004). It was soon followed by the Herschel space telescope (Pilbratt et al. 2010), which provided better constraints on the spectrum of the dust emission by observing in the far-infrared (FIR) with the PACS (Poglitsch et al. 2010) and SPIRE instruments (Griffin et al. 2010).

Nevertheless only the most luminous star-forming objects can be detected at high redshifts, yielding strongly SFR biased samples (Elbaz et al. 2011). In particular, most galaxies reliably detected with these instruments at z ≥ 3 are very luminous starbursts, making it difficult to study the properties of "normal" galaxies at these epochs. So far only a handful of studies have probed in a relatively complete manner the Universe at z 3 with IR facilities (e.g. Heinis et al. 2014;Pannella et al. 2014) and most of what we know about normal galaxies at z > 3 is currently based on UV light alone (Daddi et al. 2009;Stark et al. 2009;Bouwens et al. 2012;Stark et al. 2013;González et al. 2014;Salmon et al. 2014).

Article number, page 2 of 30 C. Schreiber et al.: The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day Here we take advantage of the deepest data ever taken with Herschel in the GOODS (PI: D. Elbaz) and CANDELS (PI: M. Dickinson) fields, to infer stricter constraints on the existence and relevance of the main sequence in the young Universe up to z = 4. To do so, we first construct a mass-selected sample with known photometric redshifts and stellar masses, then isolate star-forming galaxies within it. We bin this sample in redshift and stellar mass and stack the Herschel images. This allows us to infer their average L IR , and thus their SFRs. We then present a new technique we call "scatter stacking" to measure the dispersion around the average stacked SFR, taking into account non-detected galaxies. Finally, we cross-match our sample with Herschel catalogs to study individually detected galaxies.

In the following, we assume a ΛCDM cosmology with H 0 = 70 km s -1 Mpc -1 , Ω M = 0.3, Ω Λ = 0.7 and a Salpeter (1955) initial mass function (IMF), to derive both star formation rates and stellar masses. All magnitudes are quoted in the AB system, such that M AB = 23.9 -2.5 log 10 (S ν [µJy]).

Sample and observations

We use the ultra-deep H-band catalogs provided by the CANDELS-HST team (Grogin et al. 2011;Koekemoer et al. 2011) in three of the CANDELS fields, namely GOODS-South (GS Guo et al. 2013), UDS (Galametz et al. 2013), and COS-MOS (Nayyeri et al. in prep.). With the GOODS-North (GN) CANDELS catalog not being finalized at the time of writing, we fall back to a ground-based K s -band catalog. To extend our sample to rarer and brighter objects, we also take advantage of the much wider area provided by the K s -band imaging in the COSMOS field acquired as part of the UltraVISTA program (UVISTA). In the following, we will refer to this field as "COSMOS UltraVISTA", while the deeper but smaller region observed by CANDELS will be called "COSMOS CANDELS".

Using either the H or the K s as selection band will introduce potentially different selection effects. In practice, these two bands are sufficiently close in wavelengths that one does not expect major differences to arise: if anything, the K s -band catalogs are potentially more likely to be mass-complete, since this band will probe the rest-frame optical up to higher redshifts. However such catalogs are ground based, and lack both angular resolution and depth when compared to the HST H-band data. It is thus necessary to carefully estimate the mass completeness level of each catalog, and only consider mass-complete regimes in all the following analysis.

All these fields were selected for having among the deepest Herschel observations, which are at the heart of the present study, along with high quality multi-wavelength photometry in the UV to NIR. The respective depths of each catalog are listed in Table 1. We next present the details of the photometry and source extraction of each field.

GOODS-North

GOODS-North is one of the fields targeted by the CANDELS-HST program, and the last to be observed. Consequently, the data reduction was delayed compared to the other fields and there was no available catalog when we started this work. We thus use the ground-based K s -band catalog presented in Pannella et al. (2014), which is constructed from the deep CFHT WIRCAM K sband observations of Wang et al. (2010). This catalog contains 20 photometric bands from the NUV to IRAC 8 µm and was built using SExtractor (Bertin & Arnouts 1996) in dual image mode, with the K s -band image as the detection image. Fluxes are measured within a 2 ′′ aperture on all images, and the effect of varying point spread function (PSF) and / or seeing is accounted for using PSF-matching corrections. Per-object aperture corrections to total are provided by the ratio of the FLUX_AUTO as given by SExtractor and the aperture K s -band flux. This results in a 0.8 ′′ angular resolution catalog of 79 003 sources and a 5σ limiting magnitude of K s = 24.5.

The K s -band image extends over 0.25 deg 2 , but only the central area is covered by Spitzer and Herschel. We therefore only keep the sources that fall inside the coverage of those two instruments, i.e. 15 284 objects in 168 arcmin 2 . We also remove stars identified either from the SExtractor flag CLASS_STAR for bright enough objects (K s < 20), or using the BzK color-color diagram (Daddi et al. 2004). Our final sample consists of 14 828 galaxies, 12 317 of which are brighter than the 5σ limiting magnitude, with 3 775 spectroscopic redshifts.

The Herschel images in both PACS and SPIRE were obtained as part of the GOODS-Herschel program (Elbaz et al. 2011). The source catalog of Herschel and Spitzer MIPS 24 µm are taken from the public GOODS-Herschel DR1. Herschel PACS and SPIRE 250 µm flux densities are extracted using PSF fitting at the position of MIPS priors, themselves extracted from IRAC priors. SPIRE 350 µm and 500 µm flux densities are obtained by building a reduced prior list out of the 250 µm detections. This procedure, described in more detail in Elbaz et al. (2011), yields 2 681 MIPS and 1 039 Herschel detections (> 3σ in any PACS band or > 5σ in SPIRE, following Elbaz et al. 2011) that we could cross-match to the K s -band catalog using their IRAC positions.

GOODS-South, UDS & COSMOS CANDELS

In GOODS-South, UDS and COSMOS CANDELS we use the official CANDELS catalogs presented, respectively, in Guo et al. (2013) (version 121114), Galametz et al. (2013) (version 120720) and Nayyeri et al. (in prep.) (version 130701). They are built using SExtractor in dual image mode, using the HST H-band image as detection image to extract the photometry at the other HST bands. The ground-based and Spitzer photometry is obtained with TFIT (Laidler et al. 2007). The HST photometry was measured using the FLUX_ISO from SExtractor and corrected to total magnitudes using either the FLUX_BEST or FLUX_AUTO measured in the H band, while the ground-based and Spitzer photometry is already "total" by construction. These catalogs gather 16 photometric bands in GOODS-South, 19 in UDS and 27 in COSMOS, ranging from the U band to IRAC 8 µm, for a total of 34 930 (respectively 35 932 and 38 601) sources, 1 767 (respectively 575 and 1 175) of which have a spectroscopic redshift. The H-band exposure in the fields is quite heterogeneous, the 5σ limiting magnitude ranging from 27.4 to 29.7 in GOODS-South, 27.1 to 27.6 in UDS, and 27.4 to 27.8 in COSMOS, but it always goes much deeper than the available ground-based photometry. Such extreme depth can also become a problem, especially when dealing with sources so faint that they are significantly detected in the HST images only. The SED of these objects is so poorly constrained that we cannot robustly identify them as galaxies, or compute accurate photometric redshifts. To solve this issue, one would like to only keep sources that have a sufficient wavelength coverage, e.g. imposing a significant detection in a at least ten UV to NIR bands, but this would introduce complex selection effects. Here we decide to only keep sources that have an H-band magnitude brighter than 26. This ensures that the median number of UV to NIR bands for (a) This is the sky coverage of our sample, and may be smaller than the nominal area of the detection image.

each source (along with the 16th and 84th percentiles) is 11 +3 -2 , 16 +3

-4 and 21 +5 -5 , respectively, as compared to 9 +4 -4 , 13 +5 -5 and 18 +7 -7

when using the whole catalogs.

As for GOODS-North, we remove stars using a combination of morphology and BzK classification, and end up with 18 364 (respectively 21 552 and 24 396) galaxies with H < 26 in 184 arcmin 2 (respectively 202 arcmin 2 and 208 arcmin 2 ).

In both UDS and COSMOS, the Herschel PACS and SPIRE images were taken as part of the CANDELS-Herschel program, and are slightly shallower than the ones in the two GOODS fields. The MIPS 24 µm images however are clearly shallower, since they reach a noise level of approximately 40 µJy (1σ), as compared to the 20 µJy in GOODS. In COSMOS however, the MIPS map contains a "deep" region (Sanders et al. 2007) that covers roughly half of the COSMOS CANDELS area with a depth of about 30 µJy.

In those two fields, sources are extracted with the same procedure as in GOODS-North (Inami et al. in prep). These catalogs provide, respectively, 2 461 and 2 585 MIPS sources as well as 730 and 1 239 Herschel detections within the HST coverage. Since the IRAC priors used in the source extraction come directly from the CANDELS catalog, no cross-matching has to be performed.

The Herschel images in GOODS-South come from three separate programs. PACS images are the result of the combined observation of both GOODS-Herschel and PEP (Lutz et al. 2011), while SPIRE images were obtained as part of the Her-MES program (Oliver et al. 2012). PACS fluxes are taken from the public PEP DR1 catalog (Magnelli et al. 2013), and were extracted using the same procedure as in GOODS-North. For SPIRE fluxes, we downloaded the individual level-2 data products covering the full ECDFS from the Herschel ESA archive1 and reduced them following the same procedure as the other sets of SPIRE data used in GOODS and CANDELS-Herschel. This catalog provides 1 875 MIPS and 1 058 Herschel detections within the HST coverage, that were cross matched to the CANDELS catalog using their IRAC positions.

COSMOS UltraVISTA

Only a small region of the COSMOS field has been observed within the CANDELS program. For the remaining area, we have to rely on ground-based photometry. To this end, we consider two different K s -band catalogs, both based on the UltraVISTA DR1 (McCracken et al. 2012).

The first catalog, presented in Muzzin et al. (2013b), is built using SExtractor in dual image mode, with the K s -band image as detection image. The photometry in the other bands is extracted using PSF-matched images degraded to a common resolution of ∼ 1.1 ′′ and an aperture of 2.1 ′′ , except for the Spitzer bands and GALEX. Here, an alternative cleaning method is used, where nearby sources are first subtracted using the PSFconvolved K s -band profiles (u * band for GALEX), then the photometry of the central source is measured inside an aperture of 3 ′′ . In both cases, aperture fluxes are corrected to total using the ratio of FLUX_AUTO and aperture K s -band flux. In the end, the catalog contains 30 photometric bands ranging from GALEX FUV to IRAC 8 µm (we did not use the 24 µm photometry), for a total of 262 615 objects and a 5σ limiting magnitude of K s = 23.4. As for the CANDELS fields, stars are excluded using a combination of morphological and BzK classification, resulting in a final number of 249 823 galaxies within 1.6 deg 2 , 168 509 of which are brighter than the 5σ limiting magnitude, with 5 532 having spectroscopic redshifts.

The second catalog, presented in Ilbert et al. (2013), is very similar in that, apart from missing GALEX and Subaru g + , it uses the same raw images and was also built with SExtractor. The difference lies mostly in the extraction of IRAC fluxes. Here, and for IRAC only, SExtractor is used in dual image mode, with the Subaru i-band image as the detection image. Since the IRAC photometry was not released along with the rest of the photometry, we could not directly check the consistency of the two catalogs, nor use this photometry to derive accurate galaxy properties. Nevertheless, the photometric catalog comes with a set of photometric redshifts and stellar masses that we can use as a consistency check. These were built using a much more extensive but private set of spectroscopic redshifts, and are thus expected to be of higher quality. A direct comparison of the two photometric redshift estimations shows a constant relative scatter of 4% below z = 2. At higher redshifts, the scatter increases to 10% due to the ambiguity between the Balmer and Lyman breaks. This ambiguity arises due to the poor wavelength coverage caused by the shallow depths of these surveys, but it takes place in a redshift regime where our results are mostly based on the deeper, and therefore more robust, CANDELS data. We also checked that re-doing our analysis with Ilbert et al.'s catalog yielded very similar results in the mass-complete regimes.

Finally, while the Spitzer MIPS imaging is the same than that in COSMOS CANDELS, the Herschel PACS images in this wide field were taken as part of the PEP program, at substantially shallower depth (Lutz et al. 2011). The Spitzer MIPS and Herschel PACS photometry are taken from the public PEP DR1 Article number, page 4 of 30 C. Schreiber et al.: The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day catalog2 , itself based on the MIPS catalog of Le Floc'h et al. (2009), yielding 37 544 MIPS and 9 387 PACS detections successfully cross-matched to the first K s band catalog.

Photometric redshifts and stellar masses

Photometric redshifts (photo-z) and stellar masses are derived using the procedure described in Pannella et al. (2014). Briefly, photo-zs are computed using EAZY3 (Brammer et al. 2008) in its standard setup. Global photometric zero points are adjusted iteratively by comparing the photo-zs to the available spectroscopic redshifts (spec-z), and minimizing the difference between the two. We emphasize that, although part of these adjustments are due to photometric calibration issues, they can also originate from defects in the adopted SED template library. To estimate the quality of the computed photo-zs, we request that the odds computed by EAZY, which is the estimated probability that the true redshift lies within ∆z = 0.2 × (1 + z phot ) (Benítez 2000), be larger than 0.8. A more stringent set of criteria is adopted in COSMOS CANDELS, due to the lower quality of the photometric catalog. In order to prevent contamination of our sample from issues in the photometry, we prefer to be more conservative and only keep odds > 0.98 and impose that the χ 2 of the fit be less than 100 to remove catastrophic fits. The median ∆z ≡ |z phot -z spec |/(1 + z spec ) is respectively 3.0%, 3.2%, 1.8%, 2.0% and 0.8% in GOODS-North, GOODS-South, UDS CANDELS, COSMOS CANDELS and COSMOS UltraVISTA. We stress however that the representativeness of this accuracy depends also on the spectroscopic sample. In COSMOS Ultra-VISTA, for example, we only have spec-zs for the brightest objects, hence the ones that have the best photometry. Fainter and more uncertain sources thus do not contribute to the accuracy measurement, which is why the measured value is so low. Lastly, although we use these spec-zs to calibrate our photo-zs, we do not use them afterwards in this study. The achieved precision of our photo-zs is high enough for our purposes, and the selection functions of all spectroscopic surveys we gather here are very different, if not unknown. In order not to introduce any incontrollable systematic, we therefore decide to consistently use photo-zs for all our sample. Stellar masses are derived using FAST4 (Kriek et al. 2009), adopting Salpeter (1955) IMF5 , the Bruzual & Charlot (2003) stellar population synthesis model and assuming that all galaxies follow delayed exponentially declining6 star formation histories (SFHs), parametrized by SFR(t) ∝ (t/τ 2 ) exp(-t/τ) with 0.01 < τ < 10 Gyr. Dust extinction is accounted for assuming the Calzetti et al. (2000) law, with a grid of A V ranging from 0 to 4. Metallicity is kept fixed and equal to Z ⊙ . We assess the quality of the stellar mass estimate with the reduced χ 2 of the fit, only keeping galaxies for which χ 2 < 10.

Rest-frame luminosities and star formation rates

Star formation rates are typically computed by measuring the light of young OB stars, which emit the bulk of their light in the UV. However this UV light is most of the time largely absorbed by the interstellar dust, and re-emitted in the IR as thermal radiation. In order to obtain the total SFR of a galaxy, it is therefore necessary to combine the light from both the UV and the IR.

Rest-frame luminosities in the FUV (1500 Å), U, V and J bands are computed with EAZY by convolving the best-fit SED model from the stellar mass fit with the filter response curves. The FUV luminosity is then converted into SFR uncorrected for dust attenuation using the formula from Daddi et al. (2004), i.e. SFR UV = 2.17 × 10 -10 L UV [L ⊙ ] .

(1) The infrared luminosity L IR is computed following the procedure of Elbaz et al. (2011). We fit the Herschel flux densities with CE01 templates, and compute L IR from the best-fit template. In this procedure, photometric points below 30 µm rest-frame are not used in the fit since this is a domain that is potentially dominated by active galactic nuclei (AGN) torus emission, and not by star formation (e.g. Mullaney et al. 2011). We come back to this issue in section 2.6. This IR luminosity is, in turn, converted into dust-reprocessed SFR using the formula from Kennicutt (1998

) SFR IR = 1.72 × 10 -10 L IR [L ⊙ ] .
(2) The total SFR is finally computed as the sum of SFR UV and SFR IR . The above two relations are derived assuming a Salpeter (1955) IMF and assume that the SFR remained constant over the last 100 Myr.

A substantial number of galaxies in this sample (50% in the CANDELS fields, 75% in COSMOS UltraVISTA) are detected by Spitzer MIPS but not by Herschel. Although for these galaxies we only have a single photometric point in the MIR, we can still infer accurate monochromatic SFRs using the original L IR calibration of the CE01 library. This calibration is valid up to z < 1.5, as shown in Elbaz et al. (2011), hence we only use MIPS-derived SFRs for sources not detected by Herschel over this redshift range. Although other calibrations exist and allow to reach higher redshifts (e.g. Elbaz et al. 2011;Wuyts et al. 2011), we do not know how they would impact the measurement of the scatter of the main sequence. We therefore prefer not to use them and discard the 24 µm measurements above z = 1.5. Galaxies not detected in the MIR (z < 1.5) or FIR have no individual SFR estimates and are only used for stacking. When working with detections alone (section 4.6), this obviously leads to an SFR selected sample and is taken into account by estimating the SFR completeness.

Lastly, there are some biases that can affect our estimates of SFR from the IR. In particular, the dust can also be heated by old stars that trace the total stellar mass content rather than the star formation activity (e.g. Salim et al. 2009). Because of the relatively low luminosity of these stars, this will most likely be an issue for massive galaxies with low star formation activity, i.e. typically quiescent galaxies (see e.g. Appendix A where we analyze such cases). Since we remove these galaxies from our sample, we should not be affected by this bias. This is also confirmed by the excellent agreement of IR based SFR estimates with those obtained from the radio emission (e.g. Pannella et al. 2014), the latter not being affected by the light of old stars.

A mass-complete sample of star-forming galaxies

We finalize our sample by selecting actively star-forming galaxies. Indeed, the observation of a correlation between mass and The dividing line between active and passive galaxies is shown as a solid orange line on each plot, with passive galaxies located on the top-left corner. We show in the background the distribution of sources from the H-band catalogs in gray scale. We also overplot the position of sources detected with Herschel as blue contours or, when the source density is too low, as individual blue open circles. On the top-left corner of each plot, we give the fraction of H band-selected galaxies that fall inside the quiescent region, and on the bottom-right corner we show the fraction of Herschel sources that reside in the star-forming region. (a) Number of galaxies in our mass-complete NIR sample, removing stars, spurious sources, and requiring Spitzer and Herschel coverage. (b) Final sub-sample of good quality galaxies classified as star-forming with the UV J criterion (see section 2.6). (c) Sub-sample of galaxies with a spectroscopic redshift (various sources, see catalog papers for references). (d) Subsample of galaxies with a detection in any Herschel band, requiring > 3σ significance in PACS or > 5σ in SPIRE (following Elbaz et al. 2011).

SFR only applies to galaxies that are still forming stars, and not to quiescent galaxies. The latter are not evolving anymore and pile up at high stellar masses with little to no detectable signs of star-formation. Nevertheless, they can still show residual IR emission due to the warm inter-stellar medium (ISM). This cannot be properly accounted for with the CE01 library, and will be misinterpreted as an SFR tracer. Several methods exist to exclude quiescent galaxies. The most obvious is to select galaxies based on their specific SFR (sSFR ≡ SFR/M * ); having very low SFR and usually high M * , quiescent galaxies will indeed have very low sSFR compared to star-forming galaxies. But this obviously relies on the very existence of the correlation between SFR and M * , and removing galaxies with too low sSFR would artificially create the correlation even where it does not exist. On the other hand, selecting galaxies based on their SFR alone would destroy the correlation, even where it exists (Rodighiero et al. 2011;Lee et al. 2013). It is therefore crucial that the selection does not apply directly to any combination of SFR or M * . Furthermore, these methods require that an accurate SFR is available for all galaxies, and this is something we do not have since most galaxies are not detected in the mid-or far-IR. We must thus only use information that is available for all the galaxies in our sample, i.e. involving optical photometry only.

There are several color-magnitude or color-color criteria that are designed to accomplish this. Some, like the BzK approach (Daddi et al. 2004), are based on the observed photometry and are thus very simple to compute, but they also select a particu-Article number, page 6 of 30 lar redshift range by construction. This is not desirable for our sample, and we thus need to use rest-frame magnitudes. Colormagnitude diagrams (e.g. Ur versus r-band magnitude as in Baldry et al. 2004) tend to wrongly classify some of the red galaxies as passive, while they could also be red because of high dust attenuation. Since high mass galaxies suffer the most from dust extinction (Pannella et al. 2009), it is thus likely that such a selection would have a non-trivial effect on our sample. It is therefore important to use another color in order to disentangle galaxies that are red because of their old stellar populations and those that are red because of dust extinction.

To this end, Williams et al. (2009) devised the UV J selection, based on the corresponding color-color diagram introduced in Wuyts et al. (2007). It uses the U -V color, similar to the Ur from the standard color-magnitude diagram, but combines it to the V -J color in order to break the age-dust degeneracy. Although the bimodality stands out clearly on this diagram, the locus of the passive cloud has been confirmed by Williams et al. (2009) using a sample of massive galaxies in the range 0.8 < z < 1.2 with little or no [O ii] line emission, while the active cloud falls on the Bruzual & Charlot (2003) evolutionary track for a galaxy with constant SFR. One can then draw a dividing line that passes between those two clouds to separate one population from the other. We use the following definition, at all redshifts and stellar masses:

quiescent =          U -V > 1.3 , V -J < 1.6 , U -V > 0.88 × (V -J) + 0.49 . (3) 
This definition differs by only 0.1 magnitude compared to that of Williams et al. (2009). Rest-frame colors can show offsets of similar order from one catalog to another, due to photometric coverage and uncertainties in the zero-point corrections. It is thus common to adopt slightly different definitions to account for these effects (see e.g. Cardamone et al. 2010;Whitaker et al. 2011;Brammer et al. 2011;Strazzullo et al. 2013;Viero et al. 2013;Muzzin et al. 2013b). In COSMOS UltraVISTA, we follow the definition given by Muzzin et al. (2013b).

The corresponding diagram in bins of mass and redshift for the CANDELS fields is shown in Fig. 1. Here we also overplot the location of the galaxies detected by Herschel: due to the detection limit of the surveys, the vast majority of those have high SFRs. We therefore expect them to fall on the UV J "active" region. This in indeed the case for the vast majority of those, even when the majority of optical sources are quiescent as is the case at z = 0.5 and log 10 (M * /M ⊙ ) > 10. In total, only 5 % of the galaxies in our Herschel sample are classified as passive, and about a third of those have a probability larger than 20 % to be misclassified due to uncertainties in their UV J colors. The statistics in COSMOS UltraVISTA are similar.

The number of galaxies with reliable redshifts and stellar masses (see section 2.4) that are classified with this diagram as actively star-forming are reported in Table 2. These are the galaxies considered in the following analysis. As a check, we also analyze separately the quiescent galaxies in Appendix A.

Finally, we do not explicitly exclude known AGNs from our sample. We expect AGNs to reside in massive star-forming galaxies (Kauffmann et al. 2003;Mullaney et al. 2012;Santini et al. 2012;Juneau et al. 2013;Rosario et al. 2013). While the most luminous optically unobscured AGNs may greatly perturb the optical photometry, and therefore the measurement of redshift and stellar mass, they will also degrade the quality of the SED fitting because we have no AGN templates in our fitting libraries. This can produce an increased χ 2 , hence selecting galaxies with χ 2 < 10 (see section 2.4) helps removing some of these objects. Also, their point-like morphology on the detection image tends to make them look like stars, which are systematically removed from the sample. The more common moderate luminosity AGNs can still be fit properly with galaxy templates (Salvato et al. 2011). Therefore, several AGNs do remain in our sample without significantly affecting the optical SED fitting and stellar masses. But even then, obscured AGNs will emit some fraction of their light in the IR through the emission of a dusty torus. To prevent pollution of our FIR measurements by the light of such dusty AGNs, we only use the photometry at rest-frame wavelengths larger than 30 µm, where the contribution of the AGN is negligible (Mullaney et al. 2011). Indeed, while the most extreme AGNs may affect mid-to-far IR colors such as 24-to-70 µm color, their far-IR colors are indistinguishable from that of star-forming galaxies (Hatziminaoglou et al. 2010). By rejecting the most problematic cases, and mitigating against AGN contribution to the IR, we aim to remove severe contamination while retaining a high sample completeness.

Completeness and mass functions

Table 3. log 10 (M * /M ⊙ ) above which our samples are at least 90% complete, for each catalog.

Catalog z = 0.5 1.0 1.5 2.2 3.0 4.0 GN 8.9 9.3 9.8 10.1 10.5 10.7 CANDELS a 8.3 8.7 9.0 9.4 9.9 10.3 COSMOS UVISTA 9.1 9.6 10.1 10.6 10.9 11.3 The last step before going through the analysis is to make sure that, in a each stellar mass bin we will work with, as few galaxies as possible are missed because of our selection criteria. The fact that we built these samples by starting from an NIR selection makes it much simpler to compute the corresponding mass completeness: the stellar mass of a galaxy at a given redshift is indeed well correlated with the luminosity in the selection band (either H or K s ), as illustrated in Fig. 2, the scatter around the correlation being caused by differences of age, attenuation, and to some extent flux uncertainties and k-correction. From our sample, we can actually see by looking at this correlation with various bands (H, K s and IRAC channels 1 and 2) that this scatter is minimal (0.14 dex) when probing the rest-frame 1.7 µm, but it reaches 0.4 dex in the rest-frame UV (3500 Å). While this value is of course model dependent, it stresses the importance of having high quality NIR photometry, in particular the Spitzer IRAC bands.

To estimate the mass completeness, we decide to use an empirical approach, where we do not assume any functional form for the true mass function. Instead, we directly compute the completeness assuming that, at a given redshift, the stellar mass is well estimated by a power law of the luminosity (measured either from the observed H or K s band), i.e. M * = C L α , plus a Gaussian scatter in log space. We fit this power law and estimate the amplitude of the scatter using the detected galaxies, as shown in Fig. 2. Using this model (red solid and dotted lines) and knowing the limiting luminosity in the selection band (orange horizontal lines), we can estimate how many galaxies we miss at a given stellar mass, using e.g. a Monte Carlo simulation. At a given stellar mass, we generate a mock population of galaxies with uniform redshift distribution within the bin and estimate what would be their luminosity in the selection band by using the above relation and adding a Gaussian scatter to the logarithm of the luminosity. The completeness is then computed as the fraction of galaxies that have a luminosity greater than the limiting luminosity at the considered redshift. We consider our catalogs as "complete" when the completeness reaches at least 90 %.

The same procedure is used on COSMOS UltraVISTA and GOODS-North separately, and the estimated completeness levels are all reported in Table 3. We compared the values obtained in GOODS-North with those reported in Pannella et al. (2014), where the completeness is estimated following Rodighiero et al. (2010) using a stellar population model. The parameters of the model chosen in Pannella et al. (2014) are quite conservative, and their method consistently yields mass limits that are on average 0.3 dex higher than ours. In COSMOS UltraVISTA, we obtain values similar to that of Muzzin et al. (2013a).

Finally, we build stellar mass functions by simply counting the number of galaxies in bins of redshift and stellar masses in the three CANDELS fields that are H-band selected, and normalize the counts by the volume that is probed. These raw mass functions are presented in Fig. 3 as dashed lines. Assuming that the counts follow a Schechter-like shape, i.e. rising with a power law toward low stellar mass, the incompleteness of our sample is clearly visible. We then use the estimated completeness (top panel in Fig. 2) to correct the stellar mass functions. Here, we limit ourselves to reasonable corrections of at most a factor two in order not introduce too much uncertainty in the extrapolation. The resulting mass functions are shown as solid lines in Fig. 3, with shaded areas showing the Poisson noise. The obtained mass functions are in good agreement with those already published in the literature (e.g. Ilbert et al. 2013).

Deriving statistical properties of star-forming galaxies

Due to the limitations of the Herschel surveys (the result of photometric and/or confusion noise), we cannot derive robust individual SFRs for all the sources in our sample (see section 2.5). Indeed, the fraction of star-forming galaxies detected in the FIR ranges from 80% at M * > 3 × 10 10 M ⊙ and z < 1, to almost 0% for M * < 10 10 M ⊙ and z > 1. Above z = 1, the completeness in FIR detections reaches better than 60% only above M * = 10 11 M ⊙ and up to z = 2.5. Below this mass and above that redshift, the FIR completeness is lower than 20-30%. We overcome these limitations by stacking the Herschel images. Stacking is a powerful and routinely used technique that combines the signal of multiple sources at various positions on the images, known from deeper surveys (see e.g. Dole et al. 2006, where it was first applied to FIR images). This effectively increases the signal to noise ratio of the measurement, allowing us to probe fainter fluxes than can be reached by the usual source extraction. The price to pay is that we lose information about each individual source, and only recover statistical properties of the considered sample. Commonly, this method is used to determine the average flux density of a selected population of objects. We will show in the following that it can also be used to obtain information on the flux distribution of the sample, i.e. not only its average flux, but also how much the stacked sources scatter around this average value.

This scatter is crucial information. If we measure an average correlation between SFR and M * , as has been measured in several other studies at different redshifts, this correlation cannot be called a "sequence" if the sources show a large dispersion around it.

Several studies have already measured this quantity. Noeske et al. (2007) and Elbaz et al. (2007) at z = 1 reported a 1σ dis-Article number, page 8 of 30 Fig. 4. Redshift and stellar mass bins chosen for stacking. We display in each bin (from top to bottom) the total number of star-forming H or K sband galaxies that are stacked in the CANDELS fields, and the fraction of galaxies individually detected with Herschel. The bins where we do not detect any stacked signal are shown with a gray background. persion in log 10 (SFR) of around 0.3 dex from Spitzer MIPS observations of a flux-limited sample. At z = 2, Rodighiero et al. (2011) reported 0.24 dex, using mostly UV-derived SFRs, while Whitaker et al. (2012) reported 0.34 dex from Spitzer MIPS observations. These two studies have tested the consistency of their SFR estimator on average, but we do not know how they impact the measure of the dispersion. The variation found in these two studies suggests that this is indeed an issue (see for example the discussion in Speagle et al. 2014). On the one hand, UV SFRs have to be corrected for dust extinction. If one assumes a single extinction law for the whole sample, one might artificially reduce the dispersion. On the other hand, MIPS 24 µm at z = 2 probes the rest-frame 8 µm. While Elbaz et al. (2011) have shown that it correlates well with L IR , this same study also demonstrates that it misses a fraction of L IR that is proportional to the distance from the main sequence. This can also have an impact on the measured dispersion.

Here we measure for the first time the SFR-M * main sequence and its dispersion with a robust SFR tracer down to the very limits of the deepest Herschel surveys in order to constrain its existence and relevance at higher redshifts and lower stellar masses.

Simulated images

All the methods described in this section have been extensively tested in order to make sure that they are not affected by systematic biases or, if they are, to implement the necessary corrections. We conduct these tests on simulated Herschel images that we set up to be as close as possible to the real images, in a statistical sense. In other words, we reproduce the number counts, the photometric noise, the confusion noise, and the source clustering. The algorithms, the methodology and the detailed results are described fully in Appendix B.

The stacking procedure

We divide our star-forming galaxy sample into logarithmic bins of stellar mass and redshift, as shown in Fig. 4, in order to have a reasonable number of sources in each bin. We then go to the original Herschel images of each field and extract N × N pixel cutouts around each source in the bin, thus building a pixel cube. We choose N = 41 for all Herschel bands, which is equivalent to 8 times the full width at half maximum (FWHM) of the PSF, and N = 61 for Spitzer MIPS (13 × FWHM), as a substantial fraction of the Spitzer flux is located in the first Airy ring. Since the maps have been reduced in a consistent way across all the CANDELS fields, we can safely merge together all the sources in a given bin, allowing us to go deeper while mitigating the effects of cosmic variance.

In parallel, we also stack the sources of the COSMOS Ul-traVISTA catalog in the wider but shallower FIR images. These stacked values are mostly used as consistency checks, since they do not bring any advantage over those obtained in the CAN-DELS fields: the shallow Herschel exposure is roughly compensated by the large area, but the mass completeness is much lower.

