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This thesis focuses on mining representative items and itemsets using Binary Matrix Factorization (BMF) and instance selection. To accomplish this task, we first, in Chapter 1, consider the BMF problem by studying the literature on matrix decomposition techniques and the state-of-the-art algorithms. Then, we establish a connection between BMF problem and Unconstrained Binary Quadratic Programming (UBQP) problem in order to use UBQP's algorithms and heuristics, available in the literature, in case of BMF solutions. Next, in Chapter 2, we propose a new, efficient heuristic which flips 1 bit at the time in order to improve the solutions of BMF. Using the established link discussed in Chapter 2, which enables us to use heuristics of UBQP, we compare the proposed technique, called 1-opt-BMF with that of UBQP, called 1opt-UBQP as well as the standard approach, called 1-opt-Standard. We then show, theoretically and experimentally, the efficiency of 1-opt-BMF on a wide range of publicly available datasets. Next, in Chapter 3, we explore addressing the problem of finding representative itemsets via BMF. To do that, we first consider the theoretical relation between the frequent itemset mining problem and BMF; while established, we propose a new technique called Decomposition Itemset Miner (DIM). We then design a set of experiments to show the efficiency of DIM and the quality of its results.

Finally, in Chapter 4, we consider the problem of finding representative objects (instances) in big, high-dimensional datasets. These objects helps us to find objects providing a global, top-view of the data and are very important in data analysis process. We first study the available methods for finding representative objects and discuss the pros and cons of each. We then formally define the Instance Selection Problem (ISP), provide three variants of that and examine their complexities before providing their solutions. In the experimental section, we show that although the ISP solutions can outperform other methods in some cases, in general it should be considered as a complementary technique in the context of finding representative objects.
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Résumé

Dans cette thèse, nous nous intéressons à la recherche d '"items" et d'"itemsets" d'intérêt via la décomposition de matrice binaire (Binary Matrix Factorization, BMF) et à la recherche d'objets représentatifs. Pour cela, nous étudions l'état de l'art des techniques de décomposition matricielle. Nous établissons, dans le premier Chapitre, un lien entre BMF et le problème de programmation binaire quadratique sans contraintes (Unconstrained Binary Quadratic Programming, UBQP) afin d'utiliser les algorithmes et heuristiques existant dans la littérature pour UBQP et les appliquer à BMF. Nous proposons dans le Chapitre 2 une nouvelle heuristique adaptée au calcul de BMF.

Cette technique efficace optimise les solutions de BMF ligne par ligne (ou colonne par colonne) en inversant 1 bit à chaque fois. En utilisant le lien établi dans le Chapitre 2 qui nous permet d'appliquer les algorithmes et heuristiques d'UBQP à BMF, nous comparons la méthode proposée (1-opt-BMF) avec les heuristiques spécialisées pour UBQP (1-opt-UBQP) ainsi que les heuristiques classiques . Nous montrons ensuite, en théorie et en pratique, l'efficacité de 1-opt-BMF sur une large variété de données publiques. Dans le Chapitre 3, nous nous intéressons au problème de la recherche des itemsets représentatifs en utilisant BMF et 1-opt-BMF. Pour cela, nous considérons dans un premier temps le lien entre le problème de "frequent itemset mining" et BMF, et proposons une nouvelle méthode que nous appelons "Decomposition Itemset Miner" (DIM). Une série d'expérience montre la qualité des résultats obtenus et l'efficacité de notre méthode.

Enfinf, nous nous intéressons, dans le Chapitre 4, à la recherche d'objets représentatifs (qui donnent une vue globale sur les données) dans des données de grandes dimensions. Nous examinons les méthodes disponibles dans la littérature en donnant les avantages et les inconvénients de chacune. Ensuite, nous défnissons mathématiquement le problème de sélection d'instance (Instance Selection Problem: ISP) et présentons trois variantes à ce problème ainsi que leur solutions. Dans les expériences, nous montrons que, bien qu'ISP puisse surpasser les autres méthodes dans certains cas, il vaut mieux le considérer en général comme une technique complémentaire dans le cadre de la recherche des objets représentatifs.

v INTRODUCTION

As computer hardware is getting cheaper and cheaper, and the computers get faster and faster, data collection becomes easier and easier. However, as this process is done easily, the data analysis task became a challenging problem. Due to the fast growth of social networks over the past decade, one can simply obtain a large set of data in a short amount of time. This data, nevertheless, is tremendously large and potentially noisy. As a result, new methods for analyzing large sets became a hot topic over the past few years.

Data mining is the process of extracting information out of a database or a data warehouse [START_REF] Witten | Data Mining: Practical machine learning tools and techniques[END_REF]. It is a wide domain which covers a large number of techniques (from neural networks and statistics to high-performance computing and data visualization) in order to find useful information from datasets. As, in general, the datasets considered in data mining applications are large and high-dimensional, (and as a result are hard to understand and analyze) data simplification is one of the most important methods used while dealing with large data.

For instance, consider the case of social network datasets such as Twitter. The tweets are short messages (up to 140 characters) which are posted by Twitter users.

Tweets have attracted a lot of attentions recently as they could provide a wide range of interesting information in many areas such as topic detection, sentiment analysis and studies on modern society [START_REF] Pang | Opinion mining and sentiment analysis[END_REF], Bittner, 1973, Cataldi et al., 2010, Pak and Paroubek, 2010,Chen and Mirisaee, 2014,Junco et al., 2013]. Consider the problem of sentiment analysis in Twitter where one is interested in assigning a label to each tweet: positive, negative and neutral. A positive tweet is a tweet which has a positive polarity. For example "My new iphone is great." is a positive tweet. Sentiment analysis can be used in many areas such as marketing and product evaluation and feedback. As one can guess, the content of a tweet could vary: from simple daily status to a worldwide disaster. They could be in any language (even mixture of several languages), could contain typos and may have emoticons. One can simply collect a large 1 amount of tweets for some social network analysis task. However, according to the above-mentioned issues, directly applying data mining techniques on such dataset will be probably very time consuming (since initially it is high-dimensional) and produce poor results (since it is extremely noisy). Accordingly, one can apply a data simplification technique in order to address (some of if not all of) these problems [START_REF] Zhu | Tripartite graph clustering for dynamic sentiment analysis on social media[END_REF].

In data mining, the data is usually represented using matrices where rows represents the objects and columns represent the features. Following the example discussed above on Twitter, rows (objects/instances) can be the tweets and columns (features/attributes) can be the terms of the tweet. Many techniques have been studied to simplify such data. Each of these techniques target certain characteristics of the data in order to make it easier to analyze. For instance, some focus on number of objects and try to reduce it in a smart way. Others work on the number of attributes and try to reduce it without loosing too much information. As the data is mostly represented as matrices, matrix decomposition or matrix factorization is one of the most popular methods in this regard. It has shown a significant potential in a wide range of fields and attracts more and more attention as time goes by.

In general, matrix decomposition is a process which enables us to break a large matrix into two or more smaller matrices such that the multiplication of these matrices approximates the original data. As mentioned before, data could be very large, highdimensional and noisy. As a result, the main idea of matrix factorization techniques is to simplify the data and make it more understandable. These methods try to find the main and latent information of the data. Accordingly, they can simply detect the noise (as long as the noise is not a dominant part of the data, it is not considered as the main information and is filtered out through the approximation process) and provide us with important and useful information.

As an example, Principal Component Analysis (PCA) [Pearson, 1901, Borgne andBontempi, 2007] is a very well known decomposition technique. To better understand the importance of a decomposition techniques like PCA, let us consider the example of a high-dimensional dataset were the features are not only numerous but also redundant and possibly correlated. To handle such cases, one may use feature selection algorithms which try to filter the irrelevant or redundant features in order to find more precise information from data in a shorter amount of time [Varmuza, 1980]. PCA is one of these techniques which groups some features together (as a linear combination for example). More precisely, it is a transformation from original attributes to a set of linearly uncorrelated variables. Invented by [START_REF] Pearson | Liii. on lines and planes of closest fit to systems of points in space[END_REF], PCA is one of the pioneers of data reduction field and has shown the importance of the problem since then.

A closely related method for data simplification is Singular Value Decomposition (SVD) which has been widely used in many contexts such as biological systems, image coding, signal processing, speech recognition and noise reduction [Golub and van Loan, 1996, DeAngelis et al., 1995, Andrews and Patterson III, 1976, Dendrinos et al., 1991]. Like PCA, SVD could also be seen as a technique to transform a set of correlated variables to a set of uncorrelated ones. It also could be seen as a method which can find the attributes along which most variations are observed. This latter point of view provides us with a technique to best approximate the data with fewer dimensions.

So far, we have seen that the analysis of big data is a challenging task and a number of approaches have been developed to deal with this issue. However, we did not discuss the data format yet. Intuitively, when we use a data simplification technique (such as matrix decomposition techniques), we would like to have the simplified data (i.e. approximated data) in the same form as the input data. For example, if the input is a matrix of real numbers, we are interested in approximating such input with a real-valued matrix, or if it is non-negative, we need the approximation to be also nonnegative. As many datasets are real-world observations, they usually contain nonnegative values. Consider the example of a document-term matrix where each line represents a document and each column represents a term; each cell in such a matrix represents the number of occurrences of the corresponding term in the corresponding document. Clearly this data is a non-negative, integer-valued matrix. Another example is the transaction-item matrix in which rows represent transactions (a ticket of a customer in a supermarket for example) and columns represent items (the products available in this supermarket). Then each cell shows if the corresponding items has been bought in the corresponding customer visit or not. In this case also we have a non-negative real-valued matrix as an input of our mining algorithm. Accordingly a new trend of research has been started for matrices satisfying these conditions.

Non-negative Matrix factorization (NMF) [Lee andSeung, 1999a, Lee andSeung, 2001] is a very well known method which tries to tackle the aforementioned cases.

This technique gets a non-negative matrix as an input and provides two (and in some formulations several) non-negative matrices whose product approximates the input.

This approach was first used to learn the parts of faces and semantic features [Lee and Seung, 1999a] and then became quite popular in data mining, data analysis and many other communities. Two important points of the NMF method is that it induces sparsity (which is always suitable for data analysis) and leads to a part-based decomposition (which also facilitates the interpretation process). NMF has been successfully applied to many applications such as object and face recognition, denoising, hashing and texture classification [START_REF] Soukup | Robust object recognition under partial occlusions using nmf[END_REF], Mairal et al., 2010, Monga and Mıhçak, 2007, Sandler and Lindenbaum, 2011].

In some applications, the input data is not a real-valued matrix, neither an integervalued one, but it is simply a binary matrix, i.e. it simply contains zeros and ones. For example, one can simply consider a tweet-term matrix as a binary matrix. The main reason is that tweets are very short texts and one can simply ignore the repetition of terms in a tweet, which is very unlikely if we remove the stop words (very frequent non-informative words). Another example is a frequent itemset mining dataset where, as explained before, lines represent transactions and columns represent items (products). In this case, we also can consider the input as a binary matrix since the number of products is not always of interest. What is interesting is the items purchased together frequently and not the quantity of each item. Protein-protein interactions and discrete pattern mining are other examples where the input data is a binary matrix [START_REF] Tu | A binary matrix factorization algorithm for protein complex prediction[END_REF], Shen et al., 2009].

Considering the above-mentioned issues, in this thesis, we study the use of data simplification techniques, in particular Binary Matrix Decomposition (BMF), in order to find representative itemsets in frequent itemset mining problem. Accordingly, in Chapter 1, we study the state-of-the-art and examine different decomposition techniques. We then formalize the BMF problem and, as our first contribution, find a link between the BMF problem and the Unconstrained Binary Quadratic Program (UBQP) problem [Mirisaee et al., 2015c]. Then in Chapter 2, we use this established link in order to use the heuristics of UBQP to improve the BMF solutions. Afterwards, we provide an efficient heuristic, as our second contribution, for BMF and show that it performs efficiently with respect to other techniques [Mirisaee et al., 2015b, Mirisaee et al., 2015c]. In Chapter 3, we discuss our third contribution and provide a theoretical link between BMF and frequent itemset mining problem. We illustrate that, using this link, one can find very few, high-quality representative itemsets [Mirisaee et al., 2014]. Finally, in Chapter 4, we try to find representative objects (instances) from large, high-dimensional data using different techniques and compare the results with the state-of-the-art methods. There, as our fourth contribution, we show that the proposed technique can be considered as an alternative, complementary method to the existing ones [Mirisaee et al., 2015a]. Many datasets of interest for scientific or industrial applications are high dimensional binary matrices. This high dimensionality negatively impacts the performance of traditional data analysis algorithms such as clustering or association rule mining. Additionally, they could suffer from a wide range of overlap and noise which can make some difficulties for the data mining tasks, such as expensive computations or large amount of mostly redundant results. Although many feature selection methods could be applied in order to reduce the data dimension, in most cases the correlation among the features is quite complex and local [START_REF] Zhang | Binary matrix factorization with applications[END_REF]. Accordingly, these approaches may not be efficient in many applications. In such cases, one can use matrix factorization techniques.

I BINARY MATRIX FACTORIZATION

Matrix factorization is a way to compress the data while preserving most of the characteristic patterns found inside. Matrix decomposition is a technique to find latent information, remove the noise and simplify the data. In general, matrix factorization is the process of decomposing a matrix into two or more matrices, called factors, such that the multiplication of these factors approximates the original matrix.

Over the past years, different matrix decomposition techniques have been successfully used in many applications such as image processing and clustering [Lee and Seung, 1999b, Zhang and Li, 2010, Zhang et al., 2005, Drineas et al., 2004]. Depending on the application one may use different decomposition techniques. For instance, Singular Value Decomposition (SVD) [Golub and van Loan, 1996], which is probably the most known method in this context, finds the singular values of a given matrix as well as its right and left singular vectors. This technique has many applications such as image retrieval [START_REF] Praks | On svd-free latent semantic indexing for image retrieval for application in a hard industrial environment[END_REF] and noise reduction [START_REF] Sadasivan | Svd based technique for noise reduction in electroencephalographic signals[END_REF].

The main idea in SVD is to map highly variable data points to a lower dimensional space. In general, given a matrix X ∈ m×n , SVD is formulated as follows:

X = UΣV T
where U ∈ m×m and V ∈ n×n are orthogonal matrices and they contain eigenvectors of XX T and X T X , respectively. Σ ∈ n×n is a diagonal matrix containing singular values of X in descending order. Computing an SVD decomposition might be expensive as it has a time complexity of O(min{mn 2 , m 2 n}) which is very time consuming for large matrices [START_REF] Holmes | Fast svd for largescale matrices[END_REF]. PCA, which is very similar to SVD, is considered as another popular method of matrix decomposition [Borgne andBontempi, 2007, Jolliffe, 2002]. In particular, it is used to deal with datasets having a very large number of attributes among which there exits a large number of correlated attributes. Consequently, it is regarded as a proper method of dimension reduction. PCA first makes the input zero-centered, then computes the eigenvectors of the covariance matrix of the attributes. Finally, according to the desired number of attributes, it takes the eigenvectors corresponding to the eigenvalues sorted in decreasing order. The time complexity of PCA depends on the computation of eigenvalues and eigenvectors of the covariance matrix. Using the Jacobi's method described in [Golub and van Loan, 1996] the time complexity of applying PCA on a matrix of size m × n is O(n 3 ).

Non-negative Matrix Factorization (NMF) [Lee andSeung, 1999a, Lee andSeung, 2001] is another popular method in which the input as well as the decomposition factors need to be binary. Although the initial idea of NMF, which was named Positive Matrix Factorization (PMF) at the time, has been proposed by Paatero et. al. in [Paatero and Tapper, 1994a], Lee and Seung were the first to introduce what we know today as NMF. They first used that to learn the parts of faces and semantic features [Lee and Seung, 1999a]; however, other researchers have found many applications for this technique, such as sound source separation [Virtanen, 2007], recommender systems [Koren et al., 2009a] and spectral data analysis [START_REF] Pauca | Nonnegative matrix factorization for spectral data analysis[END_REF]. After the original NMF method, some other approaches have been considered for update rules.

The projected gradient, studied in [Lin, 2007], is an example of such methods. The Different methods have been proposed to solve the above problem. One approach, called Alternative Least Squares (ALS), has been proposed in [START_REF] Paatero | Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[END_REF] and consists of solving the following equations for H and W respectively:

W T WH = W T X HH T W T = HX T
and then simply project all the negative values to zero. One very important advantage of this approach is that zero elements are not locked (unlike the multiplicative update which is explained shortly). A wide range of improvements have been made on ALS algorithm such as [START_REF] Langville | Algorithms, initializations, and convergence for the nonnegative matrix factorization[END_REF] and [Paatero, 1999].

Another method to solve the NMF problem is introduced by Lee and Seung in [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF] and called multiplicative updates. This method starts from W 1 ≥ 0, H 1 ≥ 0 (the superscripts denotes the iteration number), and then, iteratively, updates them using the following rules until the stopping condition is satisfied:

W k+1 = W k (X(H k ) T ) (W k H k (H k ) T ) (1.1)
H k+1 = H k ((W k+1 ) T X) ((W k+1 ) T W k+1 H k ) (1.2)
Multiplicative update approach is sensitive to initial values. Another disadvantage of this algorithm is that zero elements are locked. In other terms, if an element of W or H becomes zero in one iteration, it can never become positive again. Another problem of this approach is that, sometimes, the denominators of Eq. (1.1) and Eq. ( 1.2) could be zero. To handle that, some studies, such as [START_REF] Piper | Object characterization from spectral data using nonnegative factorization and information theory[END_REF], suggests to add a small value to the denominators.

An alternative approach to solve the NMF problem is called alternating least squares using projected gradient. This method tries to minimize the cost function using gradient descend together with projection [Lin, 2005]. The projection is a necessary step in this type of bound-constrained optimization. In this problem, we need to minimize the cost function f (x) subject to ∀i, l i ≤ x i ≤ u i , where f (x) : n → is a continuously differentiable function and l and u are lower and upper bounds, respectively.

CHAPTER 1. GENERAL CONSIDERATIONS ON BINARY MATRIX FACTORIZATION

Assuming that k is the iteration index, projected gradient approach for two consequent solutions is defined as follows [Lin, 2005]:

x k+1 = P[x k -α k ▽ f (x k )] (1.3)
where

P[x] =        x i if l i < x i < u i u i if x i ≥ u i l i if x i ≤ l i (1.4)
In projected gradient approach, it is necessary to ensure that we obtain sufficient decrease of the cost function in each iteration. In other words:

f (x k+1 ) -f (x k ) ≤ σ ▽ f (x k ) T (x k+1 -x k ) (1.5)
where σ is a small positive value. As mentioned in [Lin, 2005], the condition (1.5) is used in most projected gradient methods. Bertsekas in [Bertsekas, 1976] showed that using α k > 0 satisfying (1.5) always exists, and every limit point of

x k for k = 1, 2, ... is a stationary point of f (x).
Based on the alternative behavior of this approach (rotation between fixing W and fixing H according to the terminology used in [START_REF] Koren | Matrix factorization techniques for recommender systems[END_REF]), we can speed up the process using the matrix-based operations. However, there is still one time consuming step which is searching a good step size α k in each iteration [Lin, 2005].

So far we discussed many different decomposition techniques. However, in many applications of data mining, the input matrix is represented as a binary matrix, i.e.

it represents, for each object, the presence or the absence of features. As mentioned before, frequent itemset mining and tweet-term matrices are examples of such case. In these cases, what is taken into account is the presence or absence of a given attribute in an instance. These dataset could also be very large, millions of tweets is commonplace for example. Accordingly, a new body of research has been dedicated to this subject:

Binary Matrix Factorization.

When the input matrix and the factors are both binary matrices, the operation is called a Binary Matrix Factorization (BMF). The binary factors preserve the property of the input data, as they are binary, and impose sparsity. BMF has been widely used in many data mining tasks such as gene expression analysis [START_REF] Zhang | Binary matrix factorization with applications[END_REF], Zhang et al., 2010], digits reconstruction [START_REF] Meedsa | Modeling dyadic data with binary latent factors[END_REF], document clustering [Li, 2005, Zhang et al., 2007] and frequent itemset mining [Mirisaee et al., 2014]. To better understand the importance of the BMF process, consider the following example 1.1. INTRODUCTION from frequent itemset mining domain where we are looking for rectangles of ones in a given binary matrix:

Example 1.1 X =               1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0              
As one can see, three main blocks of ones (shown in boldface) exist in such matrix while one of them (the one in the middle) contains a hole; a zero value which could be noise or a missing value (shown in red). However, for an analyst, this block of one is still considered as one single pattern. For him/her the lonely one in the first row (also shown in red) is noise or an unimportant value. Having this matrix, if we try to find the patterns with a classical approach this block will be broken to several

patterns. An unsatisfying solution over the block of ones in the middle could look like the following:

X =               1 1 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0              
As one can see, the "noisy" block is broken to two sub-blocks (shown in red and blue). Now, we consider a BMF approach to analyze the patterns. Consider the following results from a BMF decomposition: pattern. As this example shows, the BMF technique can be used in many cases to retrieve important information from a dataset.

Given X ∈ {0, 1} M ×N and K ∈ , K << min(M , N ), the general problem of rank K binary matrix factorization is of the following form:

                 argmin W,H ||X -W × H|| p (p = 1 or p = 2) subject to W ∈ {0, 1} M ×K , H ∈ {0, 1} K×N (optional) W × H ∈ {0, 1} M ×N (1.6)
where ||.|| p denotes either the L 1 -norm (p = 1) or the L 2 -norm (p = 2). The optional constraint is here referred to as the binary reconstruction constraint.

