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Abstract

This thesis is dedicated to the development of a multiscale mathematical model that

describes the regulation of the cell cycle by the circadian clock. What motivated this work

is the fact that several tumorigenic diseases are linked to circadian rhythms disruption.

We would like to understand the effect of circadian rhythms on the proliferation of a cell

population and hence give plausible explanation for diseases that arise from circadian clock

disruption.

The mammalian cell cycle and the circadian clock are two molecular processes that

operate in a rhythmic manner and exquisite precision. On one hand, the cell cycle is driven

by the rhythmic activity of cyclin-dependent kinases which dictate the time a cell must engage

mitosis and the time it must divide giving birth to two daughter cells. On the other hand, the

circadian clock is a system of transcriptional and translational feedback-loops that generates

sustained oscillations of different mRNAs and proteins with a period of approximately 24 h.

It turns out that several components of the circadian clock regulates various cyclin-dependent

kinases at different stages of the cell cycle. This makes the circadian clock a key player of

the temporal organization of the cell cycle and makes these two biological processes act as

two tightly coupled oscillators.

Our modeling approach consists of using a molecular-structured partial differential equa-

tion that describes the proliferation of a cell population. Proliferation depends on the cou-

pled cell cycle-circadian clock molecular state of cells. Due to the large number of molecular

components involved in the cell cycle-circadian clock system, the problem becomes of high-

dimensionality and specific numerical techniques are needed to solve the equation.

As a first step, we simplify the problem, and use a system of transport partial differential

equations structured by the time spent by cells in a phase of the cell cycle. This system is

coupled to the molecular one, via transition coefficients that depend on the molecular state

of cells. Even tough it is a simplified version, this model has the novelty of combining both

population and intracellular levels. We use it to study the entrainment of the cell cycle by

the circadian clock and the effects of regulation on the net growth of cells.

Afterwards, we pass to the fully multi-scale model and use the particle method to circum-

vent the high-dimensionality aspect. This method consists of representing the population

of cells by a large number of particles, each having its own set of properties, position and

weight. These properties evolve in time according to a system of ordinary differential equa-

tions, so that the particles simulate individual cells evolving in the molecular state space.
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The solution of the system can be reconstructed from individual particles and shown to

converge to the solution of the initial system. The main advantage of particle methods is

their usefulness for high dimensional problems where classical numerical methods as finite

difference/volumes/elements fail.

The thesis contains three main chapters, a conclusion and an Appendix:

• Chapter 1

This chapter covers biological fundamentals (enough though for our mathematical

study) of the circadian clock and the cell cycle and mathematical models used to

study them. It contains three sections; in the first one, we give a brief review of the

history of circadian concepts and the molecular mechanism of mammalian circadian

clock. We then review the evolution of mathematical models used for the circadian

clock, starting from phase response curve models to detailed molecular ones. The sec-

ond section of this chapter is a description of the temporal organization of the cell

cycle and its mathematical modeling. In the third section we introduce renewal and

structured partial differential equations used to model cell proliferation. We review

main theorems on the net growth of a proliferating cell population under circadian

control. Part of this chapter, namely the presentation of the mathematical models for

the circadian clock, and sections 2,3 are based on the paper

R. El Cheikh, T. Lepoutre and S. Bernard. Modeling Biological Rhythms in Cell Populations. Mathematical Modelling

of Natural Phenomena / Volume 7 / Issue 06 / 2012, pp 107 - 125.

• Chapter 2

In this chapter, which is based on our published paper

R. El Cheikh, S. Bernard and N. El Khatib, Modeling circadian clock-cell cycle interaction effects on cell population

growth rates (2014) J Theor Biol, 363:318-331.,

we introduce the mathematical model that represents the first step of our study; mod-

eling the regulation of the cell cycle by the circadian clock. The novelty of this model

is that it contains both molecular and population levels. We investigate the way the

cell cycle entrains to the circadian clock with different rational period ratios and char-

acterize multiple domains of entrainment. We show that circadian clock increases the

growth rate in cells with autonomous periods of the cell cycle around 24 h and above

48 h. We study the effect of mutation of circadian genes on the growth rate of cells

and show that disruption of the circadian clock can lead to abnormal proliferation. We
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obtain non-intuitive results on growth rates that could not be obtained by a popula-

tion or a molecular model alone. Our model offers new insights on the influence of the

circadian clock on the growth of a cell population.

• Chapter 3

In this chapter, we present a multiscale model for the regulation of the cell cycle by

the circadian clock. It consists of a non-linear transport equation of the form

∂tρ(x, t, λ) +∇x ·
[
u(x, t, λ, ψ)ρ(x, t, λ)

]
= L(x, λ)ρ(x, t, λ).

This equation describes the evolution of cells density ρ with a convective term u that

depends on the molecular circadian-cell cycle system components x = (x1, · · · , xd) and

a growth term L that describes the population dynamics. The variable λ is a cellular

state parameter that induces heterogeneity among cells, and ψ is a function that com-

putes population statistical quantities such as average molecular concentrations. This

makes the cell density molecularly structured and hence confers to it a high-dimensional

aspect. One of the aims of this chapter is to adapt a numerical method to solve the

transport equation and to develop a code for it (in C, given in the appendices) that

can be used with different convective velocities u. The use of “structured” transport

equations in biology is usually limited to few dimensions, hence our code can pave the

way for new applications with high-dimensional equations. This chapter is divided into

three sections; in the first one, we present the model structure, the additional mod-

eling assumptions and details about the equations. In the second one, we introduce

the particle method and explain its theoretical background and the way it is used to

solve high dimensional equations. In the last part, we present a numerical test case to

illustrate the particle method and to test our code and then present results obtained

with our model; namely, results that confers to this model its multi-scale nature, like

the heterogeneity among cells and its influence on the growth rate, the dependence of

growth on the total cell number and the connectivity between cells and its implication

on population synchronization.

• Conclusion

We finish the main part of the manuscript with a conclusion in which we summarize

the work and results obtained during this thesis. We discuss possible improvements of

our modeling approach and the continuation of this study.
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• Appendix

The appendix contains mainly two sections. In the first on we present a study (made

during the thesis period) that is not directly related to the topic of circadian clock-cell

cycle coupling; however it still belongs to theme of age-structured equations and tumor

modeling. We present a model that we developed to estimate the time of appearance for

meningioma tumor for several patients. We had clinical data about the average age of

tumor cells, their Ki-67 index and the tumor volume. Using minimization techniques,

we fitted the data and gave an estimate for the tumor age. In the second section of

the appendix, we give a commented version for the code source files that we developed

about the particle method. In addition, the appendix contains some supplementary

materials as table values and additional formulas that we used in this manuscript.
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Résumé

Cette thèse est dédiée au développement d’un modèle mathématique multi-échelle pour

la régulation du cycle cellulaire par l’horloge circadienne. Ceci est motivé par le fait que

plusieurs études ont montré un lien direct entre certains cancers et un dysfonctionnement du

mécanisme de l’horloge circadienne. Le but est de comprendre l’effet des rythmes circadiens

et leur perturbation sur la prolifération d’une population de cellules.

Le cycle cellulaire et l’horloge circadienne sont deux processus moléculaires qui fonction-

nent de manière rythmique et avec une précision exquise. D’une part, le cycle cellulaire est

contrôlé par l’activité rythmique des cyclines CDK (cyclin-dependent kinases) qui dictent le

temps pour lequel une cellule doit s’engager dans une mitose et le temps de division pour

lequel une cellule donne naissance à deux cellules filles. D’autre part, l’horloge circadienne

est composée d’un système de boucles rétroactives transcriptionnelles et translationnelles qui

génèrent un régime d’oscillations permanent d’une multitude de messagers ARN et protéines

avec une période de 24 h. Il s’avère que différents composants de l’horloge circadienne

régulent plusieurs cyclines CDK lors de différentes étapes du cycle cellulaire. Ceci donne à

l’horloge circadienne un rôle principal dans l’organisation temporelle du cycle cellulaire et

fait de ces deux processus biologiques deux oscillateurs intimement couplés.

Notre approche pour décrire la prolifération d’une population de cellules consiste à

considérer une équation de transport structurée par les contenus moléculaires du système

couplé horloge circadienne/cycle cellulaire. En raison du nombre élevé des composants

moléculaires intervenant dans ce système, le problème devient hautement multidimension-

nel. Des méthodes numériques spécifiques sont requises alors pour la résolution. Dans un

premier temps, pour simplifier le modèle, nous considérons un système d’équations de trans-

port structurées par le temps passé par les cellules dans une phase du cycle cellulaire. Ce

système est couplé au système intracellulaire via des coefficients de transition dans l’équation

du transport qui dépendent du mécanisme moléculaire. Malgré le fait que ce premier modèle

représente une version simplifiée, il a la nouveauté de décrire les deux niveaux; populationel

et intracellulaire. Nous l’utilisons pour obtenir des résultats sur l’entrâınement du cycle cel-

lulaire par l’horloge circadienne, sur l’effet de la régulation et la perturbation de l’horloge sur

la croissance cellulaire. Ensuite nous passons au modèle multi-échelle et nous contournons

la difficulté de la haute-dimension de l’équation par l’utilisation de la méthode de partic-

ules. Cette méthode consiste à représenter la densité des cellules par un grand nombre de

particules, dont chacune possède des propriétés héritées du système intracellulaire comme le
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contenu intracellulaire et les valeurs de paramètre. Ces propriétés évoluent selon un système

d’équations différentielles ordinaires, de sorte que les particules simulent des cellules qui se

déplacent dans l’espace de contenus moléculaires. La solution de l’équation peut être recon-

struite de la distribution des particules et converge vers la solution classique. L’avantage

principal des méthodes de particules est leur utilité pour la résolution des équations de

haute dimension où les méthodes numériques classiques, comme différences/volumes finis,

sont pratiquement inutilisables.

Cette thèse contient trois chapitres. Dans le premier, nous expliquons d’une façon sim-

plifiée—suffisante cependant pour ce travail—la théorie biologique du cycle cellulaire et de

l’horloge circadienne, et on passe en revue les différents modèles mathématiques utilisés pour

les décrire. Ce chapitre est divisé en trois parties; la première est consacrée à l’horloge cir-

cadienne. Dans cette partie, nous racontons brièvement l’histoire des rythmes circadiens.

Ensuite, nous expliquons le mécanisme moléculaire des ces rythmes chez les mammaires et

nous retraons l’évolution de leurs modèles mathématiques, à commencer par les modèles

de réponses de phase PRC (phase response curve) jusqu’au modèles moléculaires détaillés.

Dans la deuxième partie nous décrivons l’organisation temporelle du cycle cellulaire et sa

modélisation mathématique. Dans la dernière partie, nous introduisons les équations aux

dérivées partielles de renouvellement qui sont utilisées pour la modélisation de la prolifération

d’une population de cellules. Nous exposons les différents théorèmes liés à l’impact d’un

contrôle circadien sur le coefficient de croissance.

Dans le deuxième chapitre nous introduisons le modèle simplifié qui étudie la régulation

du cycle cellulaire par l’horloge circadienne. Ce modèle a la nouveauté de décrire la pro-

lifération d’une population de cellules tout en tenant compte du système couplé horloge

circadienne-cycle cellulaire. Dans ce chapitre, nous étudions comment le cycle cellulaire

peut être entrainer par l’horloge circadienne sous multiples périodes rationnelles et nous car-

actérisons différents domaines d’entrâınement. Nous montrons que le couplage augmente le

taux de croissance pour des cycles cellulaires d’une période proches de 24 h et plus grande

que 48 h. Ensuite, nous étudions l’effet des mutations des gènes de l’horloge circadienne

sur le taux de croissance. Nous démontrons qu’une perturbation du mécanisme circadien

résulte en une croissance anormale des cellules. Nous obtenons des résultats contre-intuitifs

qui n’auraient pas pu être obtenus avec un modèle moléculaire ou populationnel seulement.

Ceci montre que notre modèle offre des nouvelles perspectives de l’influence de l’horloge

circadienne sur la prolifération cellulaire.

Dans le troisième chapitre nous introduisons le modèle multi-échelle. Ce modèle est
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constitué d’une équation non-linéaire de transport de la forme

∂tρ(x, t, λ) +∇x ·
[
u(x, t, λ, ψ)ρ(x, t, λ)

]
= L(x, λ)ρ(x, t, λ).

Cette équation décrit l’évolution de la densité des cellules ρ avec un terme de convection u

qui dépend des composants moléculaires x = (x1, · · · , xd) de l’oscillateur couplé cycle cellu-

laire/horloge circadienne. La variable λ est un paramètre d’état qui induit une hétérogénéité

parmi les cellules, et ψ est une fonction qui calcule des quantités statistiques au niveau

populationel, par exemple, une concentration moyenne d’un composant moléculaire. Ceci

rend l’équation de transport structurée par les contenus moléculaires et lui donne un as-

pect hautement multidimensionnel. Un objectif principal de ce chapitre est d’adapter une

méthode numérique pour la résolution de cette équation, puis développer un code (en lan-

gage C) qui pourra être utilisé avec différentes vitesses de convection u. L’utilisation des

équations de transport “structurées” dans des applications biologiques est souvent limitée à

des dimensions non élevées. Ce code permettra d’élargir les domaines d’application à des

équations de dimensions élevées. Ce chapitre est divisée en trois parties; dans la première

nous introduisons le modèle en expliquant les différentes hypothèses de modélisation que nous

y incluons. Dans la deuxième, nous présentons d’une manière simplifiée la théorie derrière la

méthode de particules. Dans la dernière partie, nous résolvons un cas test numérique pour

illustrer la méthode de particules et pour tester notre code. Ensuite, nous présentons les

résultats du modèle, surtout ceux liés à sa nature multi-échelle, comme l’hétérogénéité de la

population, la dépendance de la prolifération sur le nombre total des cellules et le paramètre

λ, et l’implication de la connectivité intercellulaire sur la synchronisation des rythmes.
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Chapter 1

State of the art

1.1 Introduction

The initial objective of this thesis was to study the impact of circadian rhythms on the dy-

namics of a population of proliferating cells, using multi-scale modeling tools. We would like

to give an explanation for the disorders that may arise when these rhythms are disrupted.

For that, three pieces should be put together to complete the whole picture: the circadian

clock, the cell cycle and the proliferation of a cell population. These three pieces can be

put together by understanding the way the cell cycle and the circadian clock are connected.

Then by understanding how to link this coupling to the proliferation of a cell population.

This chapter serves as the biological and mathematical background for our study. We give

biological details about the cell cycle and the circadian clock and passes in review mathe-

matical tools used to model them. This helps knowing what has been done until now in

related research fields and what additional studies our work brings.

The first section focuses on the circadian clock, the daily rhythm that regulates phys-

iology and behavior in our body. We present a short history of circadian clock research,

starting from early botanic experiments to recent genetic discoveries. We then present the ge-

netic mechanisms for the mammalian circadian clock, and describe the main transcriptional-

translational feedback loops that generate sustained oscillations. We end this section with a

review of mathematical models constructed to study the circadian clock. We look at phase

response curve models, namely the works of Colin S. Pittendrigh and Jürgen Aschoff, and

how they were used to study entrainment properties. We then introduce generic models,

especially Goodwin-type models and explicit time-delay models. We discuss their properties

and the importance of time delays for generating oscillations. We finally present molecular
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models, starting with basic models of this type that describe a single feedback-loop and

finishing with recent complex models including detailed molecular processes involved in the

circadian mechanism.

The second section is devoted to the cell cycle, its temporal organization, molecular

mechanisms and its mathematical modeling. We describe how the cycle is driven by cyclin-

dependent kinases and how a cell enters into mitosis and divides giving birth to two daughter

cells. We explain the different stages a cell must pass through to accomplish a healthy cycle,

portraying it as a succession of transitions that should occur in the right time and conditions.

This yields a dynamical view of the cell cycle that helped mathematicians modeling it using

differential equations. In the end of this section, we present some of these works, mainly the

models developed by Tyson and Novak.

In the third section we introduce cell renewal equations and structured cell division

models. We explain how these equations are used to model cell proliferation. We review the

main results obtained for these models on the growth of a population under periodic forcing.

This represent a crucial point for our work, since these results are among the first ones that

deal with the implication of circadian control on cell proliferation.

1.2 Circadian clock

1.2.1 History of circadian rhythms

This subsection about the History of circadian rhythms is based on chapter 1, “A History of

Chronobiological Concepts” in U Albrecht (ed.), The Circadian Clock from Protein Reviews

edition volume 12, written by S. Daan [33].

Humans have always been aware of the ubiquity of rhythms governing their life. The

alternation of seasons, day and night, the migration of birds, the periods of sowing and

harvesting, plants leaves movements, wake and sleep phases, are all examples that drew the

attention of natural philosophers and let them wonder if there might be a “force” orches-

trating these rhythmic phenomena.

Botanists were especially curious about the daily movements of plants leaves. In the

beginning, it was not clear that most of these rhythms came from within plants, and not

from factors related to earth rotation, given that these movements are in great harmony with

the alternation of everyday light and dark cycles. The first breakthrough was the experiment

done by the French astronomer Jean Jacques d’Ortous de Mairan in 1729 who hid a mimosa
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plant in a dark cupboard and observed that the movement of its leaves persisted in the

absence of light [34]. However, he was cautious about his conclusions and suggested that

the plant still sense the sun without seeing it, and that other factors, such as temperature

and humidity, might be still involved in leaves movements. In 1758 the French physician and

botanist Henri-Louis Duhamel du Monceau reported leaf movements in a dark cave with

constant humidity and temperature [39]. Later on, by the year 1875; the Swiss botanist

August de Candolle added a great contribution to de Mairan and Duhamel experiments.

He realized that movements of mimosa leaves, kept in constant light, followed a 2 h shorter

cycle. This free running cycle is sufficient to claim the endogenous nature of rhythmicity. It

would be unreasonable to attribute this cycle to any external factor since movements were

no longer in synchrony with the surrounding environment.

Despite these convincing experiments, botanists were reluctant to conclude about the

true endogenous nature of these rhythmicities. One of the skeptics was the famous German

botanist Wilhelm Pfeffer. In his early career, he believed that there were other factors

related to earth rotation that produced these rhythms. He argued that leaf movements tend

to damp out in constant environment, which make the resulting free-running rhythm like

a “Nachschwingungen” (after oscillations) phenomena [123]. As a consequence, for nearly

200 years and until the beginning of the twentieth century, botanists kept looking for hidden

factors related to earth rotation that could explain the nature of these rhythmic processes.

During the twenties and early thirties, two botanists ended up this controversy and

undoubtedly demonstrated the endogenous nature of plant movements. The Dutch botanist

Antonia Kleinhoonte observed that after a shift in the light-dark cycle, the phase of the

rhythm of Canavalia ensiformis in constant conditions had no longer any relationship to

the day and night outside [86]. Following her work, the German biologist Erwin Bünning

confirmed that plants, held in constant light, showed sustained rhythmic movements with

a cycle length deviated from 24 h [20]. Both drew the conclusion that this could not be

attributed to any factor related to earth rotation and that it should be generated from

within the plant.

Meanwhile, premises for the presence of internal rhythms in animals were unraveled.

In 1900, the English zoologist Frederick William Gamble reported the first animal rhythm

yielding evidence of a deviation from 24 h in pigmentation change in the crustacean Hip-

polyte varians [60]. Some years later, the American physiologist, Curt Richter added to

Gambles findings and observed the persistence of rhythmicity in rats activity in constant

environmental conditions with a period shorter than 24 hours [136].
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The proof of the endogenous nature of these rhythmic phenomena was a turnaround in

this field and paved the way for new discoveries, especially during the fifties and sixties,

when several new properties about biological rhythms were identified.

Scientists wondered whether these endogenous rhythms are innate or if they are, due to

decades of evolution, a result of the eternal alternation of light and day cycles. To answer

this query, Jürgen Aschoff, a German medical doctor, raised mice for several generations

in constant light, and found that the daily rhythms of the last generation were as robust

as those seen earlier, despite the persisting absence of a lightning cycle [5]. He also raised

chickens (developing inside the egg under constant conditions) and found that they expressed

a normal daily rhythm, indicating that presence of a light dark cycle was not needed for the

development of rhythmicity [7]. These results were confirmed later on by Vijay Sharma in

Bangalore, who grew Drosophila in constant light for more than 600 generations, and still

found no loss of circadian rhythmicity [146]. This led to the concept of innateness ; which

means that rhythmicity was not only endogenous, but also transmitted through the genetic

material. This implies that the rhythmic environment is not essential for the function of

these rhythms but plays an adjustment role.

All these results formed a solid foundation for the evidence of internal rhythmicity in

living species and the word circadian saw the light and was first used by Franz Halberg to

insist about the fact that “about a day” is the nature of these rhythms rather than 24 h [78].

The conclusion that most living species have developed an internal endogenous oscillating

system was finally admitted and nowadays a free-running rhythm, with a cycle deviating from

24 h in constant conditions is considered as a sufficient proof of the endogenous generation.

After early experiments done by Antonia Kleinhoonte, advances in the biological theory

of circadian rhythms promoted the emergence of multiple physical experiments and math-

ematical models to study further physical properties of circadian oscillations. Kleinhoonte

showed that single stimuli of light can shift the phase a circadian rhythm and that a stimuli

as brief as 1 min of light can shift the rhythm of the large leaves of the bean plant Canavalia

ensiformis [86]. Following Kleinhoonte work, two persons, Colin S. Pittendrigh and Jürgen

Aschoff, laid the foundation of a new field of study for circadian rhythms: entrainment ;

a concept that describes the way oscillators are synchronized by external signals. Aschoff

introduced the concept of “Zeitgeber” (literally “time giver”), to indicate synchronization of

a self sustained oscillator by an external signal and Pittendrigh introduced the concept of

phase response curve PRC to describe the way a perturbation affect the oscillations period

[4]. They had different views on the way entrainment should be described and developed
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two theories: parametric and non-parametric entrainment. Aschoff and Pittendrigh collabo-

rators, namely Rütger Wever and Arthur Winfree, widened the research in this field; Wever

developed what is, perhaps, the first mathematical model of the circadian clock, to study

the influence of light fluctuation on the circadian period [162]. Winfree did a marvelous job

describing the way multiple oscillators synchronize together and characterized type 1 and

type 0 response curves [163, 164]. Based on these mathematical frameworks, a broad class

of generic mathematical models were developed to study different properties of circadian

oscillations.

Since most of early studies of circadian rhythms were carried out on plants, which do

not possess a nervous system, the concept of circadian rhythms was perceived as a diffuse

capacity of the entire organism. Surprisingly, several experiments discarded this idea. In

1960, Curt Richter did a series of brain lesions in rats and suggested that the hypothalamic

area was a candidate for harboring a circadian pacemaker [135]. In 1972, Friedrich Stephan

and Moore R.Y. observed that ablation of a region in the hypothalamus called the suprachi-

asmatic nucleus (SCN) caused rhythmicity to disappear. And by the year 1979; Inouye and

Kawamura demonstrated that the SCN could be isolated from the surrounding brain tissue

and then retains its rhythmicity in multiple unit activity, while the rest of the brain and the

animal would become arrhythmic. From these experiments emerged the idea of a central

pacemaker that orchestrates rhythms in the whole organism. The definite proof was given

by Martin Ralph, who exploited the first mammalian circadian mutant and transplanted

SCNs from homozygous mutant embryos into SCN-lesioned wildtype hosts and vice versa.

He showed in this elegant experiment that the donor always determined the period of the

restored circadian rhythm [131].

The idea of pacemaker and entrainment properties motivated scientists to search for

the input pathways by which the Zeitgebers (the light-dark cycle) were perceived. Junko

Nishiitsutsuji-Uwo first demonstrated, by optic tract sections on the cockroach, that the

compound eyes mediate the light information to the pacemaker [116]. Recently several

experiments showed that cockroaches possess multiple photoreceptive inputs into their com-

plex circadian systems, including the eyes, the pineal and other light-sensitive elements.

This is not the case in mammals. Circadian entrainment by light employs an exclusive

retina-hypothalamic pathway. Curt Richter demonstrated that blinding rats and monkeys

abolishes entrainment by light while leaving their rhythm intact. Then, in the beginning of

1980s Groos and Mason showed that the visual field in the retina is connected to single cells

in the SCN [76]. This was confirmed two decades later by Russel Foster and his group; who
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found a specific network of intrinsic photosensitive ganglia in the inner retina. These ganglia

contain pigment melanopsin and communicate information directly to the SCN [130].

The fact that the circadian mechanism is encoded in the genetic material could not be

made clear until the first discoveries about the DNA structure and genetic code. Ronald

Konopka studied the aberrations in the circadian system controlling daily pupal eclosion in

Drosophila. He identified three mutants: one with long period of 28 h (PerL), one with 20

h (PerS) and one arrhythmic (Per0) [87]. The crucial step in this direction was the finding

by a research group at Brandeis University that a protein, labeled PER, was rhythmically

produced in the fly brain with a peak in the early night, while per RNA showed a similar

expression pattern, about 6 h in advance of the protein. This led Paul Hardin, Jeff Hall and

Michael Rosbash in 1990 to propose the idea of the transcription-translation feedback loop

[79]. The proposition was that the Per gene is transcribed in the nucleus of certain cells,

leading to messenger RNA leaving the nucleus into the cytoplasm, and to translation into

PER protein at the ribosomes, followed by return of the protein into the nucleus to suppress

further transcription of the gene.

In mammals, the first mutation involved in the clock mechanism was detected by accident

in Syrian hamsters, Mesocricetus auratus. The circadian period in DD in hamsters varies

between 23 and 25 h. In 1986 Martin Ralph, depicted the remarkable actogram of one

hamster displaying a circadian rhythm of activity with a period of 22 h. His insight to breed

this individual led to the finding that the mutation followed simple Mendelian inheritance

[132]: A single gene mutation (called tau) must be involved. Homozygous mutants had

a period around 20 h, heterozygotes around 22 h. The mutant gene was later cloned by

the group of Joe Takahashi at Northwestern University and found to be equivalent to that

coding for a casein kinase enzyme CK1ε [103]. Takahashi’s group had already discovered the

first mammalian clock gene in 1994. This was based upon a mutation, again produced by a

mutagenesis screen, causing a long period, and baptized Clock [157]. Since then, scientists

kept unveiling more details about the transcriptional-translational feedback loops involved

in the circadian molecular process. Mathematicians and theoretical biologists pursued the

trend and elaborated mathematical models to describe the molecular machinery behind the

circadian clock. This ranges from simple negative feedback loop models to complex molecular

models [139, 108, 61, 55, 9].
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1.2.2 Molecular mechanism of the mammalian circadian clock

This subsection about the molecular mechanism of the circadian clock is based on a book

chapter written by E.D. Buhr and J.S. Takahashi [19].

The circadian clock is present in almost all mammalian tissues and there is a central

circadian clock in the suprachiasmatic nuclei (SCN) that serves as a “master” clock for the

entire body [8, 149, 18, 148, 110, 147]. The master clock, through neural, humoral and

systemic signals, synchronizes individual cells and tissues to a uninform internal time. This

helps maintaining a regular ∼ 24 h rhythm for different processes in mammalian organisms,

like body temperature, blood pressure, circulating hormones and metabolism [6, 74]. We have

seen in the previous section that circadian rhythms are endogenous and encoded in the genetic

material. The mechanism behind these rhythms is a coordinated system of transcriptional-

translational feedback loops that occur within each cell. This system incorporate three

main loops. The most essential one is a negative feedback loop in which the heterodimer

BMAL1/CLOCK binds to E-boxes and E’-boxes on the promoter region of Per and Cry genes

in the nucleus and initiate their transcription. The resulting Per and Cry mRNA migrate

to the cytoplasm and translates into proteins. PER and CRY proteins bind together, form

a complex and translocate to the nucleus to inhibit BMAL1/CLOCK activity, destroying in

this way their transcription factor [75, 142]. In addition to that, studies showed that there

are two kinases, CK1ε and CK1δ that play a role in PER and CRY degradation [103, 21, 155].

This kinase-mediated degradation turned out to be of primary importance for terminating

the repression phase and restarting the transcription process. For the second feedback loop,

BMAL1/CLOCK initiate the transcription of Rev-erbα/β and RORα/β genes [128, 141, 77].

The resulting proteins play different roles, REV-ERB proteins inhibit Bmal1 transcription

while ROR proteins initiate it. It was thought that this loop only played a minor role

in the sustained circadian oscillations. However, a recent study showed that Rev-erbs are

necessary for normal period regulation of circadian rhythmicity [25]. In the third loop,

BMAl1/CLOCK binds to D-box elements on the promoter region of a set of PAR bZIP

genes, initiating their transcription. This includes genes from the HLF, DBP, TEF and

Nfil3 families [46, 102, 109]. Until now, this loop is considered as unnecessary for circadian

clock function, but some studies suggest that it helps making the oscillation more robust

and precise [100, 128]. Although the transcription–translation feedback loop of Per and Cry

genes plays the central role in generating sustained oscillations, it has been speculated that

the other feedback loops may provide the necessary delay to create the ∼ 24 h period.

An important distinction between the central clock and peripheral clocks is the difference
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of the effects of genes mutation on the clock behavior. SCN with Clock knockout, for

example, was shown to remain rhythmic [35]. This is because the gene Npas2, plays the role

of Clock in its absence as a transcriptional partner for Bmal1 in initiating the transcription

activity. However, Clock knockout abolishes rhythmic activities in peripheral clocks [36].

Furthermore, The SCN was shown to stay rhythmic in the absence of any of Per or Cry

genes. This turns out to be quite different for peripheral clocks; Cry2 mutation implies a

clock with longer period, and Cry1, Per1, Per2 lead to an arrhythmic clock [101].

1.2.3 Circadian clock models

The subsection about phase response curve models is adapted from The Colin S. Pittendrigh

Lecture written by S. Daan [32] and the work of J.J. Tyson and L. Glass written for the

memorial of Art Winfree [152]. The rest of the subsection is based on our published paper

El Cheikh el al. [43].

Phase response curve models

Early works (1950s, 1960s and early 1980s) focused on studying the entrainment properties

of the circadian clock with the help of phase response curve models [4, 163, 161, 125].

A phase response curve or a phase resetting curve is established by delivering a precisely

timed perturbation to an oscillation and measuring its effects on the cycle period and phase.

The focus, by that time, was on the impact of light delivery on the endogenous circadian

oscillations. There were two main theoretical approaches for the nature of delivered light

that led to two types of entrainment: parametric and non-parametric. The principle of

parametric entrainment, which was initiated by Aschoff, is based on delivering a continuous

or tonic light and studying the changes in period as a result of different light intensities [7].

