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The purpose of an experiment
is to make Nature speak intelligently:

all that then remains is to listen

Bill Diamond (1978)





Résumé

Depuis ses origines, dans les années 1980, la robotique a été définie comme
la science qui étudie la « connexion intelligente entre la perception et l’ac-
tion » [SK08]. Dans cette définition, il est clair qu’il n’y a pas de poids

particulier sur les composantes de perception et d’action d’un système robotique.
Ce qui rend un robot (ainsi qu’un être vivant) vraiment intelligent n’est pas, en fait,
l’excellence dans une de ces composantes (ou même dans les deux), mais, plutôt, le
correct équilibre entre les deux. Si, d’une part, il est immédiatement intuitif que la
précision de l’estimation de l’état du robot par rapport à l’environnement qui l’en-
toure a un fort impact sur la précision de ses actions, il ne faut pas oublier, d’autre
part, qu’il a été démontré à plusieurs reprises que la perception est un processus actif
aussi bien pour les êtres vivants [Gib62] que pour les systèmes robotiques [Baj88].

Comme pour de nombreux travaux en robotique, nous nous sentons partiel-
lement obligés de « justifier » notre étude en partant d’un exemple représentatif
du monde biologique. Il a été montré dans [TTAE00, Tuc00] que les rapaces ap-
prochent leur proie en suivant une trajectoire en spirale (voir Fig. 1(b)) plutôt
qu’une (plus courte) ligne droite. L’explication reconnue de ce comportement, ap-
paremment contre-productif, est que la ligne de visée de la fovéa, la région rétinienne
spécialisée dans la vision aiguë, vise à environ 45 degrés à droite ou à gauche de
l’axe frontal de l’oiseau, voir Fig. 1(a). En suivant une trajectoire en spirale autour
de la proie, le rapace peut voir la cible dans le champ de vue de la fovéa tout en
conservant la tête alignée avec le reste de son corps. Pour voler en ligne droite, le
faucon serait forcé de tourner sa tête sur le côté, augmentant ainsi considérablement
la résistance de l’air durant le vol ce qui réduirait sa vitesse. Cette trajectoire en
spirale est donc le résultat (naturel) d’une maximisation conjointe des performances
à la fois de la perception et de l’action.

Dans de nombreuses applications robotisées basées sur des capteurs extérocep-
tifs, l’état d’un robot par rapport à son environnement peut seulement être par-
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Figure 1 – Optimisation de la trajectoire chez les faucons pèlerins. Fig. (a) : struc-
ture anatomique de l’œil du faucon avec la fovéa (la zone spécialisée dans la vision aiguë)
visant à environ 45 degrés par rapport à l’axe frontal, image prise de [Tuc00]. Fig. (b) : trajec-
toire en spirale suivie par le faucon afin d’optimiser la perception visuelle et l’aérodynamique
pendant le vol vers sa proie, image prise de [TTAE00].

tiellement récupéré par ses capteurs embarqués. Dans ces situations, des schémas
d’estimation d’état peuvent être exploités pour récupérer en ligne les « informations
manquantes » et les fournir à n’importe quel planificateur/contrôleur de mouvement,
à la place des états actuels non mesurables. Quand on considère des cas non-triviaux,
cependant, l’estimation de l’état doit souvent faire face aux relations non linéaires
entre l’environnement et l’espace des capteurs (la projection perspective effectuée
par les caméras étant un exemple classique dans ce contexte [MSKS03]). En raison
de ces non-linéarités, la convergence et la précision de l’estimation peuvent être
fortement affectées par la trajectoire particulière suivie par le robot/capteur qui,
au sens large, doit garantir un niveau suffisant d’excitation pendant le mouvement
[CM10, AWCS13]. Par exemple, dans le contexte de la reconstruction 3-D à par-
tir de la vision (“Structure from Motion – SfM”), un mauvais choix des entrées
du système (par exemple, la vitesse de translation de la caméra) peut rendre la
structure 3-D de la scène non observable quelle que soit la stratégie d’estimation
utilisée [Mar12, EMMH13, GBR13], ce qui conduit, dans la pratique, à une estima-
tion inexacte de l’état pour des trajectoires avec un faible contenu d’information.
Ceci, à son tour, peut dégrader les performances de tout planificateur/contrôleur
qui doit générer des actions en fonction de l’état reconstruit, conduisant éventuel-
lement à des échecs ou des instabilités en cas de trop grandes erreurs d’estimation
[DOR08, MMR10]. La dépendance entre la performance d’estimation de la tra-
jectoire du robot et la performance du contrôle de la précision d’estimation, crée
clairement une relation étroite entre perception et action : la perception doit être
optimisée pour améliorer la performance de l’action, et les actions choisies doivent
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permettre la maximisation des informations recueillies pendant le mouvement pour
faciliter la tâche d’estimation [VTS12].

Sujet de la thèse

Avec ces considérations en tête, nous adoptons dans cette thèse la définition classique
de la robotique et nous analysons la relation entre perception et action dans les
systèmes robotiques. Étant donné l’ampleur du sujet, nous nous concentrons sur le
contexte de l’estimation et de la commande basées sur la vision et, en particulier,
sur la classe des shémas de asservissement visuel basé-image (IBVS) [CH06]. En
effet, en plus d’être une technique basée sur des capteurs très répandus, voir par
exemple [TC05, GH07, MS12], l’IBVS est aussi un bon exemple de tous les problèmes
mentionnés précédemment : d’une part, quel que soit l’ensemble choisi des primitives
visuelles (par exemple, des points, des droites, des plans et ainsi de suite), la matrice
d’interaction associée dépend toujours d’informations 3-D supplémentaires qui ne
sont pas directement mesurables à partir d’une image (par exemple, la profondeur
d’un point caractéristique ou le rayon d’une sphère). Cette information 3-D doit alors
être approximée ou estimée en ligne par l’intermédiaire d’un algorithme de Structure
from Motion (SFM), et une connaissance imprécise (en raison, par exemple, de
mauvaises approximations ou d’une mauvaise performance du SfM) peut dégrader
l’asservissement et même conduire à des instabilités ou à l’échec du suivi de la
primitive dans l’image [MMR10]. Par contre, la performance du SfM est directement
affectée par la trajectoire particulière suivie par la caméra lors de l’asservissement
[Mar12] : le contrôleur IBVS doit alors être en mesure de réaliser la tâche visuelle
principale et, en même temps, d’assurer un niveau suffisant de gain d’information
pour permettre une estimation précise de l’état.

À cet égard, nous proposons une stratégie d’optimisation de trajectoire en ligne
qui permet de maximiser le taux de convergence d’un estimateur SfM, compte tenu
de certaines limites sur la norme maximum acceptable de la vitesse de translation
de la caméra. Nous montrons aussi comment cette technique peut être associée avec
l’exécution simultanée d’une tâche IBVS en utilisant des techniques de résolution de
redondance appropriées. Tous les résultats théoriques présentés dans cette thèse sont
validés par une vaste campagne expérimentale qui, à notre avis, supporte pleinement
nos affirmations.

Structure de la thèse

Le corps de cette thèse est divisé en trois parties principales. La première présente
un examen et un état de l’art des principales techniques utilisées en vision par or-
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dinateur, commande de robot, estimation d’état et perception active. Les deuxième
et troisième parties présentent, par contre, les contributions originales de ce travail
dans le contexte de l’estimation 3-D active et de son couplage avec la réalisation
d’une tache d’asservissement. Dans ce qui suit, nous proposons un bref résumé du
contenu de chaque partie.

Aperçu de la Partie I

Dans la Partie I, nous introduisons quelques préliminaires liés à la vision par ordi-
nateur et à la robotique et nous proposons un examen approfondi de la littérature
existante. A cet égard, nous essayons de focaliser l’attention du lecteur sur l’impor-
tance d’un couplage correct entre la perception et la commande en soulignant les
problèmes éventuels qui peuvent survenir lorsqu’un tel couplage n’est pas correcte-
ment assuré.

Au Chapitre 2 nous commençons par résumer le modèle de base de la formation
d’une image et les relations géométriques qui existent entre deux vues de la même
scène prises à partir de différents points de vue de la caméra. Le chapitre se poursuit
par la présentation des techniques standard utilisées pour la modélisation de la
cinématique d’un robot et pour commander son mouvement. Nous nous concentrons,
en particulier, sur la classe des techniques de commande de mouvement basé sur la
vision, avec un accent sur les schémas d’asservissement visuel basé image (IBVS).

Au Chapitre 3 nous passons en revue les techniques classiques utilisées dans
la littérature pour estimer l’état d’un robot et/ou la structure de l’environnement
à partir de l’information visuelle. Nous proposons une comparaison entre les tech-
niques déterministes et probabilistes et, en particulier, entre les indicateurs les plus
couramment utilisés dans les deux approches pour mesurer le « conditionnement »
de l’estimation. Ceci nous conduit naturellement à l’introduction de la notion de
perception active comme le paradigme correct à adopter pour assurer un couplage
efficace entre la perception et l’action.

Aperçu de la Partie II

La Partie II de la thèse présente les contributions de ce travail dans le contexte
de l’estimation 3-D active par une caméra en mouvement. Les résultats contenus
dans cette partie sont les sujets des contributions originales de l’auteur publiées
dans [1, 2, 3, 4, 5, 6].

Au Chapitre 4 nous proposons une caractérisation de la dynamique de l’erreur
d’estimation dans la SfM. Malgré la non-linéarité du problème, on montre que la
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dynamique d’erreur peut être rendue approximativement équivalente à celle d’un
système linéaire du second ordre avec des pôles donnés si les gains d’estimation et la
vitesse de translation de la caméra sont correctement sélectionnés en ligne en fonc-
tion des mesures visuelles courantes. Par la suite, le chapitre propose l’application
de ce schéma général de perception active à un ensemble de primitives géométriques
de base : points, plans et primitives cylindriques et sphériques.

Au Chapitre 5 nous présentons une vaste validation expérimentale de l’ensemble
des thèses soutenues au Chapitre 4 avec un robot manipulateur équipé d’une ca-
méra embarquée. En particulier, nous montrons que pour l’ensemble des primitives
géométriques décrites dans le Chapitre 4, notre stratégie permet de contrôler correc-
tement et de maximiser (autant que possible) le taux de convergence de l’estimateur
sous certaines contraintes sur la norme maximale de la vitesse de la caméra.

Aperçu de la Partie III

La Partie III de ce travail aborde le problème plus difficle d’associer la perception
active avec l’exécution d’une tâche d’asservissement visuel (IBVS). Une partie de ce
travail a été présenté dans les publications de l’auteur [7, 8] et [9], qui, au moment
de la rédaction, est sous évaluation en vue de publication.

Au Chapitre 6 nous proposons une stratégie intelligente pour augmenter le taux
de convergence de l’estimation de la structure 3-D d’une manière qui est compa-
tible avec l’exécution d’une tâche principale d’asservissement visuel. Nous propo-
sons d’utiliser un opérateur de projection « large » qui permet de maximiser la
redondance du robot de manière à donner plus de « liberté » à la maximisation de
l’estimation active, tout en réalisant la tâche IBVS. Ensuite, nous étendons notre
solution par l’introduction d’une stratégie adaptative qui permet de régler l’effet de
l’estimation active et même de déclencher son activation/désactivation en fonction
de l’état actuel de l’erreur d’estimation.

Au Chapitre 7 nous présentons, comme déjà fait au Chapitre 5, une vérification
expérimentale et approfondie des résultats du Chapitre 6. Nous démontrons que l’op-
timisation du mouvement de la caméra pendant le transitoire d’un contrôleur IBVS
maximise le taux de convergence d’un estimateur SfM. Vu que les quantités estimées
sont utilisées pour calculer la matrice d’interaction pour la tâche IBVS considéré,
cela se traduit, à son tour, par une amélioration substancielle de la performance de
la commande. Enfin, nous montrons qu’en utilisant une stratégie adaptative fon-
dée sur l’état actuel de l’estimateur, on peut également réduire l’effet négatif de
déformation que la perception active a sur la trajectoire de la caméra.
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Conclusions et annexes

Le Chapitre 7 conclut la description des principales contributions de ce travail.

En plus du contenu décrit jusqu’ici, la thèse contient également un chapitre
conclusif et trois annexes.

Au Chapitre 8 nous fournissons un examen final d’ensemble des principaux ré-
sultats de la thèse en soulignant aussi quelques questions ouvertes qui restent encore
à résoudre. Le Chapitre 8 propose aussi un certain nombre d’extensions possibles
à ce travail qui mériteraient d’être étudiées. Certains d’entre elles sont en effet les
sujets de l’activité de recherche actuelle de l’auteur.

Dans l’Annexe A nous incluons quelques détails techniques supplémentaires
pour la dérivation de certains résultats présentés dans la thèse. Ce contenu n’est
pas indispensable pour comprendre le reste de ce travail, mais il est néanmoins
inclus ici pour les lecteurs intéressés.

Dans l’Annexe B nous présentons des résultats préliminaires dans le contexte
de l’estimation 3-D dense en utilisant directement des informations photométriques.
Dans ce cas, l’image de la caméra (perçue comme une nappe dense de niveau de
luminosité) est utilisée directement pour calculer le terme d’innovation de l’obser-
vateur SfM, supprimant la nécessité de tout traitement préliminaire de l’image (par
exemple l’extraction, la recherche de correspondances et le suivi des primitives).

Dans l’Annexe C nous donnons une introduction très courte et plutôt informelle
au vaste sujet des systèmes port-Hamiltoniens car ils fournissent une interprétation
intéressante, intuitive et physique des shémas d’estimation et d’optimisation utilisés
dans cette thèse. Nous introduisons également, très brièvement, la représentation à
graphe de liaisons de tels systèmes.
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Abstract

As every scientist and engineer knows very well, running an experiment is a process
that requires a careful and thorough planning phase. The goal of such a phase is
to ensure that the experiment will actually give the scientist as much information
as possible about the process that she/he is observing so as to minimize the exper-
imental effort (in terms of, e.g., number of trials, duration of each experiment and
so on) needed to reach a trustworthy conclusion.

In a similar way perception, both in a natural and in an artificial settings, is
an active process in which the perceiving agent (be it a human, an animal or a
robot) tries its best to maximize the amount of information acquired about the
environment using its limited sensor capabilities and resources.

In many sensor-based robot applications, the state of a robot w.r.t. the environ-
ment can only be partially retrieved from his on-board sensors. In these situations,
state estimation schemes can be exploited for recovering online the ‘missing informa-
tion’ then fed to any planner/motion controller in place of the actual unmeasurable
states. When considering non-trivial cases, however, state estimation must often
cope with the nonlinear sensor mappings from the observed environment to the
sensor space that make the estimation convergence and accuracy strongly affected
by the particular trajectory followed by the robot/sensor.

In this thesis we restrict our attention to the problem of vision based robot con-
trol. In fact vision is probably the most important sensor in biological systems and
endowing robots with the possibility of controlling their motion using visual infor-
mation is considered to be one of the hardest, but also most promising, challenges
in modern robotics. When relying on vision based control techniques, such as Image
Based Visual Servoing (IBVS), some knowledge about the 3-D structure of the scene
is needed for a correct execution of the task. However, this 3-D information cannot,
in general, be extracted from a single camera image without additional assumptions
on the scene. In these cases, one can exploit a Structure from Motion (SfM) estima-
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tion process for reconstructing this missing 3-D information. However performance
of any SfM estimator is known to be highly affected by the trajectory followed by
the camera during the estimation process, thus creating a tight coupling between
camera motion (needed to, e.g., realize a visual task) and performance/accuracy of
the estimated 3-D structure.

In this context, a main contribution of this thesis is the development of an online
trajectory optimization strategy that allows maximization of the converge rate of a
SfM estimator by (actively) affecting the camera motion. The optimization is based
on the classical Persistence of Excitation (PE) condition used in the adaptive control
literature to characterize the well-posedness of an estimation problem. This metric,
however, is also strongly related to the Fisher Information Matrix (FIM) employed in
probabilistic estimation frameworks for similar purposes. The optimization strategy
that we propose can be run online because it is computationally efficient and it is
only based on available information (visual measurements and camera velocity).

We also show how this technique can be coupled with the concurrent execution of
a IBVS task using appropriate redundancy resolution techniques. In particular we
employ a large projection operator that allows to maximize the robot redundancy
by controlling the visual task error norm instead of the full task.

All of the theoretical results presented in this thesis are validated by an extensive
experimental campaign run using a real robotic manipulator equipped with a camera
in-hand. In our opinion, the experiments fully support our claims showing how the
observability of a SfM estimation problem can be conveniently increased, even while
concurrently executing a IBVS task, and that this results in improved performance
for both the estimation and the control processes.

Keywords: active perception, control of robotic systems, visual servoing, struc-
ture from motion.
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Notation

General notation conventions

Throughout this thesis, the following notation conventions will be used:

• Scalar quantities are represented by lowercase symbols such as a, b, and so on.

• Elements of Rn and similar sets are interpreted as column vectors and repre-
sented by bold lowercase symbols such as a, b, and so on.

• We use the notation (a, b, c) to indicate a vertical concatenation of elements
(scalars, vectors or matrices) and [a b c] for horizontal concatenations.

• In is used to represent the identity matrix of dimension n× n.

• ��On×m is used to represent the n×m matrix with all elements equal to zero.
If m = 1 we also use ∅n.

• We use the notation A � 0 to indicate a positive definite matrix, i.e. such
that aTAa > 0, ∀a. In a similar way we define A � 0 as a semi-positive
matrix. We also write A ≺ 0 if −A � 0 and A � B if A−B � 0.

• We use the symbol c
atb to indicate the vector that goes from the origin of

reference frame Fa to that of reference frame Fb and is expressed in reference
frame Fc. We also use the notation ap = a

atp for the vector that goes from
the origin of reference frame Fa to a point p and is expressed in the reference
frame Fa. We use a similar notation to indicate velocities, e.g. c

avb is the
velocity of frame Fb w.r.t. frame Fa expressed in frame Fc. However we use
the compact notation v and ω to indicate the linear and angular velocities of
the camera frame w.r.t. the world expressed in the camera frame.
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• bRa indicates the rotation matrix that transforms vectors from frame Fa to
frame Fb. We can then write bp = bRa

ap + b
bta. We also use the notation

bMa to indicate such transformation in a compact way using the homogeneous
representation of 3-D vectors:[

bp

1

]
=

[
bRa

b
bta

∅T3 1

][
ap

1

]
= bMa

[
ap

1

]
.

• [a]× the is skew-symmetric matrix built with the components of the 3-D vector
a and representing the cross product operator for 3-D vectors, i.e. [a]× b =

a× b.

• â indicates an estimation or approximation of a.

• ã = â− a is the error between the approximation of a and its actual value.

• ǎ is used to indicate the expression of a in another set of coordinates.

• A† indicates a generalized inverse or the pseudoinverse of A.

Nabla and friends

Let f : Rn 7→ R, p 7→ f(p) be a generic scalar function of a vector argument. We
indicate with

∇pf(p) =



∂f(p)
∂p1

∣∣∣∣
p

∂f(p)
∂p2

∣∣∣∣
p

...
∂f(p)
∂pn

∣∣∣∣
p


the column vector built by stacking the partial derivatives of f w.r.t the elements
of p. This vector is also called the gradient of f w.r.t p and it can be thought of as
the product of f by the nabla (column) vector:

∇p =


∂
∂p1
∂
∂p2
...
∂
∂pn

 .
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This notation is convenient because it allows us to easily define the Hessian of a
function, i.e. the matrix of all second order partial derivatives of f w.r.t. p as

∇∇Tp f(p) = (∇p∇Tp )f(p) =



∂2f(p)
∂p21

∣∣∣∣
p

∂2f(p)
∂p1∂p2

∣∣∣∣
p

. . . ∂2f(p)
∂p1∂pn

∣∣∣∣
p

∂2f(p)
∂p2∂p1

∣∣∣∣
p

∂2f(p)
∂p22

∣∣∣∣
p

. . . ∂2f(p)
∂p2∂pn

∣∣∣∣
p

...
...

. . .
...

∂2f(p)
∂pn∂p1

∣∣∣∣
p

∂2f(p)
∂pn∂p2

∣∣∣∣
p

. . . ∂2f(p)
∂p2n

∣∣∣∣
p


∈ Rn×n.

Also the Laplacian is easily defined as

∇2
pf(p) = (∇Tp∇p)f(p) = tr (∇∇Tp f(p)) =

n∑
i=1

∂2f(p)

∂p2
i

∣∣∣∣
p

∈ R.

Now let f : Rn 7→ Rm, p 7→ f(p) be a generic (column) vector function of a vector
argument. We can extend the gradient operation and define the Jacobian of f
w.r.t. p as the matrix:

∇pf(p)T =


∇pf1(p)T

∇pf2(p)T

...
∇pfm(p)T

 ∈ Rm×n.

Note that this notation is somehow inappropriate since, if both ∇p and f are
represented as column vectors, one should write the Jacobian as f∇Tp = (∇pfT )

T .
However we accept this notation as it is common in the literature.

For all of the differential operators introduced above, we will sometimes omit the
subscript representing the variable w.r.t. which the differentiation is taken whenever
this does not lead to confusion, i.e. whenever the function that is being differentiated
depends on a single (vector) variable, e.g., ∇pf(p) = ∇f(p).

Acronyms and abbreviations

APS Active Pixel Sensor.

CCD Charge-Coupled Device.
CMOS Complementary Metal-Oxide-Semiconductor.

DOF Degree of Freedom.
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EIF Extended Information Filter.
EKF Extended Kalman Filter.

FIM Fisher Information Matrix.
FOV Field Of View.

IBVS Image Based Visual Servoing.
IF Information Filter.
iff if and only if.
IMU Inertial Measurement Unit.

KF Kalman Filter.
KLT Kanade Lucas Tomasi feature tracker.

LO Luenberger Observer.
LOS Line Of Sight.

MLE Maximum Likelihood Estimator.
MOS Metal-Oxide-Semiconductor.
MPC Model Predictive Control.
MPE Maximum a Posteriori Estimator.
MTF Modulated Transformer.

NBV Next Best View.
NLS Nonlinear Least Squares.

ODE Ordinary Differential Equation.
OG Observability Gramian.

PBVS Position Based Visual Servoing.
PDE Partial Differential Equation.
PDF Probability Density Function.
PE Persistence of Excitation.
pH port-Hamiltonian.
POMDP Partially Observable Markov Decision Process.

RANSAC RANdom SAmple Consensus.
ROS Robot Operating System.

xviii



SAM Smoothing And Mapping.
SfM Structure from Motion.
SLAM Simultaneous Localization and Mapping.
SPLAM Simultaneous Planning Localization and Mapping.
SSD Sum of Squared Difference.
SVD Singular Value Decomposition.

UKF Unscented Kalman Filter.

V-SLAM Vision based SLAM.
VO Visual Odometry.
VS Visual Servoing.

w.l.o.g. without loss of generality.
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Chapter 1

Introduction

Since its very origins, in the years 1980s, robotics was defined as the sci-
ence that studies the “intelligent connection between perception and action”
[SK08]. Clearly in this definition there is no particular stress on either the

perception or the action components of a robotic system. What makes a robot (as
well as a natural being) really intelligent is not, in fact, the excellence in either one
(or even both) of them, but, instead, the correct interplay between the two. On one
hand, it is immediately intuitive that the accuracy in the estimation of the robot
state w.r.t. the environment that surrounds it has a strong impact on the accuracy
of its actions. On the other hand, however, one should not forget that perception
has been demonstrated many times to be an active process both for natural beings
[Gib62] and for robotic systems [Baj88].

As done in many robotic works, we feel partially obliged to “justify” our study by
bringing up a representative example from the biological world. It has been shown in
[TTAE00, Tuc00] that raptors approach their preys by following a spiral trajectory
(see Fig. 1.1(b)) rather than a (shorter) straight path. The accepted explanation
for this, at first, counter-intuitive behavior is that the Line Of Sight (LOS) of the
deep fovea, the retina region specialized in acute vision, points at approximately
45 degrees to the right or left of the frontal axis of the bird, see Fig. 1.1(a). By
following a spiral trajectory around the pray, the raptor can then keep the target
within the deep fovea field of view while still maintaining its head aligned with the
rest its body. Flying on a straight line, instead, would force the falcon to turn its
head to the side thus considerably increasing air drag and significantly reducing
the flight speed. This trajectory is then the (natural) result of a joint performance
maximization of both perception and action.

In many sensor-based robot applications, the state of a robot w.r.t. the environ-
ment can only be partially retrieved from its on-board sensors. In these situations,
state estimation schemes can be exploited for recovering online the ‘missing informa-
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Figure 1.1 – Trajectory optimization in peregrine falcons. Fig. (a): anatomical
structure of the falcon eye with the deep fovea (the area specialized in acute vision) pointing
approximately 45 degrees to the side of the frontal line, image from [Tuc00]. Fig. (b): spiral
trajectory followed by the falcon to optimize visual perception and air drag while flying
toward its prey, image from [TTAE00].

tion’ then fed to any planner/motion controller in place of the actual unmeasurable
states. When considering non-trivial cases, however, state estimation must often
cope with the nonlinear sensor mappings from the observed environment to the
sensor space (the perspective projection performed by cameras being a classical ex-
ample in this context [MSKS03]). Because of these nonlinearities, the estimation
convergence and accuracy can be strongly affected by the particular trajectory fol-
lowed by the robot/sensor which, loosely speaking, must guarantee a sufficient level
of excitation during motion [CM10, AWCS13].

For example, in the context of Structure from Motion (SfM), a poor choice of
the system inputs (e.g., the camera linear velocity) can make the 3-D scene struc-
ture non-observable whatever the employed estimation strategy [Mar12, EMMH13,
GBR13], resulting, in practice, in inaccurate state estimation for trajectories with
low information content. This, in turn, can degrade the performance of any plan-
ner/controller that needs to generate actions as a function of the reconstructed
states, possibly leading to failures/instabilities in case of too large estimation errors
[DOR08, MMR10].

The dependence of the estimation performance on the robot trajectory, and of
the control performance on the estimation accuracy, clearly creates a tight cou-
pling between perception and action: perception should be optimized for the sake
of improving the action performance, and the chosen actions should allow maxi-
mization of the information gathered during motion for facilitating the estimation
task [VTS12].
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1.1 Topic of the thesis

With these considerations in mind, in this thesis we embrace the classical definition
of robotics and we analyze the relationship between perception and action in robotic
systems. Given the extent of the topic, we concentrate on the context of robot visual
estimation/control and, in particular, on the class of Image Based Visual Servoing
(IBVS) [CH06] control schemes. Indeed, besides being a widespread sensor-based
technique, see, e.g., [TC05, GH07, MS12], IBVS is also a good example of all the
aforementioned issues: on the one hand, whatever the chosen set of visual features
(e.g., points, lines, planar patches and so on), the associated interaction matrix
always depends on some additional 3-D information not directly measurable from
the visual input (e.g., the depth of a feature point or the radius of a sphere).
This 3-D information must then be approximated or estimated online via a SfM
algorithm, and an inaccurate knowledge (because of, e.g., wrong approximations
or poor SfM performance) can degrade the servoing execution and also lead to
instabilities or loss of feature tracking [MMR10]. On the other hand, the SfM
performance is directly affected by the particular trajectory followed by the camera
during the servoing [Mar12]: the IBVS controller should then be able to realize the
main visual task while, at the same time, ensuring a sufficient level of information
gain for allowing an accurate state estimation.

In this context, we propose an online trajectory optimization strategy that al-
lows to maximize the converge rate of a SfM estimator, given some limitations on
the maximum acceptable norm of the camera linear velocity. We also show how this
technique can be coupled with the concurrent execution of a IBVS task using ap-
propriate redundancy resolution techniques. All of the theoretical results presented
in this thesis are further validated by an extensive experimental campaign that, in
our opinion, fully support our claims.

1.2 Structure of the thesis

The core of this thesis is divided into three main parts. The first one presents
a review and a state of the art of the main techniques used in computer vision,
robot control, state estimation and active perception. The second and third parts
present, instead the original contributions of this work in the context of active
structure estimation from motion and its coupling with the realization of a servoing
task. In the following we propose a brief summary of the content of each part.
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Outline of Part I

In Part I we introduce some preliminaries related to computer vision and robotics
and we propose an extensive review of the existing literature in the field. In this
regard, we try to keep the focus of the reader on the importance of a correct coupling
between perception and control by highlighting the possible issues that can arise
when such a coupling is not correctly ensured.

In Chapt. 2 we start by summarizing, the basic model of image formation and
the geometrical relationships between two images of the same scene taken from
different camera points of view. The chapter continues by presenting the standard
techniques used for modeling the kinematics of a robot and for controlling its motion.
We concentrate, in particular, on the class of vision based motion control techniques
with an emphasis on IBVS schemes.

In Chapt. 3 we review the standard techniques used in the literature for esti-
mating the state of a robot and/or the structure of the environment from visual
information. We propose a comparison between deterministic frameworks and prob-
abilistic ones and, in particular, between the most common metrics used in either
approach for measuring the “conditioning” of the estimation. This naturally leads
us to the introduction of the concept of active perception as the correct paradigm
to deal with the coupling between perception and action.

Outline of Part II

The second part of the thesis presents the contributions of this work in the context
of active structure estimation from motion. The results contained in this part were
the subjects of the author’s original publications [1, 2, 3, 4, 5, 6].