In the literature, a commonly used method consists in stacking only the undetected sources on the residual maps, after extracting sources brighter than a given flux threshold. This removes most of the contamination from bright neighbors, and thus lowers the confusion noise for the faint sources, while potentially introducing a bias that has to be corrected. Detected and stacked sources are then combined using a weighted average (as in e.g. Magnelli et al. 2009). We prefer here to treat both detected and undetected sources homogeneously in order not to introduce any systematic error tied to either the adopted flux threshold or the details of the source extraction procedure. Although simpler, this procedure nevertheless gives accurate results when applied to our simulated images. Indeed, the contribution of bright neighbors is a random process: although it is clear that each source suffers from a varying level of contamination, statistically they are all affected the same way. In other words, when a sufficient number of sources are stacked, the contribution of neighbors tends to average out to the same value µ gal on all pixels, which is the contribution of galaxies to the cosmic infrared background (CIRB). But this is only true in the absence of galaxy clustering (Béthermin et al. 2010). When galaxies are clustered, there is an increased probability to find a neighbor close to each stacked galaxy (Chary & Pope 2010), so that µ gal will be larger toward the center of the stacked image. Kurczynski & Gawiser (2010) proposed an alternative stacking technique (implemented by Viero et al. 2013, in the SIMSTACK code) that should get rid of most of this bias, and that consists of simultaneously fitting for the flux of all sources within a given volume (i.e. in a given redshift bin). It is however less versatile, and in par-Article number, page 9 of 30 Fig. 6. Stacked SEDs of our star-forming mass-selected samples in bins of redshift (horizontally) and stellar mass (vertically). Stacked points are shown as empty circles, and the best-fit CE01 template is shown as the solid red curve. Grey data points were not used in the fit because they are probing rest-frame wavelengths below 30 µm. The data points have been corrected for the contribution of galaxy clustering (see Table B.2). In the bins where the signal is too low (typically < 5σ), we plot 3σ upper limits as downward triangles. ticular it is not capable of measuring flux dispersions. Béthermin et al. (2014, submitted) also show that is can suffer from biases coming from the incompleteness of the input catalog. The next step is to reduce each cube into a single image by combining the pixels together. There are several ways to do this, the two most common being to compute the mean or the median flux of all the cutouts in a given pixel. The advantage of the mean stacking is that it is a linear operation, thus one can exactly understand and quantify its biases (e.g. Béthermin et al. 2010). More specifically, it can be shown that the mean stacked value corresponds to the covariance between the input source catalog and the map (Marsden et al. 2009). Median stacking, on the other hand has the nice property of naturally filtering out bright neighbors and catastrophic outliers and thus produces cleaner flux measurements. On the down side, we show in Appendix B.1 that this measurement is systematically biased in a non trivial way (see also White et al. 2007). Correcting for this bias requires some assumptions about the stacked flux distribution, in particular the dispersion. Since this is a quantity we want to measure, we prefer to use mean over median stacking in this study. An example of a mean stacked cutout from the SPIRE 250 µm images is shown in Fig. 5 (left). However, in two bins at low masses and high redshifts (z = 1.5 and log 10 (M * /M ⊙ ) = 9.75, as well as z = 3.0 and log 10 (M * /M ⊙ ) = 10.25), the mean stacked fluxes have too low signal to noise ratios and thus cannot be used, while the median stacked fluxes are still robustly measured. In order to extend our measurement of the main sequence SFR, we allow ourselves to use the median stacked fluxes in these particular bins only. This is actually a regime where we expect the median stacking to measure most closely the mean flux (see Appendix B.1), hence this should not introduce significant biases. It is also worth noting that what we are interested in here is the mode of the main sequence, which is not strictly speaking the mean SFR we measure. We calibrated the difference between those two quantities with our simulations, and in all the following we refer to the SFR of the main sequence as the mode of the distribution. For example, for a log-normal distribution of σ = 0.3 dex, this difference is about 0.1 dex.

To measure the stacked flux, we choose to use PSF fitting in all the stacked bands. In all fields, we use the same PSFs as the ones that were used to extract the photometry of individual objects, and apply the corresponding aperture corrections. This method assumes that the stacked image is a linear combination of: 1) a uniform background; and 2) the PSF of the instrument, since none of our sources is spatially resolved. The measured flux is then obtained as the best fit normalization factor applied to the PSF that minimizes the residuals. In practice, we fit simultaneously both the flux and the background within a fixed aperture whose radius is 0.9 times the FWHM of the PSF. The advantage of this choice is that although we use less information in the fit, the background computed this way is more local, and the flux measurement is more robust against source clustering. Indeed, the amplitude of the clustering is a continuous function of angular distance: although a fraction of clustered sources will fall within a radius that is much smaller than the FWHM of the PSF and will bias our measurements no matter what, the rest will generate signal over a scale that is larger than the PSF itself, such that it will be resolved. Estimating the background within a small aperture will therefore remove the contribution of clustering coming from the largest scales.

We quantify the expected amount of flux boosting due to source physical clustering using our simulated maps. We show in Appendix B.2 that it is mostly a function of beam size, i.e. there is no effect in the PACS bands but it can boost the SPIRE fluxes by up to 25% at 500 µm. We also compare our flux extraction method to other standard approaches and show that it does re-Article number, page 10 of 30 C. Schreiber et al.: The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day duces the clustering bias by a factor of 1.5 to 2.5, while also producing less noisy flux measurements. The value of 0.9 × FWHM was chosen to get the lowest clustering amplitudes and flux uncertainties.

In order to obtain an estimate of the error on this measure, we also compute the standard deviation σ RES of the residual image (i.e. the stacked image minus the fitted source), and multiply it by the PSF error scaling factor

σ IMG = σ RES × |P 2 | - |P| 2 N pix -1/2 , ( 4 
)
where N pix is the number of pixels that are used in the fit, |P| is the sum of all the pixels of the PSF model within the chosen aperture, and |P 2 | the sum of the squares of these pixels. This is the formal error on the linear fit performed to extract the flux (i.e. the square root of the diagonal element corresponding to the PSF in the covariance matrix), assuming that all pixels are affected by a similar uncorrelated Gaussian error of amplitude σ RES . In practice, since the PSFs that we use are all sampled by roughly the same number of pixels (approximately two times the Nyquist sampling), this factor is always close to 0.5 divided by the value of the central pixel of the PSF. Intuitively, this comes from the fact that the error on the measured flux is the combination of the error on all the pixels that enter in the fit, weighted by the amplitude of the PSF. It is thus naturally lower than the error on one single pixel. In other words, using PSF fitting on these stacks allows measuring fluxes that are twice fainter than when using only the central pixel of the image. Simple aperture

photometry yields σ APER = σ RES × N pix + N pix 2 /N bg , /|P|,
where N bg is the number of pixels used to estimate the background (e.g. within an annulus around the source). If N bg is sufficiently large ( N pix ), this error is lower than the one we obtain with our PSF fitting technique because the background is estimated independently of the flux. The price to pay is that this background is not local, hence the aperture flux will be most sensitive to clustering. Finally, note that if there is no clustering, PSF fitting will give the lowest errors of all methods, provided the full PSF is used in the fit. The optimal strategy is therefore always to use PSF fitting, varying the aperture within which the fit is performed depending on the presence of clustering.

To be conservative, we compute an alternative error estimate using bootstrapping: we randomly discard half of the sources, stack the remaining ones, measure the stacked flux, and repeat this procedure 100 times. The error σ BS is then computed as the standard deviation of the measured flux in these 100 realizations, divided by √ 2, since we only work with half of the parent sample. Using our simulated images, we show in Appendix B.3 that accurate error estimates are obtained by keeping the maximum error between σ IMG and σ BS . For the SPIRE bands however, the same simulations show that both error estimates are systematically underestimated and need to be corrected by a factor of ∼ 1.7. We demonstrate in Appendix B.3 that this comes from the fact that the error budged in the SPIRE bands is mostly generated by the random contribution of nearby sources rather than instrumental or shot noise. In this case, the error on each pixel is largely correlated with that of its neighbors, and the above assumptions do not hold. We apply the above procedure to all the redshift and stellar mass bins of Fig. 4 and stack all the MIR to FIR images, from MIPS 24 µm to SPIRE 500 µm. Using the measured mean fluxes we build effective SEDs7 in each bin, shown in Fig. 6. We fit the Herschel photometry with CE01 templates, leaving the normalization of each template free and keeping only the best fit, and obtain the mean L IR . As for the individual detections, we do not use the photometry probing rest-frame wavelengths below 30 µm (see section 2.5). The MIPS 24 µm photometry is used as a check only. Converting the measured L IR to SFR IR with the Kennicutt (1998) relation and adding the mean observed SFR UV (non-dust corrected contribution), we obtain the mean total SFR in each bin.

Measuring flux dispersion with scatter stacking

To measure the flux dispersion, we introduce a new method that we will now describe. The idea is to come back to the pixel cube and build a dispersion image by measuring the scatter of each pixel around its average value. Stacked pixels away from the center measure the background fluctuations (the combination of photometric noise and random contribution from nearby sources), while pixels in the central region show enhanced dispersion due to flux heterogeneities in the stacked population, as in Fig. 5. In particular, if all the stacked sources had the same flux, the dispersion map would be flat.

Again, this can be achieved in different ways. Computing the standard deviation of pixels is the most straightforward approach, but it suffers from similar issues as mean stacking with respect to bright neighbor contamination, in a more amplified manner because pixels are combined in quadrature. Our simulations also show that this method is not able to reliably measure high dispersion values. We thus use the median absolute deviation (MAD), which is more effective in filtering out outliers while providing the same information.

The MAD is formally defined as the half-width of the range centered on the median flux S that contains 50% of the whole sample. In other words

φ ( S + MAD) -φ ( S -MAD) = 1 2 , ( 5 
)
where φ is the cumulative probability distribution function of the flux.

In order to interpret this value in terms of more common dispersion indicators, we will convert the MAD to a logdispersion σ assuming that fluxes follow a Gaussian distribution in log 10 (S ), i.e. a log-normal distribution in S . There are two reasons that justify this choice: 1) it allows direct comparison of our measured dispersions to the data from literature that quote standard deviations of log 10 (SFR); and 2) log-normal distribution are good models to describe sSFR distributions in the regimes where we can actually detect individual sources (see e.g. Rodighiero et al. 2011;Sargent et al. 2012;Gladders et al. 2013;Guo et al. 2013, and also section 4.6). For this family of distributions,

φ(S ) = 1 2 erfc         - log 10 S S √ 2 σ         , (6) 
where erfc is the complementary error function. In this case there is no analytical solution to Eq. 5, but it can be solved numerically. It turns out that one can relate the MAD and S directly Fig. 7. MAD computed by solving Eq. 5 numerically for a log-normal distribution of S = 1 as a function of the chosen σ. The solid line is the best fit of Eq. 7 to the numerical solutions, and the dashed line is the one-to-one correlation.

to σ (see Fig. 7) via the following equation which was fit on the output of the numerical analysis8 (for σ ∈ [0.05, 1.0] dex):

MAD

S ≃ 1.552 σ 1 + 0.663 σ 2 , (7) 
with a maximum absolute error of less than 0.01. This relation can, in turn, be inverted to obtain σ. Defining the "normalized" median absolute deviation NMAD ≡ MAD/ S , and only keeping the positive solution of Eq. 7, we obtain:

σ ≃ 1.171 NMAD          1 -1 - NMAD 0.953 2          . (8) 
Therefore, measuring the MAD allows us to obtain the intrinsic log-normal flux dispersion σ of the stacked sample. To do so, we perform PSF fitting on the squared images (since the dispersion combines quadratically with background noise) and fit a constant background noise plus the square of the PSF on all the pixels within a fixed radius of 0.6 × FWHM. Here we do not use the same 0.9 × FWHM cut as for the flux extraction, since the MAD does not fully preserve the shape of the PSF when its pixels are low in signal to noise (see below). We thus restrain ourselves to a more central region in order to prevent being dominated by these faint pixels. Again, this value was chosen using the simulated maps as the one that produced the least biased and least uncertain measurements.

Even then, the dispersion measured with this method is slightly biased toward higher values, but this bias can be quantified and corrected in a self-consistent way with no prior information using Monte Carlo simulations. For each source in the stack, we extract another cutout at a random position in the map. We then place a fake source at the center of each random cutout, whose flux follows a log-normal distribution of width σ MC , and with a mean flux equal to the one measured for the real sources. These bins were chosen to illustrate the two regimes of high and low signal to noise, respectively. Fig. 9. Dispersion of the ratio L IR /νL ν as a function of wavelength in bins of redshift and for the five Herschel bands in the four CANDELS fields. The wavelength is normalized here to the "peak" wavelength, where the FIR SED in νL ν reaches its maximum (calibrated from our stacked SEDs, Fig. 6). L IR is computed by fitting all the available Herschel bands (we require a minimum of three) together with CE01 templates, while νL ν is the flux in a single Herschel band converted to rest-frame luminosity. Open symbols denote measurements where νL ν comes from MIPS 24 µm. Error bars come from simple bootstraping. The contribution of photometric errors has been statistically removed. The red line shows a fit to the data points to guide the eye.

We apply our scatter stacking technique to measure the dispersion on the resulting mock flux cube, and compare it to σ MC . We repeat this procedure for different values of σ MC (from 0.1 to 0.7 dex), and derive the relation between the intrinsic and measured dispersion. Examples are shown in Fig. 8. To average out the measurement error, we repeat this procedure 20 times for each value of σ MC . In practice, this correction is mostly negligible, except for the lowest measured mass bins at any redshift where it reaches up to 0.1 dex.
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SFR dispersion from scatter stacking

The procedure described in the previous section allows us to measure the log-normal flux dispersion, while we are interested in the dispersion in SFR.

The first step is to obtain the log 10 (L IR ) dispersion σ IR . Using detected sources, we observe that the dispersion in L IR of a population of galaxies having the same flux at a given redshift depends on the rest-frame wavelength probed, as illustrated in Fig. 9. The data points in this figure are produced by looking at multiple bins of redshift, and measuring the scatter of the correlation between L IR , measured by fitting all available FIR bands, and the flux in each Herschel band converted to rest-frame luminosity (ν L ν ). By spanning a range of redshift, the five Herschel bands will probe a varying range of rest-frame wavelengths, allowing us to observe the behavior of the L IR scatter with restframe wavelength. The smaller dispersions are found at wavelengths close to the peak of the SED, in which case the dispersion goes as low as 0.05 dex. This is due to galaxies showing a variety of effective dust emissivities and temperatures that both influence the shape of the FIR SED, respectively long-ward and short-ward of the peak.

Therefore, in order to have a direct measure of σ IR , we simply have to get the flux dispersion of the Herschel band that is the closest to the peak. We thus first measure the peak wavelength λ peak from the stacked SEDs (Fig. 6), and interpolate the measured log-normal flux dispersions at λ peak . By construction, this also tends to select Herschel measurements with the highest signal to noise ratio.

One then has to combine the dispersion in L IR with that in L UV , since we combine both tracers to derive the total SFR. This is not straightforward, as the two quantities are not independent (i.e. at fixed SFR, more attenuated objects will have higher L IR and lower L UV ). In particular, we see on individual detections that the dispersion of SFR = SFR IR + SFR UV is actually lower than that of SFR IR alone.

To address this issue, we choose to work directly on "SFR stacks". First, we use our observed FIR SEDs to derive L IR monochromatic conversion factors for all bands in each of our redshift and stellar mass bins. Second, in each stacked bin, we convert all cutouts to SFR IR units, using the aforementioned conversion factor and the Kennicutt (1998) relation. Third, we add to each individual cutout an additional amount of SFR equal to the non-dust corrected SFR UV , as a centered PSF. Finally, to correct for the smearing due to the width of the redshift and mass bins, we also use our observed relation between mass, redshift and SFR (given below in Eq. 9) and normalize each cutout to the reference mass and redshift of the sample by adding SFR MS (z ref , M * ,ref ) -SFR MS (z, M * ). This last step is a small correction: it reduces the measured dispersion by only 0.02 to 0.03 dex.

We stack these cutouts and again run the dispersion measurement procedure, including the bias correction. Interpolating the measured dispersions in the five Herschel bands at λ peak as described earlier, we obtain σ SFR . As expected, the difference between the flux dispersion at the peak of the SED and the SFR dispersion is marginal, except for the lowest mass bins where it can reach 0.05 dex. This is mainly due to the increasing contribution of the escaping UV light to the total SFR, as SFR IR /SFR UV approaches unity in these bins.

There is a remaining bias that we do not account for in this study, which is the impact of errors on the photo-zs and stellar masses. As pointed out in section 2.4, the measured few percent accuracy on the photo-zs only applies to the bright sources, and Fig. 10. Evolution of the main sequence SFR with mass and redshift. Our results from stacking are shown as colored filled circles, the colors corresponding to the different redshifts as indicated in the legend. We complement these measurements by stacking sliding bins of mass (see text) for visualization purposes only, in order to better grasp the mass dependence of the SFR. In the background, we show as light gray curves our best-fit relation for the main sequence (Eq. 9).

we do not know how reliable the fainter ones are. We measure statistical uncertainties on both these quantities, but this does not take into account systematic errors coming from the library, or gaps in the photometry. Intuitively, one can expect these errors to increase the dispersion, but this would be true only if the true error was purely random. It could be that our SED fitting technique is too simplistic in assuming a universal IMF, metallicity and SFH functional form for all galaxies, and as such erases part of the diversity of the population. This could in turn decrease the measured dispersion (see discussion in Reddy et al. 2012). It is therefore important to keep in mind that our measurement is tied to the adopted modeling of stellar mass.

Results

The SFR of main sequence galaxies

The first results we present concern the evolution of the main sequence with redshift, as well as its dependence on stellar mass. In section 4.2 we start by describing the redshift evolution of the sSFR ≡ SFR/M * , and we then address the mass dependence of the main sequence slope in section 4.3.

These results are summarized in Fig. 10 where, for the sake of visualization, we also run our full stacking procedure on sliding bins of mass, i.e. defining a fine grid of M * and selecting galaxies within mass bins of constant logarithmic width of 0.3 dex. The data points are not independent anymore, since a single galaxy is included in the stacked sample of multiple neighboring points, but this allows to better grasp the evolution of the main sequence with mass. These "sliding averages" of the SFR are displayed as solid colored lines, while the points obtained with regular mass bins are shown as filled circles.

Article number, page 13 of 30 A&A proofs: manuscript no. paper Fig. 11. Evolution of the sSFR with redshift. Left: comparison of our results at M * = 2 × 10 11 M ⊙ (red curve) to published values in the literature (filled and open symbols). Filled symbols compile various results that were derived from mass-complete samples with SFRs computed either from the IR (Daddi et al. 2007;Noeske et al. 2007;Elbaz et al. 2007;Magdis et al. 2010;Reddy et al. 2012;Heinis et al. 2014;Magnelli et al. 2014;Pannella et al. 2014) or the radio (Pannella et al. 2009(Pannella et al. , 2014)). When possible, these were rescaled to a common stellar mass of 2 × 10 11 M ⊙ using the corresponding published SFR-M * relations. Results from stacking have been corrected by -0.1 dex to reach the mode of the main sequence (see discussion in section 3.2). Open symbols show results from the literature that make use of the Lyman break selection technique (LBGs) and where the SFRs are obtained from the UV light alone (Daddi et al. 2009;Stark et al. 2009Stark et al. , 2013;;González et al. 2014;Salmon et al. 2014). These samples are mostly composed of galaxies of much lower stellar mass, typically 3 × 10 9 M ⊙ , so the extrapolation to 10 11 M ⊙ is more uncertain. We therefore simply quote the published values. The gray arrow shows how the open symbols would move if we were to apply a mass correction assuming the z = 4 main sequence slope of Bouwens et al. (2012). When necessary, data from the literature have been converted to a Salpeter IMF. Right: same figure showing our other stacked mass bins with different colors.

By fitting the latter, we parametrize the main sequence SFR with the following formula, defining r ≡ log 10 (1 + z) and m ≡ log 10 (M * /10 9 M ⊙ ):

log 10 (SFR MS [M ⊙ /yr]) = m -m 0 + a 0 r -a 1 max(0, m -m 1 -a 2 r) 2 (9) 
with m 0 = 0.5 ± 0.07, a 0 = 1.5 ± 0.15, a 1 = 0.3 ± 0.08, m 1 = 0.36 ± 0.3 and a 2 = 2.5 ± 0.6. The choice of this parametrization is physically motivated: we want to explicitly describe the two regimes seen in Fig. 10 and explored in more details in section 4.3, namely a sequence of slope unity whose normalization increases with redshift (first terms), and a "bending" that vanishes both at low masses and high redshifts (last term). The precise functional form however is arbitrary, and was chosen as the simplest expression that reproduces accurately the bending behavior. This SFR will be used in the following as a reference for the locus of the main sequence.

Redshift evolution of the sSFR: the importance of sample selection and dust correction

We show in Fig. 11 the evolution of sSFR (≡ SFR/M * ) as a function of both redshift and stellar mass. Our results at z ≤ 3 are in good agreement with previous estimates from the literature, showing the dramatic increase of the sSFR with redshift. At z = 4, we still measure a rising sSFR, reaching 5 Gyr -1 , i.e. a mass doubling timescale of only 200 Myr.

However at this redshift, our measurement is substantially higher than UV-based estimates (Daddi et al. 2009;Stark et al. 2009). More recent results (Bouwens et al. 2012;Stark et al. 2013;González et al. 2014) seem to be in better agreement, but it is important to keep in mind that these studies mostly focus on relatively low mass galaxies, i.e. typically 3 × 10 9 M ⊙ . Therefore the quoted sSFR values only formally apply to galaxies in this range, i.e. to galaxies a factor of 10 to 100 times less massive than those in our sample. Extrapolating their measurements to match the mass range we are working with requires that we know the slope of the sSFR-M * relation. In their study, Bouwens et al. (2012) measured this slope from M * = 10 8 to 10 10 M ⊙ at z = 4 and found it to be around -0.27. Assuming that this holds for all masses, this means that we should reduce the sSFR by about 0.4 dex to be able to compare it directly to our result. This is illustrated by the gray arrow in Fig. 11.

Previous observations of the sSFR "plateau" (Daddi et al. 2009) could be the consequence of two key issues. First, selection effects: these studies are based either on Lyman break galaxies (LBGs) or rest-frame FUV-selected samples that, while less prone to lower redshift contaminants, are likely to miss highly attenuated and thus highly star-forming galaxies. Our sample is mass-complete, so we do not suffer from such biases. Second, failure of dust extinction correction: UV-based SFR estimates are plagued by uncertainties in dust attenuation. Most studies rely on observed correlations between UV SED features and dust attenuation that are calibrated in the local Universe, such as the IRX-β relation (Meurer et al. 1999). Recent studies tend to show that these correlations are not universal and evolve with redshift, possibly due to sub-solar metallicity (Castellano et al. 2014), ISM conditions and/or dust geometry (Oteo et al. 2013;Pannella et al. 2014).

Article number, page 14 of 30 C. Schreiber et al.: The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day 4.3. Mass evolution of the SFR and varying slope of the main sequence It is also worth noting from Fig. 10 the dependence of the SFR on stellar mass. Low mass bins (M * < 3 × 10 10 M ⊙ ) are well fit with a slope of unity. Many studies have reported different values of this slope, ranging from 0.4 to unity (Brinchmann et al. 2004;Noeske et al. 2007;Elbaz et al. 2007;Daddi et al. 2007;Santini et al. 2009;Pannella et al. 2009;Rodighiero et al. 2011). A slope of unity can be interpreted as a signature of the universality of the star formation process, since it implies a constant star formation timescale τ ≡ 1/sSFR at all stellar masses, with M * (t) ∼ exp(t/τ). As suggested by Peng et al. (2010), it is also a necessary ingredient for explaining the observed shape invariance of the stellar mass function of star-forming galaxies.

We find however that the SFR of the highest mass bin (M * ∼ 2 × 10 11 M ⊙ ) falls systematically below the value expected for a linear relation, effectively lowering the high mass slope of the SFR-M * relation to 0.8 at high redshift, down to an almost flat relation at z = 0.5. Other studies obtain similar "broken" shapes for the SFR-M * sequence (Rodighiero et al. 2010;Whitaker et al. 2012;Magnelli et al. 2014). Our results are also in very good agreement with Whitaker et al. (2014), who used a very similar approach, albeit only using MIPS 24 µm for stacking. Abramson et al. (2014) show that the relation between the disk mass M disk and SFR has a slope close to one with no sign of bending at z ≃ 0, suggesting that the bulge plays little to no role in star formation. This is a interesting explanation, however it appears to be in contradiction with the so called "bath tub" models (Bouché et al. 2010;Lilly et al. 2013), where the link between SFR and M * is explained by thinking of the stellar mass as a proxy for the total halo mass, and thus to the depth of the galaxy's potential well. A higher gravitational potential leads to more gas inflows, hence bringing more material for star formation (if the infalling gas is either already cold enough or efficiently cooled). While the work of Abramson et al. (2014) suggests that star formation only happens in the disk, the infall of gas is still tied to the total stellar mass according to the bath tub model, hence to the bulge mass. This would mean that only a fraction of the infalling gas is effectively channeled towards the disk (the rest remaining as hot gas in the bulge) and that some conspiracy makes this fraction precisely correlated to the disk mass. This seems unlikely. To further investigate this issue, a detailed analysis of the gas content of the star-forming and bulgedominated galaxies is required, but this goes beyond the scope of this paper. Nevertheless, we point out that this observation might be showing the limitations of the bath tub models, indicating that these galaxies require a specific treatment.

Mass evolution of the main sequence dispersion

We present in Fig. 12 the evolution of the measured SFR dispersion σ SFR as a function of both redshift and stellar mass. We show our measurements from stacking Herschel bands only. Spitzer MIPS is more sensitive and thus allows measurements down to lower stellar masses, but it is less robust as an SFR indicator. This is mostly an issue at z ≃ 2, where the 24 µm is probing the rest-frame 8 µm. Elbaz et al. (2011) have shown that the 8 µm luminosity L 8 correlates very well with L IR (0.2 dex scatter), except for starburst galaxies. Inferring SFR from 8 µm thus has the tendency to erase part of the starburst population, effectively reducing the observed SFR dispersion. We checked that our results are nevertheless in good agreement between MIPS and Herschel, We compare these to the typical scatter of the SFHs in the numerical simulation of Hopkins et al. (2014) shown as a solid purple line.

with MIPS derived dispersions being smaller on average by only 0.03 ± 0.02 dex.

As a sanity check, we also show an estimation of σ SFR from individual Herschel detections. We select all galaxies in our Herschel sample that fall in a given bin of redshift and mass, and compute their offset from the main sequence R SB ≡ SFR/SFR MS , where SFR MS is the SFR of main sequence galaxies given in Eq. 9. Following Elbaz et al. (2011), we call this quantity the "starburstiness". Due to the sensitivity of Herschel, this sample is almost never complete, and biased toward high values of R SB : because this sample is SFR selected, all the galaxies at low mass are starbursts. In order to avoid completeness issues, we remove the galaxies that have R SB < 1, i.e. galaxies that are below the main sequence, and compute the 68th percentile of the resulting R SB distribution. By construction, this value does not need to be corrected for the width of the redshift and mass bins. However, it is only probing the upper part of the SFR-M * correlation, while the stacked measurements also take into account undetected sources below the sequence. In spite of this difference, the values obtained are in very good agreement with the stacked ones. There is a tendency for these to be slightly higher by 0.03 dex, and this could be due to uncertainties in the individual SFR measurements. We conclude that the SFR distributions must be quite symmetric. This however does not rule out a "starburst" tail, i.e. a sub-population of galaxies with an excess of star formation. Indeed, simulating a log-normal distribution of R SB with a dispersion of 0.3 dex and adding 3% more sources with an excess SFR of 0.6 dex (following Sargent et al. 2012) gives a global dispersion measured with MAD of 0.309 dex, while the 68th percentile of the R SB > 1 tail is 0.319 dex, a difference of only 0.01 dex that is well within the uncertainties.

Article number, page 15 of 30 Fig. 13. Evolution of the cosmic star formation rate density ρ SFR with redshift. The orange dash-dotted line traces the SFR density inferred from individual Spitzer MIPS (for z < 1.5) and Herschel detections alone. The solid purple line represents the contribution of stacked sources with significant signal (> 5σ), and the dotted line is the extrapolation of the stacked SFR down to M * = 3 × 10 9 M ⊙ assuming constant sSFR and using the mass functions of Fig. 3. The green line shows the fraction of ρ SFR in regimes where we have probed the existence of the main sequence. The lines are slightly offset in redshift for clarity. Light shaded regions in the background show the corresponding 1σ statistical errors. We compare these to the literature compilation of Madau & Dickinson (2014), shown as open triangles, with their best-fit plotted as a solid gray line.

Implications for the existence of the main sequence

Probably the most striking feature of Fig. 12 is that σ SFR remains fairly constant over a large fraction of the parameter space we explore, only increasing for the lowest redshift bin and at high stellar masses. This increase is most likely caused by the same phenomenon that bends the sequence at high stellar mass (see section 4.2, e.g., a substantial population of bulgedominated objects that blur the correlation). On average, Herschel stacking thus gives σ SFR = 0.30 +0.06 -0.06 dex, with a random error of 0.01 dex, and can be considered almost constant. Doing the same analysis in COSMOS UltraVISTA yields consistently σ SFR = 0.33 +0.03 -0.03 dex, with a random error of 0.01 dex, showing that this result is not tied to specifics of our input H-band catalogs.

More importantly, this value of 0.3 dex means that, at a given stellar mass, 68 % of actively star-forming galaxies have the same SFR within a factor of two. This confirms the existence of the main sequence of star-forming galaxies for all of the stellar mass range probed here and up to z = 3, i.e. over more than 80 % of the history of the universe. A more illustrative picture is shown later in Fig. 16, and we discuss the implication of this finding in section 5.1.

Contribution of the main sequence to the cosmic SFR density

Using our stacked SFRs, we can infer the contribution of each of our stacked bins to the cosmic star formation rate density ρ SFR (Lilly et al. 1996;Madau et al. 1996). To this end, we use the stellar mass functions described in section 2.7 and extrapolate Fig. 14. Contribution to the total ρ SFR (purple dotted line in Fig. 13) as a function of redshift for the various sub-samples of Fig. 13. Background colors represent how galaxies of different stellar masses contribute to the total ρ SFR (from top to bottom: log 10 (M * /M ⊙ ) = 11.2, 10.8, 10.2 and 9.8), lighter colors indicating regions where ρ SFR is extrapolated. The colored lines are defined as in Fig. 13: the solid purple line shows the contribution of stacked sources with significant signal, the green line shows the contribution of galaxies in the regimes where we have probed the existence of the main sequence, and the orange line is the contribution of individually detected FIR sources. The lines shows the inferred mass density by extrapolating our stacked SFRs down to M * = 3 × 10 9 M ⊙ and out to z = 6 using the trend from Madau & Dickinson (2014) and integrating as a function of time. Stellar lifetimes are accounted for, and the mass of stellar remnants is included in ρ * (see text). Colors are the same as in Fig. 13: the solid purple line shows the contribution of stacked sources with significant signal, the green line shows the contribution of galaxies in the regimes where we have probed the existence of the main sequence, and the orange line is the contribution of individually detected FIR sources. Shaded regions in the background show the corresponding 1σ statistical errors. We compare these results to the literature compilation of Madau & Dickinson (2014) shown as open triangles.

Article number, page 16 of 30 C. Schreiber et al.: The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day our results to obtain a prediction for the total ρ SFR , assuming a main sequence slope of unity for low mass galaxies, and integrating the mass functions down to M * = 3 × 10 9 M ⊙ (i.e. ∼ 0.03 M ⋆ ). The results of this analysis are presented in Figs. 13 and 14, and compared to the literature compilation of Madau & Dickinson (2014) (where luminosity functions are integrated down to 0.03 L ⋆ , and should thus match our measurements to first order).

We also infer the total stellar mass density ρ * by integrating ρ SFR as a function of time. At each time step, we create a new population of stars whose total mass is given by ρ SFR , and let it evolve with time. We account for stellar mass los using the Salpeter (1955) IMF to model the population, allowing stars to evolve and die assuming the stellar lifetimes of Bressan et al. (1993) for solar metallicity. As stars die, some of the matter is left in the form of stellar remnants that are traditionally also included in ρ * , i.e. neutron stars and white dwarfs. We parametrize the masses of these remnants following Prantzos & Silk (1998). The contribution of these remnants continuously rises with time to reach about 12 % at z = 0. The result is presented in Fig. 15.

One can see from these figures that individual Herschel detections in the ultra-deep GOODS and CANDELS surveys (orange dash-dotted line) unveil about 50% of the star formation budget below z = 2, but less than 10% at z = 4. In total, and over the redshift range probed here, these galaxies have built 49% of the mass of present day stars, and are thus to be considered as major actors in the stellar mass build up in the Universe. Stacking (purple line) allows us to go much deeper, since we reach almost 100% of the total ρ SFR at z < 2, and accounts for 83% of the mass of present day stars. Extrapolating our observations, to lower stellar masses using the mass functions and to z = 0 using the best fit ρ SFR of Madau & Dickinson (2014), we obtain an estimate of the total amount of star formation in the Universe (purple dotted line). Integrating it to z = 0 gives ρ * (z = 0) = (5.3 ± 0.1) × 10 8 M ⊙ Mpc -3 , consistent with the value reported by Cole et al. (2001) and Bell et al. (2003) (our error estimate being purely statistical).

