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Abstract

This thesis is devoted to the development of two well-known models of computation for
their application in quantum computer simulations. These models are the quantum walk
(QW) and quantum cellular automata (QCA) models, and they constitute doubly strategic
topics in this respect. First, they are privileged mathematical settings in which to encode
the description of the actual physical system to be simulated. Second, they offer an experi-
mentally viable architecture for actual physical devices performing the simulation.

For QWs, we prove precise error bounds and convergence rates of the discrete scheme
towards the Dirac equation, thus validating the QW as a quantum simulation scheme. Fur-
thermore, for both models we formulate a notion of discrete Lorentz covariance, which
admits a diagrammatic representation in terms of local, circuit equivalence rules. We also
study the continuum limit of a wide class of QWs, and show that it leads to a class of PDEs
which includes the Hamiltonian form of the massive Dirac equation in (1+1)-dimensional
curved spacetime.

Finally, we study the two particle sector of a QCA. We find the conditions for the ex-
istence of discrete spectrum (interpretable as molecular binding) for short-range and for
long-range interactions. This is achieved using perturbation techniques of trace class oper-
ators and spectral analysis of unitary operators.
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Résumé

Cette thèse étudie deux modèles de calcul: les marches quantiques (QW) et les auto-
mates cellulaires quantiques (QCA), en vue de les appliquer en simulation quantique. Ces
modèles ont deux avantages stratégiques pour aborder ce problème: d’une part, ils con-
stituent un cadre mathématique privilégié pour coder la description du système physique à
simuler; d’autre part, ils correspondent à des architectures expérimentalement réalisables.

Nous effectuons d’abord une analyse des QWs en tant que schéma numérique pour
l’équation de Dirac, en établissant leur borne d’erreur globale et leur taux de convergence.
Puis nous proposons une notion de transformée de Lorentz discrète pour les deux modèles,
QW et QCA, qui admet une représentation diagrammatique s’exprimant par des règles
locales et d’équivalence de circuits. Par ailleurs, nous avons caractérisé la limite continue
d’une grande classe de QWs, et démontré qu’elle correspond à une classe d’équations aux
dérivées partielles incluant l’équation de Dirac massive en espace-temps courbe de (1+1)-
dimensions.

Finalement, nous étudions le secteur à deux particules des automates cellulaires quan-
tiques. Nous avons trouvé les conditions d’existence du spectre discret (interprétable comme
une liaison moléculaire) pour des interactions à courte et longue portée, à travers des tech-
niques perturbatives et d’analyse spectrale des opérateurs unitaires.
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1 CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Context

QUANTUM computation can be defined as an interdisciplinary scientific field, devoted
to understanding the computational power of physical systems in the quantum me-

chanical regime [NC10]. Among a great number of research directions, one is designing
algorithms that cope with quantum mechanical laws, and hopefully outperform classical
algorithms. In this respect, Quantum Walks (QWs) can be seen as the quantum mechanical
analogue of classical random walks.

QWs were originally introduced [ADZ93, Mey96, AAKV01, Kem03] as dynamics hav-
ing the following features:

• the underlying spacetime is a discrete grid;

• the evolution is unitary;

• it is causal, i.e. information propagates strictly at a bounded speed;

• it is homogeneous, i.e. translation-invariant and time-independent.

At the physical level, the design of actual hardware capable of performing QWs in the
laboratory is an intense research area. We refer to the book [WM13] for an up-to-date
discussion.

At the theoretical level, quantum computing has a number of algorithms that are phrased
in terms of QWs, such as exponentially faster hitting [CCD+03, FG98, CFG02], quantum
search [Por13], and graph isomorphism [Kem03] to mention some; we refer to [VA12] for
a review. The focus in this thesis is on QW models per se, or as models of a given quantum
physical phenomena, through a continuum limit. In some sense this kind of approach is
the one adopted by the very preliminary forms of QWs [SB93, BB94], around the 1990s.
Nowadays, such QWs models are known to have a broad scope of applications:

• they provide discrete toy models to explore foundational questions [DP14, AFF14,
AF13, FS14a, FS14b, Llo05];
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CHAPTER 1. INTRODUCTION 2

• even for a classical computer they provide a stable numerical scheme, thereby guar-
anteeing convergence of the simulation as soon as the scheme is consistent [ANF14];

• they provide quantum algorithms, for the efficient simulation of the modelled phe-
nomena upon a quantum simulation device [Fey82].

1.2 State of the art
Quantum simulation of the Dirac equation. The connection between QWs and the Dirac
equation was first explored in [SB93, BB94, Mey96, BES07], and further developed in
[D’A12, BDT13, Shi13, ANF14, FS14b, Str06b]. The non-relativistic Dirac to Shrödinger
limit of the Dirac Quantum Walk is studied in [SB93, Str06a, Str06b, BT98a]. Decoher-
ence, entanglement and Zitterbewegung are studied in [LB05, Str07]. The relationship
with the Klein-Gordon equation is studied in [CBS10, dMD12]. The latter also studies the
general continuous limit of one-dimensional space and time-dependent QWs. Similarly,
[LB11, HJM+05, FGLB12] provide variations aimed at accounting for the Maxwell-Dirac
equations or the time-dependent Dirac equation, as well as faster convergence in numerical
simulations. Algorithmic applications of the Dirac QW are studied in [CG04]. The issues
of physical interpretation of the QW one-particle states are tackled in [BES07]. First prin-
ciples derivations in (1 + 1) and (3 + 1)-dimensions are provided in [BDT15, DP14]. The
ideas behind the (1 + 1)-dimensional Dirac Quantum Walk can be traced back to Feyn-
man’s relativistic checkerboard [Bat12], although early models were not unitary [KN96]
and sometimes continuous-time Ising-like [Ger81]. In (2 + 1)-dimensions, continuous-
time models over the honeycomb lattice have been conceived in order to model electron
transport in graphene [KTH08].

Lorentz covariance and discreteness. In physical theories, Lorentz covariance states that
the laws of physics remain the same in all inertial frames. Lorentz transforms specify
rules that serve to relate spacetimes as seen by different inertial frames. Clearly there is
a problem with discreteness, since a fundamental discretization length (ε), can in princi-
ple be contracted as much as desired by a boost. Researchers have studied this apparent
incompatibility from several angles. This is indeed an active area of research, both from
the experimental [BG14] and from the epistemological sides [Hag14]. More recently, some
communities have adopted an informational approach to this problem, and our contribution
enters in this category. Let us present a brief summary of related works.

In the causal set approach, only the causal relations between the spacetime events is
given. Without a background spacetime Lorentz covariance is vacuous. If, however, the
events are generated from a Poissonian distribution over a flat spacetime, then covariance
is recovered in a statistical sense [DHS04].

Researchers working on Lattice Boltzmann methods for relativistic hydrodynamics also
take a statistical approach: the underlying model breaks Lorentz covariance, but the statis-
tical distributions generated are covariant [MBHS10].

Loop Quantum Gravity offers a deep justification for the statistical approach. By inter-
preting spacetime intervals as the outcome of measurements of quantum mechanical oper-
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3 CHAPTER 1. INTRODUCTION

ators, one can obtain covariance for the mean values, while keeping to a discrete spectrum
[RS03, LO04].

The idea of interpreting space and time as operators with a Lorentz invariant dis-
crete spectrum goes back to Snyder [Sny47]. This line of research goes under the name
of Doubly Special Relativity (DSR). Relations between DSR and QWs are discussed in
[BDBD+15]. In the DSR approach, a deformation of the translational sector of the Poincaré
algebra is required.

Instead of deforming the translation operator algebra, one could look at dropping trans-
lational invariance of the QW evolution. Along these lines, models have been constructed
for QWs in external fields, including specific cases of gravitational fields [DMBD14, dMD12].

Another non-statistical, early approach is to restrict the class of allowed Lorentz trans-
forms, to a subgroup of the Lorentz group whose matrices are over the integers num-
bers [Sch48]. Unluckily, there are no non-trivial integral Lorentz transforms in (1+1)-
dimensions. Moreover, interaction rules that are covariant under this subgroup are difficult
to find [HNO90, Das60].

Towards curved spacetime. The extension of to curved spacetime of QWs was initiated in
[DMBD13, DMBD14, SFGP15]. In [DMBD13, DMBD14], Di Molfetta et al. have sys-
tematically studied the continuum limit of a two-time-step QW with arbitrary coin. This
stroboscopic approach made it possible to recover the (1 + 1)-Weyl equation in curved
spacetime, for metrics of having g00 = 1. This forbids the Schwarzschild metric for in-
stance, but black holes can still be dealt with under suitable change of coordinates.

Another approach, recently pursued by Succi et al. [SFGP15], is within the framework
of lattice discretization of the relativistic quantum wave equation (quantum lattice boltz-
mann [Suc01]). The key observation is that the mass term can be recovered by extending
the neighbourhood of the dynamical map. However, the existence of a parametrization for
the unitary evolution in terms of the metric, has remained an open question.

Two-particle sector of QCA, or interacting quantum walks. The extension of the discrete-
time QW to multiple walkers was first studied by Omar et al. in 2004 [OPSB06]. They
studied a two-particle QW on the line, and proved that coin entanglement induces spa-
tial correlations between the spatial degrees of freedom. In their case the QW is non-
interacting, in the sense that the coins are homogeneous. This subject was pursued further
in [BW11, ŠBK+11, LZG+13], and physically implemented in [SGR+12]. One should
recall that the non-interacting case is not trivial in quantum mechanics. Indeed, a system
with multiple particles –even non-interacting– presents new interesting features that depart
from classical mechanics: there is entanglement and there are quantum statistical aspects,
such as distinguishability.

Besides, researchers have studied non-homogeneous QWs with a “defect”, i.e. assum-
ing that the coin operator is everywhere the same and distinct at a fixed position. Two differ-
ent approaches are the method of CMV matrices [KN07] (since the QW matrix is naturally
CMV-shaped), see [CGMV12], and the method of generating functions [KŁS13]. Non-
homogeneous quantum walks have also been studied under periodic coins [LS09, SK10],
and shown numerically that in some circumstances the spectrum has behaviour similar to
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CHAPTER 1. INTRODUCTION 4

the self-simliar Hofstadter butterfly [Hof76].
Finally, in [AAM+12] they consider the non-homogeneity of the coin as an interaction.

In particular, they study the spectrum of an IQW with a zero range interaction. In this case
V (0) = eigI4, and I4 otherwise. They prove the presence of eigenvalues in the gaps of
the continuous spectrum, interpreted as molecular binding. This phenomenon manifests
itself in the joint probability distributions as peaks wich are close to each other even after
a long time, and the wave-function decays exponentially in the relative position of the two
particles.

1.3 Thesis outline
This thesis is organized as follows:

• In Chapter 2, we formally analyse the Dirac QW and obtain a result on the conver-
gence of solutions of the discrete scheme towards the Dirac equation.

• In Chapter 3, we present a new framework for describing Lorentz covariance sym-
metry property of QWs and QCAs.

• In Chapter 4 we introduce Paired QWs, which are both a subclass of the general
QWs described above, and generalization of the most usual QWs found in the litera-
ture.

• In Chapter 5, we study interacting QWs (IQWs), i.e. the two-particle sector of a
QCA. We perform a thorough analysis of the spectral properties of the free walk, and
then treat the interacting case as a perturbation problem.

• In Chapter 6 we draw the main conclusions and we suggest some interesting future
lines of research.

v6



5 CHAPTER 2. THE DIRAC QUANTUM WALK

Chapter 2

The Dirac quantum walk

FOR the purpose of quantum simulation (on a quantum device) as envisioned by Feyn-
man [Fey82], or for the purpose of exploring the power and limits of discrete models

of physics, we may wish to discretize the Dirac equation. There are (at least) two directions
one could follow. First, through finite-difference methods; the problem with this approach
is that the discrete scheme does not conserve the ||.||2-norm, in general, hence violating
unitarity. The second approach would be integrating exactly the Dirac equation; the trans-
formation would be unitary, but it is unclear how to discretize space. In this chapter, we
solve both problems by proving convergence of solutions of a class of QWs towards the
solution of the Cauchy problem of the Dirac equation. We do so by adapting a power-
ful method from standard numerical analysis, which is of general interest to the field of
quantum simulation.

We start introducing the Dirac equation and review related works in Section 2.1. In Sec-
tion 2.2 we find the class of QWs with the desired properties, that are investigated in the
subsequent sections. We continue with the formal analysis of the discrete scheme in Sec-
tion 2.3, setting the notation and including some mathematical preliminaries from Fourier
analysis and Sobolev spaces. We then recall the well-posedness of the Dirac equation in
Section 2.4, and prove that our discrete scheme is consistent (Section 2.5), stable (Section
2.6), and finally, convergent (Section 2.7). We conclude with a result on the global error
including space discretization (Section 2.8), and summarize in Section 2.9.

2.1 Introduction

2.1.1 Discretization approaches of the Dirac equation
The Dirac equation is a partial differential equation, first order in time, and it is of central
importance for describing relativistic quantum particles [BD64, Tha92]. For a free fermion
of mass m, it takes the form1:

i∂0ψ = Dψ, with D = mα0 − i
∑

j

αj∂j, (2.1.1)

1We always work in Planck units, ~ = c = 1.
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CHAPTER 2. THE DIRAC QUANTUM WALK 6

where the Latin index j spans the spatial dimensions 1 . . . n, with 1 ≤ n ≤ 3, and whereas
Greek indices µ, ν will span the space-time dimensions 0 . . . n. The domain of definition of
the operator D is made precise in Section 2.4; for the moment, we think of ψ in (2.1.1) as
a differentiable space-time wave-function from Rn+1 to Cd, with d a number that depends
on n, whereas φ will denote a space-like wave-function from Rn to Cd, e.g. we may
write φ = ψ(x0 = 0) for the initial state. Finally, the (αµ) are d × d hermitian matrices
which must verify αµαν − αναµ = 2δµν Id, i.e. they square to the identity and pairwise
anticommute [Tha92]. Physically, the integer d encodes the spinor nature of a Dirac-like
particle, and it is either 2 or 4 for the applications we will consider.

There are (at least) two obvious directions one could follow to discretize the Dirac
equation. First, through finite-difference methods one gets (where τµ,ε denotes translation
by ε along the µ-axis):

ψ(x0 + ε) = (Id−iεDε)ψ(x0), (2.1.2)

with Dε = mα0 − i
∑

j

αj
τj,ε − Id

ε
, (2.1.3)

(τµ,εψ)(xµ) = ψ(xµ + ε). (2.1.4)

The problem with this crude approach is that (Id−iεDε) does not conserve the ||.||2-norm,
in general. From the point of view of numerical simulation, this means one has to check
the model’s convergence and stability. From the point of view of quantum simulation this
simply bars the model as not implementable on a quantum simulating device. From the
point of view of discrete toy models of physics, this means that the model lacks one of the
fundamental, guiding symmetries: unitarity.

The second approach would be integrating exactly the original Dirac equation, and
expressing ψ(x0 + ε) as a function of ψ(x0). The transformation would be unitary, but it is
unclear how to discretize space.

2.1.2 Motivations and related works
In numerical analysis, in order to evaluate the quality of a numerical scheme, two main
criteria are used. The first criterion is consistency, a.k.a. accuracy. Intuitively it demands
that, after an ε of time, the discrete model approximates the solution to a given order of ε.

Consistency of the (1 + 1)-dimensional Dirac QW has been argued in [Mey96], and for
the (1 + 1)-dimensional massless case in [CBS10]. It has been observed numerically in
(1 + 1)-dimensions in [LB05] and in (3 + 1)-dimensions in [Pal09, LD11, DLPS11]. It has
been proved in (1 + 1)-dimensions in [Str06b, Str07, BDT15].

The second criterion is convergence. Intuitively it demands that, after an arbitrary time
x0, and if ε was chosen small enough, the discrete model approximates the solution to a
given order of ε. This criterion is stronger2. Convergence has been observed numerically

2Of course convergence implies consistency, but the converse does not always hold. Indeed, consistency
means that making ε small will increase the precision of the simulation of an ε of time step. But it will also
increase the number of time steps l = x0/ε which are required in order to simulate an x0 of time evolution.
Depending upon whether the two effects compensate, convergence may or may not be reached.
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7 CHAPTER 2. THE DIRAC QUANTUM WALK

in (3+1)-dimensions in [Pal09, LD11, DLPS11]. It has been proved in (1+1)-dimensions
in [Str06b, Str07, Shi13]. The difficulty to analyse the (3 + 1)-dimensional Dirac QW is
mentioned in [Str06a, Str07, BT98b, Cha11].

2.2 Construction of the Dirac QW

2.2.1 In (2 + 1)-dimensions
A standard representation of the (2 + 1)-dimensional Dirac equation is:

i∂0ψ = Dψ with D = mσ2 − iσ1∂1 − iσ3∂2 (2.2.1)

and (σµ) the Pauli matrices, with σ0 the identity, i.e.

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.2.2)

Now, intuitively,

τµ,εψ = (Id +ε∂µ)ψ +O(ε2). (2.2.3)

but this statement and its hypotheses will only be made formal and quantified in later sec-
tions. Meanwhile, substituting Eq. (2.2.1) into Eq. (2.2.3) for µ = 0 yields:

τ0,ε = (Id−iεD) +O(ε2)

= (Id−iεmσ2)(Id−εσ1∂1)(Id−εσ3∂2) +O(ε2)

= exp
(
−iεmσ2

)
H(Id−εσ3∂1)H(Id−εσ3∂2) +O(ε2)

(2.2.4)

since σ1 = Hσ3H with H the Hadamard gate, H = 1√
2

(
1 1
1 −1

)
. Using the definition

of σ3, using Eq. (2.2.3), and taking the convention that C2 is spanned by the orthonormal
basis {|l〉/l ∈ {−1, 1}}, we get:

τ0,ε = CεHT1,εHT2,ε +O(ε2) (2.2.5a)

with Cε = exp
(
−iεmσ2

)
(2.2.5b)

and Tj,ε =
∑

l∈{−1,1}

|l〉〈l|τj,lε. (2.2.5c)

Overall, we have:

ψ(x0 + ε) = Wεψ(x0) +O(ε2) (2.2.6a)
with Wε = CεHT1,εHT2,ε (2.2.6b)

where the T matrices are partial shifts. This Dirac Quantum Walk [SB93, BB94, Mey96]
models the (2 + 1)-dimensional Dirac equation. It has a product form. Such ‘alter-
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nate quantum walks’ have the advantage of using a two-dimensional coin-space instead
of a four-dimensional coin-space: fewer resources are needed for their implementation
[DFMGMB11]. It is still just one quantum walk, i.e. a translation-invariant causal unitary
operator.

2.2.2 In (3 + 1)-dimensions

From (2 + 1) to (3 + 1)-dimensions the Dirac equation changes form, the spin degree of
freedom goes to degree four. The equation is:

i∂0ψ = Dψ with

D = m(σ2 ⊗ σ0) + i
∑

j

(σ3 ⊗ σj)∂j (2.2.7)

Indeed, one can check that the matrices σ2⊗σ0 and−σ3⊗σi are hermitian, that they square
to the identity, and that they anticommute. Using the definition of σ3, Eq. (2.2.3), and
taking the convention that C4 is spanned by the orthonormal basis {|r, l〉 / r, l ∈ {−1, 1}}:

(
Id +ε(σ3 ⊗ σ3)∂3

)
ψ = T3,εψ +O(ε2) (2.2.8a)

with Tj,ε =
∑

r,l∈{−1,1}

|r, l〉〈r, l|τj,rlε. (2.2.8b)

Similarly,
(
Id +ε(σ3 ⊗ σ2)∂2

)
ψ = (Id⊗F )T2,ε(Id⊗F †)ψ +O(ε2) (2.2.9a)

as σ2 =Fσ3F † (2.2.9b)

with F =Rπ
2
H =

(
1/
√

2 1/
√

2

i/
√

2 −i/
√

2

)
. (2.2.9c)

Likewise,
(
Id +ε(σ3 ⊗ σ1)∂1

)
ψ = (Id⊗H)T1,ε(Id⊗H)ψ +O(ε2) (2.2.10a)

as σ1 =Hσ3H. (2.2.10b)

Finally, let Cε = exp (−iεm(σ2 ⊗ σ0)). We have:

ψ(x0 + ε) = Wεψ(x0) +O(ε2), (2.2.11)

with
Wε = Cε(Id⊗H)T1,ε(Id⊗HF )T2,ε(Id⊗F †)T3,ε (2.2.12)

where the T matrices are partial shifts. This is the (3 + 1)-dimensional Dirac Quantum
Walk. We now move on to the formal analysis of the model.
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9 CHAPTER 2. THE DIRAC QUANTUM WALK

2.3 Mathematical preliminaries

We begin the formal analysis of the discrete scheme with a review of some standard math-
ematical facts, namely from Fourier analysis and Sobolev spaces. They also serve to fix
notation for the following sections.

2.3.1 Fourier transform

We recall that the Fourier transform of the wave-function φ ∈ L2(Rn)d is defined as the
function (FT φ) = φ̂ : Rn → Cd such that

φ̂(k) =
1

(2π)n/2

∫

Rn
φ(x)e−ik·x dx (2.3.1)

where by k · x we mean the scalar product in Euclidean space Rn, x = (xj), and k = (kj).
The function FT is unitary, its inverse is

φ(x) =
1

(2π)n/2

∫

Rn
φ̂(k)eik·x dk. (2.3.2)

From the above definition it is easily seen that for the spatial derivatives: FT (∂jφ)(k) =

ikjφ̂. Is is also useful to recall that for translations:

FT (φ(x± ε)) (k) = e±ik·ε φ̂(k). (2.3.3)

In Fourier space the (2 + 1)-dimensional Dirac operator, Eq. (2.2.1), becomes:

D̂(k) = mσ2 + k1σ
1 + k2σ

3

=

(
k2 k1 − im

k1 + im −k2

) (2.3.4)

with eigenvalues±|γ|, being γ2 = m2 + ||k||2. The same formula for the eigenvalues holds
true in three dimensions (i.e. there is a twofold degeneracy).

In Fourier space the (2+1)-dimensional Dirac Quantum Walk operator Ŵε, decomposes
as a product of exponential matrices, using identities such as:

HT̂1,ε(k)H = H

(
e−ik1ε 0

0 eik1ε

)
H = He−ik1εσ3

H = e−iεk1σ1

(2.3.5)

and likewise for the other directions. Eventually in (n+ 1)-dimensions it takes the form

Ŵε =
∏

µ

e−iεÂµ (2.3.6)

with some known Âµ.
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2.3.2 Fourier series

We recall that the Fourier series of the wave-function φ ∈ L2([−π
ε
, π
ε
]n)d, ε ∈ R+, is

defined as the function (FSφ) = φ̂ : εZn → Cd such that

φ̂(k) =
( ε

2π

)n/2 ∫

[−π
ε
,π
ε

]n
φ(x)eik·x dx. (2.3.7)

The function FS is unitary, its inverse is

φ(x) =
( ε

2π

)n/2 ∑

k∈εZn
φ̂(k)e−ik·x. (2.3.8)

The sign conventions of the exponentials are slightly non-standard. They have been on
purpose so that, whenever φ̂ = FT (φ) has support in [−π

ε
, π
ε
]n, then (with |X denoting

restriction to X):

FS(φ̂|[−π
ε
,π
ε

]n) = εn/2FT −1(φ̂)|εZn = εn/2φ|εZn , (2.3.9)

and
FS−1(εn/2φ|εZn) = φ̂|[−π

ε
,π
ε

]n . (2.3.10)

Indeed, the (2.3.9) follows from the definition, and (2.3.10) is the reciprocal.

2.3.3 Sobolev spaces

The usual wave-function space for quantum theory is the subspaceL2(Rn)d of the functions
Rn → Cd for which the ||.||2-norm is finite. Recall that

||φ||2 =

√∫

Rn
||φ(x)||2dx (2.3.11)

with ||.|| the usual 2-norm in Cd, and x = (xi). For our approximations to hold, we need to
restrict to the (weighted) Sobolev space Hs

m(Rn)d of the functions L2(Rn)d for which the
||.||Hs

m
-norm is finite, for some fixed s ≥ 0, m ≥ 0. Here,

||φ||Hs
m

=

√∫

Rn
(1 +m2 + ||k||2)s||φ̂(k)||2dk (2.3.12)

with φ̂ the Fourier transform of φ, and ||k||2 =
∑

j |kj|2.

Several remarks are in order. First, notice that ||φ||H0
m

= ||φ̂||2 = ||φ||2, thusH0
m(Rn)d =

L2(Rn)d. Second, notice that for continuous differentiable functions,

||φ||2H1
m

= (1 +m2)||φ||22 +
∑

j

||∂jφ||22, (2.3.13)
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11 CHAPTER 2. THE DIRAC QUANTUM WALK

thusH1
m(Rn)d is just the subset of L2(Rn)d having first-order derivatives in L2(Rn)d, and it

is often referred to as the energy norm. Second, Hs+1
m (Rn)d is dense in Hs

m(Rn)d, as can be
seen from mollification techniques [Sob38]. Finally, notice that, on the one hand, the choice
of having the ||.||Hs

m
-norm to depend on m is slightly non-standard: usually this constant is

set to zero. On the other hand, three elements argue in favour of this non-standard choice:

1. It fits nicely with the mathematics of this approach;

2. Our main use of the ||.||Hs>0
m

-norm is to impose a sufficiently regular initial condition
on the particle’s wave-function, that this regularity condition may depend on the
particle’s mass m does not seem problematic;

3. The above defined ||.||Hs
m

-norm is equivalent to the usual ||.||Hs-norm:

||φ||Hs =

√∫

Rn
(1 + ||k||2)s||φ̂(k)||2dk (2.3.14)

in the sense of norm equivalence, because

1 + ||k||2 ≤ 1 +m2 + ||k||2 ≤ (m2 + 1)(1 + ||k||2). (2.3.15)

This last point is why the well-posedness of the Dirac equation with respect to the usual
||.||Hs-norm carries through with respect to the ||.||Hs

m
-norm, see next section.

2.4 Well-posedness
A major concern in numerical analysis is finding discrete models to approximate the con-
tinuous solutions of a well-posed Cauchy problem. Here, the Cauchy problem is to find
the solution ψ given ψ(0) and i∂0ψ = Dψ. Intuitively, Cauchy problems are well-posed
if and only if the solution exists, is unique, and if small variations on the initial state ψ(0)
have a small impact on the final state ψ(x0). In mathematical terms, a Cauchy problem is
well-posed in a Banach space X if:

• D is a densely defined operator on X , that is, Dom D ⊂ X is a dense subset of X;

• There exists a dense subset Y of X such that for every initial condition in Y , the
Cauchy problem has a solution;

• There exists a non-decreasing function C : R+ → R+ such that for every x0 ∈
R+, ||ψ(x0)||X ≤ C(x0)||ψ(0)||X for any solution ψ (not necessarily from an initial
condition in Y ).

A symmetric hyperbolic system is a Cauchy problem of the form

∂0ψ = Dψ with D = −iβ0 −
∑

j

βj∂j (2.4.1)
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where the (βµ) are hermitian.
For symmetric hyperbolic systems, the Cauchy problem is known to be well-posed in

Hs(Rn)d for any s ≥ 0. D is defined on the subspace ofHs(Rn)d such thatDφ ∈ Hs(Rn)d

for any φ ∈ Hs(Rn)d, which is dense indeed, and every initial condition in this space yields
a solution. The Hs-norm is constant for solutions of the problem, so that C(t) = 1 fulfills
the requirement. For references, see [Fat83] (1.6.21) or [BGS07].

Since the Dirac equation is a symmetric hyperbolic system, the problem is well-posed
[Fat83] for the Sobolev space Hs

m(Rn)d, with s ≥ 0 of the functions for which the ||.||Hs
m

-
norm is finite, with Sobolev norm given by (2.3.12). Notice that the Sobolev norm involves
an integral in Fourier space. For this reason, and because the Dirac operator is just a
pointwise multiplication in Fourier space, most of the following derivations will use the
notation introduced in Section 2.3.

2.5 Consistency
In numerical analysis, in order to evaluate the quality of a numerical scheme, the first
criterion is consistency, also known as accuracy. Intuitively it demands that, after an ε of
time, the discrete model approximates the solution to a given order of ε.

Formally, say a Cauchy problem is well-posed on X , with Y a dense subspace of X .
The discrete model Wε is consistent of order r on Y if and only if there exists C such that
for any solution ψ with ψ(x0 = 0) ∈ Y , for all ε ∈ R+, we have

||Wεψ(0)− ψ(ε)||X = εr+1C||ψ(0)||Y . (2.5.1)

The main result of this section is the following.

Proposition 2.1. For s ≥ 0, r = 1, X = Hs
m(Rn)d and Y = Hs+2

m (Rn)d, for all φ ∈ Y ,
and for all ε > 0,

||Wεφ− T (ε)φ||Hs
m
≤ ε2Cn||φ||Hs+2

m
, (2.5.2)

with φ = ψ(0), T (ε)φ = ψ(ε), i.e. T (ε) = τ0,ε is the continuous solution’s time evolution
operator, and Cn = 1 + n/2.

2.5.1 Proof of consistency
We work on Fourier space and see Ŵε(k) with fixed k as a function of the real-valued ε.
First, observe that the quantum walk operator can generally be written as (we sometimes
omit the k dependence in the notations of this section):

Ŵε =
∏

µ

e−iεÂµ , (2.5.3)

see Subsection 2.3.1 where one such construction is made explicit. Here Âµ are hermitian,
|||Â0|||2 = m, |||Âj|||2 = kj , and

∑
µ Âµ = D̂. For instance, in (2 + 1)-dimensions, Â0 is

equal to mσ2, Â1 is equal to k1σ
1 and Â2 is equal to k2σ

3.
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13 CHAPTER 2. THE DIRAC QUANTUM WALK

As Ŵε(k) is a matrix whose elements are products of trigonometric functions and ex-
ponentials, its entries are C∞ functions (on the variable ε). We will denote ∂ε the derivative
with respect to variable ε in each entry. Observe that Ŵ0 = Id.

Now we calculate the first and second order derivatives making use of Eq. (2.5.3). For
the first order derivative we have

(
∂εŴε

)
ε

=
(
−iÂ0

)
e−iεÂ0 · · · e−iεÂn + e−iεÂ0

(
−iÂ1

)
e−iεÂ1 · · · e−iεÂn + · · ·

+ e−iεÂ0 · · ·
(
−iÂn

)
e−iεÂn

=
∑

µ

(∏

κ<µ

e−iεÂκ

)(
−iÂµ

)(∏

κ≥µ

e−iεÂκ

)
.

(2.5.4)

Evaluating at ε = 0, (
∂εŴε

)
ε=0

= −iD̂. (2.5.5)

For the second order derivative, the computation is slightly more involved, but we can
proceed similarly as in (2.5.4). The result after regrouping is

(
∂2
εŴε

)
ε

= −
∑

µ

(∏

κ<µ

e−iεÂκ

)
Â2
µ

(∏

κ≥µ

e−iεÂκ

)

− 2
∑

ν<µ

(∏

κ<ν

e−iεÂκ

)
Âν

( ∏

ν≤κ<µ

e−iεÂκ

)
Âµ

(∏

κ≥µ

e−iεÂκ

)
. (2.5.6)

Then,

|||∂2
εŴε|||2 ≤

∑

µ

|||Â2
µ|||2 + 2

∑

ν<µ

|||Âν |||2 |||Âµ|||2

≤
(∑

µ

|||Âµ|||2
)2

≤ (n+ 1)
∑

µ

|||Âµ|||22

(2.5.7)

where we get to the last line using that3 for real numbers, (x0 + · · ·+ xn)2 ≤ (n+ 1)(x2
0 +

· · ·+ x2
n). Now, since γ2 = m2 + ||k||22, then

|||∂2
εŴε|||2 ≤ (n+ 1)γ2. (2.5.8)

By application of Taylor’s formula with the integral form for the remainder [KL03] to each

3It is an easy consequence of the Cauchy-Bunyakovsky-Schwarz inequality for sums, that is,
(
∑n
k=1 akbk)

2 ≤
(∑n

k=1 a
2
k

) (∑n
k=1 b

2
k

)
for arbitrary real numbers (ak)nk=1 and (bk)nk=1.
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entry of the matrix Ŵε, we get

Ŵε = Id +ε
(
∂εŴε

)
ε=0

+

∫ ε

0

(ε− η)
(
∂2
εŴε

)
ε=η

dη (2.5.9)

and

T̂ (ε) = e−iεD̂ = Id−iεD̂ +

∫ ε

0

(ε− η)
(
−D̂2e−iηD̂

)
dη. (2.5.10)

Let us define the remainder operator as

R̂ε = Ŵε − T̂ (ε), (2.5.11)

whose operator norm can be bounded using of the previous expressions. Indeed, applying
the triangular inequality, we get

|||R̂ε|||2 ≤
∫ ε

0

|ε− η| |||∂2
εŴε|||2 dη +

∫ ε

0

|ε− η| |||D̂2e−iεηD̂|||2dη

≤
∫ ε

0

(ε− η)(n+ 1)γ2dη +

∫ ε

0

(ε− η)γ2dη

≤ ε2γ2
(

1 +
n

2

)
,

(2.5.12)

where we used that the eigenvalues of D̂ are ±γ with γ2 = m2 + ||k||22, see Subsection
2.3.1. Substituting this result into the Sobolev norm, we arrive at

||Wεφ− T (ε)φ||Hs
m

=

√∫

Rn
(1 +m2 + ||k||2)s||R̂εφ̂(k)||2dk

=

√∫

Rn
(1 +m2 + ||k||2)s||R̂ε(k)φ̂(k)||2dk

≤ ε2 C

√∫

Rn
(1 +m2 + ||k||2)s+2||φ̂(k)||2dk

≤ ε2 C||φ||Hs+2
m
.

(2.5.13)

This is what we wanted to prove, with C = Cn = 1 + n
2
.

2.6 Stability
In numerical analysis, in order to evaluate the quality of a numerical scheme model, an in-
termediate criterion is stability. It demands the discrete model be a bounded linear operator.
In our situation this fact is straightforward.

Proposition 2.2. For all φ, for all s ≥ 0, the equality ||Wεφ||Hs
m

= ||φ||Hs
m

holds.
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Proof. We proceed by applying the definition of Sobolev norm, which yields

||Wεφ||2Hs
m

=

∫

Rn
(1 +m2 + ||k||2)s||FT (Wεφ)(k)||2dk

=

∫

Rn
(1 +m2 + ||k||2)s||(Ŵεφ̂)(k)||2dk

=

∫

Rn
(1 +m2 + ||k||2)s||Ŵε(k)φ̂(k)||2dk

(2.6.1)

where in the second to third lines we used the fact that as Wε is a translation-invariant
unitary operator it is represented in Fourier space as a left multiplication by a unitary matrix
Ŵε(k), which depends on k. We then have

||Wεφ||2Hs
m

=

∫

Rn
(1 +m2 + ||k||2)s||φ̂(k)||2dk = ||φ||2Hs

m
. (2.6.2)

Thus if |||.|||Hs
m

denotes the operator norm with respect to the normHs
m, we have |||Wε|||Hs

m

equal to one, as requested.

2.7 Convergence

In numerical analysis, in order to evaluate the quality of a numerical scheme, the most im-
portant criterion for quality is convergence. Intuitively it demands that, after an arbitrary
time x0, and if ε was chosen small enough, the discrete model approximates the solution
to a given order of ε. Fortunately, the Lax theorem [LR56, ISEe4] states that stability and
consistency implies convergence. Unfortunately, as regards the quantified version of this
result, the literature available comes in many variants, with various degrees of formaliza-
tion, each requesting different sets of hypotheses. Thus, for clarity, we inline the proof
here.

Formally, say a Cauchy problem is well-posed on X and Y , with Y a dense subspace
of X . The discrete model Wε is convergent of order r on Y if and only if there exists C
such that for any solution ψ with ψ(x0 = 0) ∈ Y , for all x0 ∈ R+, l ∈ N, we have:

||W l
εl
ψ(0)− ψ(x0)||X = εrl x0C||ψ(0)||Y (2.7.1)

with εl = x0/l. This is exactly what we will now prove. We state below the convergence
result for the interesting case n = 3.

Theorem 2.1. Let T (x0) = e−iDx0 be the evolution operator of the free (3+1)-dimensional
Dirac equation, and consider the Dirac QW:

Wε = Cε(Id⊗H)T1,ε(Id⊗HF )T2,ε(Id⊗F †)T3,ε.

Then for any solution ψ of the Dirac equation with initial condition φ ∈ Hs+2
m (R3)4, s ≥ 0,
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and for all x0 ∈ R+, it holds

||W l
εφ− T (εl)φ||Hs

m
≤ 5

2
εx0||φ||Hs+2

m
, (2.7.2)

where l = x0/ε ∈ N.