In Chapt. 4 we propose a characterization of the dynamics of the estimation error
in SfM. We show that, despite the nonlinearity of the problem, the error dynamics
can be made approximately equivalent to that of a second order linear system with
assigned poles if the estimation gains and the camera linear velocity are correctly
selected online as a function of the current visual measurements. Subsequently, the
chapter proposes the application of this general active perception scheme to a set
of basic geometric primitives: point features, planes, and spherical and cylindrical
targets.

In Chapt. 5 we present an extensive experimental validation of all of the theo-
retical claims of Chapt. 4 on a real robotic manipulator equipped with a camera
in-hand. In particular, we show that, for all of the geometric primitives described
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in Chapt. 4, our strategy allows to correctly control and maximize (whenever possi-
ble) the convergence rate of the estimator given some constraints of the maximum
allowed camera velocity norm.

Outline of Part III

The third part of this work addresses the more challenging problem of coupling
active perception with the execution of a visual servoing (IBVS) task. Part of this
material was presented in the author’s publications [7, 8] and in [9] which, at the
time of writing, is under consideration for publication.

In Chapt. 6 we suggest a sensible control strategy for increasing the convergence
rate of a SfM estimator in a way that is compatible with the execution of a main
visual servoing task. We propose to use a large projection operator that allows to
maximize the redundancy of the robot so as to give more “freedom” to the active
estimation maximization, while still realizing the IBVS task. Next, we extend our
solution by introducing an adaptive strategy that allows to tune the effect of the
active estimation and even trigger its activation/deactivation as a function of the
current state of the estimation error.

In Chapt. 7 we report, as done in Chapt. 5, a thorough experimental verification
of the results of Chapt. 6. We demonstrate that the optimization of the camera
motion during the transient of a IBVS scheme maximizes the convergence rate of
a SfM estimator. Since the estimated quantities are used to calculate the inter-
action matrix for the considered IBVS task, this results, in turn, in a substantial
improvement of the control performance. Finally we show that, by using an adap-
tive strategy based on the status of the estimator, one can also reduce the negative
deformation effects of the active SfM optimization on the camera trajectory.

Conclusions and appendices

Chapter 7 concludes the description of the main contributions of this work. In addi-
tion to the content outlined so far, the thesis also contains an additional conclusive
chapter and three appendices.

In Chapt. 8 we provide a final overall review of the main results of the thesis
by also highlighting some open issues that still remain to be solved. Chapter 8
also proposes a certain number of possible extensions to this work that could be
worth investigating. Some of them, are, indeed the subjects of the author’s current
research activity.
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In Appendix A we include some additional technical details for the derivation
of some of the results contained in the thesis. This content is not essential to un-
derstand the rest of this work, but it is nevertheless included here for the interested
reader.

In Appendix B we report some preliminary original results in the context of
dense structure estimation from motion using photometric information directly. In
this case the camera image (intended as a dense luminance level map) is directly
used to compute the innovation term of the SfM observer removing the need for any
preliminary image processing (e.g. feature extraction, matching and tracking) step.

In Appendix C we give a very short and rather informal introduction to the vast
topic of port-Hamiltonian (pH) systems since they provide an interesting intuitive
and physical interpretation of the estimation and optimization schemes used in this
thesis. We also introduce very briefly the bond-graph graphical representation of
such systems.
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Chapter 2

Computer vision and
robotics fundamentals

This chapter provides an overview of the main topics this thesis is con-
cerned with and the related state of the art. The material and results
included here are well established and can be found in many computer

vision and robotics textbooks. By no means, we can provide a complete picture
of such a vast literature, but we will try, at least, to introduce the most essential
concepts.

We begin the chapter with an introduction to computer vision in Sect. 2.1. A
short historical prospective, in Sect. 2.1.1, foreruns a description of the basic geo-
metrical aspects of the camera projection process (Sect. 2.1.2) and of the geometric
relationships between two images taken from different points of view in Sect. 2.1.3.

After this, in Sect. 2.2, we move our focus to robotics. We start by introducing
the classical modeling of robot kinematics (Sect. 2.2.1) and differential kinemat-
ics (Sect. 2.2.2) w.r.t. a certain task. This gives us all the necessary background
information to tackle the problem of robot motion control in Sect. 2.2.4.

We conclude the chapter by putting together robotics and computer vision in the
so-called Visual Servoing (VS) framework in Sect. 2.3. In particular, we concentrate
our attention on Image Based Visual Servoing (IBVS) which is thoroughly described
in Sect. 2.3.2.

2.1 Computer and robot vision

Computer vision is the research field that studies how a computer algorithm can
exploit an image or, more in general, a sequence of images, to take decisions such
as, for example, identify a possible danger, recognize a person or devise appropriate
control inputs for a robotic system. This analysis is obviously many-sided as it can
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(a) (b) (c)

Figure 2.1 – History of electronic imaging. Fig. (a): picture of a cephalopod Nautilus.
The pinhole camera eye is visible in the center of the image. “Nautilus Palau” by Manuae -
Own work. Licensed under CC BY-SA 3.0 via Commons - https://commons.wikimedia.org.
Fig. (b): artist using a camera obscura as an aid for drawing, from [Bea72]. Fig. (c): first
surviving picture ever taken dating circa 1826. “View from the Window at Le Gras” by
Joseph Nicéphore Niépce - Rebecca A. Moss, Coordinator of Visual Resources and Digital
Content Library. College of Liberal Arts Office of Information Technology, University of
Minnesota. Licensed under Public Domain via Commons - https://commons.wikimedia.org.

be expected given the richness and complexity of information contained in even a
single image. In this section, however, we limit ourselves to reviewing the basic
geometrical formalism of computer vision.

2.1.1 A brief history of electronic imaging

The history of computer vision starts in the 5-th century BC, in ancient China, when
the Mohist philosopher Mozi documented, for the first time, the use of a pinhole
to project, on a wall, the inverted image of a person [Nee62]. Western civiliza-
tions made the same discovery about a century later, when the Greek philosopher
Aristotle described the effect in his book “Problems”. This natural phenomenon,
can sometimes be observed when sunlight filters through dense foliage and it is
the working principle of some primitive animal eyes [Lan05] such as those of the
cephalopod Nautilus in Fig. 2.1(a).

In the centuries that followed, many scientists, philosophers and artists experi-
mented with the pinhole and contributed to the development of the so called camera
obscura (see Fig. 2.1(b)), an elementary optical device that allows to project a neat
image of the environment on a planar surface. In 1584, in his work “Magiae nat-
uralis”, the Italian scientist and philosopher Giambattista della Porta proposed,
for the first time, the addition of concave and convex lenses to improve the focus
and brightness of the images projected by the camera obscura. It was only in the
19-th century, however, that, thanks to the contributions of Thomas Wedgwood
and Nicéphore Niépce, the device would be used, in conjunction with light-sensitive
materials, to create the first permanent pictures (Fig. 2.1(c)).

10
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These primitive cameras required an exposure time of several minutes and were,
thus, not suited for real-time video capturing. The invention of the celluloid film
by Kodak in 1889 finally made it possible to take instantaneous snapshots and
videos at a reasonable cost. On February 12, 1892 Léon Bouly first patented the
cinématographe, a single device that would allow the capturing and projection of
motion movies. Unable to afford the patent fees and to further develop the idea,
Bouly would sell the rights to the French engineers Auguste and Louis Lumière who
would realize the first movie “Sortie de l’usine Lumière de Lyon” in 1895.

Cameras would have been of little use for robot control without the invention of
electric image sensors. The first attempts to transduce light information into elec-
tric signals date back to the beginning of the 20-th century when Alan Archibald
Campbell-Swinton discussed the use of cathode ray tubes as both capture and dis-
play devices to realize a “Distant Electric Vision” [Cam08]. Such a device would
actually come to light only thirty years later, when H. Miller and J. W. Strange at
EMI, and H. Iams and A. Rose at RCA independently succeeded in transmitting
the first images.

Equally fundamental for the development of computer vision, was the discovery
of solid-state electronics. The unilateral conducting properties of certain crystals
had been discovered by the German scientist Karl Ferdinand Braun in 1874, but
it was not until the end of the 1930s that the American physicist R Shoemaker
Ohl, at Bell Labs, would obtain a sufficiently pure silicon crystal to realize an
efficient rectifying effect. Ohl also discovered and described the photo sensitivity
of semiconductor junctions. As the story goes [RH97], Ohl was examining the
conducting properties of a cracked silicon crystal when he realized, by accident, that
the voltage across the rod would suddenly increase when the crystal was flashed by
a desk lamp. This discovery would later lead to the development of the solid-state
photo-diode.

In the late 1960s attempts were made to use multiple photo-diodes, arranged
in a matrix, to realize image sensors. Particularly promising was the Active Pixel
Sensor (APS) technology in which each pixel photo-diode was coupled with its own
integrated Complementary Metal-Oxide-Semiconductor (CMOS) transistor ampli-
fier to increase noise rejection and reduce readout time. The beginning of elec-
tronic imaging was, however, marked by the invention of the Charge-Coupled De-
vice (CCD) by Willard Boyle and George E. Smith at Bell Labs in 1969 [BS70].
Michael Tompsett, also at Bell Labs, later demonstrated the potential of CCD de-
vices for electronic imaging in 1971 [ABT71, TAB+71]. The high variability in
Metal-Oxide-Semiconductor (MOS) production processes and the instability, over
time, of MOS transistors characteristics, eclipsed APS-MOS technology in favor of
CCDs for image sensors. In the late 1980s and early 1990s, however, advances in
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the production process determined a resurgence in the use of CMOS sensors that
nowadays dominate the market.

2.1.2 The pinhole camera model

Modern vision sensors are far more sophisticated than a simple pinhole camera.
A complex optical system, composed of multiple lenses, is used to focus light on
the actual image sensor. Each of these lenses is characterized by its own optical
properties including its shape, refraction, absorption and reflectance indices, chro-
matic aberration, presence of impurities and so on. The projection process can,
consequently, be extremely complex to describe accurately. In this work, however,
as it is often the case for computer vision and robotic applications, we make the
assumption that the camera optics is “good enough” to reduce all distorting effects
so that the projection model can be reasonably approximated by that of an ideal
pinhole camera with an infinitely small aperture. Under this assumption, only the
light rays passing through the aperture position oC can enter the pinhole camera
and hit the sensing surface on the back wall (see Fig. 2.1). We call this point the
camera optical center. The axis passing through this point and perpendicular to
the image plane is, instead, called the camera optical axis. The distance f between
the image plane and the optical center (measured on the optical axis) is called the
focal length.

It is convenient to define a reference frame FC centered in oC and with the z
axis parallel to the camera optical axis. This is also referred to as a canonical
retinal frame. Consider a generic 3-D point p = [X, Y, Z]T in frame FC . Us-
ing elementary geometry and triangle similarities, one can conclude that the light
ray originating from p and passing through oC intersects the image plane in the
point ρ =

[
−f XZ , −f

Y
Z , −f

]T in FC , also called the perspective projection of p,
see [MSKS03]. Note that the same is true for any point along the projection line
from oC to ρ, i.e. for any point defined as p′ = αp. A camera is, therefore, a scale
invariant sensor: the projection of the 3-D world on the 2-D sensing surface causes
a “loss” of information about the scale and the distance of the environment. Small
objects close to the camera will look the same as larger objects further away from
the sensor. This depth ambiguity is the core of the astonishing portraits by the
Dutch artist Maurits Cornelis Escher an example of which can be seen in Fig. 2.2.
Vector ρ should then be considered as representing a 2-D direction rather than a
3-D point. More precisely one can say that ρ belongs to the 2-D projective space,
i.e. the set of one dimensional subspaces (lines through the origin) of R3. Due to
this scale ambiguity, it is perfectly licit to “re-scale” ρ in any way that is found
convenient from a mathematical or numerical point of view. Moreover one can also
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Figure 2.2 – M. C. Escher (Leeuwarden 1898 – Laren 1972), “Convex and Con-
cave” . Lithograph print, first printed in March 1955.

oC

xy

z

xy

f

p

π

Figure 2.3 – Projection model of a pinhole camera.

introduce the handy notation
ρ ∼= p

to indicate equivalence, up to a scale factor, between two quantities.

By dividing ρ by its last component −f , e.g., one obtains the vector

π =
ρ

−f
=

1

Z
p ∈ P2 (2.1)

where P2 is the space of 3-D homogeneous vectors defined as

P2 = {a : a ∈ R3, eT3 a = 1}. (2.2)

Note that, the notation P2 is often used in the literature to represent the projective
space of dimension 2. For us, instead, it represents a particular representation of
such space (the one based on homogeneous vectors). In this representation, π also
corresponds to the projection of p on a virtual image plane, parallel to the vision
sensor and placed at a unitary distance from oC in front of the optical center (see
Fig. 2.4). Another convenient representation is obtained by dividing π by its norm.
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oC

xy

z

p

π
η

Figure 2.4 – Planar and spherical perspective projection models.

In this way, one obtains the unit-norm vector

η =
π

‖π‖
=

1

‖p‖
p ∈ S2

where S2 is the unit sphere, i.e. the space of 3-D unit-norm vectors defined as

S2 = {a : a ∈ R3, ‖a‖ = 1}. (2.3)

In this representation, also called the spherical perspective projection, η corresponds
to the intersection of the projection ray of p with a virtual spherical imaging sur-
face with unit radius and centered in oC (see again Fig. 2.4). The spherical model
is particularly convenient when dealing with cameras with a large Field Of View
(FOV), such as catadioptric cameras, or when fusing images from different cameras
pointing in different directions (generalized cameras) [FC09]. In fact one has, ob-
viously, η = π/‖π‖ and, since ‖π‖ ≥ π3 = 1, η is always well defined where as
π = η/η3 which is not defined for η3 = 0 (points on the plane orthogonal to e3 and
passing through oC).

Before concluding this section, we want to point the attention to the fact that, in
an actual camera sensor, measurements are not obtained directly w.r.t. the canonical
frame introduced above, but, instead, in terms of non-negative integer pixel indices
(j, k) ∈ N2 w.r.t. an image origin which, typically, corresponds to the upper left
corner of the image. Assuming that all the pixels are rectangular and have the same
size, the transformation from pixel indices to homogeneous coordinates π is affine
and can then be written in a matrix form asjk

1

 =

fdx 0 joC
0 fdy koC
0 0 1


xy

1

 = Kπ (2.4)

where dx and dy are the pixel dimensions in metric units and (joC , koC) are the
coordinates, in pixels, of the camera principal point : the point in which the optical
axis intersects the image plane. The matrix K contains a set of parameters that
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are peculiar to a specific camera and therefore is also called the intrinsic parameter
matrix. Identifying K requires, in general, a calibration process and this motivates
the fact that K is also called the camera calibration matrix. Camera calibration
can be a complex problem and, as such, it has generated a vast literature (see, for
example [Dua71, Tsa87, Zhe00]). More complex, possibly nonlinear, transforma-
tions can also be considered, instead of (2.4), to model distortion effects. This topic
is, however, beyond the scope of this thesis and an incredible amount of libraries
and toolboxes are available to perform the calibration task. Among these one can
mention ViSP [MSC05] and OpenCV [BK12] just to give some examples. From
this point on, therefore, we will always assume that the camera in use has been
preliminarily perfectly calibrated and thus the intrinsic parameters are known so
that it is always possible to recover the metric measurement π (or equivalently η)
from the raw measurement (j, k). This allows us to carry on all further numerical
developments in terms of the metric quantities π and η with the implicit assump-
tion that (2.4) (or a more complex model) will be used to transform the sensor
measurements in the actual implementation of the algorithms. Calibration errors
will be ignored or treated as exogenous noise.

Finally one should mention that, for some computer vision applications, such
as, for example, 3-D reconstruction from online videos [PNF+08, Har94], it is not
desirable or even possible to perform any camera calibration procedure. A vast
literature exists concerning the use of uncalibrated cameras in computer vision and
robot control. This is, again, beyond the scope of this thesis.

2.1.3 Geometry of multiple views

In Sect. 2.1.2 we explained how the light, emanating from a particular point in the
environment, hits the image sensor in a specific position. This section is, instead,
devoted to the relationship between the projection of the same point p on two
different image planes belonging to different cameras or, equivalently, corresponding
to a different position of a single moving camera.

Note that, in general, identifying the same point in two different images is all
but a trivial task. The problem goes generally under the name of correspondence
resolution or feature matching and tracking or, more in general, image registration
and has been addressed in countless works (see, e.g., [MS05, LK81]). This thesis,
however, is not concerned with the correspondence problem resolution and we as-
sume that a robust tracking algorithm, such as those implemented in the ViSP or
OpenCV libraries, allows to correctly identify the same point (or other geometric
primitives) in different images.
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2.1.3.1 The epipolar constraint

Consider a generic point p, fix two different camera poses corresponding to the
reference frames Fa, Fb and let aRb represent the orientation of Fb expressed in Fa
and a

atb be the coordinates of the origin of Fb expressed in Fa. The coordinates of
p in the two frames are related by the affine transformation

ap = aRb
bp+ a

atb. (2.5)

From (2.1) one can write

aZ aπ = aRb(
bZ bπ) + a

atb.

To eliminate the (unknown) depths from the equation one can multiply both sides
by [aatb]× obtaining

aZ [aatb]×
aπ = bZ [aatb]×

aRb
bπ.

Scalarly multiplying both sides by aπ yields

0 = bZ aπT [aatb]×
aRb

bπ.

Finally, assuming bZ 6= 0, one can divide by bZ and obtain the epipolar constraint

aπT aEb
bπ = 0, (2.6)

where matrix aEb = [aatb]×
aRb is the essential matrix encoding the relative pose

between Fa and Fb.

The epipolar constraint (2.6) can also be easily derived from geometric consid-
erations. By looking at Fig. 2.5 one can immediately notice that the origins of the
two frames oa and ob and the point p form a triangle and therefore lie on the same
plane. The triple product between the three vectors aatb,

aπ, and bπ (all expressed
in the same frame) must, therefore, be equal to zero. From Fig. 2.5 one can also im-
mediately realize that such triangle collapses onto a line if oa, ob and p are aligned,
i.e. if aatb = ∅3 (pure camera rotation) or if aatb is parallel to aπ (translation along
the projection ray of p). In this case the epipolar constraint (2.6) degenerates.

Matrix aEb belongs to the essential space, the subset of 3× 3 real matrices
obtained as the product of a skew-symmetric matrix and a rotation matrix:

E =
{
E ∈ R3×3|E = [a]×R, R ∈ SO(3), a ∈ R3

}
,

where SO(3) = {R ∈ R3×3|RRT = RTR = I3, det (R) = 1} is the special or-
thonormal group of dimension three. Since the epipolar constraint (2.6) is linear in
the elements of the essential matrix, it is possible to estimate aEb, up to a single
scalar factor (due to the homogeneous form of (2.6)), from a sufficient number of
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Figure 2.5 – Geometrical representation of the epipolar constraint. The points aπ
and bπ represent the projections of the same point p from two camera vantage points related
by the rigid transformation described by the rotation matrix aRb and the translation vector
a
atb.

point correspondences. The classical work [Lon81] introduced an efficient algorithm
based on the use of eight point correspondences to reconstruct aEb. This method
is probably the most widely known and it is still adopted nowadays. Nevertheless,
more recent algorithms have significantly reduced the number of necessary points.
As a matter of fact one can notice that, despite having 9 elements, matrix aEb only
possess 5 Degrees of Freedom (DOFs): 3 for the rotation and 2 for the translation
up to a scalar factor. Kruppa [Kru13, Nis04] demonstrated, indeed, that it is possi-
ble to reduce the number of necessary (non degenerate) point correspondences to 5,
although the solution cannot be obtained in closed form. An efficient algorithm for
solving the 5 points problem was proposed in [Nis04], and it is significantly more
involved than the 8 points one.

Once aEb has been reconstructed, one can also decompose it into four solutions
[Lon81]

aRb = URT
z

(
±π

2

)
V T , [aatb]× = URz

(
±π

2

)
SUT

with all possible combinations of ± and with U , V and S being the matrices of the
Singular Value Decomposition (SVD) of aEb = USV T , andRz(θ) being the matrix
corresponding to a rotation of an angle θ about the z-axis. By imposing that aZ

and bZ are both positive (otherwise p would be behind the image plane and hence
not visible by the camera) one can actually exclude three of the above solutions and
finally select the correct one. The resulting solution is still defined up to a single
scalar factor due to the scale ambiguity of the projection process. If additional
metric information is available, such as the norm of aatb, one can then recover the
scale and fully reconstruct the environment structure (p) and the transformation
between the two camera poses (aatb,

aRb). In human beings, for example, learned
knowledge of the distance between the eyes and of familiar objects size are used as
priors for environment structure reconstruction and accurate navigation.
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Figure 2.6 – Geometrical representation of the homography constraint. The points
aπ and bπ represent the projections of the same point p from two camera vantage points
related by the rigid transformation described by the rotation matrix aRb and the translation
vector aatb.

2.1.3.2 The homography constraint

It can be shown that, if the points used for the reconstruction of the epipolar ma-
trix form some particular degenerate configurations, called critical surfaces [Adi85,
LH88], the standard 8-points algorithm fails. Most of these critical surfaces rarely
occur in practice, however one of them is extremely common in all artificial environ-
ments: the plane. If the selected points lie on the same planar surface, one additional
constraint can be exploited to obtain a more sensible algorithm for reconstructing
the structure of the scene.

Let bn ∈ S2 be the unit vector normal to the plane P expressed in frame Fb.
Let also bd indicate the distance between P and the origin of frame Fb. Any point
bp on the plane surface must then satisfy the planarity constraint :

bnT bp+ bd = 0, ∀ bp ∈ P.

Assuming bd 6= 0, one can then write −
bnT

bd
bp = 1 and plug this in (2.5) obtaining

ap =

(
aRb −

a
atb
bd

bnT
)
bp = aHb

bp

where aHb is the homography matrix encoding both the roto-translation between
Fa and Fb and the geometric parameters of plane P. Using again (2.1), multiplying
both sides by matrix [aπ]× and assuming, again, bZ 6= 0, one finally obtains the
homography constraint

[aπ]×
aHb

bπ = ∅3. (2.7)
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We can now immediately understand why the epipolar constraint (2.6) cannot be
used to reconstruct the essential matrix bEa in a planar case. In fact for any 3-D
vector a one has:

aπT
(
[a]×

aHb

)
bπ = −aT [aπ]×

aHb
bπ = 0,

i.e. the constraint aπTE bπ is satisfied for a set of matrices E = [a]×
aHb that are

different from aEb and do not belong to the essential space.

As for the epipolar constraint, the homography constraint (2.7) is linear in the
elements of the homography matrix. Differently from the epipolar case, however,
only 4 point correspondences (aπi,

bπi) are necessary in this case, provided that no
three of them are collinear. In fact there is a total of 7 DOFs (3 for the rotation, 2
for the translation up to a scalar factor and 2 for the unit-norm plane normal) but
each point contributes with 2 constraints using (2.7).

Following, e.g., [MSKS03], the homography constraint (2.7) can be rearranged as
bTi x = 0 where bi = bπi⊗ [aπi]× ∈ R9×3 (with ⊗ indicating the Kronecker product),
and x = [aHb11,

aHb21, . . . ,
aHb33]T ∈ R9 is the vector obtained by stacking the

columns of aHb. By now letting B = (b1, . . . , bN ) ∈ R3N×9 be the collection of all
the N bi, one can compactly rewrite equation (2.7) for all measured pairs as

Bx = ∅9. (2.8)

Equation (2.7) has a unique (non zero) solution, up to a scalar factor, if and only
if (iff) rank (B) = 8. A (least-square) solution x of (2.8) can then be found by
exploiting the SVD of B = UBSBV

T
B and by taking the column of VB associated

to the smallest singular value σ2
1,B.

Since the homography matrix is defined up to a scale factor and the left-
multiplication by aHb is a left group action, one can also think of aHb as an element
of the special linear group of dimension 3 SL(3) = {A ∈ R3| det (A) = 1}. This
fact was exploited in [HMT+11] to derive a nonlinear observer for the homography
matrix.

Using standard algorithms [MSKS03], it is finally possible to decompose the
associated recovered homography aHb into 4 solutions for R, td and n (expressed in
either frame). The positive depth constraint can be used, as done for the essential
matrix, to exclude only two of them. The ambiguity among the remaining physically
admissible solutions can only be resolved by exploiting prior knowledge of the scene
(e.g., approximated known direction of n in one of the two frames, or comparison
against the homography estimated from a third frame).

Furthermore, as with the epipolar constraint, the structure of the scene and the
camera translation remain defined up to a scalar factor (only the ratio t

d can be
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recovered). Additional knowledge about either the camera motion or the scene 3-D
structure is then still needed for solving this ambiguity. Moreover, similarly to the
epipolar case, one can easily verify that if aatb = ∅3 (pure camera rotation) or aatb is
parallel to aπ (translation along the projection ray of p), constraint (2.8) is satisfied
regardless of the value of td and n and therefore point p cannot be used to identify
these parameters.

2.1.3.3 The interaction matrix

For the development of the Visual Servoing control laws described in Sect. 2.3 it
will be necessary to derive a description of the relationship between the camera
motion and the motion of the projection of the environment on the image. To
determine such a relationship we start by differentiating w.r.t. time the projection
equation (2.1) obtaining

π̇ =
1

Z
ṗ− 1

Z2
pŻ =

1

Z

(
I3 − πeT3

)
ṗ.

Assuming that the point p is static in the environment one can write

ṗ = −v − [ω]× p

where v and ω are the camera linear and angular velocity expressed in the camera
frame. Wrapping everything up one concludes that

π̇ =
[
−ζ
(
I3 − πeT3

)
[π]×

]
u = Lπu. (2.9)

with ζ = 1
Z and u = [vT ,ωT ]T . Matrix Lπ ∈ R3×6 is called the Interaction Matrix

of the point feature. Note that the last row of Lπ ∈ R3×6 contains only zeros. For
this reason, in general, only the first two rows of (2.9) are considered:

[
ẋ

ẏ

]
=

− 1

Z
0

x

Z
xy −

(
1 + x2

)
y

0 − 1

Z

y

Z
1 + y2 −xy −x

u. (2.10)

By repeating the same calculations one can easily show that [HM02]

η̇ =
[
−δ
(
I3 − ηηT

)
[η]×

]
u = Lηu (2.11)

with δ = 1
‖p‖ . Note that Lη ∈ R3×6, however rank (Lη) = 2 because of the con-

straint ‖η‖ = 1.
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2.2 Robot modeling and control

From a mechanical point of view, a manipulator is a set of rigid bodies, called links,
connected by joints possibly actuated by motors. In particular, we will concentrate
our attention to fixed-base, open-chain, fully-actuated robotic manipulators. In
such robots, the first link, called base, is rigidly attached to the ground so that it
does not move during normal operation. A single sequence (chain) of n − 1 links,
coupled by n joints, connects the base to the end-effector of the manipulator, where
a tool, specific to the desired task (e.g. a camera), is attached. Moreover, each one
of the joints is actuated by a motor.

2.2.1 Robot kinematics

As well known, the configuration space of a rigid body, i.e. its pose, comprises
both its position and orientation w.r.t. a fixed inertial frame FW and can hence
be thought of as an element of the special Euclidean group of dimension three:
SE(3) = R3 × SO(3). The configuration space of n + 1 free rigid bodies of a
manipulator is then given by SE(3)×SE(3)×SE(3) · · · = SE(3)n+1. Nevertheless
we made the assumption that the base of the manipulator is fixed to the ground and
therefore its position and orientation are constant during normal operation. The
links are also connected to each other by joints that constraint the space of possible
motions by applying mechanical reaction forces to the links. Assuming infinitely stiff
joints, this introduces kinematic constraints to the space of possible link velocities.
Such constraints are of the holonomic type: they can be integrated into geometrical
constraints on the manipulator configuration variables. This restricts the actual
robot configuration space to a n-dimensional smooth sub-manifold Q of SE(3)n+1,
locally diffeomorphic to Rn, that contains all possible configurations of the robot
links. This subspace can be parametrized by a vector q = [q1, q2, . . . , qn]T ∈ Q of
n generalized coordinates. The vector q̇ = [q̇1, q̇2, . . . , q̇n]T ∈ TqQ represents the
generalized velocity of the manipulator and it is an element of TqQ, the tangent
space of Q at q.

If the manipulator kinematic parameters (relative position and orientation of the
joint axes) are known, the position and orientation of each link, and in particular
of the robot end-effector, w.r.t. the fixed frame FW can be computed as a function
of the robot joint configuration q only. This mapping is also called the robot direct
kinematics. Standard conventions, such as the Denavit-Hartenberg parametrization,
exist to evaluate the direct kinematics [SSVO09]. Software toolboxes are also avail-
able to simplify the task [Cor11]. Identifying the kinematic parameters of a robot
is a process called kinematic calibration that usually requires moving the robot in
different joint configurations while measuring the pose of its end-effector [SSVO09].
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The process can be considerably involved but many solutions have been proposed
in the literature and specific software tools have been developed for the purpose
[BW04]. Often the robot manufacturer provides the geometric parameters of the
robot links and the only thing that remains to identify is the hand-eye transforma-
tion between the end-effector frame and the reference frame of the tool/sensor (e.g.
the camera) w.r.t. which the task is assigned [MSC05]. In the rest of the thesis,
we will then assume that a preliminary calibration process has been performed for
the robot in use so that the manipulator kinematic parameters are know with high
accuracy.