Although the range in redshift and stellar mass over which we are able to probe the existence of the main sequence is limited, it nevertheless accounts for 66% of the mass of present day stars. This number climbs up to 73% if we take into account other studies that have observed a tight correlation down to z = 0 (Brinchmann et al. 2004). We show in the next section that starburst galaxies make up about 15% of the SFR budget in all the redshift and mass bins that we probe with individual detections, and that the remaining fraction is accounted for by a single population of main sequence galaxies. Subtracting these 15% from the above 73 %, we can say that at least 62% of the mass of present day stars was formed by galaxies belonging to the main sequence. In other words, whatever physical phenomenon shapes the main sequence is the dominant mode of star formation in galaxies.

4.6. Quantification of the role of starburst galaxies and the surprising absence of evolution of the population 4.6.1. An overview of the main sequence

We summarize the previous results in Fig. 16. Here we show the distribution of individually detected galaxies on the SFR-M * plane at various redshifts. The locus of our stacked SFRs (solid blue lines) may not appear to coincide with the average of the detections because of the SFR detection limit, symbolized by the horizontal dashed line. We discuss later on (in Fig. 17) the distribution of these detected sources and confirm that the stacks and the detections are in perfect agreement. We also show for reference the z = 0 sample taken from the Sloan Digital Sky Survey (SDSS DR4, Brinchmann et al. 2004) as presented in Elbaz et al. (2007). In this data set, actively starforming galaxies are selected according to their rest-frame U -V colors only (i.e. what is usually referred to as the "blue cloud"), and SFRs are estimated from the dust-corrected H α line. These differences of observables and sample selection are likely to affect the shape of the main sequence. In particular, it is clear that the bending at high mass is less pronounced in the SDSS sample, and this is likely due to the selection. Therefore, the comparison of this z = 0 data set with our own sample should be done with caution. This nevertheless resembles our own results quite closely and allows us to paint a consistent picture from z = 0 to z = 3.

"Starburstiness" distributions

Although the depth of the Herschel surveys is limited, there is still a lot to be learned from the individually detected sources, in particular for the bright starburst galaxies. Now that we have a good definition of the main sequence, we can study these galaxies in more detail. Rodighiero et al. (2011) have used similar data in COSMOS and found that the distribution of star-forming galaxies on and off the main sequence is bimodal: a population of normal star-forming galaxies shapes the main sequence with a log-normal distribution of sSFR at a given mass, while another smaller population of "starbursts" boosts the high sSFR counts. Their work was restricted to z = 2 because of the BzK selection, so we want to extend it here to a mass-complete sample over wider range of redshifts to see what we can learn about the starburst population.

In Fig. 17 we show the distributions of "starburstiness" R SB , defined as the ratio between the actual SFR of each galaxy and SFR MS , the SFR they would have if they were exactly following the main sequence defined in Eq. 9. We analyze these distributions in the same bins that were used for stacking, to make the comparison simpler. Since the CANDELS fields have a relatively similar depth, we group them together into a single distribution (blue curve), and following Rodighiero et al. (2011) we keep the COSMOS UltraVISTA sources apart (orange curve) where the catalog is mass-complete.

As was the case for the stellar mass functions discussed in section 2.7, these distributions are affected by completeness issues. To correct this, we use a procedure very similar to the one used for the mass functions. We assume that the total L IR of a galaxy at a given redshift is well modelled from the rest-frame monochromatic luminosity in each Herschel band by a power law plus a Gaussian scatter in logarithmic space. In each bin of redshift and stellar mass, we select galaxies that are detected in at least three Herschel bands, fit this power law and measure the dispersion as in Fig. 2. In this case, this dispersion will be mainly due to differences in dust temperature, and is found to be minimal at the peak of the FIR emission (see Fig. 9). Then, for each Herschel band, in each redshift and mass bin, we then generate a mock population of 10 000 galaxies with uniform redshift and mass distribution within the bin and associate to each mock galaxy a starburstiness with uniform probability. We multiply this starburstiness by the SFR MS of the galaxy computed from its redshift and mass, subtract the average observed SFR UV in this bin (we assume no scatter in SFR UV for simplicity), convert the remaining SFR IR into L IR , and finally the L IR into monochromatic luminosity in the considered Herschel band, adding a ran-Article number, page 17 of 30 Elbaz et al. (2007), while each subsequent panel displays our result for increasing redshifts. The blue line shows the average stacked SFR (section 4.2), and the green lines above and below show the 1σ dispersion obtained with scatter stacking (section 4.4). Both of these were performed on sliding bins of mass for the sake of visualization, and for this figure only. The SFR detection limit of each sample is indicated with a solid orange line. We also show the sliding median and percentiles of the SDSS distribution with purple and yellow lines respectively, to emphasize that both the SFR tracer and the sample selection are different (see text). This correlation, observed in the local Universe, is reproduced as a gray line on each panel. The density of individual detections in shown in gray scale in the background, except for the two highest redshift bins where we show the individual galaxies as gray filled circles. dom logarithmic scatter whose amplitude is given by the dispersion measured earlier. The completeness is then given as the fraction of mock galaxies with simulated monochromatic luminosity larger than the limiting luminosity at the corresponding redshift.

Since we include in our sample all sources provided that they are detected in at least one Herschel band, we then take the maximum completeness among all bands. In Fig. 17 In all fields, the low R SB counts at z < 1.2 come from MIPS derived SFRs. Since the MIPS imaging in COSMOS UltraV-ISTA is only half as deep as the deepest CANDELS fields (see section 2.3 and Table 1), the two curves probe almost similar ranges of R SB . At z ≥ 1.2 (i.e. starting from the bin at z = 1.5) MIPS is not used any more, and the difference in depth of the Herschel surveys becomes quite obvious. Reassuringly, we see very good agreement between the two data sets where they overlap.

Evolution of the fraction of starbursts

From these distributions, we can derive interesting statistical properties of our star-forming galaxy sample. In particular, Rodighiero et al. (2011) reported that only 2 to 3% of the galaxies in their z = 2 sample were in a "starburst" mode, with an SFR increased by more than a factor 4 (or 0.6 dex) compared to the main sequence (i.e. R SB > 4). Using our data set, we are able to measure this fraction at different redshifts, and look for an evolution of this population. To do so, we select in each redshift bin all star-forming galaxies more massive than 5 × 10 10 M ⊙ (this mass threshold is chosen to avoid SFR completeness issues), and com-Article number, page 18 of 30 C. Schreiber et al.: The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day Fig. 17. R SB histograms of individual Herschel and Spitzer MIPS (for z < 1.2) detections in each of our redshift and stellar mass bins. The blue and orange lines correspond, respectively, to the counts in the CANDELS and COSMOS 2 deg 2 fields. We also show the incomplete counts in light colors in the background. The green curve shows our best fit to the combined data set, and is the same for all bins except for the normalization, which is set by the mass function. The black vertical line shows the locus of the main sequence. Error bars indicate Poissonian noise. pute the fraction of objects for which the observed SFR is at least a factor X SB above the main sequence. Following Rodighiero et al. (2011), we choose X SB = 4. However, to make sure that our results are not affected by this somewhat abritrary choice, we also do this analysis with X SB = 3 and 2.5. By lowering this threshold, the number of object increases and the statistics become more robust, at the price of having a higher number of nonstarburst contaminants scattering from the main sequence. Note that we could have overcome this problem by fitting the observed counts, decomposing the total SFR distribution as coming from two populations: a main sequence component, and a starburst component, as was done in Sargent et al. (2012). While such a deconvolution provides a more physical definition of a "starburst", it is also dependent on the model one choses to describe the starburst population. Also, except in a few low redshift bins, our data do not probe a wide enough range to be able to robustly perform this decomposition. We therefore choose this simpler approach of a fixed R SB threshold for now, and will come back to the decomposition later. The results are presented in Fig. 18. Between z = 0.5 and z = 4 and for X SB = 4, we measure a roughly constant value ranging between 2 and 4%, and no clear Article number, page 19 of 30 A&A proofs: manuscript no. paper Fig. 18. Evolution of the observed "starburst" fraction with redshift, where starbursts galaxies are defined as having an SFR enhanced by at least a factor X SB compared to the SFR on the main sequence. Our results are shown for X SB = 4, 3 and 2.5 as diamonds (black, gray and white, respectively), slightly offset in redshift for clarity. Only points where the starburst sample is complete are shown, and error bars are estimated using bootstraping. We also show the value observed by Rodighiero et al. (2011) at z = 2 as a filled red star, which was obtained with X SB = 4. These figures are compared qualitatively to the observed pair fraction reported by Kartaltepe et al. (2007) as open blue triangles, and the range of major merger fraction predicted by Hopkins et al. (2010a) is shown with dashed purple lines. It is clear that, both in observations and simulations, the merger fraction evolves significantly faster than the observed starburst fraction, the latter remaining almost constant regardless of the precise definition of what is a "starburst".

trend with redshift emerges. We discuss the implication of this fact in section 5.2. 4.6.4. Quantifying the contribution of starbursts to the total SFR budget

We now normalize the counts by the integral of the stellar mass function in all bins and, supported by our findings on the constant width of the main sequence (Fig. 12), and a constant starburst fraction (Fig. 18), we assume that the R SB distribution is not varying. We note that, with this same assumption of an unvarying distribution, Sargent et al. (2012) managed to reconstruct the IR luminosity function at various redshifts. With the increased statistics, we are now able to perform a two component decomposition of the whole distribution. We thus fit all the counts simultaneously with a double log-normal distribution following Sargent et al. (2012). The chosen parametrization for the fit is

φ R SB (x) = 1 -f SB -f miss √ 2 π σ MS exp - log 10 (x/x 0 ) 2 2 σ MS 2 + f SB √ 2 π σ SB exp - log 10 (x/B SB ) 2 2 σ SB 2 , ( 10 
)
where σ MS and σ SB are respectively the widths of the main sequence and starburst distributions, f SB is the fraction of starbursts, and B SB is the median multiplicative SFR boost of starburst galaxies. We also introduce f miss as the fraction of star-Fig. 19. Combined "starburstiness" distributions from Fig. 17 normalized to the total number of star-forming galaxies in each bin. The green line shows our best-fit model from Eq. 10, and the blue and orange lines show respectively the contributions of main sequence and starburst galaxies. The residuals of the fit are shown at the top of the figure.

forming galaxies that are neither "main sequence" nor "starburst" galaxies (e.g. "green valley" galaxies), and x 0 the median R SB of main sequence galaxies. By construction, the latter two parameters should be close to 0 and 1 respectively, but we allow them to vary in order to check for the consistency between the detections and the stacks.

The result is shown in Fig. 19. Leaving all parameters free, the fit of the starburst population is highly uncertain, so we decided to fix σ SB = σ MS , and fit the logarithm of the counts. We obtain σ MS = 0.31 ± 0.02 dex, f SB = 3.3 % ± 1.5 %, B SB = 5.3 ± 0.4, f miss = 0 % ± 2 % and x 0 = 0.87 ± 0.04.

We remind the reader that these numbers depend heavily on the chosen parametrization of the starburst population. For example, not imposing σ SB = σ MS would change the values of B SB considerably, hence the measured values should be used with caution. The integrated contribution of the starburst population is however well constrained (Sargent et al. 2012). Taking these numbers at face value, we reach a similar conclusion as Rodighiero et al. (2011) and Sargent et al. (2012), i.e. that starbursts are rare and happen in only about 3% of galaxies at a given instant. However, they form stars on average ∼ 5 times faster than their main sequence counterparts, and thus contribute to ∼ 15% of the SFR budget. It is worth noting that the bimodality, if any, is not clearly apparent in our data, and the high R SB counts can also be fit with a single power law (with a slope close to -2). While our goal is not to demonstrate the validity of this bimodal decomposition, we want to stress that the absence of a "gap" in the distribution between the peaks of the two components does not rule out the bimodal hypothesis.

The main sequence distribution on the other hand is very well constrained and both its average and the measured σ MS are in agreement with the stacked value. The fact that f miss is close to zero means that we are able to recover essentially all the star-forming galaxies with this model. More precisely, if there Article number, page 20 of 30 C. Schreiber et al.: The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day is another population of star-forming galaxies, we can say with 70 % probability that it can only make up for less than 2 % of the counts.

Last but not least, the accuracy of the fit in all the bins (as shown in Fig. 17) confirms the validity of our hypothesis of a universal R SB distribution.

Discussion

Connection of the main sequence dispersion with feedback processes

The non-evolution of the main sequence dispersion, as described in section 4.4, is intriguing. Indeed, this dispersion can originate from several completely different processes. On the one hand, the scatter within the star-formation history (SFH) of individual galaxies, i.e. bursts of star formation due to minor/major merging and feedback from AGNs or supernova winds, will naturally broaden the distribution of SFR. On the other hand, the scatter may also be due to one or more missing variables, such as age, metallicity, geometry or environment. For example, Salmi et al. (2012) found, using 24 µm based SFRs at z ≃ 1, that the dispersion of the main sequence could artificially be reduced to about 0.15 dex by introducing the rest-frame U -V color as well as z-band clumpiness as extra variables. This also shows that most of the observed scatter of the main sequence is physical and not due to measurement errors. Hopkins et al. (2014) have computed the expected scatter of SFH from a set of numerical simulations, and found it to be a strong function of halo mass, and thus of stellar mass. Performing abundance matching using their M * -M halo relation, one finds that they predict a variation of the SFR (averaged over 200 Myr, hence comparable to the time scale our FIR SFR tracer) of about 0.1 dex at M * > 10 11 M ⊙ , rising up to 0.4 dex as stellar mass decreases down to 10 8 M ⊙ . They also find that this evolution is coming predominantly from the rising importance of stellar feedback, and not from merging or global gravitational instabilities. Intuitively, the smaller the galaxy, the more sensitive it is to the impact of stellar winds and super novae, since the characteristic length scale over which these phenomena tend to heat and blow away the gas is more or less constant. Since there are other components that add up to the total scatter in SFR (age, environment, metallicity, etc.), this prediction should be considered as a lower limit.

The predicted values of Hopkins et al. (2014) are shown as the purple line in Fig. 12. The dependence of their prediction on stellar mass is clear, yet we seem to measure a constant value. Even though there are other sources of scatter at play, it would be a strange conspiracy for them to exactly counterbalance the evolution of the scatter within the SFH in order to maintain a constant main sequence scatter (see however Sparre et al. 2014). Our interpretation is thus the following.

Stellar feedback is a necessary ingredient in numerical simulations. Without it, galaxies would consume their gas too efficiently, and with the amount of infalling gas they receive from the inter-galactic medium, they would end up today with extremely high stellar masses that are not observed. The real strength of the stellar feedback is poorly constrained, so it is usually considered as a free parameter and fine-tuned to reproduce the local stellar mass density. However, our observations show that it cannot be arbitrarily high. Other processes can be considered in order to either decrease the star formation efficiency of galaxies, or reduce the amount of infalling gas they receive (e.g. Gabor & Bournaud 2014).

Connection between starbursts and mergers

We have shown in section 4.6 that the starburst population is not evolving, both in relative numbers and SFR excess with respect to the main sequence. This is intriguing in many aspects.

Both observations (Le Fèvre et al. 2000;Kartaltepe et al. 2007;Lotz et al. 2011, and references therein) and numerical simulations (e.g. Somerville et al. 2008;Hopkins et al. 2010a) predict an increase of the major merger rate with increasing redshift, typically proportional to (1 + z) m . Although the slope m of the evolution of the merger fraction is quite uncertain (see discussion in Kampczyk et al. 2007), it is always found to be positive, ranging from m ≃ 0 up to m ≃ 6. For example, Kartaltepe et al. (2007) analyzed the fraction of close pairs from z = 0 to z = 1.2, and found m = 3.1 ± 0.1. Their z = 0 value of 0.7% ± 0.1 % is comparable to our observed starburst fraction with X SB = 4, however extrapolating this relation to z = 2 would predict a pair fraction of about 50% (20% if we consider instead the numerical simulation of Hopkins et al. 2010a). If all or a constant fraction of those pairs do lead to gas-rich major mergers, this would have a huge impact on the number of starburst, at odds with our observations.

On the other hand, Perret et al. (2014) ran several numerical simulations of mergers of z = 2 clumpy galaxies, and found little to no impact of the merger on star formation when compared to isolated galaxies. Their point is that by z = 2 star formation is already fairly active in isolated galaxies, and actually close to a saturation point due to feedback processes. When the merger happens, it therefore cannot increase the total SFR by a large amount because star formation is already at its maximum. So even if mergers were more frequent in the past, they were also less efficient in triggering bursts of star formation, and this could explain why we are not seeing a huge increase in the number of starburst galaxies. This goes in the same direction as the results of Hopkins et al. (2010b) who found in their simulations that merger-driven bursts contribute to the same fraction (5-10 %) of the IR luminosity function at all redshifts, but it does not explain why the fraction of such bursts remains constant over time.

Although the most extreme starburst events are unambiguously associated with major mergers in the local Universe (e.g. Armus et al. 1987), another interpretation of our results is that the situation may be different at earlier epochs, and that some other phenomena may be responsible for such bursts of star formation, such as large scale dynamical instabilities (e.g. Dekel et al. 2009b).

Conclusions

We have put together a catalog of star-forming galaxies that is mass-complete above 2 × 10 10 M ⊙ and extends up to z = 4, using the deep UV to NIR observations in the CANDELS fields. By stacking the Herschel images at the positions of these galaxies, using bins of mass and redshift, we measured their average star formation rates in a dust-unbiased way. We then derived a new technique called "scatter stacking" to measure the scatter in SFR around the average stacked value. We also analyzed sources individually detected on the Herschel images to study the SFR distribution in more detail over a more limited range of redshift and stellar mass. Our results are the following:

-We observe a continuously rising sSFR ≡ SFR/M * up to z = 4, with no clear sign of a saturation or plateau at the highest redshifts. Previous observations of such a saturation are mostly based on LBG samples that lack observations in the Article number, page 21 of 30

FIR to reliably constrain the dust extinction. Earlier results are likely due to a combination of: 1) selection effects; and 2) biases in the dust extinction correction. It is therefore mandatory to have mass-complete samples and rest-frame MIR or FIR data to provide reliable constraints on the star formation activity of actively star-forming galaxies. -We find that the slope of the SFR-M * relation is close to unity, except for high mass galaxies (M * 10 10.5 M ⊙ ), where the slope is shallower. Furthermore, the high mass slope is evolving from ∼ 0.8 at high redshifts down to almost 0 at z ∼ 0.5. One possible explanation is the increasing contribution of the bulge to the stellar mass of these galaxies, while the star formation rates come mostly from the disk (Abramson et al. 2014). If the total SFR is proportional to the disk mass only and not to the total stellar mass, this questions the role of the gravitational potential of the galaxy, and thus gas infall, in determining the total SFR output of a galaxy. -At fixed mass and redshift, the scatter around the average SFR appears to be constant and close to 0.3 dex from M * = 3×10 9 M ⊙ to 2×10 11 M ⊙ , with no clear redshift dependence.

We therefore confirm the existence of the "main sequence" of star-forming galaxies over a large range of mass and redshift with a robust star formation rate tracer. We show that at least 66% of present day stars were formed in main sequence galaxies. Consequently, whatever physical process produces the main sequence is the dominant mode of stellar growth in galaxies.

-The non-evolution of the SFR scatter with mass can be connected to the expected strength of stellar feedback. State-ofthe-art numerical simulations indeed predict that stellar feedback generates additional scatter in the star formation histories of galaxies, a scatter whose amplitude is strongly anticorrelated with halo mass and thus galaxy mass. Our observations provide useful constraints for numerical simulations where stellar feedback is often used as an efficient star formation regulator. We show here that it cannot be arbitrarily high. -Refining the above analysis with individual Herschel detections, we look for starburst galaxies whose SFRs are systematically larger than those of main sequence galaxies. In agreement with Sargent et al. (2012) and extending their analysis to higher redshifts and more complete samples, we find that the fraction of such starburst galaxies does not evolve with time. This questions the usual interpretation of starburst as the consequence of triggering by major mergers. Several studies, both of simulations and observations, indeed show that the fraction of mergers was substantially higher in the past. An alternative explanation is that mergers may be less efficient at creating bursts of star formation within high redshift galaxies.

We have pushed Herschel as far as possible to study the main sequence of star-forming galaxies. But it is still necessary to dig deeper than that, i.e. probing higher redshifts and/or lower stellar masses. Most of what we know at present about the high redshift Universe (z > 4) comes from rest-frame UV-based studies, and we have shown here that even at these redshifts dust extinction plays an important role. Therefore it will be necessary to explore these epochs of the Universe with an independent and more robust SFR tracer in order to confirm the pioneering results obtained with the UV light alone. Probing lower stellar masses will also be an important challenge, since due to their small sizes, low mass (M * < 3 × 10 9 M ⊙ ) galaxies are probably most sensitive to smaller scale physics, e.g. stellar or AGN feedback.

Valuable insights already come from the study of lensed galaxies. This technique allows to observe galaxies about an order of magnitude fainter than the nominal instrument depths, either by chance in blank fields (e.g. the Herschel ATLAS, Eales et al. 2010), or by explicitly targeting large galaxy clusters (e.g. the Herschel Lensing Survey, Egami et al. 2010). But studying these regimes on statistically relevant samples and with a dust-unbiased SFR tracer will only be possible with a new generation of instruments. The most promising candidate available today for the high redshift Universe is certainly the Atacama Large Millimeter/submillimeter Array (ALMA), and interesting science is already on its way. In particular, we are now waiting for the completion of Cycle 2 observations targeting a mass-complete sample of z = 4 star-forming galaxies down to log 10 (M * /M ⊙ ) = 10.7. With only a few minutes of on-source integration, these data will allow us to probe SFRs about five times lower than those available with the deepest Herschel surveys. As for the low mass galaxies, substantial progress is likely to happen in a few years thanks to the exceptional MIR capabilities of the James Webb Space Telescope (JWST). In particular, this means that if we compute the median of our noisy stacked image and subtract the median value of the noise, we do not exactly recover the median flux density. We will call this effect the noise bias in what follows. White et al. (2007) show that this bias arises when: 1) the signal to noise ratio of stacked sources is low; and 2) the distribution of flux is skewed toward either faint or bright sources. The latter is indeed true in our simulations, since we used a log-normal distribution for the SFR. Correcting for this effect is not trivial, as it requires knowledge on the real flux distribution. Indeed, Fig. B.3 shows the amplitude of this bias for different log-normal flux dispersions, the highest dispersions producing the highest biases. White et al. (2007) argue that the median stacked flux is still a useful quantity, since it is actually a good measure of the mean of the distribution. But this is only true in the limit of low signal to noise ratios: in their first example -a double normal distribution -the measured median reaches the true mean for SNR < 0.1, but correctly measures the true median for SNR > 3.

Of course these values depend on the distribution itself, as is shown in Fig. B.3. In particular, for a log-normal distribution with 0.3 dex scatter, the mean is reached for SNR < 0.4, and the median for SNR > 3. Theoretically, the difference between the mean and the median for a log-normal distribution is log(10) σ 2 /2 dex. In our simulations, the typical 100 µm flux dispersion within a stacking bin is ∼ 0.45 ± 0.1 dex, which yields a factor ∼ 1.7 +0.5 -0.2 , in agreement with the maximum observed bias. To see how this affects the measured L IR in practice, we list in Table B.1 the ratio of the median to mean measured L IR in each stacked bin, as measured on the real images. We showed in section 4.4 that the dispersion in L IR is about 0.3 dex. Therefore, assuming a log-normal distribution, we would theoretically expect the ratio of the median to mean L IR to be close to 0.78. It is, however, clear from Table B.1 that this is not the case in practice: the median is usually (but not always) much closer to the mean than expected for a noiseless situation. Therefore, the median stacked fluxes are often not measuring the median fluxes or the mean fluxes, but something in between. Since correcting for this bias requires assumption on the flux distribution, we prefer (when possible) to use the more noisy but unbiased mean fluxes for this study.

Appendix B.2: Clustering correction

Among our 400 random realizations, the measured mean fluxes do not show any systematic bias. However these simulations do not take into account the flux boosting due to source physical clustering, because we assigned random positions to the sources in our catalog. In order to test the effect of clustering, we regenerate a new set of 200 simulations, this time using the real optical positions of the sources and only varying the photometric noise and the SFRs of the sources.

If galaxies are significantly clustered in the image, then the measured fluxes will be boosted by the amount of light from clustered galaxies that falls inside the beam. Since the beam size here is almost a linear function of the wavelength, we expect These values were obtained by computing the ratio of measured mean stacked fluxes to the expected mean fluxes in simulated images using our flux extraction method (see section 3.2). Median stacked fluxes are affected the same way, after removing the noise bias described in Appendix B.1. We also show the 16th and 84th percentiles of the bias distribution. The methods are: A, using our own flux extraction procedure section 3.2; B, using the full PSF; and C, using only the central pixel.

SPIRE bands to be more affected than PACS bands. Since the same beam at different redshifts corresponds to different proper distances, low redshift measurements (z < 0.5) should be less affected. However, due to the flatness of the relation between redshift and proper distance for z > 0.5, this should not have a strong impact for most of our sample. Indeed, we do not observe any significant trend with redshift in our simulations. No trend was found with stellar mass either, hence we averaged the clustering signal over all stacked bins for a given band, and report the average measured boost in Table B.2 ("method A") along with We warn the reader that, by construction, these corrections are specific to our flux extraction method. By limiting the fitting area to pixels where the PSF relative amplitude is larger than 10%, we absorb part of the large scale clustering into the background level. If we were to use the full PSF to measure the fluxes, we would measure a larger clustering signal (see section 3.2). We have re-extracted all the fluxes by fitting the full PSF, and we indeed measure larger biases. These are tabulated in Table B.2 as "method B". An alternative to PSF fitting that is less affected by clustering consists of setting the mean of the flux map to zero before stacking and then only using the central pixel of the stacked cutout (Béthermin et al. 2012). Due to clustering, the effective PSF of the stacked sources will be broadened, and using the real PSF to fit this effective PSF will result in some additional boosting. Therefore, by only using the central pixel, one can get rid of this effect. We show in Table B.2 as "method C" how the figures change using this alternative method. Indeed the measured boosting is smaller than when using the full PSF, and is consistent with that reported by Béthermin et al. (2014, submitted), but our method is even less affected thanks to the use of a local background.

Appendix B.3: Error estimates

We now study the reliability of our error estimates on the stacked fluxes. We compute the difference between the observed and input flux for each realization, ∆S . We then compute the median ∆S , which is essentially the value plotted in Fig. B.2, i.e. it is non-zero mostly for median stacked fluxes. We subtract this median difference from ∆S , and compute the scatter σ of the resulting quantity using median absolute deviation, i.e. σ ≡ 1.48×MAD(∆S -∆S ). We show in Fig. B.5 the histograms of (∆S -∆S )/σ for the mean and median stacked PACS 100 µm fluxes in each stacked bin. By construction, these distributions are well described by a Gaussian of width unity (black curve).

We have two error estimates at our disposal. The first, σ IMG , is obtained by measuring the RMS of the residual image (after the stacked fluxes have been fitted and subtracted), and multiplying this value by the PSF error factor (see Eq. 4). The second, σ BS , is obtained by bootstraping, i.e. repeatedly stacking half of the parent sample and measuring the standard deviation of the resulting flux distribution (again, see section 3.2). Each of these method provides a different estimation of the error on the flux measurement, and we want to test their accuracy.

In Fig. B.5, we show as red and blue lines the predicted error distribution according to σ IMG and σ BS , respectively. When the predicted distribution is too narrow or too broad compared to the observed one (black curve), this means that the estimated error is respectively too low or too high.

For median stacked fluxes, it appears that σ BS is accurate in all cases. It tends to slightly overestimate the true error on some occasions, but not by a large amount. On the other hand, σ IMG dramatically underestimates the error when the measured S /N of stacked sources is high (or the number of stacked sources is low).

The situation for mean stacked fluxes is quite different. The behavior of σ IMG is the same, but σ BS show the completely opposite trend, i.e. it underestimates the error at low signal to noise and high number of stacked sources. This may be due to the fact that bootstraping will almost always produce the same confusion noise, because it uses the same sources. The reason why this issue does not arise for median stacked fluxes might be due to the fact that the median naturally filters out bright neighbors, hence reducing the impact of confusion noise.

The results are the same for the PACS 70 and 160 µm band. Therefore, keeping the maximum error between σ IMG and σ BS ensures that one has an accurate error measurement in all cases for the PACS bands. SPIRE fluxes on the other hand show a substantially different behavior. We reproduce the same figures in Fig. B.6, this time for the SPIRE 350 µm band. Here, and except for the highest mass bin, the errors are systematically underestimated by a factor of ∼ 1.7, regardless of the estimator used. We therefore use this factor to correct all our measured SPIRE errors in these bins.

We believe this underestimation of the error is an effect of confusion noise. Indeed, it is clear when looking at the stacked maps at these wavelengths (e.g. Fig. 5) that there is a substantial amount of large scale noise coming from the contribution of the neighboring bright sources. The main issue with this noise is that it is spatially correlated. This violates one of the assumptions that were made when deriving the error estimation of Eq. 4, which may thus give wrong results. The reason why only the SPIRE bands are affected is because the noise budget here is (by design) completely dominated by confusion. This is clear from Fig. B.4 (left): when putting little to no instrumental noise σ inst on the simulated maps, the total error σ tot on the flux measurements is completely dominated by the confusion noise σ conf (blue line), and it's only by adding instrumental noise of at least 10 mJy (i.e. ten times more than what is present in the real maps) that the image becomes noise dominated. By fitting

σ tot = σ 2 conf + σ 2 inst , (B.1)
we obtain σ conf = 4.6 mJy. This value depends on the model we used to generate the simulated fluxes, but it is in relatively good agreement with already published estimates from the literature (e.g. Nguyen et al. 2010, who predict σ conf. = 6 mJy).

We then show in Fig. B.4 (right) that the error underestimation in the SPIRE bands, here quantified by the ratio σ/σ IMG , goes away when the image is clearly noise dominated, meaning that this issue is indeed caused by confusion and the properties of the noise that it generates.

Article number, page 27 of 30 that is put on the image (here normalized to a "PSF" noise in mJy, i.e. the error on the flux measurement of a point source in the absence of confusion). We generated multiple simulations of the 250 µm maps using varying levels of white noise, and compute σ from the difference between the measured fluxes and their expected values. Left: evolution of the average total noise per source σ tot. = σ × √ N stack where N stack is the number of stacked sources. This is the total error when extracting the flux of a single source on the map. When the instrumental noise (red line) is high, it dominates the error budget over the confusion noise. But when reaching too low values, the measured total noise is dominated by the confusion noise σ conf. (blue line). We fit this evolution as σ Article number, page 29 of 30 1. Introduction

2 tot. = σ 2 inst. + σ 2 conf. ( orange 
The discovery of a relation between the star formation rate (SFR) and the stellar mass (M * ) of galaxies, also called the "Main Sequence" of star-forming galaxies (Noeske et al. 2007), at z ≃ 0 (Brinchmann et al. 2004;Elbaz et al. 2007), z ≃ 1 (Noeske et al. 2007;Elbaz et al. 2007), z ≃ 2 (Daddi et al. 2007;Pannella et al. 2009a;Rodighiero et al. 2011;Whitaker et al. 2012) z = 3-4 (Daddi et al. 2009;Magdis et al. 2010;Heinis et al. 2013;Schreiber et al. 2015;Pannella et al. 2015) and even up to z = 7 (e.g., Stark et al. 2009;Bouwens et al. 2012;Stark et al. 2013;González et al. 2014;Steinhardt et al. 2014;Salmon et al. 2015) suggested a radically new paradigm for star formation. The tightness of this correlation is indeed not consistent with the frequent random bursts induced by processes like major mergers of gasrich galaxies, and favors more stable, long-lasting episodes of star formation (Noeske et al. 2007).

Most studies focusing on this Main Sequence have measured the slope (in logarithmic space) of this correlation, and many different values were reported. A thorough compilation was recently published in Speagle et al. (2014), summarizing most measurements obtained so far. In particular, we can distinguish three kinds of measurements. First, measured slopes close to unity (e.g., Elbaz et al. 2007;Daddi et al. 2007;Pannella et al. 2009a;Peng et al. 2010). Second, slopes shallower than unity, typically 0.8, and as low as 0.6 (e.g., Noeske et al. 2007;Karim et al. 2011;Rodighiero et al. 2011;Bouwens et al. 2012;Steinhardt et al. 2014;Speagle et al. 2014;Pannella et al. 2015). And finally, more recently a third group of studies actually advocate a broken power-law shape, or continuously varying slopes, where low-mass galaxies are well fitted with a slope of unity, and high mass galaxies exhibit much shallower (if not flat) slopes (e.g., Whitaker et al. 2012;Magnelli et al. 2014;Whitaker et al. 2014;Ilbert et al. 2015;Schreiber et al. 2015;Lee et al. 2015;Gavazzi et al. 2015). This latter, more refined description could actually explain the diversity of slope measurements that were obtained so far. Indeed, depending on the stellar mass range covered by the sample, which is usually limited, as well as the chosen red-Article number, page 1 of 20 A&A proofs: manuscript no. paper shift window, fitting a single power law will yield different bestfit slopes.