2.7.1 Proof of convergence

Take x0 ∈ R+. Consider the sequence (εl) such that εl = x0/l. Because T (εll) = T (εl)
l,

and because

l−1∑

j=0

W l−j
εl
T (εl)

j −W l−j
εl
T (εl)

j = 0 (2.7.3a)

l−1∑

j=0

W l−j
εl
T (εl)

j −W l−j−1
εl

T (εl)
j+1 = W l

εl
− T (εl)

l, (2.7.3b)

we have

W l
εl
φ− T (εll)φ =

l−1∑

j=0

W l−1−j
εl

(Wεl − T (εl))T (εl)
jφ. (2.7.4)

From consistency, there exists C such that for all φ,

||WεlT (jεl)φ− T (εl)T (jεl)φ||Hs
m
≤ ε2

lC||φ||Hs+2
m
. (2.7.5)

Hence,

||W l
εl
φ− T (εll)φ||Hs

m
≤

l−1∑

j=0

|||W l−1−j
εl

|||Hs
m
ε2
lC||φ||Hs+2

m

≤ lε2
lC||φ||Hs+2

m
= εlx0C||φ||Hs+2

m
,

(2.7.6)

as requested. Here C = Cn is a constant only dependent on n.

2.8 Space discretization

In this chapter, we aim at giving a quantum walk model Wε : `2(εZn)d → `2(εZn)d of the
Dirac equation. So far we explained how we can discretize time in the Dirac equation, but in
order to get a quantum walk, we need to discretize space as well. In a sense, this is already
done since the walk operators Wε that we defined, although they take input functions in
Hs(Rn)d, can equally well be defined on `2(εZn)d, for the only shift operators involved in
their definitions are multiples of the Tj,ε-s. The question remains, however, of what initial
state we can feed our quantum walks, and how we are to interpret their output. One of the
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difficulties, in particular, is to construct, given φ ∈ L2(Rn)d, a Discretize(φ) ∈ `2(εZn)d.
That the discretized version of φ be normalized is essential so that the quantum simulation
can be implemented on a quantum simulator, just like the unitarity of Wε was essential.
This section relies heavily on notations introduced in Section 2.3.

The main result of this section is the following.

Theorem 2.2. For a discretization parameter ε, a number of iterations l, and if x0 = εl is
the total evolution time, then the overall error is

‖Reconstruct(W l
ε(Discretize(φ)))− T (εl)φ‖Hs

m
≤ ε2C||φ||Hs+2

m
, (2.8.1)

for some constant C > 0 which only depends on l and the dimensions n.

The proof is organized in three steps. In 2.8.1, we formalize the discretization proce-
dure. In 2.8.2-2.8.3. Then, the overall bound is computed in 2.8.4.

2.8.1 Discretization procedure
We discretize by

Discretize(φ) = Renormalize(FS(FT (φ)|[−π
ε
,π
ε

]n)). (2.8.2)

Notice that
φLP = FT −1(χ[−π

ε
,π
ε

]nFT (φ)), (2.8.3)

where χA denotes the indicator function of A, applies an ideal low-pass filter, and that

FS(FT (φLP)|[−π
ε
,π
ε

]n) = εn/2φLP|εZn (2.8.4)

is, up to a constant, the sampling of φLP, see Subsection 2.3.2. Discretize(φ) is hence
proportional to the function obtained by sampling φ after it has been low-pass filtered.
Since FS and FT are unitary, the renormalization is by a factor of ‖φLP‖−1

2 . For it to be
well-defined, we must check that φLP does have a non-zero norm.

2.8.2 Low-pass filtering
For every s ≥ 0, we have

‖φ− φLP‖2
Hs
m

=

∫

Rn\[−π
ε
,π
ε

]n
(1 +m2 + ‖k‖2)s‖φ̂(k)‖2dk

=

∫

Rn\[−π
ε
,π
ε

]n
(1 +m2 + ‖k‖2)−2(1 +m2 + ‖k‖2)s+2‖φ̂(k)‖2dk

≤
(
ε2C ′‖φ‖Hs+2

m

)2 with C ′ = π−2.

(2.8.5)

This tells us two things. First, if ε2 < ‖φ‖2
C′‖φ‖

H2
m

, then φLP 6= 0, so it can be renormalized.

Second, the loss induced by low-pass filtering is small, as needed below in order to bound
the overall error.
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CHAPTER 2. THE DIRAC QUANTUM WALK 18

2.8.3 Reconstruction procedure

We reconstruct by

Reconstruct(φ̃) = FT −1(FS−1(Renormalize−1(φ̃))), (2.8.6)

with the convention that FS−1(φ̃) ∈ L2([−π
ε
, π
ε
]n)d is extended to L2(Rn)d by the null

function on Rn \ [−π
ε
, π
ε
]n, and the inverse renormalization is by a factor of ‖φLP‖2. No-

tice that φLP = Reconstruct(Discretize(φLP)), and that this reconstruction is equivalent to
the Whittaker-Kotelnikov-Shannon formula (cf. [PM62], [JG04] for the multidimensional
case).

2.8.4 Overall scheme

Given a wave function φ, we approximate T (εl)φ, the continuous evolution of φ, by

Reconstruct(W l
ε(Discretize(φ))), (2.8.7)

the reconstruction of the walk iterated on the discretization of φ. Let us bound the overall
error. For all φ we have (renormalizations cancel out by linearity of W l

ε):

Reconstruct(W l
ε(Discretize(φ))) = FT −1(FS−1(W l

ε(FS(FT (φ)|[−π
ε
,π
ε

]n))))

= FT −1(FS−1(W l
ε(FS(FT (φLP)))))

= FT −1(FS−1(W l
ε(ε

n/2φLP|εZn)))

= FT −1(FS−1(εn/2W l
ε(φLP)|εZn))

= FT −1(FT (W l
ε(φLP))|[−π

ε
,π
ε

]n)

= W l
ε(φLP)

(2.8.8)

where the preceding step comes from (2.3.10). Now, since W l
ε is unitary, we have

‖W l
ε(φLP)−W l

ε(φ)‖Hs
m

= ‖φLP − φ‖Hs
m
≤ ε2C ′‖φ‖Hs+2

m
. (2.8.9)

On the other hand in Section 2.7 we had:

‖W l
ε(φ)− T (εl)(φ)‖Hs

m
≤ ε2lC||φ||Hs+2

m
. (2.8.10)

And thus the bound on the overall error is:

‖Reconstruct(W l
ε(Discretize(φ)))− T (εl)φ‖Hs

m
≤ ε2(lC + C ′)||φ||Hs+2

m
. (2.8.11)

where in the last inequality we should recall that ε is the discretization parameter and l the
number of iterations, thus x0 = εl is for how long the evolution is simulated.
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19 CHAPTER 2. THE DIRAC QUANTUM WALK

2.9 Summary
Nowadays, simulation of physical processes is realized over classical computers, and the
quality of the result is validated by numerical analysis. With the future development of
quantum computers, the quantum simulation of physical processes will also need to be
validated. Based on simple arguments, our approach allows to obtain convergence of the
solutions from stability and consistency, without ever having to obtain the solutions them-
selves. This is a key point: this method will apply equally well to more complicated QWs,
e.g. in principle could be applied to Bargmann-Wigner equations describing arbitrary spin
relativistic wave equations, or even symmetric hyperbolic systems in general.

The QW is parametrized on ε, the discretization step. It is of course tempting to set ε
to in Planck units, and grant

W = C(Id⊗H)T1(Id⊗HF )T2(Id⊗F †)T3 (2.9.1)

a more fundamental status. One could even wonder whether some relativistic particles
might behave according to this QW, rather than the Dirac equation. For setting this idea on
stronger grounds, the next chapter points in one of these possible directions. We study to
which extent such discrete models retain Lorentz covariance.

v6



CHAPTER 3. DISCRETE LORENTZ COVARIANCE 20

Chapter 3

Discrete Lorentz covariance

WE have seen that QWs are dynamics whose main features are being: discrete in time
and space (i.e. a unitary evolution of the wave-function of a particle on a lattice);

homogeneous (i.e. translation-invariant and time-independent), and causal (i.e. informa-
tion propagates at a bounded speed, in a strict sense). Therefore, they have several of the
fundamental symmetries of physics, built-in. But can they also have Lorentz covariance?
In this chapter, we give a positive answer, by formalizing a notion of discrete Lorentz trans-
forms for QWs and QCAs. Already in the reduced (1 + 1)-dimensional discrete spacetime
there are several difficulties that need to be overcome, and all the chapter is placed in this
setting. The theory admits a diagrammatic representation in terms of a few local, circuit
equivalence rules. Within this framework, we show the first-order-only covariance of the
Dirac QW. We then introduce the Clock QW and the Clock QCA, and prove that they are
exactly discrete Lorentz covariant. The theory also allows for non-homogeneous Lorentz
transforms between non-inertial frames.

This chapter is organized as follows. We start in Section 3.1 stating our approach, the
notations, and recalling the proof of covariance of the Dirac equation. In Section 3.2 we
discuss the first-order-only covariance of the Dirac QW. In Section 3.3 we formalize dis-
crete Lorentz transforms, covariance, and discuss non-homogeneous Lorentz transforms.
In Sections 3.4 and 3.5 apply this theory to the Clock QW and the Clock QCA respectively.
We finish with a discussion of the physical interpretation in Section 3.6, and summarize
our results in Section 3.7.

3.1 Introduction
In this chapter we formalize a notion of discrete Lorentz transforms, acting upon wave-
functions over discrete spacetime. It formalizes the notion of discrete Lorentz covariance
of a QW, by demanding that a solution of the QW be Lorentz transformed into another
solution, of the same QW. Our approach is non-statistical: we look for exact Lorentz co-
variance. Spacetime remains undeformed, always assumed to be a regular lattice, and the
QW remains homogeneous. While keeping to 1 + 1 dimensions and integral transforms,
we allow for a global rescaling, so that we can represent all Lorentz transforms with ra-
tional velocity. The basic idea is to map each point of the lattice to a lightlike rectangular
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21 CHAPTER 3. DISCRETE LORENTZ COVARIANCE

spacetime patch, as illustrated in Figs. 3.1.1 and 3.3.4.
Before the formalism is introduced, we investigate a concrete example: the Dirac

QW [SB93, BB94, Mey96, ANF14]. The Dirac QW is a natural candidate for being
Lorentz covariant, because its continuum limit is the covariant, free-particle Dirac equa-
tion [Str07, ANF14, BDT13]. This example helps us build our definitions. However, the
Dirac QW turns out to be first-order covariant only. In order to obtain exact Lorentz covari-
ance, we introduce a new model, the Clock QW, which arises as the quantum version of a
covariant classical Random Walk [Wal88]. However, the Clock QW requires an observer-
dependent dimension for the internal state space. In order to overcome this problem, the
formalism is extended to multiple-walkers QWs, i.e. Quantum Cellular Automata (QCA).
Indeed, the Clock QCA provides a first finite-dimensional model of an exactly covariant
QCA. We use numerous figures to help our intuition. In fact, the theory admits a simple
diagrammatic representation, in terms of a few local, circuit equivalence rules. The theory
also allows for non-homogeneous Lorentz transforms, a specific class of general coordinate
transformations, and yet expressive enough to switch between non-inertial frames.

t

x

t′

x′

t

x

t′

x′

Figure 3.1.1: Conceptual diagram for the discrete Lorentz transform. In this example
α = 2, β = 1. Each point in the original reference frame is transformed into a lightlike
rectangular spacetime patch of α × β points, here enclosed by the dashed lines. This
switches from the x, t frame to the x′, t′ frame, as shown.

3.1.1 Finite Difference Dirac Eq. and the Dirac QW
The Dirac Equation. The (1+1)-dimensional free particle Dirac equation is (with Planck’s
constant and the velocity of light set to one):

∂tψ = −imσ1ψ − ∂xσ3ψ, (3.1.1)

v6



CHAPTER 3. DISCRETE LORENTZ COVARIANCE 22

ψ+(r, l) ψ−(r, l)

C

ψ+(r + ε, l)ψ−(r, l + ε)

ψ(r, l) =

(
ψ+(r, l)
ψ−(r, l)

)

ψ+(r, l)

ψ+(r + ε, l)

ψ−(r, l)

ψ−(r, l + ε)

ψ(r, l) =

(
ψ+(r, l)
ψ−(r, l)

)
=

(a) Each white dot (left) represents the corresponding piece of circuit (right).

ψ(r, l)

ψ(r, l + ε) ψ(r + ε, l)

(b) A discrete spacetime wavefunction ψ in lightlike
coordinates. Time flows upwards.

C C
ψ(r, l)

ψ+(r + ε, l)ψ−(r, l + ε)

ψ(r, l)

C
ψ(r, l + ε)

C
ψ(r + ε, l)

(c) An explicit circuit-like representation of the re-
lationship between the vectors at each point. The
matrix C gets applied upon its input vector, whereas
each lightlike wire propagates just one scalar compo-
nent of the output vector.

Figure 3.1.2: Discrete spacetime wavefunctions that are solutions of the FD Dirac or the
Dirac QW.

where m is the mass of the particle, ψ = ψ(t, x) is a spacetime wavefunction from R1+1

to C2 and σj (j = 0, . . . , 3) are the Pauli spin matrices, with σ0 the identity. Eq. (3.1.1)
corresponds to the Weyl (or spinor) representation [Tha92].

Lightlike coordinates. In order to study covariance, it is always a good idea to switch
to lightlike coordinates r = (t + x)/2 and l = (t − x)/2, in which a Lorentz transform is
just a rescaling of the coordinates. Redefine the wavefunction via ψ(r+ l, r− l)→ ψ(r, l),
then Eq. (3.1.1) becomes

diag∂r∂lψ = −imσ1ψ. (3.1.2)

Finite-difference Dirac Equation. In this chapter eε∂µ will be used as a notation for the
translation by ε along the µ-axis (with µ = 0, 1), i.e. (eε∂µψ)(xµ) = ψ(xµ + ε).

v6



23 CHAPTER 3. DISCRETE LORENTZ COVARIANCE

Using the first order expansion of the the exponential, the spacetime wavefunction ψ is
a solution of the Dirac equation if and only if, as ε→ 0,

diageε∂reε∂lψ = (Id +diagε∂rε∂l)ψ +O(ε2)

= (Id−imεσ1)ψ +O(ε2). (3.1.3)

Equivalently, if we denote ψ = (ψ+, ψ−)T, then ψ is a solution of the Dirac equation if
and only if, to first order in ε and as ε→ 0,

ψ+(r + ε, l) = ψ+(r, l)− imεψ−(r, l)

and ψ−(r, l + ε) = ψ−(r, l)− imεψ+(r, l). (3.1.4)

If we now suppose that ε is fixed, and consider that ψ is a spacetime wavefunction from
(εZ)2 to C2, then Eq. (3.1.4) defines a Finite-difference scheme for the Dirac equation (FD
Dirac). As a dynamical system, this FD Dirac is illustrated in Fig. 3.1.2 with:

C =

(
1 −iεm
−iεm 1

)
. (3.1.5)

The Dirac QW. We could have gone a little further with Eq. (3.1.3). Indeed, by recog-
nizing in the right-hand side of the equation the first order expansion of an exponential, we
get:

diageε∂reε∂lψ = e−imεσ1ψ +O(ε2). (3.1.6)

In fact, ψ is a solution of the Dirac equation if and only if, as ε → 0, Eq. (3.1.6) is
satisfied. See [Str07, ANF14] for a rigorous, quantified proof of convergence.

If we again say that ε is fixed, and so that ψ is a discrete spacetime wavefunction,
then Eq. (3.1.6) defines a Quantum Walk for the Dirac equation (Dirac QW) [SB93, BB94,
Mey96, BDT13, ANF14]. Indeed, as a dynamical system, this Dirac QW is again illustrated
in Fig. 3.1.2 but this time taking:

C = e−imεσ1 =

(
cos(εm) −i sin(εm)
−i sin(εm) cos(εm)

)
, (3.1.7)

which is exactly unitary, i.e. to all orders in ε.
In the original (t, x) coordinates, both the FD Dirac and the Dirac QW evolutions are

given by ψ(t + ε, x) = TCψ(t, x), where T = e−ε∂xσ3 is the shift operator and C is the
matrix appearing in Eq. (3.1.5) or Eq. (3.1.7) respectively (see [ANF14] for details). In the
case of the Dirac QW, W = TC is referred to as the walk operator: it is shift-invariant and
unitary. C is referred to as the coin operator, acting over the ‘coin space’, which isH ∼= C2

for the Dirac QW. Eq. (3.1.6) reads as follows: the top and bottom components of the coin
space get mixed up by the coin operator, and then the top component moves at lightspeed
towards the right, whereas the bottom component goes in the opposite direction.

Remark 3.1. Let α, β be arbitrary positive integers. Notice that knowing the value of the
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scalars ψ−(r, l), . . . , ψ−(r+ (α− 1)ε, l) carried by the right-incoming wires, together with
the scalars ψ+(r, l), . . . , ψ+(r, l+ (β− 1)ε) carried by the left-incoming wires, fully deter-
mines ψ(r+ iε, l+ jε) for 0 ≤ i ≤ (α− 1) and 0 ≤ j ≤ (β− 1), as made apparent in Fig.
3.1.3. We denote by C(i, j) the operator which, given the vectors

ψ−(r, l) =




ψ−(r, l)
...

ψ−(r + (α− 1)ε, l)




and

ψ+(r, l) =




ψ+(r, l)
...

ψ+(r, l + (β − 1)ε)




combined as

ψ(r, l) =

(
ψ+(r, l)

ψ−(r, l)

)
,

yields ψ(r+ iε, l+ jε), i.e. ψ(r+ iε, l+ jε) = C(i, j)ψ(r, l). Moreover, notice that those
values also determine the right outcoming wires ψ+(r + αε, l + jε) for 0 ≤ j ≤ (β − 1),
which we denote by C+ψ(r, l), and the left outcoming wires ψ−(r+ iε, l+βε) for 0 ≤ i ≤
(α − 1), which we denote be C−ψ(r, l). More generally, we denote by C the circuit made
of (αβ) gates shown in Fig. 3.1.3, i.e.

C ψ(r, l) =
(
C+ ⊕ C−

)
ψ(r, l). (3.1.8)

We write Cm for the operator, instead of C, when we want to make explicit its dependency
upon the parameter m.

3.1.2 Scaled Lorentz transforms and covariance

Let us review the covariance of the Dirac equation in a simple manner, that will be useful
for us later. Consider a change of coordinates r′ = αr, l′ = βl. This transformation is
proportional by a factor of

√
αβ to the Lorentz transform

Λ =




√
α

β
0

0

√
β

α


 (3.1.9)

whose velocity parameter is u = (α − β)/(α + β). Let us define ψ̃(r′, l′) = ψ̃(αr, βl) =
ψ(r, l). A translation by ε along r (resp. l) becomes a translation by αε along r′ (resp. βε
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ψ+(r, l + 0ε)

ψ+(r, l + 1ε)

ψ+(r, l + 2ε)

ψ−(r + 0ε, l)

ψ−(r + 1ε, l)

ψ−(r + 2ε, l)

ψ−(r + 3ε, l)

Figure 3.1.3: Lightlike rectangular patches of spacetime (in this example α = 4, β = 3)
are fully-determined by the incoming wires.

along l′). Hence the Dirac equation now demands that as ε→ 0,

diageαε∂r′eβε∂l′ ψ̃ =

(
1 −iεm
−iεm 1

)
ψ̃ +O(ε2). (3.1.10)

Equivalently, to first order in ε and as ε→ 0,

ψ̃+(r′ + αε, l′) = ψ̃+(r′, l′)− imεψ̃−(r′, l′) (3.1.11a)

ψ̃−(r′, l′ + βε) = ψ̃−(r′, l′)− imεψ̃+(r′, l′) (3.1.11b)

Unfortunately, whenever α 6= β, this is not in the form of a Dirac equation. In other words
the coordinate change alone does not take the Dirac equation into the Dirac equation.

Remark 3.2. In Section 3.4 we will study the Clock QW, inspired by:
(
eαε∂r 0

0 eβε∂l

)
ψ = e−imεσ1ψ. (3.1.12)

Meanwhile, notice that in the first order, the top and bottom ε can be taken to be differ-
ent, leading to

diageε∂r′eε∂l′ ψ̃ =

(
1 −iεm/α

−iεm/β 1

)
ψ̃ +O(ε2). (3.1.13)
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diageε∂r′eε∂l′

(
ψ̃+/
√
β

ψ̃−/
√
α

)
=

(
1 −iεm/

√
αβ

−iεm/
√
αβ 1

)(
ψ̃+/
√
β

ψ̃−/
√
α

)
+O(ε2). (3.1.14)

Let us define

S =

(
1/
√
β 0

0 1/
√
α

)
and ψ′ = Sψ̃. (3.1.15)

Call this ψ′ the Lorentz transformed of ψ, instead of ψ̃. Now we have:

diageε∂r′eε∂l′ψ′ =

(
1 −iεm/

√
αβ

−iεm/
√
αβ 1

)
ψ′ (3.1.16)

i.e. the Dirac equation just for a different mass m′ = m/
√
αβ. This different mass is due

to the fact that the transformation to primed coordinates that we considered was a scaled
Lorentz transform. In the special case where αβ = 1, the above is just the proof of Lorentz
covariance of the Dirac equation.

3.2 A discrete Lorentz transform for the Dirac QW

3.2.1 Normalization problem and its solution

Normalization problem in the discrete case. Take ψ(r, l) a solution of the Dirac QW such
that the initial condition is normalized and localized at single point e.g. ψ(0, 0) = (1, 0)T

and ψ(r, l) = (0, 0)T for t = r + l = 0. Then, after applying the Lorentz transform
described in Subsection 3.1.2, the initial condition is ψ′(0, 0) = (1/

√
β, 0)T and ψ′(r, l) =

(0, 0)T for t = r + l = 0 which is not normalized for any non-trivial Lorentz transform,
see Fig. 3.2.1(a). Hence, we see that the Lorentz transform described in Subsection 3.1.2,
i.e. that used for the covariance of the continuous Dirac equation, is problematic in the
discrete case: the transformed observer sees a wavefunction which is not normalized. This
seems a paradoxical situation since in the limit when ε→ 0, the discrete case tends towards
the continuous case, which does not have such a normalization issue. In order to fix this
problem, let us look more closely at how normalization is preserved in the continuous case.

Normalization in the continuous case. Now take ψ(r, l) a solution of the massless
Dirac equation such that the initial condition is the normalized, right-moving rectangular
function, i.e. ψ(r, l) = (1/

√
2, 0)T, for 0 ≤ l < 1 and ψ(r, l) = (0, 0)T elsewhere. The

Lorentz transform of ψ is

ψ′(r′, l′) = Sψ(r′/α, l′/β) =





(
1/
√

2β
0

)
0 ≤ l′ < β

(
0
0

)
elsewhere,

(3.2.1)
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ψ+
ψ+√
2

↪→

(a)

ψ+
ψ+√
2

ψ+√
2

↪→

(b)

Figure 3.2.1: The normalization problem and solution in the m = 0, α = 1, β = 2 case.
(a) If ψ+(0, 0) gets interpreted as a right-traveling Dirac peak, then its transformed version
is ψ′+(0, 0) = ψ+(0, 0)/

√
2, which is not normalized. (b) If ψ+(0, 0) gets interpreted as a

right-moving rectangular function, then its transformed version spreads out as ψ′+(0, 0) =

ψ′+(0, 1) = ψ+(0, 0)/
√

2, which is normalized.

which is normalized. We see that the S matrix is no longer a problem for normalization,
but rather it is needed to compensate for the larger spread of the wavefunction, see Fig.
3.2.1(b). This suggests that the normalization problem for the localized initial condition in
the discrete case could be fixed, by allowing the discrete Lorentz transform to spread out
the initial condition.

From the continuous to the discrete. Intuitively, we could think of defining the dis-
crete Lorentz transform as the missing arrow “Discrete Λ?” that would make the following
diagram commute:

Dirac Λ−−−→ Dirac′yDiscretize

yDiscretize

QW Discrete Λ?−−−−−−→ QW′

(3.2.2)

In other words,
Discrete Λ ◦ Discretize := Discretize ◦ Λ (3.2.3)
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and hence,
Discrete Λ := Discretize ◦ Λ ◦ Interpolate (3.2.4)

For instance, if the localized walker was to be interpolated as a rectangular function instead
of a Dirac peak, that rectangular function will be spread out by the continuous Λ, and may
discretize as a more spread out walker. The discrete Lorentz transform that we propose next
does just that. However, it will be phrased directly in the discrete setting. Later in Section
3.3 we provide a more general and diagrammatic definition of discrete Lorentz transform
and discrete Lorentz covariance.

3.2.2 A discrete Lorentz transform

In the continuous case we had ψ′(r′, l′) = Sψ(r, l). Hence ψ′(r′, l′) = Sψ(r′/α, l′/β).
In the discrete case, however ψ is a spacetime wavefunction from (εZ)2 to C2, as in Fig.
3.1.2(b). Hence, demanding, for instance, that ψ′(ε, 0) = Sψ(ε/α, 0) becomes meaning-
less, because ψ(ε/α, 0) is undefined. The normalization issues and the related discussion
of Subsection 3.2.1 suggests setting ψ′−(ε, 0) to Sψ−(0, 0), and not to 0. More generally,
we will take:

∀r′ ∈ εαZ, ψ′+(r′, l′) =
ψ+(r′/α, bl′/βcε)√

β
(3.2.5)

and

∀l′ ∈ εβZ, ψ′−(r′, l′) =
ψ−(br′/αcε, l′/β)√

α
. (3.2.6)

where b.cε takes the closest multiple of ε that is less or equal to the number. Notice that
this implies that for all r′ ∈ εαZ and l′ ∈ εβZ, we have ψ′(r′, l′) = Sψ(r′/α, l′/β), as in
the continuous case. However, what if we have neither r′ ∈ αεZ nor l′ ∈ βεZ? As was
illustrated in Fig. 3.1.3, this spacetime region is now fully determined, i.e. we set

∀r′, l′ ∈ εZ, ψ′(r′, l′) = Cm′(i, j)ψ′(br′cαε, bl′cβε) (3.2.7)

with m′ = m/
√
αβ, iε = r′ − br′cαε, jε = l′ − bl′cβε, Cm′(i, j) as defined in Remark 3.1,

and ψ′(br′cαε, bl′cβε) again as defined in Remark 3.1, namely

ψ′+(br′cαε, bl′cβε) =




ψ′+(br′cαε, bl′cβε)
...

ψ′+(br′cαε, bl′cβε + (β − 1)ε)




=




ψ+(br′cαε, bl′cβε)√
β
...



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and similarly

ψ′−(br′cαε, bl′cβε) =




ψ−(br′cαε, bl′cβε)√
α
...




and finally

ψ′(br′cαε, bl′cβε) =

(
ψ′+(br′cαε, bl′cβε)
ψ′−(br′cαε, bl′cβε)

)
.

This finishes to define a discrete Lorentz transform Lα,β , which is illustrated in Fig. 3.2.2.

An equivalent, more concise way of specifying this discrete Lorentz transform Lα,β
is as follows. First, consider the isometry Eβ (resp. Eα) which codes ψ+(r, l) (resp.
ψ−(r, l)) into the more spread out qψ+(r, l) = Eβψ+(r, l) = ψ′+(αr, βl) (resp. qψ−(r, l) =

Eαψ−(r, l) = ψ′−(αr, βl)), and let qψ(r, l) = qψ+(r, l)⊕ qψ−(r, l), and m′ = m/
√
αβ. Sec-

ond, construct ψ′ = Lα,βψ by replacing every spacetime point ψ(r, l) with the lightlike

rectangular spacetime patch
(
Cm′(i, j) qψ(r, l)

)
i=0...(α−1),j=0...(β−1)

.

Does this discrete Lorentz transform fix the normalization problem of Subsection 3.2.1?
Let us evaluate this question.

3.2.3 From continuous to discrete current and norm

3.2.3.1 Continuous current and norm

In order to evaluate the norm of a spacetime wavefunction ψ in the continuous setting, we
need the following definition. We say that a surface σ is a Cauchy surface if it intersects
every causal curve exactly once (a causal curve being a curve whose tangent vector is
always timelike or lightlike). The relativistic current jµ = (j0, j1) is equal to jµ = (|ψ+|2+
|ψ−|2, |ψ+|2 − |ψ−|2), and in lightlike coordinates becomes js = (|ψ+|2, |ψ−|2), s = ±.
The norm of ψ along a Cauchy surface σ is defined by integrating the current js along σ

||ψ||2σ =

∫

σ

jsnsdσ (3.2.8)

where ns is the unit normal vector to σ in r, l coordinates.

If ψ is a solution of the Dirac equation, then this definition does not actually depend on
the surface σ (for a proof see for instance [Sch61b], Chap. 4), and so in this case we can
write ||ψ||2σ = ||ψ||2.
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ψ+(r, l)

ψ+(r + ε, l) ψ−(r + ε, l)

ψ−(r, l)

ψ−(r, l + ε)

ψ(r, l)

ψ(r, l + ε)

ψ+(r, l + ε)

ψ(r + ε, l)

↪→

(a) Individual points and pairs incoming wires of the original spacetime diagram.

ψ+(r, l)√
2

ψ+(r, l)√
2

ψ−(r, l)√
3

ψ−(r, l)√
3

ψ−(r, l)√
3

ψ+(r + ε, l)√
2

ψ+(r + ε, l)√
2

ψ−(r + ε, l)√
3

ψ−(r + ε, l)√
3

ψ−(r + ε, l)√
3

ψ+(r, l + ε)√
2

ψ+(r, l + ε)√
2

ψ−(r, l + ε)√
3

ψ−(r, l + ε)√
3

ψ−(r, l + ε)√
3

(b) Replacement by a rectangular patch of spacetime, which is a zoomed-in version of the point obtained by
spreading out its incoming wires.

Figure 3.2.2: A discrete Lorentz transform, with parameters α = 3, β = 2.

v6



31 CHAPTER 3. DISCRETE LORENTZ COVARIANCE

This definition of norm is Lorentz invariant, indeed:

||ψ||2σ =

∫

σ

jsnsdσ

=

∫

σ

( |ψ+|2
β

βdl +
|ψ−|2
α

αdr

)

=

∫

σ′
(|ψ′+|2dl′ + |ψ′−|2dr′)

=

∫

σ′
j′sn′sdσ

′

= ||ψ′||2σ′ (3.2.9)

3.2.3.2 Discrete Cauchy surfaces

We now provide discrete counterparts to the above notions, beginning with discrete Cauchy
surfaces. Let us consider a function σ : Z→ {R,L}, and an origin (r0, l0). Together, they
describe a piecewise linear curve made up of segments of the following form (in red): i.e.

R L

Figure 3.2.3: Breaking up of segments.

this curve intersects the spacetime lattice in two ways, labeled R and L (right, left). The
centering on the origin is done as in Fig. 3.2.4 (a).

(r0, l0)
σ(0) = Lσ(−1) = R

(r′0, l
′
0)

α = 3β = 2

Figure 3.2.4: Discrete Cauchy surfaces and their transformations. (a) Centering on the
origin (r0, l0) of the discrete Cauchy surface. (b) Lorentz transform of the same piece of
surface for α = 3, β = 2.

We say that such a curve is a discrete Cauchy surface if it does not contain infinite
sequences of contiguous R or L. One can easily see that such a surface must intersect
every lightlike curve exactly once. For concreteness, notice that the discrete equivalent to
the continuous constant-time t = 0 Cauchy surface, is described by:

σ(n) =

{
L for even n
R for odd n (3.2.10)
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with origin (0, 0).

3.2.3.3 Discrete current and discrete norm

Similarly, let us define the discrete current carried by a wavefunction ψ. At each wire
connecting two points of the discrete lattice, the current is given by:

j = |ψ−(r, l + ε)|2

(r, l + ε)

(r, l)

j = |ψ+(r + ε, l)|2

(r + ε, l)

(r, l)

In analogy with the continuous case, we can evaluate the norm of ψ along a surface σ
as follows

||ψ||2σ =
∑

i∈Z

j(i) (3.2.11)

where j(i) is the current of the wire at intersection i. For instance, for the discrete constant-
time surface the above expression evaluates to the usual L2-norm of a spacelike wavefunc-
tion

||ψ||2t=0 =
∑

i∈Z

j(i)

=
∑

i∈2Z+1

|ψ+(i,−i)|2 +
∑

i∈2Z

|ψ−(i,−i)|2

=
∑

i

||ψ(i,−i)||2 = ||ψ||2.

(3.2.12)

3.2.3.4 Cauchy surface independence of the discrete norm

If ψ is a solution of a QW, then just like the continuous case, the discrete norm does not
depend on the discrete Cauchy surface chosen for evaluating it. The proof outline is as
follows. First, two Cauchy surfaces σ and σ′ can be made to coincide on an arbitrary large
region using only a finite sequence of swap moves1:

(r, l + ε) (r + ε, l)

(r, l)

(r − ε, l) (r, l − ε)

(r, l + ε) (r + ε, l)

(r, l)

(r − ε, l) (r, l − ε)

1We take the convention that if the swap move is applied to a segment around the origin, the origin moves
along.
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Second, swap moves leave the norm invariant, because of unitarity of the C gate (see
Fig. 3.1.2):

|ψ+(r + ε, l)|2 + |ψ−(r, l + ε)|2 = |ψ+(r, l)|2 + |ψ−(r, l)|2. (3.2.13)

Third, take a positive δ. By having σ to coincide with σ′ on a large enough region, we
obtain that |(||ψ||σ − ||ψ||σ′)| ≤ δ. Lastly, since δ is arbitrary, ||ψ||σ = ||ψ||σ′ .

3.2.3.5 Lorentz invariance of the discrete norm

Finally, we will prove the analogue of equation (3.2.9) in the discrete setting. First of all
we define how a discrete Cauchy surface σ transforms under a discrete Lorentz transform
with parameters α, β. The sequence σ′ is constructed from σ by replacing each L by Lα

and each R with Rβ , starting from the center. The origin (r0, l0) is mapped to the point
(r′0, l

′
0) = (αr0, βl0). For instance, the piece of surface in Fig. 3.2.4(a) is transformed as

in Fig. 3.2.4(b). We obtain (where Rσ and Lσ are the sets of right and left intersections
respectively):

||ψ||2 =
∑

j(i)

=
∑

i∈Rσ

|ψ+(ri, li)|2 +
∑

i∈Lσ

|ψ−(ri, li)|2

=
∑

i∈Rσ

β

∣∣∣∣
ψ+(ri, li)√

β

∣∣∣∣
2

+
∑

i∈Lσ

α

∣∣∣∣
ψ−(ri, li)√

α

∣∣∣∣
2

=
∑

i′∈Rσ′

|ψ′+(ri′ , li′)|2 +
∑

i′∈Lσ′

|ψ′−(ri′ , li′)|2

=
∑

j′(i′) = ||ψ′||2. (3.2.14)

3.2.4 The first-order-only Lorentz covariance of the Dirac QW
In Subsection 3.1.1 we defined the Dirac QW, and explained when a spacetime wavefunc-
tion ψ is a solution for it. In Subsection 3.2.2 we defined a discrete Lorentz transform,
taking a spacetime wavefunction ψ into another spacetime wavefunction ψ′. In Subsection
3.2.3 we showed that this transformation preserves the norm, i.e. ||ψ||2σ = ||ψ′||2σ′ . The
question that remains is whether the Dirac QW is Lorentz covariant with respect to this
discrete Lorentz transform. In other words, is it the case that ψ′ is itself a solution of the
Dirac QW, for some m′? This demand is concrete translation of the main principle of spe-
cial relativity, stating that the laws of physics (here, the Dirac QW) remain the same in all
inertial reference frames (here, those of ψ and ψ′).

Recall that the discrete Lorentz transform works by replacing each point of the space-
time lattice by a lightlike rectangular patch of spacetime, which can be understood as a
“biased, zoomed in version” of that point, see Fig. 3.2.2. Internally, each patch is a piece
of spacetime solution of the Dirac QW by construction, see Eq. (3.2.7). But is it the case
that the patches match up, to form the entire spacetime wavefunction of a solution? Af-
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ter all, there could be inconsistencies in between patches: values carried by the incoming
wires to the next patches, e.g. qψ+(r + ε, l) (resp. qψ−(r, l + ε)) could be different from
those carried by the wires coming out of the preceding patch, i.e. ψ̂+(r, l) = C+

qψ(r, l)

(resp. ψ̂−(r, l) = C− qψ(r, l)). More precisely, we need both ψ̂+(r, l) = qψ+(r + ε, l) and
ψ̂−(r, l) = qψ−(r, l+ ε) for every r, l. This potential mismatch is represented by the discon-
tinuations of the wires of Fig. 3.2.2(b). Clearly, the patches making up ψ′ match up to form
the spacetime wavefunction of a solution if and only if there are no such inconsistencies.
We now evaluate these inconsistencies.

In the first order, the Dirac QW and the Finite-Difference Dirac equation are equivalent,
as shown in Subsection 3.1.1. This makes it easier to compute the outcoming values of
the patches, which should match the corresponding incoming wires (see Fig. A.1.1 in
Appendix A.1). Let m′ = m/

√
αβ. In general, we obtain (to first order in ε, for i =

0 . . . β − 1, j = 0 . . . α− 1):

ψ̂+(r, l)i =
(
C+

qψ(r, l)
)
i

=
ψ+(r, l)√

β
− αim′ε

ψ−(r, l)√
α

=
ψ+(r, l)− imεψ−(r, l)√

β

= qψ+(r + ε, l)i

and ψ̂−(r, l)j =
(
C− qψ(r, l)

)
j

=
ψ−(r, l)√

α
− βim′ε

ψ+(r, l)√
β

=
ψ−(r, l)− imεψ+(r, l)√

α

= qψ−(r, l + ε)j.