Depending on the specific task that needs to be accomplished, one can then
specify a m-dimensional task vector r ∈ R (e.g., the position and/or orientation of
the end-effector, the distance between two points on two different links, the distance
between the end-effector and a point in the world, and so on) and use the direct
kinematics to calculate a task function or task-oriented direct kinematics

r : Q 7→ R, q 7→ r = r(q) (2.12)

that maps each joint configuration to the value of the task vector. The task space
R is in general a smooth manifold, locally diffeomorphic to Rm. In some cases, due
to joint limits, only a subset Qa of the configuration space Q is actually admissible.
The image of Qa through r is also called the workspace of the robot

WS = {r ∈ R | r = r(q) for some q ∈ Qa}

Note that the task function is, in general, not injective: a robot can, in fact,
be redundant w.r.t. the task r ∈ WS and an infinite set of joint configurations
q ∈ Qa might result in the same r. Moreover, in most cases, r is not surjective
either: if r 6∈ WS, there exists no configuration q in Qa (and possibly even in Q)
such that r = r(q). The identification of the inverse mapping of (2.12), the inverse
kinematics problem, is therefore a complex task and many resolution strategies have
been proposed [SSVO09].

2.2.2 Robot differential kinematics

Equation (2.12) relates the space of joint configurationsQ to that of the taskR. The
task-oriented differential kinematics describes, instead, the relationship between the
joint generalized velocities q̇ ∈ TqQ and the task velocities ṙ ∈ TrR. This can easily
be obtained by differentiating the task function (2.12) w.r.t. the joint generalized
coordinates:

ṙ = Jr(q)q̇ (2.13)
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where Jr = ∇qrT ∈ Rm×n is the (analytic) task Jacobian. When the task vector
r contains the pose of the end-effector w.r.t. a fixed world frame FW , one also
calls (2.13) the robot analytic differential kinematics.

In many situations, the task is naturally expressed in terms of the end-effector
pose. This is typically the case, for example, in robotic vision applications where
the task is expressed in terms of a desired camera pose or a desired position of
some objects in the camera image and the camera itself is rigidly attached to the
robot end-effector. In these cases it is often convenient to think of r as composed
of two parts:(i ) a robot direct kinematic function that, given the configuration q
returns the pose of the robot end-effector w.r.t. the inertial frame; (ii ) an additional
function that describes the task itself in terms of the end-effector pose. For these
situations, as it will be clear in Sect. 2.3 it can be useful to calculate the robot
geometric Jacobian that relates the joint generalized velocities q̇ to the end-effector
linear and angular velocities, typically expressed in the end-effector frame itself[

vEW E
ωEW E

]
= uE = JE(q)q̇ (2.14)

with JE ∈ R6×n. Note that the geometric Jacobian does not contain partial deriva-
tives as (2.13). In fact, if r contains the end-effector position tE ∈ R3 and a minimal
parametrization φE ∈ R3 of the end-effector orientation (e.g. Euler angles, Tait-
Bryan angles, and so on), then one has:[

vEW E
ωEW E

]
=

[
I3 ��O3×3

��O3×3 T (φE)

][
ṫE

φ̇E

]
=

[
I3 ��O3×3

��O3×3 T (φE)

]
∇qrT q̇

where T (φE) ∈ R3×3 describes the relationship between the parametrization deriva-
tive and the angular velocity. One can then conclude that

JE(q) =

[
I3 ��O3×3

��O3×3 T (φE)

]
∇qrT . (2.15)

Note, however, that, in general, JE(q) can be computed directly, and more conve-
niently, by exploiting the robot kinematics rather than using the expression (2.15)
as explained, e.g., in [SSVO09].

Another important role of the geometric Jacobian can be highlighted by con-
sidering (2.14) as representing the constitutive equations of a power preserving
Modulated Transformer (MTF) in the jargon of bond graphs and port-Hamiltonian
(pH) systems (see Appendix C). The joint and end-effector velocities q̇ and uE =

( vEW E , ωEW E) clearly represent the flow variables in the transformer. One can then
introduce the corresponding dual effort variables, τ and ε, that represent the gener-
alized forces applied to the joints and those applied to the end-effector respectively
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Figure 2.7 – Bond graph representation of the robot geometric Jacobian. The Ja-
cobian (2.14) can be represented as a Modulated Transformer (MTF), function of the robot
joint configuration (top arrow). The generalized effort and flows variables are indicated on
the top and bottom of the MTF ports.

(see Fig. 2.7). Imposing that the total power is preserved by the MTF, one can
write

q̇Tτ = uTE ε = q̇TJE(q)T ε⇔ τ = JE(q)T ε,

i.e. the transpose of the geometric Jacobian describes the relationship between the
generalized forces applied to the end-effector and the ones applied to the joints. This
relationship, that goes under the name of kineto-static duality, can also be extended
to the analytic Jacobian (2.13) as well as to the velocity transformation described
by the feature interaction matrix (2.28). This latter possibility, for example, was
exploited in [MS12] to extend the classical VS framework to the control of robot
dynamics.

Finally the second-order differential kinematics can also be easily obtained by
differentiation w.r.t. time of the above first-order relationships:

r̈ = Jr(q)q̈ + J̇r(q)q̇ (2.16)

and [
v̇EW E
ω̇EW E

]
= JE(q)q̈ + J̇E(q)q̇.

2.2.3 Kinematic singularities

For both the task analytic Jacobian in (2.13) and the geometric one in (2.14) there
can exist particular configurations q for which the Jacobian looses rank. In cor-
respondence to such configurations, called kinematic singularities, one can, e.g.,
find an infinite set of task velocities ṙ that cannot be realized by any choice of q̇.
Moreover, close to singular configurations, large joint velocities q̇ can result in very
small task velocities ṙ. Exploiting the duality relationship between generalized ve-
locities and forces, one can immediately realize that in correspondence to kinematic
singularities there exist infinite forces in the task space that correspond to a zero
torque for at least one of the joints. It is then intuitive that such configurations will
arise, e.g., when two ore more joint axes are aligned as shown in Fig. 2.8. In this
configurations, in fact, the applied force ε can be totally absorbed using torques
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e
τ = 0

Figure 2.8 – Kinematic singularity. The compensation of the the applied force ε does
not require any action from the third joint since the force will be absorbed by first two
joints and by the structure of the last two aligned links.

applied to the joints before and after the aligned links and by the robot structure
of the aligned links.

2.2.4 Robot motion control

Once the robot kinematics has been identified, the control problem can be stated
as follows: with the robot in an initial configuration q0 ∈ Qa, identify a sequence of
motor commands that allows to reach (one of) the robot configuration(s) qd ∈ Qa
corresponding to a desired value of the task vector rd ∈ WS, i.e. such that r(qd) =

rd. Obviously the problem can only be solved if qd exists and qd ∈ Qa and q0 ∈ Qa
lie in the same connected component of Qa. From now on, we will always assume
this to be true.

In a physical robotic manipulator, the joints are actuated by motors that ap-
ply forces/torques on the robot links. The resulting motion of the links is then
a result of the robot dynamics which depend, in addition to the robot geometric
properties (the same involved in the kinematic model described above), of the join-
t/links dynamic parameters such as mass, inertia tensor, elasticity, viscosity and
so on. The dynamic model of the robot can be obtained, using either Lagrange
or Newton methods as described, e.g. in [SSVO09]. The dynamic parameters can
be identified via an additional dynamic calibration procedure. Once this is done,
dynamic control techniques can be used to compute the necessary motor commands
and regulate the task to the desired value (see [ACGM94, DLMO00, MS12], and
again [SSVO09] for some examples of such dynamic control techniques). In most
cases, however, knowledge of the dynamic model is not strictly necessary to obtain
satisfactory performance. A kinematic command (typically a velocity) can, in fact,
often be considered as system input in lieu of the motor forces and torques. This is
made possible by the presence of lower level feedback control loops that are capable
of executing any desired velocity reference, provided that this is physically admissi-
ble (i.e. sufficiently smooth) and does not exceed the robot actuators capabilities.
The control architecture can thus be split into a velocity-level controller that gen-
erates velocity references, and a dynamics controller that ensures their realization.
Commercial robots are typically equipped with such low-level feedback loops within
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“closed” architectures that, most of the time, do not even allow the user to have
direct control over the torques and forces applied by the motors.

In this thesis we do not address the problem of controlling the robot dynamics.
Instead, we assume that, thanks to the presence of a low-level dynamic control
feedback, the robot can be modeled as an ideal integrator that takes as input a
velocity reference q̇ and produces as output a configuration q(t) =

∫ t
t0
q̇ dτ . For our

purposes, we will also devise some control laws that generate an acceleration level
command q̈. This command will then be numerically integrated over time before
sending it (as a velocity level command) to the robot low-level controller.

2.2.4.1 Control in the configuration space

A first possibility for controlling the robot motion is to first solve the inverse
kinematics problem and calculate (one of) the joint configurations qd that satisfy
r(qd) = rd. If a solution exists, then the control law

q̇ = −k (q − qd) , k > 0 (2.17)

results in the exponential convergence of q to qd

q(t) = q0e
−λt + qd

(
1− e−λt

)
.

With this solution, the joint configuration will evolve from q0 to qd in a straight
line. Since, in general, r(q) is not a linear function, this results in unpredictable
trajectories in the task space. In addition to this, if one wished to specify a time
varying task trajectory rd(t), this strategy would require the resolution of the inverse
kinematic problem online.

2.2.4.2 Control in the task space – the non-redundant case

An alternative solution is to devise a control law that regulates directly the task
variable r avoiding the resolution of the inverse kinematics problem. This can be
done by inverting the robot kinematics at a differential level, i.e. by solving the
inverse differential kinematics problem. Assume that a task velocity ṙ is assigned.
Also assume, for the moment, that n = m and that the task Jacobian is not singular,
i.e. det (Jr) 6= 0. Under these assumptions, a joint velocity that realizes the desired
task velocity can be easily obtained by inverting (2.13)

q̇ = J−1
r ṙ. (2.18)

At this stage, the problem is simplified to that of choosing a sensible ṙ. If rd = const,
using

ṙ = −k (r − rd) = −ke, k > 0 (2.19)
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with e = r − rd, will result in the task error dynamics

ė = −ke

which yields the error behavior

e(t) = e(t0)e−λ(t−t0) ∀t ≥ t0, (2.20)

and thus ensures the exponential convergence of r to rd. In this case, the task
vector r will evolve in a straight line from its initial value r0 = r(q0) to rd

1. Since,
in general, r(q) is not linear, the joint vector will instead follow a generic, non
straight, trajectory. If one wished to solve a tracking problem in which the reference
ṙd is not constant, then

ṙ = ṙd − k (r − rd) = ṙd − ke, k > 0 (2.21)

with ṙd = drd
dt should be used instead of (2.19).

If the robot is in a singular configuration then det (Jr) = 0 and the inverse
Jacobian cannot be computed. More in general if ρ = rank (Jr) < m the linear
system (2.13) does not have a solution and the robot kinematics are over con-
strained. Leveraging classical linear least-squares results, we can reformulate the
inverse kinematics problem as an optimization one: we seek to find a solution q̇
that results in a task velocity that is as close as possible, according to a specified
metric W ∈ Rm×m � 0, to the desired one

min
q̇

1

2
(Jrq̇ − ṙ)TW (Jrq̇ − ṙ). (2.22)

As well known, thanks to the convexity of the problem, a unique solution always
exists and can be computed by using the (weighted) right Moore-Penrose pseudoin-
verse

q̇ = J†rr. (2.23)

In particular, if rank (Jr) = n, one has

J†r = W−1Jr(JrW
−1JTr )

−1
.

If rank (Jr) < n, the pseudoinverse can still be computed by resorting on a SVD
of Jr [MK89]. Note however that, while (2.23) is certainly useful for symbolic
manipulations, the numerical calculation of the pseudoinverse plus its multiplication
by the task velocity ṙ is less numerically accurate and much more computationally
expensive than the direct resolution of the linear optimization problem (2.22) and,

1Note that a straight line trajectory in the task space R does not result, in general, in a straight
line trajectory of the robot end-effector in the 3-D Eclidean space.

27



Active Visual Estimation and Control of Robotic Systems

therefore, it should be avoided if possible [GMW81]. The full control law can finally
be calculated by substituting ṙ with, e.g., the expressions in (2.19) and results in
the error dynamics

ė = −kJrJ†re.

Differently from before, the error evolution is not exponential in general and one
can only prove local convergence of the task error to zero2. Matrix J†r has a null
space of dimension m− ρ and there exist values of the task error e ∈ ker (J†r) that
correspond to local minima in which the controller can get stuck [CH06].

2.2.4.3 Control in the task space – the redundant case

A dual situation is the one in which n > m and rank (Jr) = m. In this case
the kinematics of the robot are redundant w.r.t. the assigned task r and infinite
solutions q̇ can be found that result in the same value of ṙ. One simple solution in
this case is to introduce an additional (n−m)-dimensional task function defined as:{

r2 = r2(q)

ṙ2 = Jr2(q)q̇
, r2 ∈ R(n−m), Jr2(q) ∈ R(n−m)×n.

One can then apply the same strategy as in the square case to the extended system:[
ṙ

ṙ2

]
=

[
Jr

Jr2

]
q̇ = Jexq̇, Jex ∈ Rn×n.

This resolution framework, introduced for the first time in [Ser89], takes the name
of task augmentation or extended Jacobian method. Its main disadvantage is the
introduction of algorithmic singularities that arise when rank (Jex) < n in spite of
the fact that rank (Jr) = m and rank (Jr2) = n−m.

An alternative approach is to describe the problem, as done for the overcon-
strained case, with the jargon of linear least-squares optimization as, e.g.

min
q̇

1

2
q̇TWq̇

s.t. Jrq̇ − ṙ = ∅m

where W ∈ Rn×n � 0. A unique solution always exists and can be computed by
using the (weighted) left Moore-Penrose pseudoinverse

q̇ = J†r ṙ. (2.24)
2In this overconstrained situation, the ideal behavior (2.20) could still be obtained if the m-

dimensional error vector e happens to be spanned by the ρ-dimensional range space of Jr (ρ < m)
during the whole task execution. However, in most cases this special condition cannot be expected
to hold.
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In particular, if rank (Jr) = m, one has

J†r = (JTrWJr)
−1
JTrW . (2.25)

The same considerations as above, concerning the disadvantages of computing the
pseudoinverse instead of directly solving the optimization problem, remain valid for
this case. Moreover, as shown in [CK88], a direct symbolic computation of the joint
velocity, without explicit calculation of the whole Jacobian pseudoinverse, is also
possible thanks to appropriate block decomposition of Jr.

As it is well known from linear algebra, if Jr ∈ Rm×n and rank (Jr) = ρ < n,
then the linear mapping (2.13) has a (n−ρ)-dimensional null space or kernel defined
as

ker(Jr) = {q̇ ∈ Rn|Jrq̇ = ∅m} .

Let us denote as Pr ∈ Rn×n the projection matrix whose image space corresponds
to the null space of Jr, i.e. JrPr = ��Om×n. If q̇r is a solution to (2.13), then also
q̇ = q̇r + Prq̇w, ∀q̇w ∈ Rn is a solution to (2.13). Using Lagrange’s multipliers
one can, in fact, easily demonstrate [SSVO09] that the solution to the optimization
problem

min
q̇

1

2
(q̇ − q̇w)TW (q̇ − q̇w)

s.t. Jrq̇ − ṙ = ∅m
is given by

q̇ = J†r ṙ +
(
In − J†rJr

)
q̇w. (2.26)

with J†r as in (2.25). The matrix
(
In − J†rJr

)
is then one of the possible matrices Pr

that allow to project vector q̇w into the null space of Jr thus ensuring that (2.13)
remains satisfied. Usually the joint velocity q̇w is chosen in the direction of the
gradient of a secondary (scalar) objective function that one wishes to maximize

q̇w = kr2∇qw(q), kr2 > 0.

For this reason (2.26) is also called the projected gradient redundancy resolution
technique [Lie77]. Using (2.26), with ṙ as in (2.19) or (2.21), results again in the
globally exponentially stable task error dynamics ė = −ke since the effect of q̇w is
not visible in the space R. Moreover the dynamics of the secondary task will be
described by:

ẇ = (∇qw)T q̇ = (∇qw)T
[
J†rr + kw

(
In − J†rJr

)
∇qw

]
.

If the primary and secondary task are compatible, i.e. (∇qw)TJ†r (r − Jr∇qw) ≥ 0,
then

ẇ ≥ kw ‖∇qw‖2 > 0
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and the secondary cost function will be optimized.

The projected gradient method has proven very effective for the resolution of the
inverse differential kinematics problem for redundant manipulators, nevertheless its
implementation requires a considerable computational effort when many DOFs are
involved. In this regard, alternative and more efficient solutions have been proposed
such as the reduced gradient method [LO91]. When the application involves many
different tasks that inherently have different priority levels, one can also consider
the use of a task priority resolution framework [NHY87] that explicitly models
the effect of the higher priority tasks on the lower priority ones. Along the same
lines, the task sequencing redundancy resolution method [CCSS91] regulates each
task, one at a time, from the one with the highest priority to the one with lowest
one. This ensures that an “artificial” degree of redundancy is maintained during
the resolution of all but the least priority task. Finally an incredible number of
variations and possibly combinations of the above mentioned methods exists in the
literature. For a survey on the matter, we suggest to refer to [SK08]. For the
purpose of this paper, however, given the simplicity of the involved task and the
relatively small number of DOFs considered, we will limit our attention to the use
of a simple projected gradient resolution strategy with the understanding that an
extension to different redundancy resolution frameworks would also be possible.

Finally note that the problem of controlling the robot motion in the configuration
space, described in Sect. 2.2.4.1, can be regarded as a special case of the more general
task space control problem in which one has r = q̇ and the task function and the
task Jacobian correspond to the identity function. In this case, obviously, the task
Jacobian is always square and full rank and (2.18), with (2.19), trivially reduces
to (2.17).

2.2.4.4 Control at the acceleration level

We conclude this section by considering the extension of the redundancy resolution
frameworks introduced so far to the case of an acceleration-level kinematic control.
From (2.16) one immediately has

r̈ − J̇rq̇ = Jrq̈,

therefore the second order differential kinematics inversion problem is formally
equivalent to the first order one, and all of the control schemes introduced above can
be easily extended to the acceleration level by adopting the following substitutions
in the formulas

q̇ → q̈, ṙ → r̈ − J̇rq̇, q̇w → q̈w.

Differently from before, however, at the acceleration level one also needs to make
sure that a sufficient level of damping is introduced in the system to stabilize the
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second-order dynamics of the task error. If one designs

r̈ = r̈d − kd (ṙ − ṙd)− kp (r − rd) , kd > 0, kp > 0

with, possibly, r̈d = ṙd = ∅m for regulation problems, then, in the redundant and
square cases, the dynamics of the task error becomes

ë = −kdė− kpe

and it is always globally exponentially stable.

A damping in the null space of the task must also be introduced to dissipate
internal motions. This is obtained by using, e.g.

q̈w = ∇q̇w(q̇)− kd,2q̇.

If the internal low-level robot controller only accepts velocity-level commands
(as it is the case for the robot used in the experiments of Chapts. 5 and 7) the
acceleration reference, generated using the above strategy, must be numerically
integrated over time before actually feeding it to the robot control unit.

2.3 Visual Servoing

For the control laws described in Sect. 2.2.4 to be implemented in practice, one
needs to recover the current value of the task variable r (and possibly ṙ) needed to
calculate the feedback terms in (2.19–2.21). In other words, one needs to recover
an estimation of the current robot state in relation to the assigned task. This can
be done by exploiting the presence of sensors, such as joint encoders, lasers, sonars,
and so on. According to the definition given in [CH06], the term Visual Servoing
(VS), or visual servo control, refers, in particular, to the use of computer vision data
(extracted from camera images) to control the robot motion. The first attempts of
using a camera for robot control can be dated back to the early 70s [BP73, SI73].
These works where based on an approach to the problem that is fundamentally
different from modern VS techniques: the camera would be used to take snapshots
of the scene, understand the current situation and devise from that a new reference
trajectory that would be fed to a motion control architecture; this latter would
then move the robot “blindly”, without directly exploiting any additional visual in-
formation, for a certain amount of time after which a new snapshot would be taken.
This approach was mainly imposed by the very limited performance of the com-
puting architectures available at that time and was abandoned with the progressive
improvements in computational power. The term Visual Servoing was apparently
introduced by the authors of [HP79] to distinguish their work from this pioneering
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use of visual feedback : the novelty of their work was the use of simple but fast image
processing algorithms to allow the exploitation of visual information in real-time re-
active behaviors. In essence, this is still the accepted definition of VS [Cor93]. As
such, VS is more of a general paradigm rather than a specific collection of tech-
niques. In fact, a variety of different implementations are possible tailored to the
specific applications. Different types of cameras (perspective, catadioptric [BMH03],
or generalized cameras [CMS11]) both monocular and stereoscopic [HCM94] can
be used. Cameras can be mounted either on the robot end-effector (eye-in-hand
[WSN85]) or on an external fixed base (eye-to-hand [WWR93, RK98, HDE98]) or
in a combination of both (as it is typical in humanoid robotics [APC13, TK01]).
Both fixed-base and mobile manipulators [MOP07, CAK99] can be considered. VS
control formalism can also be applied to other sensors than traditional cameras such
as RGB-D sensors [TM12], camera/laser-stripe sensors [KMM+96] and ultrasound
probes [MKC08]. The development of a fully functioning VS system requires deep
mastering of a wide range of techniques spanning the fields of image processing,
computer vision, and control and estimation theory. Since this thesis is more con-
cerned with the latter aspects, we refer the reader to specialized textbooks such as,
e.g. [Rus11, Sze10], and we concentrate our attention to the control and estimation
aspects involved.

2.3.1 General classification of Visual Servoing approaches

A large variety of different visual control schemes have been proposed in the liter-
ature. The reader can refer to the classical works [Cor93, HHC+96] or the more
recent two-parts review paper [CH06, CH07] for a complete overview. This multi-
plicity of solutions, however, are conceptually equivalent from a control point and
can be treated with a unique formulation that is based on the interpretation of the
visual information as a task variable in the sense explained in Sect. 2.2.4. Depending
on the type of information that enters in the definition of the task variable, which
in the context of VS is usually called the visual features vector, one can distinguish
two main approaches:

• in Position Based Visual Servoing (PBVS) [WHB96, TMCG02] the visual
information is used to estimate a set of 3-D parameters such as, e.g., the pose of
the camera (or the robot end-effector) w.r.t. some reference coordinate frame.
In the computer vision literature, this is referred to as the 3-D localization
problem. Once the localization is solved, the control problem is equivalent to
a classical geometric control of the robot end-effector pose.

• in Image Based Visual Servoing (IBVS) the information extracted from the
camera (e.g. the position of some key points or the contour of an object in
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the image) enters directly in the definition of the task vector and the robot
pose is never reconstructed. The goal configuration is described in terms of
the value that the features assume when camera is in the desired pose.

Both strategies present their advantages and disadvantages and the choice between
the two can sometimes be determined by the specific application requirements.
Since, for our purposes, both solutions are valid, we refer again the reader to [Cor93,
HHC+96, CH06, CH07] for a deeper discussion about the two approaches, and
we dedicate the next session to provide additional details about the IBVS control
framework.

2.3.2 Image Based Visual Servoing

Consider a camera, with an attached reference frame FC , that measures a set of
visual features s ∈ Rm (e.g., the x and y coordinates of a point, the parameters of
some lines, and so on), possibly by resorting on some image processing algorithm.
We make the assumption [ECR92] that the measurements s only depend on the
shape of the part O of environment observed by the camera (e.g., the radius of a
sphere/cylinder, the contour of a planar patch, and so on) and on the pose of the
part w.r.t. the camera (e.g., the position p of a point, the orientation and distance
of a plane, and so on). Let the shape be identified by a set of constant parameters
θ. Let also FO be a reference frame attached to the object. Its pose w.r.t. the
camera frame FC is then represented by the homogeneous transformation matrix

CMO =

[
CRO

C
CtO

∅T3 1

]
.

If a fixed reference frame FW is also defined, we can express CMO as

CMO = CMW
WMO

where WMO and WMC represent the pose of the object and the camera w.r.t. the
world fixed frame.

In a eye-in-hand configuration, the object pose is fixed w.r.t. the world and the
camera is rigidly attached to the robot end-effector with a constant transformation
CME so that its pose can be expressed as a function of the robot joint configuration
q exploiting the direct kinematics as described in Sect. 2.2.1. One can then write

s = s(CMO,θ) = s(CME
EMW(q)WMO,θ) = s(q, CME ,

WMO,θ).

In a eye-to-hand configuration, instead, the camera pose w.r.t. the world frame is
fixed and the object of interest (e.g., a tool) is mounted on the robot end-effector
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with a constant transformation EMO so that its pose can be expressed, again, as a
function of the robot joint configuration, hence

s = s(CMO,θ) = s(CMW
WME(q) EMO,θ) = s(q, CMW ,

EMO,θ).

A hybrid between the two situations is also possible. All of these configurations,
despite their differences, are all formally equivalent in the sense that, by considering
the CME and WMO, or CMW and EMO, as part of θ, one can always write

s = s(q,θ).

Due to this formal equivalence, from now on we will limit our attention to the
eye-in-hand configuration case.

Note that, in some applications such as target tracking [CRE91], one might have
that neither WMO nor CMW can be considered constant because some external
non-controlled agent is causing them to change with time. In these cases, which are
not considered in this thesis, one might have s = s(q,θ, t).

The basic idea behind IBVS is to define the task vector in Sect. 2.2.1 as a
function of the sole image features:

r = s(q,θ). (2.27)

The first step to define the VS control problem is to define a desired value of the
task. Consider, for simplicity, the case of a regulation task in which a desired
constant value sd is specified. As for the generic task oriented control framework
described in Sects. 2.2.4.2 and 2.2.4.3, sd is defined as the value of s when the robot
(or the camera) is in the desired configuration. This value can be either computed
using (2.27) or, if possible, experimentally measured by manually moving the robot
to the desired configuration. In this latter case, the goal of VS is to ensure that the
robot can then reach this learned configuration regardless of its initial configuration.

In order to use one of the control schemes introduced in Sects. 2.2.4.2 and 2.2.4.3,
one also needs to calculate the task Jacobian for the image features. In VS, rather
than symbolically differentiating (2.27) w.r.t. q, it is in general convenient to exploit
the fact that s is a function of the camera pose CMW and, hence, its derivative can
be expressed as a function of the camera linear and angular velocity. In particular,
as shown in Sect. 2.1.3.3, the following relationship holds [CH06]

ṡ = Ls(s, χ)u (2.28)

where Ls ∈ Rm×6 is the interaction matrix of the considered visual features, χ ∈ Rp

is a vector of unmeasurable 3-D quantities associated to s (e.g., the depth Z for
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a point feature or the radius R for a sphere), and u = (v, ω) ∈ R6 is the camera
linear/angular velocity expressed in the camera frame. Furthermore, one has

u =

[
v

ω

]
= CT EuE = CT EJE(q)q̇

with JE(q) being the robot geometric Jacobian, introduced in (2.14), relating end-
effector and robot joint velocities and

CT E =

[
CRE

[CtE]× CRE
��O3×3

CRE

]
being the twist matrix that transforms linear and angular velocities from the end-
effector frame to the camera frame. Note that matrix CT E contains the (constant)
roto-translation between the end-effector frame and the camera frame. These quan-
tities must be identified by a, so called, hand-to-eye calibration process, see e.g. the
classical work [TL89]. One can then introduce a camera geometric Jacobian, defined
as

JC(q) =

[
Jv(q)

Jω(q)

]
= CT EJE(q), JC(q) ∈ R6×n, (2.29)

and conclude that
Js(s, χ, q) = Ls(s, χ)JC(q) ∈ Rm×n (2.30)

is the visual task Jacobian associated to (2.27). To simplify the notation, whenever
this does not lead to confusion, we will neglect the subscript s in Js. It is worth
noting that, because of the structure in (2.30),

ρ = rank (J) ≤ min{rank (Ls), rank (JC)} ≤ min{m, n, 6}

for any m and n. By then defining e = s− sd as the visual error vector, one has

ė = Jq̇. (2.31)

As explained in Sect. 2.2.4.3, in a redundant case w.r.t. the visual task (ρ < n),
the standard choice for regulating e(t)→ ∅m is to apply the control law

q̇ = −λJ†e+ (In − J†J)q̇w = −λJ†e+ P q̇w, λ > 0, (2.32)

where J† denotes the Moore-Penrose pseudoinverse of matrix J and q̇w ∈ Rn is
an arbitrary vector projected on the null-space of the main visual task through the
action of the projector P = (In−J†J) ∈ Rn×n. Vector q̇w is typically exploited for
additional optimization purposes during the servoing, such as maximization/mini-
mization of some suitable scalar cost function w(q). In non-redundant cases (ρ = n),
P = ��On×n and the control action (2.32) reduces to

q̇ = −λJ†e, λ > 0, (2.33)
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with all the system DOFs constrained by the realization of the visual task. If,
instead, ρ = m (possible only if m ≤ min{n, 6}), i.e., if the servoing task is feasible
for the given camera/robot system, both control actions (2.32–2.33) will result in a
perfectly decoupled and exponential convergence for the visual error e(t) as in (2.20).
Finally, if ρ < m (e.g., whenm > n and/orm > 6), the visual task is overconstrained
w.r.t. the camera/robot system and the ideal exponential behavior (2.20) will, in
general, only be approximated during motion.