Different methods have been proposed to solve (more precisely, to provide an approximation of the solution of) the above problem. For the L 2 -norm, efficient approaches usually solve a relaxed version of the problem, e.g. through non-negative 

2: ε = ∞ 3: min W = min m i=1 k j=1 W i j and max W = max m i=1 k j=1 W i j 4: min H = min k i=1 n j=1 H i j and max H = max k i=1 n j=1 W i j 5: W ′ = W, H ′ = H 6: while min W ≤ max W do 7: while min H ≤ max H do 8: IF W ′ i j < min W THEN W ′ i j = 0 ELSE W ′ i j = 1 9: IF H ′ i j < min H THEN H ′ i j = 0 ELSE H ′ i j = 1 10: IF ||X -W ′ × H ′ || < ε THEN update ε,
W ′ = W, H ′ = H 13:
end while Alternatively, one can iteratively solve simpler problems with K = 1, and then aggregate the solutions to obtain the solution to the original problem. This is typically the approach adopted in the Proximus system [Koyuturk andGrama, 2003, Koyuturk et al., 2005]. This method will be explained in detail in the next section.

In both NMF-based approaches and Proximus, the approximate solution is found by iteratively fixing one matrix, W or H, and solving for the other. For the L 1 -norm, the most efficient approaches, to the best of our knowledge, consider the problem as a clustering problem and make use of a variant of the K-means algorithm to solve it [START_REF] Jiang | A clustering approach to constrained binary matrix factorization[END_REF].

Previous studies have shown that computing a rank 1 (K = 1) approximation could be reformulated as a 0-1 integer linear programming problem [START_REF] Shen | Mining discrete patterns via binary matrix factorization[END_REF].

They exploit this reformulation to guarantee the computation of an optimal solution on small matrices and, through relaxations, they provide approximations with a bounded error rate on larger matrices.

In the following sections, we first review some related studies in the matrix decomposition domain by first considering the standard methods (explained briefly in this section) and then reviewing the variants as well as the methods dedicated to the binary case. We also mention, very briefly, a totally different trend of decomposition, called boolean matrix decomposition at the end of related work section. Next, we consider a known problem called Unconstrained Binary Quadratic Programming (UBQP)

problem and establish a link between this problem and binary matrix factorization as our first contribution [Mirisaee et al., 2015b, Mirisaee et al., 2015c]. Eventually the last section provides some closing remarks on the materials covered in the chapter.

RELATED WORK

STANDARD METHODS

The optimization problem (1.6) can be seen as a non-negative matrix factorization (NMF) [Lee andSeung, 1999a, Lee andSeung, 2001] problem with additional binary constraints. Two main approaches have been followed along this line. The first one (used in [Miettinen et al., 2008]) amounts to first solve a standard NMF problem and then to project the solution onto the {0, 1} M ×K × {0, 1} K×N sub-space. The projection step amounts to setting to 1 all values of W (resp. H) above a threshold θ w (resp.

θ h ) and to 0 all the other ones. θ w and θ h are either learned from the data (typically using a grid search) or set to a predefined value, as 0.5. Learning the thresholds, even though more costly, usually leads to better results [Miettinen et al., 2008]. The grid search has been discussed previously and illustrated in Algorithm 1.

The second approach (used in [START_REF] Zhang | Binary matrix factorization with applications[END_REF] and [Zhang et al., 2010] for example) uses the regularization terms to integrate the binary constraints into the 1.2. RELATED WORK objective function being minimized in NMF, leading to:

       argmin W,H ||X -W × H|| 2 +λ 1 ||W (2) -W|| 2 + λ 2 ||H (2) -H|| 2 subject to W ≥ 0, H ≥ 0 (1.7)
where W

(2) i j = (W i j ) 2 (and similarly for H 2 ). Hence, the second and third terms of the objective function force the factors to be binary, as ||W (2) -W|| F (resp. ||H (2) -H|| F ) is null for binary matrices and strictly positive otherwise. However, this approach does not in general yield binary factors; setting λ 1 and λ 2 to very high values may result in binary factors, but at the expense of having a large reconstruction error. It is nevertheless possible to couple this approach with the preceding one, as the factors obtained prior to thresholding will be closer to binary values than the ones obtained through standard NMF. The same approach can be used for SVD, dropping in this case the positive constraints in the optimization problem (as done in [Miettinen, 2008a] for example, for a similar problem on boolean, and not binary, matrix decomposition).

A problem similar to (1.6) is formulated in [Li, 2005]. In this latter work, however, a third, non-binary matrix is introduced making the problem addressed different from the one we are interested in. This said, the approach developed in [Li, 2005] bears strong similarities with the ones used for solving Problem (1.6). The formulation provided in this study, to cluster binary data, is the following:

W = AXB T + E (1.8)
where A and B represent the membership values for clusters and X denotes the cluster representation. E is the error component this formulation. In this study, also, the authors provide an iterative approach to solve the clustering problem: given X and B, we can optimize A; given X and A we can optimize B and finally given A and B we can simply compute X. In [Li, 2005], some variations of this general model, such as one side K-means and iterative feature and data clustering, has been introduced.

PROXIMUS

Another technique to solve (1.6) is provided in [START_REF] Koyuturk | Compression, clustering, and pattern discovery in very-high-dimensional discreteattribute data sets[END_REF]Grama, 2003] and called Proximus. In Proximus, which satisfies the binary reconstruction constraint as well, one finds the latent factors one at the time. Given an input matrix A m×n , the idea is to start with a column vector x m×1 and find the best CHAPTER 1. GENERAL CONSIDERATIONS ON BINARY MATRIX FACTORIZATION corresponding row vector y n×1 . Vector x could be selected in different way: it could be a random binary vector, could be a random column of A, a combination of several columns of A, etc. Given x, which is called the presence vector, we can optimally find the best y, which is called pattern vector. More formally, we need to minimize the following quantity:

||A -x y T || 2 = ||A|| 2 -2x T A y + ||x|| 2 || y|| 2 (1.9)
where ||.|| 2 denotes the Frobenius norm. This leads to maximizing 2x

T A y -||x|| 2 || y|| 2 .
Fixing y, it is clear that x is optimized as the following:

x(i) = 1 i f 2A y ≥ || y|| 2 0 other wise
The formulation which optimizes y (when x is fixed) is similar. The intuition is simple:

having y fixed, we simply compare y T with rows of A. If at least half of the ones in y is covered with a given row, we put a one in the corresponding cell of x, otherwise we set it to zero. Once we optimized x, we can fix it and optimize y. This iterative optimization is continued until x and y are stable. Consider the following example:

Example 1.3 A =       0 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1       y T = 1 0 0 0 1
To construct x, we need to compare y T to all rows of A to check if they can cover at least one of the ones in y T (at leas half of the ones should be covered; as there are two ones, we need to cover at leas one of them), i.e. the first and the last cell (coverage means that the first and the last cell of the row of A is also one; for instance, denoting the first row of A as a 1 , what we check is that if a 1 y ≥ || y|| 2 /2 or not). The third and the forth row of A satisfy this condition. As a result, the corresponding x for such y is:

x T =       0 0 1 1      
After obtaining a stable x and y, we simply remove, from A, the columns which have a value of one in the presence vector y. This ensures that the reconstructed matrix 1.2. RELATED WORK is binary since the items in y in this step, will not be available in the next one (orthogonality of the pattern vectors). This also makes the algorithm run faster as we go forward since there are less and less columns in A and thus the computations can be done faster.

One main problem in Proximus is that, like all other similar approaches, it is sensitive to initialization. For instance, suppose that in the above-mentioned example, we start from y T = ( 1 1 1 1 1). This leads to a zero vector for x since there is no row in A that can cover at least 3 ones of y T (at least half of the ones should be covered;

as we have 5 ones, at least 3 of them should be covered). Then, starting with a zero vector as x will result in the same y. Since both vectors are stable, the algorithm will return them as a solution with the error value of 6 as 6 cells in A are approximated as zero while they were actually one. However if we started with a y as shown in the example, we would have ended in an approximation with an error value of 4. One way to tackle such problem is to run the algorithm several times with different initialization and take the best result as the solution. This is the strategy adapted in our experiments in the following chapters.

CBMF AND UBMF

All the methods explained so far solve the L 2 version of BMF. Another recent approach to solve (1.6) is the one introduced in [START_REF] Jiang | A clustering approach to constrained binary matrix factorization[END_REF] which considers the L 1 case.

This study addresses the BMF problem using a K-means approach. This technique, which is called CBMF (Constrained Binary Matrix Factorization), ensures the binary reconstruction by imposing the orthogonality. Fixing W, consider the following subproblem of optimizing j th column of H, denoted as h, with respect to j th column of X, denoted as x:

min n i=1 ||x i j -Wh i j || 1 s.t. ||h|| 1 ≤ 1 (orthogonality constraint)
where the orthogonality constraint expresses that the column vector h can contain at most one non-zero element. The optimal solution to this problem is simply obtained by comparing the distance between vector x and all columns of W. If x is closer to a column of W, say w t , than to the null vector, we simply set h t j to 1. If x is closer to null vector than to the columns of W, then the optimal solution is also to CHAPTER 1. GENERAL CONSIDERATIONS ON BINARY MATRIX FACTORIZATION have a null vector as h. Based on that, the authors in [START_REF] Jiang | A clustering approach to constrained binary matrix factorization[END_REF]] establish a link between CBMF and K-means clustering by showing that fixing one factor and optimizing the other has the same optimal solution as K-means. Accordingly, the method proposed in [START_REF] Jiang | A clustering approach to constrained binary matrix factorization[END_REF] uses a clustering technique: starting from K initial cluster representatives (which constructs the initial W) from column vectors of X, we assign each column vector of X to the class of the closest representative. Based on the columns assigned to each cluster, we build the first H. New binary representatives (corresponding to a 0 -1 average) are then computed, and the process is repeated until the clusters do not evolve. A "zero" cluster, the representative of which does not change and is set to the null vector, is used to capture column vectors of X that are best approximated by the null vector in the reconstructed matrix. The final representatives thus obtained constitute the matrix W, the matrix H being obtained through a simple operation. The following example illustrates this method.

Example 1.4 Consider the following matrix X and suppose that the initial centers (which construct the initial W, denoted as W 1 ) are the first and the second column of X, shown in red and blue respectively:

X =             1 0 1 0 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1             W 1 =             1 0 1 1 1 0 0 1 0 0 0 0            
Then the H 1 obtained by the CBMF approach is:

H 1 = 1 0 0 0 0 1 1 1
As the first column of X is closer to the first center (they are identical), we assign it to the 

W 2 =            
1 av g 01 (0, 1, 0)

1 av g 01 (1, 0, 0)

1 av g 01 (0, 0, 0) 0 av g 01 [START_REF] Mirisaee | Finding Representative Instances from Dataset[END_REF][START_REF] Mirisaee | Finding Representative Instances from Dataset[END_REF][START_REF] Mirisaee | Finding Representative Instances from Dataset[END_REF] 0 av g 01 (0, 0, 1)

0 av g 01 (0, 1, 1)             =             1 0 1 0 1 0 0 1 0 0 0 1            
where av g 01 denotes the 0 -1 averaging function.

A deterministic two-approximation of the CBMF problem is provided based on the technique mentioned above. It consists of starting with all possible k subsets of columns of X. This method is extremely time consuming as there exists

n k = n! k!(n-k)!
different initialization which are followed by an iterative clustering procedure. Accordingly, a faster approach is not to search exhaustively all possibilities, but to start with a good one. This is where the authors use the K-means++ initialization [Arthur and Vassilvitskii, 2007a] to obtain the starting centers. K-means++ tries to find the initial centers in different areas of the space in order to cover all the search space (a random initialization, for instance, is strongly affected by the distribution of the data and may select many initial centers on the same region of the space).

A slight modification of this approach is also used in [START_REF] Jiang | A clustering approach to constrained binary matrix factorization[END_REF], referred to as UBMF, to solve the problem without the binary reconstruction constraint. Using the results from [START_REF] Hasewaga | Efficient algorithms for vairance-based k-clustering[END_REF], it can be shown that CBMF yields a 4(2 + log K) approximation of the optimal solution.

Because of its reliance on K-means, CBMF can a priori be improved through local search procedures designed for K-means. [START_REF] Kanungo | A local search approximation algorithm for k-means clustering[END_REF] introduce such a local search, referred to here as the swap procedure, and that consists, when applied to our problem, in randomly selecting one of the final representatives of the current CBMF solution and replace it with one random column vector of X (the column vector of X becomes a new representative). The K-means algorithm is then applied to the new set of representatives; if the solution obtained is better, it becomes the new current solution. This process is repeated a certain number of times or until the time budget has been exhausted.

BOOLEAN DECOMPOSITION

A totally different decomposition technique is called Boolean Matrix Factorization [Miettinen et al., 2008, Miettinen, 2008a[START_REF] Miettinen ; Miettinen | The boolean column and column-row matrix decompositions[END_REF]. In this technique the multiplication between the factors is no longer the ordinary multiplication but is the boolean one where 1 + 1 = 1. Consider the following example where • denotes the boolean matrix multiplication:

Example 1.5 x = 1 1 0 y =     1 1 1     x • y = 1 * 1 + 1 * 1 + 1 * 0 = 1 as 1 + 1 = 1
, while and ordinary matrix decomposition, denoted as ×, results in a value of 2:

x × y = 1 * 1 + 1 * 1 + 1 * 0 = 2
The problem of boolean decomposition is expressed as:

min|A -B • C| s.t A, B, C ∈ {0, 1}
where • represents boolean multiplication. As SVD provides the otpimal rank-k representation of matrices with respect to the Frobenius norm, in [Miettinen et al., 2008],

the authors introduce the notion of boolean rank which is computed when the operator is boolean.

In [START_REF] Miettinen ; Miettinen | The boolean column and column-row matrix decompositions[END_REF], two boolean decomposition problems, namely BCX and

BCUR, are considered which minimize |A -C • X| and |A -C • U • R| respectively. Using
Positive-Negative Partial Set Cover problem [Miettinen, 2008c], it is shown that these problems are NP-hard. Then a cover function, which is simply a trade-off function between the 1s covered and the 0s covered, is provided in order to find a solution to those problems.

The boolean decomposition, though very interesting, is not studied in our research

as it has a completely different interpretation and theories. We here focus on the ordinary decomposition and the theorems and examples provided later will not be necessarily valid for the boolean decomposition case. et al., 2015b]. This allows us to use the UBQP heuristics [Beasley, 1998] in order to tackle the BMF problem in the following chapter.

UBQP is a quadratic maximization problem with binary variables. The general formulation of this problem is to maximize the following:

f (x) = x T Q x = n i=1 n j=1 q i j x i x j subject to x i ∈ {0, 1} ∀i = 1, ..., n (1.10)
This problem is NP-hard and has many applications such as financial analysis problems and machine scheduling [START_REF] Merz | Greedy and local search heuristics for unconstrained binary quadratic programming[END_REF]. According to its wide range of applications, the solutions to UBQP have always been of interest. Some exact methods have been proposed to solve (1.10) such as [START_REF] Helmberg | [END_REF]Rendl, 1998,Billionnet andSutter, 1994]; however, according to the computational complexity, researchers tried to find heuristics for that. Tabu search and simulated annealing are some examples of these heuristics [Beasley, 1998, Katayama et al., 2000].

As mentioned before, establishing a link between the BMF problem and the UBQP problem allows us to use the heuristics developed for UBQP in order to solve the BMF problem or improve its solutions. In the following, we show that such relation exists when the L 2 norm is concerned and then, in the next chapter, we use it as a technique to improve the solutions of L 2 -BMF and compare it to the one proposed therein.

As explained in the previous sections, standard methods for L 2 -BMF fix one matrix, W or H, and solve for the other. The quantity to be minimized in L 2 -BMF can be rewritten as:

||X -WH|| 2 2 = M i=1 N j=1 (x i j - K k=1 w ik h k j ) 2
with: 

(x i j - K k=1 w ik h k j ) 2 = x 2 i j + ( K k=1 w ik h k j ) 2 -2x i j K k=1
argmin w i. N j=1 (x 2 i j + ( K k=1 w ik h k j ) 2 -2x i j K k=1 w ik h k j ) (1.11)
where w i. is the i th row vector of W. The above minimization problem can be rewritten as

argmin w i. N j=1 ( K k=1 w ik h k j ) 2 + K k=1 w ik N j=1 (-2x i j h k j ) (1.12)
since x i j is not subject to any change and does not play any role in the minimization problem (it is only a constant). The first term in (1.12), N j=1 ( K k=1 w ik h k j ) 2 , can be rewritten as:

N j=1 ( K k=1 w ik h k j ) 2 = K k=1 w ik N j=1 h k j + K k=1 K k ′ =k+1 w ik w ik ′ 2 N j=1 h k j h k ′ j (1.13)
Now if we put (1.13) in (1.12), we need to minimize the following quantity with respect to w i. :

K k=1 w ik N j=1 h k j α + K k=1 K k ′ =k+1 w ik w ik ′ 2 N j=1 h k j h k ′ j + K k=1 w ik N j=1 (-2x i j h k j ) β (1.14)
Now we factorize K k=1 w ik in α and β:

K k=1 w ik ( N j=1 h k j - N j=1 (2x i j h k j )) + K k=1 K k ′ =k+1 w ik w ik ′ 2 N j=1 h k j h k ′ j (1.15) which is equal to K k=1 w ik ( N j=1 h k j (1 -2x i j )) + K k=1 K k ′ =k+1 w ik w ik ′ 2 N j=1 h k j h k ′ j (1.16)
Now, let us consider the symmetric, K × K matrix Q:

q kk = N j=1 h k j (1 -2x i j ), q kk ′ = N j=1 h k j h k ′ j (k = k ′ )
The quantity minimized in problem (1.12) can be rewritten with Q as follows:

K k=1 w 2 ik q kk + K k=1 K k ′ =k+1 2w ik w ik ′ q kk ′ = w i. Qw T i.
and thus problem (1.12) can be reformulated as:

argmin w i. w i. Qw T i.
(1.17) 1.3. RELATION TO UBQP which corresponds to a UBQP problem [Beasley, 1998, Merz andFreisleben, 2002].

One should note that the placement of the transposed vector is not important in this problem and it could be either before the matrix of weights (Q) or after that. Applying the same development on H when W is fixed leads to the following property.

Property 1.1 Iteratively solving the L 2 -BMF problem by fixing either W or H and solving for the other is equivalent to iteratively solving UBQP problems of the form:

argmin v v T Qv (1.18)
with:

q kk = N j=1 h k j (1 -2x i j ) OR M i=1 w ik (1 -2x i j ) q kk ′ = N j=1 h k j h k ′ j (k = k ′ ) OR M i=1 w ik w ik ′ (k = k ′ )
Note that when k = 1, the optimal W or H, when the other one is fixed, is directly obtained by setting the i th element of W (or H) to 1 if more than half of the elements with a 1 in H (or W) have also a 1 in the i th row (or column) of X, and to 0 otherwise. This corresponds to the alternating strategy used in Proximus. When k > 1,

this not longer holds and approximate solutions are usually obtained. Resorting to UBQP solvers in this case does not however represent an interesting alternative, as the solutions provided by e.g. NMF in the continuous space are in general faster to obtain and the projection on the binary domain can be done efficiently as mentioned in previous sections. Nevertheless, it might still be interesting to improve the NMF or Proximus solutions through local search algorithms designed for UBQP. This issue will be studied deeply in the following chapter.

One should note that, based on the developments provided so far, we can iteratively solve the BMF problem. The idea is to consider one row of W, say w i. , at the time.

Using the Property 1.1, one can simply compute the matrix of weights Q. Having matrix Q, we can directly apply the heuristics of UBQP to the BMF problem. In the next chapter, we will see how matrix Q needs to be updated and, using that, we will have a heuristic with a complexity of O(K N ) for updating one row of W. With the same reasoning, one can see updating a column of H has the same complexity. We will see the complexity analysis in detail in the next chapter.

In such updating procedure, once we are done with all rows of W, we redo the process with columns of H and optimize them with respect to columns of X. As before, the computation of Q is expensive for the first column and, only after that, it can be CHAPTER 1. GENERAL CONSIDERATIONS ON BINARY MATRIX FACTORIZATION updated more quickly. One should note that for the second round of optimizing W, matrix Q should be again computed completely for the very first row as H has been changed compared to the first iteration. More detailed analysis of the complexities as well as a more efficient technique for updating W and H will be provided in the next chapter.

CLOSING REMARKS

In this chapter, we first studied the importance of matrix factorization techniques in data analysis and understanding. As mentioned, these techniques can simplify the data and find latent factors or patterns. We then considered a particular decomposition method which is of interest in many applications, namely binary matrix factorization (BMF), in which both the input and the decomposition factors are binary, and the reconstruction could be optionally binary as well. Finally, it has been shown, as our first contribution [Mirisaee et al., 2015c,Mirisaee et al., 2015b], that the BMF problem can be reformulated as a UBQP problem. This reformulation will allow us to use the heuristics of UBQP in BMF cases. In the following chapter, we see how we can use this reformulation in order to establish a heuristic local search for BMF. We then provide a more efficient local search and show (theoretically and experimentally) its efficiency with respect to the UBQP approach and the standard approach.

2 HEURISTIC LOCAL SEARCH FOR BMF

INTRODUCTION

Local search algorithms are heuristics aimed at improving a current solution by searching in its neighborhood for a better solution (hence the name "local"). For instance in the traveling salesman problem (TSP) problem, a 2-change neighborhood is a set of tours that are different in only two edges [START_REF] Johnson | How easy is local search?[END_REF]. In other words, a local search is a search in which, given an independently obtained solution, we try to find a better solution repeatedly in a "close" neighborhood.