A tempting interpretation of this broken power law is that low mass galaxies evolve with a unique star formation efficiency, as shown by their universal specific SFR (sSFR ≡ SFR/M * ) (see, e.g., the discussions in Ilbert et al. 2015;Lee et al. 2015). Higher mass galaxies on the other hand depart from this universal relation and show a reduced star formation activity, probably gradually declining toward a quiescent state. This picture is somehow in contradiction with the idea that massive galaxies must quench rapidly (e.g., Peng et al. 2010), a process that often involves violent episodes in the lifetime of the galaxy, e.g., strong active galactic nucleus (AGN) feedback (Silk & Rees 1998). Instead, such a slow decline toward the red cloud could be more consistent with less abrupt processes like "radio-mode" AGN feedback (Croton et al. 2006;Bower et al. 2006) or "halo quenching" (Gabor & Davé 2012), where the infalling gas is heated up and prevented from forming stars. One can also invoke the "morphological quenching" mechanism (Martig et al. 2009), where the drop of efficiency is caused by the presence of a massive and dense stellar bulge that increases differential rotation within the disk, and prevents gas from fragmenting.

Recently, Abramson et al. (2014) put forward another possible explanation for this "bending" of the Main Sequence. They claim that this change of slope is not due to a reduced star formation efficiency. Instead, because of the presence of a bulge, they argue that the total stellar mass has become a poor proxy for the mass of gas available. Therefore, their argument is that one should rather expect the star formation rate to correlate with the mass of the disk instead, since this is where the star-forming gas is located. To support their claim, they used bulge-to-disk decompositions of the observed light profiles of thousands of local galaxies in the Sloan Digital Sky Survey (SDSS), and estimated their disk masses. They found indeed that the slope of the Main Sequence was put back to unity at all masses (at least for M * > 10 10 M ⊙ ) if the disk mass was substituted to the total stellar mass (see, however, Guo et al. 2015 where a conflicting result is obtained using the same data set).

In Schreiber et al. (2015) (hereafter S15), we have reported that the high-mass slope of the Main Sequence is gradually increasing with increasing redshift, approaching unity at z > 2 (see also Whitaker et al. 2014;Lee et al. 2015). In particular, at z = 1 we observed a less pronounced (but still significant) bending than what is reported at lower redshifts. Our goal in this paper is to test if the bending of the Main Sequence disappears when the disk mass is substituted to the total stellar mass at z = 1, similarly to what was found by Abramson et al. (2014) at z = 0.

Thanks to the very high angular resolution provided by the Hubble Advanced Camera for Surveys (ACS) imaging, it is possible to perform the morphological analysis of the stellar profile of distant galaxies out to z = 1, either through non-parametric approaches (e.g., Abraham et al. 1996;Conselice 2003;Ferguson et al. 2004;Lotz et al. 2004), profile fitting (e.g., Bell et al. 2004;Ravindranath et al. 2004;Barden et al. 2005;McIntosh et al. 2005;Pannella et al. 2006;Häussler et al. 2007;Pannella et al. 2009a), or decomposition of this profile into multiple components (e.g., Simard et al. 1999Simard et al. , 2002;;Stockton et al. 2008). The advent of the WFC3 camera on board Hubble has recently allowed studying the rest-frame near-IR (NIR) and optical stellar profiles toward higher redshifts (e.g., van der Wel et al. 2012;Newman et al. 2012;Bruce et al. 2012Bruce et al. , 2014;;Lang et al. 2014). In particular, Bruce et al. (2012) have performed bulge-to-disk decomposition on the CANDELS H-band imaging in the UDS field, focusing of massive galaxies (M * > 10 11 M ⊙ ) from z = 1 to z = 3, and finding a clear trend of decreasing bulge-to-total ratio (B/T ) with redshift. However, later on Lang et al. (2014) pushed the analysis down by one order of magnitude in stellar mass in all five CANDELS fields. By fitting stellar-mass maps estimated through resolved SED-fitting, they derived the relation between M * and B/T for star-forming and quiescent galaxies, and found very little evolution of this relation with redshift. Both these observations are contradictory, and would potentially lead to different conclusions when trying to link the bulge mass to the Main Sequence bending.

In this paper, we therefore revisit the bulge-to-disk decomposition, carefully computing disk masses of z = 1 galaxies in section 3.3, and analyzing the change of slope between the SFR-M * and SFR-M disk relations in section 5.1.

In parallel, we explore an alternative route where we directly quantify the mass of gas present in these galaxies (M gas ), to see if the bending is caused by a variation of gas fraction or a variation of the star formation efficiency (SFE ≡ SFR/M gas ). To this end, we follow the approach of Magdis et al. (2012) and Magnelli et al. (2012b) and employ the far-infrared (FIR) stacks of S15 to measure dust masses in section 4. Assuming that a fixed fraction of the metals (∼ 26%, as discussed in section 4.2) condenses to form dust grains, and with the knowledge of the gas-phase metallicity, one can infer the gas mass from the dust mass (Franco & Cox 1986) and derive the SFE. This approach has been used extensively in the recent literature to measure gas masses in a wide variety of samples from z = 0.3 to z = 4 (e.g., Magdis et al. 2012;Santini et al. 2014;Scoville et al. 2014;Béthermin et al. 2015). We apply it in section 5.2 to look for an evolution of both the gas fraction ( f gas ) and the SFE along the Main Sequence at z = 1, and complement this analysis with local galaxies drawn from the Herschel Reference Survey (HRS, Boselli et al. 2010).

In the following, we assume a ΛCDM cosmology with H 0 = 70 km s -1 Mpc -1 , Ω M = 0.3, Ω Λ = 0.7 and, unless otherwise specified, a Salpeter (1955) initial mass function (IMF) to derive both star formation rates and stellar masses. All magnitudes are quoted in the AB system, such that M AB = 23.9 -2.5 log 10 (S ν [µJy]).

Sample selection and galaxy properties

In this work we investigate the change of slope of the Main Sequence from two different angles. On the one hand, we measure the gas content inside Main Sequence galaxies to look for a decrease of either the gas fraction or the star formation efficiency. To do so, we use the stacked Herschel SEDs of S15 at z = 1 in the CANDELS fields (see section 2.3), and complement the analysis with a z = 0 sample of Main Sequence galaxies from the HRS (see section 2.4). On the other hand, we extract a subsample of massive galaxies from our z = 1 sample and perform the morphological decomposition of the HST light profile. Among these, we will also consider the galaxies with an individual IR detection in order to derive robust SFRs. The description of this subsample is given in section 2.5.

Multi-wavelength photometry

The z = 1 catalogs we use in this work are based on the CAN-DELS (Grogin et al. 2011;Koekemoer et al. 2011) Schreiber et al.: Observational evidence of a slow downfall of star formation efficiency in massive galaxies during the last 10 Gyr Fig. 1. The Main Sequence of star-forming galaxies, as seen by stacking Herschel images. Data points (solid circles) and fits (solid black line and dotted colored lines) are taken from S15. Statistical error bars are smaller than the symbols. In the present work, we focus on a redshift range around z = 1, which is highlighted in this plot. There, to illustrate the change of slope of the Main Sequence, we show with a gray solid line the extrapolation of the low-mass sSFR ≡ SFR/M * , with a slope of unity. The gray dashed lines indicate the region of this diagram within which we perform the morphological decomposition of the HST light profiles of z = 1 galaxies (section 2.5).

South (Guo et al. 2013), UDS (Galametz et al. 2013) and COS-MOS (Nayyeri et al. in prep.). Each of these fields covers about 150 arcsec 2 and they are evenly distributed on the sky to mitigate cosmic variance.

The ancillary photometry varies from one field to another, being a combination of both space-and ground-based imaging from various facilities. The UV to near-IR wavelength coverage typically goes from the U band up the Spitzer IRAC 8 µm, including at least the HST bands F606W, F814W, and F160W and a deep K (or K s ) band, and all these images are among the deepest available views of the sky. These catalogs therefore cover most of the important galaxy spectral features across a wide range of redshifts, even for intrinsically faint objects.

We complement these catalogs with mid-IR photometry from Spitzer MIPS and far-IR photometry from Herschel PACS and SPIRE taken as part of the GOODS-Herschel (Elbaz et al. 2011) and CANDELS-Herschel programs (PI: M. E. Dickinson, Inami et al. in prep.).

The UV to NIR photometry for the HRS galaxies is compiled from various sources, and this dataset is fully described in Boselli et al. (2010). The Herschel PACS and SPIRE observations were taken as part of the Herschel Reference Survey and the fluxes were extracted by Ciesla et al. (2012) for SPIRE and Cortese et al. (2014) for PACS.

Redshifts, stellar masses and star formation rates

Photometric redshifts and stellar masses for our z = 1 sample are computed following Pannella et al. (2015). We use Fig. 2. Stellar mass distribution of the various samples at z = 1 that we consider for the morphological decomposition. The black solid line shows the distribution of our parent sample, as used in S15, containing all the galaxies at 0.7 < z < 1.3 with M * > 2 × 10 10 M ⊙ and accurate determination of both redshift and stellar mass. The blue solid line is our H-sample, after removing close pairs and IRAC power-law AGNs from the parent sample. The orange solid line shows the H-sample galaxies that are classified as UV J star-forming according to Eq. 1. The red solid line is our IR-sample of star-forming galaxies, i.e., UV J star-forming galaxies in the H-sample that have a clean Spitzer MIPS or Herschel detection. The dotted lines indicate the number of galaxies whose profile we manage to correctly decompose with GIM2D, within each sample.

EAZY (Brammer et al. 2008) to derive the photometric redshifts from the CANDELS catalogs, allowing slight adjustments of the photometric zero points by iteratively comparing our photo-z's against the available spec-z's. The stellar masses are then computed using FAST (Kriek et al. 2009) by fixing the redshift to the best-fit photo-z and fitting the observed photometry up to the IRAC 4.5 µm band using the Bruzual & Charlot (2003) stellar population synthesis model, assuming a Salpeter (1955) IMF and a Calzetti et al. (2000) extinction law.

Galaxies with an uncertain photometric redshift (redshift "odds" less than 0.8) or bad SED fitting (reduced χ 2 larger than 10) are excluded from our sample. We estimated in S15 that the stellar mass 90% completeness at z = 1 was as low as 5×10 8 M ⊙ , i.e., almost one order of magnitude below the lowest stellar mass used in the present study (2 × 10 10 M ⊙ for the morphological decomposition, 10 9 M ⊙ for stacking).

Star formation rates (SFRs) of individual galaxies are estimated only for the galaxies with a MIR or FIR detection. The observed MIR to FIR photometry is fit with Chary & Elbaz (2001) templates, and the IR luminosity L IR (from 8 to 1000 µm) is obtained from the best-fit SED. Since our study focuses exclusively on the z ∼ 1 Universe (see next section), galaxies only detected by Spitzer MIPS 24 µm are also used in this analysis. For these objects, we use the original Chary & Elbaz (2001) L IR calibration. We then use the Kennicutt (1998) and Daddi et al. (2004) relations to convert this L IR and the observed L UV (1500 Å, non-dust-corrected) into SFR IR and SFR UV , respectively. The total SFR of a galaxy is then computed as the sum SFR = SFR IR + SFR UV , although for all our galaxies with a FIR detection the contribution of SFR UV is negligible.

Article number, page 3 of 20 Lastly, the rest-frame U, V and J magnitudes are computed for each galaxy using EAZY, by integrating the best-fit galaxy template from the photo-z estimation. These colors are used to separate star-forming from quiescent galaxies using the UV J classification scheme as introduced in Williams et al. (2009). This classification will be used in the following to study separately the behavior of both populations.

For HRS galaxies, stellar masses and star formation rates are derived using CIGALE (Noll et al. 2009, with the modifications of Burgarella et al. and Boquien et al. in prep.), which fits template SEDs to the available UV to FIR photometry simultaneously, in a consistent way. Since all galaxies of the HRS have Herschel coverage, the resulting SFRs are therefore based on both the observed far-UV and far-IR fluxes. These fits are described in more detail in Ciesla et al. (in prep.). We then compute the U-, V-and J-band rest-frame magnitudes from the best-fit template.

CANDELS sample for the gas mass measurements at z = 1

For the gas mass measurements at z = 1, we use the stacked Herschel photometry presented in S15. In this work, we showed that the bending of the Main Sequence is more pronounced at lower redshifts, and almost absent by z > 2 (see also Fig. 1).

To study the origin of this bending, we therefore need to focus on low redshifts, where the bending is most significant. On the other hand, the area covered by the CANDELS fields is relatively small, and consequently we cannot afford to reach too low redshifts, say z < 0.5, without being affected by limited statistics and cosmic variance. Furthermore, our estimation of the gas mass is based on the dust mass (see section 4.2), and at z > 1.5 Herschel does not probe the Rayleigh-Jeans tail of the dust SED (λ rest > 250 µm), which would prevent accurate determination of the dust mass (Scoville et al. 2014).

For these reasons we choose to base our analysis on galaxies at 0.7 < z < 1.3, and use the same sample as in S15, namely selecting all the galaxies in this redshift window that are classified as UV J star-forming:

UV J SF =          U -V < 1.3 , or V -J > 1.6 , or U -V < 0.88 × (V -J) + 0.49 . (1)
This selection is shown in Fig. 6. As discussed in S15, more than 85% of the Herschel detections are classified as UV J starforming. The UV J selection is therefore an efficient tool to pinpoint star-forming galaxies, even when MIR or FIR detections are lacking. However, it affects more strongly the galaxies at high stellar mass. In particular, between 10 11 and 3 × 10 11 M ⊙ , about half of our galaxies are classified as UV J quiescent. Since the precise definition of Eq. 1 can affect our results, we discuss its impact a posteriori in Appendix A.

HRS sample for the gas mass measurements in the Local Universe

For the z = 0 sample, we define the dividing line between "starforming" and "quiescent" galaxies as follows:

UV J SF (HRS) =          U -V < 1.6 , or V -J > 1.6 , or U -V < 0.88 × (V -J) + 0.79 . (2) 
In practice, this is equivalent to making a cut in sSFR > 6 × 10 -3 Gyr -1 , i.e., about one dex below the z = 0 Main Sequence.

Different UV J dividing lines have been adopted in the literature, reflecting a combination of both zero point offsets in the photometry and physical evolution of the colors caused by the evolution of the sSFR. For example, Williams et al. (2009) used different UV J classifications depending on the redshift, with a 0 < z < 0.5 criterion that is different from Eq. 2 by only 0.1 magnitudes, and a 1 < z < 2 criterion identical to our Eq. 1.

In the following, we use all the galaxies from the HRS survey that satisfy the UV J criterion given above, regardless of their morphological type. In practice, the UV J selection naturally filters out all the early-type galaxies (E-S0-S0/Sa), and about half of the H i-deficient galaxies (Boselli et al. 2010).

However, it is important to note that, although the HRS is a purely K-band selected sample, the volume it spans is relatively small and this field is thus subject to cosmic variance. Furthermore, because one of the science goals of the HRS is to study the influence of the environment on the star formation activity, the sample also contains the Virgo cluster, a strong overdensity that encloses 46% of the galaxies in the whole HRS (and 39% of UV J star-forming galaxies). This is a very biased environment, and although clusters are more common in the Local Universe, the HRS is known to be particularly deficient in gas mass, likely because of the inclusion of Virgo (Boselli et al. 2010). To ease the comparison with our z = 1 sample described in the previous section, we therefore exclude from the HRS all the galaxies that belong to Virgo (149 galaxies out of 323). Combined with the UV J selection, this excludes 80% of the H i-deficient galaxies, and yields a final sample of 131 galaxies. We note however that our results would be essentially unchanged if we were to keep the Virgo galaxies in our sample.

CANDELS sample for the morphological decompositions at z = 1

For the morphological analysis, we consider the same redshift window as for the gas mass measurement at z = 1, following the same motivations. In addition, limiting ourselves to z = 1 ensures that the HST H band probes the rest-frame i band, where mass-to-light ratios are weakly varying (e.g., de Jong 1996). However, to obtain reliable morphological decompositions, we further select galaxies more massive than 2 × 10 10 M ⊙ , corresponding roughly to an H-band limited sample at these redshifts, with no galaxy fainter than H = 22.5 (see section 3.2 where we justify this choice using simulated images). Unfortunately, this stellar mass cut will prevent us from performing the morphological decomposition in the regime where the Main Sequence is linear, as shown in Fig. 1. However, it is known that disk-dominated galaxies dominate the low-mass galaxy population, both in the Local Universe (e.g., Bell et al. 2003) and at higher redshifts (e.g., Pannella et al. 2009a;Lang et al. 2014;Bluck et al. 2014). Therefore we will assume in the following that most galaxies below our mass threshold are disk-dominated, with M * ≃ M disk , and only consider changes in Main Sequence slope above this threshold. We also remove 6 IRAC power law AGNs (following Donley et al. 2012).

To prevent systematic effects in the morphological analysis due to strong galaxy blending (either due to mergers or chance projections), we also need to remove from our sample the galaxies that have too close bright neighbors in the H-band image. Deblending can be done, to some extent, by fitting the profiles of multiple objects simultaneously, e.g., with GALFIT (Peng et al. 2002), but this is often adding more instability in the fit, and should be done with great caution. We will not attempt it here. Therefore, we flagged the galaxies that have at least one compan-Article number, page 4 of 20 C. Schreiber et al.: Observational evidence of a slow downfall of star formation efficiency in massive galaxies during the last 10 Gyr ion within 2 ′′ with a total flux that is no less than 10% fainter. This flags out ∼ 410 galaxies, and our final "H-sample" consists of ∼ 2 500 galaxies, ∼ 1 500 of which are UV J star-forming according to Eq. 1. The impact of these selections on the stellar mass distribution of our sample is shown in Fig. 2.

Then, among these, we also consider the "IR-sample" that consists of star-forming galaxies with a MIR or FIR detection (> 5 σ), i.e., with a robust SFR estimate coming from Spitzer or Herschel observations. To do so, we first select star-forming galaxies using the UV J diagram and Eq. 1. Then, to derive the SFRs, we start from the same IR catalogs as those introduced in S15, but here we further revisit the catalogs to solve an issue that, although irrelevant to the results of S15, can have important consequences for the present study. Briefly, we flag the Spitzer MIPS detections that are potentially wrongly associated to their H-band counterparts because of the adopted source extraction procedure. The details of this procedure are described in the next section. In total we flag no more than 5% of the MIPS detections in the catalog as wrong or uncertain associations 1 . Two thirds of these are UV J quiescent galaxies, and are therefore not part of the IR-sample.

The final IR-sample contains ∼ 950 galaxies, and therefore about 63% of the star-forming galaxies of the H-sample have a robust SFR estimation (see Fig. 2). For consistency checks, we do perform the morphological detection on the whole H-sample (i.e., including in particular those galaxies that are UV J quiescent), but only use the IR-sample to derive the slope of the Main Sequence, meaning that we will eventually work with a sample that is both mass and SFR selected. This is not an issue for our purposes. Even though half of the star-forming galaxies close to our stellar mass threshold are not seen in the MIR or FIR, the IRsample is at least 80% complete for star-forming galaxies above M * > 5 × 10 10 M ⊙ (see Fig. 2). Since the change of slope of the Main Sequence is most pronounced at the massive end, we will be able to witness any modification of this slope once the disk mass is substituted to the total stellar mass.

Cleaning the 24 µm catalogs

We focus here on the association of a Spitzer MIPS 24 µm flux to the galaxies in the H-band catalog. The procedure that was used to build the 24 µm flux catalog (see Magnelli et al. 2009) is based on IRAC 3.6 µm position priors: sources are extracted on the 24 µm map (and then, sequentially on the Herschel images) at the position of bright 3.6 µm sources. If two priors are too close to be deblended on the MIPS image, only the brightest 3.6 µm source is kept in the prior list. Because the IRAC bands are good tracers of the stellar mass, and because the stellar mass correlates with the star formation rate, this approach is very effective for extracting reliably the vast majority of the MIR and FIR sources. But it will fail in a few rare cases that will be particularly important for our study (see also Mancini et al. 2015). Indeed, one expects the method to be biased as soon as some objects deviate from the SFR-M * correlation. For example, it will happen that a massive, quiescent galaxy lies within a few arcseconds of a smaller mass (or slightly higher redshift) star-forming galaxy. The quiescent galaxy, being very massive, is most likely the brightest emitter in the IRAC 3.6 µm image, however it is not expected to shine much in the MIR because it is not forming any stars. The nearby star-forming galaxy on the other hand can be fainter in the IRAC image, but will contribute to most, if not 1 If we had not previously removed close galaxy pairs from the parent H-sample, this number would rise to 8%. all, of the MIR emission. In this situation, the typical outcome is that the star-forming galaxy is removed from the prior list, since it has the faintest IRAC flux, while the quiescent galaxy is given all the IR flux. The end result is that we do have in our catalogs a few massive quiescent galaxies with bright 24 µm emission that are obvious mismatches. We emphasize that the issue does not affect the 24 µm fluxes listed in the published catalogs, but rather the association of these fluxes to counterparts in the higher-resolution HST images.

We therefore eyeballed every galaxy of the H-sample that was attributed a counterpart in the MIPS image, looking for this kind of problematic cases. To identify quiescent galaxies, we rely on the UV J classification introduced in the previous section. In total, we find 40 clearly wrong associations over the four CANDELS fields, based on a combination of the UV J classification and the presence of a likely star-forming candidate nearby, or by significant off-centering of the MIPS emission. Because this approach is hard to replicate and translate to other surveys, we introduce here a systematic and objective procedure to identify this kind of issues that does not require eyeballing every galaxy. It also allows us to further refine the flagging and discard not only galaxies that are clearly wrong associations, but also those that are uncertain, so that we work with a sample that is as clean as possible.

For each UV J star-forming galaxy in the H-sample, we derive their expected "Main Sequence" star formation rate from their redshift and stellar mass, i.e., the SFR they would have if they were exactly following the Main Sequence as defined in S15. From this SFR we subtract the observed, non-dustcorrected SFR UV , and use the Kennicutt (1998) relation to convert the remaining obscured SFR into L IR . We then use the bestfit IR SEDs of S15 to estimate their 24 µm flux. For UV J quiescent galaxies, we follow a similar procedure where the total SFR is instead taken from the stacking of UV J quiescent galaxies, as described in the Appendix of S15. This SFR is typically a factor of ten below the Main Sequence at all stellar masses2 .

Using this procedure we are able to obtain a rough prediction of the MIR output of all the galaxies in the H-band parent sample. Then, for each galaxy with a 24 µm detection, we estimate the reliability of the MIR association. To do so, we take all the galaxies that 1) lie within 4 ′′ of the detection, 2) have a predicted 24 µm flux that is at least a tenth of that predicted for the detection, and 3) have no measured 24 µm (or below 3σ) in the catalog. We then sum all their fluxes, weighted by the MIPS PSF amplitude at their corresponding distance, and divide this sum by the predicted flux of the detection. The resulting value gives an estimation of the fraction of the measured flux that can be contaminated by neighboring sources that were excluded from the prior list.

As expected, the vast majority of the sources in the MIPS catalog are classified as robust identifications: 80% of them have an estimated contamination of zero. In the following, we only use the individual SFRs of galaxies for which this contamination fraction is below 30%. This criterion recovers 27 of the 40 wrong associations we identified by eye, the remaining 13 galaxies are either not properly deblended on the HST image, or their neighbors have wrong photometric redshifts and their contamination is underestimated. We therefore also exclude these 13 galaxies from our sample.

Note that this flagging does not apply to the sample we use to make the gas mass measurements. Indeed, the gas masses are measured by stacking H-band selected galaxies, and therefore do not rely on the 24 µm catalogs.

Measuring disk masses in distant galaxies

The bulge to disk decomposition

To perform the bulge-to-disk decomposition, we follow Pannella et al. (2009b) and use the software GIM2D (Simard et al. 2002) on the HST H-band images (0.06 ′′ /pixel resolution). To carry out a proper parametric modeling of the galaxy two-dimensional light distribution, it is of fundamental importance to obtain a careful estimate of the local background level. An extended disk or the low surface brightness wings of a high Sérsic index galaxy can easily fool the fitting code and hence retrieve the wrong galaxy model (e.g., Häussler et al. 2007;Pannella et al. 2009a;Barden et al. 2012). In order to avoid this issue, we run SExtractor (Bertin & Arnouts 1996) on the public CANDELS H-band images in "cold" mode. This allows to us to better minimize the artificial source splitting and maximize the number of pixels assigned to each object. Our newly extracted H-band catalog is then cross-matched to the original CANDELS photometric catalog so that every entry is assigned a redshift and a stellar mass. Less than 10% of the original sample is actually not retrieved by our cold source extraction. For the most part, these are blended objects for which a bulge-to-disk decomposition would be both impractical and uncertain, and we do not consider these in the following. For every galaxy, we then we extract a cutout in both the original image and our SExtractor segmentation map, the size of which depends on the actual galaxy angular dimensions. This ensures that GIM2D is able to properly fit for the image background and recover accurate galaxy parametric modeling.

Using these image and segmentation cutouts, we fit a combination of two Sérsic profiles: an exponential disk (n = 1) and a de Vaucouleur profile (n = 4), both convolved with the "hybrid" WFC3 PSFs from van der Wel et al. (2012). An example of such decomposition in given in Fig. 3.

Although the fit generally settles to physically reasonable solutions, there are cases where the effective radius of either component converges to zero, meaning that the component is essentially unresolved. In this case, there is no way to disentangle an exponential disk from a de Vaucouleur profile, and this unresolved component could be either an AGN, a nuclear starburst, or just the badly-fit core-component of a bulge. Fortunately such cases are rare (5% of our sample), so we decided to consider them as bad fits and exclude them from the following analysis.

When defining our sample, we took care to exclude close galaxy pairs that would cause blending issues (see previous section). However, while analyzing the results of the decomposition, we also found that there are a few galaxies which are not even properly deblended in the CANDELS catalogs to begin with, e.g., because the two galaxies are too close and SExtractor considered the pair as a single object. These galaxies cannot be fitted with our procedure, and typically show large χ 2 . To filter out these catastrophic failures, we therefore impose a maximum value of χ 2 < 2. This also removes remaining catastrophic fit failures, and galaxies with too irregular morphologies. This cut excludes 10% of the sample. Finally, we also exclude galaxies that are fit with extremely small component sizes, i.e., less than a fifth of a pixel, indicating that the code would have rather fitted a point source instead of an extended component. Because we cannot reliably attribute this flux either to the disk or the bulge, we choose not to use these fits in the present analysis (4% of the sample).

To make sure that our results are not strongly biased by our decomposition approach, we also run in parallel the same decomposition using GALFIT (Peng et al. 2002). The same images and segmentations are used, the only difference is that we can allow for some small position offset between the bulge and the disk. The minimization procedure is also different between both codes, and therefore different results are usually obtained for the same data, providing an estimation of the uncertainty on the decomposition. Since GALFIT requires an initial guess of the fit parameters, we used the single-component morphological parameters measured by van der Wel et al. (2012) who fit a single Sérsic profile to the H-band image of each galaxy in the CANDELS catalogs of GOODS-South, UDS and COSMOS. We complement these measurements by running ourselves similar fits in GOODS-North. These parameters are used to set the initial size, axis ratio and position angle of both the disk and the bulge components, while the initial flux of each component is set to half the total flux of the galaxy (i.e., an initial B/T = 0.5). We then run GALFIT, leaving free every parameter including the position of each component, with a maximum offset between both components of 10 pixels (in practice, the results are essentially the same if we do not allow for such offsets).

We have checked that our conclusions are not affected if we only keep the galaxies for which the two codes agree (variation of B/T smaller than 0.15), or if we used only the decomposition provided by GALFIT. In the end, we prefer to used the results provided by GIM2D since this code does not require choosing starting conditions, which are known to influence strongly the final result of GALFIT owing to the presence of local minima in the χ 2 (Lang et al. 2014, e.g.,). We also compared our results against the values obtained by running MegaMorph (Häussler et al. 2013;B. Häussler, private communication). Since Meg-Article number, page 6 of 20 Fig. 5. Relation between the total stellar mass (M * ) estimated by fitting the integrated multi-wavelength photometry of the whole galaxy and the measured luminosity from the HST H-band flux (without k-correction) for a sample of disk-dominated galaxies (B/T < 0.2, left) and bulgedominated galaxies (B/T > 0.8, right). Individual galaxies are shown with filled colored circles. The best-fit relation is shown with a straight line, and the dispersion around this relation is shown with light solid lines on each side. The global dispersion is given in the top-left corner of each plot, and is computed from the median absolute deviation (MAD) using 1.48 × MAD(∆M * ).

aMorph does not force the Sérsic index of the bulge component to be equal to n bulge = 4, we only perform the comparison against galaxies that MegaMorph chose to fit with n bulge > 2. We find a scatter in B/T of about 20%, consistent with that found when comparing the results of GALFIT and GIM2D. While this demonstrates the stability of the decomposition, it does not actually bring much information on the accuracy of the measured B/T . We quantify this in section 3.2, where we apply our procedure to simulated images.

We do not further select galaxies based on their measured morphological parameters. Abramson et al. (2014) only used face-on galaxies in their z = 0 analysis (axis ratio larger than 0.8), arguing that the decomposition is less reliable for edgeon objects. We could not find any such trend in our simulations (see section 3.2), and we also checked that no systematic trend emerges in the real data if we only use face-on galaxies. We therefore decide to use all galaxies regardless of their inclination.

For each galaxy that was properly fit, we now have an estimation of how the H-band flux is distributed between the disk and the bulge. From this decomposition, we can compute a lightweighted B/T , and we assess in the next section the robustness of this estimation. We will discuss in section 3.3 how to convert this value into a mass-weighted ratio, to finally obtain the stellar mass of the disk.

Simulated galaxies

To test the robustness and quality of our morphological decomposition, we create a large set of simulated galaxies of known profiles and B/T , and try to measure their properties in the presence of photometric noise. To do so, we use GALFIT to model pare their 1.6 µm (observer frame) luminosity against the stellar mass that was measured on the whole multi-wavelength photometry. Since these galaxies are clearly bulge-dominated, we can neglect the disk mass and assume that the observed mass-tolight ratio is representative of that of a bulge. The corresponding relation is shown in Fig. 5 (right). We derive the average trend by performing a linear fit to the running median in logarithmic space and obtain

M bulge M ⊙ = νL ν,bulge 3.25 L ⊙ 1.09 , (3) 
with a constant residual scatter of about 0.1 dex. This scatter remains the same if only consider the few B/T > 0.8 galaxies that are detected in the MIR or FIR. We then use this relation for all the other galaxies that are not bulge-dominated to estimate M bulge , and subtract this value from M * to obtain M disk .

The main advantage of this approach is that, although we perform the bulge-to-disk decomposition in a single band, we take advantage of the accurate mass-to-light ratio that was derived by fitting the total photometry of the galaxy, using a large number of photometric bands. However, we rely here on the low scatter of the mass-to-light ratio in bulges. It is true that this ratio is less variable in bulges than in star-forming disks (see, e.g., Fig. 5, left), because the latter can display a wider variety of star formation histories. Still, bulges are expected to show some variation of their dust content and metallicity, and this will not be taken into account here. In particular, one possibility we cannot account for is that bulges in composite or disk-dominated galaxies may have different colors than pure bulges. Lastly, another downside of this empirical approach is that, since we do not measure the colors of each individual bulge, we cannot flag out the "blue bulges", which are not bulges but likely compact nuclear starbursts. These are supposed to be rare though, and if anything, this population would end up substantially above the Main Sequence in the SFR-M disk relation and bias the slope toward higher values.

To make sure that our results are not significantly biased by the adopted mass-to-light ratio calibration, we have tried several other methods for estimating the disk mass, e.g., assuming the same mass-to-light ratio for the bulge and the disk, or measuring also the average mass-to-light ratio in star-forming pure disks (Fig. 5, left) and combine it with the bulge mass-to-light ratio to estimate a mass-weighted B/T . These alternative estimations did not change our conclusions. It should be noted however that the typical dispersion observed when comparing these different disk masses is of the order of 0.2 dex. The crudest approach would be to assume the average (M/L) disk ratio of disks and apply it to the measured disk luminosity, without using the information provided by the total M * . As shown in Fig. 5, the scatter in (M/L) disk (0.2 dex) is substantially larger than that of (M/L) bulge (0.1 dex), likely reflecting the greater variety of star formation histories in disks. In the end, the dispersion between this simple M disk estimate and the value we obtain by subtracting M bulge from M * is 0.3 dex, suggesting indeed that this is a poor approach. Regardless, a typical scatter of 0.2 dex means that there is little hope of seeing the dispersion of the Main Sequence becoming smaller by using the disk mass, because the latter is too uncertain. However, the absence of systematic shifts in the derived stellar masses suggests that any modification of the slope of the Main Sequence will be correctly captured.

In Fig. 6, we show on the UV J diagram the location of galaxies that are either disk-dominated (B/T < 0.2), intermediate (0.2 < B/T < 0.6), and bulge-dominated (B/T > 0.6) according to our mass-weighted bulge-to-total ratios. Reassuringly, the disk-dominated galaxies populate preferentially the UV J starforming branch, while the bulge-dominated galaxies pile up in the quiescent cloud, although there is some overlap between the two populations close to the dividing line. Intermediate objects are preferentially in the quiescent region, but are also widely spread in the tip of the star-forming branch. It should be noted that the relations we find between total stellar mass and B/T for UV J star-forming and quiescent galaxies are consistent with those derived in Lang et al. (2014).

