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Abstract

This thesis focuses on mining representative items and itemsets using Binary Matrix

Factorization (BMF) and instance selection. To accomplish this task, we first, in Chap-

ter 1, consider the BMF problem by studying the literature on matrix decomposition

techniques and the state-of-the-art algorithms. Then, we establish a connection be-

tween BMF problem and Unconstrained Binary Quadratic Programming (UBQP) prob-

lem in order to use UBQP’s algorithms and heuristics, available in the literature, in

case of BMF solutions. Next, in Chapter 2, we propose a new, efficient heuristic which

flips 1 bit at the time in order to improve the solutions of BMF. Using the established

link discussed in Chapter 2, which enables us to use heuristics of UBQP, we compare

the proposed technique, called 1-opt-BMF with that of UBQP, called 1opt-UBQP as

well as the standard approach, called 1-opt-Standard. We then show, theoretically

and experimentally, the efficiency of 1-opt-BMF on a wide range of publicly available

datasets. Next, in Chapter 3, we explore addressing the problem of finding representa-

tive itemsets via BMF. To do that, we first consider the theoretical relation between the

frequent itemset mining problem and BMF; while established, we propose a new tech-

nique called Decomposition Itemset Miner (DIM). We then design a set of experiments

to show the efficiency of DIM and the quality of its results.

Finally, in Chapter 4, we consider the problem of finding representative objects

(instances) in big, high-dimensional datasets. These objects helps us to find objects

providing a global, top-view of the data and are very important in data analysis pro-

cess. We first study the available methods for finding representative objects and discuss

the pros and cons of each. We then formally define the Instance Selection Problem

(ISP), provide three variants of that and examine their complexities before providing

their solutions. In the experimental section, we show that although the ISP solutions

can outperform other methods in some cases, in general it should be considered as a

complementary technique in the context of finding representative objects.
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Résumé

Dans cette thèse, nous nous intéressons à la recherche d’“items” et d’“itemsets” d’intérêt

via la décomposition de matrice binaire (Binary Matrix Factorization, BMF) et à la

recherche d’objets représentatifs. Pour cela, nous étudions l’état de l’art des tech-

niques de décomposition matricielle. Nous établissons, dans le premier Chapitre, un

lien entre BMF et le problème de programmation binaire quadratique sans contraintes

(Unconstrained Binary Quadratic Programming, UBQP) afin d’utiliser les algorithmes

et heuristiques existant dans la littérature pour UBQP et les appliquer à BMF. Nous

proposons dans le Chapitre 2 une nouvelle heuristique adaptée au calcul de BMF.

Cette technique efficace optimise les solutions de BMF ligne par ligne (ou colonne par

colonne) en inversant 1 bit à chaque fois. En utilisant le lien établi dans le Chapitre 2

qui nous permet d’appliquer les algorithmes et heuristiques d’UBQP à BMF, nous com-

parons la méthode proposée (1-opt-BMF) avec les heuristiques spécialisées pour UBQP

(1-opt-UBQP) ainsi que les heuristiques classiques (1-opt-Standard). Nous montrons

ensuite, en théorie et en pratique, l’efficacité de 1-opt-BMF sur une large variété de

données publiques. Dans le Chapitre 3, nous nous intéressons au problème de la

recherche des itemsets représentatifs en utilisant BMF et 1-opt-BMF. Pour cela, nous

considérons dans un premier temps le lien entre le problème de “frequent itemset min-

ing” et BMF, et proposons une nouvelle méthode que nous appelons “Decomposition

Itemset Miner” (DIM). Une série d’expérience montre la qualité des résultats obtenus

et l’efficacité de notre méthode.

Enfinf, nous nous intéressons, dans le Chapitre 4, à la recherche d’objets représen-

tatifs (qui donnent une vue globale sur les données) dans des données de grandes

dimensions. Nous examinons les méthodes disponibles dans la littérature en donnant

les avantages et les inconvénients de chacune. Ensuite, nous défnissons mathéma-

tiquement le problème de sélection d’instance (Instance Selection Problem: ISP) et

présentons trois variantes à ce problème ainsi que leur solutions. Dans les expériences,

nous montrons que, bien qu’ISP puisse surpasser les autres méthodes dans certains cas,

il vaut mieux le considérer en général comme une technique complémentaire dans le

cadre de la recherche des objets représentatifs.
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INTRODUCTION

As computer hardware is getting cheaper and cheaper, and the computers get faster

and faster, data collection becomes easier and easier. However, as this process is done

easily, the data analysis task became a challenging problem. Due to the fast growth

of social networks over the past decade, one can simply obtain a large set of data in a

short amount of time. This data, nevertheless, is tremendously large and potentially

noisy. As a result, new methods for analyzing large sets became a hot topic over the

past few years.

Data mining is the process of extracting information out of a database or a data

warehouse [Witten and Frank, 2005]. It is a wide domain which covers a large number

of techniques (from neural networks and statistics to high-performance computing and

data visualization) in order to find useful information from datasets. As, in general,

the datasets considered in data mining applications are large and high-dimensional,

(and as a result are hard to understand and analyze) data simplification is one of the

most important methods used while dealing with large data.

For instance, consider the case of social network datasets such as Twitter. The

tweets are short messages (up to 140 characters) which are posted by Twitter users.

Tweets have attracted a lot of attentions recently as they could provide a wide range of

interesting information in many areas such as topic detection, sentiment analysis and

studies on modern society [Pang and Lee, 2008,Bittner, 1973,Cataldi et al., 2010,Pak

and Paroubek, 2010,Chen and Mirisaee, 2014,Junco et al., 2013]. Consider the prob-

lem of sentiment analysis in Twitter where one is interested in assigning a label to

each tweet: positive, negative and neutral. A positive tweet is a tweet which has a

positive polarity. For example "My new iphone is great." is a positive tweet. Sentiment

analysis can be used in many areas such as marketing and product evaluation and feed-

back. As one can guess, the content of a tweet could vary: from simple daily status

to a worldwide disaster. They could be in any language (even mixture of several lan-

guages), could contain typos and may have emoticons. One can simply collect a large
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amount of tweets for some social network analysis task. However, according to the

above-mentioned issues, directly applying data mining techniques on such dataset will

be probably very time consuming (since initially it is high-dimensional) and produce

poor results (since it is extremely noisy). Accordingly, one can apply a data simplifi-

cation technique in order to address (some of if not all of) these problems [Zhu et al.,

2014].

In data mining, the data is usually represented using matrices where rows rep-

resents the objects and columns represent the features. Following the example dis-

cussed above on Twitter, rows (objects/instances) can be the tweets and columns (fea-

tures/attributes) can be the terms of the tweet. Many techniques have been studied to

simplify such data. Each of these techniques target certain characteristics of the data

in order to make it easier to analyze. For instance, some focus on number of objects

and try to reduce it in a smart way. Others work on the number of attributes and try

to reduce it without loosing too much information. As the data is mostly represented

as matrices, matrix decomposition or matrix factorization is one of the most popular

methods in this regard. It has shown a significant potential in a wide range of fields

and attracts more and more attention as time goes by.

In general, matrix decomposition is a process which enables us to break a large

matrix into two or more smaller matrices such that the multiplication of these matrices

approximates the original data. As mentioned before, data could be very large, high-

dimensional and noisy. As a result, the main idea of matrix factorization techniques is

to simplify the data and make it more understandable. These methods try to find the

main and latent information of the data. Accordingly, they can simply detect the noise

(as long as the noise is not a dominant part of the data, it is not considered as the

main information and is filtered out through the approximation process) and provide

us with important and useful information.

As an example, Principal Component Analysis (PCA) [Pearson, 1901, Borgne and

Bontempi, 2007] is a very well known decomposition technique. To better understand

the importance of a decomposition techniques like PCA, let us consider the example

of a high-dimensional dataset were the features are not only numerous but also re-

dundant and possibly correlated. To handle such cases, one may use feature selection

algorithms which try to filter the irrelevant or redundant features in order to find more

precise information from data in a shorter amount of time [Varmuza, 1980]. PCA is

one of these techniques which groups some features together (as a linear combination

for example). More precisely, it is a transformation from original attributes to a set
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of linearly uncorrelated variables. Invented by Pearson in 1901, PCA is one of the

pioneers of data reduction field and has shown the importance of the problem since

then.

A closely related method for data simplification is Singular Value Decomposition

(SVD) which has been widely used in many contexts such as biological systems, image

coding, signal processing, speech recognition and noise reduction [Golub and van

Loan, 1996,DeAngelis et al., 1995,Andrews and Patterson III, 1976,Dendrinos et al.,

1991]. Like PCA, SVD could also be seen as a technique to transform a set of correlated

variables to a set of uncorrelated ones. It also could be seen as a method which can

find the attributes along which most variations are observed. This latter point of view

provides us with a technique to best approximate the data with fewer dimensions.

So far, we have seen that the analysis of big data is a challenging task and a num-

ber of approaches have been developed to deal with this issue. However, we did not

discuss the data format yet. Intuitively, when we use a data simplification technique

(such as matrix decomposition techniques), we would like to have the simplified data

(i.e. approximated data) in the same form as the input data. For example, if the in-

put is a matrix of real numbers, we are interested in approximating such input with a

real-valued matrix, or if it is non-negative, we need the approximation to be also non-

negative. As many datasets are real-world observations, they usually contain non-

negative values. Consider the example of a document-term matrix where each line

represents a document and each column represents a term; each cell in such a matrix

represents the number of occurrences of the corresponding term in the corresponding

document. Clearly this data is a non-negative, integer-valued matrix. Another exam-

ple is the transaction-item matrix in which rows represent transactions (a ticket of a

customer in a supermarket for example) and columns represent items (the products

available in this supermarket). Then each cell shows if the corresponding items has

been bought in the corresponding customer visit or not. In this case also we have a

non-negative real-valued matrix as an input of our mining algorithm. Accordingly a

new trend of research has been started for matrices satisfying these conditions.

Non-negative Matrix factorization (NMF) [Lee and Seung, 1999a,Lee and Seung,

2001] is a very well known method which tries to tackle the aforementioned cases.

This technique gets a non-negative matrix as an input and provides two (and in some

formulations several) non-negative matrices whose product approximates the input.

This approach was first used to learn the parts of faces and semantic features [Lee

and Seung, 1999a] and then became quite popular in data mining, data analysis and
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many other communities. Two important points of the NMF method is that it induces

sparsity (which is always suitable for data analysis) and leads to a part-based decom-

position (which also facilitates the interpretation process). NMF has been successfully

applied to many applications such as object and face recognition, denoising, hashing

and texture classification [Soukup and Bajla, 2008, Mairal et al., 2010, Monga and

Mıhçak, 2007,Sandler and Lindenbaum, 2011].

In some applications, the input data is not a real-valued matrix, neither an integer-

valued one, but it is simply a binary matrix, i.e. it simply contains zeros and ones. For

example, one can simply consider a tweet-term matrix as a binary matrix. The main

reason is that tweets are very short texts and one can simply ignore the repetition of

terms in a tweet, which is very unlikely if we remove the stop words (very frequent

non-informative words). Another example is a frequent itemset mining dataset where,

as explained before, lines represent transactions and columns represent items (prod-

ucts). In this case, we also can consider the input as a binary matrix since the number

of products is not always of interest. What is interesting is the items purchased to-

gether frequently and not the quantity of each item. Protein-protein interactions and

discrete pattern mining are other examples where the input data is a binary matrix [Tu

et al., 2011,Shen et al., 2009].

Considering the above-mentioned issues, in this thesis, we study the use of data

simplification techniques, in particular Binary Matrix Decomposition (BMF), in order

to find representative itemsets in frequent itemset mining problem. Accordingly, in

Chapter 1, we study the state-of-the-art and examine different decomposition tech-

niques. We then formalize the BMF problem and, as our first contribution, find a link

between the BMF problem and the Unconstrained Binary Quadratic Program (UBQP)

problem [Mirisaee et al., 2015c]. Then in Chapter 2, we use this established link in

order to use the heuristics of UBQP to improve the BMF solutions. Afterwards, we

provide an efficient heuristic, as our second contribution, for BMF and show that it

performs efficiently with respect to other techniques [Mirisaee et al., 2015b,Mirisaee

et al., 2015c]. In Chapter 3, we discuss our third contribution and provide a theo-

retical link between BMF and frequent itemset mining problem. We illustrate that,

using this link, one can find very few, high-quality representative itemsets [Mirisaee

et al., 2014]. Finally, in Chapter 4, we try to find representative objects (instances)

from large, high-dimensional data using different techniques and compare the results

with the state-of-the-art methods. There, as our fourth contribution, we show that the

proposed technique can be considered as an alternative, complementary method to

4



the existing ones [Mirisaee et al., 2015a].
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I BINARY MATRIX FACTORIZATION FOR DATA

MINING PURPOSES
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1 GENERAL CONSIDERATIONS ON BINARY

MATRIX FACTORIZATION

1.1 INTRODUCTION

Many datasets of interest for scientific or industrial applications are high dimensional

binary matrices. This high dimensionality negatively impacts the performance of tra-

ditional data analysis algorithms such as clustering or association rule mining. Ad-

ditionally, they could suffer from a wide range of overlap and noise which can make

some difficulties for the data mining tasks, such as expensive computations or large

amount of mostly redundant results. Although many feature selection methods could

be applied in order to reduce the data dimension, in most cases the correlation among

the features is quite complex and local [Zhang et al., 2007]. Accordingly, these ap-

proaches may not be efficient in many applications. In such cases, one can use matrix

factorization techniques.

Matrix factorization is a way to compress the data while preserving most of the

characteristic patterns found inside. Matrix decomposition is a technique to find latent

information, remove the noise and simplify the data. In general, matrix factorization

is the process of decomposing a matrix into two or more matrices, called factors, such

that the multiplication of these factors approximates the original matrix.

Over the past years, different matrix decomposition techniques have been suc-

cessfully used in many applications such as image processing and clustering [Lee and

Seung, 1999b,Zhang and Li, 2010,Zhang et al., 2005,Drineas et al., 2004]. Depend-

ing on the application one may use different decomposition techniques. For instance,

Singular Value Decomposition (SVD) [Golub and van Loan, 1996], which is probably

the most known method in this context, finds the singular values of a given matrix as

well as its right and left singular vectors. This technique has many applications such as

9
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image retrieval [Praks et al., 2003] and noise reduction [Sadasivan and Dutt, 1996].

The main idea in SVD is to map highly variable data points to a lower dimensional

space. In general, given a matrix X ∈ Rm×n, SVD is formulated as follows:

X= UΣVT

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and they contain eigenvectors

of XXT and XT X , respectively. Σ ∈ Rn×n is a diagonal matrix containing singular values

of X in descending order. Computing an SVD decomposition might be expensive as it

has a time complexity of O(min{mn2, m2n}) which is very time consuming for large

matrices [Holmes et al., 2007].

PCA, which is very similar to SVD, is considered as another popular method of

matrix decomposition [Borgne and Bontempi, 2007, Jolliffe, 2002]. In particular, it

is used to deal with datasets having a very large number of attributes among which

there exits a large number of correlated attributes. Consequently, it is regarded as

a proper method of dimension reduction. PCA first makes the input zero-centered,

then computes the eigenvectors of the covariance matrix of the attributes. Finally,

according to the desired number of attributes, it takes the eigenvectors corresponding

to the eigenvalues sorted in decreasing order. The time complexity of PCA depends

on the computation of eigenvalues and eigenvectors of the covariance matrix. Using

the Jacobi’s method described in [Golub and van Loan, 1996] the time complexity of

applying PCA on a matrix of size m× n is O(n3).

Non-negative Matrix Factorization (NMF) [Lee and Seung, 1999a,Lee and Seung,

2001] is another popular method in which the input as well as the decomposition fac-

tors need to be binary. Although the initial idea of NMF, which was named Positive Ma-

trix Factorization (PMF) at the time, has been proposed by Paatero et. al. in [Paatero

and Tapper, 1994a], Lee and Seung were the first to introduce what we know today

as NMF. They first used that to learn the parts of faces and semantic features [Lee

and Seung, 1999a]; however, other researchers have found many applications for

this technique, such as sound source separation [Virtanen, 2007], recommender sys-

tems [Koren et al., 2009a] and spectral data analysis [Pauca et al., 2006]. After the

original NMF method, some other approaches have been considered for update rules.

The projected gradient, studied in [Lin, 2007], is an example of such methods. The

10
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general formulation of the NMF problem is expressed as the following:

argmin
W,H

||X−W×H||2

subject to X,W,H≥ 0

Different methods have been proposed to solve the above problem. One approach,

called Alternative Least Squares (ALS), has been proposed in [Paatero and Tapper,

1994b] and consists of solving the following equations for H and W respectively:

WT WH=WT X

HHT WT = HXT

and then simply project all the negative values to zero. One very important advantage

of this approach is that zero elements are not locked (unlike the multiplicative update

which is explained shortly). A wide range of improvements have been made on ALS

algorithm such as [Langville et al., 2014] and [Paatero, 1999].

Another method to solve the NMF problem is introduced by Lee and Seung in [Lee

and Seung, 2001] and called multiplicative updates. This method starts from W1 ≥ 0,

H1 ≥ 0 (the superscripts denotes the iteration number), and then, iteratively, updates

them using the following rules until the stopping condition is satisfied:

Wk+1 =Wk (X(Hk)T )

(WkHk(Hk)T )
(1.1)

Hk+1 = Hk ((Wk+1)T X)

((Wk+1)T Wk+1Hk)
(1.2)

Multiplicative update approach is sensitive to initial values. Another disadvantage of

this algorithm is that zero elements are locked. In other terms, if an element of W or

H becomes zero in one iteration, it can never become positive again. Another problem

of this approach is that, sometimes, the denominators of Eq. (1.1) and Eq. (1.2) could

be zero. To handle that, some studies, such as [Piper et al., 2004], suggests to add a

small value to the denominators.

An alternative approach to solve the NMF problem is called alternating least squares

using projected gradient. This method tries to minimize the cost function using gra-

dient descend together with projection [Lin, 2005]. The projection is a necessary step

in this type of bound-constrained optimization. In this problem, we need to minimize

the cost function f (x) subject to ∀i, li ≤ x i ≤ ui, where f (x) : Rn → R is a contin-

uously differentiable function and l and u are lower and upper bounds, respectively.

11



CHAPTER 1. GENERAL CONSIDERATIONS ON BINARY MATRIX FACTORIZATION

Assuming that k is the iteration index, projected gradient approach for two consequent

solutions is defined as follows [Lin, 2005]:

x k+1 = P[x k −αk▽ f (x k)] (1.3)

where

P[x] =











x i if li < x i < ui

ui if x i ≥ ui

li if x i ≤ li

(1.4)

In projected gradient approach, it is necessary to ensure that we obtain sufficient de-

crease of the cost function in each iteration. In other words:

f (x k+1)− f (x k)≤ σ▽ f (x k)T (x k+1 − x k) (1.5)

where σ is a small positive value. As mentioned in [Lin, 2005], the condition (1.5) is

used in most projected gradient methods. Bertsekas in [Bertsekas, 1976] showed that

using αk > 0 satisfying (1.5) always exists, and every limit point of x k for k = 1, 2, ... is

a stationary point of f (x). Based on the alternative behavior of this approach (rotation

between fixing W and fixing H according to the terminology used in [Koren et al.,

2009b]), we can speed up the process using the matrix-based operations. However,

there is still one time consuming step which is searching a good step size αk in each

iteration [Lin, 2005].

So far we discussed many different decomposition techniques. However, in many

applications of data mining, the input matrix is represented as a binary matrix, i.e.

it represents, for each object, the presence or the absence of features. As mentioned

before, frequent itemset mining and tweet-term matrices are examples of such case. In

these cases, what is taken into account is the presence or absence of a given attribute in

an instance. These dataset could also be very large, millions of tweets is commonplace

for example. Accordingly, a new body of research has been dedicated to this subject:

Binary Matrix Factorization.

When the input matrix and the factors are both binary matrices, the operation is

called a Binary Matrix Factorization (BMF). The binary factors preserve the property

of the input data, as they are binary, and impose sparsity. BMF has been widely used in

many data mining tasks such as gene expression analysis [Zhang et al., 2007, Zhang

et al., 2010], digits reconstruction [Meedsa et al., 2006], document clustering [Li,

2005, Zhang et al., 2007] and frequent itemset mining [Mirisaee et al., 2014]. To

better understand the importance of the BMF process, consider the following example

12
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from frequent itemset mining domain where we are looking for rectangles of ones in

a given binary matrix:

Example 1.1

X=

















1 1 1 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 1 1

0 0 0 1 1 1 1 0 1 1

0 0 0 1 1 0 1 0 1 1

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

















As one can see, three main blocks of ones (shown in boldface) exist in such matrix

while one of them (the one in the middle) contains a hole; a zero value which could

be noise or a missing value (shown in red). However, for an analyst, this block of

one is still considered as one single pattern. For him/her the lonely one in the first

row (also shown in red) is noise or an unimportant value. Having this matrix, if we

try to find the patterns with a classical approach this block will be broken to several

patterns. An unsatisfying solution over the block of ones in the middle could look like

the following:

X=

















1 1 1 0 0 0 0 1 0 0

1 1 1 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 1 1

0 0 0 1 1 1 1 0 1 1

0 0 0 1 1 0 1 0 1 1

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

















As one can see, the "noisy" block is broken to two sub-blocks (shown in red and blue).

Now, we consider a BMF approach to analyze the patterns. Consider the following

results from a BMF decomposition:

13
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Example 1.2

W=

















1 0 0

1 0 1

1 0 1

0 1 1

0 1 1

0 1 0

0 1 0

















H=







1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 1 1







This gives X′ =W×H as an approximation of X:

X′ =

















1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 1 1

0 0 0 1 1 1 1 0 1 1

0 0 0 1 1 1 1 0 1 1

0 0 0 1 1 1 1 0 0 0

0 0 0 1 1 1 1 0 0 0

















which, first of all, flipped the zero on line 5 column 6 from zero to one and makes the

block of ones in the middle as a perfect pattern. Secondly, it could flip the one in row 1

column 8 (also shown in red in previous example) to zero which was an uninteresting

pattern. As this example shows, the BMF technique can be used in many cases to

retrieve important information from a dataset.

Given X ∈ {0, 1}M×N and K ∈ N, K <<min(M , N), the general problem of rank K

binary matrix factorization is of the following form:





















argmin
W,H

||X−W×H||p (p = 1 or p = 2)

subject to W ∈ {0, 1}M×K ,H ∈ {0, 1}K×N

(optional) W×H ∈ {0, 1}M×N

(1.6)

where ||.||p denotes either the L1-norm (p = 1) or the L2-norm (p = 2). The optional

constraint is here referred to as the binary reconstruction constraint.