In the context of BMF, the neighborhood of size p of a given W (or H) is defined by the set of matrices that can be obtained from W (or H) by flipping at most p cells (here, flipping means changing a 1 to a 0 and vice versa). The following example illustrates this point.

Example 2.1 Consider the following toy matrices of CBMF (see Section 1.2.3) decomposition of the form

X = W × H + ε where ||ε|| 1 = 5.             1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 1             =             0 1 0 1 1 0 0 0 0 1 1 0             × 0 1 1 0 1 0 0 1 +             0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1            
In this example, we can simply look at a neighborhood of size one of H, i.e. flipping only one bit of H. Doing a simple bit flip operation, one can see that by flipping (from 0 to 1) the cell shown in red in H, we obtain the following solution of the form

X = W × H ′ + ε ′ where ||ε ′ || 1 = 3 which is an improvement over the initial decomposition.             1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 1 0 1 1 1             =             0 1 0 1 1 0 0 0 0 1 1 0             × 0 1 1 1 1 0 0 1 +             0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0            
According to this example, we can observe the importance of a local search. Obviously, the main question is "which bit should we flip?". One naive approach is to simply flip every single bit and check if the new solution is better or not, which is clearly an expensive solution considering the number of bits to check in each round. One may also think of flipping the first bit which brings improvement to the solution and drop the rest of the checking process. Computational-wise, what is difficult to do is the multiplication required in order to see if flipping the bit under consideration can improve the solution or not. Since this approach is iterative and needs to be done for each bit until stabilization, it could be very time consuming. Accordingly, different studies have been dedicated to find fast local heuristics for this problem.

The UBQP problem and its relation to BMF have been discussed in the previous chapter. As mentioned there, the UBQP is formulated as a maximization problem, where the function to maximize is:

f (x) = x T Q x = n i=1 n j=1 q i j x i x j subject to x i ∈ {0, 1} ∀i = 1, ..., n
Having a link between the UBQP problem and BMF allows us to use the heuristics developed for UBQP in the BMF domain. One of these heuristics has been studied in [Beasley, 1998]. In that paper, according to the hardness of UBQP, Beasley proposes two heuristics: one based on tabu search and the other based on simulated-annealing.

By introducing a new variable, the UBQP problem has been reformulated as binary linear program where the convex hull of the solution of constraints is known as a boolean quadratic polytope [Mehrotra, 1997]. One can simply relax this binary programming to find the bounds on the optimal solution of the UBQP problem. The idea of the tabu search proposed in [Beasley, 1998] is to start from a zero vector x, and then to examine all non-tabu moves. In the simulated-annealing method, Beasley proposes to set the initial temperature to the problem size (size of x) and the parameter α to 0.995. The computational results show that these methods can solve fairly large sizes of UBQP problem in a reasonable amount of time.

INTRODUCTION

In [START_REF] Merz | Greedy and local search heuristics for unconstrained binary quadratic programming[END_REF] a local search heuristics, called p-opt local search for UBQP is presented. The p-opt local search algorithm proposed in [START_REF] Merz | Greedy and local search heuristics for unconstrained binary quadratic programming[END_REF] looks for the solution in the neighborhood of size p that maximizes the gain with respect to the current solution and adopts this solution if the gain is positive. The p-opt local search, which parallels the tabu search of [Glover F., 1998] discussed in [Beasley, 1998] and based on [START_REF] Kernighan | An Efficient Heuristic Procedure for Partitioning Graphs[END_REF] and [START_REF] Lin | An effective heuristic algorithm for the traveling-salesman problem[END_REF], is similar for the neighborhood of size p, except that, for computational reasons, one does not look for the solution that maximizes the gain but only explores a part of the neighborhood looking for a solution that improves the current one. This exploration corresponds to a recursive application of the 1-opt solution.

p-opt local search algorithms are of course only interesting if the gains can be computed efficiently; the complexity of the p-opt local search algorithm proposed in [START_REF] Merz | Greedy and local search heuristics for unconstrained binary quadratic programming[END_REF], when applied to the i th row of W in our case (problem 1.17) is O(K 2 ) once the matrix Q, which depends on i, has been constructed. One can recall, from the previous chapter, that matrix Q in case of BMF is computed is the following

q kk = N j=1 h k j (1 -2x i j ) OR M i=1 w ik (1 -2x i j ) q kk ′ = N j=1 h k j h k ′ j (k = k ′ ) OR M i=1 w ik w ik ′ (k = k ′ )
In each round of updating W, matrix Q is constructed for the first row with a cost of O(K 2 N ) as the diagonal of Q can be computed via K dot products of vectors of size N and the upper triangle of Q has

K(K-1) 2
elements, each of which requiring a dot product with vectors of size N . Note that Q is symmetric and we only need to compute the upper (or the lower) triangle. Once Q is constructed for the first row of W, it can then be reused for other rows with a simple update on the diagonal which can be done in O(K N ), as explained before. Accordingly, computing Q for all rows of W has the time

complexity of O(K M N ) as it is one time K 2 N and M -1 times K N .
As the heuristic of [START_REF] Merz | Greedy and local search heuristics for unconstrained binary quadratic programming[END_REF] has a time complexity of O(K 2 ) for each row of W,

for M rows we have O(M K 2 ) for the heuristic phase. As a result, the total complexity for updating W in one round is O(M K N + M K 2 ) and since N ≥ K the complexity will be O(M K N ). Dividing this quantity by the number of rows, M , we will have O(K N )

as the complexity of updating one row of W using the 1-opt discussed in [START_REF] Merz | Greedy and local search heuristics for unconstrained binary quadratic programming[END_REF]. We denote this procedure as 1-opt-UBQP. One can simply see that updating a column of H has exactly the same complexity.

As mentioned in the previous chapter, BMF has been used in many applications recently. Consequently, in this chapter, we focus on heuristic local search for BMF.

As discussed so far, there are different BMF approaches such as (projected) NMF and

(projected) SVD, CBMF, UBMF and Proximus. In the following section, as our second contribution [Mirisaee et al., 2015b, Mirisaee et al., 2015c], we provide an efficient heuristic which, given a solution, finds a better solution in a close neighborhood. We will then show that this technique is faster than the state-of-the-art methods, and the improvement is statistically significant in many cases.

The local search introduced here is known as p-opt and it consists of, when applied to our problem, finding new solutions by flipping p bits. Finding the best p bits to flip can be done in a greedy or an exhaustive way. Here, we focus on 1-opt, in which only one bit is flipped at a time. However, the procedure to apply the p-opt is simply a repeated use of 1-opt.

p-opt LOCAL SEARCH FOR BMF

We describe here a p-opt local search procedure dedicated to rank K binary matrix factorization. As mentioned before, rows of W (or columns of H) can be optimized independently of each other. We show here how to optimize, in a neighborhood of size 1, a row of W (the reasoning is the same for columns of H). For each row w i. of W, we first compute a partition of columns of H. The main rational of such partitioning is to compute, for each partition, the gains separately. Furthermore, using this partitioning, one is able to replace many vector multiplications with straightforward summations.

As mentioned before, the computational cost of the 1-opt procedures are increased when multiplications are involved. Accordingly, if one can avoid (at least a part of if not all) multiplications, s/he can obtain a faster 1-opt procedure. In the following, we first show how this partitioning is done. We then provide examples to illustrate how this technique works on real matrices and how it can accelerate the process. 

(i) W 0 i = {h .l | 1 ≤ l ≤ N , x il = 0} (ii) W ⊥ i = {h .l | 1 ≤ l ≤ N , x il = 1, < w i. , h .l >= 0} (iii) W ⊥ i = {h .l | 1 ≤ l ≤ N , x il = 1, < w i. , h .l > = 0} 30 2.2. P-OPT LOCAL SEARCH FOR BMF
where h .l is the binary vector corresponding to the l th column of H, x il the cell of X at row i and column l; < ., . > denotes the dot product. We have of course:

|W 0 i |+|W ⊥ i |+|W ⊥ i | = N .
The following example illustrates the three sets defined above.

Example 2.2

Let x i. = 1 1 0 0 1 1 , w i. = 0 0 1 and H =     0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1     Then: W 0 i = {h .3 , h .4 } =     1 1 1 0 1 1     W ⊥ i = {h .2 , h .5 } =     1 1 1 0 0 0     W ⊥ i = {h .1 , h .6 } =     0 0 1 0 1 1    
Given a row of W (resp. a column of H), the idea is to exploit the characteristics and the distribution of the corresponding row (resp. column) of X and H (resp. W) in order to compute the gain we obtain by flipping a bit. What we need now, in order to define an efficient p-opt local search, is a fast way to compute the gain when flipping the j th bit of w i. from 0 to 1 and vice versa. Such a gain (which can be positive or negative) is defined as

∆E(i, j) = E(i, j) new -E(i, j) old = ||x i. -w j i. H|| p -||x i. -w i. × H|| p
where w j i. is obtained from w i. by flipping the j th bit (either from 0 to 1 or from 1 to 0). Theorem 2.1 provides simple expressions for ∆E(i, j) for both L 1 and L 2 norms; expressions that can be computed efficiently (with respect to other methods), as it will be shown in Theorem 2.2. CHAPTER 2. HEURISTIC LOCAL SEARCH FOR BMF Theorem 2.1 Let ∆E(i, j; 0 → 1, L 2 ) (resp. ∆E(i, j; 1 → 0, L 2 )) be the gain obtained when flipping the j th bit of w i. from 0 to 1 (resp. from 1 to 0), measured by the L 2 -norm.

Then:

∆E(i, j; 0 → 1, L 2 ) = h∈W 0 i (1+2 < w i. , h >)h j + h∈W ⊥ i (2 < w i. , h > -1)h j - h∈W ⊥ i h j (2.1) ∆E(i, j; 1 → 0, L 2 ) = h∈W 0 i (1 -2 < w i. , h >)h j + h∈W ⊥ i <w i. ,h>h j =1 1 + h∈W ⊥ i <w i. ,h>h j >1 3 -2 < w i. , h > (2.2)
Similarly for the L 1 -norm we have:

∆E(i, j; 0 → 1, L 1 ) = h∈W 0 i h j + h∈W ⊥ i h j - h∈W ⊥ i h j (2.3) ∆E(i, j; 1 → 0, L 1 ) = h∈W ⊥ i <w i. ,h>h j =1
1 -

h∈W 0 i h j - h∈W ⊥ i <w i. ,h>h j >1 1 (2.4)
Proof For each of these formulations, we consider the error change with respect to the sets defined in Def. 2.1.

∆E(i, j; 0 → 1, L 2 )
• First consider the W 0 i set: before the flip, the error E 1 0 , of w i. wrt W 0 i is:

E 1 0 = h∈W 0 i < w i. , h > 2
After the flip, this error becomes

E 2 0 = h∈W 0 i (< w i. , h > +h j ) 2
as the elements of W 0 i correspond to the cells in X having zero values (Def. 2.1). Accordingly, flipping the j th cell of w i from 0 to 1 will potentially increase the 2.2. P-OPT LOCAL SEARCH FOR BMF error depending on the value of h j ; thus, the difference in errors amounts to:

E 2 0 -E 1 0 = h∈W 0 i (< w i. , h > +h j ) 2 - h∈W 0 i < w i. , h > 2 (2.5) = h∈W 0 i (< w i. , h > +h j ) 2 -< w i. , h > 2 (2.6) = h∈W 0 i < w i. , h > 2 +2 < w i. , h > h j + h 2 j -< w i. , h > 2 (2.7) = h∈W 0 i 2 < w i. , h > h j + h 2 j (2.8) = h∈W 0 i (1 + 2 < w i. , h >)h j (2.9)
Note that in (2.8) we can replace h 2 j with h j as matrix H is binary.

• For W ⊥ i case, we denote the error before the flip as E 1 ⊥ and the error after the flip as E 2 ⊥ : before the flip we have

E 1 ⊥ = h∈W ⊥ i (< w i. , h > -1) 2
as we need to produce 1 in this case (see Def. 2.1) and thus the initial error for the columns in W ⊥ i amounts to (< w i. , h > -1) 2 since we are considering the L 2 -norm. After the flip, we are potentially introducing more error since flipping a 0 to a 1 will increase the dot product if h j is also equal to 1 (if it is equal to zero, no additional error is introduced). Accordingly, the new error becomes

E 2 ⊥ = h∈W ⊥ i (< w i. , h > -1 + h j ) 2
The difference amounts to:

E 2 ⊥ -E 1 ⊥ = h∈W ⊥ i (< w i. , h > -1 + h j ) 2 - h∈W ⊥ i (< w i. , h > -1) 2 (2.10) = h∈W ⊥ i (< w i. , h > -1 + h j ) 2 -(< w i. , h > -1) 2 (2.11) = h∈W ⊥ i (2 < w i. , h > -1)h j (2.12)
• Finally, we consider W ⊥ i : the error, before the flip, is the cardinality of the set (since the dot product is 0 whereas it should be 1). As a result, the flip can only reduce this error and it does so for all the vectors in W ⊥ i whose j th element is 1. Accordingly, following our notations, the difference in error is thus

E 2 ⊥ -E 1 ⊥ = - h∈W ⊥ i h j (2.13)
Summing (2.9), (2.12) and ( 2.13) yields Equation 2.1.

∆E(i, j; 1 → 0, L 2 )
• As before, the error with respect to W 0 i is

E 1 0 = h∈W 0 i < w i. , h > 2
before the flip. After the flip, since we are changing a 1 to a 0, we are potentially decreasing the error. The reason is that columns in W 0 i need to produce zeros when multiplied by w i. while the dot product may produce other values.

As a result, when the j th bit of w i. flipped to zero, it could decrease the error depending on the value of h j ; accordingly, the new error is simply

E 2 0 = h∈W 0 i (< w i. , h > -h j ) 2
and the difference amounts to:

E 2 0 -E 1 0 = h∈W 0 i (< w i. , h > -h j ) 2 - h∈W 0 i < w i. , h > 2 (2.14) = h∈W 0 i (< w i. , h > -h j ) 2 -< w i. , h > 2 (2.15) = h∈W 0 i < w i. , h > 2 -2 < w i. , h > h j + h 2 j -< w i. , h > 2 (2.16) = h∈W 0 i -2 < w i. , h > h j + h 2 j (2.17) = h∈W 0 i (1 -2 < w i. , h >)h j (2.18)
Here, we can again replace h 2 j with h j in (2.17) as matrix H is binary.

• For a given h ∈ W ⊥ i , two situations arise: case (i) is when, for a given column h ∈ W ⊥ i we have < w i , h > h j = 1, which means the dot product and the j th cell of h are both 1. In this case, if we flip the j th cell of w i. to 1, we have added one 34 2.2. P-OPT LOCAL SEARCH FOR BMF error per column. So we have the following quantity as error increase (which is simply the quantity of the set):

h∈W ⊥ i <w i. ,h>h j =1 1 (2.19)
Case (ii) is when, for a given column h ∈ W ⊥ i , we have (< w i , h >) h j > 1, which means that h j = 1 and < w i , h > is greater than 1. In such case, the initial error we are making is

E 1 ⊥ = h∈W ⊥ i <w i. ,h>h j >1 (< w i. , h > -1) 2
and by flipping the j th bit results in adding one extra error:

E 2 ⊥ = h∈W ⊥ i <w i. ,h>h j >1 (< w i. , h > -2) 2
Accordingly, we have

E 2 ⊥ -E 1 ⊥ = h∈W ⊥ i <w i. ,h>h j >1 (< w i. , h > -2) 2 - h∈W ⊥ i <w i. ,h>h j >1 (< w i. , h > -1) 2 (2.20) = h∈W ⊥ i <w i. ,h>h j >1 (< w i. , h > -2) 2 -(< w i. , h > -1) 2 (2.21) = h∈W ⊥ i <w i. ,h>h j >1 3 -2 < w i. , h > (2.22)
One should note that if h j = 0 flipping the corresponding bit in w i. from 0 to 1 does not change the error as, in any case, their multiplication will be zero.

• Lastly, the error on W ⊥ i is not affected by the flip as w j i. is already orthogonal to all the elements of W ⊥ i and flipping a 1 to 0 will not change this orthogonality and, as a result, does not change the error value. Summing (2.18), (2.19) and (2.22) yields Equation 2.2.

∆E(i, j; 0 → 1, L 1 )
• For columns in W 0 i , if we flip a 0 to a 1 in w i. , in case the corresponding cell of a given column h ∈ W 0

i is zero, no extra error is introduced as the multiplication would be zero in any case. However if the corresponding cell is 1, then one new error is introduced. So the error in this case is simply:

h∈W 0 i h j (2.23)
• For columns of W ⊥ i , we need to produce 1. Consequently, the initial error is

E 1 ⊥ = h∈W ⊥ i (< w i. , h > -1)
and the new error will be

E 2 ⊥ = h∈W ⊥ i (< w i. , h > -1 + h j )
as flipping the j th bit from 0 to 1 will introduce one new error if h j is also equal to 1. As a result:

E 2 ⊥ -E 1 ⊥ = h∈W ⊥ i (< w i. , h > -1 + h j ) - h∈W ⊥ i (< w i. , h > -1) (2.24) = h∈W ⊥ i < w i. , h > -1 + h j -< w i. , h > +1 (2.25) = h∈W ⊥ i h j (2.26)
• For columns of W ⊥ i , we may be able to decrease the error by flipping a bit from 0 to 1 as, initially, w i. is orthogonal to the columns of W ⊥ i , i.e the dot product produces zero while we expect a 1. As a result, if we flip the j th cell to 1, then we can decrease the error only if the corresponding cell in h ∈ W ⊥ i is also equal to one. Consequently the error change in this case is: 

- h∈W ⊥ i h j (2.
∆E(i, j; 1 → 0, L 1 )
• For W 0 i , as we need to produce a zero for each dot product, flipping a bit from 1 to 0 can only cause error decrease. This will happen if the corresponding cell in h ∈ W 0 i is 1. Thus, the error change is:

-

h∈W 0 i h j (2.28)
• For columns in W ⊥ i , we again have two case: (i) when have < w i , h > h j = 1 in which, by the same token as before, we are introducing one error per column, which means

h∈W ⊥ i <w i. ,h>h j =1 1 (2.29)
Case (ii) is when (< w i , h >) h j > 1, which means that h j = 1 and < w i , h > is greater than 1. In this case, by flipping 1 to 0, we decrease the error one unit per column (as the corresponding cell, h j , is equal to one for all columns in this set). So the difference in the error is given by

- h∈W ⊥ i <w i. ,h>h j >1 1 (2.30)
• For W ⊥ i , we do not introduce any new error by flipping a bit from 1 to 0 as the dot product is already zero and setting an element to zero does not change the result of this product. Summing (2.28), (2.29) and (2.30) yields Equation 2.3. Theorem 2.1 provides a direct way to compute the gain associated to each possible flip of an element of w i. , which can be used in a 1-opt local search procedure as defined in Algorithm 2 (in this algorithm, we use ∆E(i, j; L p ) which is equal to ∆E(i, j; 0 → 1, L p ) if w i j = 0 and to ∆E(i, j; 1 → 0, L p ) otherwise). The following example illustrates how one can utilize Theorem 2.1 in practice.

Example 2.3

Consider the following configuration where we aim at optimizing the i th row of W (denoted by w i. ) having the corresponding row of X (denoted by x i. ) and H:

x i. = 1 1 0 0 1 1 , w i. = 0 1 1 and H =     0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1    
Using Def. 2.1, we have the following sets: ) denote the gain for flipping the bits where the subscripts show the index of corresponding cell in w i. and the superscripts show whether we should use the zero-to-one formulations in Theorem 2.1 or the one-to-zero formulations. Having vector computed, we can decide which bit to flip in order to maximize the improvement. We consider both the L 2 and the L 1 cases:

W 0 i = {h .3 , h .4 } =     1 1 1 0 1 1     W ⊥ i = {h .5 } =     1 0 0     W ⊥ i = {h .1 , h .2 , h .6 } =     0 1 0 1 1 0 1 0 1     CHAPTER 2.
• L 2 : we obtain g 0→1 1 = +8 using the Eq. (2.1). Similarly, if we use Eq. ( 2.2) for g 1→0 2 and g 1→0 3 we obtain -3 and -4 respectively. As a result the gain vector is = (+8, -3, -4) which means that the best bit to flip is the last one as it has the highest negative gain.

• L 1 : in this case we use Eq. ( 2.3) for the first cell and Eq. (2.4) for the second and the third one which gives us the following gain vector = (+2, -1, -2). In this case, we select the third bit to flip as it leads to the best improvement comparing to the other bits.

The procedure expressed in Algorithm 2 can be naturally extended to p-opt local search, either by adopting a greedy approach, in which case one applies p times a 1opt local search, as done in [START_REF] Merz | Greedy and local search heuristics for unconstrained binary quadratic programming[END_REF], or by finding the p flips that maximize the gain. In both cases, the gain of flipping several bits is the sum of the gain of the individual flips. However, in the latter approach, the complexity for selecting the best bits to flip is in O(K p ), which prevents its application in most practical cases (in contrast, the complexity of the p-opt greedy approach to select the p bits is O(pK)). In the remainder, and as done in many studies, when we talk about the p-opt local search, we refer to the p-opt greedy approach. Lastly, Algorithm 2 (and its p-opt extension)

can also be adapted to cover the formulation of the BMF problem with the binary reconstruction constraint by accepting a flip only if the result is a binary vector1 .