Hence, the wires do match up in the first order. However, the second order cannot be fixed,
even if we allow for arbitrary encodings. The detailed proof of this statement is left to
Appendix A.

The lack of second order covariance of the Dirac QW can be interpreted in several ways.
First, as saying that the Dirac QW is not a realistic model. This interpretation motivates us
to explore, in the next sections, the question whether other discrete models (QWs or QCA)
could not suffer this downside, and be exactly covariant. Second, as an indication that
Lorentz covariance breaks down at Planck scale. Third, as saying that we have no choice
but to view ε as an infinitesimal, so that we can ignore its second order. In this picture,
the Dirac QW would be understood as describing an infinitesimal time evolution, but in
the same formalism as that of discrete time evolutions, i.e. in an alternative language to
the Hamiltonian formalism. Formulating an infinitesimal time quantum evolution in such a
way has an advantage: it sticks to the language of unitary, causal operators [ANW11a] and
readily provides a quantum simulation algorithm.
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3.2.5 Transformation of velocities

In Subsection 3.2.2 we defined a discrete Lorentz transform, which takes a spacetime wave-
function ψ into a Lorentz transformed wavefunction ψ′. In Subsection 3.2.4 we proved that
the Dirac QW is first-order covariant. Is it the case that the velocity of ψ is related to the
velocity of ψ′ according to the transformation of velocity rule of special relativity? We will
show that it is indeed the case, so long as we transform the “local velocity field” v(r, l),
defined as:

v(r, l) =
|ψ+(r, l)|2 − |ψ−(r, l)|2

||ψ(r, l)||2 . (3.2.15)

In order to see how we arrive at this formula, let us first recall the definition of velocity in
the continuous case.

For the Dirac equation, the velocity operator is obtained via the Heisenberg formula,
dx̂/dt = i[H, x̂] = σ3 (see Eq. (3.1.1)). Thus, in the discrete setting it is natural to
define the velocity operator as ∆X = X − WXW †, where X is the position operator,
X =

∑
x xPx =

∑
x x|x〉〈x| and W = TC is the walk operator. We have

∆X = X −WXW † = X − TCXC†T † = X − TXT †

=

(∑
x xPx 0
0

∑
x xPx

)
−
(∑

x xPx+1 0
0

∑
x xPx−1

)

= σ3 (3.2.16)

Thus the expected value of ∆X at the time slice t = 0 is, as in the continuous case,

〈σ3〉ψ =
∑

i∈Z

|ψ+(i,−i)|2 − |ψ−(i,−i)|2

=
∑

i∈Z

p(i,−i)v(i,−i) (3.2.17)

where p(r, l) = ||ψ(r, l)||2. It should be noted that it is not a constant of motion. This is in
fact a manifestation of the Zitterbewegung, whose connection with the continuous case was
well studied by several authors [Str07, BDT13, Kur08]. Eq. (3.2.17) justifies our definition
of local velocity.

Let us now consider the case of a walker which at t = 0, x = 0, has internal degree of
freedom ψ = (ψ+, ψ−)T. We will relate v = v(0, 0) and v′ = v′(0, 0) as calculated from a
Lorentz transformed observer with parameters α, β. We have v = (|ψ+|2 − |ψ−|2)/||ψ||2.
We can deduce |ψ+|2 = ||ψ||2(1 + v)/2 and |ψ−|2 = ||ψ||2(1 − v)/2. Now, let us apply a
discrete Lorentz transform. At point (0, 0), it takes ψ into ψ′ = Sψ, whose corresponding
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velocity is:

v′ =
|ψ′+|2 − |ψ′−|2
||ψ′||2 =

α|ψ+|2 − β|ψ−|2
α|ψ+|2 + β|ψ−|2

=
α||ψ||2(1 + v)− β||ψ||2(1− v)

α||ψ||2(1 + v) + β||ψ||2(1− v)

=
v + α−β

α+β

1 + vα−β
α+β

=
v + u

1 + vu
(3.2.18)

where u = (α−β)/(α+β) is the velocity that corresponds to the discrete Lorentz transform
with parameters α, β. Thus the local velocity associated to a spacetime wavefunction ψ is
related to the local velocity of the corresponding Lorentz transformed ψ′ by the rule of
addition of velocities of special relativity.

3.3 Formalization of Discrete Lorentz covariance in gen-
eral

We will now provide a formal, general notion of discrete Lorentz transform and Lorentz
covariance for Quantum Walks and Quantum Cellular Automata.

3.3.1 Over Quantum Walks
Beforehand, we need to explain which general form we assume for Quantum Walks.

3.3.1.1 General form of Quantum Walks

Intuitively speaking, a Quantum Walk (QW) is a single particle or walker moving in discrete-
time steps on a lattice. Axiomatically speaking, QWs are shift-invariant, causal, unitary
evolutions over the space

⊕
ZHc, where c is the dimension of the internal degrees of free-

dom of the walker. Constructively speaking, in turns out [GNVW12, SW04, ANW08] that,
at the cost of some simple recodings, any QW can be put in a form which is similar to that
of the circuit for the Dirac QW shown Fig. 3.1.2(c). In general, however, c may be larger
than 2 (the case c equal 1 is trivial [Mey96]). But it can always be taken to be even, so that
the general shape for the circuit of a QW can be expressed as in Fig. 3.3.1. Notice how, in
this diagram, each wire carries a d-dimensional vector ψ±(r, l). We will say that the QW
has ‘wire dimension’ d. Incoming wires get composed together with a direct sum, to form
a 2d-dimensional vector ψ(r, l). The state ψ(r, l) undergoes a 2d × 2d unitary gate C to
become some ψ′(r, l) = ψ′+(r + ε, l) ⊕ ψ′−(r, l + ε), etc. The unitary gate C is called the
‘coin’. Algebraically speaking, this means that a QW can always be assumed to be of the
form:

diageε∂r Idde
ε∂l Iddψ = Cψ. (3.3.1)
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C

+

+

ψ+(r + ε, l)ψ−(r, l + ε)

ψ(r, l) = ψ+(r, l)⊕ ψ−(r, l)

C

+

+ ψ(r, l + ε)
C

+

+ ψ(r + ε, l)

Figure 3.3.1: The circuit for a general QW. The wire dimension is d, meaning that
ψ+(r, l) = (ψ1

+(r, l), . . . , ψd+(r, l))T, etc.

We will not, in this chapter, consider QW with additional wires (i.e. more complicated
neighbourhoods) as the resulting theory would be convoluted, and because they do not fit
well with the picture of a lightspeed c = 1. Again, they can always be brought back into
the above form via space grouping of adjacent cells into supercells [ANW08, ANW11b].

3.3.1.2 Lorentz transforms for QW

The formalization of a general notion of Lorentz transform for QWs generalizes that pre-
sented in Section 3.2. Consider a QW having wire dimension d, and whose 2d×2d unitary
coin is Cm, where the m are parameters (In the case of the Dirac QW the coin is given
explicitly in 3.1.1 and there the only parameter is the mass. However, keep in mind that in
general m stands for any set of parameters.). A Lorentz transform Lα,β is specified by:

• a function m′ = fα,β(m), such that fα′α,β′β = fα′,β′ ◦ fα,β .

• a family of isometries Eα fromHd to
⊕

αHd, such that (
⊕

αEα′)Eα = Eα′α.

Above we used the notation
⊕

αHd =
⊕

i=1...αHd. Consider ψ a spacetime wavefunction
(at this stage it is not necessary to assume that it is a solution of the QW). Switching to
lightlike coordinates, its Lorentz transform ψ′ = Lα,βψ is obtained by:

• for every (r, l), computing: qψ+ = Eβψ+, qψ− = Eαψ−, and qψ = qψ+ ⊕ qψ− = Eψ.

• for every (r, l), replacing: the point (r, l) by the lightlike α × β rectangular patch of
spacetime

(
Cm′(i, j) qψ(r, l)

)
i=0...α−1,j=0...β−1

(3.3.2)

v6



CHAPTER 3. DISCRETE LORENTZ COVARIANCE 38

with Cm′(i, j) as in Remark 3.1 and Fig. 3.1.3.

Again, Fig. 3.2.2 illustrated an example of such a transformation, for the case of the Dirac
QW. The corresponding isometries Eα, described in section 3.2.2, are given by

Eα =
1√
α
1α (3.3.3)

where 1d = (1, . . . , 1)T is the d-dimensional uniform vector, and the function fα,β is given
by fα,β(m) = m/

√
αβ .

Notice that while the focus of this chapter is on translation-invariant QW, this is not
actually required in order to define the Lorentz transform. The same definition would
apply equally well if the QW has parameters that depend on the position, i.e. m = m(r, l).
We just note that in this case, according to our definition, fα,β will not itself depend on the
position, and that the new parameters m′ would be constant over each lightlike rectangular
patch.

3.3.1.3 Lorentz covariance for QW

The formalization of a general notion of Lorentz covariance for QWs generalizes that pre-
sented in Subsection 3.2.4. Consider a QW having wire dimension d whose 2d × 2d and
unitary coin unitary coin Cm, where the m are parameters. Consider ψ a spacetime wave-
function which is a solution of this QW. We just gave the formalization of a discrete gen-
eral notion of Lorentz transform taking a spacetime wavefunction ψ into another spacetime
wavefunction ψ′ = Lα,βψ, and parameters m into m′. Is it the case, for any α and β, that
the spacetime wavefunction ψ′ is a solution of the same QW, but with parametersm′? If so,
the QW is said to be covariant with respect to the given discrete Lorentz transform. Now,
the above-defined discrete Lorentz transform is obtained by replacing each point with a
lightlike α × β rectangular patch of spacetime, which, by definition, is internally a piece
of spacetime solution of the Dirac QW see Eq. (3.3.2). But again, is it the case that the
patches match up to form the entire spacetime wavefunction of a solution? Let us again
define

ψ̂+(r, l) = (Cm′)+
qψ(r, l) and ψ̂−(r, l) = (Cm′)− qψ(r, l). (3.3.4)

We need: ψ̂+(r, l) = qψ+(r + ε, l) and ψ̂−(r, l) = qψ−(r, l + ε). An equivalent, algebraic
way of stating these two requirements is obtained as follows:

qψ+(r + ε, l)⊕ qψ−(r, l + ε) = ψ̂+(r, l)⊕ ψ̂−(r, l)
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Equivalently,

(Eβ ⊕ Eα) (ψ+(r + ε, l)⊕ ψ−(r, l + ε)) =(
Cm′(α, ·)⊕ Cm′(·, β)

)
(Eβ ⊕ Eα)ψ(r, l)

⇔ (Eβ ⊕ Eα)Cmψ(r, l) = Cm′ (Eβ ⊕ Eα)ψ(r, l)

⇔ (Eβ ⊕ Eα)Cm = Cm′ (Eβ ⊕ Eα)

⇔ECm = Cm′E. (3.3.5)

Notice that in the non-translation invariant case where m = m(r, l), the above is required
for every possible values that m can take.
This expresses discrete Lorentz covariance elegantly, as a form of commutation relation
between the evolution and the encoding. Diagrammatically this is represented by Fig.
3.3.2(a). The isometry of the Eα can also be represented diagrammatically, cf. Fig.
3.3.2(b). Combining both properties straightforwardly leads to

Cm = E
†
Cm′E. (3.3.6)

This is represented as Fig. 3.3.3(a), which of course can be derived diagrammatically from
Fig. 3.3.2. Is this diagrammatic theory powerful enough to be considered an abstract,
pictorial theory of Lorentz covariance, in the spirit of [Coe10]?

3.3.1.4 Diagrammatic Lorentz covariance for QW

Combining the diagrammatic equalities of Fig. 3.3.2, we can almost rewrite the spacetime
circuit of a QW with coin Cm, into its Lorentz transformed version, for any parameters
α, β. . . but not quite. A closer inspection shows that this can only be done over regions
such as past cones, by successively: 1/ Introducing pairs of encodings via rule Fig. 3.3.2(b)
along the border of the past cone; 2/ Pushing back towards the past the bottom E via rule
Fig. 3.3.2(a), thereby unveiling the Lorentz transformed past cone. Whilst this limitation
to past-cone-like regions may seem surprising at first, there is a good intuitive reason for
that. Indeed, the diagrammatic equalities of Fig. 3.3.2 tell you that you can locally zoom
into a spacetime circuit; but you can only locally zoom out if you had zoomed in earlier,
otherwise there may be a loss of information. This asymmetry is captured by the fact that
Fig. 3.3.2(a) cannot be put upside-down, time-reversed. It follows that you should not be
able to equalize an entire spacetime circuit with its complete Lorentz transform, at least not
without using further hypotheses. And indeed, when we local Lorentz transform an entire
past cone, its border is there to keep track of the fact that this region was locally zoomed
into, and that we may later unzoom from it, if we want.

Now, could we add a further diagrammatic rule which would allow us to perform an
complete Lorentz transformation, perhaps at the cost of annotating our spacetime circuit
diagrams with information on whom has been zoomed into? Those annotations are the
dashed lines of Fig. 3.3.2 and Fig. 3.3.3(a). Clearly, as we use those rules, we know
whether some bunch of wires lives in the subspace Sα of the projector EαE†α, and we can
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Sβ

Eβ

Sα

Eα

Eβ

Eα

=

(a)

Eα

E†
α

=

(b)

Figure 3.3.2: Basic covariance rules. (a) Expresses the fundamental covariance condition
of Eqs. (3.3.5) and (3.3.11). The dashed line is optional, it is an indication which results
from using this rule: it tells us that the state of these wires belongs to the subspace Sα. The
gray and white dots stand for the same unitary interaction, but with different parameters.
(b) Expresses the isometry of the encodings used for the discrete Lorentz transform.
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Sβ

Eβ

E†
β

Sα

Eα

E†
α

=

(a) Sα

Eα

E†
αSα

=

(b)

Figure 3.3.3: Completed covariance rules. (a) is a theorem, derived from the diagrams of
Fig. 3.3.2, see also Eqs (3.3.6) and (3.3.12). It expresses the idea of a Lorentz transform
being a zoom in. The dashed line is optional, it is an indication which results from using
this rule: it tells us that the state of these wires belongs to the subspace Sα. The gray
and white dots stand for same unitary interaction, but with different parameters. (b) is a
conditional rule: the thicker dashed line is a precondition for the equality to hold. Again
it follows from the isometry of the encodings used for the discrete Lorentz transform, see
also Eq. (3.3.7).
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Figure 3.3.4: Performing a complete Lorentz transform via the completed covariance rules.
A Lorentz transform with parameters α = 2 and β = 3 consists in replacing each point by
a 2× 3 rectangular patch of spacetime using isometric encodings.
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leave that information behind. Moreover, on this subspace, it is the case that

EαE
†
α = IdSα . (3.3.7)

Then, representing this last equation in rule Fig. 3.3.3(b), which is conditional on the
annotation being there (the other rules are non-conditional, they provide the annotations),
we reach our purpose. Indeed, in order to perform a complete Lorentz-transform we can
now apply the rule Fig. 3.3.3(a) everywhere, leading to Fig. 3.3.4, and then remove the
encoding gates everywhere via Fig. 3.3.3(b). Thus, it could be said that the rewrite rules
of Fig. 3.3.3 provide an abstract, pictorial theory of Lorentz covariance. They allow to
equalize, spacetime seen by a certain observer, with spacetime seen by another, inertial
observer. Besides their simplicity, the local nature of the rewrite rules is evocative of the
local Lorentz covariance of General Relativity. This is explored a little further in Subsection
3.3.3.

3.3.1.5 Inverse transformations and equivalence upon rescaling

In analogy with the continuum case, we would like the inverse of a Lorentz transform Lα,β
to be Lβ,α, i.e.

Lα,βLβ,α = Id . (3.3.8)

However, according our definitions of L.,., we know that Lα,βLβ,α is a transformation such
that

• each point (r, l) is replaced by the lightlike αβ×αβ square patch of spacetime, with
left-incoming wires Fψ+(r, l), right-incoming wires Fψ−(r, l), right-outgoing wires
Fψ+(r + ε, l) and left-outgoing wires Fψ−(r, l + ε), where

F =

(⊕

α

Eβ

)
Eα = Eβα = Eαβ =

(⊕

β

Eα

)
Eβ (3.3.9)

• the coin parameter m is mapped to m′ = fαβ,αβ(m).

Hence, if we are to claim (3.3.8) we need to identify any two spacetime diagrams which
satisfy these relations. This is achieved as a special case in the completed diagrammatic
theory of Fig. 3.3.3.

3.3.2 Over Quantum Cellular Automata
3.3.2.1 General form of Quantum Cellular Automata

Intuitively speaking, a Quantum Cellular Automata (QCA) is a multiple walkers QW.
The walkers may or may not interact, their numbers may or may not be conserved. Ax-
iomatically speaking, a QCA is a shift-invariant, causal, unitary evolution over the space
“
⊗

ZHc”, where c is the dimension of the internal degrees of freedom of each site. Ac-
tually, care must be taken when defining such infinite tensor products, but two solutions
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U

×

×

ψ+(r + ε, l)ψ−(r, l + ε)

ψ(r, l) = ψ+(r, l)⊗ ψ−(r, l)

U

×

× ψ(r, l + ε)
U

×

× ψ(r + ε, l)

Figure 3.3.5: The circuit for a general QCA.

exist [SW04, ANW08, ANW11b]. Constructively speaking, it turns out [SW04, ANW08,
ANW11b] that, at the cost of some simple recodings, any QCA can be put in the form of
a quantum circuit. This circuit can then be simplified [AG12] to bear strong resemblance
with the circuit of a general QW seen in Fig. 3.3.1. In particular c can always be taken
to be d2, so that the general shape for the quantum circuit of a QCA is that of Fig. 3.3.5.
Notice how, in this diagram, each wire carries a d-dimensional vector ψ±(r, l). We will say
that the QCA has ‘wire dimension’ d. Incoming wires get composed together with a tensor
product, to form a d2-dimensional vector ψ(r, l). The state ψ(r, l) undergoes a d2 × d2

unitary gate U to become some ψ+(r + ε, l) ⊗ ψ−(r, l + ε), etc. The unitary gate U is
called the ‘scattering operator’. Notice how, to some extent, the QCA are alike QW up to
replacing ⊕ by ⊗. Algebraically speaking, the above means that one time-step of a QCA
can always be assumed to be of the form:

ψ 7→
(⊗

2Z+1

U

)(⊗

2Z

U

)
ψ. (3.3.10)

3.3.2.2 Lorentz transforms for QCA

The formalization of a general notion of Lorentz transform for QCA is obtained from that
over QW essentially by changing occurrences of⊕ into⊗. Indeed, consider a QCA having
wire dimension d, and whose d2 × d2 unitary scattering operator U has parameters m. A
Lorentz transform Lα,β is specified by:

• a function m′ = fα,β(m) such that fα′α,β′β = fα′,β′ ◦ fα,β .

• a family of isometries Eα fromHd to
⊗

αHd, such that (
⊗

αEα′)Eα = Eα′α.
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There is a crucial difference with QWs, however, which is that we cannot easily apply this
discrete Lorentz transform to a spacetime wavefunction. Indeed, consider ψ a spacetime
wavefunction. For every time t, the state ψ(t) may be a large entangled state across space.
What meaning does it have, then, to select another spacelike surface? What meaning does
it have to switch to lightlike coordinates? Unfortunately the techniques which were our
point of departure for QWs, no longer apply. Fortunately, the algebraic and diagrammatic
techniques which were our point of arrival for QWs, apply equally well to QCA, so that we
may still speak of Lorentz-covariance.

3.3.2.3 Lorentz covariance for QCA

Again, the formalization of the notion of Lorentz-covariance for QCA cannot be given in
terms of ψ′ being a solution if ψ was a solution, because we struggle to speak of ψ′. Instead,
we define Lorentz-covariance straight from the algebraic view:

(Eβ ⊗ Eα)Um = Um′ (Eβ ⊗ Eα)

i.e. EUm = Um′E. (3.3.11)

Diagrammatically this is represented by the same figure as for QWs, namely Fig. 3.3.2(a).
The isometry of the Eα is again represented by Fig. 3.3.2(b). Algebraically speaking,
combining both properties again leads to

Um = E
†
Um′E. (3.3.12)

Which diagrammatically this is again represented as Fig. 3.3.3(a). For the same reasons,
the conditional rule Fig. 3.3.3(b) again applies: the whole diagrammatic theory carries
through unchanged from QWs to QCA.

3.3.3 Non-homogeneous discrete Lorentz transforms and non-inertial
observers

Nothing in the above developed diagrammatic theory forbids us to apply different local
discrete Lorentz transforms to different points of spacetime, so long as point (r, l) and
point (r + ε, l) (resp. point (r, l+ ε)) have the same parameter β (resp. α). This constraint
propagates along lightlike lines, so that there can be, at most, one different αr (resp. βl) per
right-moving (resp. left-moving) lightlike line r (resp. l). We call this a non-homogeneous
discrete Lorentz transform of parameters (αr), (βl).

The circuit which results from applying such a non-homogeneous discrete Lorentz
transform is, in general, a non-homogeneous QWs (resp. QCA), as it may lack shift-
invariance in time and space. This is because the coin Cm (resp. scattering unitary Um)
of the point (r, l) gets mapped into lightlike αrβl-rectangular patch of spacetime Cm′ (resp.
Um′), whose parameters m′ = fαr,βl(m) may depend, in general, upon the position (r, l).
This problem is avoided if fαβ = f does not depend upon α and β, as in the example which
will be introduced in Section 3.5.
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(0, 0)

inhomog. boost

β = 2

β = 1

(0, 0)

Figure 3.3.6: An inhomogeneous transformation for a non-inertial observer. The region
above the red line undergoes a Lorentz transform with parameters α = 1 and β = 2, whilst
the region below is left unchanged. After the inhomogeneous transformation, the observer
is at rest.

Provided that the condition fαβ = f is met, we can now transform between non-inertial
observers by a non-homogeneous discrete Lorentz transform. Figure 3.3.6 illustrates this
with the simple example of an observer which moves one step right, one step left, until it
reaches point (0, 0) where it gets accelerated, and continues moving two steps right, one
step left etc. We choose βl = 1 for l < 0,βl = 2 for l ≥ 0 and αr = 1 for all r. This has the
effect of slowing down the observer just beyond the point (0, 0). All along his trajectory,
he now has to move two steps right for every two steps left that he takes, so that he is now
at rest.

In general, suppose that an observer moves ak steps to the right, bk steps left, ak+1 steps
right, etc. He does this starting from position rk = rk−1 + ak and lk = lk−1 + bk. For
every k, let Mk be the least common multiple of ak and bk. We choose αr = Mk/ak for
rk−1 ≤ r < rk and βl = Mk/bk for lk−1 ≤ l < lk. Let us perform the non-homogeneous
discrete Lorentz transform of parameters (αr), (βl). Then, the observer now moves Mk

steps right for every Mk steps left he takes, and then Mk+1 steps right for every Mk+1 steps
left, etc.

3.4 The Clock QW

Equipped with a formal, general notion of Lorentz transform and Lorentz covariance for
QW, we can now seek for an exactly covariant QW.
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3.4.1 Definition

In the classical setting, covariance of random walks has already been explored [Wal88].
The random walk of [Wal88] uses a fair coin, but is nonetheless biased in the following
way: after a (fair) coin toss the walker moves during p time steps to the right (resp. during
q time steps to the left). There is a reference frame in which the probability distribution is
symmetric, namely that with velocity u = (p− q)/(p+ q). Changing the parameters p and
q corresponds to performing a Lorentz transform of the spacetime diagram.

Now we will make an analogous construction in the quantum setting. The main point
is to enlarge the coin space so that the coin operator is idle during p, or q, time steps. The
coin space will be HC = H+

C ⊕ H−C , where H+
C
∼= H−C = `2(Q≥0). The Hilbert space of

the quantum walk is thenH = `2(Z)⊗HC , whose basis states will be indicated by |x, hs〉,
with h ∈ Q≥0, s = ±.

This H±C will act as a “counter”. When h > 0, the walker moves without interaction
and the counter is decreased. When the counter reaches 0, the effective coin operator is
applied and the counter is reset.

The evolution of the Clock QW with parameters p, q is defined on the subspaceHp,q
C of

HC spanned by the p+ q vectors {| i
p

+〉, | j
q

−〉} with i = 0, . . . , p− 1 and j = 0, . . . , q − 1,
as follows:

Wp,q|x, hs〉 =





|x+ 1, (h− 1
p
)+〉 for s = +, 0 < h ≤ 1− 1

p

|x− 1, (h− 1
q
)−〉 for s = −, 0 < h ≤ 1− 1

q

a|x+ 1, (1− 1
p
)+〉+ b|x− 1, (1− 1

q
)−〉 for s = +, h = 0

c|x+ 1, (1− 1
p
)+〉+ d|x− 1, (1− 1

q
)−〉 for s = −, h = 0

(3.4.1)
This map is unitary provided that the 2× 2 matrix C of coefficients C11 = a, C12 = b,

C21 = c, C22 = d is unitary. For instance we could choose, as for the Dirac QW, a = d =
cos(mε), b = c = −i sin(mε).

The Clock QW with parameters p and q will only be used over `2(Z) ⊗ Hp,q
C where

it admits a matrix form which we now provide (over the rest of HC it can be assumed to
be the identity). From Eq. (3.4.1) we can write Wp,q = Tp,qCp,q where Tp,q is the shift
operator,

Tp,q = diag




p times︷ ︸︸ ︷
e−ε∂x , . . . , e−ε∂x ,

q times︷ ︸︸ ︷
eε∂x , . . . , eε∂x


 (3.4.2)

and Cp,q is the coin operator:

Cp,q =




0 Idp−1 0 0
a 0 b 0
0 0 0 Idq−1

c 0 d 0


 . (3.4.3)

Hence, the Clock QW has an effective coin space of finite dimension p + q. However,
we will see that this dimension changes under Lorentz transforms.
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Figure 3.4.1: Covariance of the Clock QW. This is the transformation given by α, β of the
Clock QW with parameters p = 1, q = 1.

3.4.2 Covariance

In order to prove covariance, we need to find isometries satisfying the equation expressed
by Fig. 3.3.2(a). Let us consider isometries Eα : HC →

⊕
αHC defined by:

Eα|hs〉 = (|hs〉 ⊕
α− 1 times︷ ︸︸ ︷
0⊕ · · · ⊕ 0) (3.4.4)

(3.4.5)

(the Hilbert spaces in the direct sum are ordered from the bottom wire to the top one, as
in remark 3.1). In Fig. 3.4.1 it is proved that this choice actually satisfies the covariance
relation ECp,q = Cp′,q′ E, where the coin operator parameters have been rescaled as p′ =
αp and q′ = βq. Intuitively, the Lorentz transformation rescales the fractional steps of the
Clock QW by α (resp. β), while adding α−1 (resp. β−1) more points to the lattice. In this
way, the counter will reach 0 just at the end of the patch, as it did before the transformation.

3.4.3 Continuum limit of the Clock QW

The Clock QW does not have a continuum limit because its coin operator is not the identity
in the limit ε→ 0. However, by appropriately sampling the spacetime points, it is possible
to take the continuum limit of a solution of the Clock QW and show that it converges to a
solution of the Dirac equation, subject to a Lorentz transform with parameters p, q. Indeed,
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the limit can be obtained as follows. First, we divide the spacetime in lightlike rectangular
patches of dimension p × q. Second, we choose as representative value for each patch
the point where the interaction is non-trivial, averaged according to the dimensions of the
rectangle:

ψ′(r, l) =




ψ+(br/pcε , bl/qcε)√
q

ψ−(br/pcε , bl/qcε)√
p


 .

Finally, by letting ε→ 0 we obtain

ψ′(r, l) = Sψ(r/p, l/q) (3.4.6)

where now the r, l coordinates are to be intended as continuous.
Since ψ′ is of course a solution of the Dirac equation (with a rescaled mass), this proves

that the continuum limit of the Clock QW evolution, interpreted as described above, is
again the Dirac equation itself.

3.4.4 Decoupling of the QW and the Klein-Gordon equation

The Clock QW does not have a proper continuum limit unless we exclude the intermediate
computational steps. Still, as we shall prove in this section, its decoupled form has a
proper limit, which turns out to be the Klein-Gordon Equation with a rescaled mass. By
a decoupled form, we mean the scalar evolution law satisfied by each component of a
vector field, individually (see [AF13]). In the following, we give the decoupled form of the
Clock QW. The evolution matrixW is sparse and allows for decoupling by simple algebraic
manipulations, leading to:

[
T q+p − aτ−qT p − dτ pT q + det(C)τ p−q

]
ψ = 0 (3.4.7)

(where T = eε∂t and τ = eε∂x). This is a discrete evolution law which gives the value of
the current step depending on three previous time steps, namely the ones at t = −p, t = −q
and t = −p− q.

By expanding in ε the displacement operators and assuming that the coin operator ver-
ifies:

det(C) = 1, a = d = 1 +
ε2m2

2
+O(ε3) (3.4.8)

(which is the case if a = d = cos(mε)) we obtain the continuum limit:
(
∂2
t − ∂2

x +
m2

pq

)
ψ = 0. (3.4.9)

Up to redefinition of the mass m′ = m/
√
pq, this is the Klein-Gordon Equation. This

reinforces the interpretation of the Clock QW as model for a relativistic particle of mass
m′.
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3.5 The Clock QCA

One downside of the Clock QW is the fact that the dimension of the coin space varies
according to the observer. Equipped with a formal, general notion of Lorentz transform
and Lorentz covariance for QCA, we can now seek for an exactly covariant QCA of fixed,
small, internal degree of freedom.

3.5.1 From the Clock QW to the Clock QCA

The idea of the Clock QW was to let the walker propagate during a number of steps to the
right (resp. to the left), without spreading to the left (resp. to the right). In the absence of
any other walker, this had to be performed with the help of an internal clock. In the context
of QCA, however, the walker can be made to cross “keep going” signals instead.
The Clock QCA has wire dimension d = 3, with orthonormal basis |q〉, |0〉, |1〉. Both |q〉
and |0〉 should be understood as vacuum states, but of slightly different natures as we shall
see next. |1〉 should be understood as the presence of a particle.
Thus, the Clock QCA has scattering unitary a 9 × 9 matrix U , which we can specify ac-
cording to its action over the nine basis vectors. First we demand that the vacuum states be
stable, i.e.

|q〉 ⊗ |q〉 7→ |q〉 ⊗ |q〉, (3.5.1a)
|q〉 ⊗ |0〉 7→ |0〉 ⊗ |q〉, (3.5.1b)
|0〉 ⊗ |q〉 7→ |q〉 ⊗ |0〉, (3.5.1c)
|0〉 ⊗ |0〉 7→ |0〉 ⊗ |0〉. (3.5.1d)

Second we demand that multiple walkers do not interact:

|1〉 ⊗ |1〉 7→ |1〉 ⊗ |1〉. (3.5.2)

Third we demand that the interaction between |1〉 and |q〉 be dictated by a massless Dirac
QW, or “Weyl QW”, i.e. the single walker goes straight ahead:

|1〉 ⊗ |q〉 7→ |q〉 ⊗ |1〉, (3.5.3a)
|q〉 ⊗ |1〉 7→ |1〉 ⊗ |q〉. (3.5.3b)

Last we demand that the interaction between |1〉 and |0〉 be dictated by:

|1〉 ⊗ |0〉 7→ a(|0〉 ⊗ |1〉) + b(|1〉 ⊗ |0〉), (3.5.4a)
|0〉 ⊗ |1〉 7→ c(|0〉 ⊗ |1〉) + d(|1〉 ⊗ |0〉). (3.5.4b)

This map is unitary provided that the 2 × 2 matrix C of coefficients C11 = a, C12 = b,
C21 = c, C22 = d is unitary. For instance we could choose, as for the Dirac QW, a =
d = cos(mε), b = c = −i sin(mε). The Clock QCA is covariant, even though its wire
dimension is fixed and small, as we shall see.
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3.5.2 Covariance of the Clock QCA

In order to give a precise meaning to the statement according to which the Clock QCA is
covariant, we must specify our Lorentz transform. According to Section 3.3.2 we must
provide a function f , which we take to be the identity, and an encoding Eα : Hd −→ H⊗αd
which we take to be:

|a〉 7→ |a〉 ⊗
⊗

α−1

|q〉, (3.5.5)

written from the bottom wire to the top wire as was the convention for QWs. The
intuition is that the (α−1) ancillary wires are just there to stretch out this lightlike direction,
but given that |q〉 interacts with no one, this stretching will remain innocuous to the physics
of the QCA.

Let us prove that things work as planned:

U E(|a〉 ⊗ |b〉) =

( ∏

i=0...α−1,j=0...β−1

Um′

)
(|a〉0,0 ⊗

⊗

i=1...α

|q〉i,0)⊗ (|b〉0,0 ⊗
⊗

j=1...β

|q〉0,j)

=




(i,j)6=(0,0)∏

i=0...α−1,j=0...β−1

Um′


U(|a〉0,0 ⊗ |b〉0,0)⊗

⊗

i=1...α

|q〉i,0 ⊗
⊗

j=1...β

|q〉0,j)

= U(|a〉0,β−1 ⊗ |b〉α−1,0)⊗
⊗

i=1...α

|q〉i,β−1 ⊗
⊗

j=1...β

|q〉α−1,j

= EU(|a〉 ⊗ |b〉). (3.5.6)

Hence, the Clock QCA is Lorentz covariant. Notice that things would have worked equally
well if Eα had placed |a〉 differently amongst the |q . . .〉. It could even have spread out |a〉
evenly across the different positions, in a way that is more akin to the Lorentz transform
for the Dirac QW.

3.6 Discussion of the physical interpretation

We formalized discrete Lorentz covariance as a form of commutativity: ECm = Cm′E.
In the continuum, Lorentz covariance is not usually expressed as a commutation rela-
tion. However, consider a unitary representation of the Poincaré group: U(a,Λ)ψ(x) =
S(Λ)ψ(Λ−1(x− a)). Since the representation has to be homomorphic, one has:

U(0,Λ)U(a, id) = U(Λ−1a, id)U(0,Λ). (3.6.1)

If a is along time, then U(a, id) is the time evolution (analogous to the discrete, local Cm),
and U(Λ−1a, id) the time evolution in the new frame (analogous to the discrete, rectangular
patch Cm′). Similarly, U(0,Λ) in the continuous encoding (analogous to the discrete E).
Hence, the discrete Lorentz covariance condition is very much akin to the statement of the
existence of a unitary representation of the Poincaré group, only with two added twists.
First, it is expressed locally within lightlike rectangular patches of spacetime, which is

v6



51 CHAPTER 3. DISCRETE LORENTZ COVARIANCE

always possible due to the boundedness of the speed of light, but seems more conveniently
done in the discrete setting. Second, we do not look for a unitary representation but for an
isometric representation, and crucially rely on covariance up to a mass rescaling under a
conformal change of metric (aka scale covariance) of the evolutions of physics (as required
by General Relativity), in order to fit the encoded ψ back on the grid.

In the continuum setting, the Lagrangian formulation of Lorentz covariance is often
preferred to that based on the existence of a unitary representation of the Poincaré group.
This is for practical reasons: it suffices to check that the Lagrangian is an invariant scalar in
order to prove covariance, whereas exhibiting a unitary representation is not easy. It could
be said that the discrete Lorentz covariance suffers precisely the same downside: it is not
easy to see whether a QW or a QCA is Lorentz covariant. Yet, the downside is slightly
diminished by the fact that ECm = Cm′E is a local expression. Moreover, the fact that
scale covariance enters early in the game, puts us on track of which QW or QCA will work.
Intuitively, only those which can be rescaled in the sense of the renormalization group,
favouring a lightlike direction over the other at will, are suitable. In this chapter we saw
three mechanisms for implementing these lightlike stretchings: the first-order linear loss of
the Dirac QW, the internal states of the Clock QW, and the quiescent signals of the Clock
QCA. It is not clear to us whether there exists a fourth mechanism, which would not be a
variant of those three.

3.7 Summary
In the context of QW and QCA, we have formalized a notion of discrete Lorentz transform
of parameters α, β, which consists in replacing each spacetime point with a lightlike α× β
rectangular spacetime patch, Cm′E, where E is an isometric encoding, and Cm′ is the re-
peated application of the unitary interaction Cm′ throughout the patch (see Fig. 3.2.2). We
then formalized discrete Lorentz covariance as a form of commutativity: ECm = Cm′E.
This commutation rule as well as the fact the E is isometric can be expressed diagram-
matically in terms of a few local, circuit equivalence rules (see Fig. 3.3.2 and 3.3.3), à
la [Coe10]. This simple diagrammatic theory allows for non-homogeneous Lorentz trans-
forms (Fig. 3.3.6), which let you switch between non-inertial observers.
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Chapter 4

Quantum walks in curved spacetime

IN previous chapters we have seen that some QWs admit a continuum limit, leading to
familiar PDEs (e.g. the Dirac equation), and thus provide us with discrete toy models

of familiar particles (e.g. the electron). In this chapter, we study the continuum limit of
a wide class of QWs, and show that it leads to an entire class of PDEs, encompassing the
Hamiltonian form of the massive Dirac equation in (1 + 1) curved spacetime. Therefore
a certain QW, which we make explicit, provides us with a unitary discrete toy model of
the electron as a test particle in curved spacetime, in spite of the fixed background lattice.
Mathematically we have introduced two novel ingredients for taking the continuum limit
of a QW, but which apply to any quantum cellular automata: encoding and grouping.