Measuring gas masses

The star formation efficiency (SFE) is defined as the galaxy's current star formation rate divided by the mass of hydrogen gas found within the galaxy (M gas ). While we have robust estimates of the SFRs, measuring gas masses is notoriously difficult, especially among distant galaxies. We choose here to infer the gas masses from the dust masses (M dust ), which themselves can be measured from the dust continuum emission in the FIR. This approach has been used extensively in the recent literature to constrain the SFE of distant galaxies (e.g., Magdis et al. 2011;Magnelli et al. 2012a;Magdis et al. 2012;Santini et al. 2014;Scoville et al. 2014;Béthermin et al. 2015) and is based on the observed anti-correlation between the gas-to-dust ratio M gas /M dust and the metallicity Z in the Local Universe (e.g., Leroy et al. 2011;Rémy-Ruyer et al. 2014).

In this section, we describe the measurement of dust masses (section 4.1) from the FIR to submm photometry, and then detail the derivation of the associated gas masses (section 4.2).

Dust masses

Accurate dust masses can only be derived from FIR measurements down the Rayleigh-Jeans tail of the dust continuum, meaning at z = 1 that we need to measure the observer-frame emission of galaxies at λ ≥ 400 µm. While Herschel does provide deep imaging at 500 µm, the poor angular resolution prevents measuring the 500 µm flux of most galaxies, since finding the right counterpart to the fluxes measured on these maps is challenging (see, e.g., Shu et al. in prep.). This issue can be avoided by stacking the image, since the contribution from neighboring sources averages out to form a constant background. However, there still remain a source of uncertainty which is the contribution of galaxy clustering (e.g., Béthermin et al. 2010). In the presence of clustering, the contribution of neighboring sources will not average out to a uniform value, and instead will tend to produce more flux toward to the position of the stacked galaxies. In S15, we implemented an empirical correction to remove this flux boosting, which was derived from a set of realistic simulated images. The stacked 500 µm fluxes in the simulation were found to be boosted by 20% on average, and we therefore de-boosted the observed fluxes by that same amount 3 . After this factor is taken into account, no remaining bias was found in the stacked fluxes. We also considered stacking longer wavelength sub-millimeter data from AzTEC or LABOCA, however these are only available for a few fields 4 hence reducing significantly the number of stacked sources. Combined with the fact that, at z = 1, the expected flux in these bands is fairly low, we could not Fig. 7. Mean stacked FIR SEDs of star-forming galaxies in our z = 1 sample, split in four mass bins. The broadband photometry (open diamonds) is taken from S15. The fit to the stacked measurements is performed using the dust models of Galliano et al. (2011).

detect any significant signal. These upper limits are consistent with the rest of Herschel photometry at the 1 to 2σ level.

For our z = 1 sample, we therefore use the stacked SEDs of S15, which are reproduced here in Fig. 7. These SEDs were built by stacking all the UV J star-forming galaxies in the four CANDELS fields at 0.7 < z < 1.3 and in four bins of stellar mass: log 10 (M * /M ⊙ ) = 9.5 to 10, 10 to 10.5, 10.5 to 11 and 11 to 11.5. As described above, a correction for clustering is also applied.

We then fit the stacked photometry with a library of template SEDs built from the amorphous carbon dust model of Galliano et al. (2011). This new library will be presented in a forthcoming paper (Schreiber et al. in prep.), and is introduced to extend the Chary & Elbaz (2001) SED library (hereafter CE01), with the aim to provide a wider and finer grained range of dust temperatures (or, equivalently, L IR /M dust ) and finer control on the PAH mass-fraction (or, equivalently, IR8 ≡ L IR /L 8 ). If the contribution of PAHs is neglected (n.b.: they represent only 4% of the total dust mass), the following relation links together the dust mass M dust , the total infrared luminosity L IR , the mass-weighted average dust temperature T dust , and the mass-weighted average intensity of the radiation field U :

L IR L ⊙ = 185 M dust M ⊙ T dust 17.5K 5.54 = 185 M dust M ⊙ U . (4) 
Each SED in the library is calibrated per unit M dust , and therefore the dust mass is trivially obtained from the normalization of the best-fit template. Here, we allow the dust temperature to vary between 15 and 50 K, while the PAH mass-fraction is left free to vary between 0 and 1. The best-fit values we obtain are referenced in Table 2.

The infrared luminosities we derive with this library are in perfect agreement with those obtained in S15 using the CE01 library. As a cross check, we also fit this photometry with the CIGALE SED fitting code, using the Draine & Li (2007) dust SED library. We recover identical L IR , but M dust values that are systematically higher by a factor of two. Systematic differences in the dust masses are typically found by comparing the results of two different approaches, e.g., comparing the results from the Draine & Li (2007) library against simple modified black bodies (as is shown in Magdis et al. 2012 andMagnelli et al. 2012a), or different chemical compositions of dust grains within the same model (e.g., graphite and silicate versus amorphous carbon grains, as in Galliano et al. 2011). The factor of two we observe here is consistent with the value reported by Galliano et al. (2011), who argue that dust masses derived by models using graphite (like, e.g., the models of Draine & Li 2007) instead of amorphous carbon grains are overestimated by a factor of 2.6. They also claim that this overestimation creates a tension with the measured metallicity of the Large Magellanic Cloud by violating the element abundances, and therefore advocate instead the use of amorphous carbon grains in dust models. Independently of this choice, we do not expect that galaxies at different stellar masses host dust grains of radically different chemical composition, hence we argue that if our measurements are biased because of the assumption on dust composition, this bias only affects our dust mass estimates globally. This is of no consequence for the present work, since it will not affect the relative evolution of the SFE. On the other hand, it also emphasizes that without precise knowledge of the detailed chemical composition of dust, the absolute value of the dust masses should be taken with a grain of salt.

For galaxies in the HRS, angular resolution is not an issue, and the Herschel photometry of each galaxy can be obtained and fitted individually. The dust mass is estimated directly by CIGALE, when fitting the photometry to obtain the stellar mass and the SFR (see Ciesla et al. 2014 and Ciesla et al. in prep.). As written above, CIGALE uses the Draine & Li (2007) SEDs to model the dust emission. To homogenize this sample with our z = 1 dust mass measurements that are obtained with the models of Galliano et al. (2011), we therefore correct the dust masses given by CIGALE down by a factor of two.

Gas masses

The idea behind the conversion from M dust to M gas is that a universal fraction f d of all the metals in the galaxy are locked into dust grains, while the remaining fraction remains mixed with the gas (Franco & Cox 1986). With this assumption and a measurement of the dust mass, one just needs to know the gas-phase metallicity (Z) to infer the gas mass:

M gas = 1 Z 1 -f d f d M dust . (5) 
The value of f d is unknown, but it can be inferred empirically from observations where both the dust and the gas masses are known. In these cases, the gas mass is usually inferred by adding together 21 cm measurements of the neutral atomic hydrogen, and estimates of the molecular hydrogen mass, which are typically obtained from the carbon monoxide (CO) emission lines (since, indeed, molecular hydrogen is extremely hard to observe directly). This latter step implies yet another uncertainty on the conversion factor from CO intensity to molecular gas mass (α CO ). To alleviate this problem, Leroy et al. (2011) performed a resolved analysis of local galaxies, inferring jointly the gas-to-dust ratio and α CO from combined dust, 21 cm and CO observations. Assuming that the gas-to-dust ratio remains constant throughout each galaxy, they observed a relation between M gas /M dust and metallicity, and found a dependence that is consistent with Eq. 5.
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Once the dust masses are measured (see previous section), the second step is therefore to estimate the metallicity. Since only half of the galaxies in the HRS have individual metallicity measurements (Hughes et al. 2013), and almost none of the galaxies in our z = 1 sample, we need to use empirical recipes to estimate the metallicities. Following Magdis et al. (2012), Santini et al. (2014) and Béthermin et al. (2015), we estimate the metallicity from the Fundamental Metallicity Relation (FMR, Mannucci et al. 2010, Eq. 5) (12 + log 10 (O/H)) KD02 = 8.9 + 0.47 (µ 0.32 -10) for µ 0.32 < 10.4 9.07 for µ 0.32 > 10.4 ,

with µ 0.32 ≡ log 10 (M * [M ⊙ ]) -0.32 × log 10 (SFR [M ⊙ /yr]), and where both M * and SFR are converted to the Chabrier ( 2003) IMF (i.e., divided by 1.8 from the Salpeter values). For our z = 1 sample, we use the average stellar mass and SFR obtained in the stacks, and for the z = 0 HRS galaxies without metallicity measurement we use their respective M * and SFR. We checked that using this prescription or estimating the metallicity from the mass-metallicity relation (e.g., Zahid et al. 2011) would not change our conclusions (+0.12 dex metallicity shift at z = 1, after accounting for the different calibration). It is also worth noting that Béthermin et al. (2015) argue for an additional redshiftdependence of the FMR, i.e., that Eq. 6 may not hold in the distant Universe. However, this is not an issue for the present study since, first, the difference proposed by Béthermin et al. (2015) is a constant shift of the metallicity at all stellar masses, and second, it only takes place at z > 1.7. On the other hand, Kewley & Ellison (2008) showed that there exists substantial systematic differences of metallicity measurements, depending both on the available observables used to derive the oxygen abundance, and the calibration that is used. For example, the FMR was derived using the Kewley & Dopita (2002) (KD02) calibration, while the metallicities of Magdis et al. (2012) are obtained with the prescription of Pettini & Pagel (2004) (PP04). According to Kewley & Ellison (2008), the difference between these two metallicity estimates is roughly constant and equal to about 0.25 dex (at least in the metallicity range considered in this paper), with a scatter of only 0.05 dex: it is only a global shift of the absolute metallicity, and will not affect the relative trends. To derive accurate dust-to-gas ratios, it is nevertheless important to make sure that the same metallicity calibration is used consistently in all calculations. For this reason, since we are going to use the data of Magdis et al. (2012), we convert the FMR metallicities to the Pettini & Pagel (2004) 

with x ≡ (12 + log 10 (O/H)) KD02 . As written above, in practice for the galaxies we consider in this study these "PP04" abundances are systematically lower by 0.3 dex compared to the original "KD02" values (this constant shift holds within 0.05 dex for all 12 + log 10 (O/H) KD02 > 8.5).

The measured metallicities of the HRS galaxies are already in this scale, and needed no conversion. For galaxies with a metallicity measurement, comparing the latter to the metallicity derived from the FMR, we find a median offset of 0.08 dex and a scatter of 0.1 dex. Since these latter values are low, and to avoid mixing together metallicities that are directly observed and those that are inferred from the FMR, we decide to use the FMRbased metallicities for all galaxies in the HRS. We checked that our results are not affected by this choice.

The last missing ingredient to estimate gas masses is the gasto-dust ratio or, equivalently, f d in Eq. 5. Here we use the gas-todust ratios measured by Leroy et al. (2011), that we multiply by 2 to account for systematic differences in the dust mass measurements between the dust model that we used and that of Draine & Li (2007) (see previous section). Then, to relate these measurements to metallicity, we refer to Magdis et al. (2012) who have conveniently converted all the measurements of Leroy et al. (2011) to a uniform metallicity scale (PP04), and found a best-fit relation of log 10 (M gas /M dust ) = 10.54 -0.99 × (12 + log 10 (O/H)), i.e., with a metallicity dependence very close to that of Eq. 5. Taking into account the systematic difference in the dust masses, and re-fitting the data by assuming the functional form of Eq. 5 (i.e., using a slope of -1 for the metallicity), we get log 10

M gas M dust = (10.92 ± 0.04) -(12 + log 10 (O/H)) PP04 ,

Assuming a solar oxygen abundance of (12 + log 10 (O/H)) ⊙ = 8.69 (Allende Prieto et al. 2001) and a solar metallicity of Z ⊙ = 0.017 (Grevesse & Sauval 1998), this leads to the equivalent expression

M gas M dust = (170 ± 16) × Z ⊙ Z , (9) 
which is consistent with the gas-to-dust ratio of the Milky Way (M gas /M dust ) MW = 158 (Zubko et al. 2004). This prescription is therefore equivalent to assuming that 26% of the metals are locked into dust5 . For our z = 1 sample, this yields gas-to-dust ratios between 145 and 387 (the precise values we obtain are listed in Table 2), while it ranges from 145 to 494 for the z = 0 HRS galaxies (which cover a wider metallicity range). Applying Eq. 8 to the measured dust masses, we can infer the total gas mass in each stacked bin at z = 1, and for each HRS galaxy.

To check if our results depend on the way redshifts, stellar masses and UV J classifications were derived in S15, we also run the same analysis using the "official" photometric redshifts and stellar masses of the CANDELS team, which were obtained by combining together the results of different fitting codes (Dahlen et al. 2013;Santini et al. 2015), as well as the 3DHST catalogs (Skelton et al. 2014). We find that using the CANDELS fits yield the same conclusions, but using the 3DHST catalogs changes substantially the measured SFEs. To investigate this issue, we analyze the intersection of our sample and that of 3DHST, i.e., galaxies that satisfy the selection criteria in both catalogs simultaneously. This reduces the analysis to about half of the initial sample, and yields SFEs that are comparable to those presented in this paper. We therefore conclude that our results are robust against catalog changes, and that there is probably an issue in the 3DHST catalogs. Investigating this latter issue any further goes out of the scope of this paper.

Lastly, as a consistency check for the HRS, we compare our gas masses against those estimated from the combination of 21 cm and CO emission line fluxes (using data from Boselli et al. 2014), with a constant α CO = 3.6 M ⊙ /(K km/s/pc 2 ) (Strong et al. 1988). The latter are found to be systematically larger by 30%, with a scatter of 0.2 dex. Since the vast majority (90%) Fig. 8. Upper panel: Location of galaxies from the IR-sample with varying B/T on the SFR-M * plane, using the stellar mass and star formation rate (IR+UV) of the whole galaxy. On all plots, the vertical dotted line shows our adopted stellar mass cut, the horizontal dotted line is the 90% completeness in SFR, and the solid black line shows the locus of the z = 1 Main Sequence as observed through stacking in S15, while the solid gray line shows the extrapolation of the low-mass trend assuming a slope of unity, as observed at lower stellar masses (see Fig. 1). In each column, galaxies of different B/T are plotted. In the rightmost panel, we show all galaxies regardless of their B/T . The solid blue lines show the running median of the sample. Lower panel: Same as upper panel, but on the SFR-M disk plane. of the M * > 10 10 M ⊙ star-forming galaxies are detected in both atomic and molecular surveys, we also do the following analysis with these alternative gas mass estimates. We find that our conclusions remain unchanged, save for this global shift of the gas masses by a factor of 1.3. In the end, we prefer to use the dust-based estimates in order to preserve the homogeneity of our analysis.

Results

The SFR-M disk relation at z = 1

Having measured the disk masses, we can now see if the SFR-M disk relation is universal and linear by comparing the slopes of the Main Sequence using either the total stellar mass M * or the disk mass M disk . To be able to measure this slope on our whole sample at once, and because our redshift window is relatively large, we correct for the redshift evolution of the Main Sequence by renormalizing the SFR of each galaxy to a common redshift of z = 1. To do so, we use the redshift evolution measured in S15, taking the trend of low-mass galaxies where the bending of the Main Sequence is negligible. This correction is typically of the order of 0.05 dex, and no more than 0.1 dex. In Fig. 8, we show the resulting SFR-M * (top) and SFR-M disk (bottom) relations of our sample. Each panel focuses on a different range of B/T , starting from disks-dominated galaxies on the left, then increasing progressively the contribution of the bulge. In the rightmost panels, we show all galaxies from the IR-sample regardless of their B/T . We show with blue lines the running medians on the measurements in each plot, and compare them to the stacked Main Sequence of S15. In the toprightmost panel, this running median overlaps with the stacked relation, which indicates that we are not strongly affected by the SFR selection of our sample. However, we can see from the topleftmost panel that disk-dominated galaxies do not populate a particularly different region of the SFR-M * diagram: they cluster around the stacked relation of S15, and follow a sequence of slope 0.67 ± 0.07 (from M * = 3 × 10 10 to 3 × 10 11 M ⊙ ). Even after subtracting the bulge mass, which is by definition very low in these systems, the measured slope is 0.65 ± 0.08, i.e., clearly not unity. For the other galaxies, we do find a trend for some of the lowest sSFR objects to be brought back toward the Main Sequence by removing the bulge mass, but they constitute a very small fraction of the whole sample (in fact, as can be seen in Fig. 6, a good fraction of the bulge-dominated galaxies are classified as UV J quiescent), and cannot counterbalance the bending observed in disk-dominated galaxies. In the end, the slope of the SFR-M disk relation as measured on the whole sample (bottomrightmost panel) is 0.60±0.05. Therefore, knowing that the Main Sequence slope at M * < 10 10 M ⊙ is unity, we do not find that the SFR-M disk relation is linear.

In their z = 0 study, Abramson et al. (2014) only considered galaxies with B/T < 0.6, arguing that galaxies above this threshold cannot be fitted reliably (we show indeed in section 3.2 that disk masses measured in bulge-dominated galaxies are the most uncertain). We therefore tried to reject galaxies with B/T > 0.6, and did not find any significant difference. Most of them do not show any measurable IR emission (83%, compared to 46% for galaxies with B/T < 0.6), and are likely genuine bulge-dominated and quiescent objects.

To make sure that our results are not caused by an uncertain bulge-to-disk decomposition, we show in Fig. 9 how the SFR-M * diagram is populated by galaxies of varying effective Sérsic index n (van der Wel et al. 2012, and our own fits in GOODS-North, see section 3.1). While the Sérsic index alone is not well suited for measuring the disk masses of composite systems, it is a robust way of identifying disk-dominated galaxies. Indeed, the fit is intrinsically simpler and therefore more stable, and the presence of a significant bulge component will rapidly make the effective Sérsic index depart from 1, the nominal value for pure disks (see, e.g., the Appendix A of Lang et al. 2014). We find that disk-dominated galaxies (n < 1.2) follow a slightly steeper slope of 0.75 ± 0.05, consistent with that found in Salmi et al. (2012), but this is still not unity. These slope measurements are summarized in Table 1.

Gas fraction and star formation efficiency at z = 1

We show in Fig. 10 (left) the behavior of the SFE as a function of the stellar mass in our stacked z = 1 sample. These values are also reported in Table 2. From this figure, one can see that the SFE of galaxies at M * < 10 11 M ⊙ rises steadily with stellar mass, following 

However, our data point with the highest gas mass, i.e., corresponding to the stellar mass of 2 × 10 11 M ⊙ where the bending of the Main Sequence is most pronounced, has an SFE that is a factor of 2 lower than that predicted from this scaling law. Our data clearly favor two regimes of SFE: low stellar mass galaxies follow a universal relation, and high stellar mass galaxies drop below this trend. Note that, owing the to uncertainty on the fiducial trend given above, we cannot rule out a weak drop of SFE in the intermediate mass bin, at M * ∼ 5 × 10 10 M ⊙ (orange point).

In contrast, the gas fraction (Fig. 10, right) is found to decrease continuously with stellar mass (similarly to what was found in Magdis et al. 2012 andSantini et al. 2014). This is the expected behavior if the Main Sequence has a linear (or sublinear) slope while the SFR-M gas law (the so-called integrated Schmidt-Kennicutt law) is superlinear with a power-law slope of n > 1 (e.g. Daddi et al. 2010;Sargent et al. 2014;Santini et al. 2014). Indeed, if SFR ∼ M * and SFR ∼ M n gas , then M gas ∼ M 1/n * and the gas fraction has to decrease with stellar mass. By fitting the M gas -M * relation for galaxies with M * < 10 11 M ⊙ , we get (11)

For galaxies with M * > 3×10 10 M ⊙ , we measure a constant value of f gas = 26%, so that galaxies with M * > 10 11 M ⊙ actually have larger gas fractions than expected from the above trend. This can be explained if these galaxies also had lower SFEs in the past, Article number, page 13 of 20 Fig. 10. Left: Relation between the SFE = SFR/M gas and the gas mass (M gas ) for Main Sequence galaxies at z = 1. Colored diamonds show the measured SFRs and M gas of our sample, the color being associated to the stellar mass as in Fig. 7. The best-fit power law to our measurements, excluding the most massive point, is given with a black solid line (Eq. 10). Right: Gas fraction ( f gas ≡ M gas /(M gas + M * )) as a function of the stellar mass (M * ) for Main Sequence galaxies at z = 1. The legend is the same as in the left figure, and here the solid black line gives the value of f gas computed using the best-fit M gas -M * relation, also excluding the most massive point in the fit. The resulting expression of f gas is given in Eq. 11. We also show the measured gas fractions by Magdis et al. (2012) at z = 2 with a dashed gray line.

suggesting that we are witnessing a process that acts on long timescales.

We also find that the overall decrease of gas fraction cannot be explained solely from the growing mass of the bulges. Indeed, if we substitute the disk mass to the total stellar mass, using the average B/T measured in each mass bin and assuming that galaxies of M * < 10 10 M ⊙ are pure disks, the gas fraction in the disk is also found to decrease, albeit with a slightly shallower slope. Similar results are obtained if we use the B/T -M * relations of Lang et al. (2014).

It should be noted that the SFE and f gas we measure in highmass galaxies are consistent with the z = 1 value reported by Béthermin et al. (2015), who applied the same methodology to a single mass bin around M * ∼ 10 11 M ⊙ using galaxies from the larger COSMOS field. On the other hand, similar measurements were performed in Santini et al. (2014), in the same field as Béthermin et al. (2015), finding smaller gas masses by about a factor of 3. The discrepancy appears to come from different calibrations of the dust-to-gas ratio, and therefore should only result in a systematic shift. In any case, owing to the shallow depths of the COSMOS survey, Santini et al. (2014) could only focus on galaxies more massive than 3 × 10 10 M ⊙ , i.e., they do not probe the linear Main Sequence regime (as is illustrated in Fig. 10, right).

Lastly, to see how the assumptions about metallicity and gasto-dust ratio affect our result, we show in Fig. 11 the L IR /M dust ratio, which is a direct observable. The behavior of this quantity is very similar to that of the SFE, namely there is a steady rise with stellar mass, and then a sudden drop at M * > 10 11 M ⊙ . This should not come as a surprise, knowing that our estimated gas-to-dust ratio ends up being a simple power law of the stellar mass (see section 4), and that the SFRs in this sample are largely dominated by the dust-obscured, IR-luminous component. The . 11. Ratio between the dust mass (M dust ) and the total infrared luminosity (L IR ) as a function of the stellar mass for stacked galaxies at z = 1. Colors are the same as in Fig. 10. We overplot a linear fit (in log space) of the first three mass bins with a solid black line.

low-mass slope that we find here is fairly shallow, although we rule out a flat slope (as reported in Magdis et al. 2012) at the 3σ level. Yet, even if we were to adopt such a flat slope as the reference trend, the drop of L IR /M dust (or SFE) in the highest mass bin would be less pronounced but still significant (4σ). Table 2. Average physical properties of the galaxies in the stacked z = 1 sample. The quoted errors indicate the uncertainty on the average, not the intrinsic spread of the population. These uncertainties are derived through bootstrapping half of the full sample, recomputing all quantities for each bootstrap realization separately, then measuring the standard deviation among all realizations. The gas-to-dust ratio is randomized within the allowed statistical uncertainty (Eq. 8). The resulting values are then divided by √ 2 to take into account that only half of the initial sample was used in each bootstrap realization. Fig. 12. Left:Relation between the specific SFR (sSFR = SFR/M * ) and the stellar mass (M * ), at various redshifts. Our z = 1 stacked measurements from S15 are shown with empty diamonds, and the average values of the star-forming HRS galaxies are shown with empty circles (see Ciesla et al. in prep.). The associated error bar is the error on the mean, not the dispersion of the sample. We compare these measurements to the z = 2 values obtained by Magdis et al. (2012) for star-forming BzK galaxies. Right: Same as left, but replacing the sSFR by the star formation efficiency (SFE = SFR/M gas ). The diamonds and circles use the gas mass estimated in this paper, while the empty squares come from Magdis et al. (2012), and were computed with the same method.

A progressive decrease of the SFE with time

In Fig. 12 (right) we put together our SFR and M gas measurements at both z = 1 (previous section) and z = 0 using galaxies from the HRS survey to display the evolution of the SFE with stellar mass and redshift. The values in the HRS are obtained by binning galaxies in stellar mass, and computing the mean SFE in each bin, since all the HRS star-forming galaxies are individually detected by Herschel, and therefore have individual gas masses estimates. These results are compared to that of Magdis et al. (2012), who performed a similar analysis in the GOODS fields, stacking galaxies in different bins of stellar mass from M * = 10 10 to 3 × 10 11 M ⊙ , but focusing on z = 2 BzK galaxies 6 . 6 They did stacked galaxies at z = 1, but did not separate them in different stellar mass bins. Also, since the BzK selection only selects star-forming galaxies at z = 2, they had to use another method to discard quiescent galaxies at z = 1. To do so, they used a cut in Sérsic index of

The selection effects inherent to the BzK classification are not very well understood, and it is known that this selection tends to affect the shape of the Main Sequence (Speagle et al. 2014). With this caveat in mind, we proceed comparing these results to our data at z = 0 and z = 1.

Similarly to our z = 1 sample, the most massive galaxies in the HRS (M * > 10 10 M ⊙ ) are also found to have a reduced SFE, thereby confirming the trend observed in the previous section. However, Magdis et al. (2012) observe a fairly different picture than the one we present here, since their galaxies of all stellar mass are found to lie on the same SFR-M gas relation, i.e., following a universal star formation law. Fig. 13. Evolution of the mass-weighted quenching and downfall rate densities with redshift. The red curve shows the time derivative of the stellar mass density of UV J quiescent galaxies, which we assume are produced by a "fast quenching" mechanism. The blue curve shows the star formation density that is lost because of the lowered SFE in massive galaxies, which we call the "slow downfall" rate. The shaded regions in the background give the uncertainty on both measurements.

In fact, this is fully consistent with the observed evolution of the high-mass slope of the Main Sequence (see, e.g., the comprehensive analysis of Gavazzi et al. 2015), since at z = 2 the SFR-M * relation is found to be almost linear (see S15 and Fig. 12,left), indicating that whatever process drives this change of slope has not yet taken place. On the other hand, at z = 0 the bending of the Main Sequence is more pronounced and takes place above a turnover mass that is lower than at z = 1, in agreement with the behavior of the SFE that we observe for the HRS galaxies.

Similar trends of decreasing SFE with stellar mass have been reported in the literature (e.g., Saintonge et al. 2011;Dessauges-Zavadsky et al. 2015), although these studies do not mention a turnover of this relation. We argue that this is nevertheless consistent with our result, since these studies could only observe the regime above the turnover mass, where the SFE is going down. In the distant Universe, stacking is currently the only way to probe the SFE of galaxies on a range of stellar mass wide enough to see both regimes, above and below the turnover mass. Studying lensed systems, as was done in Dessauges-Zavadsky et al. (2015), is another way to probe fainter galaxies, but building statistical samples of such objects is challenging. On the other hand, in the Local Universe the turnover mass is so low (5 × 10 9 M ⊙ , Gavazzi et al. 2015) that the two regimes can only be seen by going down in mass toward the dwarf galaxies (while, e.g., Saintonge et al. 2011 stopped at ∼ 10 10 M ⊙ ).

Discussion

Quantifying the "quenching" and "downfall" rates

We find that the bending of the Main Sequence cannot be caused by abnormally low gas fractions, but is instead resulting from a progressive decrease of the star formation efficiency, as shown in Figs. 10 and 12. These observations converge toward a "slow downfall" of star formation, where massive galaxies gradually decrease their star formation activity while staying on the Main Sequence. While staying on the Main Sequence, these galaxies become gradually less efficient in their star formation activity instead of abruptly turning off though a "fast quenching". Because the SFE is going down with time, these galaxies do not grow too massive by z = 0, as shown in Leja et al. (2015) who simulate the evolution of the observed stellar mass function using a Main Sequence of varying slope. The downfall of the star formation rate in massive Main Sequence galaxies may lead to the death of galaxies if, e.g., the gas surface density falls below the critical density that is necessary to switch on the Schmidt-Kennicutt relation, but our analysis does not allow us to make any firm claim favoring or disfavoring a scenario in which this downfall feeds the red sequence. Instead, we propose here to quantify the "downfall rate" of this slow process, and compare it to the fast quenching rate associated with the growth of the red sequence.

As shown, e.g., in Muzzin et al. (2013) and Tomczak et al. (2014), the stellar mass density of UV J quiescent galaxies increases monotonously with time, illustrating the progressive buildup of the red sequence. The time derivative of this quantity, neglecting stellar mass loss and residual star formation, is a measure of the quenching rate of galaxies (see, e.g., Peng et al. 2010). Here, we make the hypothesis that all the UV J quiescent galaxies were quenched by a fast process, and set

ρ quench = dρ Q * dt , (12) 
where ρ Q * is the stellar mass density of UV J quiescent galaxies. We parametrize this latter quantity by fitting the redshift evolution reported in the CANDELS fields by Tomczak et al. (2014), accounting for the different choice of IMF:

ρ Q * M ⊙ /Mpc 3 = (2.6 ± 0.7) × 10 8 exp(-z) . (13) 
To estimate the downfall rate associated to the slow process that lowers the SFE of massive star-forming galaxies, we compute the difference between the observed SFR density (ρ SFR ) and the density that would be observed if there was no drop of SFE, therefore if the Main Sequence had a slope of unity at all stellar masses (ρ unity SFR ). This is a measure of the amount of star formation that was lost because of the reduced SFE within the Main Sequence. We estimate both SFR densities using the stellar mass functions of star-forming galaxies introduced in S15 (that we complement toward z = 0 using the mass function from Baldry et al. 2012) Since these equations were not calibrated at z < 0.5 in S15, we use the observed Main Sequence from the HRS galaxies for these redshifts.

The downfall rate is then defined simply as

ρ downfall = ρ unity SFR -ρ SFR . ( 16 
)
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The resulting evolution of both ρ quench and ρ downfall is shown in Fig. 13. One can see from this figure that the fast quenching mode clearly dominates at all z > 1.5, while the slow downfall rapidly catches up to reach similar rates from z = 1.5 to the present day, i.e., over ∼ 70% of the history of the Universe.

Two conclusions can be drawn from this observation. First, the fact that both the quenching and downfall rates reach similar values at all z < 1.5 implies that the downfall is a quantitatively important effect that should be considered alongside the growth of the red sequence. Second, it is clear that the two modes act at different epochs in the history of the Universe. While the fast quenching appears to hold a steady rate all the way from z = 4 to the present day, the slow downfall becomes a significant source of SF suppression only at z < 2. This suggests that the buildup of the red sequence and the change of slope of the Main Sequence are in fact related to two separate physical processes. This is discussed further in the next section.

Identifying the actors that regulate the SFE and the gas content

We show in section 5.1 that the bending of the Main Sequence remains even if we are to consider only the stellar mass of the disk, excluding the inert bulges. While it is natural to expect that the specific star formation rate of galaxies could be universal only when computed over the disk rather than total mass of galaxies (as proposed by Abramson et al. 2014) since bulges do not form stars, it would also contradict another concept linked to the Main Sequence, namely the fact that galaxies are fed by the infall of extragalactic matter, which is in turn proportional to the total mass of galaxies, including dark matter (e.g., Dekel et al. 2013). Hence the fact that our results from section 5.1 refute this mechanism may not be surprising, and possibly even expected when accounting for the large-scale context of infall. This also echoes the result obtained more recently in the SDSS by Guo et al. (2015), who also found a sublinear slope for z = 0 pure disk galaxies, in conflict with the result of Abramson et al. (2014).

As discussed in the previous section, we observe instead in section 5.2 that the star formation efficiency is decreasing in massive galaxies, leading to a slow downfall of star formation. This suggests the existence of an active process that impacts the star formation activity, although the question remains to figure out exactly what this process could be. We cannot definitely address this question with the present data alone, but we review in the following the known mechanisms in light of our results.