As mentioned previously in this chapter, the complexity of updating one row (say row i) of W through the UBQP approach is O(K N ). A standard procedure, denoted as 1-opt-Standard hereafter, which compute the gain through the multiplication of w i.

and H would in fact have a complexity of O(K 2 N ) as it needs to multiply w i. , which is of size K, by H to find the gain of flipping one single cell (O(K N ) so far) and since this multiplications need to be done one time for each cell of w i. , the total complexity will be O(K for each row w i in W do

3: j = argmin 1≤ j ′ ≤k ∆E(i, j ′ ; L p ) 4:
if ∆E(i, j; L p ) < 0 then flip W i j

5:

end if for updating one column of H. We show, via Theorem 2.2, that the 1-opt procedure defined on the basis of Theorem 2.1 is more efficient. This result directly extends to p-opt local search as this latter is just a chain of 1-opt procedures. Note that in Theorem 2.2, since we aim at finding the minimum gain that we are able to obtain using the proposed method, we consider updating a row of W in our calculations.

The reason is that for 1-opt-UBQP the complexity is the same for both case (updating one row of W and updating one column of H); however, since the complexity in the standard method is not the same for updating one row of W and updating one column

of H (O(K 2 N ) vs. O(K 2 M
)), we consider the faster one (K 2 N ) in order to obtain the minimum gain we can achieve with the proposed method. Consequently, Theorem 2.2 consider the case of updating one row of W.

Theorem 2.2 We assume a row vector w i. of W and a matrix H. Furthermore, let d be the density of x i. (the i th row of X) and let τ denote the proportion of columns l of H orthogonal to w i. and such that x il = 1 (thus τ = |W ⊥ i |/N ). Then, the gain in complexity for the 1-opt procedure based on Theorem 2.1 compared to both 1-opt-UBQP and 1-opt-Standard is at least:

• min{(1 -τ) -1 , Kτ -1 } for the L 2 -norm with respect to the 1-opt-UBQP; • min{K(1 -τ) -1 , K 2 τ -1 } for the L 2 -norm with respect to 1-opt-Standard; • min{K 2 , K(d -τ) -1 } for the L 1 -norm with respect to 1-opt-Standard.
Proof First note that 0 ≤ τ ≤ d ≤ 1 as the proportion of columns in H corresponding to 1s in x i. , i.e. d, is larger than the proportion of columns in H corresponding to 1s in x i. and orthogonal to w i. , i.e. τ. From the definitions of d and τ, one has:

|W 0 | = (1 -d)N , |W ⊥ | = τN , |W ⊥ | = (d -τ)N .
If we look at it in the matrix-wise way, we have the following matrices:

1. W 0 i which is of size K × (1 -d)N 2. W ⊥ i which is of size K × τN 3. W ⊥ 0 which is of size K × (d -τ)N .
In order to study the minimum gain we obtain, we need to find the complexity of both L 1 and L 2 cases. Since we have two formulas for each of these methods (one for flipping from 0 to 1 and the other for flipping from 1 to 0), we need to compute, for each norm, the complexity of each formula and take the maximum as the complexity.

For Equation 2.1, we have three parts in our complexity analysis which have been shown in Table 2.1. According to this table, if we sum all the complexities, we will Table 2.1: Complexity analysis of Equation 2.1

Sub-equation Operations needed Complexity h∈W

0 i (1 + 2 < w i. , h >)h j dot product between w i. and W 0 i O K N (1 -d) h∈W ⊥ i (2 < w i. , h > -1)h j dot product between w i. and W ⊥ i O K N (d -τ) h∈W ⊥ i h j summation over a row of W ⊥ i O(τN )
have the following total complexity for Equation 2.1:

O K N (1 -d) + K N (d -τ) + τN = O max{K N (1 -τ), τN } (2.31)
For Equation 2.2, we have two main parts to consider in the complexity analysis.

One should note that although the equation contains three parts, for two of them we need the same operation and, as a result, we can consider them as one single entity. 

O K N (1 -d) + K N (d -τ) = O K N (1 -τ) (2.
0 i (1 -2 < w i. , h >)h j dot product between w i. and W 0 i O K N (1 -d) h∈W ⊥ i <w i. ,h>h j =1 1 + h∈W ⊥ i <w i. ,h>h j >1 3 -2 < w i. , h > dot product between w i. and W ⊥ i O K N (d -τ)
Therefor, according to (2.31) 

0 i O N (1 -d) h∈W ⊥ i h j summation over one row of W ⊥ i O N (d -τ) h∈W ⊥ i h j summation over one row of W ⊥ i O(τN ) O N (1 -d) + N (d -τ) + τN = O(N ) (2.33)
For equation 2.4, we have basically two parts to study as shown in Table 2.4. Com-Table 2.4: Complexity analysis of Equation 2.4

Sub-equation Operations needed Complexity

-h∈W 0 i h j summation over one row of W 0 i O N (1 -d) h∈W ⊥ i <w i. ,h>h j =1 1 - h∈W ⊥ i <w i. ,h>h j >1 1 dot product between w i. and W ⊥ i O K N (d -τ)
paring (2.33) and complexities in Table 2.4, one can see that the total complexity of the proposed method in case of

L 1 norm is O max{N , K N (d -τ)} as N ≥ N (1 -d).
Now if we divide the complexity of the standard method, O(K 2 N ), by this quantity, the minimum gain we obtain will be min{K 2 , K(d -τ) -1 } which establishes the theorem.
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One important remark here is that in the proposed method for L 2 norm, the condition τN > K N (1τ) will almost never occur as it corresponds to values of τ greater than 0.50 and to matrices where d ≥ τ > 0.50, i.e. to extremely dense matrices.

As a result, in practice, the complexity of the proposed

L 2 method is O K N (1 -τ)
and, consequently, the gain will be (1

-τ) -1 compared to 1-opt-UBQP and K(1 -τ) -1 compared to 1-opt-Standard.
Another remark is that with the proposed method (Theorem 2.1), we do not need to perform all the dot products (the most computationally expensive operations in these formulations) for all cells of w i. as the dot products are done between w i. and the sets defined in Def. 2.1; none of these elements change while we are computing the gain for a given vector. Accordingly, one does not need to iterate over each cell which is the key point of efficiency of this method.

According to Theorem 2.2, one can note that the gain obtained by the proposed method is independent of K for the solutions of L 2 -norm methods while there is a dependency between K and the gain obtained by the proposed method for the solutions of L 1 -norm methods.

EXPERIMENTS

We have evaluated our local search heuristic on several methods used to solve the BMF problem and on several collections.

METHODS

We have retained here the most widely used methods to solve the BMF problem, all explained in detail in the previous chapter: (see e.g. [Miettinen et al., 2008]). To perform NMF and SVD, we used Matlab built-in functions and for the rest we used our own Matlab implementations.

As mentioned before, we refer to the method proposed in this chapter as 1-opt-BMF, to the standard implementation as 1-opt-Standard and to the 1-opt local search associated with UBQP as 1-opt-UBQP. One should note that the 1-opt-Standard approach benefits from highly efficient block algorithms available in LAPACK (incorporated in Matlab) which are, in average, significantly faster than a simple, naive multiplication.

In addition, for CBMF, we also evaluate the swap heuristic described in [START_REF] Kanungo | A local search approximation algorithm for k-means clustering[END_REF] and discussed in Section 1.2.3 as well as a combination of this heuristic with 1-opt. As mentioned in that section, the swap procedures, mainly applied to Kmeans-like methods, is to replace a center (after all centers become stable) with one data point and redo the clustering to see if the new solution is better than the previous one. Since CBMF is based on the K-means approach, we can apply the swap procedure which consists of randomly replacing a center (a column of W) after stabilization with a random column of X and redo the K-means clustering (the CBMF decomposition in our case). This procedure is repeated a certain amount of times or until a time budget is exhausted. Obviously, one can still apply a 1-opt heuristic on top of the swap technique in order to further improve the results.

The swap heuristic will be referred to as SCBMF (S stands for "swap") and the combination, which corresponds to the application of 1-opt on the results of SCMBF, as 1-opt-SCBMF. There are different criteria to choose the number of swaps in SCBMF.

For example, one can select a fixed number of swaps or a time limit. To be fair in our comparison, we have adopted here the following strategy: for each dataset we first run the proposed 1-opt algorithm (which is in general faster than the other approaches as we will observe shortly) on CBMF and measure its running time; then, we let the SCBMF procedure run the same amount of time to improve CBMF results. Like that, one can observe which method performs best under a given time budget.

The main difference between SCBMF and 1-opt local search procedures is that the former tries to find better solutions by exploring different parts of the search space whereas the latter tries to find a better solution in a close neighborhood of the current solution. Observing the respective behaviors of these different approaches is thus interesting.

CHAPTER 2. HEURISTIC LOCAL SEARCH FOR BMF Lastly, as SCBMF proceeds via random selections, for each dataset, we run the SCBMF ten times and report the average error of these ten runs. In this case, a difference is deemed statistically significant if it was significant on the majority of the 10 runs. We use here the Wilcoxon sum-rank test at the 1% significance level to assess whether differences in the results are significant or not.

GENERAL SETTINGS

In our experiments, we let the rank K vary in the set {1, 20, 40, 60, 80, 100}. As mentioned before, the BMF problem can be solved with or without the binary reconstruction constraint, with the L 1 -norm or with the L 2 -norm. Accordingly, four classes of decomposition methods can be considered (Table 2.5). All the experiments are 

Constrained

CBMF PROXIMUS

Unconstrained

UBMF NMF, SVD done on a Linux machine with an Intel Xeon CPU E5-2630 with 6 cores @ 2.30Ghz and 32Gb of memory. In order to be fair, unless it is explicitly mentioned, no multiprocessing or multithreading is done in our experiments.

DATASETS

We examined both real world datasets and synthetic ones, all available from the frequent itemset mining repository (FIMI) 2 . The main reason that we use frequent itemset mining datasets is that they are necessarily binary which suits our experimental setting. Table 2.6 shows the sets we used in addition to some of their characteristics.

The first part of the table shows the real datasets and the second part shows the synthetic ones. Note that in our experiments, we have removed all empty rows and empty columns from the data. additional line, labeled "Ratio=1", is added to make it simpler to compare different methods: 1-opt-BMF is faster when the curve is above 1, and slower otherwise. In the following, we will discuss these results with respect to different datasets. As one can see on the right hand side of this figure, the curves are under the fixed line (ratio=1) mostly for Mushroom and Connect; these two sets are the smallest sets in our experiments. As the 1-opt-BMF has an overhead of finding the sets defined in Def. 2.1, for small datasets this overhead is more visible with respect to the update part. However, even if these sets, for K ≥ 60, one can observe that the 1-opt-BMF becomes faster. For sufficiently large datasets (as Accidents or T40I10D100K) and sufficiently large values of K (e.g. K = 100), 1-opt-BMF can be nearly 5 times faster than the standard approach.

EXPERIMENTS

Projected SVD and NMF

On the left hand side, we only see one dataset (Pumsb) being always below the fixed line. The main reason here is that this dataset is not only very sparse (d = 3.5%), but also has a small value of τ (0.02 ≤ τ ≤ 0.03 for K = 20 for instance) which makes 1-τ very close to 1. According to Theorem 2.2, a small value of 1-τ results in a small gain, and since we have an overhead for computing the sets defined in Def. 2.1, the 1-opt-BMF cannot be more efficient than the 1-opt-UBQP in this case. However, in the other datasets, we observe the efficiency of the 1-opt-BMF with respect to 1-opt-UBQP.

In Figure 2.2, one can observe the experiments using NMF. In that figure, we can see the same points that we saw for the SVD case. We can also see the same issue for Pumsb when the 1-opt-UBQP is concerned. Additionally, the semi-constant line for ratios can also be seen in this case after a certain value of K (the figure on the left side) while in the 1-opt-standard case (the figure on the right side) the ratio grows as 

CBMF and UBMF

For the L 1 -norm methods, we can only apply the 1-opt-Standard (Figure 2.4). Here, as we have seen before, except the smallest sets (Mushroom and Connect), the 1opt-BMF is up to 8 times faster than the standard method where this efficiency is more considerable with larger values of K which is in line with the theoretical analysis provided before.

All in all however, 1-opt-BMF is in general faster than 1-opt-Standard and 1-opt-UBQP where the difference is much higher for the former than for the latter. Furthermore, unlike 1-opt-UBQP, 1-opt-BMF can be applied to all the BMF methods we know of.

2.3. EXPERIMENTS

IMPACT OF 1-opt-BMF ON L 2 METHODS

As discussed before, all the previously mentioned methods yield the same solution.

Here, we would like to examine the significance of the improvement brought by a 1opt method. Figure 2.5 shows the effectiveness of any 1-opt strategy when it is applied to (projected) SVD, (projected) NMF and Proximus. As one can note, projected NMF performs generally better than projected SVD, with a reconstruction error (measured with the L 2 -norm) significantly lower. Projected NMF also yields a lower reconstruction error than Proximus, but Proximus provides a solution that satisfies the binary reconstruction constraint, which is not the case for NMF.

To assess whether the improvements obtained with 1-opt are significant, we computed the p-value of the Wilcoxon rank-sum test (which is widely used to compare a series of bits) at the 1% significance level. In almost all L 2 -norm cases with K = 1 there is no improvement with 1-opt. This can be explained by the fact that the first dominant factor in the datasets is more easily approximated by the different methods than the first K factors. This observation also explains why the gain with Proximus, which solves a series of rank 1 problems, is not as important as with the other methods.

For K > 1 however, in all sets and with all methods, the improvement obtained with the 1-opt is statistically significant. In particular, for NMF and SVD, the improvement can be up to 61% for real sets, and up to 12 % for synthetic sets. The first point to note is that all proposed heuristics have difficulties improving the error value over synthetic datasets. In those datasets, which do not contain any number of patterns spanning few lines [START_REF] Uno | Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining[END_REF], making it more difficult for BMF algorithms to compute a good approximation for high values of K. These results

IMPACT OF 1-opt-BMF

ON L 1 METHODS
show that although a 1-opt heuristic explores a small neighborhood of the current solution, it can help improve the decomposition on such difficult cases.

Connect is a dense dataset with a strong structure [START_REF] Uno | Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining[END_REF]: this structure is mostly captured by classical CBMF for small values of K, with only small improvement by 1-opt (1%). Here the improvement of a local search only pays off for K = 80 (8%). On the other hand, SCBMF has significantly better results (from 6% to 24% improvement in error value) than CBMF: this means that CBMF was stuck in a region that was not optimal. The swap heuristic of SCBMF is the only one of this comparison that can get out of this local optima and find a better solution. SCBMF's solutions can be further refined by applying the 1-opt heuristic, showing the ability of 1-opt to improve an already good solution whatever its position in the search space.

Accidents is a different type of dataset: despite its huge size it has relatively short transactions (length 33 in average) and contains many patterns differing on only a few columns, a structure difficult to capture with low values of K. CBMF captures well the bulk of this structure (as shown by the lack of improvement from SCBMF) and its solution is hard to improve for low K values (no improvement by 1-opt). However for higher values of K, the potential of the 1-opt local search heuristic appears, as it provides a significant improvement for K ≥ 60.

Pumsb is the sparsest real dataset of this experiment. This sparsity, combined with the higher number of columns, prevents SCBMF to find a better solution in the allocated time. However, the dataset (originating from US Census data) has some structure, and here also the 1-opt method can significantly improve the solution found by CBMF (at best 3% for K = 40).

In unconstrained case, i.e. UBMF, it becomes much harder to improve the results.

Nevertheless, there are still a few cases where the 1-opt approach can provide a significantly better approximation.

CLOSING REMARKS

We have addressed in this chapter the problem of rank K Binary Matrix Factorization (BMF) which aims at approximating a binary matrix by the product of two binary matrices of lower rank. Several researchers have addressed this problem, focusing on either approximations of rank 1 or higher, using either the L 1 or L 2 -norms for measuring the quality of the approximation, through variants of the alternating strategy typically used for non-negative matrix factorization [START_REF] Lee | Algorithms for non-negative matrix factorization[END_REF].

We first reviewed several local search strategies that can be used to improve the In this chapter, we focus on frequent itemset mining (one sub-problem of a more general domain called pattern mining), a problem which has been of interest of many researchers and industries [START_REF] Han | Frequent pattern mining: current status and future directions[END_REF]. In particular, we aim at finding a set of representative itemsets which can not only provide a good view of the entire frequent itemsets, but also is a lot less numerous, hence the term representative. As mentioned previously, matrix decomposition techniques can capture the important and latent information form datasets; accordingly, in this chapter, we propose to rely on this method to find representative itemsets. As in itemset mining problem the input is a binary matrix, we can simply use the BMF technique discussed in the first two chapters. In the following, we will first introduce the general form of itemset mining problem and then discuss the importance of representative frequent itemsets.

Frequent pattern mining is a major domain of pattern mining. Its goal is to automatically extract frequently occurring patterns in large datasets. The fundamental ITEMSETS problem of frequent pattern mining is to mine frequent itemset [START_REF] Agrawal | Fast algorithms for mining association rules[END_REF], i.e. sets of items frequently occurring together in transactional databases (defined formally in the following section). This problem originated from the analysis of commercial databases and was later extended to many domains.

To better understand the importance of the frequent itemset mining problem, consider the following scenario: suppose that Tom runs a supermarket in Michigan, in which he makes the decisions for the arrangement of products. After a while he realizes that some products have been bought together quite frequently, like wine and cheese or bread and butter. In such case, depending on the marketing strategy, he may either rearrange the products in the store such that those items are located close to each other (so that customers find them quickly) or far from each other (so that customers travel all the way in the store and buy more products on the way). Accordingly, it is very important for him to find the products bought together frequently.

The frequent itemset mining technique is used in many applications today such as chemistry [START_REF] Inokuchi | An aprioribased algorithm for mining frequent substructures from graph data[END_REF], bioinformatics [START_REF] Wang | Data Mining in Bioinformatics[END_REF], trace mining [Zou et al., 2010], web data analysis [START_REF] Han | Mining frequent patterns without candidate generation[END_REF] and gene expression data [START_REF] Alves | Gene association analysis: a survey of frequent pattern mining from gene expression data[END_REF]. Frequent pattern mining algorithms have to explore a huge combinatorial space of patterns. This leads to two main problems: first, on real databases, mining algorithms usually need a large amount of time to output the set of frequent patterns. This hinders interactive analysis of data, that is however needed in most knowledge discovery tasks. Second, the set of frequent patterns is often huge: millions of frequent patterns are commonplace. This is overwhelming for the analyst, and it further prevents from having real insights on the data that appear in some frequent patterns.

There has been a large body of research on condensed representations of frequent patterns such as closed frequent patterns [START_REF] Pasquier | Discovering frequent closed itemsets for association rules[END_REF], ?], that can usually output one order of magnitude less patterns without loosing information. However, one order of magnitude reduction is often not enough when dealing with millions of patterns, hence a current trend of research focuses on discovering a small set of patterns that would represent most of the information contained in the set of all frequent patterns, and that would be small enough to be managed by the analyst [START_REF] Vreeken | Krimp: mining itemsets that compress[END_REF][START_REF] Guns | k-pattern set mining under constraints[END_REF].

In this chapter, we present our third contribution [Mirisaee et al., 2014] by introducing a new method for computing a reduced set of representative frequent patterns, that is both computationally efficient and produces very few high quality frequent pat-

FREQUENT ITEMSET MINING

terns. This method is based on constrained binary matrix factorization which has been widely used in many contexts recently and has been explained previously. As mentioned in Chapter 1, the general goal of matrix decomposition is to factorize a matrix into the product of two or more smaller matrices. The Constrained Binary Matrix Factorization (CBMF) problem, as a special case of matrix decomposition, was described previously and an efficient local heuristic for that has been introduced (Chapter 2).

In this chapter, we use the materials and techniques provided in Chapter 2 in order to mine representative frequent itemsets. Exploiting this tool, the detailed contributions of this chapter are the following:

• We theoretically study the characteristics of a matrix decomposition method adapted to frequent itemset mining, and define the notions of strong decomposition and approximately strong decomposition.

• We prove that extracting frequent itemsets from the factors of the decomposition (which are matrices of reduced dimensionality) guarantees to find existing frequent itemsets with a given support threshold and size.

• We show, through a detailed experimental study, that the representative frequent itemsets output by this method represent a significant portion of the set of all frequent itemsets according to existing metrics [START_REF] Gupta | Quantitative evaluation of approximate frequent pattern mining algorithms[END_REF], while being up to nine orders of magnitude less numerous.

In the reminder of this chapter, we first explain formally the problem of frequent itemset mining followed by a review of the state-of-the-art and the major studies conducted in this domain. Then we introduce a framework which provides the theoretical requirements for linking the matrix decomposition problem to frequent itemset mining. Next, we design a set of experiments in which we use some evaluation metrics from the literature in order to examine the quality of the obtained representative itemsets. Finally, some closing remarks are discussed in the last section.

FREQUENT ITEMSET MINING

Let I be a set of items. An itemset is a subset of I. A transaction database (TDB) is a set of transactions D where each transaction t ∈ D is an itemset of I. We will denote by m the size of a transaction database, i.e. its number of transactions. For an itemset Furthermore, P is frequent if its support is greater than a given minimum support threshold minsup: f r equenc y(P, D) ≥ minsup

The following example illustrates these definitions.

Example 3.1 Table 3.1 shows a transactional database in which t id denotes the transaction identification (or simply its ID). In this example, {cheesr, wine, chips} is an itemset of size three (since there are three items in the set) and of support value two since it has appeared in two transactions: the first and the last transactions (t 1 and t 5 ). Since this TDB contains five transactions, the frequency of this itemset is 2 5 .

Table 3 

STATE OF THE ART

In this section, we first consider the major studies on frequent itemset mining followed by the studies in the recent domain of finding an informative subset of the frequent patterns.