The principle of non-parametric entrainment, which was initiated by Colin S. Pittendrigh,

is based on delivering a discrete light pulse and studying its effects on the oscillations large

phase shifts [125]. Pittendrigh thought that the free running period τ of the circadian system

was corrected each day for the difference between τ and 24 h when the light fell at a particular

phase of the cycle in which a phase shift (4φ = τ − T ) is generated. Aschoff suggested that

light lengthens or shortens the period of an endogenous oscillation, while affecting at the

same time the average level around which this oscillation moves. He suggested that light

may affect the period of the circadian oscillation and at the same time modify its shape

and the level around which the oscillation moves. These two different points of view for
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entrainment emanate from the different fields Pittendrigh and Aschoff were working on.

Pittendrigh elaborated his studies on the single instantaneous event of Drosophila eclosion,

whereas Aschoff was interested in modulation of circadian activity of birds, mammals and

humans.

Following Aschoff work, his collaborator Rütger Wever constructed a mathematical model

to study light entrainment of circadian oscillations. His model was inspired from a model

originally used for electrical circuits; the van der Pol oscillator [154]. The van der Pol

oscillator is a particularly simple differential equation that can produce a stable limit cycle:

d2y

dt2
+ ε(y2 − 1)

dy

dt
+ y = 0. (1.2.1)

This equation models an oscillator y(t) with a nonlinear damping coefficient ε(y2 − 1). The

damping term dictates the dynamics of the oscillator. The equation reduces to the harmonic

oscillator when ε = 0. For positive values of ε, the system is non conservative, and a limit

cycle exists. The existence of the limit cycle is verified by noticing that when |y| > 1,

the damping is positive (the oscillator dissipates energy) and the amplitude of y decreases.

When |y| < 1, the damping is negative (the system receives energy), and the amplitude of y

increases. The limit cycle is the trajectory for which the average energy balance is null.

Wever model was the following

d2S

dt2
+ 0.5(S2 + S−2)

dS

dt
+ S + 0.6S2 = L+

dL

dt
+

d2L

dt2
(1.2.2)

Using this model, Wever studied the effects of light intensity L on the period of oscillations

and on their waveform. He concluded that increasing light intensity increases the oscillations

frequency as well as their activity time which he denoted by α. He also depicted different

waveforms for different photoperiods.

Another example of phase curve models comes from the eminent work of Art Winfree who

worked in Pittendrigh lab. Unlike other theoretical biologists who studied the case of a single

linear oscillator being forced by an external force, Winfree studied how multiple oscillators

can be brought together to oscillate in a synchronized way. He concluded that a weak

coupling keeps every oscillator with its autonomous period and the population of oscillators

oscillate in an asynchronous fashion. However, he found a threshold coupling strength that

made the population of oscillators transit from an asynchronous state to a synchronous one

where all oscillators oscillate with the same period [163]. Like his predecessors, Winfree also
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Figure 1.1: Simulations for the van der Pol socillator with different values of the damping
coefficient ε: (A) Positive values for ε lead to a limit cycle. (B) Negative values for ε lead
to damped oscillations. (C) Bifurcation diagram for the van der Pol oscillator. Solid black
line: stable steady state; dashed black line: unstable steady state; blue and red lines: limit
cycle.
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studied the impact of light entrainment on circadian oscillations. He plotted the “new phase”

(after a light pulse) as a function of the “old phase”. He showed that a weak pulse causes

only a small change in phase, while a strong pulse drives the oscillator to almost a constant

phase regardless of the autonomous phase. Due to the periodicity of the phase variable, he

had the brilliant idea of plotting the phase curves on a torus and identified two types of

phase resetting curves. Type 1: for a weak pulse, the line relating new phase to old phase

passes once through the hole of the torus. Type 0: for a strong pulse, the line does not pass

through the hole. Winfree believed that the function relating new phase to old phase and

light intensity cannot be continuous; for if it was continuous, the topological invariant of the

curve could never jump discontinuously from 1 to 0. This led him to search for a critical

value (old phase critical, light intensity) for which the function relating the new phase to

these critical values is undefined. He thought that by finding these critical values, he can

desynchronize any population of oscillators and he constructed a ”fly machine” to test his

predictions on the circadian rhythms of fruit flies. By delivering short light pulses at precise

duration and intensity, he found the critical values (old phase critical, light intensity) that

desynchronize the flies eclosion rhythm [164].

Goodwin-type models

Van der Pol type models have been influential in the circadian modeling literature [1, 31, 55,

56, 89]. However, analysis of single-cell imaging studies from the past decade suggested that

cell oscillators could be sloppy, or even damped [166, 160, 159, 158, 106, 13]. This is incompat-

ible with the van der Pol model, which always produces limit cycle oscillations (for positive

value of ε). Theoretical biologists and mathematicians started developing biochemically-

based models. One of the first and probably most popular biochemically-based models was

the Goodwin model [70, 71]. The Goodwin model refers to a class of generic molecular oscil-

lators based on a negative feedback loop (the final product of a three-step chain of reactions

inhibits the production of the first component)[67]. The original Goodwin equations are

dx

dt
=

k0k
n
1

kn1 + zn
− k2x, (1.2.3)

dy

dt
= k3x− k4y, (1.2.4)

dz

dt
= k5y − k6z. (1.2.5)
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All equations are linear except for the first one. The nonlinear term in the first equation

is a negative feedback term, called a Hill function, and z acts negatively on the production

of x. The repressor z can be viewed as a delayed version of the variable x. Standard

linear stability analysis shows that three variables in the Goodwin model are necessary for

a limit cycle to exist. With a relatively large Hill coefficient (n), the system can oscillate.

Thus, in addition to the negative feedback loop, a delay is a necessary ingredient to obtain

sustained oscillations. Large Hill coefficients are usually not biologically realistic, but if more

intermediate variables or more nonlinear terms are added, the Goodwin model can oscillate

for smaller Hill coefficients [69]. Either modifications to the model make it more complex

to analyze, and details about intermediate steps are often unknown. Modeling circadian

rhythms should take into account all the transcriptional and translational activities that are

behind the oscillatory phenomena of the circadian clock, this will lead to a complex set of

equations with a lot of parameters.

Instead of detailing all intermediate processes, it is tempting to introduce a “time delay”

on x that takes into account the time required to produce the repressor z. This time delay

can be introduced in a clean way into the Goodwin model. Let x be the amount of an

activator (for example the concentration of mRNA or a protein), which produces through a

linear chain process a quantity z, which in turn regulates x. We suppose that the regulator

z is the product of a linear chain of differential equations of length p, with kinetic parameter

a:

dy1(t)

dt
= a
(
x(t)− y1(t)

)
, (1.2.6)

dyj(t)

dt
= a
(
yj−1(t)− yj(t)

)
, j = 2, ..., p− 1, (1.2.7)

dz(t)

dt
= a
(
yp−1(t)− z(t)

)
. (1.2.8)

To simplify the following, kinetic parameters of the Goodwin model were chosen to be equal

ki = a, i = 2, ..., 6, but they could be different for each equation. Then, we can check that

the repressor z satisfies

z(t) =

∫ t

−∞
x(t)gpa(t− s)ds (1.2.9)

30



where the kernel gpa is the gamma probability density function

gpa(s) =
apsp−1e−as

(p− 1)!
.

To see that equation (1.2.9) holds, we use the fact that

dgja(t)

dt
= a
(
gj−1
a (t)− gja(t)

)
, j = 1, ..., p,

assuming that g0
a(s) = δ0(s) is the Dirac mass at 0, and proceed by induction on j. Converting

a linear activation chain into a convolution equation with a gamma kernel is called the “linear

chain trick”. If we re-express equation (1.2.3) as an equation with the integral term z(t), we

obtain
dx(t)

dt
=

k0k
n
1

kn1 +
[∫∞

0
x(t− s)gpa(s)ds

]n − k2x(t). (1.2.10)

This is a distributed delay differential equation, and this is a formulation equivalent to the

set of ODEs defined by equations (1.2.3, 1.2.6–1.2.8). The gamma density can be viewed

as the distribution of time required for the signal activated by x to affect the production of

x. This distribution is characterized by a mean delay τ = p/a and a variance p/a2. The

number of steps p and the kinetic rates thus determine the position and the shape of the

delayed distribution. When the number of steps in the linear chain p and the kinetic rates a

go to infinity while the mean is constant, the gamma density converges to a Dirac mass at

τ , and z(t) = x(t − τ). Hence, feedback loops with large number of intermediate steps can

be described with a discrete delay differential equation of the form

dx(t)

dt
=

k0k
n
1

kn1 + [x(t− τ)]n
− αx(t). (1.2.11)

This formulation of a negative feedback loop is a convenient way to capture the key role

of the linear activation chain: producing a delay. This delay is necessary for a limit cycle

to exist. Setting τ = 0 in equation (1.2.11) leads to a scalar ODE, which only admits

monotonic solutions. By using the linear chain trick for different linear chains, it is sometime

possible to reduce very large systems of ODEs into single distributed delay equation with

few parameters.
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Figure 1.2: Simulations for the delayed version of the Goodwin oscillator (equation (1.2.11)).
(A) Increasing the coefficient n increases the oscillatory behavior. (B) Bifurcation diagram
for the Goodwin model. Solid red line: stable steady state; dashed red line: unstable steady
state; blue and green lines: limit cycle.

Molecular models

During the 90s, biologists started to unveil the molecular mechanism of the circadian clock.

This helped computational biologists to elaborate more realistic models, based on the molec-

ular processes that generate the sustained circadian oscillation. One of the first models in

this category is the model constructed by Albert Goldbeter in 1995 [64]. By that time, it

was known that an important part of the mechanism of circadian rhythms is the circadian

variation of Per mRNA. The corresponding PER proteins follow a delayed version of Per

mRNA rhythms; suggesting that circadian oscillations involve a negative feedback exerted

by PER on the transcription of Per gene [79, 80]. It was also shown that this delay is caused

partly by the post-translational regulation of PER proteins through multiple phosphoryla-

tion cascades. Ruoff et al. proposed that this loop could be described by a generic Goodwin

type system. They associated the three equations of the Goodwin model to the aforemen-

tioned process where a gene mRNA is translated into a protein that activates a transcription

factor, which itself inhibits its own gene [139].

Goldbeter’s model contains more details and is based on the phosphorylation cascades

of PER and on the negative feedback exerted by PER on its own gene. We give here

some details about his model, because it serves as a prototype for the construction of more

complex models including more variables and molecular processes. The model equations are

32



the following:

dM

dt
= vs

Kn
1

Kn
1 + P n

N

− vm
M

Km +M
,

dP0

dt
= ksM − V1

P0

K1 + P0

+ V2
P1

K2 + P1

,

dP1

dt
= V1

P0

K1 + P0

− V2
P1

K2 + P1

− V3
P1

K3 + P1

+ V4
P2

K4 + P2

,

dP2

dt
= V3

P1

K3 + P1

− V4
P2

K4 + P2

− k1P2 + k2PN − vd
P2

Kd + P2

,

dPN
dt

= k1P2 − k2PN .

(1.2.12)

In this model, the variable M is Per mRNA and is considered to be synthesized in the

nucleus and transfer to the cytosol where it is degraded. P0, P1, P2 are respectively the

unphosphorylated, mono-phosphorylated and bi-phosphorylated forms of PER protein. PN

is the nuclear form of PER protein. Several assumptions regarding the molecular processes

were made: the rate of translation of PER is proportional to M ; P2 is marked both for

degradation and reversible transport into the nucleus; degradation of PER could also be

directed at the nuclear form PN as well as to the unphosphorylated or monophosphorylated

forms of the protein that could both be transported into the nucleus. This cascade of

phosphorylation generate the delay necessary to create sustained oscillations. Also, the first

equation is an equation of Hill type describing the negative feedback loop exerted by PN on

Per gene and is crucial for the mechanism of oscillations.

This model produces sustained periodic oscillations for a wide range of parameter values.

The phase shift between the peaks of total PER proteins and Per mRNA is around 4.5

h. This is in agreement with the experimental results obtained by Zeng et al 1994 [170].

Sustained oscillations in PER and Per mRNA correspond to the evolution toward a stable

limit cycle (Figure 1.3B).

A comprehensive model for the mammalian circadian clock was later developed by Leloup

and Goldbeter [93]. They have incorporated the regulatory effects exerted on genes expres-

sion by the PER, CRY, BMAL1, CLOCK and Rev-ERBα proteins. In a simplified way,

the model stated that the oscillations in the core of the circadian system can be generated

through two negative feedback loops. The first one exerted on the expression of Per and Cry

genes through the Binding of PER-CRY to the CLOCK-BMAL1 activated complex. The

second one exerted by CLOCK-BMAL1 through REV-ERBα on the expression of Bmal1

gene. A more detailed model was given by Forger and Peskin who made the distinction

between two categories of PER proteins: PER1 and PER2 and the CRY proteins: CRY1
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and CRY2. They have used a slower rate of phosphorylation for PER1 because it requires

more phosphorylation to bind with CRY1 or CRY2. They also used a higher coefficient of

degradation for CRY2 because it is ubiquitinated more quickly than CRY1 [57]. Both models

have suggested that light can enhance the transcription activity by inducing the production

of PER mRNA.

The model that captures most the reality of circadian clock molecular processes is perhaps

the one developed by Mirsky et al. [108]. Compared to the detailed models of Leloup et al.

and Forger et al. this model has several advantages. It includes eight genes: Per1, Per2,

Cry1, Cry2, Clk, Bmal1, Rev-erbα and Rorc, whereas the model of Forger et al. includes

Per1, Per2, Cry1, Cry2, Rev-erbα and BMAL1-CLK which are implicitly present at high

constant levels. The model of Leloup et al. includes only Bmal1, Per, Cry and Rev-erbα.

A good test for the validity of the model is its ability to reproduce correct phases of

circadian variables. This model captures precise phase relationships among molecular com-

ponents of the circadian clock work which is not always the case for other models. Namely:

Rev-erbα mRNA leads Per1, and Per2 mRNAs by 4 h; Per1, and Per2 mRNAs lead Cry1,

Cry2, and Rorc mRNAs by 4 h; Cry1, Cry2, and Rorc mRNAs lead Clk and Bmal1 mRNAs

by 4 h; Clk and Bmal1 mRNAs lead Rev-erbα mRNA by 8 h. The reason is that the authors

made exclusive use of cell-level data for both parametric fitting and validation which make

it more accurate at the cell-level where other models fail.

Finally, this model is one the best models to fit mutation phenotypes data. It has been

observed that dispersed SCN neurons or peripheral tissues/cells lack functional intercellular

coupling and thus display independently phased, cell-autonomous rhythms. The intact SCN

forms a network of neurons that are synchronized through cell-cell communication mediating

intercellular coupling that makes the SCN rhythms robust; but mask cell autonomous circa-

dian phenotypes. Therefore, the effect of knockout mutations on phenotype can be different

depending on whether ones assesses at the cellular level or at the SCN tissue or organism

level. For example, SCN explants of both Per1 and Cry1 knockouts retain rhythmicity,

whereas dispersed SCN neurons of both knockout types are largely arrhythmic [101].

In the end of this section, we review in detail a model for the mammalian circadian clock

developed by Becker-Weimann et al. [9] that will play an important role in the coming

chapters. It is a good example of a model which takes into consideration real molecular

information but has the advantage of being simple, including few variables and equations,

and still capturing essential features of the circadian clock functions. The model explores

the interdependence of the positive and negative feedback loops created by the transcription
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factor BMAL1/CLOCK. To make the model less complex, the authors made several simpli-

fying assumptions regarding the molecular processes and lumped multiple circadian actors

together. They only considered the activation by BMAL1, relying on the fact that CLOCK

is expressed at a constant level, using it as a fixed parameter. CRY proteins are represented

by a combined variable, and only Per2 is considered. Per2, Cry mRNAs and proteins are

represented by the same variables for several reasons: their expression is coregulated by

BMAL1/CLOCK, they form a complex that is necessary for nuclear accumulation, they are

both targets of casein kinase Iε/δ and they both act negatively on BMAL1/CLOCK tran-

scription activity. CKIε is considered implicitly by assuming fast phosphorylation of PER2

and CRY. Finally, the repression of Bmal1 by REV-ERBα is taken into account implicitly,

by assuming a positive action of PER2/CRY complex on Bmal1 transcription.

The model is given by a set of 7 equations, the first one reads

dy1

dt
= f1(y3, y7)− k1dy1, (1.2.13)

where:

f1(y3, y7) =
ν1b(y7 + c)

k1b(1 + ( y3

k1i
)p) + y7 + c

.

The variable y1 represents the concentration of Per2 or Cry mRNA which are considered

to be identical, for the aforementioned reasons. As one can see from the expression of

f1(y3, y7), the activated form of BMAL1 y7, activates the transcription of Per2/Cry mRNA.

Whereas increasing the nuclear concentration of PER2/CRY protein (y3), decreases the rate

of Per2/Cry mRNA. The coefficient c plays the role of a switch-like behavior of this tran-

scriptional regulation, ν1b is the maximal rate of transcription, k1b is the Michaelis constant

and k1d is the degradation rate. The second equation reads

dy2

dt
= k2by

q
1 − k2dy2 − k2ty2 + k3ty3, (1.2.14)

The variable y2 represents the concentration of cytoplasmic PER2/CRY complex. The co-

efficient k2b is the rate of formation and k2d is the rate of degradation of the complex. The

coefficients k2t and k3t represent respectively the nuclear import and export of PER2/CRY,

this justifies the negative sign in front of k2t and the positive sign in front k3t. The third

equation reads
dy3

dt
= k2ty2 − k3ty3 − k3dy3, (1.2.15)
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Here, the variable y3 represents the nuclear concentration of PER2/CRY complex. This

justifies the opposite signs in front of k2t and k3t compared to the previous equation. The

coefficient k3d represents the degradation rate of the complex. The fourth equation reads

dy4

dt
= f2(y3)− k4dy4, (1.2.16)

The variable y4 represents the concentration of Bmal1 mRNA, its rate of transcription is

given by:

f2(y3) =
ν4by

r
3

kr4b + yr3
.

One can see that the transcription rate of Bmal1 increases with rising PER2/CRY (y3)

concentration (see Figure 1.3A, dashed line for PER2/CRY and dotted line for Bmal1 ). The

coefficient k4d is a degradation rate. It is noteworthy here to recall that this positive action of

PER2/CRY describes the repression process of Bmal1 transcription by REV-ERBα. Hence,

this latter protein is included implicitly in the model. The fifth equation reads

dy5

dt
= k5by4 − k5dy5 − k5ty5 + k6ty6, (1.2.17)

The variable y5 represents the concentration of cytoplasmic BMAL1 protein. The coefficient

k5b is a translation rate, k5d is the degradation rate and the coefficients k5t and k6t represent

respectively the nuclear import and export of BMAL1. The sixth equation reads

dy6

dt
= k5ty5 − k6ty6 − k6dy6 + k7ay7 − k6ay6, (1.2.18)

The variable y6 represents the concentration of nuclear BMAL1 protein. The coefficients

k6d, k6a and k7a represent respectively, the degradation rate, the activation and deactivation

of BMAL1. The last equation reads

dy7

dt
= k6ay6 − k7ay7 − k7dy7, (1.2.19)

The variable y7 represents the activated form of BMAL1 (usually noted BMAL1∗), which

can be understood as its phosphorylated form or its combination with CLOCK.

This model shows sustained oscillations for the circadian components with a period ap-

proximately equal to 24 hours (Figure 1.3A).
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Figure 1.3: (A) Becker-Weimann et al. circadian model: proteins and mRNAs concentra-
tions. Solid line: total BMAL1 complex (variables: y5 + y6 + y7); dashed line: PER2/CRY
protein (variable y3); dot-dashed line: Per2/Cry mRNA (variable y1); dotted line: Bmal1
mRNA (variable y4). BMAL1 protein oscillates antiphasic to Per2/Cry mRNA and with
a period approximately equal to 24 hours. PER2/CRY protein oscillates with a phase
delay of 7.5 hours compared to Per2/Cry mRNA. (B) Goldbeter circadian clock model.
Solid line: Per mRNA; dot-dashed line: unphosphorylated PER form; dotted line: mono-
phosphorylated PER form; grey line: bi-phosphorylated PER form; dashed line: nuclear
PER form.
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1.3 Cell cycle

This section is based on our published paper R. El Cheikh et al. [43]. The cell division cycle

is one of life’s defining attributes by which an organism is able to reproduce and perpetuate

its own species. It can be described as the process where a new born cell doubles its size,

replicates its genetic material as well as its cellular components and gives birth to two new

progeny cells who inherit all the machinery and information needed to repeat the process.

The cell cycle consists of four distinct phases: G1 (Gap 1), S (DNA synthesis), G2

(Gap 2), and M (mitosis). The G1 phase, is a growth phase, where the cell grows in size and

accumulates all the nutrients needed to start DNA synthesis. The S phase is the phase where

DNA replication starts, every DNA molecule is replicated into two sister chromatids. When

this process is terminated, the cell enters the G2 phase, which acts like a checkpoint. During

this gap, the cell ensures that DNA replication has been well accomplished and prepares for

entry into mitosis. The mitotic phase consists of four subphases: prophase, where the nuclear

envelope is broken and a mitotic spindle is formed; metaphase, where all chromosomes are

aligned at the middle of the spindle, with sister chromatids attached to opposite poles of the

spindle; anaphase, where the sister chromatids are separated and migrate to the opposite

sides of the cell; telophase where two nuclear envelopes are formed and sequester the two

complete sets of unreplicated chromosomes. Finally the cell exits mitosis by dividing into

two new daughter cells in the G1 phase.

The cell division cycle is a very stringent process of irreversible successions, triggered

by transient signals, between its four phases. Progression through the cycle stops if these

phases do not take place in the right order. In particular, DNA replication and chromosomes

segregation should alternate in proliferating cells. There exist check-point controls that verify

whether the steps of the cycle are taking place in the right order. If a problem arises, for

example when the replicated chromosomes have not properly aligned on the mitotic spindle,

the cell cycle will never exit mitosis. If the chromosomes are well aligned, the check point

condition is satisfied, and the transition to the next phase is triggered by transient signals.

These signals disappear once the cell transits to the next phase, making these transitions

irreversible.

There are two main types of cell cycle models, molecular models and population models.

The first one attempts to model the molecular events of the cell cycle while the second

one attempts to describe the dynamics of a population of cells, with an emphasis on cell

division (birth) and death events. Before introducing mathematical models, we describe the
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molecular mechanism of the cell cycle in the coming paragraph.

1.3.1 Molecular mechanism of the cell cycle

In 2001, Paul Nurse, Timothy Hunt and Leland Hartwell won the Nobel Prize for Medicine

for their seminal discoveries of key molecular regulators of the cell cycle. They associated

the alternation of cell cycle phases to the fluctuation of certain enzyme activity.

Nurse identified specific enzymes called the cyclin-dependent kinases CDKs. These en-

zymes drive the cell cycle by catalyzing phosphorylation of proteins crucial for the cell cycle

progression. Hunt discovered a group of proteins that bind to CDKs to form complexes which

are thoroughly required for their activation. At the time, Hunt called newly discovered pro-

teins cyclins, because he liked cycling. The name cyclin turned out to be quite appropriate,

since cyclin concentration varies periodically during cell cycle. This implies also the periodic

variation of CDKs activity.

CDKs activity is governed, in general, by three distinct mechanisms [112]. First, reg-

ulation is provided by cyclin availability; kinase subunits are present in excess during the

cell cycle, but they have no activity until they bind to a cyclin partner. The availability of

cyclin subunits is strictly controlled by transcription factors that regulate the expression of

cyclin genes, and by ubiquitin-dependent proteolysis systems (e.g., the anaphase-promoting

complex APC), which can rapidly degrade cyclin proteins in response to specific signals

[122]. Second, CDK activity is regulated by phosphorylation of kinase subunits. Active cy-

clin/CDK dimers can be inactivated by phosphorylation on a specific tyrosine residue close

to the amino terminus of the kinase polypeptide chain. This tyrosine residue is phospho-

rylated by kinases of the Wee1 family and dephosphorylated by phosphatases of the Cdc25

family [29]. Finally, active cyclin/CDK dimers can also be inactivated by binding to in-

hibitors, called CDK inhibitors (CKIs) [37, 111, 144]. The levels of CKIs depend on their

production rate, which is governed by regulated transcription factors and their destruction

rate (phosphorylated CKIs are rapidly ubiquitinated and degraded) [10, 156].

In molecular models, proteins and mRNA concentrations are often modeled with ordi-

nary differential equations. Models are built with weakly connected modules, each module

standing for one of the major checkpoints of the cell cycle. Conceptually, the cell cycle

stops at each checkpoint and progression is halted until all conditions are met to raise the

checkpoint. The cell cycle can be divided into three main checkpoints: START, G2/M and

EXIT. The START checkpoint ensures that the cell has grown enough and have all the
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sufficient nutrients to leave G1 phase and dedicate to a new round of DNA synthesis. The

G2/M checkpoint ensures that there is no damaged DNA after replication before cell enters

mitosis. The Exit checkpoint ensures that the chromosomes are properly aligned and that

the cell is ready to divide into two healthy daughter cells.

The progression through these checkpoints is triggered by CDK activity fluctuation. In

G1 phase, CDK activity is low. To pass the START checkpoint, CDK activity rises up to a

certain threshold that allows the cell to start DNA replication process and enter mitosis. To

pass the EXIT checkpoint, CDK activity must fall to let the cell divides and the daughter

cells to enter G1.

So what causes this fluctuation of CDK activity? There exist protein enemies that block

CDK activity. This makes each checkpoint like a battle between CDK and its enemies.

During the START transition, CDK activity is downregulated by the enemies and; hence

the cell is blocked in G1 until some helpers called Starter kinases (SK) come for the rescue

of CDK by downregulating CDK enemies allowing the cell to pass the START checkpoint.

During the EXIT checkpoint, Exit proteins (EP) upregulate CDK’s enemies, promoting the

CDK abrupt degradation and cell division.

Experimental and theoretical biologists have shown that checkpoints are marked by

abrupt transitions, or switches, during which specific cell cycle proteins get quickly acti-

vated or deactivated [151, 22, 117, 118, 48]. A switch-like transition is a response to a

change in concentration of a stimulus that affects the system. When the concentration of

the stimulus reaches up a certain threshold, the system switches from one state to another.

We distinguish two types of switch-like transition: continuous (sigmoidal switches) and dis-

continuous (bistable switches). The response in the sigmoidal switch is graded and reversible.

By graded we mean that the response increases continuously with signal strength. By re-

versible we mean that if the signal S increases, reaches its threshold value and the system

switches on to the next state, a decreasing value for S can bring back the system to its off

state.

The discontinuous responses can further be separated into two kinds: the one-way switch

(figure 1.4 (A)) and the toggle switch (figure 1.4 (B)). For the one-way switch, there exists

a critical value (Scrit) that the signal should reach to let the response passes to the upper

state. Now, if S decreases the response does not fall back to the lower state and stays high,

this is why the switch is called in this case irreversible. Notice that for S between 0 and

Scrit, the system has two stable steady-state responses (lower and upper state) separated by

an unstable one. This is why we call the switch bistable. A good example of this irreversible
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Figure 1.4: Simulations for the one way switch and toggle switches. Equations are taken
from [151] (see Box 1, Figures 1.e and 1.f in the reference for more details). (A) One way
switch: the signal should attain the critical value “Scrit” so that the response passes to the
upper state. If the signal decreases, the response stays on the upper state and does not fall
back to the lower one. (B) Toggle switch: unlike the one way switch, if the response is on
the upper state and the signal decreases, the response falls back to the lower state.

switch is apoptosis [92]. For the toggle switch, if the response is on the upper state, and the

value of S decreases enough, the switch will go back to the lower state. For intermediate

values of S (Scrit1 < S < Scrit2), the response can be on the upper or lower state, depending

on how S was changed. This sort of two-way discontinuous switch is also called hysteresis. A

good example of hysteresis response is the activation of the mitosis promoting factor MPF,

or the START and FINISH transitions that will be explained in the coming paragraph.

By coupling sequentially many of those bistable switches, it is possible to devise models

that can follow the progression of the cell cycle [153, 118, 22].

1.3.2 Molecular models for the cell cycle

Goldbeter minimal model for mitosis

Albert Goldbeter constructed a minimal model for cell cycle mitotic oscillator in early am-

phibian embryos [66]. It is based on the cascade of phosphorylation-dephosphorylation cycles

involving cyclin and cdc2 kinase. The system of equations contains only three variables which

are cyclin, active cdc2 and active cyclin protease. The basic assumption is that cyclin is syn-

thesized at a constant rate and triggers the activation of cdc2 kinase. The latter activates

the cyclin protease which elicits cyclin degradation. This switches off the activation of cdc2
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creating a negative feedback loop and resetting the system for a new mitotic cycle.

The system of equations read:

dC

dt
= vi − vdX

C

kd + C
−KdC

dM

dt
= V1

(1−M)

K1 + (1−M)
− V2

M

K2 +M
dX

dt
= V3

(1−X)

K3 + (1−X)
− V4

X

K4 +X

with V1 = C
Kc+C

VM1 , V3 = MVM3 .

(1.3.20)

In the above equations, C denotes the cyclin concentration, while M and X represent

the fraction of active cdc2 kinase and the fraction of active cyclin protease; (1 −M) thus

represents the fraction of inactive (i.e., phosphorylated) cdc2 kinase, while (1−X) represents

the fraction of inactive (i.e., dephosphorylated) cyclin protease.

The main result of this model is the demonstration the negative feedback provided by

cdc2-induced cyclin degradation suffices to create sustained oscillations with correct period

and amplitude. No positive feedback is needed, sustained oscillations arise from the thresh-

olds and time delays built into the cascade of post translational modification controlling the

activation of cdc2 kinase and cyclin proteolysis.

MT (total amount of cdc2 kinase) for enzymes E1 and E2, and XT (total amount of cyclin

protease) for enzymes E3 and E4; both MT (4, 11, 12) and XT will be considered as constant

throughout the cell cycle. The expressions for the effective maximum rates V1 and V3 are

given by Eq. 2. These expressions reflect the assumption that cyclin activates phosphatase

E1 according to a Michaelis-Menten kinetic; VM1 denotes the maximum rate of that enzyme

reached at saturating cyclin levels. On the other hand, the effective maximum rate of cdc2

kinase is proportional to the fraction of active enzyme; VM3 denotes the maximum velocity

of the kinase reached for M = 1.