Different methods have been proposed to solve (more precisely, to provide an ap-

proximation of the solution of) the above problem. For the L2-norm, efficient ap-

proaches usually solve a relaxed version of the problem, e.g. through non-negative
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Algorithm 1 Grid search for NMF

Input: X≥ 0, step size α

Output: Wbin, Hbin ∈ {0, 1}

1: Apply NMF on X to obtain W, H ≥ 0

2: ε=∞

3: minW = min
∑m

i=1

∑k

j=1
Wi j and maxW = max

∑m

i=1

∑k

j=1
Wi j

4: minH = min
∑k

i=1

∑n

j=1
Hi j and maxH = max

∑k

i=1

∑n

j=1
Wi j

5: W ′ =W, H ′ = H

6: while minW ≤ maxW do

7: while minH ≤ maxH do

8: IF W′
i j
< minW THEN W′

i j
= 0 ELSE W′

i j
= 1

9: IF H′
i j
< minH THEN H′

i j
= 0 ELSE H′

i j
= 1

10: IF ||X−W′ ×H′||< ε THEN update ε, Wbin and Hbin

11: minH = minH +α

12: W ′ =W, H ′ = H

13: end while

14: minW = minW +α

15: end while

16: return Wbin and Hbin

matrix factorization (NMF) or singular value decomposition (SVD), and then project

the solution onto the admissible domain. This can be done through a simple thresh-

olding or a grid search. The former is to simply project the values above a certain

threshold θ to one and the values below that to zero. The grid search, on the other

hand, tries different thresholds for each factor and returns the best result as the out-

put. Algorithm 1 illustrates the grid search process for NMF (SVD is treated in the

same way).

Alternatively, one can iteratively solve simpler problems with K = 1, and then

aggregate the solutions to obtain the solution to the original problem. This is typically

the approach adopted in the Proximus system [Koyuturk and Grama, 2003, Koyuturk

et al., 2005]. This method will be explained in detail in the next section.

In both NMF-based approaches and Proximus, the approximate solution is found

by iteratively fixing one matrix, W or H, and solving for the other. For the L1-norm,

the most efficient approaches, to the best of our knowledge, consider the problem as

a clustering problem and make use of a variant of the K-means algorithm to solve

15
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it [Jiang et al., 2014].

Previous studies have shown that computing a rank 1 (K = 1) approximation could

be reformulated as a 0-1 integer linear programming problem [Shen et al., 2009].

They exploit this reformulation to guarantee the computation of an optimal solution on

small matrices and, through relaxations, they provide approximations with a bounded

error rate on larger matrices.

In the following sections, we first review some related studies in the matrix de-

composition domain by first considering the standard methods (explained briefly in

this section) and then reviewing the variants as well as the methods dedicated to the

binary case. We also mention, very briefly, a totally different trend of decomposition,

called boolean matrix decomposition at the end of related work section. Next, we con-

sider a known problem called Unconstrained Binary Quadratic Programming (UBQP)

problem and establish a link between this problem and binary matrix factorization as

our first contribution [Mirisaee et al., 2015b, Mirisaee et al., 2015c]. Eventually the

last section provides some closing remarks on the materials covered in the chapter.

1.2 RELATED WORK

1.2.1 STANDARD METHODS

The optimization problem (1.6) can be seen as a non-negative matrix factorization

(NMF) [Lee and Seung, 1999a,Lee and Seung, 2001] problem with additional binary

constraints. Two main approaches have been followed along this line. The first one

(used in [Miettinen et al., 2008]) amounts to first solve a standard NMF problem and

then to project the solution onto the {0, 1}M×K × {0, 1}K×N sub-space. The projection

step amounts to setting to 1 all values of W (resp. H) above a threshold θw (resp.

θh) and to 0 all the other ones. θw and θh are either learned from the data (typically

using a grid search) or set to a predefined value, as 0.5. Learning the thresholds, even

though more costly, usually leads to better results [Miettinen et al., 2008]. The grid

search has been discussed previously and illustrated in Algorithm 1.

The second approach (used in [Zhang et al., 2007] and [Zhang et al., 2010] for

example) uses the regularization terms to integrate the binary constraints into the
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objective function being minimized in NMF, leading to:











argmin
W,H

||X−W×H||2

+λ1||W
(2) −W||2 +λ2||H

(2) −H||2

subject to W≥ 0,H≥ 0

(1.7)

where W
(2)

i j
= (Wi j)

2 (and similarly for H2). Hence, the second and third terms of the

objective function force the factors to be binary, as ||W(2) −W||F (resp. ||H(2) −H||F)

is null for binary matrices and strictly positive otherwise. However, this approach

does not in general yield binary factors; setting λ1 and λ2 to very high values may

result in binary factors, but at the expense of having a large reconstruction error. It

is nevertheless possible to couple this approach with the preceding one, as the factors

obtained prior to thresholding will be closer to binary values than the ones obtained

through standard NMF. The same approach can be used for SVD, dropping in this case

the positive constraints in the optimization problem (as done in [Miettinen, 2008a]

for example, for a similar problem on boolean, and not binary, matrix decomposition).

A problem similar to (1.6) is formulated in [Li, 2005]. In this latter work, however,

a third, non-binary matrix is introduced making the problem addressed different from

the one we are interested in. This said, the approach developed in [Li, 2005] bears

strong similarities with the ones used for solving Problem (1.6). The formulation

provided in this study, to cluster binary data, is the following:

W= AXBT + E (1.8)

where A and B represent the membership values for clusters and X denotes the cluster

representation. E is the error component this formulation. In this study, also, the

authors provide an iterative approach to solve the clustering problem: given X and B,

we can optimize A; given X and A we can optimize B and finally given A and B we can

simply compute X. In [Li, 2005], some variations of this general model, such as one

side K-means and iterative feature and data clustering, has been introduced.

1.2.2 PROXIMUS

Another technique to solve (1.6) is provided in [Koyuturk et al., 2005, Koyuturk and

Grama, 2003] and called Proximus. In Proximus, which satisfies the binary recon-

struction constraint as well, one finds the latent factors one at the time. Given an

input matrix Am×n, the idea is to start with a column vector xm×1 and find the best
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corresponding row vector yn×1. Vector x could be selected in different way: it could

be a random binary vector, could be a random column of A, a combination of several

columns of A, etc. Given x , which is called the presence vector, we can optimally find

the best y , which is called pattern vector. More formally, we need to minimize the

following quantity:

||A− x y T ||2 = ||A||2 − 2x T Ay + ||x ||2||y||2 (1.9)

where ||.||2 denotes the Frobenius norm. This leads to maximizing 2x T Ay−||x ||2||y ||2.

Fixing y , it is clear that x is optimized as the following:

x(i) =

(

1 i f 2Ay ≥ ||y||2

0 otherwise

The formulation which optimizes y (when x is fixed) is similar. The intuition is simple:

having y fixed, we simply compare y T with rows of A. If at least half of the ones in

y is covered with a given row, we put a one in the corresponding cell of x , otherwise

we set it to zero. Once we optimized x , we can fix it and optimize y . This iterative

optimization is continued until x and y are stable. Consider the following example:

Example 1.3

A=









0 1 0 1 0

0 1 0 0 0

1 0 0 0 1

0 0 0 0 1









y T =
�

1 0 0 0 1
�

To construct x, we need to compare y T to all rows of A to check if they can cover at least

one of the ones in y T (at leas half of the ones should be covered; as there are two ones,

we need to cover at leas one of them), i.e. the first and the last cell (coverage means that

the first and the last cell of the row of A is also one; for instance, denoting the first row

of A as a1, what we check is that if a1 y ≥ ||y ||2/2 or not). The third and the forth row

of A satisfy this condition. As a result, the corresponding x for such y is:

x T =









0

0

1

1









After obtaining a stable x and y , we simply remove, from A, the columns which have

a value of one in the presence vector y . This ensures that the reconstructed matrix

18



1.2. RELATED WORK

is binary since the items in y in this step, will not be available in the next one (or-

thogonality of the pattern vectors). This also makes the algorithm run faster as we go

forward since there are less and less columns in A and thus the computations can be

done faster.

One main problem in Proximus is that, like all other similar approaches, it is sensi-

tive to initialization. For instance, suppose that in the above-mentioned example, we

start from y T = (1 1 1 1 1). This leads to a zero vector for x since there is no row

in A that can cover at least 3 ones of y T (at least half of the ones should be covered;

as we have 5 ones, at least 3 of them should be covered). Then, starting with a zero

vector as x will result in the same y . Since both vectors are stable, the algorithm will

return them as a solution with the error value of 6 as 6 cells in A are approximated

as zero while they were actually one. However if we started with a y as shown in the

example, we would have ended in an approximation with an error value of 4. One

way to tackle such problem is to run the algorithm several times with different ini-

tialization and take the best result as the solution. This is the strategy adapted in our

experiments in the following chapters.

1.2.3 CBMF AND UBMF

All the methods explained so far solve the L2 version of BMF. Another recent approach

to solve (1.6) is the one introduced in [Jiang et al., 2014] which considers the L1 case.

This study addresses the BMF problem using a K−means approach. This technique,

which is called CBMF (Constrained Binary Matrix Factorization), ensures the binary

reconstruction by imposing the orthogonality. Fixing W, consider the following sub-

problem of optimizing j th column of H, denoted as h, with respect to j th column of X,

denoted as x:

min

n∑

i=1

||x i j −Whi j||1

s.t. ||h||1 ≤ 1 (orthogonality constraint)

where the orthogonality constraint expresses that the column vector h can contain at

most one non-zero element. The optimal solution to this problem is simply obtained

by comparing the distance between vector x and all columns of W. If x is closer

to a column of W, say wt , than to the null vector, we simply set ht j to 1. If x is

closer to null vector than to the columns of W, then the optimal solution is also to
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have a null vector as h. Based on that, the authors in [Jiang et al., 2014] establish

a link between CBMF and K−means clustering by showing that fixing one factor and

optimizing the other has the same optimal solution as K−means. Accordingly, the

method proposed in [Jiang et al., 2014] uses a clustering technique: starting from K

initial cluster representatives (which constructs the initial W) from column vectors of

X, we assign each column vector of X to the class of the closest representative. Based on

the columns assigned to each cluster, we build the first H. New binary representatives

(corresponding to a 0 − 1 average) are then computed, and the process is repeated

until the clusters do not evolve. A "zero" cluster, the representative of which does not

change and is set to the null vector, is used to capture column vectors of X that are best

approximated by the null vector in the reconstructed matrix. The final representatives

thus obtained constitute the matrix W, the matrix H being obtained through a simple

operation. The following example illustrates this method.

Example 1.4 Consider the following matrix X and suppose that the initial centers (which

construct the initial W, denoted as W1) are the first and the second column of X, shown

in red and blue respectively:

X=















1 0 1 0

1 1 0 0

1 0 0 0

0 1 1 1

0 0 0 1

0 0 1 1















W1 =















1 0

1 1

1 0

0 1

0 0

0 0















Then the H1 obtained by the CBMF approach is:

H1 =

 

1 0 0 0

0 1 1 1

!

As the first column of X is closer to the first center (they are identical), we assign it to the

first cluster (H11 = 1 and consequently H21 = 0 as it is a hard clustering, i.e. each column

is assigned to exactly one center). All other columns are closer to the second center (the

second column of W) and thus we simply set the other values of H. In the next iteration,

the first center remains unchanged (the first column of W shown in red) as it has only one

column assigned to it (no averaging needed) while the second center (the second column

of W shown in blue) does not: the new center is a 0−1 averaging of the last three columns

20



1.2. RELATED WORK

of X. Accordingly, the new W, denoted as W2 will be:

W2 =















1 avg01(0, 1, 0)

1 avg01(1, 0, 0)

1 avg01(0, 0, 0)

0 avg01(1, 1, 1)

0 avg01(0, 0, 1)

0 avg01(0, 1, 1)















=















1 0

1 0

1 0

0 1

0 0

0 1















where avg01 denotes the 0− 1 averaging function.

A deterministic two-approximation of the CBMF problem is provided based on

the technique mentioned above. It consists of starting with all possible k subsets of

columns of X. This method is extremely time consuming as there exists
�

n

k

�

= n!
k!(n−k)!

different initialization which are followed by an iterative clustering procedure. Ac-

cordingly, a faster approach is not to search exhaustively all possibilities, but to start

with a good one. This is where the authors use the K−means++ initialization [Arthur

and Vassilvitskii, 2007a] to obtain the starting centers. K-means++ tries to find the

initial centers in different areas of the space in order to cover all the search space (a

random initialization, for instance, is strongly affected by the distribution of the data

and may select many initial centers on the same region of the space).

A slight modification of this approach is also used in [Jiang et al., 2014], referred to

as UBMF, to solve the problem without the binary reconstruction constraint. Using the

results from [Hasewaga et al., 1993], it can be shown that CBMF yields a 4(2+ log K)

approximation of the optimal solution.

Because of its reliance on K-means, CBMF can a priori be improved through local

search procedures designed for K-means. Kanungo et al. [Kanungo et al., 2002] in-

troduce such a local search, referred to here as the swap procedure, and that consists,

when applied to our problem, in randomly selecting one of the final representatives

of the current CBMF solution and replace it with one random column vector of X (the

column vector of X becomes a new representative). The K-means algorithm is then

applied to the new set of representatives; if the solution obtained is better, it becomes

the new current solution. This process is repeated a certain number of times or until

the time budget has been exhausted.
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1.2.4 BOOLEAN DECOMPOSITION

A totally different decomposition technique is called Boolean Matrix Factorization [Mi-

ettinen et al., 2008,Miettinen, 2008a,Miettinen, 2008b]. In this technique the multi-

plication between the factors is no longer the ordinary multiplication but is the boolean

one where 1+ 1 = 1. Consider the following example where ◦ denotes the boolean

matrix multiplication:

Example 1.5

x =
�

1 1 0
�

y =







1

1

1







x ◦ y = 1 ∗ 1+ 1 ∗ 1+ 1 ∗ 0= 1

as 1+ 1 = 1, while and ordinary matrix decomposition, denoted as ×, results in a value

of 2:

x × y = 1 ∗ 1+ 1 ∗ 1+ 1 ∗ 0= 2

The problem of boolean decomposition is expressed as:

min|A− B ◦C|

s.t A,B,C ∈ {0, 1}

where ◦ represents boolean multiplication. As SVD provides the otpimal rank-k repre-

sentation of matrices with respect to the Frobenius norm, in [Miettinen et al., 2008],

the authors introduce the notion of boolean rank which is computed when the operator

is boolean.

In [Miettinen, 2008b], two boolean decomposition problems, namely BCX and

BCUR, are considered which minimize |A−C◦X| and |A−C◦U◦R| respectively. Using

Positive-Negative Partial Set Cover problem [Miettinen, 2008c], it is shown that these

problems are NP-hard. Then a cover function, which is simply a trade-off function

between the 1s covered and the 0s covered, is provided in order to find a solution to

those problems.

The boolean decomposition, though very interesting, is not studied in our research

as it has a completely different interpretation and theories. We here focus on the

ordinary decomposition and the theorems and examples provided later will not be

necessarily valid for the boolean decomposition case.
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1.3 RELATION TO UBQP

So far, we have seen similar problems and the state-of-the-art in binary matrix decom-

position domain. In general, one way to solve a new problem is to find a relation or a

link to other known problems and use the algorithms designed for the known problem

in order to solve the new problem. In this section, we follow this line of thought and

establish a link between the BMF problem and Unconstrained Binary Quadratic Pro-

gramming (UBQP) problem as our first contribution [Mirisaee et al., 2015c, Mirisaee

et al., 2015b]. This allows us to use the UBQP heuristics [Beasley, 1998] in order to

tackle the BMF problem in the following chapter.

UBQP is a quadratic maximization problem with binary variables. The general

formulation of this problem is to maximize the following:

f (x) = x TQx =

n∑

i=1

n∑

j=1

qi j x i x j subject to x i ∈ {0, 1}∀i = 1, ..., n (1.10)

This problem is NP-hard and has many applications such as financial analysis problems

and machine scheduling [Merz and Freisleben, 2002]. According to its wide range of

applications, the solutions to UBQP have always been of interest. Some exact methods

have been proposed to solve (1.10) such as [Helmberg and Rendl, 1998,Billionnet and

Sutter, 1994]; however, according to the computational complexity, researchers tried

to find heuristics for that. Tabu search and simulated annealing are some examples of

these heuristics [Beasley, 1998,Katayama et al., 2000].

As mentioned before, establishing a link between the BMF problem and the UBQP

problem allows us to use the heuristics developed for UBQP in order to solve the BMF

problem or improve its solutions. In the following, we show that such relation exists

when the L2 norm is concerned and then, in the next chapter, we use it as a technique

to improve the solutions of L2-BMF and compare it to the one proposed therein.

As explained in the previous sections, standard methods for L2-BMF fix one matrix,

W or H, and solve for the other. The quantity to be minimized in L2-BMF can be

rewritten as:

||X−WH||2
2
=

M∑

i=1

N∑

j=1

(x i j −
K∑

k=1

wikhk j)
2

with:

(x i j −
K∑

k=1

wikhk j)
2 = x2

i j
+ (

K∑

k=1

wikhk j)
2 − 2x i j

K∑

k=1

wikhk j
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Fixing e.g. H and solving for W thus amounts to solve the following minimization

problem, ∀i, 1≤ i ≤ M (i.e. for all rows of W):

argminwi.

N∑

j=1

(x2
i j
+ (

K∑

k=1

wikhk j)
2 − 2x i j

K∑

k=1

wikhk j) (1.11)

where wi. is the i th row vector of W. The above minimization problem can be rewritten

as

argminwi.

N∑

j=1

(

K∑

k=1

wikhk j)
2 +

K∑

k=1

wik

N∑

j=1

(−2x i jhk j) (1.12)

since x i j is not subject to any change and does not play any role in the minimization

problem (it is only a constant). The first term in (1.12),
∑N

j=1
(
∑K

k=1
wikhk j)

2, can be

rewritten as:

N∑

j=1

(

K∑

k=1

wikhk j)
2 =

K∑

k=1

wik

N∑

j=1

hk j +

K∑

k=1

K∑

k′=k+1

wikwik′2

N∑

j=1

hk jhk′ j (1.13)

Now if we put (1.13) in (1.12), we need to minimize the following quantity with

respect to wi.:

K∑

k=1

wik

N∑

j=1

hk j

︸ ︷︷ ︸

α

+

K∑

k=1

K∑

k′=k+1

wikwik′2

N∑

j=1

hk jhk′ j +

K∑

k=1

wik

N∑

j=1

(−2x i jhk j)

︸ ︷︷ ︸

β

(1.14)

Now we factorize
∑K

k=1
wik in α and β :

K∑

k=1

wik(

N∑

j=1

hk j −
N∑

j=1

(2x i jhk j)) +

K∑

k=1

K∑

k′=k+1

wikwik′2

N∑

j=1

hk jhk′ j (1.15)

which is equal to

K∑

k=1

wik(

N∑

j=1

hk j(1− 2x i j)) +

K∑

k=1

K∑

k′=k+1

wikwik′2

N∑

j=1

hk jhk′ j (1.16)

Now, let us consider the symmetric, K × K matrix Q:

qkk =

N∑

j=1

hk j(1− 2x i j), qkk′ =

N∑

j=1

hk jhk′ j (k 6= k′)

The quantity minimized in problem (1.12) can be rewritten with Q as follows:

K∑

k=1

w2
ik

qkk +

K∑

k=1

K∑

k′=k+1

2wikwik′qkk′ =wi.QwT
i.

and thus problem (1.12) can be reformulated as:

argminwi.
wi.QwT

i.
(1.17)
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which corresponds to a UBQP problem [Beasley, 1998, Merz and Freisleben, 2002].

One should note that the placement of the transposed vector is not important in this

problem and it could be either before the matrix of weights (Q) or after that. Applying

the same development on H when W is fixed leads to the following property.

Property 1.1 Iteratively solving the L2-BMF problem by fixing either W or H and solving

for the other is equivalent to iteratively solving UBQP problems of the form:

argminv vT Qv (1.18)

with:

qkk =

N∑

j=1

hk j(1− 2x i j) OR

M∑

i=1

wik(1− 2x i j)

qkk′ =

N∑

j=1

hk jhk′ j (k 6= k′) OR

M∑

i=1

wikwik′ (k 6= k′)

Note that when k = 1, the optimal W or H, when the other one is fixed, is directly

obtained by setting the i th element of W (or H) to 1 if more than half of the elements

with a 1 in H (or W) have also a 1 in the i th row (or column) of X, and to 0 other-

wise. This corresponds to the alternating strategy used in Proximus. When k > 1,

this not longer holds and approximate solutions are usually obtained. Resorting to

UBQP solvers in this case does not however represent an interesting alternative, as

the solutions provided by e.g. NMF in the continuous space are in general faster to

obtain and the projection on the binary domain can be done efficiently as mentioned

in previous sections. Nevertheless, it might still be interesting to improve the NMF or

Proximus solutions through local search algorithms designed for UBQP. This issue will

be studied deeply in the following chapter.

One should note that, based on the developments provided so far, we can iteratively

solve the BMF problem. The idea is to consider one row of W, say wi., at the time.

Using the Property 1.1, one can simply compute the matrix of weights Q. Having

matrix Q, we can directly apply the heuristics of UBQP to the BMF problem. In the

next chapter, we will see how matrix Q needs to be updated and, using that, we will

have a heuristic with a complexity of O(KN) for updating one row of W. With the

same reasoning, one can see updating a column of H has the same complexity. We

will see the complexity analysis in detail in the next chapter.

In such updating procedure, once we are done with all rows of W, we redo the

process with columns of H and optimize them with respect to columns of X. As before,

the computation of Q is expensive for the first column and, only after that, it can be
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updated more quickly. One should note that for the second round of optimizing W,

matrix Q should be again computed completely for the very first row as H has been

changed compared to the first iteration. More detailed analysis of the complexities as

well as a more efficient technique for updating W and H will be provided in the next

chapter.

1.4 CLOSING REMARKS

In this chapter, we first studied the importance of matrix factorization techniques in

data analysis and understanding. As mentioned, these techniques can simplify the

data and find latent factors or patterns. We then considered a particular decomposition

method which is of interest in many applications, namely binary matrix factorization

(BMF), in which both the input and the decomposition factors are binary, and the

reconstruction could be optionally binary as well. Finally, it has been shown, as our

first contribution [Mirisaee et al., 2015c,Mirisaee et al., 2015b], that the BMF problem

can be reformulated as a UBQP problem. This reformulation will allow us to use the

heuristics of UBQP in BMF cases. In the following chapter, we see how we can use this

reformulation in order to establish a heuristic local search for BMF. We then provide a

more efficient local search and show (theoretically and experimentally) its efficiency

with respect to the UBQP approach and the standard approach.
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2 HEURISTIC LOCAL SEARCH FOR BMF

2.1 INTRODUCTION

Local search algorithms are heuristics aimed at improving a current solution by search-

ing in its neighborhood for a better solution (hence the name "local"). For instance in

the traveling salesman problem (TSP) problem, a 2-change neighborhood is a set of

tours that are different in only two edges [Johnson et al., 1988]. In other words, a

local search is a search in which, given an independently obtained solution, we try to

find a better solution repeatedly in a "close" neighborhood.