STATE OF THE ART

Frequent itemset mining and association rule learning could be seen frequently together in the literature. Association rule learning is defined as a set of techniques which aim at finding interesting relations in big datasets. These rules could be found in the same way as clustering rules [START_REF] Witten | Data mining: Practical Machine Learning Tools and Techniques[END_REF]. Association rule mining is about finding some implications within the data. For instance, if a client buys bread and cheese, how likely is that s/he buys also some chips? Looking at this problem, one can easily see that it is very similar to the frequent itemset mining problem. Consider the following example:

Example 3.2 Having the TDB shown in Table 3.1, we are interested in the following phenomenon: if a client buys cheese, how likely is it that s/he buys also wine? We denote it as cheese ⇒ wine. To examine that, we need two elements: the support of the itemset {cheese, wine} which is, in this case, called the support of the association rule and also the confidence of this rule. As the name explains, the confidence of a rule tells us how likely it is to have such a rule. As a result, the confidence of this rule is the support of the {cheese, wine} (the left hand side and the right hand side of the rule) divided by the support of {cheese} (the left hand side). As one can observe, to obtain the association rules, we need to compute the frequent itemsets.

Perhaps one of the most known studies in this domain has been conducted by [START_REF] Agrawal | Fast algorithms for mining association rules[END_REF]. This study provides a fast algorithm for solving the association rule mining which is from one to three orders of magnitude faster than the state-of-the-art algorithms of the time. Their algorithm uses a seed set in order to generate new potentially large (frequent) itemsets called candidate itemsets and then counts actual support of these candidate sets. In each step, sufficiently large itemsets become seeds for the next step. These algorithms are called Apriori and AprioriTid and make use of anti-monotony property. The level-wise process used in these algorithms avoids considering the transactions in the database.

Few years later, Agrawal et. al. [START_REF] Agrawal | Parallel mining of association rules[END_REF]] considered a set of parallel algorithms for association rule mining and analyzed the trade-off between computation, memory usage, synchronization and the use of problem-specific information. They provided a parallel algorithm to tackle the problem of finding all frequent itemsets. Then a second parallel algorithm handles the problem of generating the association rules. Based on this framework, the authors suggest three algorithms:

count distribution, data distribution and candidate distribution. The first one tries to ITEMSETS avoid communication between processors. The second one is based not on the exchange of data tuples between processes but on their counts so that processors can work independently while reading the data. As both of these approaches need process synchronization at the end of each pass (which may waste processors' time if the workload is not well balanced), the third algorithm tries to tackle this issue with minimizing the dependency between processes.

Another successful study in this domain is [Bayardo Jr, 1998] in which the authors present an algorithm which scales linearly in the number of maximal patterns, no matter how long the patterns are. This algorithm, called Max-Miner, uses the set enumeration tree search presented in [Rymon, 1992] in order to expand sets over a finite item domain. The proposed algorithm in that study provides a pruning system which is not only based on subset infrequency (like Apriori algorithm) but also based on superset infrequency. Using that, Max-Miner is able to reduce the search space and perform the mining task several orders of magnitude faster with respect to the Apriori method.

Han et. al. introduced, in [START_REF] Han | Mining frequent patterns without candidate generation[END_REF], a new approach for mining frequent itemsets, which avoids the generate-and-test approach used in Apriori-like algorithms. This method is called FP-growth and is based on a frequent pattern tree (FP-tree) structure in order to store compressed information about frequent patterns.

The efficiency of this approach is based on three points: compressing the database (to avoid database scans), pattern fragment growth (to avoid candidate generation) and a divide-and-conquer method to decompose the mining task. Focusing on two bottlenecks of the Apriori method, i.e. huge number of candidate sets and repeated database scans, FP-growth provides a better way of mining frequent itemsets which is about one order of magnitude faster than the Apriori method and scales for both short and long frequent patterns.

So far, we have seen some major studies in frequent itemset mining domain. However, classical methods, which mine all frequent patterns, produce a large number of frequent itemsets. This makes the analysis task very difficult, if not impossible. Having millions or billions of frequent patterns may not be ideal for a market analyst who needs to decide about the future decisions of a company. As a result, a new trend of research became of interest very quickly: how to find fewer itemsets which are not only frequent but also informative and non-redundant. Like that, the analyst, for example, can simply study the data without being overwhelmed with a tremendous amount of patterns. Consequently, we will first review the major studies in the recent One of the most known ways to provide a reduced number of itemsets without loosing information is to mine closed itemsets [START_REF] Pasquier | Discovering frequent closed itemsets for association rules[END_REF]. Intuitively, an itemset P is closed if non of its proper supersets has the same frequency as P. One of the first algorithms proposed to handle this problem is developed in [START_REF] Pei | CLOSET: An efficient algorithm for mining frequent closed itemsets[END_REF] and is called CLOSET. This algorithm, which is based on FP-tree, finds closed itemsets by developing a single prefix path compression method and exploring a partitionbased projection mechanism. The authors then illustrated the efficiency and speed of the algorithm by comparing it to other closed itemset mining algorithms.

LCM (Linear time Close itemset Miner) is another known algorithm in the literature of itemset mining which is basically based on prefix preserving closure extension [START_REF] Uno | Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining[END_REF],Uno et al., 2004,Bayardo Jr, 1998]. Initially, LCM did not have a procedure to reduce the database and, as a result, was not efficient in dense datasets; however, the reduction techniques then added to the algorithm on the later versions in order to perform a fast checking on closedness of the itemsets [START_REF] Uno | Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining[END_REF]. Experiments on LCM show that it is significantly faster than other methods, particularly when sparse datasets are evaluated. In the latest version of LCM [START_REF] Uno | Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining[END_REF], three types of data structures used in the domain (bitmap, prefix tree and array lists) are combined in order to provide the best performance.

In order to output a small set of frequent patterns, some studies explicitly define a targeted number of patterns, and criteria that have to be verified by the set of patterns.

Guns et al. [START_REF] Guns | k-pattern set mining under constraints[END_REF], for example, present an exhaustive approach, where the criteria to be satisfied are expressed through different constraints. The main idea in this study is to produce a set of k related patterns instead of mining all individual patterns. A number of constraints have been designed in order to find such set at the global level rather than the local level. Using constraint programming techniques, an exhaustive search is performed which, according to the authors, has many limitations since it might be computationally very expensive. A family of constraints has been introduced in order to find the k-pattern set including individual pattern constraints (based on [START_REF] Fürnkranz | Roc 'n'rule learning-towards a better understanding of covering algorithms[END_REF]), redundancy constraints, discriminative constraints and a set of different coverage constraints.

Other approaches, such as [START_REF] Bringmann | The chosen few: On identifying valuable patterns[END_REF], make use of redundancy-based heuristics to determine the set of patterns. The algorithm proposed in [START_REF] Bringmann | The chosen few: On identifying valuable patterns[END_REF] iterated over the set of patterns and, in each CHAPTER 3. APPLICATION TO THE MINING OF REPRESENTATIVE FREQUENT ITEMSETS iteration, a pattern is evaluated for its level of goodness. This technique is considered as a post-processing which is performed on the set of frequent itemsets.

Other studies rely on compression, either over all the frequent patterns [START_REF] Afrati | Approximating a collection of frequent sets[END_REF], or over the dataset [START_REF] Vreeken | Krimp: mining itemsets that compress[END_REF]. In the first case, frequent itemsets that best approximate the set of all frequent itemsets are computed. This technique requires a pre-generated set of frequent itemsets and, using that as the input, an approximated collection of frequent patterns can be generated. In the second case, the authors exploit the Minimal Description Length (MDL) principle to compute which set of patterns best compresses the database. The method studied in [START_REF] Vreeken | Krimp: mining itemsets that compress[END_REF] All of the previously cited studies consider the set of all frequent patterns in order to compute the reduced subset of patterns. The approach in [START_REF] Vreeken | Krimp: mining itemsets that compress[END_REF] is a two pass approach, that first has to compute all the frequent patterns and then select a subset of them, which is computationally inefficient. On the other hand, the approach in [START_REF] Guns | k-pattern set mining under constraints[END_REF] computes, in one pass, a subset of frequent patterns that optimize a given criterion. However, to do so, it has to explore a complex search space over the sets of patterns, which is also computationally expensive.

The approach presented here, however, is different from the previous studies in that we rely on main components of the data provided by matrix decomposition techniques in order to find representative frequent itemsets. One should note that the proposed approach is also different form studies like [START_REF] Krajca | Using frequent closed itemsets for data dimensionality reduction[END_REF] which use the Boolean decomposition and closed itemsets to reduce the dimension. Contrary to other pattern set discovery methods, by moving the burden of reducing the number of patterns from the pattern search space to the input matrix itself, one can design mining algorithms that are computationally efficient and that yield good results.

3.4. THEORETICAL ANALYSIS

THEORETICAL ANALYSIS

In order to provide an efficient BMF-based method for the frequent itemset mining task, we first need to establish the theoretical link between these problems, and to do that, we first define two kinds of decompositions: strong decomposition and approximately strong decomposition. Then, based on these definitions, we show how frequent itemsets can be mined using matrix decomposition factors.

NOTATIONS

We first define the matrix notations used in this chapter. For a given matrix X m×n , X i j denotes the element of the matrix located in row i and column j. X i• denotes the summation of row i, i.e.

X i• = n k=1
X ik X • j denotes the summation of the j th column of X i.e.

X • j = m k=1 X k j
The row vector taken from column-wise summation of X is denoted by X • . Similarly, the column vector obtained from row-wise summation of X is shown by X • . The i th row of X is denoted by X i and the j th column of X is denoted by X j . The following example, illustrates the notations that we use in this study.

Example 3.3 Consider the following matrix, X. In this matrix, X 34 = 0,

X 1• = 4, X •4 = 1, X • , X • , X 2 and X 5 is shown below: X =     1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0     X • = 3 3 3 1 1 0 0 X • =     4 4 3     X 2 = 1 1 1 1 0 0 0 X 5 =     1 0 0     ITEMSETS
We now intuitively explain how itemsets can be found in the factors of a matrix decomposition. Consider a decomposition of an input matrix X with k latent factors:

X m×n ≈ W m×k × H k×n .
Each of the k columns of W can be mapped to a set of columns of X (through the product with H). As columns of X correspond to items, columns of W correspond to packet of items. On the other hand, in H, one observes the relation between each packet of items of W and each original item of X. Using this setting, one can easily reconstruct itemsets of X. The following example illustrates this idea. Based on this example, one can see that this procedure provides a direct way of finding patterns in the dataset. However, we still need to establish a theoretical link between BMF and frequent itemset mining so that we can interpret the notions used in itemset mining domain (such as minimum support value) using BMF factors. To establish such link, we define the notion of valid transaction matrix, that will be the input of the proposed method. One should note that any binary matrix can be easily transformed into a valid transaction matrix.

Example 3.4 Consider the following decomposition of the form

X = W × H          1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0          =          1 0 1 1 0 1 1 0 0 0 1 0 0 1 0          ×     1 

Definition 3.1 (Valid transaction matrix)

A matrix X m×n is called a valid transaction matrix if it is binary and there is no rows or columns with all elements equal to zero.

More formally, X m×n is a valid transaction matrix if:

(1) ∀i, j,

1 ≤ i ≤ m, 1 ≤ j ≤ n, X i j ∈ {0, 1} ( 
2) ∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, X i• > 0, X • j > 0
Now we consider different binary decompositions of a valid transaction matrix 3.4. THEORETICAL ANALYSIS

STRONG DECOMPOSITION

A strong decomposition is simply an exact decomposition, i.e. a decomposition which perfectly reconstructs the input and produces no error in the approximation.

Definition 3.2 (Strong decomposition)

A matrix X m×n is strongly decomposable if:

(1) it is a valid transaction matrix

(2) ∃k, 1 ≤ k ≤ n such that X m×n = W m×k × H k×n (3) W ∈ {0, 1}, H ∈ {0, 1}, W × H ∈ {0, 1}
Condition [START_REF] Mirisaee | Efficient Local Search for L1 and L2 Binary Matrix Factorization[END_REF] states that the factors W and H as well as their product (W × H) are binary. The notion of strong decomposition furthermore implies that one can find factors that are all relevant, in the following sense.

Property 3.1 If X can be decomposed strongly, then there is a strong decomposition of the form X m×n = W m×k × H k×n such that there is no columns in W and no rows in H with all elements equal to zero. More formally, for all t,

1 ≤ t ≤ k, W •t > 0 and H t• > 0.
Proof. If X is strongly decomposed and W (resp. H) contains one or more fully-zero columns (resp. rows), then one can remove the zero columns of W and their corresponding rows in H (resp. zero rows of H and their corresponding columns in W), and still obtain, through the product of the simplified matrices, a strong decomposition of X with k ′ latent factors such that k ′ < k.

The following example illustrates Prop. 3.1 where one can simply remove the second column of W as well as the second row of H (shown in red) and obtain exactly the same approximation:

Example 3.5          1 1 0 1 1 0 1 1 0 0 0 1 1 0 0          ≈          1 0 1 0 1 0 0 0 0 0          × 1 1 0 0 0 1 =          1 1 1 0 0          × 1 1 0
Using the above definitions, we are now ready to provide the following theorem which describes a first link between the itemsets mined from W and H and itemsets in X. Proof. Suppose that packet p, 1 ≤ p ≤ k, has support value f in W, i.e m i=1 W ip = f . Because of the definition of strong decomposition and of Prop. 3.1, there exists at least one q, 1 ≤ q ≤ n, such that H pq = 1. Then, for all i, 1 ≤ i ≤ m, we have:

X iq = k j=1 W i j H jq ≥ W ip H pq And thus: m i=1 X iq ≥ m i=1 W ip H pq = H pq m i=1 W ip So finally: m i=1 X iq ≥ f which establishes the theorem.
In simpler terms, Theorem 3.1 shows that, in a strong decomposition, if there exists a frequent packet of items in W with support value of f , then there is a corresponding frequent itemset with support value of at least f in X (see Example 3.4).

An important consequence of Theorem 3.1 is regarding the size of the captured itemset. In this theorem, for a p such that W •p = f , if only one q is found such that H pq = 1, then there is an itemset of size one (a singleton), which is not very useful.

However, it is easy to prove that if several such q's are found, then an itemset, and not a singleton, in X is captured. This is expressed in the following corollary. 

      1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1       =       1 0 1 0 0 1 0 1       × 1 1 1 0 0 0 0 0 1 1

THEORETICAL ANALYSIS

As one can see, the itemset in red has support value of 2 and length 3, and it is captured by the first packet of items (first column of W, shown in red) where the support of the packet is also 2. The items associated to this packet can be seen in the first row of H (also in red) where one can observe that the first three items are assigned to this packet. As a result, this factor retrieves the red itemset in X with its exact size and support value.

The second itemset of X, shown in blue, can be captured by the second packet of items in W, i.e. the second column, also in blue. This packet has a support value of 2 and the itemset associated to it is an itemset of size 2, found via the second row of H represented also in blue.

Corollary 3.1 can be directly derived from Theorem 3.1 (we will provide soon a proof of a more complex version of this Corollary in Theorem 3.3). This result is very important since it shows that one can systematically mine frequent itemsets of any size using the factors of the decomposition, and as matrix decomposition provides the main structure of the data, we can expect them to be representative itemsets (we will elaborate this point in the experimental section via the quality metrics available in the literature).

As one can see, once a transaction matrix has been strongly decomposed into latent, binary factors, we can efficiently obtain some representative frequent itemsets from the decomposition without reloading the data into memory. In practice, however, a strong decomposition of a transaction matrix may not exist. Accordingly, we now consider a more realistic decomposition, called approximately strong decomposition, and reformulate the materials provided so far.

APPROXIMATELY STRONG DECOMPOSITION

A direct extension of strong decomposition is to no longer assume that the decomposition is perfect, i.e. has no error. This can be simply done by adding an error term to the reconstruction of X from the latent factors.

Definition 3.3 (Approximately strong decomposition) A matrix X m×n can be decomposed approximately strongly if:

(1) it is a valid transaction matrix W ip = f . Because of the definition of approximately strong decomposition and of Prop. 3.1, there exists at least one q, 1 ≤ q ≤ n, such that H pq = 1. Then, for all i, 1 ≤ i ≤ m, we have:

(2) ∃k, 1 ≤ k ≤ n such that X m×n = W m×k × H k×n + ε m×n (3) W ∈ {0, 1}
X iq = k j=1 W i j H jq + ε iq ≥ W ip H pq + ε iq and thus: m i=1 X iq ≥ m i=1 W ip H pq + m i=1 ε iq = H pq m i=1 W ip + m i=1 ε iq = f + m i=1 ε iq so finally: m i=1 X iq ≥ f -ε max which establishes the theorem.
Considering itemsets of a given size with approximately strong decompositions is slightly more difficult than with strong decompositions. The following theorem extends the corollary of Theorem 3.1 (Corollary 3.1) to the case of approximately strong decompositions.

Theorem 3.3 Let X m×n = W m×k × H k×n + ε m×n be an approximately strong decomposi- tion of X, and γ(a, b) = (W a • ε b ) where • represents dot product (a ∈ {1, • • • , k}, b ∈ {1, • • • , n}). Also let γ(p) = min 1≤ j≤n H p j × γ(p, j), ∀p, 1 ≤ p ≤ k. Now, if there exists a packet of items p, 1 ≤ p ≤ k, of size l (e.g. {q 1 , q 2 , • • • , q l }) in H (i.e. H pq 1 = H pq 2 = • • • = H pq l = 1 and H p• = l) with support value of f in W (i.e. W •p = f ),
then there exists an itemset of size at most l and with support value of at least f + γ(p) in X. Furthermore, if γ(p) = 0, then {q 1 , q 2 , • • • , q l } is an itemset of size l in X with support value of f . Proof. First note that γ(a, b) corresponds to the reconstruction error for item b in packet a, and that γ(p) corresponds to the minimum reconstruction error of all items belonging to packet p. Without loss of generality, we assume that a frequent itemset 3.4. THEORETICAL ANALYSIS of size l and support f occurs in the first f rows of W and first l columns of H (see the following illustration).

W =             1 • • • k 1 1 . . . f 1 . . . 0 . . . . . . m 0             H =     1 • • • l l + 1 • • • n 1 1 • • • 1 0 • • • 0 . . . k    
We thus have:

1 st i t em :

f i=1 X i1 = f i=1 W i1 H 11 + f i=1 ε i1 . . . l th i t em : f i=1 X il = f i=1 W i1 H 1l + f i=1 ε il
which can be rewritten:

1 st i t em : f i=1 X i1 = m i ′ =1 W i ′ 1 H 11 + m i ′ =1 W i ′ 1 ε i ′ 1 . . . l th i t em : f i=1 X il = m i=1 W i1 H 1l + m i′=1 W i ′ 1 ε i ′ l
Furthermore, according to the definition of γ(p) for any packet p, we have:

1 st i t em : f i=1 X i1 = f + γ(1, 1) ≥ f + γ(1)
. . .

l th i t em : f i=1 X il = f + γ(1, l) ≥ f + γ(1)
which shows that there is an itemset included in {i 1 , • • • , i l } with support of at least

f + γ(1). Furthermore, if γ(1) = 0, then {i 1 , • • • , i l } is an itemset of size l and support value f in X.
The following example illustrates how Theorem 3.3 (which is the general form of Theorem 3.2) works in practice.

Example 3.7 Consider the following Approximately strong decomposition of the form

X = W × H + ε:     1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1     =     1 1 1 1 0 1     × 1 1 1 1 0 0 0 0 0 0 1 1 +     0 0 0 0 0 -1 0 0 -1 0 0 0 0 0 0 0 0 0     ITEMSETS
According to the decomposition shown above and Theorem 3.3, we have the following

matrix for H • (W a .ε b ), ∀1 ≤ a ≤ k , 1 ≤ b ≤ n : 1 1 1 1 0 0 0 0 0 0 1 1 • 0 0 -1 0 0 -1 0 0 -1 0 0 -1 = 0 0 -1 0 0 0 0 0 0 0 0 -1
where • denotes the Hadamard product (element-wise product) and . denotes the dot product. Accordingly, the γ value is -1 for both packets, i.e γ(1) = -1 and γ( 2 The second packet, i.e the second column of W, has support value of 3 and, as γ(2) = -1, one can conclude that this packet represents an itemset with support value of at least 3 -1 = 2 and size of at most 2 as there are two items associated to this packet, i.e. the second row of H. This itemset in addition to its corresponding row/column is shown in blue.

Considering Theorem 3.3, one can easily and systematically mine representative itemsets using an approximately strong decomposition. Algorithm 3 shows this procedure, which is denoted as DIM: Decomposition Itemset Miner. Note that, according to Theorem 3.3, when γ(p) = 0, one is able to identify an itemset in X with its exact support and size.

IMPLEMENTATION

The previous development shows how one can find representative itemsets form a transaction matrix using the decomposition factors. Based on that, having a valid transaction matrix, one can easily apply the decomposition (to obtain the factors, i.e.

W and H) and start mining the itemsets. According to the input of Algorithm 3, we need a decomposition method to obtain high quality factors which also satisfies the binary reconstruction constraint.

We have discussed, in Chapter 2, different methods satisfying the conditions required for itemset mining. For the experimental section of this chapter, we used the end if 9: end for 10: return S results provided therein as the input of DIM in order to systematically find representative itemests. One should note that we are not considering the Boolean matrix decomposition [START_REF] Miettinen ; Miettinen | The boolean column and column-row matrix decompositions[END_REF] in this study since all our theoretical developments are based on classical matrix multiplication.