We proceed by first formally defining the model (Section 4.1). We then compute the
conditions for the continuum limit to exist, and provide a complete parametrization of the
QW operators in terms of the metric, in Section 4.2. Then we identify the continuum
limit with the Dirac equation in curved spacetime, and validate the model with numerical
simulations in Section 4.3. Finally, we discuss perspectives and related works in Section
4.4.

4.1 Introduction

4.1.1 From QWs to Paired QWs

Recall that usual one-dimensional QWs act on the space `2(Z;Cd ⊕ Cd), equal to the set
of square summable sequences in the space

⊕
Z(Cd ⊕ Cd). Often, the dimension of the

internal degree of freedom is two, corresponding to d = 1. We denote ψ(t) those functions
taking a lattice position x into the C2d-vector ψ+(t, x) ⊕ ψ−(t, x), where each ψ±(t, x) is
a Cd-vector.

These QWs are induced by a local unitary W from C2d to C2d often referred to as the
coin. Hence c = 2d is often referred to as the coin dimension or internal degree of freedom
of the walker. The reason why c must split as d+ d is because of the way W is wired: each
W (t, x) takes one half of ψ(t, x−1) (more precisely, its d upper components ψ+(t, x−1))
and half of ψ(t, x + 1) (more precisely, its d lower components ψ−(t, x + 1)) in order to
produce ψ(t + 1, x). This way the inputs and outputs of the different W (t, x) are non-
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Figure 4.1.1: Usual QWs. Times goes upwards. Each site contains a 2d-dimensional vector
ψ = ψ+ ⊕ ψ−. Each wire propagates the d-dimensional vector ψ±. These interact via the
2d × 2d unitary W . The circuit repeats infinitely across space and time. Notice that there
are two light-like lattices evolving independently.

Figure 4.1.2: The input to a Paired QW is allowed to be encoded via a unitary E, and
eventually decoded with E†.

Figure 4.1.3: When the scheme is iterated, the decoding of the previous time-step cancels
out with the encoding of the next time step. Thus the only relevant encoding/decoding are
those of the initial input and final output. A Paired QW is therefore really just a QW, with
a particular choice of initial conditions.

overlapping and they can be applied synchronously to generate the QW evolution over the
full line, so that

U(t) :=
⊕

x∈Z

W (t, x) (4.1.1)

generates one time step of the QW (we remark that t indicates possible time dependence of
the local unitaries; do not confuse U(t) with the evolution operator from time 0 to time t).

It follows that usual QWs evolve two independent light-like lattices, as emphasized in
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Fig. 4.1.1. On one of the light-like lattices, the evolution is given by

V (t) :=
⊕

x∈2Z

W (t, x) and V (t+ 1) :=
⊕

x∈2Z+1

W (t+ 1, x). (4.1.2)

whilst on the other lattice everything is shifted by 1 in position,

V (t) :=
⊕

x∈2Z+1

W (t, x) and V (t+ 1) :=
⊕

x∈2Z

W (t+ 1, x). (4.1.3)

Paired QWs arise as follows. Bunching up every ψ(t, x − 1) and ψ(t, x + 1) site into
φ(t, x) = ψ(t, x− 1)⊕ ψ(t, x+ 1), and applying a unitary encoding E to each bunch, we
obtain φ′(t, x) = Eφ(t, x). We may now define a QW over the space

⊕
2Z(C2d ⊕ C2d) of

these encoded bunches φ′. The local unitary W ′ will be from C4d to C4d, and each W ′(t, x)
will take one half of φ′(t, x − 2) (more precisely, its 2d upper components) and half of
φ(t, x + 2) (more precisely, its 2d lower components) in order to produce φ′(t + 2, x).
The inputs and outputs of the different W ′(t, x) are again non-overlapping and they can be
applied synchronously to generate the QW evolution over the full line,

U(t) :=
⊕

x∈2Z

W ′(t, x). (4.1.4)

In the end, each φ′(t + 2, x) may be decoded as φ(t + 2, x) = E†φ′(t + 2, x) and be
reinterpreted as φ(t + 2, x) = ψ(t + 2, x − 1) ⊕ ψ(t + 2, x + 1). Clearly this Paired QW
(pictured in Figs. 4.1.2 and 4.1.3) phrased in terms of φ′ and d′ = 2d is no different from
the usual QW definition right above. At least from a discrete point of view.

When looking for a continuum limit, a subtle difference arises. Indeed, say that the
regular initial condition is given in terms of the fine-grained spacelike surface of ψ(t),
which is assumed to be smooth, i.e. ψ(t, x) ≈ ψ(t, x + 1). Then the resulting φ(t) will be
smooth both externally, i.e. φ(t, x) ≈ φ(t, x + 1), and internally, i.e. φ(t, x) ≈ ψ(t, x) ⊕
ψ(t, x), which is not so usual to ask for. Similarly, φ′(t) will be smooth both externally, i.e.
φ′(t, x) ≈ φ′(t, x+ 1) and internally, φ′(t, x) ≈ E(ψ(t, x)⊕ψ(t, x)). It turns out that such
reinforced regularity conditions are necessary for some Paired QWs to have a limit.

The next paragraph is to emphasize that Paired QWs, and their reinforced regularity
assumptions, are not ad-hoc: they arise naturally when one performs spacetime grouping
of QWs.

A natural example of Paired QW is provided by performing the spacetime grouping of
a usual QW, an operation which we now explain. The spacetime grouping operation takes
a QW over

⊕
Z(Cd ⊕ Cd), with local unitary W into a Paired QW over

⊕
2Z(C2d ⊕ C2d),

with local unitary W ′, as pictured in Fig. 4.1.4.
It is important to notice that if the initial condition was given by ψ(t) for the original

walk, the initial condition for the spacetime grouped QW is now given by the φ′(t, x) =
E(x)φ(t, x), and φ(t, x) = ψ(t, x− 1)⊕ψ(t, x+ 1), as pictured in Fig. 4.1.4 again. In the
end, each φ′(t+2, x) may be decoded as φ(t+2, x) = E†(x)φ′(t+2, x) and be reinterpreted
as φ(t+2, x) = ψ(t+2, x−1)⊕ψ(t+2, x+1). This spacetime grouping is reminiscent of
the “stroboscopic” approach of [DMBD13, DMBD14], but has the advantage of mapping
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Figure 4.1.4: A Paired QW obtained by spacetime grouping of an ordinary QW. The green
triangles define the appropriate encoding E, that relates the fine-grained input ψ with the
coarsegrained input φ′. The dotted line indicates a t + 2 space-like surface fine-grained
output. This surface is recovered by undoing the triangles above these dotted line, which is
the role of E†.

usual QWs into usual QWs of increased dimension.

4.1.2 Model definition
In this chapter, we study the continuum limits of Paired QWs (not necessarily arising from
a spacetime grouping) for d = 1, systematically. Recall that for d = 1: ψ(t) is in `2(Z;C2)
and represents the ‘physical’ field; φ′(t) is in `2(Z;C4) and represents a paired, encoded
version of it; W ′ is the 4 × 4 coin operator. For our purpose, it will be useful to redefine
the bunching-up φ(t, x) as

φ(t, x) :=




u(t, x)
d(t, x)
u′(t, x)
d′(t, x)


 , (4.1.5)

with

[
u(t, x)
u′(t, x)

]
= H

[
ψ+(t, x+ 1)
ψ+(t, x− 1)

]
(4.1.6a)

[
d(t, x)
d′(t, x)

]
= H

[
ψ−(t, x+ 1)
ψ−(t, x− 1)

]
(4.1.6b)

where H = 1√
2

(
1 1
1 −1

)
is the Hadamard matrix.
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Notice that the ψ(t, x) dependencies are the same as before, this is just a matter of
applying a unitary pre-encoding. This convenient choice of basis is so that in the continuum
limit, u(t, x) becomes proportional to ψ+(t, x), whereas u′(t, x) becomes proportional to
the spatial derivative of ψ+(t, x).

Armed with those conventions on Paired QW, we can focus on how φout := φ(t+ 2, x)
gets computed, from φin := φ(t, x − 2) ⊕ φ(t, x + 2). This C4 ⊕ C4 to C4 function may
be thought of as the local rule of a cellular automata with cells in C4. Its explicit formula
is given by

G = E†(t+ 2, x)W ′(t, x)(P ′ ⊕ P )

(E(t, x− 2)⊕ E(t, x+ 2)), (4.1.7)

where the 2 × 4 projectors P and P ′ pick-up the u, d (non-primed subspace) and u′, d′

(primed subspace) coordinates, respectively. Thus

φ(t+ 2, x) = G(φ(t, x− 2)⊕ φ(t, x+ 2)). (4.1.8)

4.2 Continuum limit

From now on, we consider that t and x are continuous variables, and choose the same
discretization step ε ∈ R+ for each coordinate. In particular note that, to first order in ε,
we have that u '

√
2ψ+, d '

√
2ψ−, u′ ' ε

√
2∂xψ

+ and d′ ' ε
√

2∂xψ
−, see (4.1.6). To

start investigating the continuum limit of the system defined by Eq. (4.1.7), we compute
the expressions for the input and output.

The expansion of the input to first order in ε in terms of u, u′, d, d′ is

φin(t, x) '




u
d
0
0


⊕




u
d
0
0


+




−2u′

−2d′

u′

d′


⊕




2u′

2d′

u′

d′


 . (4.2.1)

We stress that u′ and d′ are themselves proportional to ε, hence the last term is proportional
to ε.

The expansion of the output to first order in ε in terms of u, u′, d, d′ is

φout(t, x) '




u
d
0
0


+




2ε∂tu
2ε∂td
u′

d′


 . (4.2.2)

Next we specify the structure of the walk and encoding operators. We shall assume, for
simplicity, that the matrix elements of W and E are analytic functions of (t, x) and ε.

First, we set W ′ := W (0)eiεW̃ , with W (0) unitary and W̃ hermitian. This enforces the
unitarity of W ′, and is without loss of generality, since only its expansion to first order in ε
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matters:
W (t, x) ' W (0)(t, x) + iεW (0)(t, x)W̃ (t, x). (4.2.3)

Then, in a similar manner, we define E := E(0)eiεẼ , with E(0) unitary and Ẽ hermitian.
Hence, to first order in ε,

E(t, x) ' E(0)(t, x) + iεE(0)(t, x)Ẽ(t, x). (4.2.4)

Here is some notation. Any matrix A ∈ C4×4 will be written in block form as A =(
A1 A3

A2 A4

)
, where Aj ∈ C2×2, j = 1, . . . , 4. Let X = σx⊗I , Y = σy⊗I and Z = σz⊗I ,

where (σx, σy, σz) are the Pauli spin matrices.
Notice that, for any A ∈ C4×4, the following simplifications hold:

(P ′ ⊕ P )(A⊕ A)(v ⊕ v) = XAv ∀v ∈ C4 (4.2.5)

and
(P ′ ⊕ P )(A⊕ A)(−v ⊕ v) = XZAv ∀v ∈ C4. (4.2.6)

Next we develop the zeroth order and the first order expansion in ε of Eq. (4.1.7).

4.2.1 Zeroth order

For the left hand side we have just the zeroth order of (4.2.2), while for the right hand side
there is only one term which does not contain ε, obtained multiplying all the zeroth order
contributions. Hence




u
d
0
0


 = E(0)†W (0)(P ′ ⊕ P )(E(0) ⊕ E(0))




u
d
0
0


⊕




u
d
0
0




= E(0)†W (0)XE(0)




u
d
0
0


 , (4.2.7)

where we used the simplification (4.2.5). The only non-trivial relations are
[
u
d

]
=
(
E(0)†W (0)XE(0)

)
1

[
u
d

]
(4.2.8)

[
0
0

]
=
(
E(0)†W (0)XE(0)

)
2

[
u
d

]
(4.2.9)

To satisfy (4.2.8) for arbitrary u and d, we must take the identity for block 1. Now, since
the matrix in (4.2.7) is unitary, then both its rows and its columns must sum to one, thus
the blocks 2 and 3 become zero, and (4.2.9) is automatically satisfied; we are left with the
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choice of an arbitrary unitary U ∈ U(2) for block 4, to complete the matrix. Hence

E(0)†W (0)XE(0) = I ⊕ U, (4.2.10)

where the direct sum is respect to the non-primed subspace (spanned by the first two entries)
and the primed subspace (spanned by the last two entries).

4.2.2 First order

For the left hand side we have just the first order of (4.2.2); note it contains time and space
derivatives of ψ±. For the right hand side we multiply and collect all possible combinations
in which only one term contains ε. Then, after a long but straightforward calculation (see
Appendix B.1 for the details), we get




2ε∂tu
2ε∂td
u′

d′


 = (I ⊕ U)




0
0
u′

d′


+ (I ⊕ U)B




2u′

2d′

0
0




+ ε
{

(2N − iẼ)(I ⊕ U)

+(I ⊕ U)(iẼ + 2M) + T
}



u
d
0
0


 . (4.2.11)

with

B = E(0)†ZE(0) (4.2.12a)

N = (∂tE
(0)†)E(0) (4.2.12b)

T = iE(0)†W (0)W̃XE(0) (4.2.12c)

M = E(0)†Z(∂xE
(0)). (4.2.12d)

To deal with (4.2.11) we shall study separately what happens in the primed and in the
non-primed subspaces.

4.2.3 Continuum limit equation

Projecting Eq. (4.2.11) on the non-primed subspace, we obtain an equation with time
derivatives in the left hand side,

[
2ε∂tu
2ε∂td

]
= B1

[
2u′

2d′

]
+ ε(2N1 + T1 + 2M1)

[
u
d

]
. (4.2.13)
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Switching to the original ψ±(t, x) coordinates, and writing ψ(t, x) = [ψ+(t, x), ψ−(t, x)]T,

∂tψ(t, x) = B1∂xψ(t, x) +

(
N1 +

T1

2
+M1

)
ψ(t, x). (4.2.14)

From (4.2.12a), applying Leibniz rule and using (4.2.12d) we have1

∂xB = M +M † = 2<M. (4.2.15)

From (4.2.12b), the unitarity of E(0) implies that N is skew-hermitian,

N † = −N. (4.2.16)

From (4.2.12c),

T = iE(0)†W (0)W̃XE(0) (4.2.17)

= iE(0)†W (0)XE(0)E(0)†XW̃XE(0) (4.2.18)

= i(I ⊕ U)E(0)†XW̃XE(0), (4.2.19)

where we used the zeroth order condition (4.2.10). Inverting,

iE(0)†XW̃XE(0) = (I ⊕ U †)T =

(
T1 T3

U †T2 U †T4

)
. (4.2.20)

Since the left hand term is skew-hermitian we have that

T †1 = −T1 (4.2.21a)

T3 = −T †2U (4.2.21b)

T †4U = −U †T4. (4.2.21c)

Therefore, by spliting M1 into its hermitian and skew-hermitian parts, and using equa-
tions (4.2.15), (4.2.16) and (4.2.21a), the continuum limit has the general form

∂tψ(t, x) = B1∂xψ(t, x) +
1

2
∂xB1ψ(t, x) + iCψ(t, x). (4.2.22)

where C is an hermitian matrix defined by

iC = N1 +
T1

2
+ i=M1. (4.2.23)

1Recall that if A ∈ Cn×n, its real and imaginary parts are <A := 1
2 (A + A†) and =A := 1

2i (A − A†),
respectively.
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4.2.4 Compatibility constraints

Projecting Eq. (4.2.11) onto the primed subspace, gives
[
u′

d′

]
= U

[
u′

d′

]
+ 2UB2

[
u′

d′

]
+ ε

(
2N2 − iẼ2

+ iUẼ2 + 2UM2 + T2

)[u
d

]
. (4.2.24)

Eq. (4.2.24) does not involve time derivatives. Therefore, these equations must be
understood as constraints. Where do these come from? Recall that the aimed continuum
limit equation (6.1.1) is over a C2 field, but the QW employed is over the C4 field obtained
by pairing it. Thus, the C4 field as some internal smoothness initially, which the QW
must preserve. More precisely, in order to have nontrivial, time-dependent solutions, the
coeffients of [u, v]T and [u′, v′]T must vanish separately:

{
U(I + 2B2) = I, (4.2.25a)
2N2 − i(I − U)Ẽ2 + 2UM2 + T2 = 0. (4.2.25b)

4.2.5 Existence of solutions

Up to now we have determined the continuum limit, provided that the constraints (4.2.25a)-
(4.2.25b) are satisfied. In this section we show that, given any hermitian B1 and C, there
are indeed compatible choices of W and E.

The strategy is the following. First we show that B1 along with constraint (4.2.25a)
determines the zeroth order part of E and W ′. Then, using C and (4.2.25b) we complete
the solution determining the first order terms.

4.2.5.1 Determination of B and U

Consider the spectral decompositionB1 = V DV †,D = diag{d1, d2}. In Appendix B.2 we
show that Eq. (4.2.12a) implies that d1, d2 must belong to the interval [−1, 1], and provide
the general form of B given B1 (see section 4.3 for a discussion about the eigenvalue
constraint). Here we just pick one particular solution, namely

B =

(
V † 0
0 V †

)
B

(
V 0
0 V

)
, (4.2.26)

where B is

B =




d1 0 −λ1e
iη1 0

0 d2 0 −λ2e
iη2

−λ1e
−iη1 0 −d1 0

0 −λ2e
−iη2 0 −d2


 , (4.2.27)

with λi =
√

1− d2
i , sin ηi = ±|di|, −π/2 < ηi < π/2, i ∈ {1, 2}.

Note that U is now fixed by Eq. (4.2.25a).
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4.2.5.2 Determination of E(0) and W (0)

From Eq. (4.2.12a) we know that E†(0) diagonalizes B. Then, its columns can be chosen
to be any complete set of normalized eigenvectors of B. More generally, we could take(
R 0
0 S

)
E(0) for arbitrary R, S ∈ U(2), because of the degeneracy of order two for each

eigenvalue +1, −1.

For the special case of B in Eq. (4.2.27), we can give an explicit solution E
(0)

,

E
(0)

=
1√
2




ν+
1 0 −ν−1 eiη1 0
0 ν+

2 0 −ν−2 eiη2

ν−1 0 ν+
1 e

iη1 0
0 ν−2 0 ν+

2 e
iη2


 , (4.2.28)

where ν±i =
√

1± di, i ∈ {1, 2}.
Once E(0) is known, we can compute W (0) from (4.2.10).

4.2.5.3 Determination of Ẽ and W̃

The choice of E(0) determines N1 and M1 via Eqs. (4.2.12b) and (4.2.12d), so T1 is fixed
by Eq. (4.2.23) once we choose C.

Since Ẽ does not appear in the continuum limit, without loss of generality we can take
Ẽ = 0. In this way T2 is fixed by the contraint (4.2.25b).

In order to complete T it is now sufficient to take T4 = 0, and T3 from (4.2.21b).
Finally, from (4.2.20) we find W̃ ,

W̃ = −iXE(0)(I ⊕ U †)TE(0)†X. (4.2.29)

4.2.6 Recap

We have shown that the continuum limit of our model is given by Eq. (6.1.1). Moreover, we
provided a procedure to obtain the parameters of the quantum walk, namely the unitaries
W ′ and E, given a pair of hermitian matrices B1 and C, possibly spacetime dependent. We
remark that the choices made in the procedure are in general not unique. In the emergent
continuum limit, different choices of E, W ′ lead in general to the same equation.

Notice also that the minimal coupling (e.g. electric field) is already considered in the
parameter C.

The whole procedure was programmed in sagemath, and made available in the au-
thor’s webpage.
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4.3 Recovering the Dirac equation

On a spacetime with metric tensor gµν and in the absence of external fields, the Dirac
equation in Hamiltonian form [DOT62] is i∂tψ = HDψ, with

HD = −i

(
α
e1

1

e0
0

+ e1
0

)
∂x −

i

2
∂x

(
α
e1

1

e0
0

+ e1
0

)
+
m

e0
0

β,

where m is the mass and α, β are matrices satisfying α2 = β2 = I , αβ + βα = 0 (here
and in the following we assume natural units, ~ = c = G = 1). Here eµa(t, x) are the
dyads, which are related to the metric via gµν(t, x)eµa(t, x)eνb (t, x) = ηab, where ηab is the
Minkowski metric.

Making the identification with the continuum limit of our discrete model, Eq. (6.1.1),
we find

B1 = −e
1
1

e0
0

α− e1
0 (4.3.1)

C = −m
e0

0

β. (4.3.2)

These equations allow to find the QW parameters, associated to a given metric. The con-
straint that the eigenvalues of B1 are d1,2 ∈ [−1, 1] represents the finite speed of prop-
agation on the lattice. In practice, for any region of spacetime where the metric field is
bounded, it is possible to rescale the coordinates in such a way that the physical lightcones
are inside the “causal lightcones” of the discrete model.

For instance, we can specialize the previous considerations to the case of the Schwarzschild
metric, whose radial part is

ds2 = (1− 2M/x)dt2 − (1− 2M/x)−1dx2, (4.3.3)

where x corresponds to the radial coordinate 2. Choosing the chiral representation [Tha92],
namely α = σz and β = σx, we have

B1 = −
(

1− 2M

x

)
σz (4.3.4)

C = −m
(

1− 2M

x

)1/2

σx. (4.3.5)

A simulation for a particle in the Schwarzschild metric is shown in Fig. 4.3.1. Again the
sagemath program which converts any metric into the corresponding QW, and produces
such simulations, is available at the author’s webpage.

2In this case the dyads are e00 = (1− 2M/x)−1/2, e11 = (1− 2M/x)1/2, and e01 = e10 = 0.
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Figure 4.3.1: Simulation of the Paired QW for the Schwarzschild metric with mass param-
eter M = 0.5. We plot the probability density for a particle with initial condition given
by a gaussian wavepacket φ(x) ∝

∫
e−(p−p0)2/(2σ2)+i(x−x0)p (u+(p) + u−(p)) dp where

x0 = 3.0, p0 = 50, σ = 1.56 and u± are the eigenvectors of the free Dirac Hamilto-
nian H0 = αp̂ + mβ. The mass of the particle is m = 50. For comparison, we show in
yellow a grid of null geodesics. The lattice spacing is ε = 5× 10−5.

4.4 Summary

In summary, we have constructed a QW, i.e. a strictly unitary, causal, local evolution, which
implements the idea of “encoding-evolution-decoding” of the discrete dynamics, defined in
Eq. (4.1.8). We have found that Paired QWs with d = 1 admit as continuum limit all PDEs
of the form (6.1.1). This class encompasses the Hamiltonian form of the Dirac equation in
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curved spacetime, together with an electromagnetic field.
In this model, curvature is effectively implemented by a collection of spacetime de-

pendent local unitaries (namely, the unitary operators E(t, x) and W ′(t, x)), which are
distributed over a fixed background lattice, and whose purpose is to drive the particle ac-
cording to the metric.
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Chapter 5

Spectral properties of interacting
quantum walks

DETERMINATION of discrete spectrum, i.e. isolated eigenvalues of finite algebraic mul-
tiplicity, is a recurrent problem in mathematical physics. Its importance lies on the

fact that the presence of eigenvalues reveals that the system has bound states, that is, states
which tend to be localized in some region of space. Although the analytic computation of
the full spectrum of an operator is sometimes possible, e.g. the hydrogen atom, most of
the time in physics and chemistry it is definitely not the case. However much physical in-
sight is obtained with the functional analysis approach, i.e. through spectral analysis1. For
instance, it serves to provide information about velocity of convergence of the eigenval-
ues towards some accumulation point (as Lieb-Thirring estimates), or to unravel existence
conditions that can be checked numerically.

5.1 Introduction

The aim of this chapter is to perform a spectral analysis of the two-particle sector of a
QCA, which we call an IQW. We collect in Appendices C.1 and C.2 the background on
distribution theory and Hilbert space that serves as a complement for the mathematics. The
approach of this chapter is quite different from the rest of the thesis: instead of focusing on
the continuum limit, we are mainly interested in the discrete dynamical system itself, i.e.
in QWs models per se. In this sense the QW is seen as the generator of “spreading” of an
initial state driven by the iterates of a unitary operator, quoting [DFV14]. Let us begin with
a recap.

1A standard reference is [RS80]; another valuable reference for a rigorous approach to quantum mechanics
is [Tes14].
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5.1.1 Recap

Let H1 = `2(Z) ⊗ C2 be the Hilbert space of C2-valued doubly infinite square summable
sequences, with inner product

〈ψ, ϕ〉 =
∑

x∈Z

ψ†(x)ϕ(x). (5.1.1)

HereH1 represents the abstract state space of a lattice model of a quantum particle with an
internal two-dimensional degree of freedom.

According to quantum mechanics, the n-particle sector is obtained by tensoring H1

with itself, that is, consideringHn = H⊗n1 . A quantum walk (QW) onHn is defined as the
operator

U0 =
n⊗

j=1

(Sj · (IZ ⊗ Cj)), (5.1.2)

where Sj are nearest-neighbour translation operators conditional on the internal state, i.e.
Sj|xj, σj〉 = |xj + σj, σj〉 for all xj ∈ Z, σj ∈ {±1}, where IZ denotes the identity
operator in the sequence space `2(Z) and where Cj ∈ U(2) are unitary matrices with
constant coefficients.

In this chapter we consider an interacting QW (IQW) of two particles,

U = U0V , (5.1.3)

with U0 defined as in (5.1.2), fixing n = 2, coupled to an interaction operator V , defined as
the multiplication by a position (x) and spin (σ) dependent unitary matrix,

(Vψ)(x1, x2) = V (x1, x2)ψ(x1, x2), V ∈ U(4). (5.1.4)

Our main goal is to analyse the existence and location of the discrete spectrum of U if we
assume physically motivated hypothesis at increasing relative separation of the particles
|x1 − x2| → ∞.

5.1.2 Notation

The direct2 space is discrete, hence the letters x, x1, x2, always denote discrete-valued (in
general integer) variables. We use |x1, x2, σ1, σ2〉 to denote the elements of the basis of
H2 = H1 ⊗ H1, with σ1, σ2 ∈ {±1}. Here |x1, σ1〉 corresponds to the first copy of H1

while |x2, σ2〉 corresponds to the second copy ofH1. Consequently, wavefunctions ψ ∈ H2

are written as
ψ =

∑

x1,x2∈Z

ψ(x1, x2)|x1, x2〉, (5.1.5)

2We sometimes use the jargon of condensed matter physics, with direct (resp. reciprocal) meaning the
x1, x2 space (resp. the space of the Fourier transform in the variables k1, k2).
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and where ψ(x1, x2) ∈ C4 is

ψ(x1, x2) =
∑

σ1,σ2

ψσ1σ2(x1, x2)|σ1, σ2〉. (5.1.6)

Let N0 = Z+ ∪ {0}, with Z+ being the set of positive integers. Let T = R/2πZ be the
(one-dimensional) torus, which we identify with the segment [−π, π]. For vectors x ∈ Zn,
we note 〈x〉 = (1 + ||x||2)1/2, ||x|| being its Euclidean norm. A multi-index is an n-tuple
α = (α1, . . . , αn) ∈ Nn

0 , and its order is |α| = α1 + . . . + αn, and xα = xα1
1 · · ·xαnn .

Partial differentiation is written Dα = Dα1
1 · · ·Dαn

n , where Dj = 1
i
∂j for j = 1, . . . , n, and

translation of a function f is denoted (τx0f)(x) = f(x− x0).
Given a function f : I → C, I ⊂ R, <(f(k)) and =(f(k)) denote the real and imagi-

nary part of f(k) respectively, and Im f denotes its image, i.e. Im f = {f(k) : k ∈ I}.
Finally, we write A ∈ Mn(X) for A an n × n matrix whose elements take values on

the vector space X , and the identity is denoted In. With ||A||F we denote the Frobenius
norm of matrix, that is, ||A||F =

√
Tr(A†A) where A† denotes the conjugate transpose of

A, i.e. A
T

.

5.1.3 Assumptions on the interaction
Some physically motivated notions are in order. For simplicity of notation we associate
the interaction operator V ∈ L(H2) acting as in Eq. (5.1.4) with the sequence of matrices
defining it, that is, with {V (x1, x2) ∈M4(C) : x1, x2 ∈ Z}.

Definition 5.1. An IQW U = U0V is said to be:

• unitary if V (x1, x2) ∈ U(4) for all x1, x2 ∈ Z.

• symmetric if V (x1, x2) = V (x2, x1) for all x1, x2 ∈ Z.

• radial if V (x1, x2) = V (|x1 − x2|) for all x1, x2 ∈ Z.

• vanishing at infinity if ||I4 − V (x1, x2)||F → 0 as |x1 − x2| → ∞.

• p-summable if
∑

x1,x2∈Z
||I4 − V (x1, x2)||pF <∞ for some p ≥ 1.

• finite range if there exists N > 0 such that V (x1, x2) = I4 for all x1, x2 such that√
x2

1 + x2
2 ≥ N .

In this chapter we consider the joint hypothesis:

(H0) V is vanishing at infinity, unitary, and radial (hence symmetric).

Note that under (H0), the walk operator U = U0V is a unitary operator inH2. Moreover,
V only depends on the relative coordinate x := x1 − x2 ∈ Z. The difference of the
interaction with respect to its value at infinity at relative position x ∈ Z is denoted

D(x) = I4 − V (x) ∈M4(C), with norm ∆(x) = ||D(x)||F . (5.1.7)
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In this chapter we study the existence and location of discrete spectra of the IQW if we
assume additional p-summability of the interaction, i.e. finiteness of weighted sums

∞∑

x=1

∆p(x) <∞ (5.1.8)

for some p ≥ 1. In our analysis, an important role is played by interactions which are
trace-class, meaning that for p = 1, (5.1.8) holds.

5.1.4 Chapter outline

The rest of the chapter is organized as follows. In Section 5.2, we perform the reduction of
the two-particle case to the relative problem. This is essential because all the subsequent
analysis relies on decoupling the relative with the total momentum coordinates. In Section
5.3, we study in detail the spectral properties of the free QW, for arbitrary choices of param-
eters. This allows to understand what kind of phenomena to expect when the interaction is
“switched on”. We begin the spectral analysis of the perturbed QW in Section 5.4, where
we derive a condition for the absence of singular continuous spectrum. In Section 5.5 we
find some Lieb-Thirring type estimates for the distribution of eigenvalues. In Section 5.6
we address the abstract eigenvalue problem, and we provide its formal solution in terms
of a system of Fredholm integral equations with a compatibility constraint. In Section 5.7
we revisit the contact interaction and propose models of long-range interactions that may
depend on the spin components, for which the approach can be applied. We summarize our
results in Section 5.8.

5.1.5 Related works

The extension of the discrete-time QW to multiple walkers was first studied by Omar et al.
in 2004 [OPSB06]. They studied a two-particle QW on the line, and proved that coin entan-
glement induces spatial correlations between the spatial degrees of freedom. In their case
the QW is non-interacting, in the sense that the coins are homogeneous. This subject was
pursued further in [BW11, ŠBK+11, LZG+13], and physically implemented in [SGR+12].
One should recall that the non-interacting case is not trivial in quantum mechanics. Indeed,
a system with multiple particles –even non-interacting– presents new interesting features
that depart from classical mechanics: there is entanglement and there are quantum statisti-
cal aspects, such as distinguishability.

Besides, researchers have studied non-homogeneous QWs with a “defect”, i.e. assum-
ing that the coin operator is everywhere the same and distinct at a fixed position. Two differ-
ent approaches are the method of CMV matrices [KN07] (since the QW matrix is naturally
CMV-shaped), see [CGMV12], and the method of generating functions [KŁS13]. Non-
homogeneous quantum walks have also been studied under periodic coins [LS09, SK10],
and shown numerically that in some circumstances the spectrum has behaviour similar to
the self-simliar Hofstadter butterfly [Hof76].

Finally, in [AAM+12] they consider the non-homogeneity of the coin as an interaction.
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In particular, they study the spectrum of an IQW with a zero range interaction. In this case
V (0) = eigI4, and I4 otherwise. They prove the presence of eigenvalues in the gaps of
the continuous spectrum, interpreted as molecular binding. This phenomenon manifests
itself in the joint probability distributions as peaks wich are close to each other even after
a long time, and the wave-function decays exponentially in the relative position of the two
particles.

5.2 Reduction to the relative problem
The main goal of this section is to show that under hypothesis (H0), the dynamics is reduced
to a one-particle problem in the relative coordinate in momentum space. The reduction is
accomplished exploiting the symmetry properties of the IQW.

We collect in Appendix C.1 a review of distribution theory on the n-dimensional Torus
Tn, with the background needed for this section.

5.2.1 States in the relative and total momentum representation
Recall that H2 = `2(Z2) ⊗ C4, and let Ĥ2 = L2(T2) ⊗ C4. By Fourier transformation on
L2(Tn), F : H2 → Ĥ2 : ψ 7→ ψ̂,

ψ̂ =
1

(2π)2

∫

T2

ψ̂(k1, k2)|k1, k2〉dk1dk2, (5.2.1)

where
ψ̂(k1, k2) =

∑

x1,x2

e−i(k1x1+k2x2)ψ(x1, x2), k1, k2 ∈ [−π, π]. (5.2.2)

The inverse transformation is given by

ψ(x1, x2) =
1

(2π)2

∫

T2

ei(k1x1+k2x2)ψ̂(k1, k2)dk1dk2. (5.2.3)

Let the relative momentum k, and total momentum p, be defined by the map

(k1, k2) 7→ (k, p) =

(
k1 − k2

2
, k1 + k2

)
. (5.2.4)

Note that
k1 =

p

2
+ k, k2 =

p

2
− k, (5.2.5)

and

k1x1 + k2x2 = sp/2 + kd, where s = x1 + x2, and d = x1 − x2. (5.2.6)

Remark 5.1. We follow [AAM+12] for the map (5.2.4). The extra factor of 1/2 is conve-
nient because it allows to assume that both pairs of variables (k1, k2) and (k, p) run through
[−π, π]2, by folding appropriately those zones of the (k1, k2) graph which make p to lie
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outside the square [−π, π]2, see Fig. 5.2.13. Formula (5.2.6) also has the property that its
dependence in k will make appear a factor eikd, and this is useful because, as we show in
the next subsection, it allows to identify a Fourier series in the relative coordinate.

Figure 5.2.1: Rearrangement of the first Brillouin zone for variables (k, p) (see Eq. (5.2.4))
to run through [−π, π]2.

Next, we write the wavefunctions in relative and total momentum. From (5.2.5) and
(5.2.6), we deduce that

ψ̂(k, p) =
∑

d

∑

s≡d mod 2

e−isp/2e−ikdψ(s, d), (5.2.7)

with inverse
ψ(s, d) =

1

(2π)2

∫

T2

eisp/2eikdψ̂(k, p) dk dp. (5.2.8)

5.2.2 Fourier transformation of the IQW
Now, we perform the transformation of the interaction operator. Recall that given an op-
erator A ∈ L(H2), its Fourier transform Â ∈ L(Ĥ2) is such that Â = FAF−1. Since F
is a unitary transformation, A and Â are said to be unitarily equivalent and have the same
spectrum.

5.2.2.1 Transformation of V
The interaction at position (x1, x2),

V (x1, x2) =
∑

σ′1,σ
′
2

∑

σ1,σ2

V σ′1σ
′
2

σ1σ2
(x1, x2)|σ′1σ′2〉〈σ1, σ2|, (5.2.9)

is an operator over the spin degrees of freedom, whose matrix elements are noted

〈σ′1, σ′2| (V (x1, x2)|σ1, σ2〉) = V σ′1σ
′
2

σ1σ2
(x1, x2). (5.2.10)

3Thanks to A. Werner for allowing to reproduce this figure from [AAM+12].
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Being V a multiplication operator in the direct space, in Fourier space it takes the form of
a convolution, and furthermore with a kernel that only depends on the relative momentum.
We now provide the details, assuming all along that hypothesis (H0) holds.

Since V is unitary, then ||V (x1, x2)|| is a constant independent of position. Hence

{V (x1, x2)}x1,x2∈Z ∈M4(S ′(Z2)), (5.2.11)

i.e. it is a sequence of slow growth, and thus

V̂ (k1, k2) =
∑

x1,x2

e−i(k1x1+k2x2)V (x1, x2) (5.2.12)

converges to some V̂ ∈ M4(P ′(R2)), that is, to an object in the space of 4 × 4 matrices
whose coefficients are periodic distributions of period 2π in two variables, over the complex
field. Let us swap to the relative and total momentum variables (k1, k2) 7→ (k, p) via (5.2.4),
noting that the sum in the right-hand side of (5.2.12) can be written in the variables sum
and difference, s = x1 +x2 and d = x1−x2, via (5.2.6). But since these variables preserve
parity, the sum in s, d is restricted to s ≡ d mod 2, and it is convenient to sum over the
unrestricted integer variables a, d where s = 2a + d. Also recall that V = V (d), since we
assume that the interaction is radial. Thus,

V̂ (k, p) =
∑

d

∑

s≡d mod 2

e−i(sp/2+kd)V (d) (5.2.13)

=
∑

d

(∑

a

e−iap

)
e−idp/2e−ikdV (d) (5.2.14)

= 2π
∑

d

δ(p)e−idp/2e−ikdV (d), (5.2.15)

where in the last equality we used the Poisson summation formula (cf. Example (C.1.1)),
which reduces to a delta in the origin since we restrict to p ∈ [−π, π].