We may already state that feedback from supernovae is not the favored solution, for it would affect more efficiently galaxies with a low gravitational potential, and therefore with low stellar masses, oppositely to our finding. Interestingly, the range in redshift and galaxy mass where the Main Sequence flattens corresponds to the regime where theory predicts group formation to be most effective, hence suggesting that structure formation or the membership to massive haloes may affect the rate of gas infall and the energetics regulating star formation (disk rotation and turbulence, see, e.g., Hennebelle & Chabrier 2008). Gravitational heating (Birnboim & Dekel 2003;Dekel & Birnboim 2008), i.e., the injection of energy into the dark matter halo from gas accretion itself, only depends on the mass of this halo, and can therefore act also in isolated galaxies. According to Dekel & Birnboim (2008), this can completely stop star formation in halos more massive than ∼ 6 × 10 12 M ⊙ , corresponding to a typical stellar mass of ∼ 2×10 11 M ⊙ at z = 1 (Behroozi et al. 2013). This halo mass is the threshold above which natural cooling cannot counterbalance the energy brought into the halo by accretion, but in fact this energy is always there, even below this mass threshold, and can affect less massive halos more moderately. Interestingly, it has been observed that AGN-driven outflows also act preferentially above a similar characteristic stellar mass: more than half of the star-forming galaxies above M * > 10 11 M ⊙ show signs of such outflows, while this fraction drops below 20% at M * < 5 × 10 10 M ⊙ , at both z = 2 and z = 1 (Förster Schreiber et al. 2014;Genzel et al. 2014). While these winds have in principle enough energy to push the gas out of the galaxy, it is likely that they will also impact the distribution of the gas within the galaxy, preventing fragmentation or disrupting molecular clouds. The reason why this would impact the SFE preferentially at z ≤ 1 is unclear, although it could be linked to the fact that z = 2 galaxies are more clumpy and gas-rich, and are therefore less affected by the winds (Roos et al. 2015). Lastly, we cannot rule out the action of the "radio-mode" AGN feedback, where jets heat the gas in the surroundings of galaxies, that may also be more common in massive galaxies.

Over the last years, the emphasis was put mostly on violent quenching mechanisms to explain the low baryonic fraction per unit dark matter halo mass, switching off the growth of galaxies by supernovae and AGNs at low and high masses, respectively (see, e.g., Silk & Mamon 2012;Behroozi et al. 2013;Behroozi & Silk 2015). We present here evidence that a slow downfall of the star formation efficiency should also be considered as a key mechanism.

Conclusions

We addressed here the origin of the change of slope of the Main Sequence of star-forming galaxies at z < 1.5, where high-mass galaxies exhibit a lower sSFR ≡ SFR/M * than what one would extrapolate from low-mass galaxies (e.g., Whitaker et al. 2012;Magnelli et al. 2014;Whitaker et al. 2014;Ilbert et al. 2015;Schreiber et al. 2015;Lee et al. 2015;Gavazzi et al. 2015).

It was reported in the Local Universe that the SFR-M disk relation is linear, suggesting that it is the bulge that creates most of the change of slope of the Main Sequence (Abramson et al. 2014). This claim was recently questioned by Guo et al. (2015) at z = 0, who reported that the slope of the SFR-M disk relation is in fact sublinear.

We performed the bulge-to-disk decomposition of a sample of ∼ 1 000 galaxies at z = 1 in the CANDELS fields, with robust SFRs measured from their mid-to far-IR photometry. We find that, as for the SFR-M * relation, the high mass slope of the SFR-M disk relation remains substantially shallower than unity. Such shallow slope is also observed among pure disk galaxies, selected either from their decomposed bulge-to-total ratio, or from their effective Sérsic index (see also Salmi et al. 2012 for a similar result at z = 1). This implies the existence of a physical mechanism at play even within the disks of massive galaxies, uncorrelated to the presence or absence of a bulge.

We then used Herschel stacking to derive jointly the average SFR and dust mass of star-forming galaxies in four bins of stellar mass in the same redshift range. Deriving the gas-phase metallicity from the Fundamental Metallicity Relation, we inferred the total gas mass, assuming that a fixed fraction of the metals are locked into dust, and analyzed the relation between the SFE ≡ SFR/M gas and the gas fraction in bins of stellar mass. We found that the most massive galaxies with M * > 2 × 10 11 M ⊙ show a significantly reduced SFE by about a factor of 2 to 3 when compared to extrapolations from lower stellar masses, while the gas fraction remains constant. We measured gas masses in Local Article number, page 17 of 20 A&A proofs: manuscript no. paper galaxies from the Herschel Reference Survey and found a similar behavior, reinforcing this finding. There, the drop of SFE happens at lower stellar masses, in agreement with the redshift evolution of the slope of the Main Sequence (see S15).

Combined together, these results point toward the existence of a slow downfall mechanism that impacts the SFE of massive star-forming galaxies. We showed that this phenomenon is quantitatively important at z < 1.5, and is likely disconnected from the fast quenching phenomenon that builds the red sequence. We argue that both mechanisms should be considered on the same footing when exploring the latest stages of galaxy evolution.

Leads for future research include studying the variation of the SFE above and below the Main Sequence, at fixed stellar mass. In this paper we show evidence that variations of SFR at high stellar masses are caused by variations of the SFE rather than gas mass. Since we have only been able to probe this through stacking and with relatively uncertain selection effects at z = 1, it would certainly be interesting to confirm these trends for individual objects. This kind of analysis can only be accomplished using a statistically complete sample of SFR and dust mass measurements at different stellar masses (ideally with direct metallicity estimates from emission lines). While SFRs and metallicities are currently within our reach, ALMA observations remain the only way to derive individual dust mass measurements for non-starbursting systems. A statistical sample with such measurement can be obtained either through dedicated pointed observations, or using a blind continuum survey, which will soon become possible with ALMA.

Appendix A: Impact of the UV J selection

It has been shown that the properties of the SFR-M * relation, i.e., its slope but also its scatter, are very sensitive to the sample selection (e.g., Speagle et al. 2014). In the present paper, we have used the standard UV J color-color diagram to isolate quiescent galaxies, and although this selection has been widely used in the recent literature (e.g., Whitaker et al. 2012;Muzzin et al. 2013;Bruce et al. 2014;Whitaker et al. 2014;Lang et al. 2014;Straatman et al. 2014;Pannella et al. 2015), its reliability can still be questioned. Indeed, while the quiescent and star-forming clouds can be easily identified on this diagram (see, e.g., Fig. 6), there is a non-negligible amount of galaxies in between, populating what is often referred to as the "green valley". The dividing line defined by Williams et al. (2009) goes arbitrarily through this population, and it would be unwise to consider blindly that a "green valley" galaxy slightly above that line is quiescent, and that a similar galaxy slightly below the line is star-forming.

One way to circumvent this issue is not to apply any selection of star-forming galaxies in the first place, and identify the Main Sequence as the ridge (or mode) of the distribution of galaxies on the SFR-M * plane. This was done, e.g., in Magnelli et al. (2014) and Renzini & Peng (2015). However this approach is only feasible in samples that are not SFR-selected. Building such a sample requires using SFRs that are not fully based on the FIR, and that are therefore potentially unreliable (one exception is the deep H α data of the SDSS, as in Renzini & Peng 2015, but translating this study to the distant Universe is currently out of our reach). Of course, this is also not applicable to stacking analyses, for which the SFR is only determined a posteriori.

Coming back to the UV J selection, there are two ways our study could be affected by this arbitrary dividing line. On the one hand, the selection may be too strict, and we could actually discard from our sample some galaxies that are still forming stars at non-negligible rates, but have colors similar to that of quiescent galaxies because of peculiar combination of star formation history and dust content. On the other hand, the selection may be too loose, and our "star-forming" sample could actually contain a number of quiescent galaxies. We expect both effects to take place mostly for the most massive galaxies, where dust is more abundant and where most quiescent galaxies are found. The first alternative can be addressed by looking at Fig. 8, on which we show the position of both UV J star-forming and UV J quiescent galaxies in the SFR-M * plane. One can see that there are indeed a few genuinely star-forming galaxies that are classified as UV J quiescent. However, as can be seen from the running median, these galaxies tend to have systematically lower star formation rates compared to UV J star-forming galaxies. Therefore, including these mistakenly identified galaxies in our sample would likely flatten the Main Sequence even more. Consequently, it is also unlikely that this would change dramatically the average SFE. The second alternative is probably more worrisome, as the drop of the SFE we observe in massive galaxies could be created by quiescent galaxies polluting our sample. One interesting observation to make out of Fig. 8 (and that can be made more quantitatively by studying the distribution of SFR around the median value, Ilbert et al. 2015;Schreiber et al. 2015) is that the mode of the SFR distribution at a given stellar mass (approximated here by the running median) coincides with the average value obtained from the stacked measurements. This means that, although our sample is SFR-selected, the amount of galaxies below our SFR detection limit is small enough that their impact on the average trend is marginal. In fact, for galaxies more massive than 5 × 10 10 M ⊙ , where the bending of the sequence is most pronounced, 79% of the UV J star-forming galaxies are detected in the FIR. Therefore, the contamination of genuinely quiescent galaxies to the UV J star-forming sample in this stellar mass range must be reasonably small (i.e., a maximum of 20%).

Nevertheless, in an attempt to quantify how our results are influenced by the choice of the UV J dividing line, we replicate our SFE measurements by stacking two different additional samples which are built by slightly shifting the UV J dividing line by ±0.1 magnitude. The resulting SFE and f gas are shown in Fig. A.1. As can be seen from this figure, moving the dividing line further into the quiescent cloud (red points) or further into the star-forming cloud (blue points) does not impact f gas in any statistically significant way. In both cases, we still observe a drop of SFE, although the amplitude of this drop does vary, in this case mostly because of a change of SFR.

This can be put in perspective with the work of Arnouts et al. (2013), who found that the sSFR of a galaxy could be inferred from its position on the NrK diagram, which is conceptually similar to the UV J diagram7 , with an sSFR that is continuously increasing as a function of the distance to the dividing line. According to Arnouts et al. (2013), using a stricter UV J selection should bias our sample toward galaxies with a higher sSFR, hence, at fixed mass, with a higher SFR, which is what we observe for the most massive bin. In this context, the fact that the gas mass does not change substantially is particularly interesting, and is another hint that the mechanism responsible for the downfall, whatever it is, is mostly impacting the SFE, and not the gas supply.

(4-3) to (6-5), but the estimated lines fluxes are too low for at least two such lines to be detected in a redshift scan within a reasonable amount of time.

With two spectral scans, we will cover the redshift range z = 5.3 to z = 6.8 and probe the peak of the redshift likelihood (Fig. 4). We do not attempt to scan the highest redshift end (z > 7) because there the expected sky density of M * > 10 11 M ⊙ galaxies is 3 times lower than at z ∼ 6 (Grazian et al. 2015), making it less probable that we actually detected galaxies that far. Should our object not be detected with the present setup, they would become even more interesting and we would push the search toward higher redshift in another future proposal.

We have estimated the expected [CII]158µm line flux based on the values reported by Capak et al. (2015). Our objects are three times brighter than their most luminous target, which was observed with a [CII]158µm line flux of 12 mJy. Because of the known [CII]158µm/L IR deficit (e.g., Gracia-Carpio et al. 2011), we expect our galaxies to have roughly the same [CII]158µm flux. With an expected uncertainty of a factor of two on this prediction, we securely aim for 1 mJy RMS to detect a line flux of 8 mJy at a peak significance of 5 σ (assuming ∆v = 120 km/s), requiring a total time of 3 hours. Obtaining the requested [CII]158µm spectral scans of these objects will provide an unprecedented wealth of information:

• Most importantly, we will secure their spectroscopic redshift between z = 5.3 to z = 6.8, providing unambiguous identification of the first dark ALMA galaxies. If these galaxies are confirmed to be at z > 5, this proposal will unveil the most distant known massive, dusty galaxies, and shed light on a high-redshift population that is usually missed by Lyman-based selections.

• At all redshifts, these galaxies will provide useful constraints on the dust properties of highredshift, possibly metal-pool, systems. Thanks to the redshift information, we will be able to perform SED fitting and we will be able to put robust constraints on the stellar properties like the stellar mass, but also on the dust attenuation curve (Fig. 2).

• By measuring the [CII]158µm emission, we will be able to constrain the [CII]158µm/L IR ratio for the first time in such high luminosity object at z > 4. Not only will this provide a useful benchmark for future follow-up of massive galaxies at high redshift, but it will also tell us about the ISM conditions inside these galaxies (e.g., Capak et al. 2015).

• The requested angular resolution of 0.5", together with the high signal to noise ratio that will be achieved in the continuum, will allow us to reliably extract the size of these galaxies and derive their integrated SFR surface density. This will be the first step toward constraining the integrated Schmidt-Kennicutt law in high redshift normal galaxies, and provide hints on the star formation mode. A natural follow-up of this proposal will be to target high-J CO lines and measure the gas mass to learn about how galaxies in the early Universe are consuming their hydrogen reservoirs.

ajustant des modèles de spectres (SEDs), estimé les taux de formation d'étoile, créé des cartes Herschel simulées, développé une nouvelle méthode de stacking (le scatter stacking, qui mesure la dispersion intrinsèque des flux d'un échantillon sur une carte), appliqué cette nouvelle méthode ainsi que le stacking traditionnel afin de mesurer la SED moyenne de différents échantillons de galaxies, ajusté des modèles de SEDs à la photométrie ainsi obtenu pour mesurer les propriétés physiques associées (en particulier le SFR), le tout pour finalement analyser les résultats et écrire l'article correspondant. Pour cette dernière étape, j'ai particulièrement bénéficié de l'aide de mes co-auteurs qui ont, par les nombreux commentaires et suggestions, grandement amélioré la qualité de l'article final.

Nos conclusions sont les suivantes. La majorité des galaxies à formation d'étoiles, de z = 3 à z = 0, évoluent dans un seul et unique "mode" de formation d'étoile, où le SFR est étroitement corrélé à la masse stellaire, de sorte que, au jour d'aujourd'hui, plus de 66% de la masse des étoiles a été formée au sein de la Séquence Principale. Nous observons que la dispersion en SFR autour de cette séquence, à masse stellaire fixée, est constante dans tous les régimes de redshifts et masses stellaires que nous avons pu étudier, et est environ égale à un facteur deux. Nous voyons également que la fraction de galaxies qui ont un SFR particulièrement élevé (les galaxies "starbursts", où galaxies à flambée de formation d'étoile), ne change pas significativement avec le temps. Ces résultats convergent vers un scénario global de l'évolution des galaxies où la majorité des étoiles sont formées dans des galaxies qui évoluent séculairement, i.e., dont les histoires de formation d'étoiles sont relativement lisses et régulières, avec d'occasionnelles flambées du taux de formation d'étoiles (potentiellement lié à des fusions de galaxies).

D.2 Modéliser la photométrie infrarouge intégrée des galaxies à formation d'étoiles

Herschel dans les champs CANDELS, de façon à extraire l'évolution de T dust et f PAH en fonction de la masse, du redshift et de la distance par rapport à la Séquence Principale. En accord avec les études précédentes, je trouve que la température de la poussière augmente avec le redshift et au sein de la Séquence Principale, de sorte des les galaxies qui ont un excès de SFR ont également un excès de température. Je trouve cependant la tendance inverse pour la fraction de PAH : les galaxies à grand redshift et/ou qui sont en mode "starburst" ont une émission de PAH fortement réduite. Il a déjà été observé dans la littérature que cette fraction de PAH dépend de la métallicité (pour différentes raisons qui ne sont pas encore bien comprises), et quand bien même les galaxies à grand redshift sont relativement pauvres en métaux, la réduction de l'émission des PAH que j'observe va au delà de ce qui serait attendu si la métallicité seule jouait un rôle. Dans son dernier article, D. Elbaz suggère que l'augmentation du rapport IR8 (défini comme le ratio de la luminosité infrarouge totale sur la luminosité à 8 µm, où les PAHs émettent l'essentiel de leur lumière, et qui est donc un proxy pour 1/ f PAH ) pourrait être causée par un effet de géométrie si les régions de formation d'étoiles sont arrangées de manière plus compacte. Avec cette interprétation, mes observation font écho à d'autres résultats récents qui suggèrent effectivement que les galaxies dans l'Univers lointain formaient leurs étoiles dans des régions plus compactes.

D.3 gencat : une simulation empirique de l'Univers observable

Une bonne partie du travail que j'ai effectué dnas le Chapitre 3 consistait à construire des cartes Herschel simulées, avec pour objectif final de tester mes procédures de stacking. Au sein de la collaboration ASTRODEEP1 , j'ai étendu la portée de ces simulations en écrivant un outil dédié, que j'ai appelé gencat, et qui est capable de générer des catalogues fictifs de galaxies avec des flux, couleurs, morphologies et positions angulaires réalistes, le tout dans toutes les longueurs d'ondes de l'UV au sub-millimétrique (voir Chapitre 5). Ce code est utilisé dans la collaboration ASTRODEEP pour tester de nouveaux codes et méthodes d'extraction de sources qui seront bientôt rendues disponibles au reste de la communauté scientifique.

Les catalogues fictifs crées par gencat sont générés à partir de prescriptions empiriques, où toutes les quantités physiques sont dérivées à partir du redshift ainsi que de la masse stellaire, eux-mêmes générés à partir des fonctions de masse observées. J'ai dérivé la plupart de ces prescriptions moi-même en utilisant les catalogues réels introduits dans le Chapitre 3 (et en ajoutant les descriptions morphologiques dérivées par A. van der Wel, van der Wel et al. 2012). Ces prescriptions concernent les fonctions de masse, le taux de formation d'étoile, l'obscuration par la poussière, la température et la composition chimique de cette poussière, le rayon mi-lumière et le rapport d'axe dans l'optique, les couleurs U -V et V -J et le clustering (projeté). J'ai écrit le code moi-même en utilisant la bibliothèque phy ++ (Appendice A), et j'ai reçu des conseils de la part de H.C. D.4 La lente chute de l'efficacité de formation d'étoiles dans les galaxies massives durant les derniers 10 Gyr Cette étude est décrite dans le Chapitre 6. Les résultats que je décris dans ce manuscrit seront présentés dans un article qui a été soumis pour publication dans A&A. Cet article est reproduit dans l'Appendice B. Ce travail est basé essentiellement sur les mêmes données que celles que j'ai introduites dans le Chapitre 3, et se concentre sur le fait (relevé déjà dans le Chapitre 3) que la pente de la relation s f r-M * évolue à la fois en fonction de la masse stellaire et du redshift : alors que cette pente est proche de 1 à tout z > 2, les galaxies massives à plus bas redshift semblent suivre une pente significativement plus faible. L'importance de cet "aplatissement" de la Séquence Principale devient plus prononcée avec le temps. Notre objectif est de rechercher la cause de ce changement de pente, pour voir en particulier si celui-ci est dû à un contenu en vielles étoiles particulièrement élevé (de sorte que certaines régions de la galaxie, en particulier le bulbe, ne sont pas corrélées à la formation d'étoile tout en contribuant à la masse stellaire), ou par des SFR particulièrement bas (dû, soit à un faible contenu en gaz, soit par une efficacité de formation d'étoile réduite).

Dans ce travail, j'utilise les mêmes catalogues que dans le Chapitre 3, à ceci près que je raffine la pureté de nos catalogues dans l'infrarouge en identifiant et excluant les mauvaises associations de flux inhérentes à la méthode d'extraction standard. J'analyse ensuite le profil lumineux dans l'optique de chaque galaxie, en utilisant une décomposition bulbe-disque produite par M. Pannella avec GIM2D, et moi-même avec GALFIT. De manière complémentaire, j'effectue également un analyse plus simples en ajustant un unique profil de Sérsic. Pour vérifier la cohérence et la robustesse de nos décompositions respectives, nous lançon également nos procédures sur des image Hubble simulées que j'ai produites moi-même. Par la suite, je ré-analyse la photométrie infrarouge stackée provenant de mon premier article en utilisant les SEDs que j'introduis dans le Chapitre 4, ce qui me permet de mesurer les masses de poussière (M dust ) de nos échantillons. J'en déduis la masse de gaz d'hydrogène présent dans ces galaxies (M gas ) en me basant sur une prescription qui me permet d'estimer la métallicité. Je complémente cette analyse avec un échantillon de galaxies à z = 0 tirées du Herschel Reference Survey, et qui m'ont été fournies par L. Ciesla. Elle a interprété la photométrie de ces galaxies pour dériver leur masse stellaire, SFR et masse de poussière.

La conclusion de cette étude est que l'aplatissement de la Séquence Principale à bas redshift est causée principalement par une efficacité de formation d'étoile (SFE) réduite, plutôt que par un manque de gas ou par la présence d'un bulbe inerte. Cette observation implique l'existence d'un processus global et relativement lent de décroissance de l'activité de formation d'étoile dans les galaxies massives que nous avons appelé la "lente chute" de l'efficacité de formation d'étoile. Nous ne sommes pas encore en mesure d'identifier le processus physique qui gouverne cette évolution, mais nous pouvons néanmoins quantifier la perte nette de formation d'étoile qui en découle. Nous trouvons que cette perte est comparable à z < 1.5 à la croissance en masse de la population de galaxies passives (la "red sequence"), ce qui démontre l'importance de ce phénomène dans l'histoire récente de l'Univers, et ce qui renforce l'idée intéressante selon laquelle toutes les galaxies ne sont pas forcées de mourir via un processus rapide (quenching). D.5 Explorer l'Univers à z = 4 avec ALMA Une des limitations de l'étude que je présente dans le Chapitre 3 est liée au fait que Herschel dispose d'une sensibilité relativement limitée, et n'est par conséquent capable de ne détecter que les starbursts les plus extrêmes à z ≥ 4. En utilisant des méthodes de stacking, j'ai pu partiellement dépasser cette limitation pour déterminer la normalisation ainsi que la dispersion du sSFR jusqu'à z = 3.5. Au delà, le stacking ne permet d'obtenir que le SFR moyen des galaxies les plus massives (M * > 10 11 M ⊙ ) at z = 4. De plus, cette détermination est incertaines, car à z = 4 le pic de la SED infrarouge atteint la bande SPIRE 500 µm, qui (de fait de sa faible résolution angulaire) est la plus sujette aux effets de clustering. Pour contourner cette limite, nous avons estimé avec M. Pannella que nous pouvions obtenir des renseignements importants sur la Séquence Principale à z = 4 en utilisant ALMA : avec seulement une minute de temps d'intégration par galaxie, nous pouvons couvrir l'intégralité de la Séquence Principale à 3.5 < z < 5 dans la gamme de masse log 10 (M * /M ⊙ ) = 10.7 -12. Avec notre collaborateur Chilien 254/260 R. Leiton, nous avons donc proposé un programme de 6 heures pour observer le continuum de la poussière de ces galaxies à 870 µm avec une résolution angulaire de 0.7 ′′ . Cette proposition d'observation a été acceptée, et nous avons reçu les données au début de l'année 2015. Je présente dans le Chapitre 7 le travail que j'ai effectué sur cet échantillon, qui mènera à un article dans un futur proche.

Dans ce Chapitre, je détaille la réduction des données, incluant l'imagerie et la mesure des flux, et je décris les premiers résultats qui ressortent de l'analyse. Je présente un premier regard sur la formation d'étoiles enfouie par la poussière à z = 4 et pour toutes les masses stellaires M * > 5 × 10 10 M ⊙ , et complémente nos premiers résultats obtenus par stacking avec Herschel par la détection directe de nos galaxies dans le continuum à 170 µm (référentiel au repos) par ALMA. La tendance observée confirme (de prime abord, l'analyse étant toujours en cours) la relation SFR-M * que nous avions déduite des données Herschel. Je note cependant un taux de détection relativement faible, autour de 30%, comparé aux 80% que nous attendions. Ceci est dû probablement à l'incertitude sur notre prédiction des flux sub-millimétriques, notre choix d'inclure les galaxies passives dans l'échantillon, des redshifts photométriques incertains, et, finalement, la normalisation inconnue de la Séquence Principale.

Je discute également la découverte de trois galaxies particulières que j'ai découvertes dans nos nouvelles données. La première est une source brillante dans le sub-millimétrique et la radio qui n'a aucune contrepartie dans les catalogues optiques simplement à cause de sa proximité avec une étoile brillante (Section 7.8). En utilisant GALFIT, j'ai soustrait le profil de cette étoile et ait estimé le flux de la galaxie par photométrie d'ouverture sur les images résiduelles dans toutes les bandes de U à Spitzer IRAC pour en apprendre plus sur cette galaxie. Je trouve qu'il s'agit d'un objet massive à z ∼ 3, et confirme la présence d'un AGN (noyau active de galaxie). Les deux autres galaxies, décrites dans la Section 7.9, n'ont aucune contrepartie dans aucun catalogue, et ne sont clairement détectée que dans les images Spitzer IRAC, suggérant que ce sont deux galaxies poussiéreuses à très grand redshift, potentiellement les objets de cette classe les plus distant connus à ce jour. Je mesure leur photométrie moi-même sur les images Hubble, Subaru, VISTA, Spitzer et Herschel, et dérive de premières contraintes sur leur redshift. Ces dernières ne sont pas très strictes, mais elles me permettent néanmoins d'exclure z < 4 avec une forte probabilité, avec une préférence pour z > 5. Je décris plus bas le programme d'observation que j'ai proposé pour déterminer leur redshift par spectroscopie avec ALMA.

D.6 phy ++ : une bibliothèque C++ rapide, légère et open-source pour l'analyse numérique en astrophysique En parallèle du travail scientifique décris ci-dessus, j'ai également développé une bibliothèque appelée phy ++ pour permettre de faire de l'analyse de donnée en C++ avec un code simple et expressif. J'ai rendu le code source de cette bibliothèque public, et donne un rapide aperçu de l'intérêt et des capacités de cette bibliothèque dans l'Appendice A.

Brièvement, mon but avec cette bibliothèque est de reproduire la facilité d'utilisation et l'expressivité des langages comme phython (et numpy) ou IDL, tout en tirant profit du C++ et de ses performances optimales ainsi que de la robustesse du code imposée par la compilation. J'ai dédié une part importante de mon temps libre à la création et au développement de ce projet de façon à atteindre rapidement une infrastructure suffisamment stable pour être utilisée au quotidien. Pour donner une idée de la taille de ce projet, je dirais simplement qu'il contient environ 270 fonctions pour un total de 29 000 lignes de code. Au final, la grande majorité des résultats scientifiques présentés dans ce manuscrit ont étés obtenus grâce à cette bibliothèque, même si IDL a été utilisé pour produire toutes les figures. 255/260 pour le Cycle 2, pour un total de 40 heures de temps d'observation, mais a été rejeté. Nous l'avons re-proposé cette année en révisant l'aire couverte à la baisse pour un total de 22 heures. Ce programme a été accepté. Un tel sondage du ciel sub-millimétrique offrira une pléthore d'information sur le contenu en poussière des galaxies à 1 < z < 2, et la formation d'étoile à plus grand redshift. Il permettra également une meilleure compréhension des images Herschel grâce à la haute résolution angulaire de ALMA, ce qui pourvoira des mesures robustes de la température de poussière des galaxies les plus brillantes, ainsi que la mesure des SFR des galaxies moins lumineuses grâce à une meilleure déconfusion. Finalement, le potentiel de sérendipité est non négligeable, comme je le démontre avec les deux galaxies sombres que nous avons découvertes dans notre premier sondage ALMA à z = 4, qui couvre une aire dix fois plus petite (mais très probablement biaisée).

D.8.2 KMOS

Je suis co-investigateur de deux projets KMOS de 20 heures chacun qui ont pour objectif de mesurer les redshifts spectroscopiques de galaxies poussiéreuses à 3 < z < 4.5 (PI : R. Leiton for both), en utilisant les rais H β , [O ii] and [O iii] dans les bandes H et K. Le premier programme cible un échantillon de galaxies à 2.9 < z < 3.5 tirés des champs CANDELS, avec pour objectif secondaire de mesurer leur métallicité, tandis que le second programme cible les mêmes galaxies que notre programme ALMA à z = 4 pour mieux contraindre leurs propriétés physiques. Ces deux programmes ont été approuvés, le 2 juillet 2014 et 2 juillet 2015, respectivement, et ont été tous deux classés "B". Dans les deux cas, j'ai été en charge de choisir les détails de l'observation ("Phase 2"), qui est un sujet complexe avec KMOS dû à son architecture unique : les 24 bras doivent être positionnés de manière optimale pour maximiser le nombre de cibles observées tout en laissant la place pour observer le ciel ainsi que quelques étoiles d'intensité modérée pour aider la compilation des différents observing blocks (OB). Nous avons commencé à recevoir les données du premier programme en décembre 2014, mais malheureusement seulement la moitié des galaxies ont finalement été observées avant que le projet soit stoppé à la fin du semestre. Depuis, j'ai pu faire une première réduction des données en utilisant la pipeline fournie par l'ESO, et ait constaté que les étoiles "guides" d'intensité modérée ont bien été détectée, mais je n'ai pas encore combiné les différents OB en un seul et unique cube pour chaque galaxie observée. De fait, je n'aborde pas davantage ce projet dans ce manuscrit.

Durant le dernier appel à proposition, un autre projet KMOS de 4.5 heures a été approuvé (PI : T. Wang) pour obtenir la confirmation spectroscopique d'un potentiel amas de galaxies à z = 2.5, qui serait le plus distant connu à ce jour. J'ai aidé à écrire cette proposition et à choisir les paramètres techniques, et j'ai aidé T. Wang à préparer la Phase 2 à la fin du mois de juillet 2015.

D.8.3 Sinfoni

Dans les données ALMA d'un de nos collaborateur (J.R. Mullaney), nous avons trouvé un intriguant groupe de trois détections ALMA très proches (comprises dans 7 ′′ ). En inspectant leur photométrie, nous avons trouvé que ces trois objets pourraient être au même redshift, z ∼ 2.5, avec une quatrième galaxies passive ainsi qu'un cinquième objet détecté à la fois dans la radio et les rayons X. Cette structure pourrait être un proto-amas dense, avec une combinaison intéressante d'émission radio et X suggérant une activité intense des AGNs. Nous avons proposé (PI : M. Pannella) de confirmer l'existence de cette structure par spectroscopie en infrarouge proche (H+K), en utilisant le champ de vue large de Sinfoni (en effet, cette structure est trop dense pour KMOS). J'ai aidé à écrire la proposition, dans laquelle nous avons demandé un total de 10 heures de temps télescope, mais celle-ci a finalement été rejetée le 2 juillet 2014. Cependant, j'ai inclus ces galaxies dans notre liste de fillers pour notre premier programme KMOS, et ai réussi à observer deux d'entre elles. Une fois que ces données seront réduites, et
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 1 Figure1.3 -Left: NGC 4038 and 4039, also known as the Antennae galaxies, an on-going major merger. Both are seen here in the center of the image, and can barely be distinguished from one another. The extended arc-like features, which inspired the name of this pair of galaxies, are called tidal tails. These are made of gas and stars that were stripped from both galaxies through complex gravitational interactions. Copyright: SSRO, reproduced with permission. Right: Simulated star formation history of the Antennae, adapted fromRenaud et al. (2014). This data comes from a full 3D model of the merger, with a maximum spatial resolution of 1.5 pc, including gas and stars (see the description of the simulation inRenaud et al. 2015). The evolution of the SFR with time is shown with a solid gray line. The green dotted line shows the energy in compressive turbulence, which is predicted byRenaud et al. (2014) to be the dominant way through which mergers densify the gas and trigger additional star formation. The red line indicates the instant where the simulation matches best the current observed state of the Antennae galaxies.
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 31 Figure 3.1 -UV J diagrams in each bin of redshift (horizontally) and mass (vertically) of our CANDELS sample. The central value of the redshift and mass bins are shown at the top and on right-hand side of the figure, respectively.The dividing line between active and passive galaxies is shown as a solid orange line on each plot, with passive galaxies located on the top-left corner. We show in the background the distribution of sources from the H-band catalogs in gray scale. We also overplot the position of sources detected with Herschel as blue contours or, when the source density is too low, as individual blue open circles. On the top-left corner of each plot, we give the fraction of H band-selected galaxies that fall inside the quiescent region, and on the bottom-right corner we show the fraction of Herschel sources that reside in the star-forming region.

Figure 3

 3 Figure 3.2 -Correlation between the stellar mass and the luminosity in the observed-frame H band at 0.7 < z < 1.2 (left) and 3.5 < z < 5 (right) in the three CANDELS fields GOODS-South, UDS, and COSMOS. On the bottom plots, the two horizontal orange lines show the position of the H = 26 limiting magnitude at z = z min and z = z max . The red line is the best-fit relation, and the dotted lines above and below show the 1σ dispersion (0.2 and 0.5 dex, respectively). The blue vertical line shows the locus of the estimated 90% mass completeness in each redshift bin. The top plots show the evolution of completeness (i.e., the estimated fraction of detected objects) with stellar mass, and the horizontal orange line shows the 90% completeness level.

Figure 3

 3 Figure 3.3 -Evolution of the starforming galaxy stellar mass function with redshift in the three CAN-DELS fields GOODS-South, UDS, and COSMOS for galaxies brighter than H = 26. Raw, incomplete counts are shown as dashed lines, while solid lines show the corrected counts. The shaded areas correspond to Poissonian errors.

Figure 3

 3 Figure 3.5 -Stack of 155 galaxies at z = 3 and log 10 (M * /M ⊙ ) = 11.3 in the SPIRE 250 µm images. Left: mean flux image, Right: MAD dispersion image. Measuring the dispersion is more difficult than measuring the flux, since the signal is always fainter. 38% of these galaxies are individually detected by Herschel, and only 25% are detected in the SPIRE 250 µm channel.
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 38 Figure 3.8 -Correction procedure for the measured dispersion. Each point is a simulated dispersion measurement with a different input value. Error bars show the scatter observed among the 20 realizations. The dashed line shows the one-to-one relation. The plots display two examples of simulated dispersions for the PACS 100 µm band, at z = 0.6 for M * = 3 × 10 10 (left panel), and at z = 1.5 for M * = 2 × 10 10 M ⊙ (right panel). These bins were chosen to illustrate the two regimes of high and low signal to noise, respectively.