EXPERIMENTS

In this section we evaluate the proposed method, DIM, based on the quality of pro- The datasets used in the experiments are publicly available datasets from the FIMI repository 1 . Following the methodology presented in [START_REF] Uno | Lcm ver. 3: Collaboration of array, bitmap and prefix tree for frequent itemset mining[END_REF], we choose pumsb, accidents and T40I10D100k as representatives of structured dense, dense and sparse datasets respectively. Although T40I10D100k is of size 100K-by-942 and ITEMSETS is sparse, if we mine it with very small support values, we have a huge number of itemsets. Accidents is of size 340K-by-468 and each transaction contains a lot of items and, thus, it is dense. Since it is not structured, the number of frequent itemsets and closed itemsets are almost equal for any minimum support value, which makes it very difficult to mine. Pumsb has 49K transactions and 2K items and each transaction is rather dense. If we mine that with small minimum support values, then the number of closed itemsets will be much smaller than the number of frequent itemsets.

EFFICIENCY EVALUATION

Contrary to other frequent itemset mining techniques, the complexity of DIM does not depend on the minimum support threshold, i.e. once a decomposition is obtained, the mining process is quite fast and straightforward. This experiment may be considered unfair, as LCM aims at finding all closed frequent itemsets, while the proposed approach only computes a small set of representative frequent itemsets. DIM might thus be compared with approaches computing a representative subset of the frequent itemsets. However, as discussed in the related work (Section 3.3), most existing approaches to identify a representative subset of the frequent itemsets are two-pass approaches, that first compute all (closed) frequent itemsets and then compute a subset of these frequent itemsets. The existing one-pass approach [START_REF] Guns | k-pattern set mining under constraints[END_REF] is more general than the proposed method and does an exhaustive search on a huge search space. Its time complexity is thus much higher than that of DIM. Therefore, their running time is higher than the one of LCM alone, and comparing running time of the proposed method to that of LCM is indeed unfair, but to our disadvantage. slow for support values smaller than 10%. In sparse datasets, like T40I10D100k, it is easy to find the itemsets with high support values. However, as these datasets contain quite huge itemsets with small support values, LCM spends a long time to find closed itemsets.

QUALITATIVE EVALUATION

DIM mines very few itemsets and the efficiency experiments have shown that for low support values this approach could output a solution faster than state-of-the-art algorithms. It thus remains to evaluate the quality of the itemsets found with respect to the complete set of closed frequent itemsets.

For this, we rely on metrics presented in [START_REF] Gupta | Quantitative evaluation of approximate frequent pattern mining algorithms[END_REF] and used for evaluating the quality of a subset of frequent itemsets with respect to the entire set of frequent itemsets. Following those metrics, we denote the entire set of closed itemsets (output ITEMSETS by LCM) as base-itemsets and itemsets outputs by DIM as found-itemsets. The following two metrics evaluate the quality of found-itemsets with respect to base-itemsets.

Recoverability: this metric measures how well a collection of found-itemsets can cover base-itemsets. Consequently, this metric is similar to recall. For a base-itemset B i , recoverability is calculated as follows: among all found-itemsets F j we look for the one which has the maximum number of items in common with B i , namely F i max . The recoverability of B i is defined as:

r ecover abil i t y(B i ) = |B i ∩ F i max | |B i | (3.1)
The total recoverability is a weighted average (bigger base-itemsets contribute more than smaller ones) of the recoverability of all base-itemsets.

Precision: As we can see, having one single large found-itemset (possibly including all items) results in a recoverability of 1 for all base-itemsets. Therefore, we need another metric to penalize such cases. Spuriousness is another metric to evaluate the quality of found-itemsets. For a found-itemset F i , spuriousness is defined as follows:

among all base-itemsets, we find the one which has the maximum number of items in common with F i , namely B i max . Then spuriousness of F i is defined as follows:

spur iousness(F i ) = |F i -F i ∩ B i max | |F i |
In this case also the total spuriousness is computed by a weighted average (bigger found-itemsets contribute more than smaller ones) of the spuriousness of each founditemset. Precision of an itemset is then defined as 1spur iousness. The following example illustrates these metrics: Example 3.8 Consider {A, J} and {A, B, C} as found-itemsets and the table 3.2 as a set of base-itemsets: Consequently, the total recoverability of this set of found-itemsets is a weighted average over the above mentioned values:

2 2 × 2 + 2 3 × 3 + 3 3 × 3 + 2 4 × 4 + 1 5 × 5 + 2 5 × 5 2 + 3 + 3 + 4 + 5 + 5 = 0.47
For spuriousness, all the base-itemsets can only match one item of the first founditemset ({A, J}); however, the second found-itemset ({A, B, C}) can be completely matched with # 3. Accordingly, the spuriousness of this set of found-itemsets (using a similar weighted average as shown above) is

1 2 × 2 + 0 3 × 3 2 + 3 = 0.20
and as a result, the precision of these found-itemsets is 1 -0.2 = 0.8.

A summary of the results is presented in Table 3.3. Number of (closed) frequent Cells with a star (*) report an estimate: LCM outputs too many items, resulting in output file of hundreds of Gigabytes and hard disk saturation. In these cases only a uniform random sample of 5 million itemsets was used to compute the metrics.

Two points in this table are of particular interest. First, whereas the number of closed frequent itemsets can get over billions of itemsets (in some cases it is even hard to count them, see pumsb for example), the number of frequent itemsets output by DIM is always very small. Thus, the frequent patterns output by DIM can be quickly examined by an analyst, which is not the case for all closed frequent itemsets produced by LCM.

Second, despite being so few, DIM frequent itemsets exhibit significant recoverability values. This fact becomes more important when the precision is also high, like

accidents with minimum support of 10% and pumsb with minimum support of 40%.

In these cases, not only we are able to recover a large amount of base-itemsets, but also we can guarantee that these itemsets are not long, uninteresting ones (according to the precision value). In other words, using DIM itemsets, an analyst can have a general, precise view of the entire data without being overwhelmed by millions or billions itemsets. For instance, in case of accidents with minimum support of 10%, we can look at 9 representative itemsets produced by DIM (instead of looking at 9.97M itemsets of LCM) and recover 67% of all closed itemsets.This is an important contribution: it experimentally shows that by looking at DIM patterns, an analyst will have a significant glimpse of the knowledge that can be extracted from the dataset, in a very short amount of human analysis time.

The case for sparse datasets like T40I10D100k is different. For this dataset DIM extracts few itemsets with very high precision values but a relatively low recoverability (18% for a support of 0.1%). This result is in line with the different nature of T40I10D100k compared to pumsb and accidents: T40I10D100k is a synthetic, sparse dataset and it does not exhibit the same strong "pattern structure" as the two other datasets. This can be confirmed with LCM results: there are few patterns comparatively to the other datasets, and they appear at very low support values. In such a case, the proposed method based on matrix decomposition is not the most adapted to get a representative view of the complete set of itemsets of LCM, as matrix decomposition techniques are likely to remove small groups of ones from the matrix for the sake of approximation. This results in losing some information that appears in the complete output of LCM. On the other hand, the itemsets captured by DIM are captured 3.7. CLOSING REMARKS with an extremely high precision; for instance, for a support of 0.1% the analyst will have to analyze only 9 itemsets, and get a good idea of the content of about one fifth of the complete number of itemsets.

Since DIM provides few itemsets, one may wonder if the amount of information provided by these itemsets can be also obtained by taking the top p (here, the term top is considered with respect to the support value, i.e. the p itemsets having the maximum support values) itemsets produced by LCM, where p is equal to the number of itemsets produced by DIM. The experiments have shown that although for high support values the proposed approach is less time efficient than state-of-the-art algorithms, for low support values, it is much faster than those algorithms. This approach is also highly scalable with respect to other algorithms according to the fact that the classical itemset mining approaches become very slow since they need to explore a huge combinatorial space as the number of items increases.

The proposed method only finds a handful of representative itemsets, but the experiments show that these itemsets convey a significant portion of the information of all frequent itemsets. We advocate that contrary to classical methods, the mining time of the proposed method is well invested: what is the utility of a very fast algorithm that outputs millions of patterns that an analyst will take hours to make some sense of? With the proposed method, the computer does most of the work, and the analyst is presented with concise, reliable and manageable information. Dealing with a large number of instances is a major problem in many scientific areas such as data mining or data analysis. In big data, selecting most representative data points is not only of interest for analysts but also simplifies the visualization.

In many applications, such as text mining for instance, many data points are similar (or correlated) and could be described by one representative data point [START_REF] Xin | Mining compressed frequent-pattern sets[END_REF],Zhou et al., 2009]. For instance, in [START_REF] Zhou | Accurate and diverse recommendations via eliminating redundant correlations[END_REF], the authors consider the problem of designing a personalized recommendation algorithm and try to provide a new technique based on higher order correlations so that the redundant correlations are eliminated. The main idea in that paper is that similarities between the same attributes (potentially, the attributes with higher weights) among data instances may introduce strong correlations. The following example illustrates the idea of representative object selection in the frequent itemset mining domain (see Chapter 3 for more detail on frequent itemset mining). One can observe that this set of itemsets can be well represented by the last itemset as they are all (highly) correlated and the last itemset can cover the others.

Another example of such cases is the protein datasets where one need to select a set of non-redundant data points in order to apply statistical analysis of protein sequence-structure relations [START_REF] Hobohm | Selection of representative protein data sets[END_REF]. In this domain, one is interested CHAPTER 4. REPRESENTATIVE OBJECTS FOR LARGE DATASETS in selecting the datasets which are similar as the set of datasets considered in this domain could be very similar and, as a result, redundant.

Many datasets in data mining could be seen as matrices where rows represent the objects (instances) and columns represent the features. In such cases, we are interested in selecting a few objects of this matrix such that we can have a global view of the entire data. These objects are called representative and are considered in many interesting applications [Leroy et al., 2015]. For instance, a biologist might be interested in finding a set of genes in a gene expression data which are responsible for a particular disease. Classic approaches such as Principal Component Analysis (PCA) and Singular Value Decomposition (SVD) fail to find the answer to this question [Deshpande andRademacher, 2010, Mahoney and[START_REF] Mahoney | [END_REF].

A simple solution to this problem is to perform a clustering on the dataset and consider the centroid of clusters as representative objects. However, there are some drawbacks in such approaches. Firstly, in real world cases, one does not know the structure of the data in advance. Accordingly, it might be very difficult to choose the right number of clusters [Milligan andCooper, 1985,Ben-Hur andGuyon, 2003]. Secondly, one data center per cluster may not be able to provide a good global view of the data. Consider a complex, high-dimensional dataset with millions of instances and only very few clusters; certainly, a huge dataset cannot be well represented with only several data points; on the other hand, clustering the data with a large number of clusters gives the chance to non-representative instances to be selected as representatives [START_REF] Daszykowski | Representative subset selection[END_REF]. Thirdly, in some applications (as we will see in the experimental section), the data is not clusterable, i.e. it contains only one type of data (all the genes involved in a given disease, all the news containing a given topic, etc).

Lastly, the distribution of the data points plays a very important role in the process of data selection. Picking only the central points of the clusters is not able to handle this issue appropriately.

As an example, consider Fig. 

RELATED WORK

As mentioned before, high dimensionality as well as large number of data instances inspired researchers to look for data simplification techniques (when a few dimensions are concerned, the problem is easy to solve [START_REF] Chaudhuri | Finding a subset of representative points in a data set[END_REF]). In general, data simplification (or data reduction) can be obtained in different ways. For instance, one may use feature selection algorithms in order to reduce the number of columns in a dataset [Blum andLangley, 1997, Liu andMotoda, 1998]. Embedded, filter and wrapper approaches are some examples of the feature selection problem.

In [START_REF] Blum | Selection of relevant features and examples in machine learning[END_REF], the authors consider the methods which focus on the problem of finding and removing irrelevant features and the problem of selecting relevant examples. The former consists of finding the features which can describe the concept and the methods to combine them in order to reduce the number of features.

The latter, however, focuses on selecting examples which are able to provide some improvements in the learning process. This task is mainly performed in order to satisfy different objectives, most of them concerns clustering applications. For example, if the learning is computationally expensive, one can select a subset of examples in order to make the learning process faster. Another case is when the labeling costs a lot as it may need a large amount of human expert time.

Ideally, the instance selection procedure should be model independent [START_REF] Huan | On issues of instance selection[END_REF], i.e. having a model M and two data sets s and t, where s is the entire dataset and t is a subsample (a selection of objects) of that, we need P(M s ) ≈ P(M t ), where P() denotes the performance of a model. As discussed in [START_REF] Huan | On issues of instance selection[END_REF], there are different techniques to address the object selection problem. Perhaps, the easiest way is sampling: selecting some data points at random (mostly without replacement) or using a probability distribution [START_REF] Kivinen | The power of sampling in knowledge discovery[END_REF]. Alternatively, one can perform an adaptive sampling where the next object to be selected depends on the objects that have already been selected. The advantage of this technique is that data characteristics are considered in the selection process. However, one drawback of this type of techniques is that they may introduce other complexities while used in different applications [START_REF] Chen | A new two-phase sampling based algorithm for discovering association rules[END_REF].

A different approach to select instances from datasets is to use the classification techniques. For instance, one can take the points which matter to the classifier. Instance-Based Learning methods are examples of such technique. In [START_REF] Aha | Instance-based learning algorithms[END_REF], for 4.2. RELATED WORK instance, the authors discuss the problem of using only some specific part of the data to address the incremental learning task. In this paper, the nearest neighbor algorithm is extended and, in order to handle its memory requirements, their algorithm relies only on some specific examples with small sacrifices in classification accuracy.

In [START_REF] Dumouchel | Squashing flat files flatter[END_REF], the authors introduce the squashing technique which could be seen as a lossy database compression method. The idea in that work is to scale down large datasets while keeping its micro-structures which are important for data analysis. Basically, squashing has three steps, namely grouping, momentizing and generating. In grouping, the data is partitioned into subregions. Then moments are calculated using Taylor series approximation, and next, for each region a set of squashed elements are created. These three steps can be individually optimized in order to find the most desirable results. Squashing is shown to be much more effective than a simple random data selection.

In a recent work, Mall et. al. proposed a KNN-based method in order to provide a subset of data that can be representative of the inherit structure of data [START_REF] Mall | Representative subsets for big data learning using k-nn graphs[END_REF]. To do that, the authors first convert the data to a KNN graph and then they use the FURS method [START_REF] Mall | Furs: Fast and unique representative subset selection retaining large-scale community structure[END_REF], which takes the nodes from dense regions of the graph, to obtain a subset. Then the subsets are used in different learning tasks such as clustering and classification.

Our study is different from the above-mentioned ones in that they all try to extract some examples from the data in order to improve the modeling tasks (such as classification). However, we do not consider such cases and aim at presenting only few examples from the dataset in order to provide a top-view of the entire data.

Another trend of data simplification techniques is matrix decomposition methods such as Non-negative Matrix Factorization (NMF) [Lee andSeung, 1999a, Lee andSeung, 2000] which try to cluster the data in both dimensions (as discussed in detail in Chapter 1); i.e. cluster the objects and attributes at the same time. Other approaches like PCA try to find linearly uncorrelated variable among the data [START_REF] Wold | Principal component analysis[END_REF].

Perhaps the most known technique in matrix decomposition family is SVD [Golub and van Loan, 1996] which provides low rank approximation via singular values and singular vectors. In general, as discussed in Chapter 1, SVD, when applied to a given matrix X ∈ m×n is a factorization of the following form:

X = UΣV T (4.1)
where U ∈ R m×m and V ∈ R n×n are orthogonal matrices, and their columns are eigen-4.3. PROBLEM STATEMENT, COMPLEXITY ANALYSIS selects the most central data point. Then, it selects one object at random and checks its distance to all previously selected ones; if the (average) distance is more than a parameter ε, then the object is added to the set, discarded otherwise. This process is repeated until k items are added to the set. The main disadvantage of OptiSim is that it is not completely parameter-free as one needs to determine a proper value for ε. Moreover, in one round of selecting candidates, we may not find k object (as we select candidates at random) and, as a result, a recycle bin needs to be considered in order to reselect the items if such case happens.

In [START_REF] Daszykowski | Representative subset selection[END_REF], the authors propose a clustering-based approach (more particularly, based on DBSCAN) to tackle the problem of finding representative object. In this approach, each object is labeled as a core, border or outlier, and based on those labels, clusters are built. Finally, a K-means is applied on the clusters provided by DBSCAN and the centers (which are not necessarily the data points) are then selected as representatives of the dataset. We will, in the experimental section, compare the results of the proposed method with a method inspired from [START_REF] Daszykowski | Representative subset selection[END_REF] and show that in some cases they perform similarly and in others the perform as complementary techniques for data representation.

PROBLEM STATEMENT, COMPLEXITY ANALYSIS

As mentioned before, we would like to find a set of instances from a large dataset which can represent the entire data and provide a global view of it. To do that, we introduce a general problem, called Instance Selection Problem (IS P), and is defined as follows: 

argmin ⊂ x∈ \ d(x, ) (4.2) 
As mentioned before, many rows (i.e. data instances) might be correlated and could b represented by a single row. Accordingly, we define matrix C m×m as the pairwise similarity matrix where C i j represents the similarity between i th and j th row of X.

Without loss of generality, we assume that C ∈ [0, 1] where 1 denotes the maximum similarity and 0 denotes the minimum similarity. Clearly C ′ = 1 -C represents the pairwise dissimilarities between rows of X. Based on that, we have three variations of the IS P problem, namely IS P min , IS P aver age and IS P max . The min case tries to find some data points such that the sum of distances between each point and the closest point from the set of selected ones is minimized (like classic clustering algorithms), while the max case finds the points which has the maximum dissimilarity with all others. The average case finds the points which are in average close to all other data points. In the following, we formalize these problems: Definition 4.2 Given a data matrix X, the set , a pairwise dissimilarity matrix C ′ and an integer k, we have the following IS P problems:

IS P min : argmin

⊂ x∈ \ min x ′ ∈ C ′ (x, x ′ ) (4.3) IS P aver age : argmin ⊂ 1 | | x∈ \ x ′ ∈ C ′ (x, x ′ ) (4.4) IS P max : argmin ⊂ x∈ \ max x ′ ∈ C ′ (x, x ′ ) (4.5) such that | | = k.
In order to study the complexity of the problem stated in Def. 4. [START_REF] Kaufman | [END_REF]. In this case, we can apply PAM by providing it with either the similarity matrix (the max case) or dissimilarity (the min case) matrix. Algorithm 4

describes the PAM approach used to solve IS P min and IS P max . Without loss of generality, we assume that rows describe the objects and columns describe the attributes.

Therefore, we aim at selecting k rows of the input matrix X as representatives. We also assume that the C ∈ [0, 1] and, as a result, ]. In terms of complexity, one should keep in mind that in any similarity based method, we first need to construct the similarity or the dissimilarity matrix. Given the matrix of pairwise distances between the data points, for IS P min and IS P max , as shown in Algorithm 4, we need to substitute each centroid with an object and redo the object assignment until stabilization. Let Λ be the number of iterations before stabilization of centroids; then, the complexity of Algorithm 4 will be O(M 2 KΛ) as we have a loop over all the medoids (K times) and all the non-medoids (M times) in order to do the reassignments (M times). To do that, suppose that we have a set of "already selected" items, -1 , and we want to add the next item, s l , to this set in order to make a larger set (i.e = -1 ∪ s l ). One can exploit the following formulation knowing that we can simply omit the averaging coefficient in the optimization problem:

C ′ = 1 -C ∈ [0, 1 
argmax for all x ∈ X\ do 5:

s l ∈ \ -1 x ′ ∈ \ s∈ C(x ′ , s) = argmax s l ∈ \ -1 x ′ ∈ \ s∈ -1 C(x ′ , s) + C(x ′ , s l ) = argmax s l ∈ \ -1 x ′ ∈ \ s∈ -1 C(x ′ , s) + x ′ ∈ \ C(x ′ , s l ) = argmax s l ∈ \ -1 x ′ ∈ \ -1 x ′ =s l s∈ -1 C(x ′ , s) α + x ′ ∈ \ C(x ′ , s l ) β ( 4 
(x) = | | i=1 C(x, i ) 6: (x) = 0 7: for all x ′ ∈ X\ , x ′ = x do 8: (x)+ = C(x, x ′ ) 9:
end for 10:

(x) = (x) -(x) 11: end for 12: ← ∪ argmax (x i ) 13: until | | < k 14: return
We can rewrite α as the following:

α = x ′ ∈ \ -1 s∈ -1 C(x ′ , s) does not depend on s l - s∈ -1 C(s, s l ) γ (4.8)
Accordingly, the terms to be maximized are β and γ:

argmax s l ∈ \ -1 x ′ ∈ \ C(x ′ , s l ) - s∈ -1 C(s, s l ) (4.9)
Eq. ( 4.9) suggests, for the next point to be selected, the following greedy approach: in order to find the best point to add to the set, one can assign a score to all points and pick the point with the highest score. For each point, this score is simply computed as the sum of similarities it has with all non-selected points (β) minus sum of similarities it has with all already-selected points (γ). Algorithm 5 provides such greedy procedure.

Note that first point added to the set is the one that is the most similar to all other points (line 2). As far as the complexity is concerned, given the pairwise similarity matrix, C, for each non-selected object, we need to consider its distance to all elements of which results in a complexity of O(M K). This said, the greedy approach is much faster than Algorithm 4. Then, we considered 10 points to be selected for the max, 10 points for the average case, and 4 points for the min case as there are 4 clusters in the set. As one can see in the balanced case, the average method selects the most central instances, i.e. the points which are on the inner frontier of the clusters and are very close to other clusters. In this case, the points are distributed among all clusters while in the unbalanced case the points tend to be more biased to the clusters having more instances (the bottom-left cluster). One should note that these points are not simply the points the most similar to others (in which case it will be very easy to find them), 4.5. EXPERIMENTS but are the points which are similar to other points and are dissimilar to each other (see Eq. ( 4.9)). The points having this property are called "central" points hereafter.