Since V is a multiplication by the matrix V in the direct space, and since multiplication
is Fourier transformed into convolution via property 5 of Theorem (C.2), we let V̂ ∈ L(Ĥ2)
be defined as

(V̂ψ̂)(k, p) = (V̂ ∗ ψ̂)(k, p). (5.2.16)

Note that, as outlined in Remark C.1, by a density argument the property alluded to above
extends to L2(T2) functions (in fact, the convolution integral makes sense more generally
for any pair of L1(T2) functions).
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Using (5.2.15), the right-hand side becomes

(V̂ψ̂)(k, p) =
1

(2π)2

∫

T
dp′
∫

T
dk′

[
2π
∑

d

δ(p− p′)e−id(p−p′)/2e−i(k−k′)dV (d)ψ̂(k′, p′)

]

=
1

2π

∫

T

∑

d

e−i(k−k′)dψ̂(k′, p)dk′

=
1

2π

∫

T
V̂ (k − k′)ψ̂(k′, p)dk′. (5.2.17)

In the last equality we defined the “relative” Fourier transform of the interaction, that is,

V̂ (k) =
∑

x∈Z

e−ikxV (x), with inverse V (x) =
1

2π

∫

T
eikxV̂ (k)dk, (5.2.18)

where the series is convergent inM4(P ′(R)).

It remains to check unitarity of V̂ ∈ L(Ĥ2). We can argue that since V is unitary, and
since the Fourier map is a unitary operator, the claim follows. Alternatively we can directly
compute in the reciprocal space, the adjoint operator of V̂ being defined by

〈ψ̂, V̂ϕ̂〉 = 〈V̂†ψ̂, ϕ̂〉 (5.2.19)

for all pairs ψ̂, ϕ̂ ∈ Ĥ2. Let us check that V̂† is given by

(V̂†ψ̂)(k) = (
˜̂
V ∗ ψ)(k) =

1

2π

∫

T
V̂ †(k′ − k)ψ̂(k′)dk′ (5.2.20)

(note the sign change in the argument of V̂ ). Then

〈V̂†ψ̂, ϕ̂〉 =
1

2π

∫

T

[
1

2π

∫

T
V̂ †(k′ − k)ψ̂(k′)dk′

]†
ϕ̂(k) dk

=
1

2π

∫

T
ψ̂†(k′)

[
1

2π

∫

T
V̂ (k′ − k)ϕ̂(k)dk

]
dk′

= 〈ψ̂, V̂ϕ̂〉 (5.2.21)
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as claimed. Then, unitarity follows from

(V†Vψ̂)(k) =
1

(2π)2

∫

T
V̂ †(k′ − k)

[∫

T
V̂ (k′ − k′′)ψ̂(k′′)dk′′

]
dk′

=
1

(2π)2

∑

x′

V †(x′)

∫

T
e−i(k′−k)x′

[∑

x

V (x)

∫

T
e−i(k′−k′′)xψ̂(k′′)dk′′

]
dk′

=
1

(2π)2

∑

x,x′

V †(x′)V (x)eikx′
∫

T
e−i(x+x′)k′dk′

∫

T
eik′′xψ̂(k′′)dk′′

=
∑

x

V †(−x)V (x)e−ikxψ(x)

=
∑

x

I4e
−ikxψ(x) = ψ̂(k). (5.2.22)

We have thus proved the following proposition.

Proposition 5.1. The Fourier transform of V ∈ L(H2) is V̂ ∈ L(Ĥ2), given by

(V̂ψ̂)(k, p) =
1

2π

∫ π

−π
V̂ (k − k′)ψ̂(k′, p)dk′ (5.2.23)

for all ψ̂ ∈ Ĥ2, and where
V̂ (k) =

∑

x∈Z

e−ikxV (x), (5.2.24)

and V (x) ≡ V (x1, x2 + x). The convergence of the series is understood in the sense of
distributions, i.e. V̂ (k) ∈M4(P ′(R)). Moreover, the operator V̂ is unitary.

5.2.2.2 Transformation of U0 and U
Next, we find the representation in Fourier space of the free and interacting walk operators.

Proposition 5.2. For an IQW U = U0V , with V satisfying Assumptions (H0), the following
assertions hold:-

(i) The free walk operator in Fourier space is

(Û0ψ̂)(k, p) =
(
Ŝ(k, p)(C1 ⊗ C2)

)
ψ̂(k, p) ≡ Û0(k, p)ψ̂(k, p), ψ̂ ∈ Ĥ2,

(5.2.25)
that is, a multiplication operator by the matrix Û0(k, p) ∈M4(C) whose entries are
analytic in the variables (k, p) ∈ T2. Moreover, ordering the basis of C2 as {|σ =
1〉, |σ = −1〉}, the shift matrix in Fourier space is Ŝ(k, p) = diag(e−ip, e−2ik, e2ik, eip).

(ii) The interacting walk operator in Fourier space is the unitary operator Û = Û0 ·(V̂ ∗).
In matrix form,

(Û ψ̂)(k, p) = Û0(k, p)
1

2π

∫ π

−π
V̂ (k − k′)ψ̂(k′, p)dk′. (5.2.26)

v6



CHAPTER 5. SPECTRAL PROPERTIES OF INTERACTING QUANTUM WALKS 74

Proof. (i) Since S1|x1, σ1〉 = |x1 + σ1, σ1〉, it acts on wavefunctions as τσ1 . Indeed,

(S1 ⊗ IH1)ψ =
∑

x1,x2,σ2

ψ+σ2(x1, x2)|x1 + 1, x2,+, σ2〉+ ψ−σ2(x1, x2)|x1 − 1, x2,−, σ2〉

=
∑

x1,x2,σ2

ψ+σ2(x1 − 1, x2)|x1, x2,+, σ2〉+ ψ−σ2(x1 + 1, x2)|x1, x2,−, σ2〉

=
∑

x1,x2,σ2

(τ1,0ψ
+σ2(x1, x2))|x1, x2,+, σ2〉+ (τ−1,0ψ

−σ2(x1, x2))|x1, x2,−, σ2〉,

and consequently, using the translation property of the Fourier map (see part 1 of Theorem
C.1), it is represented in Fourier space as

(τσ1,0ψ
σ1σ2(x1, x2))∧(k1, k2) = e−iσ1k1ψ̂σ1σ2(k1, k2). (5.2.27)

The reasoning is analogous for S2. Thus, we arrive at

Ŝ1 ⊗ Ŝ2 : ψ̂(k1, k2)→
[(
e−ik1 0

0 eik1

)
⊗
(
e−ik2 0

0 eik2

)]
ψ̂(k1, k2) =

=




e−i(k1+k2)

e−i(k1−k2)

ei(k1−k2)

ei(k1+k2)


 ψ̂(k1, k2),

which allows to conclude, using that p = k1 + k2 and 2k = k1− k2. Finally, the analyticity
of matrix entries follows from the map k 7→ eik being analytic.

(ii) The representation of U in Fourier space, Eq. (5.2.26), is obtained by combination
of Proposition 5.1 and part (i) above. Moreover, it is unitary because it is the product of
two unitary operators.

To conclude the section, we give a simple consequence of U being translation invariant:
that the total momentum p is a conserved quantity during the evolution. This is important
because it allows to study the problem in the Hilbert space associated with a fixed value of
momentum, that we callH2,p ' `2(Z)⊗C4, and the associated reciprocal space is denoted
Ĥ2,p ' L2(T) ⊗ C4. Hence, Û over Ĥ2,p is defined exactly as in (5.2.26) but where p is
considered as a parameter and not as a variable.

Proposition 5.3. Assuming (H0),

(i) U commutes with joint translations, and

(ii) the total momentum is preserved under the unitary evolution, i.e. in the semigroup
{U tψ0 : t ∈ N0} for each initial condition ψ0 ∈ H2.

Proof. (i) It suffices to develop the action of U = U0V over an arbitrary basis ket of H2,
and then use the definition of translation invariance. Recall that U is translation invariant if
it commutes with τx0,x0 ∈ L(H2), defined as

τx0,x0|x1, x2, σ1, σ2〉 = |x1 + x0, x2 + x0, σ1, σ2〉, x0 ∈ Z. (5.2.28)
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Indeed,

U0V|x1, x2, σ1, σ2〉 = U0V (x1, x2)|x1, x2〉|σ1, σ2〉
= (S1 ⊗ S2) · (IZ2 · (C1 ⊗ C2))|x1, x2〉

∑

σ′1σ
′
2

V σ′1σ
′
2

σ1σ2
(x1, x2)|σ′1, σ′2〉

= (S1 ⊗ S2)|x1, x2〉
∑

σ′1σ
′
2

V σ′1σ
′
2

σ1σ2
(x1, x2)

∑

σ′′1

C
σ′′1
1 σ′1
|σ′′1〉

∑

σ′′2

C
σ′′2
2 σ′2
|σ′′2〉

=
∑

σ′′1 σ
′′
2

∑

σ′1σ
′
2

C
σ′′1
1 σ′1

C
σ′′2
2 σ′2

V σ′1σ
′
2

σ1σ2
(x1, x2)|x1 + σ′′1 , x2 + σ′′2 , σ

′′
1 , σ

′′
2〉.

(5.2.29)

Using (H0), V (x1, x2) is assumed to be radial hence depending only on |x1−x2|, and from
this fact one easily checks that [τx0,x0 ,U ] = 0 for any x0 ∈ Z over an arbitrary basis ket.

(ii) It is an elementary fact from quantum mechanics that the momentum is the gener-
ator of translations, so part (i) above allows to conclude. More directly, one sees that Eq.
(5.2.26) in Proposition 5.2 only acts on the p coordinate via multiplication with the unitary
matrix Û0(k, p).

5.3 Basic properties of the free QW

This section is advocated to the study of the spectral properties of the free walk operator.
In particular we completely characterize the location of the spectral gaps of U0 in full
generality, that is, for arbitrary choices of parameters.

We collect in Appendix C.2 the elements of spectral theory in Hilbert space that will be
used in this and in the following sections.

5.3.1 Overview

Recall that U(n) is n2-parametric, therefore an arbitrary C ∈ U(2) is parametrized by four
real parameters. We choose the following parametrization:

C = eiθ

(
re−iα ieiγ

√
1− r2

ie−iγ
√

1− r2 reiα

)
, (5.3.1)

with α, γ, θ ∈ [0, 2π) and r ∈ [0, 1]. These parameters reduce to three if the global factor
eiθ is discarded (θ = 0). Usually this is the case in homogeneous QWs, because a global,
constant, phase factor does not show up in the dynamics. However we shall not throw it
away since we are interested in location of spectra, and it is in fact relevant to be able to
rotate freely the location of the spectrum of the free QW, before we plug-in the interaction.

In this section we are interested in the spectrum of the free QW U0 in the relative
coordinate, that is, for fixed p. We shall study the influence of each parameter r, α, γ, θ
in the band structure. Moreover, we are interested in some special points which play a

v6



CHAPTER 5. SPECTRAL PROPERTIES OF INTERACTING QUANTUM WALKS 76

particular role in the spectral properties of the perturbed operator, these are called critical
points U0-critical points in [ABJ15].

Definition 5.2. (see [ABJ15]) Quasienergy values which correspond either to band cross-
ings or to critical points (or both) are called U0-critical points. We denote this set by
MU0 ⊂ T.

5.3.2 One-dimensional case

It is illustrative to understand the one-dimensional case first in order to see what is the role
of each coin parameters on the spectrum.

Let C be given by Eq. (5.3.1), and let Ŝ(k) = diag{e−ik, eik}. The spectrum of Ŝ(k)C
as a set are the values of

λ±(k) = eiθe±iω(k), where cosω(k) = r cos(α + k). (5.3.2)

Note that the parameter γ does not appear. The parameter θ is just a global phase, i.e. a
rotation. The role of the parameters r and α is best understood looking at the phase of
λ±(k), whose variation depends on ω(k) as a function of k ∈ T. Let us concentrate on
λ+(k) first, and θ = 0. Note that cosω(k) is a function onto [−r, r], which is a symmetric
interval around 0; hence the phase ω(k) is onto [arccos(−r), arccos(r)], which is an interval
centred around π/2. The boundary points give the edges of the bands, thus they are located
at ei arccos(−r) and ei arccos(r). This analysis extends easily for λ−, since for θ = 0, it is
just the complex conjugate of λ+, hence symmetric to it with respect to the real axis. For
θ 6= 0, both λ+ and λ− are rotated by the same factor θ, in the positive direction (counter-
clockwise) for positive θ and in the negative direction for negative θ.

We conclude that there are two bands,

B+ = eiθ[µ+, µ
′
+], with µ+ = r + i

√
1− r2, µ′+ = −r + i

√
1− r2, (5.3.3)

B− = eiθ[µ−, µ
′
−], with µ− = −r − i

√
1− r2, µ′− = r − i

√
1− r2, (5.3.4)

and |B+| = |B−| = 2 arcsin r. (5.3.5)

Hence r controls the arc length of the bands, since |B±| is a monotonically increasing
function of r, from a point, i.e. |B±| = 0 for r = 0, to a whole semi-circle, i.e. |B±| = π
for r = 1. The role of α is to control for which values of k the extremal points of the bands
are reached. Hence it does not show up in the spectrum of T, but just shifts the phase ω(k).
These observations are shown in Figures 5.3.1 and 5.3.2.

5.3.2.1 Critical points

Critical points are obtained computing

∇kλ±(k) = 0 ⇐⇒ α + k = nπ, n ∈ Z. (5.3.6)
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−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
k

π/4

π/2

3π/4
ω(k)

α=0
α=π/4
α=π/2

(a) r = 1/
√

2 and α = 0, π/4, π/2.

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
k

π/4

π/2

3π/4
ω(k)

r=1/2
r=1/4
r=1/8

(b) r = 1/2, 1/4, 1/8, and α = 3π/2.

Figure 5.3.1: Graph of ω(k), for different values of the parameters r, α. The parameter α
controls the relative shift of ω(k), while the parameter r controls its amplitude.
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−1 0 1

−i

i

(a) θ = 0, r = 1/9.

−1 0 1

−i

i

(b) θ = 0, r = 1/
√

2

−1 0 1

−i

i

(c) θ = 3π/2, r = 1/
√

2

Figure 5.3.2: Spectrum of the free walk operator in the one-dimensional case. In red (resp.
blue) the band B+ (resp B−). The parameter r controls the arc length of the bands, and θ
performs a rotation in the positive direction.

Indeed, the relative extrema are given by

dω

dk
= 0 ⇐⇒ r sin(α + k)√

1− r2 cos(α + k)2
= 0 ⇐⇒ α + k = nπ, n ∈ Z. (5.3.7)

Since k ∈ T, α ∈ [0, 2π), there are at least two relative extrema of ω(k) (three in the
special cases α = 0, π but they appear at the boundary points of k). Evaluating λ±(k) at
these points, we obtain the edges of the bands.
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5.3.2.2 Band crossings

Band crossings are obtained computing

λ+(k) = λ−(k) ⇐⇒ ω(k) = −ω(k) + 2nπ, n ∈ Z. (5.3.8)

Hence ω(k) = nπ, n ∈ Z, implying r cos(α + k) = ±1, which holds provided that r =
1, α + k = nπ, n ∈ Z. In particular, they are only possible if r = 1, observation which is
clear from the graphs.

5.3.2.3 Summary

We have thus proved the following statement, cf. [ABJ15], Prop. 4.1.

Proposition 5.4. For the one-dimensional case, the U0-critical points are

MU0 =
{
eiθ(−r ± i

√
1− r2), eiθ(r ± i

√
1− r2)

}
. (5.3.9)

Remark 5.2. From a physical point of view we can interpret the results by looking at the
dependence of the band arc length on r. We obtained that for r ∈ (0, 1] there is only
continuous spectrum, hence we have propagation. Indeed for r ' 1, C is close to the
identity, in the sense that the weight of its coefficients is dominated by the diagonal terms,
and the continuous spectrum covers the full circle. Now, a QW with a coin close to the
identity favours propagation in both directions, the limiting case being C = I2 for r = 1,
in which case there is no coin mixture at all, i.e. any state |x〉| ± 1〉, x ∈ Z, just propagates
to the right, resp. left.

Conversely, for r ' 0, C is close to the Pauli matrix σx, in the sense that the weight
of its coefficients is dominated by the anti-diagonal terms. In the limiting case we have
C = σx for r = 0, and there is only point spectrum. Indeed since σx just flips the coin state
at each time step, it does not allow for propagation, as the following simple calculation
shows. Consider an initial state |ψ0〉 = |x〉|1〉, x ∈ Z, then

|x〉|1〉 IZ⊗C→ |x〉| − 1〉 S→ |x− 1〉| − 1〉 IZ⊗C→ |x− 1〉|1〉 S→ |x〉|1〉 IZ⊗C→ . . .

5.3.2.4 Eigenvectors

The eigenvectors of Ŝ(k)C, with C = C(θ, r, α, γ) (see Eq. (5.3.1)) are computed be-
low. Recall that the eigenvalues are λ±(k) = eiθe±iω(k), cosω(k) = r cos(α + k). The
normalized eigenvectors are

|u±〉 =
1√

2N±(k)

(
ei(γ−k),

± sinω(k) + r sin(α + k)√
1− r2

)T

, (5.3.10)
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and the normalization constant is

N±(k) =
1

2

(
1 +

(± sinω(k) + r sin(α + k))2

1− r2

)
(5.3.11)

=
sinω(k)

1− r2
(sinω(k)± r sin(α + k)) . (5.3.12)

Example 5.3.1. A particular instance of (5.3.1) is the Hadamard coin. It has been widely
used in the context of QWs because under a suitable initial condition it leads to symmetric
probability distribution functions. The analysis in Fourier space of the Hadamard QW is
often used to obtain the explicit analytic solutions and it can be found in many places; a
complete treatment is found for instance in pp. 70-73 of [Por13]. The Hadamard coin is
obtained letting α = θ = 3π/2, γ = 0, r = 1/

√
2, which gives

C =
1√
2

(
1 1
1 −1

)
. (5.3.13)

In this case, cosω(k) =
sin k√

2
. Using the previous formulas and straightforward simplifi-

cations we compute below the eigenvalues and normalized eigenvectors of the associated
free QW. The eigenvalues are explicitly

λ±(k) = ei(3π/2±arccos(sin k/
√

2)) =
±
√

1 + cos2 k − i sin k√
2

. (5.3.14)

Its normalized eigenvectors are

|u±〉 =
1√

2N±(k)

(
e−ik,±

√
1 + cos2 k − cos k

)T

, (5.3.15)

and the normalization constant is

N±(k) = 1 + cos2 k ± cos k
√

1 + cos2 k. (5.3.16)

5.3.3 Two-dimensional case

Let Cj = Cj(θj, rj, αj, γj), j = 1, 2, being

Cj = eiθj




rje
−iαj ieiγj

√
1− r2

j

ie−iγj
√

1− r2
j rje

iαj


 , (5.3.17)
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where αj, γj, θj ∈ [0, 2π) and rj ∈ [0, 1]. Without loss of generality we set θ2 = θ − θ1.
The spectrum of Û0 is obtained combining (5.2.25) with relations (5.2.5),

σ(Û0) = σ
[
(Ŝ1 ⊗ Ŝ2) · (C ⊗ C)

]
= σ

[
Ŝ1C1 ⊗ Ŝ2C2)

]

= σ(Ŝ1C1)σ(Ŝ2C2)

= eiθ1eiθ2
{
ei(ω1+ω2), e−i(ω1+ω2), ei(ω1−ω2), e−i(ω1−ω2)

}

= {λ1,+, λ1,−, λ2,+, λ2,−} ,

where
λ1,± = eiθe±i(ω1+ω2), λ2,± = eiθe±i(ω1−ω2), (5.3.18)

and

cosω1 = r1 cos (α1 + p/2 + k) and cosω2 = r2 cos (α2 + p/2− k) . (5.3.19)

First note that the parameter θ is just a global phase, i.e. a rotation. The general dis-
position of the bands over the unit circle, for a fixed choice of parameters and fixed value
of total momentum p, is best understood looking at the properties of the phase functions of
λ1,± and λ2,±, namely±(ω1(k) +ω2(k)) and±(ω1(k)−ω2(k)), respectively, as a function
of k ∈ T. We assert the key properties as a lemma.

Lemma 5.1. The phase functions ω1(k) + ω2(k) and ω1(k) − ω2(k), k ∈ T, satisfy the
following properties:

(i) If ϕ1 ∈ Im(ω1 + ω2), then 2π − ϕ1 ∈ Im(ω1 + ω2).

(ii) If ϕ2 ∈ Im(ω1 − ω2), then −ϕ2 ∈ Im(ω1 − ω2).

(iii) π ∈ Im (ω1 + ω2).

(iv) 0 ∈ Im (ω1 − ω2).

Proof. For (i) and (ii), note that

ω1(k) = arccos(r1 cos(α1 + p/2 + k))⇒ ω1(k ± π) = arccos(−r1 cos(α1 + p/2 + k)),

ω2(k) = arccos(r2 cos(α2 + p/2− k))⇒ ω2(k ± π) = arccos(−r2 cos(α2 + p/2− k)),

and recall the identity arccos(x) + arccos(−x) = π, x ∈ [−1, 1]. It is clear that given
k ∈ [−π, π], we can always find either k + π or k − π to be in [−π, π] (or both, in the
special case k = 0, in which k = π and k = −π are identified). Now if ϕ1 ∈ Im(ω1 + ω2),
then

ϕ1 = ω1(k) + ω2(k) = π − ω1(k ± π) + π − ω2(k ± π)

implies that
2π − ϕ1 ∈ Im(ω1 + ω2).
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−1 −r2 −r1 r1 r2 1
x

π/4

π/2

3π/4

π

arccos(x)

Im(ω1 )
Im(ω2 )

Figure 5.3.3: Plot of the arccosine function and its restriction to the symmetric intervals
−r1 ≤ x ≤ r1 and −r2 ≤ x ≤ r2; the projection of the coloured segments on the vertical
axis being the image set of ω1 and ω2 respectively.

In a similar way, if ϕ2 ∈ Im(ω1 − ω2), then

ϕ2 = ω1(k)− ω2(k) = π − ω1(k ± π)− π + ω2(k ± π)

implies that
−ϕ2 ∈ Im(ω1 − ω2).

For (iii) and (iv), first we remark that the images of ω1(k) and ω2(k) are

Im ω1 = [arccos(−r1), arccos(r1)] ⊆ [0, π],

and
Im ω2 = [arccos(−r2), arccos(r2)] ⊆ [0, π]

(see Fig. 5.3.4 for an example). Then, since ω1(k) and ω2(k) are continuous functions of
k ∈ T, part (i) (resp. part (ii)) implies that the point π must be crossed by ω1(k) + ω2(k)
(resp. the point 0 must be crossed by ω1(k)− ω2(k)).

Let B1,± (resp. B2,±) be the bands associated with λ1,± (resp. λ2,±). Assume for a
moment that θ = 0. The content of Lemma 5.1 is that B1,+ (resp. B2,+) is symmetric with
respect to the real axis and the point−1 ∈ B1,+ (resp. the point 1 ∈ B2,+). Moreover, B1,−
(resp. B2,−) is the complex conjugate of B1,+ (resp. B2,+), hence is obtained symmetrizing
with respect to the real axis. With this information we conclude that there will be two pairs
of bands, with B1,+ = B1,− and B2,+ = B2,− (of course the band crossings only happen
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−π −3π/4 −π/2 −π/4 π/4 π/2 3π/4 π
k

π/4

π/2

3π/4

π

5π/4
ω1 (k)
ω2 (k)
ω1 (k) +ω2 (k)
ω1 (k)−ω2 (k)

Figure 5.3.4: Typical behaviour of the phase functions ω1(k), ω2(k), their sum and their
difference. A numerical evaluation shows that ω1(k) + ω2(k) = π at k = −0.0079, 3.13,
while ω1(k) − ω2(k) = 0 at k = −2.71, 0.43. Here we have chosen r1 = 0.2, r2 = 0.5,
α1 = 0.7, α2 = 3.6, θ = 0, and p = 2.5. The corresponding bands in the unit circle are
shown in Fig. 5.3.5.(a).

when they coincide in the same value of k, which is a different thing). Finally note that if
θ > 0, the previous analysis still holds, although all the bands have to be rotated by θ in the
positive (counter-clockwise) direction. Consequently, we arrive at

B1,+ = B1,− = Im (λ1,+) = Im (λ1,−), (5.3.20a)
B2,+ = B2,− = Im (λ2,+) = Im (λ2,−). (5.3.20b)

The bands will be noted

B1,+ := [µ1, µ
′
1] ⊂ S, (5.3.21a)

B2,+ := [µ2, µ
′
2] ⊂ S. (5.3.21b)

We show some plots of the spectrum in Fig. 5.3.5.

Remark 5.3. In contrast to the one-dimensional case, in the two-dimensional case the role
of the radial parameters r1, r2 and of the angular parameters α1, α2 is not decoupled. For
instance, in the one-dimensional case we saw that the arc lengths and the position of the
edges of the bands on the unit circle depended only on r (and not on α, cf. Eqs. (5.3.3)-
(5.3.5)), and conversely, the position of the relative extrema (corresponding to the band
edges) depended only on α (cf. Eq. (5.3.7)). However both radial and angular parameters
intervene, in general, in the two-dimensional setting. Intuitively this can be understood
noting that the arc obtained from the product eiω1(k)eiω2(k), will not depend on each factor
individually but rather on the link imposed by k. More precisely, the return points, which
are obtained optimizing ω1(k) ± ω2(k), depend in general on all the parameters. As an
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−1 0 1

−i

i

(a) r1 = 0.2, r2 = 0.5, α1 = 0.7,
α2 = 3.6, θ = 0, and p = 2.5.

−1 0 1

−i

i

(b) r1 = 0.2, r2 = 0.5, α1 = 0.7,
α2 = 3.6, θ = 0, and p = −1.5.

−1 0 1

−i

i

(c) r1 = r2 = 1/
√

2, α1 = α2 =
3π/2, θ = 3π/2, and p = 1.

Figure 5.3.5: Spectrum of U0. In red (resp. blue) are plotted the bands B1,+ (resp B1,−). In
green (resp. yellow) are plotted the bands B2,+ (resp B2,−). Plots (a) and (b) differ just in
the total momentum, which influences the respective arc lengths. In plot (c) the spectrum
is rotated, θ 6= 0.

illustration of this point, as we will see, for the choice in which the two individual arcs are
of the same length, i.e. r1 = r2 = r, the position of the relative maxima of ω1(k)± ω2(k)
do not longer depend on r.

Next, we move on to calculate the U0-critical points. In the process we will find explicit
formulas for the localization of the bands for arbitrary choices of parameters.

5.3.3.1 Critical points

We need to solve for k in

d

dk
(ω1(k) + sω2(k)) = 0, (5.3.22)
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with k ∈ T, and where s = ±1. We shall introduce some notation. Let r̃1, r̃2 in [0, π/2]
such that r1 = cos r̃1 and r2 = cos r̃2; they exist and are unique because r1 and r2 are in
[0, 1]. Also let α̃1 = 2α1 + p mod 2π and α̃2 = 2α2 + p mod 2π.

Lemma 5.2. Solutions of Eq. (5.3.22) reduce to those of

c = a cos 2k + b sin 2k, (5.3.23)

and where a, b, c do not depend on k and are given by

a = cos2 r̃1 sin2 r̃2 cos α̃1 − sin2 r̃1 cos2 r̃2 cos α̃2, (5.3.24a)
b = − cos2 r̃1 sin2 r̃2 sin α̃1 − sin2 r̃1 cos2 r̃2 sin α̃2, (5.3.24b)
c = cos2 r̃1 − cos2 r̃2. (5.3.24c)

Moreover, the inequality
∆ ≡ a2 + b2 − c2 ≥ 0 (5.3.25)

holds for all possible choices of parameters.

Proof. Computing the derivative of the arccosine functions to each term separately (see Eq.
(5.3.19)), we get

r1 sin(α1 + p/2 + k)√
1− r2

1 cos2(α1 + p/2 + k)
− s r2 sin(α2 + p/2− k)√

1− r2
2 cos2(α2 + p/2− k)

= 0. (5.3.26)

Let A = α̃1/2 + k, B = α̃1/2− k, square (5.3.26) and rearrange, obtaining

r2
1 sin2A− r2

2 sin2B = r2
1r

2
2 sin2A cos2B − r2

1r
2
2 cos2A sin2B. (5.3.27)

Multiplying by 2 and using the identity 2 sin2 x = 1 − cos 2x in the left-hand side, and
factoring the right-hand side, we get

r2
1(1− cos 2A)− r2

2(1− cos 2B) = 2r2
1r

2
2(sinA cosB − cosA sinB)(sinA cosB + cosA sinB)

= 2r2
1r

2
2 sin(A+B) sin(A−B). (5.3.28)

To conclude we shall invert the change of variables. Note that

cos 2A = cos(2A− 2k + 2k) = cos α̃1cos 2k − sin α̃1sin 2k

cos 2B = cos(2B + 2k − 2k) = cos α̃2cos 2k + sin α̃2sin 2k

2 sin(A+B) sin(A−B) = [cos α̃2 − cos α̃1] cos 2k + [sin α̃2 + sin α̃1] sin 2k.
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Substituting these expressions in Eq. (5.3.28) and rearranging, we get the final result

r2
1 − r2

2︸ ︷︷ ︸
c

=cos 2k


r2

1(1− r2
2) cos α̃1 − r2

2(1− r2
1) cos α̃2︸ ︷︷ ︸

a




+ sin 2k


−r2

1(1− r2
2) sin α̃1 − r2

2(1− r2
1) sin α̃2︸ ︷︷ ︸

b


 .

Hence we obtain Eqs. (5.3.23)-(5.3.24c) by substituting cos r̃1 = r1 and cos r̃2 = r2.
To prove inequality (5.3.25), we set ∆ = a2+b2−c2, and after a rather long factorization

it turns out to be

∆ = 4 cos2 r̃1 cos2 r̃2 sin2 r̃1 sin2 r̃2 sin2(α̃1/2 + α̃2/2), (5.3.29)

which is non-negative.

Remark 5.4. If k∗ ∈ [−π, π] is solution of c = a cos 2k+ b sin 2k, then k∗± π is a solution
of the same equation, because

b cos(2k∗) + c sin(2k∗) = b cos(2(k∗ ± π)) + c sin(2(k∗ ± π)).

Moreover we can always choose k∗∗ ∈ [−π, π] such that |k∗∗ − k∗| = π. We conclude
that the different roots (for the same sign choice, because they are different branches of the
tangent) are separated by π. Note that from Lemma 5.1 we knew that the return points for
θ = 0 had to be one the complex conjugate of the other, and obtained with a shift in π in
the domain of k.

We move on to calculate the explicit solutions of Eq. (5.3.23). A convenient trick is to
perform a Weierstrass substitution,

cos 2k =
1− u2

1 + u2
, sin 2k =

2u

1 + u2
, tan k = u, u ∈ R, (5.3.30)

which substituting in Eq. (5.3.23), gives

u2(a+ c)− 2bu− (a− c) = 0. (5.3.31)

Solving for u,

u =
b

a+ c
±
√

∆

a+ c
, (5.3.32)

where a+c 6= 0 was assumed. The discriminant of (5.3.31) is thus proportional to ∆, which
we know from inequality (5.3.25) of Lemma 5.2 that is non-negative. The possibilities for
the roots are shown in the tree below.
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if

a+ c 6= 0

∆ > 0

k1 6= k2

∆ = 0

k1 = k2

a+ c = 0

b = 0

a = c

∀k ∈ T

a 6= c

∅

b 6= 0

tan k =
c

b
(1)

(1) If also c = 0, then the poles at ±π/2 are also roots of (5.3.23).

In the following we assume the non-trivial cases r1, r2 ∈ (0, 1). Let us introduce the
quantity

R = tan r̃2 cot r̃1 =

√
r−2

2 − 1

r−2
1 − 1

, r1, r2 ∈ (0, 1), (5.3.33)

which is a continuous function on (0, 1)× (0, 1), and has divergent behaviour in the limits
r1 → 1 and r2 → 0. The contour levels are shown in Fig. 5.3.6.

0 1/4 1/2 3/4 1
r1

0

1/4

1/2

3/4

1

r 2

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 5.3.6: Contour levels of the function R = R(r1, r2), and for plotting convenience
we restricted to r1, r2 ∈ (0.1, 0.9). Indeed note that R diverges for r1 → 1 and a fixed
value of r2, and for r1 fixed and r2 → 0. The are two regions: for r2 > r1 we have R < 1,
while for r2 < r1, we have R > 1. In the transition region, where r1 = r2, R is constantly
equal to 1.
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The particular cases can be discriminated using the following factorizations. Note that

a+ c = cos2 r̃1 sin2 r̃2(1 + cos α̃1)− sin2 r̃1 cos2 r̃2(1 + cos α̃2)

= − sin2 r̃1 cos2 r̃2

[
(1 + cos α̃2)−R2(1 + cos α̃1)

]
, (5.3.34)

and

b = −
[
cos2 r̃1 sin2 r̃2 sin α̃1 + sin2 r̃1 cos2 r̃2 sin α̃2

]

= − sin2 r̃1 cos2 r̃2

[
sin α̃2 +R2 cos α̃1

]
. (5.3.35)

Using (5.3.25), (5.3.34) and (5.3.35), we have the following:

1. a+ c = 0 whenever any of the following conditions are met:

(a) r1 = 1.

(b) r2 = 0.

(c) R =
√

(1 + cos α̃2)/(1 + cos α̃1).

2. b = 0 whenever any of the following conditions are met:

(a) r1 = 1.

(b) r2 = 0.

(c) R =
√
− sin α̃2/ cos α̃1.

3. ∆ = 0 whenever any of the following conditions are met:

(a) r1 = 0 or r1 = 1.

(b) r2 = 0 or r2 = 1.

(c) α1 + α2 + p is an integer multiple of π.

For the general case (a + c 6= 0), u is obtained from (5.3.32) with u = tan k, which
gives

tan k =
sin α̃2 +R2 sin α̃1

(1 + cos α̃2)−R2(1 + cos α̃1)
± 2R| sin α̃1+α̃2

2
|

(1 + cos α̃2)−R2(1 + cos α̃1)
. (5.3.36)

Since our domain is [−π, π], there are two lines which cut the branches of the tangent
function, so we find two pairs of solutions, one corresponding to each sign choice in the
original equation. It is worth noting that compatibility with (5.3.26) implies that solutions
k∗ ∈ T should verify, for the choice s = 1,

Sg[sin(α1 + p/2 + k∗)] = Sg[sin(α1 + p/2− k∗)], (5.3.37)

and for the choice s = −1,

Sg[sin(α1 + p/2 + k∗)] = −Sg[sin(α1 + p/2− k∗)]. (5.3.38)
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Remark 5.5. We observe that solutions acquire a simple form in some special cases of
interest. Assume that r1 = r2 = r ∈ (0, 1), and that cos α̃1 6= cos α̃2, the other parameters
kept arbitrary. In this case R = 1, and (5.3.36) simplifies to

tan k =
sin α̃2 + sin α̃1

cos α̃2 − cos α̃1

± 2| sin α̃1+α̃2

2
|

cos α̃2 − cos α̃1

. (5.3.39)

We note in this case that the location of the critical points becomes independent of r.
A second interesting case is that in which each free QW has the same (non-trivial) coin,

i.e. r1 = r2 = r ∈ (0, 1) and α1 = α2 = α. Then from (5.3.24a)-(5.3.24c), both c = 0
and a = 0, and Lemma (5.2) implies that the critical values are the set {±π,±π/2, 0}.
Using conditions (5.3.37) and (5.3.38), we find further that {0,±π} are the critical points
of λ1,±(k), and that {±π/2} are those of λ2,±(k). It is remarkable that in this case the
critical points turn out to be independent not only of r but also of α, in contrast to the
one-dimensional case (cf. Eq. (5.3.6)).

5.3.3.2 Eigenvectors

The eigenvectors of Û0(k) are constructed via tensor product of the one-dimensional case,
which was discussed in paragraph 5.3.2.4. For j = 1, 2, recall that ωj are given by (5.3.19),
and let

|vj,±(k)〉 =
1√

2Nj,±(k)

(
ei(γj−k),

± sinωj(k) + rj sin(αj + k)√
1− r2

j

)T

, (5.3.40)

and

Nj,±(k) =
sinωj(k)

1− r2
j

(sinωj(k)± rj sin(αj + k)) . (5.3.41)

The normalized eigenvectors with the corresponding sign choices are presented in Table
5.3.1.