Tyson and Novak fission yeast model

Tyson and Novak fission yeast model underlines the main molecular events behind the

progress of the cell cycle. The core of this model is based on the activity of the cyclin-

dependent protein kinases complexes Cdc2/Cdc13 (also called MPF or mitosis promoting

factor), which are the engine needed to start DNA replication and mitosis. In this model, the

cell cycle is punctuated by three transitions: Start, G2/M and Finish. These transitions de-

pend on the concentration of Cdc2/Cdc13 and their enemies. If the activity of Cdc2/Cdc13
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Figure 1.5: Albert Goldbeter cell cycle model: sustained oscillations of cyclin concentration,
active cdc2 kinase, and cyclin protease. (B) Limit cycle behavior for the mitotic oscillator
obtained by plotting the solution of the system in (cyclin, cdc2) space. Two sets of initial
conditions are considered, one inside and the other outside the limit cycle; arrows indicate
the direction of the time evolution.

is high, the cell progresses through the cell cycle; if it is low, the cell blocks its progression.

Each phase transition of the cycle is regulated by specific enemies and helpers that decide

whether Cdc2/Cdc13 will win or lose. The Start transition (G1 to S) is governed by the an-

tagonistic interaction between Cdc2/Cdc13 and their enemies Ste9 and Rum1. Ste9 targets

Cdc13 to the APC core and promotes their degradation, while Rum1 binds to Cdc2/Cdc13

complexes and inhibits their activity. On the other hand, Cdc2/Cdc13 can also downreg-

ulate, by phosphorylation, the activity of Ste9 and Rum1. So what shifts the balance to

Cdc2/Cdc13 so that they can win and let the cell passes to the next phase? For the Start

transition, there exists starter kinases that help MPF to get the upper hand and phospho-

rylate Ste9 and Rum1. For the Finish transition, the MPF activity should shut down to let

the cell exit mitosis and enter the G1 phase. The helper molecule for this transition is the

Slp1/APC complex, which promotes the degradation of Cdc13 and activates Ste9. Hence,

the activity of the enemies will win over the activity of MPF, which shuts down and lets the

cell exit mitosis. In the G2/M transition, the enemy of MPF is the tyrosine kinase WEE1,

which can inactivate Cdc2. To shift the balance toward MPF, a specific phosphatase called

Cdc25 removes the inhibitory effect of WEE1. Cdc25 is activated in a positive feedback by

MPF (Figure 1.6).
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Figure 1.6: Fission yeast cell cycle: circles represent phases of the cell cycle, colored rect-
angles show the three main transitions and the wiring diagram illustrates the antagonism
mechanism between Cdc13/Cdc2 and Rum1, Ste9/APC. Green rectangle: start transition
(G1/S). Cdc2/Cdc13 and Ste9/APC, Rum1 mutual inhibition (processes 1,2,3,4); help of
the “starter kinase SK” to shift the balance for Cdc2/Cdc13 by deactivating Ste9/APC,
Rum1 (processes 5 and 6). Brown rectangle: G2/M transition. Mutual antagonism between
Cdc2/Cdc13 and WEE1 (precesses 8 and 9); help of Cdc25 (process 12) by inactivating
WEE1 (process 11); Cdc25 is activated in a positive feedback by Cdc2/Cdc13 (process 10).
Red rectangle: finish transition (M/G1). Slp1/APC helps Ste9/APC (process 14) by in-
hibiting the activity of Cdc2/Cdc13 (process 15). Blue and red arrows represent negative
feedback loops, which generate the oscillatory activity of Cdc2/Cdc13.
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The first equation of the model describes the growth of cell mass.

dM

dt
= µM.

The mass M is divided by two in the EXIT phase.

The second equation describes the rate of change in Cdc13/Cdc2 (named Cdc13T ) complex

concentration :

d[Cdc13T ]

dt
= k1M − k′2[Cdc13T ]− k′′2 [Ste9][Cdc13T ]− k′′′2 [Slp1][Cdc13T ].

The first term on the right hand side assumes that the rate is proportional to the cell mass,

the last three terms are the nonspecific degradation, Ste9 and Slp1 -mediated degradation

rates.

The third equation represents the antagonism between WEE1 and MPF through the form

of the factor kwee (See auxiliary equations):

d[PreMPF ]

dt
= kwee([Cdc13T ]− [PreMPF ])− k25[PreMPF ]− (k′2 + k′′2 [Ste9]

+k′′′2 [Slp1])[PreMPF ],

where PreMPF refers to the activated form of Cdc13T/Cdc2.

The fourth equation describes the rate of change in Slp1 total concentration:

d[Slp1]

dt
= k′5 +

k′′5 [MPF ]4

J4
5 + [MPF ]4

− k6[Slp1].

The first term on the right hand side is a synthesis term, the second term is a Hill type

synthesis term due to MPF, and the last term is a degradation term.

The fifth equation describes the rate of change in the IEP enzyme activity. IEP provides

the delay necessary for the chromosomes to align with the metaphase plane before they are

separated at anaphase:

d[IEP ]

dt
=
k9[MPF ](1− [IEP ])

J9 + (1− [IEP ])
− k10[IEP ]

J10 + IEP
.
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Figure 1.7: Simulations for the cell cycle model proposed by Tyson and Novak: (A) Cell mass
(solid line) between birth and division is divided by two when MPF concentration (dashed
line) decreases below a threshold value in the end of mitosis. (B) Antagonism between Cdc13
complex (solid line) and its enemies Ste9 (dotted line), and Slp1 (dashed line).

The sixth equation describes the rate of change of Ste9 total concentration:

d[Ste9]

dt
=
k′3 + k′′3 [Slp1](1− [Ste9])

J3 + (1− [Ste9])
− (k′4[SK] + k4[MPF ])[Ste9]

J4 + [Ste9]
.

The first term on the right hand side is an activation term and the second one represents

deactivation caused by SK and MPF.

The seventh equation describes the variation of the total concentration of Rum1 :

d[Rum1T ]

dt
= k11 − (k12 + k′12[SK] + k′′12[MPF ])[Rum1T ].

The first term on the right hand side is a pure synthesis one, the second term represents

constant degradation and degradation due to SK and MPF activities.

The eighth equation represents the variation of the SK kinases concentration:

d[SK]

dt
= k13[TF ]− k14[SK]

here TF is some function of the mass M and on MPF.
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1.4 Renewal equations and structured division models

In this section, we present structured partial differential equations in the context of cell

proliferation or population models. This section is based on our published paper R. El

Cheikh et al. [43]. We emphasize results related to circadian control, that is, theorems on

growth rate with periodic transition coefficients.

Our typical population model is written as it follows
∂tn(t, x) + ∂xn(t, x) = −d(t, x)n(t, x), x > 0,

n(t, x = 0) =
∫∞

0
B(t, x)n(t, x)dx,

(1.4.21)

where, n(t, x) represents cells density at time t and age x. The variable x characterizes

they dynamics and confer the concept of age-structured equations for such models. d(t, x)

represents a loss term (for instance, death, but it can also include a transfer rate to other

compartments) depending on age and time and B(t, x) is a birth rate. Circadian control

is taken into consideration by assuming that both coefficients, d and B are periodic with a

period T . A specific example is the following division model
∂tn(t, x) + ∂xn(t, x) = −[d(t, x) +K(t, x)]n(t, x), x > 0,

n(t, x = 0) = 2
∫∞

0
K(t, x)n(t, x)dx.

(1.4.22)

In this model, the loss rate is divided into two parts: a death rate d and a division rate K.

The loss of one cell due to the term K is compensated by the creation of two new cells of

age x = 0. The age x is not a physiological maturity but is the chronological age since birth.

Using the method of characteristics, one can show that

n(t+ x, x) = n(t, 0) exp

(
−
∫ x

0

d(t+ s, s)ds

)
.

The latter equation is the key to the link between structured population models and delay

differential equations. Using the boundary condition, we can derive a Volterra-like integral

equation satisfied by n(t, 0)

n(t, 0) =

∫ ∞
0

B(t, x)n(t− x, 0) exp

(
−
∫ x

0

d(t+ s, s)ds

)
. (1.4.23)
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Well posedness for those models is classical in the case of bounded coefficients and initial

conditions in L1(R+) [121].

More detailed cell cycle models can be devised. In [28] Lepoutre and coworkers considered

a cell cycle model with I phases
∂tni(t, x) + ∂xni(t, x) + [di(t, x) +Ki→i+1(t, x)ni(t, x) = 0, 1 ≤ i ≤ I

ni+1(t, 0) =
∫∞

0
Ki→i+1(t, x)ni(t, x)dx,

n1(t, 0) = 2
∫∞

0
KI→1(t, x)nI(t, x)dx.

(1.4.24)

usually I = 4, and I + 1 = 1. Similar to division models, the loss rate di + Ki in the i−th

equation contains two terms: a death rate di and a transition rate Ki from phase i to i+ 1,

which turns out to be a division rate for i = I. This system was studied with the aim to

show that tumor growth is enhanced by circadian clock disruption. It was proved, using a

convexity result for the dominant eigenvalue (to be introduced below) of the system, that for

a disrupted circadian rhythm (averaged coefficients), the dominant eigenvalue is smaller than

the cases of controlled circadian rhythm (periodic coefficients). This result would imply that

periodic population grows faster. This lead the authors to conclude that disrupted circadian

rhythms do not enhance tumor growth directly but rather damages the healthy tissues that

fight against it [28].

Another important class of population models in cell cycle representation are delay dif-

ferential models. These models are linked to previous partial differential equations. For

instance, in [26], the following discrete delay equation, which was studied in [14, 104], was

re-derived from a division model

dp(t)

dt
= −[d(t) +K(t)]p(t) + 2σ(t)K(t− τ)p(t− τ). (1.4.25)

Based on age-structured PDEs, more general delay models can be constructed. For example,

systems where the discrete delay is replaced by a distribution of delays can be derived

rigorously from division models:

dx(t)

dt
= −a(t)x(t) +

∫ ∞
0

x(t− u)b(t, u)g(u)du. (1.4.26)

The coefficients a(t), b(t, u) are directly related to the coefficients of the division model with
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I = 2 in the following way:

a(t) = d1(t) +K1(t), (1.4.27)

g(u) = K2(u)e−
∫ u
0 K2(s)ds, (1.4.28)

b(t, u) = 2K1(t− u)e−
∫ t
t−u d2(s,s−t+u)ds. (1.4.29)

In the coming paragraph we summarize various properties for the growth rate of such equa-

tions. Due to the close link between PDE-based and DDE-based models, results are sum-

marized for PDE models only. We choose to write all the theorems on (1.4.21) but mutatis

mutandis the results remain true for division models.

1.4.1 Asymptotic behavior with or without periodic forcing

The theoretical results presented hereafter concerning the analysis of asymptotic behavior

have been obtained by T. Lepoutre in his thesis [97] and have been published [27, 26, 28] .

The quantity of interest is the growth exponent. We assume that coefficients satisfy con-

ditions ensuring net growth of the population and that the asymptotic behavior is governed

by the principle eigenvalue and its associated eigenvector (examples of such conditions can

be found in [28]). For simplicity, we present the results for the renewal equation (1.4.21).

We assume there exists a triple (N,Φ, λ), such that

∂tN(t, x) + ∂xN(t, x) = −(d(t, x) + λ)N(t, x),

N(t, x = 0) =
∫∞

0
B(t, x)N(t, x)dx,

−∂tΦ(t, x)− ∂xΦ(t, x) + (d(t, x) + λ)Φ(t, x) = B(t, x)Φ(t, 0).

λ is a positive number, N,Φ are positive functions

∀t, N(t+ T, x) = N(t, x), Φ(t+ T, x) = Φ(t, x),

1
T

∫ T
0

∫∞
0
N(t, x)dx =

∫∞
0
N(t, x)Φ(t, x)dx = 1.

The last condition is just a renormalization to ensure uniqueness. Classically, such a λ is

unique and governs the growth (detailed results on general relative entropy theory can be

found in [121]). One has, in particular,

d

dt

∫ ∞
0

n(t, x)e−λtφ(t, x)dx = 0,
d

dt

∫ ∞
0

|n(t, x)e−λt − ρ0N(t, x)|φ(t, x)dx ≤ 0
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where ρ0 =
∫∞

0
n0(x)Φ(0, x)dx > 0 is determined only by n0. Conditions for existence are

not the aim of this section and for this purpose the reader could refer to [28, 97].

To analyze the impact of periodic forcing, it is natural to compare the behavior of the

periodic system with a time-constant system. The first result in that direction can be

summarized as

Theorem 1. [28] Assume in (1.4.21) that the birth rate B does not depend on time. Let

λper be the growth rate of the system (1.4.21) and λs be the system where d(t, x) has been

replaced by its arithmetical average over time

ds(x) =
1

T

∫ T

0

d(t, x)dt. (1.4.30)

then the following inequality holds true

λper ≥ λs.

A more general result was then obtained concerning the role of the birth rate B [26].

Surprisingly, it leads to the apparition of a geometrical average of this rate

Bg(x) = exp

(
1

T

∫ T

0

logB(t, x)dt

)
. (1.4.31)

The result can be summarized as it follows

Theorem 2. [26] Define λper as the growth rate of (1.4.21) and λg the growth rate of (1.4.21)

with d replaced by ds and B replaced by Bg, then the following inequality holds true

λper ≥ λg.

Introducing different types of means can be puzzling but might be better understood by

looking closely at the system structure. In equation (1.4.23), we can see that logB(t, x) and∫ x
0
d(t−x+s, s)ds have a similar role. This mathematical result cannot be readily exploited

for division or cell cycle models, at least concerning division and transition coefficients,

since division rate K also appears as a loss rate and a birth rate in (1.4.22). In this case,

the averaged model cannot not be characterized as a division model because K would be
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Figure 1.8: Simulations for the age structured one-phase model (logarithmic scale). (A)
Influence of the transition age on the population growth (logarithmic scale) with and without
periodic coefficients. Transition rate K = k01x>xtrans(A+Bcos(2πt/T )) (B) Comparison of
the growth with and without periodic coefficients. Results are coherent with theorem (3),
which states that there is no general inequality between λper and λs. In particular, one can
build examples with λper < λs as well as λper > λs.

replaced by different functions in the PDE (by Ks) and in the boundary condition (by Kg).

We end this paragraph on averaged models by stating an opposite result on the comparison

with an arithmetical average everywhere

Theorem 3. [26] Define λper as the growth rate of (1.4.21) and λs the growth rate of (1.4.21)

replacing d by ds and B by Bs, then there is no general inequality between λper and λs. In

particular, one can build examples with λper < λs as well as λper > λs.

We tested this result and compared the growth of a cell population with and without

periodic forcing. Simulations were coherent with theoretical results, in the sense that there is

no general inequality between the growth with and without periodic coefficients (Figure 1.8).

The first two theorems above can be generalized to a convexity property:

Theorem 4. [27] The growth rate of equation (1.4.21) λper is geometrically convex with

respect to B and convex with respect to d.

This result needs explanation. Suppose we have two sets of coefficients d1, d2, B1, B2 with

the same period T , and the corresponding growth rates λ1
per, λ

2
per. We define an intermediate
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model with coefficients dθ, Bθ, with θ ∈ (0, 1), by

dθ = θd1 + (1− θ)d2, (1.4.32)

Bθ = (B1)θ(B2)1−θ. (1.4.33)

Then, from Theorem 4, the following inequality holds:

λθper ≥ θλ1
per + (1− θ)λ2

per.

Theorem 4 is a continuous version of the “Jensen”-based Theorem 2. It can also be seen as

an extension to periodic systems of an inequality given by Kingman on spectral radius of

nonnegative matrices [85]. This theorem leads to a theoretical justification of chronotherapy.

Indeed, consider a drug, given every day at the same time, which side effects on healthy

tissue are only represented by an additional death rate ddrug(t− tadm, a) (the parameter tadm

representing the effect of the drug administration time). Equation (1.4.21) is then replaced

by ∂tn+ ∂xn+ [d(t, x) + ddrug(t− tadm, x)]n(t, x) = 0,

n(t, x = 0) =
∫∞

0
B(t, x)n(t, x)dx,

to which growth rate λ(tadm) is naturally associated. In the case of a continuous treatment,

the drug induced death rate would be

dcont(a) =
1

T

∫ T

0

ddrug(t, a)dt =
1

T

∫ T

0

ddrug(t− tadm, a)dtadm.

Again a growth rate λcont is associated. As a consequence of the convexity of the growth

rate with respect to death rates, we have

1

T

∫ T

0

λ(tadm)dtadm ≥ λcont.

which implies that an average periodic drug delivery is less toxic than a constant delivery.
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Chapter 2

Modeling circadian clock-cell cycle

interaction effects on population

growth rate

2.1 Introduction

The work presented in this chapter is based on our published paper R. El Cheikh et al. [42].

In the previous chapter, we presented the cell cycle and the circadian clock as two distinct

biological oscillators, we discussed their molecular mechanisms and mathematical models

employed for their study. However, the circadian clock interacts with the cell cycle through

multiple molecular pathways [41, 84, 167, 120, 83, 114]. The aim of this chapter is to

construct a mathematical model that studies the influence of this coupling on the growth

of a cell population. Our work is motivated by several epidemiological studies that have

shed light on the fact that individuals with disrupted circadian rhythms have increased

risk of developing tumorigenic diseases [88, 51, 50, 49, 59, 62, 73]. Studies made on yeast

revealed restriction of cell division to the reductive phases of the yeast metabolic cycle. This

regulation insures that the cell cycle evades the potentially mutagenic redox environment

of the oxidative respiratory phase, helping to minimize the occurrence of futile reactions

[113, 150]. This type of control was shown to be involved in circadian regulation and may

be a general strategy for the robust maintenance of cellular processes.

We have seen, as described in Section 1.3.1, progression through each phase of the cell cy-

cle depends on the activity of cyclins and cyclin-dependent protein kinase complexes (Cdks)
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and a mitosis promoting factor (MPF). When MPF activity is high, the cell progresses

through the cycle. When it is low, progression stops [112]. Each phase of the cell cycle is

controlled by a different cyclin/Cdk complex: G1 is controlled by cyclin D/Cdk4-6, G1/S

transition by cyclin E/Cdk2, S phase by cyclin A/Cdk2 and G2/M transition by cyclin

B/Cdk1 [83]. The link between the circadian clock and the cell cycle is due to the regu-

lation of different Cdks by several molecular clock components. It has been reported that

BMAL1/CLOCK activates the transcription of the kinase WEE1 to regulate the G2/M tran-

sition [105]. The circadian clock, via the protein REV-ERBα, regulates the transcription of

p21, which inhibits Cdk2 and blocks the G1/S transition [73]. The circadian clock is also

involved in direct control of DNA damage and apoptosis pathways by virtue of its regulation

of Chk2 and other related factors [62, 23].

Two main approaches have been used to model the coupling between the cell cycle and

the circadian clock. The first approach is to model the molecular machinery of the cell. It is

usually based on ordinary differential equations, where the variables describe the intracellular

molecular concentrations of both oscillators. Chauhan and colleagues constructed such a

model to account for the regulation of mammalian cell cycle progression and its gating by

the circadian clock in the regenerating liver [22]. Zamborszky and colleagues used a minimal

model for circadian rhythms coupled to a cell cycle model that had been originally developed

for the yeast cell cycle. Their model revealed quantized cell cycles and they suggested that

cell size control is influenced by the clock [169]. More recently, Gérard and colleagues used

a detailed computational model for the Cdk network driving the mammalian cell cycle to

study the effect of multiple molecular links to the circadian clock [61]. They characterized

the domains of autonomous periods where the cell cycle can be brought to oscillate to 24

or 48 h periods, and determined conditions for switching between these two patterns of

entrainment.

The second approach is to model a cell population, leaving aside molecular details. This

approach is based on PDEs, especially the category of physiologically-structured models, or

on individual-based models and cellular automata. In these models, the cell cycle is divided

into multiple, discrete phases and the circadian clock is coupled via time-periodic parameters,

such as the transition coefficients or phases duration. Altinok and colleagues used a cellular

automaton model to examine the entrainment of the cell cycle by the circadian clock [3].

Clairambault and colleagues used an age-structured PDE system to model a population

of cells under the control of the circadian clock [26, 27]. The circadian clock was taken

into account through periodic cell cycle phase transition coefficients into the equations (see
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section 1.4 for more details).

Compared to population models, molecular models capture more details of the fine regu-

lation of the cell cycle, and in particular, can predict the effect of mutations on the cell cycle

regulation. However, molecular models rarely describe explicitly dividing cell populations

and it is not clear how growth rates are affected by disruptions at the molecular level.

Here, we present a mathematical model that combines the molecular and the population

levels, to study the influence of the circadian clock on the growth of a cell population. We

study the influence of circadian clock gene mutations on the net growth rate of a dividing

population. We show that disruption of circadian rhythms can lead to abnormal proliferation.

Depending on autonomous cell cycle properties and the nature of the disruption, circadian

clock gene mutations can lead to faster or slower growth rates. We characterize the effect of

circadian clock gene mutations, and show that combined molecular/population model brings

to the dynamics of cell proliferation a picture more complete than a molecular or population

model alone.

2.2 Presentation of the model

Our study focuses on the coupling between the cell cycle and the circadian clock through the

protein WEE1. The combined molecular/population model consists of two coupled systems

of equations: one system of ordinary differential equations that describes the molecular

dynamics of the cell cycle and the circadian clock, and one system of partial differential

equations that describes the growth of a cell population. The molecular model itself is a

coupled system of two core networks, one for the circadian clock, and one for the cell cycle.

According to Nagoshi et al. [114], cultured fibroblasts harbor self-sustained and cell au-

tonomous circadian clocks similar to those operative in the neurons of the suprachiasmatic

nuclei. Circadian gene expression continues during cell division and daughter cells resume

the rhythms of mother cells after mitosis [113]. A recent computational study examined the

effect of cell division of genetic oscillators. It was shown that oscillations are quite resilient

to cell division, and that cell-cell heterogeneity appear to be the main source of variability

observed experimentally [68]. Based on these assumption, we assume that cell cycle divisions

do not alter the molecular concentration of the circadian components, neither their rhythms.

For the circadian clock, we used the model proposed by Becker-Weimann and colleagues

[9]. It consists of seven nonlinear ordinary differential equations describing the concentrations

of Per/Cry mRNA and PER/CRY protein complexes, and Bmal1 /Clock mRNA and protein

55



complexes (yi, i = 1, ..., 7). We recall that this is relatively a simple model that takes into

consideration molecular information and that was used to analyze the roles of feedback

loops on the oscillatory dynamics (more details are included in Section 1.2.3). This model

was used to explore the role of the negative feedback loop created by the transcription

factor complex BMAL1/CLOCK that activates the Period and Chryptochrome genes (Per1,

Per2, Cry1 and Cry2 ) (Figure 2.1A). After several hours, PER and CRY proteins form a

complex in the cytoplasm, go back to the nucleus and downregulate their own synthesis by

inhibiting BMAL1/CLOCK. Once the latter protein complex is inhibited, transcription of

PER and CRY stops. Hence, BMAL1/CLOCK is no longer inhibited and the cycle starts its

process again. The model also includes a positive feedback loop where Bmal1 transcription

is positively regulated by PERs and CRYs because the complex PER/CRY also inhibits the

transcription of Rev-erbα, which inhibits the transcription of Bmal1.

For the cell cycle, we used a system of three ordinary differential equations based on

MPF activity (zi, i = 8, ..., 10). This model was inspired by the model by Tyson and Novak

[117] (more details about the model are presented in Section 1.3.2). The core of Tyson

and Novak model is based on the activity of the cyclin-dependent protein kinase complexes

CyclinB/Cdk1 (also called MPF for Mitosis Promoting Factor), which are the engine needed

to start DNA replication and mitosis. The cell cycle is divided into three phases: G1, S/G2,

and M. Transitions from one phase to the other depend on the concentration of MPF and its

enemies. When the activity of MPF is high, the cell progresses through the cell cycle; when

it is low, the cell blocks its progression. Each phase transition of the cycle is regulated by

specific enemies and helpers, which decide whether MPF will win or lose. Transition from

G1 to S is governed by the antagonistic interaction between MPF and its enemies APCG1

and CKI. In the G2/M transition, the enemy of MPF is the tyrosine kinase WEE1, which

can inactivate Cdk1. At cell division, or M to G1 transition, MPF activity shuts down to let

the cell exit mitosis and enter the G1 phase. The helper molecule for this transition is the

APCM complex, which promotes the degradation of CyclinB. In the model, three players

are included explicitly: MPF (z8), WEE1 (z9) and the inhibitor of MPF (z10). We supposed

that cells enter S/G2 phase when MPF increases above a fixed threshold (θ1), enter mitosis

(M phase) when MPF activity rises above that of WEE1, and divide when MPF reaches

back a low threshold level (θ2), as it happens during mitosis. Even though the cell cycle

model presented here is not quantitative due to the small number of kinetic parameters,

it still reproduces a correct qualitative behavior of the cell cycle dynamics. Since we were

interested in the effects of coupling the circadian clock to the cell cycle through the protein
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(A) (B)

Figure 2.1: (A) Scheme of the circadian clock network: the activated heterodimer
BMAL1/CLOCK (BMAL1?, y7) activates Per2 and Cry genes, which produce Per2/Cry
mRNA (y1). PER2 and CRY proteins are synthesized and bind in the cytosol to form a
complex (y2) to be transported into the nucleus (y3). This complex inhibits the activity
of BMAL1/CLOCK complex, thus destroying its own source of transcription and closing
the negative feedback loop. The nuclear complex PER2/CRY (y3) also activates Bmal1
transcription, which produces an increase in Bmal1 mRNA (y4), and cytosolic protein con-
centration (y5). The BMAL1/CLOCK complex is then transported to the nucleus (y6),
where it is activated. The activated BMAL1/CLOCK complex (BMAL1?, y7) restarts the
activation process of Per2/Cry. (B) Schematic representation of the coupling between the
cell cycle and the circadian clock through the protein WEE1 (z9) [105]. In the model, the
cell cycle is divided into three successive phases G1, S/G2, M. Transitions from one phase
to another depend on the activity of MPF (z8). For cells to leave G1 and enter S/G2, MPF
activity must exceed a fixed threshold θ1 = 0.09. For cells to leave S/G2 and enter M phase,
MPF activity must exceed that of WEE1 (z9). In the M phase, MPF activates its inhibitor
(z10), which represses MPF activity, letting it shut down and forcing the cell to exit mitosis.
Division occurs once MPF activity reaches a low threshold level θ2 = 0.06. Coupling between
the cell cycle and the circadian clock is achieved by the transcriptional activation of Wee1,
which induces WEE1 activity (z9) by the active BMAL1/CLOCK complex (y7).
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WEE1, we only considered the antagonistic relation of WEE1 and MPF to avoid simulation

artefacts, which may come from other interactions that are not related to our study. Our

model reproduces well the evolution of MPF activity, which oscillates in an antagonistic way

with the activity of WEE1. Once MPF activity surpasses WEE1 activity, it activates its

inhibitor (variable z10 in our model, which can be associated to APCM in the Tyson and

Novak model, Figure 1.6 in Section 1.3.1) to help shutting down its own activity and forces

the cell to exit mitosis.

The full, 10-variable molecular system, reads

dy1

dt
=

ν1b(y7 + c)

k1b(1 + ( y3

k1i
)p) + y7 + c

− k1dy1, (2.2.1)

dy2

dt
= k2by

q
1 − k2dy2 − k2ty2 + k3ty3, (2.2.2)

dy3

dt
= k2ty2 − k3ty3 − k3dy3, (2.2.3)

dy4

dt
=

ν4by
r
3

kr4b + yr3
− k4dy4, (2.2.4)

dy5

dt
= k5by4 − k5dy5 − k5ty5 + k6ty6, (2.2.5)

dy6

dt
= k5ty5 − k6ty6 − k6dy6 + k7ay7 − k6ay6, (2.2.6)

dy7

dt
= k6ay6 − k7ay7 − k7dy7, (2.2.7)

dz8

dt
=

k0mpfk
n
1mpf

kn1mpf + zn8 + szn10

(1− z8)− dwee1z9z8, (2.2.8)

dz9

dt
=

kactw
kactw + dw1

(cw + Cy7)+( kactw
kactw + dw1

− 1
) kinactwzn8 z9

kn1wee1 + zn8
− dw2z9, (2.2.9)

dz10

dt
= kact(z8 − z10). (2.2.10)

The dynamical variables of the circadian clock are: y1 Per2 or Cry mRNA and proteins; y2

PER2/CRY complex (cytoplasm); y3 PER2/CRY complex (nucleus); y4 Bmal1 mRNA; y5

BMAL1 cytoplasmic protein; y6 BMAL1 nuclear protein; y7 Active BMAL1; The dynamical

variables of the cell cycle are: z8 Active MPF; z9 Active WEE1; z10 Active MPF inhibitor.

For the cell population system, we used age-structured equations as described in Section

1.4. The molecular model entrains the cell population system through cell cycle phase
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transition rates, which depend on an average molecular state of the cells. The age-structured

system tracks the time elapsed by cells in each cell cycle phase [28, 26, 38]. We divided the

cell cycle model into three phases corresponding to the three phases of the molecular model:

G1, S/G2, and M phases. The equations read

∂tni(t, x) + ∂xni(t, x) +Ki(y, z)ni(t, x) = 0, (2.2.11)

ni+1(t, 0) =

∫ ∞
0

Ki(y, z)ni(t, x)dx, (2.2.12)

for i = 1, 2, and

n1(t, 0) = 2

∫ ∞
0

K3(y, z)n3(t, x)dx, (2.2.13)

The variable ni(x, t) represents the density of cells in phase i (phase 1: G1; phase 2:

S/G2; phase 3: M). The variable x represents the time spent by a cell in a phase. The

parameter Ki is the transition rate from phase i to the next phase. The transition between

phase i = 3 and phase i = 1 marks the cell division, which accounts for the coefficient 2 in the

boundary condition for n1. Each transition rate Ki depends on an average molecular state

of the cells. The molecular state is given by the coupled systems of ODEs for the circadian

clock and the cell cycle (Equations 2.2.1–2.2.10). The functional form of the transition rates

is a Goldbeter-Koshland function [65]:

K(y, z) =
2yJi

z − y + zJa + yJi +
√

(z − y + zJa + yJi)2 − 4yJi(z − y)
. (2.2.14)

This function has been used to generate a switch behavior [117]. If the ratio y/z becomes

larger than one, the function switches to the upper state and the transition occurs. Ja and Ji

are two constants that determines the stiffness of the switch, if they tend to zero, the switch

tends to a step function. The transition rate from G1 (i = 1) to S/G2 (i = 2) is switched

ON when the concentration of MPF reaches a certain threshold value θ1 that instructs the

cell to start DNA synthesis (K1 = K(z8, θ1)). The G2 to M (i = 3) transition rate depends

on the balance between MPF and WEE1. The cell is blocked in S/G2 and cannot transit

to mitosis until MPF concentration exceeds that of WEE1 (K2 = K(z8, z9)). The transition

from M to G1, and cell division, occur when the activity of MPF goes back to baseline level
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(K3 = K(θ3, z8)). The total cell number in each phase is given by

Ni(t) =

∫ ∞
0

ni(t, x)dx, (2.2.15)

i = 1, 2, 3 and the total cell number is N(t) =
∑3

i=1Ni(t).