The max method, as we expect, selects the data points which are on the outer frontier of the clusters which denotes the fact that they are the least similar instances compared to their own cluster as well as the other clusters. The min case, which is a classical K-medoids approach, selects the centroids of each cluster.

This simple example shows how different IS P methods can select objects from different regions to provide a global view of the data. In the following, we will illustrate the effectiveness of the three IS P methods on Reuters data and will explain how the proposed algorithms behave on this dataset.

REUTERS DATA

We have visually shown, on synthetic data, how different solutions of the IS P problem work. However, we still need to study them on real world data. To do that, we use the Reuters dataset [START_REF] Lewis | Rcv1: A new benchmark collection for text categorization research[END_REF] which is publicly available for research purposes. This dataset is called RCV1 and contains Reuters' English news collected from 20/08/1996 to 19/08/1997 where each entry is associated with at least one topic.

There are around 800K news and more than 90 topics. To conduct our experiments, we adopted the following strategy: we first found the most popular topics, i.e. the topics which had more than 200 news containing only and only that topic. We then picked four popular topics and extracted all the news having that topic (and potentially other topics) in their metadata. Next, we removed the stop words, lemmatized the text and removed punctuation and digits. Finally, we filtered the terms which appeared less than 5 times. Table 4.1 illustrates the chosen topics as well as some information about them after the preprocessing step. We used normalized tf-idf as in such contexts [START_REF] Bilenko | Adaptive name matching in information integration[END_REF], Zhang et al., 2011]. In the following, we will discuss the data points selected by each ISP algorithm and explain how they can represent the entire data. To do that, we fix the number of documents to be selected to 60 (i.e 180 documents in total). The main reason is that if we select less documents, although ISP works well, other approaches (explained shortly) may not provide a good representation of the entire data.

We have already seen, thought Fig. to select desired number of representatives (180) out of those candidates, and (ii) we apply the ISP techniques on the candidates and, then, compare the results. The main reason of using K-medoids is that, unlike K-means, the provided centroids are data points.

To select the candidates, we propose to run the DBSCAN with a grid search on different values of p and ε in order to find a large set of cores as candidates (5 ≤ p ≤ 300 with a step size of 5 and 0.05 ≤ ε ≤ 0.70 with a step size of 0.05). Here, we set the size of candidates to 10 time the size of representatives; i.e. 1800. One should note that it might not be possible to obtain exactly 1800 cores; accordingly, we used the results in which at least 1800 and at most 2000 cores are provided. In case where there were several similar possibilities (close number of cores), we selected the one with maximum number of clusters as it can better represent the data. Once we have the set of candidates, we compare the representatives selected by PAM with those selected by ISP. These two techniques are denoted as DBPAM and DBISP in our experiments as they are the combination DBSCAN with PAM and ISP respectively.

Following this strategy, one can see a summary of the DBSCAN part of the DBPAM and DBISP in Table 4.2.

2D Illustrations

For sake of visualization, we used multidimensional scaling on the normalized tf-idf matrix and used the first two components to plot the figures. One can alternatively perform a PCA for this purpose [START_REF] Daszykowski | Representative subset selection[END_REF]. Fig. 4. 5-4.8 show the representatives selected by each method for all four topics. To better illustrate the effects of DBPAM and DBISP, in these figures, we show each method separately as well as the combination of both methods. In the following, we see how these two techniques can C31: as one can note in Fig. 4.6, DBPAM covers well the region on the left and on the bottom; however, the region on the right is not very well covered as only some points have been selected on the rightmost part of this region. Nevertheless, DBISP has covered this area with several data points, making it a complement to DBPAM.

As one can note in the figure, for C31, DBISP alone can also provide a very good representation of the data shape.

E512: in this case also, the two approaches seem to perform complementary as combining them will provide a shape similar to the original data as it can be observed in Fig. 4.7. As one can see, DBPAM fails to find sufficient data points on the top "arm" of the data; it only finds some points on the topmost area. However, DBISP seems to recover the missed region by selecting a few point located from the center to the top (i.e. covering this arm). On the other hand, the left-bottom part is better covered by DBPAM, which makes these two methods complementary.

GDIP: for this topic, both methods perform similarly on the arm located on bottom as well as the one located on the right hand side of the data. Nevertheless, DBPAM cannot cover the top arm properly; again, three points are selected in this arm and they are located in the far end region. However, DBISP can recover this missing area with several points (see Fig. 4.8), and, together with DBPAM, provides a good representation of the data shape.

Topic Analysis

So far, we have considered the effectiveness of DBISP and its complementariness with respect to the available methods (in particular DBPAM). In the following, we will consider the representativeness of the DBISP instances by considering each ISP method separately. E512: firstly, one should note that the most coappearing topics for E512 is E51 and ECAT (95.5% of co-appearance). Considering that, one can see the effect of IS P aver age : only 3 documents (out of 60) selected by this method does not contain these two topics. This is basically in line with the reasoning provided before: the average case finds the documents which have a lot in common with other documents. Consequently, we observe that the topics of the IS P aver age data points are widely seen among the dataset.

In the max case, the selected documents contain much more topics compared to the average or the min case. They also contain the topics which do not appear in the other approaches. For instance, one of the documents selected by the max approach contains C18 (ownership changes) which only appears with E512 in 39 documents (0.3%) and cannot be seen in the documents selected by the min or by the average approach. Another example of such cases is C24 (capacity/facilities) which coappears with E512 in 1.2% document. One should note that the documents selected by the max case are not outliers (as they are in a way filtered by DBSCAN beforehand), but are the points determining the shape of the data as they are located in the outer frontier (see Eq. (4.5)). In other words, they are the documents containing less frequent topics. The documents of the min case, which are ideally the central points of the subparts of the data, are expected to be in between the max case and the average case.

Accordingly, we observed that 90% of the data points selected by the min approach contain the frequent topics (E51 ECAT). In addition, in this case, there are also topics which are less common in the dataset but not as uncommon as the max case topics.

For instance, one can observe the topic G15 (European community) which coappears with 14% of documents or GDIP (international relations) which coappears with 27.3% of the documents of E512. These results confirm that the min case selects the points which are neither in the outer border of the data nor the very central space but are in the center of different sub-parts of the data.

C31: the documents selected by the max case contain the topics which could not be found in those of the min or the average method. GJOB (Labor issues) and E41

(Employment/Labor) are two examples of such topics. To illustrate, one can observe that these two topics coappear with C31 in only 0.8% of documents in the entire set.

Again, this is what expect from the max case: selecting the documents which are on the outer frontier of the data and potentially contain a wider range of topics. In the min case, we observe that the selected documents not only contain the most coappear-ing topic, i.e. CCAT (Corporate/Industrial), but also contain other less likely topics.

For instance C15 (performance) which coappears in 11% of documents and C151 (accounts/earning) which coappears in 4.2% documents. However, unlike the max case, the min case documents do not contain less-frequently-distributed topics. For the average case, as it selects the most central objects of the set, 40% of the documents contain only one coappearing topics: CCAT (corporate/industrial). This indicates that the selected documents are those focusing on the very main topics: 98.2% of C31 documents contain also CCAT; as a result, one can conclude that these documents are the very central ones in the dataset.

C11:

In this case also, some less frequent topics appear in the max case. For example, we see C23 (research/development) which is highly rare to coappear with C11 (1.8% of co-appearance). In addition, in the min case, we see that the topics of the selected documents are the topics which are more likely to appear with C11.

For instance, the documents selected by IS P min contains the C15 (performance) with a co-appearance of 9.6%. C152 (comment/forecasts) is another example of this type which appeared with C11 in 7.5% of documents. For the average case, we observe that 28% of the documents selected by IS P aver age are the documents with only and only one coappearing topic: CCAT (corporate/industrial). As we expect, CCAT is a "always there" topic when we are considering strategy/plans (C11). This could be simply seen by looking at the proportion of C11 documents containing CCAT (97.4%).

In the IS P aver age case, among 60 selected documents, there is only one document that does not contain CCAT. This point shows that the average method has chosen the most central documents in the dataset.

GDIP: perhaps this topic is a good example where the max approach can detect "not-easy-to-find" documents. In this topic, while the conclusion on the min and average methods are similar to the other topics, the conclusion on the max case is more contrasted. In the representatives selected by IS P max , we find several topics which not only do not coappear with GDIP in min and average results, but also are too infrequent in the entire set. These topics coappear with GDIP in less than 1% of documents, which means that the documents containing these topics are infrequent and, as a result, hard to detect. However, the max approach was able to detect at least one document of each topic. Maybe the topic G151 (EC international market) is a good example here:

only 166 documents contain G151 as a coappearing topic with GDIP and IS P max is able to detect one of them. Another example is G154 (EC monetary/economic) which coappears with GDIP in 341 documents and IS P max can detect two of them.

CONCLUSION

The goal of this thesis was to explore the problem of finding interesting and representative itemsets and items in large, high-dimensional datasets. To achieve this objective, we first studied the main challenges in this domain: the data is large in terms of number of objects/instances and number of attributes/features and may also contain noise and missing values. These factors make the mining process much more difficult. As a result, a wide range of data studies have been conducted to address these problems.

One major technique in this area is data simplification. The idea of data simplification is to find better ways to represent the data such that better pieces of information can be extracted or better understanding of the data is provided. Following this line of thought, we studied one particular case of matrix decomposition called Binary Matrix Factorization (BMF) in which the input and the factors are binary; the reconstructed matrix can be optionally binary as well. We first, in Chapter 1, went through the decomposition techniques available in the state-of-the-art before formalizing the BMF problem. We then presented the available methods solving the BMF problem. As our first contribution, we established a link between the BMF problem and the Unconstrained Binary Quadratic Programming (UBQP) problem. This link allowed us to use the heuristics developed for UBQP, which we called 1-opt-UBQP, in the case of BMF.

Then in Chapter 2, as our second contribution, we presented a new, efficient heuristic, called 1-opt-BMF, to improve the BMF solutions. We first provided a theoretical analysis on the efficiency of this method with respect to 1-opt-UBQP and the standard approach, called 1-opt-Standard. Then, we have shown experimentally that the proposed heuristic is up to 8 times faster than the other methods and brings statistically significant improvement in many cases.

In Chapter 3, we discussed our third contribution where we introduce a new technique, called Decomposition Itemset Miner (DIM), in order to mine representative itemsets. Since in frequent itemset mining domain, the classical methods provide a huge number of itemsets, which are extremely hard to be analyzed by an analyst, the techniques providing good, representative itemsets have been of interest recently. As matrix decomposition techniques are able to capture the main structure and the latent factors of the data, we proposed to rely on these techniques in order to find representative itemsets. We first studied the existing methods in the literature, from classical algorithms to those aiming at finding a reduced number of itemsets. Then, we proposed to rely on BMF in order to mine representative itemsets and, to do that, we first established the theoretical link between BMF and frequent itemset mining. Once established, we designed a set of experiments to show the efficiency of the proposed method, as well as the quality of the itemsets produced. These experiments shows the itemsets found by DIM can well recover the data and are mostly precise.

Continuing on the problem of finding representative objects, we examined the problem of finding a subset of instances form datasets which can well represent different regions of the dataset. To do that, in Chapter 4, we formalized the Instance Selection Problem (IS P) and provided three variants of this problem, namely IS P aver age , IS P min and IS P max . We then showed that all these three variants are NP-complete before providing solutions to them. For the IS P aver age , we exploited the objective function to provide a greedy approach which selects one object at the time, and for the two others we used the classical PAM algorithm. Then, inspired by the state-ofthe-art methods, we designed a technique, called DBPAM, which is a combination of DBSCAN and PAM, and compared that the another approach called DBISP, a combination DBSCAN and ISP. In our experiments, we showed that DBISP can be considered as a complementary method for the existing technique: where other techniques cannot cover a region, DBISP does it and vice versa.

This thesis opens several research directions. Firstly, complexity of the BMF problem is still unknown, even for rank 1. In the literature, the complexity of some similar problems, such as weighted rank-1 BMF, has been considered; however, to the best of our knowledge, no complexity analysis has been presented for BMF. Although this problem is conjectured to be NP-hard in many studies, no formal proof of this fact has been proposed so far.

Another future research direction would be new methods for using BMF for frequent itemset mining problem. In this study, we presented the theoretical requirements and proved that BMF can be used for this application. However, one can further exploit the decomposition factors by characterizing the itemsets found by this method.

For instance "Which part of the dataset do they mostly cover?" is an interesting question that can be further studied to better understand the usefulness of BMF in frequent itemset mining. Another possibility is to exploit all the itemsets provided in the second decomposition factor (H in this document). According to the theoretical analysis provided here, many itemsets are dropped due to the fact that the error parameter does not allow us to exploit them. However, this does not mean that they are totally useless. Using the properties of BMF, one can further study the characteristics of the rows of H to better recover the representative itemsets. Another interesting direction is to develop the theory of using boolean decomposition in order to mine representative itemsets.

As another interesting future work, one can further study different formulations of finding representative objects. In this document, to find representative objects, we have provided three problems, two of which rely on clustering methods. Another alternative would be using decomposition techniques and exploit the latent factors provided by those techniques. For instance, as matrix decomposition techniques can be considered as a 2-mode clustering method (also known as co-clustering or biclustering), one can consider the factors of the decomposition as the clusters of objects and the clusters of attributes. For instance, using NMF in a document-term matrix, each latent factor could be considered as a topic [START_REF] Xu | Document clustering based on non-negative matrix factorization[END_REF]; following this line of thought, can we select some documents from each topic and consider them as representatives? If so, which documents should be selected form each topic? What characteristics should they have?

  W bin and H bin matrix factorization (NMF) or singular value decomposition (SVD), and then project the solution onto the admissible domain. This can be done through a simple thresholding or a grid search. The former is to simply project the values above a certain threshold θ to one and the values below that to zero. The grid search, on the other hand, tries different thresholds for each factor and returns the best result as the output. Algorithm 1 illustrates the grid search process for NMF (SVD is treated in the same way).
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 21 For a given row w i. (1 ≤ i ≤ M ) of W and a given H, we define three sets of column vectors of H:

2. 3

 3 .4 TIME COMPARISONWe compare here 1-opt-BMF with 1-opt-Standard and 1-opt-UBQP according to the running time. One should note that these three approaches yield the same solution, namely the one corresponding to the best improvement in a neighborhood of size 1 and thus, their only difference is the running time. Note that 1-opt-BMF and 1-opt-Standard can be applied to both L 1 and L 2 decomposition methods, whereas 1-opt-UBQP can only be applied on the L 2 decomposition approaches (NMF, SVD and Proximus). As a result, for L 2 methods, we compare 1-opt-BMF with both 1-opt-Standard and 1-opt-UBQP while for L 1 methods we can only perform one comparison: 1-opt-BMF with 1-opt-Standard.To further illustrate the speed of the different methods, we display in Figure2.1-2.4 the ratio: execution time of 1-opt-Standard divided by execution time of 1-opt-BMF and execution time of 1-opt-UBQP divided by execution time of 1-opt-BMF. An

Figure 2 .Figure 2 . 1 :

 221 Figure 2.1 illustrates the time comparison between 1-opt-UBQP and 1-opt-BMF on the left as well as the comparison between 1-opt-Standard and 1-opt-BMF on the right. The first issue to note is that, generally speaking, 1-opt-UBQP is faster than 1-opt-Standard as in the latter the ratio reaches up to 4.7 while in the former it reaches to 1.8 in the best case.Another point on this figure is that by increasing the value of K the ratio increases
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 222324 Figure 2.2: Efficiency of 1-opt-BMF compared to 1-opt-UBQP (left) and 1-opt-Standard (right) for NMF

Figure 2 . 5 :

 25 Figure 2.5: Improvement of L 2 -norm with the 1-opt strategy applied on SVD, NMF and Proximus. The horizontal axis represents the value of K and the vertical axis shows the L -norm.

  In previous chapters, we have mentioned that matrix decomposition techniques have been widely used in data mining applications as they are able to capture the main structure of the data and provide us with latent factors and important pattern found within the data. Then we focused on one particular case of matrix decomposition, namely Binary Matrix Factorization (BMF), and showed its relation to other problems.In addition, we discussed the local search heuristics for BMF and proposed a new heuristic which can improve the solutions significantly faster than other state-of-theart techniques. An extensive set of experiments was conducted and different datasets have been considered to show the efficiency of the proposed method.

CHAPTER 3 .

 3 APPLICATION TO THE MINING OF REPRESENTATIVE FREQUENT ITEMSETS P ⊆ I and a transaction database D, the support of P in D, denoted by suppor t(P, D), is the number of transactions of D including P: suppor t(P, D) = |{t | t ∈ D ∧ P ⊆ t}| The frequency of P is f r equenc y(P, D) = suppor t(P, D) m

3. 3 .

 3 STATE OF THE ART domain of finding an informative subset of the frequent patterns before providing the new BMF-based representative itemset mining procedure.

  The matrix on the left (X) contains three itemsets shown in three different colors. The same colors are used in the matrices on the right hand side to highlight the packet of items (in W) and the associations of the items to each packet (in H). The columns of W represent packets of items. The first packet has a support of 3 and the second and the third have a support of 2. In order to find the items associated to each packet, we need to look at the rows of H to see which items are assigned to each packet. Items one, two and three are in the first packet, item four and five in the second and item six in the third packet.

CHAPTER 3 .Theorem 3 . 1

 331 APPLICATION TO THE MINING OF REPRESENTATIVE FREQUENT ITEMSETS Let X m×n = W m×k × H k×n be a strong decomposition of X. If a packet of items with support value f is found in W (i.e. ∃p, 1 ≤ p ≤ k, W •p = f ), then there is at least one itemset with support value of at least f in X.

Corollary 3 . 1 Example 3 . 6

 3136 If X m×n = W m×k × H k×n is a strong decomposition of X, and there exists apacket of items p, 1 ≤ p ≤ k of size l in H (i.e. H p• = l) with support value f in W (i.e.W •p = f ), then there exists an itemset of size at least l and support value of at least f in X.The following example, illustrates the Corollary 3.1. Consider the following decomposition of the form X = W × H where itemsets are colored in matching colors X, W and H.

  ) = -1 as the minimum value in both rows are -1. According to the decomposition, the first packet, i.e the first column of W has support value of 2 and as γ(1) = -1, one can conclude that this column represents an itemset with support value of at least 2 -1 = 1. If we look at the first row of H, which corresponds to this packet, we see that four items are allocated to this packet. As a result, this factor represents an itemset with support value of at least 1 and size of at most 4 (shown in red).

Algorithm 3

 3 Mining representative itemsets with DIMInput: W, H, vector γ, min-supp f , min-size l Output: S : a set of itemsets with length of at most l and support of at least f

  duced itemsets and the mining efficiency through a set of experiments on different datasets. The qualitative experiments compare the set of itemsets output by DIM with the set of all closed frequent itemsets output by LCM algorithm [Uno et al., 2005]. The efficiency experiments compare the mining time of DIM and LCM. For LCM, we use its authors C implementation, while DIM is implemented in Matlab, which provides efficient matrix operations. The experiments are conducted on a Linux machine with an Intel Xeon E-2630 with 6 cores @ 2.30 Ghz with 32 GB of RAM. No multiprocessing or multithreading has been applied on DIM or LCM.
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 331 Figure 3.1 presents the mining time with a varying minimum support for both LCMand DIM. As expected, DIM's running time is constant. Note that, in DIM, while the decomposition is done, the mining phase is quite straightforward and fast. Accordingly, one can see a constant line in Fig.3.1 as the time consuming phase of DIM is the decomposition. In practice, the decomposition has only to be done once, and then it can be exploited by Algorithm 3 for any support value we desire. It can be observed that for high support values LCM is faster than DIM. However, for lower support values, LCM suffers from the combinatorial explosion of the number of results, and needs much more computation time than DIM. This point is more crucial in structured dense datasets, like pumsb, where even with high support values, itemset mining task is very difficult. In dense datasets, like accidents, LCM becomes very
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 41 Consider the following set of frequent itemsets mined by an arbitrary mining algorithm: {I 1 , I 3 , I 4 , I 5 } {I 1 , I 3 , I 4 , I 6 } {I 1 , I 4 , I 5 , I 6 } {I 3 , I 4 , I 5 , I 6 } {I 1 , I 3 , I 4 , I 5 , I 6 }
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 41 Figure 4.1: Centeroids provided by K-medoids with k = 40 on a 2D data with more than 12K instances.
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 41 The general IS P problem) Let = {X 1 , • • • , X m } be the set of rows of matrix X ∈ m×n with X i the i th row of X, and d a distance function. Then the general ISP problem is to find a subset ⊂ with | | = k and 1 ≤ i ≤ m such that:
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 42 Figure 4.2: Data points selected by different IS P methods on synthetic data.

  Figure 4.2 shows two cases for the synthetic data: balanced and unbalanced, where in the unbalanced case the two bottom regions contain more data points compared to those of top (and bottom-left more than bottom-right).
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 43 Figure 4.3: Comparison of the normalized distribution of topics coappearing with E512. The horizontal axis represents the topics (not labeled to increase the readability) and the vertical axis shows the values. Topics with less than five documents have been removed from the distributions.
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 45 Figure 4.5: Comparison between DBPAM and DBISP on C11.
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 46 Figure 4.6: Comparison between DBPAM and DBISP on C31.
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 47 Figure 4.7: Comparison between DBPAM and DBISP on E512.
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 48 Figure 4.8: Comparison between DBPAM and DBISP on GDIP.