Eigenvalue ×e−iθ Eigenvector
λ1,+(k) = ei(ω1+ω2) |u1,+(k)〉 := |v1,+(p/2 + k)〉 ⊗ |v2,+(p/2− k)〉
λ1,−(k) = e−i(ω1+ω2) |u1,−(k)〉 := |v1,−(p/2 + k)〉 ⊗ |v2,−(p/2− k)〉
λ2,+(k) = ei(ω1−ω2) |u2,+(k)〉 := |v1,+(p/2 + k)〉 ⊗ |v2,−(p/2− k)〉
λ2,−(k) = e−i(ω1−ω2) |u2,−(k)〉 := |v1,−(p/2 + k)〉 ⊗ |v2,+(p/2− k)〉

Table 5.3.1: Normalized eigenvectors of Û0(k) ∈M4(C).

Example 5.3.2. The Hadamard walk corresponds to r1 = r2 = 1√
2
, α1 = α2 = 3π

2
, and

θ1 = θ2 = 3π
2

, thus θ = π. The one-dimensional case was studied in Example 5.3.1. Using
the shorthand k1,2 = p/2± k, and j = 1, 2, we find that

λj,±(k) =
1

2

(
±
√

1 + cos2 k1 − i sin k1

)(
±(−1)j+1

√
1 + cos2 k2 − i sin k2

)
,
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and the normalized eigenvectors are

|uj,±〉 =
1

2
√
N ′j,±(k)

(
e−ik1

±
√

1 + cos2 k1 − cos k1

)
⊗
(

e−ik2

±(−1)j+1
√

1 + cos2 k2 − cos k2

)

where
N ′j,±(k) = N±(p/2 + k)N±(−1)j+1(p/2− k), (5.3.42)

and
N±(k) = 1 + cos2 k ± cos k

√
1 + cos2 k. (5.3.43)

Note that N±(k) 6= 0 for k ∈ T. Indeed, if k /∈ {nπ
2
}n=0...3, then

N±(k) >
√

1 + cos2 k (1± cos k) > 0. (5.3.44)

The other cases are positive, N±(0) = N∓(π) = 2±
√

2, N±(π
2
) = N±(3π

2
) = 1.

5.4 Absence of singular continuous spectrum of the IQW
In this section we determine the spectral components of the IQW. This is achieved applying
spectral stability arguments. In particular we explore the assumption of the interaction
being p-summable, that is, (I − V) belonging to a p-Schatten class of operators, since this
is a suitable setting for perturbation theory.

5.4.1 The IQW as a perturbation problem

We will make use of the following elementary lemma characterizing multiplication opera-
tors in sequence spaces.

Lemma 5.3. Consider a sequence of matrices {A(x)}x∈Z ⊂Md(C), such that A(x)→ 0
when |x| → ∞, and let A ∈ L(H) be the associated multiplication operator in H =
`2(Z)⊗ Cd, i.e. (Aψ)(x) = A(x)ψ(x) for all x ∈ Z, ψ ∈ H. Let p ≥ 1. Then A is in the
p-Schatten class Sp(H) if and only if {||A(x)||F}x∈Z ∈ `p(Z).

Proof. The condition lim|x|→∞A(x) → 0 implies that A is compact. In fact it suffices to
consider, for a fixed N ≥ 0, the operator (ANψ)(x) := (Aψ)(x) = A(x)ψ(x) if |x| ≤ N
and zero otherwise. SinceA is the norm limit ofAN , which is of finite rank,A is compact.

The adjoint of A is (A∗ψ)(x) = A†(x)ψ(x). This is seen by computing

〈ψ,Aψ〉 =
∑

x

ψ†(x)A(x)ψ(x) =
∑

x

[
ψ†(x)(A†(x)ψ(x))

]†
= 〈ψ,A†ψ〉 = 〈A†ψ, ψ〉.

Now, since σ(A∗A) = {∪dj=1λj(A
†(x)A(x)) : x ∈ Z},

||A||pSp(H) =
∑

x,j

spj(A(x)) =
∑

x

||A(x)||pp. (5.4.1)

v6



91 CHAPTER 5. SPECTRAL PROPERTIES OF INTERACTING QUANTUM WALKS

Since the norms || · ||F and || · ||p are equivalent, there exist constants c1 and c2 such that
c1||A(x)||p ≤ ||A(x)||F ≤ c2||A(x)||p, and this allows to conclude.

Let us now express the IQW as a perturbation problem in the relative momentum co-
ordinate. Recall that the dynamics for fixed total momentum p occurs in the Hilbert space
H2,p ' `2(Z) ⊗ C4, and the reciprocal space is Ĥ2,p ' L2(T) ⊗ C4. Let U = U0V be
written as

U − U0 = −U0(I − V). (5.4.2)

Recall that the sequence {∆(x) : x ∈ Z} was defined as ∆(x) = ||I4− V (x)||pF for x ∈ Z,
though it is only relevant over one side (say, N), because under the radial assumption, V is
an even function of the relative coordinate x.

Proposition 5.5. Under Assumption (H0), the operator (I − V) is compact. Additionally,

(I − V) ∈ Sp for some p ≥ 1 if and only if the series
∞∑
x=1

∆p(x) converges.

Proof. Since (I−V) is the multiplication operator by the sequence {I4−V (x)}x∈Z, Lemma
5.3 applies. Note that evaluating only one side of the series is enough because V (x) is an
even function of x.

We turn to the stability of the essential spectrum. In section 3 we proved that the
spectrum of U0 is purely essential, i.e. σ(U0) = σess(U0). More precisely, it consists in two
degenerate pairs of bands, σ(U0) =

⋃2
i=1(Bi,+ ∪ Bi,−), where Bi,+ = Bi,− = [µi, µ

′
i] ⊂ S

for i = 1, 2. We are now in a position to apply classical perturbation theory arguments,
which allow to arrive at the following theorem.

Theorem 5.1. Assume that the IQW satisfying Assumption (H0) is, additionally, p-summable
for some p ≥ 1. Then:

1. the essential spectrum is stable, i.e. σess(U) = σess(U0), and

2. if the IQW is of trace class, i.e. p = 1, then σac(U) = σac(U0).

Proof. (i) From the p-summability condition, we know from Lemma 5.3 that (I − V) ∈
Sp, and in particular is compact. The stability condition criteria of Weyl under compact
perturbations allows to conclude.

(ii) Since (I − V) ∈ S1, the claim follows from the Birman-Krein theorem on invari-
ance of the absolutely continuous spectrum under trace-class perturbations, see [BK62] and
references in [Joy94].

Under p-summability, the spectrum of U is the disjoint union of σess(U0) and σd(U), the
latter being an (at most countable) set of isolated eigenvalues of finite algebraic multiplicity,
and they can only accumulate at σess(U0), which is a closed set.

Now we move on to study the singular continuous spectrum of the perturbed operator.
In particular, we are interested in knowing under which conditions σsc(U) is empty or not.
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5.4.2 Absence of singular continuous spectrum
Recently, in [ABJ15] the authors derive sufficient conditions for a (possibly inhomoge-
neous) QW to have some nice spectral properties, using methods of unitary Mourre theory.
They introduce the notion of regularity of a coin operator.

Definition 5.3 (see [ABJ15]). The interaction V = {V (x) ∈ U(4) : x ∈ Z} is said to be
regular if ∫ ∞

1

sup
dare≤x≤bbrc

∆(x) dr <∞, (5.4.3)

for some constants 0 < a < b <∞.

Recall that the floor and ceiling functions map a real number to the largest previous or
the smallest following integer, respectively. More precisely, for r ∈ R, dre = min{x ∈ N :
x ≥ r} and brc = max{x ∈ N : x ≤ r}. Given arbitrary a, b ∈ R+ with 0 < a < b <∞,
consider the step functions L(r) = dare and R(r) = bbrc, which define the borders of the
moving window appearing in the integral (5.4.3) for each r ≥ 1. It may happen that R(r)
is smaller than L(r) for some values of r, but since b > a, from some point on R(r) will
be greater, that is, the function

χa,b(r) =

{
1 if L(r) ≤ R(r)

0 otherwise
(5.4.4)

satisfies χa,b(r) = 1 for sufficiently large r, as proved below. We plot some examples in
Fig. 5.4.1.

Note that we can multiply the integrand in (5.4.3) by χa,b(r) and the value of the integral
remains the same, because χa,b(r) is either zero when then there are no points in the window
to evaluate, or one otherwise.

Lemma 5.4. The following piecewise formulas hold:

L(r) =

{
dae if 1 ≤ r ≤ dae

a

dae+ n if dae+n−1
a

< r ≤ dae+n
a

, n ≥ 1
(5.4.5)

and

R(r) =

{
bbc 1 ≤ r < bbc+1

b

bbc+ n bbc+n
b
≤ r < bbc+n+1

b
, n ≥ 1

. (5.4.6)

Moreover there exists r0 such that

χa,b(r) = 1 ∀r ≥ r0. (5.4.7)

Proof. For (5.4.5), if a ≤ ar ≤ dae, taking ceiling on each side gives L(r) = dae; for
the other piece take n ≥ 1 and take ceiling on dae + n − 1 < ar ≤ dae + n, which gives
dae+n−1 < L(r) ≤ dae+n, and since there is only one integer on any half-open interval
of length one, we must have L(r) = dae+ n.
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(c) a = 1.8, b = 1.9, in the region when they start
to separate

Figure 5.4.1: In blue (resp. red), L(r), (resp. R(r)).

We proceed analogously for (5.4.6). If b ≤ br < bbc+1, taking floor on each side gives
bbc ≤ R(r) < bbc + 1, thus R(r) = bbc; for the general piece take n ≥ 1 and taking floor
over bbc+ n ≤ br < bbc+ n+ 1, gives R(r) = bbc+ n.

Let us prove (5.4.7). For r > max{ dae
a
, bbc+1

b
}, from (5.4.5)-(5.4.6) there are integers

n1, n2, both greater or equal than one, such thatL(r) = dae+n1(r) andR(r) = bbc+n2(r).
Using that n1(r) < ar − dae+ 1 and n2(r) > br − bbc − 1, then

R(r)− L(r) = bbc − dae+ n2(r)− n1(r)

≥ −1 + n2(r)− n1(r)

> −1 + (br − bbc − 1)− (ar − dae+ 1)

= (b− a)r − 3 + (dae − bbc). (5.4.8)
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Let us show that 3+bbc−dae
b−a > bbc+1

b
:

3 + bbc − dae
b− a − bbc+ 1

b
≥ 2 + b− dae

b− a − b+ 1

b

≥ b+ ab+ a− b dae
(b− a)b

≥ a

(b− a)b
> 0. (5.4.9)

We conclude from (5.4.8), that that R(r)− L(r) > 0 is fulfilled if

r > r0 := max

{dae
a
,
3 + bbc − dae

b− a

}
. (5.4.10)

After these preliminaries, we investigate the relationship between regularity and summa-
bility of the interaction.

Proposition 5.6. Consider a radial interaction V = {V (x) ∈ U(4) : x ∈ Z}. If
{∆(x)}x∈N is a monotonically decreasing sequence, then regularity is equivalent to con-
vergence of the series

∑
x∈N

∆(x).

Proof. Taking r0 from Lemma 5.4,
∫ ∞

1

sup
dare≤x≤bbrc

∆(x)χa,b(r) dr = c1 +

∫ ∞

r0

sup
dare≤x≤bbrc

∆(x) dr

= c1 + c2 +
1

a

∞∑

i=1

∆(dae+ i),

with c1 <∞, and from (5.4.5) we know that 0 < c2 ≤ ∆(bar0c)
a

. The claim follows.

In the general case the conditions of regularity and trace-class are no longer equivalent.
In fact as we show below, the regularity condition is stronger.

Proposition 5.7. Consider a radial interaction V = {V (x) ∈ U(4) : x ∈ Z}.
(i) If V is regular, then

∑
x∈N

∆(x) converges.

(ii) The converse of the previous assertion is not true in general.

Proof. (i) Taking r0 from Lemma 5.4,
∫ ∞

1

sup
dare≤x≤bbrc

∆(x)χa,b(r) dr ≥
∫ ∞

r0

sup
dare≤x≤bbrc

∆(x) dr

≥
∫ ∞

r0

∆(bbrc)dr

= c+
1

b

∞∑

i=1

∆(bbr0c+ i),
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where 0 < c ≤ ∆(bbr0c)
b

. By contradiction, assume that
∞∑
x=1

∆(x) diverges. Then from the

inequality above, the integral diverges, because an infinite subset of a divergent series of
positive terms diverges.

(ii) We build a counterexample. Let a = 1, b = 2. From (5.4.5)-(5.4.6), for n ∈ N0,
L(r) = 1 + n if n < r ≤ n+ 1, and R(r) = 2 + n for 1 + n/2 ≤ r < 3/2 + n/2. Then

∫ ∞

1

sup
L(r)≤x≤R(r)

∆(x)dr =
∞∑

n=1

∫ n+1

n

sup
L(r)≤x≤R(r)

∆(x)dr

=
1

2

∞∑

n=1

(
sup

n+1≤x≤2n
∆(x) + sup

n+1≤x≤2n+1
∆(x)

)
. (5.4.11)

Let us rewrite the last series as
(

sup
2≤x≤2

∆(x) + sup
2≤x≤3

∆(x)

)
+

(
sup

3≤x≤4
∆(x) + sup

3≤x≤5
∆(x) + sup

4≤x≤6
∆(x) + sup

4≤x≤7
∆(x)

)

+

(
sup

5≤x≤8
∆(x) + sup

5≤x≤9
∆(x) + . . .+ sup

8≤x≤14
∆(x) + sup

8≤x≤15
∆(x)

)
+ . . .

=
∞∑

n=1

2n−1∑

k=0

sup

{
∆(x) : 2n−1 + 1 +

⌊
k

2

⌋
≤ x ≤ 2n + k

}
. (5.4.12)

The idea is that each term in parentheses shares the same power of two, if we look at all
the intervals which appear in the sum.

Now, given c > 1, consider the sequence {xn = cn}n∈N, and let

∆(x) =

{
c−n if x = xn,

0 otherwise .
(5.4.13)

Clearly,
∞∑

x=1

∆(x) =
∞∑

n=1

∆(xn) = 1/(c− 1) = 1 <∞. (5.4.14)

Let c = b/a = 2. Using (5.4.12)-(5.4.13) in (5.4.11), we arrive at

∫ ∞

1

sup
L(r)≤x≤R(r)

∆(x)dr =
1

2

∞∑

n=1

2n−1∑

k=0

∆(2n)

=
1

2

∞∑

n=1

2n∆(2n) =
1

2

∞∑

n=1

1, (5.4.15)

which diverges.

Applying Corollary 4.5 of [ABJ15], we obtain the following result.
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Corollary 5.1. Consider an IQW, assume that hypothesis (H0) holds, and that the interac-
tion is trace-class and monotonically decreasing. Then

σac(U) = σac(U0), σsc(U) = ∅, (5.4.16)

and the eigenvalues of U are either a finite set or an infinite set which can accumulate only
at the edges of the bands.

5.5 Lieb-Thirring type estimates
It often happens that the exact determination of the spectrum an operator is a hard task.
However a valuable alternative task is to relate the behaviour of sums or weighted sums
of the eigenvalues, with properties of the behaviour of functions of the coefficients of the
problem at hand4.

Inequalities of the Lieb-Thirring type, first appeared at the end of the seventies (see
collected works here [LT02]), were attempted to provide a rigorous proof of the stability
of matter [LS10]. In the form that we will present them, they give information about how
fast the eigenvalues approach the bands of the continuous spectrum. We should remark that
they do not say nothing about the existence of eigenvalues, but rather the bounds apply in
any circumstance, be there none, a finite or an infinite number. In this sense, this section is
complementary to the eigenvalue problem presented in Section 5.6, where we the problem
of existence of eigenvalues is addressed.

5.5.1 Discrete eigenvalue estimates I
In finite dimensional spaces, a classical estimate giving information about the change in the
eigenvalues for some change in the matrix is the Hoffman-Wielandt inequality [HW+53].
See [Bha97] Chapter VI for proofs and further details.

Theorem 5.2. (Hoffman-Wielandt inequality) Let A,B ∈ Mn(C) be normal matrices,
with eigenvalues {λ1, . . . , λn} and {µ1, . . . µn} respectively. Then

min
σ∈Sn

(
n∑

i=1

|λi − µσ(i)|2
)1/2

≤ ||A−B||F ≤ max
σ∈Sn

(
n∑

i=1

|λi − µσ(i)|2
)1/2

, (5.5.1)

where Sn is the set of permutations on n symbols.

The extension to infinite dimensional Hilbert spaces of the Hoffman-Wielandt inequal-
ity was achieved by Kato [Kat87] for the case of a pair of self-adjoint operators which differ
in a compact operator. It was subsequently generalized in [BS88] for unitary operators with
compact difference, in [BE94] for a pair of normal operators with Hilbert-Schmidt differ-
ence, and in [EF95] for a pair of normal operators with Hilbert-Schmidt difference. More
recently, Hansmann et al. [Han11, Han13] developed a powerful method of perturbation

4Cf. “spectral gems”, quoting Barry Simon [Sim09].
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determinant and complex analysis, which can be applied to general bounded operators, see
[Han10] for further details.

Let us first apply the result for a pair of unitary operators to the IQW. We need to
introduce the notion of an extended enumeration of the discrete eigenvalues. If U is a
unitary operator, an extended enumeration of its eigenvalues is a sequence of complex
numbers {µj} such that any discrete eigenvalue of U of multiplicity m appears in the
sequence exactly m times, and any other element of the sequence is a boundary point of
the essential spectrum (with respect to ∂D).

Theorem 5.3 (see [BS88]). Let U , V be unitary operators in H such that their difference
C = U − V is in Sp(H) for some 1 ≤ p ≤ ∞. Then there exist extended enumerations
{µj}, {νj} of discrete eigenvalues of U ,V respectively, such that

∑

j

|µj − νj|p ≤
(π

2

)p
||C||pSp . (5.5.2)

Moreover, the constant π/2 occurring in the above inequality cannot be replaced by a
smaller constant: for p = 1, the estimate is sharp.

Using this result we can directly obtain an estimate for the discrete eigenvalues of the
IQW. Recall that σ(U0) = σess(U0) = B1,+ ∪ B1,− ∪ B2,+ ∪ B2,−, and that their edges are
denotedB1,+ = [µ1, µ

′
1], etc.; the subindex in the µi’s can be dropped becauseB1,+ = B1,−

and B2,+ = B2,−.

Corollary 5.2. Consider an IQW satisfying (H0), and suppose it is p-summable for some
p ≥ 1. Then, the following estimate holds:

∑

eiω∈σd(U)

dist(eiω, σ(U0))p ≤ cp
∑

x∈Z

∆(x)p, (5.5.3)

with cp > 0 a constant independent of V and which depends only on p.

Proof. We apply Theorem 5.3 for p = 1. Since any extended enumeration of U0 is a (pos-
sibly infinite) sequence containing only the extremes of the bands, the only non-vanishing
terms of the sum are obtained choosing eiω ∈ σd(U). Taking the minimum over all possible
choices guarantees that the existence bound (5.5.2) can be applied. We have that

dist(eiω, σ(U0))p = min
1≤i≤2

{|eiω − µi|p, |eiω − µ′i|p}. (5.5.4)

In terms of ∆(x) = ||I4 − V (x)||F = ||I4 − V (x)||S2 , from equivalence of norms there is
a constant cp > 0 such that the right-hand side of (5.5.3) is

(π
2

)p
||I − V||pSp =

(π
2

)p∑

x

||I4 − V (x)||pp ≤ cp
∑

x∈Z

∆(x)p. (5.5.5)
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5.5.2 Discrete eigenvalue estimates II
The following result, due to Hansmann [Han13], is an application to unitary operators of
estimation of discrete spectra. It applies to the Schatten classes p > 1.

Theorem 5.4 (see [Han13] Th. 2). Let U ∈ L(H) be unitary and σ(U) 6= T. Let V ∈
L(H), such that V − U ∈ Sp(H) for some p > 1. Let τ ∈ T \ (σ(U) ∪ σ(V )). Then

∑

λ∈σd(V )

dist(λ, σ(U))p

|τ − λ|p ≤ cp||(V − τI)−1 − (U − τI)−1||pSp , (5.5.6)

where cp > 0 is a constant which depends only on p.

Note that the previous estimate involves a weighted sum respect to a point τ ∈ T that
is not in the spectrum of U . Such τ always exists provided that we exclude the trivial cases
(either r1 or r2 belong to the edges of [0, 1]). Also recall that σ(U0) ⊂ σ(U). In our setting,
we derive the following estimate.

Corollary 5.3. Consider an IQW satisfying (H0), and assume that the interaction is p-
summable for some p > 1. Let τ ∈ T \ σ(U). Then

∑

eiω∈σd(U)

dist(eiω, σ(U0))p

|τ − eiω|p ≤ cp
dist(τ, σ(U0))p dist(τ, σ(U))p

∑

x∈Z

∆p(x), (5.5.7)

where cp > 0 is a constant which depends only on p.

Proof. Since σ(U0) 6= T, Theorem 5.4 applies, giving

∑

eiω∈σd(U)

dist(eiω, σ(U0))p

|τ − eiω|p ≤ cp||R(U , τ)−R(U0, τ)||pSp . (5.5.8)

When the resolvent of two operators is evaluated at the same point, we can factor their
difference via the second resolvent identity, namely for τ ∈ ρ(U), we have that

R(U , τ)−R(U0, τ) = R(U0, τ)(U0 − τI)R(U , τ)−R(U0, τ)(U − τI)R(U , τ)

= R(U0, τ) (U0 − τI − U + τI)R(U , τ)

= R(U0, τ)(U0 − U)R(U , τ).

Since U0 − U = U0(I − V), then

||R(U , τ)−R(U0, τ)||Sp = ||R(U , τ)U0(I − V)R(U , τ)||Sp
≤ ||R(U0, τ)|| ||I − V||Sp ||R(U , τ)||

≤ ||I − V||Sp
dist(τ, σ(U0)) dist(τ, σ(U))

.

(5.5.9)

In the last step we used that U and U0 are normal. To conclude we combine (5.5.8), (5.5.9)
and equivalence of norms as in (5.5.5) (the constant cp is generic).

v6



99 CHAPTER 5. SPECTRAL PROPERTIES OF INTERACTING QUANTUM WALKS

Lastly, we note that for any eiω ∈ σd(U) and τ ∈ T \ σ(U),

1

max
1≤i≤2

{|τ − µi|, |τ − µ′i|}
≤ 1

|τ − eiω| ≤
1

min
1≤i≤2

{|τ − µi|, |τ − µ′i|}
, (5.5.10)

and consequently the term |τ − eiω| can be extracted from the sum (5.5.7), thus giving

∑

eiω∈σd(U)

dist(eiω, σ(U0))p ≤ cp

max
1≤i≤2

{|τ − µi|p, |τ − µ′i|p}
dist(τ, σ(U0))p dist(τ, σ(U))p

∑

x∈Z

∆p(x). (5.5.11)

Clearly, inequality (5.5.3) is related to (5.5.11) but the latter incorporates a τ -dependent
coefficient that is expected to be greater than 1, so in this respect inequality (5.5.3) is better.

5.6 Eigenvalue problem
This section is devoted to the eigenvalue problem associated to the IQW in the relative
momentum Hilbert space, Ĥrel. = L2(T;C4), i.e. the total momentum p is fixed. In
Proposition 5.2 it was shown that the relevant object of study is the integral equation

(Û ψ̂)(k) = Û0(k) · 1

2π

∫ π

−π
V̂ (k − k′)ψ̂(k′)dk′, k ∈ T. (5.6.1)

Since Û is a unitary operator, its eigenvalues lie on the unit circle S = {z ∈ C : |z| = 1},
and the eigenvalue problem is to solve

Û ψ̂ = eiωψ̂ for some non-trivial ψ̂ ∈ Ĥrel.. (5.6.2)

The main difficulty posed by (5.6.1) is that it has a distributional kernel, and since it
is not in general a regular function, the convolution integral is not a compact operator and
standard methods do not apply straightforwardly. To tackle this problem we proceed in
three steps. First, we show that decoupling the interaction at the contact point (x = 0) from
long-range interactions, there is a new integral operator, with well-behaved kernel (under
suitable hypothesis on the decay rate of the interaction). Second, we formally solve the
eigenvalue problem via analytic Fredholm theory, and identify the objects which condition
the existence of eigenvalues of the IQW. Third, we transform the eigenvalue problem (5.6.2)
into an algebraic problem that is suitable for numerical computations.

5.6.1 Decoupling the integral equation at the contact point
The even and odd parts of V are

V (x) =
V (x) + V (−x)

2
+
V (x)− V (−x)

2
= Ve(x) + Vo(x). (5.6.3)
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Then

V̂ (k) =
∞∑

x=−∞

e−ikxV (x) =
∞∑

x=−∞

e−ikx (I4 + Ve(x)− I4 + Vo(x))

=
∞∑

x=−∞

e−ikxI4 − (I4 − V (0))−
∞∑

x=1

2(I4 − Ve(x)) cos kx− i
∞∑

x=1

2Vo(x) sin kx.

Assuming that V is radial, then it is an even function of the relative position x, implying
that Vo = 0 and

V̂ (k) = 2πδ(k)I4 −D(0)−G(k), (5.6.4)

with

G(k) :=
∞∑

x=1

2D(x) cos kx, D(x) = I4 − V (x). (5.6.5)

Remark 5.6. The series in (5.6.5) is convergent in general in the sense of distributions, be-
cause the general term is clearly a sequence of slow growth (using that V is vanishing at
infinity). For a broad class of interactions, G(k) is a regular function -in particular continu-
ous in T-. Let us assume, on top of (H0), that (I−V) ∈ S1, which we saw in Corollary 5.5
that is equivalent to the series of general term ∆(x) = ||D(x)||F being finite. A standard
argument allows to conclude that Gij(k) ∈ C(T), i, j = 1, . . . , 4. In fact, the Weierstrass

M-test applies, since ||D(x) cos kx||F ≤ ∆(x) and the series
∞∑
x=1

∆(x) converges, hence

the series in (5.6.5) converges uniformly on T; by the uniform limit theorem, this limit is
also a continuous function, since each D(x) cos kx is continuous in k.

Let
N0ψ̂ :=

1

2π

∫ π

−π
ψ̂(k)dk = ψ(0) (5.6.6)

denote the projection onto the zeroth component of the relative distance. Let G denote the
integral operator in T with associated kernel G, i.e.

(Gψ̂)(k) :=
1

2π

∫ π

−π
G(k − k′)ψ̂(k′)dk′, k ∈ T. (5.6.7)

Making the corresponding substitutions into (5.6.1), we find that an eigenvector ψ̂ of Û
must sastify

eiωψ̂ = Û0ψ̂ − Û0D(0)N0ψ̂ − Û0Gψ̂, (5.6.8)

which upon rearranging becomes

D(0)N0ψ̂ + Gψ̂ = Û−1
0 (Û0 − eiω)ψ̂. (5.6.9)

We have thus decoupled the interaction at the contact point, x = 0, with the term
arising when the particles are at relative position x > 0. The non-local interactions infor-
mation is contained in the integral equation with kernel G(k). We stress that related works
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[AAM+12] on IQWs have considered the contact interaction, that is, G identically zero
(this important case is revisited in detail in Subsection 5.7.1). In the following sections we
embark on the analysis of the general case given by (5.6.9).

5.6.2 Formal solution
In the following we shall work under the hypothesis that G is a compact operator. As
already discussed in Remark 5.6, assuming that the IQW is trace-class guarantees that the
kernel G(k) is continuous on T. In this situation G is indeed compact, as can be deduced
from the following more general result.

Theorem 5.5 (see [GH10]). Let K be a bounded linear operator in the Hilbert space
Lp(T)⊗ Cd, d ≥ 1, 1 ≤ p ≤ ∞, given by the equality

(Kψ̂)(k) =
1

2π

∫ π

−π
K(k − k′)ψ̂(k′) dk′, k ∈ T, (5.6.10)

where K(k) ∈Md(L
q(T;C)), q ≥ 1. Then for every p the operator K is compact.

To go further it is convenient to make a couple of definitions. First, we define a modified
resolventR0 for eiω /∈ σ(Û0), (R0(eiω)ψ̂)(k) = R0(eiω, k)ψ̂(k) ∀ψ̂ ∈ Ĥrel., with

R0(eiω, k) := (Û0(k)− eiω)−1Û0(k), k ∈ T. (5.6.11)

Remark 5.7. The objectR0(eiω), instead of the resolvent itself, has already appeared in the
context of perturbations of unitary operators, see for instance [KK70], [Joy94]. To see this
more clearly, let us go back to the general picture and consider the problem U = U0V ,
where U,U0, V are unitary operators. Writing the eigenvalue problem Uψ = λψ in the
form (U0 − λ)ψ = U0(I − V )ψ, it is plain that ψ = R0(λ)(I − V )ψ for λ /∈ σ(U0).

Second, we define

A(z) =
1

2π

∫

T
(I −R0(z)G)−1R0(z, k) dk. (5.6.12)

Note that A(z) ∈M4(C), and we are assuming that z /∈ σ(Û0) and that (I −R0(z)G)−1 ∈
L(Ĥrel.). The validity of these hypothesis is discussed below. Here R0(z, k) = (Û0(k) −
z)−1Û0(k) analytically extends (5.6.11) to the region C \ σ(Û0) (by region we mean a
connected and open set, which holds because σ(Û0) is always closed5).

The formal solution of the eigenvalue problem (5.6.2) can be given as follows.

Theorem 5.6. Consider an IQW with an interaction satisfying hypothesis (H0), and that
is also trace-class. Assume that for some eiω /∈ σ(Û0), the operator (I − R0(eiω)G) is
invertible. Then, eiω ∈ σp(U) if and only if

1 ∈ σ
(
A(eiω)D(0)

)
. (5.6.13)

5Of course connectedness holds provided that we avoid the trivial cases r1 or r2 ∈ {0, 1}, in which
σ(Û0) = S.
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Proof. Since eiω /∈ σ(Û0),R0 is a well-defined bounded linear operator in Ĥrel.. Multiply-
ing (5.6.9) from the left byR0, we obtain

R0(eiω)D(0)N0ψ̂ +R0(eiω)Gψ̂ = ψ̂, (5.6.14)

which is equivalent to

R0(eiω)D(0)N0ψ̂ = (I −R0(eiω)G)ψ̂. (5.6.15)

Since by hypothesis (I −R0(eiω)G) is invertible,

ψ̂ = (I −R0(eiω)G)−1R0(eiω)D(0)N0ψ̂. (5.6.16)

Integrating in T, and since N0ψ̂ = ψ(0), we get

1

2π

∫

T
ψ̂(k)dk =

[
1

2π

∫

T
(I −R0(eiω)G)−1R0(eiω, k)dk

]
D(0)ψ(0), (5.6.17)

hence
ψ(0) = A(eiω)D(0)ψ(0), (5.6.18)

which holds for a non-trivial ψ(0) if and only if Ker (I −A(eiω)D(0)) 6= {0}, equivalently
if and only if (5.6.13) holds.

The basic information about the existence or not of the inverse of (I − R0(eiω)G) is
contained in the following standard result, known as the analytic6 Fredholm alternative. As
a preparation the following remark will be useful.

Remark 5.8. We continue assuming that the interaction is trace-class, thus G is compact
from Theorem 5.5 and in particular ||G|| is finite, and consequently the operatorR0(z)G is
a compact analytic operator-valued function for each z ∈ D, with D = C \ σ(Û0) (recall
that compact operators are a two-sided ideal in L(H)). Here analyticity derives from the
fact that the resolvent of any bounded linear operator is analytic in its resolvent set7.

Theorem 5.7 (see [Yaf91], Ch. I, Sect. 8). Let D ⊂ C be a region and letM(z) be an
analytic operator-valued function on D such thatM(z) is a compact operator in a Hilbert
space for each z ∈ D. Then, either:

1. (I −M(z))−1 exists for no z ∈ D; or

2. (I −M(z))−1 exists for all z ∈ D \D0, where D0 is a discrete subset of D. In this
case, (I −M(z))−1 is meromorphic8 in D with possible poles belonging to D0.

6Recall that an operator-valued function T (λ) which maps a subset of C into L(H) is analytic at λ0 if
T (λ) = T0 + (λ − λ0)T1 + (λ − λ0)2T2 + . . ., and where each Ti is in L(H) and the series converges for
each λ in some neighborhood of λ0.

7See for instance [GGK03].
8Recall that a function f is said to be meromorphic in an open set Ω ⊂ C if there is a set Ω0 ⊂ Ω such

that: (i) Ω0 is a discrete subset of Ω (that is, it has no limit points in Ω); (ii) f is analytic in Ω \Ω0; (iii) f has
a pole (of finite order) at each point of Ω0. See for instance [Rud87] Ch. 10.
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As it turns out, the first situation of Theorem 5.7 can be excluded by the following
argument. It is well-known that for all T ∈ L(H) with ||T || < 1, the inverse of (I − T )
exists9. For z ∈ D = C\σ(Û0), using the usual resolvent upper bound for normal operators,

||R0(z)G|| ≤ ||(Û0 − z)−1Û0|| ||G|| ≤
||G||

dist(z, σ(Û0))
. (5.6.19)

Thus the left-hand side is bounded above by 1 provided that we choose |z| > 1 + ||G||. To
see this, note that dist(z, σ(Û0)) = infµ∈σ(Û0) |z− µ| ≥ |z| − 1. Consequently there always
exist z ∈ D such that I −R0(z)G is invertible and this rules out case 1 of Theorem 5.7.

Hence the IQW has (at least one) eigenvalue provided condition (5.6.18) of Theorem
5.6 is satisfied in the allowed set, i.e. there exists eiω ∈ D \D0 (here D0 is a discrete subset
of D, i.e. it does not contain limit points in D) such that 1 ∈ σ

(
A(eiω)D(0)

)
. Moreover

we know that (I −R0(z)G)−1 exists for all z ∈ D \D0 and it is meromorphic in D with
possible poles belonging to D0.

The previous discussion raises the following questions:

(Q1) Is A(z) : D \D0 →M4(C) given by Theorem (5.6.12) analytic?

(Q2) Can we give examples where condition 2 of 5.6 is cannot be satisfied, i.e. that there
are not eigenvalues in the gaps?

(Q3) Is the multiplicity of 1 as an eigenvalue of A(eiω)D(0) equal to the multiplicity of
eiω as an element in σp(U)?

(Q4) Can we rule out the existence of embedded eigenvalues in the continuous spectrum?

While (Q3) and (Q4) are left as future work, in the remaining part of this subsection we
answer (Q1) and (Q2).

Proposition 5.8. Let D = C \ σ(Û0), and D0 a discrete subset of D such that the operator
(I − R0(z)G)−1 is meromorphic in D, and that (I − R0(z)G)−1ψ̂(k) ∈ C(T;C4) for all
ψ(k) ∈ C∞(T;C4). Then the matrix-valued function A : D \D0 →M4(C),

A(z) =
1

2π

∫

T
(I −R0(z)G)−1R0(z, k) dk (5.6.20)

is analytic in D \D0.

Proof. We proceed in two steps, first proving continuity and then deriving analyticity as a
consequence of Morera’s theorem.

Continuity. Since (I − R0(z)G)−1 is analytic in D \ D0, and R0(z) is analytic in
D, then their product is analytic at D \ D0, because analytic functions form a ring. Let
z0 ∈ D \D0, and choose δ0 > 0 such that B(z0, δ0) = {z ∈ C : |z − z0| < δ} ⊂ D \D0.
For z ∈ B(z0, δ0), (I −R0(z)G)−1R0(z, k) is continuous as a function of (z, k) and hence

9See for instance [GGK03] Section 2.8.
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uniformly continuous on B(z0, δ0) × [−π, π]. Thus, given ε > 0 there exists δ1 > 0 such
that

||(I −R0(z)G)−1R0(z, k)− (I −R0(z0)G)−1R0(z0, k)|| < ε. (5.6.21)

Hence for δ = min{δ0, δ1}, from (5.6.20) we deduce

||A(z)− A(z0)|| < ε (5.6.22)

for all z ∈ B(z0, δ).
Analyticity. We apply Morera’s Theorem. Given any closed piecewise C1 curve γ in

D \D0,
∫

γ

A(z)dz =
1

2π

∫ π

−π

[∫

γ

(I −R0(z)G)−1R0(z, k)dz

]
dk = 0. (5.6.23)

Here the change in the order of integration is justified by continuity of the integrand on
int(γ) × [−π, π], and the analyticity of the integrand implies that the integral around γ is
zero for all k ∈ [−π, π].

An interesting consequence is that the interaction at the contact point has a prominent
role for the non-existence of eigenvalues, and this remark allows to answer (Q2). Consider
an IQW which satisfies hypothesis (H0), and that is also trace-class. Let V (0) = I4 (i.e. the
interaction at the contact point vanishes), and arbitarary V (x) for |x| ≥ 1. Since D(0) = 0,
from Theorem 5.6, the IQW cannot have eigenvalues in the gaps of its continuous spectrum
in all points where (I − R0(eiω)G is invertible. In fact in the same lines we can deduce a
slightly more general consequence. The key is to apply the previous reasoning to the case
when V (0) is taken “sufficiently” close to the identity.