In the context of BMF, the neighborhood of size p of a given W (or H) is defined by

the set of matrices that can be obtained from W (or H) by flipping at most p cells (here,

flipping means changing a 1 to a 0 and vice versa). The following example illustrates

this point.

Example 2.1 Consider the following toy matrices of CBMF (see Section 1.2.3) decompo-

sition of the form X=W×H+ ε where ||ε||1 = 5.















1 0 1 1

1 0 0 1

0 1 1 1

1 1 0 0

1 0 0 1

0 1 1 1















=















0 1

0 1

1 0

0 0

0 1

1 0















×

 

0 1 1 0

1 0 0 1

!

+















0 0 1 0

0 0 0 0

0 0 0 1

1 1 0 0

0 0 0 0

0 0 0 1















In this example, we can simply look at a neighborhood of size one of H, i.e. flipping only

one bit of H. Doing a simple bit flip operation, one can see that by flipping (from 0 to 1)

the cell shown in red in H, we obtain the following solution of the form X=W×H′ + ε′
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where ||ε′||1 = 3 which is an improvement over the initial decomposition.














1 0 1 1

1 0 0 1

0 1 1 1

1 1 0 0

1 0 0 1

0 1 1 1















=















0 1

0 1

1 0

0 0

0 1

1 0















×

 

0 1 1 1

1 0 0 1

!

+















0 0 1 0

0 0 0 0

0 0 0 0

1 1 0 0

0 0 0 0

0 0 0 0















According to this example, we can observe the importance of a local search. Obvi-

ously, the main question is "which bit should we flip?". One naive approach is to simply

flip every single bit and check if the new solution is better or not, which is clearly

an expensive solution considering the number of bits to check in each round. One

may also think of flipping the first bit which brings improvement to the solution and

drop the rest of the checking process. Computational-wise, what is difficult to do is

the multiplication required in order to see if flipping the bit under consideration can

improve the solution or not. Since this approach is iterative and needs to be done for

each bit until stabilization, it could be very time consuming. Accordingly, different

studies have been dedicated to find fast local heuristics for this problem.

The UBQP problem and its relation to BMF have been discussed in the previous

chapter. As mentioned there, the UBQP is formulated as a maximization problem,

where the function to maximize is:

f (x) = x TQx =

n∑

i=1

n∑

j=1

qi j x i x j subject to x i ∈ {0, 1}∀i = 1, ..., n

Having a link between the UBQP problem and BMF allows us to use the heuristics

developed for UBQP in the BMF domain. One of these heuristics has been studied

in [Beasley, 1998]. In that paper, according to the hardness of UBQP, Beasley proposes

two heuristics: one based on tabu search and the other based on simulated-annealing.

By introducing a new variable, the UBQP problem has been reformulated as binary lin-

ear program where the convex hull of the solution of constraints is known as a boolean

quadratic polytope [Mehrotra, 1997]. One can simply relax this binary programming

to find the bounds on the optimal solution of the UBQP problem. The idea of the

tabu search proposed in [Beasley, 1998] is to start from a zero vector x , and then to

examine all non-tabu moves. In the simulated-annealing method, Beasley proposes

to set the initial temperature to the problem size (size of x) and the parameter α to

0.995. The computational results show that these methods can solve fairly large sizes

of UBQP problem in a reasonable amount of time.
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In [Merz and Freisleben, 2002] a local search heuristics, called p-opt local search for

UBQP is presented. The p-opt local search algorithm proposed in [Merz and Freisleben,

2002] looks for the solution in the neighborhood of size p that maximizes the gain with

respect to the current solution and adopts this solution if the gain is positive. The p-opt

local search, which parallels the tabu search of [Glover F., 1998] discussed in [Beasley,

1998] and based on [Kernighan and Lin, 1970] and [Lin and Kernighan, 1973], is

similar for the neighborhood of size p, except that, for computational reasons, one

does not look for the solution that maximizes the gain but only explores a part of the

neighborhood looking for a solution that improves the current one. This exploration

corresponds to a recursive application of the 1-opt solution.

p-opt local search algorithms are of course only interesting if the gains can be

computed efficiently; the complexity of the p-opt local search algorithm proposed in

[Merz and Freisleben, 2002], when applied to the i th row of W in our case (problem

1.17) is O(K2) once the matrix Q, which depends on i, has been constructed. One

can recall, from the previous chapter, that matrix Q in case of BMF is computed is the

following

qkk =

N∑

j=1

hk j(1− 2x i j) OR

M∑

i=1

wik(1− 2x i j)

qkk′ =

N∑

j=1

hk jhk′ j (k 6= k′) OR

M∑

i=1

wikwik′ (k 6= k′)

In each round of updating W, matrix Q is constructed for the first row with a cost of

O(K2N) as the diagonal of Q can be computed via K dot products of vectors of size N

and the upper triangle of Q has
K(K−1)

2
elements, each of which requiring a dot product

with vectors of size N . Note that Q is symmetric and we only need to compute the

upper (or the lower) triangle. Once Q is constructed for the first row of W, it can then

be reused for other rows with a simple update on the diagonal which can be done in

O(KN), as explained before. Accordingly, computing Q for all rows of W has the time

complexity of O(KMN) as it is one time K2N and M − 1 times KN . As the heuristic

of [Merz and Freisleben, 2002] has a time complexity of O(K2) for each row of W,

for M rows we have O(MK2) for the heuristic phase. As a result, the total complexity

for updating W in one round is O(MKN +MK2) and since N ≥ K the complexity will

be O(MKN). Dividing this quantity by the number of rows, M , we will have O(KN)

as the complexity of updating one row of W using the 1-opt discussed in [Merz and

Freisleben, 2002]. We denote this procedure as 1-opt-UBQP. One can simply see that

updating a column of H has exactly the same complexity.
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As mentioned in the previous chapter, BMF has been used in many applications

recently. Consequently, in this chapter, we focus on heuristic local search for BMF.

As discussed so far, there are different BMF approaches such as (projected) NMF and

(projected) SVD, CBMF, UBMF and Proximus. In the following section, as our second

contribution [Mirisaee et al., 2015b, Mirisaee et al., 2015c], we provide an efficient

heuristic which, given a solution, finds a better solution in a close neighborhood. We

will then show that this technique is faster than the state-of-the-art methods, and the

improvement is statistically significant in many cases.

The local search introduced here is known as p-opt and it consists of, when applied

to our problem, finding new solutions by flipping p bits. Finding the best p bits to

flip can be done in a greedy or an exhaustive way. Here, we focus on 1-opt, in which

only one bit is flipped at a time. However, the procedure to apply the p-opt is simply

a repeated use of 1-opt.

2.2 p-opt LOCAL SEARCH FOR BMF

We describe here a p-opt local search procedure dedicated to rank K binary matrix

factorization. As mentioned before, rows of W (or columns of H) can be optimized

independently of each other. We show here how to optimize, in a neighborhood of size

1, a row of W (the reasoning is the same for columns of H). For each row wi. of W, we

first compute a partition of columns of H. The main rational of such partitioning is to

compute, for each partition, the gains separately. Furthermore, using this partitioning,

one is able to replace many vector multiplications with straightforward summations.

As mentioned before, the computational cost of the 1-opt procedures are increased

when multiplications are involved. Accordingly, if one can avoid (at least a part of if

not all) multiplications, s/he can obtain a faster 1-opt procedure. In the following, we

first show how this partitioning is done. We then provide examples to illustrate how

this technique works on real matrices and how it can accelerate the process.

Definition 2.1 For a given row wi. (1≤ i ≤ M) of W and a given H, we define three sets

of column vectors of H:

(i) W 0
i
= {h.l | 1≤ l ≤ N , x il = 0}

(ii) W⊥
i
= {h.l | 1≤ l ≤ N , x il = 1, <wi.,h.l >= 0}

(iii) W
6⊥
i
= {h.l | 1≤ l ≤ N , x il = 1, <wi.,h.l > 6= 0}
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where h.l is the binary vector corresponding to the l th column of H, x il the cell of X at row

i and column l;< ., .> denotes the dot product. We have of course: |W 0
i
|+|W⊥

i
|+|W 6⊥

i
|=

N.

The following example illustrates the three sets defined above.

Example 2.2

Let xi. =
�

1 1 0 0 1 1
�

, wi. =
�

0 0 1
�

and H=







0 1 1 1 1 0

1 1 1 0 0 0

1 0 1 1 0 1







Then:

W 0
i
= {h.3,h.4}=







1 1

1 0

1 1







W⊥
i
= {h.2,h.5}=







1 1

1 0

0 0







W
6⊥
i
= {h.1,h.6}=







0 0

1 0

1 1







Given a row of W (resp. a column of H), the idea is to exploit the characteristics

and the distribution of the corresponding row (resp. column) of X and H (resp. W) in

order to compute the gain we obtain by flipping a bit. What we need now, in order to

define an efficient p-opt local search, is a fast way to compute the gain when flipping

the j th bit of wi. from 0 to 1 and vice versa. Such a gain (which can be positive or

negative) is defined as

∆E(i, j) = E(i, j)new − E(i, j)old = ||xi. −w
j

i.H||p − ||xi. −wi. ×H||p

where w
j

i. is obtained from wi. by flipping the j th bit (either from 0 to 1 or from 1 to

0). Theorem 2.1 provides simple expressions for ∆E(i, j) for both L1 and L2 norms;

expressions that can be computed efficiently (with respect to other methods), as it will

be shown in Theorem 2.2.
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Theorem 2.1 Let ∆E(i, j; 0 → 1, L2) (resp. ∆E(i, j; 1 → 0, L2)) be the gain obtained

when flipping the j th bit of wi. from 0 to 1 (resp. from 1 to 0), measured by the L2-norm.

Then:

∆E(i, j; 0→ 1, L2) =
∑

h∈W 0
i

(1+2<wi.,h>)h j+
∑

h∈W
6⊥
i

(2<wi.,h> −1)h j−
∑

h∈W⊥
i

h j (2.1)

∆E(i, j; 1→ 0, L2) =
∑

h∈W 0
i

(1−2<wi.,h>)h j+
∑

h∈W
6⊥
i

<wi.,h>h j=1

1+
∑

h∈W
6⊥
i

<wi.,h>h j>1

3−2<wi.,h>

(2.2)

Similarly for the L1-norm we have:

∆E(i, j; 0→ 1, L1) =
∑

h∈W 0
i

h j +
∑

h∈W
6⊥
i

h j −
∑

h∈W⊥
i

h j (2.3)

∆E(i, j; 1→ 0, L1) =
∑

h∈W
6⊥
i

<wi.,h>h j=1

1−
∑

h∈W 0
i

h j −
∑

h∈W
6⊥
i

<wi.,h>h j>1

1 (2.4)

Proof For each of these formulations, we consider the error change with respect to

the sets defined in Def. 2.1.

∆E(i, j; 0→ 1, L2)

• First consider the W 0
i

set: before the flip, the error E1
0
, of wi. wrt W 0

i
is:

E1
0
=
∑

h∈W 0
i

<wi.,h>
2

After the flip, this error becomes

E2
0
=
∑

h∈W 0
i

(<wi.,h> +h j)
2

as the elements of W 0
i

correspond to the cells in X having zero values (Def. 2.1).

Accordingly, flipping the j th cell of wi from 0 to 1 will potentially increase the
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error depending on the value of h j; thus, the difference in errors amounts to:

E2
0
− E1

0
=
∑

h∈W 0
i

(<wi.,h> +h j)
2 −

∑

h∈W 0
i

<wi.,h>
2 (2.5)

=
∑

h∈W 0
i

�

(<wi.,h> +h j)
2− <wi.,h>

2
�

(2.6)

=
∑

h∈W 0
i

<wi.,h>
2 +2<wi.,h> h j + h2

j
− <wi.,h>

2 (2.7)

=
∑

h∈W 0
i

2<wi.,h> h j + h2
j

(2.8)

=
∑

h∈W 0
i

(1+ 2<wi.,h>)h j (2.9)

Note that in (2.8) we can replace h2
j

with h j as matrix H is binary.

• For W
6⊥
i

case, we denote the error before the flip as E1
6⊥ and the error after the

flip as E2
6⊥: before the flip we have

E1
6⊥ =

∑

h∈W
6⊥
i

(<wi.,h> −1)2

as we need to produce 1 in this case (see Def. 2.1) and thus the initial error for

the columns in W
6⊥
i

amounts to (< wi.,h > −1)2 since we are considering the

L2-norm. After the flip, we are potentially introducing more error since flipping

a 0 to a 1 will increase the dot product if h j is also equal to 1 (if it is equal to

zero, no additional error is introduced). Accordingly, the new error becomes

E2
6⊥ =

∑

h∈W
6⊥
i

(<wi.,h> −1+ h j)
2

The difference amounts to:

E2
6⊥ − E1

6⊥ =
∑

h∈W
6⊥
i

(<wi.,h> −1+ h j)
2 −

∑

h∈W
6⊥
i

(<wi.,h> −1)2 (2.10)

=
∑

h∈W
6⊥
i

�

(<wi.,h> −1+ h j)
2 − (<wi.,h> −1)2

�

(2.11)

=
∑

h∈W
6⊥
i

(2<wi.,h> −1)h j (2.12)

• Finally, we consider W⊥
i

: the error, before the flip, is the cardinality of the set

(since the dot product is 0 whereas it should be 1). As a result, the flip can only
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reduce this error and it does so for all the vectors in W⊥
i

whose j th element is 1.

Accordingly, following our notations, the difference in error is thus

E2
⊥ − E1

⊥ = −
∑

h∈W
6⊥
i

h j (2.13)

Summing (2.9), (2.12) and (2.13) yields Equation 2.1.

∆E(i, j; 1→ 0, L2)

• As before, the error with respect to W 0
i

is

E1
0
=
∑

h∈W 0
i

<wi.,h>
2

before the flip. After the flip, since we are changing a 1 to a 0, we are poten-

tially decreasing the error. The reason is that columns in W 0
i

need to produce

zeros when multiplied by wi. while the dot product may produce other values.

As a result, when the j th bit of wi. flipped to zero, it could decrease the error

depending on the value of h j; accordingly, the new error is simply

E2
0
=
∑

h∈W 0
i

(<wi.,h> −h j)
2

and the difference amounts to:

E2
0
− E1

0
=
∑

h∈W 0
i

(<wi.,h> −h j)
2 −

∑

h∈W 0
i

<wi.,h>
2 (2.14)

=
∑

h∈W 0
i

�

(<wi.,h> −h j)
2− <wi.,h>

2
�

(2.15)

=
∑

h∈W 0
i

<wi.,h>
2 −2<wi.,h> h j + h2

j
− <wi.,h>

2 (2.16)

=
∑

h∈W 0
i

−2<wi.,h> h j + h2
j

(2.17)

=
∑

h∈W 0
i

(1− 2<wi.,h>)h j (2.18)

Here, we can again replace h2
j

with h j in (2.17) as matrix H is binary.

• For a given h ∈ W
6⊥
i

, two situations arise: case (i) is when, for a given column

h ∈W
6⊥
i

we have <wi,h> h j = 1, which means the dot product and the j th cell

of h are both 1. In this case, if we flip the j th cell of wi. to 1, we have added one
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error per column. So we have the following quantity as error increase (which is

simply the quantity of the set):

∑

h∈W
6⊥
i

<wi.,h>h j=1

1 (2.19)

Case (ii) is when, for a given column h ∈W
6⊥
i

, we have (<wi,h>)h j > 1, which

means that h j = 1 and <wi,h> is greater than 1. In such case, the initial error

we are making is

E1
6⊥ =

∑

h∈W
6⊥
i

<wi.,h>h j>1

(<wi.,h> −1)2

and by flipping the j th bit results in adding one extra error:

E2
6⊥ =

∑

h∈W
6⊥
i

<wi.,h>h j>1

(<wi.,h> −2)2

Accordingly, we have

E2
6⊥ − E1

6⊥ =
∑

h∈W
6⊥
i

<wi.,h>h j>1

(<wi.,h> −2)2 −
∑

h∈W
6⊥
i

<wi.,h>h j>1

(<wi.,h> −1)2 (2.20)

=
∑

h∈W
6⊥
i

<wi.,h>h j>1

(<wi.,h> −2)2 − (<wi.,h> −1)2 (2.21)

=
∑

h∈W
6⊥
i

<wi.,h>h j>1

3− 2<wi.,h> (2.22)

One should note that if h j = 0 flipping the corresponding bit in wi. from 0 to 1

does not change the error as, in any case, their multiplication will be zero.

• Lastly, the error on W⊥
i

is not affected by the flip as w
j

i. is already orthogonal to

all the elements of W⊥
i

and flipping a 1 to 0 will not change this orthogonality

and, as a result, does not change the error value.

Summing (2.18), (2.19) and (2.22) yields Equation 2.2.

∆E(i, j; 0→ 1, L1)

• For columns in W 0
i

, if we flip a 0 to a 1 in wi., in case the corresponding cell of a

given column h ∈W 0
i

is zero, no extra error is introduced as the multiplication
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would be zero in any case. However if the corresponding cell is 1, then one new

error is introduced. So the error in this case is simply:

∑

h∈W 0
i

h j (2.23)

• For columns of W
6⊥
i

, we need to produce 1. Consequently, the initial error is

E1
6⊥ =

∑

h∈W
6⊥
i

(<wi.,h> −1)

and the new error will be

E2
6⊥ =

∑

h∈W
6⊥
i

(<wi.,h> −1+ h j)

as flipping the j th bit from 0 to 1 will introduce one new error if h j is also equal

to 1. As a result:

E2
6⊥ − E1

6⊥ =
∑

h∈W
6⊥
i

(<wi.,h> −1+ h j)−
∑

h∈W
6⊥
i

(<wi.,h> −1) (2.24)

=
∑

h∈W
6⊥
i

<wi.,h> −1+ h j− <wi.,h> +1 (2.25)

=
∑

h∈W
6⊥
i

h j (2.26)

• For columns of W⊥
i

, we may be able to decrease the error by flipping a bit from

0 to 1 as, initially, wi. is orthogonal to the columns of W⊥
i

, i.e the dot product

produces zero while we expect a 1. As a result, if we flip the j th cell to 1, then

we can decrease the error only if the corresponding cell in h ∈W⊥
i

is also equal

to one. Consequently the error change in this case is:

−
∑

h∈W⊥
i

h j (2.27)

Summing (2.23), (2.26) and (2.27) yields Equation 2.3.

∆E(i, j; 1→ 0, L1)

• For W 0
i

, as we need to produce a zero for each dot product, flipping a bit from

1 to 0 can only cause error decrease. This will happen if the corresponding cell

in h ∈W 0
i

is 1. Thus, the error change is:

−
∑

h∈W 0
i

h j (2.28)
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• For columns in W
6⊥
i

, we again have two case: (i) when have <wi,h> h j = 1 in

which, by the same token as before, we are introducing one error per column,

which means
∑

h∈W
6⊥
i

<wi.,h>h j=1

1 (2.29)

Case (ii) is when (< wi,h >)h j > 1, which means that h j = 1 and < wi,h > is

greater than 1. In this case, by flipping 1 to 0, we decrease the error one unit

per column (as the corresponding cell, h j, is equal to one for all columns in this

set). So the difference in the error is given by

−
∑

h∈W
6⊥
i

<wi.,h>h j>1

1 (2.30)

• For W⊥
i

, we do not introduce any new error by flipping a bit from 1 to 0 as the

dot product is already zero and setting an element to zero does not change the

result of this product.

Summing (2.28), (2.29) and (2.30) yields Equation 2.3.�

Theorem 2.1 provides a direct way to compute the gain associated to each pos-

sible flip of an element of wi., which can be used in a 1-opt local search procedure

as defined in Algorithm 2 (in this algorithm, we use ∆E(i, j; Lp) which is equal to

∆E(i, j; 0 → 1, Lp) if wi j = 0 and to ∆E(i, j; 1 → 0, Lp) otherwise). The following

example illustrates how one can utilize Theorem 2.1 in practice.

Example 2.3 Consider the following configuration where we aim at optimizing the i th

row of W (denoted by wi.) having the corresponding row of X (denoted by x i.) and H:

xi. =
�

1 1 0 0 1 1
�

, wi. =
�

0 1 1
�

and H=







0 1 1 1 1 0

1 1 1 0 0 0

1 0 1 1 0 1







Using Def. 2.1, we have the following sets:

W 0
i
= {h.3,h.4}=







1 1

1 0

1 1







W⊥
i
= {h.5}=







1

0

0







W
6⊥
i
= {h.1,h.2,h.6}=







0 1 0

1 1 0

1 0 1






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What we need to do is to compute the error change (gain) for zero cells and one cells

in wi. separately. Let G = (g0→1
1

, g1→0
2

, g1→0
3
) denote the gain for flipping the bits

where the subscripts show the index of corresponding cell in wi. and the superscripts show

whether we should use the zero-to-one formulations in Theorem 2.1 or the one-to-zero

formulations. Having vector G computed, we can decide which bit to flip in order to

maximize the improvement. We consider both the L2 and the L1 cases:

• L2: we obtain g0→1
1
= +8 using the Eq. (2.1). Similarly, if we use Eq. (2.2) for

g1→0
2

and g1→0
3

we obtain −3 and −4 respectively. As a result the gain vector is

G = (+8, −3, −4) which means that the best bit to flip is the last one as it has the

highest negative gain.

• L1: in this case we use Eq. (2.3) for the first cell and Eq. (2.4) for the second and

the third one which gives us the following gain vector G = (+2, −1, −2). In this

case, we select the third bit to flip as it leads to the best improvement comparing to

the other bits.

The procedure expressed in Algorithm 2 can be naturally extended to p-opt local

search, either by adopting a greedy approach, in which case one applies p times a 1-

opt local search, as done in [Merz and Freisleben, 2002], or by finding the p flips that

maximize the gain. In both cases, the gain of flipping several bits is the sum of the gain

of the individual flips. However, in the latter approach, the complexity for selecting the

best bits to flip is in O(K p), which prevents its application in most practical cases (in

contrast, the complexity of the p-opt greedy approach to select the p bits is O(pK)). In

the remainder, and as done in many studies, when we talk about the p-opt local search,

we refer to the p-opt greedy approach. Lastly, Algorithm 2 (and its p-opt extension)

can also be adapted to cover the formulation of the BMF problem with the binary

reconstruction constraint by accepting a flip only if the result is a binary vector1.