2.3 Results

2.3.1 Entrainment properties

We first studied the influence of the coupling strength between the circadian clock and the

cell cycle. The coupling describes the BMAL1/CLOCK-mediated rate of WEE1 activation

(parameter C in equation 9). Cell cycle durations reported in the literature range from

around 8 h for fast dividing lymphocytes to more than 60 h for slow tumor cells [107]. The

characteristic division times of most mammalian cells coincide with the 24 h period of the

day. To see how cells could entrain to the circadian clock period, we chose a cell cycle with

an autonomous period (period without coupling to the circadian clock) close, but not equal

to 24 h. The cell cycle period was set by scaling the time in the cell cycle equations to obtain

the right period. This means that all kinetic events (activation and deactivation) are scaled

uniformly. We simulated the influence of the coupling on a cell cycle with an autonomous

period of 18 h, for different coupling strengths C = 0, 0.5, 1, 1.5. We observed that when the

coupling strength increases, the period of the cell cycle increases (Figure 2.2). This behavior

was expected for two reasons: (i) WEE1 blocks the cell cycle in G2 phase, and hence slows it

down, and (ii) the period of entrainment of the circadian clock is longer than the autonomous

period of the cell cycle.

We then asked whether coupling to the circadian clock always slows down the cell cycle,

or whether it could speed it up. To answer this question, we looked at the influence of the

coupling strength on the cell cycle for autonomous cell cycle period ranging from 8 to 60 h.

Our simulations led to different modes of locking between the circadian clock and the cell

cycle. For certain combinations of coupling strength and autonomous periods, the cell cycle

can entrain to the circadian clock with a rational period ratio, referred to as n:m phase-

locking or entrainment (Figure 2.3A). For a n:m locking, the cell divides n times each m

days. These regions of the coupling strength/autonomous periods are called Arnold tongues

[124]. Arnold tongues show that the cell cycle can phase-lock to a wide range of orders with
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Figure 2.2: Cell cycle dynamics with coupling to the circadian clock. Autonomous period
of the cell cycle is equal to 18 h in this example. Increasing the coupling strength tends to
regulate the cell cycle to 24 h. Coupling strength: (A) 0, (B) 0.5, (C) 1, (D) 1.5.
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Figure 2.3: (A) Arnold tongues showing the regions of n:m entrainment for different coupling
strengths and autonomous periods. Each region corresponds to an order of entrainment. The
order n:m means that cells divide n times every m days. Hence, the 1:1 phase-lock region
contains all cell cycles that are entrained to one division per day, or a cycle of 24 h, under
an appropriate coupling strength. (B) The 24h/T’ vs T plot for a fixed coupling strength
(C = 1.2) has a characteristic shape, the devil’s staircase [124]. T’ is the period after
entrainment by the circadian clock and T is the autonomous period of the cell cycle.

m up to 5. 1:1 and 1:2 phase-locks have the widest range of entrainment, but other ratios

can be found for large coupling strengths, such as 2:1, 3:2 and 2:3.

For a fixed coupling strength (C = 1.2), the graph of the domains of entrainment leads

to a devil’s staircase (Figure 2.3B). The devil’s staircase shows the frequencies (in number

of cell cycles per day) of the phase-locked cell cycles as a function of the autonomous period.

Phase-locked frequencies are distributed below (Figure 2.3B, shaded region) and above the

autonomous frequencies (white region), indicating that entrainment by the circadian clock

can either slow down, or speed up the cell cycle. The cell cycle is accelerated for intervals

of autonomous periods above 24 and 48 h. Therefore, although in our model the circadian

clock only acts as a break for cell cycle progression, cells with autonomous periods above 24

or 48 h can cycle faster under circadian entrainment.

2.3.2 Effects of coupling on growth rate

The simulations so far show that the circadian clock could make the cell cycle model run

faster or slower, depending on its autonomous period. How does this translate into a net
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Figure 2.4: Effects of coupling the circadian clock to the cell cycle with autonomous period
of 20 h. (A) Without coupling (C = 0): MPF activity follows a 20-h autonomous cycle.
BMAL1/CLOCK period is equal to 24 h. (B) With coupling (C = 1.2): the cell cycle period
is entrained to 24 h. (C) The population in M phase is entrained to 24 h, hence cells have a
division cycle of 24 h instead of 20 h. (D) With coupling, the growth rate does not decrease
even though the cell cycle period becomes longer.
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Figure 2.5: Effects of coupling on the growth rate. (A) Present model. (B-C) Effects of
coupling on the growth rate with other models chosen from literature for the circadian clock:
Mirsky et al. [108] (B), and Leloup et Goldbeter [94]) (C).
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growth rate in a dividing cell population is unclear, and recent analytical results have shown

counter-intuitive effects of periodic forcing on growth rates of proliferating cells. There is no

systematic inequality when comparing growth rates of a population under circadian control

versus a population with a constant, average control [26, 27], but it seems that populations

under circadian control that have a cell cycle period close to multiples of 24 h proliferate

faster [14].

We would expect the cell cycle period to be inversely proportional to the growth rate, as

in the devil’s staircase (Figure 2.3B). If this were so, the knowledge of the clock-entrained

period should be enough to determine the cell population dynamics, without the need of

population models. To test that hypothesis, and examine the effect of coupling on the

growth rate, we made simulations with and without coupling to the circadian clock. Based

on the Arnold tongues for C = 1.2, the autonomous period of the cell cycle was set to 20

h, inside the 1:1 phase-lock region (Figure 2.3A). When coupled to the circadian clock, the

activity of MPF and WEE1 is well entrained and follows a rhythm of 24 h (Figure 2.4A,B).

Driven by the new rhythm of MPF and WEE1, the fraction of dividing cells follows a rhythm

of 24 h (Figure 2.4C). Even though the coupling slows down the cell cycle, the population

growth rate stays practically unchanged (Figure 2.4D). This can be justified by the fact that

not all cells divide at each cycle. Indeed, there was 0.38 cell division per cell per cycle with

coupling, while there was 0.32 cell division per cell per cycle without coupling. Therefore, a

longer cell cycle can be compensated by a larger number of division at each cycle, resulting

in a higher growth rate than would be inferred from the cell cycle duration only.

To gain more insight on this non-intuitive result, we examined the impact of the coupling

strength on the growth rate, for autonomous cell cycle periods ranging from 8 to 60 h.

In absence of circadian coupling, the growth rate decreases almost linearly with the cell

cycle period (Figure 2.5A, solid line). In presence of circadian coupling, the growth rate is

decreased for most of the autonomous cell cycle periods (Figure 2.5A, non-solid lines). A

notable exception is the interval between 20 h and 31 h, where the growth rate is elevated

compared to the growth rate without coupling. This interval corresponds to the range of

1:1 phase-lock (Figure 2.3). For the larger coupling strengths (C ≥ 1.2), the growth rate is

almost constant on this interval, as is to be expected from a synchronized population. The

elevated growth rate in phase-locked populations is not systematic. For autonomous cell

cycle periods above 31 h, which include the 1:2 phase-lock region, the growth rate is almost

constant. In this phase-lock region, the cell cycle is entrained on a 48 h period, and the

growth rate is close to the autonomous growth rate at 48 h. These results are in agreement
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Mutation Circadian clock period
Experimental Simulation

Per2 Arrhythmic [108] Arrhythmic
Bmal1 Arrhythmic [108] Arrhythmic
Cry2 Rhythmic, long period [108] Rhythmic, T = 24.2 h
Per2 /Cry2 Rhythmic [119] Rhythmic, T = 22.7 h

Table 2.1: Effects of mutations on the period of the circadian clock: comparison between
experimental data and simulations.

with previous theoretical studies made with population models which showed that under

circadian forcing, the growth rate was elevated near 24 h. Taken together, these results show

that the growth rate is related to the entrainment of the molecular cell cycle, but that it is

not possible to compare the growth rates with or without coupling [26, 27, 14].

To test the robustness and genericity of these results, we performed the same simulations

on the effect of the coupling strength with two other published models for the circadian clock,

one by Mirsky et al. [108], and the other by Leloup et al. [94]. For the Leloup et al. model,

we used parameter set 4. Both models showed the same qualitative result for the impact of

the coupling strength on the growth rate. The coupling to the circadian clock increases the

growth rate for periods around 24 h, over 48 h and decreases it elsewhere (Figure 2.5B,C).

2.3.3 Circadian clock and cancer

To investigate the role of the circadian clock in tumor development, we looked at the ef-

fect of mutations or deletions of circadian genes on the growth rate. Different types of

mutations were examined, namely Per2, Bmal1, Cry2 mutations and Per2 /Cry2 double

mutations. Per2 and Bmal1 mutations abolished circadian clock rhythmicity, while Cry2

and Per2 /Cry2 mutations maintained rhythmicity, in agreement with experimental data

(Table 2.1 and reference [9], details on simulating mutants are below). Two cases were stud-

ied, one considering an autonomous period of the cycle equal to 28 h and one equal to 20 h.

By choosing an appropriate coupling strength (C = 1.2 for example) to the circadian clock,

these two cycles could be entrained to a 1:1 cycle (Figure 2.3). We looked at changes that

occurred after simulating a mutation in the circadian clock. Finally, to have a more global

view, we investigated the effect of mutations for autonomous periods ranging from 8 to 60

h.

We studied the effect of mutating Per2 gene by considering that PER2 is a main ac-
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Figure 2.6: Effects of mutating circadian genes on the fraction of cells entering mitosis. (A)
Autonomous period of the cell cycle is equal to 28 h. (B) Autonomous period of the cell
cycle is equal to 20 h.

Autonomous period 28 h Autonomous period 20 h
mutation period (h) g.r. (d−1) period (h) g.r. (d−1)
Wild-type 28.0 0.3389 20.0 0.3282
Per2 56.4 0.3364 38.4 0.3954
Bmal1 60.0 0.2938 42.7 0.3558
Cry2 24.2 0.1895 24.2 0.0986
Per2 /Cry2 22.6 0.3348 22.7 0.3289

Table 2.2: Effects of mutations on the period of the M phase (column period) and the growth
rate (column g.r.).
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tor in the negative feedback loop and simulated Per2 mutation by decreasing the rate of

PER2/CRY complex formation (we set k2b = 0.01). Simulations showed that Per2 mutants

have a slower division cycle (Figure 2.6A,B, dash-dotted lines). This mutation tends to in-

crease the growth rate in the case of 20 h autonomous cell cycle and keeps it almost equal to

that of wild type cells for autonomous period of 28 h (Table 2.2). Even though the cell cycle

becomes much slower in mutants, in the case of 28 h autonomous period, 1.05 cell divisions

occur during each 56 h-cycle, compared to 0.4 divisions per cycle in wild type cells. This

means that for Per2 mutants, some cells must divide more than once during the cycle and

explains why the mutants proliferate at the same rate as the wild-type. We also supposed

that PER2 activates Bmal1 transcription and simulated Per2 mutation by decreasing Bmal1

transcription rate (we set ν4b = 1.5). Similarly, we obtained that Per2 mutants have a slower

division cycle and an increased growth rate (Figure 2.7 dot-dashed lines).

We simulated Bmal1 knockout by setting the transcription rate of Bmal1 ν4b equal to

0. Simulations showed that this mutation tends to slow the cell division cycle for both 20

and 28 h autonomous period (Figure 2.6A,B, dotted lines). We observed that this mutation

decreases the growth rate for autonomous periods of 28 h and increases it for autonomous

periods of 20 h (Table 2.2).

We simulated deficient Cry2 mutants by decreasing the strength of the negative feedback

loop (the constant k1i was increased to k1i = 0.8). Cry2 mutation preserves the periods of

mitotic divisions (Figure 2.6A,B grey-dashed lines), but decreases the growth rate for both

20 and 28 h-autonomous the cell cycle periods (Table 2.2).

We simulated Per2 /Cry2 double mutants by assuming that Per2 mutation decreases the

rate of PER2/CRY complex formation, and that Cry2 mutation decreases the strength of

the negative feedback loop (we set k1i = 0.8 and k2b = 0.01). Our simulations showed that

these double mutants have recovered a mitotic division cycle similar to that of wild type.

They also have the same growth rate (Figure 2.6A,B, dashed lines; Table 2.2).

Finally, we compared the growth rates for mutants and wild type cells for autonomous

cell cycle periods ranging between 8 and 60 h. Per2 mutation generally increases the growth

rate. Cry2 mutation decreases it, and Bmal1 mutation increases it for autonomous periods

less than 21 h and decreases it elsewhere. Our simulations also predict that Per2 /Cry2

double mutants recover a normal proliferation rate and have approximately the same growth

rate for all autonomous periods of the cell cycle (Figure 2.7).

We tested the robustness and the genericity of these results by performing the same

simulations on the effect of circadian genes mutations with the models proposed by Mirsky
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Figure 2.7: Effects of mutating circadian genes on the growth rate. Mutation of Per2,
assuming its role in the negative feedback loop (dot-dashed line), decreases the growth rate
for periods ranging from 27 to 31 h, for periods larger than 40 h and increases it elsewhere.
Mutation of Per2 assuming its positive regulation of Bmal1 (grey dot-dashed line) increases
the growth rate almost everywhere. Bmal1 knockout (dotted line) increases the growth rate
for periods shorter than 21 h and decreases it elsewhere. Cry2 mutation (grey dashed line)
decreases the growth rate everywhere. Per2 /Cry2 double mutation (dashed line) maintains
a normal proliferation.
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et al. [108] and Leloup et al. [94]. Results given by the model proposed by Mirsky et al. [108]

were consistent with current model. Namely, Per2 mutation increases the growth rate,

Cry1 decreases it, Bmal1 mutation increases it for autonomous periods less than 22 h and

decreases it elsewhere. Simulations on Per and Cry mutations done with the model proposed

by Leloup et al. [94] did not show a difference in growth rate compared to the wild type

(Figure 2.8). These results may be explained by the fact that this model is relatively robust

to parameter variations. For the parameter set 4 in Leloup et al. [94], the circadian clock

was most sensitive to parameters related to Bmal1, for which the effect on the population

growth rate was similar to the current model and the model by Mirsky et al. [108].

Taken together, these results predict a differential effect of certain clock gene mutations,

depending on the autonomous cell cycle period of the cell population. For instance, Per2

mutant populations grow faster when the autonomous period is shorter than 40 h, but can

also grow more slowly if their autonomous period is longer. Other mutations, such as Cry2,

systematically slow down the population growth rate.

These results can be explained by looking at the impact of mutations on the MPF/WEE1

dynamics, which dictates the rhythm for cells to enter into mitosis and then divide. Mutation-

induced change in BMAL1/CLOCK dynamics, either its period or concentration, directly

influences WEE1 activity and the cell cycle dynamics. For example, in case of a 28 h au-

tonomous period, even though the cell cycle becomes longer for Per2 mutants, the growth

rate does not change.

Per2 mutation produces an arrhythmic clock with low BMAL1/CLOCK concentration

(Figure 2.9B, dash-dotted line). A comparison of MPF/WEE1 dynamics between mutants

and wild type cells shows how the transition rates for the M phase differ (Figure 2.10). For

Per2 mutants, the transition rate is at a high level for a longer time. This means that

even though the cell cycle is longer, much more cells will have the time to enter M phase

and divide. This explains why growth rates are similar in Per2 mutants, even though the

cell cycle period is longer. For Cry2 mutants, growth rate decreases. Cry2 mutation leads

to higher rates of BMAL1/CLOCK, which in turn increases WEE1 activity (Figure 2.9B,

grey-dashed line). Increasing WEE1 activity will decrease the activity of MPF (Figure 2.9A,

grey-dashed line), which means that cells are blocked in G2 phase for a longer time and are

prevented from transiting into mitosis. A comparison of the transition rate between wild

type and Cry2 mutants shows that transition rate for wild type cells stays on a high level

for a longer time than for mutant cells (Figure 2.11).
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Figure 2.8: Effects of mutating circadian genes on the growth rate. Simulations were per-
formed with other models chosen from literature for the circadian clock (Mirsky et al. [108]
(A), and Leloup and Goldbeter [94] (B)). Both models gave a result for Bmal1 mutants simi-
lar to our result, Bmal1 mutation increases the growth rate for autonomous periods less than
22 hours and decreases it elsewhere. For other types of mutations, the first model is more
consistent with our model. It gave similar result for Per2 mutants, Per2 mutation increases
the growth rate (dot-dashed line (A)). Results for Cry1 mutation were also in agreement
with our results. Cry1 mutation (grey solid line (A)) seems to decrease the growth rate for a
large interval of autonomous periods. Results for Cry2 mutation are not in agreement with
ours, since Cry2 mutation (grey dashed line (A)) seems to increase the growth rate and do
not decrease it as it was predicted by our model. Simulations on Per and Cry mutations
done with the model proposed by Leloup et al. did not show much difference for the growth
rate compared to wild type cells (dot-dashed and grey solid lines (B)).

Mutation Circadian clock rhythmicity
Current Mirsky et al.

Per2 Arrhythmic Arrhythmic
Bmal1 Arrhythmic Arrhythmic
Cry2 Rhythmic, T = 24.2 h Rhythmic, T = 32.1 h
Per2 /Cry2 Rhythmic, T = 22.7 h Arrythmic
Cry1 Arrhythmic Arryhthmic

Table 2.3: Effects of mutations on the period of the circadian clock: comparison between
the current model [9] and the model of Mirsky et al. [108].
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Figure 2.9: Effects of mutating circadian genes. (A) MPF activity under different clock
mutations. (B) BMAL1/CLOCK activity under different clock mutations, current model [9].
(C) BMAL1/CLOCK activity under different clock mutations, model of Mirsky et al. [108].

Mutation BMAL1/CLOCK
Current Mirsky et al.

Per2 Lower Lower
Bmal1 Lower Lower
Cry2 Higher Lower
Per2 /Cry2 Similar Lower
Cry1 Higher Higher

Table 2.4: Effects of mutations on the BMAL1/CLOCK concentration compared to wild
type: comparison between the current model [9] and the model of Mirsky et al. [108].
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Figure 2.10: (A) Per2 mutants. (B) Wild type cells.
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Figure 2.11: (A) Cry2 mutants. (B) Wild type cells.
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2.4 Discussion

2.4.1 New insight on the regulation of the cell cycle by the circa-

dian clock

We developed a combined molecular/population mathematical model to study how the cou-

pling of the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating

cell population. The model has the novelty of combining both, intracellular and population

levels. We investigated the influence of coupling on the period of the molecular cell cycle

and on the growth rate of the population. The molecular model displays wide ranges of

entrainment to the circadian clock, where there is a n:m ratio in the number of cell cycles

and the number of circadian oscillations. We found that molecular information about the cell

cycle was not always sufficient to predict how the growth rate in a dividing cell population

is affected. The combined molecular/population could predict an increase in growth rate

in Per2 mutants that could not be explained by the molecular model alone. We used the

combined model to look at the influence of circadian clock gene mutations on the popula-

tion growth rate. We found a differential effect of clock gene mutations, depending on the

autonomous cell cycle period of the cell population.

2.4.2 Two coupled oscillators

We examined the influence of coupling the cell cycle to the circadian clock on the num-

ber of cell cycle divisions per day. We showed that for certain combinations of coupling

strength and autonomous periods, the cell cycle can entrain to the circadian clock with a

rational period ratio, referred to as n:m phase locking or entrainment. These regions in

the coupling strength/autonomous periods space are the Arnold tongues already introduced

(Figure 2.3A). Gérard and colleagues characterized domains of entrainment to 24 and 48

h periods [61], which correspond to 1:1 and 1:2 phase-locking, respectively. While their

model and the current model both predict wide ranges of 1:1 and 1:2 entrainment, there are

small differences. In the current model, the 1:2 entrainment region is larger than the 1:1,

while the converse is true for the model by Gérard and Goldbeter ([61], their Figure 4B, our

Figure 2.3A). In the current model, 1:2 entrainment is observed at large coupling strength

in a autonomous period range where 3:2 occurs (around autonomous periods of 36 h). It

looks like that in the Gérard and Goldbeter model, the 1:1 entrainment takes over for larger

coupling strengths. Recently, Feillet et al. used multispectral imaging of single live cells and
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mathematical modeling to investigate how the temporal organization of cell division at the

single cell level produces daily rhythms at the population level [47]. They demonstrated that

there are multiple coexisting robust oscillatory dynamical states of the coupled clock and

cell cycle in proliferating mammalian cells, namely 1:1, 5:4 and 3:2 phase locking states. We

have characterized a wide range of entrainment modes, including high order phase-locking

(3:5, 4:5, 5:4, 5:3), which is consistent with the experimental data of Feillet et al. and which

may partly explain the observed quantized cell cycle times discussed previously [169]. The

devil’s staircase provides a way to predict the frequency of cell divisions as a function of the

autonomous cell cycle period. Although the circadian clock acts as a break by activating the

inhibitor WEE1, for certain autonomous periods, the cell cycle frequency can still be higher

with the clock than without (Figure 2.3B).

2.4.3 Modulation of population growth rate by the clock

We investigated the influence of coupling on the growth rate for autonomous periods of the

cell cycle varying from 8 to 60 h. Clairambault and colleagues [27] showed, using population

models, that there is no general inequality between growth rates with and without coupling

to the circadian clock. Bernard et al. [14] found that cells under circadian control that have

an interdivision time close to multiples of 24 h proliferate faster. Here, we showed that

coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and

above 48 h. For most other periods, the growth rate is decreased. These results could not

have been obtained based only on the molecular model, which predicted a smaller growth

rate for autonomous periods just below 24 h.

2.4.4 Effect of mutating clock genes on the growth rate

We investigated the effect of single or double circadian clock gene mutations on a cell pop-

ulation growth rate. Fu and colleagues showed that loss of Per2 functions increased tumor

development [59]. The roles of PER2 in the circadian clock mechanism have been unclear.

It is usually considered as a main actor in the negative feedback loop, repressing the activity

of BMAL1/CLOCK through the complex PER2/CRY. But some studies also suggest that

PER2 activates Bmal1 transcription in an indirect manner [145, 168, 2]. We first examined

Per2 mutation by considering that PER2 plays a repressive role in the negative feedback

loop. Our simulations are in agreement with experimental results and show that Per2 muta-

tion increases the growth rate for a wide range of autonomous periods of the cell cycle. When
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a positive action of PER2 on Bmal1 was assumed, we also obtained an increased growth rate

for this mutation. We examined Cry2 mutation. We showed that Cry2 mutation decreases

the growth rate for almost all periods of the cell cycle. This may explain the experimental

results obtained by Matsuo and colleagues, who showed that the weight of regenerating liver

in Cry deficient mice was significantly lower than in wild type mice [105].

We examined Per2 /Cry2 double mutation. We showed that Per2 /Cry2 double mutants

recover normal proliferation rates and have similar growth rates for all autonomous periods

of the cell cycle. Oster et al. showed that inactivation of Cry2 gene in Per2 mutant mice

restored circadian rhythmicity as well as normal clock gene expression patterns [119]. They

showed that both the period and amplitude of Bmal1 (also of Per1 and Cry1 ) expressions in

Per2 /Cry2 double mutant animals were comparable to those of wild types. Hence, if both

period and amplitude of Bmal1 are comparable to those of wild type, WEE1 profile will not

be changed for these double mutants, preserving normal dynamics for the cell cycle.

We also explored Cry1 mutation and Cry1 /Cry2 double mutation, based on the assump-

tion that CRY1 plays a more important role in the negative feedback loop [91]. In the current

model, these mutations completely abolished cell proliferation (data not shown). There is

no experimental evidence that disruption of the circadian clock can totally prevent cell cycle

progression, and it is likely that the cell cycle relies on factors not included in the current

model to proceed through division.

2.4.5 Robustness of the results

To test the robustness of our results, we performed our main simulations with two other

models for the circadian clock (Mirsky et al. [108], Leloup et al. [94]). We simulated the

effect of coupling and circadian genes mutation on the growth rate. Both models show the

same qualitative result that we obtain for the impact of the coupling on the growth rate.

Results on mutating circadian genes obtained with the model proposed by Mirsky et al.

were more consistent with our results. The model proposed by Leloup et al. did not show

a difference between mutated and wild type cells. This may be explained by the fact that

the model proposed by Mirsky et al. was designed to study the effects of mutating circadian

genes, whereas the model proposed by Leloup et al. was designed to generate sustained

oscillations, which makes it more robust about parameter variation.

The current circadian clock model [9] shows limitations in reproducing experimental data

that are inherent to models with simplifying assumptions and distinct molecular species
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lumped together. To check how the simplifying assumptions affect the results, we made a

detailed comparison between the current model and the model by Mirsky et al. [108] on

the effects of circadian gene mutations. What it is critical in our model is the effect specific

mutations on the activity of BMAL1/CLOCK (period and concentration), which regulates

directly WEE1 and the cell cycle. Hence, we simulated the effects of circadian gene mutations

on BMAL1/CLOCK using Mirsky et al. model (in the same way the authors did it in the

original study, Table S3 in [108]) and compared the results with those obtained by the

current model. Both models showed similar effects for Bmal1 and Per2 mutations. Bmal1

mutation results in an arrhythmic clock with zero concentration of BMAL1/CLOCK and

Per2 mutation results in an arrhythmic clock with a low BMAL1/CLOCK concentration

(Figures 2.9B,C and Tables 2.3, 2.4). Consequently, Bmal1 and Per2 mutations have similar

effects on the growth rates (Figures 2.7 and 2.8A, dotted and dash-dotted lines). Cry2

mutation results in a rhythmic clock with a longer period for both models. However, the

period obtained with the model of Mirsky et al. is longer than with the current model

(T = 32.1 h vs T = 24.2 h, Table 2.3). The effect on BMAL1/CLOCK concentration is

different: the Mirsky et al. model showed a lower concentration compared to wild type,

while the current model showed a higher concentration (Figures 2.9B,C and Table 2.4). This

results in different growth rates for the two models (Figures 2.7 and 2.8A, grey dashed lines).

Per2 /Cry2 double mutation results in a rhythmic clock with the current model (T = 22.7

h), with a concentration similar to wild type, while it results in an arrhythmic clock using

the model of Mirsky et al. (Figures 2.9B,C and Tables 2.3, 2.4). Finally, both models gave an

arrhythmic clock for Cry1 mutation, with higher BMAL1/CLOCK concentration compared

to wild type (Figures 2.9B,C, grey solid line).

The main differences between the two models are the effects of Cry2 and Per2 /Cry2

mutations. Mirsky et al. predict a longer period for Cry2 mutants, which may be more

realistic in the case of lung explants and fibroblasts. The model by Mirsky et al. predicts

an arrhythmic clock for Per2 /Cry2 double mutation, in contrast to the current model and

experiments showing normal rhythmicity for these double mutants [119] . The model by

Forger and Peskin also predicts a rhythmic clock for this double mutation [58]. The main

limitation of the current model is the way Cry1 mutation and Cry1 /Cry2 double mutation

are approached. Both are simulated in the same way, by decreasing further the strength

of the negative feedback loop. This leads to an arrhythmic clock with high constitutive

BMAL1/CLOCK concentration inhibiting cell proliferation, which cannot be supported by

experimental data (data not shown). Results given on the growth rate by the model of Mirsky
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et al. on Cry1 mutation seems more coherent. Cry1 mutants have a decreased growth rate

compared to wild types for a wide interval of autonomous periods of the cell cycle (Figure

2.8A, grey solid line).

2.4.6 Conclusion

Combining a molecular model to a population model offers new insight on the influence of

the circadian clock on the growth of a cell population. Disruption of the circadian clock can

increase or decrease the growth rate, as well as the period of mitotic divisions, depending

on which clock gene is affected. In some cases, even though the cell cycle slows down, the

growth rate can still increase, making the combination of a molecular model and population

model unavoidable to study the effect of circadian clock disruption. This can have beneficial

impacts on chronotherapy, which aims to develop new strategies in cancer therapies by a

better understanding of the circadian clock and its impact on cell proliferation.

The combined model presented in this study is the first step in developing a fully multi-

scale model for the interaction between the circadian clock and the cell cycle. The multiscale

model describes a cell population p structured with a molecular content (y, z) describing the

circadian clock and the cell cycle. Heterogeneity among cells can be fully taken into account

in a multiscale model, but at the cost of a high-dimensional phase space (here 10D). Even

though it has limitations, the current molecular model is simple enough to be amenable to

a multiscale description, which, in our view, is essential.

Several studies have shown that the tolerance and the toxicity of drugs varies according

to their administration time [52, 82, 99]. Clinical studies showed that compared to standard

chemotherapies, chronomodulated chemotherapies, which aim to deliver drugs at an optimal

time of the day, could be more efficient and better tolerated by patients [54, 53]. In a

recent work, Bernard et al. [12] used a simple cell population model under chronomodulated

treatment and developed a quantitative method to identify biological parameters important

for the successful design of a chronotherapy strategy. They found that optimal times depend

not only on the circadian status but also on the cell cycle kinetics of the tumor. They

suggested that the length of the cell cycle is important to determine the best treatment

times and intervals. For fast growing tumors, with short S phase, administering a drug

that targets the S phase of the cell cycle at 28.8 h intervals may be safer than treating

at 24 h intervals, and that for slow growing tumors, with a long S phase, treating at 24

h intervals would be the best option. The circadian clock is often disrupted in advanced
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stage cancers, perhaps because this gives a competitive advantage to growing tumor cells

[143]. The current model could be useful to predict how the cell cycle is modified following

circadian clock disruption. Combined with the method proposed by bernard et al. [12], this

may be of great importance to determine the right time for drug delivery. By taking into

account complex interactions between the cell cycle, the circadian clock and the treatment,

the combined molecular/population model can be a helpful tool for chronotherapy.
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Chapter 3

A particle method for

high-dimensional transport equations:

application for the regulation of the

cell cycle by the circadian clock

3.1 Introduction

In the previous chapter we have presented a model that couples the circadian clock and

the cell cycle through transition coefficients in an age-structured equation. Though this

model had the novelty of capturing the influence of intracellular dynamics on the growth

rate of cells, it lacks a multiscale description and cannot take into consideration, for example,

intracellular heterogeneity among cells. In this chapter we present a multiscale version of

the previous model and a numerical method for solving it. This is done by structuring

our transport equation by the molecular contents of the coupled cell cycle-circadian clock

oscillator. This means that instead of taking a transport equation of the form

∂tρ(a, t) + ∂aρ(a, t) = f(x)ρ(a, t),

where a is the time spent by cells in a phase of the cycle and f(x) is some function that

depends on the intracellular components x = (x1, · · · , xd) as in chapter 2, we now take an
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equation of the form

∂tρ(x, t, λ) +∇x ·
[
u(x, t, λ, ψ)ρ(x, t, λ)

]
= L[x, λ]

(
ρ(x, t, λ)

)
.