Remark 2.1. Note that, in general, the feature interaction matrix (2.28), and thus
the IBVS task Jacobian (2.30), depend on some unmeasurable quantity χ, related
to the scene 3-D structure, that cannot be directly measured using a camera sensor
only. In particular, these geometric quantities only appear in the first 3 columns
of the feature interaction matrix (2.28), i.e. those related to the camera linear
velocity, see, e.g. 1/Z in (2.10). In practice, then, whenever the specified IBVS tasks
involves the camera translational DOFs, none of the IBVS control laws introduced
in this section, can be implemented exactly, but it will be necessary to substitute
the actual Js(s, χ, q) with an approximation Ĵs = Js(s, χ̂, q) with Ĵs → Js for
χ̂ → χ. Regardless of the degree of redundancy of the considered robot/visual task
combination, the error dynamics will be governed by the eigenvalues of matrix JsĴ

†
s .

It is already clear, then, that ensuring a high estimation accuracy for χ̂ will be
crucial to guarantee that JsĴ

†
s � 0 (so that e → ∅m) and, more in general, to

improve performance of any IBVS control law.
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Chapter 3

State estimation

As discussed in Sect. 2.3, the first attempts of using a camera to control robot motion
used the vision sensor only to reconstruct the current state of the robot at some
distant time instants. More modern PBVS approaches rely on visual information to
recover an estimation of the current camera pose. Finally, even in IBVS frameworks,
despite the fact that the camera pose is not directly entering in the definition of
the task, the features interaction matrix in (2.28) and, as a consequence, the task
Jacobian in (2.30), still depend on some 3-D geometric parameters that cannot be
directly extracted from a camera image but, in general, must be estimated using a
sequence of images together with some additional metric information.

This need for recovering (online) an approximation of the current state of the
system is not peculiar to VS applications, but characterizes pretty much all control
problems to the point that it has led to the emergence of an entire dedicated branch
of research that can take different names depending on the particular application
and assumptions.

In this chapter we introduce and analyze the problem of state estimation in gen-
eral, but with a focus to visual applications in particular. We start, in Sect. 3.1, by
introducing the problem of state/parameter estimation from vision and by review-
ing the main “branches” in which this has evolved in the literature. We dedicate the
final part of Sect. 3.1 to position our work w.r.t. to these different approaches. In
Sects. 3.2 and 3.3 we introduce the basic deterministic and probabilistic frameworks
that have been proposed to solve the estimation problem. We also explain and com-
pare the standard metrics that are commonly used to quantify the “well-posedness”
of the estimation problem and the amount of information available about the quan-
tities to be estimated. This naturally leads us to the introduction, in Sect. 3.4, of
the active perception problem which is the main topic and motivation of this thesis.
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3.1 Estimation from vision

Almost all animal species have, at least, a very simple eye-spot and about 96% of
all known species have a proper eye, capable of recognizing patterns and control
locomotion [LF92]. During the course about 600 million years, animal eyes have
evolved in a multiplicity of different forms [LF92, Lan05]. The sense of vision has
then brilliantly succeeded the test of natural selection and it is probably the most
essential in our daily life experience. The main reason for this is to be found in
the tremendous amount of information that vision can provide about the geometry,
appearance (texture and color) and even the semantic content of the environment.
In a similar way, a camera is probably one of the most informative sensors that
a robotic system can be equipped with. Camera sensors also have the advantage
of being very small and lightweight and usually, due to their intrinsically passive
nature, more power efficient than other sensors (e.g. laser range finders, ultra-
sound and sonar sensors need to actively generate a signal to be able to acquire the
information).

The power of vision, however, also comes at a considerable cost. It is estimated
that about 40% of human brain pathways are connected to the retina and up to 50%
of the neural tissue might be directly or indirectly devoted to the processing of visual
information, more than all other senses combined. Visual information processing
also takes two thirds of the electrical activity of our brain when we open our eyes
[Fix57, Bow12]. In a similar way, processing information from a vision sensor has
proven to be an incredible challenge for engineering and science. Computer vision
algorithms are often extremely eager of computational power to the point of being
one of the main factors pushing forward the development of highly efficient and
specialized computer architectures [FM05, DBSM07].

In this thesis, we are only concerned with the geometric aspects of computer
vision. The first work that was directly dedicated to the mathematical modeling
of the problem of reconstructing the geometric structure of a scene from two (pro-
jected) views is attributed to Kruppa [Kru13, MSKS03]. Kruppa was, in particular,
interested in the problem of estimating both the structure of the scene and the rel-
ative pose between the two view points. This problem is known in computer vision
as Structure from Motion (SfM). As explained in Sect. 2.1.3.1, Kruppa proved that
5 point correspondences from two different points of view, are sufficient to solve
the problem up to a finite number of solutions (and to a scale factor). With the
increase of computers computational power, research became interested in using a
large number of images (instead of just two), both calibrated and not calibrated,
to accurately estimate both the structure of complex environments (represented by
thousands of points) and the camera poses in each of the view points. In this context
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one can mainly distinguish two different approaches.

Typical SfM algorithms, stemming from the computer vision community, pro-
cess altogether a large number of images, usually from uncalibrated cameras, in an
offline optimization process. This optimization is also known as bundle adjustment
[TMHF00] and was initially conceived for photogrammetry applications. It can lead
to very impressive results in the reconstruction of complex scenes as demonstrated
in, e.g., [SSS06].

A different approach, more typical of robotic applications, is to process the set of
images sequentially, as new frames are captured by the camera, in real time. In these
approaches one is typically mainly interested in the relative pose Ck−1MCk of the
camera between frame k−1 and frame k (although sometimes more than two frames
might be processed to improve accuracy). If necessary, a pose w.r.t. the initial frame
(usually chosen as the fixed reference) can be computed by integrating the sequence
of estimated transformations, i.e. WMCk = C0MC1

C1MC2 . . .
Ck−1MCk . Because of

this integration process, the problem is typically known as Visual Odometry (VO)
[SF11, FS12] for its similarity with the more classical wheel odometry. Even if
VO is not directly interested in the reconstruction of the scene geometry, bundle
adjustment can sometimes be applied to a limited selection of the most recent frames
(sliding window bundle adjustment) to improve accuracy.

Somewhat in between these two approaches is the, so called, Vision based SLAM
(V-SLAM) problem [PPTN08, Dav03]. This is an extension of the more general Si-
multaneous Localization and Mapping (SLAM) problem [DWB06, BDW06] to the
case of visual measurements. In V-SLAM, similarly to SfM, the focus is on recon-
structing both the camera pose (localization) and the structure of the environment
(mapping) w.r.t. a global reference frame (typically coincident with the first image).
Differently from SfM, however, in V-SLAM there is a temporal causality relation-
ship between the frames. The images (and the corresponding camera poses) are
normally processed in a sequence, and the camera motion is integrated, similarly to
what happens in VO, until the moving camera revisits a certain part of the scene.
When this loop closure arises, a global optimization is performed that involves both
the camera pose and the section of the map correlated (in a statistical sense) to
the loop path. While in SfM the estimation problem is usually solved using batch
optimization techniques (such as bundle adjustment) both V-SLAM and VO mostly
adopt recursive filtering strategies, such as (Extended/Unscented) Kalman Filters,
Particle Filters and Recursive Least Squares/Maximum Likelihood estimators.

Note that the boundary line between V-SLAM and SfM is often very blurry.
The use of the two terms seems sometimes mostly related to the “traditions” of
different scientific communities with SfM being more common in the computer vision
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community and V-SLAM being more widely used in the robotics one. Sometimes,
in fact, the term real-time SfM is also used to refer to V-SLAM [CFJS02, DRMS07,
SMD10].

Finally, both VO and V-SLAM algorithms, usually assume that the camera
intrinsic parameters are known from some preliminary calibration process although
some exceptions can be found in the literature [KWHT10, TEC12].

Regardless of the approach taken, the problem of estimating the 3-D geometric
structure of a scene and/or the camera pose from a sequence of 2-D images acquired
by a camera belongs to the class of the so-called inverse problems: starting from
the result of a physical process (the images obtained by projection) one has to in-
fer the cause (the 3-D structure and camera pose) that originated it. This type
of problems is usually difficult to solve and mathematically ill-conditioned because
the information contained in the measurements is typically not sufficient to entirely
reconstruct the process, unless additional priors (or measurements) can be intro-
duced. In the case of vision, the projection process described in Sect. 5.1.1 reduces
the 3-D world into a 2-D image. The third dimension is “lost” in the process and
this causes the scale ambiguity that affects image measurements (see Sect. 5.1.1).
By no means this scale can be reconstructed from the 2-D images only : additional
metric information (such as the known dimension of an object in the scene or the
metric distance between the camera view points in the different images) must also
be included. Priors on the position/shape of some observed objects or on the initial
camera motion have been assumed, e.g., in [ZKA+09, KM07]. Another possibility,
often exploited in SfM [XS12], VO [NNB06] and V-SLAM [SBO+10] is to use a
stereo vision sensor with a known fixed distance between the left and right cameras.
This strategy is also adopted by many animals, including humans, that have (at
least) two front facing eyes with overlapping fields of view. An alternative, is to
use a single monocular moving camera and exploit additional sensors to retrieve
a metric measurement of the distance between multiple views. In some cases a
monocular camera can be mounted on a slider mechanism as in [Mor80]. This is
conceptually equivalent to stereo-vision and it is a strategy also adopted in nature:
to increase their FOV and effectively detect predators, some animals (like pigeons)
have sideways eyes with scarcely overlapping fields of view; by bobbing their heads
back and forth they can however recover depth perception. Another possibility is
to use additional metric sensors, such as joint encoders [CBBJ96], Inertial Measure-
ment Units (IMUs) [GBSR15, Mar12], sonar [HMTP13] and so on, to recover some
metric information such as the motion of the camera or the distance from the scene
and thus reconstruct the scale of the environment. Finally, note that the monocular
estimation problem is also interesting when dealing with a stereo sensor. As a mat-
ter of fact, when the distance to the environment is much larger than the distance
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between the left and right cameras, stereo-vision degenerates to the monocular case.
This is the reason why, e.g., panorama pictures look in general more realistic than
close range ones.

With respect to these previous works, in this thesis we address the problem
of 3-D structure reconstruction from monocular image measurements and known
and controlled camera motion [CBBJ96]. This is, in fact, the typical situation when
considering robotic fixed-base manipulators, where the camera is attached to the
robot end-effector and its velocity can be accurately measured and controlled using
the robot differential kinematics (2.14) and joint encoders and motors. Even when
dealing with mobile or flying robots, one can sometimes assume that at least a rough
estimate of the camera velocity is known from wheel odometry or aerodynamic
drag [AABM14]. However, presence of non negligible dynamics, non-holonomic
constraints [FMS06, SSVO09] and underactuation [AOM02, AOB14] complicates
the control problem and thus the study of this kind of platforms was not considered
in this thesis and is left to future extensions.

As in SfM, we are mostly interested in retrieving the scene 3-D geometry. How-
ever, w.r.t. SfM works, we do not consider arbitrarily complex scenes, but instead
we limit our attention to a class of basic geometric primitives (points, spheres, cylin-
ders, planes) that can be treated in close form and efficiently estimated. Similarly
to VO and V-SLAM, we use a real-time recursive estimation framework. Our ap-
proach is particularly similar to the “sensor-based” or “ego-centric” filtering strategy
presented in [GBSO13]. In both cases, the robot/camera builds a 3-D model of
the environment in its own body/sensor frame via a filtering technique: a Kalman
Filter (KF) in [GBSO13] and similar works, and a deterministic nonlinear filter in
our case. In fact, differently from most V-SLAM papers, we do not explicitly model
noise in our estimation process but, instead, we adopt a deterministic observer,
originally introduced in [DOR07], that is capable (thanks to its stability properties)
of rejecting the effect of noise as an exogenous disturbance. The main advantage
in doing so, is that this will allow us to recover the dynamics of the error in closed
form and thus to predict the performance of the estimation and also to actively
optimize it using classical control techniques. The main focus of this thesis, in fact,
is not the estimation problem per se, but rather the control of the camera motion
to guarantee that the estimation is well defined. Indeed, as already anticipated in
Sect. 2.1.3, certain camera motions may result in a degeneration of the multiple
view geometry. As it will be experimentally demonstrated in Chapt. 5, the control
policy that we propose results in improved estimation performance regardless of the
adopted estimation algorithm.
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3.2 Deterministic frameworks

In deterministic estimation frameworks the presence of noise in the system dynamics
or in the measurement process is ignored. The design of the estimation algorithm is
based on the nominal system or, equivalently, on the expected value of a stochastic
system. Care is taken to always ensure that the resulting estimation error dynamics
is (possibly globally and exponentially) asymptotically stable. In essence this means
that the estimation will always “tend to” match with the real system state and will
reject the disturbing effect of unmodeled parts of the system dynamics such as noise.

3.2.1 The Luenberger observer

The first mathematical theory behind recursive estimation for linear systems is due
to David Luenberger [Lue64, Lue66]. Consider the state space representation of a
linear time-invariant dynamic system

P :

{
ẋ = Ax +Bu

s = Cx +Du
(3.1)

where x ∈ Rq is the system dynamic state that is initially equal to x0 (unknown),
u ∈ Rv is the input vector, s ∈ Rm is the measurable output, A ∈ Rq×q is the system
matrix, B ∈ Rq×v is the input matrix, C ∈ Rm×q is the output matrix and finally
D ∈ Rm×q. The idea behind the Luenberger observer is to construct an artificial
dynamic system that “imitates” the real one. The reasoning behind this is that if,
given the same input u, the outputs s and ŝ generated by the real system and by
the observer are identical (up to the differential level q), then the two systems must
be in the same state and one can use the state x̂ of the observer as an estimation
of the state x of the real system. If the matrices A, B, C and D are known, a
sensible way of constructing an observer for (3.1) is the Luenberger Observer (LO){

˙̂x = Ax̂ +Bu−K (ŝ− s)

ŝ = Cx̂ +Du
(3.2)

where K ∈ Rq×m � 0 is a constant gain. With this choice it is easy to verify that
the dynamics of the error x̃ = x̂− x is given by

˙̃x = (A−KC) x̃

and its solution

x̃ = e(A−KC)(t−t0)x̃0

converges to zero, regardless of the value of x̃0, if (A−KC) ≺ 0. Note that the
input u does not appear in the error dynamics and thus, it has no effect on the
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convergence of the estimation. This property only characterizes, in general, linear
systems.

The conditions for the existence of a gain K s.t. (A−KC) ≺ 0 were studied
by Kalman who first demonstrated that the gain K always exists iff the system is
observable [Kal60], i.e. if and only if

rankO = q, with O =


C

CA
...

CAq−1

 . (3.3)

or, equivalently,

G =

∫ t

t0

eA
T (τ−t0)CTCeA(τ−t0) dτ � 0, for some t > t0.

where G ∈ Rq×q is also called the Observability Gramian (OG) of the system.
Note, again, that for linear time-invariant systems, the observability is an intrinsic
property of the system and only depends on the structure of matrix A and C and
not on the inputs applied to the system. Interesting for the following considerations
is the fact that a system is observable iff one cannot find a state transformation
such that: 

˙̌x =

[
Ǎ11 ��Om×(q−m)

Ǎ21 Ǎ22

]
x̌ + B̌u

š =
[
Č1 ��Om×(q−m)

]
x̌ + Ďu

i.e. a part of the state (the bottom one in this case) does not have any effect on
either the rest of the state or the measurements.

The observability results also extend to linear time-varying systems of the form:

P :

{
ẋ = A(t)x +B(t)u

s = C(t)x +D(t)u
. (3.4)

In this case, the OG is given by

G =

∫ t

t0

Φ(τ, t0)TC(τ)TC(τ)Φ(τ, t0) dτ � 0, for some t > 0. (3.5)

where Φ(t, t0) is the state transition matrix corresponding to A(t) that satisfies

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ.
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3.2.2 Nonlinear state observation

The case of nonlinear systems is generally more complex than that of linear ones.
Consider a generic nonlinear system P described by

P :

{
ẋ = f(x,u)

s = g(x,u)
.

As with the linear case one can build a state observer whose dynamics is a com-
position of a prediction term, which tries to make the observer evolve as the real
system, and an innovation term, which uses the discrepancy between the outputs ŝ
and s generated by the two systems to compensate for the fact that the observer
was initialized from an initial state x0 that is different, in general, from the initial
state x0 of the real system. Differently from linear systems, however, the design of
these terms must be done, in general, case by case without relying on any general
design rule apart from some specific classes of nonlinear systems. An extension of
the concept of observability to nonlinear systems was proposed in [HK77]. There,
two states x0 and x1 are defined as indistinguishable if, starting from x0 and x1 and
for every admissible input u(t), t ∈ [t0, tf ], the system P produces identical outputs
s(t), t ∈ [t0, tf ]. A system is then observable if for every state x, the set of states
indistinguishable from x is equal to x itself. If this is true, then it is possible to re-
construct the state from which the system has started (and consequently the current
state) by looking at the input-output map over a certain period of time. Note that
the fact that a (nonlinear) system is observable does not imply that every admissi-
ble input u(t), t ∈ [t0, tf ] allows to distinguish two states by looking at the output
s, but only that there exists at least one input u(t), t ∈ [t0, tf ] that allows such a
distinction. Moreover, in general, a system may not be instantaneously observable:
it might be necessary to travel for a long distance/time to be able to distinguish
a state x from other states. Because of this, the authors of [HK77] introduce the
concept of local weak observability. Let U be a subset of the state space, x0 is U -
indistinguishable from x1 if none of the inputs u(t), t ∈ [t0, tf ] that, starting both
x0 and x1, result in a trajectory that lies in U , i.e such that x(t) ∈ U,∀t ∈ [t0, tf ],
allows to distinguish x0 from x1. The system P is then said locally weakly observ-
able if, for each state x ∈ Rq, there exists an open neighborhood U such that, for
every open neighborhood V ⊆ U of x, there is no state in V (other than x) that is
V -indistinguishable from x. Intuitively this means that there exist some input that
allows to instantaneously distinguish a state from its neighbours, see [HK77]. If a
system is locally weakly observable, then the system state can be estimated from
the measured outputs, the known control inputs and a certain number (depending
on the particular system) of their derivatives. We want to stress again the fact that
not all admissible inputs might be appropriate for the estimation to be effective,
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even if the system is observable. [HK77] also introduces a simple algebraic test for
local weak observability. To simplify the algebra we limit our attention to driftless
control-affine systems that have the form:

P :


ẋ = L(x)u =

v∑
i=1

li(x)ui

s = g(x)

.

with L(x) ∈ Rq×v and li(x) ∈ Rq. Let us denote as Llg the Lie derivative of g
w.r.t. l defined as:

Llg(x) = ∇xg(x)T l(x) ∈ Rq.

Lie differentiation is a recursive operation and we can define

Ll2Ll1g(x) = ∇xLl1g(x)T l2(x), Lkl g(x) = ∇xLk−1
l g(x)

T
l(x), with L0g(x) = g(x).

We can now build a matrix O analogous to the one in (3.3) by piling up the single
matrices obtained by taking the Jacobians of the Lie derivatives of g(x) w.r.t. li.
If this matrix has rank q, then the system is locally weakly observable and an
estimator can be designed that reconstructs x from measurements of s and known
(and appropriate) inputs u.

To give an example let us consider the dynamics of a single point feature. Let
us define x = (η, δ) ∈ R4 and u = (v, ω) as in Sect. 2.1.3.3. The derivative of δ
can be easily calculated as:

δ̇ =
d

dt

(
1

‖p‖

)
=

pT

‖p‖3
ṗ =

pT

‖p‖3
(−v − [p]×ω) = −δ2ηTv.

Therefore, using also (2.11), we have

P :


ẋ =

[
−δ(I3 − ηηT ) [η]×

δ2ηT ∅T3

]
u

s = η =
[
I3 ∅3

]
x

. (3.6)

We begin by defining the zero-th order Lie derivative and its Jacobian:

L0g = η, ∇xL0g
T

=
[
I3 ∅3

]
(3.7)

The first order Lie derivatives w.r.t. li, i = 1, . . . 6 are given by the columns of

L1
li
g = column i of

[
−δ(I3 − ηηT ) [η]×

]
.
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Piling up their gradients and (3.7), we conclude

O =



I3 ∅3

δ(ηTe1I3 − ηeT1 ) −(I3 − ηηT )e1

δ(ηTe2I3 − ηeT2 ) −(I3 − ηηT )e2

δ(ηTe3I3 − ηeT3 ) −(I3 − ηηT )e3

− [e1]× ∅3

− [e2]× ∅3

− [e3]× ∅3



← vx

← vy

← vz

← ωx

← ωy

← ωz

where we highlighted the rows corresponding to each input. It is easy to verify that
O has rank 4 by taking the rows number 1, 2, 3, 4, 8, 12

1 0 0 0

0 1 0 0

0 0 1 0

2δηx 0 0 η2
x − 1

0 2δηy 0 η2
y − 1

0 0 2δηz η2
z − 1


and considering that, since ‖η‖ = 1, the last column cannot contain only zeros. The
Structure from Known Motion problem is, therefore, observable as already shown,
e.g. in [SP94]. However, this does not mean that any input u allows to distinguish
between different states. In fact if v = αη the system reduces to:

P :


ẋ =

[
∅3 [η]×
δ2 ∅T3

]
u

s = η =
[
I3 ∅3

]
x

.

with now u = u = (α, ω). If we repeat the calculation of O we obtain

O =


I3 ∅3

��O3×3 ∅3

− [e1]× ∅3

− [e2]× ∅3

− [e3]× ∅3


← α

← ωx

← ωy

← ωz

that can never have rank 4. This is clearly due to the fact that, with this choice
of inputs, a part of the system state (δ) does not affect neither the output nor
the dynamics of the other state components. In general, in the case of nonlinear
systems, together with the above observability conditions, one will have to impose
a persistent excitation condition on the system inputs. In other words, apart from
trivial cases in which the state can be directly measured by inverting s, one will
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have to guarantee that the inputs are selected in such a way that every component
of the state x has an effect (possibly only for a limited amount of time) on the
history of the output s.

3.2.3 A nonlinear observer for SfM

In this section we focus our attention to a particular class of nonlinear systems
which are typical of SfM problems. For the reader’s convenience, we start recalling
here a classical formulation of the Persistence of Excitation (PE) Lemma in the
context of adaptive control as stated in, e.g., [MT95].

Lemma 3.1 (Persistence of Excitation). Consider the system1:{
˙̃s = −Hs̃+ ΩT (t) χ̃

˙̃χ = −αΩ (t) s̃
. (3.8)

where s̃ ∈ Rm, χ̃ ∈ Rp, H � 0, and α > 0. If ‖Ω (t)‖ and
∥∥∥Ω̇ (t)

∥∥∥ are uniformly
bounded and the PE condition is satisfied, that is, there exists a time interval T > 0

and a scalar γ > 0 such that∫ t+T

t
Ω (τ) ΩT (τ) dτ � γIp � 0, ∀t ≥ t0, (3.9)

then (s̃, χ̃) = (∅m, ∅p) is a globally exponentially stable equilibrium point.

Let now x = [sT χT ]T ∈ Rm+p be the state of a dynamical system, where
s ∈ Rm represents a measurable component of x and χ ∈ Rp an unmeasurable one.
Assume further that the following holds{

ṡ = fs(s, u) + ΩT (s, u)χ

χ̇ = fχ(s, χ, u)
(3.10)

with u ∈ Rv being an input vector, and Ω(t) ∈ Rp×m a generic but known time-
varying quantity. Note that in formulation (3.10) vector χ is required to appear
linearly in the dynamics of s (first equation). Furthermore, matrix Ω(·) ∈ Rp×m

and vectors fs(·) ∈ Rm and fχ(·) ∈ Rp are assumed to be generic but known and
sufficiently smooth functions w.r.t. their arguments which are all available apart
from the unknown value of χ in fχ(·). For the case of structure from motion for
point feature, considering, again, (3.6), one has for example s = η, χ = δ, and
u = u 

fs(s, u) = [s]×ω

Ω(s, u) = −(I3 − ssT )

fχ(s, χ, u) = χ2sTv
1A more general version of this lemma was discussed in [1]. Such a generalization, however, is

not necessary for the developments of the rest of this thesis and therefore will be omitted.
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Exploiting (3.8–3.9), a sensible estimation scheme for retrieving the (unmeasur-
able) value of χ can be devised, as suggested by [DOR07, RDO08, DOR08], in the
following way: let x̂ = [ŝ, χ̂]T ∈ Rn+p be the estimated state, s̃ = ŝ−s, χ̃ = χ̂−χ,
x̃ = [s̃T χ̃T ]T , and design the following update rule{

˙̂s = fs(s, u) + ΩT (s, u)χ̂−Hs̃
˙̂χ = fχ(s, χ̂, u)− αΩ(s, u)s̃

. (3.11)

The error dynamics then takes the form
˙̃s =−Hs̃+ ΩT (s, u)χ̃

˙̃χ =− αΩ(s, u)s̃+ [fχ(s, χ̂, u)− fχ(s, χ, u)]

=− αΩ(s, u)s̃+ d(x̃, t)

. (3.12)

System (3.12) matches almost perfectly the formulation (3.8) apart from the ‘spuri-
ous’ term d(x̃, t). This can be considered as a vanishing disturbance for the nominal
system (3.8), i.e., such that d(∅p, t) = ∅p. Therefore, it is typically possible to still
prove local exponential convergence of the origin of (3.12) by resorting to Lyapunov
arguments and by imposing suitable bounds on the initial condition x̃(t0) and/or
on ‖d(x̃, t)‖, see [DOR08, RDO08] for some examples in this sense.

The PE condition (3.9) plays the role of an observability criterion: convergence
of the estimation error x̃(t)→ ∅q is possible iff the square matrix Ω (t) ΩT (t) ∈ Rp×p

keeps being full rank in the integral sense of (3.9). We note that if m ≥ p, that
is, if the number of independent available measurements s is larger or equal to the
number of independent estimated quantities χ, then it is in principle possible to
instantaneously satisfy (3.9) by enforcing

Ω (t) ΩT (t) � γ

T
Ip, ∀t ≥ t0. (3.13)

On the other hand, if m < p then det(Ω (t) ΩT (t)) ≡ 0 by construction. Neverthe-
less, in this case, it could still be possible to satisfy (3.9) in an integral sense if the
l−dimensional range space of Ω (t) ΩT (t) (l ≤ m) can span Rp during the period
T . In this work, however, we will only consider the first situation m ≥ p and thus
aim at fulfilling the (more restrictive) condition (3.13).

Remark 3.1. Note that the local stability properties of the error dynamics (3.12)
are due to the perturbation term d(x̃, t) which affects an otherwise globally exponen-
tially stable error system. Indeed, in the special case χ̇ = ∅p (unknown but constant
parameters), one has d(x̃, t) ≡ ∅p and global exponential convergence for the error
system (3.12). This is, for instance, the case of the structure estimation problems
for spherical and cylindrical objects considered in Sects. 4.5.3 and 4.5.4. We stress,
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however, that the estimation scheme (3.11) is not restricted to this particular sit-
uation but can be applied (with, in this case, only local convergence guarantees) to
the more general case of state observation problems in which the unknown χ is
subject to a non-negligible dynamics as in (3.10). The structure estimation for a
point feature and a planar surface discussed in Sects. 4.5.1 and 4.5.2 falls in this
second class.

Before concluding this section we want to mention that many other deterministic
observers have been proposed in the literature for solving the SfM problem. Some
references and a recent comparison of some of these solutions can be found, e.g., in
[GBC+15].

3.3 Probabilistic frameworks

Differently from deterministic frameworks, probabilistic ones explicitly take into
consideration, in the modeling and design phase, the presence of stochastic terms
in the system dynamics. Both the system state x and the measurements s are
treated as random processes and the estimation in general consists in finding a
(deterministic) x̂ that minimizes some statistical property of the estimation error
which is also considered as a random process. In this section we briefly present two
very common probabilistic frameworks: the Maximum Likelihood Estimator (MLE)
is only treated here because it allows to simply introduce the Cramer-Rao bound
and the Fisher Information Matrix; the Kalman Filter (KF) will instead be used in
Chapt. 5 for a basic comparison between deterministic and probabilistic estimation
frameworks.

3.3.1 The Maximum Likelihood Estimator

Assume that one wants to estimate the value of a random vector χ ∈ Rp. We
use the notation χ ∼ pχ(χ) to indicate the Probability Density Function (PDF) of
χ. The quantity pχ(χ) is also called the a priori PDF of χ as it represents the
confidence that one has about the different values that χ may have before taking
any additional measurement. Assume now that a measurement s ∈ Rm is taken
and that this measurement (also a random vector) is correlated with χ, meaning
that

ps,χ(s,χ) 6= ps(s)pχ(χ)

where ps,χ(s,χ) is the joint probability density function of the two random vectors
or, equivalently,

pχ|s(χ|s) 6= pχ(χ)
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i.e. the observation of s “tells something” about χ that makes one change his
confidence (the PDF) of χ. The quantity pχ|s(χ|s) is also called the a posteriori
PDF of χ as it represents the confidence that one has about the different values that
χ may have after taking the measurement s. The Maximum Likelihood Estimator
(MLE) technique consists in choosing the estimation χ̂ as the value that maximizes
the probability of obtaining the measurement s [BSLK04]

χ̂ = arg max
χ

ps|χ(s|χ).

