N
N

N

HAL

open science

Algebraic methods for security analysis of cryptographic
algorithms implementations

Rina Zeitoun

» To cite this version:

Rina Zeitoun. Algebraic methods for security analysis of cryptographic algorithms implementations.
Cryptography and Security [cs.CR)|. Université Pierre et Marie Curie - Paris VI, 2015. English. NNT:

2015PA066310 . tel-01254443

HAL Id: tel-01254443
https://theses.hal.science/tel-01254443

Submitted on 12 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01254443
https://hal.archives-ouvertes.fr

UNIVERSITE PIERRE ET MARIE CURIE

Ecole doctorale Informatique, Télécommunications et Electronique (Paris)

THESE

Pour obtenir le titre de

Docteur en Sciences
de PUNIVERSITE PIERRE ET MARIE CURIE - PARIS 6

Mention INFORMATIQUE

Présentée par

Rina ZEITOUN

METHODES ALGEBRIQUES POUR L’ANALYSE DE SECURITE DES
IMPLANTATIONS D’ALGORITHMES CRYPTOGRAPHIQUES

Theése dirigée par Jean-Charles FAUGERE ET GUENAEL RENAULT

soutenue le jeudi 16 juillet 2015

aprés avis des rapporteurs

M. Damien STEHLE Professeur, Ecole Normale Supérieure de Lyon
M. Jaime GUTIERREZ Professeur, Université de Cantabria

devant le jury composé de

M. Jean-Charles FAUGERE Directeur de recherche, INRITA

M. Guénaél RENAULT Maitre de conférences, Université Pierre et Marie Curie
M. Damien STEHLE Professeur, Ecole Normale Supérieure de Lyon

M. Jaime GUTIERREZ Professeur, Université de Cantabria

M. Jean-Sébastien CORON Professeur, Université du Luxembourg

M. Phong NGUYEN Directeur de recherche, INRIA

M. Stef GRAILLAT Professeur, Université Pierre et Marie Curie

OBERTHUR TECHNOLOGIES, Equipe Cryptographie, Technologie & Innovation

Contents

L__State Of T'he Artl

{1 RSA on Embedded Devices and Physical Attacks|
[1.1 RSA Cryptosystem on Embedded Devices
[1.1.1 RSA Signature in Standard mode|.
[1.1.2° RSA Signature in CRT' mode|
1.2 Physical Attacks|

[1.3 Lattices in Physical Attacks|
[1.3.1 SPA on Modular Exponentiation and Lattices:|

[2.2.6 Number of Iterations ot LLL-Reduction Algorithms|
[2.3 Diophantine Problem and LLL-Reduction|
[2.3.1 Finding Small Integer Solutions|
[2.3.2 Simultaneous Diophantine Approximation|

13 Finding Small Solutions to Polynomial Equations|
3.1 Coppersmith’s Method tor Univariate Modular Equations|
3.1.1 The Main Result|

29

31
32
32
32
33
33
38
41
41
41
41

43
43
43
44
45
47
47
48
49
49
50
52
93
93
93

4 CONTENTS
B.1.3 Complexity| 65

[3.1.4 Applications|. 66

13.2 Coppersmith’s Method tfor Bivariate Equations over Z{ 67
321 The Main Result] 67

3.2.2 Core Idea of the Methodl 67

[3.2.3 Applications|. 68

3.3 The BDH Method tor Factoring N =p"q. 68
B.3.1 Motivations o 68

.32 The Main Resultl 68

.33 The Methodl. 69

Ul __Contributions| 75
4 Rounding and Chaining LLLJ 77
4.1 Speeding up Coppersmith’s Algorithm by Roundingl 78
4.1.1 Rounding for Coppersmith’s Algorithm| 79

4.1.2 Running time: proof of Theorem 29 85

4.1.3 A Remark on the Original Coppersmith’s Complexity | 86

4.1.4 A Summary of the Complexities] 87

4.2 Chammg LLL| oo o 88
4.2.1 Exploiting Relations Between Consecutive Lattices| 89

4.2.2 Rounding and Chaining LLL| 91

4.2.3 Complexity Analysis: A Heuristic Approach| 96

4.3 Experiments|. 98
4.3.1 Practical Considerations| 98

4.3.2 Implementation Results| 99

4.4 Other Small-Root Algorithms| 101
441 Ged Generalization|o oo 101

4.4.2 Multivariate Equations|.o oL 102

|5 Factoring N = p"¢° for Large 7| 105
5.1 BDH’s Theorem Slightly Revisited| 106
5.2 Factoring N =p"¢° tor Large | L. 107
b.2.1 "Two Natural Approaches that Fa1ll 107

2.2 The Main Theorem|. 108

H.2.3 An Outhline of the Methodl 109

9.2.4 A Useful Lemma: Decompositionof rand s/ 109

0.2.5 Proof of the Main Theoreml 112

[5.2.6 Refinement of the Condition on 7 for Small s or for s Close to r.] . 114

[5.3 Generalization for N = [[p;" for Large r;’s 115
[5.3.1 A Condition on r; Depending on the Ratio ri/rp_q|. 116

b.3.2 Factoring with Gaps| 121

[5.3.3 An Iterative Definition of Function p 122

CONTENTS 5

B5.3.4 Proof of the Generalization Theorem!| 124

.4 Speeding-up by Rounding and Chaining| 126
b.4.1 Rounding| 127
[5.4.2 Chaining| 128

0.5 Experiments|.o 129
b.0. 1 Practical Considerations| L. 129
[5.5.2 Speed-up by Rounding and Chaining| 130
[5.5.3 Implementation Results| 130
[5.5.4 Comparison with ECM|. 132

6 _Combined Attack on RSA-CRT] 133
6.1 Context and Principle| 135
6.1.1 RSA Signature Using the CRT Mode| 135
6.1.2 Countermeasures Against SCAand FI} 135

6.2 A New Combined Attack on CRT-RSAI. 136
621 A Useful Relation|., 136
[6.2.2 Recovering the Private Key| 137

6.3 Experiments|. 138
6.4 Reducing the Complexity Using Coppersmith’s Methods| 140
[6.4.1 Bringing Up the Original Problem to Solving a Modular Equation| 140
[6.4.2 Results From Our Implementation| 143

6.5 Countermeasures| e 144
[6.5.1 Blind Before Splitting], 144
[6.5.2 Verification Blinding| L. 145

6.6 Conclusionl. 145

Notations

Notations

In this manuscript, the following notations are used to represent some widespread
mathematical tools.

We use row representation for matrices.

Matrices are denoted by uppercase letters, and their coefficients are denoted by
lowercase letters.

The transposition of a matrix M is M7T.

Vectors are row vectors denoted by bold lowercase letters.

The transposition of a vector v is vT.

The Euclidean norm is represented by ||||.

The inner product of R™ is represented by ().

The Euclidean norm is naturally extended to polynomials as follows : if f(z) =
S fiat € Rla], then |[£] = (X0 £2)V/2

We use the following matrix norms: if M = (m; ;) is an n x m matrix, then

|| xM
x| >

— [[M]loc = maxi<jcm 33y [migl,

— And we have [|[M |2 < /n||M]||co-

If x € R, we respectively denote by |z], [x], [z] the lower integer part, the upper
integer part of x and the closest integer to x.

All logarithms are in base 2.

We write f(n) = O(g(n)) if there exist constants ng and ¢ > 0 such that | f(n)| <
clg(n)| for all n > ny.

We write f(n) = Q(g(n)) if g(n) = O(f(n)). Therefore f(n) = Q(g(n)) if and
only if there exist constants ng and ¢ > 0 such that |f(n)| > c|g(n)]| for all n > ny.

— [[M]l2 = maxx40

Introduction

Cryptologie

A T'aube du 21¢™¢ siécle, les besoins cryptographiques explosent. Le chiffrement n’est
plus réservé aux communications classifiées des armées : il gagne tous les domaines,
avancant au rythme des découvertes mathématiques. Les applications civiles du chif-
frement (transactions en ligne, vote électronique, usage de systémes de communication,
passeports, stockage dans le nuage, paiements électroniques, etc.) deviennent un moteur
fondamental de progrés dans ce domaine. Les révélations récentes d’Edward Snowden
concernant la surveillance mondiale secréte effectuée par la NSA renforcent amplement
la nécessité du chiffrement. Ainsi, la cryptologie devient une science dynamique & I’in-
tersection des mathématiques et de l'informatique. De nombreux protocoles cryptogra-
phiques sont continuellement élaborés. Dans le méme temps, des études sont menées pour
en assurer la sécurité, car ces cryptosystémes ont des fins trés concrétes : ils sont aussi
bien utilisés pour sécuriser ’emploi d’'Internet, qu’intégrés dans nos cartes bleues, cartes
SIM, passeports, etc. Nombre de ces cryptosystémes se révélent vulnérables et sont aban-
donnés, d’autres plus robustes perdurent bien que nécessitant souvent des réadaptations
face a des attaques mettant en avant la vulnérabilité de certains choix de paramétres. De
nombreuses techniques d’analyse de vulnérabilité des cryptosystémes sont employées. On
peut citer par exemple les études basées sur des méthodes algébriques, c¢’est-a-dire mo-
délisées par la résolution d’équations non-linéaires. D’autres types d’attaques telles que
I’analyse des fuites physiques générées par les systémes embarqués peuvent également
permettre d’obtenir des informations secrétes. De fait, les deux types d’attaques peuvent
naturellement parfois étre combinées. Cette thése se situe précisément dans ce contexte,
celui ou les attaques physiques constituent un apport crucial d’informations permettant
de rendre la résolution du probléme algébrique réalisable.

On distingue classiquement deux grandes catégories en matiére de chiffrement : la
cryptographie a clé secréte et la cryptographie a clé publique.

La cryptographie a clé secréte est de loin la plus ancienne. Elle nécessite au préalable
la mise en commun entre les destinataires d’une clé secréte, puis consiste a utiliser cette
méme clé pour le chiffrement et le déchiffrement, (pour cette raison, on 'appelle également
cryptographie symétrique). Elle est intuitive de par sa similarité avec ce que 'on s’attend
a utiliser pour verrouiller et déverrouiller une porte : la méme clé. Cependant, la principale
difficulté de la mise en ceuvre de ce systéme est I’échange en toute siireté de la clé secréte

9

10 CONTENTS

entre les deux parties.

La cryptographie a clé publique, dite asymétrique, s’attache a résoudre ce probléme.
Elle repose quant & elle sur un autre concept faisant intervenir pour chaque utilisateur
une paire de clés : 'une pour le chiffrement, rendue publique, et I’autre pour le déchiffre-
ment, conservée secréte. Les clés sont différentes mais elles sont liées et seul I'utilisateur
associé a la paire de clés en connait le lien. Afin de chiffrer un message & 'intention d’un
utilisateur, le correspondant emploie la clé publique de cet utilisateur. Le déchiffrement
du message chiffré nécessite la connaissance de la clé secréte, que seul I'utilisateur dé-
tient. Ce concept naturel permet de communiquer de maniére confidentielle sans avoir a
partager la moindre information secréte initialement. La cryptographie asymétrique est
fondée sur 'utilisation d’une fonction & trappe : une fois cette fonction appliquée & un
message, il est extrémement difficile de retrouver le message original, & moins de posséder
une information particuliére tenue secréte : la clé privée. Toutefois, il reste une difficulté :
trouver une fonction a trappe.

Cryptosystéme RSA

Le premier modéle de chiffrement & clé publique, appelé RSA, proposant une fonc-
tion & trappe, a été mis en place en 1977 par Ron Rivest, Adi Shamir et Leonard Ad-
leman [RSAT78|. Ce cryptosystéme a été le plus utilisé pendant de nombreuses années
et est encore 'un des plus utilisés de nos jours (méme si un remplacement progressif
tend a s’effectuer vers des cryptosystémes plus performants), notamment dans les sys-
témes embarqués tels que les cartes bancaires, cartes SIM, passeports, ol une sécurité
des ressources sensibles qu’ils contiennent doit étre assurée.

Le cryptosystéme RSA repose sur la fonction qui, & deux grands nombres premiers p
et g associe leur produit p x g. Elle est a sens unique car étant donné p et g, il est aisé
de calculer N = p x ¢, mais & I'inverse, connaissant un entier N produit de deux grands
nombres premiers, il est trés difficile de retrouver les facteurs p et q.

Le protocole cryptographique RSA fonctionne de la maniére suivante. Un utilisateur
souhaitant recevoir des messages de maniére sécurisée, et dont il sera le seul & pouvoir
en déchiffrer le contenu, choisit deux grands nombres premiers distincts p et ¢ et calcule
leur produit N = p x ¢. Il choisit un entier e premier avec ¢(N) = (p—1)(¢—1) et calcule
d tel que ed = 1 mod ¢(N). Le couple (N, e) constitue la clé publique de l'utilisateur.
Elle sera utilisée par ses correspondants pour le chiffrement. L’utilisateur garde secréte
sa clé privée d et en fera usage pour déchiffrer. Un correspondant désirant lui envoyer
un message m se procure la clé publique (IV,e) de l'utilisateur puis calcule le message
chiffré ¢' = m® mod N. C’est ce dernier nombre qu’il lui envoie. L’utilisateur regoit C.
Il calcule grace a sa clé privee D = C% mod N. D’aprés le théoréme d’Euler, on a
D = m% = m mod N. Il a donc reconstitué¢ le message initial.

Le cryptosystéme & clé publique RSA a également été adapté a d’autres fins applica-
tives telles que la signature électronique permettant de garantir 'intégrité d’un document
et de certifier son auteur comme tel. Le principe de la signature RSA est similaire a celui
du chiffrement RSA (voir Chapitre a ceci prés que l'utilisateur fera usage de sa clé

CONTENTS 11

privée d pour signer ses messages, et que la clé publique (N, e) de 'utilisateur sera utili-
sée par ses correspondants afin de vérifier ses signatures. Ainsi un utilisateur souhaitant
signer un message m calcule la signature S = m? mod N et envoie le couple (m, S) au
correspondant. Ce dernier calcule alors & I’aide de la clé publique (N, e) de l'utilisateur
la valeur S€ mod N. Si la signature est correcte, ce résultat correspond précisément au
message m.

Si le calcul de la vérification de signature S® mod N (respectivement le calcul du
chiffrement d’un message m® mod N) est généralement peu couteux car en pratique la
clé publique e est toujours choisie petite (a cette fin justement, ainsi que pour des rai-
sons de consommation mémoire), il n’en est pas de méme du calcul de la signature
S = m%mod N (respectivement du calcul du déchiffrement d’un message C¢ mod N)
car 'exposant secret d est nécessairement grand pour des raisons de sécurité. Aussi, dans
les systémes embarqués tels que les cartes & puces ou les critéres de performances sont
souvent cruciaux, la plupart des implantations de RSA utilisent le mode CRT basé sur le
Théoréme des Restes Chinois, qui permet une accélération du calcul de cette exponentia-
tion modulaire d’un facteur 4 [CQ82|. Ainsi, dans le cadre de la signature RSA, le mode
CRT consiste a effectuer le calcul S = m? mod N en deux temps : une fois modulo p et
une autre modulo ¢, puis la signature finale modulo N est obtenue par recombinaison
des deux résultats, en utilisant par exemple la formule de Garner |Gar59| (un rappel est

fourni au Chapitre .

Dans le cryptosystéme RSA, il est aisé d’observer que la connaissance des entiers
premiers p et ¢ permet de retrouver la clé privée d de I'utilisateur. Actuellement, il n’y a
aucune méthode connue, capable de factoriser dans un temps convenable de trés grands
entiers. Le fonctionnement du cryptosystéme RSA est ainsi basé sur cette difficulté. RSA
est donc un protocole cryptographique que 'on peut présumer siir dés lors que la taille
des entiers p et ¢ est suffisamment grande. Typiquement, aujourd’hui la taille des pre-
miers utilisés est de 512, 1024 ou 1536 bits, a savoir qu’une taille de 512 bits n’est déja
plus recommandée.

De toute évidence, le cryptosystéme RSA a été une cible notable des attaquants.
Mais de fait, si RSA est encore I'un des cryptosystémes les plus utilisés aujourd’hui,
c’est parce qu’il s’avére trés résistant aux cryptanalyses théoriques dans le cas général.
Cependant, de nombreuses attaques mettant en jeu des cas particuliers d’utilisation ou
des paramétres vulnérables, ont été publiées. Par exemple, en 1989 Wiener montre, a
l'aide d’un développement en fractions continues de N/e, que l'utilisation d’une petite
clé secréte d est a bannir [Wie90|. De méme, Hastad en 1985 montre qu’en interceptant
le méme message envoyé a plusieurs destinataires différents, il est possible de retrouver
le message originel si la clé publique e est suffisamment petite [Has85|. D’autres attaques
permettant la factorisation de N = pq s’appliquent lorsque le facteur premier p est tel
que p — 1 ou p+ 1 est friable (ne possédant que de petits facteurs premiers). A ce sujet,
les méthodes p — 1 de Pollard |[Pol74] et p+ 1 de Williams |[Wil82] sont les plus connues
et 'adoption d’entiers qui ne soient pas friables devient nécessaire. C’est la raison pour

12 CONTENTS

laquelle la norme ANSI X9.31 [ANS98] ou FIPS186-4 [FIP13| de génération de clés RSA
s’attarde & générer des entiers dits premiers forts, respectant ces propriétés.

Attaques physiques sur systéme embarqué

Ainsi, les attaques proposées dénotent souvent plus un probléme d’utilisation du cryp-
tosystéme qu’un probléme de fond lié & la sécurité intrinséque de celui-ci. Plus encore, la
sécurité théorique d’un cryptosystéme ne garantit pas forcément une sécurité lors de son
utilisation dans la pratique. En effet, la mise en ceuvre d’un protocole cryptographique
dans un systéme embarqué tel qu’'une carte a puce peut facilement étre attaquée si elle
a été réalisée sans précautions particuliéres.

Les analyses par canaux auziliaires (Side-Channel Analysis en anglais et SCA en
abrégé), introduites par les travaux de Paul Kocher en 1996 |Koc96|, visent a exploi-
ter les fuites d’informations physiques du systéme embarqué (voir Chapitre . Ainsi,
certaines valeurs manipulées par le dispositif, portant de I'information secréte, peuvent
étre retrouvées par un attaquant lorsque ces derniéres sont maniées sans précautions.
A Torigine, le temps d’exécution était principalement utilisé comme fuite d’information
exploitable, mais d’autres paramétres comme la consommation électrique ainsi que le
rayonnement électromagnétique sont rapidement devenues les sources d’exploitation les
plus efficaces pour attaquer la cryptographie embarquée [KJJ99,/QS00].

Les fuites telles que la consommation électrique de la carte, peuvent étre exploitées
principalement de deux maniéres : si I’on considére une seule mesure, on peut effectuer
une analyse simple par courant ou SPA (Simple Power Analysis en anglais) ; si 'on en
considére plusieurs, une Analyse différentielle par courant ou DPA (Differential Power
Analysis en anglais) peut étre réalisée. Ces attaques sont dites passives, en ce sens que les
données manipulées par le systéme embarqué ne sont pas modifiées par I'attaquant, mais
seulement observées et analysées par celui-ci, afin d’obtenir des informations sensibles.

Une attaque SPA consiste & analyser les variations et les pics de la consommation
électrique du circuit dans le but de découvrir des informations secrétes comme la clé de
chiffrement. La signature RSA est typiquement vulnérable a ce type d’attaque si aucune
précaution n’est prise. Par exemple, si I’exponentiation modulaire est implantée suivant
I’algorithme Square-and-Multiply, ot Popération effectuée change selon que le bit traité
soit 0 ou 1, 'exposant secret d peut directement étre extrait par simple lecture d’une
unique courbe car 'opération de mise au carré et celle de la multiplication signent diffé-
remment. Une contremesure naturelle consiste a employer des algorithmes dits réguliers
qui effectuent la méme opération peu importe la valeur du bit d’exposant (par exemple,
les algorithmes Square-Always ou Montgomery ladder |JY02L|CFGT11]).

Une attaque DPA nécessite quant & elle un grand nombre de mesures extraites de
plusieurs exécutions utilisant la méme clé. L’idée consiste & identifier une variable in-
termédiaire dite sensible manipulée durant I’exécution de I’algorithme qui dépend d’une
petite partie de la clé secréte et d’'une donnée connue qui peut étre modifiée & chaque
exécution de 'algorithme. Ainsi, dés lors qu’une variable sensible est identifiée, une re-

CONTENTS 13

cherche exhaustive va pouvoir étre effectuée sur la petite partie de la clé secréte et le
choix correct sera validé & l'aide d’un traitement statistique mettant en corrélation la
valeur sensible associée au choix du secret, et I’ensemble des courbes de fuites obtenues
lors de la manipulation de cette variable : le choix correct est celui pour lequel le niveau
de corrélation est le plus élevé. De fait, la signature RSA en mode CRT est vulnérable
aux DPA. En effet, une attention particuliére portée sur les valeurs intermédiaires des
calculs permet de remarquer que la valeur |.S/q| peut & un moment donné étre manipu-
lée. Puisque cette valeur dépend de la clé secréte g ainsi que de la signature S qui peut
étre modifiée d’une exécution & 'autre, cette valeur est sensible et une DPA permettrait
de la retrouver, et donc d’obtenir le secret gq. Des contremesures classiques pour résister
a la DPA consistent a employer des techniques de masquage, c’est-d-dire a randomiser
le module N, le message m et 'exposant d comme décrit dans [AFV07] afin d’introduire
une donnée inconnue qui est modifiée & chaque exécution de ’algorithme, ce qui rend
I’attaque impraticable.

Les attaques par injection de fautes (Fault Injection en anglais et FI en abrégé) pour-
voient & l'attaquant un autre chemin d’attaque (voir Chapitre . Ces attaques sont
dites actives dans le sens ou elles permettent la réalisation de modifications sur le systéme
embarqué, allant d’une simple altération des données manipulées, jusqu’a la détérioration
irréversible du matériel. Les attaques par faute visent a perturber les calculs cryptogra-
phiques, de sorte qu’une analyse du résultat erroné correspondant permet a ’attaquant
de retrouver la clé secréte |GT04]. Le cryptosystéme RSA a été le premier d’une longue
liste (DES, ElGamal, DSA, etc.) a fléchir face aux attaques par fautes avec la trés célebre
attaque dite de Bellcore |Bel96, BDLI7| qui s’applique sur la signature RSA lorsque le
mode CRT est employé. L’idée consiste & injecter une faute durant le calcul modulo p,
et & laisser inchangé celui modulo ¢g. Si 'on a accés & un couple de signatures correcte
et erronée (S, S) du méme message, un simple calcul du PGCD de S — S avec N per-
met de retrouver 'entier secret premier ¢g. Une contre-mesure naturelle consiste & vérifier
I'exactitude de la signature S avant de la rendre publique, de sorte que la signature est
retournée si et seulement si S mod N = m et qu'un attaquant ne puisse jamais avoir
acceés a une signature erronée.

Ainsi, les SCA et FI ont soulevé un intérét certain aussi bien au sein de la com-
munauté académique qu’industrielle et ont été amplement étudiées au cours des deux
derniéres décennies. Les impacts dans le domaine de I'industrie de ces deux types d’at-
taques sont conséquents puisque les produits sécurisés doivent étre certifiés afin de prou-
ver leur résistance contre de telles menaces. Aussi, ces derniéres années, la communauté
cryptographique a également exploré I’éventuelle possibilité de combiner les deux types
d’attaques. Ceci a donné lieu & la création d’une nouvelle classe d’attaques appelée at-
taques combinées (Combined Attacks en anglais) qui se focalisent particuliérement sur
des implémentations supposées résistantes aux attaques par canaux auxiliaires et par
fautes.

14 CONTENTS

Attaques physiques combinées

L’idée d’associer SCA et FI est apparue en 2007 avec la publication par Amiel, Feix,
Marcel et Villegas d’une attaque combinée sur une implantation de RSA protégée contre
les attaques par injection de fautes et les SPA [AFMVO07|. Ils remarquérent qu’en for-
cant, & l'aide d'une FA, la mise & zéro de I'un des registres temporaires utilisés dans
I’algorithme Montgomery ladder, sa structure se déséquilibrait, permettant ensuite la ré-
vélation de ’exposant secret par SPA. Suite a cette publication, trois autres papiers
ont vu le jour, basés sur cette nouvelle maniére d’attaquer les systémes embarqués.
Deux d’entre eux présentent une attaque combinée contre une implantation sécurisée
de 'AES |[RMO7,RLK11]. Le troisiéme est axé sur la multiplication scalaire employée au
sein de cryptosystémes basés sur les courbes elliptiques [FGV11]. Les attaques combinées
restent cependant assez peu nombreuses, prouvant ainsi la difficulté de concevoir de telles
attaques.

Proposition d’'une Attaque Combinée FI/DPA

Une premiére contribution de cette theése qui sera détaillée dans le Chapitre [6] consiste
en la proposition d’une nouvelle attaque combinée sur une implantation RSA en mode
CRT, résistante aux SCA (grace a l'utilisation de techniques de masquage) et protégée
contre les attaques par fautes (grace a la vérification de la signature en utilisant 'ex-
posant public e). Une telle implantation était connue pour résister a toutes les attaques
publiées jusqu’alors. Cependant, nous montrons qu’en injectant une faute durant le calcul
de la signature, une variable sensible sera manipulée lors de la vérification publique, de
sorte qu'une SCA pourra subséquemment étre appliquée afin de la retrouver, et obtenir
dans le méme temps 1'un des facteurs premiers secrets. Plus précisément, si 'on faute
le message m pour le calcul de la signature modulo p de sorte que le message fauté m
soit tel que m = m + € et que l'on laisse inchangé le calcul modulo g, alors la valeur
manipulée lors de la vérification publique avec ’exposant e n’est plus S¢ = m mod NV,
mais 5S¢ = m + £qig mod N ol iy = ¢~ ! mod p. Ainsi, on remarque aisément que cette
valeur est sensible puisqu’elle dépend d'une partie secréte eqiy qui ne change pas d'une
exécution a lautre (sur la base de 'hypothése que e reste constant) et d’une partie
connue m qui peut étre modifiée & chaque exécution de 'algorithme. L’application d’une
DPA permettrait donc de retrouver eqiy comme illustré en Figure E Par suite, un simple
calcul du PGCD de eqiq avec N permet de retrouver 'entier secret premier g, et donc la
factorisation de N.

Ainsi, le but de la réalisation de cette DPA est de retrouver grace a des fuites du
modele physique, la valeur de I'inconnue eqi, (afin de factoriser N comme expliqué pré-
cédemment). En fait, une analyse théorique permet de modéliser le probléme par la re-
cherche des racines entiéres d’un certain polynéme & deux variables modulo N. En effet,
grace a 'identité de Bézout, nous avons la relation pi,+qi, = 1 mod N ol i), = p~ ! mod ¢
et iy = ¢~ ' mod p. Ainsi, en multipliant la relation par €2qiq, le terme €2qiq X pip dis-

CONTENTS 15

FIGURE 1 — CPA durant la recombinaison CRT effectuée lors de la signature RSA.

Plusieurs exécutions de ’algorithme de Signature RSA
avec des messages d’entrée différents m;
et une faute constante injectée ¢

ya a

Mesure de courant durant Estimation des mesures de courant

la manipulation de S;° =m,; + £qiq L(m; + k) pour chaque k possible

\/

‘ Traitement Statistique ‘

.

‘ Le choix k correct est identifié ‘

]

Pour chaque partie k&
du secret eqiq

parait car pg = 0 mod N, ce qui donne I’équation finale : €2q2i3 — Equq = 0mod N. Si
I’on suppose la faute € connue ou petite (de sorte qu’elle puisse étre recherchée exhaus-
tivement), la valeur de I'inconnue eqi, est solution entiére yy de 'équation modulaire
y? — ey =0 mod N.

De méme, le probléme plus général de la factorisation RSA peut également étre
modélisé par la résolution de I’équation polynomiale a deux variables sur les entiers
N —zy =0 ou xg = p et yg = g sont les solutions entiéres recherchées.

De fait, la recherche des secrets de I’ensemble des cryptosystémes existants peut se
modéliser par la résolution d’équations ou de systémes d’équations a une ou plusieurs
variables. La sécurité de ces cryptosystémes est donc intrinséquement liée & la difficulté de
résoudre de telles équations. Le probléme Diophantien consistant & trouver les solutions
entiéres d’équations polynomiales, spécifié comme étant le 10°™¢ probléme de Hilbert, a
été prouvé indécidable en 1970 |[Mat00].

Problématique

Un sous-probléme crucial en cryptanalyse consiste a s’intéresser aux solutions exis-
tantes au sein de certains sous-espaces, comme par exemple, chercher ’ensemble des
petites solutions entiéres de certaines équations polynomiales. Ce probléme est pertinent
en cryptologie car si 'ensemble des attaques physiques décrites précédemment (SCA,
FI) permettent quelques fois de retrouver la totalité de certaines données secrétes, dans
nombre de cas, seulement une partie du secret est dévoilée. L’avantage d’un attaquant
connaissant une partie du secret se modélise précisément par le fait qu’il n’ait a recher-
cher que les solutions entiéres d’équations polynomiales qui soient petites. La trés célébre
méthode de Coppersmith s’attache justement & résoudre ce probléme, et notamment &

16 CONTENTS

spécifier la notion du terme « petit » jusqu'alors imprécise.

Méthodes de Coppersmith pour trouver les petites solutions
entiéres d’équations polynomiales

Coppersmith s’est intéressé & deux formes de polynoémes en particulier, a savoir les po-
lynémes univariés modulo un entier N de factorisation inconnue f(z) =0 mod N, ainsi
que les polynomes bivariés sur les entiers f(x,y) = 0. La résolution de ces deux formes
de polynomes est en effet particuliérement intéressante dans le cadre de la cryptanalyse
de RSA. Comme il a été précisé précédemment, trouver toutes les solutions entiéres de
ces polyndmes est un probléme difficile, & savoir, il n’existe pas d’algorithme s’exécutant
en temps polynomial permettant d’y arriver (ni de déterminer l'existence de telles solu-
tions!). Cependant, Coppersmith publia en 1996 |[Cop96bl, Cop96alCop97| une méthode
pour trouver efficacement I’ensemble des petites solutions de ces équations polynomiales.
Son résultat le plus simple et peut-étre le plus célébre concerne le cas univarié modulaire,
et est le suivant : étant donnés un entier NV de factorisation inconnue et un polyndéme
unimodulaire f(z) & coefficients entiers, de degré §, on peut retrouver toutes les solutions
entiéres z¢ telles que f(z¢) = 0 (mod N) et |zo| < N/ en temps polynomial en log N
et d.

La méthode de Coppersmith s’attache & obtenir, & partir du polynéme modulaire f,
un nouveau polyndéme v admettant les mémes solutions, mais ayant la propriété qu’il
tienne sur les entiers de sorte qu’il puisse étre résolu facilement sur Z. Plus précisément,
la méthode construit un polynéme v(z) € Z[z| tel que : si 29 € Z est tel que f(zg) =
0 (mod N) et |xg| < X, alors v(zp) = 0 et peut étre résolu sur Z.

La méthode de Coppersmith est basée sur des techniques de réseaux. Un réseau est
un arrangement régulier et infini de points dans ’espace, défini par une base. Toutefois,
il existe une infinité de bases pour représenter un méme réseau, et certaines bases ont des
propriétés plus avantageuses que d’autres, en particulier celles comportant des vecteurs
courts et relativement orthogonaux. Etant donnée une base quelconque, trouver une
base contenant le vecteur le plus court du réseau (connu comme le probléme du plus court
vecteur ou SVP) est un probléme NP-difficile [Ajt96]. Cependant il existe des algorithmes
dits de réduction-LLL, traitant une notion plus allégée de réduction de réseaux (comme
les algorithmes LLL, L? et El) permettant de trouver un vecteur relativement court en
temps polynomial en la taille des éléments du réseau. La méthode de Coppersmith utilise
précisément ces algorithmes afin d’obtenir, a partir d’un vecteur possédant de grands
coefficients (correspondant au polyndme original f), un vecteur court (correspondant au
nouveau polynoéme v) comportant des coefficients plus petits. De par la construction du
réseau initial de Coppersmith, ce nouveau polynéme v a la caractéristique qu’il admet les
mémes racines que le polynéme f. Cependant, ayant de petits coefficients, ce polynéme v
s’annulera en x(sur les entiers, sous réserve que la solution recherchée xg soit également
petite, d’ou lefficacité de la méthode de Coppersmith pour trouver uniquement les petites
solutions.

CONTENTS 17

Quelques applications des méthodes de Coppersmith

De nombreuses applications de la méthode de Coppersmith ont vu le jour dans le do-
maine de la cryptanalyse a clé publique (par exemple, pour attaquer des cas particuliers
de RSA, ou pour factoriser N avec la connaissance de certains indices ou certaines par-
ties des secrets p, g, d, etc.), mais aussi dans quelques preuves de sécurité (comme dans
RSA-OAEP [Sho02|). De fait, les travaux de Coppersmith ont donné lieu & des dizaines
d’articles introduisant de nouvelles variantes, généralisations et simplifications (notam-
ment celle due & Howgrave-Graham [HG97] devenue une référence dans le domaine). Les
applications ont également été nombreuses (se référer a [May10]). Les plus connues sont
sans doute la factorisation du module RSA N = pq avec la connaissance de la moitié des
bits de p [Cop96a], avec un petit exposant public e (typiquement lorsque e = 3) |[Cop97],
avec des petits exposants-CRT secrets [BM06] ou encore lorsque d < N%2% |[BD99].

Application a ’attaque combinée sur CRT-RSA

Dans ce contexte, une analyse de la contribution présentée en Figure [1| nous a per-
mis de proposer une amélioration de la complexité de 'attaque grace a la méthode de
Coppersmith. En effet, la DPA employée au sein de 'attaque combinée qui permet de
retrouver la variable sensible eqi, s’effectue partie par partie (typiquement par tranche
de 8 bits). Ainsi, dans I’équation modulaire €2q2i3 — ezqz’q = 0 mod N précédemment ob-
tenue, si l'on écrit eqiy = 2'k + z ou 2'k représente la partie haute de £gi, connue grace
a la DPA déja effectuée sur cette partie, et oll x représente la partie basse non encore
obtenue, 'on obtient que le secret x est solution d’une équation univariée modulaire de
degré 2 (si 'on suppose la faute € connue ou petite). D’aprés le théoréme de Coppers-
mith, la solution x peut étre retrouvée si sa taille est plus petite que la moitié de celle
de N. Ainsi, dans le cas ot IV est un entier de 2048 bits, il suffit de retrouver les 1024
bits de poids fort de eqi, pour obtenir spontanément les 1024 bits de poids faible, ce qui
conduit & une accélération significative de l'attaque. Il est intéressant de noter que les
mémes résultats sont obtenus si la DPA procure en premier lieu les bits de poids faible
et non de poids fort. Une extension de I'attaque combinée traitant le cas ou la faute e
est inconnue est également proposée. Ces résultats sont détaillés dans le Chapitre [6]

Factorisation de N = p"q lorsque r est grand : état de ’art

La factorisation des modules de la forme N = p"q constitue une extension pertinente
de la méthode de Coppersmith. De fait, I'utilisation de tels modules a été introduite
en cryptographie il y a plusieurs années avec la proposition de certaines applications,
notamment pour le cas r = 2, avec la conception par Fujioka et al. [FOM91| d’un
schéma de paiement électronique mettant en avant I'emploi d’'un module N = p?q,
ainsi qu’avec la construction d’un cryptosystéme & clé publique probabiliste par Oka-
moto et Ushiyama |[OU9S8|. Plus généralement, il a été souligné par Takagi dans |Tak9§|
que l'utilisation de modules N = p"q pour RSA pouvait conduire & un déchiffrement

18 CONTENTS

significativement plus rapide qu’avec 'utilisation de modules classiques N = pq.

A Crypto 99, Boneh, Durfee et Howgrave-Graham (BDH) analysérent la sécurité face
A l'utilisation de tels modules, en ce qui concerne les méthodes basées sur les réseaux. Les
auteurs aboutirent en la conception d’une méthode pour factoriser les modules N = p'q,
grace & une adaptation de la méthode de Coppersmith pour la factorisation des polynémes
univariés modulaires. La condition pour obtenir une factorisation en temps polynomial
est que l'exposant r soit grand, a savoir que r =~ logp lorsque ¢ < pPW [BDHG99].
En fait, les auteurs montrent que la connaissance d’une fraction 1/(r + 1) des bits de p
est suffisante pour factoriser N = p"q en temps polynomial. Ainsi, lorsque r ~ logp, la
connaissance d’'un nombre constant de bits de p est nécessaire. Par conséquent, ces bits
peuvent étre retrouvés par recherche exhaustive, ce qui rend la factorisation de N = p"q
réalisable en temps polynomial.

Ainsi, la méthode de BDH met en avant la vulnérabilité de 'utilisation de tels mo-
dules N = p"¢. On pourrait naturellement étre tenté d’utiliser des modules de la forme
N = p"q® afin d’éviter I'attaque précédente, d’autant plus que la technique employée
dans |Tak98| pour un déchiffrement rapide modulo p peut également étre appliquée a
q, ce qui apporte une accélération supplémentaire comme cela a été montré a Indocrypt
2000 dans [LKYLOO| : ainsi, l'utilisation d'un module N = p?¢® de 8196 bits permet un
déchiffrement 15 fois plus rapide en comparaison & I’emploi d’'un module RSA classique
N = pq de la méme taille. Aussi, dans [BDHGY99| les auteurs ont laissé explicitement
ouvert le probléme de la généralisation de la méthode BDH & des modules de la forme
N = p"q® lorsque 7 et s ont approximativement la méme taille.

Proposition d’une méthode pour factoriser N = p"¢*

Dans ce contexte, une contribution de cette thése qui sera détaillée dans le Chapitre[5]
consiste en 'apport d’une solution & ce probléme ouvert : de tels modules N = p"¢® de-
vraient également étre utilisés avec précaution, puisque lorsque r ou s est grand, factoriser
N = p"q¢® peut également se faire en temps polynomial. En effet, nous proposons un nou-
vel algorithme déterministe pour factoriser N = p"¢® en temps polynomial lorsque 7 ou
s est plus grand que (logp)3.

Deux tentatives naturelles pour arriver & ce résultat échouent. La premiére serait
d’écrire Q := ¢° et d’appliquer la méthode BDH sur le module N = p"(Q, cependant la
condition pour une factorisation polynomiale serait r >~ log () ~ slog ¢, ce qui n’aboutit
pas si r et s ont approximativement la méme taille. La deuxiéme approche consisterait
a écrire N = (P + 2)"(Q + y)° et a appliquer le théoréme de Coppersmith pour le cas
bivarié modulaire sur les entiers. Cependant, la condition serait p - ¢ < p/3¢25/3") ce
qui ne donne jamais lieu & une factorisation en temps polynomial.