  For instance, one can name feature selection algorithms as a data simplification technique where we are interested in selecting a subset of features that best represents the data. As the data is usually represented via matrices, where rows are the instances and columns are the attributes, one important data simplification technique is matrix decomposition. Matrix decomposition is a method which factorizes a matrix into two or more smaller matrices, called factors, such the the multiplication of the factors approximates the original data. Matrix decomposition can extract the main information of the data and capture the latent factors. This technique has been widely used over the past few years and found a large number of applications such as text mining and image processing. Depending on the application, one may use different decomposition techniques. For instance, when the input matrix is nonnegative and the factors are also supposed to be nonnegative, one may use Non-negative Matrix Factorization (NMF).

  HEURISTIC LOCAL SEARCH FOR BMFWhat we need to do is to compute the error change (gain) for zero cells and one cells

	in w i. separately. Let	= (g 0→1 1	, g 1→0 2	, g 1→0 3

Table 2 .

 2 

2 illustrates these entities: according to Table 2.2, the total complexity of Equation 2.2 amount to

Table 2 .

 2 2: Complexity analysis of Equation 2.2

	32)

  and (2.32), the proposed method in case of L 2 norm has a theoretical complexity of O max{K N (1τ), τN } . Now if we divide the complexity 1-opt-UBQP, i.e. O(K N ), by this quantity, the minimum gain we obtain will be

	Sub-equation Operations needed	Complexity
	h∈W 0 i	h j	summation over one row of W

min{(1-τ) -1 , Kτ -1 }, and if we divide that by the complexity of the standard method, i.e. O(K 2 N ), we have a minimum gain of min{K(

1

τ) -1 , K 2 τ -1 }.

For the L 1 case, we have two equations: 2.3 and 2.4. We can consider Table

2.3

for Equation

2

.3. Based on that, the total complexity of Equation

2

.3 is: Table 2.3: Complexity analysis of Equation 2.3

  For projected NMF and SVD, we use the grid search, discussed in Chapter 1 and illustrated in Algorithm 1, with α = 0.05 in order to find the best possible binary results

	2.3. EXPERIMENTS
	1. Projected NMF;
	2. Projected SVD;
	3. Proximus;
	4. CBMF;
	5. UBMF.

Table 2 .

 2 5: Different problem classes

	Approach/Norm	L 1	L 2

Table 2 .

 2 6: Datasets used in the experiments.

	Name	# Rows # Columns Density (%)
	Mushroom	8124	119	19.32
	Connect	67557	129	33.33
	Accidents	340183	468	7.22
	Pumsb	49046	2113	3.50
	T10I4D100K 100000	870	1.16
	T40I10D100K 100000	942	4.20

Table 2 .

 2 7 illustrates the improvement that 1-opt can make over the L 1 methods, namely CBMF, SCBMF and UBMF. As mentioned before, SCBMF is provided the same amount of time as 1-opt-BMF. As one can note, the case of K = 1 is removed from the table since, as mentioned above, no local improvement can be made for the first factor.The table shows the normalized errors in percentage. Significant improvements are shown in bold (measured again using Wilcoxon rank-sum test at the 1% significance level). Note that for CBMF (resp. UBMF), the 1-opt error is shown in bold if it is significantly better than the standard CBMF (resp. UBMF). SCBMF's error is shown

in bold if it is significantly better than standard CBMF. For 1-opt-SCBMF, the error is in bold if it is significantly better than SCBMF.

Table 2 .

 2 7: Effectiveness of the 1-opt on L 1 methods. Numbers are the normalized error in percentage. Statistically significant improvements are shown in boldface.

	Dataset	k	CBMF Standard	1-opt	SCBMF 1-opt-SCBMF	UBMF Standard	1-opt
		20	7.5032	7.2662	7.0481	6.7332	6.8685	6.8685
		40	4.9601	4.4301	4.1346	3.6278	4.4537	4.4537
	Mushroom	60	2.5769	2.2591	2.4711	2.1682	2.1958	2.1958
		80	1.4323	1.1655	1.3449	1.1608	1.0042	1.0042
		100	0.1917	0.1313	0.1835	0.1500	0.1377	0.1377
		20	7.9585	7.8659	7.4513	7.3004	7.3202	7.3202
		40	4.9624	4.9077	4.5270	4.4728	4.1145	4.1145
	Connect	60	2.6073	2.5850	2.4071	2.3849	1.7336	1.7336
		80	1.7881	1.6420	1.3584	1.3551	0.8995	0.8995
		100	0.3537	0.3537	0.3537	0.3537	0.3537	0.3321
		20	3.1373	3.1373	3.1373	3.1373	2.9923	2.9923
		40	2.7191	2.7191	2.7191	2.7191	2.4352	2.4352
	Accidents	60	2.1906	2.1493	2.1900	2.1495	1.9766	1.9766
		80	1.6426	1.6360	1.6321	1.6255	1.4654	1.4653
		100	1.1345	1.1014	1.1342	1.1018	0.9504	0.9504
		20	1.3253	1.2895	1.3214	1.2782	1.2177	1.2176
		40	0.9608	0.9310	0.9608	0.9311	0.8903	0.8903
	Pumsb	60	0.8719	0.8647	0.8719	0.8647	0.8201	0.8200
		80	0.8763	0.8467	0.8740	0.8491	0.7638	0.7637
		100	0.7560	0.7470	0.7560	0.7470	0.7010	0.7010
		20	1.1158	1.1158	1.1148	1.1148	1.1158	1.1097
		40	1.0745	1.0745	1.0745	1.0745	1.0734	1.0734
	T10I4D100K	60	1.0432	1.0432	1.0413	1.0413	1.0403	1.0403
		80	0.9806	0.9804	0.9803	0.9802	0.9757	0.9757
		100	0.9441	0.9435	0.9438	0.9432	0.9321	0.9321

  1} implies ε ∈ {-1, 0, 1} m×n . It should be also noted that Prop. 3.1 holds for the approximate decomposition as well.Based on Def. 3.3, now we can rewrite Theorem 3.1. Let X m×n = W m×k ×H k×n +ε m×n be an approximately strong decomposition of X, and let ε max be the maximum of absolute values of ε • . If a frequent packet of items with support value of f is found in W (i.e. ∃p, 1 ≤ p ≤ k, W •p = f ), then there is at least one itemset with support value of at least fε max in X.Proof Suppose that packet p, 1 ≤ p ≤ k, has support value of f in W, i.e

	Theorem 3.2 m
	i=1

m×k , H ∈ {0, 1} k×n and W × H ∈ {0, 1} m×n ITEMSETS Note that having values of X, W, H and W × H in {0,

Table 3 .

 3 

				2: Base-itemsets		
	#1	#2	#3	#4	#5	#6
	{A,B} {A,B,D} {A,B,C,D} {A,D,E,F} {A,F,G,H,I} {A,C,D,F,I}
	All the base-itemset can be best recovered by the second found-itemset ({A, B, C}). All
						3
						3

items of

# 1, two items of # 2, all items of # 3, two items of # 4, one item of # 5 and 

two items of # 6 are covered. As a result we have the following recoverability for each base-itemset:

Recover abil i t y(#1) = 2 2 Recover abil i t y(#2) = 2 3

Recover abil i t y(#3) =

Table 3 .

 3 APPLICATION TO THE MINING OF REPRESENTATIVE FREQUENT ITEMSETS increase the readability, large numbers are suffixed by M (millions) or B (billions).

	3: Comparing LCM closed itemsets and DIM itemsets
	Dataset	min-supp #(LCM) #(DIM) Prec. Recov.
		40%	44.7M	7	71%	72%
		20%	7.49B	10	34%* 76%*
	Pumsb	10%	≫10B	15	27%* 94%*
		5%	≫10B	17	25%* 94%*
		1%	≫10B	20	22%* 94%*
		10%	9.97M	9	75%	67%
	accidents	5%	64.8M	13	69%	68%
		1%	1.62B	15	40%* 53%*
		1%	64481	1	88%	2.8%
	T40I10D100k	0.5 % 0.3 %	1.27M 3.56M	7 8	84% 87%	9.5% 10%
		0.1%	18.4M	9	87%	18%

itemsets for both LCM and DIM as well as the precision and recoverability of DIM itemsets are shown in this table. The minimum size for the itemsets is set to 2 since singletons are not of interest. The number of latent factors (k) is set to 30 since larger values of k results in uninteresting itemsets (i.e. itemsets with large error value). To
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Table 3

 3 .[START_REF] Mirisaee | Local Heuristic Search for Binary Matrix Factorization[END_REF] gives recoverability for the top p itemsets of LCM for each dataset (precision is by definition 100% in this case). For instance, in the accidents dataset with minimum support of 10%, DIM outputs 9 itemsets, so we take the top 9 itemsets from the results of LCM, and compute the recoverability, which is 13%. The recoverability of the top p itemsets of LCM is more than 4 times lower than those of DIM in real datasets. In the synthetic dataset, however, the improvement is marginal.

	These results, in general, confirms that DIM itemsets convey more information than
	traditional top p itemsets techniques.		
	Dataset	p min-supp Recov. (LCM) Recov. (DIM)
	pumsb	7	40%	15%	72%
	accidents	9	10%	13%	67%
	T40I10D100k 9	0.1%	12%	18%
	Table 3.4: Comparing top-p LCM closed itemsets with DIM itemsets
	3.7 CLOSING REMARKS		
	In this chapter, we have examined the problem of finding representative itemsets
	through decomposition of the input matrix. Using theoretical analysis, we have shown
	that matrix decomposition can help us mining representative frequent itemsets as it
	extracts the main information of the data.		

  4.1 where among more than 12K instances, 40 centroids of K-medoids have been displayed. Although these centroids can cover two arms of the data, the one on the top is not very well covered as only two representatives have been selected form there. We will see, in the experimental section, what this dataset represents and show how we can find other representatives with an alternative technique proposed later in this chapter.As our fourth contribution, in this chapter, we propose a method which selects a handful of instances which can provide a global view of the data[Mirisaee et al., 

	4.1. INTRODUCTION				
		Centroids selected by K-medoids with K=40	
					Data points
					K-medoids centroids
	0.6					
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	0.2					
	0					
	-0.2					
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  given a graph G = (V, E) and nonnegative weights for edges w i j , MCGS problem aims at finding a set U ∈ V such that |U| = k and i∈U, j / ∈U w i j is maximized. As discussed in[START_REF] Feige | Approximation algorithms for maximization problems arising in graph partitioning[END_REF], this problem (which is referred to as Max-Cut k therein) is NP-complete. It is easy to observe that having an instance G = (V, E)of the general Max-Cut problem, we can create the following instances of the MCGS problem in polynomial time:{G = (V, E), k = 1}, • • • , {G = (V, E), k = [n/2]} where n = |V |.If we are able to find a polynomial solution for these instances, then we can find a polynomial solution for the Max-Cut problem, which is a contradiction unless P = N P. It is also very easy to see that IS P aver age is clearly a MCGS problem and, as a

	4.4. SOLUTIONS			
	MCGS: result, is NP-complete.			
	4.4 SOLUTIONS			
	4.4.1 MIN AND MAX CASE		
	T ⊂W x∈W	d(x, T ) with d(x, T ) = min y∈T	d(x, y)	(4.6)
	By comparing Eq. (4.3) and Eq. (4.6), one can see that IS P min is NP-complete as it
	is a simple, polynomial transformation from the K-medoids problem. With the same
	reasoning, we can simply prove that the IS P max is also NP-complete since IS P max is
	similar to IS P min with a different distance function, i.e. d(x, T ) = max x ′ ∈	

2, we use two well-known problem: K-medoids and weighted max-cut problem. K-medoids problem: given a set of n data points W and a distance function d, the objective is to find a set of medoids, T , such that |T | = k and sum of distances between each data point and its closest medoid, T i , is minimized. More formally: argmin C ′ (x, x ′ ).

In order to study the complexity of IS P aver age , we use graph partitioning problems, in particular those introduced in

[START_REF] Ageev | Approximation algorithms for maximum coverage and max cut with given sizes of parts[END_REF] 

and

[START_REF] Feige | Approximation algorithms for maximization problems arising in graph partitioning[END_REF]

. The problem which is of interest here is the Maximum Cut problem with Given Sizes of Parts (MCGS).

As mentioned, in the previous section, in order to solve the IS P max and IS P min , one can use the K-medoids solvers such as Partitioning Around Medoids (PAM)

[Kaufman 

  Algorithm 4 PAM algorithm for IS P min and IS P max Input: Similarity matrix C or distance matrix C ′ , k

	Output: k representative instances
	1: select k rows of X
	2: compute the total cost
	3: repeat
	4:	for all medoid m do
	5:	for all non-medoid m ′ do
	6:	swap m with m ′ and compute total cost
	7:	end for
	8:	replace m with m ′ having the minimum cost
	9:	end for
	10: until no change observed in the medoids
	11: return medoids
	4.4.2 AVERAGE CASE

In case of IS P aver age , we propose a greedy algorithm which can efficiently find a solution of the optimization problem

(4.4)

. As one can observe, we can transform the minimization problem, i.e. Eq.

(4.4)

, into a maximization problem by simply replacing C ′ with C. The proposed greedy algorithm, which works on the maximization version of IS P aver age , picks the instances one by one in order to build the final solution set .

Table 4 .
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	Code Description	# Docs # Terms
	C11	Strategy/Plans	24325	35142
	C31	Markets/Marketing	40506	42002
	E512 Merchandise trade	12634	19037
	GDIP International relations 37739	43167

1: Topics used in the experiments. the weighting and the cosine function as the similarity metric as they are widely used

Table 4 .

 4 2: DBSCAN part of the DBPAM and DBISP.and then use two different methods to select the representatives from them: (i) similar to[START_REF] Daszykowski | Representative subset selection[END_REF], we apply K-medoids (here we use PAM, i.eAlgorithm 4) 

	4.5. EXPERIMENTS			
	Topic # Clusters # Candidates (cores) p	ε
	C11	38	1869	25 0.40
	C31	74	1850	10 0.05
	E512	13	1804	40 0.40
	GDIP	29	1926	30 0.15

4.2

, how ISP behaves on a small, synthetic data. Here, to illustrate the effect of each ISP technique on real data, we show the

This condition can be efficiently computed when checking the gains defined in Theorem

2.1. 

Publicly available at http://fimi.ua.ac.be/data/ (last visited03-Jun-2015) 

http://fimi.ua.ac.be/data/ (last visited 03-Jun-2015)
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CLOSING REMARKS

BMF solutions obtained by previously proposed methods. Then we introduced, as our second contribution [Mirisaee et al., 2015b,Mirisaee et al., 2015c], a new local search dedicated to the BMF problem and studied its complexity with respect to other local search approaches.

The experiments, conducted with several state-of-the-art methods, on several collections, have confirmed that the 1-opt local search procedure proposed in this chapter is in general faster than the previously proposed ones. They have also shown that this procedure significantly improves the solutions found by the state-of-the-art L 2 -norm methods: projected NMF, projected SVD and Proximus.

For the L 1 -norm methods, the experimental results show that the proposed local search procedure improves the results of the state-of-the-art methods solving the complete BMF problem, with the binary reconstruction constraint, on the real datasets, which are more structured than the synthetic ones. These methods include CBMF and its "swapped" version. The situation is more contrasted with UBMF, which solves the BMF problem without the binary reconstruction constraint. 1-opt local search heuristic do not seem to be able to improve this state-of-the-art method in many cases. vectors of X X T and X T X , respectively. Σ is a diagonal matrix of size X and it contains singular values of X in descending order. The nearest rank-k matrix to X under both the Frobenius and the spectral norm is obtained by taking the largest k eigenvalues and their corresponding eigenvectors [START_REF] Deshpande | Efficient volume sampling for row/column subset selection[END_REF].

Many previous studies tried to address the problem of column subset selection (also refereed to as volume sampling which was originally defined in [START_REF] Deshpande | Matrix approximation and projective clustering via volume sampling[END_REF]) where the objective is to be as close as possible to the best rank-k approximation computed via SVD. Although SVD can be computed in O(min{mn 2 , nm 2 }), it is still too slow for many applications. Accordingly, there is a large body of papers exploring the approximation techniques for that. For instance, in [START_REF] Boutsidis | An improved approximation algorithm for the column subset selection problem[END_REF],

the authors provide a method to select k columns of a given matrix, X, such that the probability of having ||X -P C X|| F ≤ Θ(k log 1/2 k) ||X -X k || F is at least 0.8, where P C X denotes the projection of X onto the span of columns of C and X k denotes the best rank-k approximation obtained via SVD. Their algorithm consists of two steps: a randomized step and a deterministic step. In the randomized step Θ(k log k) columns of X is chosen, and in the deterministic step a strong rank-revealing QR factorization [START_REF] Gu | Efficient algorithms for computing a strong rank-revealing qr factorization[END_REF] is employed to select exactly k columns of X.

Our study is also different from this family of research because we are not interested in finding the low rank approximation (rank-k approximation) but we would like to find some real data points selected from a huge amount of data.

Representative object selection has been widely used in other domains such as chemistry, biology and chemometrics [START_REF] Dean | Molecular diversity in drug design[END_REF],Brown and Martin, 1996, Higgs et al., 1997, Agrafiotis, 1997]. One of the most known approaches has been discussed in [START_REF] Kennard | Computer aided design of experiments[END_REF] and is very similar to the one presented in [Arthur and Vassilvitskii, 2007b] which is used to initialize K-means (which is basically the idea of the K-means++ algorithm). To select k representative objects, the idea of [START_REF] Kennard | Computer aided design of experiments[END_REF] is to first select the most central data object and then select the one which has the maximum distance to the first one. The next data points are selected based on the maximum distance to all previously selected ones.

This procedure is continued until k data points are selected. As we will see in the following sections, one of the variants of the proposed method is basically using a similar approach for initialization and, thus, will provide a better solution with respect to [START_REF] Kennard | Computer aided design of experiments[END_REF].

Another similar, but more efficient, technique has been introduced by Clark [Clark, 1997] and is called OptiSim. Similar to [START_REF] Kennard | Computer aided design of experiments[END_REF], OptiSim first normalized distribution of topics of the documents selected by each ISP method as well as that of the original set for two topics, namely E512 and GDIP, in Figure 4.3 and 4.4 respectively. Note that the topics are sorted (in descending order) based on their frequency of appearance in the original set and this order has been preserved for the ISP plots. We have also filtered the topics with less than 5 documents in order to avoid the very long tail in the distributions.

As one can see in Fig. 4.3, the average method selects the data points with a strong focus on the two most popular topics (E51 ECAT). The max case, however, has a long, CHAPTER 4. REPRESENTATIVE OBJECTS FOR LARGE DATASETS visible tail (i.e. selects the documents containing less frequent topics in the original set) as it tends to select the objects with a wide variety of topics. As it can be seen, the topics provided by the objects selected by the max technique are a lot less frequently seen in the original set (one can easily observe that by comparing the corresponding bars in the max case and in the first plot). This confirms that the IS P max selects the documents which are far from others and contain less frequent topics. The min case is expected be located somewhere between the two others: it should, ideally, selects the documents containing not solely the "most popular" topics, but also some documents with "less popular" topics. That is the fact that one can see in Fig. 4.3 when it is compared to other approaches as well as to the distribution of original set. With the min approach, the distribution values of the first 5 "most frequent" topics is at least 0.2 and we still see some other topics further on the tail of distribution. Compared to the distribution of the original set, one can observe that min case is also able to highlight the topics which are in the medium level of "popularity" in the data. On the other hand, unlike the max case, it does not provide a vast range of topics including less frequent topics. This indicates that the min case has found data points situated between the max and the average case.

For GDIP, similar to E512, one can see that the documents of the average case focus on the most popular topics; that is why one observes the bars only on the left hand side of the second plot in Fig. 4.4. The documents of the max case covers, as usual, many topics while the min case falls between the two other cases.

To further evaluate the representativity of the documents selected by the ISP methods, we designed an approach inspired by [START_REF] Daszykowski | Representative subset selection[END_REF] as the method therein has shown better performance with respect to other methods such as [START_REF] Kennard | Computer aided design of experiments[END_REF] and [Clark, 1997], and compared ISP to that.

In [START_REF] Daszykowski | Representative subset selection[END_REF], the authors propose to apply the DBSCAN on the dataset to find some clusters in the data and, then, run K-means within each cluster of DBSCAN in order to select the representatives (centers of K-means). The number of cluster in K-means is either a fixed number or is chosen proportional to the size of each DBSCAN cluster. The rational is that DBSCAN is able to capture the clusters with complex structures. Accordingly, once these structures are captured, we can apply a "center-based" technique, like K-means, to find the representatives (centers of the K-means in this case).

Inspiring from that, we propose the following experimental settings to evaluate the representatives selected by ISP: we first find a large set of candidates using DBSCAN

CLOSING REMARKS

In this chapter, as our fourth contribution [Mirisaee et al., 2015a], we have studied a new, alternative approach to select representative objects from different regions of big, high-dimensional datasets in order to provide a top, global view of the data. To do that, we defined the Instance Selection Problem (ISP) and its three variants. We have then shown how each of these variants can select representatives from different regions of the data. To show the behavior of the proposed approach, we first used a small, synthetic data for illustration purpose. We have then designed a set of experiments to show that using the DBISP technique, which is a combination DBSCAN and ISP, we can obtain good representatives on data. We then evaluated our results on Reuters dataset by extracting all documents of four popular topics and applying the DBISP on them.

Inspired by the state-of-the-art techniques, we designed a method called DBPAM and then compared the results of DPISP with that of DBPAM. We argue that in some cases and some data regions DBISP provides a better representation of the data while in most case these two approaches should be considered as complementary techniques:

where DBPAM is unable to cover a region of the data, DBISP does it and vice versa. of the 2014 ACM SIGMOD international conference on Management of data, pages 1531-1542. ACM.

[ Zou et al., 2010] Zou, J., Xiao, J., Hou, R., andWang, Y. (2010). Frequent instruction sequential pattern mining in hardware sample data. In ICDM, pages 1205-1210.