Assuming that ps|χ(s|χ) is differentiable, one can find this value by equating to zero
its derivative w.r.t. χ which gives rise to the likelihood equation

∇χps|χ(s|χ)

∣∣∣∣
χ̂

= ∅p.

In practice it is often more convenient to work with the logarithm of the likelihood
equation, called the log-likelihood equation:

∇χlog ps|χ(s|χ)

∣∣∣∣
χ̂

= ∅p. (3.14)

To make an example, assume, that the a priori PDF of χ is a Gaussian distribu-
tion with mean E {χ} = χ0 and covariance E

{
(χ− χ0)(χ− χ0)T

}
= Σ0 ∈ Rp×p

so that

pχ(χ) =
1√

(2π)p det (Σ0)
e−

1
2

(χ−χ0)TΣ−1
0 (χ−χ0). (3.15)

We also write χ ∼ N (χ0,Σ0). Assume now that the measurement model is linear
with additive noise

s = ΩTχ+ v (3.16)

where Ω ∈ Rm×p is deterministic and v ∈ Rm represents the measurement noise,
which is assumed to be Gaussian distributed with zero mean and covariance matrix
E
{
vvT

}
= R ∈ Rm×m. The PDF of s given χ is easily computed as a multivariate

Gaussian distribution

ps|χ(s|χ) =
1√

(2π)m det (R)
e−

1
2(s−ΩTχ)

T
R−1(s−ΩTχ). (3.17)

Using (3.14) one obtains the maximum likelihood estimation of χ

χ̂ = arg min
χ

{
1

2

(
s−ΩTχ

)T
R−1

(
s−ΩTχ

)}
=
(
ΩR−1ΩT

)−1
ΩR−1s. (3.18)

Since we have only considered one measurement, in fact, the best we can do is to
use a weighted pseudoinverse based on the noise content of each component of the
measurement. Note that the estimation is only possible if ΩR−1ΩT � 0. The

50
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information provided by the prior (3.15) was not considered for the calculation
of (3.18). The prior can be treated as an additional virtual measurement affected
by a Gaussian uncertainty

χ0 = χ+ v0, v0 ∼ N (∅p,Σ0)⇒ pχ0|χ(χ0|χ) = 1√
(2π)q det (Σ0)

e−
1
2

(χ0−χ)TΣ−1
0 (χ0−χ).

The joint probability distribution of (χ0, s), under the assumption that v0 and v
are not correlated, is given by

pχ0,s|χ(χ0, s|χ) = pχ0|χ(χ0|χ)ps|χ(s|χ)

= c e
− 1

2

[
(s−ΩTχ)

T
R−1(s−ΩTχ)+(χ0−χ)TΣ−1

0 (χ0−χ)
]

where c is a normalizing constant that does not depend of χ and hence can be
ignored. Using again (3.14) one obtains

χ̂ =
(
ΩR−1ΩT + Σ−1

0

)−1 (
ΩR−1s+ Σ−1

0 χ0

)
. (3.19)

It can be shown [BSLK04] that this result would also be obtained by considering an
alternative estimation technique: the Maximum a Posteriori Estimator (MPE). This
latter defines the optimal estimation χ̂ as the one that maximizes the a posteriori
distribution of χ, i.e.

χ̂ = arg max
χ

pχ|s,χ0
(χ|s,χ0).

Taking the expected value of the estimation error χ̃ = χ̂− χ with χ̂ in (3.19),
one has

E {χ̂− χ} = E {χ̂} − E {χ} =
(
ΩR−1ΩT + Σ−1

0

)−1 (
ΩR−1 E {s}+ Σ−1

0 χ0

)
− χ0

=
(
ΩR−1ΩT + Σ−1

0

)−1 (
ΩR−1ΩT E {χ}+ Σ−1

0 χ0

)
− χ0 = ∅p

and the estimation χ̂ is said to be unbiased.

The MLE can easily be extended to the case in which one takes multiple in-
dependent measurements sk = s(tk), k = 1, . . .K, which are different samples of a
random process s(t), and wants to use them, together with the initial prior (3.15), to
estimate the value χk of another random process χ(t) at the same instants tk. We in-
dicate with X = χ0,χ1, . . . ,χK the set of unknowns and with S = χ0, s1, s2, . . . , sK

the set of measurements. Considering a generic nonlinear measurement model with
additive Gaussian noise

s(tk) = g(χ(tk), tk) + v(tk)

with vk = v(tk) ∼ N (∅m,Rk) and assuming that the variables sk, χk and vk are
all independent, we can write the joint PDF of the measurements as

pS|X (S|X ) = c e[−
1
2

∑K
k=0 (sk−g(χk,tk))TR−1

k (sk−g(χk,tk))]
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where we used s0 = χ0, g(χ(t0), t0) = χ0, R0 = Σ0, and c is a normalizing factor
that does not depend on X and thus can be ignored. Therefore the MLE (3.14)
returns

X̂ = arg min
X

[
1

2

K∑
k=1

(sk − g(χk, tk))
T R−1

k (sk − g(χk, tk))

]
which is a Nonlinear Least Squares (NLS) problem. This kind of batch resolution
strategies, based on MLE and NLS, have been exploited in many SLAM works where
χk typically represents a set of robot and landmark locations and sk is the set of
all taken measurements. The problem in this case also takes the name of trajectory
Smoothing And Mapping (SAM) [DK06, KRD08] because of its similarity to the
signal smoothing problem. In this context, in general, one also exploits the fact
that the different robot poses χk are not independent but, instead, they are related
by the dynamics of the system:

χk = f(χk−1,uk) +wk

where uk ∈ Rv is a control input and wk ∈ Rp is a Gaussian distributed process
noise wk ∼ N (∅p,Qk). Therefore one can write

pχk|χk−1
(χk|χk−1) = e−

1
2

(χk−f(χk−1,uk))TQ−1
k (χk−f(χk−1,uk)).

The joint measurements PDF can be easily obtained, by exploiting the uncorrela-
tion, as a simple product between the single Gaussian PDFs

pS|X (S|X ) = c pχ0|χ0
(χ0|χ0)

K∏
k=1

pχk|χk−1
(χk|χk−1)psk|χk(sk|χk)

= c e−
1
2 [(χ0−χ0)TΣ−1

0 (χ0−χ0)+
∑K
k=1 (χk−fk)TQ−1

k (χk−fk)+(sk−gk)TR−1
k (sk−gk)]

where c is a normalization factor that does not depend on X and, for brevity of
notation, we wrote fk = f(χk−1,uk) and gk = g(χk, tk). The application of (3.14)
leads to [KGS+11]

X̂ = arg min
X

1

2

[
(χ0 − χ0)T Σ−1

0 (χ0 − χ0)

+
K∑
k=1

(χk − fk)T Q−1
k (χk − fk) + (sk − gk)T R−1

k (sk − gk)

]

Different techniques can be used to find the numerical solution to the NLS prob-
lem [DS96]. Iterative methods, such as Gauss-Newton or Levenberg-Marquardt al-
gorithms are often preferred because of their efficiency [KGS+11]. Incremental NLS
solutions have also been proposed in [KJR+11, PSI+13] to reduce computational
time by exploiting the sparsity of the SLAM problem and efficient block-matrix
operations.
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3.3.2 The Fisher Information Matrix and the Cramer-Rao bound

Let us calculate the estimation error covariance for the MLE (3.19). Assuming that
χ and v are not correlated and after some tedious but straightforward calculation
one obtains

Σ = E
{

(χ̂− χ)T (χ̂− χ)
}

=
(
ΩR−1ΩT + Σ−1

0

)−1
. (3.20)

It is clear, than, that the quantity ΩR−1ΩT represents the “gain”, in terms of
reduction of uncertainty, that one has by using s to ameliorate the estimation of χ.
This concept is formalized by the so called Fisher Information Matrix (FIM)

IF = −E
{

(∇χlog pS|χ(S|χ))(∇χlog pS|χ(S|χ))T
}
. (3.21)

The quantity ∇χlog pS|χ(S|χ), the gradient of the log-likelihood function that ap-
pears in (3.14), is also called the score of the measurement S since it represents
the amount of information that S contains about X or the sensitivity of the mea-
surements w.r.t. the unknown quantities. One can also prove [BSLK04] that the
following definition of IF is equivalent to (3.21)

IF = −E
{
∇∇Tχlog pS|χ(S|χ)

}
(3.22)

and hence the FIM represents the curvature of the log-likelihood function that
appears in (3.14). As such it represents a quantitative measure of the “quality” of
the maximum point found with (3.14). The importance of the FIM lies in the fact
that it can be proved (see again [BSLK04]) that for any unbiased estimation χ̂, the
covariance of the estimation error satisfies the Cramer-Rao lower bound :

E
{

(χ̂− χ)T (χ̂− χ)
}
� I−1

F . (3.23)

In our first example, we used the prior (3.15) and the measurement (3.17), therefore
S = {χ0, s} and

− log (pS|χ(S|χ)) = − log (pχ(χ)ps|χ(s|χ)) = − log pχ(χ)− log (ps|χ(s|χ))

= (χ− χ0)T Σ−1
0 (χ− χ0) +

(
s−ΩTχ

)T
R−1

(
s−ΩTχ

)
and taking the expected value of the second order partial derivatives w.r.t. χ we
conclude

IF = ΩR−1ΩT + Σ−1
0

which is equal to the covariance of the MLE in (3.20). In the case of MLE, then, the
Cramer-Rao bound(3.23) is satisfied with the equal sign and therefore the estimator
is called efficient.
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The Fisher information matrix for the multiple measurement case can also be
easily computed as

IF = Σ−1
0 +

K∑
k=1

∇χkg(χk, tk)
TR−1

k ∇χkg(χk, tk).

In a simple case, analogous to (3.16), where one has a linear time varying measure-
ment model sk = ΩT

kχk + vk this results in

IF = Σ−1
0 +

K∑
k=1

ΩkR
−1
k ΩT

k . (3.24)

Note the resemblance between the expression (3.24) and the quantity involved in
the PE condition (3.9). As a matter of fact (3.24) is the expression of the FIM that
one would obtain from system (3.10) by assuming as measurement the quantity
ṡ−fs(s, u). In SfM, this corresponds to the de-rotated optical flow field, sometimes
used for 3-D reconstruction [GBSR15]. The similarity is more evident if we consider
the expression of (3.24) for Rk = r2

sIm and in the limit for ∆t = tk − tk−1 → 0.
With this assumption the summation can be approximated by a continuous time
integral in a similar way to what done in [WSM14]

IF = Σ−1
0 +

1

r2
s

K∑
k=1

ΩkΩ
T
k ≈ I0 + is

∫ t+T

t
Ω(τ)Ω(τ)T dτ.

where I0 = Σ−1
0 and is = 1

r2s
represent the amount of information contained in the

initial prior and in each measurement. We can then conclude that:∫ t+T

t
Ω(τ)Ω(τ)T dτ =

IF − I0

is

i.e. the integral in (3.9) can be interpreted as an index of the efficiency of the
experiment: how much information was acquired during the experiment (IF − I0)
w.r.t. the information contained in the measurements (is). Note that the FIM (3.22)
and the PE matrix in (3.9) are characteristic properties of the system and of the
experiment only and do not depend in any way of the kind of estimator that is
used to recover χ̂. The Cramer-Rao bound (3.23), on the contrary, qualifies the
particular estimation scheme that is being used: only an efficient estimator will
make correctly use of all the available information and produce an estimation with
the least possible uncertainty.

We conclude this section by reporting the expression of the FIM for nonlinear
continuous-process discrete-measurement systems of the form:{

ẋ = f(x,u, t)

sk = g(xk, tk) + vk
.
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Our derivation is very similar to [Tay79], however, instead of computing the FIM
relative to the most recent system state xK we are interested in knowing the FIM
w.r.t. the estimation of the initial state x0: this will respond the question of how
much information the measurements sk, k = 1, . . . ,K give about the initial state x0

of the system. This is a more similar question to the one addressed in observability
analysis. Following [Tay79] we can consider S = {x0, s1, . . . , sK}, X = {x0, . . . ,xK}
and write

− log (pS|X (S|X )) = c+ (x0 − x0)T Σ−1
0 (x0 − x̂0) +

K∑
k=1

(sk − gk)T R−1
k (sk − gk)

and taking the second order differentials w.r.t. x0 we conclude

IF = Σ−1
0 +

K∑
k=1

ΦT
k,0C

T
k R
−1
k CkΦk,0

where

Ck = ∇xkg(xk, tk)
T

and Φk,0 = Φ(tk, t0) is the solution to the ordinary differential equation

∂

∂t
Φ(t, t0) = ∇xf(x,u, t)TΦ(t, t0)

from t = t0 to t = tk subject to the initial condition

Φ(t0, t0) = Iq.

If we consider the linear time varying system (3.4), we have

Ck = C(tk),
∂

∂t
Φ(t, t0) = A(t)Φ(t, t0)

so Φk,0 is the state transition matrix corresponding to A(t) and we have

IF = Σ−1
0 +

K∑
k=1

ΦT
k,0C

T
k R
−1
k CkΦk,0. (3.25)

Note the strong similarity between (3.25) and the OG in (3.5). The similarity is
more evident if we assumeR−1

k = isIm, we write Σ−1
0 = I0 and we make the sample

time ∆t = tk − tk−1 tend to zero. Then we have

IF (t)− I0

is
=

∫ t

t0

Φ(τ, t0)TC(τ)C(τ)Φ(τ, t0) dτ = G(t).

We can conclude that the OG (3.5), the PE condition (3.9) and the FIM (3.22) are,
in essence, just different forms of the same intuitive concept: regardless of the type
of estimation algorithm that one decides to use, the maximum possible performance
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(in terms of reduced final uncertainty or converge rate) is determined, all gains being
equal, by the amount of information that is contained in the measurements. This
latter is an intrinsic characteristic of the system and, in the nonlinear case, of the
trajectory followed by the system during the experiment. If one has control on
the system evolution, through the input u, one can then engage in an Experiment
Design problem, i.e. in the study of optimal input profiles u(τ), τ ∈ [t0, t] that
result in the maximum information gain. This problem and how to conciliate it
with the execution of additional tasks, is the main focus of this work.

3.3.3 The Kalman-Bucy filter

Probably the most well known and widely used probabilistic state estimator is the
Kalman Filter (KF), sometimes called the Kalman-Bucy Filter when presented in
its continuous-time version. This algorithm takes its name from Rudolf E. Kalman,
who introduced the first discrete-time version of the filter in [Kal60], and Richard
S. Bucy, who contributed extending the filter to continuous time in [KB61]. The
filter, originally intended for linear system, was later extended to nonlinear system
dynamics by the NASA Ames Research Center where it was incorporated in the
Apollo on-board computer for estimating the trajectory of the lunar module [SSM62,
MS85]. An interesting historical perspective as well as an overview of past and
current applications of Kalman filtering can be found in [GA10].

Consider a generic time-varying linear system P with state-space dynamic equa-
tions:

P :

{
ẋ = A(t)x +B(t)u +G(t)w

s = C(t)x +D(t)u +H(t)w + v
(3.26)

where x ∈ Rq is the system dynamic state, u ∈ Rv is the input vector, s ∈ Rm

is the measurable output, A(t) ∈ Rq×q is the system matrix, B(t) ∈ Rq×v is the
input matrix, C(t) ∈ Rm×q is the output matrix, G(t) ∈ Rq×w, H(t) ∈ Rm×w and
finally, w ∈ Rw and v ∈ Rm are two Gaussian-distributed random processes with
zero mean and known covariance matrices, i.e.

E {w(t)} = ∅w, E
{
w(t)w(τ)T

}
= δ(t− τ)Q(t),

E {v(t)} = ∅m, E
{
v(t)v(τ)T

}
= δ(t− τ)R(t),

E
{
w(t)v(τ)T

}
= δ(t− τ)M(t),

(3.27)

where δ is the Dirac’s delta function. We further assume that P is observable
according to the definition introduced in Sect. 3.2.1 and that the initial state x(t0)

is a Gaussian random vector with known mean and covariance matrix

E {x(t0)} = x0, E
{

[x(t0)− x0] [x(t0)− x0]T
}

= Σ0
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and that x0 is independent on w and v.

The structure of the KF is similar to (3.2), but uses a time varying update gain
K(t) ∈ Rq×m:

˙̂x = A(t)x̂ +B(t)u−K(t) [C(t)x̂ +D(t)u− s] . (3.28)

Observer (3.28) generates an unbiased estimation of x as it can be easily verified
by calculating the expected value of the estimation error. If the filter is initialized
with x̂(t0) = x0, then

E {x̃(t0)} = E {x̂(t0)− x(t0)} = E {x0 − x(t0)} = x0 − E {x(t0)} = ∅q.

Moreover, by subtracting (3.26–3.28), one obtains the error dynamics:

˙̃x = [A(t)−K(t)C(t)] x̃− [G(t)−K(t)H(t)]w +K(t)v. (3.29)

Since A(t), K(t), C(t), G(t) andH(t) are deterministic matrices and E {w} = ∅w,
E {v} = ∅m by hypothesis, the expected value of the error derivative in (3.29) is

E
{

˙̃x
}

=
d E {x̃}

dt
= [A(t)−K(t)C(t)] E {x̃},

and remains identically zero if E {x̃(t0)} = ∅q as already shown.

Up to this point, the KF does not differ in any way from the deterministic
Luenberger Observer (LO) introduced in Sect. 3.2.1. The core difference between
the two estimators is, in fact, in the computation of the update gain K(t). As
a matter of fact, in the KF, this gain is selected online as an optimal trade-off
between the process and measurement noise contents. As shown in, e.g., [KB61]
and briefly reported in Appendix A.1.1, the dynamics of the error covariance matrix
Σ(t) = E

{
x̃(t)x̃(t)T

}
is given by

Σ̇(t) = [A(t)−K(t)C(t)] Σ(t) + Σ(t)[A(t)−K(t)C(t)]T

+ [G(t)−K(t)H(t)]Q(t)[G(t)−K(t)H(t)]T +K(t)R(t)K(t)T

−K(t)M(t)[G(t)−K(t)H(t)]T − [G(t)−K(t)H(t)]M(t)TK(t)T

(3.30)

while the initial error covariance can be easily computed as

Σ(t0) = E
{

x̃(t0)x̃(t0)T
}

= E
{

[x̂(t0)− x(t0)] [x̂(t0)− x(t0)]T
}

= E
{

[x0 − x(t0)] [x0 − x(t0)]T
}

= Σ0.

The Pontryagin minimum principle can be used to minimize the cost functional
E
{
‖x̃‖2

}
, as shown in [AT67] and in Appendix A.1.1, resulting in the optimal

update gain

K(t) =
[
Σ(t)C(t)T + M̌(t)

]
Ř(t)

−1
, (3.31a)
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with

M̌(t) = G(t)
[
Q(t)H(t)T +M(t)T

]
,

Ř(t) = H(t)Q(t)H(t)T +R(t) +H(t)M(t)T +M(t)H(t)T .

(3.31b)

(3.31c)

Injecting (3.31a) in (3.30) and wrapping everything up, one finally obtains the
optimal KF dynamics for estimating the state of (3.26):

{
Σ̇(t) = A(t)Σ(t) + Σ(t)A(t)T +G(t)Q(t)G(t)T −K(t)Ř(t)K(t)T

˙̂x = A(t)x̂ +B(t)u−K(t) [C(t)x̂ +D(t)u− s]
.

(3.31d)

(3.31e)

Note that the computation of K(t) in (3.31a) requires knowledge of the current
Σ(t) which can only be obtained by integrating (3.31d) over time. This represents
a considerable additional computational effort w.r.t. the non-optimal LO described
in Sect. 3.2.1.

An alternative, and equivalent, form of the KF is the so-called Information Filter
(IF) which is based on use of the canonical parametrization of the multivariate
Gaussian distribution that can be obtained by using the transformation

{
i(t) = Σ(t)−1x(t)

I(t) = Σ(t)−1
.

(3.32a)

(3.32b)

i(t) ∈ Rq and I(t) ∈ Rq×q are usually called the information vector and information
matrix respectively. To avoid confusion with the FIM described in Sect. 3.3.2,
however, we prefer to refer to I(t) as the precision matrix as suggested in [TBF05].

The dynamics of I(t) can be easily calculated by considering that I(t)Σ(t) = Iq

and hence, taking the time derivative of both sides, one obtains

İ(t)Σ(t) + I(t)Σ̇(t) = ��Oq×q ⇒ İ(t) = −I(t)Σ̇(t)I(t). (3.33)

As for i(t) one obviously has:

i̇(t) = İ(t)x(t) + I(t)ẋ(t). (3.34)

Using (3.31, (3.33) and (3.34), one obtains the propagation equations for the IF


İ(t) = −I(t)A(t)−A(t)TI(t)− I(t)G(t)Q(t)G(t)TI(t)−K(t)Ř(t)K(t)T

˙̂
i = −

[
A(t)T + I(t)G(t)Q(t)G(t)TI(t)−K(t)M̌(t)

T
]
î

+ I(t)B(t)u−K(t) [D(t)u− s]

(3.35a)

(3.35b)
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with

K(t) =
[
C(t)T + I(t)M̌(t)

]
Ř(t)

−1

M̌(t) = G(t)
[
Q(t)H(t)T +M(t)T

]
Ř(t) = H(t)Q(t)H(t)T +R(t) +H(t)M(t)T +M(t)H(t)T

.

(3.35c)

(3.35d)

(3.35e)

The extension of KF to nonlinear system dynamics of the form{
ẋ = f(x,u,w)

s = g(x,u,w) + v

can be easily obtained by linearizing the dynamics around a nominal state trajectory
[SSM62] or around the current estimated state x̂(t) as described in [MS85]. The
latter solution, in particular, usually results in a superior estimation accuracy and
takes the name of Extended Kalman Filter (EKF). Its dynamics are given by

˙̂x = f(x,u,w)

∣∣∣∣ x=x̂
w=∅w

−K(t)

g(x,u,w)

∣∣∣∣ x=x̂
w=∅w

− s

 (3.36)

and (3.31a) to (3.31d) with

A(t) = ∇xf
T

∣∣∣∣ x=x̂
w=∅w

, B(t) = ∇uf
T

∣∣∣∣ x=x̂
w=∅w

, G(t) = ∇wfT
∣∣∣∣ x=x̂
w=∅w

,

C(t) = ∇xg
T

∣∣∣∣ x=x̂
w=∅w

, D(t) = ∇ug
T

∣∣∣∣ x=x̂
w=∅w

, H(t) = ∇wgT
∣∣∣∣ x=x̂
w=∅w

.

(3.37)

Contrarily to the KF, in general, only local convergence of the EKF can be
proved [Kre03] and, in some cases, the filter can even converge to biased estimations.

In a similar way, one can also devise an Extended Information Filter (EIF),
whose dynamics are:

˙̂
i = −

[
A(t)T + I(t)G(t)Q(t)G(t)TI(t)−K(t)M̌(t)

T
]
î

+ I(t)

f(x,u,w)

∣∣∣∣
x=I−1 î
w=∅w

−A(t)x̂

−K(t)

g(x̂,u,w)

∣∣∣∣
x=I−1 î
w=∅w

− s−Cx̂

 (3.38)

with (3.35a) and (3.35c) to (3.35e) and using the same linearizations introduced
in (3.37). Note that the EIF requires to retrieve an estimation of the system state
x̂ = I−1î for computing the process and output functions. This represents one of
the main disadvantages of the EIF w.r.t. the EKF and motivates the wider adoption
of the EKF, especially for estimation problems that involve a large state space. In
some cases, however, the interaction between state variables is only local and, as
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a result, the precision matrix becomes sparse. One can then exploit this sparsity
(which does not extend to Σ) to improve the computational efficiency of the IF
filter [TLK+04]. In addition to this, the IF and EIF allow to easily represent global
uncertainty as I = ��Oq×q, where as the KF and EKF would require the use of an
infinite covariance matrix. More in general, the IF tends to be numerically more
stable than the KF.

Another alternative extension of the KF to nonlinear system dynamics, also
considerably popular in the literature (see, e.g., [LCG+13, HKM08] and references
therein), is the so-called Unscented Kalman Filter (UKF) proposed in [JU97]. This
filter is based on a different strategy (namely the Unscented Transform [JUD95]) for
propagating Gaussian distributions through nonlinear system dynamics: instead of
propagating the expected value and covariance through a linearization of the sys-
tem equations (as done in EKF), the UKF uses the nonlinear system dynamics to
propagate an appropriately selected set of samples of the original Gaussian PDF;
the propagated samples are then used to find a new “best-fitting” Gaussian distri-
bution. The UKF can, sometimes, be more computationally expensive than the
EKF but it is easier to develop (it does not require the symbolic calculation of the
linearizations (3.37)) and can outperform the EKF in terms of accuracy, especially
in presence of highly nonlinear system dynamics.

For more details about the KF, IF and their extensions to nonlinear system, we
suggest to refer to [TBF05, LXP07]. We also want to report an interesting result
demonstrated in [Tay79]: for the case of nonlinear systems with negligible process
noise (w ≡ ∅w), the dynamics of the FIM have the same form as those of the
precision matrix in the EKF, the only difference being that the linearizations (3.37)
are evaluated along the true state trajectory x, instead of the current estimation
x̂. This allows to conclude that, if the EKF estimate x̂ actually converges to x,
then, from that moment on, the EKF will be efficient and make perfect use of all
available information.

We conclude this section by showing how the general EKF structure specializes
to the dynamics (3.10) which is typical of SfM applications. Since we assumed
that s is measurable, we can directly exploit its knowledge for the computation of
the prediction (∼feedforward) component of the EKF thus obtaining the following
estimation dynamics analogous to (3.11){

˙̂s = fs(s, u) + ΩT (s, u)χ̂−Kss̃

˙̂χ = fχ(s, χ̂, u)−Kχs̃.
(3.39)

where K = (Ks,Kχ) is computed using (3.31a) to (3.31d). Note that this is
equivalent to treating s as an additional component of the input vector u. A similar
strategy was exploited in [GBSO13] to obtain an asymptotically stable EKF filter
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for SLAM applications. As done in (3.11), we also still carry on an estimation of
s that allows us to compute the innovation term for the estimator as a function of
s̃ = ŝ − s. Finally we assume that s and u are affected by independent Gaussian
distributed additive noise with E

{
ssT

}
= Σs and E

{
uuT

}
= Σu. With these

choices we have

Q =

[
Σs ��Om×v

��Ov×m Σu

]
, R = Σs, M =

[
Σs

��Ov×m

]

and the linearization (3.37) becomes2

A(t) =

[
��Om×m Ω(s,u)T

��Op×m ∇χfχT (s, χ̂,u)

]

B(t) = G(t) =

[
∇s(fs + ΩTχ)

T
(s,u) L(s, χ̂)

∇sfχT (s, χ̂,u) ∇ufχ
T (s, χ̂,u)

]
C(t) =

[
Im ��Om×p

]
, D(t) = H(t) = ��Om×(m+v)

, (3.40)

where L is the interaction matrix of the considered visual measurements s.

3.4 Active perception

As we have seen in the previous sections of this chapter, when dealing with nonlin-
ear system dynamics and measurement models, the performance of the estimation
process is not only determined by the efficiency of the chosen observer, i.e. its ability
to exploit the information in a sensible way, but also by the amount of information
that is available to perform the estimation, which is represented and quantified, in
a similar way, by the observability Gramian, the persistence of excitation condition
and the Fisher information matrix. All these quantities, in general, are strongly
dependent on the trajectory followed by the system during the estimation process,
also called the experiment. If the system is controllable through some input ports u

one can consider the problem of actively driving the system so that the maximum
amount of information is gathered during the experiment. The problem, however,
would not be well defined (the objective function would be unbounded from above),
without some additional constraint on, e.g., the duration T of the experiment or
the total energy available. This view of perception and sensing as an active process
can be found, under different forms, in many research fields.

J. J. Gibson and his wife E. J. Gibson, among the most important psychologists
of the 20th century, formulated their theory of the active observer in the 1960s. For
them “perceiving is active, a process of obtaining information about the world. We

2Note that we could have equivalently considered R =�Om×m and H = [Im,�Om×v]

61



Active Visual Estimation and Control of Robotic Systems

don’t simply see, we look. The visual system is a motor system as well as a sensory
one. When we seek information in an optic array, the head turns, the eyes turn to
fixate, the lens accommodates to focus” [Gib88, Gib79]. We do not touch, but we
feel [Gib62].

Possibly the research field that traditionally has been the most interested in this
problem is that of statistics. A statistical analysis is, in fact, meaningless without
a corresponding measure of the reliability of the results. Since, in general, one can
only perform a limited number of experiments, it is important to select the ones
that are most significant. Ronald Fisher is regarded as the founder of the modern
methods for experimental design [Yat64]. For the first time, in fact, he realized
that the main responsibility of the statistician was not the results of its analysis
but rather “the processes by which the data had come into existence”. He started
formally investigating the data gathering phase that had previously been conducted
using empirical considerations. Fisher’s work was initially applied to agricultural
engineering and crop selection but, since then, statistical techniques for optimal
experimental design have been used in medical diagnostics [AEK+04, SGL+13],
biology [CSKW03, KT09], chemistry [LH06, Lea09], public opinion polling and
many other fields.