Figure 3 .

 3 Figure 3.12 -Evolution of the log 10 (SFR) dispersion as a function of both redshift and stellar mass. Each color is showing a different redshift bin. Filled symbols show the result of scatter stacking, while open symbols show the dispersion estimated from individual Herschel detections above the Main Sequence (see text). The open symbols have been shifted up by 0.1 dex in mass for clarity. Errors are from bootstrapping in all cases. We compare these to the typical scatter of the SFHs in the numerical simulation of Hopkins et al. (2014) shown as a solid purple line.

Figure 3 .

 3 Figure 3.16 -Compilation of both detections and stacking results on the SFR-M * plane for the CAN-DELS fields. The top left panel shows the results obtained with the Sloan Digital Sky Survey (SDSS) in the local Universe, as presented inElbaz et al. (2007), while each subsequent panel displays our result for increasing redshifts. The blue line shows the average stacked SFR (Section 3.4.2), and the green lines above and below show the 1σ dispersion obtained with scatter stacking (Section 3.4.4). Both of these were performed on sliding bins of mass for the sake of visualization, and for this figure only. The SFR detection limit of each sample is indicated with a solid orange line. We also show the sliding median and percentiles of the SDSS distribution with purple and yellow lines, respectively, to emphasize that both the SFR tracer and the sample selection are different (see text). This correlation, observed in the local Universe, is reproduced as a gray line on each panel. The density of individual detections is shown in gray scale in the background, except for the two highest redshift bins where we show the individual galaxies as gray filled circles.

  , raw incomplete counts are shown as light curves in the background, and corrected counts are shown as darker lines. Error bars indicate Poisson noise and for clarity are only shown for the CAN-DELS counts.

Figure 3 .

 3 Figure3.19 -Combined starburstiness (R SB ) distributions from Fig.3.17 normalized to the total number of star-forming galaxies in each bin. The green line shows our best-fit model from Eq. 3.10, and the blue and orange lines show the contributions of Main Sequence and starburst galaxies, respectively. The residuals of the fit are shown at the top of the figure.
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 320 Figure3.20 -Same as Fig.3.16, this time also showing the location of UV J passive galaxies. In each panel, the blue line shows the average stacked SFR (Section 3.4.2), and the green lines above and below show the 1σ dispersion obtained with scatter stacking. The orange horizontal line shows the detection limit of Herschel in SFR. The red line shows the stacked SFR of UV J passive galaxies, naively assuming that all the IR light comes from star formation. This is a conservative upper limit, since in these galaxies dust is predominantly heated by old stars, and the effective dust temperature inferred from the FIR SED is much colder than for actively star-forming galaxies of comparable mass.

Figure 3 .

 3 Figure 3.21 -Real Herschel PACS 100 µm image (left) and one of our simulations (right). The green region shows the extent of the PACS coverage, while the red region shows the Hubble ACS coverage, i.e., the extent of our input catalog. The two images are shown here with the same color bar.

  line) to obtain σ conf. = 4.6 mJy. The red circle marks the instrumental noise level reached in the real maps. Right: comparison between the estimated error from the stack residual σ IMG and the true error σ. The points show the median of σ/σ IMG , and the error bars are showing the 16th and 84th percentiles of the distribution. The green horizontal line is the line of perfect agreement, and the blue vertical line marks the confusion noise at 250 µm. The red circle marks the instrumental noise level reached in the real maps.

Figure 3 .

 3 Figure3.25 -Normalized distribution of (∆S -∆S )/σ of the mean (top) and median (bottom) stacked PACS 100 µm fluxes in each stacked bin. The black, blue, and red curves show Gaussians of width 1, σ BS /σ and σ IMG /σ, respectively. The estimation of the true signal to noise ratio of the flux measurement is displayed in dark red, while the average number of stacked sources is shown in dark blue.
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 41 Figure 4.1 -Spitzer and Herschel stacks of S15 (open triangles) of Main Sequence galaxies at different redshifts (from left to right) and for different stellar masses (colors, see legend). We add to these data new stacks of the Spitzer 16 µm images in the GOODS fields, and overplot the best fit template from our library with colored solid lines. Fainter empty triangles in the background show the expected broadband flux from the best-fit template, to illustrate any offset with the observations. For the last redshift bin (bottom-right panel), we fixed f PAH and T dust (see Appendix 4.4) because there is no data to constrain the PAH region and the Rayleigh-Jeans tail of the dust continuum.
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 43 Figure 4.3 -Left: Evolution of the effective dust temperature T dust with redshift. The T dust estimated from each stacked SED at different stellar masses are shown with empty triangles of different colors (see legend). The trend we adopt in this paper is illustrated with a solid black line. We also show the T dust evolution ofMagdis et al. (2012) andBéthermin et al. (2015b) (both converted from U to T dust using Eq. 4.1) as well asMagnelli et al. (2014) (corrected from light-weighted to mass-weighted using Eq. 4.5). Right: Evolution of the PAH mass fraction f PAH with redshift. The legend is the same as for the plot on the left, except that here we show the values obtained byElbaz et al. (2011) andMagdis et al. (2012) (computed from their SEDs). Both were converted from IR8 to f PAH using our SEDs. For reference, we also give the median f PAH value measured in local galaxies byGalliano et al. (2008).

Figure 4

 4 Figure 4.4 -Left: Evolution of the dust temperature (T dust , top) and PAH mass fraction ( f PAH , bottom)of galaxies individually detected with Herschel in the CANDELS fields. For the T dust measurement, we consider only those galaxies with at least 3 measured photometric points in the dust continuum so that the dust temperature is relatively well constrained. For the f PAH measurement, we use only those galaxies with at least one measured photometric point around the rest-frame 8 µm and at least one point in the dust continuum. We overplot the trends found in stacking (Section 4.2.1) with solid black lines, as well as the sliding medians on the detection with solid red lines. Middle: Calibration of the evolution of T dust (top) and f PAH (bottom) with the offset from the Main Sequence (R SB , see text). The legend is the same as for the plot on the left, except that here the black solid line shows our best-fit linear relation to the data. Right: Distribution of T dust (top) and f PAH (bottom) after removing the redshift evolution as well as the starburstiness trend. The scatter of this distribution, measured with 1.48 × median|∆X|, where X is either T dust or log 10 ( f PAH ), is shown in inset.
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 45 Figure4.5 -Relation between the PAH mass fraction f PAH observed in stacked Spitzer and Herschel photometry, and the gas-phase metallicity (given here in terms of oxygen abundance, 12 + log 10 (O/H), where the solar value is 8.69, as given in AllendePrieto et al. 2001), which is estimated either using the Fundamental Metallicity Relation (FMR, Mannucci et al. 2010) (upward facing triangles) or a broken FMR(Béthermin et al. 2015b) (leftward facing triangles). The z = 0 relation obtained byGalliano et al. (2008) is shown for reference with a dotted gray line, and the same relation rescaled by a factor 0.45 is shown with a dashed gray line.

Figure 5

 5 Figure 5.1 -Conditional stellar mass function at different redshifts for star-forming (left) and quiescent galaxies (right), selected with H < 26. The dashed lines in the background indicate the raw mass functions, before completeness corrections are applied. The solid colored regions show the completenesscorrected estimate of the mass function, and the width of the region indicates the statistical uncertainty on the measurement (i.e., Poisson noise).

  GENCAT: AN EMPIRICAL SIMULATION OF THE OBSERVABLE UNIVERSE

  Fig.5.5 is showing the the total (bulge+disk) magnitude distributions in multiple bands as produced by the simulation. These are compared to the observed distributions in GOODS-South, splitting the field into two parts: the HUDF, which is deeper, and the rest of the field. The agreement is found to be very good in the NIR. Since these wavelengths are most closely correlated to the stellar mass of the galaxies, and since the mock catalog was built to reproduce exactly the stellar mass function in GOODS-South, this should not come as a surprise. Still, this shows that the procedure works well. Generating the optical (F435W and F606W) fluxes is more complex, because these bands actually trace the emerging UV light coming from star formation. Nevertheless, the agreement here is also very good. Fig. 5.6 (left) shows instead the FIR fluxes distributions. We jointly analyze in Fig. 5.7 the pixel histogram distribution of the simulated maps against the observed maps. This second test is important because of the blending, which sometimes pollutes the measured flux catalogs 99/260

Figure 6

 6 Figure 6.2 -Example bulge-to-disk decomposition of an H = 22.2 galaxy from the GOODS-South field, which is among the faintest galaxy in our sample. The first column shows the observed HST WFC3 image of the galaxy, and we also provide in the top-left corner its main physical properties. The second column shows the best-fit disk (top) and bulge (bottom) components as extracted by GIM2D. The third column shows the residual of the image after subtraction of the bulge (top) and the disk (bottom), to visualize the profile of the other component. Finally, the fourth column shows the residual image after both components are subtracted. The best-fit parameters are given in the top-right corner.
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 66 Figure 6.6 -Mean stacked FIR SEDs of z = 1 galaxies in our sample, split in four mass bins. The broadband photometry (open diamons) is taken from Chapter 3. The fit to the stacked measurements is performed using the dust models of Galliano et al. (2011) (see also Chapter 4).

Figure 6

 6 Figure 6.8 -Same as the upper panel of Fig. 6.7, but this time varying the Sérsic index n.

  ⊙ /yr]) = mm 0 + a 0 r .(6.15) 

7. 6

 6 The z = 4 Main Sequence 7.6.1 Calibration of the SFR In Chapter 4, I developed a new template library and gave prescriptions for the evolution of the dust temperature with cosmic time. By extrapolating the trend observed at lower redshifts, this prescription suggests that the average dust temperature at z = 4 should be around 36K. It turns out that the best-fit Chary & Elbaz (2001) SED of the z = 4 stacked Herschel photometry from Schreiber et al. (
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 74 Figure 7.4 -Top-left: UV to NIR photometry of AZ4-C4, as obtained by aperture photometry on the different images. The red circles show the measured fluxes, and the black solid line is the best-fit model from FAST. The corresponding best-fit parameters are listed in the bottom-right corner. The inset in the top-left corner shows a zoom-in on the galaxy, the chosen aperture (red circle), the ALMA contours (green, 3 to 4σ as dotted lines, 5σ as a solid line), and the radio contours (purple dashed lines, 5 and 8 σ). Middle-left: Redshift probability distribution, as inferred from the χ 2 of FAST. The smallest χ 2 solution is indicated with a red arrow. Right and bottom: Optical to NIR imaging of AZ4-C4, after subtraction of the bright neighboring star. The regions with large residuals have been masked and appear in white color. The colored circles indicate galaxies that were not included in the CANDELS (or 3DHST) catalogs. The size of the circle gives the aperture that was used to measure the fluxes. (a), in red, is AZ4-C4. (b) and (c) have a very comparable photometry, both in terms of flux and shape, and are fitted with young blue stellar populations at z ∼ 1, although the redshift is poorly constrained owing to the lack of a clear break in the SED. Both are clearly detected in the U band, indicating that they must be mostly dust-free galaxies at z < 2.

Figure 7

 7 Figure 7.7 -Postage stamps of the two "dark ALMA galaxies" that we discovered in our ALMA survey. The first eight images show AZ4-C5, and the remaining ones show AZ4-C6. For each galaxy, the following images are displayed: • the sum of the Subaru images in the B, V, r, i and z bands, • the sum of the HST WFC3 images in the F125W, F140W and F160W bands, • the sum of the VISTA Y, J, H and K s bands, • the four Spitzer IRAC bands, and • the ALMA image, non-primary-beam-corrected.The first three images are smoothed with a Gaussian kernel to reveal the extended and faint structures that would otherwise be undetectable. On each image, I show a green contour corresponding to the 1 mJy level of the ALMA emission.

Figure 7

 7 Figure 7.8 -U to Spitzer IRAC photometry of the two dropouts (left: AZ4-C5, right: AZ4-C6). The measured fluxes are shown with empty red circles, with their associated error bars in light gray. To guide the eye, the optimal best-fit SED from FAST is shown with a solid orange line (at z = 6.9 and z = 7.45, respectively, although the precise redshift is very uncertain), and the model fluxes are shown with empty orange circles.

Figure 7 .

 7 Figure 7.10 -Panchromatic SED of the two dropouts (top: AZ4-C5, bottom: AZ4-C6). Each panel shows the best-fit model SED at different redshifts, z = 2, z = 4 and z = 7.5 from left to right. On all figures, measured fluxes are shown with empty red circles, the stellar and dust SEDs are shown individually with two solid orange lines, while the combined SED is shown with a solid blue line. The corresponding model fluxes are shown with orange small empty circles.

  Figure 7.11 -Observing setup for the ALMA [C ii] spectral scan. This figure shows the two spectral scans that I proposed during the last ALMA call for proposal. The frequency range covered by each spectral scan is indicated with a striped dark blue region. Within each scan, this figure shows the individual spectral setups that compose the scan (the small colored squares), each setup containing four passbands that are observed simultaneously. The atmospheric transmission curve is shown in the background with arbitrary units.
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 1 Figure A.1 -Example web page in the online documentation of the phy ++ library (http://cschreib. github.io/phypp/doc/category_support_01_intro.html). Three main areas are highlighted on this screenshot: (a) the category menu, where the functions of the library are grouped by themes and sub-themes to ease the discovery of new functions; (b) the alphabetical menu, which lists all the functions of the library by alphabetical order to allow quick access to the documentation of a known function; and (c) the central panel where the documentation is displayed, giving the signature of the function (i.e., what arguments it expects), a short descriptive text, and a code sample to illustrate the usage of the function.
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 2 Figure A.2 -Example application of pixfit in GOODS-South. In the top row are the observed images. From left to right: Spitzer 16 and 24 µm, Herschel PACS 70, 100 and 160 µm, Herschel SPIRE 250, 350 and 500 µm, and LABOCA 870 µm. Each postage stamp covers the same region of the sky. The bottom row are the same image after subtracting the galaxies that have individual flux measurements, leaving only the fluxes of the groups.Each open circle, whether green or red, is a prior position used to extract the fluxes. Green circles are galaxies that have an individual flux measurement, while red circles show galaxies that where grouped with their neighbors for being too closely packed. A yellow contour indicates the extent of the corresponding flux group, and the area that is used to perform aperture photometry.

  .."); // Extract just what we need from the whole map uint_t xmi = max(0, floor(min(tx[id]) -group_aper_size)); uint_t xma = min(img.dims[1]-1, ceil(max(tx[id]) + group_aper_size)); uint_t ymi = max(0, floor(min(ty[id]) -group_aper_size)); uint_t yma = min(img.dims[0]-1, ceil(max(ty[id]) + group_aper_size)); vec2i tgrp = grp_map(ymi-_-yma,xmi-_-xma); // Convert coordinates to the local map tix[id] -= xmi; tiy[id] -= ymi; // Build the aperture mask vec2b mask(tgrp.dims); for (uint_t j : id) { // Create the aperture for this source vec2b taper = translate(aper, tdy[j], tdx[j]) > 0.5; vec1u idi, idp; subregion( mask, {tiy[j]-hsize, tix[j]-hsize, tiy[j]+hsize, tix[j]+hsize}, idi, idp 190/260 1. Introduction Most extremely star-forming galaxies in the local Universe are heavily dust-obscured and show undeniable signs of an ongo-Article number, page 1 of 30

Fig. 1 .

 1 Fig. 1. UV J diagrams in each bin of redshift (horizontally) and mass (vertically) of our CANDELS sample. The central value of the redshift and mass bins are shown at the top and on right hand side of the figure, respectively.The dividing line between active and passive galaxies is shown as a solid orange line on each plot, with passive galaxies located on the top-left corner. We show in the background the distribution of sources from the H-band catalogs in gray scale. We also overplot the position of sources detected with Herschel as blue contours or, when the source density is too low, as individual blue open circles. On the top-left corner of each plot, we give the fraction of H band-selected galaxies that fall inside the quiescent region, and on the bottom-right corner we show the fraction of Herschel sources that reside in the star-forming region.

Fig. 2 .

 2 Fig. 2. Correlation between the stellar mass and the luminosity in the observed-frame H band at 0.7 < z < 1.2 (left) and 3.5 < z < 5 (right) in the three CANDELS fields GOODS-South, UDS and COSMOS. On the bottom plots, the two horizontal orange lines show the position of the H = 26 limiting magnitude at z = z min and z = z max . The red line is the best fit relation, and the dotted lines above and below show the 1σ dispersion (0.2 and 0.5 dex, respectively). The blue vertical line shows the locus of the estimated 90 % mass completeness in each redshift bin. The top plots show the evolution of completeness (i.e. the estimated fraction of detected objects) with stellar mass, and the horizontal orange line shows the 90 % completeness level.

Fig. 3 .

 3 Fig. 3. Evolution of the star-forming galaxy stellar mass function with redshift in the three CANDELS fields GOODS-South, UDS and COS-MOS, for galaxies brighter than H = 26. Raw, incomplete counts are shown as dashed lines, while solid lines show the corrected counts. The shaded areas correspond to Poissonian errors.

Fig. 5 .

 5 Fig. 5. Stack of 155 galaxies at z = 3 and log 10 (M * /M ⊙ ) = 11.3 in the SPIRE 250 µm images. Left: mean flux image, Right: MAD dispersion image. Measuring the dispersion is more difficult than measuring the flux, since the signal is always fainter. 38% of these galaxies are individually detected by Herschel, and only 25% are detected in the SPIRE 250 µm channel.

Fig. 8 .

 8 Fig. 8. Correction procedure for the measured dispersion. Each point is a simulated dispersion measurement with a different input value. Error bars show the scatter observed among the 20 realizations. The dashed line shows the one-to-one relation. The plots display two examples of simulated dispersions for the PACS 100 µm band, at z = 0.6 for M * = 3 × 10 10 (left panel), and at z = 1.5 for M * = 2 × 10 10 M ⊙ (right panel). These bins were chosen to illustrate the two regimes of high and low signal to noise, respectively.

Fig. 12 .

 12 Fig. 12. Evolution of the log 10 (SFR) dispersion as a function of both redshift and stellar mass. Each color is showing a different redshift bin. Filled symbols show the result of scatter stacking, while open symbols show the dispersion estimated from individual Herschel detections above the main sequence (see text). The latter have been shifted up by 0.1 dex in mass for clarity. Errors are from bootstraping in all cases.We compare these to the typical scatter of the SFHs in the numerical simulation ofHopkins et al. (2014) shown as a solid purple line.

Fig. 15 .

 15 Fig. 15. Predicted evolution of the cosmic stellar mass density ρ * with redshift. The lines shows the inferred mass density by extrapolating our stacked SFRs down to M * = 3 × 10 9 M ⊙ and out to z = 6 using the trend fromMadau & Dickinson (2014) and integrating as a function of time. Stellar lifetimes are accounted for, and the mass of stellar remnants is included in ρ * (see text). Colors are the same as in Fig.13: the solid purple line shows the contribution of stacked sources with significant signal, the green line shows the contribution of galaxies in the regimes where we have probed the existence of the main sequence, and the orange line is the contribution of individually detected FIR sources. Shaded regions in the background show the corresponding 1σ statistical errors. We compare these results to the literature compilation ofMadau & Dickinson (2014) shown as open triangles.

Fig. 16 .

 16 Fig. 16. Compilation of both detections and stacking results on the SFR-M * plane for the CANDELS fields. The top left panel shows the results obtained with the Sloan Digital Sky Survey (SDSS) in the local Universe, as presented inElbaz et al. (2007), while each subsequent panel displays our result for increasing redshifts. The blue line shows the average stacked SFR (section 4.2), and the green lines above and below show the 1σ dispersion obtained with scatter stacking (section 4.4). Both of these were performed on sliding bins of mass for the sake of visualization, and for this figure only. The SFR detection limit of each sample is indicated with a solid orange line. We also show the sliding median and percentiles of the SDSS distribution with purple and yellow lines respectively, to emphasize that both the SFR tracer and the sample selection are different (see text). This correlation, observed in the local Universe, is reproduced as a gray line on each panel. The density of individual detections in shown in gray scale in the background, except for the two highest redshift bins where we show the individual galaxies as gray filled circles.

  , raw incomplete counts are shown as light curves in the background, and corrected counts are shown as darker lines. Error bars indicate Poisson noise and for clarity are only shown for the CANDELS counts.

Fig

  Fig. B.1. Real Herschel PACS 100 µm image (left) and one of our simulations (right). The green region shows the extent of the PACS coverage, while the red region shows the Hubble ACS coverage, i.e. the extent of our input catalog. The two images are shown here with the same color bar.

Fig. B. 3 .

 3 Fig. B.3. Monte Carlo analysis showing evidence for a systematic bias in median stacking. These values have been obtained by computing medians of log-normally distributed values in the presence of Gaussian noise of fixed amplitude (σ noise = 1 in these arbitrary flux units, so that the input flux is also the S /N).

Fig. B. 2 .

 2 Fig. B.2.Comparison of measured stacked flux densities from the simulated images with the real flux densities that were put into the 100 µm map (the other wavelengths behave the same). The stacked sources were binned in redshift and mass using exactly the same bins as those that were used to analyze the real images. Left: mean stacked flux densities, right: median stacked flux densities. Each point shows the median S output /S input among all the 400 realizations, while error bars show the 16th and 84th percentiles of the distribution. Filled circles indicate measurements that are individually significant at > 5σ on average, i.e. the ones we would use for science, while open circles indicate measurements at < 5σ to illustrate the trend. On each plot, gray circles show the values obtained with the other method (i.e. median and mean, respectively) for the sake of direct comparison. It is clear that mean fluxes are more noisy, while median fluxes exhibit a systematic bias.

Fig. B. 4 .

 4 Fig. B.4. Evolution of the true error σ on stacked flux measurements as a function of the instrumental white noise level σ inst. that is put on the image (here normalized to a "PSF" noise in mJy, i.e. the error on the flux measurement of a point source in the absence of confusion). We generated multiple simulations of the 250 µm maps using varying levels of white noise, and compute σ from the difference between the measured fluxes and their expected values. Left: evolution of the average total noise per source σ tot. = σ × √ N stack where N stack is the number of stacked sources. This is the total error when extracting the flux of a single source on the map. When the instrumental noise (red line) is high, it dominates the error budget over the confusion noise. But when reaching too low values, the measured total noise is dominated by the confusion noise σ conf. (blue line). We fit this evolution as σ 2 tot. = σ 2 inst. + σ 2 conf. (orange line) to obtain σ conf. = 4.6 mJy. The red circle marks the instrumental noise level reached in the real maps. Right: comparison between the estimated error from the stack residual σ IMG and the true error σ. The points show the median of σ/σ IMG , and the error bars are showing the 16th and 84th percentiles of the distribution. The green horizontal line is the line of perfect agreement, and the blue vertical line marks the confusion noise at 250 µm. The red circle marks the instrumental noise level reached in the real maps.

  Fig. B.4. Evolution of the true error σ on stacked flux measurements as a function of the instrumental white noise level σ inst. that is put on the image (here normalized to a "PSF" noise in mJy, i.e. the error on the flux measurement of a point source in the absence of confusion). We generated multiple simulations of the 250 µm maps using varying levels of white noise, and compute σ from the difference between the measured fluxes and their expected values. Left: evolution of the average total noise per source σ tot. = σ × √ N stack where N stack is the number of stacked sources. This is the total error when extracting the flux of a single source on the map. When the instrumental noise (red line) is high, it dominates the error budget over the confusion noise. But when reaching too low values, the measured total noise is dominated by the confusion noise σ conf. (blue line). We fit this evolution as σ 2 tot. = σ 2 inst. + σ 2 conf. (orange line) to obtain σ conf. = 4.6 mJy. The red circle marks the instrumental noise level reached in the real maps. Right: comparison between the estimated error from the stack residual σ IMG and the true error σ. The points show the median of σ/σ IMG , and the error bars are showing the 16th and 84th percentiles of the distribution. The green horizontal line is the line of perfect agreement, and the blue vertical line marks the confusion noise at 250 µm. The red circle marks the instrumental noise level reached in the real maps.

Fig. 4 .

 4 Fig. 4. Comparison between the simulated B/T and that measured by GIM2D, for galaxies with H < 22.5. The median measured B/T are shown with empty red diamonds, and the error bars give the 16th and 84th percentiles of the distribution. The dotted line in the background gives the expected one-to-one relation.

Fig. 3 .

 3 Fig. 3. Example bulge-to-disk decomposition of an H = 22.2 galaxy from the GOODS-South field, which is among the faintest galaxy in our sample. The first column shows the observed HST WFC3 image of the galaxy, and we also provide in the top-left corner its main physical properties. The second column shows the best-fit disk (top) and bulge (bottom) components as extracted by GIM2D. The third column shows the residual of the image after subtraction of the bulge (top) and the disk (bottom), to visualize the profile of the other component. Finally, the fourth column shows the residual image after both components are subtracted. The best-fit parameters are given in the top-right corner.

Fig. 9 .

 9 Fig. 9. Same as the upper panel of Fig. 8, but this time varying the Sérsic index n.

SFE

  

Fig

  Fig. 11. Ratio between the dust mass (M dust ) and the total infrared luminosity (L IR ) as a function of the stellar mass for stacked galaxies at z = 1. Colors are the same as in Fig.10. We overplot a linear fit (in log space) of the first three mass bins with a solid black line.

  , and integrate these mass functions weighted by the SFR. For the observed ρ SFR , we use the SFR-M * relation given in S15. Defining r ≡ log 10 (1 + z) and m ≡ log 10 (M * /10 9 M ⊙ ), this relation readslog 10 (SFR MS [M ⊙ /yr]) = mm 0 + a 0 r -a 1 max(0, mm 1 -a 2 r) 2 , (14)with m 0 = 0.5 ± 0.07, a 0 = 1.5 ± 0.15, a 1 = 0.3 ± 0.08, m 1 = 0.36±0.3 and a 2 = 2.5±0.6. For ρ unity SFR we use this same equation excluding the last term (which is used to describe the bending), i.e.: log 10 (SFR unity MS [M ⊙ /yr]) = mm 0 + a 0 r . (15)

  Ferguson et son étudiante en thèse C. White afin de mesurer et implémenter le clustering. Les catalogues créés par gencat sont ensuite utilisés par E. Merlin et M. Castellano pour construire des images Hubble réalistes, et je me suis chargé de générer les images Spitzer et Herschel correspondantes. Les distributions de flux finales ainsi que les propriétés statistiques des cartes correspondantes sont en excellent accord avec les observations, ce qui confirme par la même occasion la robustesse des techniques que j'ai utilisée tout au long de ma thèse.

  

  

  

  

Table 3 .

 3 1 -Catalog depths for each field.

	Field	Area a arcmin 2	NIR b (5σ)	24 µm 100 µm 160 µm 250 µm 350 µm 500 µm µJy mJy mJy mJy mJy mJy (3σ) c (3σ) c (3σ) c (5σ) c (5σ) c (5σ) c
	GN	168	K s < 24.5	21	1.1	2.7	7.3	7.8	13
	GS	184	H < 27.4	20	0.8	2.4	7.0	7.5	13
	UDS	202	H < 27.1	40	1.7	3.9	10	11	13
	COSMOS								
	-CANDELS -UVISTA 1.6 deg 2 K s < 23.4 27-40 208 H < 27.4 27-40	1.5 4.6	3.1 9.9	11 -	14 -	14 -

Table 3 .

 3 2 -Number of object in our sample per field.

	Field	All galaxies a	SF b	Spec-z c Herschel d
	GN	6 973	5 358	2 605	867
	GS	5 539	4 630	2 275	947
	UDS	7 455	6 372	504	654
	COSMOS				
	-CANDELS	7 580	6 599	811	976
	-UVISTA	58 202	39 375 3 736	7 053

Table 3 .

 3 3 -log 10 (M * /M ⊙ ) above which our samples are at least 90% complete, for each catalog.

Table 3 .

 3 4 -Ratio of the L IR values obtained from median and mean stacking using the same sample on the real Herschel images. log 10 (M * /M ⊙ ) z = 0.5 1.0

	1.5	2.2	3.0	4.0

Table 3 .

 3 6 -Ratio of the L IR s obtained after and before applying clustering corrections listed in Table3.5.Although negligible in PACS, this effect can reach 30% in SPIRE 500 µm data.

	log 10 (M * /M ⊙ ) z = 0.5 1.0	1.5	2.2	3.0	4.0
	11.2	0.96	1.01 0.90 0.93 0.91 0.75
	10.8	0.96	1.02 0.87 0.97 0.93 -
	10.2	0.99	0.98 0.96 0.99 0.94 -
	9.8	0.99	0.95 0.78 -	-	-

Table 5

 5 

.1 -Double Schechter function parameters for the star-forming galaxy population. Parameters that were chosen manually are enclosed in brackets.

Table 5 .

 5 2 -Double Schechter function parameters for the quiescent galaxy population. Parameters that were chosen manually are enclosed in brackets.

  [M ⊙ ]) -0.32 × log 10 (SFR [M ⊙ /yr]), and where both M * and SFR are converted to the Chabrier (

		, Eq. 5)		
	(12 + log 10 (O/H)) KD02		
	=	8.9 + 0.47 (µ 0.32 -10) for µ 0.32 < 10.4 9.07 for µ 0.32 > 10.4	,	(6.6)
	with µ 0.32 ≡ log 10 (M			

*

  Magdis et al. (2012), we convert the FMR metallicities to the Pettini & Pagel (2004) "[N ii]" scale, following the calibration proposed byKewley & Ellison (2008): (12 + log 10 (O/H)) PP04 = 569.4927 -192.5182 x + 21.91836 x 2 -0.827884 x 3 , (6.7) with x ≡ (12 + log 10 (O/H)) KD02 . As written above, in practice for the galaxies we consider in this study these "PP04" abundances are systematically lower by 0.3 dex compared to the original "KD02" values (this constant shift holds within 0.05 dex for all 12 + log 10 (O/H) KD02 > 8.5).

Table 6 .

 6 1 -Measured slopes of the SFR-X relation, where X is either M * or M disk . All slopes were obtained by fitting a straight line (in logarithmic space) to the running median shown in Figs. 6.7 and 6.8, considering only star-forming galaxies with 10.2 < log 10 (X) < 11.3. Uncertainties are estimated by bootstrapping.

Table 7 .

 7 1 -Summary of the observations in the three fields. (a) The data sets we use for science are highlighted in boldface. (b) Number of targets that belong to the primary sample. (c) Number of targets from the primary sample that are detected at more than 3σ significance. (d) Number of additional galaxies detected in the field of view at more than 5σ significance.

	141/260

Table 7

 7 

.4 -ALMA passbands available for observing in Cycle 3 (omitting band 8 and 9, which have poor atmospheric transmission).

  .
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Table 1 .

 1 Catalog depths for each field.

	Article number, page 3 of 30

Table 2 .

 2 Number of object in our sample per field.

	Field	All galaxies a	SF b	Spec-z c Herschel d
	GN GS UDS COSMOS	6 973 5 539 7 455	5 358 4 630 6 372	2 605 2 275 504	867 947 654
	-CANDELS -UVISTA	7 580 58 202	6 599 39 375	811 3 736	976 7 053

Table B .

 B 1. Ratio of the L IR values obtained from median and mean stacking using the same sample on the real Herschel images.

	1.5 0.95 0.84 0.88 0.82 0.86 2.2 3.0 4.0 log 10 (M * /M ⊙ ) z = 0.5 1.0 11.2 0.79 10.8 0.63 0.90 0.92 0.94 0.77 -10.2 0.84 0.98 0.90 0.97 --9.8 0.89 0.91 ----

Table B .

 B 2. Clustering bias in simulated Herschel images.

	Method 100 µm 160 µm 250 µm 350 µm 500 µm
	A B C	0% +7% -7% 0% +8% -12% 3% +13% 3% +9% -8% -12% 19% +17% 8% +12% -8% -11% 33% +27% 13% +12% -10% 25% +19% -18% -19% 58% +54% -31% 0% +8% -7% 7% +11% -9% 14% +14% -9% 22% +19% -14% 39% +22% -23%

  Article number, page 26 of 30 C.Schreiber et al.: The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day the 16th and 84th percentiles. Although we limited this analysis to fluxes measured at better than 5σ, the scatter in the measured bias is compatible with being only due to uncertainties in flux extraction. B.3. Ratio of the L IR obtained after / before applying clustering corrections listed in Table B.2. Although negligible in PACS, this effect can reach 30% in SPIRE 500 µm data. Here we correct for this bias by simply deboosting the real measured fluxes by the factors listed in Table B.2, band by band. The net effect on the total measured L IR is reported in Table B.3.

	1.5 1.01 0.90 0.93 0.91 0.75 2.2 3.0 4.0 Table log 10 (M * /M ⊙ ) z = 0.5 1.0 11.2 0.96 10.8 0.96 1.02 0.87 0.97 0.93 -10.2 0.99 0.98 0.96 0.99 0.94 -9.8 0.99 0.95 0.78 ---

  Hubble Space Telescope (HST) WFC3 H-band images in the four CANDELS fields that are covered by deep Herschel PACS and SPIRE observations, namely GOODS-North (Barro et al. in prep.), GOODS-

	C.
	Article number, page 2 of 20

  "[N ii]" scale, following the calibration proposed by Kewley & Ellison (2008): (12 + log 10 (O/H)) PP04 = 569.4927 -192.5182 x + 21.91836 x 2 -0.827884 x 3 ,

Table 1 .