La méthode que nous proposons fait appel aux deux techniques suivantes : celle de
Coppersmith traitant le cas univarié modulaire, ainsi que son extension proposée par
BDH. Nous illustrons en premier lieu notre méthode & I’aide d’un cas particulier : le
module de la forme N = p"¢"~!. Comme expliqué précédemment, la méthode BDH ne
peut pas étre appliquée directement & N = p"Q avec Q = ¢" !, car la condition pour

CONTENTS 19

une factorisation en temps polynomial serait r = Q(log Q) = (r — 1)Q2(log q), condition
qui n’est jamais satisfaite. Toutefois, il est possible d’écrire N de la fagon suivante :
N = (pq)"'p = P"71Q avec P := pq et Q := p. Cette représentation permet d’appliquer
la méthode BDH pour retrouver P et @ (et donc p et q), avec 7 = Q(log Q) = Q(log p)
comme condition pour une factorisation en temps polynomial, cette condition étant es-
sentiellement la méme que celle obtenue dans la méthode BDH. Par conséquent, cela
met en avant le fait que N = p"q n’est pas la seule classe d’entiers qui peut étre facto-
risée de maniére efficace; il est également possible de factoriser des modules de la forme
N =p"¢"~! en temps polynomial lorsque r est suffisamment grand.

Il est aisé de généraliser 'observation précédente a 1’ensemble des modules de la
forme N = p@7tagfr+b Jorsque les entiers o, 3, a et b sont petits. En effet, on peut
écrire P := p¢P et Q := p2g® et appliquer BDH sur N = P"Q pour retrouver P et Q
(donc p et q). La condition pour une factorisation en temps polynomial est de nouveau
r = Q(log @), qui, pour des petites valeurs a et b donne la méme condition r = Q(log p)
que précédemment (en supposant que p et ¢ ont une taille similaire).

Il est ensuite naturel de se demander si 'on peut généraliser cette méthode pour
I’ensemble des modules N = p"¢®. Autrement dit, une question intéressante est de se
demander quelles sont les classes d’entiers (r, s) pouvant étre représentées ainsi :

{ r = u-a+ta

s = u-pf+b (1)

ol u est un entier suffisamment grand et «, 3, a, b des entiers suffisamment petits, pour
que la méthode précédente puisse étre appliquée (& savoir, le module N = p"¢® serait
représenté par N = P*Q ou P := p®¢? et Q := p®¢, et la méthode BDH serait appli-
quée sur N = P*Q afin de retrouver P et), et donc p et q). Aussi, le résultat que nous
obtenons est le suivant :

Théoréme 1. Soit N = p"q¢® un entier de factorisation inconnue avec r > s et
pged(r, s) = 1. Les facteurs premiers p et q peuvent étre retrouvés en temps polynomial
en log N si la condition suivante est satisfaite :

r = Q(log® max(p, q))

En effet, sous cette condition, nous sommes assurés de trouver une « bonne » décom-
position de r et s suivant , permettant une factorisation en temps polynomial de
N = p"¢®. Ainsi, une nouvelle classe d’entiers pouvant étre factorisés efficacement est
identifiée : celle des modules N = p"¢® lorsque r ou s est grand.

En outre, pour obtenir la borne Q(log® max(p, q)), il est essentiel de considérer éga-
lement une méthode de factorisation alternative. En effet, si 'on examine de nouveau le
module initial N = p"¢"~!, nous remarquons que 'on peut également écrire N = (pq)" /q,
ce qui conduit a la relation (pg)” = 0 (mod N). Par conséquent, P = pq est une petite
racine d’un polynéme univarié modulo N et de degré r. Ainsi, 'on peut appliquer le pre-
mier théoréme de Coppersmith pour trouver les petites solutions des polynémes univariés
modulaires avec la condition P < NY" = Pg~1/". Cette condition peut étre satisfaite

20 CONTENTS

en effectuant une recherche exhaustive sur les (loggq)/r bits de poids fort de P, ce qui
reste réalisable en temps polynomial si r = Q(logq). En conséquence, 'on obtient une
deuxiéme méthode (basée sur le théoréme de Coppersmith pour le cas univarié modu-
laire) pour factoriser les modules de la forme N = p"q"~! sous la condition r = Q(log q),
condition identique & celle obtenue par l'utilisation de la premiére méthode (basée sur
BDH). Comme précédemment, cette observation peut se généraliser aisément aux mo-
dules de la forme N = p®7+e¢# 7+ lorsque «, f3, |a| et |b| sont suffisamment petits, et ou
cette fois-ci, les entiers a et b sont tous deux négatifs.

Ainsi, nous montrons dans cette thése que l'utilisation alternée des deux méthodes
(BDH et Coppersmith) permet la factorisation en temps polynomial des modules de la
forme N = p"¢° lorsque r ou s (le « ou» est non exclusif) est de ordre de Q(log® max(p, q)).
Nous soulignons le fait que les deux méthodes, utilisées de maniére alternée selon les mo-
dules, sont essentielles pour ’obtention d’une telle condition : dans le cas ot une seule mé-
thode (soit BDH, soit Coppersmith) est employée, la condition plus forte Q(log® max(p, q))
semble nécessaire.

Généralisation aux modules N = H?Zl P

Nous proposons également dans le Chapitre [5] une généralisation de cette méthode
aux modules de la forme N = Hle p;". En particulier, nous montrons qu'’il est toujours
possible d’extraire un facteur non trivial de N en temps polynomial si I'un des k exposants
r; est plus grand que log% (max p;), o les premiéres valeurs de 0 sont données en Table
(a savoir Oy = 3, 05 = 9, 04 = 25, etc.) et plus généralement 0 ~ O(k!) lorsque k est
grand. Ainsi, 'exposant 0 grandit exponentiellement avec le nombre de facteurs premiers
k, cependant, pour une valeur de k fixée, extraire un facteur non trivial de N s’effectue
en temps polynomial en log N.

T

TABLE 1 — Valeurs de 6 pour un module N = H?:l p;’ avec k facteurs premiers. La
condition sur le plus grand exposant r; est r; = Q(log” max p;).

k 2 3 4 5 6
Ox 3 9 25 81 | 321

Résultats d’implantation

Nous avons implanté notre algorithme en considérant quatre modules N = p"¢® ol
r=28,et s=1,3,5,7, avec des premiers p et ¢ de 128 bits. D’aprés notre analyse pour
chaque module N, nous avons indiqué en Table 2| la meilleure méthode a employer (BDH
ou Coppersmith) ainsi que la décomposition correspondante. Le temps d’une réduction-
LLL est également précisé (réalisé sur un PC 3.20-GHz Intel Xeon), ainsi que le temps
total estimé pour factoriser N (obtenu en multipliant le temps d’une réduction-LLL par
2! o1 t est le nombre de bits manquants, sur lesquels la recherche exhaustive s’effectue).

CONTENTS 21

TABLE 2 — Module N, méthode employée (BDH ou Coppersmith), nombre de bits man-
quants, dimension du réseau, temps d’exécution de la réduction-LLL, et temps global
estimé.

Méthode ‘ (p®q®)vp2qb ‘ bits manquants ‘ dim. ‘ LLL H Temps estimé

N = p8q BDH pq 29 68 8.6 s 146 années

N = p®q® Copp. (P2q)4q_1 51 61 4.2s 3-108% années
N =p®q° | BDH (p%q)%q 55 105 | 1.3s || 2-10° années
N =p8q” | Copp. (pq)8q! 38 81 26s || 2-10° années

Notre méthode de factorisation de N = p"¢® (tout comme celle de BDH pour N =
p"q) est moins performante que la méthode ECM [Len87| pour des tailles de p et ¢ relati-
vement petites comme c’est le cas dans nos expériences (p et ¢ de 128 bits). Cependant,
notre algorithme s’exécute en temps polynomial en la taille de N tandis que ECM est
exponentiel, ce qui signifie que notre algorithme devient plus intéressant que ECM pour
des tailles de p et q assez grandes.

Performance de ces méthodes basées sur les réseaux en pratique

Tout ces algorithmes permettant de trouver les petites solutions d’équations polyno-
miales sont basés sur la méme idée qui consiste & obtenir de nouveaux polynoémes grace &
la réduction de réseau. En théorie, ceci peut étre réalisé en temps polynomial grace aux
algorithmes de réduction- LL L, cependant en pratique cela n’est pas tout aussi trivial. En
effet, le temps d’exécution asymptotique est un polynome de haut degré, car le réseau
a réduire est gigantesque. Plus précisément, la complexité de la méthode de Coppers-
mith est O((log? N)/62) lorsque I'algorithme L? de Nguyen et Stehlé [NS09] est utilisé
pour effectuer la réduction-LLL. Les applications courantes de la méthode de Coppers-
mith comportent des polynomes de faible degré (§ < 9), toutefois la valeur log N est la
taille d’'un module RSA donc elle ne vaut pas moins de 1024, ce qui rend la complexité
théorique considérable : la quantité log? N vaut déja plus de 2.

Ainsi, le véritable goulot d’étranglement de I’ensemble des algorithmes basés sur la
méthode de Coppersmith est la réduction-LLL. Malgré I'attention considérable portée
sur ces algorithmes, aucune amélioration conséquente permettant de réduire leur temps
d’exécution n’a été publiée, hormis le fait que les algorithmes de réduction-L L L ont connu
des avancées depuis la publication de I'article |[Cop97| (avec Papparition de L? |[NS09) et
L' |[NSV11]). Ce probléme apparait dans les expériences (voir [CNS99)]) : en pratique on
ne peut trouver les petites racines que jusqu’a une borne qui est plus petite que la borne
théorique annoncée. Ce point peut étre illustré par I'attaque de Boneh-Durfee [BDOO|
sur RSA lorsqu’un petit exposant secret est utilisé. En particulier, la borne théorique
permettant de factoriser IV est d < NI-UVZ o NO292 mais le plus grand d que font
apparaitre les expériences de Boneh-Durfee est seulement d ~ N%280 et ce, pour un

22 CONTENTS

module N de 1000 bits. Lorsque N grandit, les résultats pratiques s’éloignent plus encore
de la borne théorique, avec par exemple d ~ N9265 pour N de 4000 bits.

Proposition d’accélération de la méthode de Coppersmith

Dans ce contexte, ot la borne théorique énoncée par la méthode de Coppersmith est
souvent difficilement atteignable, voire totalement inaccessible & cause du temps d’exé-
cution fort conséquent en pratique, une contribution de cette thése (présentée dans le
Chapitre [4)) consiste en la proposition de deux méthodes permettant 1'accélération du
temps d’exécution de l'algorithme de Coppersmith pour le cas univarié modulaire ; les
deux méthodes pouvant étre combinées en pratique.

La premiére accélération résulte de 'application de I’algorithme de réduction-LLL
sur une matrice ou les éléments sont tronqués (Rounding en anglais). Plus précisément,
au lieu de réduire la matrice de Coppersmith contenant des éléments gigantesques, 'idée
consiste a tronquer les coefficients de maniére appropriée avant d’effectuer la réduction-
LLL dans le but de les rendre considérablement plus petits. En procédant de la sorte,
nous montrons que la matrice ainsi réduite permet d’obtenir des vecteurs du réseau suf-
fisamment courts. En pratique, cela signifie que pour toute instanciation de I’algorithme
de Coppersmith permettant de trouver les petites solutions inférieures & une borne X, il
est possible de diminuer considérablement la taille des coefficients de la matrice & réduire
(asymptotiquement, la taille des éléments est allégée d’'un facteur (log N)/J), tout en
atteignant quasiment la méme borne X sur les solutions retrouvées.

Si cette stratégie consistant a tronquer les éléments de la matrice de Coppersmith
avant d’y appliquer la réduction-LLL est plutot naturelle, il n’est pas avéré qu’elle puisse
étre employée sur tout type de matrice. En effet, lorsque ’on tronque les éléments d’une
matrice arbitraire non-singuliére, celle-ci pourrait devenir singuliére, ce qui empirerait
la situation pour la réduction- LLL. Cependant, nous montrons qu’une stratégie adaptée
fonctionne pour le cas particulier des matrices utilisées par 'algorithme de Coppersmith.
En effet, 'on exploite le fait que les matrices & réduire sont triangulaires et que les
éléments de la diagonale sont relativement équilibrés.

Il est intéressant de noter que cette propriété peut également étre utilisée pour amé-
liorer la complexité de la méthode de Coppersmith par une simple analyse, donc sans
méme modifier la méthode, en remarquant que le nombre d’itérations de 'algorithme
de réduction-LLL est fortement lié & I’équilibrage des éléments de la diagonale (voir
Chapitre [4]).

Ainsi, 'ensemble des complexités obtenues sont présentées en Table [B] en fonction
de l'algorithme de réduction de réseau employé (LLL, L? ou L). Plus précisément, la
complexité originale de ’algorithme de Coppersmith est fournie en premiére ligne a titre
de comparaison. La deuxiéme ligne représente la complexité raffinée avec prise en compte
du lien entre le nombre d’itérations et ’équilibrage des éléments. Enfin, la troisiéme ligne
met en évidence les complexités obtenues par 'application de la méthode Rounding.

Par exemple, la complexité originale de la méthode de Coppersmith avec 'utilisa-
tion de L%est O((log? N)/62). L’analyse raffinée que 'on propose permet en réalité de
la réduire a O((log® N')/§). En outre, I'application de la méthode Rounding apporte une

CONTENTS 23

TABLE 3 — Complexité de l'algorithme de Coppersmith en prenant en compte ’analyse
originale, 'analyse raffinée et la méthode Rounding. Ces trois complexités dépendent de
I'algorithme de réduction de réseau employé (LLL, L?ou L').

| LLL | L2 | L' |
Analyse Originale O((log'? N)/8%) | O((log” N)/6%) | O((log"" N) /o)
Analyse Raffinée O((log™ N)/6?) O((log® N)/6) O(log?*e N)
Méthode Rounding O(log” N) O(log” N) O(log® N)

amélioration supplémentaire de la complexité qui devient (’)(log7 N). Ainsi, 'accélération
totale ©((log? N)/6%) est quadratique en la taille de la borne sur les petites solutions
N1/9. Le gain est également conséquent avec P'utilisation de LLL ou la complexité origi-
nale O((log'? N)/83) devient O(log? N) avec une accélération globale de ©((log® N)/6%)
cubique en la taille des solutions N/9. Cependant on remarque que Papplication de la mé-
thode Rounding est moins pertinente lorsque 'algorithme LY est utilisé. En effet, notre
analyse permet d’obtenir la complexité O(log®™ N) au lieu de O((log”"¢ N)/3) pour
tout € > 0 avec une arithmétique efficace sur les entiers, ce qui apporte une accélération
O((log N)/8) qui est linéaire en la taille des solutions N/, cependant la complexité
asymptotique reste O(logf™ N) avec emploi de la méthode Rounding. Cela résulte du
fait que l'algorithme L!applique une stratégie similaire consistant a tronquer successi-
vement les éléments de certaines sous-matrices. On peut toutefois ajouter qu’une réelle
comparaison des deux approches semble délicate due aux constantes absorbées par le O,
une implantation de 'algorithme L! n’étant pas encore diffusée.

Un point intéressant consiste a remarquer que la méthode Rounding permet de clari-
fier la complexité asymptotique de 'algorithme de Coppersmith pour le cas de polynémes
univariés modulaires. En effet, la dépendance au degré ¢ n’était jusque-la pas tout a fait
claire : par exemple, Coppersmith dans I'article [Cop97| donnait une complexité gran-
dissant exponentiellement en ¢, mais il est bien connu qu’il s’agit d’une typo et que la
complexité était en réalité polynomiale en § (voir par exemple [BMO5b, Theorem 11]).
Ainsi, avec l'utilisation de la méthode Rounding, les complexités obtenues ne dépendent
plus du degré §, mais seulement de la taille du module V.

La deuxiéme méthode d’accélération que nous proposons est heuristique et s’applique
lorsque 'on souhaite effectuer une recherche exhaustive afin d’agrandir la borne supé-
rieure X des solutions retrouvées par l'algorithme de Coppersmith. C’est le cas par
exemple si la solution recherchée dépasse la borne théorique réalisée par ’algorithme de
Coppersmith X < N9, Mais c’est également et d’abord le cas si I'on souhaite déja
réellement atteindre la borne N9 car en pratique cette borne ne peut pas étre atteinte
en appliquant purement la méthode de Coppersmith puisque cela nécessiterait ’emploi
de paramétres impraticables par les machines de calcul actuelles. Plus précisément, les
éléements de la matrice a réduire seraient de taille log? N bits, et la matrice de dimension

24 CONTENTS

log N ; ainsi pour un module N de 2048 bits, la matrice contiendrait 20482/2 soit plus
de 2 millions d’éléments (car la matrice est carrée et triangulaire), et la taille de chaque
élément serait de plus de 4 millions de bits, ce qui signifie que I'on aurait & réduire une
matrice de plus d’un tera-octet.

Ainsi, pour atteindre la borne N1/, une recherche exhaustive est préconisée et s’avére
considérablement plus efficace. Celle-ci consiste a appliquer 1'algorithme de Coppersmith
avec le méme module N mais sur différents polyndémes qui sont tous « décalés » par
rapport au polynome initial f(z) : fi(x) = f(X -t + x) ou t varie et est tel que 0 <
t< NS /X . Dans cette thése, nous montrons que ce « décalage » permet d’exhiber des
relations entre les matrices & LLL-réduire, et que ces relations peuvent étre exploitées en
pratique. En effet, au lieu d’appliquer des réductions-L L L de maniére indépendante, il est
possible de les chainer. Plus précisément, si By, By, ..., B, sont les différentes matrices
a réduire, ou By est la matrice de Coppersmith correspondant au polynéme f;(x), notre
méthode consiste & effectuer une premiére réduction-LLL coiiteuse de la matrice By,
ce qui donne la matrice Bé%. Ensuite, au lieu de réduire By, réduction qui serait tout
aussi cofiteuse que celle de By, 'on réduit la matrice B§ - P ot P est une matrice
bien choisie (en 'occurrence, il s’agit de la célébre matrice de Pascal). Du fait que la
matrice B(]f - P soit le produit d’'une matrice réduite B§ par une matrice contenant des
coefficients relativement petits, on peut s’attendre a ce qu’elle soit déja presque réduite.
Par conséquent, sa réduction-LLL devrait étre peu cotiteuse.

Ce procédé de chainage (Chaining en anglais) peut ensuite étre itéré pour réduire
considérablement le temps global de la recherche exhaustive comme illustré en Figure [2]
Bien que cette accélération soit conséquente en pratique, elle reste néanmoins heuristique
comme nous ’avons précisé plus haut.

Il est judicieux de mentionner que les deux méthodes Rounding et Chaining sont des
techniques ayant déja été auparavant utilisées dans le domaine de la réduction de réseau.
En effet pour ce qui est de la technique Rounding, elle a été utilisée par Buchmann [Buc94|
pour estimer de maniére rigoureuse dans quel cas un calcul avec des réseaux sur les réels
pouvait étre effectué alternativement & l'aide de réseaux sur les entiers. Comme nous
'avons précisé précédemment, Ialgorithme L INSV11] est également basé sur cette
stratégie de Rounding. La méthode Chaining quant & elle, a par exemple été utilisée
dans le contexte MIMO [NJD11]| (avec une technique et analyse toutefois différente de la
notre). Cependant, malgré ces premiers résultats, les travaux présentés dans cette thése
proposent la premiére amélioration connue de 'algorithme de Coppersmith. Enfin, plus
récemment, un article de Saruchi, Morel, Stehlé et Villard [SMSV14] traite le cas de la
technique Rounding sur des matrices plus générales que celles spécifiques a la méthode
de Coppersmith. Les bornes qu’ils obtiennent appliquées au cas des matrices de Coppers-
mith sont trés proches de celles que 'on fournit dans notre étude : elles sont légérement
moins avantageuses car leur analyse prend en compte la réduction-LLL de I’ensemble de
la matrice, alors que notre approche ne requiert que des bornes sur le premier vecteur de
la base réduite.

CONTENTS 25

FIGURE 2 — Nouveau schéma Chaining de recherche exhaustive au sein de la méthode de
Coppersmith. Une premiére matrice By est LLL-réduite, puis les matrices sont chainées
par 'application de P et successivement LL L-réduites.

t:() t:l t:2 o o o

Sow fw)
|

Matrices R
. By
LLL-Réduites

Enfin, nous montrons que les deux méthodes d’accélération peuvent étre combinées.
Dans ce cas, en pratique, le nouvel algorithme s’exécute des centaines de fois plus ra-
pidement pour des paramétres typiques. Par exemple, si 'on considére le polyndéme
f(x) = 22 +ax+b =0 mod N de degré § = 2, oil la borne théorique sur les pe-
tites solutions est X < N2, 'application des méthodes Rounding et Chaining (pour
atteindre la borne théorique N/ 2) permet une accélération de quelques dizaines a milliers
de fois suivant les modules, comme illustré en Table

TABLE 4 — Temps global de recherche exhaustive avec 'utilisation de la méthode originale
et de la nouvelle méthode (Rounding et Chaining combinés) pour des tailles de N de
512, 1024, 1536 et 2048 bits.

[loga(N)] =512 | [logy(N)] = 1024 [logs(N)] = 1536 | [logy(N)] = 2048

Meéthode Originale 47 minutes 13.1 jours 108.5 jours 7.9 années
Nouvelle Méthode 52 secondes 1.2 heures 5.2 heures 2.6 jours
Accélération 54 262 502 1109

Ainsi, il est pertinent de noter que pour des paramétres typiques, le fait d’atteindre
(voire de dépasser!) la borne théorique de Coppersmith, borne qui était jusqu’alors sou-
vent quasiment inaccessible en pratique, peut devenir grace a ces méthodes une chose
tout a fait envisageable (les temps passant parfois de plusieurs années a quelques jours).

26 CONTENTS

Perspectives

Dans cette thése, la méthode Rounding est appliquée a 'algorithme de Coppersmith
pour le cas de polyndémes univariés modulaires. Aussi, il serait intéressant d’élargir son
emploi & d’autres polynémes, algorithmes, voire & d’autres contextes, avec éventuellement
des adaptations & proposer. Ainsi, par exemple, il existe de nombreuses variantes de 1’al-
gorithme de Coppersmith sur lesquelles I'obtention d’un gain significatif par ’application
de cette méthode ne semble pas tout aussi apparent. En effet, on note par exemple la
généralisation au PGCD |[HGO1,BDHG99| qui consiste a trouver les petites solutions zg
telles que f(z9) = 0 mod N ot PGCD(f(z9),N) > N® et 0 < o < 1, mais aussi la
méthode de Coppersmith pour le cas de polyndmes bivariés sur les entiers, ou encore les
généralisations aux polynoémes multivariés (modulaires ou sur les entiers). Dans ces va-
riantes, les matrices sur lesquelles la réduction-LL L est effectuée n’ont plus tout a fait la
propriété d’équilibre de I’ensemble des éléments de la diagonale, ce qui rend I’application
de la méthode Rounding moins directe, ou du moins nécessitant une adaptation. Cela
reste donc un probléme ouvert intéressant que d’obtenir une accélération significative sur
ces différentes variantes.

Par ailleurs, s’il est vrai que les applications de la méthode Rounding ici traitées
concernent le cas d’anneaux Euclidiens, cette méthode semble s’appliquer tout aussi bien
a d’autres types de structures, tels que les anneaux de polyndémes, les corps de nombres ou
corps de fonctions. On note par exemple 'application & l'algorithme Guruswami-Sudan
pour le décodage des codes de Reed-Solomon et sa variante améliorée [CH11b| a laquelle
la méthode Rounding pourrait s’adapter naturellement. Ainsi il serait intéressant d’y
apporter une analyse plus approfondie.

La méthode Chaining a par ailleurs elle aussi été appliquée a 'algorithme de Cop-
persmith pour le cas de polynémes univariés modulaires. Toutefois, il serait intéressant
d’analyser l'efficacité de son application aux autres variantes. En effet, si I'on observe
par exemple le cas de polynémes multivariés creux, I’application de la méthode Chaining
pourrait nécessiter I’ajout d’'un nombre non négligeable de colonnes (et de lignes) dans
la matrice de Coppersmith, ce qui pourrait alourdir les calculs. En effet, afin que la ma-
trice de passage conserve des éléments de petite taille, il est nécessaire que ’ensemble
des mondémes apparaissant au cours du chainage figurent également dans la matrice de
Coppersmith initiale méme s’ils s’avérent superflus au départ. Ainsi, analyser la perti-
nence de la méthode Chaining dans ces cas-1a pour éventuellement y apporter certaines
adaptations, reste un point d’étude ouvert.

Par ailleurs, comme nous ’avons précisé, I'accélération due a ’application de la mé-
thode Chaining sur l’algorithme de Coppersmith pour le cas de polynémes univariés
modulaires est heuristique. En effet, une analyse de la taille des éléments des matrices
réduites lors du déroulement de la méthode Chaining ne permet pas de mettre en avant
une amélioration de la complexité asymptotique des réductions-LLL. Toutefois, le gain
est considérable en pratique. Cela s’explique intuitivement par le fait que les matrices

CONTENTS 27

a réduire durant le chainage sont le produit d’une matrice déja réduite par une matrice
contenant des coefficients relativement petits (matrice de Pascal), et que par suite, le tra-
vail & effectuer par I'algorithme de réduction-LLL devrait étre moins conséquent. Cela se
confirme par une analyse expérimentale illustrée en Figure[3|de la taille des coefficients de
Gram-Schmidt de ces matrices (courbe bleue) qui restent relativement proches de ceux
de la matrice réduite (courbe verte horizontale) en comparaison de ceux de la matrice de
Coppersmith originale (courbe rouge en dents de scie). Cependant une meilleure compré-
hension théorique de la forme de la courbe bleue reste un point ouvert qui permettrait
d’écarter I'heuristique de la méthode et de mieux quantifier le gain obtenu.

FIGURE 3 — Taille des coefficients de Gram-Schmidt log,y(||bi*||) de chaque vecteur pour
3 matrices : la courbe rouge (dents de scie) est associée a la matrice originale de Cop-
persmith (dimension 151) pour un polynéme univarié modulaire de degré 6 = 2 et
[log N1 = 512; la courbe verte (horizontale) représente la matrice LLL-réduite cor-
respondante ; la courbe bleue est associée aux matrices intermédiaires & réduire au sein
de la méthode Chaining.

' ' C')riginal doppersm'ith Matrix M_0 N
Reduced Coppersmith Matrix M_0"R —s+—
38500 H Matrix MAR}_I*P —— 1
38400 “J‘ “HHH i
! |
= 38300 |l|l|"ll i
£ I e
é 38200 | ‘H
38100 |
38000 t
0 20 40 &0 a0 100 120 140

Index of vector

Enfin, si cette thése propose des attaques algébriques et physiques, elle met aussi en
avant le lien existant entre ces deux approches, en particulier le fait qu’elles s’avérent
parfois trés complémentaires. En outre, si 'on prend également en compte les accéléra-
tions proposées pour trouver les petites racines de polyndmes, accélérations permettant
en pratique de repousser les bornes existantes, il pourrait étre intéressant d’analyser
certaines attaques physiques publiées dans le domaine, afin de les améliorer voire de
trouver de nouveaux chemins d’attaque grace a I'utilisation de méthodes algébriques, et
en particulier de méthodes basées sur les réseaux.

Part 1

State Of The Art

29

Chapter 1

RSA on Embedded Devices and
Physical Attacks

Contents
(1.1 RSA Cryptosystem on Embedded Devices| 32
[1.1.1 RSA Signature in Standard mode|. 32
[1.1.2 RSA Signature in CRT mode| 32
(1.2 Physical Attacks| o 0000000 33
(.21 Non-mvasive Attacksl. 33
[1.2.2 Invasive Attackslo 38
(1.3 Lattices in Physical Attacks| 41
[1.3.1 SPA on Modular Exponentiation and Lattices:| 41
.32 CPA on CRT-Recombination and Latticesd 41
[L.3.3 Fault Attacks on RSA and Latticesd 41

Since its introduction in 1978, the RSA cryptosystem has become one of the most
used public-key cryptosystems. RSA can be used as a ciphering tool, for example to
cipher symmetric keys, but also as a signing tool, namely for numerical signatures, to
guaranty the integrity of a document and to authenticate its author. The process of
both schemes (ciphering and signing) is similar, even so we rather consider the signing
scheme in this chapter since it is by far the most used in practice. Furthermore, it is
well known that some computations in RSA can be speeded up by using the famous
Chinese Remainder Theorem (CRT). Thusly, we commonly speak about two modes of
implementation: the Standard mode, and the CRT mode. In embedded systems like
smart cards, most RSA implementations use the CRT mode which yields an expected
speed-up factor of about four . However, when using this CRT mode on embedded
systems, the implementation becomes more vulnerable to Fault Attacks, as depicted
in . More generally, because embedded systems are left to the consumer’s hands,
it can be vulnerable to what is called Side-channel analysis.

Hence, in this chapter, we recall the RSA Signature accordingly to both modes, the
Standard mode and the CRT mode. Then, we recall the most common side-channels and

31

32 CHAPTER 1. RSA ON EMBEDDED DEVICES AND PHYSICAL ATTACKS

we describe some basic physical attacks on such an algorithm. Eventually, we highlight
that physical attacks can sometimes be combined with lattice-based techniques in the
sense that physical attacks can possibly allow to recover part of the secret and in some
instances, the use of lattice-based techniques can be decisive to recover the whole secret.

1.1 RSA Cryptosystem on Embedded Devices

As previously said, RSA is one of the most used public-key cryptosystems. In practice,
it is especially employed in the single framework of electronic signature schemes [RSA7S|.
In the following we recall how to compute the RSA signature in the Standard mode and
the CRT mode.

1.1.1 RSA Signature in Standard mode

If a user wants to sign a message, the following steps should be performed:

1. Creation of the keys:
— Choose two distinct large prime numbers p and q.
— Compute their product: N = p x q.
— Compute Euler’s totient function ¢(N) = (p — 1)(q — 1).
— Choose an integer e which is prime with ¢(V).
— Compute d such that ed = 1 mod ¢(N).
2. Distribution of the keys:
— The triplet (p, q,d) is the private key of the user. It is kept secret and used to
sign a message.
— The pair (N, e) is the public key of the user. It will be used by his correspondent
to verify the signature of the message.
3. Sending of the signed message:
— The user who wants to sign a message m € Zy computes the signature S = m
mod N and sends to the correspondent the pair (S, m).

d

4. Verification of the signature:
— To verify the signature, the correspondent computes S¢ mod N by using the
public key (N, e) of the user, and checks if the corresponding result is equal to
m. Indeed, according to Euler’s Theorem, one has S¢ mod N = m? mod N =
m mod N.

1.1.2 RSA Signature in CRT mode

In the CRT mode, most steps are identical to the ones in the Standard mode. Indeed,
Steps 1, 2 and 4 remain alike. However, Step 3 which is the signature computation step,
is performed differently, by using the Chinese Remainder Theorem (CRT). Thus, instead
of directly computing m? mod N, one separates the computation into two parts, and
recombines both results. More precisely, one performs two exponentiations

Sp = m% modp and Sq = m% mod q

1.2. PHYSICAL ATTACKS 33

where
dy=dmodp—-1 and dy=dmodgqg—1

The signature is then obtained by recombining S;, and \S;, which is usually done by using
Garner’s formula |Gar59|:

S = CRT(Sp,Sq) =S¢+ q(ig(Sp — Sq) mod p) , (1.1)

1

where i, = ¢~ mod p.

Remark 1. Note that in both modes, in order to avoid some attacks (reordering of the
message, existential forgery, etc.) and to deal with long messages, the message is not
signed directly but is previously hashed using a hash function h. Then, the quantity h(m)
is signed.

1.2 Physical Attacks

Physical attacks consists in observing and manipulating the data processed by the
embedded system in order to extract some secret information. Depending on whether
the device is altered or simply observed, the attack is said to be invasive or non-invasive.

1.2.1 Non-invasive Attacks

In the context of non-invasive attacks, the manipulated data is not modified but only
observed and analyzed. Namely, the device is not permanently altered and no evidence
of an attack is left behind. Non-invasive attacks typically exploit what is called side-
channels.

The most famous side-channels:

Side-Channel analysis is a cryptanalytic technique which exploits information leaking
from the physical implementation of cryptosystems. It takes advantage of leakages arisen
during the execution of an algorithm, in order to extract secret information from a
cryptographic device. One of the best examples of cryptographic devices which are
subject to side-channel analysis are embedded devices like smart cards.

Side-Channel analysis has been introduced by the publication of the so-called timing
attacks in 1996 |[Koc96]. By that time, execution timing was the most exploited side-
channel. However, other parameters like the power consumption and electromagnetic
radiations rapidly became the most efficient side-channels to attack embedded cryptog-
raphy [KJJ99,QS00].

Besides, the four most famous side-channels which can bring exploitable information
to an attacker are the power consumption of the card, the electromagnetic radiations and
the photonic emission diffused by the card, and the timing of a computation, as depicted

in Figure

34 CHAPTER 1. RSA ON EMBEDDED DEVICES AND PHYSICAL ATTACKS

Figure 1.1: The most famous side-channels

. Electromagnetic
Power consumption o
radiations

. S

== ”.\\ Faulty

Ciphertext

Plaintext

Y
™
/dragonflyy)

Photonic
emission

Electron

Timing

Photor

O
N@\eua

=4

Side-channel analysis exploits the dependency between the manipulated data or the
executed instruction and the side-channel leakages which can be monitored during the
algorithm execution. In the following, we mostly consider the power consumption as
a side-channel, but other side-channels like electromagnetic radiations can equally be
exploited to mount the same type of attacks.

A typical equipment allowing the exploitation of power consumption involves a com-
puter, a smart card reader, an oscilloscope and a card: the computer sends commands
of cryptographic algorithms execution to the card via the smart card reader, and the
oscilloscope connected to a small resistor in series with the power supply measures the
power consumption as illustrated in Figure [I.2]

Figure 1.2: Typical equipment for a side channel analysis using the power consumption.

1.2. PHYSICAL ATTACKS 35

The side-channel analysis performed on the obtained information is different whether
one considers one measurement only or several measurements. Hence, one draws a dis-
tinction between Simple Power Analysis and Differential Power Analysis, as explained
in the sequel.

Simple Power Analysis (SPA)

Simple Power Analysis (SPA) consists in analyzing the variations and peaks of one
curve of power consumption during the execution of the cryptographic algorithm, in order
to discover some secret information, like the ciphering key [KJJ99]. Historically, this type
of analysis was discovered by exploiting the power consumption as a side-channel, and
this explains the “ P” in the acronym SPA. In fact, other side-channels can be similarly
used to perform an SPA: the attacks are performed identically, the only difference is the
way the leakage measurement is obtained. For example, when electromagnetic radiations
are considered, one can rather employ the acronym SEMA. Yet, in the sequel and as it
is frequently done, the acronym SPA will be employed to specify the analysis of all types
of side-channels requiring one measure only.

An example of SPA on modular exponentiation during RSA signature: One
of the most popular SPA attack applies on the modular exponentiation m® mod N which
is performed during the RSA signature in case of a straightforward Square-and-Multiply
implementation to perform the exponentiation. Namely, the Square-and-Multiply algo-
rithm consists in writing the private key d in a binary basis and for each bit of d, a
computation depending on whether the bit is 0 or 1 is performed: if the current bit is 0,
then a simple squaring is done, if the bit is 1, one executes a squaring followed by a mul-
tiplication. When the squaring and multiplication operations have different patterns in
the corresponding side-channel leakages, it is easy to differentiate them [KJJ99|. Hence,
the secret exponent d can be directly extracted from one measurement as depicted in
Figure [1.3] Thusly, the factorization of N can be easily recovered from the secret key d.

In the literature, a common countermeasure consists in using a so-called regular al-
gorithm which performs the same operation whatever the exponent bit value such as the
Square-Always or Montgomery ladder algorithms |[JY02,CFGT11].

Differential Power Analysis (DPA)

In contrast to a Simple Power Analysis, where a direct relation linking the secret
and the side-channel information could be drawn, a Differential Power Analysis (DPA)
exploits side-channel information which is less explicitly linked to the secret. Thus, in a
DPA, the secret information is brought out by using a large number of measurements ex-
tracted from many executions that use the same secret key. Note that as specified before,
one can use measurements obtained from other side channels than power consumption,
like electromagnetic radiations; the way the attack is subsequently performed remains

36 CHAPTER 1. RSA ON EMBEDDED DEVICES AND PHYSICAL ATTACKS

Figure 1.3: Electromagnetic radiations measured during the execution of a modular
exponentiation performed with the Square-and-Multiply method.

0101010000001 1 10001 11 10101 1000010011

identical. This type of attack applies a statistical treatment on the curves to recover
information on the manipulated values. They consist in identifying some intermediate
variables which are manipulated during the execution of the algorithm, and which de-
pend on small parts of the secret key and on some known values. Such variables are
said to be semsitive. Thus, if one can recover a sensitive value, then one retrieves the
corresponding part of the secret key, and vice-versa.

Hence, if a sensitive value is manipulated during the execution of the algorithm,
the principle of the attack consists in performing an exhaustive search on the small
secret part by making all possible guesses on this secret part. Thusly, on one side,
one executes several times the algorithm with different known inputs and one saves the
corresponding leakage measurements, and on the other side, for each guess, one predicts
the sensitive variables associated to the known inputs (which can be done because the
sensitive variables depend on this guess and on the known inputs). For the correct
guess, a statistical relation is observed between the predicted values and the leakage
measurements, and for all other guesses it is expected that no noticeable relation will be
observed.

A classical statistic tool used to perform such a statistical treatment, is the Pearson
correlation coefficient:

cov(L, H
o = A (1.2)
oo

where L is the set of curves and H depends on a known value m and on a guess of a
small part of a secret k. Such an attack is called Correlation Power Analysis (CPA), as

depicted in [EBCO04].

1.2. PHYSICAL ATTACKS 37

An example of CPA on CRT-recombination during RSA signature: In the
literature, many different CPAs have been published to attack the RSA cryptosystem.
For instance in the RSA signature, if the CRT mode is implemented then an attacker can
mount a CPA to recover the private parameter ¢ during the CRT-recombination specified
in Relation . This CPA attack is depicted in [AFV07] and its principle is recalled in
the following.

We use the same notations as before, namely we denote by S the value m? mod N
where N = pq, and i, is ¢! mod p. We also have Sy = m mod p and Sq = mda
mod q.