As mentioned previously in this chapter, the complexity of updating one row (say

row i) of W through the UBQP approach is O(KN). A standard procedure, denoted

as 1-opt-Standard hereafter, which compute the gain through the multiplication of wi.

and H would in fact have a complexity of O(K2N) as it needs to multiply wi., which is

of size K , by H to find the gain of flipping one single cell (O(KN) so far) and since this

multiplications need to be done one time for each cell of wi., the total complexity will

be O(K2N). Using the same reasoning, 1-opt-Standard has a complexity of O(K2M)

1This condition can be efficiently computed when checking the gains defined in Theorem 2.1.
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Algorithm 2 1-opt-BMF

Input: Matrices X, W and H; p = 1 or 2

Output: Improved W and H

1: repeat

2: for each row wi in W do

3: j = argmin
1≤ j′≤k

∆E(i, j′; Lp)

4: if ∆E(i, j; Lp)< 0 then flip Wi j

5: end if

6: end for

7: for each column hi in H do

8: j = argmin
1≤ j′≤k

∆E(i, j′; Lp)

9: if ∆E(i, j; Lp)< 0 then flip H ji

10: end if

11: end for

12: until no change in W and H

for updating one column of H. We show, via Theorem 2.2, that the 1-opt procedure

defined on the basis of Theorem 2.1 is more efficient. This result directly extends

to p-opt local search as this latter is just a chain of 1-opt procedures. Note that in

Theorem 2.2, since we aim at finding the minimum gain that we are able to obtain

using the proposed method, we consider updating a row of W in our calculations.

The reason is that for 1-opt-UBQP the complexity is the same for both case (updating

one row of W and updating one column of H); however, since the complexity in the

standard method is not the same for updating one row of W and updating one column

of H (O(K2N) vs. O(K2M)), we consider the faster one (K2N) in order to obtain the

minimum gain we can achieve with the proposed method. Consequently, Theorem 2.2

consider the case of updating one row of W.

Theorem 2.2 We assume a row vector wi. of W and a matrix H. Furthermore, let d

be the density of x i. (the i th row of X) and let τ denote the proportion of columns l

of H orthogonal to wi. and such that x il = 1 (thus τ = |W⊥
i
|/N). Then, the gain in

complexity for the 1-opt procedure based on Theorem 2.1 compared to both 1-opt-UBQP

and 1-opt-Standard is at least:

• min{(1−τ)−1, Kτ−1} for the L2-norm with respect to the 1-opt-UBQP;

• min{K(1−τ)−1, K2τ−1} for the L2-norm with respect to 1-opt-Standard;
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• min{K2, K(d −τ)−1} for the L1-norm with respect to 1-opt-Standard.

Proof First note that 0 ≤ τ ≤ d ≤ 1 as the proportion of columns in H corresponding

to 1s in xi., i.e. d, is larger than the proportion of columns in H corresponding to

1s in xi. and orthogonal to wi., i.e. τ. From the definitions of d and τ, one has:

|W 0| = (1− d)N , |W⊥| = τN , |W 6⊥| = (d − τ)N . If we look at it in the matrix-wise

way, we have the following matrices:

1. W0
i

which is of size K × (1− d)N

2. W⊥
i

which is of size K ×τN

3. W
6⊥
0 which is of size K × (d −τ)N .

In order to study the minimum gain we obtain, we need to find the complexity of

both L1 and L2 cases. Since we have two formulas for each of these methods (one for

flipping from 0 to 1 and the other for flipping from 1 to 0), we need to compute, for

each norm, the complexity of each formula and take the maximum as the complexity.

For Equation 2.1, we have three parts in our complexity analysis which have been

shown in Table 2.1. According to this table, if we sum all the complexities, we will

Table 2.1: Complexity analysis of Equation 2.1

Sub-equation Operations needed Complexity
∑

h∈W 0
i
(1+ 2<wi.,h>)h j dot product between wi. and W0

i
O
�

KN(1− d)
�

∑

h∈W
6⊥
i
(2<wi.,h> −1)h j dot product between wi. and W

6⊥
i

O
�

KN(d −τ)
�

∑

h∈W⊥
i

h j summation over a row of W⊥
i

O(τN)

have the following total complexity for Equation 2.1:

O
�

KN(1− d) + KN(d −τ) +τN
�

= O
�

max{KN(1−τ),τN}
�

(2.31)

For Equation 2.2, we have two main parts to consider in the complexity analysis.

One should note that although the equation contains three parts, for two of them we

need the same operation and, as a result, we can consider them as one single entity.

Table 2.2 illustrates these entities: according to Table 2.2, the total complexity of

Equation 2.2 amount to

O
�

KN(1− d) + KN(d −τ)
�

= O
�

KN(1−τ)
�

(2.32)
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Table 2.2: Complexity analysis of Equation 2.2

Sub-equation Operations needed Complexity
∑

h∈W 0
i
(1− 2<wi.,h>)h j dot product between wi. and W0

i
O
�

KN(1− d)
�

∑

h∈W
6⊥
i

<wi.,h>h j=1

1 +

∑

h∈W
6⊥
i

<wi.,h>h j>1

3− 2<wi.,h>
dot product between wi. and W

6⊥
i

O
�

KN(d −τ)
�

Therefor, according to (2.31) and (2.32), the proposed method in case of L2 norm

has a theoretical complexity of O
�

max{KN(1− τ),τN}
�

. Now if we divide the com-

plexity 1-opt-UBQP, i.e. O(KN), by this quantity, the minimum gain we obtain will be

min{(1−τ)−1, Kτ−1}, and if we divide that by the complexity of the standard method,

i.e. O(K2N), we have a minimum gain of min{K(1−τ)−1, K2τ−1}.

For the L1 case, we have two equations: 2.3 and 2.4. We can consider Table 2.3

for Equation 2.3. Based on that, the total complexity of Equation 2.3 is:

Table 2.3: Complexity analysis of Equation 2.3

Sub-equation Operations needed Complexity
∑

h∈W 0
i

h j summation over one row of W0
i

O
�

N(1− d)
�

∑

h∈W
6⊥
i

h j summation over one row of W
6⊥
i

O
�

N(d −τ)
�

∑

h∈W⊥
i

h j summation over one row of W⊥
i

O(τN)

O
�

N(1− d) + N(d −τ) +τN
�

= O(N) (2.33)

For equation 2.4, we have basically two parts to study as shown in Table 2.4. Com-

Table 2.4: Complexity analysis of Equation 2.4

Sub-equation Operations needed Complexity

−
∑

h∈W 0
i

h j summation over one row of W0
i

O
�

N(1− d)
�

∑

h∈W
6⊥
i

<wi.,h>h j=1

1−
∑

h∈W
6⊥
i

<wi.,h>h j>1

1 dot product between wi. and W
6⊥
i

O
�

KN(d −τ)
�

paring (2.33) and complexities in Table 2.4, one can see that the total complexity of

the proposed method in case of L1 norm is O
�

max{N , KN(d −τ)}
�

as N ≥ N(1− d).

Now if we divide the complexity of the standard method, O(K2N), by this quantity, the

minimum gain we obtain will be min{K2, K(d−τ)−1}which establishes the theorem.�
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One important remark here is that in the proposed method for L2 norm, the condi-

tion τN > KN(1−τ) will almost never occur as it corresponds to values of τ greater

than 0.50 and to matrices where d ≥ τ > 0.50, i.e. to extremely dense matrices.

As a result, in practice, the complexity of the proposed L2 method is O
�

KN(1 − τ)
�

and, consequently, the gain will be (1−τ)−1 compared to 1-opt-UBQP and K(1−τ)−1

compared to 1-opt-Standard.

Another remark is that with the proposed method (Theorem 2.1), we do not need

to perform all the dot products (the most computationally expensive operations in

these formulations) for all cells of wi. as the dot products are done between wi. and

the sets defined in Def. 2.1; none of these elements change while we are computing

the gain for a given vector. Accordingly, one does not need to iterate over each cell

which is the key point of efficiency of this method.

According to Theorem 2.2, one can note that the gain obtained by the proposed

method is independent of K for the solutions of L2-norm methods while there is a de-

pendency between K and the gain obtained by the proposed method for the solutions

of L1-norm methods.

2.3 EXPERIMENTS

We have evaluated our local search heuristic on several methods used to solve the

BMF problem and on several collections.

2.3.1 METHODS

We have retained here the most widely used methods to solve the BMF problem, all

explained in detail in the previous chapter:

1. Projected NMF;

2. Projected SVD;

3. Proximus;

4. CBMF;

5. UBMF.
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For projected NMF and SVD, we use the grid search, discussed in Chapter 1 and illus-

trated in Algorithm 1, with α = 0.05 in order to find the best possible binary results

(see e.g. [Miettinen et al., 2008]). To perform NMF and SVD, we used Matlab built-in

functions and for the rest we used our own Matlab implementations.

As mentioned before, we refer to the method proposed in this chapter as 1-opt-

BMF, to the standard implementation as 1-opt-Standard and to the 1-opt local search

associated with UBQP as 1-opt-UBQP. One should note that the 1-opt-Standard ap-

proach benefits from highly efficient block algorithms available in LAPACK (incorpo-

rated in Matlab) which are, in average, significantly faster than a simple, naive multi-

plication.

In addition, for CBMF, we also evaluate the swap heuristic described in [Kanungo

et al., 2002] and discussed in Section 1.2.3 as well as a combination of this heuristic

with 1-opt. As mentioned in that section, the swap procedures, mainly applied to K-

means-like methods, is to replace a center (after all centers become stable) with one

data point and redo the clustering to see if the new solution is better than the previous

one. Since CBMF is based on the K-means approach, we can apply the swap procedure

which consists of randomly replacing a center (a column of W) after stabilization with

a random column of X and redo the K−means clustering (the CBMF decomposition

in our case). This procedure is repeated a certain amount of times or until a time

budget is exhausted. Obviously, one can still apply a 1-opt heuristic on top of the

swap technique in order to further improve the results.

The swap heuristic will be referred to as SCBMF (S stands for "swap") and the

combination, which corresponds to the application of 1-opt on the results of SCMBF,

as 1-opt-SCBMF. There are different criteria to choose the number of swaps in SCBMF.

For example, one can select a fixed number of swaps or a time limit. To be fair in our

comparison, we have adopted here the following strategy: for each dataset we first

run the proposed 1-opt algorithm (which is in general faster than the other approaches

as we will observe shortly) on CBMF and measure its running time; then, we let the

SCBMF procedure run the same amount of time to improve CBMF results. Like that,

one can observe which method performs best under a given time budget.

The main difference between SCBMF and 1-opt local search procedures is that the

former tries to find better solutions by exploring different parts of the search space

whereas the latter tries to find a better solution in a close neighborhood of the current

solution. Observing the respective behaviors of these different approaches is thus

interesting.
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Lastly, as SCBMF proceeds via random selections, for each dataset, we run the

SCBMF ten times and report the average error of these ten runs. In this case, a differ-

ence is deemed statistically significant if it was significant on the majority of the 10

runs. We use here the Wilcoxon sum-rank test at the 1% significance level to assess

whether differences in the results are significant or not.

2.3.2 GENERAL SETTINGS

In our experiments, we let the rank K vary in the set {1, 20, 40, 60, 80, 100}. As

mentioned before, the BMF problem can be solved with or without the binary recon-

struction constraint, with the L1-norm or with the L2-norm. Accordingly, four classes

of decomposition methods can be considered (Table 2.5). All the experiments are

Table 2.5: Different problem classes

Approach/Norm L1 L2

Constrained CBMF PROXIMUS

Unconstrained UBMF NMF, SVD

done on a Linux machine with an Intel Xeon CPU E5-2630 with 6 cores @ 2.30Ghz

and 32Gb of memory. In order to be fair, unless it is explicitly mentioned, no multi-

processing or multithreading is done in our experiments.

2.3.3 DATASETS

We examined both real world datasets and synthetic ones, all available from the fre-

quent itemset mining repository (FIMI)2. The main reason that we use frequent itemset

mining datasets is that they are necessarily binary which suits our experimental set-

ting. Table 2.6 shows the sets we used in addition to some of their characteristics.

The first part of the table shows the real datasets and the second part shows the syn-

thetic ones. Note that in our experiments, we have removed all empty rows and empty

columns from the data.

2Publicly available at http://fimi.ua.ac.be/data/ (last visited 03-Jun-2015)
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Table 2.6: Datasets used in the experiments.

Name # Rows # Columns Density (%)

Mushroom 8124 119 19.32

Connect 67557 129 33.33

Accidents 340183 468 7.22

Pumsb 49046 2113 3.50

T10I4D100K 100000 870 1.16

T40I10D100K 100000 942 4.20

2.3.4 TIME COMPARISON

We compare here 1-opt-BMF with 1-opt-Standard and 1-opt-UBQP according to the

running time. One should note that these three approaches yield the same solution,

namely the one corresponding to the best improvement in a neighborhood of size 1 and

thus, their only difference is the running time. Note that 1-opt-BMF and 1-opt-Standard

can be applied to both L1 and L2 decomposition methods, whereas 1-opt-UBQP can

only be applied on the L2 decomposition approaches (NMF, SVD and Proximus). As

a result, for L2 methods, we compare 1-opt-BMF with both 1-opt-Standard and 1-opt-

UBQP while for L1 methods we can only perform one comparison: 1-opt-BMF with

1-opt-Standard.

To further illustrate the speed of the different methods, we display in Figure 2.1-

2.4 the ratio: execution time of 1-opt-Standard divided by execution time of 1-opt-

BMF and execution time of 1-opt-UBQP divided by execution time of 1-opt-BMF. An

additional line, labeled "Ratio=1", is added to make it simpler to compare different

methods: 1-opt-BMF is faster when the curve is above 1, and slower otherwise. In the

following, we will discuss these results with respect to different datasets.

2.3.4.1 Projected SVD and NMF

Figure 2.1 illustrates the time comparison between 1-opt-UBQP and 1-opt-BMF on the

left as well as the comparison between 1-opt-Standard and 1-opt-BMF on the right. The

first issue to note is that, generally speaking, 1-opt-UBQP is faster than 1-opt-Standard

as in the latter the ratio reaches up to 4.7 while in the former it reaches to 1.8 in the

best case.

Another point on this figure is that by increasing the value of K the ratio increases
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Figure 2.1: Efficiency of 1-opt-BMF compared to 1-opt-UBQP (left) and 1-opt-Standard

(right) for SVD

significantly with respect to the standard method. In case of UBQP, the curves become

almost stable for larger values of K . As discussed in the Theorem 2.2, the gain of

1-opt-Standard is directly influenced by K , unlike the 1-opt-UBQP.

As one can see on the right hand side of this figure, the curves are under the fixed

line (ratio=1) mostly for Mushroom and Connect; these two sets are the smallest sets

in our experiments. As the 1-opt-BMF has an overhead of finding the sets defined in

Def. 2.1, for small datasets this overhead is more visible with respect to the update

part. However, even if these sets, for K ≥ 60, one can observe that the 1-opt-BMF

becomes faster. For sufficiently large datasets (as Accidents or T40I10D100K) and

sufficiently large values of K (e.g. K = 100), 1-opt-BMF can be nearly 5 times faster

than the standard approach.

On the left hand side, we only see one dataset (Pumsb) being always below the

fixed line. The main reason here is that this dataset is not only very sparse (d = 3.5%),

but also has a small value of τ (0.02≤ τ≤ 0.03 for K = 20 for instance) which makes

1−τ very close to 1. According to Theorem 2.2, a small value of 1−τ results in a small

gain, and since we have an overhead for computing the sets defined in Def. 2.1, the

1-opt-BMF cannot be more efficient than the 1-opt-UBQP in this case. However, in the

other datasets, we observe the efficiency of the 1-opt-BMF with respect to 1-opt-UBQP.

In Figure 2.2, one can observe the experiments using NMF. In that figure, we can

see the same points that we saw for the SVD case. We can also see the same issue

for Pumsb when the 1-opt-UBQP is concerned. Additionally, the semi-constant line for

ratios can also be seen in this case after a certain value of K (the figure on the left

side) while in the 1-opt-standard case (the figure on the right side) the ratio grows as
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Figure 2.2: Efficiency of 1-opt-BMF compared to 1-opt-UBQP (left) and 1-opt-Standard

(right) for NMF

the value of K increases. This is in line with theoretical analysis provided in Theorem

2.2.

2.3.4.2 Proximus

First of all, one should note that in Proximus, one may end up in less number of latent

factors than what s/he had in mind initially. The reason is that, according to the way

Proximus solves the problem, in each iteration, a set of columns are eliminated (the

covered columns are eliminated in order to ensure the orthogonality which, in turn,

ensures the binary reconstruction). This may result in early termination of the algo-

rithm if we run out of columns before reaching the desired value of K . This case has

happened for two datasets in our experiments: Mushroom and Connect. Since they

have few columns and they are very dense, the columns are covered very quickly. As a

result, we only have 53 and 54 latent factors in Mushroom and Connect respectively.

Consequently, in Figure 2.3, for K ≥ 60, we report the same results corresponding to

the maximum number of factors obtained.

As one can observe in Figure 2.3, for the 1-opt-Standard, we see similar behavior

as the other L2-norm methods (SVD and NMF). The situation with respect to 1-opt-

UBQP is also similar to those of SVD and NMF. When applied to Proximus, 1-opt-BMF is

faster on 5 collections out of 6, i.e. all except Pumsb for the same reason as mentioned

before. Here again we see that 1-opt-BMF gets significantly faster than 1-opt-Standard

as the value of K increases.
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Figure 2.3: Efficiency of 1-opt-BMF compared to 1-opt-UBQP (left) and 1-opt-Standard

(right) for Proximus
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Figure 2.4: Efficiency of 1-opt-BMF compared to 1-opt-Standard for CBMF (left) and

UBMF (right)

2.3.4.3 CBMF and UBMF

For the L1-norm methods, we can only apply the 1-opt-Standard (Figure 2.4). Here,

as we have seen before, except the smallest sets (Mushroom and Connect), the 1-

opt-BMF is up to 8 times faster than the standard method where this efficiency is

more considerable with larger values of K which is in line with the theoretical analysis

provided before.

All in all however, 1-opt-BMF is in general faster than 1-opt-Standard and 1-opt-

UBQP where the difference is much higher for the former than for the latter. Further-

more, unlike 1-opt-UBQP, 1-opt-BMF can be applied to all the BMF methods we know

of.

48



2.3. EXPERIMENTS

2.3.5 IMPACT OF 1-opt-BMF ON L2 METHODS

As discussed before, all the previously mentioned methods yield the same solution.

Here, we would like to examine the significance of the improvement brought by a 1-

opt method. Figure 2.5 shows the effectiveness of any 1-opt strategy when it is applied

to (projected) SVD, (projected) NMF and Proximus. As one can note, projected NMF

performs generally better than projected SVD, with a reconstruction error (measured

with the L2-norm) significantly lower. Projected NMF also yields a lower reconstruc-

tion error than Proximus, but Proximus provides a solution that satisfies the binary

reconstruction constraint, which is not the case for NMF.

To assess whether the improvements obtained with 1-opt are significant, we com-

puted the p-value of the Wilcoxon rank-sum test (which is widely used to compare a

series of bits) at the 1% significance level. In almost all L2-norm cases with K = 1

there is no improvement with 1-opt. This can be explained by the fact that the first

dominant factor in the datasets is more easily approximated by the different methods

than the first K factors. This observation also explains why the gain with Proximus,

which solves a series of rank 1 problems, is not as important as with the other methods.

For K > 1 however, in all sets and with all methods, the improvement obtained with

the 1-opt is statistically significant. In particular, for NMF and SVD, the improvement

can be up to 61% for real sets, and up to 12 % for synthetic sets.

2.3.6 IMPACT OF 1-opt-BMF ON L1 METHODS

Table 2.7 illustrates the improvement that 1-opt can make over the L1 methods, namely

CBMF, SCBMF and UBMF. As mentioned before, SCBMF is provided the same amount

of time as 1-opt-BMF. As one can note, the case of K = 1 is removed from the table

since, as mentioned above, no local improvement can be made for the first factor.

The table shows the normalized errors in percentage. Significant improvements

are shown in bold (measured again using Wilcoxon rank-sum test at the 1% signifi-

cance level). Note that for CBMF (resp. UBMF), the 1-opt error is shown in bold if it

is significantly better than the standard CBMF (resp. UBMF). SCBMF’s error is shown

in bold if it is significantly better than standard CBMF. For 1-opt-SCBMF, the error is

in bold if it is significantly better than SCBMF.

The first point to note is that all proposed heuristics have difficulties improving

the error value over synthetic datasets. In those datasets, which do not contain any
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Figure 2.5: Improvement of L2-norm with the 1-opt strategy applied on SVD, NMF and

Proximus. The horizontal axis represents the value of K and the vertical axis shows

the L2-norm.

structure, all the methods yield roughly the same results.

Over all real datasets, a 1-opt local search can often bring significant improvement

in the error value. The most spectacular case is the Mushroom dataset, where for

K = 80 the error value is decreased by more than 18%. This dataset has a large
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Table 2.7: Effectiveness of the 1-opt on L1 methods. Numbers are the normalized error

in percentage. Statistically significant improvements are shown in boldface.