 1 Measured slopes of the SFR-X relation, where X is either M * or M disk . All slopes were obtained by fitting a straight line (in logarithmic space) to the running median shown in Figs.8 and 9, considering only star-forming galaxies with 10.2 < log 10 (X) < 11.3. Uncertainties are estimated by bootstrapping.

  Article number, page 14 of 20 C.Schreiber et al.: Observational evidence of a slow downfall of star formation efficiency in massive galaxies during the last 10 Gyr

	M * 10 10 M ⊙ 10 7 M ⊙ M dust 0.56 2.1 +0.9 -0.5 1.8 5.2 +0.8 -0.5 5.5 10.2 +0.7 -0.9 16 34.7 +4.1 -3.2	L IR 10 10 L ⊙ 2.4 +0.2 -0.2 8.7 +0.3 -0.3 23.0 +0.9 -0.8 41.7 +2.3 -2.1	T dust K 24.5 +1.3 -1.4 26.1 +0.3 -0.7 27.7 +0.6 -0.5 24.5 +0.4 -0.5	f PAH % 0.8 +0.9 -0.5 4.5 +0.2 -0.2 4.9 +0.3 -0.3 4.4 +0.3 -0.3	SFR M ⊙ /yr 5.5 +0.3 -0.4 16.7 +0.4 -0.5 40.9 +1.5 -1.4 73.3 +3.8 -3.7	12 + log 10 (O/H) M gas /M dust (PP04 [N ii]) 8.33 387 +24 -22 8.47 284 +20 -19 8.62 197 +10 -15 8.76 145 +9 -10	M gas 10 10 M ⊙ 0.8 +0.4 -0.2 1.5 +0.2 -0.2 2.0 +0.2 -0.2 5.0 +0.8 -0.6	SFE 1/Gyr 0.68 +0.26 -0.18 1.14 +0.14 -0.15 2.03 +0.25 -0.20 1.45 +0.21 -0.19	f gas % 58.7 +7.8 -8.8 45.5 +3.1 -3.1 26.8 +2.2 -2.0 24.7 +2.8 -2.3

One could push as far down in scales as the size of a dust grain, a fraction of microns, and up to the size of a galaxy cluster, a couple of mega-parsecs (Mpc), to span about thirty orders of magnitude. Fortunately, not all these scales are coupled, so it is possible to study them separately to some extent.

Much like there is always an infinity of functions that fit exactly to a finite number of points. Or much like, and this is an intended pun to my particle physicist friends, we can always explain any observations at the LHC by adding new particles to the standard model of particle physics.

Note that this comparison is slightly unfair, since ALMA has a very limited field of view (about 15 ′′ ), and its efficiency is substantially reduced when it comes to mapping an entire field, which is what Herschel was designed for.

And if you are willing to assume, for the sake of the argument, that there are pools and frogs on the Moon.13/260CHAPTER 1. INTRODUCTION

Or, equivalently, to use interferometry, which is very common in the radio domain.

These names were not chosen randomly: these colors are those that our eyes would perceive with such spectra.16/260CHAPTER 1. INTRODUCTION

There are codes which actually interpret the photometry from the UV all the way up to the FIR in a consistent way, when FIR photometry is available. In this case, the mechanism to estimate the SFR is much closer to the FIR-based approach.

See howeverBoquien et al. 2012 where this uniformity is found even in a resolved analysis.

Note that there are many other approaches to estimate SFRs without using the UV or the FIR light, e.g., hydrogen recombination lines, X-ray binaries, or radio emission from super-novae and star-forming regions. However, they are usually at least as expensive as the FIR-based SFRs observationally speaking, while suffering from more biases.

Another correlation, somewhat related, was also reported between the SMBH mass and the velocity dispersion of the stars inside the bulge(Ferrarese & Merritt 2000;Gebhardt et al. 2000).

In fact, an interesting parallel can be drawn with dark matter halos, compared to which galaxies are themselves relatively small. Here also, is it not trivial to transport gas accreted from the intergalactic medium from the halo down to the galaxy.

http://www.astrodeep.eu/

27/260 CHAPTER 2. SUMMARY OF THE WORK DONE IN THIS THESIS

This field is also known as the Subary XMM Deep Survey (SXDS) field.

http://www.cosmos.esa.int/web/herschel/science-archive

http://www.mpe.mpg.de/ir/Research/PEP/DR1

http://code.google.com/p/eazy-photoz.

http://astro.berkeley.edu/~mariska/FAST.html

Using another IMF would systematically shift both our M * and SFRs by approximately the same amount, and therefore would not affect the shape of the Main Sequence.

Other star formation histories were considered, in particular with a constant or exponentially declining SFR. Selecting all galaxies from z > 0.3 to z < 5, no systematic offset is found, while the scatter evolves mildly from 0.12 dex at M * = 1 ×

10 8 M ⊙ to 0.08 at M * = 3 × 10 11 M ⊙ .

These PSFs are normalized to unit integral flux, but are truncated beyond a certain radius. Therefore aperture correction is necessary to recover the total flux. These corrections were derived by the GOODS-Herschel team using in flight observation of Vesta.

These SEDs are effective in the sense that they are not necessarily the SED of the average galaxy in the sample: they are potentially broadened by the range of redshifts and dust temperatures of the galaxies in the stacked samples. In practice, we checked that the broadening due to the redshift distribution is negligible, and the photometry is well fitted by standard galaxy templates, as can be seen in Fig.3.6.

This analysis was performed with Mathematica.51/260

In fact, they compute the effective dust temperature of theDale & Helou (2002) templates, and use these templates to associate a T dust to each galaxy. This approach is more robust that a simple modified black body fit, but will essentially return the same result.

http://www.astromatic.net/software/skymaker

http://www.astromatic.net/software/stuff

https://github.com/cschreib/gencat

This may sound surprisingly high, but it should be noted that this stacked "SFR" of quiescent galaxies also includes, for a large fraction, some L IR coming from the dust headed by old stars, and not actual star formation. Therefore this prescription allows us to take into account both residual star formation and dust headed by old stars at the same time. See alsoFumagalli et al. (2014) where this was done in more details.

As a consistency check, I also refit the galaxies in the other fields with single Sérsic profile, and find that I recover accurately the same results as those published byvan der Wel et al. (2012).

Note that these correction factors depend greatly on the way the fluxes are measured, as shown in the Appendix of S15.

AzTEC in GOODS-North and LABOCA in GOODS-South. Both are also covering COSMOS at shallower depth.

Neil Nagar, Mark Dickinson, Ezequiel Treister, Gustavo Orellana Gonzalez, Carolina Finlez, Sabrina Cales, Paula Calderon, and Yun-Kyeong Sheen. 

Moving a 12 m antenna across several kilometers takes some amount of time, as the transporters can only reach speeds of 12 km/h. For this reason, it is sometimes more efficient to schedule a low-resolution observation in an extended configuration and spend a bit more time on-source, rather than changing the configuration.

To come back to the analogy with aperture photometry: this is equivalent to using a PSF-convolved model to measure the flux of an object. In this case, no aperture is necessary since the fit automatically weights pixels depending on the expected flux of the model.

https://nhscsci.ipac.caltech.edu/pacs/data/PSFs/vesta20091109/ 156/260

T dust is roughly measured from the position of the peak of the FIR SED in the rest frame. In fact, what we actually measure as observers is T obs dust = T dust /(1 + z), hence the degeneracy between z and T dust .

https://github.com/aconley/ALMAzsearch 159/260

Observing this region down to the depth I choose here would not require more than a few tens of minutes of integration time, but ALMA has a small field of view (about

′′ diameter) that make it much less efficient at achieving large area surveys. 2 http://www.stsci.edu/jwst/science/sensitivity

http://www.exelisvis.com/ProductsServices/IDL.aspx

http://gnudatalanguage.sourceforge.net/

http://www.numpy.org/

http://idlastro.gsfc.nasa.gov/

http://www.astropy.org/ 183/260

The procedures from the IDL library that are written in IDL language are actually open-source, but all the procedures written in native language are compiled and only the binary is provided.

http://julialang.org/

The best counter example is probably Java.

http://eigen.tuxfamily.org

http://code.google.com/p/blaze-lib/

Eigen actually has a tensor module, but it is unsupported.

Actually, at the time of writing this sentence, only half of the functions are documented.

http://cschreib.github.io/phypp/doc/category_support_01_intro.html

http://github.com/cschreib/phypp/raw/master/doc/latex/phypp.pdf

Actually a similar approach is used in the extraction code ofMagnelli et al. (2009), where sources that are distant by less than a pixel are not fitted individually. The main difference with the approach I introduce here is that only one of their galaxies is kept in the prior list and arbitrarily "wins" all the observed flux.

This expression is numerically unstable for large deviations above the upper limit. Setting d ≡ (limitmodel)/error, then for d < -3, this formula can be approximated with good accuracy by d 2 + 2 log(-2 d √ π/2.0). Note the similarity with the regular formula for a Gaussian weight, which is just d 2 .

http://www.cosmos.esa.int/web/herschel/ science-archive

http://www.mpe.mpg.de/ir/Research/PEP/DR1

http://code.google.com/p/eazy-photoz.

http://astro.berkeley.edu/~mariska/FAST.html

Using another IMF would systematically shift both our M * and SFRs by approximately the same amount, and therefore would not affect the shape of the main sequence.

Other star formation histories were considered, in particular with a constant or exponentially declining SFR. Selecting all galaxies from z > 0.3 to z < 5, no systematic offset is found, while the scatter evolves mildly from 0.12 dex at M * = 1 × 10 8 M ⊙ to 0.08 at M * = 3 × 10 11 M ⊙ .

These SEDs are effective in the sense they are not necessarily the SED of the average galaxy in the sample: they are potentially broadened by the range of redshifts and dust temperatures of the galaxies in the stacked samples. In practice, we checked that the broadening due to the redshift distribution is negligible, and the photometry is well fitted by standard galaxy templates, as can be seen in Fig.6.

This analysis was performed with Mathematica.

Article number, page 24 of 30

Article number, page 25 of 30

This may sound surprisingly high, but it should be noted that this stacked "SFR" of quiescent galaxies also includes, for a large fraction, some L IR coming from the dust headed by old stars, and not actual star formation. Therefore this prescription allows us to take into account both residual star formation and dust headed by old stars at the same time. See alsoFumagalli et al. (2014) where this was done in more details.

Article number, page 8 of 20 C.Schreiber et al.: Observational evidence of a slow downfall of star formation efficiency in massive galaxies during the last 10 Gyr

Note that these correction factors depend greatly on the way the fluxes are measured, as shown in the Appendix of S15.

AzTEC in GOODS-North and LABOCA in GOODS-South. Both are also covering COSMOS at shallower depth.

Using the dust masses from the Draine & Li models would increase this fraction to 41%.

n < 1.5 (see e.g.,Wuyts et al. 2011, and Fig. 9). Because the associated selection effects are not obvious to determine, we prefer not to consider this data point in the present analysis, although the gas fraction they report is compatible with the one we measure here.Article number, page 15 of 20

By using rest-frame wavelengths that are further apart, this diagram has a larger dynamic range and will separate quiescent and star-forming galaxies more clearly than the UV J diagram. The downside is that measuring the rest-frame K band is particularly difficult at high redshifts, while the near-UV is hardly accessible at low redshift.

Pour mesurer les SFR des galaxies et étudier la Séquence Principale, j'ai produit un ensemble de SED infrarouges par stacking, dans des intervalles de redshift et masse stellaire. Ce nouvel ensemble de SED, couvrant les longueurs d'ondes observées du 16 à 500 µm ainsi qu'une gamme de redshift étendue, permet de résoudre certains problèmes liés aux SEDs couramment utilisées dans la littérature. J'ai donc décidé d'étudier cet aspect plus en profondeur, et projette de publier les résultats obtenus en tant que premier auteur. Durant ce travail, j'ai démarré une collaboration avec Frédéric Galliano (CEA Saclay) afin de modéliser de manière plus détaillée l'émission de la poussière dans ces SEDs. Cette modélisation, présentée dans le Chapitre 4, apporte un regard nouveau sur l'évolution des hydrocarbures polycyclique aromatique (PAHs) en fonction du redshift, et est utilisée dans le Chapitre 6 pour mesurer la masse de poussière des galaxies de la Séquence Principale.Ce nouveau modèle empirique est basé sur le modèle détaillé de F. Galliano(Galliano et al. 2011), qui décrit la poussière interstellaire comme étant un mélange de silicates et de grains carbonés amorphes (ce qui résulte en des rapports masse sur luminosité plus bas d'un facteur deux par rapport aux modèles couramment utilisés dans la littérature). Le modèle de F. Galliano a pour objectif de décrire le spectre émis par des régions résolues au sein des galaxies proches, et il dispose de fait d'un grand nombre de degrés de liberté afin de reproduire la grande diversité de conditions physiques que l'on peut trouver au sein d'une même galaxie. En revanche, la bibliothèque de SEDs que j'introduis dans ce chapitre à une portée plus limitée, car elle ne vise à reproduire que la photométrie intégrée (spatialement) d'une galaxie, qui est bien plus universelle. En conséquence, le nombre de paramètres libres est réduit à trois : la masse totale de poussière (M dust ), la température moyenne de cette poussière (T dust ), et la fraction de la masse correspondant au PAHs ( f PAH ).J'ajuste la forme du continuum (et donc la distribution de températures) afin de reproduire la photométrie stackée obtenues dans le Chapitre 3, et j'utilise ensuite la bibliothèque correspondante pour décrire la photométrie de toutes les galaxies individuellement détectées par

http://www.astrodeep.eu/
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The library can be split into two components: the core library and the support library. The core library introduces the vector type, which is at the heart of phy ++ , while the support library provides functions and other tools to manipulate these vectors and do some common tasks, ranging from low level mathematics and programming (sorting, integrating, binning, ...) to higher level astrophysics-related tasks (such as cross-matching, stacking, SED fitting, ...). You can think of the core library as "the language" (the equivalent of IDL or python), and the support library as "the function library" (the equivalent of the IDLastro 4 , numpy or astropy 5 libraries).

Below is an code sample written in phy ++ that illustrates its most basic functionalities.

vec2f img = fits::read("img.fits"); // read a FITS image img -= median(img); // subtract the median of the whole image float imax = max(img);

// find the maximum of the image vec1u ids = where(img > 0.5*imax); // find pixels at least half as bright float sum = total(img[ids]); // compute the sum of these pixels img[ids] = log(img[ids]/sum); // modify these pixels with a logarithm fits::write("new.fits", img);

// save the modified image to a FITS file A.1.2 Why write something new?

The immediate goal of phy ++ is to provide a syntax as close as possible to that of IDL. IDL is an interpreted language that is widely used in the scientific community, in particular in astrophysics. Born in the late 1970s, this language provides intuitive manipulation of large arrays of data using vectorized operations: applying an operation on a given array does not require the To further test the reliability of the UV J selection technique, we have stacked separately the galaxies classified as quiescent. The result is presented in Fig. A.1. On this plot we show what the location of the quiescent galaxies would be on the SFR-M * plane assuming that all their IR luminosity is coming from star formation. This is certainly wrong, because in these massive galaxies dust is mostly heated by old stars, so the SFR we derive is actually an upper limit on the true star formation activity of such galaxies. But even with this naive assumption, the derived SFRs are an order of magnitude lower than that of the star-forming sample. We also observe that the effective dust temperature, inferred from the wavelength at which the FIR emission peaks, is lower and this is expected if dust is indeed mainly heated by less massive stars.

Appendix B: Tests of our methods on simulated images

In order to test all of these procedures, we build a set of simulated images. We design these to be as close as possible to the real images in a statistical sense, i.e. the same photometric and confusion noise, and the same number counts.

To do so, we start from our observed H-band catalogs, knowing redshifts and stellar masses for all the galaxies. Using our results from stacking Herschel images, we can associate an SFR to each of these galaxies. We then add a random amount of star formation, following a log-normal distribution of dispersion 0.3 dex. We also put 2% of our sources in starburst mode, where Article number, page 23 of 30 A&A proofs: manuscript no. paper 16, this time also showing the location of UV J passive galaxies. In each panel, the blue line shows the average stacked SFR (section 4.2), and the green lines above and below show the 1σ dispersion obtained with scatter stacking. The orange horizontal line shows the detection limit of Herschel in SFR. The red line shows the stacked SFR of UV J passive galaxies, naively assuming that all the IR light comes from star formation. This is a conservative upper limit, since in these galaxies dust is predominantly heated by old stars, and the effective dust temperature inferred from the FIR SED is much colder than for actively star-forming galaxies of comparable mass.

their SFR is increased by 0.6 dex. Next, we assign an FIR SED to each galaxy following the observed trends with redshift (no mass dependence) and excess SFR (Magnelli et al. 2014). Starburst galaxies are also given warmer SEDs.

From these simulated source catalogs, we generate a list of fluxes in all Herschel bands. Given noise maps (either modeled from RMS maps assuming Gaussian noise, or constructed from the difference between observing blocks), we build simulated images by placing each source as a PSF centered on its sky position, with a Gaussian uncertainty of 0.45 ′′ and a maximum offset of 0.9 ′′ . We randomly reposition the sources inside the fields using uniform distributions in right ascension and declination, in order to probe multiple realizations of confusion. These simulated images have pixel distribution -or P(D) plots -very close to the observed images, and are thus good tools to study our methods. An example is shown in Fig. B.1 for the GOODS-South field at 100 µm.

We produce 400 such sets of simulated catalogs and images, each with a different realization of photometric noise, confusion noise and SFR. We then run our full stacking procedure on each, using the same setup as for the real images (i.e. using the same redshift and mass bins), in order to test the reliability of our flux extraction and the accuracy of the reported errors.

Appendix B.1: Mean and median stacked fluxes

For each of the 400 realizations we compare the measured flux densities using both mean and median stacking to the expected mean and median flux densities respectively. The results are shown in Fig. B.2 for the PACS 100 µm band. The other bands show similar behavior.

It is worth noting that, although less noisy, median fluxes are biased toward higher values (at most by a factor 2 here). This is because the median is not a linear operation, so it is not true in general that a + b = a + b , where . denotes the median.

A&A proofs: manuscript no. paper Fig. 6. Location of galaxies from the H-sample with varying B/T on the UV J diagram (left: B/T < 0.2, middle: 0.2 < B/T < 0.6, right: B/T > 0.6), using the total magnitudes of each galaxy. The dotted line shows the dividing line between the star-forming and quiescent populations defined in Eq. 1. It is clear that both bulge-and disk-dominated galaxies occupy very different regions of the diagram, illustrating the good agreement between the colors and the morphology. However, intermediate galaxies with roughly equal mass in the disk and bulge (middle panel, B/T = 0.4) are spread over the two regions, with a tendency for being preferentially in the quiescent region.

5 000 idealized double Sérsic profiles (n = 1 and n = 4) of varying sizes, axis ratios, position angles, and fluxes, and place these models on empty regions of the real HST images. We then run both GALFIT and GIM2D trying to find back the input parameters.

We find that the total magnitude of the galaxy is always well recovered, except in the case of some catastrophic failures which happen almost exclusively with GALFIT. Enforcing that the measured total magnitude is close to that chosen in input effectively gets rid of most of these poor fits. For the real galaxies, we choose to compare the measured total magnitude to that quoted in the CANDELS catalogs, and discard GALFIT runs for which the difference is more than 0.5 magnitudes.

We also find that the bulge-to-disk decomposition is usually hopeless at H > 23, as the measured B/T are either very noisy or systematically biased toward roughly equal partition of the flux. For galaxies brighter than H = 23, we show in Fig. 4 the comparison between the B/T we put in the simulation, and the ones that are recovered by GIM2D. We find that the code is able to identify disk dominated galaxies with great accuracy, while bulge-dominated galaxies and intermediate systems show a slight systematic underestimation: given the choice, GIM2D will tend to put more flux in the disk component than in the bulge. This effect is small however, and we checked that our conclusions are not affected if we correct for it by adding 0.05 to the B/T > 0.5. We also observe that the uncertainty on the flux of the disk depends on B/T , with brighter bulges leading to more uncertain disk fluxes. For example, assuming constant mass-to-light ratio, for M disk ≃ 2 × 10 10 M ⊙ , the error on M disk is 0.04 dex for B/T ≃ 0, and 0.07 dex for B/T > 0.3. It should be noted that these simulations are only able to capture the ability of the codes to recover what was put on the simulated image, i.e., idealized profiles with realistic photometric noise and neighbor contamination, but it does not allow us to say how reliable is the decomposition in the case of perturbed, irregular or clumpy galaxies, nor does it hint about actually measuring a disk mass (which is done in the next section), e.g., it does not contain varying mass to light ratios. Therefore the real uncertainties on the measurements are probably larger. Still, even doubled, the errors we estimate here are low enough for our purposes.

Estimating the disk mass

Once the flux of both the bulge and disk are measured, the last step is to measure the stellar mass of the disk. Both components have different mass-to-light ratios, since bulges are mostly made of old stars and will typically have higher mass-to-light ratios compared to the star-forming disks. In practice, since we are doing the decomposition in the H band (rest-frame i band at z = 1), the variation in mass-to-light ratio is supposed to be minimal (e.g., de Jong 1996). Yet, to prevent any bias in our results, we will nevertheless correct for this effect. The ideal way to treat this issue is to perform the decomposition on multiple photometric bands, and use the colors to infer accurate mass-to-light ratios as in Abramson et al. (2014), or even complete SED fitting similar to what was done in Bruce et al. (2014). However this is only possible for the brightest objects (e.g., Bruce et al. 2014 only focused on galaxies with M * > 10 11 M ⊙ ).

Here we use a simpler approach where we assume an average mass-to-light ratio for the bulge components, infer the bulge masses, and subtract them from the total stellar masses. Doing so, we do not make any assumption on the mass-to-light ratio of the disk, and take best advantage of the robust stellar masses obtained by fitting the total photometry.

To determine the average mass-to-light ratio of bulges, we build a sample of "pure bulge" galaxies (B/T > 0.8) and com-Appendix C
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Unveiling a population of massive, dark ALMA galaxies at z = 6 PI: Corentin Schreiber

Abstract

While analyzing the data of a Cycle 2 project (PI: R. Leiton) in the COSMOS CANDELS field, we have discovered two "dark ALMA galaxies", unexpected 20 σ detections in the 870 µm continuum that have no counterpart in any of the deep optical-to-NIR broadband images available in this field, except for the Spitzer IRAC channels. Photometric redshift codes place these sources at z = 5.7. Such estimates are of course highly uncertain and confirmation from spectroscopy is required. In fact, should these object be indeed at z ≃ 5.7, they would be among the most massive and dustiest objects known in the early Universe. Their extremely red UV colors indicate strong dust attenuation (A V > 1), consistent with the relations found at lower redshifts, and at odds with recent claims based on z = 6 Lyman Break selected galaxies (LBGs). The identification of these galaxies may prove to be a crucial benchmark to study the star formation and dust properties of high redshift galaxies. For this reason we propose to use the unique spectral scan capabilities of ALMA to target the [CII]158µm line covering z = 5.3 to 6.8 to secure the identification of these two galaxies.

Scientific rationale

Over the past decade, dust-based tracers of star formation have substantially improved our understanding of galaxy formation and evolution. Ground-breaking work done with Spitzer at 24 µm, and the more recent sub-millimeter, VLA and Herschel FIR surveys, have shown that most star formation (and likely black hole growth) took place in dusty environments at 1 ≤ z ≤ 4, when luminous infrared galaxies (LIRGs and ULIRGs) were far more abundant than they are today (Barger et al. 2000, Chapman et al. 2005, Le Floc'h et al. 2005;Magnelli et al. 2011). The duty cycle of these galaxies, estimated from the ratio between the molecular gas mass and the actual star formation rate (M gas /SFR), can be as long as a few Gyrs (Leroy et al. 2009, Daddi et al. 2010, Genzel et al. 2010, Saintonge et al. 2011, Santini et al. 2013, Genzel et al. 2014, Béthermin et al. 2015) pointing to a "secular" mode of star formation in rotation-dominated galaxies (Shapiro et al. 2008, Wisnioski et al. 2015) as opposed to the short-lived merger-driven starburts seen, for example, in high redshift sub-millimeter surveys (Tacconi et al. 2008, Carilli et al. 2010). However, dust is expected to have played a lesser role in the earliest epochs of the Universe, where galaxies are mostly young and metal poor. In fact, a significant fraction of the UV flux has to escape from the host galaxy in order for the Universe to be re-ionized by z ∼ 7, but little else is known about the dust properties of very high redshift galaxies. Follow-up observations of Lyman Alpha Emitters (LAEs) usually fail at detecting either the dust continuum or the FIR emission lines, probably because these galaxies are almost dust-free by construction, due to the need to observe Lyα escaping from the galaxy. More recently, Capak et al. (2015) have observed with ALMA a sample of Lyman Break Galaxies (LBGs) at z ∼ 6, and detected among the first dusty galaxies at these high redshifts (see also Watson et al. 2015). They found that the galaxies in their sample emit significantly less in the FIR than similar galaxies at lower redshifts, and argue that they witness the build-up of the dust content of distant star-forming galaxies. Perhaps more surprisingly, they found that the ISM properties of these galaxies differ from what is typically observed in such systems, in particular: 1) the ratio between the [CII]158µm emission line luminosity and the total IR luminosity is enhanced compared to lower-redshift galaxies, owing probably to their low metallicities; and 2) the shape of the attenuation curve deviates from the Meurer et al. (1999): although the UV spectrum is 1 quite red, the dust output in the FIR is reduced by a factor of 10 (Fig. 2). These result point toward a major change in the dust properties of z = 6 galaxies.

As can be seen from these pioneering surveys, thanks to the exceptional sensitivity of instruments like ALMA, the high-redshift "sub-millimeter galaxies" are no longer restricted to the brightest end of the luminosity function, and a good fraction of them are actually more typical star-forming galaxies (e.g. Hodge et al. 2013, Capak et al. 2015). Taking advantage of this fact, we have proposed for Cycle 2 a systematic ALMA 870 µm continuum survey (PI: R. Leiton) in the CANDELS fields, aiming at measuring the dust-based SFRs of the largest mass-complete sample of z = 4 normal galaxies. The data were delivered a few months ago, and we are currently analyzing them. During this analysis, we discovered two unexpected 20 σ sources close to some of our targets in the COSMOS field. Surprisingly, these two galaxies have no counterpart in any of the deep optical-to-NIR broadband images, except in the first two Spitzer IRAC channels (3.6 and 4.5 µm) where both galaxies are detected at > 20 σ (Fig. 1). We dubbed these objects the first "dark ALMA galaxies", and show their measured photometry in Fig. 3, where upper limits are taken from Skelton et al. (2014). The IRAC fluxes were extracted by PSF fitting, and show a pronounced rise toward the longer wavelengths, which is a sign that these galaxies are likely to be at very high redshifts (Daddi et al. 2009).

We then used the deeper optical-to-NIR imaging the CANDELS GOODS-South field to look for galaxies with similar colors. Among the 35 000 galaxies present in the catalog, only 5 were similar to our two galaxies, all of them at 4.5 < z < 7, and with z = 5.7 (Fig. 3). To support this analysis, we also perform SED fitting with FAST (Kriek et al. 2009) on the observed photometry, taking into account upper limits, and establish the redshift likelihood (Fig. 4). We confirm that the most probable redshift is at z > 5, yet we also find a secondary solution of a strongly attenuated SED (A V > 2) at z ∼ 2.5. This solution can actually be ruled out by the fact that our galaxies are not detected in any Herschel or Spitzer MIPS bands. The estimated stellar masses of these objects are about 2 × 10 11 to 4 × 10 11 M ⊙ (Salpeter IMF) at all z > 4, and because of negative k-correction, the sub-millimeter flux of 3 mJy also translate to a unique SFR = 500 M ⊙ /yr. If the redshift is confirmed, they would be the most massive dusty galaxies ever detected at z > 5 (Fig. 5).

The non-detection in the Hubble H band translates into a strong lower limit on the InfraRed eXcess (IRX = L IR /L UV ), placing it much above that typically measured in the Capak et al. (2015) sample. If these galaxies are indeed confirmed to be at z > 5, they will complement this latter sample and show that there exists dusty galaxies with ISM properties similar to z = 2-4 star forming galaxies, even up to z ∼ 6. This is expected especially among the most massive systems, which are known at z < 4 to be the most dusty (Pannella et al. 2014), and less likely to be selected in LBG samples (Wang et al. submitted).

Immediate objective

Using the unique frequency scan capabilities of ALMA, we will secure the redshift identification of these two objects by targeting the [CII]158µm FIR emission line within band 6 and band 7. ALMA is probably the only instrument to date that can efficiently detect an emission line for these kind of objects, as shown by Weiß et al. (2013), Watson et al. (2015) or Capak et al. (2015). Indeed, the observed 870 µm continuum and the non-detection in the optical-to-NIR broadbands indicate a strong dust attenuation, making it very difficult, if not hopeless, to detect emission lines from standard ground-based spectrographs.

Targeting [CII]158µm was found to be the most efficient way to confirm the redshift, because this line is among the brightest in the FIR. In fact, at z > 2 it is the only line we expect to detect in band 6 and band 7, so that the redshift estimation will be unambiguous. Below z < 2, high-J CO lines enter our spectral window but 1) they are expected to be very faint, and 2) the observed photometry already rules out this redshift window with high confidence (Fig. 4). The second most efficient alternative would have been to target the high-J CO lines that would fall in band 3, namely

Potential for publicity

These two galaxies are the typical targets that ALMA was built to detect. Because of their "dark" nature, they are extremely intriguing, and ALMA could confirm through this proposal that these are luminous distant objects that are completely invisible in the Hubble images. Therefore, there is a good potential for outreach, should these galaxies be confirmed to be no older than one Gyr. 

Résumé en français

Durant les trois années qu'a duré ma thèse, j'ai travaillé sur différents projets qui sont décrits ci-dessous. Ce travail a été entrepris en collaboration avec les membres du Service d'Astrophysique de Saclay, ainsi que plusieurs collaborations internationales incluant GOODS-Herschel (PI : D. Elbaz), CANDELS-Herschel (PI : M.E. Dickinson), CANDELS-HST (PIs : H. Ferguson, S. Faber) et ASTRODEEP (PI : A. Fontana). J'ai également eu la chance de présenter les résultats de mon premier article dans plusieurs conférences internationales, via quatre présentations orales et deux posters.

J'ai publié en premier auteur mon premier projet, décrit dans le Chapitre 3 (section D.1 ci-après), dans le journal Astronomy & Astrophysics (Schreiber et al. 2015). À l'heure où ces lignes ont été écrites, j'ai également pu soumettre à publication le travail que je présente dans le Chapitre 6 (section D.4). Deux autres articles sont en préparation, correspondant respectivement aux Chapitres 4 et 5 (sections D.2 et D.3). Ces articles, déjà bien avancés, seront distribués aux co-auteurs durant le mois de septembre.

Je vais maintenant décrire plus en détail chacun des projets sur lesquels j'ai travaillé.

D.1 La Séquence Principale des galaxies à formation d'étoiles vue par Herschel

Ce travail, présenté dans le Chapitre 3, a été publié dans Astronomy & Astrophysics (Schreiber et al. 2015), et a été entrepris au sein des collaborations GOODS-et CANDELS-Herschel, ainsi que CANDELS-HST. Notre but est de contraindre l'existence et la pertinence de la Séquence Principale des galaxies à formation d'étoiles, en tirant profit des nouvelles données acquises par les satellites Hubble et Herschel dans les champs profonds CANDELS afin de détecter des galaxies plus lointaines et/ou moins massives que dans les études précédentes. Grâce aux données Herschel et Spitzer, nous pouvons obtenir une estimation robuste du taux de formation d'étoiles (SFR) des galaxies, et les images haute-résolution dans l'infrarouge proche fournies par l'instrument WFC3 de Hubble nous permettent de construire des échantillons de galaxies statistiquement complet en masse stellaire (M * ) à hauts redshift. Cette combinaison unique de donnée nous permet de poser les meilleures contraintes sur la corrélation SFR-M * , i.e., la Séquence Principale. De plus, cet échantillon rend possible l'étude de ces rares galaxies qui sortent de cette corrélation du fait de leur extrême activité de formation d'étoiles.

Les catalogues de photométrie de l'ultraviolet (UV) à l'infrarouge proche (NIR) ont été produits par l'équipe CANDELS-HST (ainsi que M. Pannella pour le champ GOODS-North), les catalogues de l'infrarouge moyen (MIR) à lointain (FIR) ont quant à eux été produits par les équipes GOODS-et CANDELS-Herschel. À partir de ces données, M. Pannella a pu estimer les redshifts photométriques ainsi que les masses stellaires et les couleurs dans le référentiel au repos. J'ai effectué le reste de l'analyse : j'ai combiné les différents catalogues en un unique catalogue complet de l'UV au FIR, calculé les luminosités infrarouges de chaque galaxie en