As pointed out by R. Bajcsy [Baj88], who contributed extending the concept
to the robotics and computer vision fields, the term active perception is not to be
confused with the active sensing strategies utilized in many robotics and computer
vision works. In that case, in fact, the word active refers to the fact that the
sensor, in order to be able to extract some information, needs to preliminary inject
information into the system. E.g. an echographic probe or a laser path finder need
to actively generate a signal to be able to perceive the environment. While active
sensing can be considered as a particular instance of active perception, this latter
concept is more general and refers to the way a sensor is used rather than to its
intrinsic functioning mechanisms. Furthermore, it is perfectly possible to use a
passive sensor (such as a camera) to do some active perception [Baj88].

In the system identification and adaptive control literature, the problem is usu-
ally referred to as input design or optimal experiment design [Meh74]. The first
results in this field are attributed to [Lev60] who first studied the problem of iden-
tifying the parameters of linear SISO dynamic systems with the minimum possible
uncertainty, i.e., by minimizing the estimation covariance matrix. In this case, one
aims at designing the set of inputs that allow to reconstruct, looking at the cor-
responding system outputs for a certain amount of time, the dynamic parameters
of the system, e.g., its poles and zeros. The problem of persistence of excitation
of the input signal arises3. The analysis is usually done in the spectral domain

3Note that we are now considering the problem of estimating the parameters of a linear system
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and, as well know [BS83], one needs an input signal with at least n spectral lines
to identify a system with n parameters with white noise being, consequently, the
most exciting signal [Lev60]. In adaptive control a term that is often used is that
of non-uniformly observable systems [BH96] with reference to the fact that, for
generic nonlinear systems, the convergence of estimation schemes might depend on
the input. Input optimization solutions based on the minimization of the covari-
ance matrix [BRG13] or on the maximization of the observability Gramian [RBG13]
have been proposed. Mutual information between the measured outputs and the
unknown system parameters, was also exploited as a metric for the quality of an
experiment in [AK71].

A similar problem arises in experimental robot calibration. In this case, one
needs to find the robot joint trajectory that results in a sufficient excitation of
the robot dynamics/kinematics such that the identification process can be success-
ful and robust w.r.t. noise and other disturbances. In most cases, the calibration
procedure is done by resolving a system of (possibly nonlinear) equations using
(weighted) least squares techniques. The condition number of such system is often
used as a quantitative measure and optimization criterion for the selection of robot
trajectories [GK92, RVA+06]. In a similar way, B. Armstrong suggests to maximize
the condition number of the persistent excitation matrix over the robot trajectory
[Arm89]. In some cases the non deterministic properties of the measurements are
explicitly taken into account and the problem is solved using maximum likelihood
techniques [SGT+97, WSM14]. In this case the optimization criterion is some metric
of the (expected) parameters estimate covariance matrix or of the FIM. The search
space for the optimization is usually constructed via a time-discretization of the
system inputs [WSM14] or using a set of basis functions [Arm89, Par06, RLH12].

Another similar issue is that of optimal sensor placement or dynamic sensor
placement for sensor networks [KM85, Zha92, UC05]. In this case the different
measurements are distributed in space rather than in time: one needs to observe
a distributed phenomenon (e.g. for air/water quality monitoring, fault detection,
weather forecasting, and so on) through the use of a (limited) set of sensors displaced
in different positions of the environments. The problem is then that of identifying
the most significant quantities to measure and the optimal positions (possibly time-
varying) of the sensors. The optimization function is usually a metric of the FIM
[UC05] or of the estimation covariance. The constraint is usually on the total num-
ber of sensors and possibly on their dynamics (if they can move). In this context,
a term that is often used is that of optimal coverage [CMKB02] with reference to
the maximum coverage problem [CK08] in statistics and computational geometry.

and not its state. The observability of the state of a linear system, in fact, does not depend on the
inputs as shown in Sect. 3.2.1.
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Figure 3.1 – Resolution of a real-life art gallery problem for the city center of
Bremen. From [BDRDS+13].

This is usually posed in this way: given a set of sets (e.g. the fields of view covered
by some sensors when placed in certain discretized positions), select k sets, among
them, in such a way that they contain the maximum number of elements (for the
sensor placement problem we can think of the total observed area as the quantity to
maximize). A related topic, in computational geometry, is the art gallery problem
[O’r87] in which one tries to find the minimum number of guards, and their distri-
bution, such that every section of a museum lies in the FOV of at least one guard.
This problem was demonstrated to be NP-hard in [LL86] but some sub-optimal
approximated solutions have been proposed (see, e.g. [BDRDS+13]). Given the
complexity of the problem, most of these works use off-line solutions.

The maximization of information is also at the core of Active SLAM or Si-
multaneous Planning Localization and Mapping (SPLAM). In this framework, one
addresses the problem of designing a robot trajectory that optimally explores the
environment while the map is built. The objective to optimize is, in general, con-
structed in terms of entropy or information gain [SR05, SB03, BMW+02] or estimate
covariance matrix [LHD06]. In this context one often distinguishes two different
phases:(i ) in the exploration phase the robot enlarges the map by visiting new
sections of the environment; (ii ) in the localization phase the robot revisits know
sections of the map (loop closure) to reduce the uncertainty related to its position.
The optimal policy is usually found by selecting the best control action (in terms
of expected information gain) among a limited set of candidates. Since the actual
information gain depends on the measurements, which are not known in advance,
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the process must be repeated at each iteration based on the current estimate of the
environment.

Other interesting strategies are those based on modeling robot motion and obser-
vations as a Partially Observable Markov Decision Process (POMDP). This frame-
work is probably the most general one as the uncertainty about the system state
is explicitly modeled in the calculation of the control action. The resolution al-
gorithms are, however, very complex and, in general, not suitable for a real-time
implementation. Examples of the use of POMDP for active sensing can be found,
e.g., in [VM07, CH10, SVL10].

Finally, more specific to vision, we can mention the problem of Active vision
or Next Best View calculation or View Path Planning for object reconstruction
[Pit99, BWDA00, SRR03] and recognition [HK+89, RCB04]. As with the active
SLAM, also in this case the decision about the next viewpoint position is in general
made by computing the expected information gain (in terms of entropy or coverage)
on a limited set of candidate action and selecting the one that is expected to be the
most convenient. The seminal work [AWB88] showed that some complex and ill-
posed problems such as structure from motion, become much easier if the observer
is active and can control the geometric parameters (e.g. the position or orientation)
of the sensor.

SLAM and active vision can also be used jointly to reconstruct a map of the
environment and localize a robot within it with the best possible accuracy with
the aim of performing some task. In [DM02], which is considered as a pioneering
work in this field, the robot trajectory is assigned and determined by a certain
task. While the robot is following it, the goal is to change the gaze of a stereo
head so that it points toward the feature, in the current map segment, with the
largest uncertainty. [AWCS13] runs a probabilistic planner on a known map to
find a path from the starting configuration to the assigned goal that minimizes
uncertainty measured as a function of the state covariance matrix. The authors
of [FPS14] suggest a planning strategy that takes into account both structure and
texture since, as well known, vision algorithms perform worse in presence of uniform
patterns. The authors also show that local greedy control strategies perform worse
than finite horizon planning techniques.

With respect to all these works, in this thesis we address the problem of ac-
tive vision from a classical control perspective. As it will be shown in Chapt. 4, the
nonlinear deterministic observer that we use, described in Sect. 3.2.3, enforces an
evolution of the estimation error that is equivalent to that of a second order linear
system. Moreover, a complete online control over the eigenvalues of such evolution
is possible by acting both on the estimation gains and on the camera linear veloc-
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Figure 3.2 –Trajectory planning to minimize uncertainty for micro aerial vehicles.
The objective is to reach the final pose (to the left) while minimizing the localization un-
certainty. The resulting trajectory (black line) is more informative than the direct magenta
path. From [AWCS13].

ity. In particular, as it can already be intuitively expected from the developments
in Sect. 3.2.3, the “natural frequencies” of the error dynamics are directly propor-
tional to the instantaneous persistence of excitation condition introduced in (3.13).
Thanks to the structure of the SfM problem, the PE condition in (3.9) and, in par-
ticular, its instantaneous value (3.13) can not just be calculated online using only
known information (the visual measurements and the camera linear velocity), but it
can also be controlled by acting (online) on the camera linear velocity. One can then
use standard control techniques, such as those described in Sect. 2.2.4, to regulate
some metric of (3.13) (e.g. its smallest eigenvalue) to obtain the fastest possible
convergence rate (and similarly the minimum estimation uncertainty) given some
additional constraints on the control inputs. In the next part of the thesis, we will
assume that the SfM is the primary task that must be accomplished. The active
estimation strategy, thus, has complete freedom on choosing the value of the camera
velocity and only a constraint on its norm (that otherwise would grow indefinitely)
is imposed. In the last part of the thesis, instead, constraints on the camera velocity
will be introduced by the introduction of a main IBVS task that must be executed.
The maximization of the observability will then have to be realized only in the
null space of this primary task, using some of the redundancy resolution techniques
described in Sect. 2.2.4.

Contrarily to some probabilistic frameworks described in this section, we do
not take into account the presence of noise neither in the measurements nor in
the system dynamics. Probabilistic techniques, in fact, usually do not allow for
a complete characterization of the estimation error dynamics. The robustness of
the proposed approach w.r.t. noise is however demonstrated by the reporting many
real experiments in Chapts. 5 and 7. Moreover, since the excitation of a system
(and similarly the acquired Fisher information) does not depend on the choice of
the observer, the optimized camera trajectory that our method produces will result
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in improved performance also for probabilistic estimation techniques as it will be
briefly shown in Chapt. 5.

Finally we use a greedy optimization technique and do not plan on a finite
horizon as some of the discussed techniques do. The reason why we do this is that
the evaluation of the PE condition (and similarly of the OG and FIM) in the future,
here as in all other works, requires a prediction of the future measurements which
in turn depends on the estimated quantity. Only locally optimal solutions can then
be found, in general, even if a finite planning horizon is considered. Nevertheless,
as it will be discussed in the conclusions, the use of a longer planning horizon,
coupled with a online re-planning, could result in better results especially once the
estimation is close to convergence.
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Active structure from motion
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Chapter 4

A framework for
active Structure from Motion

The previous chapters briefly introduced the fundamental theoretical con-
cepts that are necessary for the understanding of the rest of this thesis.
From this chapter on, we will instead explain the contributions of this work

in the context of active structure from motion. As already explained in depth, SfM
is a nonlinear estimation problem. As such it results in non uniformly observable
system dynamics: singular inputs u (i.e. camera velocities) exist such that the
system evolution starting from two different initial states and under the action of
u results in identical measurements s(t). If such an input is used, then obviously
the system input-output mapping (u, s) does not allow to reconstruct the full state
of the system. For SfM this results in the impossibility of reconstructing the en-
vironment geometry (e.g. the depth of a point feature or the radius of sphere).
The strategy that we propose allows to calculate online, based only on measurable
quantities, the best motion, i.e. the one that results in the maximum excitation of
the system dynamics (measured by the PE condition in (3.13)) and in the maximum
amount of acquired information (in the sense of the FIM introduced in Sect. 3.3.2).

We start the chapter by highlighting, in Sect. 4.1, some interesting properties
of the nonlinear SfM estimator described in Sect. 3.2.3 that will provide intuitive
interpretations for some of the results of this thesis. We continue by character-
izing the dynamics of the SfM estimation error as resulting from the use of the
nonlinear observer (3.10), and showing its dependence on the observer gains and
on system inputs in Sect. 4.2. We then describe how to actively tune these lat-
ter online, as a function of the current measurements, to fix the desired damping
factor (Sect. 4.3) and natural frequencies (Sect. 4.4). We conclude the chapter by
detailing, in Sect. 4.5, how this general policy specializes to specific geometric prim-
itives: points (Sect. 4.5.1), planes (Sect. 4.5.2), spheres (Sect. 4.5.3), and cylinders
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(Sect. 4.5.4).

The results contained in this chapter have been presented in different interna-
tional venues [1, 2, 3, 4, 5] as well as in a journal publication [6].

4.1 Interesting properties of the nonlinear Structure
from Motion estimator

We now perform some manipulations of system (3.12) in order to slightly simplify
its structure and highlight some important features exploited in the following.

Being α > 0, we can consider the following invertible change of coordinates
ˇ̃s = s̃

ˇ̃χ =
χ̃√
α

. (4.1)

In the new coordinates, system (3.12) takes the form[
˙̃̌
s
˙̃̌
χ

]
=

([
��Om×m Ω̌T (t)

−Ω̌ (t) ��Op×p

]
−

[
Ȟ ��Om×p

��Op×m ��Op×p

])[
ˇ̃s
ˇ̃χ

]
+

[
∅m

ď(ˇ̃x, t)

]
, (4.2)

with Ȟ = H, Ω̌(t) =
√
αΩ (t), and ď = 1√

α
d. We can then note the following facts:

1. In the new coordinates, system (4.2) has an evident port-Hamiltonian (pH)
structure (see Appendix C) which is perfectly recovered in the unperturbed
case (ď ≡ ∅p). The Hamiltonian (storage function) for (4.2) is the lower-
bounded scalar function

H(ˇ̃s, ˇ̃χ) =
1

2
ˇ̃s
T ˇ̃s+

1

2
ˇ̃χ
T ˇ̃χ =

1

2
s̃T s̃+

1

2α
χ̃T χ̃ ≥ 0. (4.3)

Following the pH interpretation, the symmetric component of Ȟ, Ȟs =
1
2(Ȟ + ȞT ), represents the dissipative action in the system, while matrix
Ω̌ (t) defines the internal power-preserving interconnection among the ˇ̃s and
ˇ̃χ components of the state. The PE condition (3.13) can then be interpreted
as a requirement of a persistent energy exchange among the two parts of the
system which permits a complete depletion of the total stored energy thanks
to the dissipative action provided by Ȟs.

2. The gain α is a free design parameter and can be suitably exploited to fulfill
two objectives. First, since

Ḣ = −ˇ̃s
T
Ȟs

ˇ̃s+ ˇ̃χ
T
ď = −s̃THss̃+

1

α
χ̃Td,
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one can conclude that, for a bounded disturbance ‖d‖ ≤M , it is always possi-
ble to attenuate at will its (possibly destabilizing) contribution by letting the
gain α → ∞, basically obtaining a ‘semi-global’ vs. local stability condition.
Furthermore, being

Ω̌(t)Ω̌T (t) = αΩ(t)ΩT (t), (4.4)

it is also possible to directly affect the norm of Ω̌Ω̌T by acting on the gain
α. Having an explicit control over the norm of Ω̌Ω̌T , or equivalently over its
(real) eigenvalues, will be pivotal for the next developments. We note however
that increasing α might also result in a higher sensitivity of the observer to
measurement noise that was not taken into account in this analysis.

3. Finally, it is worth to informally re-analyze the stability proof for (4.2) in
the new coordinates (ˇ̃s, ˇ̃χ) for the case ď = ∅p. First of all, system (4.2)
is clearly still in the form of (3.8) with α = 1 and Ȟ = H � 0. Sec-
ond, from Ḣ = −ˇ̃s

T
Ȟs

ˇ̃s ≤ 0 we can conclude, using Lyapunov’s stabil-
ity theorems, boundedness of the state trajectories (ˇ̃s(t), ˇ̃χ(t)). Being Ḧ =

−2ˇ̃s
T
Ȟs

(
Ω̌T (t) ˇ̃χ− Ȟ ˇ̃s

)
and exploiting the assumption of a bounded ‖Ω(t)‖

from Lemma 3.1, allows to further conclude boundedness of Ḧ which, invoking
Barbalat’s Lemma, grants Ḣ → 0 and ˇ̃s(t) → ∅m. Finally, by restricting the
system dynamics to the set ˇ̃s(t) ≡ ˙̃̌

s(t) ≡ ∅m, the first row of (4.2) reduces to
∅m = Ω̌T (t) ˇ̃χ. Assuming, as previously stated,m ≥ p and full (instantaneous)
rank of ΩΩT as in (3.13) also implies full rankness of the (high-rectangular)
matrix Ω̌T ∈ Rm×p and, consequently, that ˇ̃χ ≡ ∅p as well (thus concluding
the proof).

It is now worth noting that the same proof still holds for a sufficiently smooth
time-varying dissipation matrix h1Im � Ȟ(t) � h2Im, 0 < h1 ≤ h2 < ∞,
with bounded

∥∥∥ ˙̌H(t)
∥∥∥: this important feature opens the possibility of suit-

ably shaping the dissipation matrix Ȟ over time in order to fulfill additional
objectives of interest, as it will be the case in the next developments.

4.2 Characterization of the system transient behavior

In this section, we will give a characterization of the transient behavior of sys-
tem (4.2). We will assume that Ω(t) = Ω(s, ς,u) where ς ∈ Rr indicates a set
of time-varying measurable quantities that are not included neither in s (i.e. they
do not appear in the observer update term) nor in u (because they cannot be di-
rectly controlled). This is a quite natural requirement in many situations, and it
is certainly the case for the SfM applications considered in this work, in which, as
it will be shown, Ω always depends on a set of visual measurements and on the
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linear velocity of the camera v. This structure allows to (actively) exploit the input
vector u(t) in order to affect matrix Ω̌ and, as a consequence, the system transient
response. Note that the introduction of ς was not necessary for the developments
of Sect. 3.2.3 because, from an estimation point of view, the elements of ς can be
thought of as being part of vector u in the sense that they are measurable quantities
used to calculate the prediction term of the estimator. In this section, however, we
start dealing with the control problem and thus we need to make this distinction
since the value of ς, differently from u, cannot be arbitrarily assigned.

Finally, for this analysis, we will neglect the disturbance term ď(t), since, as
explained before, its distorting effects can be typically made arbitrarily small by a
proper choice of the gain α. This claim will also be confirmed by the simulation
and experimental results in Chapts. 5 and 7.

Following the pH interpretation of system (4.2), in particular with in mind a
standard mechanical system, one can identify vector ˇ̃χ as playing the role of a
‘position’-like quantity, and vector ˇ̃s as that of a ‘velocity’-like quantity upon which
a dissipative action is present. Therefore, analogously to a mechanical system, we
focus the analysis on the dynamics of vector ¨̌̃

χ.

Being ˙̃̌
χ = −Ω̌ˇ̃s, it is

¨̌̃
χ =− ˙̌Ωˇ̃s− Ω̌

˙̃̌
s = − ˙̌Ωˇ̃s− Ω̌(−Ȟ ˇ̃s+ Ω̌T ˇ̃χ) =

=(Ω̌Ȟ − ˙̌Ω)ˇ̃s− Ω̌Ω̌T ˇ̃χ = ( ˙̌ΩΩ̌† − Ω̌ȞΩ̌†)
˙̃̌
χ− Ω̌Ω̌T ˇ̃χ

(4.5)

with Ω̌† ∈ Rm×p denoting the pseudo-inverse of matrix Ω̌. Let Ǔ ŠV̌ T = Ω̌ be the
SVD of matrix Ω̌, where Š = [Σ̌ ��Op×(m−p)], Σ̌ = diag(σ̌i) ∈ Rp×p, and 0 ≤ σ̌1 ≤
· · · ≤ σ̌p, from which it directly follows Ω̌Ω̌T = ǓΣ̌2ǓT and Ω̌† = V̌ T Š†Ǔ where,
as usual, Š† = [Σ̌−1 ��Op×(m−p)]

T with Σ̌−1 = diag(σ̌†i ), σ̌
†
i = 1/σ̌i if σ̌i > 0 and

σ̌†i = 0 otherwise.

As for ˙̌Ω it is ˙̌Ω = ˙̌UŠV̌ T + Ǔ ˙̌SV̌ T + Ǔ Š ˙̌V T . Exploiting the orthonormality of
Ǔ , we have ǓT Ǔ = Ip =⇒ ˙̌UT Ǔ + ǓT ˙̌U = ��Op×p. Denoting the skew-symmetric
matrix ǓT ˙̌U = Γ̌U , it is ˙̌U = Ǔ Γ̌U and, following the same arguments, one has
˙̌V T V̌ = Γ̌V = −Γ̌TV and ˙̌V T = Γ̌V V̌

T . Therefore,

˙̌Ω = Ǔ(Γ̌U Š + ˙̌S + ŠΓ̌V )V̌ T . (4.6)

We highlight that, as shown in [PL00], matrices Γ̌U , Γ̌V and ˙̌S can be computed
in closed-form from the knowledge of Ǔ , V̌ , Š and of the closed-form expression
of Ω̌. This is also valid in our context since an explicit expression of Ω̌ is assumed
available, while matrices Ǔ , V̌ and Š can be numerically retrieved from Ω̌ via any
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standard SVD routine. Finally, exploiting (4.6) we have

˙̌ΩΩ̌† =Ǔ Γ̌U ŠŠ
†ǓT + Ǔ ˙̌SŠ†ǓT + Ǔ ŠΓ̌V Š

†ǓT

=Ǔ(Γ̌U + ˙̌ΣΣ̌−1 + Σ̌Γ̄V Σ̌−1)ǓT
(4.7)

where Γ̄V = −Γ̄TV is the p× p upper-left block of matrix Γ̌V .

At this point, the dissipation matrix is purposely taken as

Ȟ = V̌

[
D1 ��Op×(m−p)

��O(m−p)×p D2

]
V̌ T (4.8)

with D1 ∈ Rp×p � 0, D2 ∈ R(m−p)×(m−p) � 0, and, thus, Ȟ � 0 as well. This
choice in fact yields

Ω̌ȞΩ̌† = ǓΣ̌D1Σ̌
−1ǓT . (4.9)

By combining (4.5) with (4.7–4.9), and exploiting the diagonal form of matrix Σ̌,
we finally obtain

¨̌̃
χ =Ǔ(Γ̌U + ˙̌ΣΣ̌−1 + Σ̌Γ̄V Σ̌−1 − Σ̌D1Σ̌

−1)ǓT ˙̃̌
χ− ǓΣ̌2ǓT ˇ̃χ

=(ǓΣ̌)(Σ̌−1Γ̌U Σ̌ + ˙̌ΣΣ̌−1 + Γ̄V −D1)(Σ̌−1ǓT )
˙̃̌
χ− ǓΣ̌2ǓT ˇ̃χ

=(ǓΣ̌)(Π̌−D1)(Σ̌−1ǓT )
˙̃̌
χ− (ǓΣ̌)Σ̌2(Σ̌−1ǓT ) ˇ̃χ

(4.10)

where

Π̌ = Σ̌−1Γ̌U Σ̌ + ˙̌ΣΣ̌−1 + Γ̄V . (4.11)

The expression obtained in (4.10) has a clear and neat structure: it indicates
presence of a change of coordinates

ε = (Σ̌−1ǓT ) ˇ̃χ (4.12)

in which, in the approximation Σ̌−1ǓT ≈ const, the system exhibits the simple
(and almost diagonal) form

ε̈ = (Π̌−D1)ε̇− Σ̌2ε, (4.13)

that is, a (unit-)mass-spring-damper system with diagonal stiffness matrix Σ̌2.

The convergence rate of (4.13) is then related to the slowest mode of the system,
i.e., that associated to the element σ̌2

1 in Σ̌2. Therefore, in order to impose a given
convergence speed and overall transient behavior to (4.13) (and to the estimation
error dynamics (4.5)), one can try to ‘place the poles’ of (4.13) by:(i ) regulating σ̌2

1

to a desired value σ̌2
1,d and, at the same time, (ii ) shaping the damping factorD1 in

order to prevent the occurrence of oscillatory modes (∼ complex poles). Sections 4.3
and 4.4 explain how to achieve these two objectives.
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Remark 4.1. Note that, in the special situation p = 1 (only one quantity to
be estimated), if σ1(t) ≡ const then Σ̌−1ǓT ≡ const in (4.12) and matrix Π̌

has no disturbing effects on (4.13). Therefore, in this case it is always possi-
ble to exactly enforce the ideal estimation error dynamics (4.15) by just keeping
‖Ω(t)‖2 = σ2

1(t) = const during the camera motion. This situation will apply to the
case studies discussed in Sects. 4.5.1, 4.5.3 and 4.5.4.

4.3 Shaping the damping factor

A reasonable choice for matrix D1 could be

D1 = Π̌ +C (4.14)

with C any positive definite matrix, without loss of generality (w.l.o.g.) a diagonal
one C = diag(ci), ci > 0, so as to obtain a completely decoupled transient behavior
for (4.13)

ε̈i + ciε̇i + σ̌2
i εi = 0, i = 1 . . . p. (4.15)

For instance, taking ci = c∗i = 2σ̌i would (conveniently) result in a critically damped
state evolution.

MatrixD1, however, is bound to remain positive definite over time, a constraint
which, clearly, is not necessarily met by (4.14) for any arbitrary pair (C, Π̌). Let Π̌s

and Π̌a represent the symmetric/skew-symmetric components of Π̌, and similarly
for D1 and C, with then Π̌s =

1

2
(Σ̌−1Γ̌U Σ̌− Σ̌Γ̌U Σ̌−1) + ˙̌ΣΣ̌−1

D1s = Π̌s +Cs

. (4.16)

It is obviously D1 � 0 ⇐⇒ Cs � −Π̌s. In the special case of Σ̌ = σ̌Ip = const

(constant and coincident singular values), Π̌s = ��Op×p and thus (4.14) can be safely
implemented for any choice ofC � 0. This possibility, however, requires a very strin-
gent constraint on matrix Ω̌Ω̌T which may be hard to enforce in practice. Alterna-
tively, a less stringent condition may be obtained by suitably bounding ‖Π̌s‖ � qIp,
q ≥ 0: in this case, any Cs � qIp would then guarantee D1 � 0.

While this latter possibility is certainly viable, we note however the following:
in the general case, satisfying the requirement Cs � qIp would guarantee positive
definiteness of D1 in (4.14) but at the possible expense of imposing an over-damped
transient behavior to the system. In fact, in the general case, one could have Cs �
qIp � diag(c∗i ). In other words, having aimed at obtaining a completely decoupled
behavior for the evolution of ε(t) as in (4.15) could entail a unnecessary degradation
of the transient response.
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A full characterization of possible bounds on Π̌s is out of the scope of this
work and thus will not be addressed here apart from the following qualitative con-
siderations. Boundedness of ‖Ω(t)‖ and ‖Ω̇(t)‖ required by Lemma 3.1 together
with (3.13) are sufficient conditions for guaranteeing boundedness of ‖Π̌s‖ as well.
In fact, by a rough inspection of Π̌s, we can conclude that it can be made arbitrarily
small by:(i ) limiting ‖Σ̌‖ (implied by limited ‖Ω‖), (ii ) limiting det(Σ̌) from below
in order to prevent Σ̌−1 → ∞ (implied by (3.13)), and (iii ) limiting the rate of
change of Σ̌ and Ǔ , that is, by bounding ‖ ˙̌Σ‖ and ‖Γ̌U‖ (implied by limited ‖Ω̇‖).

In any case, in absence of as a deeper analysis, in the following we will not
aim for a cancellation of matrix Π̌, but we will rather neglect its effects on the
transient by just taking D1 = diag(c∗i ) > 0. This can of course result in a poorer
overall behavior (for not compensating for Π̌), but avoids the introduction of any
unnecessary lower bound on D1. The simulation and experimental results reported
in Chapt. 5 will anyway show that not compensating for matrix Π̌ has a marginal
effect.

4.4 Tuning the stiffness matrix

We recall that matrix Σ̌2 = diag(σ̌2
i ) contains the p eigenvalues of the square sym-

metric matrix Ω̌Ω̌T in (4.4). Let then Σ2 = diag(σ2
i ) represent the eigenvalues of

matrix ΩΩT in the original coordinates (s̃, χ̃). From (4.4) it follows that, in order
to affect Σ̌2, one can either(i ) act on the gain α for a given Σ2, or (ii ) actively
adjust Σ2 for a given gain α (or, of course, any combination of both actions). The
effect of gain α has already been discussed in Sect. 4.1: in short, one can exploit it
to freely amplify/attenuate the eigenvalues of Σ̌2 as clear from (4.4). However, we
note that, regardless of any choice of the gain, one still needs to ensure a minimum
threshold σ2

1(t) ≥ σ2
min > 0 for the estimation to converge, i.e., for fulfilling condi-

tion (3.13): this can only be achieved by actively tuning matrix Σ2. The rest of the
section is then devoted to this issue.

We start by noting that, from (4.4), one has Σ̌2 = αΣ2 =⇒ σ̌2
i = ασ2

i . There-
fore, seeking a desired value σ̌2

i,d is equivalent to imposing σ2
i → σ2

i,d = σ̌2
i,d/(α). We

can then focus on the regulation of the eigenvalues σ2
i .

An explicit expression of the time derivative of the eigenvalues σ2
i can be ob-

tained as follows: being Ω(t) = Ω(y, u), with y = (s, ς), it is σ2
i (t) = σ2

i (y, u)

which, exploiting the results of [PL00, YFG+10], allows to conclude

d

dt
σ2
i =

v∑
j=1

(
vTi

∂(ΩΩT )

∂uj
viu̇j

)
+

n∑
j=1

(
vTi

∂(ΩΩT )

∂sj
viṡj

)
(4.17)
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where vi ∈ Rp is the normalized eigenvector associated to σ2
i . Letting

Ju,i =

[
vTi

∂(ΩΩT )

∂u1
vi . . . vTi

∂(ΩΩT )

∂uv
vi

]
∈ R1×v (4.18)

and
Jy,i =

[
vTi

∂(ΩΩT )

∂y1
vi . . . vTi

∂(ΩΩT )

∂yn
vi

]
∈ R1×n, (4.19)

eq. (4.17) can be compactly rewritten as

˙(σ2
i ) = Ju,iu̇ + Jy,iẏ. (4.20)

Note, again, that the Jacobian matrices Ju,i and Jy,i in (4.18–4.19) can be com-
puted in closed-form from the knowledge of the eigenvectors vi and of a closed-form
expression for matrix Ω.