Dataset k
CBMF

SCBMF 1-opt-SCBMF
UBMF

Standard 1-opt Standard 1-opt

Mushroom

20

40

60

80

100

7.5032

4.9601

2.5769

1.4323

0.1917

7.2662

4.4301

2.2591

1.1655

0.1313

7.0481

4.1346

2.4711

1.3449

0.1835

6.7332

3.6278

2.1682

1.1608

0.1500

6.8685

4.4537

2.1958

1.0042

0.1377

6.8685

4.4537

2.1958

1.0042

0.1377

Connect

20

40

60

80

100

7.9585

4.9624

2.6073

1.7881

0.3537

7.8659

4.9077

2.5850

1.6420

0.3537

7.4513

4.5270

2.4071

1.3584

0.3537

7.3004

4.4728

2.3849

1.3551

0.3537

7.3202

4.1145

1.7336

0.8995

0.3537

7.3202

4.1145

1.7336

0.8995

0.3321

Accidents

20

40

60

80

100

3.1373

2.7191

2.1906

1.6426

1.1345

3.1373

2.7191

2.1493

1.6360

1.1014

3.1373

2.7191

2.1900

1.6321

1.1342

3.1373

2.7191

2.1495

1.6255

1.1018

2.9923

2.4352

1.9766

1.4654

0.9504

2.9923

2.4352

1.9766

1.4653

0.9504

Pumsb

20

40

60

80

100

1.3253

0.9608

0.8719

0.8763

0.7560

1.2895

0.9310

0.8647

0.8467

0.7470

1.3214

0.9608

0.8719

0.8740

0.7560

1.2782

0.9311

0.8647

0.8491

0.7470

1.2177

0.8903

0.8201

0.7638

0.7010

1.2176

0.8903

0.8200

0.7637

0.7010

T10I4D100K

20

40

60

80

100

1.1158

1.0745

1.0432

0.9806

0.9441

1.1158

1.0745

1.0432

0.9804

0.9435

1.1148

1.0745

1.0413

0.9803

0.9438

1.1148

1.0745

1.0413

0.9802

0.9432

1.1158

1.0734

1.0403

0.9757

0.9321

1.1097

1.0734

1.0403

0.9757

0.9321

T40I10D100K

20

40

60

80

100

4.0715

3.9340

3.8203

3.6850

3.5602

4.0715

3.9340

3.8203

3.6850

3.5596

4.0715

3.9340

3.8169

3.6850

3.5560

4.0715

3.9340

3.8169

3.6850

3.5555

4.0715

3.9321

3.7926

3.6382

3.5062

4.0563

3.9321

3.7926

3.6382

3.5062

number of patterns spanning few lines [Uno et al., 2005], making it more difficult for

BMF algorithms to compute a good approximation for high values of K . These results

show that although a 1-opt heuristic explores a small neighborhood of the current

solution, it can help improve the decomposition on such difficult cases.
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Connect is a dense dataset with a strong structure [Uno et al., 2005]: this struc-

ture is mostly captured by classical CBMF for small values of K , with only small im-

provement by 1-opt (1%). Here the improvement of a local search only pays off for

K = 80 (8%). On the other hand, SCBMF has significantly better results (from 6%

to 24% improvement in error value) than CBMF: this means that CBMF was stuck in

a region that was not optimal. The swap heuristic of SCBMF is the only one of this

comparison that can get out of this local optima and find a better solution. SCBMF’s

solutions can be further refined by applying the 1-opt heuristic, showing the ability of

1-opt to improve an already good solution whatever its position in the search space.

Accidents is a different type of dataset: despite its huge size it has relatively short

transactions (length 33 in average) and contains many patterns differing on only a few

columns, a structure difficult to capture with low values of K . CBMF captures well the

bulk of this structure (as shown by the lack of improvement from SCBMF) and its

solution is hard to improve for low K values (no improvement by 1-opt). However

for higher values of K , the potential of the 1-opt local search heuristic appears, as it

provides a significant improvement for K ≥ 60.

Pumsb is the sparsest real dataset of this experiment. This sparsity, combined with

the higher number of columns, prevents SCBMF to find a better solution in the allo-

cated time. However, the dataset (originating from US Census data) has some struc-

ture, and here also the 1-opt method can significantly improve the solution found by

CBMF (at best 3% for K = 40).

In unconstrained case, i.e. UBMF, it becomes much harder to improve the results.

Nevertheless, there are still a few cases where the 1-opt approach can provide a sig-

nificantly better approximation.

2.4 CLOSING REMARKS

We have addressed in this chapter the problem of rank K Binary Matrix Factorization

(BMF) which aims at approximating a binary matrix by the product of two binary ma-

trices of lower rank. Several researchers have addressed this problem, focusing on

either approximations of rank 1 or higher, using either the L1 or L2-norms for mea-

suring the quality of the approximation, through variants of the alternating strategy

typically used for non-negative matrix factorization [Lee and Seung, 2000].

We first reviewed several local search strategies that can be used to improve the
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BMF solutions obtained by previously proposed methods. Then we introduced, as our

second contribution [Mirisaee et al., 2015b,Mirisaee et al., 2015c], a new local search

dedicated to the BMF problem and studied its complexity with respect to other local

search approaches.

The experiments, conducted with several state-of-the-art methods, on several col-

lections, have confirmed that the 1-opt local search procedure proposed in this chapter

is in general faster than the previously proposed ones. They have also shown that this

procedure significantly improves the solutions found by the state-of-the-art L2-norm

methods: projected NMF, projected SVD and Proximus.

For the L1-norm methods, the experimental results show that the proposed local

search procedure improves the results of the state-of-the-art methods solving the com-

plete BMF problem, with the binary reconstruction constraint, on the real datasets,

which are more structured than the synthetic ones. These methods include CBMF and

its "swapped" version. The situation is more contrasted with UBMF, which solves the

BMF problem without the binary reconstruction constraint. 1-opt local search heuristic

do not seem to be able to improve this state-of-the-art method in many cases.

53





3 APPLICATION TO THE MINING OF REP-

RESENTATIVE FREQUENT ITEMSETS

3.1 INTRODUCTION

In previous chapters, we have mentioned that matrix decomposition techniques have

been widely used in data mining applications as they are able to capture the main

structure of the data and provide us with latent factors and important pattern found

within the data. Then we focused on one particular case of matrix decomposition,

namely Binary Matrix Factorization (BMF), and showed its relation to other problems.

In addition, we discussed the local search heuristics for BMF and proposed a new

heuristic which can improve the solutions significantly faster than other state-of-the-

art techniques. An extensive set of experiments was conducted and different datasets

have been considered to show the efficiency of the proposed method.

In this chapter, we focus on frequent itemset mining (one sub-problem of a more

general domain called pattern mining), a problem which has been of interest of many

researchers and industries [Han et al., 2007]. In particular, we aim at finding a set

of representative itemsets which can not only provide a good view of the entire fre-

quent itemsets, but also is a lot less numerous, hence the term representative. As men-

tioned previously, matrix decomposition techniques can capture the important and

latent information form datasets; accordingly, in this chapter, we propose to rely on

this method to find representative itemsets. As in itemset mining problem the input

is a binary matrix, we can simply use the BMF technique discussed in the first two

chapters. In the following, we will first introduce the general form of itemset mining

problem and then discuss the importance of representative frequent itemsets.

Frequent pattern mining is a major domain of pattern mining. Its goal is to au-

tomatically extract frequently occurring patterns in large datasets. The fundamental
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problem of frequent pattern mining is to mine frequent itemset [Agrawal and Srikant,

1994], i.e. sets of items frequently occurring together in transactional databases (de-

fined formally in the following section). This problem originated from the analysis of

commercial databases and was later extended to many domains.

To better understand the importance of the frequent itemset mining problem, con-

sider the following scenario: suppose that Tom runs a supermarket in Michigan, in

which he makes the decisions for the arrangement of products. After a while he re-

alizes that some products have been bought together quite frequently, like wine and

cheese or bread and butter. In such case, depending on the marketing strategy, he may

either rearrange the products in the store such that those items are located close to

each other (so that customers find them quickly) or far from each other (so that cus-

tomers travel all the way in the store and buy more products on the way). Accordingly,

it is very important for him to find the products bought together frequently.

The frequent itemset mining technique is used in many applications today such

as chemistry [Inokuchi et al., 2000], bioinformatics [Wang et al., 2005], trace min-

ing [Zou et al., 2010], web data analysis [Han et al., 2000] and gene expression

data [Alves et al., 2010]. Frequent pattern mining algorithms have to explore a

huge combinatorial space of patterns. This leads to two main problems: first, on

real databases, mining algorithms usually need a large amount of time to output the

set of frequent patterns. This hinders interactive analysis of data, that is however

needed in most knowledge discovery tasks. Second, the set of frequent patterns is

often huge: millions of frequent patterns are commonplace. This is overwhelming for

the analyst, and it further prevents from having real insights on the data that appear

in some frequent patterns.

There has been a large body of research on condensed representations of frequent

patterns such as closed frequent patterns [Pasquier et al., 1999, ?], that can usually

output one order of magnitude less patterns without loosing information. However,

one order of magnitude reduction is often not enough when dealing with millions of

patterns, hence a current trend of research focuses on discovering a small set of pat-

terns that would represent most of the information contained in the set of all frequent

patterns, and that would be small enough to be managed by the analyst [Vreeken

et al., 2011,Guns et al., 2010].

In this chapter, we present our third contribution [Mirisaee et al., 2014] by intro-

ducing a new method for computing a reduced set of representative frequent patterns,

that is both computationally efficient and produces very few high quality frequent pat-
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terns. This method is based on constrained binary matrix factorization which has been

widely used in many contexts recently and has been explained previously. As men-

tioned in Chapter 1, the general goal of matrix decomposition is to factorize a matrix

into the product of two or more smaller matrices. The Constrained Binary Matrix Fac-

torization (CBMF) problem, as a special case of matrix decomposition, was described

previously and an efficient local heuristic for that has been introduced (Chapter 2).

In this chapter, we use the materials and techniques provided in Chapter 2 in order to

mine representative frequent itemsets. Exploiting this tool, the detailed contributions

of this chapter are the following:

• We theoretically study the characteristics of a matrix decomposition method

adapted to frequent itemset mining, and define the notions of strong decom-

position and approximately strong decomposition.

• We prove that extracting frequent itemsets from the factors of the decomposi-

tion (which are matrices of reduced dimensionality) guarantees to find existing

frequent itemsets with a given support threshold and size.

• We show, through a detailed experimental study, that the representative frequent

itemsets output by this method represent a significant portion of the set of all

frequent itemsets according to existing metrics [Gupta et al., 2000], while being

up to nine orders of magnitude less numerous.

In the reminder of this chapter, we first explain formally the problem of frequent

itemset mining followed by a review of the state-of-the-art and the major studies con-

ducted in this domain. Then we introduce a framework which provides the theoretical

requirements for linking the matrix decomposition problem to frequent itemset min-

ing. Next, we design a set of experiments in which we use some evaluation metrics

from the literature in order to examine the quality of the obtained representative item-

sets. Finally, some closing remarks are discussed in the last section.

3.2 FREQUENT ITEMSET MINING

Let I be a set of items. An itemset is a subset of I . A transaction database (TDB) is a

set of transactions D where each transaction t ∈ D is an itemset of I . We will denote

by m the size of a transaction database, i.e. its number of transactions. For an itemset
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P ⊆ I and a transaction database D, the support of P in D, denoted by suppor t(P, D),

is the number of transactions of D including P:

suppor t(P, D) = |{t | t ∈ D ∧ P ⊆ t}|

The frequency of P is

f requenc y(P, D) =
suppor t(P, D)

m

Furthermore, P is frequent if its support is greater than a given minimum support

threshold minsup:

f requenc y(P, D)≥ minsup

The following example illustrates these definitions.

Example 3.1 Table 3.1 shows a transactional database in which tid denotes the trans-

action identification (or simply its ID). In this example, {cheesr, wine, chips} is an itemset

of size three (since there are three items in the set) and of support value two since it has

appeared in two transactions: the first and the last transactions (t1 and t5). Since this

TDB contains five transactions, the frequency of this itemset is 2
5
.

Table 3.1: A Transactional DataBase (TDB)

tid contents

1 {cheese, wine, chips, bread}

2 {bread, butter, beer, nuts}

3 {cheese, bread, orange, soap}

4 {chips, bread, beer, nuts, orange}

5 {cheese, wine, chips}

3.3 STATE OF THE ART

In this section, we first consider the major studies on frequent itemset mining followed

by the studies in the recent domain of finding an informative subset of the frequent

patterns.
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Frequent itemset mining and association rule learning could be seen frequently

together in the literature. Association rule learning is defined as a set of techniques

which aim at finding interesting relations in big datasets. These rules could be found

in the same way as clustering rules [Witten et al., 2011]. Association rule mining is

about finding some implications within the data. For instance, if a client buys bread

and cheese, how likely is that s/he buys also some chips? Looking at this problem, one

can easily see that it is very similar to the frequent itemset mining problem. Consider

the following example:

Example 3.2 Having the TDB shown in Table 3.1, we are interested in the following

phenomenon: if a client buys cheese, how likely is it that s/he buys also wine? We denote

it as cheese⇒ wine. To examine that, we need two elements: the support of the itemset

{cheese, wine} which is, in this case, called the support of the association rule and also

the confidence of this rule. As the name explains, the confidence of a rule tells us how

likely it is to have such a rule. As a result, the confidence of this rule is the support of

the {cheese, wine} (the left hand side and the right hand side of the rule) divided by the

support of {cheese} (the left hand side). As one can observe, to obtain the association

rules, we need to compute the frequent itemsets.

Perhaps one of the most known studies in this domain has been conducted by

Agrawal and Srikant [Agrawal and Srikant, 1994]. This study provides a fast algo-

rithm for solving the association rule mining which is from one to three orders of

magnitude faster than the state-of-the-art algorithms of the time. Their algorithm

uses a seed set in order to generate new potentially large (frequent) itemsets called

candidate itemsets and then counts actual support of these candidate sets. In each

step, sufficiently large itemsets become seeds for the next step. These algorithms are

called Apriori and AprioriTid and make use of anti-monotony property. The level-wise

process used in these algorithms avoids considering the transactions in the database.

Few years later, Agrawal et. al. [Agrawal and Shafer, 1996] considered a set of

parallel algorithms for association rule mining and analyzed the trade-off between

computation, memory usage, synchronization and the use of problem-specific infor-

mation. They provided a parallel algorithm to tackle the problem of finding all fre-

quent itemsets. Then a second parallel algorithm handles the problem of generating

the association rules. Based on this framework, the authors suggest three algorithms:

count distribution, data distribution and candidate distribution. The first one tries to
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avoid communication between processors. The second one is based not on the ex-

change of data tuples between processes but on their counts so that processors can

work independently while reading the data. As both of these approaches need pro-

cess synchronization at the end of each pass (which may waste processors’ time if

the workload is not well balanced), the third algorithm tries to tackle this issue with

minimizing the dependency between processes.

Another successful study in this domain is [Bayardo Jr, 1998] in which the authors

present an algorithm which scales linearly in the number of maximal patterns, no

matter how long the patterns are. This algorithm, called Max-Miner, uses the set

enumeration tree search presented in [Rymon, 1992] in order to expand sets over a

finite item domain. The proposed algorithm in that study provides a pruning system

which is not only based on subset infrequency (like Apriori algorithm) but also based

on superset infrequency. Using that, Max-Miner is able to reduce the search space and

perform the mining task several orders of magnitude faster with respect to the Apriori

method.

Han et. al. introduced, in [Han et al., 2000], a new approach for mining fre-

quent itemsets, which avoids the generate-and-test approach used in Apriori-like al-

gorithms. This method is called FP-growth and is based on a frequent pattern tree

(FP-tree) structure in order to store compressed information about frequent patterns.

The efficiency of this approach is based on three points: compressing the database

(to avoid database scans), pattern fragment growth (to avoid candidate generation)

and a divide-and-conquer method to decompose the mining task. Focusing on two

bottlenecks of the Apriori method, i.e. huge number of candidate sets and repeated

database scans, FP-growth provides a better way of mining frequent itemsets which is

about one order of magnitude faster than the Apriori method and scales for both short

and long frequent patterns.

So far, we have seen some major studies in frequent itemset mining domain. How-

ever, classical methods, which mine all frequent patterns, produce a large number of

frequent itemsets. This makes the analysis task very difficult, if not impossible. Hav-

ing millions or billions of frequent patterns may not be ideal for a market analyst who

needs to decide about the future decisions of a company. As a result, a new trend

of research became of interest very quickly: how to find fewer itemsets which are

not only frequent but also informative and non-redundant. Like that, the analyst, for

example, can simply study the data without being overwhelmed with a tremendous

amount of patterns. Consequently, we will first review the major studies in the recent
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domain of finding an informative subset of the frequent patterns before providing the

new BMF-based representative itemset mining procedure.

One of the most known ways to provide a reduced number of itemsets without

loosing information is to mine closed itemsets [Pasquier et al., 1999,?]. Intuitively, an

itemset P is closed if non of its proper supersets has the same frequency as P. One of

the first algorithms proposed to handle this problem is developed in [Pei et al., 2000]

and is called CLOSET. This algorithm, which is based on FP-tree, finds closed itemsets

by developing a single prefix path compression method and exploring a partition-

based projection mechanism. The authors then illustrated the efficiency and speed of

the algorithm by comparing it to other closed itemset mining algorithms.

LCM (Linear time Close itemset Miner) is another known algorithm in the literature

of itemset mining which is basically based on prefix preserving closure extension [Uno

et al., 2005,Uno et al., 2004,Bayardo Jr, 1998]. Initially, LCM did not have a procedure

to reduce the database and, as a result, was not efficient in dense datasets; however,

the reduction techniques then added to the algorithm on the later versions in order to

perform a fast checking on closedness of the itemsets [Uno et al., 2005]. Experiments

on LCM show that it is significantly faster than other methods, particularly when sparse

datasets are evaluated. In the latest version of LCM [Uno et al., 2005], three types of

data structures used in the domain (bitmap, prefix tree and array lists) are combined

in order to provide the best performance.

In order to output a small set of frequent patterns, some studies explicitly define a

targeted number of patterns, and criteria that have to be verified by the set of patterns.

Guns et al. [Guns et al., 2010], for example, present an exhaustive approach, where

the criteria to be satisfied are expressed through different constraints. The main idea

in this study is to produce a set of k related patterns instead of mining all individual

patterns. A number of constraints have been designed in order to find such set at the

global level rather than the local level. Using constraint programming techniques, an

exhaustive search is performed which, according to the authors, has many limitations

since it might be computationally very expensive. A family of constraints has been

introduced in order to find the k-pattern set including individual pattern constraints

(based on [Fürnkranz and Flach, 2005]), redundancy constraints, discriminative con-

straints and a set of different coverage constraints.

Other approaches, such as [Bringmann and Zimmermann, 2007], make use of

redundancy-based heuristics to determine the set of patterns. The algorithm proposed

in [Bringmann and Zimmermann, 2007] iterated over the set of patterns and, in each
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iteration, a pattern is evaluated for its level of goodness. This technique is considered

as a post-processing which is performed on the set of frequent itemsets.

Other studies rely on compression, either over all the frequent patterns [Afrati

et al., 2004], or over the dataset [Vreeken et al., 2011]. In the first case, frequent

itemsets that best approximate the set of all frequent itemsets are computed. This

technique requires a pre-generated set of frequent itemsets and, using that as the

input, an approximated collection of frequent patterns can be generated. In the second

case, the authors exploit the Minimal Description Length (MDL) principle to compute

which set of patterns best compresses the database. The method studied in [Vreeken

et al., 2011] is called KRIMP and is based on a code table: a table which maps each

itemset to a prefix code which is determined based on the usage of the itemset. The

idea of the coding is that more frequent itemsets have shorter lengths since the concern

here is to have the best compression. The KRIMP algorithm starts with a standard code

table based on all singletons (itemsets of size one), and then adds one frequent itemset

at the time (mined beforehand and ordered with respect to a procedure based on size

and support) and recomputes the code table. If the new code table provides a better

compression, then the itemset is kept in the set, discarded otherwise.

All of the previously cited studies consider the set of all frequent patterns in order

to compute the reduced subset of patterns. The approach in [Vreeken et al., 2011]

is a two pass approach, that first has to compute all the frequent patterns and then

select a subset of them, which is computationally inefficient. On the other hand, the

approach in [Guns et al., 2010] computes, in one pass, a subset of frequent patterns

that optimize a given criterion. However, to do so, it has to explore a complex search

space over the sets of patterns, which is also computationally expensive.

The approach presented here, however, is different from the previous studies in

that we rely on main components of the data provided by matrix decomposition tech-

niques in order to find representative frequent itemsets. One should note that the

proposed approach is also different form studies like [Krajca et al., 2011] which use

the Boolean decomposition and closed itemsets to reduce the dimension. Contrary to

other pattern set discovery methods, by moving the burden of reducing the number

of patterns from the pattern search space to the input matrix itself, one can design

mining algorithms that are computationally efficient and that yield good results.
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3.4 THEORETICAL ANALYSIS

In order to provide an efficient BMF-based method for the frequent itemset mining

task, we first need to establish the theoretical link between these problems, and to do

that, we first define two kinds of decompositions: strong decomposition and approxi-

mately strong decomposition. Then, based on these definitions, we show how frequent

itemsets can be mined using matrix decomposition factors.

3.4.1 NOTATIONS

We first define the matrix notations used in this chapter. For a given matrix Xm×n, Xi j

denotes the element of the matrix located in row i and column j. Xi• denotes the

summation of row i, i.e.

Xi• =

n∑

k=1

Xik

X• j denotes the summation of the j th column of X i.e.

X• j =

m∑

k=1

Xk j

The row vector taken from column-wise summation of X is denoted by X•. Similarly,

the column vector obtained from row-wise summation of X is shown by X•. The i th

row of X is denoted by Xi and the j th column of X is denoted by X j. The following

example, illustrates the notations that we use in this study.

Example 3.3 Consider the following matrix, X. In this matrix, X34 = 0, X1• = 4, X•4 =

1, X•, X•, X2 and X5 is shown below:

X =







1 1 1 0 1 0 0

1 1 1 1 0 0 0

1 1 1 0 0 0 0







X • =
�

3 3 3 1 1 0 0
�

X• =







4

4

3







X2 =
�

1 1 1 1 0 0 0
�

X 5 =







1

0

0






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We now intuitively explain how itemsets can be found in the factors of a matrix

decomposition. Consider a decomposition of an input matrix X with k latent factors:

Xm×n ≈Wm×k ×Hk×n. Each of the k columns of W can be mapped to a set of columns

of X (through the product with H). As columns of X correspond to items, columns of

W correspond to packet of items. On the other hand, in H, one observes the relation

between each packet of items of W and each original item of X. Using this setting, one

can easily reconstruct itemsets of X. The following example illustrates this idea.

Example 3.4 Consider the following decomposition of the form X=W×H











1 1 1 0 0 1

1 1 1 0 0 1

1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 1 1 0












=












1 0 1

1 0 1

1 0 0

0 1 0

0 1 0












×







1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1







The matrix on the left (X) contains three itemsets shown in three different colors. The

same colors are used in the matrices on the right hand side to highlight the packet of

items (in W) and the associations of the items to each packet (in H). The columns of W

represent packets of items. The first packet has a support of 3 and the second and the

third have a support of 2. In order to find the items associated to each packet, we need

to look at the rows of H to see which items are assigned to each packet. Items one, two

and three are in the first packet, item four and five in the second and item six in the third

packet.

Based on this example, one can see that this procedure provides a direct way of finding

patterns in the dataset. However, we still need to establish a theoretical link between

BMF and frequent itemset mining so that we can interpret the notions used in itemset

mining domain (such as minimum support value) using BMF factors. To establish

such link, we define the notion of valid transaction matrix, that will be the input of the

proposed method. One should note that any binary matrix can be easily transformed

into a valid transaction matrix.

Definition 3.1 (Valid transaction matrix) A matrix Xm×n is called a valid transaction

matrix if it is binary and there is no rows or columns with all elements equal to zero.