Corollary 5.4. Consider an IQW which satisfies hypothesis (H0), and that is also trace-
class. Then eiω ∈ (D \D0) ∩ S is such that eiω /∈ σp(U) ∩ (S \ σac(U)) if

||D(0)|| < 2π∫ π

−π
||(I −R0(eiω)G)−1R0(eiω, k)||dk

. (5.6.24)

In particular, the IQW has no eigenvalues in the gaps of the continuous spectrum provided
that

||D(0)|| < 2π

max
z∈(D\D0)∩S

∫ π

−π
||(I −R0(eiω)G)−1R0(z, k)||dk

. (5.6.25)

Proof. If r(A(z)D(0)) < 1, where r(·) denotes the spectral radius, then the eigenvalues
of A(z)D(0) are in the open unit disk D, and in particular 1 cannot be an eigenvalue, thus
condition 2 of Theorem 5.6 cannot be satisfied. From Gelfand’s formula, r(A(z)D(0)) ≤
||A(z)D(0)||, where || · || denotes any matrix norm10 (although in the examples we choose

10See [HJ12], Theorem 5.6.9.
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the Frobenius norm). The bounds above follow from

||A(z)D(0)|| ≤ ||D(0)|| 1

2π

∫ π

−π
||(I −R0(z)G)−1R0(z, k)||dk (5.6.26)

for z ∈ (D \D0) ∩ S.

5.6.3 Reducing the integral equation to an algebraic system

From (5.6.5), we have formally that

G(k − k′) =
∞∑

x=1

2D(x) cos(k − k′)x (5.6.27a)

=
∞∑

x=1

2D(x) cos kx cos k′x+
∞∑

x=1

2D(x) sin kx sin k′x. (5.6.27b)

In the following we restrict to the case where (I − V) is trace class. As discussed in
Remark 5.6, in this case both series appearing in (5.6.27b), seen as functions of k′, converge
uniformly for each fixed value of k ∈ T. Using this fact we are able to integrate term by
term the cosine and sine series appearing in (5.6.27b) by dominated convergence.11

For each x ∈ Z, D(x) ∈ C4×4 is normal, because

[D(x), D†(x)] = [I4 − V (x), I − V †(x)] = [V (x), V †(x)] = 0, (5.6.30)

from unitarity of V (x). Then from the spectral theorem for normal operators in finite-

11Suppose that we have a complex-valued sequence a = {a(x)}x∈N ⊂ C and we would like to integrate

term by term in T the series
∞∑
x=1

a(x) cos kx, which we assume it converges for each value of k. Consider

the sequence of functions {fn(k)}n∈N defined by the partial sums, i.e. fn(k) =
n∑
x=1

a(x) cos kx. To apply

Lebesgue’s dominated convergence theorem, we need to find a dominating function. In this case, assume that
a ∈ `1(N). For p, q ∈ R such that 1 ≤ p < q ≤ ∞, the inclusion `p(N) ⊂ `q(N) holds. Then a is also in
`2(N), hence it converges to an L2(T) function by the Riesz-Fisher theorem. Moreover, since

|fn(k)| ≤
n∑

x=1

|a(x)| ≤
∞∑

x=1

|a(x)| = ||a||1 (5.6.28)

Then the constant function ||a||1 for all k ∈ T is a summable dominating function for all n ≥ 1 allowing the
interchange, i.e.

∫

T

∞∑

x=1

a(x) cos kx dk = lim
n→∞

∫

T

n∑

x=1

a(x) cos kx dk =

∞∑

x=1

∫

T
a(x) cos kx dk. (5.6.29)
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dimensional spaces, D(x) allows a decomposition

D(x) =
4∑

j=1

dx,jφx,jφ
†
x,j, dx,j = 1− eiλx,j , (5.6.31)

where the vectors {φx,j ∈ C4}4
j=1 are orthonormal and the eigenvalues are {dx,j}4

j=1, with
{eiλx,j}4

j=1 being the eigenvalues of V (x). Let

ĝex,j :=
√

2φx,j cos kx, ĝox,j :=
√

2φx,j sin kx. (5.6.32)

Lemma 5.5. Let {φx,j}j be the normalized eigenvectors of D(x), and let ĝex,j and ĝox,j be
defined as in (5.6.32). Set the multi-index ~m = (s, x, j), for s ∈ {e, o}, x ∈ N0, and
j ∈ {1, . . . , 4}. Then the set {ĝ~m}~m=(s,x,j) forms an orthonormal system in Ĥrel., i.e. the
relation

〈ĝ~m, ĝ~m′〉 = δ~m,~m′ (5.6.33)

holds.

Proof. Equation (5.6.33) is equivalent to

〈ĝex1,j1 , ĝex2,j2〉 = δj1,j2δx1,x2 , (5.6.34a)

〈ĝox1,j1 , ĝox2,j2〉 = δj1,j2δx1,x2 , (5.6.34b)

〈ĝex,j, ĝox′,j′〉 = 0. (5.6.34c)

Beginning with the first equation, we compute

〈ĝex1,j1 , ĝex2,j2〉 =
1

2π

∫ π

−π
ĝe †x1,j1 ĝ

e
x2,j1

dk

=
1

2π

∫ π

−π
2φ†x1,j1φx2,j2 cos kx1 cos kx2 dk

= φ†x1,j1φx2,j2
1

π

∫ π

−π

cos k(x1 − x2) + cos k(x1 + x2)

2
dk

= δj1,j2δx1,x2 .

For the other cases it follows in a similar way, applying the rules of products of trigonomet-
ric functions that can be found in many places, for instance see Chapter 1 of [Tol62].
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We now substitute (5.6.27b) into (5.6.7), which leads to

(Gψ̂)(k) =
1

2π

∫ π

−π
G(k − k′)ψ̂(k′)dk′

=
1

2π

∫ π

−π

[
∞∑

x=1

2D(x) cos kx cos k′x+
∞∑

x=1

2D(x) sin kx sin k′x

]
ψ̂(k′)dk′

=
∞∑

x=1

2D(x) cos kx

[
1

2π

∫ π

−π
cos k′x ψ̂(k′)dk′

]

+
∞∑

x=1

2D(x) sin kx

[
1

2π

∫ π

−π
sin k′x ψ̂(k′)dk′

]

=
∑

x,j

dx,j
√

2φx,j cos kx

[
1

2π

∫ π

−π

√
2φ†x,j cos k′x ψ̂(k′)dk′

]

+
∑

x,j

dx,j
√

2φx,j sin kx

[
1

2π

∫ π

−π

√
2φ†x,j sin k′x ψ̂(k′)dk′

]
.

The last equation was arranged so that we recognise an inner product. We arrive at

(Gψ̂)(k) =
∞∑

x=1

4∑

j=1

dx,j

(
〈ĝex,j, ψ̂〉ĝex,j(k) + 〈ĝox,j, ψ̂〉ĝox,j(k)

)
. (5.6.35)

Expression (5.6.35) is the canonical decomposition of a compact operator. It is clear that
the spectral decomposition of the integral operator G can be given explicitly once that of
V (x) is known,

σ(G) = {0} ∪ {dx,j : x ∈ N, 1 ≤ j ≤ 4 (with double multiplicity)}. (5.6.36)

Plugging (5.6.35) into the eigenvalue equation (5.6.9), we arrive at

D(0)N0ψ̂ +
∑

x,j

∑

s

dx,j〈ĝsx,j, ψ̂〉ĝsx,j = Û−1
0 (Û0 − eiω)ψ̂. (5.6.37)

The index s refers to the parity of the eigenvectors, either e (even) or o (odd). Note that
the leftmost term is a “source” term, D(0)N0ψ̂ = D(0)ψ(0), independent of k. However it
is not an independent term, since the solution of the equation is linked to it via ψ(0): it is
rather a compatibility condition which specifies that solutions ψ̂ of (5.6.9) must satisfy Eq.
(5.6.6).

To conclude, we project (5.6.37) into the basis {ĝ~m}~m, reducing the problem to a (possi-
bly infinite) system of algebraic equations in the coefficients 〈ĝ~m, ψ̂〉. Multiplying (5.6.37)
from the left byR0, we arrive at

R0(eiω)D(0)N0ψ̂ +
∑

~m: x≥1

dx,j〈ĝ~m, ψ̂〉R0(eiω)ĝ~m = ψ̂. (5.6.38)
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We summarize the content of this section in the following theorem.

Theorem 5.8. Consider the eigenvalue problem for Û as in (5.6.1)-(5.6.2). Assume that
(H0) holds, and additionally that (I−V) ∈ S1. Let eiω /∈ σ(Û0) for some ω ∈ T. Then, eiω

is an eigenvalue of Û with associated eigenvector ψ̂ ∈ Ĥrel. if and only if ψ̂ is a non-trivial
solution of Eq. (5.6.38) for the same value of ω.

A system of equations as that given by (5.6.38), is typically solved by projecting on the
basis elements.

Finite range interactions. Rank N interactions are translated into the following system
of equations. Let dx,j be zero for x ≥ N . Projecting Eq. (5.6.38) into ĝs′x′,j′ , with s′ = e, o,
we find

〈ĝs′x′,j′ , R0D(0)N0ψ̂〉+
N∑

x=1

4∑

j=1

∑

s=e,o

dx,j〈ĝsx,j, ψ̂〉〈ĝs
′

x′,j′ , R0ĝ
s
x,j〉 = 〈ĝs′x′,j′ , ψ̂〉. (5.6.39)

Infinite range interactions. Infinite range interactions are translated into the following
system of equations. Projecting Eq. (5.6.38) into ĝs′x′,j′ ,

〈ĝs′x′,j′ , R0ϕ0〉+
∞∑

x=1

4∑

j=1

∑

s=e,o

dx,j〈ĝsx,j, ψ̂〉〈ĝs
′

x′,j′ , R0ĝ
s
x,j〉 = 〈ĝs′x′,j′ , ψ̂〉. (5.6.40)

5.6.3.1 Further properties ofR0(eiω)

We denote by {E0(·)} the spectral family associated to Û0, i.e.

〈ψ̂, Ûn0 ψ̂〉 =

∫

T
einθd〈ψ̂, E0(θ)ψ̂〉 =

∫

T
einθdµψ̂(θ), (5.6.41)

for all ψ̂ ∈ Ĥrel. and n ∈ Z. Let r 6= 1 and θ ∈ T, then

R0(reiθ) = (Û0 − reiθ)−1Û0 = (I − reiθÛ∗0 )−1, (5.6.42)

and we let
2πδr(E0, θ) = R0(reiθ)−R0(r−1eiθ). (5.6.43)

Lemma 5.6. (see [KK70]) For any pair of vectors ψ̂, φ̂ ∈ Ĥ2,

lim
r→1−
〈ψ̂, δr(E0, θ)φ̂〉 =

d

dθ
〈ψ̂, E0,a.c.(θ)φ̂〉, a.e. θ ∈ T (5.6.44)

where E0,a.c.(θ) is the absolutely continuous part of the spectral projector of Û0 at eiθ.

The following result which we adapt to our context, appears in [AC11]. It assumes that
Û0 is purely absolutely continuous, which always holds in the IQW.
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Theorem 5.9. (see [AC11]) Consider an IQW satisfying (H0). Assume that such that for
some eiω ∈ T and some ĝ~m′ , the limit

v̂~m′ := lim
r→1−

(Û0 − reiω)−1Û0ĝ~m′ (5.6.45)

exists. Then,

〈ĝ~m, v̂~m′〉 =
1

2
δ~m,~m′ +

i

2

∫

S
cot

(
ω − θ

2

)
d〈ĝ~m, E0(θ)ĝ~m′〉. (5.6.46)

Moreover,
〈ĝ~m, v̂~m′〉 = −〈ĝ~m′ , v̂~m〉. (5.6.47)

Let us note that the limit (5.6.45) always exists if we choose eiω /∈ σ(Û0). Thus, formu-
las (5.6.46)-(5.6.47) are another way of writing the coefficients appearing in the algebraic
system (5.6.40).

Suppose otherwise that eiω ∈ σ(U0), that is, it is embedded in the continuous spectrum,
and we ask if the limit (5.6.45) exists. Without giving a complete answer to the question,
below we reformulate it in terms of the eigenvectors of the free QW, that were computer
explicitly (see 5.3.3.2). Consider the spectral decomposition of Û0(k),

Û0(k) =
∑

`=1,2

eiλ`,+ |u`,+〉〈u`,+|+ eiλ`,−|u`,−〉〈u`,−|. (5.6.48)

Then, for r < 1,

(Û0(k)− reiω)−1 =
∑

`=1,2

1

eiλ`,+ − reiω
|u`,+〉〈u`,+|+

1

eiλ`,− − reiω
|u`,−〉〈u`,−|, (5.6.49)

and consequently

v̂~m = lim
r→1−

(Û0 − reiω)−1Û0ĝ~m

= lim
r→1−

∑

`=1,2

eiλ`,+

eiλ`,+ − reiω
|u`,+〉〈u`,+, ĝ~m〉+

eiλ`,−

eiλ`,− − reiω
|u`,−〉〈u`,−, ĝ~m〉.

(5.6.50)

Integrals of the form

c`,±,s(x) := 〈u`,±, ĝ~m〉 =
1√
2π

∫ π

−π
u†`,±(k) · φx,j

{
cos kx
sin kx

}
dk (5.6.51)

can in general be evaluated via residues, and the result is a function of x only (not of
k). Suppose that there is k ∈ T such that, say, λ1,+(k) = ω mod 2π. Then we have a
divergence, i.e. eiλ1,+ − reiω → 0 when r → 1−. For the limit to exist we require that
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v̂~m ∈ L2(T,C4), and in turn this implies that limits of the form

lim
r→1−

〈u1,+, u1,+〉
|eiλ1,+ − reiω|2 (5.6.52)

exist. The existence of this kind of limit can be explored with the help of the formulae for
the eigenvectors obtained in Subsection 5.3.3.2.

To conclude this section, let us take a closer look at the object 〈ĝs′x′,j′ , R0(eiω)ĝsx,j〉. We
can exploit the property that Û0(k) depends on k in a simple way, namely that rows 2
and 3 are multiplied by e−2ik and e2ik respectively, the other rows being independent of k
(see Proposition 5.2). Let us write (Û0(k) − eiω)−1 = d0(eiω)−1cof(Û0(k) − eiω)T, where
cof(·) is the cofactor matrix, and d0(eiω) = det(Û0(k) − eiω). Seen now as functions of
k ∈ T with fixed eiω, and setting µ = e2ik, both d0 and the matrix elements of the cofactor
matrix are polynomials in µ, µ−1 of order 1. Then, the matrix elements of R0(eiω, k) =
(Û0(k)− eiω)−1Û0(k) are rational functions on µ of order 4, more precisely,

[R0(eiω, µ)]ij =

∑2
`=−2 α

ij
` µ

`

∑1
`=−1 β

ij
` µ

`
, µ = e2ik. (5.6.53)

Then

〈ĝs′x′,j′ , R0(eiω)ĝsx,j〉 = 2φ†x,j

[
1

2π

∫ π

−π

{
cos kx′

sin kx′

}
R0(eiω, k)

{
cos kx
sin kx

}
dk

]
φx,j

= 2φ†x,jQ(x, x′, s, s′)φx,j.

(5.6.54)

The integral in brackets, Q(x, x′, s, s′) ∈M4(C), can in general be evaluated via com-
plex analysis using (5.6.53) (for instance first computing the zeros of d0, developing in
simple fractions and applying Cauchy’s residue theorem12). Component-wise we have af-

12Recall that the computation of a trigonometric integral of the form 1
2π

∫ π
−π Q(cos k, sin k)dk, where Q

is a rational function of two variables, which we assume is continuous on S = ∂D, can be reduced to pole
evaluation inside the unit circle via Cauchy’s residue theorem. Recall that if zi is a pole of order n, then

Res(f, zi) =
1

(n− 1)!
lim
z→zi

dn−1

dzn−1
((z − zi)nf(z)) . (5.6.55)

If we let f(z) =
Q
(
1
2

(
z + 1

z

)
, 1
2i

(
z − 1

z

))

iz
, then the following formula holds:

1

2π

∫ π

−π
Q(cos k, sin k) dk = i

∑

zi∈D
Res(f, zi). (5.6.56)
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ter the change of variables µ = e2ik and some elementary manipulations, that

[Q(x, x′, s, s′)]ij = − i

16π

∮

S′
[R0(eiω, µ)]ij µ

−x
′
2
−x

2
−1

{
1 + µx

′

i− iµ−x
′

}{
1 + µx

i− iµ−x

}
dµ.

(5.6.57)

Where S′ = {z ∈ C : z = e2ik, k ∈ T} denotes two loops around the unit circle S.

5.7 Examples

5.7.1 Contact interaction revisited

The case of an IQW with contact (or point) interaction is defined by

V (x) = V0δx,0 + (1− δx,0)I4, x ∈ Z, (5.7.1)

where δx,0 is a Kronecker delta and V0 ∈ U(4), with eigenvalues {eiλj}4
j=1.

The contact interaction was studied in [AAM+12], in particular with the free QW given
by the Hadamard walk and V0 = eigI4. In this setting, the authors found that U admits
eigenvalues that lie in the gaps of the continuous spectrum, and for a fixed initial condition
ψ(0) = ψ− = (0, 1,−1, 0)T/

√
2, the position of the eigenvalues over S was obtained

analytically. They also proved that allowing general V (0) ∈ U(4), the inverse problem can
always be solved.

In this section we revisit the problem of contact interactions. In addition of presenting
some intermediate steps and details not included in [AAM+12], we contribute in several
directions:

(1) We compute in full R0(eiω, k) and A(eiω). We remark that these expressions are
useful because (i) with them one can analyse arbitrary initial conditions; (ii) they
prepare the ground for studying more complicated IQW problems (e.g. non-contact
interactions) in which the free walk is given by the Hadamard walk.

(2) We study and give conditions for the direct problem, that is, the existence of eigen-
values for a given V0 ∈ U(4).

5.7.1.1 Spectrum of Û0 and gap condition

We fix the free walk to be given by Hadamard walks, that is, we set once and for all
C1 = C2 = H (see (5.3.13) of Example 5.3.1). Then, from Proposition 5.2,

Û0(k) =
1

2




e−ip e−ip e−ip e−ip

e−2ik −e−2ik e−2ik −e−2ik

e2ik e2ik −e2ik −e2ik

eip −eip −eip eip


 . (5.7.2)
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Let us consider the band structure of the spectrum. It follows from Remark 5.5 that the
critical values of λ1,±(k) are {0,±π}, and those of λ2,±(k) are {±π/2}. The evaluation
of λ1,±(k) and λ2,±(k) at these special points is straightforward from (5.3.19); the result
appears in Table 5.7.1.

λ1,+(k) λ1,−(k) λ2,+(k) λ2,−(k)

k = 0 −e2i arccos
(

1√
2
sin p/2

)
−e−2i arccos

(
1√
2
sin p/2

)
−1 −1

k = ±π −e−2i arccos
(

1√
2
sin p/2

)
−e2i arccos

(
1√
2
sin p/2

)
−1 −1

k = π/2 1 1 e
2i arccos

(
1√
2
cos p/2

)
e
−2i arccos

(
1√
2
cos p/2

)
k = −π/2 1 1 e

−2i arccos
(

1√
2
cos p/2

)
e
2i arccos

(
1√
2
cos p/2

)

Table 5.7.1: Evaluation of λ1,±(k) and λ2,±(k) for the Hadamard walk at critical points.

5.7.1.2 Eigenvalue problem

Since (5.7.1) implies that dx,j = 0 for x ≥ 1, then the only surviving term is the source
term, because G is identically zero, and the eigenvalue equation (cf. (5.6.9)) isR0(eiω)D(0)N0ψ̂ =
ψ̂. In terms of the notation introduced in Subsection (5.6.2), F (z) = (I −R0(z)G)−1 = I
and consequently

A(eiω) =
1

2π

∫ π

−π
R0(eiω)dk, eiω /∈ σ(U0). (5.7.3)

Theorem (5.6) gives a first characterization of the eigenvalue problem. Clearly for
contact interactions, both (H0) and trace-class conditions are trivially satisfied.

Lemma 5.7. Consider an IQW with a contact interaction, D(x) = δx,0(I4 − V0) with
V0 ∈ U(4). Then,

eiω ∈ σp(U) ⇐⇒ 1 ∈ σ
(
A(eiω)D(0)

)
. (5.7.4)

The following characterization of A(eiω) is a restatement of a result which appears in
[AAM+12].

Lemma 5.8. For eiω /∈ σ(U0), the matrix

I4 − A(eiω)−1 (5.7.5)

is unitary, and

A(eiω) =
I4

2
+

iH(eiω)

2
, (5.7.6)

with H self-adjoint.

Combining Lemma 5.7 with Lemma 5.8, we get a refined condition.
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Theorem 5.10. Consider an IQW with a contact interaction, D(x) = δx,0(I4 − V0), and
let V0 = eigI4 for some g ∈ [−π, π) \ {0}. Then, counting multiplicities,

eiω ∈ σp(U) ⇐⇒ sin g

1− cos g
∈ σ

(
H(eiω)

)
. (5.7.7)

Proof. Let c = 1− eig. From Lemma 5.7, we deduce that

eiω ∈ σp(U) ⇐⇒ 1 ∈ σ (AD(0)) (5.7.8a)
⇐⇒ 1 ∈ σ (cA) (5.7.8b)
⇐⇒ 1/c ∈ σ (A) (5.7.8c)

⇐⇒ 1

2
+

i

2

sin g

1− cos g
∈ σ (A) , (5.7.8d)

in the last equation we used the formula

1

c
=

1

1− eig
=

1

2
+

i

2

sin g

1− cos g
. (5.7.9)

By Lemma 5.8, we find that

eiω ∈ σp(U) ⇐⇒ 1

2
+

i

2

sin g

1− cos g
∈ σ

(
I4

2
+

i

2
H

)
. (5.7.10)

By spectral mapping, this implies

sin g

1− cos g
∈ σ(H(eiω)). (5.7.11)

In particular, the previous result solves the inverse problem. Suppose that we fix the
position of an eigenvalue eiω ∈ S \ σ(Û0) and compute the eigenvalues of H(eiω) (four,
counting multiplicities), which will be real because it is an hermitian matrix. Then since
Im sin g

1−cos g
= R \ {0}, there is always g ∈ [−π, π) \ {0} such that condition (5.7.11) is

satisfied.

5.7.1.3 Evaluation of R0(eiω, k)

Next we compute R0(eiω, k) = (Û0(k)− eiω)−1Û0(k). The inverse was taken symbolically
with the package sagemath13. Let

[R0(eiω, µ)]ij =
αij2 µ

2 + αij1 µ+ αij0
β2µ2 + β1µ+ β0

, µ = e2ik, (5.7.12)

13Some useful references are http://www.sagemath.org/ and http://ask.sagemath.org.
Also the book [CCC+13] is an excellent introduction.
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i, j = 1, . . . , 3. Comparing to the general rational expression (5.6.53), we see that the
Hadamard case is already simpler in the sense that it is of order 2 in µ, instead of being of
order 4.

The determinant is d0(µ) = β2µ
2 + β1µ+ β0 with

β2 = β0 = cosω − cos p (5.7.13a)
β1 = 2 (cos 2ω − cosω cos p) . (5.7.13b)

For the sequel, we are interested in the roots of d0(µ) and its position with respect to
the unit circle.

1. If cosω = cos p, then d0(µ) = βµ with β = −2 sin2 ω. Then d0(µ) = 0 if and only
if µ sin2 ω = 0, so that Z(d0) = {µ1 = 0} if ω /∈ {−π, 0, π} and otherwise it is the
constant null function.

2. If cosω 6= cos p, then d0(µ) = β(µ − µ1)(µ − µ2), with β = cosω − cos p, β 6= 0.
Then

d0(µ) = 0 ⇐⇒ µ2 + 2µf(ω, p) + 1 = 0, (5.7.14)

where
f(ω, p) =

cos 2ω − cosω cos p

cosω − cos p
. (5.7.15)

Then Z(d0) = {µ1 = −f +
√
f 2 − 1, µ2 = −f −

√
f 2 − 1}. We have two sub-

cases:

(a) If |f(ω, p)| ≤ 1, then the roots are one complex conjugate of the other and are
located over S. In particular µ1, µ2 /∈ D.

(b) If |f(ω, p)| > 1, then there are two distinct real roots. In particular:

(b.i) If f > 1 then µ1 ∈ D and µ2 /∈ D.
(b.ii) If f < −1, then µ1 /∈ D and µ2 ∈ D.

The region of (ω, p) ∈ T2 corresponding to each case are outlined below. Let u =
cosω − cos p. Then

if

u > 0

u ≥ sin2 ω

1 + cosω

−1 ≤ f < 1

u <
sin2 ω

1 + cosω

f < −1

u < 0

u > − sin2 ω

1− cosω

f > 1

u ≤ − sin2 ω

1− cosω

−1 < f ≤ 1

The coefficients of R0(eiω, k), sorted by order in µ, are presented in Table 5.7.2. Only
the coefficients of the numerators are shown, since the denominator is common, cf. (5.7.12).
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Coefficient Matrix element

[R0]11 [R0]12 [R0]13 [R0]14

αij2
1
2 (e−iω − e−ip) 1

2 (e−iω − e−ip) 0 0

αij1 e−2iω − e−ip cosω 1
2 (−eiω−ip + 1) 1

2 (−eiω−ip + 1) −ie−ip sinω

αij0
1
2 (e−iω − e−ip) 0 1

2 (e−iω − e−ip) 0

[R0]21 [R0]22 [R0]23 [R0]24

αij2 0 0 0 0

αij1
1
2 (e−iω+ip − 1) e−2iω − e−iω cos p 0 1

2 (−e−iω−ip + 1)

αij0
1
2 (−eiω + eip) cosω − cos p −i sinω 1

2 (eiω − e−ip)
[R0]31 [R0]32 [R0]33 [R0]34

αij2
1
2 (−eiω + eip) −i sinω cosω − cos p 1

2 (eiω − e−ip)
αij1

1
2 (e−iω+ip − 1) 0 e−2iω − e−iω cos p 1

2 (−e−iω−ip + 1)

αij0 0 0 0 0

[R0]41 [R0]42 [R0]43 [R0]44

αij2 0 1
2 (eip − e−iω) 0 1

2 (e−iω − eip)
αij1 −ieip sinω 1

2 (eiω+ip − 1) 1
2 (eiω+ip − 1) e−2iω − eip cosω

αij0 0 0 1
2 (−e−iω + eip) 1

2 (e−iω − eip)

Table 5.7.2: Evaluation of R0(eiω, k).

5.7.1.4 Evaluation of A(eiω) and its spectrum

Using the generic expression (5.7.12) into (5.7.3), we deduce

[A(eiω)]ij =
1

2π

∫ π

−π

αij2 e
4ik + αij1 e

2ik + αij0
β2e4ik + β1e2ik + β0

dk (5.7.16a)

=
1

2π

∮

S′

αij2 µ
2 + αij1 µ+ αij0

β2µ2 + β1µ+ β0

dµ

2iµ
(5.7.16b)

=
∑

µ`∈D

Res
(

[R0(eiω, µ)]ij
µ

, µ`

)
. (5.7.16c)

In the second to third lines we applied Cauchy’s residue theorem; note that the factors of 2
cancel because with µ = e2ik, k ∈ T, we make two loops through the unit circle S (which
we call S′ above). The sum over the residues can be evaluated once we determine the roots
inside the unit circle of the denominator. From the discussion above, there are several cases
depending on the relation between ω and p. Below we compute the formulas for [A(eiω)]ij
together with the relations derived from result (5.7.6), namely

[A]ij + [A]ji = δij (5.7.17a)

[A]ij − [A]ji = i[H]ij. (5.7.17b)
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1. Case cosω = cos p. There is a double pole at 0, and we find that (here β = −2 sin2 ω)

[A]ij = Res

(
[R0(eiω, µ)]ij

µ
=
αij2 µ

2 + αij1 µ+ αij0
βµ2

, µ` = 0

)

= − αij1
2 sin2 ω

.

(5.7.18)

It is particular of this case that we might choose either ω = p or ω = −p. Calcuations
show that in either case, formula (5.7.17a) is correct. With (5.7.17b) we find

H =




cotω 0 0 −i + cotω
0 cotω 0 i− cotω
0 0 cotω i− cotω

i + cotω −i− cotω −i− cotω 3 cotω


 (ω = p), (5.7.19)

and

H =




3 cotω i + cotω i + cotω i + cotω
−i + cotω cotω 0 0
−i + cotω 0 cotω 0
−i + cotω 0 0 cotω


 (ω = −p). (5.7.20)

In either case, the eigenvalues are

σ(H(ω)) = {cosω (doubly degenerate),

2 cotω −
√

3 + 4 cot2 ω, 2 cotω +
√

3 + 4 cot2 ω
}
.

(5.7.21)

2. Case cosω 6= cos p and |f(ω, p)| ≤ 1. There is only a simple pole at z = 0. We find
that (here β = cosω − cos p)

[A]ij = Res

(
[R0(eiω, µ)]ij

µ
=

αij2 µ
2 + αij1 µ+ αij0

βµ(µ− µ1)(µ− µ2)
, µ` = 0

)

=
αij0

cosω − cos p
.

(5.7.22)

Condition (5.7.17a) does not verify. For instance, α33
0 + α33

0 = 0 6= 1. This case is
ill-posed because there are not allowed values of eiω in this region of the (ω, p) ∈ T2

set (in the sense that eiω /∈ σac(U)).

3. Case cosω 6= cos p and |f(ω, p)| > 1. There are two poles inside D. There are two
subcases (here β = cosω − cos p).
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(a) If f(ω, p) > 1. Then µ1 ∈ D, µ2 /∈ D. We find that

[A]ij =
αij2 µ

2
1 + αij1 µ1 + αij0
βµ1(µ1 − µ2)

+
αij0
β

=
µ2

1(αij2 + αij0 ) + µ1α
ij
1

(cosω − cos p)(µ2
1 − 1)

.

(5.7.23)

Calculations show that (5.7.17a) holds.

(b) If f(ω, p) < −1. Then µ1 /∈ D, µ2 ∈ D. We find that

[A]ij =
αij2 µ

2
2 + αij1 µ2 + αij0
βµ2(µ2 − µ1)

+
αij0
β

=
µ2

2(αij2 + αij0 ) + µ2α
ij
1

(cosω − cos p)(µ2
2 − 1)

.

(5.7.24)

Analogously to the previous case, calculations show that (5.7.17a) holds.

5.7.2 Power law decay

In this section we consider an interaction of infinite support. It is given by

V (x) =




1 0 0 0
0 eif(x) 0 0
0 0 eif(x) 0
0 0 0 1


 ∀x ∈ Z, (5.7.25)

where f : Z→ R+ is given by a power law,

f(x) =
g

〈x〉α , (5.7.26)

with 0 ≤ g ≤ π and α > 0. Here x = |x1 − x2| is the relative coordinate.
The p-summability condition is explored in the following lemma.

Lemma 5.9. With the interaction (5.7.25)-(5.7.26), Assumption (H0) holds. Moreover, it
is p-summable for p ≥ 1 if and only if αp > 1.

Proof. Clearly, f(x) → 0 for |x| → ∞, hence V (x) → I4 in the same limit, hence V
vanishes at infinity. It is obviously unitary, and it is radial because f is even. Hence (H0)
holds.

To check p-summability, first consider the series

∞∑

x=1

(
sin

g

2xα

)β
, (5.7.27)
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with 0 ≤ g ≤ π and α, β ≥ 0. For 0 ≤ y ≤ π/2, the bounds 2
π
y ≤ sin y ≤ y hold.

Hence, if we let y = g
2xα

and apply the comparison test with the hyperharmonic series,
then (5.7.27) converges if and only if αβ > 1. As shown in Proposition 5.5, (V − I) ∈ Sp

if and only if the following series is finite:

∑

x∈Z

∆p(x) =
∑

x∈Z

(∑

i,j

|Vij(x)− δij|2
)p/2

=
∑

x∈Z

(
2|1− eif(x)|2

)p/2

=
∑

x∈Z

8p/2| sin(f(x)/2)|p.

Since f(x) = g/〈x〉α, using the summability of (5.7.27) we obtain the claim.

5.7.3 Repulsive interaction
We want to produce a sequence {V (x) : x ∈ Z} satisfying Assumption (H0) and that
additionally has some “repulsive” behaviour at small x. Thus we require that when the
particles are far (|x| >> 1), V (x)→ I4, and when they are close, they shall interact via the
Pauli matrix σx applied to each particle, because it changes (swaps) the direction of motion
of the spin, impeding propagation.

To obtain the properties that we are looking for, the following formula is useful. Its
proof, that we omit, follows from writing the series of the exponential, regrouping, and
using the fact that Pauli matrices square to the identity and pairwise anticommute.

Lemma 5.10. Let θ ∈ R and ~n ∈ R3 a unit vector, i.e. ~n2 = 1. Then

e−iθ~n·~σ = cos(θ)I2 − i sin(θ)~n · ~σ, (5.7.28)

where ~σ = (σx, σy, σz) are the Pauli spin matrices.

From (5.7.28), a representation of σx is eiπ
2

(σx−I2). This suggests how to “connect” the
identity matrix and σx with a unitary path, via eiπ

2
ξ(σx−I2), ξ ∈ [0, 1]. Note that it evaluates

to I2 at ξ = 0, and to σx at ξ = 1, and it is unitary for all intermediate values of ξ. We get
an explicit formula using Lemma 5.10,

eiπ
2
ξ(σx−I2) = e−iπ

2
ξ cos(πξ/2)I2 + i sin(πξ/2)e−iπ

2
ξσx

= e−iπ
2
ξ

(
cos(πξ/2) i sin(πξ/2)
i sin(πξ/2) cos(πξ/2)

)
. (5.7.29)

Now define
V (x) = eiπ

2
ξ1(x)(σx−I2) ⊗ eiπ

2
ξ2(x)(σx−I2). (5.7.30)

The choice ξ1(x) = ξ2(x) corresponds to a pair of particles of the same species, and we

v6



119CHAPTER 5. SPECTRAL PROPERTIES OF INTERACTING QUANTUM WALKS

continue with this choice from now on, and we let

ξ(x) =
1

〈x〉α ∀x ∈ Z, (5.7.31)

for some α > 0.

Lemma 5.11. With the interaction (5.7.30)-(5.7.31), Assumption (H0) holds. Moreover, it
is p-summable for p ≥ 1 if and only if αp > 1.

Proof. It remains only to check the second statement. Computation gives

||V (x)− I4||pF = 8p/2| sin y(x)|p (3− 2 sin y(x))p/2 , (5.7.32)

where y(x) = πξ(x)
2

with ξ(x) = 〈x〉−α. Note that 0 ≤ y(x) ≤ π/2 for any x ∈ Z. Since

| sin y(x)|p ≤ | sin y(x)|p (3− 2 sin y(x))p/2 ≤ 5p/2| sin y(x)|p, (5.7.33)

comparison against (5.7.27) allows to conclude.

5.8 Summary
Inspired by the approach in [AAM+12], we have extended the analysis of the point-interacting
QW. More precisely, we have looked into several new directions:

(i) we do not restrict to Hadamard walks;

(ii) we settle the problem for interactions of arbitrary range, which depend on the spin
degrees of freedom;

(iii) we propose new examples of interactions for which the methods apply.

For (i), the analysis of the free walk, though harder than in the one-dimensional case,
can still be done with full generality on the parameters. Due to the link between the QWs
eigenvalues, the arc length of the bands is not only controlled by r but also by the angular
parts (α) and the total momentum p.

For (ii), the eigenvalue problem was formulated as the existence of solutions to a system
of Fredholm integral equations of the second kind with a constraint. It was expressed in
terms of the condition 1 ∈ σ(A(eiω)D(0)), which involves D(0) = I4 − V (0) and the
four-by-four matrix A(eiω) which depends analytically on eiω for eiω /∈ σ(U0).

Finally, our progress with (iii) is at a more exploratory stage. We proposed several
examples and showed that they fit into the model, i.e. satisfying hypothesis (H0) and that
are also trace-class. The natural continuation is either to attempt solving the associated
system of integral equations, or to prove that it doesn’t allow solutions, proving that some
cases do not allow for eigenvalues. Because of its difficulty, it is to be expected that one
has to resort to numerics for proceeding further. Another interesting question is to give
information about the eigenvalue counting the IQW, which may be infinite in the general
case.
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Chapter 6

Conclusion

Our goal has been to further develop conceptually and mathematically two well-known
models of computation, quantum walks and quantum cellular automata, for their potential
application in quantum simulation devices, or as toy models to explore foundations of
physics. Let us summarize our results and provide perspectives for future works.

6.1 Summary of results
In the first part of this thesis we quantified how good quantum walks are as simulation
schemes. In Chapter 2, our main contribution was to provide a formal, analytic derivation
of both consistency and convergence. The novelty of the approach was to import a powerful
technique of numerical analysis, namely the Lax equivalence theory, in order to provide a
formal proof of convergence of solutions between the QW and the associated Dirac Cauchy
problem in the appropriate function spaces where it is known to be well-posed. This method
avoids the trouble of previous works (e.g. [Str07]) which rely on solving the QW in order
to compare its solution against that of the Dirac equation. We believe that having adapted
this method is a contribution by itself: indeed, for quantum simulation schemes without
known solutions, the procedure will still apply.