Partial derivatives for the convective term in this latter equation are now taken with respect

to the molecular contents x and the space where we solve this equation is a d-dimensional

space with d the number of molecular components xi; this is why we call it a molecular-

structured equation. Our model becomes high-dimensional, with d typically larger than 10,

and classical numerical methods such as finite volumes/differences are not appropriate for

solving this transport equation. We circumvent this difficulty by using a particle method.

Particle methods have arisen as an alternative to classical numerical methods for solving

high-dimensional problems. They are used in different applications, for example the in-

compressible Euler equations in fluid mechanics [81, 95, 96], the Vlasov equation in plasma

physics [15, 63] and in turbulence models for reactive flows [127, 126]. The computational

implementation of particle methods is conceptually simple. At a given time, the solution

is represented by a large number of particles, each having its own properties, for example

position and weight. These properties evolve in time according to a system of stochastic

or deterministic differential equations and the classical solution to the PDE is obtained by

reconstructing the particles distribution. Theoretically, the solution is thought as a linear

combination of Dirac masses

ρ(x, t) =
N∑
j=1

αj(t)δ(x− xj)

where αj is the weight of particle j, xj its position (state) and N is the total number of

particles. To obtain a classical solution, one has to update the positions and weights of

particles and then regularize the Dirac masses. The overriding strength of particle methods

is that, for N fixed, the size of the system increases only linearly with the dimensionality

of the space. This means that if we have a structured equation with dimension d, we have

to solve d × N ODEs/SDEs. Since recovering a classical solution needs a regularization

of the dirac distribution, the performance of particle methods depends also on the quality

of the regularization procedure. For generalities about particle methods, one can refer to

[121, 133, 30].

Solving our equation using the particle method becomes natural, since each particle can

be associated to a single cell. We make several improvements on the model presented in
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Chapter 2. Here, we consider a cell population that is heterogeneous, which means that each

cell has its own properties, namely different molecular concentrations and intrinsic cell cycle

period. We assume that cells are coupled to the same master circadian clock and that cells

are connected together by assuming that the rate of Per/Cry mRNA production of each cell

is dependent on the average Per/Cry production of all cells. As for the previous model, we

consider that division is dependent on the MPF-WEE1 antagonistic activities. In addition,

we assume that cell growth is dependent on the total number of cells. Specifically, we consider

a limited growth by assuming that MPF activity decreases with increasing number of cells.

These additional assumptions, and the fact that the transport equation is structured by

molecular concentrations confer to the model its multiscale nature.

This chapter is divided into three parts. In the first one, we introduce the structure of

our model and give details about the equations we use. In the second part, we introduce

deterministic particle methods and their mathematical background. In the third part, we

expose a test case for the particle method and the results of our model. In addition we

have developed a code (in C) that is adaptable to different intra-cellular dynamics. This

means that the code we present in the appendix can be used to solve similar hyperbolic type

equations with different convective velocity u.

3.2 Description of the model

3.2.1 Equation without cell birth or death

We have a large collection of cells with state (x, λ) ∈ Ω×Λ ⊂ Rd×Rp, where x is a cellular

dynamical state in an open subset Ω of dimension d and λ a cellular parameter state in an

open subset Λ of dimension p. In our case, x =
(
x1, · · · , xd

)
and λ represent respectively

the set of proteins/mRNAs concentrations and the intrinsic cell cycle period of each cell.

The distinction between the dynamical and the parameter state is that the dynamical state

changes during the lifespan of a cell, while the parameter state is fixed over the lifespan of

the cell, but can vary among cells or when a cell divides. The population is described by its

density ρ(x, t, λ). The evolution of density is described by a nonlinear, nonlocal first-order

hyperbolic equation

∂ρ

∂t
(x, t, λ) +∇x ·

[
u(x, t, λ, ψ)ρ(x, t, λ)

]
= 0. (3.2.1)
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We assume that the dynamics of the cellular state x is governed by a deterministic system

of ODEs, represented by the term u(x, t, λ, ψ), that depends on the cellular state x and λ

and on m population-level statistics ψ : Ω× R× Λ→ Rm where

ψi = 〈ρ,Φi〉 =

∫∫
Ω×Λ

ρ(x, t, λ)Φi(x, t, λ)dxdλ, i = 1, · · · ,m (3.2.2)

with Φi : Ω× R× Λ→ R, i = 1, · · · ,m taken such that ψi is finite.

3.2.2 Equation with cell birth and death and parameter variation

Equation 3.2.1 with a source term has the following general form

∂ρ

∂t
(x, t, λ) +∇x ·

[
u(x, t, λ, ψ)ρ(x, t, λ)

]
= L[x, λ]

(
ρ(x, t, λ)

)
. (3.2.3)

L[x, λ] is an operator describing the population relative growth rate. We impose that L

be only determined by the cellular state (x, λ) and not by the population statistics ψ. The

fact that the growth rate does not depend on the population statistics ψ is voluntary, as

cells rely on their internal state only to determine their fate.

We seek solution of the form

ρ̃(x, t, λ) =

N(t)∑
j=1

αj(t)δ(xj(t),λj(t)).

The approximate solution ρ̃ lies in a measure space M(Rd × [0, T ]×Rp). When computing

the solution, we can choose to aggregate several cells in single states, or keep all cells at

their individual states, or use a mixture of aggregation and individual-state description. We

favored the individual-state description. This implies that αj ≡ 1 for all i = 1, · · · , N , and

that the total cell number is N(t). The solution has the form

ρ(x, t, λ) =

N(t)∑
j=1

δ(xj(t),λj(t))

.

We distinguish between two kinds of growth rates, deterministic and stochastic. For the

deterministic growth rate, cell divides when (x, λ) crosses an open subset of a d − 1

dimensional smooth manifold Γ ∈ Ω, while for the stochastic growth rate, cells divide
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with a finite rate r(x, λ). For the cellular state to cross Γ, the characteristic lines must be

transversal to Γ, i.e.

u(x, t, λ) · ∇F (x) 6= 0,

where F defines implicitly Γ, with F (x) = 0 for all x ∈ Γ. In particular u(x, t, λ) must not

vanish on Γ, and the crossing must always occurs in the same direction: u(x, t, λ) · ∇F (x)

has the same sign in all connected subsets of Γ. Γ lies in Ω but can depend on λ as parameter

(Figure 3.1). When the cell crosses Γ the growth rate is given by

r(x, λ) = δ(x∈Γ).

In practice, defining Γ that satisfies the transversality condition may not be practical, so

we can add a condition that the crossing should be in a specific direction: u · ∇F > 0

or u · ∇F < 0. Cell death is treated in a similar way. In the deterministic case, because

there is a finite number of cells N(t), divisions occur at discrete times. At division time t,

N(t) = N(t−) + 1, and the parameter state of the daughter cells are updated, according to

a probability density p(λ|z) of jumping from state z to state λ.

For the stochastic growth rate, the relative growth rate r(x, λ) is given by a finite

function of (x, λ), with the interpretation that the probability for a single cell to divide

in a small time interval 4t is 4t × r(x, λ). The parameter state can be thought of as a

differentiation marker, and we assume that changes in λ occur only at cell division. The

dynamics on λ is based on [11]. Equation 10 in [11] describes the evolution of a cell density

in a differentiation state space, analogous to the parameter state space here. The evolution

equation is an integral-differential equation of the form

∂ρ

∂t
(t, λ) =

∫
Λ

p(λ|z)R(z)ρ(t, z)dz −R(λ)ρ(t, λ) + r(λ)ρ(t, λ). (3.2.4)

The kernel p(λ|z) is the probability density of jumps from parameter state z to state λ, R is

the rate at which jumps are occurring (the differentiation rate) and r is the growth rate of

the population. Because change in parameter λ occurs only at division, the differentiation

rate is linked to the to growth rate. For instance, if there is no cell death, then R = r, i.e.

differentiation occurs only when there is a cell division.
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Figure 3.1: Deterministic growth condition.

The full equations on (x, λ) now reads

∂ρ

∂t
(x, t, λ) +∇x ·

[
u(x, t, λ, ψ)ρ(x, tλ)

]
=∫

Λ

p(x, λ|z)R(x, z)ρ(x, t, z)dz

−R(x, λ)ρ(x, t, λ) + r(x, λ)ρ(x, t, λ). (3.2.5)

When the jumps in the parameter space are not to large and the dependence of p on z not

too important, we can approximate the integral term by a diffusion. Let σ2(x, z) be the

variance of the jump distribution at z. Then the equation can be approximated as

∂ρ

∂t
(x, t, λ) +∇x ·

[
u(x, t, λ, ψ)ρ(x, t, λ)

]
=

1

2
∆λ ·

[
σ2(x, t, λ)R(x, λ)ρ(x, t, λ)

]
+ r(x, λ)ρ(x, t, λ). (3.2.6)

3.2.3 Intracellular dynamics

Equation (3.2.1) describes the evolution of cells in the space of intracellular components. We

are interested in studying the effect of circadian regulation on the cell cycle. To do that,

we take the intracellular dynamics to be the coupled circadian/cell cycle deterministic ODE

system that we presented in the previous chapter
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dx

dt
= u(x, t, λ, ψ). (3.2.7)

where

u1(x) =
dx1

dt
=

ν1b(x7 + c)

k1b(1 + ( x3
k1i

)p) + x7 + c
− k1dx1 + ksψ1, (3.2.8)

u2(x) =
dx2

dt
= k2bx

q
1 − k2dx2 − k2tx2 + k3tx3, (3.2.9)

u3(x) =
dx3

dt
= k2tx2 − k3tx3 − k3dx3, (3.2.10)

u4(x) =
dx4

dt
=

ν4bx
r
3

kr4b + xr3
− k4dx4, (3.2.11)

u5(x) =
dx5

dt
= k5bx4 − k5dx5 − k5tx5 + k6tx6, (3.2.12)

u6(x) =
dx6

dt
= k5tx5 − k6tx6 − k6dx6 + k7ax7 − k6ax6, (3.2.13)

u7(x) =
dx7

dt
= k6ax6 − k7ax7 − k7dx7, (3.2.14)

u8(x) =
dx8

dt
= λ

((
klmpf+k0mpf exp−ηψ2

)
kn1mpf

kn1mpf+xn8 +sxn10
(1− x8)− dwee1x9x8

)
, (3.2.15)

u9(x) =
dx9

dt
= λ

(
kactw

kactw + dw1
(cw + Cx7) +

( kactw
kactw + dw1

− 1
)kinactwxn8x9

kn1wee1 + xn8
− dw2x9

)
, (3.2.16)

u10(x) =
dx10

dt
= λ

(
kact(x8 − x10)

)
. (3.2.17)

We recall that equations (3.2.8-3.2.14) describe the circadian oscillator and (2.2.8-2.2.10)

the cell cycle. Dynamical variables are x1, Per2 or Cry mRNA and proteins; x2, PER2/CRY

complex (cytoplasm); x3, PER2/CRY complex (nucleus); x4, Bmal1 mRNA; x5, BMAL1

cytoplasmic protein; x6, BMAL1 nuclear protein; x7, Active BMAL1; x8, Active MPF; x9,

Active WEE1; x10, Active MPF inhibitor. Coupling of these two oscillators is taken into

consideration in equation (3.2.16) through the regulation of WEE1 by BMAL1/CLOCK (in

the term Cx7, C is the coupling strength). Details about this model can be found in the

previous chapter. The cellular dynamics is now part of a multiscale system, some changes

were added to the system to reflect that cells interact with each other. These changes

are detailed in the coming paragraphs. Peripheral tissues are not known to couple their

circadian clocks. This example of coupling in proliferating cells is taken as an illustration of

the multiscale modeling.
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3.2.4 Population synchronization

Including connectivity between cells is in certain tissues important to maintain a robust syn-

chronized activity. It is known, for example, that neuronal clocks within the the suprachi-

asmatic nucleus SCN form a heterogenous network that must synchronize to maintain time

keeping activity. The coherent output of the SCN is established by intracellular signaling

factors, such as vasointestinal polypeptide [45]. A simple way to induce synchronization in

our model is to make Per/Cry mRNA transcription depends on the average concentration of

Per/Cry among cells. For that, we add to equation (3.2.8) the term ksψ1 := ks〈ρ,Φ1〉 with

ks a coefficient that represents the connectivity strength and Φ1 = x1. Peripheral tissues are

not known to couple their circadian clocks. This example of coupling in proliferating cells is

taken as an illustration of the multiscale modeling.

3.2.5 Variability among cells

Variability among cells arises naturally from the difference in their molecular contents. This

is taken into consideration in our model through the initial states of cells, which can be chosen

randomly. We add another source of variability through the parameter λ. We assume that

each cell has a distinct cell cycle period. This is modeled by multiplying equations (3.2.15-

3.2.17) by a scaling factor λ. Cell division can also induce variability by assigning to each

new born cell an intrinsic cell cycle period that is different from its mother cell. This is taken

into consideration by taking a non trivial distribution p(λ|z).

3.2.6 Cell division

An important aspect of our model is that it takes into account cell division. Cell division is

based on the antagonistic relationship between the mitosis promoting factor MPF and the

protein WEE1. It is assumed that a cell enters mitosis once the activity of MPF surpasses

that of WEE1 and then divides once MPF activity shuts down abruptly. Based on this

mechanism we consider two types of division, one deterministic and one stochastic. The

deterministic division occurs “exactly” every time MPF activity rises above WEE1 activ-

ity and then shuts down. This was taken into consideration by considering a growth rate

r(x, λ) := rd(x, λ) = δ(x∈Γ).

For the stochastic division, we consider that a cell divides with a certain probability

4t× r(x, λ) within a small time step 4t. The division is a function of x and λ that mimics
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the deterministic case. For example, a switch-like function that takes small values on one side

of Γ and large values on the other side could be used. Here we used the Koshland-Goldbeter

switch defined in the previous chapter (see equation 2.2.14).

3.2.7 Limited growth

To make sure the growth is bounded (for physiological and computational reasons), we as-

sume that cell proliferation stops when the total number of cells reaches a threshold value.

We assume that the activation coefficient of MPF is decreasing at an exponential rate pro-

portional to the total number of cells. This is taken into consideration in equation (3.2.15)

by multiplying MPF activation coefficient k0mpf by exp−ηψ2 where ψ2 = 〈ρ,Φ2〉 with Φ2 = 1

(ψ2 = N(t)). When cell number is large enough, MPF activity cannot increase above that

of WEE1, and cell division is blocked.

3.3 Description of the particle method

The theoretical results we present in this section are based on the work of P.A. Raviart [133].

A d-dimensional population equation, in its conservative form, can be written as follows

∂ρ(x, t)

∂t
+

d∑
i=1

∂

∂xi
(ui(x, t)ρ(x, t)) + u0(x, t)ρ(x, t) = f(x, t), x ∈ Rd, t > 0 (3.3.18)

ρ(x, 0) = ρ0(x). (3.3.19)

A weak solution of equation (3.3.18) is a function ρ ∈ L1
loc(Rd × [0, T [) that satisfies the

following integral equality for any test function φ ∈ C1
0(Rd × [0, T [) (space of continuously

differentiable functions with compact support in Rd × [0, T [)∫ T

0

∫
Rd
ρL∗φdxdt =

∫ T

0

∫
Rd
fφdxdt+

∫
Rd
ρ0φ(·, 0)dx

where L∗ is the adjoint of the differential operator L defined by:

Lρ =
∂ρ

∂t
+

d∑
i=1

∂

∂xi
(uiρ) + u0ρ and L?φ = −∂φ

∂t
−

d∑
i=1

ui
∂φ

∂xi
+ u0φ.

The particle method consists of considering even less regular solutions, hence finding a

solution of equation (3.3.18) in the space of measures of subsets on Rd. By definition, a
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function ρ ∈M(Rd × [0, T [) is a measure solution of (3.3.18) if

〈ρ, L?φ〉 = 〈f, φ〉+ 〈ρ0, φ(·, 0)〉 ∀φ ∈ C1
0

(
Rd × [0, T [

)
(3.3.20)

where M(S), for a set S, is the space of measures defined on S and 〈·, ·〉 is the duality

pairing between M(S) and C0
0(S). Equality (3.3.20) makes sense if ρ0 ∈ M(Rn) and f ∈

M(Rn × [0, T [).

The intuition behind the particle method is to start with a distribution of particles that

approximate the initial condition and then follow the evolution in time of the positions and

weights of these particle according to the velocity u and the functions u0 and f . Since

the particle solution is a measure solution, this implies it is irregular. To obtain a solution

in the usual classical sense at a give time T , one has to recover the classical solution with

regularization techniques. Hereafter, we describe the different steps of obtaining the solution

for equation (3.3.18) using the particle method. For the sake of simplicity we consider f = 0.

Step 1: approximation of the initial condition

Given an initial condition of our problem ρ0 ∈ C0(Rd), we would like to chose the initial

distribution of our particles xj and their weights αj so that ρ0
h =

∑
j

αjδ(x−xj) approximates

ρ0. This should be understood as an approximation in the sense of measures, which means

that we are looking for a test function φ ∈ C0
0(Rd) such that

〈ρ0, φ〉 =

∫
Rd
ρ0φdx and 〈ρ0

h, φ〉 =
∑
j

αjφ(xj).

This yields a typical numerical quadrature problem where one would like to approximate∫
Rd
ρ0φ by

∑
j

αjφ(xj). A simple, but not necessarily most efficient, way for choosing αj and

xj can be obtained by using the midpoint quadrature rule. If we partition our domain Rd

into a collection of sets Bj, and place the particles at t = 0 into the centers of mass of each

set: the second-order midpoint quadrature rule leads to the following initial set of particle

distribution: xj = xjc, αj = µ(Bj)ρ
0(xjc), where xjc and µ(Bj) are respectively the center of

mass and the area of set j. Supposing our domain Ω is a d-cube, and dividing it into regular

sets of size h such that xj = jh, the approximation of the initial density reads
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ρ0
h(x) =

∑
j

hdρ0(xj)δ(x− xj). (3.3.21)

This approximation means that if ρ0 ∈ C0(Rd), then we have that for all functions

φ ∈ C0
0(Rd)

lim
h→0
〈ρ0
h − ρ0, φ〉 = 0. (3.3.22)

The proof of this convergence result inM(Rd) can be deduced from the following theorem

concerning quadrature formulas in Rd.

Theorem 5. [133] Let m ≥ 1 be an integer and let p > d
m
, q = p

p−1
, then there exists a

constant C > 0 independent of h such that for all function g ∈ Wm,p(Rd) ∩ L1(Rd) if m ≤ 2

or g ∈ Wm,p(Rd) ∩Wm−1,1(Rd) if m ≥ 3, we have∣∣∣∣∣
∫
Rd
g(x)dx− hd

∑
j

g(xj)

∣∣∣∣∣ ≤ Chm+ d
q

∑
j

| g |m,p,Bj

where Wm,p(Rd) is the Sobolev space of functions which are, together with their deriva-

tives up to order m in Lp(Rd) and | g |m,p,Ω:=

(∑
|α|=m

‖∂αg‖pLp(Ω)

)1/p

is the usual Sobolev

semi-norm.

Using 5, we get that lim
h→0
|
∫
Rd
g(x)dx − hd

∑
j

g(xj) |= 0 for any function g ∈ C0
0(Rd).

Finally the convergence result 3.3.22 follows by taking g = ρ0φ.

Step 2: updating positions and weights

The particles positions Xj(t) (to not confuse between Xj and xj, our notations implies that

Xj(0) = xj) and their corresponding weights αj(t) can be computed at a given time t by

solving the following ordinary differential system:
d

dt
Xj(t) = u(Xj(t), t)

d

dt
αj(t) = −u0(Xj(t), t)αj(t)

Xj(0) = xj and αj(0) = αj
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and the measure solution at a given time t, is given by

ρh(x, t) =
∑
j

αj(t)δ(x−Xj(t)). (3.3.23)

Step 3: classical solution recovery

Solution (3.3.23) is a set of particles with the positions in Ω and weights. To obtain a solution

in the classical sense, one has to regularize the particle solution. This can be done by taking

the convolution product of ρh with a cut-off function ζε ∈ C0(Rd) ∩ L1(Rd) parameterized

with ε such that
∫
Rd ζ(x)dx = 1 and ζε(x) =

1

εd
ζ(

x

ε
). The classical solution is hence defined

as

ρεh(·, t) = ρh(·, t) ∗ ζε =
∑
j

αj(t)ζε(x−Xj(t)). (3.3.24)

Convergence of the regularized particle solution to the classical one is obtained using the

following Lp estimate for the error ρ(·, t)− ρεh(·, t) with 1 ≤ p ≤ +∞

Theorem 6. Assume the following conditions hold

• there exists an integer k ≥ 1 such that

(i)

∫
Rd
ζ(x) = 1 (3.3.25)

(ii)

∫
Rd

xαζ(x)dx = 0 ∀α ∈ Rd and 1 ≤ α ≤ k − 1 (3.3.26)

(iii)

∫
Rd
| x |k| ζ(x) | dx < +∞ (3.3.27)

• the cut-off function ζ belongs to the space Wm,∞(Rd) ∩ Wm,1(Rd) for some integer

m > d.

• the coefficients ui ∈ C0(Rd × [0, T ]) and u1, · · · , ud, u0 + div u ∈ L∞(0, T,W l,∞(Rd))

where l = max(k,m).

Then if ρ0 ∈ W l,p(Rd), there exists a constant C = C(T ) > 0 such that for all t ∈ [0, T ]

‖ρ(·, t)− ρεh(·, t)‖Lp(Rd) ≤ C
(
εk‖ρ0‖k,p,Rd + (h

ε
)m‖ρ0‖m,p,Rd)

)
. (3.3.28)
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We give here a brief description of the proof of the above theorem. For more details one

could refer to [133]. The idea consists of splitting the error ρ(·, t) − ρεh into a sum of two

terms
(
u(·, t)− u(·, t) ∗ ζε

)
+
(
ρ(·, t)− ρ(·, t)

)
∗ ζε and giving an Lp bound for each one. We

start by stating the following lemma

Lemma 7. Assuming there exists a constant k such that conditions 3.3.25-3.3.27 are verified,

then we have for some constant C > 0 and for all function f ∈ W k,p(Rd), 1 ≤ p ≤ +∞

‖f ∗ ζε − f‖Lp(Rd) ≤ Cεk | f |k,p,Rd

Now if ρ0 ∈ W k,p(Rd), it follows from the smoothness of the coefficients ui that ρ belongs

to L∞(0, T ;W k,p(Rd)). Hence applying lemma 7 we get an Lp bound for the first term of

the sum

‖ρ(·, t)− ρ(·, t) ∗ ζε‖Lp(Rd) ≤ cεk | ρ(·, t) |k,p,Rd≤ cεk‖ρ0‖k,p,Rd . (3.3.29)

The constant c needs not to be the same in both inequalities, however to simplify the

notations we kept it the same.

To show the Lp bound for the second term of the sum we remark that

((ρ(·, t)−ρh(·, t))∗ζε)(x) =

∫
Rd
ρ(y, t)ζε(x−y)dx−

∑
j

αj(t)ζε(x−Xj(t)) =
∑
j

Ej(g(x, ·, t))

where Ej(g) =
∫
Bj
g(x)dx − hdg(xj) and g(x,y, t) = ρ0(y) exp(−

∫ t
0
u0(X(s; y, 0)ds)ζε(x −

X(t; y, 0)).

After checking that y→ g(x,y, t) ∈ W 1,m(Rd), we use theorem 5 with p = 1 to obtain

| ((ρ(·, t)− ρh(·, t)) ∗ ζε)(x) |≤ chm | g(x, ·, t) |m,1,Rd .

Now using the smoothness of the coefficients ui we get

| g(x, ·, t) |m,1,Rd≤ chm
∑

|α|+|β|≤m

∫
Rd
| ∂αρ0(y)∂βζε(x−X(t; y, 0)) | dy.

Remarking that the right hand side of the above inequality is a finite sum of a the convolution

products | ∂αρ0(X(t; ·, 0)) | ∗ | ζε | and using the fact that ‖f ∗g‖Lr(Rd) ≤ ‖f‖Lp(Rd)+‖g‖Lq(Rd)

with 1
r

= 1
p
− 1

q
− 1, we get that
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| g(x, ·, t) |m,1,Rd≤ chm
∑

|α|+|β|≤m

‖∂αρ0(X(t; ·, 0))‖Lp(Rd)‖∂βζε‖L1(Rd)

and by remarking that ‖∂βζε‖L1(Rd) ≤ c
ε|β|

and that ‖∂αρ0(X(t; ·, 0))‖Lp(Rd) ≤ ‖∂αρ0‖Lp(Rd)

we finally get

‖((ρ(·, t)− ρh(·, t)) ∗ ζε)(x)‖ ≤ c
(
h
ε

)m
‖ρ0‖m,p,Rd . (3.3.30)

Therefore the proof of the needed Lp bound 3.3.28 is obtained by adding the Lp bounds

inequalities 3.3.29 and 3.3.30 which proves theorem 6.

3.4 Results

3.4.1 2-d test problem

To test the particle method and our code, we consider an advection problem that was studied

in [40, 98]. In this example, a passive tracer is advected in a non divergent deformational

flow. The spatial domain is the unit square [0, 1]× [0, 1] and the initial condition is a cosine

bell. The equations read

∂ρ(x, y, t)

∂t
+

∂

∂x
(u1(x, y, t)ρ(x, y, t)) +

∂

∂y
(u2(x, y, t)ρ(x, y, t)) = 0 (3.4.31)

ρ0(x, y) =
1 + cos(πr(x, y))

2
, (3.4.32)

where r(x, y) = min
(

1, 4
√

(x− 1/4)2 + (y − 1/4)2

)
, and the velocity field is a swirling

shear flow defined as it follows:

u1(x, y, t) = sin2(πx) sin(2πy) cos(πt/5) (3.4.33)

u2(x, y, t) = − sin2(πy) sin(2πx) cos(πt/5), (3.4.34)

The tracer distribution is most deformed at t = 2.5. Since the velocity periodically

reverses direction, the tracer distribution comes back to its initial position after a period

T = 5. We compared the solution obtained with the particle method and with a classical non-

oscillatory method (Third order-upwind for the spatial derivative and third order stability
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input : Number of cells N
Index of WEE1 and MPF iW and iM
Division type: Dirac or Koshland or no division
time step τ

output: A matrix S that contains the state of cells at a given time T

t = 0
while t <= T do

t = t+ τ
% Advance one time step using 4th order Runge-Kutta scheme:
for j = 1 to N do

for i = 1 to M do

k
(1)
i = u(t,xji , λ

j , ψ)

k
(2)
i = u(t+

τ

2
,xji +

k1

2
τ, λj , ψ)

k
(3)
i = u(t+

τ

2
,xji +

k2

2
τ, λj , ψ)

k
(4)
i = u(t+ τ,xji + k3τ, λ

j , ψ)

Si,j = Si,j +
τ

6
(k

(1)
i + 2k

(2)
i + 2k

(3)
i + k

(4)
i )

end

end
for j = 1 to N do

flagj1 = 1(SiM ,j>SiW ,j)

flagj2 = 1(SiM ,j<SiW ,j) × 1(SiM ,j<θ1)

KG = G(SiW ,j , SiM ,j)
generate a random number r uniformly distributed in [0, 1]
if division type = Dirac then

if (flagj1= 1 and flagj2 = 1) then
N = N + 1, λN+1 = λj

for i = 1 to M do
Si,N+1 = Si,j ,

end

flagj1 = flagj2 = 0

end

end
else if division type = Koshland then

if (flagj1= 1 and r < KG × τ) then
N = N + 1, λN+1 = λj

for i = 1 to M do
Si,N+1 = Si,j ,

end

flagj1 = flagj2 = 0

end

end
else

Go back to the main time loop
end

end

end

Algorithm 1: Simplified Pseudo algorithm to solve equation 3.2.5 using the particle
method. The full code is given as an Appendix. In this algorithm the molecular
contents and the intrinsic cell cycle period are kept the same after division. This
can be changed by assigning for example random values to Si,N+1 and λN+1 after
division.
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preserving Runge-Kutta for time derivative [72]) at both t = 2.5 and t = 5. To make

a reasonable comparison, we took 10000 particles for the particle method and a uniform

250 × 250 grid for the classical one. The solution using the particle method is irregular

compared to the classical solution (Figure 3.2A,B). This is to be expected due to the nature

of particle methods which consider solutions in the measure sense. Specific regularization

techniques can be applied to regularize the solution such as the filtering algorithms for

oscillatory solutions of hyperbolic PDEs presented in [44]. Another possibility is to take

larger values of ε for the cut-off function ζε. However, increasing the value of ε makes the

solution more diffusive (Figure 3.2C,D). This can be overcome by modifying the convolution

procedure, and taking a cut-function ζεi with variable width that depends on the distance

between particles [24]. Our interest in this study is to examine statistic-like quantities such

as molecular averages and synchronization properties. Such information can be deduced

from the particles distribution without the need of a “best regular” solution recovered from

them as it is the case in other applications like fluid dynamics. Therefore, we do not focus on

advanced reconstruction techniques for the solution, because the particles distribution, even

though not regular, allows us to obtain information we are looking for. Also, the fact that

the particle method enables us to reduce our 10-d problem to a system of ODEs remains

the unavoidable advantage of this method. Another advantage of particle methods over

classical non-oscillatory schemes is their shape preserving property over time. This is clearly

illustrated by comparing the solutions at t = 5 where we see how the classical scheme leads to

some numerical diffusion in the solution while the particle solution remains accurate (Figure

3.2E,F). This is important in our study, since we are following proliferation of cells, hence

for long time intervals, we do not lose information about cells state.

3.4.2 Regulation of the cell cycle by the circadian clock

We solve equation (3.2.3) with L = 0, which means without division. We assume that each

cell has an intrinsic cell cycle period included in the interval [20 h, 28 h] . This is done

by assigning to each particle a different coefficient λ. We let all cells have the same initial

molecular state and consider two cases; one without coupling to the circadian clock (C = 0),

and one with coupling to the circadian clock (C = 1.2). We plot a projection of the solution

in the subspaces (x7, x9) and (x7, x8), which are the subspaces of molecular concentrations

(BMAL1/CLOCK, WEE1) and (BMAL1/CLOCK, MPF). We obtain a random distribution

of particles for the non-coupled case and a limit cycle distribution for the coupled case (Figure
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Figure 3.2: Passive tracer test case. Left figures: particle solution; right figures: upwind-SSP
solution. (A-B) Solution at t = 2.5, (C-D) contour plot of the solution at t = 2.5, (E-F)
Contour plot of the solution at t = 5.
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3.3). This means that the circadian clock is forcing all cells to oscillate with the same period.