More formally, Xm×n is a valid transaction matrix if:

(1) ∀i, j, 1≤ i ≤ m, 1≤ j ≤ n, Xi j ∈ {0, 1}

(2) ∀i, j, 1≤ i ≤ m, 1≤ j ≤ n, Xi• > 0, X• j > 0

Now we consider different binary decompositions of a valid transaction matrix
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3.4.2 STRONG DECOMPOSITION

A strong decomposition is simply an exact decomposition, i.e. a decomposition which

perfectly reconstructs the input and produces no error in the approximation.

Definition 3.2 (Strong decomposition) A matrix Xm×n is strongly decomposable if:

(1) it is a valid transaction matrix

(2) ∃k, 1≤ k ≤ n such that Xm×n =Wm×k × Hk×n

(3) W ∈ {0, 1}, H ∈ {0, 1}, W× H ∈ {0, 1}

Condition (3) states that the factors W and H as well as their product (W × H) are

binary. The notion of strong decomposition furthermore implies that one can find

factors that are all relevant, in the following sense.

Property 3.1 If X can be decomposed strongly, then there is a strong decomposition of

the form Xm×n =Wm×k×Hk×n such that there is no columns in W and no rows in H with

all elements equal to zero. More formally, for all t, 1≤ t ≤ k, W•t > 0 and Ht• > 0.

Proof. If X is strongly decomposed and W (resp. H) contains one or more fully-zero

columns (resp. rows), then one can remove the zero columns of W and their corre-

sponding rows in H (resp. zero rows of H and their corresponding columns in W), and

still obtain, through the product of the simplified matrices, a strong decomposition of

X with k′ latent factors such that k′ < k.�

The following example illustrates Prop. 3.1 where one can simply remove the second

column of W as well as the second row of H (shown in red) and obtain exactly the

same approximation:

Example 3.5












1 1 0

1 1 0

1 1 0

0 0 1

1 0 0












≈












1 0

1 0

1 0

0 0

0 0












×

 

1 1 0

0 0 1

!

=












1

1

1

0

0












×
�

1 1 0
�

Using the above definitions, we are now ready to provide the following theorem which

describes a first link between the itemsets mined from W and H and itemsets in X.
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Theorem 3.1 Let Xm×n = Wm×k ×Hk×n be a strong decomposition of X. If a packet of

items with support value f is found in W (i.e. ∃p, 1≤ p ≤ k, W•p = f ), then there is at

least one itemset with support value of at least f in X.

Proof. Suppose that packet p, 1 ≤ p ≤ k, has support value f in W, i.e
∑m

i=1
Wip = f .

Because of the definition of strong decomposition and of Prop. 3.1, there exists at least

one q, 1≤ q ≤ n, such that Hpq = 1. Then, for all i, 1≤ i ≤ m, we have:

Xiq =
∑k

j=1
Wi jH jq ≥WipHpq

And thus:
∑m

i=1
X iq ≥

∑m

i=1
WipHpq = Hpq

∑m

i=1
Wip

So finally:
∑m

i=1
X iq ≥ f

which establishes the theorem.�

In simpler terms, Theorem 3.1 shows that, in a strong decomposition, if there exists

a frequent packet of items in W with support value of f , then there is a corresponding

frequent itemset with support value of at least f in X (see Example 3.4).

An important consequence of Theorem 3.1 is regarding the size of the captured

itemset. In this theorem, for a p such that W•p = f , if only one q is found such that

Hpq = 1, then there is an itemset of size one (a singleton), which is not very useful.

However, it is easy to prove that if several such q’s are found, then an itemset, and not

a singleton, in X is captured. This is expressed in the following corollary.

Corollary 3.1 If Xm×n =Wm×k ×Hk×n is a strong decomposition of X, and there exists a

packet of items p, 1 ≤ p ≤ k of size l in H (i.e. Hp• = l) with support value f in W (i.e.

W•p = f ), then there exists an itemset of size at least l and support value of at least f in

X.

The following example, illustrates the Corollary 3.1.

Example 3.6 Consider the following decomposition of the form X=W×H where item-

sets are colored in matching colors X, W and H.









1 1 1 0 0

1 1 1 0 0

0 0 0 1 1

0 0 0 1 1









=









1 0

1 0

0 1

0 1









×

 

1 1 1 0 0

0 0 0 1 1

!
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As one can see, the itemset in red has support value of 2 and length 3, and it is captured

by the first packet of items (first column of W, shown in red) where the support of the

packet is also 2. The items associated to this packet can be seen in the first row of H (also

in red) where one can observe that the first three items are assigned to this packet. As a

result, this factor retrieves the red itemset in X with its exact size and support value.

The second itemset of X, shown in blue, can be captured by the second packet of items

in W, i.e. the second column, also in blue. This packet has a support value of 2 and the

itemset associated to it is an itemset of size 2, found via the second row of H represented

also in blue.

Corollary 3.1 can be directly derived from Theorem 3.1 (we will provide soon a

proof of a more complex version of this Corollary in Theorem 3.3). This result is very

important since it shows that one can systematically mine frequent itemsets of any

size using the factors of the decomposition, and as matrix decomposition provides the

main structure of the data, we can expect them to be representative itemsets (we will

elaborate this point in the experimental section via the quality metrics available in the

literature).

As one can see, once a transaction matrix has been strongly decomposed into la-

tent, binary factors, we can efficiently obtain some representative frequent itemsets

from the decomposition without reloading the data into memory. In practice, however,

a strong decomposition of a transaction matrix may not exist. Accordingly, we now

consider a more realistic decomposition, called approximately strong decomposition,

and reformulate the materials provided so far.

3.4.3 APPROXIMATELY STRONG DECOMPOSITION

A direct extension of strong decomposition is to no longer assume that the decompo-

sition is perfect, i.e. has no error. This can be simply done by adding an error term to

the reconstruction of X from the latent factors.

Definition 3.3 (Approximately strong decomposition) A matrix Xm×n can be decom-

posed approximately strongly if:

(1) it is a valid transaction matrix

(2) ∃k, 1≤ k ≤ n such that Xm×n =Wm×k × Hk×n + εm×n

(3) W ∈ {0, 1}m×k, H ∈ {0, 1}k×n and W× H ∈ {0, 1}m×n
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Note that having values of X, W, H and W×H in {0, 1} implies ε ∈ {−1, 0, 1}m×n. It

should be also noted that Prop. 3.1 holds for the approximate decomposition as well.

Based on Def. 3.3, now we can rewrite Theorem 3.1.

Theorem 3.2 Let Xm×n =Wm×k×Hk×n+εm×n be an approximately strong decomposition

of X, and let εmax be the maximum of absolute values of ε•. If a frequent packet of items

with support value of f is found in W (i.e. ∃p, 1 ≤ p ≤ k, W•p = f ), then there is at

least one itemset with support value of at least f − εmax in X.

Proof Suppose that packet p, 1≤ p ≤ k, has support value of f in W, i.e
∑m

i=1
Wip = f .

Because of the definition of approximately strong decomposition and of Prop. 3.1, there

exists at least one q, 1≤ q ≤ n, such that Hpq = 1. Then, for all i, 1≤ i ≤ m, we have:

Xiq =

k∑

j=1

Wi jH jq + εiq ≥WipHpq + εiq and thus:

m∑

i=1

X iq ≥
m∑

i=1

WipHpq +

m∑

i=1

εiq = Hpq

m∑

i=1

Wip +

m∑

i=1

εiq = f +

m∑

i=1

εiq so finally:

m∑

i=1

X iq ≥ f − εmax

which establishes the theorem.�

Considering itemsets of a given size with approximately strong decompositions

is slightly more difficult than with strong decompositions. The following theorem

extends the corollary of Theorem 3.1 (Corollary 3.1) to the case of approximately

strong decompositions.

Theorem 3.3 Let Xm×n =Wm×k ×Hk×n + εm×n be an approximately strong decomposi-

tion of X, and γ(a, b) = (Wa · εb) where · represents dot product (a ∈ {1, · · · , k}, b ∈

{1, · · · , n}). Also let γ(p) = min
1≤ j≤n

Hp j × γ(p, j), ∀p, 1 ≤ p ≤ k. Now, if there exists a

packet of items p, 1≤ p ≤ k, of size l (e.g. {q1, q2, · · · , ql}) in H (i.e. Hpq1
= Hpq2

= · · ·=

Hpql
= 1 and Hp• = l) with support value of f in W (i.e. W•p = f ), then there exists an

itemset of size at most l and with support value of at least f + γ(p) in X. Furthermore,

if γ(p) = 0, then {q1, q2, · · · , ql} is an itemset of size l in X with support value of f .

Proof. First note that γ(a, b) corresponds to the reconstruction error for item b in

packet a, and that γ(p) corresponds to the minimum reconstruction error of all items

belonging to packet p. Without loss of generality, we assume that a frequent itemset
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of size l and support f occurs in the first f rows of W and first l columns of H (see

the following illustration).

W =















1 · · · k

1 1
...

f 1
... 0
...

...

m 0















H =







1 · · · l l + 1 · · · n

1 1 · · · 1 0 · · · 0
...

k







We thus have:

1st i tem :
∑ f

i=1
X i1 =

∑ f

i=1
Wi1H11 +

∑ f

i=1
εi1

...

l th i tem :
∑ f

i=1
X il =

∑ f

i=1
Wi1H1l +

∑ f

i=1
εil

which can be rewritten:

1st i tem :
∑ f

i=1
X i1 =

∑m

i′=1
Wi′1H11 +

∑m

i′=1
Wi′1εi′1

...

l th i tem :
∑ f

i=1
X il =

∑m

i=1
Wi1H1l +

∑m

i′=1
Wi′1εi′ l

Furthermore, according to the definition of γ(p) for any packet p, we have:

1st i tem :
∑ f

i=1
X i1 = f + γ(1, 1)≥ f + γ(1)

...

l th i tem :
∑ f

i=1
X il = f + γ(1, l)≥ f + γ(1)

which shows that there is an itemset included in {i1, · · · , il} with support of at least

f +γ(1). Furthermore, if γ(1) = 0, then {i1, · · · , il} is an itemset of size l and support

value f in X.�

The following example illustrates how Theorem 3.3 (which is the general form of

Theorem 3.2) works in practice.

Example 3.7 Consider the following Approximately strong decomposition of the form

X=W×H+ ε:






1 1 1 1 1 0

1 1 0 1 1 1

0 0 0 0 1 1






=







1 1

1 1

0 1






×

 

1 1 1 1 0 0

0 0 0 0 1 1

!

+







0 0 0 0 0 −1

0 0 −1 0 0 0

0 0 0 0 0 0






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According to the decomposition shown above and Theorem 3.3, we have the following

matrix for H ◦ (Wa.εb), ∀1≤ a ≤ k , 1≤ b ≤ n :

 

1 1 1 1 0 0

0 0 0 0 1 1

!

◦

 

0 0 −1 0 0 −1

0 0 −1 0 0 −1

!

=

 

0 0 −1 0 0 0

0 0 0 0 0 −1

!

where ◦ denotes the Hadamard product (element-wise product) and . denotes the dot

product. Accordingly, the γ value is -1 for both packets, i.e γ(1) = −1 and γ(2) = −1 as

the minimum value in both rows are -1. According to the decomposition, the first packet,

i.e the first column of W has support value of 2 and as γ(1) = −1, one can conclude that

this column represents an itemset with support value of at least 2− 1 = 1. If we look at

the first row of H, which corresponds to this packet, we see that four items are allocated

to this packet. As a result, this factor represents an itemset with support value of at least

1 and size of at most 4 (shown in red).

The second packet, i.e the second column of W, has support value of 3 and, as γ(2) =

−1, one can conclude that this packet represents an itemset with support value of at least

3− 1 = 2 and size of at most 2 as there are two items associated to this packet, i.e. the

second row of H. This itemset in addition to its corresponding row/column is shown in

blue.

Considering Theorem 3.3, one can easily and systematically mine representative item-

sets using an approximately strong decomposition. Algorithm 3 shows this procedure,

which is denoted as DIM: Decomposition Itemset Miner. Note that, according to The-

orem 3.3, when γ(p) = 0, one is able to identify an itemset in X with its exact support

and size.

3.5 IMPLEMENTATION

The previous development shows how one can find representative itemsets form a

transaction matrix using the decomposition factors. Based on that, having a valid

transaction matrix, one can easily apply the decomposition (to obtain the factors, i.e.

W and H) and start mining the itemsets. According to the input of Algorithm 3, we

need a decomposition method to obtain high quality factors which also satisfies the

binary reconstruction constraint.

We have discussed, in Chapter 2, different methods satisfying the conditions re-

quired for itemset mining. For the experimental section of this chapter, we used the
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Algorithm 3 Mining representative itemsets with DIM

Input: W, H, vector γ, min-supp f , min-size l

Output: S : a set of itemsets with length of at most l and support of at least f

1: S← ;

2: for all rows r in H do

3: if Hr• ≥ l then

4: if W•r + γ(r)≥ f then

5: P ← items corresponding available in r

6: S← S ∪ {P}

7: end if

8: end if

9: end for

10: return S

results provided therein as the input of DIM in order to systematically find repre-

sentative itemests. One should note that we are not considering the Boolean matrix

decomposition [Miettinen, 2008b] in this study since all our theoretical developments

are based on classical matrix multiplication.

3.6 EXPERIMENTS

In this section we evaluate the proposed method, DIM, based on the quality of pro-

duced itemsets and the mining efficiency through a set of experiments on different

datasets. The qualitative experiments compare the set of itemsets output by DIM with

the set of all closed frequent itemsets output by LCM algorithm [Uno et al., 2005]. The

efficiency experiments compare the mining time of DIM and LCM. For LCM, we use

its authors C implementation, while DIM is implemented in Matlab, which provides

efficient matrix operations. The experiments are conducted on a Linux machine with

an Intel Xeon E-2630 with 6 cores @ 2.30 Ghz with 32 GB of RAM. No multiprocessing

or multithreading has been applied on DIM or LCM.

The datasets used in the experiments are publicly available datasets from the FIMI

repository 1. Following the methodology presented in [Uno et al., 2005], we choose

pumsb, accidents and T40I10D100k as representatives of structured dense, dense

and sparse datasets respectively. Although T40I10D100k is of size 100K-by-942 and

1http://fimi.ua.ac.be/data/ (last visited 03-Jun-2015)
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is sparse, if we mine it with very small support values, we have a huge number of

itemsets. Accidents is of size 340K-by-468 and each transaction contains a lot of

items and, thus, it is dense. Since it is not structured, the number of frequent itemsets

and closed itemsets are almost equal for any minimum support value, which makes it

very difficult to mine. Pumsb has 49K transactions and 2K items and each transaction

is rather dense. If we mine that with small minimum support values, then the number

of closed itemsets will be much smaller than the number of frequent itemsets.

3.6.1 EFFICIENCY EVALUATION

Contrary to other frequent itemset mining techniques, the complexity of DIM does not

depend on the minimum support threshold, i.e. once a decomposition is obtained,

the mining process is quite fast and straightforward. This experiment may be consid-

ered unfair, as LCM aims at finding all closed frequent itemsets, while the proposed

approach only computes a small set of representative frequent itemsets. DIM might

thus be compared with approaches computing a representative subset of the frequent

itemsets. However, as discussed in the related work (Section 3.3), most existing ap-

proaches to identify a representative subset of the frequent itemsets are two-pass ap-

proaches, that first compute all (closed) frequent itemsets and then compute a subset

of these frequent itemsets. The existing one-pass approach [Guns et al., 2010] is more

general than the proposed method and does an exhaustive search on a huge search

space. Its time complexity is thus much higher than that of DIM. Therefore, their run-

ning time is higher than the one of LCM alone, and comparing running time of the

proposed method to that of LCM is indeed unfair, but to our disadvantage.

Figure 3.1 presents the mining time with a varying minimum support for both LCM

and DIM. As expected, DIM’s running time is constant. Note that, in DIM, while the

decomposition is done, the mining phase is quite straightforward and fast. Accord-

ingly, one can see a constant line in Fig. 3.1 as the time consuming phase of DIM

is the decomposition. In practice, the decomposition has only to be done once, and

then it can be exploited by Algorithm 3 for any support value we desire. It can be

observed that for high support values LCM is faster than DIM. However, for lower

support values, LCM suffers from the combinatorial explosion of the number of re-

sults, and needs much more computation time than DIM. This point is more crucial in

structured dense datasets, like pumsb, where even with high support values, itemset

mining task is very difficult. In dense datasets, like accidents, LCM becomes very
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Figure 3.1: Time comparison of LCM and DIM, varying the min-supp for pumsb,

accidents and T40I10D100k

slow for support values smaller than 10%. In sparse datasets, like T40I10D100k, it is

easy to find the itemsets with high support values. However, as these datasets contain

quite huge itemsets with small support values, LCM spends a long time to find closed

itemsets.

3.6.2 QUALITATIVE EVALUATION

DIM mines very few itemsets and the efficiency experiments have shown that for low

support values this approach could output a solution faster than state-of-the-art algo-

rithms. It thus remains to evaluate the quality of the itemsets found with respect to

the complete set of closed frequent itemsets.

For this, we rely on metrics presented in [Gupta et al., 2000] and used for evaluat-

ing the quality of a subset of frequent itemsets with respect to the entire set of frequent

itemsets. Following those metrics, we denote the entire set of closed itemsets (output
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by LCM) as base-itemsets and itemsets outputs by DIM as found-itemsets. The following

two metrics evaluate the quality of found-itemsets with respect to base-itemsets.

Recoverability: this metric measures how well a collection of found-itemsets can

cover base-itemsets. Consequently, this metric is similar to recall. For a base-itemset

Bi, recoverability is calculated as follows: among all found-itemsets F j we look for the

one which has the maximum number of items in common with Bi, namely F i
max

. The

recoverability of Bi is defined as:

recoverabil i t y(Bi) =
|Bi ∩ F i

max
|

|Bi|
(3.1)

The total recoverability is a weighted average (bigger base-itemsets contribute

more than smaller ones) of the recoverability of all base-itemsets.

Precision: As we can see, having one single large found-itemset (possibly includ-

ing all items) results in a recoverability of 1 for all base-itemsets. Therefore, we need

another metric to penalize such cases. Spuriousness is another metric to evaluate the

quality of found-itemsets. For a found-itemset Fi, spuriousness is defined as follows:

among all base-itemsets, we find the one which has the maximum number of items in

common with Fi, namely Bi
max

. Then spuriousness of Fi is defined as follows:

spuriousness(Fi) =
|Fi − Fi ∩ Bi

max
|

|Fi|

In this case also the total spuriousness is computed by a weighted average (bigger

found-itemsets contribute more than smaller ones) of the spuriousness of each found-

itemset. Precision of an itemset is then defined as 1 − spuriousness. The following

example illustrates these metrics:

Example 3.8 Consider {A, J} and {A, B, C} as found-itemsets and the table 3.2 as a set

of base-itemsets:

Table 3.2: Base-itemsets

#1 #2 #3 #4 #5 #6

{A,B} {A,B,D} {A,B,C,D} {A,D,E,F} {A,F,G,H,I} {A,C,D,F,I}

All the base-itemset can be best recovered by the second found-itemset ({A, B, C}). All

items of # 1, two items of # 2, all items of # 3, two items of # 4, one item of # 5 and

two items of # 6 are covered. As a result we have the following recoverability for each

base-itemset:

Recoverabil i t y(#1) =
2

2
Recoverabil i t y(#2) =

2

3
Recoverabil i t y(#3) =

3

3
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Recoverabil i t y(#4) =
2

4
Recoverabil i t y(#5) =

1

5
Recoverabil i t y(#6) =

2

5

Consequently, the total recoverability of this set of found-itemsets is a weighted average

over the above mentioned values:

2
2
× 2+ 2

3
× 3+ 3

3
× 3+ 2

4
× 4+ 1

5
× 5+ 2

5
× 5

2+ 3+ 3+ 4+ 5+ 5
= 0.47

For spuriousness, all the base-itemsets can only match one item of the first found-

itemset ({A, J}); however, the second found-itemset ({A, B, C}) can be completely matched

with # 3. Accordingly, the spuriousness of this set of found-itemsets (using a similar

weighted average as shown above) is

1
2
× 2+ 0

3
× 3

2+ 3
= 0.20

and as a result, the precision of these found-itemsets is 1− 0.2= 0.8.

A summary of the results is presented in Table 3.3. Number of (closed) frequent

Table 3.3: Comparing LCM closed itemsets and DIM itemsets

Dataset min-supp #(LCM) #(DIM) Prec. Recov.

Pumsb

40% 44.7M 7 71% 72%

20% 7.49B 10 34%* 76%*

10% ≫10B 15 27%* 94%*

5% ≫10B 17 25%* 94%*

1% ≫10B 20 22%* 94%*

accidents

10% 9.97M 9 75% 67%

5% 64.8M 13 69% 68%

1% 1.62B 15 40%* 53%*

T40I10D100k

1% 64481 1 88% 2.8%

0.5 % 1.27M 7 84% 9.5%

0.3 % 3.56M 8 87% 10%

0.1% 18.4M 9 87% 18%

itemsets for both LCM and DIM as well as the precision and recoverability of DIM

itemsets are shown in this table. The minimum size for the itemsets is set to 2 since

singletons are not of interest. The number of latent factors (k) is set to 30 since larger

values of k results in uninteresting itemsets (i.e. itemsets with large error value). To
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increase the readability, large numbers are suffixed by M (millions) or B (billions).

Cells with a star (*) report an estimate: LCM outputs too many items, resulting in

output file of hundreds of Gigabytes and hard disk saturation. In these cases only a

uniform random sample of 5 million itemsets was used to compute the metrics.

Two points in this table are of particular interest. First, whereas the number of

closed frequent itemsets can get over billions of itemsets (in some cases it is even hard

to count them, see pumsb for example), the number of frequent itemsets output by

DIM is always very small. Thus, the frequent patterns output by DIM can be quickly

examined by an analyst, which is not the case for all closed frequent itemsets produced

by LCM.

Second, despite being so few, DIM frequent itemsets exhibit significant recover-

ability values. This fact becomes more important when the precision is also high, like

accidentswith minimum support of 10% and pumsbwith minimum support of 40%.

In these cases, not only we are able to recover a large amount of base-itemsets, but

also we can guarantee that these itemsets are not long, uninteresting ones (according

to the precision value). In other words, using DIM itemsets, an analyst can have a

general, precise view of the entire data without being overwhelmed by millions or bil-

lions itemsets. For instance, in case of accidents with minimum support of 10%, we

can look at 9 representative itemsets produced by DIM (instead of looking at 9.97M

itemsets of LCM) and recover 67% of all closed itemsets.This is an important contribu-

tion: it experimentally shows that by looking at DIM patterns, an analyst will have a

significant glimpse of the knowledge that can be extracted from the dataset, in a very

short amount of human analysis time.