We also addressed the question of the discretization of the input wavefunction φ. Alto-
gether we prove that for any time x0 and a sufficiently regular initial condition φ, the proba-
bility of observing a discrepancy between the iterated walk Reconstruct(W x0/ε

ε Discretize(φ))
and the solution of the Dirac equation ψ(x0) = T (x0)φ, goes to zero, quadratically, as the
discretization step ε goes to zero. Contrary to previous works, we do not limit ourselves to
just consistency proof, nor to the massless case, nor to the (1 + 1)-dimensional case.

In Chapter 3 we considered the Dirac QW, a natural candidate for being exactly dis-
crete Lorentz covariant, given that it has the Dirac equation as continuum limit, which is
of course covariant. Unfortunately, we proved the Dirac QW to be covariant only up to
first-order in the lattice spacing ε. This is inconvenient if ε is considered a physically rele-
vant quantity, i.e. if spacetime is really thought of as discrete. But if ε is thought of as an
infinitesimal, then the second-order failure of Lorentz-covariance is irrelevant. Thus, this
result encourages us to take the view that ε is akin to infinitesimals in non-standard analy-
sis. Then, the Dirac QW would be understood as describing an infinitesimal time evolution,
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but in the same formalism as that of discrete time evolutions. As an alternative language
to the Hamiltonian formalism, it has the advantage of sticking to local unitary interactions
[ANW11a], and that of providing a quantum simulation algorithm.

Exact Lorentz covariance, however, is possible even for finite ε. We introduced the
Clock QW, which achieves this property. However the effective dimension of its internal
degree of freedom depends on the observer. Furthermore, the Clock QW does not admit a
continuum limit, unless we appropriately sample the points of the lattice. Yet, its decoupled
form does have a continuum limit, which is the Klein-Gordon Equation. It is interesting to
see that there is a QW evolution which can be interpreted as a relativistic particle (since it
satisfies the KG Equation), and yet not have a continuum limit for itself.

Actually, one may argue that the very definition of the Lorentz transform should not de-
pend on the QW under consideration. Similarly, one may argue that the transformed wave
function should be a solution of the original QW, without modifications of its parameters.
However, recall that (1 + 1) dimensional, integral Lorentz transforms are trivial unless we
introduce a global rescaling. Thus the discrete Lorentz transform of this may be thought of
as a biased zooming in. In order to fill in the zoomed in region, one generally has to use
the QW in a weakened, reparameterized manner.

We introduced the Clock QCA, which is exactly covariant and has a three dimensional
state space for its wires, and whose parameters do not depend on the scale.

In Chapter 4 we introduced Paired QWs, which are both a subclass of the general
QWs described above, and generalization of the most usual QWs found in the literature.
Basically, (i) the input is allowed a simple prior encoding and (ii) the local unitary ‘coin’
is allowed to act on larger than usual neighbourhoods. Moreover, the coin is allowed to
depend on space and time, as in other QW models.

We showed that Paired QWs admit as continuum limit the class of PDEs of form

∂tψ(t, x) = B1∂xψ(t, x) +
1

2
∂xB1ψ(t, x) + iCψ(t, x) (6.1.1)

with B1 and C hermitian and ||B1|| ≤ 1. This class of PDEs includes the Hamiltonian
form of the massive curved Dirac equation in (1 + 1)-dimensions for any bounded metric
in any coordinate system, together with an electromagnetic field. Given the PDE we wish
to simulate, we are able to retro-engineer the corresponding Paired QW.

Finally, in Chapter 5 we studied the 2-particle sector of quantum cellular automata.
The objective was to explore the properties and conditions of existence of discrete eigenval-
ues (that is, isolated eigenvalues of finite algebraic multiplicity) of the IQW. Their physical
interpretation is the presence of bound states, or “molecular binding”. The results extend
previous works since our interactions are of arbitrary range and may act generically on
the spin components. The free evolutions are generic as well. The work was organized
in three steps. First, by Fourier analysis we reduced the problem to a dynamics in the the
relative coordinate k only, for fixed total momentum p. We also studied in detail the spec-
tral properties of the free walk, for generic parameters. Second, we restated the dynamic
equation as a perturbation problem for interactions that are unitary, radial and vanish at in-
finity. Assuming a trace class condition, we provided conditions for the absence of singular
continuous spectrum derived from previous works, and studied Lieb-Thirring estimates for
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the discrete spectrum of the perturbed walk. Third, we formulated the eigenvalue problem
as a system of Fredholm integral equations of the second kind with a constraint. Finally,
we revisited the contact interaction example, and proposed other examples of long range
interactions that can be studied in this formalism.

6.2 Further lines of research
Developments presented in this thesis open several branches of interesting questions that
may be addressed in future projects. We conclude this work by enumerating what we think
are the most interesting and promising lines of future research.

1. In Chapter 2, the method could be generalized for equations of the form

i∂0|ψ〉 = D|ψ〉, with D =
∑

j

Dj, (6.2.1)

such that each exp (−iDj) is a quantum walk. Indeed, the same procedure yields the
QW

W =
∏

j

exp (−iDj) . (6.2.2)

Ultimately, it is the fact the Dirac Hamiltonian is a sum of logarithms of Quantum
Walks, which enables us to model it as the product of these Quantum Walks. It would
be interesting to further extend the method to non-homogeneous Dj’s, for instance
those considered in Chapter 5 the Dirac equation in curved spacetime.

2. The approach of Chapter 3 draws its inspiration from Quantum Information and a
perspective for the future would be to discuss relativistic quantum information the-
ory [AK84, PT04] within this framework. On the other hand, it forms part of a
general trend seeking to model quantum field theoretical phenomena via discrete dy-
namics. For now, little is known on how to build QCA models from first principles,
which admit physically relevant Hamiltonians [DP14, D’A12, Elz14, FS14b, tH13]
as emergent. In this chapter we have identified one such first principle, namely the
Lorentz covariance symmetry. It is interesting to study other fundamental symme-
tries, such as isotropy phenomena, for instance studying the propagation of circular
fronts [SKT05], thereby extending our work to higher dimensions.

3. In the physical discussion of Chapter 3, we pointed out the difficulty to find other
covariant models, not based on the first-order approximation nor on clocked mecha-
nisms. This leaves the following question open: is there a systematic method which
given a QW with coin operator C, decides whether it exists a Lorentz transform Eα,
fα,β such that ECm = Cm′E, i.e. such that the QW is covariant? The same question
applies to QCA; answering it would probably confirm the intuition that covariant
QWs are scarce amongst QWs.

4. In Chapter 4, we found that there is a slight overgenerality of the continuum limit that
we recovered (see Eq. (6.1.1)), with respect to the (1+1) curved Dirac equation, and
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just matches some terms arising as (1 + 1) projections of the (2 + 1) curved Dirac
equation. This suggests easy generalization to (2 + 1) dimensions, through operator
splitting, which is the subject of current work. For future works, the extension to
(3 + 1) dimensions remains an interesting question since gamma matrices become
four dimensional. Another approach is the study the underlying symmetries of the
discrete model, e.g. by making explicit some form of discrete general covariance
along the same lines as [AFF14].

5. The approach adopted in Chapter 5, for the part of concrete examples, is still ex-
ploratory. For instance, one would like to find a finite range interaction (non-trivial,
i.e TG not identically zero) where the operator (I − TGR0) can be inverted by hand.
For general G this problem is standard, but not trivial; it reduces to solving a system
of coupled integral equations of the second kind. In those cases numerical integration
is a path to be explored.

6. Our progress with finding new examples of interactions for which the methods apply
is still at a more exploratory stage. We proposed several examples and showed that
they fit into the model, i.e. satisfying hypothesis (H0) and that are also trace-class.
The natural continuation is either to attempt solving the associated system of integral
equations, or to prove that it doesn’t allow solutions, proving that some cases do
not allow for eigenvalues. Because of its difficulty, it is to be expected that one has
to resort to numerics for proceeding further. Another interesting question is to give
information about the eigenvalue counting the IQW, which may be infinite in the
general case.

v6



APPENDIX A. PROOFS FOR CHAPTER 3 124

Appendix A

Proofs for Chapter 3

A.1 Proof of the first-order-only covariance of the Dirac
QW

Uniqueness of encodings. Here we prove that the only encoding compatible with first-order
covariance is the flat one, as described in section 3.2.2. In general, the encoding isometries
Eα, Eβ can be defined in terms of normalized vectors, v± as follows (remember that for
the Dirac QW, ψ+ and ψ− are just scalars):

Eβψ+ = ψ+v+, Eαψ− = ψ−v−.

In order to require covariance, we need to calculate the terms appearing in the commutation
relation (3.3.5). The r.h.s of the relation is (see Fig. A.1.1 and Subsection 3.2.4):

Cm′E =

(
ψ+v+ − im′ε(

∑
v−)ψ−1β

ψ−v− − im′ε(
∑

v+)ψ+1α

)
+O(ε2)

where 1d = (1, . . . , 1)T is the d-dimensional uniform vector, and
∑

v =
∑

i vi. On the
other hand the l.h.s. is:

ECm =

(
ψ+v+ − imεψ−v+

ψ−v− − imεψ+v−

)
+O(ε2).

Requiring first-order covariance, one obtains

mv+ = m′
(∑

v−

)
1β, mv− = m′

(∑
v+

)
1α

which, together with the normalization of v±, gives

m′ =
m√
αβ

, v+ =
eiλ+√
β
1β, v− =

eiλ−√
α
1α.
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ψ+√
2

ψ−√
3

ψ+√
2
− im′εψ−√

3

ψ−√
3

ψ+√
2

ψ−√
3
− im′εψ+√

2

ψ−(r, l + ε)√
3

=
ψ−(r, l)− imεψ+(r, l)√

3
=

=
ψ−(r, l)√

3
− 2im′εψ+(r, l)√

2

ψ+√
2
− im′εψ−√

3

ψ−√
3
− im′εψ+√

2

ψ−(r, l + ε)√
3

=
ψ−(r, l)√

3
− 2im′εψ+(r, l)√

2

ψ+(r, l)√
2
− 3im′εψ−(r, l)√

3
=
ψ+(r, l)− imεψ−(r, l)√

2

=
ψ+(r + ε, l)√

2

ψ+√
2
− 2im′εψ−√

3

ψ−√
3

ψ+(r + ε, l)√
2

ψ+√
2
− 2im′εψ−√

3

ψ−√
3
− im′εψ+√

2

ψ−(r, l + ε)√
3

=
ψ−(r, l)√

3
− 2im′εψ+(r, l)√

2

Figure A.1.1: First order covariance of the Dirac QW. In the first order, the outcoming
wires of a patch match the incoming wires of the next patch. Unless otherwise indicated,
all the fields values appearing in this Figure are evaluated at (r, l).

thereby proving that the only possible encoding compatible with first-order covariance is
the flat one (up to irrelevant phases).
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A.2 Failure at second order
The Dirac QW can similarly be expanded to the second order. This time, however, the
patches that make up ψ′ do not match up. A simple counter-example supporting this fact
arises with α = 2 and β = 1 already, as illustrated in Fig. A.2.1. Notice that we ought
to have C(0, 1) qψ−(0, 0) = C(1, 1) qψ−(0, 0), if we want those outcoming wires to match
up with the corresponding incoming wires of the next patch qψ−(0, 1)0 = qψ−(0, 1)1 =
ψ−(0, 1)/

√
2. But it turns out that those outcoming wires verify

C(0, 1) qψ−(0, 0) 6= C(1, 1) qψ−(0, 0) (A.2.1)

due a term in ε2.

ψ+
ψ−√
2

(
1− m′2ε2

2

)
ψ−√
2
− im′εψ+

(
1− m′2ε2

2

)
ψ+ −

im′εψ−√
2

ψ−√
2

(
1− 3m′2ε2

2

)
ψ−√
2
− im′εψ+ (1−m′2ε2)ψ+ −

2im′εψ−√
2

Figure A.2.1: Failure of covariance at the second order for the Dirac QW. The outcoming
wires of a patch do not match the incoming wires of the next patch.
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Appendix B

Proofs for Chapter 4

B.1 Calculation of the first order expansion of the discrete
model

In this section we prove Eq. (4.2.11), which we reproduce here:



2ε∂tu
2ε∂td
u′

d′


 = (I ⊕ U)




0
0
u′

d′


+ (I ⊕ U)B




2u′

2d′

0
0




+ ε
{

(2N − iẼ)(I ⊕ U) +(I ⊕ U)(iẼ + 2M) + T
}



u
d
0
0


 . (B.1.1)

Recall that we want to expand

φout(t, x) = G φin(t, x), (B.1.2)

where

G = E†(t+ 2, x)W ′(t, x)(P ′ ⊕ P )(E(t, x− 2)⊕ E(t, x+ 2)). (B.1.3)

The first order expansion of the encoding and of the walk is, by definition,

E(t, x) = E(0)(t, x) + εiE(0)(t, x)Ẽ(t, x) +O(ε2) (B.1.4)

W ′(t, x) = W (0)(t, x) + εiW (0)(t, x)W̃ (t, x) +O(ε2), (B.1.5)
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hence, to first order in ε, the operators in (B.1.3) expand to

E†(t+ 2, x) ' E(0)† + ε
(

2∂tE
(0)† − iẼE(0)†

)
(B.1.6)

W ′(t, x) ' W (0) + εiW (0)W̃ (B.1.7)

E(t, x− 2)⊕ E(t, x+ 2) '
(
E(0) − 2ε∂xE

(0) + iεE(0)Ẽ
)
⊕
(
E(0) + 2ε∂xE

(0) + iεE(0)Ẽ
)
.

(B.1.8)

In the right hand side all operators are evaluated at (t, x). Recall that the first order expan-
sions of the output and the input are

φout(t, x) '




u
d
0
0


+




2ε∂tu
2ε∂td
u′

d′


 , φin(t, x) '




u
d
0
0


⊕




u
d
0
0


+




−2u′

−2d′

u′

d′


⊕




2u′

2d′

u′

d′


 . (B.1.9)

We shall use the identities

(P ′ ⊕ P )(E ⊕ E)(v ⊕ v) = XEv (B.1.10)
(P ′ ⊕ P )(E ⊕ E)(−v ⊕ v) = XZEv (B.1.11)

valid for any v ∈ C4, because P ′ (resp. P ) are the projections onto the primed (resp.
non-primed) coordinates; in matrix form,

P ′ =

(
0 0 1 0
0 0 0 1

)
, P =

(
1 0 0 0
0 1 0 0

)
. (B.1.12)

Next we plug the previous expansions into (B.1.2). Collecting all the terms of first order
in ε,



2ε∂tu
2ε∂td
u′

d′


 = E(0)†W (0)XE(0)




0
0
u′

d′


+ E(0)†W (0)XZE(0)




2u′

2d′

0
0




+
{
ε(2∂tE

(0)† − iẼE(0)†)W (0)XE(0) + iεE(0)†W (0)W̃XE(0) + iεE(0)†W (0)XE(0)Ẽ

+ 2εE(0)†W (0)XZ∂xE
(0)
}



u
d
0
0


 .

Next we use the zeroth order condition (cf. (4.2.10)), namelyE(0)†W (0)XE(0) = I⊕U ,
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so that



2ε∂tu
2ε∂td
u′

d′


 = (I ⊕ U)




0
0
u′

d′


+ (I ⊕ U)E(0)†ZE(0)

︸ ︷︷ ︸
B




2u′

2d′

0
0




ε






2 (∂tE

(0)†)E(0)

︸ ︷︷ ︸
N

−iẼ


 (I ⊕ U) + iE(0)†W (0)W̃XE(0)

︸ ︷︷ ︸
T

+i(I ⊕ U)Ẽ + 2(I ⊕ U)E(0)†Z∂xE
(0)

︸ ︷︷ ︸
M








u
d
0
0


 ,

and we get the desired result.

B.2 General form of B
Since B must be hermitian, cf. (4.2.12a), then B1 and B4 are hermitian. Since it is also
unitary, then it must square to the identity. This implies that the conditions

B2
1 +B†2B2 = Id2 (B.2.1a)

B2
4 +B2B

†
2 = Id2 (B.2.1b)

and

B2B1 +B4B2 = 0 (B.2.2a)

B1B
†
2 +B†2B4 = 0 (B.2.2b)

must hold. Note also that B must have a complete set of orthonormal eigenvectors, eigen-
values ±1, and it shall be traceless, because it is is similar to Z.

First, we parametrize the block B2. Consider the spectral decomposition of B1 =
V DV †, D = diag{d1, d2}. From the first of conditions (B.2.1a), we have that d1, d2 ∈
[−1, 1], because the square root of the components of Id−D2 are precisely the singular
values of B2, which should be non-negative. Next, we shall find B2 such that constraint
(4.2.25a) is satisfied. The same equation also determines U .

We look forB2 ∈ C2×2 such that conditions (4.2.25a) and (B.2.1a) are satisfied, namely
that

1. Id +2B2 is unitary,

2. B†2B2 = Id−B2
1 .

To prove our lemma we will use a shortcut provided by the following characterization
of matrices with positive definite [Bha09] real part. Recall that if A ∈ Cn×n, its real and
imaginary parts are <A := 1

2
(A+ A†) and =A = 1

2i
(A− A†), respectively.
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Theorem B.1 (see [Lon81]). Let A ∈ Cn×n. Then, <A is positive definite if and only if

A = T




1 + iα1

. . .
1 + iαn


T † (B.2.3)

for some non-singular T and α1, . . . , αn ∈ R.

Note that, from condition 1 above,

(Id +2B†2)(Id +2B2) = Id⇒ B2 +B†2 + 2(B†2B2) = 0, (B.2.4)

hence condition 1 is equivalent to <B2 = −B†2B2. Recall that A†A is positive definite for
any A ∈ Cn×n, hence Theorem B.1 can be applied to −B2.

We recall the following parametrization of the U(2) group, namely that

U(2) =

{
eiθ

(
α β

−β α

)
: θ ∈ [0, 2π), α, β ∈ C, |α|2 + |β|2 = 1

}
. (B.2.5)

Lemma B.1. Let B1 ∈ C2×2 be hermitian, with spectral decomposition B1 = V1D1V
†

1 ,
and eigenvalues d1, d2 ∈ [−1, 1] ∈ R. Assume that B2 ∈ C2×2 satisfies the conditions

1. <B2 = −B†2B2,

2. B†2B2 = Id−B2
1 .

Then,

B2 = −K
(
λ1e

iη±1 0

0 λ2e
iη±2

)
K†, (B.2.6)

where λi =
√

1− d2
i , sin η±i = ±|di|, −π/2 ≤ η±i ≤ π/2, i ∈ {1, 2}. If d2

1 6= d2
2 (non-

degenerate case) then K = V1, if d2
1 = d2

2 (degenerate case) then K ∈ U(2) is arbitrary.

Proof. From Theorem B.1, and condition 1, B2 can be written asB2 = −T2D2T
†
2 for some

non-singular T2 and D2 = diag{1 + iα1, 1 + iα2}, α1, α2 ∈ R. Substitution into condition
1 gives

T †2T2 =

(
(1 + α2

1)−1 0
0 (1 + α2

2)−1

)
. (B.2.7)

Now, let the SVD of T2 = WΣV †. Then T †2T2 = V Σ2V † and using (B.2.7) it is easy to
see, using the canonical decomposition of unitary matrices (cf. (B.2.5)), that we must have
one of the following cases:

1. If α2
1 6= α2

2, then for some θ1, θ2 ∈ [0, 2π), either
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(a) Σ =




1√
1+α2

2

0

0 1√
1+α2

1


 and V =

(
0 eiθ1

eiθ2 0

)
. Hence,

B2 = −W
(

1+iα2

1+α2
2

0

0 1+iα1

1+α2
1

)
W †.

(b) Σ =




1√
1+α2

1

0

0 1√
1+α2

2


 and V =

(
eiθ1 0
0 eiθ2

)
. Hence,

B2 = −W
(

1+iα1

1+α2
1

0

0 1+iα2

1+α2
2

)
W †.

Note that in either case, we can write B2 = −Wdiag

{
1+iασ(1)
1+α2

σ(1)

,
1+iασ(2)
1+α2

σ(2)

}
W †,

where σ : {1, 2} → {1, 2} is a permutation. It is easy to check that condition 1
is indeed satisfied. Next, substitution into condition 2 gives

(
1− d2

1 0
0 1− d2

2

)
= K

( 1
1+α2

σ(1)

0

0 1
1+α2

σ(2)

)
K†, (B.2.8)

with K := V †1 W ∈ U(2). Again, we use the canonical form, cf. (B.2.5), to find
that K is diagonal or antidiagonal, with two independent phases. Introducing
back W into B2, in either case we have α2

i =
d2i

1−d2i
, i = 1, 2, hence αi =

± |di|√
1−d2i

, so

1 + iαi
1 + α2

i

=
√

1− d2
i

(√
1− d2

i ± i|di|
)

=
√

1− d2
i e

iη±i , (B.2.9)

provided that cos η±i =
√

1− d2
i , and sin η±i = ±|di|. This proves part 1.

2. If α2
1 = α2

2, then Σ = 1√
1+α2

1

Id2, and V ∈ U(2) is arbitrary. Thus, we can write

B2 = − 1
1+α2

1
K

(
1 + iα1 0

0 1± iα1

)
K† for some K ∈ U(2). Substitution into con-

dition 2, gives α2
1 = d2

1/(1− d2
1), and proceeding as in (B.2.9), we obtain the claim.

Next we characterizeB4. We assume that the relevant constraints fron (B.2.1a)-(B.2.2b)
are satisfied, namely B2

1 +B†2B2 = Id2 and that B2
4 +B2B

†
2 = Id2.

Lemma B.2. In the hypothesis of above,
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1. If d2
1 6= d2

2 (non-degenerate case), then B4 = −B1.

2. If d2
1 = d2

2 (degenerate case),

B4 = −sK ′
(
d1 0
0 d2

)
K ′†, (B.2.10)

where K ′ ∈ U(2) is arbitrary and s = 1 if d1 = d2, s = ±1 if d1 = −d2.

Proof. From (4.2.25a), B2 is normal, then from (B.2.1a) and (B.2.1b) we have that B2
1 =

B2
4 . SinceB4 is hermitian consider its spectral decomposition, B4 = WD4W

†, W ∈ U(2).
Then, D2

4 = KD2
1K
†, where K := W †V1. Using the canonical form (B.2.5), we find that

1. If d2
1 6= d2

2, then K is either diagonal or anti-diagonal, with arbitrary phases. In either
case we obtain B4 = V1diag{±d1,±d2}V †1 , but since we must have TrB4 = −TrB1,
we shall take −d1, −d2. Hence, B4 = −B1.

2. If d2
1 = d2

2, thenK ∈ U(2) is arbitrary, and we haveB4 = V1K
†diag{±d1,±d1}KV †1 .

If d1 = d2, then TrB4 = −2d1, so B4 = −d1 Id2. If d1 = −d2, then TrB4 = 0, and
we can take d1,−d1 or −d1, d1.
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Appendix C

Complement to Chapter 5

C.1 Review of distribution theory in Tn

In this section we recall some notation from distribution theory and standard results from
Fourier analysis. For preparing this section, useful references treating periodic distributions
were [Sch61a, Zem82], though we mainly follow the lecture notes by M. Salo [Sal13].

The space of rapidly decreasing sequences is denoted S(Zn). Recall that a sequence
ψ = {ψ(x)}x∈Zn ⊂ C is said to be rapidly decreasing if for any N > 0 there is cN > 0
such that

|ψ(x)| ≤ cN〈x〉−N (C.1.1)

for all x ∈ Zn. We equip S(Zn) with the topology induced by the norms

ψ 7→ sup
x∈Zn
〈x〉N |ψ(x)|. (C.1.2)

Note that S(Zn) is a discrete analogue of S(Rn), the Schwartz space of rapidly decreasing
functions, i.e. S(Rn) = {f ∈ C∞(Rn) : ∀α, β ∈ Nn

0 ||f ||α,β < ∞}, where ||f ||α,β =
||xαDβf ||L∞(Rn).

The space of periodic test functions, noted P(Rn), is the set of all infinitely differen-
tiable functions Rn → C that are 2π-periodic in each variable. A sequence {ϕ̂j}j∈N ⊂
P(Rn) converges to ϕ̂ if for all α ∈ Nn

0 , ∂αϕ̂j → ∂αϕ̂ uniformly in Rn.
We denote by F the Fourier series, given by the following map:

F : S(Zn)→ P(Rn), ψ 7→ ψ̂(k) =
∑

x∈Zn
ψ(x)e−ik·x. (C.1.3)

Conversely, the inverse Fourier map F−1 is the Fourier series of test functions, taking a test
function to its sequence of Fourier coefficients,

F−1 : P(Rn)→ S(Zn), ψ̂ 7→ ψ = {ψ(x)}x∈Zn , ψ(x) =
1

(2π)n

∫

Tn
ψ̂(k)eik·xdk.

(C.1.4)
It is important to recall that the map F is an isomorphism between S(Zn) and P(Rn), and
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any periodic test function ψ̂ ∈ P(Rn) can be written as the Fourier series of some sequence,
as in the right-hand side of (C.1.3), with convergence in P(Rn).

Remark C.1. We recall that any function in L2(Tn) can be approximated with arbitrary
accuracy (in L2-norm) with a sequence of functions in P(Rn). Indeed, any continuous
function on Tn can be approximated uniformly by trigonometric polynomials, and since
uniform convergence on Tn implies L2 convergence and continuous functions are dense
in L2(Tn), it follows that P(Rn) is dense in L2(Tn). The theory of Fourier series of L2

functions can be defined as in Eqs. (C.1.3) and (C.1.4), this time acting between the spaces
F : `2(Zn) → L2(Tn), where convergence of the Fourier series is understood in the sense
of L2.

The main properties of the Fourier series of periodic test functions are summarized
below. We use (ψ)∧(k) to denote the Fourier series of the sequence ψ = {ψ(x)}x∈Zn
evaluated at k, that is, (ψ)∧(k) = ψ̂(k).

Theorem C.1. (properties of the Fourier series on P). Let ψ ∈ S(Zn), then the following
properties hold:

1. translation: (τx0ψ)∧(k) = e−ik·x0ψ̂(k), x0 ∈ Zn.

2. modulation: (eik0·xψ(x))∧(k) = (τk0ψ̂)(k), k0 ∈ Tn.

3. derivative: ((−1)|α|(x)αψ(x))∧(k) = (Dαψ̂)(k), α ∈ Nn
0 .

4. product: (ψϕ)∧(k) = (ψ̂ ∗ ϕ̂)(k), with convolution in P being (ψ̂ ∗ ϕ̂)(k) =
(2π)−n

∫
Tn ψ̂(k − k′)ϕ̂(k′)dk′.

5. convolution: ((ψ ∗ ϕ)(x))∧(k) = (ψ̂ϕ̂)(k), with discrete convolution being (ψ ∗
ϕ)(x) =

∑
x′∈Zn ψ(x− x′)ϕ(x′).

The space of sequences of polynomial growth, or slow growth, is denoted with S ′(Zn).
Recall that a complex sequence ψ = {ψ(x)}x∈Zn is said to be of slow growth if there exists
N > 0 and c > 0 such that

|ψ(x)| ≤ c〈x〉N (C.1.5)

for all x ∈ Zn.
The space of periodic distributions, noted P ′, is the set of all continuous linear func-

tionals on P , that is,

P ′ =
{
T̂ : P → C; T̂ is linear and T̂ (ϕ̂j)→ 0 if ϕ̂j → 0 in P

}
. (C.1.6)

For example, each periodic test function that is Lebesgue integrable, ϕ̂ ∈ L1(Tn), induces
a unique (as an element of P ′) periodic distribution, if we set

T̂ϕ̂ : P → C, ϕ̂ 7→
∫

Tn
ϕ̂ ψ̂ dk. (C.1.7)

An advantage of this identification is that operations on P can be defined on P ′ by duality.
Another example is given by any finite complex Borel measure µ on Rn that is periodic, in
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the sense that µ(E + 2πej) = µ(E), for any Borel set E ⊂ Rn and ej is an element of the
canonical basis of Rn. In this case we integrate against the measure,

T̂µ(ϕ̂) =

∫

Tn
ϕ̂ dµ. (C.1.8)

An important case is given by the Dirac delta measure, that satisfies T̂δ(ϕ̂) = ϕ̂(0), and is
defined for any Borel set E ⊂ Rn as

δ(E) =

{
1, if E ∩ 2πZn 6= ∅
0, otherwise

(C.1.9)

The Dirac delta on P ′(R) is also written as
∑

x∈Z δ(k − 2πx), k ∈ T.
Next we consider Fourier series of periodic distributions. If T̂ ∈ P ′(Rn) is a periodic

distribution, its Fourier coefficients are defined as

T (x) := (2π)−nT̂ (eikx), x ∈ Zn. (C.1.10)

The central result is that any periodic distribution has a Fourier series that converges in the
sense of distributions. This provides a weak notion for convergence of trigonometric series
that we shall apply when dealing with the interaction operator V . More precisely, it can be
proved that any T̂ ∈ P ′ can be written as the Fourier series

T̂ =
∑

x∈Zn
T (x)e−ik·x, (C.1.11)

whith convergence in the sense of distributions, i.e.

 lim
N→∞

∑

|k|≤N

T (x)e−ik·x


 (ϕ̂) = T̂ (ϕ̂) (C.1.12)

for arbitrary ϕ̂ ∈ P . Conversely, any sequence of slow growth induces a periodic distri-
bution via (C.1.11). In this sense the Fourier map (C.1.10) defines a bijection between the
spaces P ′(Rn) and S ′(Zn).

Example C.1.1. Consider the Dirac delta measure δ ∈ P ′(Rn) introduced above. From
definition (C.1.10), its Fourier coefficients are (2π)−n for all x ∈ Zn, and using (C.1.11)
we obtain the Poisson summation formula,

∑

x∈Zn
e−ik·x = (2π)n

∑

x∈Zn
δ(k − 2πx), k ∈ Tn. (C.1.13)

Below we summarize the properties of the Fourier series of periodic distributions,
which are in some sense dual of those presented in Theorem (C.1).

Theorem C.2. (properties of the Fourier series on P ′). Let ϕ̂ ∈ P(Rn) and T̂ ∈ P ′(Rn),
then the following properties hold:
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1. translation: (τx0T (x))∧(k) = e−ik·x0T̂ (k), x0 ∈ Zn.

2. modulation: (eik0·xT (x))∧(k) = (τk0T̂ )(k), k0 ∈ Tn.

3. weak derivative: ((−1)|α|xαT (x))∧(k) = (DαT̂ )(k), α ∈ Nn
0 .

4. convolution: ((T ∗ ϕ)(x))∧(k) = (T̂ ϕ̂)(k).

5. product: (Tϕ)∧(k) = (T̂ ∗ ϕ̂)(k).

Below is a summary of operations on P ′ that can be defined by duality with P .

Theorem C.3. (operations on P ′). Let ψ̂, ϕ̂ ∈ P(Rn) and T̂ ∈ P ′(Rn). Then the following
operations are well defined:

1. reflection: ˜̂
T (ϕ̂) = T̂ ( ˜̂ϕ), where ˜̂ϕ(k) = ϕ̂(−k).

2. conjugation: T̂ (ϕ̂) = T̂ (ϕ̂).

3. translation: (τk0T̂ )(ϕ̂) = T̂ (τ−k0ϕ̂), k0 ∈ Tn.

4. weak derivative: (∂αT̂ )(ϕ̂) = (−1)|α|T̂ (∂αϕ̂), α ∈ Nn
0 .

5. product: (ψ̂T̂ )(ϕ̂) = T̂ (ψ̂ϕ̂).

6. convolution: (T̂ ∗ ψ̂)(ϕ̂) = T̂ (
˜̂
ψ ∗ ϕ̂).

Next we present more properties of the Fourier series of periodic distributions and a
structure theorem, which states that periodic distributions always arise as a distributional
derivative of a continuous periodic function.

Theorem C.4. Let T̂ ∈ P ′ be arbitrary. Then:

1. It has finite order, i.e. there exist N > 0 and c > 0 such that

|T̂ (ϕ̂)| ≤ c
∑

|α|≤N

||∂αϕ̂||L∞ (C.1.14)

2. It is uniquely determined by its Fourier coefficients, i.e. if T (x) = 0 for all x ∈ Zn,
then T̂ = 0.

Theorem C.5. (structure theorem for periodic distributions). Any periodic distribution
T̂ ∈ P ′ may be expressed as

T̂ = (1−∇2)N ξ̂, (C.1.15)

for some continuous 2π-periodic ξ̂ in Rn and some integer N ≥ 0, and ∇2 =
∑n

j=1
∂2

∂x2j
is

the Laplacian operator.
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C.2 Review of spectral theory in Hilbert space
We denote byL(H) the algebra of bounded linear operators in a complex, separable Hilbert
spaceH. IfA ∈ L(H) is a compact operator, notedA ∈ S∞(H), its eigenvalue sequence is
noted {λn}n∈N counting algebraic multiplicities, and is ordered by non-increasing modulus
so that |λ1(A)| ≥ |λ2(A)| ≥ · · · . Recall that the n-th singular value of A ∈ S∞(H) is
given by

sn(A) =
√
λn(A∗A) = λn(|A|), n ∈ N, (C.2.1)

where |A| =
√
A∗A and the last inequality follows from the spectral mapping theorem for

self-adjoint operators.
We recall that the Schatten-Von Neumman class of operators of order p in H (in the

sequel just p-Schatten), denoted Sp(H), consists of all those compact operators inHwhose
singular values are p-summable for some fixed p ∈ (0,∞). Thus,

A ∈ Sp ⇐⇒ {sn(A)}n∈N ∈ `p(N). (C.2.2)

If 1 ≤ p < ∞, it can be shown that Sp(H) becomes a Banach space by introducing the
p-Schatten norm

||A||p = ||{sn(A)}n∈N||`p . (C.2.3)

Note that in the rhs we are just evaluating the `p-norm of a sequence, that is, given a

sequence x = {xn}n∈N ⊂ C, its `p-norm is ||x||`p =

(∑
n∈N
|xn|p

)1/p

, and it is the usual

Euclidean norm for p = 2.
Of particular relevance are the classes S1 of trace-class operators and S2 of Hilbert-

Schmidt operators, see [GGK00, Sim79, Con00] for detailed treatments. If A ∈ S1(H),
its trace is defined as TrA =

∑
n〈ϕn, Aϕn〉 for any orthonormal basis {ϕn}n of H, and

it holds that Tr(A) =
∑

n λn(A) (Lidskii’s theorem). We will make use of the fact that
S1(H) is a two-sided ideal in L(H), see for instance [Con00] Chapter 3 for proofs.

When we deal with complex matrix spaces of dimension d ≥ 1, we shall fix the matrix
norm to the Frobenius norm1,

||A||F =
√

Tr(A∗A) =

(
d∑

i,j=1

|Aij|2
)1/2

, A ∈ Cd×d. (C.2.4)

The generalization of the Frobenius norm is the p-Schatten norm of the matrix, i.e. for
p ≥ 1,

||A||p =

(
d∑

i=1

spi (A)

)1/p

. (C.2.5)

Note that for p = 2 this is just the Frobenius norm.
Recall that two norms || · || and || · ||′, on a vector space E, are called equivalent if

there exist numbers c1 > 0 and c2 such that for all e ∈ E, c1||e||′ ≤ ||e|| ≤ c2||e||′. Any

1Of course here we mean A∗ = A†, the conjugate transpose of A.
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two norms on a finite dimensional vector space are equivalent (see for instance [GGK03]
Chapter XI).

Given a unitary operator U ∈ L(H), we denote its associated spectral family by EU(·),
that is

〈ψ,Unψ〉 =

∫

T
einξd〈ψ,EU(ξ)ψ〉 (C.2.6)

for all ψ ∈ H, n ∈ Z, T = R/2πZ. We let σ(U) to denote the spectrum of U , σp(U) the
set of its eigenvalues, σsc(U) its singular continuous spectrum, and σac(U) its absolutely
continuous spectrum. If σ(U) = σac(U), then U is said to be purely absolutely continuous,
in which case the spectral measure d〈ψ,EU(ξ)ψ〉 has a Radon-Nikodym derivative with
respect to the Lebesgue measure d〈ψ,EU (ξ)ψ〉

dξ
= Fψ(ξ) that belongs to L1(T) for any ψ ∈ H.

Recall that the discrete spectrum of U , noted σd(U), is the set of isolated eigenvalues of
finite multiplicity, that is

σd(U) = {λ ∈ σ(U) : λ is an isolated point of σ(T ) and dim Ker (U−λ) <∞}. (C.2.7)

Finally, recall that the essential spectrum is its complement,

σess(U) = σ(U) \ σd(U). (C.2.8)

The notions (C.2.7) and (C.2.8) are still meaningful for any normal operator, but for general
classes of operators the notion of essential spectrum is more subtle, we refer to [Dav07]
Chapter 4 for further details.
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