This is in agreement with the results obtained by the model presented in the previous chapter.

We have shown that a population of cells with cell cycle periods between 20 h and 28 h are

brought to oscillate with a unique cell cycle period of 24 h for large values of C.

3.4.3 Cell division

We took initially 4 cells, two of them with λ = 230 and two with λ = 180 (these values are

taken randomly and do not necessarily lead to a cell cycle period of integer value). We solve

equation (3.2.3) with a source term and consider two cases, one with r = rd and the other
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with r = rs. For both cases we first take η = 10−16, which means that MPF activity does not

depend on the total cells number (taking a very small value for η insures that the coefficient

exp−ηψ2 in equation (3.2.15) is equal to one, implying no dependence of k0mpf on the total

cell number). We assume that new born cells retain the same molecular concentrations of

their mother cells at the division time, hence the differentiation rate R is equal to 0. This

insures that MPF cycle does not change along birth. Our simulations show that the total

number of cells after four days is equal to 1152 for the first case, 900 for the second one

with a stiff Koshland-Goldbeter function and 480 with a non stiff one. This is natural and

is justified by the fact that the division rate rd is a Dirac-type division which means that

division depends deterministically on MPF activity. Looking at MPF activity, we see that

it peaks 9 times for λ = 230, and 6 times for λ = 180 every 4 days (Figure 3.4A,B). If

division occurs exactly once MPF activity accomplish a normal cycle, the total number of

cells should be 2 × 29 + 2 × 26 = 1152, which is the result obtained with r = rd (Figure

3.4C). The division rate rs introduces stochasticity in the decision for division. In this case,

division does not depend only on MPF-WEE1 activity, but also on the probability rs ×4t
at each time step 4t Figure (3.4C). Second, we assumed that proliferation depends on the

total number of cells, and took η = 2× 10−3 (increasing the value of η will make the factor

exp−ηψ2 less than one and hence decreases the value of MPF activation coefficient k0mpf ).

We took initially 100 cells with different intrinsic cell cycle periods and followed the total

number of cells over 15 days. We obtain that after 8 days, division stops and the curve

reaches a steady state (3.4D). Increasing the value of η decreases the activity of MPF with

increasing number of cells, which means that at a certain time, MPF activity will decrease

below a threshold that does not allow the cell to proceed through mitosis.

3.4.4 Synchronization

To study the synchronization of cells, we compared the molecular concentrations of a cell

chosen randomly with the average molecular concentrations for all cells. We let the rate of

production of Per2/Cry mRNA of each cell to be dependent on the average value for Per2/Cry

mRNA. This was done by taking ks = 0.05 in equation (2.2.1). We took a population

of 100 cells with autonomous cell cycle periods randomly distributed between 20 and 28

hours. Initial molecular concentrations are chosen randomly between 0 and 1 and each

cell has a distinct initial molecular state. We did not consider division, hence L = 0 and

we do consider coupling between the cell cycle and the circadian clock (C = 1.2). We
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followed the evolution of 3 components, Per2/Cry mRNA, BMAL1/CLOCK and WEE1,

over 20 days. Our simulations show that for ks = 0, the average molecular concentrations

tend to have small oscillations which are asynchronous with the oscillations of the random

cell concentrations (Figure 3.5A,B,C). Whereas for ks = 0.05, we obtain that the average

molecular concentrations tend to coincide with the concentrations of the random cell (Figure

3.5E,F,G). This indicates that all cells are oscillating in a similar manner (same period

and phase), and indicates synchronization of all cells of the population. We would like to

emphasize here that, in the case ks = 0, even though cells are coupled in the same manner

to the circadian clock, cells keep oscillating in an asynchronous matter. The circadian clock

regulate all cells to oscillate in a similar period which is 24 h in this case, but due to the

randomness in the initial molecular concentrations, each cell oscillate with a different phase.

3.4.5 Heterogeneity of cells and growth rate

We studied the growth rate of a cell population where each cell has a different cell cycle

period. We took initially 100 cells and confer to each of them a coefficient λ chosen randomly

between 128 and 193. These coefficients scale the intracellular cell cycle system so that

periods range randomly from 12 h to 18 h. The circadian control strength value C was fixed

to 1.6, we did not consider connection between cells and we did not consider dependence of

the intracellular dynamics on any population level statistics. Simulations were done over 20

days and with a net death rate to mainly reduce the computation time. Our simulations

showed a growth rate with two peaks per day, indicating that there are two rounds of division

every day (Figure 3.6A). To explain this bimodal behavior for the growth rate, we looked at

the average activity of WEE1 and MPF. Simulations show that MPF activity overcomes that

of WEE1 once a day (Figure 3.6B), suggesting that division should occur only once a day.

This cannot explain the two peaks per day obtained for the growth rate. This underlies the

fact that biological function markers that most of the time relies on average-like information

can mislead the interpretation in some cases. For that, we investigated the individual-like

division mechanism. We followed a subpopulation of cells and examined at which time each

cell divided. There are almost 3 regimes for division: 1 division per day, 2 divisions per day

and 3 divisions every 2 days (Figure 3.6C,D). This is not surprising and can be explained by

the entrainment results obtained in the previous chapter for autonomous cell cycle periods

between 12 and 18 h. The double peaks for the growth rate can be then explained by the

fact that all cells are dividing at least once a day and some of them two times per day or
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two times every three days (Figure 3.6D).

3.5 Discussion and conclusion

We presented in this chapter a multiscale model for the regulation of the cell cycle by the

circadian clock. The model is structured by the molecular contents of the coupled circadian-

cell cycle oscillator and is high dimensional. We presented a solution using a deterministic

particle method and developed a code that is adaptable to different molecular systems.

Several studies, similar to ours, dealt with modeling cell population connected to molec-

ular systems influencing cell growth. Bekkal Brikci et al. developed a nonlinear model for

the dynamics of a cell population divided into a proliferative and quiescent compartments.

This model was structured by the time spent by a cell in a proliferative phase and by the

amount of Cyclin D CDK4/6 [17, 16]. Ribba et al. developed a multiscale model of cancer

growth based on the genetic and molecular features of the evolution of colorectal cancer. This

model investigated the role of gene-dependent cell cycle regulation in the response of tumors

to therapeutic irradiation protocols [134]. In more recent works, Prokopiou et al. presented

a multiscale computational model to study the maturation of CD8 T-cells in a lymph node

controlled by their molecular profile [129]. Even though these models contain details about

both, molecular and population level, they are of low dimensionality. Our model captures

more information but has the advantage of being of dimension 10. As a consequence, we

had to find a way to simulate transport equations in high-dimensions at reasonable cost.

The particle method does just that. In addition the code we developed is adaptable to any

system of differential equations for the advective term. This means that the code can give

solutions for even higher dimensional equations. Also, none of these models has taken into

consideration heterogeneity among cells; which is an important feature of our model. There

exist such type of models, aiming at studying the synchronization of a population of cells.

Namely, the work by Kunz and Acherman who studied, using van der Pol oscillators, inter

cellular coupling mechanisms between generic oscillators and showed how locally coupled

networks can robustly synchronize [89]. Rougemont et al. used more abstract Kuramoto

oscillators, in which only the phase is described, with periods and phases randomly varying

in time to characterize the source of phase dispersion [138]. As examples of models using

realistic genetic networks to describe synchronization, we cite the work by Roenneberg and

Merrow who proposed the concept of Zeitnehmer, where the cellular circadian oscillator

feeds back on the input pathway of Zeitgebers, blurring the distinction between intra and
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extracellular components [137]. A more comprehensive study was developed by Bernard et

al. who proposed a heterogenous network of circadian neuronal oscillators model for the syn-

chronization of circadian oscillators that combines intercellular and single cell-level dynamics

[13]. This category of models can inform about coupling properties of a cell population but

cannot take into consideration cell proliferation.

Globally our model captures information on cell proliferation, intra- and intercellular

dynamics. The use of particle methods in our study was of crucial importance. It allowed

us to take into consideration a large system describing molecular dynamics and structure

the transport equation by many variables. In such contexts, the method is natural and

simple since each cell can be associated to a particle. This can pave the way for the use

of high-dimensional structured models since particle methods, as we have shown, makes the

resolution of high dimensional equations possible.
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Chapter 4

Conclusion

In this thesis, we developed a multiscale mathematical model for the regulation of the cell cy-

cle by the circadian clock. We studied the influence of a circadian control on the proliferation

of a cell population.

We started our study by a simplified version of the multiscale model. We developed a

model that consists of two coupled systems, one for the proliferation of cells and one for the

molecular cell cycle/circadian clock connected network. Cell proliferation was described by a

system of age-structured transport equations with transition coefficients that depend on the

molecular state of cells. We studied the way the cell cycle entrains to the circadian clock and

characterized multiple domains of entrainment. We showed that there are two wide ranges

of entrainment 1:1 and 1:2, and other ranges which are narrower, for example 2:1, 3:2, 5:4

and 3:4. Such regimes of entrainment were found in recent experimental studies, for example

in the work of Feillet et al. [47] who obtained 1:1, 3:2 and 5:4 entrainment modes. Sandler et

al. showed that cells follow a 2:1 entrainment to the circadian clock [140]. We showed that

the circadian clock can slow down or accelerate the cell cycle depending on cell autonomous

cell cycle period. We studied the influence of a circadian control on the net growth rate

of cells. We showed that the circadian clock increases the growth rate for autonomous cell

cycle periods around 24 h and larger than 48 h. We examined the impact of clock gene

mutations on the growth rate and showed that disruption of the circadian mechanism leads

to abnormal cell proliferation. Namely, we showed that Per2 mutation increases the growth

rate, Cry mutations decreases it, and Bmal1 mutation can either decrease it or increase it

depending on the autonomous cell cycle period. This is in agreement with experimental

studies, namely the study of Fu el al. [59] who showed that Per2 have increasing sensitivity

to tumor development and Matsuo et al. who obtained impaired liver regeneration in Cry
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deficient mice [105]. This model has the novelty of combining both, a population and a

molecular description. It gave new insights on the regulation of the cell cycle by the circadian

clock that could not be obtained by a population model or a molecular model alone.

Next, we presented the multiscale model. It consists of a transport partial differential

equation structured by the molecular concentrations of the coupled cell cycle-circadian clock

system. The main difficulty encountered with this model is its high-dimensionality aspect.

We used a deterministic particle method to circumvent this difficulty and developed a code

(in C) to solve the partial differential equation. This code can be adapted to different

convective velocities (intracellular dynamics). We endowed this model with several additional

properties that confers to it its multiscale nature; namely, the heterogeneity among cells and

the dependence of the intracellular dynamics on population like statistical quantities, such

as the total number of cells or a total average concentration. We examined the solution of

the structured equation considering different cases. We showed that without birth and with

a circadian control, the particle solution follows a well defined trajectory in the state space,

unlike without circadian control where particles stay randomly distributed. This yields a

different view for entrainment properties than the one studied using the simplified model.

We examined a case where the rate of MPF production depends inversely on the total cell

number and showed how this stops cell proliferation. We showed how the dependence of the

rate of Per/Cry production on the total average Per/Cry concentration for all cells induces

synchronization properties. We finally examined the growth rate of a cell population with

cells having different autonomous cell cycle periods. We obtained two peaks of division

per day that could not be explained by average molecular concentrations and explained it

by following divisions time for each cell. This highlights the importance of our modeling

approach, since it captures both, population dynamics and individual-like mechanisms.

Our model can be helpful for cancer chronotherapy. Chronotherapy aims to take benefit

of circadian rhythms to find an optimal time for drug delivery. This makes the drug less toxic

and more efficient. Several studies showed that the cell cycle dynamics determines optimal

treatment time. We have seen how a clock gene mutation leads to abnormal proliferation

and different dynamical behaviors for the fraction of cells in mitosis. Disruption of circadian

rhythms is often associated with advanced stage tumors. Our model can help estimate the

time cancer cells are dividing and hence helps finding the appropriate time for the drug

delivery. Also, two peaks growth rate, like the one we obtained with our multiscale model,

were observed in mice tumors [165]. It was shown that the circadian clock component

BMAL1 and protein WEE1 of tumor cells vary throughout the day in synchrony with tumor
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growth, mitotic index, 5-Fu drug target and the toxic therapeutic index of 5-FU. Such results

can be reproduced by our model and hence make it a useful tool for chronotherapy. The

work presented in chapter 4 is under preparation for submission.

Several improvements can be added to our modeling as a future continuation of this

work. Improvements can be done on both, the intracellular and population levels. On the

intracellular level, we considered for the circadian clock the model developed by Becker-

Weimann et al. More detailed models can be considered such as the ones developed by

Mirsky et al. [108] or Forger et al. [58]. Our description for the cell cycle was limited to the

antagonistic activity of MPF and WEE1. A more comprehensive model for the cell cycle

can also be considered. This makes it possible to take into consideration more than one

link between the cell cycle and the circadian clock. Also, we note that we considered only

a one-way coupling, which means an implication for the circadian clock on the cell cycle.

However, several studies showed that also cell cycle components regulates circadian ones.

This also can be further considered. The multiscale description yields a high dimensional

model; this constrained our choice for a reduced system on the molecular level. However, as

we indicated in chapter 4, the code we developed can be adapted to different convective terms

u. Hence, a future work can be done by considering a more elaborate system that describes

the coupling between the cell cycle and the circadian clock. On the population level, we

considered that cell division depends only on the state variables, more types of division can

be considered. The particle method and the code should be improved to be able to take into

consideration a more general source term L. Improvements on the multiscale description

can be inspected, namely on the mechanisms inducing cells heterogeneity and connectivity.

Our description for heterogeneity is limited to variability among molecular concentrations

and cell cycle periods. Its is known, for example, that cells circadian mechanism is not

the same for all cells in some tissues. Connection through different signaling pathways is

found to insure circadian synchronization among these tissues. Such kind of variability and

connectivity can be added to improve our modeling.

During the thesis, we have also worked on other projects that are not directly related to

the circadian clock/cell cycle coupling modeling.

We developed a mathematical model (presented in Appendix A) to estimate meningioma

tumor age for several patients who had a surgery to extract the tumor. In this work we

analyzed, using minimization techniques, experimental data about cells average age, Ki-67

index, net growth of cells related to patients age, and tumor volume. We were able to fit

the data and give an estimate for the time the tumor started growing for each patient. We
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are examining additional data about tumor volume, and once the analysis is done, this work

will be the subject of a publication.

We also worked on a project about modeling chronic myelogenous leukemia treatment

with the Tyrosine Kinase Inhibitor, Imatinib. Briefly, in this work we had clinical data

for the BCR-ABL ratios for a group of 104 patients who were monitored during Imatinib

therapy. We developed a mathematical model based on a system of ordinary differential

equations that describe the proliferation of a population of leukemic and autologous immune

cells. We observed that patients leukemic load was able to partially or fully suppress the

autologous immune response. We, therefore, defined an immune window(a range of leukemic

loads) for which the autologous immune system induces an improved response. We deduced

that Imatinib therapy drives the leukemic load under this immune window allowing patients

immune cells to expand and eventually mount an efficient recognition of the residual leukemic

burden. Our study led us to hypothesize that immunotherapy may complement Tyrosine

Kinase Inhibitors treatments, by helping to maintain a patients autologous immune response

when the leukemia stimulus alone is insufficient. This work was concretized by a publication

that was recently submitted (BCR-ABL transcripts variations in chronic phase chronic myelogenous leukemia pa-

tients on imatinib: Possible role of the autologous immune system. Geoffrey D. Clapp, Thomas Lepoutre, Raouf El Cheikh,

Samuel Bernard, Jérémy Ruby, Hélène Labussière-Wallet, Franck E. Nicolini, Doron Levy).

Circadian rhythms disruption is linked to several diseases. Understanding their implica-

tion on our health is important. We focused on understanding the implication of circadian

rhythms on the proliferation of a cell population. We developed a multiscale model for

this purpose. Our approach is novel and innovative. While most of the previous works in

the same theme limited their studies to one aspect, such as molecular dynamics or popu-

lation dynamics; our multiscale model describes different aspects, namely cell proliferation,

individual-like dynamics and cells connectivity.

Describing complex biological processes needs advanced mathematical modeling tools.

Multiscale modeling is an unavoidable choice. This thesis makes a step forward in this

direction.

Globally the thesis work was mostly focused on the regulation of the cell cycle by the

circadian clock (two published papers and one under preparation) and two side projects;

one on modeling chronic myelogenous leukemia (one submitted paper) and one on modeling

meningioma tumor growth (one paper under preparation).
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Appendix A

Additional Work

In this Appendix, we expose additional works and results obtained during the thesis that

are not directly related to the regulation of the cell cycle by the circadian clock. However,

they still belong to the framework of population dynamics, structured equations and tumor.

A.1 Meningioma

A.1.1 Introduction

In this section we would like to exploit data collected for several patients who had a surgery

to extract a meningioma. For each patient, we have information about the tumor size at the

time of surgery, the average age of cells and the percentage of cycling cells Ki-67 index (Table

A.1). Based on these data, we would like to set a model that estimates the tumor age (the

time elapsed from onset until the operation date). This work was done in collaboration with

Hagen Huttner, Jonas Frisén and Olaf Bergmann from the Karolinska institute in Stockholm.

To accomplish this task, we develop a mathematical model that describes the prolifera-

tion and aging of a cell population. The model consists of an age-structured partial differ-

ential equation with Gompertz growth that tracks both the tumor size and the age of cells.

Gompertz law was shown to reproduce well the growth dynamics in low grade meningioma.

According to it, the tumor size follows a sigmoid curve: growth is initially exponential and

slows down as the tumor size approaches a maximal value [90]. During the growth, the age

of tumor cells is tracked by the age-structure of the equation. We assumed that there was

no cell death, that newborn cells were aged zero and that mother cells retained their age

at division. Our estimates were based on two experimentally measured quantities for each
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patient: the tumor volume and the average age of tumor cells. A third quantity, the growth

coefficient, was estimated from literature [115]. Using the model and available data, we esti-

mated the values of three parameters for each patient: a proliferation coefficient describing

how fast the tumor grows initially, a carrying capacity describing the maximal size the tumor

can reach, and the time elapsed since the beginning of tumor development (the time tumor

had a volume corresponding to one cell). Parameters were estimated using a least-square

method that minimizes the difference between collected data and model predictions. Our

simulations lead to non intuitive results for the relation between the tumor size and its age.

A.1.2 Model description

Gompertz model describes the evolution of the number of cells in time with the following

ordinary differential equation:
dN(t)

dt
= α ln

(
K
N(t)

)
N(t),

N(0) = N0.
(A.1.1)

Here, N(t) is the number of cells at time t (years), α is the proliferation coefficient, K is

the carrying capacity or the maximum amount of cells that can be attained, and N0 is the

initial number of cells. The solution of this equation can be given explicitly by

N(t) = Ke
ln

(
N0

K

)
e−αt

.

This model describes the evolution of the tumor size, but does not give any information

about the age of cells themselves. To take the age of cells into account, it is necessary to

endow the Gompertz model with an age-structure so that we can investigate both, the tumor

size and the age of cells at a given time. Adding an age structure x, our model reads:

∂n(x, t)

∂t
+
∂n(x, t)

∂x
= 0, (A.1.2a)

n(x, 0) = N0δ(x), (A.1.2b)

n(0, t) = αN(t) ln
(

K
N(t)

)
. (A.1.2c)

Here, n(x, t) is the density of cells of age x at time t. N0 is the initial number of cells,

the Dirac delta function δ(x) insures that all cells, initially, have an age x = 0 years. The
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Patient Birthday Date of operation Average age of cells Ki-67 index Tumor size(cm3)
1 23.Aug.-1932 07.Apr.-2004 2.5 1.00 50.5
2 26.May-1933 09.Jan.-2001 3.3 0.30 1.7
3 31.Dec.-1939 09.Nov.-2001 4 1.1 44.5
4 26.Dec.-1948 04.Dec.-1996 3.7 0.7 7.5
5 07.July.-1953 08.Jan.-2003 1.7 0.5 6.25
6 02.Sep.-1963 15.Jan.-2002 2.5 0.4 2.25
7 08.Oct.-1966 20.June.-2011 6 0.7 38.5
8 03.Jan.-1969 15.Feb.-2011 5 0.5 21
9 09.June.-1967 21.Mar.-2011 0.5 7.10 168

Table A.1: Biological data: The first column gives the birth date of each patient and the
second one gives the date of operation. The average age of cells in the third column was calcu-

lated using carbon 14C dating. The growth rate given by the Ki-67 is equal to
Ki-67 index

cycle time
;

if the Ki-67 index is equal to 0.3 and the length of the cycle is 2 days for example, then the
growth rate per year is equal to 0.3

2×100
× 365. The last column gives the volume of the tumor

when it was extracted during the operation.

boundary condition n(0, t) accounts for the addition of new cells in time following a Gompertz

type of growth. N(t) is the total number of cells and is obtained by summing up all cells of

all ages, N(t) =

∫ t

0

n(x, t)dx. The average age of cells can be calculated using the following

formula 〈a〉 =

∫ t
0
xn(x, t)dx

N(t)
.

The solution of the age-structured Gompertz equation can be determined explicitly:

n(x, t) =

N0δ(x− t) + αK ln
(
K
N0

)
e−α(t−x)e

ln

(
N0

K

)
e−α(t−x)

if t ≥ x,

0 if x > t,

(A.1.3)

We made several assumptions regarding cell dynamics during aging. First, we assume

that there is no cell death (0 on the right hand side of equation A.1.2a). Second, we assume

that a cell is born at age 0, (boundary condition at x = 0 in equation A.1.2c). Third,

mother cells retain their age after division. These assumptions have an impact on the age

distribution of cells that will be discussed later.

A.1.3 Tumor age estimate: lack of data

The analytical solution A.1.3 gives the density of cells for a known couple (age x, time t)

and given parameters (α, K). However, our goal is to find the values of (t, α, K) that give

an average age for cells and a volume that are equal to those collected experimentally.
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To solve this inverse problem, we define the following cost functional

J1

(
t, α,K; Ṽ , 〈ã〉

)
=| Ṽ − V |2 + | 〈ã〉 − 〈a〉 |2,

where, Ṽ and 〈ã〉 are respectively the volume and the average age predicted by the model,

V and 〈a〉 are respectively the volume and the average age given experimentally. Variables

are scaled to reduce the optimal search interval. We took one volume unit as 10−9cm3 and

the initial population is set to one cell, that is N0 = 1.

To find the tumor age, we should solve the following minimization problem. Find:

min (t,α,k)J1

(
t, α,K; Ṽ , 〈ã〉

)
such that (t, α,K) belong to an admissible set of values. This implies that the growth time

t should not exceed the patient age, the coefficients α and K should be chosen so that the

value of the growth rate α ln(K/N) should not exceed the growth rate induced by the Ki-67

index. This is due to the fact that we do only consider net growth, and this may not reflect

the heterogeneity of the population, because there might be another subset of cells which

are not proliferating. Therefore, the Ki-67 index, gives us an upper bound for the growth

rate.

The minimization problem is solved numerically using the Matlab function fminsearch.

Simulations show that there exists an interval of values for (t, α,K) that minimize the func-

tion J1 (Figure A.1). This infer that there is not a unique parameter set (t, α,K) that fits

experimental data about the volume and the average age; this was to be expected because,

roughly speaking, we have three parameters to estimate and two variables to fit.

A.1.4 Additional data

The main obstacle encountered in minimizing the function J1 is the lack of information

regarding the proliferation coefficient of tumor cells. We could not predict a unique value

for the tumor age. We obtained an interval of possible values that all fit the experimental

data.

To circumvent this obstacle, we relied on experimental data coming from the work by

Nakamura et al. [115]. This work investigated the relation between the patient age and

the meningioma growth rate. These experimental data helped us to estimate the required

growth coefficient for tumor cells. Nakamura data can be helpful in two different ways:
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Figure A.1: Parameters estimate for the initial optimization process: one can see how the
tumor age is changing with respect to different values of α and K. There exists an interval
of values (t, α,K) fitting the biological data.

estimating the absolute growth and estimating the relative growth. We analyze both ways

in the coming paragraphs.

First approach: estimating the absolute growth

In a first attempt, we looked at the absolute growth per year given by Nakamura data. It

helped us get global estimates for α and K in the Gompertz model. It was possible to choose,
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Figure A.2: Fitting the absolute growth data using Gompertz model. Solid curve is obtained
by finding the appropriate couple values (α,K) yielding an absolute growth (V (t+1)−V (t))
that fit best nakamura data. V (t) is the volume at time t and is given by Vc ×N(t), where
Vc is the volume of one cell.

for each patient, a unique triplet (t, α,K) that is consistent with Nakamura data and obtain

a fitting curve that estimates the absolute tumor growth per year (Figure A.2). Relying on

this, we went back to our initial optimization problem, which yield an interval of values for

(α,K), and looked at which of these values could give a curve of absolute growth per year

similar to the one estimated by Nakamura data (Figure A.3). Once (α,K) were fixed, we

were able to give a unique estimate for the tumor age (Table A.2, Figures A.4, A.8).

Second approach: estimating the relative growth

Rather than looking at the absolute growth per year, we looked at the relative growth, which

is known to depend on the tumor size. We follow the same approach and fit the relative

growth rate as a function of tumor size, using Gompertz model (Figure A.5). The fitted

curve gives us a relative growth coefficient α ln(K
N

) that depends on the tumor size or the

number of cells. Assuming that, for a tumor size V (number of cells = Nf ), the fitting curve

yields a relative growth equal to γr, we impose a new constraint to the cost function

J2 =| Ṽ − Vd |2 + | 〈ã〉 − 〈ad〉 |2 + | γ̃r − γr |2,

where γ̃r = α ln( K
Nf

). This additional constraint ensures that the cost function returns a
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Figure A.3: Comparison of the absolute growth per year between by Nakamura data and
our model. (A) Patient 1, (B) patient 4.

volume, average age, and growth coefficient which are equal to those given experimentally.

Henceforth, the minimization problem has a unique solution which leads to a unique esti-

mated value of the tumor age (Table A.3, Figures A.6, A.8).

Final approach

We took benefit of Nakamura data in two different ways to estimate the tumor age. Both

led to reasonable results. We end up this investigation by combining both approaches. We

define the following cost functional

J3 =| Ṽ − V |2 + |< ã > − < a >|2 +δ1 | γ̃r − γr |2 +δ2 | γ̃a − γa |2,

where γ̃r and γ̃a (γ̃r = α ln( K
Nf

), γ̃a = V (t+1)−V (t)) are respectively the relative growth

and the absolute growth rates to be found. γr and γa are the corresponding growth rates

given by Nakamura’s data. δ1 and δ2 are weight constants that play the role of finding an

average value between γr and γa.

Minimizing J3 enabled us to estimate the tumor age for all patients while respecting

experimental data (Table A.4).
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Figure A.4: First method of fit: evolution of tumor volume in time. From upper left to
bottom right: patient 1 till patient 9.

A.1.5 Discussion

In this work, we propose a mathematical model to estimate the age of meningioma for several

patients who were operated to extract the tumor. The model consists of an age-structured

transport equation coupled with a Gompertz type equation to model the growth of cells.

Analysis was based on three main experimental data for each patient: the tumor volume,

the average age, and the growth coefficient given by the experimental work of Nakamura
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Figure A.5: Relative growth data fit using Gompertz model.

et al. We point out that we had an additional experimental data about the percentage of

proliferating cells (Ki-67 index) for each sample. Unfortunately, the Ki-67 index did not help

to find the proliferative ability of tumor cells. Even though, it informs us on the percentage

of cycling cells, we were not able to use this percentage to find the growth coefficient. None

of the estimated values for (α,K) could achieve a relative growth α ln(K
N

) equal to the one

given by the Ki-67 index. This can be explained by the fact, that the population of cells may

be heterogenous, or there is a subset of cells that is not proliferating. Hence, we concluded

that the growth rate induced by the Ki-67 index is an upper bound for the growth coefficient.

By defining a minimization function that takes in consideration the volume, the average age

and the growth coefficient (both relative and absolute), we were able to estimate the tumor

age. Results are counter-intuitive in certain cases. One would intuitively expect that larger

tumors are older. However, the link between the the tumor size and its age is more intricate

than that. The tumor volume does not affect much its age. For instance, looking at figure

A.7, we observe that patient 1 has a tumor of volume 50.5 cm3 but the estimated age is small.

This can be explained by the fact that tumor cells have a big proliferation coefficient and

the tumor size is rapidly increasing. Conversely, patient 6 has a small tumor (2.25 cm3) but

the tumor is very old, and this is is due to the low proliferation coefficient, so tumor size is

increasing slowly. Based on parameter estimates for each patient, we speculate whether the

tumor is dangerous or not. If the curve is in its steady state (for example patient 1 in figure

A.7), the tumor reached a limit size value and will not grow much more than that. Whereas,

if the curve is still in its exponential phase, tumor is still growing and could be dangerous,
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Figure A.6: Second method of fit: evolution of tumor volume in time. From upper left to
bottom right: patient 1 till patient 9.

even though it has a small size (see for example patients 2 and 6 in Figure A.7). We finally

give a prediction for the evolution of tumor over 25 years, imagining that no surgery was done

(Figure A.8). By examining whether the growth curve is in its steady state or exponential

state, practitioners could use our model to complement medical imagery about the decision

of surgery time.
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Patient Estimated proliferation coefficient α Estimated carrying capacity K Tumor age
First fit

1 0.17 346.4707 16.8419
2 0.0750 58.4924 27.2273
3 0.1410 177.8720 22.5013
4 0.0940 77.3119 26.3729
5 0.1480 186.4637 14.2414
6 0.1140 99.9973 17.2317
7 0.1160 90.9549 29.8443
8 0.1040 90.5833 29.1302
9 0.4830 2.6777e+06 2.7450

Table A.2: Simulation results using the first method of fit (estimate of the absolute growth).

Patient Estimated proliferation coefficient α Estimated carrying capacity K Tumor age
Second fit

1 1.4043 70.3386 5.1446
2 0.0786 78.8727 26.6122
3 0.6379 63.3347 9.6569
4 0.1961 19.8495 17.6683
5 0.9663 9.3670 5.1240
6 0.4888 4.5068 7.9667
7 0.2832 47.9088 17.9972
8 0.2194 38.6553 19.1138
9 0.0145 6.7521 0.2001

Table A.3: Simulation results using the second method of fit (estimate of the relative growth).