The case for sparse datasets like T40I10D100k is different. For this dataset DIM

extracts few itemsets with very high precision values but a relatively low recoverabil-

ity (18% for a support of 0.1%). This result is in line with the different nature of

T40I10D100k compared to pumsb and accidents: T40I10D100k is a synthetic,

sparse dataset and it does not exhibit the same strong "pattern structure" as the two

other datasets. This can be confirmed with LCM results: there are few patterns com-

paratively to the other datasets, and they appear at very low support values. In such a

case, the proposed method based on matrix decomposition is not the most adapted to

get a representative view of the complete set of itemsets of LCM, as matrix decomposi-

tion techniques are likely to remove small groups of ones from the matrix for the sake

of approximation. This results in losing some information that appears in the com-

plete output of LCM. On the other hand, the itemsets captured by DIM are captured
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with an extremely high precision; for instance, for a support of 0.1% the analyst will

have to analyze only 9 itemsets, and get a good idea of the content of about one fifth

of the complete number of itemsets.

Since DIM provides few itemsets, one may wonder if the amount of information

provided by these itemsets can be also obtained by taking the top p (here, the term top

is considered with respect to the support value, i.e. the p itemsets having the maximum

support values) itemsets produced by LCM, where p is equal to the number of itemsets

produced by DIM. Table 3.4 gives recoverability for the top p itemsets of LCM for each

dataset (precision is by definition 100% in this case). For instance, in the accidents

dataset with minimum support of 10%, DIM outputs 9 itemsets, so we take the top 9

itemsets from the results of LCM, and compute the recoverability, which is 13%. The

recoverability of the top p itemsets of LCM is more than 4 times lower than those of

DIM in real datasets. In the synthetic dataset, however, the improvement is marginal.

These results, in general, confirms that DIM itemsets convey more information than

traditional top p itemsets techniques.

Dataset p min-supp Recov. (LCM) Recov. (DIM)

pumsb 7 40% 15% 72%

accidents 9 10% 13% 67%

T40I10D100k 9 0.1% 12% 18%

Table 3.4: Comparing top-p LCM closed itemsets with DIM itemsets

3.7 CLOSING REMARKS

In this chapter, we have examined the problem of finding representative itemsets

through decomposition of the input matrix. Using theoretical analysis, we have shown

that matrix decomposition can help us mining representative frequent itemsets as it

extracts the main information of the data.

The experiments have shown that although for high support values the proposed

approach is less time efficient than state-of-the-art algorithms, for low support values,

it is much faster than those algorithms. This approach is also highly scalable with

respect to other algorithms according to the fact that the classical itemset mining ap-

proaches become very slow since they need to explore a huge combinatorial space as

the number of items increases.
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The proposed method only finds a handful of representative itemsets, but the ex-

periments show that these itemsets convey a significant portion of the information of

all frequent itemsets. We advocate that contrary to classical methods, the mining time

of the proposed method is well invested: what is the utility of a very fast algorithm

that outputs millions of patterns that an analyst will take hours to make some sense

of? With the proposed method, the computer does most of the work, and the analyst

is presented with concise, reliable and manageable information.
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4 REPRESENTATIVE OBJECTS FOR LARGE

DATASETS

4.1 INTRODUCTION

Dealing with a large number of instances is a major problem in many scientific ar-

eas such as data mining or data analysis. In big data, selecting most representative

data points is not only of interest for analysts but also simplifies the visualization.

In many applications, such as text mining for instance, many data points are similar

(or correlated) and could be described by one representative data point [Xin et al.,

2005,Zhou et al., 2009]. For instance, in [Zhou et al., 2009], the authors consider the

problem of designing a personalized recommendation algorithm and try to provide a

new technique based on higher order correlations so that the redundant correlations

are eliminated. The main idea in that paper is that similarities between the same at-

tributes (potentially, the attributes with higher weights) among data instances may

introduce strong correlations. The following example illustrates the idea of represen-

tative object selection in the frequent itemset mining domain (see Chapter 3 for more

detail on frequent itemset mining).

Example 4.1 Consider the following set of frequent itemsets mined by an arbitrary min-

ing algorithm:

{I1, I3, I4, I5} {I1, I3, I4, I6} {I1, I4, I5, I6} {I3, I4, I5, I6} {I1, I3, I4, I5, I6}

One can observe that this set of itemsets can be well represented by the last itemset as they

are all (highly) correlated and the last itemset can cover the others.

Another example of such cases is the protein datasets where one need to select

a set of non-redundant data points in order to apply statistical analysis of protein

sequence-structure relations [Hobohm et al., 1992]. In this domain, one is interested
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in selecting the datasets which are similar as the set of datasets considered in this

domain could be very similar and, as a result, redundant.

Many datasets in data mining could be seen as matrices where rows represent

the objects (instances) and columns represent the features. In such cases, we are

interested in selecting a few objects of this matrix such that we can have a global

view of the entire data. These objects are called representative and are considered in

many interesting applications [Leroy et al., 2015]. For instance, a biologist might be

interested in finding a set of genes in a gene expression data which are responsible

for a particular disease. Classic approaches such as Principal Component Analysis

(PCA) and Singular Value Decomposition (SVD) fail to find the answer to this question

[Deshpande and Rademacher, 2010,Mahoney and Drineas, 2009].

A simple solution to this problem is to perform a clustering on the dataset and

consider the centroid of clusters as representative objects. However, there are some

drawbacks in such approaches. Firstly, in real world cases, one does not know the

structure of the data in advance. Accordingly, it might be very difficult to choose the

right number of clusters [Milligan and Cooper, 1985,Ben-Hur and Guyon, 2003]. Sec-

ondly, one data center per cluster may not be able to provide a good global view of

the data. Consider a complex, high-dimensional dataset with millions of instances

and only very few clusters; certainly, a huge dataset cannot be well represented with

only several data points; on the other hand, clustering the data with a large number

of clusters gives the chance to non-representative instances to be selected as represen-

tatives [Daszykowski et al., 2002]. Thirdly, in some applications (as we will see in the

experimental section), the data is not clusterable, i.e. it contains only one type of data

(all the genes involved in a given disease, all the news containing a given topic, etc).

Lastly, the distribution of the data points plays a very important role in the process of

data selection. Picking only the central points of the clusters is not able to handle this

issue appropriately.

As an example, consider Fig. 4.1 where among more than 12K instances, 40 cen-

troids of K-medoids have been displayed. Although these centroids can cover two

arms of the data, the one on the top is not very well covered as only two representa-

tives have been selected form there. We will see, in the experimental section, what this

dataset represents and show how we can find other representatives with an alternative

technique proposed later in this chapter.

As our fourth contribution, in this chapter, we propose a method which selects

a handful of instances which can provide a global view of the data [Mirisaee et al.,
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Figure 4.1: Centeroids provided by K-medoids with k = 40 on a 2D data with more

than 12K instances.

2015a]. This method can be considered as an alternative technique for what has

already been proposed in this context. More importantly, as it is explained in the ex-

perimental section, the proposed method can perfectly play a complementary role for

other state-of-the-art representative subset selection algorithms, like DBSCAN-based

technique.

This chapter is organized as follows: Section 4.2 discusses the related work on

the topic. Then the main problem, its three variants along with the complexity anal-

ysis is explained in Section 4.3. The solutions to these three variants are provided in

Section 4.4. In Section 4.5, experiments are discussed on synthetic and real datasets

and an extensive analysis on the results is provided. Lastly, Section 4.6 provides some

closing remarks of the chapter.
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4.2 RELATED WORK

As mentioned before, high dimensionality as well as large number of data instances

inspired researchers to look for data simplification techniques (when a few dimensions

are concerned, the problem is easy to solve [Chaudhuri et al., 1994]). In general, data

simplification (or data reduction) can be obtained in different ways. For instance, one

may use feature selection algorithms in order to reduce the number of columns in

a dataset [Blum and Langley, 1997, Liu and Motoda, 1998]. Embedded, filter and

wrapper approaches are some examples of the feature selection problem.

In [Blum and Langley, 1997], the authors consider the methods which focus on

the problem of finding and removing irrelevant features and the problem of selecting

relevant examples. The former consists of finding the features which can describe the

concept and the methods to combine them in order to reduce the number of features.

The latter, however, focuses on selecting examples which are able to provide some

improvements in the learning process. This task is mainly performed in order to satisfy

different objectives, most of them concerns clustering applications. For example, if the

learning is computationally expensive, one can select a subset of examples in order to

make the learning process faster. Another case is when the labeling costs a lot as it

may need a large amount of human expert time.

Ideally, the instance selection procedure should be model independent [Huan and

Motoda, 2002], i.e. having a model M and two data sets s and t, where s is the entire

dataset and t is a subsample (a selection of objects) of that, we need P(Ms)≈ P(Mt),

where P() denotes the performance of a model. As discussed in [Huan and Motoda,

2002], there are different techniques to address the object selection problem. Perhaps,

the easiest way is sampling: selecting some data points at random (mostly without

replacement) or using a probability distribution [Kivinen and Mannila, 1994]. Alter-

natively, one can perform an adaptive sampling where the next object to be selected

depends on the objects that have already been selected. The advantage of this tech-

nique is that data characteristics are considered in the selection process. However,

one drawback of this type of techniques is that they may introduce other complexities

while used in different applications [Chen et al., 2002].

A different approach to select instances from datasets is to use the classification

techniques. For instance, one can take the points which matter to the classifier. Instance-

Based Learning methods are examples of such technique. In [Aha et al., 1991], for
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instance, the authors discuss the problem of using only some specific part of the data

to address the incremental learning task. In this paper, the nearest neighbor algorithm

is extended and, in order to handle its memory requirements, their algorithm relies

only on some specific examples with small sacrifices in classification accuracy.

In [DuMouchel et al., 1999], the authors introduce the squashing technique which

could be seen as a lossy database compression method. The idea in that work is to

scale down large datasets while keeping its micro-structures which are important for

data analysis. Basically, squashing has three steps, namely grouping, momentizing

and generating. In grouping, the data is partitioned into subregions. Then moments

are calculated using Taylor series approximation, and next, for each region a set of

squashed elements are created. These three steps can be individually optimized in

order to find the most desirable results. Squashing is shown to be much more effective

than a simple random data selection.

In a recent work, Mall et. al. proposed a KNN-based method in order to provide

a subset of data that can be representative of the inherit structure of data [Mall et al.,

2014]. To do that, the authors first convert the data to a KNN graph and then they

use the FURS method [Mall et al., 2013], which takes the nodes from dense regions

of the graph, to obtain a subset. Then the subsets are used in different learning tasks

such as clustering and classification.

Our study is different from the above-mentioned ones in that they all try to extract

some examples from the data in order to improve the modeling tasks (such as clas-

sification). However, we do not consider such cases and aim at presenting only few

examples from the dataset in order to provide a top-view of the entire data.

Another trend of data simplification techniques is matrix decomposition methods

such as Non-negative Matrix Factorization (NMF) [Lee and Seung, 1999a, Lee and

Seung, 2000]which try to cluster the data in both dimensions (as discussed in detail in

Chapter 1); i.e. cluster the objects and attributes at the same time. Other approaches

like PCA try to find linearly uncorrelated variable among the data [Wold et al., 1987].

Perhaps the most known technique in matrix decomposition family is SVD [Golub

and van Loan, 1996] which provides low rank approximation via singular values and

singular vectors. In general, as discussed in Chapter 1, SVD, when applied to a given

matrix X ∈ Rm×n is a factorization of the following form:

X = UΣV T (4.1)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and their columns are eigen-
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vectors of X X T and X T X , respectively. Σ is a diagonal matrix of size X and it contains

singular values of X in descending order. The nearest rank-k matrix to X under both

the Frobenius and the spectral norm is obtained by taking the largest k eigenvalues

and their corresponding eigenvectors [Deshpande and Rademacher, 2010].

Many previous studies tried to address the problem of column subset selection (also

refereed to as volume sampling which was originally defined in [Deshpande et al.,

2006]) where the objective is to be as close as possible to the best rank-k approxima-

tion computed via SVD. Although SVD can be computed in O(min{mn2, nm2}), it is

still too slow for many applications. Accordingly, there is a large body of papers ex-

ploring the approximation techniques for that. For instance, in [Boutsidis et al., 2009],

the authors provide a method to select k columns of a given matrix, X, such that the

probability of having ||X− PCX||F ≤ Θ(k log1/2 k) ||X−Xk||F is at least 0.8, where PCX

denotes the projection of X onto the span of columns of C and Xk denotes the best

rank-k approximation obtained via SVD. Their algorithm consists of two steps: a ran-

domized step and a deterministic step. In the randomized step Θ(k log k) columns of

X is chosen, and in the deterministic step a strong rank-revealing QR factorization [Gu

and Eisenstat, 1996] is employed to select exactly k columns of X.

Our study is also different from this family of research because we are not inter-

ested in finding the low rank approximation (rank-k approximation) but we would

like to find some real data points selected from a huge amount of data.

Representative object selection has been widely used in other domains such as

chemistry, biology and chemometrics [Dean and Lewis, 1999,Brown and Martin, 1996,

Higgs et al., 1997, Agrafiotis, 1997]. One of the most known approaches has been

discussed in [Kennard and Stone, 1969] and is very similar to the one presented

in [Arthur and Vassilvitskii, 2007b] which is used to initialize K-means (which is ba-

sically the idea of the K-means++ algorithm). To select k representative objects, the

idea of [Kennard and Stone, 1969] is to first select the most central data object and

then select the one which has the maximum distance to the first one. The next data

points are selected based on the maximum distance to all previously selected ones.

This procedure is continued until k data points are selected. As we will see in the

following sections, one of the variants of the proposed method is basically using a

similar approach for initialization and, thus, will provide a better solution with re-

spect to [Kennard and Stone, 1969].

Another similar, but more efficient, technique has been introduced by Clark [Clark,

1997] and is called OptiSim. Similar to [Kennard and Stone, 1969], OptiSim first
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selects the most central data point. Then, it selects one object at random and checks

its distance to all previously selected ones; if the (average) distance is more than a

parameter ε, then the object is added to the set, discarded otherwise. This process

is repeated until k items are added to the set. The main disadvantage of OptiSim is

that it is not completely parameter-free as one needs to determine a proper value for

ε. Moreover, in one round of selecting candidates, we may not find k object (as we

select candidates at random) and, as a result, a recycle bin needs to be considered in

order to reselect the items if such case happens.

In [Daszykowski et al., 2002], the authors propose a clustering-based approach

(more particularly, based on DBSCAN) to tackle the problem of finding representative

object. In this approach, each object is labeled as a core, border or outlier, and based on

those labels, clusters are built. Finally, a K-means is applied on the clusters provided by

DBSCAN and the centers (which are not necessarily the data points) are then selected

as representatives of the dataset. We will, in the experimental section, compare the

results of the proposed method with a method inspired from [Daszykowski et al.,

2002] and show that in some cases they perform similarly and in others the perform

as complementary techniques for data representation.

4.3 PROBLEM STATEMENT, COMPLEXITY ANALYSIS

As mentioned before, we would like to find a set of instances from a large dataset

which can represent the entire data and provide a global view of it. To do that, we

introduce a general problem, called Instance Selection Problem (ISP), and is defined

as follows:

Definition 4.1 (The general ISP problem) Let L = {X1, · · · , Xm} be the set of rows of

matrix X ∈ Rm×n with X i the i th row of X, and d a distance function. Then the general

ISP problem is to find a subset S ⊂L with |S|= k and 1≤ i ≤ m such that:

argmin
S⊂L

∑

x∈L\S

d(x ,S) (4.2)

As mentioned before, many rows (i.e. data instances) might be correlated and

could b represented by a single row. Accordingly, we define matrix Cm×m as the pair-

wise similarity matrix where Ci j represents the similarity between i th and j th row of X.

Without loss of generality, we assume that C ∈ [0, 1] where 1 denotes the maximum
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similarity and 0 denotes the minimum similarity. Clearly C′ = 1 − C represents the

pairwise dissimilarities between rows of X. Based on that, we have three variations

of the ISP problem, namely ISPmin, ISPaverage and ISPmax . The min case tries to find

some data points such that the sum of distances between each point and the closest

point from the set of selected ones is minimized (like classic clustering algorithms),

while the max case finds the points which has the maximum dissimilarity with all oth-

ers. The average case finds the points which are in average close to all other data

points. In the following, we formalize these problems:

Definition 4.2 Given a data matrix X, the setL , a pairwise dissimilarity matrix C′ and

an integer k, we have the following ISP problems:

ISPmin : argmin
S⊂L

∑

x∈L\S

min
x ′∈S

C ′(x , x ′) (4.3)

ISPaverage : argmin
S⊂L

1

|S|

∑

x∈L\S

∑

x ′∈S

C ′(x , x ′) (4.4)

ISPmax : argmin
S⊂L

∑

x∈L\S

max
x ′∈S

C ′(x , x ′) (4.5)

such that |S|= k.

In order to study the complexity of the problem stated in Def. 4.2, we use two

well-known problem: K-medoids and weighted max-cut problem.

K-medoids problem: given a set of n data points W and a distance function d, the

objective is to find a set of medoids, T , such that |T |= k and sum of distances between

each data point and its closest medoid, Ti, is minimized. More formally:

argmin
T⊂W

∑

x∈W

d(x , T ) with d(x , T ) =min
y∈T

d(x , y) (4.6)

By comparing Eq. (4.3) and Eq. (4.6), one can see that ISPmin is NP-complete as it

is a simple, polynomial transformation from the K-medoids problem. With the same

reasoning, we can simply prove that the ISPmax is also NP-complete since ISPmax is

similar to ISPmin with a different distance function, i.e. d(x , T ) =max
x ′∈S

C ′(x , x ′).

In order to study the complexity of ISPaverage, we use graph partitioning problems,

in particular those introduced in [Ageev and Sviridenko, 1999] and [Feige and Lang-

berg, 2001]. The problem which is of interest here is the Maximum Cut problem with

Given Sizes of Parts (MCGS).
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MCGS: given a graph G = (V, E) and nonnegative weights for edges wi j, MCGS

problem aims at finding a set U ∈ V such that |U |= k and
∑

i∈U , j /∈U

wi j is maximized. As

discussed in [Feige and Langberg, 2001], this problem (which is referred to as Max-

Cutk therein) is NP-complete. It is easy to observe that having an instance G = (V, E)

of the general Max-Cut problem, we can create the following instances of the MCGS

problem in polynomial time: {G = (V, E), k = 1}, · · · , {G = (V, E), k = [n/2]} where

n = |V |. If we are able to find a polynomial solution for these instances, then we can

find a polynomial solution for the Max-Cut problem, which is a contradiction unless

P = N P. It is also very easy to see that ISPaverage is clearly a MCGS problem and, as a

result, is NP-complete.

4.4 SOLUTIONS

4.4.1 MIN AND MAX CASE

As mentioned, in the previous section, in order to solve the ISPmax and ISPmin, one

can use the K-medoids solvers such as Partitioning Around Medoids (PAM) [Kaufman

and Rousseeuw, 1990]. In this case, we can apply PAM by providing it with either the

similarity matrix (the max case) or dissimilarity (the min case) matrix. Algorithm 4

describes the PAM approach used to solve ISPmin and ISPmax . Without loss of gener-

ality, we assume that rows describe the objects and columns describe the attributes.

Therefore, we aim at selecting k rows of the input matrix X as representatives. We also

assume that the C ∈ [0, 1] and, as a result, C ′ = 1−C ∈ [0, 1]. In terms of complexity,

one should keep in mind that in any similarity based method, we first need to con-

struct the similarity or the dissimilarity matrix. Given the matrix of pairwise distances

between the data points, for ISPmin and ISPmax , as shown in Algorithm 4, we need

to substitute each centroid with an object and redo the object assignment until stabi-

lization. Let Λ be the number of iterations before stabilization of centroids; then, the

complexity of Algorithm 4 will be O(M2KΛ) as we have a loop over all the medoids

(K times) and all the non-medoids (M times) in order to do the reassignments (M

times).
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Algorithm 4 PAM algorithm for ISPmin and ISPmax

Input: Similarity matrix C or distance matrix C ′, k

Output: k representative instances

1: select k rows of X

2: compute the total cost

3: repeat

4: for all medoid m do

5: for all non-medoid m′ do

6: swap m with m′ and compute total cost

7: end for

8: replace m with m′ having the minimum cost

9: end for

10: until no change observed in the medoids

11: return medoids

4.4.2 AVERAGE CASE

In case of ISPaverage, we propose a greedy algorithm which can efficiently find a so-

lution of the optimization problem (4.4). As one can observe, we can transform the

minimization problem, i.e. Eq. (4.4), into a maximization problem by simply replacing

C ′ with C . The proposed greedy algorithm, which works on the maximization version

of ISPaverage, picks the instances one by one in order to build the final solution set S.

To do that, suppose that we have a set of "already selected" items, S−1, and we want to

add the next item, sl , to this set in order to make a larger set S (i.e S= S−1 ∪ sl). One

can exploit the following formulation knowing that we can simply omit the averaging

coefficient in the optimization problem:

argmax
sl∈L\S−1

∑

x ′∈L\S

∑

s∈S

C(x ′, s) =

argmax
sl∈L\S−1

∑

x ′∈L\S

� ∑

s∈S−1

C(x ′, s) + C(x ′, sl)
�

=

argmax
sl∈L\S−1

∑

x ′∈L\S

∑

s∈S−1

C(x ′, s) +
∑

x ′∈L\S

C(x ′, sl) =

argmax
sl∈L\S−1

∑

x ′∈L\S−1

x ′ 6=sl

∑

s∈S−1

C(x ′, s)

︸ ︷︷ ︸

α

+
∑

x ′∈L\S

C(x ′, sl)

︸ ︷︷ ︸

β

(4.7)
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Algorithm 5 Greedy approach for ISPaverage

Input: Similarity matrix C , k

Output: k representative instances

1: S← ;

2: S← S∪ argmax
i

∑M

i=1
Ci j

3: repeat

4: for all x ∈ X\S do

5: A(x) =
∑|S|

i=1
C(x ,Si)

6: B(x) = 0

7: for all x ′ ∈ X\S, x ′ 6= x do

8: B(x)+ = C(x , x ′)

9: end for

10: C(x) = B(x)−A(x)

11: end for

12: S← S∪ argmax C(x i)

13: until |S|< k

14: return S

We can rewrite α as the following:

α=
∑

x ′∈L\S−1

∑

s∈S−1

C(x ′, s)

︸ ︷︷ ︸

does not depend on sl

−
∑

s∈S−1

C(s, sl)

︸ ︷︷ ︸

γ

(4.8)

Accordingly, the terms to be maximized are β and γ:

argmax
sl∈L\S−1

∑

x ′∈L\S

C(x ′, sl)−
∑

s∈S−1

C(s, sl) (4.9)

Eq. (4.9) suggests, for the next point to be selected, the following greedy approach: in

order to find the best point to add to the set, one can assign a score to all points and pick

the point with the highest score. For each point, this score is simply computed as the

sum of similarities it has with all non-selected points (β) minus sum of similarities it

has with all already-selected points (γ). Algorithm 5 provides such greedy procedure.