Since by Garner’s formula one has S = S;+¢(i4(Sp — S;) mod p), therefore we deduce

that s g
2] -saman s |3

Furthermore, because by definition, we have S, < ¢, we deduce that L%J = 0. Therefore,
one gets the relation:

th = iq(Sp — Sq) mod p.

The value i4(S, —S;) mod p is manipulated during the CRT-recombination computation.
Since this manipulated value is equal to |S/q], it depends on a secret value ¢ and on a
known value S. Therefore, this is a sensitive value on which one can perform a CPA.
More precisely, the value i4(S, — ;) mod p is manipulated part by part: typically each
byte is processed sequentially. Therefore one can consider each byte of the secret ¢
independently.

Thus, for each byte of ¢, one makes a guess on the value of this byte and one wants to
confirm this guess. To this aim, one launches on the device ¢ executions of the algorithm
with input messages mq,mo, ..., my, and collect the curves C, Co, ..., C}y corresponding
to the power consumption of these executions. On the other hand, for all input messages
mi, Mo, ..., My, one predicts the value of the corresponding byte of the sensitive variables
| S/q] associated to the guess of the byte of ¢ and to the known signatures S.

Then the Pearson correlation coefficient is computed by using the obtained curves and
the predictions (cf. Relation (1.2])). If the guess was correct, then a statistical relation
is observed between the predicted values and the leakage measurements. In the case
where no statistical relation is observed, then one tries other guesses, until recovering
the correct byte of the secret q. Hence, an attacker can obtain the whole secret ¢ by
performing a CPA for each of its bytes.

Eventually, classical countermeasures to resist CPA consist in randomizing the mod-
ulus NV, the message m and the exponent d as depicted in [AFV07] in order to introduce
some unknown data that changes at each execution, which makes the attack impossible.

Thus, we have recalled some basics about non-invasive attacks involving side-channels,
and we refer the interested reader to the book [MOPO7| for more details. In the following,
we describe another type of attack which affects the physical integrity of the card and
which is said to be invasive.

38 CHAPTER 1. RSA ON EMBEDDED DEVICES AND PHYSICAL ATTACKS

1.2.2 Invasive Attacks

Invasive attacks typically start by the depackaging of the cryptographic device as
depicted in Figure They allow to introduce modifications on the embedded system,
ranging from a simple alteration of the processed data, to an irreversible damage of the
material.

Figure 1.4: Smart card depackaging on the back side (on the left) and on the front side
(on the right).

A typical example of invasive attacks are Fault Attacks which consist in disrupting
the cryptographic computation, for instance by injecting light pulses (see Figures
and , so that it produces erroneous results.

Figure 1.5: A Diode Laser Station (picture taken from the Riscure Inspector Data Sheet).

1.2. PHYSICAL ATTACKS 39

Figure 1.6: Multi-area Diode Laser System: an additional spot is added by a laser beam
through a glass fiber (pictures taken from the Riscure Inspector Data Sheet).

Fault Models:

In the literature, four different fault models are generally considered to define the

attacker’s capabilities [BOS03]:

the random fault model: the bits are changed to a uniformly distributed random
value;

the bit-flip fault model: in that case, affected bits are flipped to their complemen-
tary value;

the stuck-at fault model: the fault sets the bits to 0 or to 1, depending on the
underlying hardware;

the unknown constant fault model: the fault always sets the bits to the same
unknown value.

Moreover, these faults do not necessarily modify a whole temporary result. Indeed, it is
generally considered that the number of bits affected by the fault is linked to the CPU
word-size which is generally 8, 16 or 32 bits.

An Example of Fault Attack on RSA-CRT Signature:

RSA has been the first cryptosystem to succumb to Fault attacks. In the following,
we describe the so-called Bellcore attack [BDL97] when the CRT mode is implemented.
We recall that in such a mode, the computation of the signature S is performed modulo

40 CHAPTER 1. RSA ON EMBEDDED DEVICES AND PHYSICAL ATTACKS

p and g separately, which gives S, and S, and both are then recombined to get the final
signature S mod V.

Assume that a fault is injected during the computation of S, (and not during the
one of ;) leading to a faulty signature S. By definition we have S = S, mod p and
S = S, mod g, hence one notices that

§ESmodq

S # S modp

because the computation of S; was not disturbed and that a fault was injected during
S, computation.

Thusly, when it is possible to sign the message twice: one time correctly, and one
time by inducing a fault, one gets a correct signature S and a faulty signature S. The
knowledge of both signatures allows to easily recover the secret parameter ¢ by computing
the ged of S — S and N. Indeed, since S — S = 0 mod q and S — S # 0 mod p we have
that

ged(S — g,N) =q .
The other factor p = N/q is then straightforwardly deduced.

When it is not possible to sign the same message twice and if the message is known
to the attacker, a variant of this attack consists in computing the ged of S¢—m and N to
obtain the secret value g [Len96|. Indeed, since by definition one has S¢—m =0mod N,
one deduces that S¢ — m = 0 mod q and S¢—m # 0 mod p, therefore we have that

ged(5¢ —m, N) =

More generally, the effect of fault injections on CRT-RSA is not limited to the dis-
turbance of S, or S;. Indeed, a fault injected in any part of the key parameters (i.e. p,
q, dp, dg or iy), in the message m at the beginning of either S, or S, computation, or
even during the CRT-recombination can lead to a useful faulty signature.

The most natural way to counteract fault injection on RSA-type signature is to check
the correctness of the signature S before outputting it [BDL97|. More precisely, the
signature is returned if and only if S mod N = m. Moreover, such a method requires
very little overhead since the public exponent e is usually small in practice (typically 3,
17 or 216 +1).

Other methods getting rid of e have also been proposed but they do not offer the same
level of security and are generally slower than the public verification |Gir06lVig08,Riv09].

1.3. LATTICES IN PHYSICAL ATTACKS 41

1.3 Lattices in Physical Attacks

If physical attacks sometimes allow the retrieval of the whole secret, in many cases,
only part of the secret is revealed to the attacker. In those cases, lattice-based techniques
(see Chapter [2| and Chapter 3| for further details) turn out to be very useful and com-
plementary to physical attacks. Namely, the information brought by physical attacks
can account for a substantial input which allows to make possible the discovery of the
entire secret thanks to lattice-based techniques. In the following, we reconsider the three
examples of physical attacks recalled in this chapter and we provide some extensions
based on lattices.

1.3.1 SPA on Modular Exponentiation and Lattices:

It is well-known that the use of a small private key d in RSA, namely an exponent
d < N9292 should be prohibited. This result has emerged from a lattice-based technique
due to Coppersmith [BD00| which allows to recover the entire secret d if such a condition
is fulfilled. Alternatively, if d is large and if one knows a portion of the bits of d, then
the same method can be applied to recover the whole secret d. Namely, in [BDF98|, the
authors show that for low public exponent e, a quarter of the bits of the private key
d is sufficient to recover the entire private key. Similar results (though not as strong)
are obtained for larger values of e. Furthermore, they also deal with the case where the
known bits are the most or the least significant ones, or when a part in both sides is
known. Thusly, such methods can be employed in the case where part of the bits of d
was recovered thanks to a side-channel analysis such as the SPA described in Section
The other part of the secret d can indeed be straightforwardly retrieved thanks to these
lattice-based techniques.

1.3.2 CPA on CRT-Recombination and Lattices:

It has been shown in [Cop96a] that the knowledge of half of the bits of prime ¢ is
sufficient to recover the rest of ¢ by using lattice-based techniques, namely by using
Coppersmith’s method (which is recalled in Chapter . Thusly, such a method can be
very useful in the case where half of the bits of ¢ was recovered thanks to a side-channel
attack such as the CPA described in Section[I.2] The other part of the secret ¢ is indeed
directly retrieved thanks to lattice techniques.

1.3.3 Fault Attacks on RSA and Lattices:

The fault attack on RSA Signature described in Section is noteworthy in the sense
that a single fault allows to directly recover the entire secret. However, many published
fault attacks with a different context of application, allow to recover part of the secret,
sometimes with the necessity of many fault injections. Then the use of lattice-based
techniques is decisive to recover the whole secret.

One can mention for example randomized RSA encoding/signature schemes (e.g. the
randomized version of ISO/IEC9796-2 Standard) which were usually considered to be

42 CHAPTER 1. RSA ON EMBEDDED DEVICES AND PHYSICAL ATTACKS

resistant to traditional fault attacks since a part of the message is unknown to the at-
tacker and varies for each signature computation. However this common assumption was
mitigated regarding the works of [CJK™09] and [CNT10] which defeat two randomised
RSA encoding schemes. These attacks use lattice-based techniques, and more precisely
Coppersmith’s method to solve a bivariate polynomial equation whose coefficients are
built thanks to the generated faulty signatures.

One can also mention the attack published in [EBNNT11|, where the authors take
advantage of the disturbance of the public modulus. The generated faulty signatures
allow them to build a lattice, which in turn leads to factorize the public modulus.

Chapter 2

Lattice Reduction

Contents

.......................... 43

2.1.1 Some Basic Definitionsl. 43
2.1.2 Volume and Determinant| 44
[2.1.3 Shortest Vector Problem and Orthogonality] 45
2.2 LL[L-Reduction/, 47
2.2.1 Size-Reduced Basisl. 47
222 [LLl-Reduced Basigl 48
[2.2.3 A Basic Version of the LLL Algorithm|. 49
224 Bounds of LLL-Reduced Vectorsl 49
[2.2.5 Complexities of the LLL, L? and L' Algorithms|. 50
[2.2.6 Number of Iterations of LLL-Reduction Algorithms| 52

2.3 Diophantine Problem and LL[L-Reduction|. 53
[2.3.1 Finding Small Integer Solutions|. 53
[2.3.2 Simultaneous Diophantine Approximation| 53

In this chapter, we recall some important definitions and theorems concerning lattices
which will be useful for the scope of the manuscript. More precisely, in Section [2.1] we
recall some basics on Euclidean lattices. In Section [2.2]we highlight the problem of lattice
reduction, together with the weaker notion of LLL-reduction and we depict the most
famous existing polynomial-time algorithms that ensure LLL-reduction. Eventually, in
Section[2.3] we give an application of LL L-reduction algorithms, related to the problem of
simultaneous Diophantine approximation. More generally, we refer the interested reader

to Coh95| for a more detailed introduction into the theory of lattices.

2.1 FEuclidean Lattices

2.1.1 Some Basic Definitions

A lattice is a regular infinite arrangement of points in space. Mathematically, it is a
discrete additive subgroup of R™. More precisely, we acknowledge the following definition.

43

44 CHAPTER 2. LATTICE REDUCTION

Definition 2. Let uj,...,un € R™ be linearly independent vectors with n < m.
— A lattice L spanned by {uy,...,un} is the set of all integer linear combinations
ofuy,...,up:

L = {ueR"|u=) Nw with \ €Z} .
i=1
— The set B={u1,...,un} is called a basis of the lattice L.

— If m = n, then the lattice is called a full rank lattice.
— The dimension of the lattice dim(L) = n is the number of vectors in the basis B.

In this thesis, and as it is often the case in cryptography, we only consider integer lat-
tices, that is lattices for which the basis vectors {us,...,un} belong to Z". Furthermore,
the considered lattices will only be full rank lattices.

2.1.2 Volume and Determinant

As soon as dim(L) > 2, there exist infinitely many bases which allow to represent the
lattice £, but all bases contain the same number of elements which is dim(£). Another
property that connects all those bases lies in the fact that they all admit the same volume.
In other words, the n-dimensional volume of the parallelepiped spanned by any basis of
the same lattice is a geometric invariant. As recalled in the sequel, the volume can be
defined by the algebraic notion of determinant.

A full rank lattice £ spanned by the basis B = {uy,...,un} can be represented by a
matrix B of dimension n x n where each row of the matrix B contains the coordinates
of one vector in the basis B.

Thus, the following proposition highlights the link between the volume of a lattice £
and the determinant of a basis of £:

Proposition 3. Let B be a matriz representing a basis of the lattice L. The volume of
the lattice L is defined as follows:

vol(£) = y/det(BBT) .

If further, L is a full rank lattice, then we have:
vol(L£) = | det(B)|

Thus, in the same way that all bases of a lattice admit the same volume, they all
have the same determinant. This leads to the following proposition which gives a link
between two matrices of the same lattice.

Proposition 4. Let B and B’ be two matrices representing a full rank lattice L. Then,
there exists a unimodular matriz U with integer coefficients such that

B'=UxB and det(U)==+1

Thus, all bases of the lattice L have the same determinant.

2.1. EUCLIDEAN LATTICES 45

If the basis matrix B is triangular, then the lattice determinant is simply the product
of the absolute values of the diagonal coefficients of B. But when it is not the case,
Hadamard’s inequality still gives a useful upper-bound on the determinant as depicted
in the following proposition.

Proposition 5. Let £ be a full rank lattice and B = (uy,...,uyn) be a basis of L,
Hadamard’s inequality gives:

n

[det(B) < [T lhwill
i=1

Eventually, we provide a last property which allows to write the determinant of the
lattice in a convenient way. This relation uses the famous notion of Gram-Schmidt
orthogonalization that will be recalled in next section.

Proposition 6. Let L be a full rank lattice spanned by B = {u1,...,un} and let B* =
{uy,...,u}} be the corresponding Gram-Schmidt orthogonal basis. The determinant of
L is

n
|det B =] [lluf|l -
i=1

2.1.3 Shortest Vector Problem and Orthogonality

As mentioned before, there exist infinitely many bases for the same lattice £. How-
ever, some of them hold more interesting properties than others: namely, those which
contain vectors that are relatively small (with regard to the Euclidean norm) and or-
thogonal.

Shortest Vector Problem:

Since a lattice is a discrete subgroup, there exists a non-zero vector v belonging in the
lattice, which has a minimal norm. Thereon, Minkowski gave in [Min12| an upper-bound
on the norm of the shortest vector, which is depicted in the following theorem.

Theorem 7 (Minkowski). Let L be a lattice of dimension n, then it contains a non-zero
vector v such that

IVl < v/ det(£)/"

The Shortest Vector Problem, called SVP, is the most famous lattice problem, and it
is the following:

Problem 8 (Shortest Vector Problem (SVP)). Given a basis B = {u1,...,un} of a
lattice L, find a shortest non-zero vector u in the lattice L.

46 CHAPTER 2. LATTICE REDUCTION

This problem is known to be NP-hard under randomized reductions, that is, there is
no known polynomial time algorithm that solves it [Ajt96]. Note that in dimension 2,
the Gauss Reduction Algorithm allows to find a shortest vector of a lattice in polynomial
time. Thus, even if the general problem (for any larger dimension) is NP-hard, some
polynomial-time algorithms which allow to approximate a shortest vector have been
designed, as depicted in next section.

Gram-Schmidt orthogonalization:

As previously said, we are interested in finding bases which contain relatively small
and orthogonal vectors. Thus, we recall the process of the Gram-Schmidt Orthogonal-
ization.

Definition 9 (Gram-Schmidt Orthogonalization). Let B = {uj,...,un} be an input
basis. The Gram-Schmidt orthogonalization process allows to construct an orthogonal
basis B* = {uj,...,u}} of the same vector subspace as B.

— The process works iteratively on the vectors u; for i < n and consists in computing
u; which is the projection of u;, orthogonally to the vector subspace generated by
the i — 1 first vectors of B. More precisely, it is done as follows:

u; =u; ,

* s . h o wug) 2<i<

uf =u; —) piu; , where Hij = Tl for 2<i<n
1<t

— The orthogonalized matriz B* verifies B* = M x B where M is the n x n lower-
triangular matriz defined as follows:

M;; = —pij if i>7]
M;; = 1 if i=j
MiJ = 0 if 1<y

Namely, in Algorithm [1, we provide the Gram-Schmidt orthogonalization algorithm
which, given an input matrix B = {uy,...,un}, outputs a Gram-Schmidt orthogonalized
matrix B* = {uj,...,u}} and a lower-triangular transformation matrix M such that

B = MB~*.

2.2. LLL-REDUCTION 47

Algorithm 1 Gram-Schmidt Orthogonalization Algorithm
Input: Initial basis of the vector space B = {uy,...,up}.
Output: A Gram-Schmidt Orthogonalized basis B* = {u7,...,u}} and a transforma-
tion matrix M such that B = M B*.
1: for i from 1 to n do

2 wr = uy
3: for j from 1toi—1do
4: Wij i= fuing)
J [EHIE
5 u;y = uj — p;5uj.
6: end for
7: end for

8: Output matrices B* and M.

2.2 LLL-Reduction

As highlighted in Section the problem of finding a shortest vector in a lattice is
NP-hard. However, Lenstra, Lenstra and Lovasz |[LLL82| proposed in 1982 a polynomial
time algorithm which is able to approximate a shortest vector. Namely, this famous
algorithm called LLL, produces a reasonably good basis, using a relaxed notion for
reduced basis. This notion, called LLL-reduction is defined by two conditions, where
the first one, known as size-reduction, will be used in Chapter [4] and is defined in the
following.

2.2.1 Size-Reduced Basis

Definition 10 (size-reduced). Let L be a lattice spanned by B = {ui,...,un}. The
basis B is size-reduced if the Gram-Schmidt orthogonalization of B satisfies:

<) forall i< j

’Ni,j

N

There is a classical elementary algorithm which size-reduces a matrix basis B =
{uy,...,un} of an integer lattice L C Z™, in polynomial time, without ever modifying
the Gram-Schmidt vectors uj, as depicted in Algorithm [2|

48 CHAPTER 2. LATTICE REDUCTION

Algorithm 2 A Size-Reduction Algorithm

Input: A basis B = {ui,...,un} of a lattice L.

Output: A size-reduced basis B = {uy,...,up}.
1: Compute all the Gram-Schmidt coefficients 11 ; (using Algorithm .
2: for i from 2 to n do
3: for j from i — 1 downto 1 do

4 u; = uj — [,ui’jjuj.

5 for k from 1 to j do

6: Wik := ik — | Mig) 1k
7 end for

8: end for

9: end for

10: Output matrix B = {us,...,un}.

This algorithm is included in the original LLL algorithm [LLL82| (e.g. it is the sub-
algorithm RED in the description of LLL in |Coh93|). In the special case that the input
basis is (square) lower-triangular, the running-time of this size-reduction algorithm is
O(n®b?) without fast integer arithmetic, and nO(b) using fast-integer arithmetic, where
b= maxj<i<n log ||bl||

2.2.2 LLL-Reduced Basis

Eventually, in the following, we give the definition of an L L L-reduced basis.
Definition 11 (LLL-reduced). Let L be a lattice spanned by B = {u1,...,un} and let

B* = {uj,...,u}} be the corresponding Gram-Schmidt orthogonal basis. The basis B is
LLL-reduced with a parameter 6 € (1/4,1] if the following two conditions are satisfied:

forall i <j (size-reduced condition)

N[

lpaj| <

WV

ur, |12 (6 =y agl?, for alli (Lovdsz’ condition)

The two conditions indicated above that should be satisfied for having an LLL-
reduced basis are meant to control the two sought properties of the basis (small size and
orthogonality). Roughly the first condition which is the size-reduced condition, allows
to output a basis with relatively small vectors, and the second one, which is the Lovasz’
condition, ensures that the vectors remain quite orthogonal relative to one another (in
fact this second condition is also crucial to ensure that the vectors are short).

2.2. LLL-REDUCTION 49

2.2.3 A Basic Version of the LLL Algorithm

In Algorithm [3] we provide a basic version of the LLL algorithm which highlights
the principle of the LLL-reduction with the two conditions. We refer the reader to
[Coh93,NV10| for a more refined version of the LLL algorithm.

Algorithm 3 A Basic Version of the LLL Algorithm

Input: A basis B = {u1,...,un} of a lattice £ with a factor § = 3/4.
Output: An LLL-reduced basis B = {uy,...,up}.

1: Size-reduce the matrix B = {uy,...,un} (using Algorithm [2).

2: if there exists an index j which does not satisfy Lovéasz’ condition then
3: Swap uj and uj4q.

4: Return to Step 1.
5
6

: end if
: Output matrix B.

2.2.4 Bounds of LLL-Reduced Vectors

The upper-bounds of each vectors achieved for an LLL-reduced basis are highlighted
in the following theorem (see [SKKOO06]).

Theorem 12 (L LL-reduced vectors bounds). Let B® = {vy,...,vn} be an LLL-reduced
basis of a lattice L. Then we have:

n(n—1

)
vl < 257D det(L) 77T |

In particular, the shortest vector of an LL L-reduced basis B = {v1,..., vy} is most
likely to be the first vector v and satisfies

[va]| < 2= D/4 det(L£)/™

Hence, while the theoretical upper-bound of the shortest vector given in Theorem [7|has a
factor y/n which is polynomial in the dimension, the upper-bound of the shortest vector
of an LLL-reduced basis has a factor 2"~ /4 which is exponential in the dimension.
However, LLL-reduced bases give a good approximation of the shortest vector and turn
out to be extremely useful in loads of fields, and in particular for cryptanalysis. Also note
the bounds obtained in practice by usual LLL-type reduction algorithms are frequently
better than the theoretical bounds, which makes them even more interesting.

20 CHAPTER 2. LATTICE REDUCTION

2.2.5 Complexities of the LLL, L? and L' Algorithms

The LLL Algorithm:

As previously said, Lenstra, Lenstra and Lovéasz |[LLL82| proposed in 1982 a poly-
nomial time algorithm called LLL. When this algorithm was discovered, the authors
first applied it for the factorization of polynomials over the rationals, a problem that
was firmly established at that time as something that could not be solved in polynomial
time. Clearly, this algorithm was originally meant to compute an LL L-reduced basis in
polynomial time. Thus, the time complexity of LLL is depicted in the following theorem.

Theorem 13 (LLL). Given an input basis B = {uy,...,un} of a lattice L € Z™, where
b = maxi<i<n(log||uil|), the LLL algorithm outputs an LLL-reduced basis in polynomial
time in

O(n°mb%)

Thus, the LLL algorithm has a complexity which is cubic in the size of the input
coefficients. While this algorithm is very useful when the size of the elements and the
dimension are reasonable, it turns out to be totally inefficient when they become very
large, as it is frequently encountered in cryptology.

In order to deal with this problem, many floating-point versions of the LLL algorithm
have been proposed, but they usually lead to instability problems, or worse, it may
happen that they do not output an LLL-reduced matrix.

The L? Algorithm:

Nguyen and Stehlé proposed in 2005 a floating-point algorithm, called L? [NS09],
which has the advantage to be practical and stable, but even more interesting, it has a
better time complexity than the LLL algorithm, as highlighted in the following theorem.

Theorem 14 (L?). Given an input basis B = {uy,...,un} of a lattice L € Z™, where
b = maxj<;<n(log ||us||), the L? algorithm outputs an approzimate LLL-reduced basis (cf.
Remark in polynomial time in

O(n*mb(n + b))
Accordingly, the L? algorithm has a complexity which is quadratic in the size of the

input coefficients. Therefore, this algorithm is particularly interesting to reduce bases
with large coefficients.

2.2. LLL-REDUCTION o1

The L! Algorithm:

Recently in 2011, Novocin, Stehlé and Villard proposed an algorithm called L* INSV11],
with an improved complexity. This algorithm deals with smaller coefficients by taking
advantage of the fact that only the most significant bits of the coefficients are crucial for
the reduction. At each step, the least significant bits can therefore be neglected during
the costly computations and reconsidered after. Actually, the L! algorithm can be seen
as a generalization of the Knuth-Schonhage fast GCD algorithm [Knu71|, from integers
to matrices. Thereby, the L! algorithm can output an LLL-reduced basis for a full-rank
lattice with a complexity which is quasi-linear in the size of the input coefficients. The
complexity of L'is given in the following theorem.

Theorem 15 (L'). Given an input basis B = {u1,...,un} of a full rank lattice L, where
b = maxj<;<n(log ||usl|), the L algorithm outputs an approzimate LLL-reduced basis (cf.
Remark i polynomial time in

O (n5+€b + nw+1+s b1+s)

for any € > 0 using fast integer arithmetic, where w < 2.376 is the matriz multiplication
complexity constant.

The L' algorithm is for the time being the LL L-reduction algorithm holding the best
complexity (note that a similar complexity bound can also be obtained by using the 2-
dimensional BKZ’ algorithm [HPS11, Th. 3]). However, for now the L' algorithm is still
considered mainly theoretical since it is currently not implemented. This is the reason
why, in this manuscript it will therefore be meaningful to mention when needed, the
complexities associated to both algorithms: L?and L' .

Remark 16. We emphasize that the complexities of LLL and L? algorithms given in
Theorem [13 and Theorem [IJ) assume that no fast integer arithmetic is implemented, as
opposed. to the complexity of L* given in Theorem which uses fast integer arithmetic
and fast linear algebra. The complexities of LLL and L? when using fast integer arith-
metic are respectively n®mbO(nb) and n*m(n + b)bO(n), where b = max; ;< (log ||[us).

Remark 17. The L? and L' algorithms do not strictly output LLL-reduced bases follow-
ing Definition [I1], but they compute approximate LLL-reduced bases for a mild modifica-
tion in the definition of the LLL-reduction. We refer the reader to [NS09] and [NSV11]

for more details.

52 CHAPTER 2. LATTICE REDUCTION

Complexity Summary: We summarize in Table[d.I|the time complexities of the LLL,
L?and L algorithms, applied to an input basis B = {uy,...,un} of a lattice £ € Z™,
where b represents the size of the maximal element in the input basis. As it is well
highlighted by their calling designations, the LLL algorithm has a complexity which is
cubic in b, while the L?is quadratic in b and the L!is quasi-linear in b.

Table 2.1: Time complexities of the LLL, L? and L! algorithms.

LLL L? Lt
Complexity | O(n®mb3) | O(n*mb(n + b)) | O(nOTb + n@titeplte)

2.2.6 Number of Iterations of LLL-Reduction Algorithms

The number of loop iterations performed by LLL-reduction algorithms (LLL, L?and
L') is upper bounded by O(n?b) |LLL82|. However, when the Gram-Schmidt norms of
the input basis are balanced, the LL L-reduction algorithms require fewer loop iterations
than in the worst case. Namely, it has been shown in [DV94] that the b term in the number
of iterations O(n2b) can be replaced by the more refined term max ||b;*|| /min [|b;*||. More
precisely, [DV94] showed the following theorem:

Theorem 18 (Number of iterations). Let L be a lattice spanned by B = {b1,...,bn}
and let B* = {b1*,...,by*} be the corresponding Gram-Schmidt orthogonal basis. The
upper bound on the number of loop iterations of LLL-reduction algorithms is:

o (v

min [|b;"||

Since the complexity of the LLL-reduction algorithms depends on the number of
loop iterations, by using Theorem the complexity of LLL-reduction can sometimes
be decreased by some polynomial factor.

Remark 19. The property of Gram-Schmidt norms balancedness which is highlighted in
Theorem[18 will be used in Chapter[{]in order to improve the complexity of Coppersmith’s
method.

2.3. DIOPHANTINE PROBLEM AND LLL-REDUCTION 93

2.3 Diophantine Problem and LLL-Reduction

The Diophantine problem consists in searching or studying, integer solutions for a
system of equations given by:

filx1,...,2n) =0, where i=1,....,m .

Diophantine problems typically hold fewer equations than unknown variables and they
involve finding integers that work correctly for all equations (if there are more equations
than variables, then the problem amounts to solving an overdetermined system that can
be done using classical tools like Grobner bases, and thereby extracting the integer roots
among all roots found). The problem of deciding whether such solutions exist has been
formalized in the 10-th Hilbert Problem and has been shown in 1970 to be NP-hard in
its general form.

Still, LLL-reduction in polynomial time has brought a non-negligible impact to the
Diophantine problem. Thus, LLL-reduction has been used to find small integer solutions
to Diophantine equations, but also to find simultaneous diophantine approximation, as
recalled below.

2.3.1 Finding Small Integer Solutions

As previously said, the 10-th Hilbert problem is difficult in its general form. How-
ever, with the publication of LLL-reduction algorithms in polynomial time, one of its
subproblems consisting in finding small integer solutions, has been shown to be solvable
in polynomial time. Namely, Coppersmith in |[Cop96b, Cop96al|Cop97| showed that if
the searched integer roots are small enough, then lattice-based techniques can allow to
recover them. The core idea involves finding new polynomial equations thanks to lattice-
reduction in order to get as many equations as variables, and then solve the system easily.
We describe in more details those techniques in Chapter

2.3.2 Simultaneous Diophantine Approximation

Another famous application of lattice reduction algorithms involves the theory of
Diophantine approximation. Apart from its own interest, being able to have good simul-
taneous approximations is a very useful building block for many algorithms. This theory
deals with the approximation of numbers (rational or irrational), by rational numbers
with special properties. Namely, let n be a positive integer, e, es,..., e, be rational
numbers and ¢ € R satisfying 0 < ¢ < 1. A theorem from Cassels [Cas|, Sec.V.10] spec-
ifies that there exist integers p1,p2, ..., pn,q such that |p; — ge;| < e for 1 <i < n, and
1<g<ge™.

54 CHAPTER 2. LATTICE REDUCTION

However, even if it is proven that such integers exist, no known polynomial-time
algorithm can find them. Yet, in [LLL82| it is shown that the LLL algorithm can be
used to recover integers that satisfy a slightly weaker condition. Namely, they show the
following theorem:

Theorem 20 (Simultaneous Diophantine Approximation). There exists a polynomial
time algorithm (LLL) that, given a positive integer n and rational numbers ey, e, ..., en,
satisfying 0 < € < 1, finds integers p1,p2,...,Pn,q for which

lpi —qeil <e for 1<i<n |,

0 —eq
0 —es
B = :
1 —en
00 ... 0 275 entt

We denote by v the first vector of the L LL-reduced matrix and by v/ = (p1,p2, ..., 0n,q)"
the vector of the transformation matrix such that Bv' = v. Thus the vector v is such
that

zn(n+l)
v=(p1—qe1, p2—qe2, ... , Pp—Qen, q2° 1% E"'H)T)

Since matrix B is upper triangular, one has

—n(n+1)
detB=2"1 ¢t}

Therefore, the first vector v of the LLL-reduced matrix satisfies:
Iv]| < 2% (det B)wrt = ¢ .

Thus, it straightforwardly follows that |p; — ge;| < e for 1 < i < n. It remains to show
n(n+1) . —n(n+1)

that 1 < ¢ <2 7 & " . Indeed, since the last component g2~ 1 "t of vector v

. o n(n+1) ,

is also < g, one gets the condition ¢ < 27 7 ¢~ ". Eventually, since ¢ < 1 and v # 0,

one gets ¢ # 0. Thus, if ¢ is negative, then one rather considers vector —v. This ensures
that ¢ > 1 because ¢ is an integer, and it concludes the proof.

n

O]

2.3. DIOPHANTINE PROBLEM AND LLL-REDUCTION 95

Hence, as depicted in Theorem [20, LL L-reduction algorithms have made effective a
relaxed version of the simultaneous Diophantine approximation problem.

Remark 21. Theorem[20 will be used in Chapter[Jin order to find a decomposition of the
exponents r; for moduli of the form N = Hlepgi, which satisfies some good conditions.

Chapter 3

Finding Small Solutions to
Polynomial Equations

Contents

[3.1 Coppersmith’s Method for Univariate Modular Equations|. . 60

.11 The Main Resultl 60
.12 The Methodl. 60
[3.1.3 Complexity] 65
[3.1.4 Applications| Lo o 66
[3.2 Coppersmith’s Method for Bivariate Equations over 7| 67
21 The Main Resultl, 67
322 Core Idea of the Methodl. 67
[3.2.3 Applications| 68
(3.3 The BDH Method for Factoring N=p"¢| 68
B3I Motivationd 68
B32 TheMaimResultl 68
B33 TheMethodl. oo 69

The famous Diophantine problem which consists in finding integer roots of polyno-
mial equations is hard in general. The problem of deciding whether such solutions exist
is known as the 10" Hilbert Problem, whose insolvability has been proven in 1970 by
Yuri Matiyasevich . In cryptology, many security assumptions are based on the
ability to solve specific Diophantine equations. For example, the RSA cryptosystem (see
Chapter (1)) is defeated if one can solve the bivariate polynomial equation over the integers
N — 2y = 0 where xg = p and yg = q are the searched integer solutions.

More generally, the following two problems are particularly interesting with regard
to the cryptanalysis of RSA:

57

58 CHAPTER 3. FINDING SMALL SOLUTIONS TO POLYNOMIAL EQUATIONS

Problem 1: Find the integer roots of polynomial equations with integer coefficients.
That is, we look for

(x1, ..., ©q) €Z such that f(xy, ..., zq)=0 .

Problem 2: Find the modular roots of modular polynomial equations with integer
coefficients. That is, we look for

(x1, ..., ©q) € Z/NZ such that f(z1, ..., zg) =0 mod N .

While those problems are hard in general, Coppersmith showed at EUROCRYPT ’96
that if the roots are small enough, then lattice-based techniques can allow to recover
them in polynomial time in the size of the coefficients |[Cop96bl Cop96aL|Cop97].

The global idea of these techniques consists in recovering, thanks to lattice reduction,
some new polynomials which admit the same roots as the polynomial f, but with better
properties than f, namely properties which allow to solve them easily.

For example, in the case where we look for integer roots of f(x1, ..., z4) over the
integers, the idea is to find d algebraically independent polynomial equations which all
admit the same integer roots as the polynomial f (in fact one has to find d — 1 equations
since one already has one polynomial which is f). Then, from these d equations with d
variables, one can easily retrieve those roots by using classical tools for solving systems of
polynomial equations, like Grobner bases [CLOO07|. In other words, the method consists
in finding a set of polynomials such that the obtained system forms an ideal of dimension
0, i.e. such that the computation of a Grobner basis from this ideal allows to recover the
searched solutions.

In the case where we look for modular roots of f(x1, ..., z4), the principle is the
same: one finds d algebraically independent polynomials which all admit the same mod-
ular roots as the polynomial f, but this time those equations hold over the integers. Yet
as before, one can solve the corresponding system. Note that this time, one actually
needs to find d equations because the modular polynomial f cannot be used into the
system.

We highlight that the d required polynomials are obtained by LL L-reducing (cf Chap-
ter 2) a particular matrix and by taking the polynomials corresponding to the d first
vectors of the L L L-reduced matrix. Obviously, we will specify in the sequel the matrix
used, and we will justify why the method works.

Heuristic: Before that, one should notify that in fact, Coppersmith’s root finding
algorithms for multivariate polynomial equations (i.e. d > 2 for modular equations and
d > 3 for equations over the integers) are heuristic. This comes from the fact that
one cannot be sure that the d equations found will be algebraically independent. It is
interesting to note that in practice, Coppersmith’s algorithms for multivariate polynomial
equations have proven to be of great use and above all, to work generally well, despite

99

the heuristic. Besides, some work has been done with the aim of removing the heuristic
in some cases, namely in [Bau08|, the authors give a construction to make Coppersmith’s
methods rigorous for some multivariate polynomials.

Yet, Coppersmith’s algorithms for multivariate polynomial equations are natural gen-
eralizations of the univariate modular case (d = 1) and of the bivariate integer case
(d = 2) in the sense that the method is similar no matter the number d of variables, the
main difference being the number of equations finally taken from the LLL-reduced ma-
trix (which is d for the modular case and d—1 for the integer case). Thus, it is interesting
to note that for the univariate modular case and for the bivariate integer case, since one
makes use of one vector of the LLL-reduced matrix only, the result is not heuristic.

Complexity: When the number of variables is small, the bottleneck of Coppersmith’s
algorithms is the LLL-reduction. Indeed, once the LLL-reduced basis is computed,
the retrieval of the roots is easily done by using classical tools for solving systems of
polynomial equations, whose complexity is smaller than the one corresponding to an
LLL-reduction (see proof of Corollary. As a consequence, the complexity of Copper-
smith’s algorithms depends on the LLL-reduction algorithm used (typically LLL, L?or
L). Hence, this complexity depends on the dimension n of the matrix to be reduced,
and on the maximal size b of the matrix coefficients. More precisely, in Coppersmith’s
matrices, the size b depends on the dimension n, on the degree ¢ of the polynomial and
on the size of the module log N. Thus the complexity depends on these three parameters:
n, 0 and log N. We emphasize that contrarily to § and log N which are fixed inputs of
Coppersmith’s algorithm, the dimension n is a parameter which can be chosen. There-
fore at this stage, it is interesting to differentiate the asymptotical complexity and the
practical complexity of Coppersmith’s algorithm.

Indeed, in theory, in order to reach the bound on the solutions found by Coppersmith’s
algorithm, it is necessary to consider a matrix of huge dimension. As a consequence,
May’s survey |Mayl0| gives for Coppersmith’s lattice-based algorithm, the complexity
upper bound O(6°log? N) using the L? algorithm [NS09| as the reduction algorithm.
A careful look gives a somewhat better upper bound: asymptotically, one may take a
matrix of dimension n = O(log N), and bit-size O((log? N)/§), resulting in a complexity
upper bound O((log? N')/é§?) using L?.

In practice, though, the dimension of the matrix used cannot be that large. Therefore
a combination of LLL-reduction and exhaustive search is generally employed to reach
Coppersmith’s bound. While this exhaustive search is asymptotically carried out in
constant time, in reality, it can be, by all means, impractical.

Hence, in this chapter, we provide a new detailed analysis which allows to determine
the asymptotical complexity of Coppersmith’s algorithm. However, the exhaustive search
difficulties which occur in practice are rather studied and improved in Chapter [4]

ROADMAP. In Section we highlight Coppersmith’s main result (Theorem for
finding small solutions to univariate modular equations, and we review the associated
method allowing to get to that result. We also provide a new analysis to determine

60 CHAPTER 3. FINDING SMALL SOLUTIONS TO POLYNOMIAL EQUATIONS

the asymptotical complexity of such an algorithm. In Section we briefly recall the
main result for the bivariate integer case. We refer the reader to [JMO06| for more details
about the multivariate integer and modular cases. Eventually, in Section [3.3] we provide
a reminder on the Boneh-Durfee-Howgrave-Graham method for factoring moduli of the
form N = p"q, which is an extension of Coppersmith’s method for the univariate modular
case.

3.1 Coppersmith’s Method for Finding Small Roots to Uni-
variate Modular Equations

3.1.1 The Main Result

Coppersmith in |Cop96b, Cop97| showed how to find efficiently all small roots of
univariate modular polynomial equations. In the following, we recall Coppersmith’s
theorem which gives a condition on the size of the small roots and the complexity of the
method.

Theorem 22 (Coppersmith). Let f(x) be a monic polynomial of degree § in one variable,
modulo an integer N of unknown factorization. Let X be such that X < N5. One can
find all integers xo with f(xo) =0 mod N and |xg| < X in time polynomial in log N
and 4.