P Experimental data Nakamura growth rates Fitted data Parameters estimate

< a > V Ki-67 γr γa Ṽ < ã > γ̃r γ̃a α K t
1 2.5000 50.5000 1,00 2.5554 0.1682 50.6392 2.4773 1.7582 0.3013 1.7775 69.7568 4.5906
2 3.3000 1.7000 0,30 23.8801 0.2415 1.6935 3.2964 20.9658 0.3698 0.1250 12.5342 21.0108
3 4.0000 44.5000 1,10 3.3508 0.4100 44.6559 3.9713 2.4459 0.6760 0.7872 61.9903 8.6434
4 3.7000 7.5000 0,70 14.5470 1.1516 7.4916 3.7070 14.5561 1.0613 0.1943 19.9917 17.7718
5 1.7000 6.2500 0,50 15.6935 1.0738 6.1374 1.7485 17.9387 0.8890 0.7610 10.0796 5.9235
6 2.0000 2.2500 0,40 22.1176 1.9479 2.3334 2.2154 33.1126 0.8155 0.1649 21.3576 15.1021
7 6.0000 38.5000 0,70 4.2615 1.4842 38.4998 6.0001 4.3330 1.4833 0.2795 48.1271 18.1287
8 5.0000 21.0000 0,50 8.0728 1.6546 20.9990 5.0005 8.3744 1.6480 0.2097 39.8848 19.6095
9 0.5000 168.0000 7,10 -5.0026 1.5706 167.8469 0.7581 4.2916 1.4473 5.5687 215.6970 1.4394

Table A.4: Final results
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Figure A.7: Final approach: evolution of tumor volume in time. From upper left to bottom
right: patient 1 till patient 9.



0 5 10 15 20 25 30 35
 0.0

50.0

100.0

150.0

200.0

250.0

Tumor age (Years)

T
um

or
 s

iz
e 

(c
m

3)
 

 

 

Patient 1
Patient 2
Patient 3
Patient 4
Patient 5
Patient 6
Patient 7
Patient 8

0 5 10 15 20 25
 0.0

10.0

20.0

30.0

40.0

50.0

60.0

Tumor age (Years)

T
um

or
 s

iz
e 

(c
m

3)
 

 

 

Patient 1
Patient 2
Patient 3
Patient 4
Patient 5
Patient 6
Patient 7
Patient 8

0 5 10 15 20 25
 0.0

10.0

20.0

30.0

40.0

50.0

60.0

Tumor age (Years)

T
um

or
 s

iz
e 

(c
m

3)

 

 

Patient1
Patient 2
Patient 3
Patient 4
Patient 5
Patient 6
Patient 7
Patient 8

Figure A.8: Our model prediction of the evolution of the tumor volume. Left: using the
absolute growth method of fit. Center: using the relative growth method of fit. Right: using
the final approach.





Appendix B

Supplementary materials

Auxiliary equations for Tyson and Novak model:

G(a, b, c, d) =
2ad

b− a+ bc+ ad+
√

(b− a+ bc+ ad)2 − 4ad(b− a)
, (B.0.1)

kwee = k′wee + (k′′wee − k′wee)G(Vawee, Viwee[MPF ], Jawee, Jiwee), (B.0.2)

k25 = k′wee + (k′′25 − k′25)G(Va25[MPF ], Vi25, Ja25, Ji25), (B.0.3)

Σ = [Cdc13T ] + [Rum1T ] +Kdiss, (B.0.4)

[Trimer] =
2[Cdc13T ][Rum1T ]

Σ +
√

Σ2 − 4[Cdc13T ][Rum1T ]
, (B.0.5)

[MPF ] =
([Cdc13T ]− [PreMPF ])([Cdc13T ]− [Trimer])

[Cdc13T ]
, (B.0.6)

[TF ] = G(k15M,k′16 + k′′16[MPF ], J15, J16). (B.0.7)
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Parameters Values Units Description
vi 0.025 µM/min Constant rate of cyclin synthesis
vd 0.25 µM/min Maximum rate of cyclin degradation by protease X
Kd 0.025 µM Michaelis constants for cyclin degradation
Kc 0.5 µM Michaelis constants for cyclin activation
kd 0.01 1/min Degradation rate of cyclin
V1 3 1/min maximum rate of transcription
V2 1.5 1/min maximum rate of transcription
V3 1 1/min maximum rate of transcription
V4 0.5 1/min maximum rate of transcription
k1 0.01 unitless Michaelis constant
k2 0.01 unitless Michaelis constant
k3 0.01 unitless Michaelis constant
k4 0.01 unitless Michaelis constant

Table B.1: Albert Goldbeter mitotic oscillator model: parameters description.

Parameter Value Parameter Value Parameter Value Parameter Value
k1 0.03 J5 0.3 kdiss 0.001 Vi25 0.25
k′2 0.03 k7 1 k13 0.1 Ja25 0.01
k′′2 1 k8 0.25 k14 0.1 Ji25 0.01
k′′′2 0.1 J7 0.001 k15 1.5 k′wee 0.15,
k′3 1 J8 0.001 k′16 1 k′′wee 1.3,
k′′3 10 k9 0.1 k′′16 2 k′25 0.05
J3 0.01 k10 0.04 J15 0.01 k′′25 5
k′4 2 J9 0.01 J16 0.01 µ 0.005
k4 35 J10 0.01 Vawee 0.25 k6 0.1
J4 0.01 k11 0.1 Viwee 1 k′′12 3
k′5 0.005 k12 0.01 Jawee 0.01 Va25 1
k′′5 0.3 k′12 1 Jiwee 0.01

Table B.2: Parameter values for Tyson and Novak fission yeast cell cycle model. All param-
eters have units min−1, except the Ji′s and kdiss which are dimensionless constants.
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Parameters Values Units Description
Circadian clock

c 0.01 nM Concentration of constitutive activator
p 8 Unit less Hill coefficient

ν1b 9 nMh−1 Maximal rate of Per2/Cry transcription
k1b 1 nM Michaelis constant of Per2/Cry transcription

k1d 0.12 h−1 Degradation rate of Per2/Cry mRNA
k1i 0.56 nM Inhibition constant of Per2/Cry transcription

k2b 0.3 nM−1h−1 Formation rate of cytoplasmic PER2/CRY complex

k2d 0.05 h−1 Degradation rate of cytoplasmic PER2/CRY complex

k2t 0.24 h−1 Nuclear import rate of PER2/CRY complex

k3t 0.02 h−1 Nuclear export rate of PER2/CRY complex
q 2 Unit less Number of PER2/CRY2 complex forming subunits

k3d 0.12 h−1 Degradation rate of nuclear PER2/CRY complex

ν4b 3.6 nM−1h−1 Maximal rate of Bmal1 transcription
r 3 Unit less Hill coefficient of Bmal1 transcription
k4b 2.16 nM Michaelis constant of Bmal1 transcription

k4d 0.75 h−1 Degradation rate

k5b 0.24 h−1 Translation rate of BMAL1

k5d 0.06 h−1 Degradation rate of BMAL1

k5t 0.45 h−1 Nuclear import rate of BMAL1

k6t 0.06 h−1 Nuclear export rate of BMAL1

k6d 0.12 h−1 Degradation rate of nuclear BMAL1

k6a 0.09 h−1 Activation rate of nuclear BMAL1

k7a 0.003 h−1 Deactivation rate of nuclear BMAL1?

k7d 0.09 h−1 Degradation rate of nuclear BMAL1?

Cell cycle

k0mpf 10 h−1 Activation rate of MPF
k1mpf 0.05 nM Activation rate of MPF
s 20 nM Inhibition constant of MPF

dwee1 5 h−1 Degradation rate
n 2 Unit less Hill coefficient

kactw 1 h−1 Activation rate of WEE1 due to BMAL1/CLOCK
dw1 1 nM Michaelis constant
cw 0.5 nM Concentration of constant activator
C 0 nM Coupling strength to the circadian clock

kinactw 200 h−1 Deactivation rate
k1wee1 0.5 nM Michaelis constant

dw2 1 h−1 Degradation rate

kact 0.01 h−1 Activation rate of MPF inhibitor
Population model

θ1 0.09 nM Threshold value for G1 to S/G2 transition
θ2 0.06 nM Threshold value for mitotic division (M to G1)
Ja 0.1 Unit less Stiffness of the switch
Ji 0.1 Unit less Stiffness of the switch

Table B.3: Parameters description for the coupled population-molecular model (Section 2.2).
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Appendix C

Code source files

Program file Description

haupt.h Functions prototypes

parameters.h Parameters declaration

division type.cpp Examines if division conditions are satisified

functions.cpp Some functions that are used in the program

initial state.cpp Assign molecular concentrations for initial cells

main program.cpp Main time loop

md malloc.cpp Functions for arrays memory allocation

ODE system params assignation.cpp Parameters for intracellular ODE system

(2.2.1-2.2.10)

right hand side.cpp Right hand side functions of intracellular

ODE system (2.2.1-2.2.10)

RK4 step.cpp Advances one time step using Runge-Kutta solver

states update.cpp Creates new cells if division conditions are satisfied

Listing C.1: Descriptive Caption Text

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
parameters . h

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

#i f n d e f PARAMETERS H

#de f i n e PARAMETERS H

double FTime = 5 . ;

const double t ime s tep = 1 . e−4;

// I n i t a l number o f c e l l s

const int i n i t c e l l s n u m b e r = 100 ;

// Number o f e q ua t i on s in t h e i n t r a c e l l u l a r ODE system
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const int neqs = 10 ;

// Number o f parameters f o r t h e i n t r a c e l l u l a r ODE system

const int nparams = 39 ;

// C e l l s G1 phase are de termined by low MPF conc en t r a t i on ( [MPF] < 0 . 06 )

// C e l l s in M phase are de termined by : [WEE1] > [MPF]

const int index MPF = 7 ;

const int index WEE1 = 8 ;

// Charac ter c on s t an t s

// Choose t h e i n i t i a l d i s t r i b u t i o n o f c e l l s

// Type ’ random ’ f o r random d i s t r i b u t i o n

// Type ’ f i x e d ’ f o r con s t an t i n i t i a l v a l u e s :

// t h i s means a l l c e l l s have same i n i t i a l d i s t r i b u t i o n

char ∗ i n i t i a l v a l u e s t y p e = ”random” ;

// D i v i s i on t ype : ” d i r a c ” or ” ko sh lnad ” or ” n o d i v i s i o n ”

char ∗ d i v i s i o n t y p e = ” n o d i v i s i o n ” ;

// In case you choose ko sh l and : S p e c i f i y t h e s t i f n e s s o f t h e sw i t c h

// sma l l e r v a l u e s g i v e s t i f f e r sw i t c h

double const K G f u n c t i o n s t i f f = 0 . 1 ;

double const KG div i s ion constant = 1 0 . ; //

// I n i t i a l s t a t e :

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// 1−−In case you chose a f i x e d i n i t i a l s t a t e

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

double i n i t s t a t e v a l u e s f i x e d [ neqs ] =

{0 .2 , 0 . 4 , 1 . 12 , 0 . 8 , 1 . 3 , 0 . 8 , 1 . 1 , 0 .015 , 0 .575 , 0 . 0 8} ;

double s c a l f a c t 2 f i x [ i n i t c e l l s n u m b e r ] =

{82 .84 , 130 .84 , 130 .84 , 130 . 84} ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// 2−− In case you choose random i n i t i a l s t a t e

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// Choose t h e range ” each ” i n i t i a l v a l u e to b e l on g ” randomly ” to :

// y i j b e l o n g s to [ a , b ] ; a and b shou l d NOT be i d e n t i c a l and a < b

double i n i t s t a t e v a l u e s r a n d [ neqs ] [ 2 ] =

{{0 . , 1 .} , {0 . , 1 .} , {0 . , 1 .} , {0 . , 1 .} , {0 . , 1 .} ,

{0 . , 1 .} , {0 . , 1 .} , {0 . , 1 .} , {0 . , 1 .} , { 0 . , 1 .}} ;

// Choose t h e l ower bound f o r t h e i n t r i n s i n c pe r i od o f each c e l l :

// Chosen randomly between min and max v a l u e s be low :

double c e l l c y c l e p e r i o d m i n f = 8 2 . 8 4 ; // 82 .84 ho l d s f o r 28h

double c e l l c y c l e p e r i o d m a x f = 115 . 97 ; // 115.97 ho l d s f o r 20h

// Parameters f o r t h e mean va l u e f u n c t i o n

double params MVfunction [ 1 0 ] =

{1 , 1 . , 1 . , 1 . , 1 . , 1 . , 1 . , 1 . , 1 . , 1 . } ;

#end i f

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
haupt . h

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

#i f n d e f HAUPT H

#de f i n e HAUPT H

#inc lude <deque>
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#inc lude <s t d i o . h>

us ing namespace std ;

// Funct ions d e c l a r a t i o n s :

double randomfloat (double , double ) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−
// Newing f r e e i n g space

//−−−−−−−−−−−−−−−−−−−−−−−−−−
// 1D

double ∗md new( int ) ;

void md free ( double ∗ , int ) ;

// 2D

double ∗∗md2 new( int , int ) ;

void md2 free (double ∗∗ , int , int ) ;

int ∗∗mi2 new ( int , int ) ;

void mi2 f r e e ( int ∗∗ , int , int ) ;

double ∗∗md2 cal loc ( int , int ) ;

// 3D

double ∗∗∗md3 new( int , int , int ) ;

void md3 free (double ∗∗∗ , int , int , int ) ;

// Rea l l o c a t i o n

double ∗∗md2 rea l l oc (double ∗∗ , int , int , int , int ) ;

int ∗∗m i 2 r e a l l o c ( int ∗∗ , int , int , int , int ) ;

// Funct ions

double functionG (double , double , double , double ) ;

void p r i n t p o i n t e r (double ∗ , const int ) ;

void pr in t mat r i x ( ofstream &, double ∗∗ , const int , int ) ;

void params ass ignat ion (double ∗ , double ∗ ) ;

void params ass ignat ion2 (double ∗ , double ∗ ) ;

void ODE system params assignation (double ∗params ) ;

void r i g h t h a n d s i d e s a b i n a (double , double ∗∗ ,double ∗∗ , double ∗ ,

double ∗∗ , const int , int ) ;

void r i g h t h a n d s i d e c e l l c y c l e a l o n e (double , double ∗∗ ,double ∗∗ ,

double ∗ , double ∗∗ , const int , int ) ;

void RK4 step ( const double , double , double ∗∗ , double ∗∗ , double ∗ ,

double ∗∗ , const int , int ) ;

void d i v i s i o n t y p e ( char ∗ , double , const double , const double ,

const double , int , int ,

double ∗∗ , int ∗∗ , int ∗∗ , int , int &,

deque <int> &, deque <int> &, deque <double> &, deque <double> &,

deque <double> &);

void i n i t i a l s t a t e (double ∗∗ , double ∗∗ , const int , int , char ∗ ,

double [ ] , double [ ] [ 2 ] , double [ ] , double , double ) ;

void s t a t e s updat e (double , char ∗ , double [ ] , const int ,

int &, int &, int &, int &, int &, int &,

double ∗∗ , double ∗∗ , double ∗∗ , int ∗∗ , int ∗∗ ,

deque <int> &, deque <double> &,

double , double , o f stream &);

void MVfunction ( int , const int , double ∗∗ , double [ ] , deque <double> &);
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#end i f

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
r i g h t h a n d s i d e s a b i n a . cpp

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

#inc lude <iostream>

#inc lude <iomanip>

#inc lude <c s td l i b>

#inc lude <cmath>

#inc lude <s t d i o . h>

#inc lude ”haupt . h”

void r i g h t h a n d s i d e s a b i n a (double x , double ∗∗y , double ∗∗dydx ,

double ∗params , double ∗∗ s c a l f a c t 2 , const int neqs , int ns ta t e s ) {

double y1 , y2 , y3 , y4 , y5 , y6 , y7 , y8 , y9 , y10 , s c a l f a c t o r 2 ;

double s c a l f a c t 1 = params [ 0 ] ;

double nu1b = params [ 1 ] ;

double k1b = params [ 2 ] ;

double k1 i = params [ 3 ] ;

double c = params [ 4 ] ;

double p = params [ 5 ] ;

double k1d = params [ 6 ] ;

double k2b = params [ 7 ] ;

double q = params [ 8 ] ;

double k2d = params [ 9 ] ;

double k2t = params [ 1 0 ] ;

double k3t = params [ 1 1 ] ;

double k3d = params [ 1 2 ] ;

double nu4b = params [ 1 3 ] ;

double k4b = params [ 1 4 ] ;

double r = params [ 1 5 ] ;

double k4d = params [ 1 6 ] ;

double k5b = params [ 1 7 ] ;

double k5d = params [ 1 8 ] ;

double k5t = params [ 1 9 ] ;

double k6t = params [ 2 0 ] ;

double k6d = params [ 2 1 ] ;

double k6a = params [ 2 2 ] ;

double k7a = params [ 2 3 ] ;

double k7d = params [ 2 4 ] ;

// Param f o r t h e mpf−wee1 dynamics

double nmw = params [ 2 5 ] ;

double k0mpf = params [ 2 6 ] ; // 10 = 4 + 6∗ exp(− lambda∗N)

double k1mpf = params [ 2 7 ] ;

double k1wee1 = params [ 2 8 ] ;

double dwee1 = params [ 2 9 ] ;

double kactw = params [ 3 0 ] ;

double kinactw = params [ 3 1 ] ;

double dw1 = params [ 3 2 ] ;

double dw2 = params [ 3 3 ] ;

double kbm = params [ 3 4 ] ; // Coup l ing f o r c e

double cw = params [ 3 5 ] ;

double kact = params [ 3 6 ] ; // r a t e con s t an t f o r i n h i b i t o r

double s = params [ 3 7 ] ; // s t r e n g t h o f t h e i n h i b i t o r ;

double lambda = params [ 3 8 ] ;

double k = 0.05/ s c a l f a c t 1 ;

deque <double> MVfunction out ;

double MVfunction params [ 1 0 ] =

{k , 0 . , 0 , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . , 0 . } ;

MVfunction ( nstates , neqs , &y [ 0 ] , &MVfunction params [ 0 ] ,

MVfunction out ) ;

for ( int j = 0 ; j < ns ta t e s ; j++ ) {

y1 = y [ 0 ] [ j ] ; y2 = y [ 1 ] [ j ] ; y3 = y [ 2 ] [ j ] ; y4 = y [ 3 ] [ j ] ;

y5 = y [ 4 ] [ j ] ; y6 = y [ 5 ] [ j ] ; y7 = y [ 6 ] [ j ] ; y8 = y [ 7 ] [ j ] ;
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y9 = y [ 8 ] [ j ] ; y10 = y [ 9 ] [ j ] ;

s c a l f a c t o r 2 = s c a l f a c t 2 [ 0 ] [ j ] ;

dydx [ 0 ] [ j ] = nu1b∗( y7 + c )/( k1b∗(1+pow( y3/ k1i , p ) ) + y7 + c )

− k1d∗y1 + MVfunction out [ 0 ] ;

dydx [ 1 ] [ j ] = k2b∗pow( y1 , q ) − ( k2d + k2t )∗y2 + k3t∗y3 ;

dydx [ 2 ] [ j ] = k2t∗y2 − k3t∗y3 − k3d∗y3 ;

dydx [ 3 ] [ j ] = ( nu4b∗pow( y3 , r ) ) / ( pow( k4b , r ) + pow( y3 , r ) ) − k4d∗y4 ;

dydx [ 4 ] [ j ] = k5b∗y4 −(k5d + k5t )∗y5 + k6t∗y6 ;

dydx [ 5 ] [ j ] = k5t∗y5 −(k6t + k6d + k6a )∗y6 + k7a∗y7 ;

dydx [ 6 ] [ j ] = k6a∗y6 − k7a∗y7 − k7d∗y7 ;

dydx [ 7 ] [ j ] = s c a l f a c t o r 2 ∗((4.+ k0mpf∗exp(−lambda∗ ns ta t e s ) )

∗(1.0−y8 )∗pow( k1mpf ,nmw)/(pow( k1mpf ,nmw)

+ pow( y8 ,nmw) + s∗pow( y10 ,nmw)) − dwee1∗y9∗y8 ) ;

dydx [ 8 ] [ j ] = s c a l f a c t o r 2 ∗( kactw /( kactw + dw1)∗ ( cw+kbm∗(y7−0.9629)

+ 0 .9629) + ( kactw /( kactw + dw1) − 1 . )∗ kinactw∗pow( y8 ,nmw)/

(pow( k1wee1 ,nmw)+pow( y8 ,nmw))∗ y9 − dw2∗y9 ) ;

dydx [ 9 ] [ j ] = s c a l f a c t o r 2 ∗kact ∗( y8 − y10 ) ;

}
MVfunction out . c l e a r ( ) ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ODE sys tem params ass ignat ion . cpp

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
// Param f o r t h e c i r c a d i an c l o c k ( source : Becker−weimann e t a l . ) and

// the c e l l c y c l e ( El Cheikh e t a l . 2014)

#inc lude ”haupt . h”

#inc lude <cmath>

#inc lude <math . h>

#inc lude <iostream>

#inc lude <iomanip>

#inc lude <s t d i o . h>

void ODE system params assignation (double ∗params ) {
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// parameters f o r t h e coup l ed o s c i l l a t o r

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

params [ 0 ] = 0 . 0 4 2 ; // s c a l f a c t 1

params [ 1 ] = 9 ./ params [ 0 ] ; // nu1b

params [ 2 ] = 1 . ; // k1b

params [ 3 ] = 0 . 5 6 ; // k1 i

params [ 4 ] = 0 . 0 1 ; // c

params [ 5 ] = 8 . ; // p

params [ 6 ] = 0.12/ params [ 0 ] ; // k1d

params [ 7 ] = 0.3/ params [ 0 ] ; // k2b

params [ 8 ] = 2 . ; // q

params [ 9 ] = 0.05/ params [ 0 ] ; // k2d

params [ 1 0 ] = 0.24/ params [ 0 ] ; // k2 t

params [ 1 1 ] = 0.02/ params [ 0 ] ; // k3 t

params [ 1 2 ] = 0.12/ params [ 0 ] ; // k3d

params [ 1 3 ] = 3.6/ params [ 0 ] ; // nu4b

params [ 1 4 ] = 2 . 1 6 ; // k4b

params [ 1 5 ] = 3 . ; // r

params [ 1 6 ] = 0.75/ params [ 0 ] ; // k4d

params [ 1 7 ] = 0.24/ params [ 0 ] ; // k5b

params [ 1 8 ] = 0.06/ params [ 0 ] ; // k5d

params [ 1 9 ] = 0.45/ params [ 0 ] ; // k5 t

params [ 2 0 ] = 0.06/ params [ 0 ] ; // k6 t

params [ 2 1 ] = 0.12/ params [ 0 ] ; // k6d

params [ 2 2 ] = 0.09/ params [ 0 ] ; // k6a

params [ 2 3 ] = 0.003/ params [ 0 ] ; // k7a

params [ 2 4 ] = 0.09/ params [ 0 ] ; // k7d

// Param f o r t h e mpf−wee1 dynamics

params [ 2 5 ] = 2 ; // nmw

params [ 2 6 ] = 6 . ; // k0mpf : 10 = 4 + 6∗ exp(− lambda∗N)
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params [ 2 7 ] = . 0 5 ; // k1mpf

params [ 2 8 ] = . 5 ; // k1wee1

params [ 2 9 ] = 5 . 0 ; // dwee1

params [ 3 0 ] = 1 . 0 ; // kactw

params [ 3 1 ] = 2 0 0 . 0 ; // k inac tw

params [ 3 2 ] = 1 . ; // dw1

params [ 3 3 ] = 1 . ; // dw2

params [ 3 4 ] = 1 . 2 ; //kbm Coup l ing f o r c e

params [ 3 5 ] = 0 . 5 ; // cw

params [ 3 6 ] = 0 . 0 1 ; // kac t r a t e con s t an t f o r i n h i b i t o r

params [ 3 7 ] = 50 ; // s s t r e n g t h o f t h e i n h i b i t o r ;

params [ 3 8 ] = 1 . e−16; // lambda k0mpf = 4 + 6∗ exp(− lambda∗ n s t a t e s )

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
RK4 step . cpp

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

// Runge k u t t a f u n c t i o n over a t ime s t e p tau

#inc lude ”haupt . h”

#inc lude <cmath>

#inc lude <math . h>

#inc lude <iostream>

#inc lude <iomanip>

#inc lude <s t d i o . h>

us ing std : : cout ;

us ing std : : endl ;

us ing std : : setw ;

void RK4 step ( const double tau , double x , double ∗∗y ,double ∗∗dydx ,

double ∗params , double ∗∗ s c a l f a c t 2 , const int neqs , int ns ta t e s ) {

double ∗∗k1 ,∗∗ k2 ,∗∗ k3 ,∗∗ k4 ;

double ∗∗y aux ;

y aux = md2 new( neqs , n s t a t e s ) ;

k1 = md2 new( neqs , n s t a t e s ) ;

k2 = md2 new( neqs , n s t a t e s ) ;

k3 = md2 new( neqs , n s t a t e s ) ;

k4 = md2 new( neqs , n s t a t e s ) ;

for ( int j = 0 ; j < ns ta t e s ; j++) {
for ( int i = 0 ; i < neqs ; i++ ) {y aux [ i ] [ j ]= y [ i ] [ j ] ; }
}
r i g h t h a n d s i d e s a b i n a (x , &y aux [ 0 ] , &dydx [ 0 ] , &params [ 0 ] , &s c a l f a c t 2 [ 0 ] ,

neqs , n s t a t e s ) ;

for ( int j = 0 ; j < ns ta t e s ; j++) {
for ( int i = 0 ; i < neqs ; i++ ) {
k1 [ i ] [ j ] = dydx [ i ] [ j ] ;

y aux [ i ] [ j ] = y [ i ] [ j ] + 0.5∗ tau∗k1 [ i ] [ j ] ; }
}

r i g h t h a n d s i d e s a b i n a (x + 0.5∗ tau , &y aux [ 0 ] , &dydx [ 0 ] , &params [ 0 ] ,

&s c a l f a c t 2 [ 0 ] , neqs , n s t a t e s ) ;

for ( int j = 0 ; j < ns ta t e s ; j++) {
for ( int i = 0 ; i < neqs ; i++ ) {
k2 [ i ] [ j ] = dydx [ i ] [ j ] ;

y aux [ i ] [ j ] = y [ i ] [ j ] + 0.5∗ tau∗k2 [ i ] [ j ] ; }
}

r i g h t h a n d s i d e s a b i n a (x + 0.5∗ tau , &y aux [ 0 ] , &dydx [ 0 ] , &params [ 0 ] ,

&s c a l f a c t 2 [ 0 ] , neqs , n s t a t e s ) ;
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for ( int j = 0 ; j < ns ta t e s ; j++) {
for ( int i = 0 ; i < neqs ; i++ ) {
k3 [ i ] [ j ] = dydx [ i ] [ j ] ;

y aux [ i ] [ j ] = y [ i ] [ j ] + tau∗k3 [ i ] [ j ] ; }
}
r i g h t h a n d s i d e s a b i n a (x + tau , &y aux [ 0 ] , &dydx [ 0 ] , &params [ 0 ] ,

&s c a l f a c t 2 [ 0 ] , neqs , n s t a t e s ) ;

for ( int j = 0 ; j < ns ta t e s ; j++) {
for ( int i = 0 ; i < neqs ; i++ ) {
y [ i ] [ j ] += ( tau∗k1 [ i ] [ j ] + 2 .∗ tau∗k2 [ i ] [ j ] + 2 .∗ tau∗k3 [ i ] [ j ]

+ tau∗dydx [ i ] [ j ] ) / 6 . ; }
}

md2 free ( y aux , neqs , n s t a t e s ) ;

md2 free ( k1 , neqs , n s t a t e s ) ;

md2 free ( k2 , neqs , n s t a t e s ) ;

md2 free ( k3 , neqs , n s t a t e s ) ;

md2 free ( k4 , neqs , n s t a t e s ) ;

}

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
main prgram . cpp

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

#inc lude <iostream>

#inc lude <iomanip>

#inc lude <s t d l i b . h>

#inc lude <fstream>

#inc lude <cmath>

#inc lude <c s t r i ng>

#inc lude <time . h>

#inc lude <s t d i o . h>

#inc lude <deque>

#inc lude <random>

#inc lude ”haupt . h”

#inc lude ” parameters . h”

us ing namespace std ;

int main ( ) {

int nstates , nnstates , addedsize , Npop , Npop total ;

const double tau = t ime s tep ;

n s t a t e s = i n i t c e l l s n u m b e r ;

nns ta te s = ns ta t e s ;

double ∗∗K; // S t a t e s Matr ix

double ∗∗dydx ; //

double ∗∗ s c a l f a c t 2 ; // e q u i v a l e n t to lambda in th e ODE system

int ∗∗ divcounter1 ; // e q u i v a l e n t to f l a g 1 in t h e pseudo−a l g o r i t hm

int ∗∗ divcounter2 ; // e q u i v a l e n t to f l a g 2 in t h e pseudo−a l g o r i t hm

double ∗params ;

// t r a c k s t h e number o f d i v i d e d c e l l s

deque< int > d iv id ed ce l l s number ;

deque< int > d iv ided ce l l s number output ;

// t r a c k s t h e t ime each c e l l d i v i d e d

deque< double > d i v i d e d c e l l s t i m e ;

deque< double > d i v i d e d c e l l s t i m e o u t p u t ;

deque <double> KG f1 ;

// d−v e c t o r t h a t c a c l c u l a t e s mo l e cu l a r a v e ra g e s a t each t ime s t e p

deque <double> MVfunction output ;
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s c a l f a c t 2 = md2 new (1 , n s t a t e s ) ;

d ivcounter1 = mi2 new (1 , n s t a t e s ) ;

d ivcounter2 = mi2 new (1 , n s t a t e s ) ;

params = md new( nparams ) ;

K = md2 new( neqs , n s t a t e s ) ;

// Each column o f K r e p r e s e n t s t h e mo l e cu l a r s t a t e o f a c e l l

dydx = md2 new( neqs , n s t a t e s ) ; // Righ t hand s i d e o f ODE system

// I n i t i a t i o n

int ind1 = 0 ;

int ind2 = 0 ;

int inddiv ;

addeds ize = 0 ;

Npop = 0 ;

Npop total = ns ta t e s ;

// Parameters i n i t i a t i o n

ODE system params assignation(&params [ 0 ] ) ;

p r i n t p o i n t e r (&params [ 0 ] , nparams ) ;

for ( int i = 0 ; i < 1 ; i++) {
for ( int j = 0 ; j < ns ta t e s ; j++) {
divcounter1 [ 0 ] [ j ] = ind1 ;

d ivcounter2 [ 0 ] [ j ] = ind2 ;