Note that first point added to the set is the one that is the most similar to all other points

(line 2). As far as the complexity is concerned, given the pairwise similarity matrix,

C , for each non-selected object, we need to consider its distance to all elements of S

which results in a complexity of O(MK). This said, the greedy approach is much faster

than Algorithm 4.
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Figure 4.2: Data points selected by different ISP methods on synthetic data.

4.5 EXPERIMENTS

4.5.1 ILLUSTRATION ON SYNTHETIC DATA

As mentioned before, given a set of data points, we aim at selecting few instances

in order to have a view of the entire data. Here, we first show how the algorithms

discussed in Section 4.4 behave on a small, synthetic dataset. To better visualize the

effect of ISP methods, we have shown in Figure 4.2, some random points distributed

in four visual clusters each of which located in one of the quadrants of the 2D plane.

Then, we considered 10 points to be selected for the max, 10 points for the average

case, and 4 points for the min case as there are 4 clusters in the set. Figure 4.2 shows

two cases for the synthetic data: balanced and unbalanced, where in the unbalanced

case the two bottom regions contain more data points compared to those of top (and

bottom-left more than bottom-right).

As one can see in the balanced case, the average method selects the most central

instances, i.e. the points which are on the inner frontier of the clusters and are very

close to other clusters. In this case, the points are distributed among all clusters while

in the unbalanced case the points tend to be more biased to the clusters having more

instances (the bottom-left cluster). One should note that these points are not simply

the points the most similar to others (in which case it will be very easy to find them),
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but are the points which are similar to other points and are dissimilar to each other

(see Eq. (4.9)). The points having this property are called "central" points hereafter.

The max method, as we expect, selects the data points which are on the outer

frontier of the clusters which denotes the fact that they are the least similar instances

compared to their own cluster as well as the other clusters. The min case, which is a

classical K-medoids approach, selects the centroids of each cluster.

This simple example shows how different ISP methods can select objects from dif-

ferent regions to provide a global view of the data. In the following, we will illustrate

the effectiveness of the three ISP methods on Reuters data and will explain how the

proposed algorithms behave on this dataset.

4.5.2 REUTERS DATA

We have visually shown, on synthetic data, how different solutions of the ISP problem

work. However, we still need to study them on real world data. To do that, we use

the Reuters dataset [Lewis et al., 2004] which is publicly available for research pur-

poses. This dataset is called RCV1 and contains Reuters’ English news collected from

20/08/1996 to 19/08/1997 where each entry is associated with at least one topic.

There are around 800K news and more than 90 topics. To conduct our experiments,

we adopted the following strategy: we first found the most popular topics, i.e. the

topics which had more than 200 news containing only and only that topic. We then

picked four popular topics and extracted all the news having that topic (and poten-

tially other topics) in their metadata. Next, we removed the stop words, lemmatized

the text and removed punctuation and digits. Finally, we filtered the terms which

appeared less than 5 times. Table 4.1 illustrates the chosen topics as well as some

information about them after the preprocessing step. We used normalized tf-idf as

Code Description # Docs # Terms

C11 Strategy/Plans 24325 35142

C31 Markets/Marketing 40506 42002

E512 Merchandise trade 12634 19037

GDIP International relations 37739 43167

Table 4.1: Topics used in the experiments.

the weighting and the cosine function as the similarity metric as they are widely used
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Figure 4.3: Comparison of the normalized distribution of topics coappearing with

E512. The horizontal axis represents the topics (not labeled to increase the readabil-

ity) and the vertical axis shows the values. Topics with less than five documents have

been removed from the distributions.

in such contexts [Bilenko et al., 2003, Zhang et al., 2011]. In the following, we will

discuss the data points selected by each ISP algorithm and explain how they can rep-

resent the entire data. To do that, we fix the number of documents to be selected to 60

(i.e 180 documents in total). The main reason is that if we select less documents, al-

though ISP works well, other approaches (explained shortly) may not provide a good

representation of the entire data.

We have already seen, thought Fig. 4.2, how ISP behaves on a small, synthetic

data. Here, to illustrate the effect of each ISP technique on real data, we show the

94



4.5. EXPERIMENTS

 0

 0.2

 0.4

 0.6

 0.8

 1

GDIP: normalized distribution of coappearing topics

 0

 0.2

 0.4

 0.6

 0.8

 1

Avg case: normalized distribution of coappearing topics

 0

 0.2

 0.4

 0.6

 0.8

 1

Max case: normalized distribution of coappearing topics

 0

 0.2

 0.4

 0.6

 0.8

 1

Min case: normalized distribution of coappearing topics

Figure 4.4: Comparison of the normalized distribution of topics coappearing with

GDIP. The horizontal axis represents the topics (not labeled to increase the readability)

and the vertical axis shows the values. Topics with less than five documents have been

removed from the distributions.

normalized distribution of topics of the documents selected by each ISP method as

well as that of the original set for two topics, namely E512 and GDIP, in Figure 4.3

and 4.4 respectively. Note that the topics are sorted (in descending order) based on

their frequency of appearance in the original set and this order has been preserved for

the ISP plots. We have also filtered the topics with less than 5 documents in order to

avoid the very long tail in the distributions.

As one can see in Fig. 4.3, the average method selects the data points with a strong

focus on the two most popular topics (E51 ECAT). The max case, however, has a long,
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visible tail (i.e. selects the documents containing less frequent topics in the original

set) as it tends to select the objects with a wide variety of topics. As it can be seen, the

topics provided by the objects selected by the max technique are a lot less frequently

seen in the original set (one can easily observe that by comparing the corresponding

bars in the max case and in the first plot). This confirms that the ISPmax selects the

documents which are far from others and contain less frequent topics. The min case is

expected be located somewhere between the two others: it should, ideally, selects the

documents containing not solely the "most popular" topics, but also some documents

with "less popular" topics. That is the fact that one can see in Fig. 4.3 when it is

compared to other approaches as well as to the distribution of original set. With the

min approach, the distribution values of the first 5 "most frequent" topics is at least

0.2 and we still see some other topics further on the tail of distribution. Compared

to the distribution of the original set, one can observe that min case is also able to

highlight the topics which are in the medium level of "popularity" in the data. On the

other hand, unlike the max case, it does not provide a vast range of topics including

less frequent topics. This indicates that the min case has found data points situated

between the max and the average case.

For GDIP, similar to E512, one can see that the documents of the average case focus

on the most popular topics; that is why one observes the bars only on the left hand

side of the second plot in Fig. 4.4. The documents of the max case covers, as usual,

many topics while the min case falls between the two other cases.

To further evaluate the representativity of the documents selected by the ISP meth-

ods, we designed an approach inspired by [Daszykowski et al., 2002] as the method

therein has shown better performance with respect to other methods such as [Kennard

and Stone, 1969] and [Clark, 1997], and compared ISP to that.

In [Daszykowski et al., 2002], the authors propose to apply the DBSCAN on the

dataset to find some clusters in the data and, then, run K-means within each cluster

of DBSCAN in order to select the representatives (centers of K-means). The number

of cluster in K-means is either a fixed number or is chosen proportional to the size of

each DBSCAN cluster. The rational is that DBSCAN is able to capture the clusters with

complex structures. Accordingly, once these structures are captured, we can apply a

"center-based" technique, like K−means, to find the representatives (centers of the

K-means in this case).

Inspiring from that, we propose the following experimental settings to evaluate the

representatives selected by ISP: we first find a large set of candidates using DBSCAN
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Topic # Clusters # Candidates (cores) p ε

C11 38 1869 25 0.40

C31 74 1850 10 0.05

E512 13 1804 40 0.40

GDIP 29 1926 30 0.15

Table 4.2: DBSCAN part of the DBPAM and DBISP.

and then use two different methods to select the representatives from them: (i) similar

to [Daszykowski et al., 2002], we apply K-medoids (here we use PAM, i.e Algorithm 4)

to select desired number of representatives (180) out of those candidates, and (ii) we

apply the ISP techniques on the candidates and, then, compare the results. The main

reason of using K-medoids is that, unlike K-means, the provided centroids are data

points.

To select the candidates, we propose to run the DBSCAN with a grid search on

different values of p and ε in order to find a large set of cores as candidates (5 ≤

p ≤ 300 with a step size of 5 and 0.05 ≤ ε ≤ 0.70 with a step size of 0.05). Here,

we set the size of candidates to 10 time the size of representatives; i.e. 1800. One

should note that it might not be possible to obtain exactly 1800 cores; accordingly, we

used the results in which at least 1800 and at most 2000 cores are provided. In case

where there were several similar possibilities (close number of cores), we selected

the one with maximum number of clusters as it can better represent the data. Once

we have the set of candidates, we compare the representatives selected by PAM with

those selected by ISP. These two techniques are denoted as DBPAM and DBISP in our

experiments as they are the combination DBSCAN with PAM and ISP respectively.

Following this strategy, one can see a summary of the DBSCAN part of the DBPAM and

DBISP in Table 4.2.

2D Illustrations

For sake of visualization, we used multidimensional scaling on the normalized tf-idf

matrix and used the first two components to plot the figures. One can alternatively

perform a PCA for this purpose [Daszykowski et al., 2002]. Fig. 4.5-4.8 show the rep-

resentatives selected by each method for all four topics. To better illustrate the effects

of DBPAM and DBISP, in these figures, we show each method separately as well as the

combination of both methods. In the following, we see how these two techniques can
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Figure 4.5: Comparison between DBPAM and DBISP on C11.

represent the data and why they should be considered as complementary methods.

C11: this case is a very good illustration for the complementariness of DBISP and

DBPAM. As one can note in Fig. 4.5, DBPAM has difficulties covering the horizontal

arm (see the huge white space in the center of DBPAM’s figure). However, DBISP

recovers this area with some representatives. On the other hand, DBISP covers only

the middle of the vertical arm while DBPAM provides a good representation of the

extreme parts of this arm. Accordingly, they act like two pieces of a puzzle which,

together, provide a decent picture of the data.

C31: as one can note in Fig. 4.6, DBPAM covers well the region on the left and

on the bottom; however, the region on the right is not very well covered as only some

points have been selected on the rightmost part of this region. Nevertheless, DBISP

has covered this area with several data points, making it a complement to DBPAM.

As one can note in the figure, for C31, DBISP alone can also provide a very good

representation of the data shape.

E512: in this case also, the two approaches seem to perform complementary as

combining them will provide a shape similar to the original data as it can be observed

in Fig. 4.7. As one can see, DBPAM fails to find sufficient data points on the top "arm"
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Figure 4.6: Comparison between DBPAM and DBISP on C31.

of the data; it only finds some points on the topmost area. However, DBISP seems to

recover the missed region by selecting a few point located from the center to the top

(i.e. covering this arm). On the other hand, the left-bottom part is better covered by

DBPAM, which makes these two methods complementary.

GDIP: for this topic, both methods perform similarly on the arm located on bottom

as well as the one located on the right hand side of the data. Nevertheless, DBPAM

cannot cover the top arm properly; again, three points are selected in this arm and

they are located in the far end region. However, DBISP can recover this missing area

with several points (see Fig. 4.8), and, together with DBPAM, provides a good repre-

sentation of the data shape.

Topic Analysis

So far, we have considered the effectiveness of DBISP and its complementariness with

respect to the available methods (in particular DBPAM). In the following, we will

consider the representativeness of the DBISP instances by considering each ISP method

separately.
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Figure 4.7: Comparison between DBPAM and DBISP on E512.

E512: firstly, one should note that the most coappearing topics for E512 is E51 and

ECAT (95.5% of co-appearance). Considering that, one can see the effect of ISPaverage:

only 3 documents (out of 60) selected by this method does not contain these two

topics. This is basically in line with the reasoning provided before: the average case

finds the documents which have a lot in common with other documents. Consequently,

we observe that the topics of the ISPaverage data points are widely seen among the

dataset.

In the max case, the selected documents contain much more topics compared to

the average or the min case. They also contain the topics which do not appear in the

other approaches. For instance, one of the documents selected by the max approach

contains C18 (ownership changes) which only appears with E512 in 39 documents

(0.3%) and cannot be seen in the documents selected by the min or by the average

approach. Another example of such cases is C24 (capacity/facilities) which coappears

with E512 in 1.2% document. One should note that the documents selected by the max

case are not outliers (as they are in a way filtered by DBSCAN beforehand), but are

the points determining the shape of the data as they are located in the outer frontier

(see Eq. (4.5)). In other words, they are the documents containing less frequent topics.
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Figure 4.8: Comparison between DBPAM and DBISP on GDIP.

The documents of the min case, which are ideally the central points of the sub-

parts of the data, are expected to be in between the max case and the average case.

Accordingly, we observed that 90% of the data points selected by the min approach

contain the frequent topics (E51 ECAT). In addition, in this case, there are also topics

which are less common in the dataset but not as uncommon as the max case topics.

For instance, one can observe the topic G15 (European community) which coappears

with 14% of documents or GDIP (international relations) which coappears with 27.3%

of the documents of E512. These results confirm that the min case selects the points

which are neither in the outer border of the data nor the very central space but are in

the center of different sub-parts of the data.

C31: the documents selected by the max case contain the topics which could not

be found in those of the min or the average method. GJOB (Labor issues) and E41

(Employment/Labor) are two examples of such topics. To illustrate, one can observe

that these two topics coappear with C31 in only 0.8% of documents in the entire set.

Again, this is what expect from the max case: selecting the documents which are on the

outer frontier of the data and potentially contain a wider range of topics. In the min

case, we observe that the selected documents not only contain the most coappear-
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ing topic, i.e. CCAT (Corporate/Industrial), but also contain other less likely topics.

For instance C15 (performance) which coappears in 11% of documents and C151 (ac-

counts/earning) which coappears in 4.2% documents. However, unlike the max case,

the min case documents do not contain less-frequently-distributed topics. For the av-

erage case, as it selects the most central objects of the set, 40% of the documents

contain only one coappearing topics: CCAT (corporate/industrial). This indicates that

the selected documents are those focusing on the very main topics: 98.2% of C31

documents contain also CCAT; as a result, one can conclude that these documents are

the very central ones in the dataset.

C11: In this case also, some less frequent topics appear in the max case. For

example, we see C23 (research/development) which is highly rare to coappear with

C11 (1.8% of co-appearance). In addition, in the min case, we see that the topics

of the selected documents are the topics which are more likely to appear with C11.

For instance, the documents selected by ISPmin contains the C15 (performance) with

a co-appearance of 9.6%. C152 (comment/forecasts) is another example of this type

which appeared with C11 in 7.5% of documents. For the average case, we observe

that 28% of the documents selected by ISPaverage are the documents with only and

only one coappearing topic: CCAT (corporate/industrial). As we expect, CCAT is a

"always there" topic when we are considering strategy/plans (C11). This could be

simply seen by looking at the proportion of C11 documents containing CCAT (97.4%).

In the ISPaverage case, among 60 selected documents, there is only one document that

does not contain CCAT. This point shows that the average method has chosen the most

central documents in the dataset.

GDIP: perhaps this topic is a good example where the max approach can detect

"not-easy-to-find" documents. In this topic, while the conclusion on the min and av-

erage methods are similar to the other topics, the conclusion on the max case is more

contrasted. In the representatives selected by ISPmax , we find several topics which not

only do not coappear with GDIP in min and average results, but also are too infrequent

in the entire set. These topics coappear with GDIP in less than 1% of documents, which

means that the documents containing these topics are infrequent and, as a result, hard

to detect. However, the max approach was able to detect at least one document of

each topic. Maybe the topic G151 (EC international market) is a good example here:

only 166 documents contain G151 as a coappearing topic with GDIP and ISPmax is

able to detect one of them. Another example is G154 (EC monetary/economic) which

coappears with GDIP in 341 documents and ISPmax can detect two of them.
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4.6 CLOSING REMARKS

In this chapter, as our fourth contribution [Mirisaee et al., 2015a], we have studied a

new, alternative approach to select representative objects from different regions of big,

high-dimensional datasets in order to provide a top, global view of the data. To do that,

we defined the Instance Selection Problem (ISP) and its three variants. We have then

shown how each of these variants can select representatives from different regions

of the data. To show the behavior of the proposed approach, we first used a small,

synthetic data for illustration purpose. We have then designed a set of experiments to

show that using the DBISP technique, which is a combination DBSCAN and ISP, we can

obtain good representatives on data. We then evaluated our results on Reuters dataset

by extracting all documents of four popular topics and applying the DBISP on them.

Inspired by the state-of-the-art techniques, we designed a method called DBPAM and

then compared the results of DPISP with that of DBPAM. We argue that in some cases

and some data regions DBISP provides a better representation of the data while in

most case these two approaches should be considered as complementary techniques:

where DBPAM is unable to cover a region of the data, DBISP does it and vice versa.
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CONCLUSION

The goal of this thesis was to explore the problem of finding interesting and represen-

tative itemsets and items in large, high-dimensional datasets. To achieve this objective,

we first studied the main challenges in this domain: the data is large in terms of num-

ber of objects/instances and number of attributes/features and may also contain noise

and missing values. These factors make the mining process much more difficult. As a

result, a wide range of data studies have been conducted to address these problems.

One major technique in this area is data simplification. The idea of data simplification

is to find better ways to represent the data such that better pieces of information can

be extracted or better understanding of the data is provided. For instance, one can

name feature selection algorithms as a data simplification technique where we are

interested in selecting a subset of features that best represents the data.

As the data is usually represented via matrices, where rows are the instances and

columns are the attributes, one important data simplification technique is matrix de-

composition. Matrix decomposition is a method which factorizes a matrix into two

or more smaller matrices, called factors, such the the multiplication of the factors ap-

proximates the original data. Matrix decomposition can extract the main information

of the data and capture the latent factors. This technique has been widely used over

the past few years and found a large number of applications such as text mining and

image processing. Depending on the application, one may use different decomposi-

tion techniques. For instance, when the input matrix is nonnegative and the factors

are also supposed to be nonnegative, one may use Non-negative Matrix Factorization

(NMF).

Following this line of thought, we studied one particular case of matrix decompo-

sition called Binary Matrix Factorization (BMF) in which the input and the factors are

binary; the reconstructed matrix can be optionally binary as well. We first, in Chapter

1, went through the decomposition techniques available in the state-of-the-art before

formalizing the BMF problem. We then presented the available methods solving the
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BMF problem. As our first contribution, we established a link between the BMF prob-

lem and the Unconstrained Binary Quadratic Programming (UBQP) problem. This link

allowed us to use the heuristics developed for UBQP, which we called 1-opt-UBQP, in

the case of BMF.

Then in Chapter 2, as our second contribution, we presented a new, efficient heuris-

tic, called 1-opt-BMF, to improve the BMF solutions. We first provided a theoretical

analysis on the efficiency of this method with respect to 1-opt-UBQP and the standard

approach, called 1-opt-Standard. Then, we have shown experimentally that the pro-

posed heuristic is up to 8 times faster than the other methods and brings statistically

significant improvement in many cases.

In Chapter 3, we discussed our third contribution where we introduce a new tech-

nique, called Decomposition Itemset Miner (DIM), in order to mine representative

itemsets. Since in frequent itemset mining domain, the classical methods provide a

huge number of itemsets, which are extremely hard to be analyzed by an analyst, the

techniques providing good, representative itemsets have been of interest recently. As

matrix decomposition techniques are able to capture the main structure and the latent

factors of the data, we proposed to rely on these techniques in order to find represen-

tative itemsets. We first studied the existing methods in the literature, from classical

algorithms to those aiming at finding a reduced number of itemsets. Then, we pro-

posed to rely on BMF in order to mine representative itemsets and, to do that, we

first established the theoretical link between BMF and frequent itemset mining. Once

established, we designed a set of experiments to show the efficiency of the proposed

method, as well as the quality of the itemsets produced. These experiments shows the

itemsets found by DIM can well recover the data and are mostly precise.

Continuing on the problem of finding representative objects, we examined the

problem of finding a subset of instances form datasets which can well represent dif-

ferent regions of the dataset. To do that, in Chapter 4, we formalized the Instance Se-

lection Problem (ISP) and provided three variants of this problem, namely ISPaverage,

ISPmin and ISPmax . We then showed that all these three variants are NP-complete

before providing solutions to them. For the ISPaverage, we exploited the objective

function to provide a greedy approach which selects one object at the time, and for

the two others we used the classical PAM algorithm. Then, inspired by the state-of-

the-art methods, we designed a technique, called DBPAM, which is a combination of

DBSCAN and PAM, and compared that the another approach called DBISP, a combina-

tion DBSCAN and ISP. In our experiments, we showed that DBISP can be considered as
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a complementary method for the existing technique: where other techniques cannot

cover a region, DBISP does it and vice versa.

This thesis opens several research directions. Firstly, complexity of the BMF prob-

lem is still unknown, even for rank 1. In the literature, the complexity of some similar

problems, such as weighted rank-1 BMF, has been considered; however, to the best

of our knowledge, no complexity analysis has been presented for BMF. Although this

problem is conjectured to be NP-hard in many studies, no formal proof of this fact has

been proposed so far.

Another future research direction would be new methods for using BMF for fre-

quent itemset mining problem. In this study, we presented the theoretical require-

ments and proved that BMF can be used for this application. However, one can further

exploit the decomposition factors by characterizing the itemsets found by this method.

For instance "Which part of the dataset do they mostly cover?" is an interesting ques-

tion that can be further studied to better understand the usefulness of BMF in frequent

itemset mining. Another possibility is to exploit all the itemsets provided in the second

decomposition factor (H in this document). According to the theoretical analysis pro-

vided here, many itemsets are dropped due to the fact that the error parameter does

not allow us to exploit them. However, this does not mean that they are totally use-

less. Using the properties of BMF, one can further study the characteristics of the rows

of H to better recover the representative itemsets. Another interesting direction is to

develop the theory of using boolean decomposition in order to mine representative

itemsets.

As another interesting future work, one can further study different formulations

of finding representative objects. In this document, to find representative objects,

we have provided three problems, two of which rely on clustering methods. Another

alternative would be using decomposition techniques and exploit the latent factors

provided by those techniques. For instance, as matrix decomposition techniques can

be considered as a 2-mode clustering method (also known as co-clustering or biclus-

tering), one can consider the factors of the decomposition as the clusters of objects

and the clusters of attributes. For instance, using NMF in a document-term matrix,

each latent factor could be considered as a topic [Xu et al., 2003]; following this

line of thought, can we select some documents from each topic and consider them as

representatives? If so, which documents should be selected form each topic? What

characteristics should they have?
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