The technique designed by Coppersmith to obtain this result was later simplified by
Howgrave-Graham in [HG97]. Coppersmith and Howgrave-Graham’s methods have the
same asymptotical complexity, but since the latter one holds a more natural approach
and is easier to implement (in fact both methods lie in dual vectorial spaces relative to
one another), it is commonly adopted. Therefore we describe in the sequel the method,
following the classical Howgrave-Graham’s approach and we refer the reader to [Cop96b,
Cop97| or to |[Rit10,Bau08| for descriptions of the original Coppersmith’s method. For
the sake of simplicity, one will adopt the calling “ Coppersmith’s method” even when
Howgrave-Graham’s approach is employed.

3.1.2 The Method

The core idea of the method consists in reducing the problem to solving univariate
polynomial equations over the integers, by transforming modular roots into integral roots.
More precisely, it constructs a polynomial v(x) € Z[z] such that: if xy € Z is such that
f(zo) =0 (mod N) and |zg| < X, then v(xg) = 0 over Z. Then, solving this univariate
polynomial equation v(x) over the integers can efficiently be done by using Schonhage’s
root isolation algorithm [Sch82) Sec. 5.2].

Thus, in order to obtain such a polynomial v(x), one considers many polynomials
which correspond to some specific multiples of polynomial f and which all admit zy as
a root modulo N, where m is a given parameter. By applying LLL on the matrix
containing all those polynomials, one retrieves a polynomial v which also admits x(as

3.1. COPPERSMITH’S METHOD FOR UNIVARIATE MODULAR EQUATIONS 61

a root modulo N™, but with small coefficients. Accordingly, if the solution zg is small
enough, the polynomial v will be such that v(zg) = 0 over the integers, and can easily
be solved.

More precisely, the method goes as follows. Let m > 1 be an integer parameter and
define the following family of n = dm+1 polynomials where § is the degree of polynomial

f:
gij(x) = :chmfifi(:E) (3.1)

for all ¢ and j such that 0 <¢ <mand 0 < j < §, and j =0 for ¢ = m.

These n polynomials satisfy:

if f(z9) =0 (mod N) for some x¢ € Z, then g; j(z9) = 0 (mod N™).
Indeed, since f(x¢) = 0 (mod N), one has

gij(xo) = ac%Nm_ifi(xg) = ngm_iNi = a:éNm =0 (mod N™) .

Then one constructs the n-dimensional lattice L spanned by the rows of the n x n
matrix B formed by the n coefficient vectors of g; ;(xX) where X is a known upper-bound
on the solution xg. These polynomials are ordered by increasing degree (e.g. in the order
(¢,7) = (0,0),(0,1),---,(0,0 — 1),(1,0),--- ,(m — 1,5 — 1),(m,0)) and the coefficients
are ordered by increasing monomial degree: the first coefficient is thus the constant term
of the polynomial. The matrix B is lower triangular, and its n diagonal entries are:

(Nm, N™X, .. NmXOL Nixomeo o Nlxom=2 nlyém-l NOX‘Sm) . (3.2)

because f(z) is monic (that is, the coefficient associated to the leading monomial z° is
1). In other words, the exponent of X increases by one at each row, while the exponent
of N decreases by one every ¢ rows. Therefore, the matrix B has a block structure as

depicted in the following, where f(z) = ag + ayz + - - - + asz®.

62 CHAPTER 3. FINDING SMALL SOLUTIONS TO POLYNOMIAL EQUATIONS

Nm™

XN™

X5—1Nm
agN™~ 1 . X(SNm—l
ag X N™— 1 . X5+1N'm71
B aoxélemfl X2671Nm71
ag ! X8m-1N

asn_lX Xd(m—1)+1p

a(T)nleéfl X(Smle
ay xom

Since matrix B is diagonal, it follows that the determinant of B is the product of its
diagonal elements, that is

det(B) — (H N&z) (H Xz) N2 n— 1)(m+1)X2n(n 1)
=1

Then the LLL algorithm (or an improved algorithm with similar output - see Section

is applied to the matrix B. An LLL-reduced matrix B® is therefore output. Since

in the original matrix B, all polynomials where such that g; j(zo) = 0 mod N™, the

polynomials retrieved after LLL-reduction of B keep this same property. In particular,

the polynomial v(x) associated to the first vector of B? satisfies:

v(zp) =0 mod N™ .

At a guess, the problem of solving v(z) = 0 mod N™ is as difficult as the original
problem of solving f(x) = 0 mod N™. However, there is a crucial difference between
both problems: the coefficients of the polynomial v(x) are small. Namely, according to
Theorem the first polynomial v of B is a non-zero polynomial € Z[z] such that

n=1 _(n=1)(m+1) _ n-1

Jo(zX)|| <27 det(B)n =2"T N 2 X'z . (3.3)
In fact, one would like this polynomial to be such that
v(xg) < N™ sothat wv(xg) =0over Z .

Indeed, if it is the case, one can solve it easily over the integers. To this aim, one uses
the following elementary criterion:

3.1. COPPERSMITH’S METHOD FOR UNIVARIATE MODULAR EQUATIONS 63

Lemma 23 (Howgrave-Graham [HG97|). Let v(x) € Z[z] be a polynomial with at most
n non-zero coefficients. Let N be an integer > 1. Assume that |Jv(zX)| < f — for some

X eR. If xg € Z is such that v(xzg) =0 mod N™ and |zo| < X, then v(xzg) = 0.

Proof. We have:

(3|22

Z [0 X < Valv(@X)|| < N™.
=1

o) = |> v ux ()

IN

Therefore we have |v(zg)| < N, and since v(zg) =0 mod N™, this gives v(xg) = 0.
O

It follows from Lemmal[23|that the polynomial v(z) holds over the integers if [[v(zX)|| <
N™/\/n. By using inequality , this gives the following condition:

n— (n—1)(m+1) __ n—1 N™
QTNiX 2 <T .
n

Therefore, in order for this inequality to be accurate, one gets the following condition on
the bound X:

(n—=1)(m+1) 1

X"T_l < 2‘”T_le—Tn_§

which gives:

Since we have:

2m m+1 2 m+1 2n—-56m+1) 2n—(n—-1)-0 n—-46+1

n—1 n 9 n on a on on ’

we get the condition:
S+1 1

X <27 2N"%n n . (3.4)

Thus, Coppersmith’s method allows to find all small integers roots x(such that |zg| < X

where X satisfies (3.4]).

About the need of the bound X in matrix B: As previously explained, the poly-
nomials g; j(x) are such that g; j(zg) = 0 (mod N™), but in matrix B we set the vec-
tors associated to the polynomials g; j(z.X), that is, each coefficient is multiplied by X i
where 0 < 7 < d — 1 represents the index of the column. Obviously, it is not true that
9i,j(x0X) = 0 (mod N™). This is the reason why, once the short polynomial v(zX) is
obtained by LLL-reduction, one has to perform the reverse step: divide each coefficient
of v(zX) by X*, to get polynomial v(x). Hence, it is natural to justify the need of such a

64 CHAPTER 3. FINDING SMALL SOLUTIONS TO POLYNOMIAL EQUATIONS

bound X in matrix B, especially by considering that it makes the determinant increase,
together with the upper bound of the shortest vector v(xX). In fact, if one considers
polynomials g; j(x) instead of g; j(zX) in matrix B, then the LLL-reduction ensures
that the first polynomial v(x) evaluated for = 1 is small, but not necessarily v(xo).
Therefore, the polynomial v(zp) may not hold over the integers as required.

Exhaustive search: As mentioned before, the upper bound X on the solutions that are
found by Coppersmith’s method satisfies . Therefore, Coppersmith’s method does
not directly achieve the bound N'/¢ given in Theorem Indeed, it finds efficiently all
roots up to some bound X (< N 1/ 5) depending on the dimension n of the lattice used.

But when n is sufficiently large, then X becomes sufficiently close to N9 so that one
1

can find all roots up to N'/9. Indeed, in condition 1) the two terms 272 and n~ -1
are asymptotically in O(1). Thus, the main term is N5 and by taking n = O(log N),
one has:

n—~6+1

However, in practice the bound X = N1/ should not be reached by using such a large
dimension n. Instead, it is faster to use a lattice of reasonable dimension, and perform
exhaustive search on the most significant bits of the solutions. Namely, we consider
polynomials:

file)=f(X-t+2x) ,

where
NL/6
0<t< X
and
X = |27 VAN e (3.5)

Thus, an initial solution x(that can be written xy = X - to + x(, is obtained by finding
the solution x, of the polynomial f;,. In this case, this solution satisfies |z{,| < X and it
has a correct size for LLL to find it using a lattice of dimension n. For each polynomial
ft, one runs LLL on the matrix B associated to f;. The solution zq is then found for the
right value tg, i.e. for the right polynomial f,. As it will be shown later, the exhaustive
search is performed in constant time.

Eventually, the whole Coppersmith’s method is depicted in Algorithm

It is straightforward that when the degree of the polynomial is sufficiently large in
comparison to N (it is sufficient that 6 + 1 > (log N)/2 in our analysis) then a brute
force search of the solutions provides a comparable complexity result. In a similar way,
if the degree of the polynomial is one, then a direct approach naturally allows to recover
the solutions. Thus, this explains why we implicitly consider polynomials not in these
cases in Algorithm [4] that is to say polynomials verifying 2 < § +1 < (log N)/2.

3.1. COPPERSMITH’S METHOD FOR UNIVARIATE MODULAR EQUATIONS 65

Algorithm 4 Coppersmith’s Method
Input: Two integers N > 1 and m > 1, a univariate degree-§ monic polynomial f(z) €
Zlx] with coefficients in {0,...,N —1} and 2 < d+ 1 < (log N)/2.
Output: All zg € Z s.t. |z9| < NV and f(z9) =0 mod N.
1: Let n =md + 1, X the bound given in , and t = 0.
2: while Xt < N'/? do
32 fi(z) = f(Xt+x) € Z[z].
4: Build the n x n lower-triangular matrix B whose rows are the g; j(X)’s defined
by .
5. Run the L? algorithm [NS09] on the matrix B.
The first vector of the reduced basis corresponds to a polynomial of the form v(zX)
for some v(z) € Zlx].
: Compute all the roots z(, of the polynomial v(z) € Z[z] over Z.
8: Output zg = Xt + x, for each root x{, which satisfies fi(z() = 0 (mod N) and
ap) < X.
9: t+t+1.
10: end while

3.1.3 Complexity

In the following, the complexity of Coppersmith’s method is enlightened. Namely, as
shown in the proof of Corollary since the exhaustive search is performed in constant
time, and since the bottleneck of Algorithm [4] is the LL L-reduction, the asymptotical
complexity of Coppersmith’s method is the cost of one LLL-reduction. Thus, the com-
plexity depends on the lattice reduction algorithm which is used in Step 5] of Algorithm [4]
This is why in Corollarywe give two complexities: one associated to L?, and the other,
to L',

nts—1 __1_
Corollary 24. Algorz'thm of Theorem withn = [logN| and X = [27V2N 50 n w1 |
runs in time O((log” N)/6%) without fast integer arithmetic using L in Step @ or
O((log"™ ¢ N)/8) for any e > 0 using fast integer arithmetic and L' in Step @

Proof. As a first step, we show that Algorithm [4] performs a constant number of loop
n+d— 1
iterations. Indeed, consider the bound X = |271/2N n n—1 | achieved by one loop

of Algorithm By definition, Algorithmperforms at most O(N'/9/X) loop iterations.
Recall that we have 2 < § + 1 < (log N)/2, since in the other cases a direct approach

n4+d—1

provides a much better complexity. We have O(X) = O(N é») and:

n+dé—1 1 ntdé—1

1 6—1 1
NS/N on :Ngi on :NWSN%

n+d—1
n

Therefore, for n = |log N|, we conclude that N %/N 5
of loop iterations is constant.

As a second step, we provide the running time for L? and L' algorithms in Step
of Algorithm 4l The dimension of B is n = dm + 1, and the entries of the matrix B have

= O(1), that is, the number

66 CHAPTER 3. FINDING SMALL SOLUTIONS TO POLYNOMIAL EQUATIONS

bit-size O(mlog N). Therefore the running time of L? in Step [5| without fast integer
arithmetic is
O(6°m log N + 85m" log? N) = O(6°m" log? N) ,

because § + 1 < (log N')/2. Furthermore, the running time of L' in Step |5|is

(9(7716'“565‘“E log N + me T2t gutlte 1og1+‘6 N)

for any € > 0 using fast integer arithmetic, where w < 2.376 is the matrix multiplication
complexity constant. Yet, with m = |log N/6|, one gets the complexities O((log? N)/6?)
for L? and O((log™"* N) /&) for L' .

As a last step, we emphasize that the bottleneck of Coppersmith’s algorithm is the
reduction step (Step . Indeed, let ¢ be the maximal bit-size of the coefficients of
v(z) € Z[x] in Step [} we know that £ < mlog N, and the degree of v(z) is < n. Then
Step [7| can be performed in time O(n?(¢ +1logn)) = O(mlog* N) = O((log® N)/J) using
Schonhage’s root isolation algorithm [Sch82, Sec. 5.2|. Hence, the cost of Step [7]is less
than the one of Step [f

Thus, the asymptotic complexity of Coppersmith’s algorithm is the one of one call
to LLL (L? or L'). This allows to conclude the proof.

O

Remark 25. The complexity (log N, d) highlighted in Theorem 15 the complexity stated
in [Cop96b], but surprisingly in [Cop97[, the enunciated complexity is polynomial in
(log N, 25) where § is the degree of the polynomial equation. It seems that there is no
reason that it should be 20 rather than & since the exhaustive search is performed in con-
stant time. In any case, one refers the reader to Chapter[{] for a complexity which is
polynomial in log N, i.e. which is independent of 6. And in any case, we can assume
that 6 < log N since otherwise we would get the condition X < N9 < exp(1), hence
only a constant number of possible roots xg. Thus, the complexity is polynomial in log N
only.

Thus, in Chapter] we propose a new method called Rounding and Chaining which
allows to improve the complexities given in Corollary In particular, as it was just
specified in previous remark, the complexities will be independent of the degree §.

3.1.4 Applications

Many applications have risen from Coppersmith’s method for finding small solutions
to univariate modular polynomial equations (see May’s survey |[Mayl0|). Perhaps the
most famous one is the vulnerability of RSA when using a public key e which is small,
namely for e = 3. Indeed, in this case, one has the equivalence m? = ¢ mod N, where
m is the secret message and c is the known ciphered message. Then by decomposing the
message m as m = M + z, and by assuming that M is a known part of m, one gets the
polynomial equation f(x) = (M + x)3 —c¢ =0 mod N. This is a univariate modular
polynomial equations of degree 3. According to Coppersmith’s theorem, one can recover

3.2. COPPERSMITH’S METHOD FOR BIVARIATE EQUATIONS OVER Z 67

z if it is smaller than N/3. This means that one can recover the entire message if one
knows 2/3 of the message m.

Another application which requires an extension of this method, is the factorization
of moduli of the form N = p"q for large . Such an application will be discussed in more
details in Section [3.3

3.2 Coppersmith’s Method for Finding Small Roots to Bi-
variate Equations Over the Integers

3.2.1 The Main Result

As specified before, Coppersmith also proposed a method that allows to find small
integer roots of bivariate polynomials over Z |Cop96b,|Cop97]. Namely, one would like
to find small (z9,yo) such that f(zg,y0) = 0. In the following, we recall Coppersmith’s
main result for the bivariate integer case.

Theorem 26 (Coppersmith). Let f(z,y) be an irreducible polynomial in two variables
over Z, of maximum degree § in each variable separately. Let X and Y be upper bounds
on the desired integer solution (zo,yo), and let W = max; ; | fi;| XY7. If XY < W/ 39,
then in time polynomial in (log W,2%), one can find all integer pairs (xq,1y0) such that
f(:EanO) =0, ’x0| <X, and |y0’ <Y.

3.2.2 Core Idea of the Method

In the scope of this thesis, a simple overview of the method is sufficient, however, we
refer the interested reader to [Cor07| for more details.

Coppersmith’s approach for the bivariate integer case is very similar to the one used to
solve univariate modular polynomials. The idea consists in constructing, thanks to lattice
reduction, a new equation v(z,y) which admits the same roots as the original polynomial
equation f, and which is algebraically independent with f, so that one can easily solve the
system containing the two polynomial equations f and v with two variables. As for the
univariate modular case, a simplification of the method to construct the polynomial v has
been proposed by Coron at CRYPTO 2007 |Cor(07|. This method involves an adaptation
of Howgrave-Graham’s version for the univariate modular case. The core idea consists in
considering many polynomials which correspond to some specific multiples of polynomial
f and which all admit x¢ as a root modulo N, where N is a well chosen integer. By
applying LLL on the matrix containing all those polynomials (in fact we apply LLL
on a submatrix obtained after triangularization), one retrieves a polynomial v which
also admits (xg,yo) as a root modulo N, but with small coefficients. Accordingly, if the
solution (xg,yo) is small enough, the polynomial v will be such that v(xg,yo) = 0 over
the integers, which corresponds to the sought equation.

68 CHAPTER 3. FINDING SMALL SOLUTIONS TO POLYNOMIAL EQUATIONS

3.2.3 Applications

Undoubtedly, the most famous application of Coppersmith’s method for finding small
roots of bivariate polynomial equations over the integers is the factorization of RSA
moduli N = pq when half of p is known. Indeed, by writing p = P + x where P is the
known upper part of p, one can retrieve half of ¢ as follows: compute Q = N/P and
write ¢ = @ +x. Thus, one gets the equation N — (P +z)(Q+y) = 0. This is a bivariate
polynomial equation over the integers, of maximum degree 1 in each variable z and y
separately. According to Coppersmith’s theorem, one can recover the solutions x and y
if the product is smaller than N'/2. This leads to the aforementioned result: one can
factorize N with the knowledge of half of p.

3.3 The Boneh-Durfee-Howgrave-Graham Method for Fac-
toring N = p'q

3.3.1 Motivations

The use of moduli of the form N = p"q has been introduced in cryptography many
years ago and studied ever since. In particular, for the case r = 2, at least two applications
have been proposed: one from Fujioka et al. [FOM91] where a modulus N = p?q is used
for the design of an electronic cash scheme, and one from Okamoto and Ushiyama |[OU9S|
for the construction of a practical public key cryptosystem which is proven to be as secure
as factoring N = p?q. More generally, it has been shown by Takagi in [Tak98| that the
use of moduli N = p”q in RSA could lead to a decryption which is significantly faster
than that with classical RSA moduli N = pg. The idea consists in noticing that in order
to preclude both the number field sieve and the elliptic curve method, one can use a
smaller private key d with N = p”q than with N = pq, for similar sizes of V.

3.3.2 The Main Result

At Crypto 99 [BDHG99|, Boneh, Durfee and Howgrave-Graham analyzed the security
of the use of such moduli as far as lattice-based methods are concerned. As a result, they
adapted Coppersmith’s method for univariate modular polynomials, in order to design a
method which factorizes moduli N = p"¢q in polynomial time, under the condition that
r is large, namely that r ~ logp when ¢ < p®. In the following, we recall their main
theorem.

Theorem 27 (BDH). Let N = p"q where ¢ < p® for some c. The factor p can be
recovered from N, r, and ¢ by an algorithm with a running time of:

c+1
-1 O
exp (r s 0gp> (),

where 7y is the time it takes to run LLL on a lattice of dimension O(r?) with entries of
size O(rlog N). The algorithm is deterministic, and runs in polynomial space.

3.3. THE BDH METHOD FOR FACTORING N = PEQ 69

When p and ¢ have similar bitsize one can take ¢ = 1. Thus in that case we have
(c+1)/(r+c) = O(1/r). Therefore, knowing a fraction 1/r of the bits of p is enough for
a polynomial-time factorization of N = p"q. Alternatively, if no part of p is known, the
algorithm is still polynomial time when r is large, namely, when r = Q(log p). Indeed,
in this case, only a constant number of bits of p must be known, hence those bits can be
recovered by exhaustive search, and factoring N = p"q becomes polynomial-time.

More generally, for arbitrary ¢, that is for all sizes of p and ¢, if (r +¢)/(c+1) =
O(logp), then the running time becomes exp(O(1))- O(7), which is polynomial in log N.

3.3.3 The Method

In the sequel we recall the main steps of the BDH method that allow to get to The-
orem We refer the reader to [BDHG99] for more details.

Let N = p"q. Assume that we are also given an integer P such that p = P + xg
where the high-order bits of P are the same as the high-order bits of p, and zg is a small
unknown. One considers the polynomial f(z) = (P +)" which satisfies:

f(zo)=(P+4+29)" =0 (mod p")

This polynomial equation is a univariate equation of degree r and modulo p”. Thus the
main difference between such an equation and the one used in the univariate modular
case (Section is that the present modulus p” is unknown, contrarily to the previous
modulus N which was public. On the face of it, this makes a direct application of
Coppersmith’s method inconvenient.

However, since N = p"q one has:

N=0 (modp") .

Therefore, even if the modulus p” is unknown, one can create, as in Section [3.I] some
polynomials with “good” properties thanks to the knowledge of N.
More precisely, for a given integer m one considers the polynomials

gik(x) = N™ ' f*(z) (3.6)
for 0 < k <m and i > 0. Thus, for all £ and i, we have:
gik(zo) = Nk x% . fk(xo) =0 (modp™)

Let X be a bound on zy. One considers the lattice spanned by the coefficient vectors
of gip(xX) for 0 <k <m—1and 0 <i < r—1, and also g; x(zX) for & = m and
0 <i<n—mr—1, where n is a parameter which is actually the lattice dimension. As
depicted below, the matrix B has a block structure. All blocks contain r rows, apart
from the last one which somehow completes the matrix so that it has a dimension n.

70 CHAPTER 3. FINDING SMALL SOLUTIONS TO POLYNOMIAL EQUATIONS

prm xn—mr— 1

Nm™
XN™
X’r—le
Per—l Xer—l
PTXN"L71 X’H’le*l
PTerlefl X2T71NM71
prim=1) N Xr(m=1) N
prim=1)x N xr(m=1)+1p
prim—1) xr—1p xrm—1p
prm xrm
prmx er+1

anl

Since the matrix basis B of the lattice is triangular, the determinant of the lattice is
the product of the diagonal entries, which gives:

m—1r—1 n—1
det B = (H HNmk) H Xj _ Nrm(erl)/QXn(nfl)/Z < Nrm(m+1)/2Xn2/2)
7=0

k=0 i=0

We apply the LLL algorithm on the matrix B. Again, since in the original matrix B, all
polynomials where such that g; x(z¢) = 0 mod p™™, the polynomials retrieved after LLL-
reduction of B keep this same property. In particular, the polynomial v(z) associated to
the first vector of the reduced matrix satisfies:

v(zp) = 0 mod p™ .

Furthermore, according to Theorem this first polynomial v is such that
||U(SUX)|| < 2(n71)/4(de,C B)l/n < 2(n71)/4Nrm(m+1)/(2n)Xn/2 < Nrm(erl)/(Qn)(QX)n/Z]

In fact, one would like this polynomial to be such that

v(xzo) <p™ sothat wv(xp) =0over Z .

From Lemma 23| and omitting the \/n factor, this property is satisfied if ||v(zX)| <

p™™ which gives the condition:

Nrm(m+1)/(2n) (2X)n/2 < prm

)

3.3. THE BDH METHOD FOR FACTORING N = PEQ 71

or equivalently
(2X)n2/2 <pnrmN7rm(m+1)/2)
We assume that ¢ < p¢ for some ¢ > 0. This gives N < p"*¢
condition:

, which gives the
(2X)n2/2 < pnrmfr(r+c)m(m+1)/2)

The larger the value nrm — r(r 4+ ¢)m(m + 1) /2, the larger the solution = with |zg| < X
that can be found. Therefore, for a fixed r, we wish to maximize the value of nm — (r +
c¢)m(m+1)/2, so that one can use weaker approximations P. One can rewrite this value
as follows:

nm —

1
(r+c)rr2L(m+):_r—;—cm2+<n_r+c)m

A polynomial az? + bx + ¢ is maximized at * = —b/(2a) with maximum —A/(4a)
where A = b? — 4ac. Therefore in our case, the previous value is maximized at:

r+c o 2 n 1
m=|n-— = - =
2 2(r+¢) r+c 2

Therefore, we set the positive integer parameter m to :

and one may choose the dimension n such that %= — 1 is within s-— of an integer. The
r4c 2 2r+c

maximum of the value nm — (r + ¢)m(m + 1)/2 is then:

r4c\? 2 (nf%)2 n?—n-(r+c) n? r+c
n— X = > = 1-— .
2 4(r+c) 2(r+c) 2(r+c) 2(r+c¢) n
Therefore, we get the condition:

2 r-+c
71272 <p7‘><ﬁ(l— ;t)

(2X)

9

which gives the bound (by neglecting the factor 2):

X < prLJrc(lfrjzrc)

Therefore we deduce the following condition on X under which the solution xy can be
retrieved in polynomial time in log(p) by using Coppersmith’s method:

T

X < plmrre (3.7)

which proves Lemma 3.3 from [BDHG99].

72 CHAPTER 3. FINDING SMALL SOLUTIONS TO POLYNOMIAL EQUATIONS

Lemma 28 (Lemma 3.3 from [BDHG99]). Let N = p"q be given, and assume q < p° for
some c. Furthermore assume that P is an integer satisfying

T

[P —p| <p' T

Then the factor p may be computed from N, r, ¢ and P by an algorithm whose running
time is dominated by the time it takes to run LLL on a lattice of dimension n.

In [BDHG99| the authors take n = 2r(r + ¢), which gives:

+1

P —p| < p'Tre

Therefore, in order to factor moduli of the form N = p"q it suffices to perform exhaustive
search on a fraction (¢ + 1)/(r + ¢) of the bits of p, and the running time becomes:

c+1
exp (7“—|—C . 10gp> - poly(log V)

which proves Theorem

Yet, as for Coppersmith’s method, in practice instead of using such a large dimension
n = 2r(r + ¢), it is faster to use a lattice of reasonable dimension, and perform an
exhaustive search in constant time on the most significant bits of the solutions. Namely,
we consider polynomials fi(x) = f(X -t + x) where

c T

0<t<p /X and X = [2llo8Pl0-75-20)

Thus one has

1

0 < t < I\Q%i'rﬂ»cJ

Yet, as before, the solution zg such that zo = X - to + z{, is obtained by finding the solu-
tion z{, of the polynomial f;,. Therefore, the LLL algorithm is applied on each matrix B
associated to each polynomial f;, and the solution xg is found for the right polynomial f;,.

In outline, the whole BDH method is depicted in Algorithm

3.3. THE BDH METHOD FOR FACTORING N = PEQ 73

Algorithm 5 BDH’s Method for factoring N = p"q
Input: An integer modulus N and a degree r such that NV = p"q. A rational ¢ such that
q < p°. An approximation P of p such that P = p + x.
Output: All zg € Z s.t. |zo| < P! —7¥e and f(zo) =0 mod N.
1: Let f be a univariate degree-r monic polynomlal buch that f(z) (P+x)".

1 1
2: Let the dimension n be such that 7 — 5

3: Let m > 1 be an integer defined as m = L“%C — %

1: Let X be the bound X = |2/108P10—7==220))

5: while Xt < 2/°710-550) do

6: fi(z)=f(Xt+2z)=(P+ Xt+z)" € Zlz].

7: Build the n x n lower-triangular matrix B whose rows are the g; 1 (2X)’s defined
by (3.6).

8: Run the L? algorithm [NS09| on the matrix B.

9: The first vector of the reduced basis corresponds to a polynomial of the form v(zX)

for some v(z) € Z[z].

10: Compute all the roots zj, of the polynomial v(z) € Z[x] over Z.

11: Output zg = Xt + xy, for each root z{, which satisfies f;(z() = 0 (mod N) and
24/ < X.

12: t<+t+4+1.

13: end while

As highlighted in Theorem if none of the bits of p is known, then the exhaustive
search can still be performed in constant time with a running time which is polynomial
in log N if the degree r and the rational ¢ are such that r +c¢/c+1 = O(logp). Thus,
in this case, one simply replaces P by 0 in Algorithm [5] which leads to the use of the
polynomial f(x) = 2", where |z¢| = p is the searched solution.

In summary, in this section we have recalled the BDH’s method which allows to fac-
torize moduli of the form N = p"q in polynomial time, if r ~ logp and ¢ < p®™).

A generalized Takagi-Cryptosystem with moduli of the form N = p"¢® has also been
proposed at Indocrypt’ 2000 in [LKYLOO]. Namely, the authors show that the use of such
moduli allows to considerably speed up the computation: for example using an 8196-bit
modulus N = p?¢? leads to a decryption which is 15 times faster than with a classical
RSA modulus N = pq of the same size. In the BDH paper the generalization of the
attack to moduli of the form N = p"¢® where r and s are approximately the same size, is
explicitly left as an open problem. Yet, in Chapter I, we solve this open problem and we
also propose a generalization to moduli N =]_[Z L p;* with more that two prime factors.

Part 11

Contributions

75

Chapter 4

Rounding and Chaining LLL:
Finding Faster Small Roots of
Univariate Polynomial Congruences

Contents
4.1 Speeding up Coppersmith’s Algorithm by Rounding| 78
[4.1.1 Rounding for Coppersmith’s Algorithm| 79
[4.1.2 Running time: proof of Theorem |29, 85
[4.1.3 A Remark on the Original Coppersmith’s Complexity | 86
[4.1.4 A Summary of the Complexities] 87
4.2 Chaining LLL|. 0 0 it ittt i it e oo 88
[4.2.1 Exploiting Relations Between Consecutive Lattices| 89
[4.2.2 Rounding and Chaining LLL| 91
[4.2.3 Complexity Analysis: A Heuristic Approachl. 96
4.3 Experiments| 0 it e e e e e e e e 98
[4.3.1 Practical Considerations 98
[4.3.2 Implementation Results| 99
4.4 Other Small-Root Algorithms| 101
441 Ged Generalizationlo o000 101
[4.4.2 Multivariate Equations|.o oo 102

The results presented in this chapter are from a joint work with Jingguo Bi, Jean-
Sébastien Coron, Jean-Charles Faugére, Phong (). Nguyen and Guénaél Renault. It was
published in the proceedings of the PKC’ 14 conference [BCFT 14)].

In Chapter 3.1, we have recalled Coppersmith’s method which allows to find all
small roots of univariate polynomial congruences of degree § modulo an integer N of
unknown factorization, in polynomial time in (log N,¢). This has found many appli-
cations in public-key cryptanalysis and in a few security proofs. However, the running

7

78 CHAPTER 4. ROUNDING AND CHAINING LLL

time of the algorithm is a high-degree polynomial, which limits experiments. Indeed,
as explained in Chapter [3.1.3] the bottleneck of Coppersmith’s algorithm is the LLL-
reduction of a high-dimensional matrix with extra-large coefficients. Namely, the com-
plexity is O((log® N)/62) if one uses the L? algorithm for the LLL-reduction step and it
is O((log™= N)/6) if L' is rather used. We present in this chapter two speedups which
are the first significant speedups over Coppersmith’s algorithm.

The first speedup is based on a special property of the matrices used by Copper-
smith’s algorithm, namely, the diagonal elements in the matrix are all balanced. This
property allows to provably speed up the LLL-reduction by rounding, that is by keeping
only the most significant bits of all coefficients in the matrix before LL L-reducing it,
so that the matrix contains much smaller elements. Once the LLL-reduction is done,
the result is then rectified in order to reintegrate the least significant bits which were
previously neglected. As we will show, this property of balancedness can also be solely
used to improve the complexity analysis of Coppersmith’s original algorithm. The exact
speedup depends on the L L L-reduction algorithm used. Namely, the complexity becomes
O(log” N) if one uses the L? algorithm for the LI L-reduction step and it is O(log®™® N)
if L'is rather used. Thus, the speedup is asymptotically quadratic (resp. linear) in the
bit-size of the small-root bound if one uses the L? (resp. the L!) algorithm. Yet, a new
feature of the complexity bound is that it becomes now independent of the degree 4.
Indeed, the complexity only depends on the bit-size of the modulus N.

The second speedup is heuristic and applies whenever one wants to enlarge the root
size of Coppersmith’s algorithm by exhaustive search. Instead of performing several
LLL-reductions independently, we exhibit relationships between these matrices so that
the LLL-reductions can somewhat be chained to decrease the global running time.

As depicted in the sequel, when both speedups are combined, the new algorithm is
in practice hundreds of times faster for typical parameters.

RoADMAP. In Section we present and analyze our first speedup of Coppersmith’s
algorithm: rounding LLL. In Section [£.2] we present and analyze our second speedup
of Coppersmith’s algorithm: chaining LLL. In Section £.3] we provide experimental
results with both speedups. Finally, we discuss the case of other small-root algorithms
in Section [£.41

STATE OF THE ART. In this Chapter, we make use of the reminder on lattice reduction
given in Chapter 2 We will also frequently refer the reader to the original Coppersmith’s
method provided in Chapter [3]

4.1 Speeding up Coppersmith’s Algorithm by Rounding
The original Coppersmith’s method which allows to find small roots of univariate

modular congruencies is recalled in Section As shown there, the costliest step in the
method is the LLL-reduction of the well-designed matrix B. Therefore, the complexity

4.1. SPEEDING UP COPPERSMITH’S ALGORITHM BY ROUNDING 79

of the method strongly depends on the LLL-reduction algorithm used. Thus, the com-
plexity of Coppersmith’s method is O((log? N)/62) if one uses the L? algorithm and it is
O((log™¢ N)/6) if L' is rather used (see Corollary .

Our first main result is the following complexity improvement over Coppersmith’s
algorithm:

Theorem 29. There is an algorithm (namely, Algorithm @ which, given as input an
integer N of unknown factorization and a monic polynomial f(x) € Z[z] of degree 6 and
coefficients in {0, ..., N — 1}, outputs all integers xo € Z such that f(xg) = 0 (mod N)
and |zo| < NV in time O(log” N) without fast integer arithmetic using the L? algo-
rithm [NS09], or O(logb*e N) for any e > 0 using fast integer arithmetic and the L'
algorithm [NSV11] in Step[7

As explained in Section [3.1] we recall that only the non trivial case where the degree
d is such that 2 < § +1 < (log N)/2 will be implicitly considered in the sequel.

4.1.1 Rounding for Coppersmith’s Algorithm

In Coppersmith’s algorithm (Algorithm |4)) an LL L-reduction of the matrix B is done
in Step This matrix has a dimension n = dm + 1, and its entries have bit-size
O(mlog N). We explained that asymptotically, the dimension n is O(log N') which gives
m = O(log N/§). Therefore, the bit-size of the elements is O((log? N')/5). In our method,
we will modify Coppersmith’s algorithm in such a way that we only need to LLL-reduce
a matrix of the same dimension but with much smaller entries. Namely the bit-length

will be in O(log N) instead of O((log® N)/9).

To explain the intuition behind our method, let us first take a closer look at the matrix
B and uncover some of its special properties. In particular, in the following lemma, we
show that the maximal and the minimal diagonal coefficients are relatively close, which
means that the diagonal elements are well-balanced.

Lemma 30. Let X < N9, n=6ém+1 withm > 1 and B be the Coppersmith’s matriz
defined in Step. [§) of Algorithm[4)

— The mazimal diagonal coefficient of matriz B is N™X0~1 < N™+1,

— The minimal diagonal coefficient is X < N™.

— The ratio between the maximal and the minimal diagonal coefficient satisfies

Nmxo-1 1-1/5
X 2N
— Furthermore, if X > Q(Nntsf;l) and n = O(log N), then the minimal diagonal

coefficient is such that:

Xom > Nm=o), (4.1)

80 CHAPTER 4. ROUNDING AND CHAINING LLL

Proof. The n = dm + 1 diagonal coefficients of B are naturally split into h blocks of ¢
coefficients with a last additional row. The ¢-th block is formed by the leading coefficients
of the polynomials g; j(xX) for 0 < j < ¢ and the last row is formed by the leading
coefficients of the polynomials g, o(zX). Since the leading coefficient of g; ;j(zX) is
XIN™=iX% it follows that the maximal and minimal coefficients in the i-th block are
located respectively at the end (i.e. 7 = 0) and at the beginning (i.e. j = § — 1): their
values are respectively

X001 Nm=i — N(x0/N) X1 and N™IX% = N™(X®/N) .

If X < N/ we obtain that the maximal diagonal coefficient is N™X%~1 < Nm+1
reached in the O-th block i.e. for i = 0, and the minimal diagonal coefficient is X™ < N™
reached in the last row, i.e. for i = m.
Furthermore, the ratio N™X%~1/X%™ is greater than N'~/% for m > 1. Indeed,
since X < N1/ we have
NmX6 1 _ N™ - N™ _ N™ _ le%

Xom Xo(m—1)+1 = N&(m—él)-‘rl N(m_1)+§

Now, let Xy = N"5 5o that X = Q(Xp). One has

n—=56+1
on

1_6-1 1_96 i_1
N = N6 on 2 N6 on = N6 n

Therefore we have Xy > NY/6=1/n Hence Xg > N=9/7 and thus Xgm is such that
Xgm > N = N S N

Since X = Q(Xp) and dm = O(log N), we obtain X > N™~O0) which is (4.1).
O

Lemma [30] implies that the diagonal coefficients of B are somewhat balanced. This
means that the matrix B is not far from being reduced. In fact, the first row of B has norm
N™ which is extremely close to the bound N™/y/n required by Lemma Intuitively,
this means that it should not be too difficult to find a lattice vector shorter than N /y/n.

To take advantage of the structure of B, we first size-reduce B (see Chapter
Definition to make sure that in each column, all subdiagonal coefficients are smaller
than the diagonal coefficient.

Then we round the entries of B so that the smallest diagonal coefficient becomes |c|
where ¢ > 1 is a parameter. More precisely, we create a new n x n triangular matrix

B = (b; ;) defined by:
B=|eB/X"'| . (4.2)

This means that the new matrix B is made of matrix B where all of its coefficients are
divided by X"~1/c.

4.1. SPEEDING UP COPPERSMITH’S ALGORITHM BY ROUNDING 81

By Lemma the diagonal coefficients b; ; of matrices B are such that:
big > X = X"
which gives that the diagonal coefficients l;i,i of matrix B are such that:
bii > [e X"/ X" = e

Hence, we LLL-reduce the rounded matrix B instead of B. Let v be the first vector
of the reduced basis obtained Bf. This vector v is in fact the result of the product of
a transformation vector x (which is the first vector of the transformation matrix output
by LLL) with the matrix B. This means that we have v = xB. We then apply the
transformation vector x to the matrix B in order to obtain a short vector v. Those steps
are illustrated in Figure and they correspond to Steps [6] to [0 in Algorithm [6]

Figure 4.1: Rounding-LLL: the rounded matrix B = LCB/X”_lj is LLL-reduced. Then
the transformation vector x is applied to the matrix B, which gives a short vector v.