}
}
// i n i t i a l s t a t e

i n i t i a l s t a t e (&K[ 0 ] , &s c a l f a c t 2 [ 0 ] , neqs , ns tates ,

i n i t i a l v a l u e s t y p e , i n i t s t a t e v a l u e s f i x e d , i n i t s t a t e v a l u e s r a n d ,

s c a l f a c t 2 f i x , c e l l c y c l e p e r i o d m i n f , c e l l c y c l e p e r i o d m a x f ) ;

// Pr i n t i n g i n t i t i a l pop

ofstream w r i t e i n i t p o p ( ” i n i t p o p . t ext ” ) ;

p r in t mat r i x ( w r i t e i n i t p o p , &K[ 0 ] , neqs , n s t a t e s ) ;

w r i t e i n i t p o p . c l o s e ( ) ;

o f stream wr i t e t ime ( ” time . t ext ” ) ;

o fstream w r i t e o n e c e l l ( ” o n e c e l l . t ext ” ) ;

o fstream wr i t e c e l l s numbe r ( ” ce l l s number . t ext ” ) ;

o fstream wr i t e mo l e cu l a r ave r ag e s ( ” mo l ecu la r ave rage s . t ext ” ) ;

o fstream o n e c o m p d i f f c e l l s ( ” o n e c o m p d i f f c e l l s . t ext ” ) ;

int counter = 0 ;

double Time = 0 ;

while (Time < FTime − tau && nnstate s < 20000) {

wr i t e t ime << Time << endl ;

Time+=tau ;

counter+=1;

// cout << Time << se tw (12) << nn s t a t e s <<end l ;

// Updat ing t h e sys tem one t ime s t e p u s ing Runga−Kutta s o l v e r

RK4 step ( tau , Time , &K[ 0 ] , &dydx [ 0 ] , &params [ 0 ] , &s c a l f a c t 2 [ 0 ] ,

neqs , nns ta te s ) ;

// Examines i f d i v i s i o n c on d i t i o n s are s a t i s f i e d

d i v i s i o n t y p e ( d iv i s i on type , Time , tau , KG func t i on s t i f f ,

KG div i s ion constant , index MPF , index WEE1 ,

&K[ 0 ] , &divcounter1 [ 0 ] , &divcounter2 [ 0 ] , nnstates , Npop ,

d iv ided ce l l s number , d iv ided ce l l s number output ,

d i v i d e d c e l l s t i m e , d i v i d e d c e l l s t i m e o u t p u t , KG f1 ) ;

// cout << KG f1 [ counter −1] << end l ;

o n e c o m p d i f f c e l l s << K[ 6 ] [ 0 ] << ” ” << K[ 6 ] [ 1 ] << ” ” << K[ 6 ] [ 2 ]
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<< ” ” << K[ 6 ] [ 3 ] << ” ” << K[ 6 ] [ 4 ] << ” ” << K[ 6 ] [ 5 ] << endl ;

// Ca l c u l a t i n g t h e mo l e cu l a r a v e rag e s

MVfunction ( nnstates , neqs , &K[ 0 ] , params MVfunction ,

MVfunction output ) ;

for ( int i = 0 ; i < neqs ; i++) {
w r i t e o n e c e l l << K[ i ] [ 1 ] << ” ” ;

wr i t e mo l e cu l a r ave r ag e s << MVfunction output [ i ] << ” ” ;

}
w r i t e o n e c e l l << ”\n” ;

wr i t e mo l e cu l a r ave r ag e s <<”\n” ;

MVfunction output . c l e a r ( ) ;

KG f1 . c l e a r ( ) ;

// Adding new c e l l s

s t a t e s updat e (Time , i n i t i a l v a l u e s t y p e , i n i t s t a t e v a l u e s f i x e d ,

neqs , addedsize , ns tates , nnstates , inddiv , Npop total , Npop ,

&K[ 0 ] , &dydx [ 0 ] , &s c a l f a c t 2 [ 0 ] , &divcounter1 [ 0 ] , &divcounter2 [ 0 ] ,

d iv ided ce l l s number , d i v i d e d c e l l s t i m e ,

c e l l c y c l e p e r i o d m i n f , c e l l c y c l e p e r i o d m a x f ,

w r i t e c e l l s numbe r ) ;

} // End wh i l e (Time < )

wr i t e t ime . c l o s e ( ) ;

w r i t e mo l e cu l a r ave r ag e s . c l o s e ( ) ;

w r i t e o n e c e l l . c l o s e ( ) ;

w r i t e c e l l s numbe r . c l o s e ( ) ;

o n e c o m p d i f f c e l l s . c l o s e ( ) ;

i f ( d iv ided ce l l s number output . s i z e ( ) > 0) {
ofstream d i v i d e d c e l l s ( ” d i v i d e d c e l l s . t ext ” ) ;

for ( int j = 0 ; j < d iv ided ce l l s number output . s i z e ( ) ; j++) {
d i v i d e d c e l l s << d iv ided ce l l s number output [ j ] << ” ”

<< d i v i d e d c e l l s t i m e o u t p u t [ j ] << endl ;

cout << d iv ided ce l l s number output [ j ] << setw (12)

<< d i v i d e d c e l l s t i m e o u t p u t [ j ] << endl ;

}
d i v i d e d c e l l s . c l o s e ( ) ;

}

cout << ”The t o t a l number o f c e l l s i s : ” << Npop total << endl ;

// Wri t ing f i n a l s t a t e

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ofstream w r i t e f i n a l p o p ( ” f i n a l p o p . t ext ” ) ;

p r in t mat r i x ( w r i t e f i n a l p o p , &K[ 0 ] , neqs , nns ta te s ) ;

w r i t e f i n a l p o p . c l o s e ( ) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

md2 free (K, neqs , nns ta te s ) ;

md2 free (dydx , neqs , nns ta te s ) ;

md free ( params , nparams ) ;

m i2 f r e e ( divcounter1 , 1 , nns ta te s ) ;

m i2 f r e e ( divcounter2 , 1 , nns ta te s ) ;

md2 free ( s c a l f a c t 2 , 1 , nns ta te s ) ;

d i v id ed ce l l s number . c l e a r ( ) ;

d i v ided ce l l s number output . c l e a r ( ) ;

d i v i d e d c e l l s t i m e . c l e a r ( ) ;

d i v i d e d c e l l s t i m e o u t p u t . c l e a r ( ) ;

c in . get ( ) ;

return 0 ;

}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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d i v i s i o n t y p e . cpp

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

#inc lude ”haupt . h”

#inc lude <iostream>

#inc lude <iomanip>

#inc lude <s t d l i b . h>

#inc lude <fstream>

#inc lude <cmath>

#inc lude <c s t r i ng>

#inc lude <time . h>

#inc lude <s t d i o . h>

#inc lude <random>

#inc lude <deque>

us ing namespace std ;

void d i v i s i o n t y p e ( char ∗ d iv i s i on type , double Time ,

const double tau ,

const double s t i f f n e s s , const double tr , int index MPF ,

int index WEE1 , double ∗∗K, int ∗∗divcounter1 , int ∗∗divcounter2 ,

int nnstates , int &Npop ,

deque <int> &div ided ce l l s number ,

deque <int> &div ided ce l l s number output ,

deque <double> &d i v i d e d c e l l s t i m e ,

deque <double> &d i v i d e d c e l l s t i m e o u t p u t ,

deque <double> &KG f1 ) {

double r ; // random number f o r t h e ko sh l and d i v i s i o n t ype

/∗ i n i t i a l i z e random seed : ∗/
// srand ( t ime (NULL) ) ;

i f ( strcmp ( d iv i s i on type , ” d i r a c ” ) == 0) {

KG f1 . push back ( functionG (0 . 06 , K[ index MPF ] [ 2 ] , s t i f f n e s s ,

s t i f f n e s s ) ) ;

for ( int j = 0 ; j < nnsta te s ; j++) {

i f ( K[ index MPF ] [ j ] > K[ index WEE1 ] [ j ] ) {
divcounter1 [ 0 ] [ j ] += 1 ;

d ivcounter2 [ 0 ] [ j ] = 0 ;

// i n d d i v = 0 ;

// cou t << d i v c oun t e r 1 [ 0 ] [ j ] << end l ;

}
i f ( (K[ index MPF ] [ j ] < K[ index WEE1 ] [ j ] )

&& (K[ index MPF ] [ j ] < 0 . 06 ) && ( divcounter1 [ 0 ] [ j ] >= 1) ){
divcounter2 [ 0 ] [ j ] += 1 ;

}

i f ( d ivcounter2 [ 0 ] [ j ] == 1) {
Npop +=1;

// cout << Npop << se tw (12) << Time <<end l ;

d iv id ed ce l l s number . push back ( j ) ;

d i v ided ce l l s number output . push back ( j ) ;

d i v i d e d c e l l s t i m e . push back (Time ) ;

d i v i d e d c e l l s t i m e o u t p u t . push back (Time ) ;

// cout << Npop << se tw (12) << d i v i d e d c e l l s n umb e r . s i z e ( ) << end l ;

divcounter1 [ 0 ] [ j ] = 0 ;

d ivcounter2 [ 0 ] [ j ] = 0 ;

}
// cout << d i v c oun t e r 2 [ 0 ] [ j ] << se tw (12) << i n d d i v << se tw (12) << Npop << end l ;

}

}
else i f ( strcmp ( d iv i s i on type , ” koshland ” ) == 0) {
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KG f1 . push back ( functionG (0 . 06 , K[ index MPF ] [ 2 ] ,

s t i f f n e s s , s t i f f n e s s ) ) ;

for ( int j = 0 ; j < nnsta te s ; j++) {

std : : random device rd ;

std : : mt19937 gen ( rd ( ) ) ;

std : : u n i f o r m r e a l d i s t r i b u t i o n<> d i s (0 , 1 ) ;

r = d i s ( gen ) ;

// r = ( ( doub l e ) rand ( ) ) / ( doub l e )RAND MAX;

// cout << r << end l ;

double k = functionG (0 . 06 , K[ index MPF ] [ j ] , s t i f f n e s s , s t i f f n e s s ) ;

// cout << k << se tw (18) << k∗ tau << end l ;

// i f (

functionG (K[ index MPF ] [ j ] , K[ index WEE1 ] [ j ] , s t i f f n e s s , s t i f f n e s s ) >

th r e sho ld ) {
i f ( K[ index MPF ] [ j ] > K[ index WEE1 ] [ j ] ) {

divcounter1 [ 0 ] [ j ] += 1 ;

d ivcounter2 [ 0 ] [ j ] = 0 ;

// i n d d i v = 0 ;

// cou t << d i v c oun t e r 1 [ 0 ] [ j ] << end l ;

}
i f ( (K[ index MPF ] [ j ] < K[ index WEE1 ] [ j ] ) && ( r < k∗ t r ∗ tau )

&& ( divcounter1 [ 0 ] [ j ] >= 1) ){
divcounter2 [ 0 ] [ j ] += 1 ;

}

i f ( d ivcounter2 [ 0 ] [ j ] == 1) {
Npop +=1;

// cout << j << end l ;

// cou t << Npop << se tw (12) << Time <<end l ;

d iv id ed ce l l s number . push back ( j ) ;

d i v ided ce l l s number output . push back ( j ) ;

d i v i d e d c e l l s t i m e . push back (Time ) ;

d i v i d e d c e l l s t i m e o u t p u t . push back (Time ) ;

d ivcounter1 [ 0 ] [ j ] = 0 ;

d ivcounter2 [ 0 ] [ j ] = 0 ;

// cout << Npop << se tw (12) << d i v i d e d c e l l s n umb e r . s i z e ( ) << end l ;

}
// cout << d i v c oun t e r 2 [ 0 ] [ j ] << se tw (12) <<

inddiv << setw (12) << Npop << endl ;

}

}

else i f ( strcmp ( d iv i s i on type , ” n o d i v i s i o n ” ) == 0) {

KG f1 . push back (

functionG (0 . 06 , K[ index MPF ] [ 0 ] , s t i f f n e s s , s t i f f n e s s ) ) ;

d i v id ed ce l l s number . c l e a r ( ) ;

d i v ided ce l l s number output . c l e a r ( ) ;

d i v i d e d c e l l s t i m e . c l e a r ( ) ;

d i v i d e d c e l l s t i m e o u t p u t . c l e a r ( ) ;

d i v id ed ce l l s number . push back ( 0 ) ;

d i v ided ce l l s number output . push back ( 0 ) ;

d i v i d e d c e l l s t i m e . push back (Time ) ;

d i v i d e d c e l l s t i m e o u t p u t . push back (Time ) ;

Npop = 0 ;
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}

else { cout << ” type not de f ined ” << endl ;}
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s t a t e s u p d a t e . cpp

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

// Funct ion t h a t update t h e s t a t e o f t h e system and a l l o c a t e new memory

// due to p o s s i b l e i n c r e a s e in t h e c e l l number

#inc lude ”haupt . h”

#inc lude <iostream>

#inc lude <iomanip>

#inc lude <s t d l i b . h>

#inc lude <fstream>

#inc lude <cmath>

#inc lude <c s t r i ng>

#inc lude <time . h>

#inc lude <s t d i o . h>

#inc lude <deque>

us ing namespace std ;

void s t a t e s updat e (double Time , char ∗ i n i t i a l v a l u e s ,

double i n i t s t a t e v a l u e s f [ ] , const int neqs ,

int &addedsize , int &nstates , int &nnstates ,

int &inddiv , int &Npop total , int &Npop ,

double ∗∗K, double ∗∗dydx , double ∗∗ s c a l f a c t 2 ,

int ∗∗divcounter1 , int ∗∗divcounter2 ,

deque <int> &div ided ce l l s number ,

deque <double> &d i v i d e d c e l l s t i m e ,

double c e l l c y c l e p e r i o d m i n f , double c e l l c y c l e p e r i o d m a x f ,

o fstream &wr i t e c e l l s numbe r ) {

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Updat ing t h e p opu l a t i o n a f t e r each t ime s t e p

// Generat ing new c e l l i f a c e l l p a s s e s from M to G1

// The new c e l l has t h e same mo l ecu l a r c on c en t r a t i on o f i t s mother ?

// Rea l l o c a t i o n o f t h e matr ix

addeds ize = Npop ;

i f ( ( addeds ize > 0) ) {
K = md2 rea l l oc (&K[ 0 ] , neqs , nnstates , 0 , addeds ize ) ;

dydx = md2 rea l l oc (&dydx [ 0 ] , neqs , nnstates , 0 , addeds ize ) ;

d ivcounter1 = m i 2 r e a l l o c (&divcounter1 [ 0 ] , 1 , nnstates , 0 , addeds ize ) ;

d ivcounter2 = m i 2 r e a l l o c (&divcounter2 [ 0 ] , 1 , nnstates , 0 , addeds ize ) ;

s c a l f a c t 2 = md2 rea l l oc (& s c a l f a c t 2 [ 0 ] , 1 , nnstates , 0 , addeds ize ) ;

// Adding t h e new c e l l s :

nnsta te s += addeds ize ;

Npop total +=Npop ;

for ( int j = ns ta t e s ; j < nnsta te s ; j++) {

// Reas s i gn ing f o r each c e l l t h e same pe r i od o f

// i t s mother ! can be o t h e rw i s e ! !

i f ( strcmp ( i n i t i a l v a l u e s , ”random” ) == 0) {
for ( int i = 0 ; i < neqs ; i++) {
K[ i ] [ j ] = K[ i ] [ d i v id ed ce l l s number [ j − ns ta t e s ] ] ;

// K[ i ] [ j ] = i n i t s t a t e v a l u e s f [ i ] + randomf loa t ( 0 . , 0 . 2 ) ;

// cou t << << end l ;

}
s c a l f a c t 2 [ 0 ] [ j ] = randomfloat ( c e l l c y c l e p e r i o d m i n f , c e l l c y c l e p e r i o d m a x f ) ;

d ivcounter1 [ 0 ] [ j ] = divcounter1 [ 0 ] [ d i v id ed ce l l s number [ j − ns ta t e s ] ] ;

d ivcounter2 [ 0 ] [ j ] = divcounter2 [ 0 ] [ d i v id ed ce l l s number [ j − ns ta t e s ] ] ;

}
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else i f ( strcmp ( i n i t i a l v a l u e s , ” f i x e d ” ) == 0){
for ( int i = 0 ; i < neqs ; i++) {
K[ i ] [ j ] = K[ i ] [ d i v id ed ce l l s number [ j − ns ta t e s ] ] ;

}
s c a l f a c t 2 [ 0 ] [ j ] =

s c a l f a c t 2 [ 0 ] [ d i v id ed ce l l s number [ j − ns ta t e s ] ] ;

d ivcounter1 [ 0 ] [ j ] =

divcounter1 [ 0 ] [ d i v id ed ce l l s number [ j − ns ta t e s ] ] ;

d ivcounter2 [ 0 ] [ j ] =

divcounter2 [ 0 ] [ d i v id ed ce l l s number [ j − ns ta t e s ] ] ;

}
else { cout << ” p l ea s e choose a type f o r i n i t i a l va lues ” <<endl ;

break ;}

} // end f o r ( i n t j = n s t a t e s ; j < nn s t a t e s ; j++)

Npop = 0 ;

n s t a t e s = nnstate s ;

inddiv = 0 ;

d i v id ed ce l l s number . c l e a r ( ) ;

d i v i d e d c e l l s t i m e . c l e a r ( ) ;

} // end i f ( ( a dd e d s i z e > 0)

addeds ize = 0 ;

wr i t e c e l l s numbe r << Time << ” ” << nnsta te s+Npop << endl ;

} // End f un c t i o n d i v i s i o n

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
f u n c t i o n s . cpp

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

#inc lude ”haupt . h”

#inc lude <iostream>

#inc lude <iomanip>

#inc lude <s t d l i b . h>

#inc lude <fstream>

#inc lude <cmath>

#inc lude <c s t r i ng>

#inc lude <time . h>

#inc lude <a s s e r t . h>

#inc lude <random>

#inc lude <deque>

us ing namespace std ;

// g ene r a t i on o f a f l o a t i n g number between min and max

double randomfloat (double min , double max) {

a s s e r t (max > min ) ;

/∗ doub l e random = (( doub l e ) rand ( ) ) / ( doub l e ) RAND MAX;

doub l e range = max − min ;

r e t u rn ( random∗ range ) + min ; ∗/

// Perhaps a b e t t e r way !

double r ;

std : : random device rd ;

std : : mt19937 gen ( rd ( ) ) ;

std : : u n i f o r m r e a l d i s t r i b u t i o n<> d i s (min , max ) ;

r = d i s ( gen ) ;

return r ;
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}

// Go l d b e t e r f n c t i o n s : sw i t c h l i k e b e h a v i r : sw i t c h e s to t h e upper

// s t a t e when a/b = 1

// c , d : s t i f f n e s s o f t h e sw i t ch , s t i f f e r when c , d −−−> 0

double functionG (double a , double b , double c , double d) {

double r , he lp ;

help = b − a + b∗c + a∗d ;

r = 2∗a∗d/( help + sq r t ( pow( help , 2 ) − 4∗a∗d∗(b − a ) ) ) ;

return r ;

}

// Funct ion t h a t p r i n t s t h e v a l u e s o f a p o i n t e r

void p r i n t p o i n t e r (double ∗y , const int n) {
for ( int i = 0 ; i < n ; i++ ) cout << ∗(y+i ) <<endl ;

}

// Funct ion t h a t p r i n t s a matr ix u s ing o f s t r eam

void pr in t mat r i x ( ofstream &write matr ix , double ∗∗K,

const int neqs , int ns ta t e s ) {

for ( int i = 0 ; i < neqs ; i++) {
for ( int j = 0 ; j < ns ta t e s ; j++) {
wr i t e matr ix << K[ i ] [ j ] << ” ” ;

}
wr i t e matr ix <<”\n” ;

}
}
// Mean va l u e f u n c t i o n : Ca l c u l a t e s t h e mo l e cu l a r a v e ra g e s o f c e l l s

void MVfunction ( int nstates , const int neqs , double ∗∗K,

double params MVfunction [ ] , deque <double> &output ) {

double r ;

r = 0 . ;

for ( int i = 0 ; i < neqs ; i++) {
for ( int j = 0 ; j < ns ta t e s ; j++) {
r+=K[ i ] [ j ] ;

}
r∗=params MVfunction [ i ] ;

r = r /(double ) n s t a t e s ;

output . push back ( r ) ;

r = 0 . ;

}
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i n i t i a l s t a t e . cpp

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

#inc lude <iostream>

#inc lude <iomanip>

#inc lude <s t d l i b . h>

#inc lude <fstream>

#inc lude <cmath>

#inc lude <c s t r i ng>

#inc lude <time . h>

#inc lude ”haupt . h”

//#in c l u d e ” parameters . h”

#inc lude <deque>

us ing namespace std ;

void i n i t i a l s t a t e (double ∗∗K, double ∗∗ s c a l f a c t 2 , const int neqs ,

int nstates , char ∗ i n i t i a t i o n t y p e , double i n i t s t a t e v a l u e s f [ ] ,

double i n i t s t a t e v a l u e s r [ ] [ 2 ] ,
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double s c a l f a c t 2 f i x [ ] , double c e l l c y c l e p e r i o d m i n f ,

double c e l l c y c l e p e r i o d m a x f ) {

/∗ i n i t i a l i z e random seed : ∗/
srand ( ( unsigned ) time (NULL) ) ;

/∗Random d i s t r i b u t i o n ∗/
//−−−−−−−−−−−−−−−−−−−−−−−//

i f ( strcmp ( i n i t i a t i o n t y p e , ”random” ) == 0) {

for ( int j = 0 ; j < ns ta t e s ; j++) {
for ( int i = 0 ; i < neqs ; i++) {
double yi0 = i n i t s t a t e v a l u e s r [ i ] [ 0 ] ;

double yi1 = i n i t s t a t e v a l u e s r [ i ] [ 1 ] ;

K[ i ] [ j ] = randomfloat ( yi0 , y i1 ) ;

//K[ i ] [ j ] = i n i t s t a t e v a l u e s f [ i ] + randomf loa t ( 0 . , 0 . 1 ) ;

}

// De f in ing t h e i n i t i a l c e l l c y c l e p e r i od f o r each c e l l

s c a l f a c t 2 [ 0 ] [ j ] =

randomfloat ( c e l l c y c l e p e r i o d m i n f , c e l l c y c l e p e r i o d m a x f ) ;

cout << s c a l f a c t 2 [ 0 ] [ j ] << endl ;

}
}

/∗Fixed d i s t r i b u t i o n ∗/
//−−−−−−−−−−−−−−−−−−−−−−−//

else i f ( strcmp ( i n i t i a t i o n t y p e , ” f i x e d ” ) == 0) {
for ( int j = 0 ; j < ns ta t e s ; j++) {
for ( int i = 0 ; i < neqs ; i++) {
K[ i ] [ j ] = randomfloat ( 0 . , 1 . 1 ) ; // i n i t s t a t e v a l u e s f [ i ] ;

}
s c a l f a c t 2 [ 0 ] [ j ] = s c a l f a c t 2 f i x [ 0 ] ;

}
}

else {
cout << ” Please choose a c o r r e c t type f o r i n i t i a l d i s t r i b u t i o n ”

<< endl ;

system ( ”pause” ) ;

e x i t ( 1 ) ;

}
}
/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
md mal loc . cpp

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

// Memory a l l o c a t i o n f u n c t i o n s

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// md new : Funct ion t h a t r e s e r v e s space ( doub l e ) f o r a v e c t o r w i th n e l emen t s

// mi new : Funct ion t h a t r e s e r v e s space ( i n t ) f o r a v e c t o r w i th n e l emen t s

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
#inc lude <iostream>

us ing std : : cout ;

#inc lude ”haupt . h”

#inc lude <s t d l i b . h>

#inc lude <s t d i o . h>

// A l l o c a t i o n and f r e e i n g 1D

double ∗md new( int n) {

double ∗ptr ;

ptr = new double [ n ] ;
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i f ( ptr == 0)

{
cout << ” no space should be a l l o c a t e d because n i s NULL \n” ;

}

return ( ptr ) ;

}

void md free (double ∗a , int n) {
f r e e ( a ) ;

}
// A l l o c a t i o n and f r e e i n g 2D

double ∗∗md2 new( int m, int n) {

double ∗∗a = new double ∗ [m] ;

for ( int i = 0 ; i < m; i++)

a [ i ] = new double [ n ] ;

return a ;

}

int ∗∗mi2 new ( int m, int n) {

int ∗∗a = new int ∗ [m] ;

for ( int i = 0 ; i < m; i++)

a [ i ] = new int [ n ] ;

return a ;

}

void md2 free (double ∗∗a , int m, int n){
for ( int i = 0 ; i < m; i++)

d e l e t e [ ] a [ i ] ;

d e l e t e [ ] a ;

}

void mi2 f r e e ( int ∗∗a , int m, int n){
for ( int i = 0 ; i < m; i++)

d e l e t e [ ] a [ i ] ;

d e l e t e [ ] a ;

}
// c a l l o c

double ∗∗md2 cal loc ( int m, int n) {
double ∗∗xyz ;

xyz = (double∗∗) c a l l o c (m, s izeof (double ∗ ) ) ;

for ( int i = 0 ; i < m; i++)

xyz [ i ] = (double∗) c a l l o c (n , s izeof (double ) ) ; return xyz ;

return xyz ;

}

// A l l o c a t i o n and f r e e i n g 3D

// a l l o c a t e a 3D array

double ∗∗∗md3 new( int x , int y , int z )

{
double∗∗∗ the a r ray = new double ∗∗ [ x ] ;

for ( int i ( 0 ) ; i < x ; ++i )

{
the a r ray [ i ] = new double ∗ [ y ] ;

for ( int j ( 0 ) ; j < y ; ++j )

{
the a r ray [ i ] [ j ] = new double [ z ] ;

for ( int k ( 0 ) ; k < z ; ++k)

{
the a r ray [ i ] [ j ] [ k]= 0 . ;

}
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}
}
return the a r ray ;

}

void md3 free (double ∗∗∗ the array , int x , int y , int z )

{
for ( int i = 0 ; i < x ; ++i )

{
for ( int j = 0 ; j < y ; ++j )

{
d e l e t e [ ] the a r ray [ i ] [ j ] ;

}
d e l e t e [ ] the a r ray [ i ] ;

}
d e l e t e [ ] the a r ray ;

}

// Rea l l o c a t i o n o f a matr ix o f s i z e [m] [ n ]

// New s i z e i s [m + mm] [ n + nn ]

double ∗∗md2 rea l l oc (double ∗∗xyz , int m, int n , int mm, int nn) {

xyz = (double∗∗) r e a l l o c ( xyz , (m + mm)∗ s izeof (double ∗ ) ) ;

// The new column ’ s p o i n t e r must be i n i t i a l i s e d to NULL

for ( int i = m; i < (m+mm) ; i++)

xyz [ i ] = NULL;

// Rea l l o c a t e rows

for ( int i = 0 ; i < (m+mm) ; i++)

// xyz [ i ] = ( i n t ∗) r e a l l o c ( xyz [ i ] , (n + nn)∗ s i z e o f ( i n t ) ) ;

xyz [ i ] = (double∗) r e a l l o c ( xyz [ i ] , (n + nn)∗ s izeof (double ) ) ;

return xyz ;

}

// I n t e g e r matr ix r e a l l o c a t i o n

int ∗∗m i 2 r e a l l o c ( int ∗∗xyz , int m, int n , int mm, int nn) {

xyz = ( int ∗∗) r e a l l o c ( xyz , (m + mm)∗ s izeof ( int ∗ ) ) ;

// The new column ’ s p o i n t e r must be i n i t i a l i s e d to NULL

for ( int i = m; i < (m+mm) ; i++)

xyz [ i ] = NULL;

// Rea l l o c a t e rows

for ( int i = 0 ; i < (m+mm) ; i++)

// xyz [ i ] = ( i n t ∗) r e a l l o c ( xyz [ i ] , (n + nn)∗ s i z e o f ( i n t ) ) ;

xyz [ i ] = ( int ∗) r e a l l o c ( xyz [ i ] , (n + nn)∗ s izeof ( int ) ) ;

return xyz ;

}
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Multiscale modeling for the regulation of the cell cycle by the circadian clock :

Applications to chronotherapy.

Résumé :
This thesis is dedicated to the development of a multiscale mathematical model that describes the regulation
of the cell cycle by the circadian clock. What motivated this work is the fact that several tumorigenic diseases
are linked to circadian rhythms disruption. We would like to understand the effect of circadian rhythms on the
proliferation of a cell population and hence give plausible explanation for diseases that arise form circadian
clock disruption.
The mammalian cell cycle and the circadian clock are two molecular processes that operate in a rhythmic man-
ner and exquisite precision. On one hand, the cell cycle is driven by the rhythmic activity of cyclin-dependent
kinases which dictate the time a cell must engage mitosis and the time it must divide giving birth to two daugh-
ter cells. On the other hand, the circadian clock is a system of transcriptional and translational feedback-loops
that generates sustained oscillations of different mRNAs and proteins with a period of approximately 24 h. It
turns out that several components of the circadian clock regulates various cyclin-dependent kinases at different
stages of the cell cycle. This makes the circadian clock a key player of the temporal organization of the cell
cycle and makes these two biological processes act as two tightly coupled oscillators.
Our modeling approach consists of using a molecular-structured partial differential equation that describes
the proliferation of a cell population. Proliferation depends on the coupled cell cycle-circadian clock molecular
state of cells. Due to the large number of molecular components involved in the cell cycle-circadian clock
system, the problem becomes of high-dimensionality and specific numerical techniques are needed to solve the
equation.
As a first step, we simplify the problem, and use a system of transport partial differential equations structured
by the time spent by cells in a phase of the cell cycle. This system is coupled to the molecular one, via transition
coefficients that depend on the molecular state of cells. Even tough it is a simplified version, this model has
the novelty of combining both population and intracellular levels. We use it to study the entrainment of the
cell cycle by the circadian clock and the effects of regulation on the net growth of cells.
Afterwards, we pass to the fully multi-scale model and use the particle method to circumvent the high-
dimensionality aspect. This method consists of representing the population of cells by a large number of
particles, each having its own set of properties, position and weight. These properties evolve in time according
to a system of ordinary differential equations, so that the particles simulate individual cells evolving in the
molecular state space. The solution of the system can be reconstructed from individual particles and shown
to converge to the solution of the initial system. The main advantage of particle methods is their usefulness
for high dimensional problems where classical numerical methods as finite difference/volumes/elements fail.

Key Words : circadian clock, cell cycle, dynamical systems, structured transport partial differential equations,
entrainment, growth rate, particle method.
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