At this point, any differential inversion technique can be applied to (4.20) in
order to affect the behavior of the i-th eigenvalue σ2

i (t) by acting upon vector u̇:
this must then be treated as the ‘actual’ input vector, with u regarded, instead, as
an internal state. The eigenvalues σ2

i can, in fact, be used to construct a task vector
r or a cost function w(q̇) and the techniques described in Sect. 2.2.4 (in particular
the ones in Sect. 2.2.4.4) can be used to regulate/maximize its value. Sect. 4.5 will
discuss some examples in this sense. As illustration, the classical choice

u̇ = J†u,i
[
−k(σ2

i − σ2
i,d)− Jy,iẏ

]
, k > 0, (4.21)

would result in a perfect exponential convergence of σ2
i (t)→ σ2

i,d.

Remark 4.2. We note, however, that in general it is not possible to compensate for
the term Jy,iẏ as simply done in (4.21) (or in any other equivalent law). Indeed, the
formulation (3.10) implies a direct dependency of ṡ from the unmeasurable χ, and a
similar dynamics can, in general, be found for ς, so that an exact evaluation of ẏ is
not obtainable in practice. A possible workaround is to replace ẏ with an estimation̂̇y obtained by plugging χ̂ in (3.10) and in the dynamics of ς, in place of χ. As
χ̂→ χ one obviously has ̂̇y→ ẏ, thus allowing for an asymptotic compensation of
Jy,iẏ. Another possibility, when viable, is to enforce ẏ ≡ ∅m+r during the system
evolution. A combination of both strategies is, of course, also possible. The next
sections will present some examples in this sense.

In all SfM problems, matrix ΩΩT and its eigenvalues σ2
i are only function of

y and of the camera linear velocity v (never of the angular one). This is a direct
consequence of the fact that, as already pointed out, the unknown 3-D parameters χ
only appear in the columns of the interaction matrix that are related to the camera
translational motion. Therefore (4.20) reduces to

˙(σ2
i ) = Jv,iv̇ + Jy,iẏ ≈ Jv,iv̇ (4.22)
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where the approximation is valid under the assumption that ẏ is kept (approx-
imately) constant. In particular, roughly speaking, ‖ΩΩT ‖ is monotonically in-
creasing with ‖v‖2: the faster the camera motion the faster the SfM convergence
regardless of any other optimization action. Use of the control law (4.21) could
then result in a sub-optimal velocity direction compensated by a growth of ‖v‖. To
avoid such a situation, we prefer to consider the optimization of the observability
as a secondary objective function to be maximized in the null space of a main task
that has the only purpose of keeping the linear velocity norm constant:

v̇ = −k1
v

‖v‖2
(κ− κd) + k2

(
I3 −

vvT

‖v‖2

)
∇vw(ΩΩT ) (4.23)

with k1 > 0, k2 ≥ 0, κ = 1
2v

Tv, κd = 1
2v

T
0 v0, and w(ΩΩT ) is a function of matrix

ΩΩT that quantifies the observability. The analysis in Sect. 4.2 shows that the
smallest eigenvalue σ2

1 directly affects the convergence rate of the employed estima-
tor, and thus a reasonable choice is to maximize σ2

1 over time. This corresponds to
the so called E-optimality criterion introduced in [Ehr55].

w(ΩΩT ) = ΦE = σ2
1 ⇒ ∇vw(ΩΩT ) = JTv,1.

Another optimality criterion, often used in the context of experimental design,
is the A-optimality introduced by [Che53]. This aims at maximizing the trace of
matrix ΩΩT :

w(ΩΩT ) = ΦA = tr(ΩΩT ) =

p∑
i=1

σ2
i ⇒ ∇vw(ΩΩT ) =

p∑
i=1

JTv,i. (4.24)

Unfortunately, the evaluation of the derivative/gradient of an eigenvalue as
in (4.17) is not well-defined for repeated eigenvalues [Fri96]. In order to avoid
this issue, one can also consider the quantity

w(ΩΩT ) = ΦD = det(ΩΩT ) =

p∏
i=1

σ2
i (4.25)

as a conditioning measure for matrix ΩΩT . Indeed, from classical linear algebra
[Ber09] the following relationship holds for a square matrix A

d

dt
det(A) = tr

(
adj (A)

dA

dt

)
(4.26)

with tr (·) and adj (·) being the trace and adjugate operators, respectively. Contrar-
ily to the derivative of an eigenvalue, the relationship (4.26) is always well-defined
with, in particular, no possible ill-conditioning due to repeated eigenvalues. Op-
timization of (4.25) goes under the name of D-optimality criterion and was first
proposed by [Wal43].
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A variety of other optimality criteria have been proposed in the literature. We
suggest to refer to [RAS09] for an overview and comparison of the different ones.
Some of them turn out to be equivalent under certain assumptions[Kie74]. Finally,
if p = 1, one obviously has ΦE = ΦA = ΦD = σ2

1.

4.5 Application to a class of geometric primitives

In this section we illustrate the application of the proposed active estimation frame-
work to four concrete SfM problems:(i ) estimation of the 3-D coordinates of a point
feature, (ii ) estimation of the distance and orientation of a planar surface, (iii ) es-
timation of the 3-D position and radius of a spherical target, and (iv ) estimation
of the 3-D position and radius of a cylindrical target.

In the point feature case, the effects of the adopted projection model on the
estimation convergence are also explicitly considered by discussing the differences
between the two popular choices of planar and spherical projection models intro-
duced in Sect. 2.1.2.

For the planar target, we consider both the case of a collection of discrete points
of interest extracted and tracked form the surface of a textured planar object,
and that of a dense planar patch segmented in the image. Discrete and dense
image moments can be used (among others) as a measurement to recover the plane
3-D parameters in the two cases. Since the choice of image moments affects the
performance of the estimation, we also propose to adaptively select on-line the
most informative image moments to use.

Finally for the spherical and cylindrical targets, we propose the use of two novel
minimal parametrization that allow to express the sphere/cylinder 3-D structures in
terms of measured visual features and of a single unknown parameter (the sphere/-
cylinder radius). This allows, in both cases, to reduce the SfM task to the estimation
of a single unknown quantity (the sphere/cylinder radius), thus satisfying the re-
quirements of Remark 4.1 for exactly imposing the ideal dynamics (4.15) to the
estimation error.

4.5.1 Active Structure from Motion for a point

The first case study that we will consider is that of the estimation of the depth of
a single point feature. We propose two different estimation schemes using either a
planar or a spherical projection model. We will show that the two schemes have
different and somehow complementary properties.
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4.5.1.1 Planar projection model

Let π = (x, y, 1) = (X/Z, Y/Z, 1) ∈ R3 be the perspective projection of a 3-D point
p = (X, Y, Z) onto the image plane of a calibrated pinhole camera. As it is well
know (see [CH06] and Sect. 2.1.3.3), the differential relationship between the image
motion of a point feature and the camera linear/angular velocity u = (v, ω) ∈ R6

expressed in camera frame is given by the interaction matrix (2.10) as a function of
the depth Z of the feature point. The dynamics of Z is

Ż =
[
0 0 −1 −yZ xZ 0

]
u. (4.27)

The expression in (2.10) is not linear in Z but it is linear in ζ = 1/Z. Therefore,
by defining s = (x, y) ∈ R2 and χ = ζ ∈ R, with then m = 2 and p = 1, we obtain
for (3.10) 

fs (s, ω) =

[
xy −

(
1 + x2

)
y

1 + y2 −xy −x

]
ω

Ω (s, v) =
[
xvz − vx yvz − vy

]
fχ (s, χ, u) = vzχ

2 + (yωx − xωy)χ

, (4.28)

with the perturbation term d(x̃, t) in (3.12) taking the expression

d(χ̃, t) = vz
(
χ̂2 − χ2

)
+ (yωx − xωy) χ̃, (4.29)

so that d(0, t) = 0 as expected. Note that, once χ has been estimated, one can
obviously retrieve the 3-D position of the point feature as p = π/ζ = s/χ.

In the point feature case matrix ΩΩT reduces to its single eigenvalue which, for
a planar projection model, takes the expression

σ2
1 = ‖Ω‖2 = (xvz − vx)2 + (yvz − vy)2. (4.30)

Furthermore, as explained in Remark 4.1, in this case if σ1(t) ≡ const > 0 then by
construction Σ̌−1ǓT = const in (4.12) and matrix Π̌ has no distorting effect on
the behavior of (4.13). Therefore, it is always possible to exactly enforce the ‘ideal’
estimation error dynamics (4.15) by keeping ‖Ω‖2 = σ2

1 = const.

Moreover, using (4.30), the Jacobian Jv,1 in (4.22) is given by

Jv,1 = 2

 vx − xvz
vy − yvz

(xvz − vx)x+ (yvz − vy) y


T

. (4.31)

Since σ2
1 does not depend on ω (this is always true for SfM problems), it is possible

to freely exploit the camera angular velocity for fulfilling additional goals of interest
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without interfering with the regulation of σ2
1(t) (only affected by v). For instance,

as in [CBBJ96], one can use ω for keeping s ' const so as to make the effects of ṡ
negligible when inverting (4.22) w.r.t. v̇, see Remark 4.2.

We now note that σ2
1 in (4.30) depends on both the camera linear velocity v

and on the location π of the feature point on the image plane. Since the value of
σ2

1 directly affects the convergence speed of the estimation error, it is interesting to
study what conditions on s and v result in the largest possible σ2

1 (i.e., the fastest
possible convergence for a given gain α). Letting e3 = [0, 0, 1]T being the camera
optical axis, it is (by inspection)[

ΩT

0

]
= [e3]× [π]× v

where [a]× is the skew-symmetric matrix representing the cross product operator
for 3-D vectors (i.e., [a]× b = a× b). Therefore,

σ2
1 =

[
Ω 0

] [ΩT

0

]
=
∥∥[e3]× [π]× v

∥∥2

= ‖π‖2 ‖v‖2 sin2 (θπ,v) sin2
(
θe3,[π]×v

)
where θπ,v and θe3,[π]×v

represent the angles between vectors (π, v) and vectors
(e3, [π]× v), respectively. The maximum attainable value for σ2

1 is then

σ2
max = max

π, v
(σ2

1) = ‖π‖2 ‖v‖2 . (4.32)

This maximum is obtained when the camera linear velocity v is such that π ⊥ v
and e3 ⊥ [π]× v, i.e., rearranging in matrix form[

πT

eT3 [π]×

]
v =

[
x y 1

−y x 0

]
v = 0. (4.33)

If π 6= e3 (point feature not at the center of the image plane), system (4.33) has
(full) rank 2 and admits the unique solution (up to a scalar factor)

v ∼= [π]2× e3.

This requires the linear velocity v to be orthogonal to π and to lie on the plane
defined by vectors π and e3 (i.e., v must belong to a straight line as shown
in Fig. 4.1(a)).

If π = e3 (point feature at the center of the image plane), system (4.33) loses
rank and any v ⊥ e3 is a valid solution, see Fig. 4.1(b).

It is then possible to draw the following conclusions: for a given norm of the
linear velocity ‖v‖ (i.e., the amount of ‘control effort’), system (4.33) determines
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the direction of v resulting in σ2
1 = σ2

max (maximization of σ2
1). These conditions

are summarized in Figs. 4.1(a) and 4.1(b). The value of σ2
max is, however, also a

function of the feature point location π which can be arbitrarily positioned on the
image plane. In particular, σ2

max = ‖v‖2 for π = e3 and σ2
max = ‖π‖2‖v‖2 > ‖v‖2

∀π 6= e3, with lim‖π‖→∞ σ
2
max(π) = ∞. The value of ‖π‖ (distance of the point

feature from the projection center) thus acts as an amplification factor for σ2
max.

Therefore,

1. the smallest σ2
max (i.e., the slowest ‘optimal’ convergence for the depth esti-

mation error) is obtained for the smallest value of ‖π‖, i.e., when π = e3 =⇒
‖π‖ = 1 (feature point at the center of the image plane). It is worth noting
that in this case vz = 0 (from the condition v ⊥ π) and σ2

max = ‖v‖2 = v2
x+v2

y :
the camera moves on the surface of a sphere with a constant radius (depth)
pointing at the feature point. Also, being in this case χ̇ = Ż/Z2 = 0, one has
d(χ̃, t) ≡ 0 and global convergence for the estimation error (see Remark 3.1);

2. the largest σ2
max (i.e., the fastest ‘optimal’ convergence for the depth estima-

tion error) is obtained for the largest possible value of ‖π‖. In the usual case
of a rectangular image plane centered at the origin, this translates into keep-
ing the feature point positioned at one of the four image corners. However,
compared with the previous case, this results in a d(χ̃, t) 6= 0 and only local
convergence for the estimation error. Moreover, as shown in [CBBJ96], this
also results in an increased impact of measurement errors (e.g. discretization
and other undeterministic effects) on the estimation.

4.5.1.2 Spherical projection model

We now develop the depth estimation machinery for the spherical projection model.
In this case, the following quantity is taken as visual feature measured on the image
plane

s = η =
π

‖π‖
=

p

‖p‖
∈ S2,

where S2 represents the unit sphere and, as well-known (see [HM02]) and shown in
Sect. 2.1.3.3,

ṡ =
[
δ
(
ssT − I3

)
[s]×

]
u,

with δ = 1
‖p‖ and

δ̇ = −δ2 d ‖p‖
dt

= −δ2sT ṗ = δ2sTv. (4.34)

83



Active Visual Estimation and Control of Robotic Systems

C

e1
e2

e3

π

v

v

S

(a)

C

e1
e2

e3 ≡ π

v v

v

vv

v

(b)

Figure 4.1 – Optimality conditions for the camera linear velocity v as dictated by
system (4.33). Fig. (a): when π 6= e3, vector v must be orthogonal to π and lie on the
plane S spanned by π and e3 (that is, v must belong to a specific straight line). Fig. (b):
when π = e3, any v ⊥ e3 is a valid solution to (4.33).

Hence by taking χ = δ one obtains for (3.10)
fs (s, u) = [s]×Ω

Ω (s, v) = −vT
(
I3 − ssT

)
fχ (s, χ,u) = χ2sTv

(4.35)

with m = 3, p = 1, and d(χ̃, t) = (χ̂2−χ2)sTv for the perturbation term in (3.12).
We note that, although in this case m = 3, vector s is subject to the constraint
‖s‖ = 1, thus resulting in only two independent measurements (as in the previous
case of planar projection). Moreover, from the estimated χ one can easily retrieve
p = η/δ = s/χ.

For the spherical projection model, the eigenvalue determining the convergence
of the estimation error is

σ2
1 = ΩΩT = vTv − (sTv)2,

with thus

Jv,1 = 2vT (I3 − ssT ). (4.36)

As before, σ2
1 does not depend on ω which can then be exploited to fulfill any

additional task of interest (e.g., keeping s ' const during motion).

As for the conditions on s and v that yield maximization of σ2
1, one clearly has

σ2
1 = σ2

max = max
s, v

(σ2
1) = ‖v‖2 (4.37)
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iff sTv = 0 (linear velocity orthogonal to the projection ray passing through p). We
also note that, in this case, one has χ̇ = 0 and d(χ̃, t) ≡ 0 (constant unknown state
and global convergence for the estimation error) regardless of the location of s on
the image plane.

4.5.1.3 Comparison between planar and spherical projection models

For a spherical projection model, maximization of the eigenvalue σ2
1 imposes only

one condition for the linear velocity v (ηTv = 0). When this condition is met, one
has σ2

1 = σ2
max = ‖v‖2 and global convergence for the estimation error whatever

the location of the feature point η. This is equivalent to what was obtained for the
planar projection case in the special situation π = e3 (indeed the two projection
models coincide for π = η = e3). However, with a spherical projection model one
also loses the possibility to increase the estimation convergence rate by suitably
positioning the point feature s on the image plane (since in this case σ2

max does not
depend on s).

It is then worth noting the complementarity of the two cases: for a given ‖v‖,
and provided the optimal condition πTv = 0 is satisfied, the planar projection
allows obtaining a faster error convergence at the price of local stability (increase
of the perturbation d) by suitably positioning s = [x, y]T (the larger ‖s‖ the faster
the convergence). The spherical projection guarantees global error convergence for
any location of the feature point, but at the price of being always subject to the
same convergence rate only function of the control effort ‖v‖.

4.5.2 Active Structure from Motion for a plane

Plane detection and estimation from raw visual data is a classical problem in sensor-
based robot control, especially in the context of mobile robotics. Indeed, planes
are widespread in artificial (man-made) and natural environments, and therefore
constitute the typical 3-D structure one tries to segment in order to, e.g., plan safe
paths among planar obstacles (e.g., vertical walls), or navigate by keeping a desired
attitude or distance from special planes (e.g., ground plane for flying robots). The
ability to classify and reconstruct planes in the perceived environment is therefore an
important feature for several sensor-based applications. When dealing with images
taken by a (possibly moving) camera, a number of approaches has been developed
for solving the problem of detecting and identifying planes from visual data.

Several methods for instance exploit known correspondences across frames to
identify point features (or directly pixels) as whether belonging to a common plane
together with the associated plane parameters [ASNM10, LJPS10, GBR12]. These
methods usually rely on special geometric constraints linking two views of a pla-
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nar scene such as the homography constraint. We have already explained, in
Sect. 2.1.3.2, some techniques for exploiting the homography constraint between
two views of the same set of points to recover the parameters of the plane and the
camera motion up to a scalar factor. We will use the classical 8-point algorithm, in
the following referred to as method A, as a baseline for comparison and evaluation
of the other original ones proposed in this section.

Alternative strategies, such as those suggested in [VBP08, SSN11, BELN11] and
references therein, instead, attempt to directly measure (using special sensors such
as the RGB-D camera) or recover (exploiting structure from motion algorithms) a
‘depth map’ of the observed images, for then dealing with the issue of clustering and
extracting planes from clouds of 3-D points. In these cases, the problem is rather
on how to fit planes to sets of 3-D points and on how to cluster them according to
some reasonable ‘planarity measure’. We propose, in Sect. 4.5.2.1, a solution that
can be ascribed to this second class because it uses a simple least-squares fitting
strategy to extract a plane from a point cloud of estimated points. In Sect. 4.5.2.2
we will discuss, instead, an alternative solution that estimates the plane parameters
directly from a set of discrete image moments. Finally Sect. 4.5.2.4 explains how a
similar method could be applied to a set of dense image moments computed on a
segmented planar patch.

4.5.2.1 Plane reconstruction from 3-D points

Assume that a visual tracker is able to extract and track, in a sequence of images,
the projection of a set of N points pk belonging to the same plane P.

Using the active strategies discussed in Sect. 4.5.1, one can (optimally) retrieve
an estimation Ẑk of the unknown depth Zk of each point (similarly, one could also
use a spherical projection model to find an estimate ‖̂pk‖ of the point distances
‖pk‖). Then, from each measured point feature πk (or ηk) one can recover an
estimation p̂k = Ẑkπk (or p̂k = ‖̂p‖kηk) of the corresponding 3-D point pk in the
current camera frame. Let P : nTE + d = 0 be the equation of the sought plane,
with n ∈ S2 and d ∈ R representing the unit normal vector and distance in camera
frame. For the estimated points p̂k to belong to P, it must hold

nT p̂k + d = 0, i = 1 . . . N. (4.38)

Equation (4.38) can be rearranged in matrix form as
p̂T1 1
...

...
p̂TN 1


[
n

d

]
= A

[
n

d

]
= ∅N (4.39)
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with A ∈ RN×4. Assuming N ≥ 4 and rank (A) = 3, the linear system (4.39) has
a unique solution (up to a scalar factor) for the pair (n, d) which can be found
by standard least-square techniques. Let UASAV T

A = A be the SVD of matrix A,
with σ1,A ≤ · · · ≤ σ4,A being the associated singular values. As well-known, a (least-
square) solution of the homogeneous system (4.39) is given by v1 = [v11, v12, v13]T ,
the column of VA associated to σ1,A. Furthermore, the inverse of the condition
number σA = σ1,A/σ4,A can be taken as a normalized measure of the planarity of
the N points p̂k, in fact rank (A) = 3 ⇐⇒ σA = 0. From v1 one can then recover[

n

d

]
= ± v1√

v2
11 + v2

12 + v2
13

, (4.40)

i.e., by imposing ‖n‖ = 1. The final sign ambiguity can be resolved by fixing the
sign of d according to the adopted convention.

As for the issue of optimally recovering the unknown depths Zk for the N tracked
point features πk, this can be addressed by exploiting the SfM scheme (3.11). Let
s = [x1, y1, . . . , xN , yN ]T ∈ R2N be the vector of measured visual features, and
χ = [1/Z1, . . . , 1/ZN ]T ∈ RN be the 3-D structure to be estimated (the depths of
all tracked points). This choice results in the matrix

ΩΩT = diag(σ2
1,1, σ

2
1,2, . . . σ

2
1,N ), (4.41)

with

σ2
1,i = (xkvz − vx)2 + (ykvz − vy)2 (4.42)

being the eigenvalue determining the convergence speed of the k-th estimation er-
ror χ̃k(t) = χ̂k(t) − χk(t) = 1/Ẑk(t) − 1/Zk(t) for the k-th feature point. Exploit-
ing (4.22), optimization of the convergence of the whole vector χ̃(t) can then be
obtained by, e.g., maximizing the minimum eigenvalue

σ2
m = min

i=1...N
σ2

1,i (4.43)

w.r.t. the camera linear velocity v.

We finally note that this method does not require the exact matching of point
features across distant frames (initial and current ones) as it is instead the case for
the homography reconstruction method described in Sect. 2.1.3.2, but it only needs
a frame-by-frame tracking. As a consequence, the method can straightforwardly
cope with loss/gain of feature points because of, e.g., limited FOV: new estimated
points p̂k can be added to system (4.39) by initializing the corresponding estimated
depth Ẑk so as to belong to the current estimation of the plane P. The only
assumption (common to all the methods) is that all the tracked points seen by the
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moving camera belong to a common plane1. In the following, this second possibility
for recovering (n, d) will be denoted as method B.

4.5.2.2 Plane reconstruction from discrete image moments

Another possibility for estimating the structure of a plane is based on the machin-
ery of point-based image moments originally introduced in [TC05]. This method,
hereafter denoted as method C, can be seen as a further improvement of method B
in that it exploits the active estimation scheme (3.11) for directly estimating the
pair (n, d) (3 independent quantities) instead of the N depths Zk of the N con-
sidered point features πi for then algebraically solving system (4.39). Thus, the
complexity of the SfM scheme results reduced w.r.t. method B as the number of
estimated states is independent of the number of tracked points. Furthermore, since
(n, d) are directly estimated via a filtering process, one can expect method C to be
more robust than method B w.r.t. non perfectly planar scenes as no algebraic step
is involved (contrarily to method B that still requires the least-square solution of
the linear system (4.39)). Indeed, these considerations are also supported by the
experimental results of Sect. 5.2.

Consider then the (i, j)-th momentmij evaluated on the collection ofN observed
feature points πk = (xk, yk, 1)

mij =
N∑
k=1

xiky
j
k. (4.44)

As shown in [Cha04], dividing the plane equation (4.38) by Zk and d, the depth
Zk on any 3-D point pk ∈ R3 lying on this plane can be expressed in terms of its
normalized image coordinates πk as

1

Zk
= ζk = −n

T

d
πk = νTπk, (4.45)

where ν = −n/d ∈ R3 represents an unmeasurable 3-D scene structure (as with Z
for the point feature case). Exploiting this fact, [TC05] shows that the dynamics of
mij takes the expression

ṁij = fmij (mkl, ω) +$T
mij (mkl, v)ν (4.46)

wheremkl stands for the generic (k, l)-th moment of order up to i+j+1. Analogous
considerations hold for the centered moments

µij =

N∑
k=1

(xk − xg)i(yk − yg)j

1The results of Sect. 5.2 will nevertheless test the robustness of the methods against this
hypothesis.
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with xg = m10/m00 and yg = m01/m00 being the barycenter coordinates, and
m00 = N = const in this case. Furthermore, it is (see, e.g., [1])

ν̇ = ννTv − [ω]× ν = fν(ν, u). (4.47)

The estimation scheme (3.11) can then be directly applied for recovering χ = ν by
including in s a suitable collection ofm ≥ 3 image moments s = (mi1j1 , . . . ,mimjm),
and thus letting ς = (mk1l1 , . . . ,mkrlr) be the set of moments that appear in
the dynamics of s but are not included in s, fs = [fmi1j1 . . . fmimjm ]T ∈ Rm,
fχ(χ, u) = fν(ν, u) and

Ω = [$mi1j1
. . . $mimjm ] ∈ R3×m. (4.48)

This estimation strategy, however, lacks the possibility of taking into account the
loss/gain of feature points over time (as it is instead the case with method B). When
a feature point leaves visibility, a practical workaround could be to just redefine a
moment mij as the sum over the remaining N − 1 points and feed the estimation
scheme with this new measurement (and analogously for new points entering visi-
bility). However, this would clearly introduce a discontinuity in the measured mij

— a discontinuity not modeled by the dynamics (4.46) which predicts the moment
evolution as only a function of the camera own motion (v, ω). Therefore, we now
propose a redefinition of weighted image moments meant to explicitly cope with this
issue.

Assume presence of a countable number of feature points on the plane πk =

[xk, yk, 1]T , k = 1 . . .∞, and define the (i, j)-th weighted moment as

mij =
∞∑
k=1

w(xk, yk, t− tk)xiky
j
k, (4.49)

where the weighting function w(x, y, τ) : R3 7→ [0, 1] is a sufficiently smooth map,
and tk represents the time at which the point feature πk is considered for the first
time.

The weight w can be exploited to assign a ‘quality’ measure to each feature
point so as to enforce a smooth change in mij whenever a tracked feature leaves
visibility or a new feature is taken into consideration (regardless of its position on
the image plane). In particular, we design the weight w(x, y, τ) as the product of
three scalar functions

w(x, y, τ) = w1(x)w2(y)w3(τ).

Weights w1(x) and w2(y) are designed so as to vanish at the image borders and
are meant to smoothly take into account features entering/exiting the image plane.
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Figure 4.2 – Possible shape of the weight functions used to cope with a limited
camera FOV. Left: shape of weight w1(x) with limits xmin = −xmax = 0.2884 (normalized
size of the image plane). Right: shape of weight w3(τ).

Weight w3(τ) is finally intended to smoothly take into account the introduction of a
newly detected feature point πk when already within visibility (for instance, when
starting to track a new point close to the image center). Figure 4.2 shows a possible
shape for w1(x) (also representative of w2(y)) and w3(τ).

Exploiting the definition (4.49), it is easy (although tedious) to obtain an expres-
sion conceptually equivalent to (4.46) for the dynamics of the weighted moments
ṁij . Some details in this sense are reported in Appendix A.2. This then allows to
directly apply the SfM scheme (3.11) to the case of weighted moments. We finally
note that, in practice, the summation (4.49) is clearly evaluated only on the (finite
but time-varying) set of currently tracked point features since w(xk, yk, t− tk) = 0

for any πk not visible or not considered at any time t ≤ tk.

As for which moments to consider for the estimation of χ, after some experi-
mental tests we opted for

s = (xg, yg, µ20, µ02, µ11) ∈ Rm, m = 5. (4.50)

This choice is partially motivated by [TC05] which proposed the triple (xg, yg, µ20 +

µ02) as a good set of features for controlling the camera translational DOFs in a VS
loop. However, we empirically found this latter set to be ill-conditioned for what
concerns the estimation of χ, with instead (4.50) providing enough information (i.e.,
full rankness of matrix ΩΩT ) for the estimation convergence. Alternatively, one
could also resort to an adaptive/online selection of the best set of image moments
as discussed in Sect. 4.5.2.3.

Finally, analogously to the previous cases, optimization of the structure estima-
tion convergence from image moments can be achieved by maximizing w.r.t. v the
smallest eigenvalue σ2

1 of the square 3× 3 matrix ΩΩT from (4.48).

4.5.2.3 Optimizing online the selection of moments

As already anticipated in the previous section, the selection of a good set of image
moments for visual control or SfM is still an open problem. Ideally, for VS appli-
cations, one would like to find a unique set of visual features resulting in the ‘most
linear’ control problem with the largest convergence domain. In case of SfM tasks,
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instead, one is in general interested in maximizing observability for a given cam-
era displacement. However, to the best of our knowledge, only local, partial (e.g.,
depending of the particular shape of the object) or heuristic results are currently
available. For instance, [TC05, KDS+07, BCM13] propose different combinations
of image moments able to only guarantee local stability of the servoing loop around
the desired pose, with a basin of attraction to be heuristically determined case by
case. As for what concerns the SfM case, the choice of which moments to exploit for
allowing a converging estimation of the scene structure is also not straightforward.
In [RDO08] the area a and barycenter coordinates (xg, yg) of a dense region are suc-
cessfully fed to a SfM scheme based on the (intuitive) motivation that the same set
(a, xg, yg) is also the typical choice for controlling the camera translational motion
in a servoing loop [TC05]. However, this intuition breaks down when considering
moments of a discrete point cloud: in this case, the typical choice for controlling
the camera translational motion, that is, the set (xg, yg, µ20 + µ02) (see [TC05]), is
empirically shown in [4] to not provide enough information for allowing a converging
estimation of the scene structure.