LLL

T |,| B%

|_CB/Xn71J

More generally, if we applied to B the unimodular transformation 7" that LL L-reduces
B, we may not even obtain an LLL-reduced basis in general. However, because of the
special structure of B, it turns out that by applying the transformation vector x to the
matrix B, the vector v = xB is still a short non-zero vector of L, as shown below:

Lemma 31. Let B = (b;;) be an n x n lower-triangular matriz over Z with strictly
positive diagonal. Let ¢ > 1. If B = |cB/min]_, b;;| and xB is the first vector of an
LLL-reduced basis of B, then:

0 < |xB| < (n||1§‘1|!2 + 1) 2"7" det(B)* .

Proof. Let a = minj’, b;;/c, so that B = |B/a]. Define the matrix B = aB whose
entries are b;; = ab; ;. Therefo;e the elements b; ; are relatively close to the elements
b; ;. Namely we have 0 < b; ; — b; ; < . This gives the relation

|B — Blj2 < na .

82 CHAPTER 4. ROUNDING AND CHAINING LLL

Thus we have:
IxB| < [1x(B = B)|| + [xB|| < [|Ix|| x || B~ Bll2 + a|[xB|| < n||x|a+ a|xB||.
Let ¥ = xB. Then ||x|| < ||¥]|||B~"||2, and we obtain

IxBll < (nIB"]l2+1) a7

The matrix B is lower-triangular with all diagonal coefficients strictly positive because
¢ > 1. Since v = xB is the first vector of an LLL-reduced basis of B, and B is non-
singular, we have xB # 0, which gives ||xB|| > Op and:

3=

9] < 27T det(B)
Therefore we deduce that
al[¥]| < a2"T det(B)n = 2"T det(B)n < 2°T det(B)n,

where we used the fact that matrices B, B and B are lower-triangular. To conclude, the
result follows by combining both inequalities:

IxBll < (nIB~ls +1) 25 det(B)"
]

If xB is sufficiently short, then it corresponds to a polynomial of the form v(xX) for
some v(x) € Z[x] satisfying Lemma [23| and the rest proceeds as in Algorithm

The whole rounding algorithm is given in Algorithm [6] which will be shown to admit
a lower complexity upper-bound than Algorithm |4|to compute all roots up to N 1/5,

We now justify the bound X given in Algorithm [f] In order for Lemma [31] to be
useful, we need to exhibit an upper bound for |B~!|y. Later on, we will see that the
upper bound for |[B~!||> depends on the upper-bound of the inverse of a triangular
matrix. Therefore, we already need to prove the following elementary lemma from which
one can derive an upper bound on inverses of triangular matrices.

Lemma 32. Lett > 0 and T = (t; ;) be an n x n lower-triangular matriz over R, with
unit diagonal (i.e. t;; =1 for 1 < i < mn), and such that |t; ;| <t for1 < j <i<n.
Then the matriz T satisfies

1T oo < (L +)"7"

Proof. Let S = T—'. Then for 1 < 4,j < n we have ZZ:;’ siktk,j = 0ij, where d; ; is
Kronecker’s symbol. Therefore one has

n

Sij=0ij— > Sikthy

k=j+1

4.1. SPEEDING UP COPPERSMITH’S ALGORITHM BY ROUNDING 83

Algorithm 6 Coppersmith’s Method with Rounding
Input: Two integers N > 1 and m > 1, a univariate degree-§ monic polynomial f(z) €
Zlx] with coefficients in {0,...,N —1} and 2 < d+ 1 < (log N)/2.
Output: All zg € Z s.t. |z9| < NV and f(z9) =0 mod N.
1: Let n =dm + 1, X the bound given in Theorem c=(3/2)" and t = 0.
2: while Xt < N'/? do
32 fi(z) = f(Xt+x) € Z[z].
Build the n x n matrix B whose rows are the g; j(2X)’s defined by .
Size-reduce B without modifying its diagonal coefficients.
Compute the matrix B = |¢B/X"!| obtained by rounding B.
Run the L? algorithm [NS09] on the matrix B.
Let v = xB be the first vector of the reduced basis obtained.
The vector v.= xB corresponds to a polynomial of the form v(xX) for some
v(x) € Zlx].
10: Compute all the roots xj, of the polynomial v(z) € Z[x] over Z.
11: Output zy = z(, + Xt for each root x{, which satisfies fi(z() = 0 (mod N) and
ah) < X.
12: t<t+1.
13: end while

This implies that S is lower-triangular and for 1 < j < 7 < n one has:

i
sigl <t |1+ D Isinl |- (4.3)
k=j+1

Let us prove that for all j < i, |s; j| < t(1+¢)"7~1 by induction over i —j. Since |t; j| <t
for 1 < j < i <n, one has |s; ;1| < t|s;;| = t, which starts the induction for i — j = 1.
Now, assume by induction that |s; ;| < t(1 + t)"=k=1 for all k such that i — k < i — j for
some 1 < j < ¢ <n. Then implies:

i—j—2
sijl < t|1+ Z tA) = t<1+t2(1+t)’“>

k=j+1 k=0

1+t)i—-1 -1 -
= t<1+t(tit_l) = t(14+t)7t

which completes the induction. Hence, we have:

n
IS]loe < 1+ t(1+1)"2 —1—|—tz (14t) = (1+1)"
=2

O

One can now exhibit an upper bound for | B~||2, as given in the following lemma.

84 CHAPTER 4. ROUNDING AND CHAINING LLL

Lemma 33. Let B = (b;;) be an n X n size-reduced lower-triangular matriz over Z with
strictly positive diagonal. Let ¢ > 1. If B = |¢B/min} | b;;|, then:

2c—2

182 < Vi (30‘ 2) /lel.

Proof. The matrix B is lower-triangular like B. Because B is size-reduced, the entries of

B satisty, for 1 < j <i<n:

i B k
’?w| < ’bw|k{2 < 1 % % < 1 X

1
1-1/c

This means that B is almost size-reduced. Let A be the n x n diagonal matrix whose
i-th diagonal entry is 1/b;;. Then T = AB satisfies the conditions of Lemma with
t =1/(2(1 —1/c)). Therefore we get:

1 1 o 3e— 2\t
T < (= 1) = (=)
T oo < (2 T T) <2c2>

Furthermore, we have

1Bz < VallB Yl < VallT sl Allss

Therefore we deduce that:

1B < ﬁ<30_2>n1x1~ < \/ﬁ<36_2>n1/LcJ,

2c—2 minlgign b,L i 2c—2

)

which concludes the proof.
O

By combining Lemmas [31] and B3] we obtain the following small-root bound X for
Algorithm [6}

Theorem 34. Given as input two integers N > 1 and m > 1, a rational ¢ > 1, and
a univariate degree-0 monic polynomial f(x) € Z[x] with coefficients in {0,..., N — 1},
one loop of Algorithm@ corresponding to t < Nl/‘;/X, outputs all vog = Xt+z(€ Z s.t.
lzg] < X and f(zg) =0 mod N, where n =dm + 1 and

nté=1 _9/(n—1) n—1
N on K 3c—2
X = L th k1 =n*?(— R 4.4
{ V2l J with w1 =n"\Geg) L (44)
Proof. Combining Lemma (33| with Lemma [31| where det(B)'/" = N (et anl, we

get

(n=1)(m+1) _ n_1
2n XT

0 < |xB| < k12T N

4.1. SPEEDING UP COPPERSMITH’S ALGORITHM BY ROUNDING 85

It follows from Lemma [23|that the polynomial v(z) holds over the integers if ||v(zX)|| =
|xB|| < N™/y/n. This gives the following condition on X:

n—1 (n—1)(m—+1) n—1

kK12 2T N~ 2z X 2 <N™/\n.

which can be rewritten

2 +1 —
N)

V2 nt/(n=1)

X <

As already seen in Chapter [3] one has:

2m m+1 2 m+1 2p—90(m+1) 2n—(n—-1)-0 n-0+1

n—1 n 1) n on on on

Therefore, the bound given in (4.4)) is straightforwardly obtained from the last inequality.
O

The bound X of Theorem [34] is never larger than that of Corollary 24 However, if
one selects ¢ > (3/2)", then the two bounds are asymptotically equivalent. This is why
Algorithm [6] uses ¢ = (3/2)".

4.1.2 Running time: proof of Theorem

The original matrix B had entries whose bit-size was O(mlog N). Let 8 = ¥ ;,5(_51_ " be

the ratio between the maximal diagonal coefficient and the minimal diagonal coefficient
of B. If B is size-reduced, the entries of the new matrix B = LcB /X ”_1J are upper
bounded by c¢f.

By Lemma we know that if m > 1, then 8 > N'"1/9 and if further X >
Q(N%_WTH) and 6m = O(log N), then 8 = N°1). Hence, the bit-size b of B’s entries
is such that

b<logc+ O(logN) .

Furthermore, the dimension of B is the same as B, i.e. n = dm + 1. It follows that the
running time of L? in Step [7]is O(6°m%(log c + log N) + 6°m®(log ¢ + log N)?) without
fast integer arithmetic, which is

L% O((6m)®(log e +1log N)?) = O((log ¢ + log N)7)

because § < (log N)/2 — 1 and ém = O(log N). The running time using L' in Step [7]is
O((dm)>*¢(log c+log N) + (6m)“+1*+¢(log c +log N)'*¢) for any e > 0 using fast integer
arithmetic, where w < 2.376 is the matrix multiplication complexity constant, which
gives the complexity:

L' O((6m)>*5(log c+log N) + (6m)* 1+ (log ¢ +log N)1¢) = O((log ¢ +log N)®F¢) .

This leads to our main result (Theorem, which is a variant of Coppersmith’s algorithm
with improved complexity upper bound. More precisely, as in Coppersmith’s algorithm,

86 CHAPTER 4. ROUNDING AND CHAINING LLL

one can easily prove that the number of loops performed in Algorithm [f] is at most
constant. Indeed, when ¢ = (3/2)", then 111_2/n_1 converges to 1. This means that the
bound X achieved by Theorem is asymptotically equivalent to the one achieved by
Corollary which completes the proof of Theorem because log ¢ = O(log N) when
c=(3/2)".

4.1.3 A Remark on the Original Coppersmith’s Complexity

By simply analyzing Coppersmith’s matrix, and without even performing the Rounding-
LLL improvement, the complexity upper bounds of Corollary with LZand L' can
already actually be decreased. Indeed, Lemma [30| uncovers the special property of bal-
ancedness of Coppersmith’s matrix, which implies that

0 <max”b‘> = O(N) .

min|[by||

Therefore, according to Theorem[I8] the number 7 of loop iterations of the LL L-reduction
algorithm on the input basis used by Coppersmith’s algorithm is

maz|[bj]|

T:(’)<n2log) = O(n%logN) = O(log® N) ,

min||/by||
by using that n = O(log N). This number 7 of loop iterations replaces the all-purpose
bound O(n?b) = O(n?*mlog N) = O(log* N/5) [DV94].

L? Algorithm:

By taking this observation into account, the complexity of the L? algorithm becomes:
O(n3r(n + b)) = O(n’log® N(n + b)) = O(log® N(n + b)) instead of O(n3log* N(n +
b)/8) = O(log” N(n + b)/68). Since according to Lemma [30] the maximal diagonal ele-
ment is bounded by N™*+1 the bit-size b of the elements in matrix B is bounded by
O(mlog N) = O(log? N/§). This yields the complexity O(log® N (n+b)) = O(log® N/§),
instead of the previous O((log” N)/42). Yet the Rounding-LLL improvement, which can
be easily implemented, is based on the same special property of Coppersmith’s matrix
and it allows to continue decreasing the complexity down to O(log” N) as highlighted in
Theorem

L' Algorithm:

Surprisingly, Lemma also allows to prove that the ! algorithm, when carefully
analyzed using the balancedness of the Gram-Schmidt norms, already achieves the com-
plexity bound O(log®™¢ N) given in Theorem Indeed, using Theorem 6 from [NSV11|
which gives the L' complexity upper bound O(n3t¢7) = O(log®*® N7) where 7 is the
total number of iterations, and combining it with [DV94| applied to Coppersmith’s ma-
trix (Lemma , which gives 7 = O(n?log N) = O(log® N), allows to retrieve the above

4.1. SPEEDING UP COPPERSMITH’S ALGORITHM BY ROUNDING 87

complexity O(logb*® N). However, we have proposed in this section a direct improve-
ment of Coppersmith’s method based on elementary tools and which can therefore be
easily implemented on usual computer algebra systems (e.g. Sage, Magma, NTL) with
immediate practical impact on cryptanalyses. Furthermore, we are not aware of any
implementation of the L' algorithm for the time being, which makes a practical com-
parison tricky.

4.1.4 A Summary of the Complexities

As a summary, the obtained asymptotical complexities are provided in Table 4.1} as
a function of the LLL-reduction algorithm employed (L?or L). More precisely, the
original complexity of Coppersmith’s algorithm is given in the first row for comparison.
The second row represents the refined complexity by taking into account the link between
the number of iterations of the LLL-reduction algorithm and the balancedness of the
Gram-Schmidt norms. Eventually, the third row highlights the complexities obtained by
the application of the Rounding method. Thus, when using the L? algorithm, the global
asymptotical speed up O((log? N)/§2) is quadratic in the bit-size of the small-root bound
N'/% and the speed up O((log N)/d) is linear when L'is rather employed.

Table 4.1: Coppersmith algorithm complexity by taking into account the original anal-
ysis, the refined analysis and the Rounding method. The complexities depend on the
LLL-reduction algorithm employed (L?or L!).

| v [I |
Original Analysis O((log? N)/5%) | O((log™= N)/6)
Refined Analysis O((log® N)/9) O(log" N)
Rounding Method O(log” N) O(log?*e N)

Eventually, we emphasize that this work helps to clarify the asymptotical complexity
of Coppersmith’s algorithm for univariate polynomial congruences regarding the depen-
dence on the polynomial degree 4. In the original Coppersmith’s paper |Cop97| the
complexity is stated as polynomial in (log N, 2°), but it is well known that the 2° is a
typo and the complexity is polynomial in ¢ only (see our analysis in Chapter. However,
our final complexity upper bound using the Rounding method becomes independent of
d: it only depends on the bit-size of the modulus N.

In next section, we present a method that allows to speed up the exhaustive search
which is performed to reach Coppersmith’s bound N1/¢,

88 CHAPTER 4. ROUNDING AND CHAINING LLL

4.2 Chaining LLL

As recalled in Section 3.1} in order to find all solutions which are close to the bound
N9 one should not use a very large lattice dimension (i.e. n = O(log N)). Instead, it
is better to use a lattice of reasonable dimension and to perform exhaustive search on the
most significant bits of x until finding all solutions. Namely, we consider polynomials:

N1/5

n— 1

S

filz)=f(X-t4+2) where 0<t< and X =|27'2N

Thus, an initial solution x that can be written xy = X - to + x(, is obtained by finding
the solution x(, of the polynomial f;. In this case, this solution satisfies || < X and it
has a correct size for LLL to find it using a lattice of dimension n. For each polynomial
ft, one runs LLL on a certain matrix (Step 4] of Algorithm @ The solution xg is then
found for the right value ¢g , ¢.e. for the right polynomial f;,.

In Section [£.2.1], we describe a method that allows to take advantage of the LLL per-
formed for the case t = i to reduce (in practice) the complexity of the LLL performed for
the case t = ¢+ 1. The method is based on a hidden relationship between Coppersmith’s
lattices. More precisely, we show how to easily construct a matrix which is equivalent
to the Coppersmith’s one for the case t = ¢ + 1 from a matrix of the case t = i¢. One
enlightens the fact that in order to solve polynomial f;, one can use matrix By - P? (in-
stead of matrix used in Step |4] of Algorithm @, for different instances t = 0,...,7 those
matrices can be linked one to another by the relation

B; = Bi.1-P = B;_9-P?> = ... = By-P' |,

where P is a well-known structured matrix. Our method consists in LLL-reducing By,
which gives B{t. Then, instead of LLL-reducing By - P, we apply LLL on B; = B{' - P.
We expect this matrix to be almost reduced already since it is the product of an LLL-
reduced matrix B{ with a matrix P containing small coefficients. This gives matrix B¥.
Next step consists in applying LLL on By = B . P instead of By- P?. Thus, we perform
this process incrementally until all solutions are found, as illustrated in Figure [4:2]

4.2. CHAINING LLL 89

Figure 4.2: Chaining-LLL: New exhaustive search scheme within Coppersmith’s method.
A first matrix By is LLL-reduced, then the matrices are chained by the application of P
and successively LL L-reduced.

t=20 t=1 t=2

By

L, o
7] *\ 7] \J\ /
[)

LLL-Reduced) .)
Bi*

Matrices

Thereafter, in Section [£.2.2)we combine this improvement with the rounding approach
described in Section [4.1]

4.2.1 Exploiting Relations Between Consecutive Lattices

The following proposition discloses a connection between the lattice used for the case
t =4 and the next lattice used for t = ¢ + 1. This connection is based on the well-known
Pascal matrizc P = (ps ;) defined as the n x n lower-triangular matrix whose non-zero
coefficients are the binomials: p ; = (j) for 0 < j < s <n—1. Namely, we have:

1
11
1 2
1 3 3 1
p_ |1 4 6 4
1 5 10 10 5 1

90 CHAPTER 4. ROUNDING AND CHAINING LLL

Proposition 35. Let B be a basis of the n-dimensional lattice used by Coppersmith’s
algorithm to find all small roots of the polynomial fi(x) = f(X i+ x), where X is the
small-root bound. Then B - P is a basis of the “next” lattice used for the polynomial

fir1(z).

Proof. Because all lattice bases are related by some unimodular matrix, it suffices to
prove the statement for a special basis B. We thus only consider the special basis B = B;
formed by the n shifted polynomials constructed from f;(z) and written in the basis

B=(1,zX1 (X H2 ... (X Hr
For the case t = i + 1, one tries to solve the polynomial
fi+1(a;) = f(X (z'—i—l)—i—x) = f(X’i—l-{E-i-X) = fz(.’L'-i-X)

Therefore, the shifted polynomials constructed from f;;; are the same as for the case
t = 7, but written in the different basis

B =X ' +1,@X ' +1)2% .. X +1)") .

Yet, we need to return to the original representation of the polynomials, i.e. in the
basis B. To this end, we use the following property regarding the lower triangular Pascal
matrix P:

BT =p.B".
Namely, we have:
1 1
z+X 2
X 9 X 9
(%) = P x| (%)
- o
(=) ()"

As a consequence, left-multiplying each side of this equality by the matrix B; proves
that the matrix B; - P 1is a basis of the lattice used for finding small roots of the
polynomial f;y1(z).

O

The proposition allows us to use different matrices to tackle the polynomial f;1(x)
than the one initially used by Coppersmith’s method. In particular, we can use a matrix
of the form B . P where B® is an LLL-reduced basis of the previous lattice used to
solve f;(x): intuitively, it might be faster to LLL-reduce such matrices than the initial
Coppersmith’s matrix. Although we are unable to prove the lattice reduction will be
faster, we can show that the vectors of such a matrix are not much longer than that of

BE:

4.2. CHAINING LLL 91

Corollary 36. Let BZR be the LLL-reduced matriz used for solving f; fort =1 and P be
the Pascal matriz. The matriz
Biy1=BE.P

spans the same lattice used for solving the case t = i+ 1. This matrix consists of vectors
bit1,j whose norms are close to vector norms of the LLL-reduced matriz BZR. Namely,
for all 1 < j < n we have:

b1l <v/n-2"7" bt .
In particular, for the case i = ty the first vector of Biy1 has a norm bounded by 2" 1. N™.

Proof. The previous proposition immediately gives the first statement. Since the matrix
B; 41 is the product of BZ-R with a matrix P composed of relatively short elements, the
elements in B;41 remain close to those in the reduced matrix BiR. Indeed, the largest
element in P is ([(r::)l /21). By a property of binomial coefficients, we have ([a‘;ﬂ) <201
for a > 1. Therefore the largest element in P is smaller than 2”2, More precisely, the
maximal norm of column vectors in P is reached in the |(n — 1)/2]-th column and is
smaller than

\/22'("7_2—1) 492" ... 4 92(n-2) < /2203 L gn—1

Therefore the norm of each row vector of B;; is at most enlarged by a factor /n -
compared to the norm of the corresponding vector in BZ-R, i.e. for all 1 < j < n we have
Ibit1 | < m-2n71. HbF]H In particular, for i = tq, since the first vector of B
has a norm bounded by N™/\/n, the norm of the first vector of Bf - P is bounded by

2"~1. N™ which is relatively close to N™/\/n.

2n—1

O]

Corollary [36] shows us that vectors of Bji; are relatively close to the ones in the
LLL-reduced matrix BZ-R. Thus, we intuitively expect the LL L-reduction of B;11 to be
less costly than the one of the original Coppersmith’s matrix. However, our bounds are
too weak to rigorously prove this. Yet, one can use this property iteratively to elaborate
a new method which chains all LLL-reductions as follows. First, one LLL-reduces By
for the case t = 0. This gives a reduced matrix B(])%. Then, one performs a multiplication
by P and an LLL-reduction of By = B{ - P, which gives Bf. We then iterate this
process by performing LLL on By = BZ-R - P (for i > 0) to obtain Bﬁ_l and so forth
until all solutions are found (each time by solving the polynomial corresponding to the
first vector of BfY).

In the sequel, we study this chaining method by performing similar roundings as in
Section 1] before each call of LLL-reduction.

4.2.2 Rounding and Chaining LLL

During the exhaustive search described in Section we perform the LLL algo-
rithm on the matrix Bjy1 = BF - P for 0 < i < NY9/X | where BE is LLL-reduced.

92 CHAPTER 4. ROUNDING AND CHAINING LLL

It is worth noticing that the structure of BZR and thereby of B;;1, is different from the
original Coppersmith’s matrix By (in particular, it is not triangular anymore). Yet, we
are able to show that under certain conditions on B;y1 verified experimentally, one can
combine the rounding technique of Section with the chaining technique of Section
[4:21] Indeed, we show that during the chaining loop, one can size-reduce B;;1 and then
round its elements for all i > 0 as follows:

Bips = {cBm/lggan Hb;-*IIJ , (45)

where b} are Gram-Schmidt vectors of B; 41 and c is a rational that will be determined
later. Then, one applies LLL on the rounded matrix B;yq as performed in Section
We obtain an LLL-reduced matrix Bﬁl and a unimodular matrix U;;1 such that

PR
Ui+1 : Bi-}—l = Bi+1

Then one shows that by applying Ui+1 on B;1, the first vector of this matrix Ui+1 -Bip1
is a short vector that allows to find the solutions provided that they are smaller than a
bound X that will be determined latter.

For the sake of clarity, in the sequel we denote by B the matrix B;11, and by xB,
the first vector of matrix (~]i+1 - Biy1.

We would like to exhibit an upper-bound on ||xB]|. To this end, we will need, as in
Section to upper-bound the value ||B~!||o. This is done in the following lemma:

Lemma 37. Let B = (b; ;) be an n X n non-singular integral matriz and o > 1 such that
nal|B~t|e < 1. Then the matriz B = | B/a| is invertible with:

af B~ "2

By 1B
15 = T,

Proof. Let again B = oB, which implies that |B — B||s < na. Since na|[B~!|; < 1, we
have p = |B"'AB]||2 < 1, where AB = B — B.

Theorem 2.3.4 in the book |[GVL13| by Golub and Loan gives a bound on inverses for
perturbed matrices. Namely, it states that if we have p = || B~!AB||2 < 1, then B+ AB
is non-singular with:

|AB]|2| B3

B+AB)™' - By <
|(B+ AB) [l2 < -

(4.6)

Therefore, in our case, one deduces that B is invertible with:

—1(2 —1112
||B—1 _B—IH2 < ||AB‘1|2”B H2 < 7’LO£||B ”2

—p " 1—na|B 2

4.2. CHAINING LLL 93

Hence one deduces the following upper-bound on ||B~!||2:

no|BYE B
1 —na||B7Y2 1—na|B71:

IB7 2 < 1B7 = B l2 + B 2 < |B7 |2 +

Since B = aB, we have B~! = aB~!. Therefore |[B~!|| = a||B~!||2, which concludes
the proof.
O

As one can see, this value depends on ||[B~1||2 which is given in Lemma

Lemma 38. Let B be an n X n non-singular size-reduced matrix, with Gram-Schmidt

vectors b}. Then:
Vvn(3/2)"!

Bl Y—
1B Iz minj<i<y, | b|

Proof. Using the Gram-Schmidt factorization, we have B = pDQ. Therefore B~! =
Q'D 'y~ ! and

1B~ 2 < D7 2l -
Because B is size-reduced, we can apply Lemma [32{on p and ¢t = 1/2, which proves that
|1 loo < (3/2)" L. Hence:

1B™ |2 < [ID7Hl2v/n(3/2)" 7,

where ||D_1||2 = 1/minj<;<y [|b}]|.

One can now give an upper-bound on ||xB]|:

Corollary 39. Let B = (b;;) be an n x n size-reduced non-singular matriz over Z.
Let o« > 1 such that nfaHB_ng < 1. Then B = [c¢B/mini<i<n [b}||] = [B/a] is
non-singular. And if xB is the first vector of an LLL-reduced basis of B, then:

0 < ||xB| < kp2"T det(B)n,

where
ntl
c n

(e = w22y) (e — (3B
Proof. The proof follows Lemma [31| proof. The major differences being that the bounds
on ||B~Y| and ||[B~!||y differ (see Lemmas [37] and , and that det(B) is not straight-
forwardly predictable anymore since matrix B is no more triangular.

Here starts the proof. We have B = |B/a|. Define the matrix B = aB whose
entries are b; j = ab; j. Since n®a||B~2 < 1, Lemma implies that B is non-singular.
Furthermore, we have:

R =

IxB < lIx(B = B)ll + [xB]| < x| x | B = Bll2 + alxB]|| < nllx[la+ al[x5].

94 CHAPTER 4. ROUNDING AND CHAINING LLL

Let ¥ = xB. Then ||x|| < ||¥]|||B~"||2, and we obtain:
IxBll < (nI B~ 12 +1) a9

Since v = xB is the first vector of an LLL-reduced basis of B, and B is non-singular,
xB # 0 and we have:

al[¥]| < a2"T det(B)n = 2"T det(B)n

The condition n?a||B~t|s < 1 implies that n||B~Y|2||B — B2 < 1.

Godunov et al. |GAKK93| give a bound on determinants for perturbed matrices.
Namely, they show that if n||B~!||2| AB||l2 < 1, where B is an n X n non-singular matrix
and AB is a “small” n x n perturbation, then one has:

|det(B + AB) —det B| _ _n|[B~"[5/|AB|

4.7
e B = T nlB-LIAB[o
In our case, since B = B + (B — B), this implies that:
[det(B) —det B| _ n||[B[s|[B=Bl> _ n’a|B7l2
| det B ~ 1-n[[B 2B - Bll2 ~ 1-n*al| B2
It follows that:
_ n2a||B~1| | det B|
det(B)| < |detB| (1 = .
B < a8l (1+ T) = e
Therefore, we get the following inequality:
IxB|l < (nI Bl +1) 25 (1 = nal| B~ |2) /" det(B) . (4.8)

Using Lemmas [38 and [37] which respectively give the upper bounds

Vn(3/2)"

ming <<y, ||b}||

af B~

B, < — R
1B7 2 = nal BT,

and HB*lHQ <

and combining them in (4.8)), one gets

n+1 n—1

minlgign Hb:HT 274 det(B)%
(mini<i<n [[bf[| = n3/2a(3/2)" 1) (mini<;<y [[b] || — n®/2a(3/2)n=1)1/n

[xB]| <

Eventually, one replaces a by minj<;<, |b7||/c in previous inequality. This allows to get
the bound stated in Corollary [39}
O

4.2. CHAINING LLL 95

Again, if ||xB|| is sufficiently short, then it corresponds to a polynomial of the form
v(zX) for some v(z) € Z[x] satisfying Lemma In particular, for the case t = tg,
solving this polynomial equation would allow to retrieve the solution xy. Note that the
condition n?a|/ B~ < 1 specified in Corollary [39 gives a condition on the rational c.
Indeed, since a = minj<;<y ||b}||/c and using Lemma 38, one gets:

2 mini<i<n |} /n(3/2)"! o n®/2(3/2)n1
c mini<j<p ||[b}] c

nal|B7Y|2 < <1

)

that is ¢ should be such that ¢ > n%/2(3/2)"1.

The whole chaining and rounding algorithm is depicted in Algorithm [7] Note that in
practice, we do not need to perform Step |8 of Algorithm m and that min;<j<y, ||bgy1]]|
can be estimated instead of being computed in Step |§| (see Section for more details).

In the following, we give a small-root bound X on the solution xzj, sufficient to guar-
antee success:

n—1
)

Theorem 40. Given as input two integers N > 1 andm > 1, a rational ¢ > n®?(3/2)
and a univariate degree-0 monic polynomial f(x) € Z[x] with coefficients in {0,..., N —
1}, one loop of Algorithm@ corresponding to t < N1/5/X, outputs all zo = Xt+z(€ Z
s.t. |zp] < X and f(zg) =0 mod N, and n = dm + 1, where

2

Nn;&«klmﬁ
_ " Mo
X = il | (4.9)

and kg is the value defined in Corollary [39

Proof. During the chaining-LLL method, all matrices B satisfy the property

(n=D(m+1) __n-1

det(B)/"=N"2= X'z
since the Pascal matrix has determinant equal to 1.
Furthermore, it follows from Lemma that the polynomial v(z) holds over the
integers if ||[v(zX)| = [|[xB| < N™/y/n. Therefore, using Corollary one gets the
condition: et

ke 277 NP X < N,

which can be rewritten
2m _ m+1 -2/(n—1)
)

n—1 n
X<
V2 nl/(n=1)
As before, since we have % — mTH = "}7‘;*1, the bound given in l) follows.

The bound X of Theorem [40] is never larger than that of Corollary 24 However, if
one selects ¢ > n%/2(3/2)"!, then the two bounds are asymptotically equivalent. This
is why Algorithm [7| uses ¢ = n®/2(3/2)".

96 CHAPTER 4. ROUNDING AND CHAINING LLL

Algorithm 7 Coppersmith’s Method with Chaining and Rounding

Input: Two integers N > 1 and m > 1, a univariate degree-d monic polynomial f(z) €
Zlx] with coefficients in {0,...,N —1} and 2 < d+ 1 < (log N)/2.

Output: All zg € Z s.t. |z9| < N9 and f(2¢) =0 mod N.

1: Perform Step 1 and Steps to of Algorithm@ Step [7| returns Bgf and Uy such that
0o - Bo — BE.

2: Let n = ém + 15 and X be the bound given in Theorem [40] Let the rationnal ¢ be
such that ¢ = n2 (%)” and the loop iteration counter ¢t = 0. Let P be the n x n lower
triangular Pascal matrix.

3. Compute the matrix Uy - By, where By is the matrix computed in Step [5 of Algo-
rithm [6

4: The first vector of Uy - By corresponds to a polynomial of the form v(zX) for some
v(z) € Zx].

5. Compute and output all roots xg € Z of v(x) satistying f(xg) = 0 (mod N) and

|$0| < X.
while Xt < N/ do
Compute the matrix Byy1 = Ut - By - P.
Size-reduce Bi41.
Compute the matrix Bt+1 = |cBy1/ minj<i<y ||be417]|| obtained by rounding

Bt+1.

10: Run L? algorithm on matrix Bt—i—l which returns Btlil and Ut—i—l s.t. Ut—i—l ~Bt+1 =
BE . ~

11: Compute the matrix Usyq - Byyq.

12: The first vector of Uy, - B,y corresponds to a polynomial of the form v(zX).

13: Compute all the roots zj, of the polynomial v(z) € Z[x] over Z.

14: Output zp = z{,+ Xt for each root z{, which satisfies f(x(, + Xt) = 0 (mod N) and
7h) < X.

15: t+—t+1.

16: end while

4.2.3 Complexity Analysis: A Heuristic Approach

The complexity of Algorithm [7] relies on the complexity of the LLL-reduction per-
formed in Step The cost of this reduction depends on the size of coefficients in matrix
B = Biy1, which itself depends on the value minj<;<, [|b¥||. The exact knowledge of
this value does not seem straightforward to obtain without computing the Gram-Schmidt
matrix explicitly. However, experiments show that the Gram-Schmidt curve is roughly
decreasing, i.e. minj<;<y ||b}|| ~ ||b}|| and is roughly symmetric, i.e.

log ||b|| — log ||bfn/zj | ~ log Hbfn/zj | —log|br,_isall -

If we assume these two experimental facts, we deduce that ||btn/2J | ~ | det(B)|'/™. By
duality, this means that ||b%|| ~ | det(B)[*™/||b%||. Furthermore, from the definition of

4.2. CHAINING LLL 97

the GSO, we know that ||bj|| = ||b1]|, where by is the first vector of matrix B. Therefore
we have: (s
|det(B)[*» N % X!

min b ~ b] il : (4.10)

Thus, we need an estimation on ||by||. Since in practice, the matrix B = B; 1 = U;-B;-P
is already nearly size-reduced, one can skip Step [§] of Algorithm [/l Therefore, vector
b, is the first vector of matrix (NJZ - B; - P. Using Corollary , one deduces that the
first vector of matrix U; - B; is roughly as short as the first vector of an LLL-reduced
matrix. From the well-known experimental behavior of LLL |[NS06|, we can model the
first vector of the LLL-reduced basis as a “random” vector of norm ~ 1.02"| det(B)|"/"
(where 1.02 has to be replaced by a smaller constant for dimension n < 60) . Since the
Pascal matrix P has a norm smaller than 2”1 (see proof of Corollary , one gets the
bound ||by|| < /2" 11.02"| det(B)|'/". Therefore, we deduce that: minj<;<, ||bZ| ~
| det(B)|Y/™/(y/n2"~11.02") . In practice, we conjecture (see Figure in Section
that 1/n

min (b7 > [T

in Bn where (<2 .

This discussion leads to the following heuristic approach regarding the method: firstly,
one should rather use the estimation in Step |§| of Algorithm (7] instead of explicitly
computing the Gram-Schmidt matrix; secondly, one can skip Step [§] of Algorithm [7}
This heuristic version of Algorithm [7] is the one we used during our experiments, all
these assumptions were always verified.

To conclude our analysis, since as specified before, our experiments gave

x il o 1det(B)™ | det(B)P"
max [[bj|| ~ |[bi]| ~ ~

1<i<n il minicicn b

one gets
det(B)[*/"
max ||b}|| ~ 7| t(B)l

" & |det(B)|V"B" .

Therefore, instead of reducing a matrix such that maxj<i<, ||bf|| < |det(B)|"/"8", it
suffices to reduce a rounded matrix such that

maxj<i<n ||by ||

max ||bY] < ¢ < B

1<i<n min;<i<p |||
This means that we are trading entries of size O(n) instead of O(mlog N). Therefore,
by considering n = O(log N), we obtain the same complexity as in Theorem [29 but in
a heuristic way. However, even if both asymptotic complexities are identical, in practice
for reasonable dimensions the speed-up brought by using Algorithm [7] rather than Algo-
rithm |§| is considerable (see Section [4.3)). Indeed, the LLL-reduction of matrix U; - B; - P
(Step of Algorithm [7)) performs surprisingly faster than expected. This comes from
the fact that for reasonable dimensions, the Gram-Schmidt curve of this matrix remains
quite close to the one of matrix (72- - B;, where Ui - B; turns out to be LLL-reduced

98 CHAPTER 4. ROUNDING AND CHAINING LLL

(or nearly). Besides, the overall running-time of Algorithm [7|is approximately the time
spent to perform one LLL-reduction, multiplied by the number of executed loops, i.e.
by N1/9/X.

4.3 Experiments

4.3.1 Practical Considerations

We implemented Coppersmith’s algorithm (Algorithm [4]) and our improvements (Al-
gorithms |§| and [7)) using Magma Software V2.19-5 for N being 1024-bit and 2048-bit
moduli. Our test machine is a 3.20-GHz Intel Xeon. Running times are given in seconds.

We used polynomials of the form
f(x)=2>4ax+b=0 mod N with degree § =2 .

According to Coppersmith’s Theorem, one can retrieve the solution zg if xg < N 1/2,
More precisely, Algorithm 4l with n = 2m 4+ 1, can find all roots z(as long as

n—~06+1 1 1 1 1

5n n_"‘1J = L27§N§*ﬁn_ﬁj

jwpl < X = 272N

For a fixed n, the rounding strategy (Algorithm @ gives a worse bound than X, but the
difference can be made arbitrarily small by increasing the parameter c: in our experi-

1 1

ments, we therefore chose the smallest value of ¢ such that x{"" and /-c" are larger
than 0.90, so that the new bound is never less than the old bound X by more than 10%,
which is essentially the same. However, we note that the value ¢ can be taken smaller in
practice: indeed, our theoretical analysis was a worst-case analysis. For instance, it has
been proved in [VT98| that if 7" is a random n X n lower-triangular matrix with unit di-
agonal and subdiagonal coefficients normally distributed, then (|||7~"/|2)*/™ converges to
1.3057... And experimentally, when subdiagonal coefficients are uniformly distributed
over [—1/2,41/2], then we have (|||T~"||o)/™ < 1.1 with high probability. This means
that the constants of Lemma (32| (and therefore the implicit 3/2 in formulas for ¢) are
better in practice.

Furthermore, it is worth noticing that since the value « is not significant in itself,
in order to increase the efficiency, one can round matrices at negligible cost by taking
o = 21°82(®)] and performing shifts of |logy(a)] bits.

In the same vein, one can increment ¢ by 2 instead of 1 in Step [9] of Algorithm []
or in Step |12 of Algorithm EI, and one can multiply the matrix U, - B; by P? instead
of P in Step [7] of Algorithm l This comes from the fact that if 0 < z{; < X (resp.
—X < x < 0), then a2, — X (resp. z(, + X) is also a valid solution. This refinement
allows to divide by 2 the global timing of Algorithms [] and [f] However, it seems to be
much less relevant when applied to Algorithm [7]

4.3. EXPERIMENTS 99

4.3.2 Implementation Results

We have performed several tests depending on the dimension n. Results are depicted
in Table[6.1]for the case [logy(N)] = 1024 and in Table[6.2|for the case [logy(N)] = 2048.
In both tables, the bit-size of Coppersmith’s theoretic upper-bound X = N1/2 ig given in
last column. We have noted the bit-size of the bound X’ associated to a dimension n for
which the solution zf, is found in practice. We give corresponding timings for different
applications:

— Time for one LLL execution on the original Coppersmith’s matrix By (given
for comparison only: this reduction is never performed in our method). This
corresponds to Step [p] of Algorithm

— Time for one LLL execution on the first truncated Coppersmith’s matrix (applied
to reduce the first matrix B{, only). This corresponds to Step E] of Algorithm @

— Time for one LLL execution on the truncated matrix which is quasi LL L-reduced
(applied on Bl fori=1,..,t during the exhaustive search). This corresponds
to Step [10] of Algorithm [7}

— Time for the multiplication with the unimodular matrix (Uj; - B; performed for
i = 1,...,tg during the exhaustive search after each LLL computation of matrix
B ;). This corresponds to Step [11| of Algorithm

Note that the cost of solving a univariate equation over Z is not given since it turns out
to be negligible in practice. Running times are given as averages over 5 samples.

Table 4.2: Bounds and running time (in seconds if not specified) as a function of the
dimension for [logy(N)] = 1024.

loga (X' 492 496 500 503 504 505 logy(X) = 512

Dimension 29 35 51 71 77 87 N/A

Original| LLL (Bo) 10.6 35.2 355 2338 4432 11426 N/A
Method| ¢4 Timing (days) 1286d. 267d 168d. 139d. 13.1d. 16.9d. N/A
Truncated LLL (B() 1.6 3.5 18.8 94 150 436 N/A

New Trunc. Exhaus. LLL ([3;) 0.04 0.12 1.4 9.9 15.1 46.5 N/A
Method| \jyitiplication Unimodular | 0.04 0.08 0.4 1.2 1.7 3.6 N/A
Total Timing (hours) 23.3h. 3.6 h. 2.1 h. 16h. 1.2h. 19h N/A

As depicted in Tables and by increasing the dimension, one can retrieve so-
lutions xg that get ever closer to X = N /2 However, beyond a certain point, it is not
profitable to increase the dimension since an exhaustive search would end up faster. In
our case, the best dimension to use is depicted in bold on both tables. Indeed, one can
see that using a larger dimension allows to find a solution which is one bit longer only,
for LLL executions that take more than twice as much time.

As a consequence, for [logy(N)| = 1024, the best trade-off is to use lattices of di-
mension 77, and perform an exhaustive search on 512 — 504 = 8 bits. As depicted in

100 CHAPTER 4. ROUNDING AND CHAINING LLL

Table 4.3: Bounds and running time (in seconds if not specified) as a function of the
dimension for [log, (V)] = 2048.

logg (X') 994 1004 1007 1011 1012 1013 logy(X) = 1024

Dimension 35 51 63 85 91 101 N/A

Original| LLL (Bo) 164 1617 5667 39342 60827 125498 N/A
Method | mo¢a] Timing (years) | 5584y. 538y, 236y 102y 7.9y 82y N/A
Truncated LLL (B() 9 48 146 825 1200 2596 N/A

New Trunc. Exhaus. LLL (B{) 0.15 1.6 6.2 33 48 104 N/A
Method Multiplication Unimodular 0.12 0.6 1.5 5.4 6.5 11.5 N/A
Total Timing (days) 3355d. 26.7d. 11.7d. 3.7d. 2.6 d. 2.8 d. N/A

Table the exhaustive search then takes 150+ (28 —1)(15.1+1.7) ~ 1.2 hours, which
is about 262 times faster than the original method which takes 28 x 4432 ~ 13.1 days.
Somehow, this represents the global speedup obtained by using Algorithm [7] rather than
Algorithm 4] More specifically, when the exhaustive search is not considered, performing
a single LLL execution takes 150 seconds when truncating the matrix (Algorithm @,
compared to 4332 seconds using the original method Algorithm []

In the same way, for [logy(N)] = 2048, the best trade-off is to use lattices of dimension
91, and perform an exhaustive search on 1024 — 1012 = 12 bits. Again, as depicted in
Table the exhaustive search then takes 1200 + (2!2 —1)(48 +6.5) =~ 2.6 days, which
is about 1109 times faster than the original method which takes 2'? x 60827 ~ 7.9 years.
More specifically, when the exhaustive search is not considered, performing a single LLL
execution takes 1200 seconds when truncating the matrix (Algorithm @, compared to
60827 seconds using the original method (Algorithm @

Table 4.4: Global exhaustive search timing using original /new methods for [log,(N)] =
1024 and 2048.

[logy(N)] =512 [logy(N)] = 1024 [logy(N)] = 1536 [logy(N)] = 2048
Original method 47 minutes 13.1 days 108.5 days 7.9 years
New method 52 seconds 1.2 hours 5.2 hours 2.6 days
Speed up 54 262 502 1109

Yet, one recovers the fact that the speed up of the rounding method (Algorithm @
is linear in m = (n — 1)/J (same as obtained in the theoretical analysis), and we obtain
even more speedups by using the rounding and chaining method (Algorithm 7). Hence,
our improvement is practical and allows to get much closer to the asymptotic small-root
bound. Moreover, as depicted in Table [4.4] the larger the modulus N, the more signifi-
cant the speed-up of Algorithm

4.4. OTHER SMALL-ROOT ALGORITHMS 101

Furthermore, we verify the assumption on the value minj<;<, ||b7|| for matrix B.
We write max;<;<y [|bf]| ~ Bivol(L)Y/™ and minj<;<, ||bf|| ~ Byvol(L)"/™. In this
paper, we have assumed that ; = 1/83. We summarize the results of our experiments
for [log N| = 512 with dimensions 30, 60, 90,120,150 in Table We can see that
B1 X B2 =~ 1 and that $; < 2. This means our assumptions are reasonable.

Figure 4.3: Beta values for [log N| = 512

Data Parameter m

type 10 20 30 40 50

51 1.7582 | 1.8751 | 1.9093 | 1.9218 | 1.9435

B2 0.5460 | 0.5271 | 0.5155 | 0.5091 | 0.5077

product | 0.9600 | 0.9883 | 0.9842 | 0.9785 | 0.9867

4.4 Other Small-Root Algorithms

We now discuss whether our rounding method can similarly speed up other small-root
algorithms (see the surveys [May10, Ngu09|), which are based on the same main ideas
where LLL-reduction plays a crucial role. In theory, the rounding method provides a
speedup for any triangular matrix whose diagonal coefficients are all large. However,
in order to have a large speedup, we need the minimal diagonal coefficient to be much
larger than the ratio between the maximal diagonal coefficient and the minimal diagonal
coefficient. In Coppersmith’s algorithm, the smallest diagonal coefficient was N m—0(1)
while the gap was N O, which translated into a polynomial speedup. As we see in the
sequel, it turns out that other small-root algorithms do not share the same features: we
only get a (small) constant speedup.

4.4.1 Gcd Generalization

Coppersmith’s algorithm (Algorithm has been essentially generalized by Howgrave-
Graham |[HGO1| and Boneh et al. [BDHG99| (see the surveys [May10,Ngu09]) as follows:

Theorem 41. There is an algorithm which, given as input an integer N of unknown
factorization, a rational o s.t. 0 < o < 1 and a monic polynomial f(x) € Z[z] of degree §
and coefficients in {0, ..., N — 1}, outputs all integers x¢ € Z such that ged(f(xg), N) >
N and |zo| < N/ in time polynomial in log N, § and the bit-size of .

Theorem [22]is then the special case a = 1 of Theorem The algorithm underlying
Theorem [41] is in fact very similar to Algorithm [4 instead of applying Lemma [23] with

102 CHAPTER 4. ROUNDING AND CHAINING LLL

N™, one uses p" where p > N¢ is some unknown divisor of V. And one considers the
same family of polynomials

gij(x) =2 N fi(2) |

but over slightly different indices. Algorithm [4jused 0 <i<m and 0<j < 4§, and j =0
for ¢ = m. This time, we use the two following sets of indices:

1) 0<i<m and 0<j <3, 2) i=m and 0<j<7y ,
where is chosen asymptotically to be such that:

v=[om/(a—1)]

Then the dimension is n = dm + . The maximal diagonal coefficient is still N X0~1,
and the minimal diagonal coefficient is still X°™, like in Lemma . However, the balance
between these two coefficients has changed, because the bound X is much smaller than

n—=56+1
on

in Coppersmith’s algorithm. Before, X was essentially N whose order of magnitude

is the same as N9, but now, it is close to NO‘Q/‘S, so that

X&m ~ N(Sma2/6 — Nma2

In other words, the ratio between the maximal and minimal diagonal coefficient is about

NmX6—1

~ N(17a2)m+(a2(571)/5) ~ N(lfaQ)m
Nma?

Therefore, by performing the rounding improvement as before, i.e. by dividing all coef-
ficients of B by X" /¢ where ¢ > 1 is a small parameter, the bit-size of the truncated
elements will be bounded by a value close to NV (1_0‘2)7”, in comparison to the univariate
modular case, where the truncated elements were bounded by N9,

We are thus trading an LLL-reduction of a matrix with bit-size &~ mlog N, with one
with bit-size ~ (1—a?)mlog N, which can only provide a small constant speedup at best,
namely 1/(1 —a?)? for L? or close to 1/(1 —a?) for L'. Thus, in the ged generalization,
the input basis is much less reduced than in Coppersmith’s algorithm.

4.4.2 Multivariate Equations

As depicted in Chapter 3] Coppersmith [Cop96b,|Cop97] showed that his algorithm
for finding small roots of univariate polynomial congruences can heuristically be extended
to multivariate polynomial congruences: the most famous example is the Boneh-Durfee
attack [BD00O| on RSA with short secret exponent.

Not all these multivariate variants use triangular matrices, though they sometimes
can be tweaked: some rely on lattices which are not full-rank, including the Boneh-Durfee
attack [BD00|. However, when the matrix is triangular, there is a similar problem than
for the gcd generalization: the diagonal coefficients are much more unbalanced than in

4.4. OTHER SMALL-ROOT ALGORITHMS 103

the univariate congruence case, which means that the speedup of the rounding method
is at most a small constant. And in the Boneh-Durfee attack, the coefficients which play
the role of the diagonal coefficients are also unbalanced.

For instance, assume that one would like to find all small roots of f(z,y) =0 (mod N)
with |z| < X and |y| <Y, where f(x,y) has total degree ¢ and has at least one monic
monomial 2%y°~® of maximal total degree. Then, for a given parameter m, the lower-
triangular matrix has dimension n = (dm + 1)(dm + 2)/2 and diagonal coefficients

N™—v xmtudyuste(d-a) where wup +us +dv<md and wuq,ug,v>0

with u1 < a or ug < § — . For typical choices of X and Y such that XY < N1/9=¢ the
ratio between the largest and smallest diagonal coefficient is no longer N,

Yet, we deduce that we only get a small constant speed-up for other small-root
algorithms. We leave it as an open problem to obtain polynomial (non-constant) speedups
for these other small-root algorithms: this might be useful to make practical attacks on
certain fully-homomorphic encryption schemes (see [CH11a]).

Chapter 5

Factoring N = p"¢° for Large r

Contents
[5.1 BDH’s Theorem Slightly Revisited] 106
6.2 Factoring N =p ¢ for Large 7] . « « v v v v v v v v v v v v v u 107
[p.2.1 Two Natural Approaches that Faal] 107
022 The Main Theoreml. 108
0.2.3 An Outline of the Methodl 109
[5.2.4 A Useftul Lemma: Decompositionof rand s|. 109
[5.2.5 Proof of the Main Theoreml 112
(£.2.6 Refinement of the Condition on r for Small s or for s Close to r]114
[5.3 Generalization for N = [[p;" for Large r’s[. 115
[5.3.1 A Condition on r; Depending on the Ratio r1/rp—1| 116
[6.3.2 Factoring with Gaps| oL 121
[5.3.3 An Iterative Definition of Function p¢| 122
(£.3.4 Proof of the Generalization Theoreml 124
[5.4 Speeding-up by Rounding and Chaining]. 126
[5.4.1 Rounding| 127
[b.4.2 Chaining] 128
B8 Experiments|ttt 129
.51 Practical Considerationsl 129
[0.5.2 Speed-up by Rounding and Chainingf. 130
[5.5.3 Implementation Results| 130
[5.5.4 Comparison with ECM| 132

The results presented in this chapter are from a joint work with Jean-Sébastien Coron,
Jean-Charles Faugére and Guénaél Renault.

Boneh, Durfee and Howgrave-Graham (BDH) showed at Crypto 99 [BDHG99| that
moduli of the form N = p'q can be factored in polynomial time for large r, when
r ~ log p. Asrecalled in Chapter[3.3] their algorithm is based on Coppersmith’s technique

105

106 CHAPTER 5. FACTORING N = PEQ°% FOR LARGE R

for finding small roots of polynomial equations [Cop97|, which uses lattice reduction. In
the BDH paper the generalization to moduli of the form N = p"¢® where r and s are
approximately the same size, is explicitly left as an open problem. In this chapter we
solve this open problem and we identify a new class of integers that can be efficiently
factored. Namely, we describe a new algorithm to factor NV = p"¢® in deterministic
polynomial time when at least one of both exponents r or s is greater than (logp)?.

Our technique consists in decomposing the exponents r and s so as to write N = P“Q)
for some large enough u, where P = p®¢® and Q = p®¢®. This decomposition is obtained
by LLL-reducing a well-designed matrix which only depends on r and s. Depending on
the considered decomposition one subsequently applies BDH’s method with N = P“Q),
or Coppersmith’s technique for univariate congruencies. This allows to recover P and @,
and eventually the prime factors p and gq.

As a next step, we generalize our technique for moduli of the form N = Hle p;* with
more than two prime factors. Namely, we show that a sufficient condition to extract a
non-trivial factor of such moduli in polynomial time in log N is that the largest of the k
exponents r; is in Q(log™ (max p;)), where £y = 3 and ¢}, = 4(k— 1)(1+Zf:_13 ;:f’j) +1
for k > 3. For example, we have {3 =9, {4 = 25, and more generally ¢, = O(k!).

ROADMAP. In Section [5.1] we give a slightly simpler condition than the one given in
BDH’s Theorem (Theorem which will rather be used in the current chapter. In
Section [5.2] we start by showing why natural approaches fail to factorize N = p"¢® in
polynomial time for large r and s. Then we derive a condition on r and describe our
method for a polynomial time factorization of N = p"¢®. We also show that this condition
can be improved in the case where s is small, or when s is close to 7. In Section we
generalize our method for modulus of the form N = Hle p;". Finally, in Sectiona
present our experimental results.

we

TooLs. In this Chapter, we make use of Coppersmith’s small-root method for the
univariate modular case, whose reminder is provided in Chapter We also make use
of the Boneh-Durfee-Howgrave-Graham technique described in Chapter [3:3]

5.1 BDH’s Theorem Slightly Revisited

In Chapter [3.3|we recalled in Theorem [27]the original BDH’s Theorem from [BDHG99].
Roughly, it states that given a modulus of the form N = p"q where ¢ < p© for some ratio-

c+1
r4-c

of the LLL-reduction. A direct consequence is that if we have (r+¢)/(c+1) = Q(logp),
then the running time becomes exp(O(1)) - O(y), which is polynomial in log N.

nal ¢ > 0, one can factorize N in time exp < -log p) -O(y), where ~ is the complexity

Actually by simple inspection of the proof of Theoremin IBDHG99| one can obtain
the slightly simpler condition r = Q(logq) instead of the previous (r + ¢)/(c + 1) =
O(logp) for a polynomial time factorization. Namely, this is highlighted in the following
theorem that will rather be used in the current chapter.

5.2. FACTORING N = PEQ® FOR LARGE R 107

Theorem 42 (BDH). Let p and q be two integers with p > 2 and ¢ > 2, and let N = p"q.
The factors p and q can be recovered in polynomial time in log N if

r = Q(log q)

Proof. We start from Lemma 28 which is taken from [BDHG99| whose proof is recalled
in Chapter We emphasize that in Lemma [2§| the integers p and ¢ can be any integers
greater than 2, and not necessarily prime numbers. Indeed, the proof of Lemma [28] does
not depend on p and ¢ being primes.
Then, instead of taking a dimension n = 2r(r + ¢) as in Chapter where c is such
that ¢ < p°, we now take n = 2[r - log p|, which gives the sufficient condition:
1——¢ __1
’P—p‘ < p rte logp
and therefore, in order to factor N = p"q it suffices to perform exhaustive search on a
fraction ¢/(r + ¢) < ¢/r of the bits of p, which gives a running time:

exp (E . 10gp> - poly(log N)
r

Moreover we can take ¢ such that (p©)/2 < ¢ < p°, which gives p¢ < 2g. Thus one gets
clogp < logq + log2. Therefore the running time is:

1
exp (qu> - poly(log V)
r
and therefore a sufficient condition for polynomial-time factorization of N = p"q is
r = Q(logq)

This concludes the proof of Theorem A2
O

Note that if p and ¢ are integers of the same bit-size, i.e. ¢ = 1, then one retrieves
the condition r = Q(logp) given in [BDHG99]. Furthermore, we emphasize again that
in Theorem (as well as in Theorem , the values p and ¢ can be any integers, and
not necessarily prime numbers. Thus, one will need this latter property in the sequel.

5.2 Factoring N = p"¢® for Large r

5.2.1 Two Natural Approaches that Fail

In BDH’s paper, the generalization to moduli of the form N = p"¢® where r and s
are approximately the same size, is explicitly left as an open problem. In the following,
we start by providing two natural approaches that fail to factorize moduli N = p"¢®.
The first one is a straightforward application of BDH’s method, and the second one is
an application of Coppersmith’s method for finding small roots of bivariate polynomials
over Z. We indeed show that in fact, both approaches do not lead to a polynomial-time
factorization of N = p"¢°.

108 CHAPTER 5. FACTORING N = PEQ® FOR LARGE R

A First Approach: Straightforward Use of BDH’s method

In order to factorize moduli of the form N = p"¢®, one could try to straightforwardly
use BDH’s technique on N = p"@ where Q = ¢°. However, according to Theorem
the condition for a polynomial-time factorization becomes r = Q(log @) = Q(log¢®) =
Q(slogq), which is

gzgﬂbgw
Therefore, there must be a sufficient gap between the exponents r and s. Namely, the
ratio r/s should be larger than log ¢, and thus, r should be much larger than s. But in
the case where r and s have approximately the same size, this approach does not allow
a polynomial-time factorization of N.

A Second Approach: Use of Coppersmith’s Second Theorem

Alternatively, a natural approach to factor N = p"¢® would be to write p = P + xg
and ¢ = Q+yo where |zg] < X and |yp| < Y for some y, and in a first step we assume that
P and @ are given. Therefore (z¢,yo) is a small root over Z of the bivariate polynomial:

flz,y) = (P +2)"(Q+y) .

Without loss of generality, one can assume that r > s. Thus, the degree of f(z,y) is at
most 7 separately in x and y. Therefore, according to Theorem one can retrieve the
root (xg,yo) if the following condition is satisfied:

XY < w6

where W = P"(Q)® ~ N. Hence, one has the condition
XY < W2/(3T) ~ N2/(37’) — p2/3q23/(3r)

If r is close to s, the condition can be approximated by XY < (pq)Q/ 3. Therefore one
should take the bounds X ~ p?/3 and Y ~ ¢2/3. This implies that to recover p and ¢
in polynomial time we must know at least 1/3 of the high-order bits of p and 1/3 of the
high-order bits of ¢. If r is much larger than s, the condition is close to XY < p?/3,
and one should take the bounds X ~ p'/3 and Y ~ ¢%/3, which means that to recover
p and ¢ in polynomial time we must know at least 2/3 of the high-order bits of p and
2/3 of the high-order bits of ¢. Since in both cases (7 close or far to s) this is a constant
fraction of the bits of p and ¢ (that cannot be lowered by making r or s increasing),
Coppersmith’s method for the bivariate integer case does not enable to factor N = p"¢*®
in polynomial-time for any r and s.

5.2.2 The Main Theorem

In the following, we describe our method to factorize moduli of the form N = p"¢°.
As in BDH’s method, we consider primes p and ¢ which can have different sizes. With-
out loss of generality, we assume for the remaining of the chapter that » > s, as we can

5.2. FACTORING N = PEQ® FOR LARGE R 109

swap p and ¢ if r < s. We also assume that ged(r, s) = 1, otherwise we should consider
N’ = N'/% where § = ged(r, s). Finally, the exponents r and s can be supposed to be
known, otherwise they can be recovered by exhaustive search in time (9(log2 N).

The condition on r to factorize moduli of the form N = p"¢® in polynomial time in
log N is highlighted in our main theorem:

Theorem 43. Let N = p"q® be an integer of unknown factorization with r > s and
ged(r,s) = 1. One can recover the prime factors p and q in polynomial time in log N
under the condition

r = Q(log? max(p, q))

5.2.3 An Outline of the Method

In the following algorithm, we give an outline of our method that enables to show
Theorem 3]

Algorithm 8 Method for factoring N = p"¢® in polynomial time in log N

Input: Two positive integers r and s such that » > s and r = Q(log® max(p,q)). A
modulus N = p"¢°.
Output: Primes p and q.
1: Find integers & > 0 and 8 > 0 such that r- 8 — s - a = v with |y| < 2- r2/3 and
{a,B} < 2-r'/3 using LLL-reduction.
if |r/a| < s/f then
Compute u = |r/a].
Compute positive integer values a and b such that » = au + a and s = fu + b.
Apply BDH'’s factorization method on N = P*Q where P = p®¢® and Q = p*q’.
else
Compute u = [r/a].
Compute negative integer values a and b such that r = au + a and s = fu + b.
Apply Coppersmith’s method for finding small roots of univariate modular poly-
nomials with P* = Q - N where P = p®¢® and Q = p~?¢".
10: end if
11: From (P, Q), recover p and q.

5.2.4 A Useful Lemma: Decomposition of r and s
The proof is based on the following lemma.

Lemma 44. Let r and s be two integers such that v > s > 0. One can compute in
polynomaal time integers u, «, B, a, b such that

r = u-a + a

(5.1)
s =u-pB + b

110 CHAPTER 5. FACTORING N = P®Q®% FOR LARGE R
with
O<O¢<2r1/3 and 0<A<K «
la| < « and |b| < 6r%/3/a) (5.2)
u>r/a—1
where the integers a and b are either both > 0 (Case 1), or both <0 (Case 2).

Proof. We first generate two small integers o« > 0 and [such that:

r-f—s-a=rvy, (5.3)
for some small integer ~. For this we apply LLL on the following matrix M of row
vectors:

Lrl/?’j —s
M =
0 r
We obtain a short non-zero vector v = (|71/3] - a,), where y = —s - a + r - 8 for some

B € Z; hence we obtain integers «, 8 and +y satisfying equation (5.3]).

According to Theorem , the first vector v of the LLL-reduced matrix M % satisfies
[v] < 2(»=D/4(det M)Y/™ where n = 2 is the dimension of the lattice. Therefore, we
must have

IV < 214 (det M)I/2 € 20 (P32 < 218 g2
This gives the following two bounds :
|O[| < 27“1/3 and |'Y‘ < 2,,,,2/3)

Note that by applying the Gauss-Lagrange algorithm instead of LLL one can obtain
a slightly better bound for ||v||, corresponding to Minkowski bound (see Theorem (7).

Furthermore, one can assume that a > 0 since if the obtained « is negative, then
one can take vector —v instead of v. Moreover we must have a # 0 since otherwise we
would have v = (0, 5r) for some integer 3 # 0, which would give ||v|| > r, which would
contradict the previous bound. Therefore we must have 0 < a < 2r%/3.

From equation (5.3)) we have 5 = (v+ a - s)/r and moreover using —1 < v/r < 1 and

0 < s < r we obtain: N
-8
1< 1 TTYE T h<1ta
r T T

Since a and g are integers this implies 0 < 5 < a.

5.2. FACTORING N = PEQ® FOR LARGE R 111

We now show how to generate the integers u, a and b. In fact, we must ensure that
a and b are either both > 0 (Case 1) or both < 0 (Case 2). This is why we distinguish
two cases: a first one when |r/a| < s/ or =0, and a second one when [r/a] > s/f.

Case 1: f=0or (8 #0 and |r/a] <s/3). In that case we let:

and we let
a:=r—u-a and b:=s—u-p .

This gives (5.1)) as required. Since a is the remainder of the division of 7 by a we must
have 0 < a < . If § =0 we then have b = s > 0. If 8 # 0 we have using [r/a] < s/f:

b:s—u‘ﬂ:s—V’J~BZs—S-ﬂ:O ,
o B

so in both cases b > 0. Therefore in Case 1 we have that the integers a and b are both
> 0. Moreover the relation a - —b-a = v is acknowledged. Indeed, by combining (/5.1

and ([5.3]) we obtain
a-f—-b-a=a-f—(s—u-Pla=a—uv-a)f—s-a=r-f—s-a=".
This gives using 0 < < aand 0 < a < a:

a-f-y _aB+hl_a'+Dhl :a+m<a+27«2/3

X
« « « « «

0<b=

Since 0 < o < 2r1/3 we have 4r2/3/a > 2r1/3 > «, therefore we obtain as required:
6r2/3
«

Case 2: f# 0 and |r/a] > s/B. In that case we let:

-

As previously we let a :=r —u-a and b:= s — u - #, which gives again (5.1)). Moreover
we have —a < a < 0. As previously using [r/a]| > [r/a| > s/ we obtain:

0<b<

b:s—u‘ﬁ:s—[rw5<s—s‘ﬂ:0 .
o B

Therefore in Case 2 we have that the integers a and b are both < 0. As previously using
0<pf<a —a<a<0and a< 47“2/3/04 we obtain as required:

or2/3 gr2/3
<

Ib| < ’“’5_7
8]

'<o¢—|—
[0 [0

This terminates the proof of Lemma [44]

112 CHAPTER 5. FACTORING N = P®Q®% FOR LARGE R

5.2.5 Proof of the Main Theorem

We now proceed with the proof of Theorem [I3] We are given as input N = p"¢®. As
said before, we can assume that the exponents r and s are known, otherwise they can be
recovered by exhaustive search in time O(log? N). We apply Lemma 44| with r, s and
obtain u, a, 8, a and b such that:

r=u-a + a
s =u-B +0b

The rest of the proof differs according to whether Case 1 or Case 2 is considered.

Case 1 when [r/a| < s/ or f =0: An application of BDH’s method

We first consider Case 1 of Lemma 44 with ¢ > 0 and b > 0. In that case the modulus
N = p"¢® can be rewritten as follows:

N =p'q® = p"otagtit = (p°g”)ptg" = PUQ |

where P := p®¢® and Q := p®¢®. One can then apply Theorem on N = P“Q to
recover P and @ in polynomial time in log N under the condition

u=QlogQ) .
Since u > r/a — 1, we get the sufficient condition
r=Qa-logQ) .

We have from the bounds of Lemma [44}

67"2/3
a-logQ = a-(alogp+blogqg) <a-|a-logp+ -logq
a

< o - logp + 6r2/3 . logg < 10- P23 log max(p, q)
which gives the sufficient condition
r= Q(r2/3 -log max(p, q))
Therefore one can recover P and @ in polynomial time under the condition:
r = Q(log® max(p, q))

Last Step. Eventually the prime factors p and g can easily be recovered from P = p®¢®

a b
and Q = p®¢® = N/P*. Indeed, the matrix whose determinant is a-S—b-a = 7,

a f

5.2. FACTORING N = PEQ® FOR LARGE R 113

is invertible with inverse

By —b/y

—a/y aly

Namely we must have v # 0, since otherwise we would have 3 -r = «a - s. But since we
have ged(r, s) = 1, the integer o would be non-zero multiple of 7, which would contradict
the bound from Lemma[44] Therefore one can retrieve p and ¢ by computing:

af—ba bB—bp

5P = (it - (pegf)T = : S
Q" v o= (p¢")" (") =p v g7 =p-¢ =0p

aa—aa af-ba

Q™ P = (p°")> -(p*d®)y =p 7 ¢ =7p"¢" =¢q

Complexity Analysis. The complexity of the L? algorithm is O(n°*¢ log b+n**+¢ log? b)
when the entries are bounded by b and n is the dimension of the lattice used. Here
the entries are bounded by N™ < p("+9™ where m > 0 is an integer parameter (see
Chapter [3.3). Since n = O((r + ¢)m), we have B = O(p"). Therefore logb = O(nlogp)
and the time complexity is O(n%+¢log?p). Note that according to BDH’s method, the
asymptotical dimension n of the lattice is n = O(ulog P) = O((r/a)(alogp+Slogq)) =
O(r(log p+log q)) = O(r-logmax(p, q)). Therefore, for r ~ log® max(p, q), the dimension
is n = O(log? max(p, ¢)) and we have log N ~ log? max(p,q). As a consequence, the
complexity is O(log?5*¢ max(p, ¢)), which finally gives the complexity O(logs>* N).

Case 2 when [r/a| > s/f: An application of Coppersmith’s method

We now consider Case 2 from Lemma , that is ¢ < 0 and b < 0. In that case we
can write:
N =p'q® = p*eteqh it = (p*q")p'¢" = P*/Q

for P := p®¢® and Q := p~%q~?. Note that Q is an integer because a < 0 and b < 0. We
obtain P* = @Q - N which implies:

PY=0 (mod N) .

Therefore P is a small root of a univariate polynomial equation of degree u modulo
N. Hence we can apply Coppersmith’s Theorem for the univariate modular case. The
condition from Theorem [22] is

P< Nl/u :P/Ql/u]

Although the condition is not directly satisfied, it can be met by doing exhaustive search
on the high-order (log @)/u bits of P, which is still polynomial time under the condition

u=Q(logQ) .

This is the same condition as in Case 1 for BDH.

114 CHAPTER 5. FACTORING N = P®Q®% FOR LARGE R

More precisely, we write P = X -t 4 xg where X = | N'/*] and |zo| < X. We obtain
the polynomial equation:
(X t+20)"=0 mod N .

For a fixed t this is a univariate modular polynomial equation of degree u and small
unknown zg. We have X < N/%. Therefore we can apply Theorem and recover zg
in polynomial time in log N. Since the integer ¢ is unknown, we do exhaustive search on
t, where:

0<t<P/X<2P/N'"=2Q'"

Therefore the algorithm is still polynomial time under the same condition as in Case 1,
namely © = Q(log@). Since in Lemma the bounds on u, a and b are the same in
both Case 1 and Case 2, we obtain that in Case 2 recovering P and @ is polynomial-time
under the same condition

r = Q(log? max(p, q))

Last Step. Similarly as before, one can recover p and ¢ from P and Q = P"/N. The

B8 —=b —a a
same reasoning as before holds. Thus, one hasp=Q~ - P> and¢g=Q " - P~.

Complexity Analysis. The complexity of the L? algorithm is O (n°*¢ log b+n**+¢ log? b)
when the entries are bounded by b and n is the dimension of the lattice used. Here the en-
tries are bounded by N™*! = (p"g*)™*! (see Chapter. Since n = rm+1, we have b =
O((max(p, q))"). Therefore logb = O(nlogmax(p, q)) and the time complexity is O(n®+¢
log? max(p, q)). Note that similarly as before, in Coppersmith’s method the asymptotical
dimension n of the lattice is n = O(log N) = O(rlogp + slogq) = O(r - log max(p, q)).
Therefore, for 7 ~ log® max(p, ¢), the dimension is again n = O(log? max(p, ¢)) and we
have log N ~ log* max(p, q). As a consequence, the complexity is O(log?¢ max(p, q)),
which finally gives the complexity O(log®°+¢ N).

As a conclusion, we have shown that in both cases, |r/a] < s/ and [r/a] > s/0,
the associated approach (BDH or Coppersmith) can factorize N in polynomial time in
log N if 7 = Q(log® max(p, ¢)). This terminates the proof of Theorem

5.2.6 Refinement of the Condition on r for Small s or for s Close to r.
In the following, we show that the condition derived in Theorem [43] can be improved

for the two specific cases where s is small and when s is close to 7.

Case where s is small

In the case where s is small, namely if s < log® max(p, ¢), then a more refined bound
can be derived:

Lemma 45. Let N = p"¢® be an integer of unknown factorization with r > s and
ged(r,s) = 1. Let s be such that s < log?max(p,q). Then one can factorize N in

5.3. GENERALIZATION FOR N =] PIRI FOR LARGE R;’S 115

polynomaal time in log N if:
r
s Qlogq) -

Proof. By using BDH’s method on N = (p)"(¢*) = P"Q with v = r, P = p and
Q = ¢°, the condition u = Q(log @) becomes r = Q(logq®) = Q(s - logq). Therefore,
if s < log?max(p,q), then we have s -logq < log?max(p,q) - logq < log®max(p, q).
We deduce that a more refined condition than the one given in Theorem {43| would be
r/s = Q(logq).

O

Case where s is close to r

Another interesting case appears when r and s are close, namely if r—s < log? max(p, q),
then the following bound can be derived:

Lemma 46. Let N = p"q® be an integer of unknown factorization with r > s and
ged(r,s) = 1. Let s be such that r — s < logZ max(p,q). Then one can factorize N in

polynomaal time in log N if:
r

L = Q(logq) .

Proof. By using Coppersmith’s method on N = (pq)"(¢°") = P*/Q with u = r, P = pq
and @ = ¢" %, the condition u = Q(log Q) becomes r = Q(logq¢"~*) = Q((r — s) - logq).
Therefore, if r — s < log? max(p, q), then we have (r — s) - log ¢ < log? max(p, q) - log q <
log?® max(p, q). We deduce that a more refined condition than the one given in Theorem
would be r/(r — s) = Q(log q).

]

A summary of the conditions in Figure [5.1

We have summarized in Figure[5.1]results from Theorem [43] Lemmal[d5|and Lemma [46]
Namely, if s is small (i.e. s < log?max(p,q)) or close to r (i.e. 7 — s < log? max(p,q))
then the condition ranges from r = Q(log) to r = Q(log® max(p, ¢)) depending on s. In
all other cases, the condition is r = Q(log® max(p, q)).

Therefore, we enlighten that for the case where s = 1, one retrieves the bound
r = Q(log q) given in |[BDHGY99|. Besides, in the case where s = r — 1, one also gets the
condition r = Q(log q).

5.3 Generalization for N = [[p;’ for Large r;’s

We generalize the previous techniques to moduli of the form

k
N=]]#" .
=1

116 CHAPTER 5. FACTORING N = PEQ°% FOR LARGE R

Figure 5.1: Conditions on r for a polynomial-time factorization of N = p"¢® as a function
of s, when p and ¢ are two primes of the same bit-size.

r=Q(s-log(q)) r = Qlog® max(p,q)) r=Q((r—s)-log(q))

s=1 s = log? max(p, q) s =1 — (log? max(p,q)) s=7r—1

with more than two prime factors. As before, we consider primes p; for 1 < i < k,
which can have different sizes. In order to ease the notations, in this section we let
p = max{p;,1 < i < k}. Note that with 3 prime factors or more we cannot hope to
obtain a complete factorization of N. Namely starting from an RSA modulus N; = pq
one could artificially embed Ny into a larger modulus N = (pq)"¢’ for some known prime
¢, and recover the factorization of Ny by factoring N, but of course, this cannot be. For
the same reason we cannot hope to extract even a single prime factor of N; namely given
two RSA moduli Ny = p1q1 and Na = page and using N = (N7)" Na, extracting a prime
factor of NV would factor either Ny or No. Instead we show that we can always extract a
non-trivial factor of NV, if one of the exponents r; is large enough. Namely, we show that
we can always recover a non-trivial factor of N in polynomial time if the largest r; is at
least Q(logek max p;), for some sequence 6y with 03 =9, 4 = 25, 05 = 81 and 0, = O(k!)
for large k. More precisely, we prove the following Theorem, which is a generalization of
Theorem E3]

Theorem 47. Let k > 2 be fizred and let N = Hlep? where . = max(r;). Let
p = max{p;, 1 < i < k}. One can recover a non-trivial factor of N in time polynomial
in log N if

r = Qlog p)

where 05 = 3 and:

k—3 k-3
Op=4(k—1) [1+> J[i]+1, for k=3,

i=1 j=i
with 0, = O(K!) for large values of k.
The proof of Theorem is based on three lemmas which are highlighted in the
sequel.
5.3.1 A Condition on r; Depending on the Ratio r/r;_;

Without loss of generality, we assume in the proof that r{ > ro > - - > r, otherwise,
one should as before interchange the primes p; so that this condition is satisfied.

5.3. GENERALIZATION FOR N =] PIRI FOR LARGE R;’S 117

In the first Lemma [48] we derive a first condition on r; for a polynomial-time factor-
ization of N, which depends on the ratio 71 /r_1. We will give afterwards an upper-bound
on this ratio in order to derive a general condition which does not depend anymore on
this ratio.

Lemma 48. Let N = Hlep? for a fited k > 2 andry =2 19 = -+ > 1. Let p =
max{p;,1 < i < k} and p be such that r1/rx—1 < log”p. Then, one can recover a
non-trivial factor of N in polynomial time in log N if

Proof. Our technique is as follows. We start by finding k& small integers a1, ..., ax and
k — 1 small integers 7o, ..., v such that:

T — T 01 =% (5.4)
for all 2 <4 < k. In order to get such equations, we apply Theorem [20| with n = k — 1,

e = log_(p+1)p and e;—1 = r;/r; for 2 < i < k. This allows us to obtain integers
a1, Qo, ..., o satisfying:

N
)

|ozi—a1 C—
1

Therefore we obtain the sought relations ([5.4) with:

M=)
|7i|<’rl'€ and 1<O{1<2 4 . £ (k 1)

Note that for all 2 < ¢ < k we have 0 < a; < «1. Indeed, from (5.4), we have
a; = (v + i - a1)/r1. Therefore, by using |v;| < r; - e with 0 < e < 1, one deduces that:

T Qg Yi +7i- o T Qg
Caj=———<Le+
1 1 1

1< —-—e< -+ <l4+a ,

and since a; and «; are integers, one deduces that 0 < o; < o
Then as previously, we compute the integer value u > 0 as follows:

u:min{{”J with «; # 0, forlgigk‘}

Q;
We know that such u exists because a; # 0. We take the smallest index j such that
U= V—JJ We consider two approaches according to whether j < k or j = k. If at least

Q;

one of the «;’s for 2 < ¢ < k is null, then Case 1 is applied.

118 CHAPTER 5. FACTORING N = P®Q®% FOR LARGE R

Case 1 when j < k or when at least one «; is null: An application of BDH’s

method.
The first approach consists in computing the integers a; for all 1 < ¢ < k such that:
ri=Uu- o4 a; . (5.5)

By definition of u, we have a; > 0 for 1 < ¢ < k. Therefore, we can write

V= (o) (Ilvi) = P

where P = [[p{" and @ = [[p{". According to Theorem one can therefore apply
the BDH’s factorization method on N = P%() to recover P and @ in polynomial time in
log N if

u=QlogQ) . (5.6)
k k
Since log @ = Y (a;logp;) < > (a;)logp, condition l) amounts to:
i=1 i=1
Ty o)
o " Q ((1122522 az)logp> . (5.7)

Let’s give an upper-bound on the integers a;. By using (5.4)) and (5.5 we obtain that
vi=ri-op—ricar=(u-oqg+a1) o —(u-ai+a)ar=a-0;—a;-a1 . (5.8)

Therefore, since we have 0 < a; < aq for 2 < i < k, we deduce that a; for 2 <7 < k is
bounded as follows:
al'az’*%<a1'0éi+\%| \

a; = < <a 4+ (5.9)
aq aq aq

Furthermore, by using the inequality a; < a; and relation (5.8)) with ¢ = j which gives
air = (a; - a1 +7;)/ e, one deduces that:
m < a; - a1 +7;

a; < a1+ < —|—M<041—|—m+M
aq QO aq Q5 a1

for 1<i<k.

As a consequence, by using this upper bound on a; and the following relation derived

from (|5.4]):
e i_n o (5.10)
Oéj (65) Othéj ’ '

condition ((5.7)) becomes:

n_q (Wj| + (o1 + bl + max(m))logp>
aq OélOéj aj 7 a1

5.3. GENERALIZATION FOR N =] PIRI FOR LARGE R;’S 119

The term O‘év—]' is absorbed by the larger term bl log p, and is therefore ignored in the
105 Qa;

sequel. Furthermore, since all |y;| are bounded by the same value and since a;; < a1, the
il
‘a1

Therefore, by multiplying the previous condition by a; in both sides, we get:

term max; () is also absorbed by % and is neglected in the following.
J

r =9 <(O<% + 7f)é|,a1)10gp> : (5.11)
J

Relation (5.11]) involves the ratio oy /a;. Yet, one shows that a1 /a; = O(ry/r;). Indeed,
by using and the bound |y;| < r; - €, one deduces that

oy, |yl _n € 1
—=—- P =414 =) <2 -—.
Oéj 7‘]' TjOéj ’f’j T’jO&j T‘j Oéj ’l"j

Since j < k, we have r; > ry_1, and therefore, we have r/r; < ri/rp_;. Furthermore,
by definition, we have r1/ry_1 < log”p. As a consequence, in condition (5.11)), one can
replace the ratio a1 /a; by log” p, which gives:

r1 = Q((af + || log? p) logp) (5.12)
By applying Theorem 20| with € = 10g_(p+1) p, we get the following bounds:

oy < 2T logk=De+1)

p+1)

lyj| <1 -log= P p

Therefore the term |v;|log” p - logp in condition (5.12)) can be bounded by r;. Indeed,
we have

i log? p - logp < r1 -log™ "t p-log’ p - logp < 1y
As a consequence, condition (5.12)) becomes 1| = Q(a% -log p). By using the upper-bound
on oq, one gets:

k(k—1)

=0 (277 1og2t e pu10gp)

which allows to retrieve the final condition given in this Lemma by neglecting the term
ok(k—1)/2

Case 2 when |r;/ax| < |ri/a;] for all 1 <i< k—1: An application of Copper-
smith’s method.

In this case, as in Section [5.2 one cannot apply previous method since at least one
of the integers a; would be negative. The alternative approach consists in computing the
integer value v’ > 0 as follows:

u’:max{{m-‘, forlgz'gk‘}
673

120 CHAPTER 5. FACTORING N = P®Q®% FOR LARGE R

As before, we take the smallest index j such that ' = [r;/a;]. Inevitably, one has j < k.
Indeed, since we are in Case 2, we have |rp/ag] < [ri/a;] for all 1 < i < k— 1. This
means that there exists an index j with j < k such that [r;/a;| > [rp/ou].

One computes the integers a} for all 1 < i < k such that:
ri=u'-o;—aj . (5.13)

By definition of «/, we have a} > 0 for 1 <14 < k — 1. Furthermore, since j < k, we have
u' > [ry/ay], and therefore aj > 0. Thusly, we can write

v = ([T () = e

where P = [[p{* and Q" = [] p?l Similarly to Case 2 in Section according to
Theorem one can apply Coppersmith’s factorization method on N = P Q' to recover
P and Q' in polynomial time in log N if

u' = Q(log Q) . (5.14)

As before, one can easily show that both conditions and are equivalent.
For this, one should first emphasize that in both cases, we have u = Q(r;/a;) and
u' = Q(r1/ay), which ensures that the bounds on w and «’ are similar. It remains to
show that log @ = O(log Q). To this aim, we first show that the upper-bound on a; and
a; for 1 < i < k is similar. Indeed, by using and we obtain that

yi=ricai—ricar =W —a) - (W o —al) a1 =—d)-a; +a;-ar. (5.15)

Therefore, since we have 0 < «; < aq for 2 < i < k, we deduce that a; for2<i<k
is bounded as follows:

Ly — A Iy . .
a/’lb, _ al Z’Ll Yi < al aozél—i_ ‘71’ < ai + t:’;‘ . <516)

Furthermore, by using the inequality ag- < a; and relation (5.15)) with i = j which gives
ay = (a} - a1 +7;)/;, one deduces that:

for 1<i<k.

/
ai<a1+ X

| a-on 4y ; j '
cp il (gt el bel bl
aq Q; aq Qg5 a1

Since the upper-bounds on aq, oy, |y;| are identical in Case 1 and Case 2 and since we
have j < k in either cases, one gets the same upper-bound on a; as for a; and we deduce
that log @ = O(log Q).

Note that the knowledge of P and @’ allows always to recover a non-trivial factor of
N. Indeed, since we have ag» < o < rj, we deduce that @' cannot be a multiple of N

5.3. GENERALIZATION FOR N =] PIRI FOR LARGE R;’S 121

and it is therefore ensured that ged(V, Q') is a non-trivial factor of N.

As a conclusion, we have shown that in Case 1 and Case 2, the associated approach
(BDH or Coppersmith) can recover a non-trivial factor of N in polynomial time in log N
under the condition on r; given in the present Lemma, which depends on the ratio
T1/Th—1-

O

5.3.2 Factoring with Gaps

Our next lemma shows that if there is a sufficient gap between two consecutive expo-
nents r; and 7441, then the condition on r; to factorize N in polynomial time will only
depend on the ¢ first exponents, and not on ryy1,...,7r;. We also give a recursive bound
on this gap.

Lemma 49. Let N = Hlep;" for a fixed k > 2 withry > ro = -+ 2 1 and p =
max{p;,1 < i< k}. Lett be an integer such that 1 <t < k—1, and p; be such that

r1/re < logft p

and

™ > logPttl p = log(t—l)(ﬂt+1)+1

Tt+1

D .
Then one can recover a non-trivial factor of N in polynomial time in log N if

r =0 <log2<t—1><pt+1>+1 p>

Proof. As previously we can assume that the exponents r;’s are known, otherwise we can
recover them by exhaustive search in time O (log® N): for a fixed k this is still polynomial
in log N.

In the first instance, we only consider the first ¢ exponents 1,72, ...,7r:. By applying
Theorem [20| with 71,79, ..., and

e =log= Pty (5.17)
one can recover a non-trivial factor of N in polynomial time if r; = Q(logQ(t*l)(ptH)Jrl D).
Indeed, the proof follows the one of Lemma [8 with & = ¢. The difference is that we
always perform Case 1 even if j = ¢. Thus, the fact r; > 7,1 is not true anymore, since
one can have r; = ;. As a consequence, one has an upper-bound on rq/r; rather than
r1/r¢—1 and this is why we take p = p;.

In order for the condition on r1 not to be modified by also considering the integers
Tt+1,-..,Tk, one needs those integers to be small enough so that one can simply take

122 CHAPTER 5. FACTORING N = P®Q®% FOR LARGE R

«; = 0 and one would get a; = r; for t + 1 < i < k. As a consequence, because
rer1 = - = g, we would have:

max a; = max 7T; = Tiyq1
t+1<i<k t+1<i<k

Therefore, one would have:

max a;) - lo < (maxa; + max a;)-lo < (maxa; +r -lo .
(1<i<k i) logp < (1<i<t b ri<ick i) logp < (1<z<t i +7ep1) - logp

Accordingly, condition ([5.6)) would amount to:

n_q ((max a; +riy1) -logp)

o 1<i<t

This condition, without the term r:y1, leads to the condition on r; given in the
present Lemma. Therefore, in order for the term ;1 not to change the condition on rq,
one needs that 71 /a; > 741 1log p, or equivalently that

AN alogp . (5.18)
Tt4+1

Yet, according to Theorem with € given in (5.17)), one has the following upper

bound on «;:

Therefore, by using this upper-bound on «a; in condition (5.18)), one deduces that if

"L S ogt= DD+,
Tt+1

)

and 71 /1 < log” p, then one can recover a non-trivial factor of N in polynomial time in
log N under the condition

7’1 = Q (10g2(t71)(pt+1)+1 p>
O

Thusly, Lemma [49] highlights that if there is a sufficient gap between two consecutive
exponents r; and ryy1, then the condition on r; to factorize N in polynomial time is

r1 =0 (logQ(t—l)(PtHHl p), which only depends on the ¢ first exponents.

5.3.3 An Iterative Definition of Function p;

In order to prove our main Theorem [47] one needs to highlight a last Lemma which
allows to give an iterative definition of the recursive function py1; = (¢ —1)(pr +1) + 1.

5.3. GENERALIZATION FOR N =] PIRI FOR LARGE R;’S 123

Lemma 50. Let p be the function which is recursively defined as follows:

p1=0 ,

pry1=t—1(pe+1)+1 , for t>1 .

Then, the function p can be iteratively defined as follows:

p1=0,
t—2t—2
pe=14+2> 1[5 , for t=2 .
i=1 j=i

Proof. We start by giving an intuition of the iterative formula given in Lemmal[50] Indeed,
since pi1 = (t — 1)(pt + 1) + 1, we have:

pr = (t—2)(pr—1 + 1) +1=(t-2)((t—3)(p—a+1)+2)+1
(t—=2)(t—3)(pt2+1)+2(t—-2)+1
= (t-2)t=-3)(t—4(p—3+1)+2)+2(t —2) +1
= (=2)=3)t -4 (p—3+1)+20—-2)(t—3)+2(t - 2) +1
:2(.75”—2)(7573)...(1)+2(t—2)(t—3)...(2)+~--+2(t—2)(t—3)+2(t—2)+1
t—21t-2
=1+2) [[J
i=1 j=i

We now rigorously prove Lemma [50| by recurrence on ¢.

00
Base Case: The case t = 1 is trivial. For t =2, we have po =14+2 > [[j = 1. And by
i=1j=i
using the recursive definition, we obtain ps = (1 —1)(p1 +1) +1 = 1.
t—2¢-2
Inductive Step: We assume that for an arbitrary ¢, we have p, = 1+2 Y [[j. We show
i=1 j=i
t—1t—1
that the relation is still verified for ¢t 4+ 1, i.e. that we have: pry1 =14+2>" [] J.
i=1j=i
Since we have the relation p;1 = (t —1)(ps + 1) + 1, by using the recurrence assumption
for p;, we deduce that

t—2 t—2 t—2t—2
pr1 = (t—D(1+2> a1+ =20t -1)a+> [+
i=1 j=1 i=1 j=i
t—2t—1 t—1t—1
= 2t-D+> [[H+1 =1+2>][J.
i=1 j=i i=1 j=i

which concludes the proof.

124 CHAPTER 5. FACTORING N = P®Q®% FOR LARGE R

5.3.4 Proof of the Generalization Theorem

One can now prove Theorem [47] Namely, we show that one can factorize N =
Hle p;" with 7y > 79 > -+ > 7y if 7 is large enough. More precisely, we show that
either all the r;’s are large enough, or there must be a gap between r; and ry;; for some
t < k. As previously we can assume that the exponents r;’s are known. Otherwise we can
recover them by exhaustive search in time (’)(logk N): for a fixed k this is still polynomial
in log N.

An Illustration:

We first illustrate our technique iteratively. Let’s consider the ratios r1/r; for 1 <
t < k— 1. Obviously, one has r1/r; = 1 < log”* p, which leads to p; = 0. Thusly, in
the case where r1/ry > log” p = log D10+), — 160 p by applying Lemma , one
can recover a non-trivial factor of N if r; = Q(log?1 D1+) — Q(logp). On the
other side, if r;/ry < log” p, then one has to check r3. Namely, if r1/r3 > logp =
log(271)("’2+1)+1p = log®p, then by applying Lemma one can recover a non-trivial
factor of N if r; = Q(log?@~D2+D+1 5y — O(log® p). On the other side, if r1/r3 <
log”® p, then one has to check 74, and so forth, and so on until ¢ = k — 2 with r1/rg_s <
logP*=2 p. For this last case, if r1/rp_1 > log”*~! p, then one can apply Lemma as
before with the condition 71 = Q(log?*~3)(Pk—2FD+1 py But in the case where 71 /7,_1 <
logP#=1 p, then one applies Lemma with p = pg_1, which allows to recover a non-
trivial factor of N if r; = Q(logQ(k_1 (”’“—1+1)+1p). According to Lemma one has
Pr_1=1+2 Ef:f’ Hf;f j. Eventually, plugging this value for px_1 in previous relation
allows to retrieve the condition r; = Q(log? p) with 6}, given in Theorem 47| to recover
a non-trivial factor of N in polynomial time in log N.

A constructive approach:

More rigorously, we define p;y =0 and for all 1 <t <k —1:
prr1=({E—D)(pr+1)+1 . (5.19)

We consider the following possible cases on the exponents r;:

ri/re < logPtp
1<t<k-2, Caset:

r1/Tee1 > logltttp
Case k—1: 7ri/rg_1 <logP1p

It is easy to check that Case 1 to Case k — 1 cover all possible cases. Namely if the
second inequality in Case t is not satisfied, we obtain:

1T < log(tfl)(Pt+1)+1p

5.3. GENERALIZATION FOR N =] PIRI FOR LARGE R;’S 125

which implies using that the first inequality r;/ry+1 < logP**! p in Case t + 1 must
be satisfied. Since the first inequality in Case 1 is automatically satisfied, this implies
that one of Case t must apply, for some 1 <t < k — 2.
Eventually if the second inequality in Case t = k — 2 is not satisfied then the single
inequality in Case k — 1 must be satisfied.

Thusly, if there exists an integer ¢t with 1 < ¢ < k — 2 such that 1 /r; < log?* p and
r1/Ti+1 > logl**! p, we are in Case t, and then one can apply Lemma . This allows to
recover a non-trivial factor of NV in polynomial time if

r1 = Qlog!m N+)

where according to Lemma we have

t—2t—2
p=1+2) [[i
i=1 j=i
Since p is an increasing function, one has pr_o > p; for 1 <t < k — 2. Therefore, among

the "Case t", the largest condition on r; occurs for Case t = k — 2, which gives the
condition

r = Q(log (k‘ 3)(pk 2+1)+1) Q(lOg4(k_3)(l+Z H] i j)+1)

However, if such a value ¢t does not exist, then it means that for all ¢ such that
1 <t < k-1, one has ri/r, <logf p, and in particular, one has r1/rg_1 < logP*1p
Therefore, we are in Case k — 1, and one can apply Lemma with p = pr_1, which
allows to recover a non-trivial factor of NV if

r1 = Q(log?F—Dles—1+D)+1 py (5.20)

where according to Lemma , one has pp_1 =1+2 Zf:_f’ H;";?’ j for k > 3. Therefore,
one gets the stronger condition

r1 = Qlog2F=Dk-1+D+1) — 0 (1ogdh=DI+HZEI T)+1y = (10g% p)
This allows us to retrieve the condition on 71 for £ > 3 given in Theorem to recover

a non-trivial factor of NV in polynomial time in log V.

Furthermore, we have p; = 0 according to Lemma [50] Therefore, for the case k = 2,
Condition ([5.20) becomes

r1 = Qlog2F=Dler1+1+1 5y — O(1og?MOFDHL 5y — O(log? p) .

Obviously, this is the same condition as the one obtained in Section [5.2]

First values 6}, in condition r; = Q(log p):

Thus, in Table [5.1] we provide the first values of py_1 and 6 for a modulus N =
Hi:l p;" with k prime factors. The condition on the largest exponent 71 is 71 = Q(log% p).
Namely, we obtain a polynomial time factorization if r| = Q(10g9 p) for k =3, if r| =
Q(log® p) for k = 4, etc.

126 CHAPTER 5. FACTORING N = PEQ°% FOR LARGE R

Table 5.1: Values of pp_1 and 0 for a modulus N = Hle p;" with k prime factors. The
condition on the largest exponent r; is r; = Q(log% p).

Pt ol 1] 3| 9|31

O =2k —D)(pp—1+1)+1 || 3| 9 | 25 | 81 |321

A more explicit condition for large k:

Eventually, for £ > 3 one has the relation:

k—3k-3

14> i1+ E=-3)(k-3)<(k-2) ,

i=1 j=i

which gives for large k,

Op <Ak — 1) +1=O(k!)

Therefore, for large values of k, we obtain the more explicit bound r = Q(logk! p) and
this terminates the proof of Theorem

Thus, the bound on r; grows exponentially in the number of prime factors k, but
for a fixed k, the condition is polynomial in logp. We emphasize that this condition on
r1 is a sufficient but not necessary condition. Indeed, it deals with the worst possible
series 71,79, ...,rr which is the one satisfying r1/r; < log” p for all 1 < i < k where p;
follows the definition of Lemma But it can be improved following Lemma [9] if there
is a sufficient gap between two consecutive r;. In particular, for the case where k = 2,
Lemma[49|applied with ¢ = 1 allows to recover the improvement proposed in Section [5.2.6]
when s is small compared to r, i.e. that the condition is r = Q(log max(p,q)) when
r/s > logmax(p, q). This terminates the proof of Theorem

5.4 Speeding-up by Rounding and Chaining

In Chapter {4 we described a method called Rounding and Chaining, which allows
to speed-up the LLL-reduction performed within Coppersmith’s method to find small
roots of univariate modular equations. In this section we apply it to our technique for

factorising moduli of the form N = Hle Pt

5.4. SPEEDING-UP BY ROUNDING AND CHAINING 127

5.4.1 Rounding

The Rounding method, uses the fact that the diagonal elements in the matrix to
be LLL-reduced are all balanced. This property allows to speed up the LL L-reduction
by rounding, that is by keeping only the most significant bits of all coefficients in the
matrix before LLL-reducing it. That way, the matrix contains much smaller elements
than originally.

In our context of factorizing moduli of the form N = Hle p;’, one rewrites NV,
according to the method used, namely, one has N = P*(Q) for BDH’s application, and
one has N = P"/@ for Coppersmith’s application. Thus one considers both applications
separately.

Coppersmith’s method

If Coppersmith’s method is used, the Rounding technique described in Chapter [can
straightforwardly be used. Indeed, Coppersmith’s method applied to our case amounts
to solving the univariate modular equation

flz)=(X-t+z)" mod N |,

where X -t is the known upper part of P and X is an upper-bound on the searched
solution zy. Therefore, one uses the matrix B drawn in Section [3.1] where § = u. Thus,
as shown in Lemma [30] from Chapter [fapplied for 6 = u, the minimal diagonal coefficient
of B is X" and the maximal diagonal coefficient is X“~'N™, where m is the positive
integer parameter linked to the dimension of the matrix (see Chapter 4| for more details).
Therefore, as in Chapter 4] we first size-reduce B (see Chapter [2| Definition [10) to
make sure that in each column, all subdiagonal coefficients are smaller than the diagonal
coeflicient.

Then, one can round the entries of B so that the smallest diagonal coefficient becomes
|| where ¢ > 1 is a small parameter (the analysis provided in Chapter [gave ¢ = (3/2)"
where n is the dimension of matrix B). More precisely, we create a new n x n triangular
matrix B = (b; ;) defined by:

B =|cB/X"™| . (5.21)

This means that the new matrix B is made of matrix B where all of its coefficients are
divided by X*™/c. Since the diagonal coefficients b; ; of matrices B are such that b;; >
X" the diagonal coefficients b; ; of matrix B are such that: b;; > [cX*" /X" | = |c].
Hence, we LLL-reduce the rounded matrix B instead of B.

Complexity: The original matrix B has entries whose bit-size was O(mlog N). In
the rounded matrix B, the elements have bit-size O(log ¢ +1log N). Indeed, according to
Lemma the ratio between the maximal and the minimal diagonal coefficients of B
satisfies:

NmXufl

1
Xum Z Nl_ﬂ

128 CHAPTER 5. FACTORING N = PEQ°% FOR LARGE R

Therefore, the entries of the new matrix B = |¢B/X"™| are upper bounded by ¢N -3
By taking um = O(log N), with the bound X given in Chapter 4} we obtain that the
elements have bit-size O(log ¢ + log N).

Since loge = O(log N) when ¢ = (3/2)", we get b < O(log N). Furthermore, the

dimension n of B is the same as the one of B. It follows that the running time of the
LLL-reduction is O(u%mS(log N) + u>m?(log N)?) using L? which is

L?: O((um)’(log N)?) = O(log" N)

because u < (log N)/2 — 1 and um = O(log N); instead of the previous O((log? N)/u?).
The running time using L' is O((um)>*(log N) + (um)“ 1+ (log N)'*¢) for any € > 0
using fast integer arithmetic, where w < 2.376 is the matrix multiplication complexity
constant, which gives the complexity:

L' O((um)®*(log N) + (um)“*1*2(log N)1*¢) = O(logf*e N) |

instead of the previous O((log”" N)/u).

BDH’s method

For BDH’s method, one uses the matrix B depicted in Section [3.3] where r = wu.
Again, a simple analysis of the diagonal coefficients in matrix B, enlightens that the min-
imal diagonal coefficient of B is X" and the maximal diagonal coefficient is X*“~'N™.
These limit coefficients are exactly the same as for Coppersmith’s method. Thusly, one
can rigorously follow the description of the Rounding method performed for Copper-
smith’s method.

Complexity: Thusly, the complexity is the same as the one obtained for Coppersmith’s
method. Namely, the complexity is O(log” N) when L?is used, and O(log®"¢ N) when
L'is used.

As a conclusion, since the speed-up depends on the degree u, namely it is ©((log? N) /u?)
when using L?, and ©((log N)/u) when L'is employed; we emphasize that the higher
the degree u, the less significant will be the speed-up. Therefore, since the degree u
increases with the number k of primes in order to have a polynomial-time factorization
of N = Hle p;*, we deduce that the speed-up becomes less significant when the number
k of primes increases.

5.4.2 Chaining

As explained in Section [5.2] in order to reach Coppersmith and BDH’s bounds, one
should perform some exhaustive search in order to recover the N*/* high order bits of P
which are necessary to retrieve the whole value P.

5.5. EXPERIMENTS 129

Namely, in Coppersmith’s method, we write N = P*/Q and P = X -t + x¢ where
X = [NY*| and |zg| < X. We obtain the polynomial equation:

fi(wg) = (X -t +20)*=0 mod N .

Since the integer ¢ is unknown, we do exhaustive search on ¢ for 0 < ¢t < P/X, and the
solution z¢ is then found for the right value ¢y, i.e. for the right polynomial fy,.

In BDH’s method, the same applies, namely we write N = P*Q) and P = X -t 4+ xg
where X = [NV*| and |zo| < X, and we have

fi(xg) = (X -t +29)*=0 mod P" .

Again, we have 0 <t < P/X, and we do exhaustive search on ¢ to recover P.
Thus, in both methods, the polynomials constructed from f;(z) and written in the
basis

B= (12X " (X 2. .. (aXx ") |

where n is the dimension of the lattice. For the case t+1, one tries to solve the polynomial

Therefore, the shifted polynomials constructed from f;;1 are the same as for the case t,
but written in the different basis

B =X 1 4+1, X +1)%. . (eX

Therefore, if B is the matrix used for the polynomial f;(x), then according to Lemma
from Chapter [4] since one has the property B7 = P - B! where P is the Pascal matrix,
the matrix B - P is a basis of the “next” lattice used for the polynomial f;1(z) and
can be used instead for the L L L-reduction. Therefore, one can chain all L L L-reductions
during the exhaustive search, as performed in Chapter [£.2] In particular, we can use
a matrix of the form B® . P where B® is an LLL-reduced basis of the previous lattice
used to solve f;(z). As highlighted in Chapter even if the speed-up is heuristic, it is
in practice faster to LL L-reduce such matrices than the original Coppersmith’s matrices
independently.

Note that as it is done in Chapter [£.2.2] both speed-ups Rounding and Chaining can
be combined. Namely, during the chaining loop, the matrices can also be rounded before
the LL L-reduction.

5.5 Experiments

5.5.1 Practical Considerations

We have implemented our algorithm using Magma Software V2.19-5. We considered
the case of moduli N = p"¢® with two primes (k = 2). As highlighted, in Section , the
sufficient condition for a polynomial time factorization of N is that 7 = Q(log® maz(p, q)).

130 CHAPTER 5. FACTORING N = PEQ°% FOR LARGE R

Since this condition is somehow difficult to be put into practice with a reasonably large
size of p and ¢, we rather used relatively small » and s in comparison to the theoretical
condition. Namely, we considered four moduli N = p"¢® with r = 8, and s = 1,3,5,7,
with 128-bit primes p and ¢, which means that moduli N are of bit-length 1152, 1408,
1664 and 1920. As a consequence, in our experiments, one cannot hope to obtain a
polynomial-time factorization of N. Nevertheless, it seems to us interesting to run the
algorithm with such parameters in order to study its behaviour as a function of the
parameter s, for a steady r, and to get some practical timings. Since in Section a
fraction 1/u of the bits of @ is guessed by exhaustive search, for each modulus N we
have determined the values of a, 8, a and b that minimize the quantity log(Q)/u. Such
minimum is reached either by the BDH method (Case 1), or by the Coppersmith method
(Case 2), and we have indicated which of both behaves best according to N.

5.5.2 Speed-up by Rounding and Chaining

To speed up the LLL-computation we have implemented the Rounding and Chaining
methods recalled in previous section and thoroughly described in Chapter @] We gave
timings corresponding to the best possible dimension (the one which yielded the timeless
exhaustive search). Note that the first LLL-reduction is costlier than the subsequent
ones, therefore we considered the running time LLL; of the first LLL reduction, and
running time LLL. of subsequent LLL reductions.

5.5.3 Implementation Results

In Table [5.2) we give the optimal decomposition of IV, using either the BDH method
(Case 1) or the Coppersmith method (Case 2), the best decomposition between both
is highlighted in bold. For each case, we provide the number of bits given, the lattice
lattice dimension and the running times LLL; (first LLL-reduction) and LLL. (next
LLL-reductions). Finally we also estimate the total running time of the factorization,
by multiplying LLL, by 2! where ¢ is the number of bits given (or alternatively recovered
by exhaustive search).

Thusly, for the case where N = p8¢, the decomposition which yields the best condi-
tion, 4.e. which yields the less bits that are needed to be given, is the trivial decomposition
N = (p¢")®(»%") = (p)®(q) where a = 1,8 = 0,a = 0 and b = 1, with the application
of BDH’s method. This amounts to straightforwardly apply [BDHG99] on N = p®q
(together with the Rounding and Chaining improvement). By applying Algorithm
we obtain that the number of bits that should be given is 29. Note that in theory, the
number of bits given is (log Q)/u = (logq)/u = 128/8 = 16, which is smaller than 29.
As explained in Section [5.2] what makes the difference between the practice and the
theory is that one uses relatively small dimensions for practical timing reasons. Hence,
for a dimension 68, we obtain that the first L L L-reduction takes 142 seconds, and all
subsequent reductions take 8.6 seconds (note that without the Rounding and Chaining
improvement, each reduction would have taken approximately 1000 seconds). Thusly,

5.5. EXPERIMENTS 131

the estimated running time of the exhaustive search is 22 x 8.6 seconds =~ 146 years.
By testing all possible decompositions with a@ < r and 8 < «, one can show that this is
the decomposition which yields the smallest number of bits given. By way of comparison,
the use of Coppersmith’s method on N = (p*q)2¢~' (which is the best decomposition
associated to this method), would have yielded a theoretical number of bits given which
is (log @)/u = (logq)/2 = 128/2 = 64, which is far larger than 16. Note that in practice,
we obtain 77 as the number of bits given for this decomposition.

In the case where N = p®¢3, then the best decomposition is N = (p?q)*q~!, which
means that « = 2,8 =1,a = 0 and b = 1, with the application of Coppersmith’s method.
The theoretical number of bits that should be given is (log Q) /u = (logq)/u = 128/4 = 32
(in practice it is again higher than that: our experiments with a dimension 61 give 51
bits). Again, by testing all possible decompositions, one can show that this is the de-
composition which yields the smallest number of bits given. By way of comparison, a
straightforward use of BDH’s method on N = (p)®(¢®), would have yielded a number of
bits given which is (log Q)/u = (3logq)/8 =3 x 128/8 = 48 > 32.

The same analysis can be done for the other moduli N = p8¢® and N = p8¢” for
which we obtain that the best decompositions are respectively (p?q)*q with the applica-
tion of BDH’s method and (pq)8¢~! with Coppersmith’s method. The number of bits
that should be given and the corresponding timings for the L L L-reduction are depicted
in Table

Furthermore, as mentioned in Section [5.2] we emphasize that the number of bits given
is smaller for the case where s is small (29 bits for s = 1) or when 7 and s are close (38
bits for s = 7) in comparison to more average cases (51 bits for s = 3 and 55 bits for
s =D5).

Table 5.2: Number of bits given, lattice dimension, running time LLL of the first LLL,
running time LLL. of subsequent LLLs, and estimated total running time.

| Method | (p*q®)"p?q® | bits given | dim. | LLL¢ | LLL, || Est. time

N = p%q BDH pq 29 68 142 s | 8.6 s 146 years
Copp. (p*q)%qt 7 69 96 s 8.6s || 4-106 years

N = pfd BDH ¢ 51 61 | 160s | 5.7s | 4-10°% years
Copp. (p2q)*q1! 51 61 86 s | 4.2s || 3-108 years
N = pf BDH (p2a)*q 55 105 | 115s | 1.3 s || 2-10° years
Copp. (pq)8q3 70 65 | 141s | 58s || 2-10™ years

N = p8q7 BDH (pq)™p 40 81 319s | 12.2s || 4-10° years
Copp. (pa)®q! 38 81 |676s| 26s || 2-10° years

132 CHAPTER 5. FACTORING N = P®Q®% FOR LARGE R

5.5.4 Comparison with ECM

It is well known that the BDH algorithm for factoring N = p”q is unpractical. Namely
the experiments from [BDHG99| show that the BDH algorithm is practical only for
relatively small primes p and ¢, but for such small prime factors the ECM method [Len87|
performs much better. Namely for 128-bit primes p and ¢ and N = p'%¢ the predicted
runtime of ECM from [BDHG99| is only 7000 hours [BDHG99|, instead of 146 years for
BDH for N = p8qg. Needless to say, our algorithm for factoring N = p"¢® is even less
practical, as illustrated in Table since for N = p"¢® we need much larger exponents
r or s than in BDH for N = p"q.

However the complexity of the ECM factorization algorithm for extracting a prime
factor p is exp ((v2+ o(1))y/Iog ploglog p). Therefore, the ECM scales exponentially,
whereas our algorithm scales polynomially. Hence for large enough primes p and ¢ our
algorithm (like BDH) must outpace ECM.

Chapter 6

Combined Attack on RSA-CRT:
why public verification must not be
public?

Contents
[6.1 Context and Principlel. 135
[6.1.1 RSA Signature Using the CRT Mode|. 135
[6.1.2 Countermeasures Against SCAand FIf 135
6.2 A New Combined Attack on CRT-RSA| 136
621 A Useful Relation| 136
[6.2.2 Recovering the Private Key| 137
[6.3 Experiments| 0000000 138

[6.4 Reducing the Complexity Using Coppersmith’s Methods| . . 140
[6.4.1 Bringing Up the Original Problem to Solving a Modular Equation|140

[6.4.2 Results From Our Implementation| 143
6.5 Countermeasures|., 144
[6.5.1 Blind Before Splitting], 144
[6.5.2 Verification Blinding| 0oL 145
6.6 Conclusionl 0o 145

The results presented in this chapter are from a joint work with Guillaume Barbu,
Alberto Battistello, Guillaume Dabosville, Christophe Giraud, Guénaél Renault and So-
line Renner. It was published in the proceedings of the PKC’ 13 conference [BBD™ 15).

Over the last few years, the cryptographic community has investigated the possibility
of combining the two main kinds of physical attacks applied to embedded systems, which
involve Side-Channel Analysis (SCA) and Fault Injection (FI). This has resulted in a new
class of attacks called Combined Attacks (CA) that can defeat implementations which
are meant to resist both SCA and FI. However, as far as we know very few CA have

133

134 CHAPTER 6. COMBINED ATTACK ON RSA-CRT

been published since their introduction in 2007, proving the difficulty to conceive such
attacks.

In this chapter, we describe a new Combined Attack on a CRT-RSA implementation
which is independently resistant against Side-Channel Analysis (assuming that blinding
countermeasures are used) and Fault Injection attacks (assuming that a public verification
is performed, i.e. the signature is verified using the public exponent, before outputting
it). Such an implementation is known to resist each and every kind of attack published
so far. In particular, it prevents an attacker from obtaining the signature when a fault
has been induced during the computation since such a value would allow the attacker to
recover the RSA private key by computing the ged of the public modulus and the faulty
signature.

However, we demonstrate that when injecting a fault during the signature computa-
tion, a value depending on the message and on a multiple of a secret prime is manipulated
in plain during the public verification. Therefore, we notice that one can perform a Side-
Channel Analysis to gain some information on such a sensitive value. The resulting infor-
mation is then used to factorize the public modulus, leading to the disclosure of the whole
RSA private key. Besides, we exploit lattice-based techniques, and in particular Copper-
smith’s methods for finding small solutions to polynomial equations [Cop96bl|Cop97], to
significantly reduce the complexity of our Combined Attack. We also provide simulations
that confirm the efficiency of our attack as well as two different countermeasures having
a very small impact on the performance of the algorithm.

As it performs a Side-Channel Analysis during a Fault Injection countermeasure
to retrieve the secret value, this chapter recalls the need for Fault Injection and Side-
Channel Analysis countermeasures as monolithic implementations. That is, both types
of countermeasures should be dealt unitedly and not independently.

RoADMAP. In Section [6.1] we present the context of application of our attack. In Sec-
tion [6.2] we describe our new CA on a CRT-RSA implementation that is known to resist
both SCA and FI attacks. In Section we present the results of our simulations which
prove the efficiency of our new attack. We then improve its complexity by using lattice
reduction techniques in Section [6.4] Finally, we suggest in Section [6.5] possible counter-
measures having a negligible penalty on the performance of the algorithm.

STATE OF THE ART. The reminder on CRT-RSA signature together with the correspond-
ing attacks and countermeasures provided in Chapter [I]is a preliminary of the present
chapter. Coppersmith’s lattice-based method, which is recalled in Chapter |3 will also
be used in this chapter.

6.1. CONTEXT AND PRINCIPLE 135

6.1 Context and Principle

6.1.1 RSA Signature Using the CRT Mode

In embedded systems like smart cards, most RSA implementations use the CRT mode
(also called CRT-RSA) which yields an expected speed-up factor of about four [CQ82]
in comparison to the use of the Standard mode. We refer the reader to Chapter [1] for
a reminder on such modes. Thus, in this chapter, we consider a CRT-RSA Signature
implementation. Here, we only recall some notations on such an implementation: the
computation of the Signature S = m¢ mod N is carried out in two sequences which yields
Sp = m% mod p and Sq = mf% mod ¢, and the signature S is the CRT recombination
usually done by using Garner’s formula [Garb9]: S = S, + ¢(iq(Sp — Sg) mod p) where
iq = ¢ ' mod p.

6.1.2 Countermeasures Against SCA and FI

As stated in Chapter [} several countermeasures have been developed to protect
CRT-RSA embedded implementations against both SCA and FI. In the framework of
this chapter, we consider an algorithm protected:

— against SCA by using message and exponent blinding as suggested in [WvWM11],
a regular exponentiation algorithm such as the Square Always |[CFGT11| and
a mask refreshing method along the exponentiation such as the one presented
in [DV11]. Moreover, the blinding is kept all along the CRT-recombination.

— against FI by verifying the signature using the public exponent e |[BDL97|. In
addition, we also use the approach presented in [DGRS09| which mainly consists
in checking the result of the verification twice to counteract double FI attacks.

Figure depicts the main steps of such an implementation where the k;’s are random
values (typically of 64 bits) generated at each execution of the algorithm and Szlv S’(’] and
S’ represent the blinded version of S,, S, and S respectively.

In the following, we assume that the fault injected by the attacker follows either the
bit-fault, the stuck-at or the unknown constant fault models (cf. Chapter. Moreover,
we assume the attacker is able to choose which byte of the message is affected by the
fault.

As mentioned in Chapter injecting a fault during the signature computation
leads to a faulty signature that allows the attacker to recover the private key. However in
the implementation considered in this chapter, the verification with the public exponent
detects such a disturbance and the faulty signature is never revealed to the attacker. The
main contribution of this chapter is to show that in this case, an SCA can still allow the
attacker to gain enough information on the faulty signature to recover the private key.

136 CHAPTER 6. COMBINED ATTACK ON RSA-CRT

(Blinding) (Blinding)
¢ ¢

[m + kop mod kup | | m + k2q mod ksq |
' ¢

(SCA-resistant expo) (SCA-resistant expo)
' ¢

| S, modkip | | S;modksq |

(SCA-resistant CRT-recombination)

¢

S" mod ks N I

— 7
(b" mod N = m)

False True

Security action Return S" mod N
C) C)

Figure 6.1: Main steps of a CRT-RSA implementation secure against SCA and FI.

6.2 A New Combined Attack on CRT-RSA

At first glance, it seems impossible to perform such an attack during the signature
process due to the blinding countermeasure. However by observing Figure [6-1] one may
note that the faulty signature S remains blinded until the end of exponentiation with e
modulo N. Therefore if we can express S¢ mod N in terms of the message m and of the
private key then we can perform an SCA on this value. In the following, we exhibit such
a relation allowing us to mount a CA on an SCA-FI-resistant CRT-RSA implementation.

6.2.1 A Useful Relation

As stated in [BDL97|, a fault injected in the message before the first operation of .S,
(or S;) modular exponentiation, leads to a faulty signature S which corresponds to an

6.2. A NEW COMBINED ATTACK ON CRT-RSA 137

erroneous message S¢ mod N = . In order to exploit the fault induced on the message,
we make use of the following proposition on which our attack is based.

Proposition 51. If a fault € is induced in m such that the faulty message m is equal to
m + € at the very beginning of the computation of S, then

S¢ =m + eqig mod N | (6.1)

where S corresponds to the faulty signature.

Proof. By definition of the CRT-RSA signature, we have:

> (6.2)

S = (m+¢)dmod p
S = m?mod ¢

because the computation of S, is perturbed with a fault ¢ induced in m such that the
faulty message m is equal to m + ¢ and the computation of S; remains unchanged. It
comes then straightforwardly that:

Se m —+ & mod p
= m mod q

(6.3)

Finally, applying Gauss recombination to 1' in order to get S€ mod N , leads to (|6.1))

since:

S¢ = pipm+ qig(m+¢) mod N (6.4)
= (pipm + qigm)+eqigmod N (6.5)
=m + eqigmod N , (6.6)

1 1

where i, = p~ mod ¢ and iy, = ¢~ mod p.

O

One may note that a similar relation holds if m is disturbed at the very beginning of
Sy computation due to the symmetrical roles of p and ¢ in both branches of the CRT-
RSA. For the sake of simplicity, we will use the case where .S, computation is disturbed
in the rest of this chapter.

6.2.2 Recovering the Private Key

Following the attack’s principle depicted in Section [6.1] and using Proposition we
will now present in detail the main steps of our attack.

Firstly, the attacker asks the embedded device to sign several messages m; through a
CRT-RSA implemented as described in Section[6.1] For each signature, the computation
of S, is performed correctly and a constant additive error ¢ is injected on the message
m; at the beginning of each S, computation. Then during each signature verification,

138 CHAPTER 6. COMBINED ATTACK ON RSA-CRT

the attacker monitors the corresponding side-channel leakage £; which represents the
manipulation of SY mod N.

From Proposition we know that there exists a sensitive value k satisfying the
relation gf mod N = m; + k. Therefore, the attacker will perform a CPA to recover this
sensitive value by computing the Pearson correlation coefficient pg(m; + k, £;) for all the
possible values of k (cf. Chapter.

Depending on the set {(m;, Sf mod N)};, it follows from Relation that & will
be equal either to eqi; mod N or to eqig mod N — N. Therefore, the value k producing
the strongest correlation at the end of the CPA will be one of these two values. Once k
recovered, the attacker must then compute the ged between k£ and N, which leads to the
disclosure of ¢q. From this value, the private key is straightforwardly computed.

Regarding the practicality of our fault model (i.e. a constant additive fault), one may
note that by fixing a small part of the message (e.g. a byte), the disturbance of such a
part in either the stuck-at, the bit-flip or the unknown constant fault model results in a
constant additive error during the different signature computations. Therefore our fault
model is definitely valid if the attacker can choose the messages to sign, or even if she
can only have the knowledge of the messages and attack only those with a given common
part.

Finally, one may note that it is not possible to perform a statistical attack targeting
the full value of k at once due to its large size (i.e. [loga(N)] bits). However, one can
attack each subpart of this value, for instance by attacking byte per byte starting with the
least significant one in order to be able to propagate easily the carry. It is worth noticing
that CPA only applies when the corresponding part of the message varies. Therefore, if
the attacker fixes the MSB of the message, then the corresponding set of measurements
can be used to recover the whole but last byte of k. In such a case, a brute force search
can be used to recover the missing byte.

In the next section, we present simulations of our attack which prove the efficiency
of our method and which are based on the attacker’s capability to inject the same fault
and on the noise of the side-channel measurements.

6.3 Experiments

The success of the attack presented in Section [6.2)relies on the ability of the attacker
to both measure the side-channel leakage of the system during the signature verification
and induce the same fault € on the different manipulated messages.

In order to evaluate the effectiveness of this attack, we have experimented it on
simulated curves of the side-channel leakage £, according to the following leakage model:

L(d) = HW (d) + N (i, 0) (6.7)

with N(u,0) a Gaussian noise of mean p and standard deviation o, and HW (d) the
Hamming weight function evaluated for the manipulated data d. In the framework of
our experiments, we consider that the processor manipulates 8-bit words and we use
three different levels of noise, namely ¢ = 0.1, 1 and 5.

6.3. EXPERIMENTS

139

As well as the side-channel leakage, the faults were also simulated by setting the most
significant word of the message m to all-0 at the very beginning of the .S, computation.
These faults were induced with a given success rate r, varying in our different experiment
campaigns (namely 50%, 10% and 1%).

Depending on the experimental settings, all the different words of the secret value will
be equivalently correlated with the simulated curves. The graphs presented in Figure [6.2
present the convergence of the correlation for each possible value k of one particular byte
(the 5" least-significant byte) of the secret depending on the number of side-channel
measurements with different simulation settings ¢ and r.

Figure 6.2: Convergence of the correlation for the 256 possible values k; for the secret
(the correct one being depicted in black) depending on the number of side-channel mea-
surements (x500) for different levels of noise o and fault injection success rates r.

06
s/ ™~ A
04
03
02

01

0 10 20 3 40 50 60 70 80 90 100
nb curves (x 500)

0 10 20 30 40 50 60 70 8 90 100
nb curves (x 500)

10

20 30 40 50 60 70 80 90 100
nb curves (x 500)

oc=0.1,r=50% oc=1r=5% oc=5,1r=5%
0.2 0.2 0.2
0.18 0.18
0.16 0.16
0.14 0.14]
0.12 0.12 0.12
a 0.1 0.1 a 0.1
0.08 0.08
0.06 0.06
0.04 0.04]
| 0.02 0.02
L L L L L L L L L | L L L L L L L L L | L L L L L L L L L |
[10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
nb curves (x 500) nb curves (x 500) nb curves (x 500)
c=0.1,r=10% c=1,r=10% oc=51r=10%
0.: 0.
0.2 0.2 0.2
0.15 0.15
.
0.1 0.1 0.1
0.05 0.05
[20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 [20 40 60 80 100 120 140 160 180 200
nb curves (x 500) nb curves (x 500) nb curves (x 500)
c=01,r=1% c=1,r=1% c=51r=1%

As exposed in Figure [6.2] the number of traces required to recover the secret value

140 CHAPTER 6. COMBINED ATTACK ON RSA-CRT

depends essentially on the fault injection success rate. This comes from the fact that every
wrongly-faulted computation can be considered as noise in the scope of our statistical
analysis. The number of curves required to retrieve the secret word grows as the fault
injection success rate decreases and to a fewer extent as the noise of the side-channel
leakage increases.

With regard to the results obtained when o = 5 and r = 10%, which appear to be
plausible values in practice, it took us 3.35 seconds to retrieve one byte of the secret value
by performing the CPA on 15,000 curves of 128 points each[ﬂ Assuming a genuine curve
should be made of at least 5,000 points, we can estimate the time required to practically
perform the attack to about 1 minute 5 seconds per byte. That is to say, it takes about
2 hours 20 minutes to recover the complete secret value if we consider a 1024-bit RSA
module.

For the sake of clarity, we restrained the experiments presented here to the case
where the processor manipulates 8-bit words, and thus € is an 8-bit error. The same
experiments have been run for processor word-size up to 32 bits with success. Besides,
about the same number of curves were necessary for the CPA to highlight the correct
secret byte.

Section shows how it is possible to considerably reduce the complexity of our
attack thanks to the use of lattice techniques.

6.4 Reducing the Attack Complexity Using Coppersmith’s
Methods

This section aims at improving the attack complexity using Coppersmith’s methods.
It is in line with the problem of factorizing N knowing half part of prime p (or ¢), that
was solved in [Cop97]. With respect to our case, we highlight that if the CA presented
in Section provides about half of the secret eqi; mod N, then the other half part can
be straightforwardly computed by solving a well-designed modular polynomial equation
that we elaborate in the sequel. Besides, we deal with two cases (¢ known and unknown),
depending on the fault model that is considered.

6.4.1 Bringing Up the Original Problem to Solving a Modular Equa-
tion

Suppose we are given the t least significant bits (LSB) of the secret eqi; mod N,
which is denoted by k. The latter value can be rewritten as follows:

eqiq = 2"z + kmod N (6.8)

where ¢t and k are known values, and xg is the [logy(INV) — ¢]-bit unknown integer that
is to be recovered. In the following Lemma, we provide a modular polynomial equation
P.(z) which admits zg as an integer root, i.e. such that P.(z¢) = 0 mod N.

1. The execution time given here and in Section have been obtained on a 32-bit CPU @3.2GHz

6.4. REDUCING THE COMPLEXITY USING COPPERSMITH’S METHODS 141

Lemma 52. The unknown secret part xo is solution of the polynomial P.(x):
P(z)=a*+c 2™k —2%) z+c (k* —ke) =0mod N (6.9)
where ¢ = (22)"' mod N, k, t, N are known, and ¢ is the induced fault.

Proof. The Bézout identity applied to our context yields that primes p and ¢q interrelate
with integers i, = p~! mod ¢ and i, = ¢! mod p by the following relation:

Pip + qig =1mod N . (6.10)

Multiplying by € leads to the relation epi, + eqiy = € mod N, or equivalently to
epip = € — £qig mod N. Therefore, replacing €qi, using allows us to deduce an
equivalence for epi,:

epip =€ — 2'wg — kmod N . (6.11)

We then multiply by , to get the relation:
eqiq - epip = (280 + k) - (€ — 2'wo — k) mod N .
Since N = pq, we deduce that eqi, - epi, = 0 mod N, which gives the equation:
(2'z0 + k) - (¢ — 2'29 — k) mod N . (6.12)

Eventually, developing the right-hand side of (6.12)), and multiplying it by ¢ = (2%)~! mod
N leads to the obtention of the monic polynomial P.(z).
O

The initial problem of retrieving the unknown part of eqi; mod N is thereby altered
in solving the modular polynomial equation . In the sequel, we deal with two pos-
sible cases regarding €, whether it is known to the adversary or not.

Case 1: The fault ¢ is known to the adversary

This case corresponds to the bit-flip and stuck-at fault models (Section since the
message is known to the attacker and the fault location can be chosen. In both cases, since
the fault € is known, the problem is reduced to solving a univariate modular polynomial
equation, c¢f. Relation . This problem is known to be hard. However, when the
integer solution z is small, Coppersmith showed |Cop96a] that it can be retrieved using
the well-known LLL algorithm. Accordingly, we induce the following proposition:

Proposition 53. Given N = pq and the low order 1/2 logy(N) bits of eqig mod N and

assuming € is known, one can recover in time polynomial in (logy(N),d) the factorization
of N.

142 CHAPTER 6. COMBINED ATTACK ON RSA-CRT

Proof. From Coppersmith’s Theorem |Cop97|, we know that, given a monic polynomial
P(x) of degree d, modulo an integer N of unknown factorization, and an upper bound
X on the desired solution xg, one can find in polynomial time all integers xg such that

P(zg)=0mod N and | X| < NV . (6.13)

In our case we have d = 2, and since x¢ is a [logy(N) — ¢]-bit integer, we know that
lzo] < X = 2Mog2(N)—t1 Thys, the condition in (6.13) becomes 2M082(N)—t1 < N1/2
1.€.

1

Therefore, knowing at least half part of the secret eqiy; mod N allows to recover the whole
secret. As previously done, computing ged(eqiy mod N, N) provides the factorization of
N.

O

Note that the method is deterministic, and as will be seen further (Table [6.1)), it is
reasonably fast.

Case 2: The fault ¢ is unknown to the adversary

This case is met in the unknown constant fault model (see Chapter . In such a
case, one can consider the polynomial P.(x) as a bivariate modular polynomial equation
with unknown values z and €. This specific scheme has also been studied by Coppersmith
and includes an additional difficulty of algebraic dependency of vectors which induces
the heuristic characteristic of the method [Cop96b|. As depicted in Section in our
experiments nearly 100% of the tests verified the favorable property of independency.
Accordingly, in this vast majority of cases, the following proposition holds:

Proposition 54. Under an hypothesis of independency (see discussion above), given
N = pq and the low order 1/2 logy(N)+s bits of eqig mod N, where s denotes the bitsize
of €, and assuming € is unknown, one can recover in time polynomial in (logy(N),d) the
factorization of N.

Proof. Coppersmith’s Theorem for the bivariate modular case |[Cop96b| notifies that
given a polynomial P(x,¢) of total degree d, modulo an integer N of unknown factor-
ization, and upper bounds X and E on the desired solutions zg, €g, it may be possible
(heuristic) to find in polynomial time all integer couples (xo,ep) such that

P(z0,0) =0mod N and X -E| < NV . (6.15)

In our case, we have d = 2 and F = 25 The integer z(is [logy(IN) — t]|-bit long,
therefore we have X = 2M1982(N)~t1 Thys, the condition in 1' becomes 2M1082(N)~t].
25 < NYZ je.

1

6.4. REDUCING THE COMPLEXITY USING COPPERSMITH’S METHODS 143

This means that knowing s more bits of the secret £qi; mod N than before, would allow
the recovering of the whole secret.
O

Remark 55. The bound of success in Proposition can actually be slightly improved
using results of [BMO05a). Indeed, Coppersmith’s bound applies to polynomials whose
monomials shape is rectangular, while in our case the monomial €2 does not appear in
P(z,e) which corresponds to what they called an extended rectangle in (BM05a). For
the sake of simplicity, we only mentioned Coppersmith’s bound since practical results are
similar.

6.4.2 Results From Our Implementation

We have implemented this lattice-based improvement using Magma Software [BCP97],
with NV a 1024-bit integer i.e. 128 bytes long, in the cases where ¢ is an 8-bit known value
(for Case 1) and a 32-bit unknown value (for Case 2). We chose Howgrave-Graham’s
method [HG97| for the univariate case, and its generalization by Jochemsz et al. [JMOG|
for the bivariate case since both have the same bound of success as Coppersmith’s method
(sometimes even better for [JMO06|) and they are easier to implement. As we know, the
theoretical bound given in Coppersmith’s method is only asymptotic |[Cop97|. Thus,
we report in Table (for Case 1) and in Table (for Case 2) the size ¢ (in bytes)
of the secret eqiy mod N that is known to the attacker before applying Coppersmith’s
method, the lattice dimension used to solve Relation and finally the timings of our
attack. We emphasize that the timings are taken from the original publication of our
work at PKC’13 |[BBD"13|. But for Case 1, the Rounding-LLL improvement proposed
in [BCFT14] and described in Chapter [4] has been implemented (the Rounding method
is less relevant when applied to the polynomial equation used in Case 2). Thus, an ad-
ditional row is provided in Table and represents the new timing using the Rounding
method [BCFT14]. Naturally in the sequel, for Case 1 we only consider the timings
provided by the use of the Rounding method (the speed up roughly ranges from 5 to
15, depending on the dimension of the lattice: the larger the dimension, the higher the
speed-up).

Table 6.1: Size t required (in bytes) for the method to work and running time of the
LLL-reduction (Magma V2.19-5), as a function of the lattice dimension in Case 1 (e
known, being an 8-bit integer).

Size t required (bytes) 69 68 67 66 65 64

Dimension 15 17 23 37 73 N/A

Timing | Original Method X | 029 052 2.63 34.25 2588 N/A

(seconds) | gounding Method 005 01 04 35 170 N/A

144 CHAPTER 6. COMBINED ATTACK ON RSA-CRT

Table 6.2: Size t required (in bytes) for the method to work and running time of the
LLL-reduction (Magma V2.19-5), as a function of the lattice dimension in Case 2 (e
unknown, being a 32-bit integer).

Size t required (bytes) 74 73 72 71 70 69

Dimension 35 51 70 117 201 N/A
Timing (seconds) PX°*1 | 1717 58 30.22 606 12071 N/A

As depicted in Table [6.1], and combining these results with the experiments of Section
the best trade-off is to perform a CPA on the 66 first bytes, taking 66 x 1m05s =
1h11m30s, and to retrieve the 62 remaining bytes using lattices in 3.5s, bringing the
total time up to 1 hour 12 minutes, instead of the previous 2 hours 20 minutes.

In order to illustrate Case 2, we have chosen to rather show our results for € being a
32-bit value, since when ¢ is 8-bit long, we obtained slightly better results by considering
the 255 possible values of the variable € together with their corresponding polynomials
P.(z), and by running the method on each of the polynomials until finding the solution
xg that allows to factorize N. This indeed leads to a best trade-off of 68 bytes required
from the CPA and the 60 remaining bytes computed with lattices by performing 255
times the LLL algorithm in the worst case, for a total of 68 x 1m05s + 255 x 0.1s, i.e.
1 hour 14 minutes instead of 2 hours 20 minutes. Besides, this exhaustive search can be
performed in parallel and it also has the advantage to be deterministic.

However, when € is 32-bit long, an exhaustive search becomes impractical and, as depicted
in Table the best trade-off would be to perform a CPA on 72 bytes and to compute
the 56 remaining bytes with lattices (even if heuristic, it worked in nearly 100% of the
tests in practice), resulting in a total of 72 x 1m05s + 30.22s, i.e. 1 hour 19 minutes
instead of the previous 2 hours 20 minutes.

6.5 Countermeasures

In this section, we describe different candidate countermeasures to protect an imple-
mentation against the CA presented in Section

6.5.1 Blind Before Splitting

Our first proposition consists in avoiding the possibility to inject the same fault during
several signature computations. To do so, we deport the blinding of the input message
m before executing the two exponentiations modulo p and ¢:

m' =m + koN mod k1N | (6.17)

with ko and k; two n-bit random values generated at each algorithm execution (n being
typically 64). Hence S}, = m/% mod kop and Sy = m/% mod ksq.

6.6. CONCLUSION 145

This countermeasure prevents an attacker from injecting always the same error during
the signature computation. Indeed if the fault is injected on m at the very beginning
of one exponentiation, then the corresponding error cannot be fixed due to the blinding
injected by Rel. .

Moreover, if the fault is injected when the message m is manipulated during ,
then the error € impacts the computation of both SI’) and St’], leading to seemingly un-
workable faulty outputs.

Such a countermeasure induces a small overhead in terms of memory space since m’
must be kept in memory during the first exponentiation but the execution time remains
the same.

6.5.2 Verification Blinding

Our second countermeasure aims at annihilating the second hypothesis of our attack:
a predictive variable is manipulated in plain during the verification. To do so, we inject
a [logy(IN)]-bit random r before performing the final reduction with N, cf. Rel. (6.18).
Therefore, each and every variable manipulated during the verification is blinded.

((S¢ + 7 —m) mod ki N) mod N < r . (6.18)

One may note that the final comparison should be performed securely with regards to
the attack described in [LRT12| since information on eqi, could leak if such a comparison
was performed through a substraction.

The cost of such a countermeasure is negligible since it mainly consists in generating
a [logy(NN)|-bit random variable.

6.6 Conclusion

This chapter introduces a new Combined Attack on CRT-RSA. Even if a secure im-
plementation does not return the faulty signature when the computation is disturbed, we
show how to combine FI with SCA during the verification process to obtain information
on the faulty signature. Such information allows us to factorize the public modulus and
thus to recover the whole private key. Therefore, the main consequence of this result
is that fault injection countermeasures must also be designed to resist SCA and vice
versa. Indeed, stacking several countermeasures does not provide global security despite
addressing each and every attack separately.

We also show that Coppersmith’s methods for finding small solutions to univariate
and bivariate modular polynomial equations can be used to significantly reduce the com-
plexity of the attack. In particular, it highlights that lattice-based techniques can be
very useful and complementary to physical attacks.

Bibliography

[AFMV07]

[AFVO7]

[Ajt96]

[ANSOS]|

[Bau08|

[BBD*+13]

[BCF+14]

[BCPY7]

Frédéric Amiel, Benoit Feix, Louis Marcel, and Karine Villegas. Passive
and Active Combined Attacks — Combining Fault Attacks and Side Channel
Analysis —. In L. Breveglieri, S. Gueron, 1. Koren, D. Naccache, and J.-P.
Seifert, editors, Fault Diagnosis and Tolerance in Cryptography — FDTC
2007, pages 92-99. IEEE Computer Society, 2007.

Frédéric Amiel, Benoit Feix, and Karine Villegas. Power Analysis for Se-
cret Recovering and Reverse Engineering of Public Key Algorithms. In
Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, Selected Areas
in Cryptography — SAC 2007, LNCS, pages 110-125. Springer, 2007.

Miklos Ajtai. Generating hard instances of lattice problems. Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, STOC
’96, pages 99-108, 1996.

ANSI X9.31. Digital Signatures Using Reversible Public Key Cryptography
for the Financial Services Industry (rDSA). American National Standards
Institute, September 1998.

Aurélie Bauer. Vers une généralisation rigoureuse des méthodes de Cop-
persmith pour la recherche de petites racines de polynémes. PhD thesis,
Université de Versailles Saint-Quentin-en-Yvelines, 2008.

Guillaume Barbu, Alberto Battistello, Guillaume Dabosville, Christophe
Giraud, Guénaél Renault, Soline Renner, and Rina Zeitoun. Combined at-
tack on RSA-CRT: why public verification must not be public? In Public
Key Cryptography — Proc. PKC ’13, volume 7778 of Lecture Notes in Com-
puter Science, pages 198-215. Springer, 2013.

Jingguo Bi, Jean-Sébastien Coron, Jean-Charles Faugére, Phong Q). Nguyen,
Guénaél Renault, and Rina Zeitoun. Rounding and chaining LLL: Find-
ing faster small roots of univariate polynomial congruences. In Public Key
Cryptography — Proc. PKC 14, volume 8383 of Lecture Notes in Computer
Science, pages 185-202. Springer, 2014.

Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997.
Computational algebra and number theory (London, 1993).

147

148

[BD99]

[BDOO]

[BDF98]

[BDHG9Y]

[BDL97|

[Bel96]

[BMO5a]

[BMO5b]

[BMOG6|

[BOS03]

[Buc94|

|Cas|

[CFGT11]

BIBLIOGRAPHY

Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with private key d less
than N©.292. In J. Stern, editor, Advances in Cryptology — EUROCRYPT
’99, volume 1592 of LNCS. Springer, 1999.

Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with private key d less
than NY-292_ JEEE Transactions on Information Theory, 46(4):1339, 2000.

Dan Boneh, Glenn Durfee, and Yair Frankel. An attack on RSA given a
small fraction of the private key bits. In K. Ohta and P. Dinggyi, editors,
Advances in Cryptology — ASIACRYPT ’98, volume 1514 of LNCS, pages
25-34. Springer, 1998.

Dan Boneh, Glenn Durfee, and Nick Howgrave-Graham. Factoring n = p”q
for large r. In Advances in Cryptology - Proc. CRYPTO ’99, volume 1666
of Lecture Notes in Computer Science, pages 326-337. Springer, 1999.

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the Impor-
tance of Checking Cryptographic Protocols for Faults. In W. Fumy, editor,
Advances in Cryptology — EUROCRYPT ’97, volume 1233 of LNCS, pages
37-51. Springer, 1997.

Bellcore. New Threat Model Breaks Crypto Codes. Press Release, Septem-
ber 1996.

Johannes Bloémer and Alexander May. A Tool Kit for Finding Small Roots
of Bivariate Polynomials over the Integers. In R. Cramer, editor, Advances
in Cryptology — EUROCRYPT 2005, volume 3494 of LNCS, pages 251-267.
Springer, 2005.

Johannes Blomer and Alexander May. A tool kit for finding small roots
of bivariate polynomials over the integers. In Advances in Cryptology -
Proc. EUROCRYPT ’05, volume 3494 of Lecture Notes in Computer Sci-
ence, pages 251-267. Springer, 2005.

Daniel Bleichenbacher and Alexander May. New attacks on RSA with Small
Secrett CRT-Exponents. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias,
and Tal Malkin, editors, Public Key Cryptography — PKC 2006, volume 3958
of LNCS. Springer, 2006.

Johannes Blémer, Martin Otto, and Jean-Pierre Seifert. A New RSA-CRT
Algorithm Secure against Bellcore Attacks. In S. Jajodia, V. Atluri, and
T. Jaeger, editors, ACM Conference on Computer and Communications
Security — CCS’03, pages 311-320. ACM Press, 2003.

Johannes Buchmann. Reducing lattice bases by means of approximations.
In Algorithmic Number Theory — Proc. ANTS-I, volume 877 of Lecture Notes
in Computer Science, pages 160-168. Springer, 1994.

John W.S. Cassels. An introduction to the geometry of numbers, volume 2.
Kluwer Academic Publishers.

Christophe Clavier, Benoit Feix, Georges Gagnerot, Myléne Roussellet, and
Vincent Verneuil. Square Always Exponentiation. In Daniel J. Bernstein

BIBLIOGRAPHY 149

[CH11a)
[CH11b]

[CIK+09]

[CLOO7]

[CNS99]

[CNT10]

[Coh93]

[Coh95]

[Cop96al

[Cop96b]

[Cop97]

[Cor07]

and Sanjit Chatterjee, editors, INDOCRYPT, volume 7107 of LNCS, pages
40-57. Springer, 2011.

Henry Cohn and Nadia Heninger. Approximate common divisors via lat-
tices. TACR Cryptology ePrint Archive, 2011:437, 2011.

Henry Cohn and Nadia Heninger. Ideal forms of Coppersmith’s theorem
and Guruswami-Sudan list decoding. ICS, pages 298-308, 2011.

Jean-Sébastien Coron, Antoine Joux, Ilya Kizhvatov, David Naccache, and
Pascal Paillier. Fault Attacks on RSA Signatures with Partially Unknown
Messages. In Christophe Clavier and Kris Gaj, editors, Cryptographic Hard-
ware and Embedded Systems — CHES 2009, volume 5747 of LNCS, pages
444-456. Springer, 2009.

David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algo-
rithms: an Introduction to Computational Algebraic Geometry and Com-
mutative Algebra, volume 10. Springer, 2007.

Christophe Coupé, Phong Q. Nguyen, and Jacques Stern. The effectiveness
of lattice attacks against low-exponent RSA. In Public Key Cryptography —
Proc. PKC ’99, volume 1560 of Lecture Notes in Computer Science, pages
204-218. Springer, 1999.

Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Fault Attacks
against EMV Signatures. In Josef Pieprzyk, editor, Topics in Cryptology —
CT-RSA 2010, volume 5985 of Lecture Notes in Computer Science, pages
208-220. Springer, 2010.

Henri Cohen. A course in computational algebraic number theory, volume
138 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

Henri Cohen. A Course in Computational Algebraic Number Theory. Grad-
uate Texts in Mathematics. Springer, 2nd edition, 1995.

Don Coppersmith. Finding a small root of a bivariate integer equation;
factoring with high bits known. In Advances in Cryptology - Proc. EU-
ROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pages
178-189. Springer, 1996.

Don Coppersmith. Finding a small root of a univariate modular equation. In
Advances in Cryptology - Proc. EUROCRYPT ’96, volume 1070 of Lecture
Notes in Computer Science, pages 155-165. Springer, 1996.

Don Coppersmith. Small solutions to polynomial equations, and low ex-
ponent RSA vulnerabilities. J. Cryptology, 10(4):233-260, 1997. Journal
version of |Cop96b}, Cop96al.

Jean-Sébastien Coron. Finding small roots of bivariate integer polynomial
equations: A direct approach. In Advances in Cryptology — Proc. CRYPTO
07, volume 4622 of Lecture Notes in Computer Science, pages 379-394.
Springer, 2007.

150

[CQs2]

[DGRS09)

[DV94]

[DV11]

[EBCO04]

[EBNNT11]

[FGV11]

[FIP13]

[FOMY1]

[GAKK93]

[Gar59|

[Gir06]

[GTO4]

BIBLIOGRAPHY

C. Couvreur and Jean-Jacques Quisquater. Fast Decipherment Algorithm
for RSA Public-Key Cryptosystem. FElectronics Letters, 18(21):905-907,
1982.

Emmanuelle Dottax, Christophe Giraud, Matthieu Rivain, and Yannick
Sierra. On Second-Order Fault Analysis Resistance for CRT-RSA Imple-
mentations. In Olivier Markowitch, Angelos Bilas, Jaap-Henk Hoepman,
Chris J. Mitchell, and Jean-Jacques Quisquater, editors, Information Se-
curity Theory and Practices — WISTP 2009, volume 5746 of LNCS, pages
68-83. Springer, 2009.

Hervé Daudé and Brigitte Vallée. An upper bound on the average number
of iterations of the LLL algorithm. Theor. Comput. Sci., 123(1):95-115,
1994.

Vincent Dupaquis and Alexandre Venelli. Redundant Modular Reduction
Algorithms. In Prouff [Proll|, pages 102-114.

Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Anal-
ysis with a Leakage Model. In M. Joye and J.-J. Quisquater, editors, Cryp-
tographic Hardware and Embedded Systems — CHES 2004, volume 3156 of
LNCS, pages 16-29. Springer, 2004.

Eric Brier, David Naccache, Phong Nguyen, and Mehdi Tibouchi. Modulus
Fault Attack against RSA-CRT Signatures. In Preneel and Takagi [PT11],
pages 192-206.

Jungfeng Fang, Benedikt Gierlichs, and F. Vercauteren. To Infinity and
Beyond: Combined Attack on ECC Using Points of Low Order. In Preneel
and Takagi [PT11|, pages 143-1509.

FIPS PUB 186-4. Digital Signature Standard. National Institute of Stan-
dards and Technology, 2013.

Atsushi Fujioka, Tatsuaki Okamoto, and Shoji Miyaguchi. Esign: an ef-
ficient digital signature implementation for smartcards. Furocrypt, pages
446-457, 1991.

S. K. Godunov, A. G. Antonov, O. P. Kiriljuk, and V. I. Kostin. Guar-
anteed accuracy in numerical linear algebra, volume 252 of Mathematics
and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1993.
Translated and revised from the 1988 Russian original.

Harvey L. Garner. The Residue Number System. IRE Transactions on
FElectronic Computers, 8(6):140-147, June 1959.

Christophe Giraud. An RSA Implementation Resistant to Fault Attacks and
to Simple Power Analysis. IEEE Transactions on Computers, 55(9):1116—
1120, September 2006.

Christophe Giraud and Hugues Thiebeauld. A Survey on Fault Attacks. In
J.-J. Quisquater, P. Paradinas, Y. Deswarte, and A.A. El Kalam, editors,

BIBLIOGRAPHY 151

[GVL13]

[Has85)

[HG97]

[HGO1]

[HPS11]

[IMO6]

[TY02]

[KJJ99)

[Knu71]

[Koc96]

[Len87|
[Len96]

[LKYLO0|

Smart Card Research and Advanced Applications VI — CARDIS 2004, pages
159-176. Kluwer Academic Publishers, 2004.

Gene H. Golub and Charles F. Van Loan. Matriz computations. Johns
Hopkins Studies in the Mathematical Sciences. Johns Hopkins University
Press, Baltimore, MD, fourth edition, 2013.

Johan Hastad. On using RSA with low exponent in a public key network.
In H.C. Wiliams, editor, Advances in Cryptology — CRYPTO 85, volume
218 of LNCS, pages 403—408. Springer, 1985.

Nick Howgrave-Graham. Finding small roots of univariate modular equa-
tions revisited. In Cryptography and Coding — Proc. IMA °97, volume 1355
of Lecture Notes in Computer Science, pages 131-142. Springer, 1997.

Nick Howgrave-Graham. Approximate integer common divisors. In Proc.
CaLC °01, volume 2146 of Lecture Notes in Computer Science, pages 51-66.
Springer, 2001.

Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Analyzing block-
wise lattice algorithms using dynamical systems. Proceedings CRYPTO 11,
6841:447-464, 2011.

Ellen Jochemsz and Alexander May. A strategy for finding roots of mul-
tivariate polynomials with new applications in attacking rsa variants. In
ASTACRYPT’06, pages 267-282, 2006.

Marc Joye and Sung-Ming Yen. The Montgomery Powering Ladder. In B.S.
Kaliski Jr., C.K. Kog, and C. Paar, editors, Cryptographic Hardware and
Embedded Systems — CHES 2002, volume 2523 of LNCS, pages 291-302.
Springer, 2002.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In M.J. Wiener, editor, Advances in Cryptology — CRYPTO ’99, volume
1666 of LNCS, pages 388-397. Springer, 1999.

Donald Knuth. The analysis of algorithms. Actes du Congrés International
des Mathématiciens (Nice, 1970), 3:269-274, 1971.

Paul Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In N. Koblitz, editor, Advances in Cryptology —
CRYPTO ’96, volume 1109 of LNCS, pages 104-113. Springer, 1996.

Hendrik W. Lenstra. Factoring integers with elliptic curves. Ann. Math.,
126:649-673, 1987.

Arjen K. Lenstra. Memo on RSA Signature Generation in the Presence of
Faults. Manuscript, 1996.

Seongan Lim, Seungjoo Kim, Ikkwon Yie, and Hongsub Lee. A generalized
takagi-cryptosystem with a modulus of the form p"¢®. Indocrypt, 1977:283—
294, 2000.

152
[LLL82|

[LRT12]

[Mat00]
[May10]

[Min12]
[MOPO7]

[Ngu09|

[NJD11]

[NS06]
[NS09)

[NSV11]

[NV10]
[OUYS]

[Pol74]

[Proll]
[PT11]

[QS00]

BIBLIOGRAPHY

Arjen K. Lenstra, Hendrik W. Lenstra, and Léaszl6 Lovasz. Factoring poly-
nomials with rational coefficients. Mathematische Ann., 261:513-534, 1982.

Victor Lomne, Thomas Roche, and Adrian Thillard. On the Need of Ran-
domness in Fault Attack Countermeasures — Application to AES. In Guido
Bertoni and Benedikt Gierlichs, editors, Fault Diagnosis and Tolerance in
Cryptography — FDTC 2012, pages 85-94. IEEE Computer Society, 2012.

Yuri Matiyasevich. On Hilbert’s Tenth Problem. Pacific Institute for the
Mathematical Sciences Distinguished Lecturer Series, 2000.

Alexander May. Using LLL-reduction for solving RSA and factorization
problems: A survey. 2010. In [NV10].

Hermann Minkowski. Geometrie der Zahlen. Teubner Verlag, 1912.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks — Revealing the Secrets of Smartcards. Springer, 2007.

Phong Q. Nguyen. Public-key cryptanalysis. In I. Luengo, editor, Recent
Trends in Cryptography, volume 477 of Contemporary Mathematics. AMS—
RSME, 2009.

Hossein Najafi, M.E.D. Jafari, and Mohamed-Oussama Damen. On adaptive
lattice reduction over correlated fading channels. Communications, IEEE
Transactions on, 59(5):1224-1227, 2011.

Phong Q. Nguyen and Damien Stehlé. LLL on the average. In Algorithmic
Number Theory — Proc. ANTS, LNCS, pages 238-256. Springer, 2006.
Phong Q. Nguyen and Damien Stehlé. An LLL algorithm with quadratic
complexity. SIAM J. of Computing, 39(3):874-903, 2009.

Andrew Novocin, Damien Stehlé, and Gilles Villard. An LLL-reduction
algorithm with quasi-linear time complexity: extended abstract. In Proc.
STOC ’11, pages 403-412. ACM, 2011.

Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm: Survey
and Applications. Information Security and Cryptography. Springer, 2010.
Tatsuaki Okamoto and Shigenori Uchiyama. A new public key cryptosystem
as secure as factoring. Furocrypt, pages 310-318, 1998.

John M. Pollard. Theorems on factorization and primality testing. Math-
ematical Proceedings of the Cambridge Philosophical Society, 76:521-528,
1974.

Emmanuel Prouff, editor. Smart Card Research and Advanced Applications,
10th International Conference — CARDIS 2011, LNCS. Springer, 2011.

Bart Preneel and Tsuyoshi Takagi, editors. Cryptographic Hardware and
Embedded Systems — CHES 2011, volume 6917 of LNCS. Springer, 2011.

Jean-Jacques Quisquater and David Samyde. A New Tool for Non-intrusive
Analysis of Smart Cards Based on Electro-magnetic Emissions, the SEMA
and DEMA Methods. Presented at Eurocrypt 2000 Rump Session, 2000.

BIBLIOGRAPHY 153

[Rit10]

[Riv09)

[RLK11]

[RMO7]

[RSATS]

[Sch&2]
[Sho02]
[SKKOO06]
[SMSV14]
[Takos]

[Vig0s]

[VT98]
[Wie90|
[Wils2]

[WyWM11]

Maike Ritzenhofen. On Efficiently Calculating Small Solutions of Systems
of Polynomial Equations. PhD thesis, 2010.

Matthieu Rivain. Securing RSA against Fault Analysis by Double Addition
Chain Exponentiation. In Marc Fischlin, editor, Topics in Cryptology —
CT-RSA 2009, volume 5473 of LNCS, pages 459-480. Springer, 2009.

Thomas Roche, Victor Lomné, and Karim Khalfallah. Combined Fault
and Side-Channel Attack on Protected Implementations of AES. In Prouff
|Proll|, pages 152-169.

Bruno Robisson and Pascal Manet. Differential Behavioral Analysis. In
Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic Hardware
and Embedded Systems — CHES 2007, volume 4727 of LNCS, pages 413—
426. Springer, 2007.

Ron Rivest, Adi Shamir, and Leonard Adleman. A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems. Communications of the
ACM, 21(2):120-126, 1978.

Arnold Schénhage. The fundamental theorem of algebra in terms of compu-
tational complexity - preliminary report. Universitat Tiibingen, 1982.

Victor Shoup. OAEP reconsidered. J. Cryptology, 15(4):223-249, 2002.

Bagus Santoso, Noboru Kunihiro, Naoki Kanayama, and Kazuo Ohta. Fac-
torization of square-free integers with high bits known. Progress in Cryp-
tology - VIETCRYPT 2006, 4341:115-130, 2006.

Saruchi, Ivan Morel, Damien Stehlé, and Gilles Villard. LLL reducing with
the most significant bits. Proceedings ISSAC, ACM Press, 2014.

Tsuyoshi Takagi. Fast rsa-type cryptosystem modulo pFq. Crypto, pages
318-326, 1998.

David Vigilant. RSA with CRT: A New Cost-Effective Solution to Thwart
Fault Attacks. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryp-
tographic Hardware and Embedded Systems — CHES 2008, volume 5154 of
LNCS, pages 130-145. Springer, 2008.

D. Viswanath and L. N. Trefethen. Condition numbers of random triangular
matrices. STAM J. Matriz Anal. Appl., 19(2):564-581 (electronic), 1998.

Michael J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE
Transaction on Information Theory, 36(3):553-558, May 1990.

Hugh C. Williams. A p + 1 method for factoring. Mathematics of Compu-
tation, 39:225-234, 1982.

Marc Witteman, Jasper van Woudenberg, and Federico Menarini. Defeating
RSA Multiply-Always and Message Blinding Countermeasures. In Agge-
los Kiayias, editor, Topics in Cryptology — CT-RSA 2011, volume 6558 of
LNCS, pages 77-88. Springer, 2011.