One could argue that the hope of finding a unique set of visual features optimal
in all situations might eventually prove to be unrealistic, if not impossible, while it
could just be more appropriate (and reasonable) to rely on an automatic and online
selection of the best feature set (within a given class) tailored to the particular
task at hand. Motivated by these considerations, we propose, in this section, a
generalization of the image moments definition that aims in this direction.

Let w = w(x, y, θ) be a smooth function of the coordinates (x, y) on the image
plane and of a vector of parameters θ ∈ Rh. One can generalize (4.44) and define a
weighted parametric image moment for N observed features πk

mw(θ) =

N∑
k=1

w(xk, yk, θ), (4.51)

with, obviously, mw = mij for w(x, y, θ) = xiyj . Function w(x, y, θ) can be seen
as the class of all the considered image moments (e.g., a quadratic form in x, y)
parametrized by vector θ (e.g., the coefficients of the quadratic form). Consider
now the following additional definitions

mx
wij (θ) =

∑N

k=1
xiky

j
k

∂w(x, y, θ)

∂x

∣∣∣∣
(xk, yk)

my
wij (θ) =

∑N

k=1
xiky

j
k

∂w(x, y, θ)

∂y

∣∣∣∣
(xk, yk)

mθ
w(θ) =

∑N

k=1
∇θw(x, y, θ)T

∣∣∣∣
(xk, yk)

,

(4.52)
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and note that mθ
w is a row vector of dimension h. Following the derivations in

[TC05], it is easy to show that the dynamics of mw(θ) takes the expression (remi-
niscent of (4.46))

ṁw(θ) =[mA(v, θ) mB(v, θ) mC(v, θ)]ν

+ [mωx(θ) mωy(θ) mωz(θ)]ω +mθ
w(θ)θ̇

(4.53)

with 

mA =−mx
w10

vx −my
w10

vy + (mx
w20

+my
w11

)vz

mB =−mx
w01

vx −my
w01

vy + (mx
w11

+my
w02

)vz

mC =−mx
w00

vx −my
w00

vy + (mx
w10

+my
w01

)vz

mωx =(mx
w11

+my
w02

+my
w00

)

mωy =(−mx
w00
−mx

w20
−my

w11
)

mωz =(mx
w01
−my

w10
)

, (4.54)

and ν = [A, B, C]T = −n/d.

One can then exploit (4.51–4.54) for implementing a visual control or estimation
algorithm as in the classical case, but with the additional possibility of acting on
vector θ (a free parameter) for optimizing any criterion of interest, e.g., the norm
of the observability matrix ΩΩT during an estimation task.

Clearly, there exist many possibilities for designing the weighting function w(·),
i.e., the class of moments spanned by vector θ. A convenient choice, in our opin-
ion, is to take w(·) as some polynomial basis in x and y with θ being the vector
of coefficients. Indeed, in this way the weighted moments (4.51), the expressions
in (4.52) and, eventually, all the terms in (4.54) will reduce to linear combinations
of the unweighted moments mij in (4.44). The overall computational complexity
will then result equivalent to the classical case [TC05].

As for which polynomial basis to exploit, many choices are possible depending
on the constraints/requirements of the particular application. Within the scope of
this work, two possibilities are considered:

Polynomial basis of fixed degree First, one can take w(·) as a polynomial in
x and y of a given degree δ ∈ N+, that is,

w(x, y, θ) =

δ∑
j=1

j∑
k=0

θTj+kx
(j−k)yk (4.55)

with Tj =
(
j+1

2

)
and θ = (θ1, . . . . . . θTδ+δ) ∈ RTδ+δ. Indeed, this allows (4.51) to

span all the moment linear combinations of order up to δ with coefficients in vector
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θ. As illustration, by choosing δ = 2 in (4.55), one obtains the following quadratic
polynomial

w(x, y, θ) = θ1x+ θ2y + θ3x
2 + θ4xy + θ5y

2

that, when plugged in (4.51), yields

mw(θ) = θ1m10 + θ2m01 + θ3m20 + θ4m11 + θ5m02. (4.56)

The class (4.56) can then specialize into, e.g., the barycenter coordinate xg for
θ = (1/N, 0, 0, 0, 0), the centered moment µ02 for θ = (0, −yg, 0, 0, 1), and so
on. Clearly, the larger the value of the degree δ, the richer the basis representation
power in encoding the scene geometry, but at the (well-known) cost of an increasing
noise level with the moment order.

Constrained polynomial basis A second possibility is to design a constrained
polynomial basis for coping with the possible loss/gain of point features during the
camera motion because of the limited camera FOV. Indeed, by imposing that w(·)
vanishes (with vanishing derivative) at the image borders, any point feature close
to the limits will smoothly enter or leave the image plane and, thus, prevent any
discontinuity in the moment dynamics (4.53).

Let then xmin < xmax and ymin < ymax represent the limits of a rectangular
image plane, and consider a weighting function w(·) partitioned as

w(x, y, θ) = wx(x,θx)wy(y,θy), (4.57)

where wx(x,θx) and wx(x,θy) are polynomial bases and θ = (θx, θy) ∈ Rhx+hy ,
hx + hy = h, is the vector of coefficients. Assuming hx ≥ 4 and imposing


wx(xmin,θ

x) = wx(xmax,θ
x) = 0

∂wx(x,θx)

∂x

∣∣∣∣
xmin

=
∂wx(x,θx)

∂x

∣∣∣∣
xmax

= 0
, (4.58)

one can solve for a set of 4 parameters in vector θx for shaping wx(x,θx) as desired.
For instance, by taking

wx(x, θx) = θx1x
5 + θx2x

4 + θx3x
3 + θx4x

2 + θx5x+ θx6 (4.59)

and by (arbitrarily) choosing the pair (θx1 , θ
x
2 ) as free parameters in vector θx,
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Figure 4.3 – Three examples of the constrained polynomial basis w(x, y, θ)
in (4.57–4.60). Note how w(x, y, θ) smoothly vanishes at the image borders of size
[−1, 1]× [−1, 1]

system (4.58) yields



θx3 = (−3x2
max − 3x2

min − 4xmaxxmin)θx1 + (−2xmin − 2xmax)θx2

θx4 = (2x3
max + 8x2

maxxmin + 8xmaxx
2
min + 2x3

min)θx1

+ (x2
max + 4xmaxxmin + x2

min)θx2

θx5 = (−7x2
maxx

2
min − 4x3

minxmax − 4x3
maxxmin)θx1

+ (−2xmaxx
2
min − 2x2

maxxmin)θx2

θx6 = (2x3
maxx

2
min + 2x2

maxx
3
min)θx1 + x2

maxx
2
minθ

x
2 .

(4.60)

Imposing analogous conditions to function wy(y,θy) at ymin and ymax (with again
hy ≥ 4) will then constrain a total of 8 parameters in vector θ, with the remaining
h−8 coefficients still free to be exploited for optimization purposes. For the sake of
illustration, Figure 4.3 shows three examples of weighting functions w(·) smoothly
vanishing at the borders of an image plane of size [−1, 1]× [−1, 1] and obtained by
picking at random three values for the free parameters in vector θ.

We conclude by noting that, compared to the previous case (4.55), this latter
possibility necessitates of a polynomial basis (4.57) with a degree of at least 7.
Indeed, as explained, the vanishing conditions at the image border will constrain
4 + 4 coefficients in θx and θy, thus forcing both wx(x,θx) and wy(y,θy) to have
a degree of (at least) 3 for ensuring hx ≥ 4 and hy ≥ 4 as required (see (4.59)).
However, for any optimization of the coefficient vector θ to be possible, either
hx > 4 or hy > 4 must hold for allowing presence of at least one free coefficient
to be optimized besides those already constrained by the vanishing conditions. On
the other hand, if either hx > 4 or hy > 4, the final polynomial basis (4.57) will
necessarily result of at least degree 7. Therefore, the use of higher-order moments
(of at least order 7) is the ‘price to pay’ for smoothly taking into account the
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loss/gain of point features during the camera motion2. In contrast, the degree of
the polynomial basis in (4.55) can be chosen at will and thus adjusted, if necessary,
for limiting the noise level in the measured moments.

Optimization of the weighted parametric image moments Consider now
a set of m ≥ 3 weighted moments

s = (mw(θ1), . . . , mw(θm)) ∈ Rm

with θ = (θ1, . . . , θm) ∈ Rh being the stack of all parameters. Plugging the
weighted moment dynamics (4.53–4.54) in the definition (4.48), one has

Ω(s, v, θ) =

mA(s, v, θ1) · · · mA(s, v, θm)

mB(s, v, θ1) · · · mB(s, v, θm)

mC(s, v, θ1) · · · mC(s, v, θm)

 ∈ R3×m. (4.61)

Therefore, when employing the weighted parametric moments (4.51) instead of the
classical moments (4.44), one gains the additional possibility of also acting on vector
θ (i.e., on the ‘moment shape’) for affecting matrix ΩΩT .

By applying (4.26) to matrix ΩΩT and expanding the various terms, one obtains

Φ̇D =
∑
i

tr

(
adj
(
ΩΩT

) ∂(ΩΩT )

∂vi

)
v̇i +

∑
i

tr

(
adj
(
ΩΩT

) ∂(ΩΩT )

∂θi

)
θ̇i

+
∑
i

tr

(
adj
(
ΩΩT

) ∂(ΩΩT )

∂si

)
ṡi = Jvv̇ + Jθθ̇ + Jsṡ

(4.62)

where the Jacobian matrices

Jv =

[
. . . tr

(
adj
(
ΩΩT

) ∂(ΩΩT )

∂vi

)
. . .

]
∈ R1×3

Jθ =

[
. . . tr

(
adj
(
ΩΩT

) ∂(ΩΩT )

∂θi

)
. . .

]
∈ R1×h

Js =

[
. . . tr

(
adj
(
ΩΩT

) ∂(ΩΩT )

∂si

)
. . .

]
∈ R1×m

(4.63)

are function of (s, v, θ) (all available quantities). We stress that all the terms
in (4.63) can be computed in closed-form.

The relation (4.62) can then be exploited for affecting ΦD(t) over time by acting
on v̇ (the camera linear acceleration) and/or θ̇ (the parameter vector). Among the
many possibilities, we considered here the following update rules

v̇ = kv

(
I3 −

vvT

vTv

)
JTv

θ̇ = kθ

(
I3 −

θθT

θTθ

)
JTθ

, kv > 0, kθ > 0 (4.64)

2Of course, the use of different functional bases, also non-polynomial, could be possible.
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which are meant to maximize ΦD(t) by following its gradient w.r.t. (v, θ) projected
on the null-spaces of the constant-norm constraints ‖v(t)‖ = const and ‖θ(t)‖ =

const. As explained in Sect. 4.4, the constraint ‖v(t)‖ = const is meant to prevent
a better conditioning of matrix ΩΩT only due to a faster camera motion while
observing the scene. The second constraint ‖θ(t)‖ = const is motivated by similar
arguments: an increasing ‖θ(t)‖ would (artificially) magnify ΦD(t) at the cost of
an increased noise level (all the terms in (4.54) would just result amplified).

The optimization action (4.64) will then maximize the observability measure
det(ΩΩT ) for the SfM task at hand by:(i ) adjusting the direction of the camera lin-
ear velocity v (as with the other case studies presented so far) and, at the same time,
(ii ) by adapting the shape of the m weighted moments s = (mw(θ1), . . . , mw(θm))

as only a function of the perceived scene and camera motion. We also remark
that (4.64) (or any other equivalent strategy) assumes the possibility of acting at
will on the direction of the linear camera velocity v. There could be cases where this
is not (fully) possible, and v (or components of it) are given (for example during
a combined estimation/servoing loop as ii will be discussed in Chapt. 6). In all
these cases, it is obviously still possible to just keep on optimizing θ(t) during the
(given/known) camera motion in order to adapt, as best as possible, the moment
shape. Finally, since Ω(t) (and thus ΦD(t)) does not depend on the camera angular
velocity, one can freely choose ω to fulfill any additional goal of interest.

4.5.2.4 Using dense image moments

We conclude the analysis of the plane estimation case study by discussing a possible
extension of these techniques to the case of dense image moments. In some context,
in fact, the (planar) scene observed by the camera might not be sufficiently textured
to allow for the extraction and tracking of a sufficient number of point features in
a reliable way. For this kind of situations it might be better to segment and track
some objects or “patches” in the images and use a “dense” definition of the (i, j)-th
order image moments in which the summation in (4.44) (and similar definitions) is
substituted by a continuous integral over the image of object O

mij =

∫∫
O
xiyj dxdy. (4.65)

Still from [Cha04], the dynamics of mij can be shown to take the expression

ṁij = Lmij (mkl, χ)u = fmij (mkl, ω) +$T
mij (mkl, v)ν (4.66)

where mkl stands for a generic (k, l)-th moment of order up to i+ j + 1 and, again,
ν = −n/d. Note that (4.66) is linear in the unmeasurable χ, while all the other
quantities are available to measurement. Let then s = [mi1j1 . . .mimjm ]T ∈ Rm

96



4. A framework for active Structure from Motion

be a collection of m image moments, ς = [mk1l1 . . .mkrlr ]
T ∈ Rr be the set of

moments that appear in the dynamics of s but are not part of s, and χ = ν. Using
again (4.47), formulation (3.10) can be recovered with

fs (s, ς,ω) =
[
fmi1j1 (s, ς,ω) . . . fmimjm (s, ς,ω)

]T
Ω (s, ς,v) =

[
$mi1j1

(s, ς,v) . . . $mimjm (s, ς,v)
]

fχ (χ,u) = χχTv − [ω]×χ

d(χ̃, t) = (χ̂χ̂T − χχT )v − [ω]× e3

.

where Ω ∈ Rp×m, p = 3. As before, it is d(∅3, t) = ∅3.

As with the discrete moments case, choice of which moments to include in s
is in general not obvious as many possibilities exist (in number and kind). The
adaptive techniques, described in the previous sections, for selecting online the
set of moments to use and for dealing with the limitations of the camera FOV,
can easily be extended to the case of dense image moments. However, for the
results in Sect. 5.2.5, we limited our analysis to the use of the lowest-order moments
because of their robustness w.r.t. image noise: s = [a, xg, yg]

T , i.e., the area a

and barycenter (xg, yg) of the observed object. This choice, originally suggested
by [RDO08], implies m = p = 3, thus yielding a ‘square’ problem (square matrix
Ω). Note that, in this case, vector ς = [n20, n11, n02]T ∈ R3 (the normalized
centered moments of order 2) thus yielding r = 3, see [Cha04]. For the case under
consideration, matrix Ω then takes the expression

Ω =

3axgvz − avz
(
x2
g + 4n20

)
vz − xgvz (xgyg + 4n11) vz − xgvy

3aygvz − avy (xgyg + 4n11) vz − ygvz
(
y2
g + 4n02

)
vz − ygvy

2avz xgvz − vz ygvz − vy

 (4.67)

We can note that, as in all other cases, Ω = Ω(s, ς, v) thus allowing to exploit the
camera angular velocity ω for fulfilling additional tasks of interest without affecting
observability. For example, analogously to the point feature case, one could try to
keep the barycenter at a constant position (xg, yg) ' const in order to mitigate
the effects of ṡ in (4.22). Furthermore, it is interesting to note that matrix Ω

(and, therefore, matrix ΩΩT as well) loses rank whenever vz = 0: in order to
meet condition (3.13), that is, to keep σ2

1(t) > 0, the camera then necessarily needs
to translate with a non-zero component along the optical axis regardless of the
orientation of the plane3. No special insights can be gained, instead, from the
inspection of the Jacobian matrix Jv.

3A requirement not present in the point-feature case where any non-zero linear velocity not
aligned with the projection ray could guarantee fulfillment of (3.13).
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Figure 4.4 – Geometry of a spherical object. Spherical target OS and planar limb
surface L.

We conclude this section by mentioning the interesting possibility of employing
the photometric image moments, as defined in [BCM13], to estimate the plane
structure. The general expression of the (i, j)-th order photometric image moment
is in fact

mij =

∫∫
I
Y (x, y)xiyj dxdy. (4.68)

where Y (x, y) is the intensity level of the image in position (x, y) and the integral
is extended to the entire image I. With this new definition, the image processing
steps (segmentation, tracking and so on) are simplified even further since it is not
necessary to identify neither a specific set of points pk nor a particular object O as
it is the case, instead for (4.44–4.65) and other similar definitions introduced in this
section. Along the same line, Appendix B will present some preliminary original
results on the direct use of the photometric information for SfM estimation.

4.5.3 Active Structure from Motion for a sphere

We now detail the application of the proposed estimation machinery to the case of
a spherical target. Consider a sphere OS of radius R and let p0 = (X0, Y0, Z0) be
the coordinates of its center in the camera frame. Let also

L : nTp+ d = 0

represent the planar limb surface associated to the sphere in the camera frame,
where p ∈ R3 is any 3-D point on the plane, n ∈ S2 is the plane unit normal vector
and d ∈ R the plane distance to the camera center [Cha04]. Figure 4.4 shows the
quantities of interest.

The depth Z of any point p lying on L can be expressed in terms of its normalized
image coordinates π = (x, y, 1) as

1

Z
=
X0

K
x+

Y0

K
y +

Z0

K
= νTπ, (4.69)
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where K = pT0 p0 − R2 and ν = p0/K = −n/d ∈ R3 represent unmeasurable
quantities (analogously to Z for the point feature case), see [ECR92] for all the
details. As discussed in Sect. 4.5.2, the interaction matrix of a generic (i, j)-th
order moment mij evaluated on the image of OS depends linearly on ν, see again
[Cha04, RDO08]. Therefore, a first possibility to retrieve the sphere 3-D parameters
(p0, R) would be to implement the estimation scheme (3.11) with s being a suitable
collection of image moments (e.g., area and barycenter) and χ = ν. It is in fact
possible to show that (see Appendix A.3)

χ̇ = − v
K
− [ω]×χ+ 2χχTv

and that K can be expressed in terms of image moments and of vector χ itself,
so that, having estimated χ, one can consequently retrieve p0 = χK and R =√
pT0 p0 −K.

Although conceptually valid, this solution requires the concurrent estimation of
three time-varying quantities (vector χ(t)). On the other hand, inspired by [FC09],
we now describe a novel representation of the sphere projection on the image plane
that allows to reformulate the structure estimation task in terms of a single unknown
constant parameter, i.e., the sphere radius R.

To this end, define vector s = (sx, sy, sz) ∈ R3 as

sx =
xg
sza2

1

sy =
yg
sza2

1

sz =

√
1 + a2

1

a2
1

, (4.70)

where (xg, yg, n20, n11, n02) represent the barycenter and normalized centered mo-
ments of order 2 measured from the elliptical projection of the sphere OS on the
image plane, and a1 is the minor axis of the observed ellipse with [Cha04]

a2
1 = 2

(
n20 + n02 −

√
(n20 − n02)2 + 4n11

)
. (4.71)

We thus note that vector s can be directly evaluated in terms of measured image
quantities. From [Cha04, FC09] one also has

xg =
X0Z0

Z2
0 −R2

, yg =
Y0Z0

Z2
0 −R2

, a2
1 =

R2

Z2
0 −R2

(4.72)

which, when plugged in (4.70–4.71), result in the equivalent expression s = p0/R.
Since vector s can be computed from image measurements as in (4.70), estimation of
the (unknown) sphere radius R allows to recover the 3-D sphere center as p0 = sR.
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Exploiting now the results of [FC09], it is possible to show that

ṡ =

[
− 1

R
I3 [s]×

]
v. (4.73)

Since (4.73) is linear in 1/R, we can define χ = 1/R, with then m = 3 and p = 1,
and obtain for (3.10–3.12) 

fs (s, ω) = [s]×ω

Ω (s, v) = −vT

fχ (s, χ, u) = 0

d(x̃, t) = 0

. (4.74)

We note that in this case it is always possible to obtain global convergence
for the estimation error since χ̇ = 0 and therefore d(x̃, t) = 0 by construction
(see Remark 3.1). Furthermore, matrix ΩΩT reduces again to its single eigenvalue
σ2

1 = ‖v‖2 and, if σ2
1(t) ≡ const > 0, the ‘ideal’ estimation error dynamics (4.15)

can be exactly obtained. One also has Ω = Ω(v) and Jv,1 = 2vT .

We finally note the following facts: first of all, contrarily to the previous cases,
here ṡ has no effect on the regulation of σ2

1 which is only function of the camera
linear velocity v. As usual, it is of course still possible to freely exploit the cam-
era angular velocity ω for, e.g., keeping the sphere at the center of the image by
regulating (sx, sy) to zero. Second, we note the strong similarities with the previ-
ous optimal results obtained for a point feature under a spherical projection model
(σ2
max in (4.37)): in both cases the maximum estimation convergence rate for a

given ‖v‖ does not depend on the position of the observed object on the image
plane. Differently from the case of the point, however, one now has σ2

1 = ‖v‖2

regardless of the direction of v: due to the spherical symmetry of the observed
object any direction of motion is equally informative. Moreover, since the sphere
has a finite non-zero dimension, moving in its direction causes a variation of the
measurement s (the sphere will appear bigger or smaller in the image) that makes
this motion informative for the estimation task, differently from the point feature
case.

4.5.4 Active Structure from Motion for a cylinder

We now finally consider the case of SfM for a 3-D cylindrical object. A cylinder
OC can be described by its radius R > 0 and by its main axis a ∈ S2 passing
through a 3-D point p0 = (X0, Y0, Z0), with ‖a‖ = 1 and, w.l.o.g., aTp0 = 0 (p0

can be chosen as the closest point on a to the origin of the camera frame [CBBJ96]).
Moreover, analogously to the sphere, a cylinder is also associated with a planar limb
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Figure 4.5 – Geometry of a cylindrical object. Camera C and cylindrical target OC
with the planar limb surface L and the other planes of interest P1 and P2

surface L such that (4.69) holds for any point on L with projection π = (x, y, 1).
Therefore, as for the case of a sphere, a first possibility is to estimate the three
unknown parameters of the limb plane L (with χ = ν) by exploiting (at least)
three image measurements, see [CBBJ96] and Appendix A.4 for some details in
this sense. However, following the previous developments, we now propose a novel
representation of the cylinder projection on the image plane which, again, allows to
obtain the cylinder parameters (p0, a, R) in terms of image measurements and of
the unknown but constant cylinder radius R which, therefore, represents the only
quantity to be estimated.

Let (ρ1, θ1) and (ρ2, θ2) be the (measured) distance/angle parameters of the
two straight lines resulting from the projection of the cylinder on the image plane,
and

n1 = (cos θ1, sin θ1, −ρ1), n2 = (cos θ2, sin θ2, −ρ2) (4.75)

be the normal vectors to the two planes passing through the origin of the camera
frame and the two above-mentioned projected lines4. Figure 4.5 gives a graphical
representation of the quantities of interest. Note that vectors n1 and n2 can be
directly evaluated from image measurements (the line parameters). We then define
vector s ∈ R3 as

s =
∆

‖∆‖2
(4.76)

with

∆ =
1

2

(
n1

‖n1‖
+

n2

‖n2‖

)
. (4.77)

Vector s is, thus, also directly obtainable in terms of image quantities.
4The two planes are therefore tangent to the surface of the cylinder.
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We now note that, from [Cha94], an equivalent expression for vectors n1, n2 in
terms of the cylinder 3-D geometry can be obtained as

n1 =
1

N1


R
X0√
K
− a

R
Y0√
K
− b

R
Z0√
K
− c

 , n2 =
1

N2


R X0√

K
+ a

R
Y0√
K

+ b

R
Z0√
K

+ c

 (4.78)

with 

K =
√
pT0 p0 −R2

(a, b, c) = [p0]× a

N1 =

√(
R
X0√
K
− a
)2

+

(
R
Y0√
K
− b
)2

N2 =

√(
R
X0√
K

+ a

)2

+

(
R
Y0√
K
− b
)2

, (4.79)

thus yielding 

n1

‖n1‖
=

1

pT0 p0

RX0 − a
√
K

RY0 − b
√
K

RZ0 − c
√
K


n2

‖n2‖
=

1

pT0 p0

RX0 + a
√
K

RY0 + b
√
K

RZ0 + c
√
K


. (4.80)

Plugging (4.80) in (4.77) results in the equivalent expression

∆ =
R2

pT0 p0
s

which, using (4.76), finally yields the following relationship between image quantities
and cylinder 3-D structure

s =
∆

‖∆‖2
=
p0

R
. (4.81)

As for the cylinder axis a, exploiting (4.78) one has

[n2]×n1 =
2R

N1N2

√
K

Z0b− Y0c

X0c− Z0a

Y0a−X0b

 =
2R

N1N2

√
K

ab
c


×

p0

=
2R

N1N2

√
K

[
[p0]×n

]
× p0 =

2RpT0 p0

N1N2

√
K
a

(4.82)
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where in the last step the property aTp0 = 0 was used. Since ‖a‖ = 1, from (4.82)
it is

a =
[n2]×n1∥∥[n2]×n1

∥∥ . (4.83)

The cylinder axis a can then be directly obtained in terms of only measured quan-
tities.

We now note that, as in the sphere case, the only unknown left is the cylinder
radius R: once known, the cylinder 3-D structure can be fully recovered from image
measurements as p0 = Rs from (4.81) and a from (4.83). An estimation scheme for
R can be obtained exploiting the following differential relationship whose derivation
is given in Appendix A.5

ṡ =

[
− 1

R

(
I3 − aaT

)
[s]×

]
u. (4.84)

Note the similarity of (4.84) with (4.73) for the sphere case.

Being (4.84) linear in 1/R, one can then apply observer (3.11) by choosing s = s,
ς = a, χ = 1/R with m = 3, r = 3 and p = 1, and obtaining

fs (s,ω) = [s]×Ω

Ω (s, ς,v) = −vT
(
I3 − ςςT

)
fχ (s, χ,u) = 0

d(x̃, t) = 0

. (4.85)

Note how, again, being χ̇ = 0 it is d(x̃, t) = 0 (global convergence for the error
system (3.12) as in the sphere case).

Matrix ΩΩT reduces to its single eigenvalue

σ2
1 = ΩΩT = ‖v‖2 − (ςTv)2. (4.86)

It is worth comparing (4.86) with the result obtained for the sphere (σ2
1 = ‖v‖2).

In the cylinder case, the convergence rate of the estimation error is affected by both
the norm and the direction of the linear velocity v. In particular, for a given ‖v‖ =

const, the maximum value for σ2
1 is obtained when v has a null component along

the cylinder axis a (aTv = 0) with, in this case, σ2
1 = σ2

max = ‖v‖2. Intuitively,
any camera motion along the cylinder axis does not provide any useful information
to the estimation task. Furthermore, as in all previous cases with p = 1, keeping a
σ2

1(t) = const allows to exactly enforce the ideal estimation error dynamics (4.15),
see Remark 4.1.

Finally, from (4.86) one has

˙(σ2
1) = Jv,1v̇ + Ja,1ȧ = Jv,1v̇ + Ja,1[a]×Ω (4.87)
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with Jv,1 = 2vT
(
I3 − aaT

)
and Ja,1 = 2vTavT . Although (4.87) also depends on

the angular velocity Ω, it is possible to fully compensate for the effects of Ja,1[a]×Ω

(a known quantity) when inverting (4.87) w.r.t. v̇ as discussed in Sect. 5.4. There-
fore, one can act on v̇ to regulate the value of σ2

1(t) and, at the same time and in a
decoupled way, exploit the camera angular velocity Ω for implementing additional
tasks of interest such as keeping the cylinder axis a at the center of the image plane
by enforcing (sx, sy) = ∅2.

4.6 Conclusions

In this chapter we addressed the problem of active SfM for recovering the 3-D
structure of some basic but common geometric primitives: a point feature, a pla-
nar object, and a spherical and a cylindrical targets. We proposed a novel active
estimation strategy tailored to the four cases under consideration. Using a non-
linear observer we showed how one can impose to the estimation error a transient
evolution that is (almost) equivalent to that of a second order linear system. More
importantly one can act online on the camera linear velocity to maximize the exci-
tation of the system and thus reduce the estimation error convergence time given
some constraints on the maximum allowed camera velocity.

For the depth estimation of a point feature, two possibilities differing in the
adopted projection model (planar or spherical) were proposed and critically com-
pared highlighting the complementarity of the two models in terms of attainable
convergence rates and basin of attraction for the estimation error.

For the planar case, we first applied a simple standard strategy to extract a best
fitting plane, in a least-squares sense, from a (actively) estimated point cloud. Then,
we showed how to conveniently exploit image moments (in both their discrete and
dense definitions) to estimate directly the parameters of the plane. For this second
solution, we also explained how the standard definition of image moments can be
extended to(i ) cope with the possible loss/addition of point features due to a limited
camera FOV and, (ii ) automate the selection of which image moments order to use
for the estimation to further improve the system observability.

Finally, in the spherical and cylindrical cases, we showed how an adequate choice
of the measured visual features allows to reduce the SfM task to the estimation of
a single unknown constant quantity (the sphere/cylinder radius R) in place of the
classical (and time-varying) three parameters (scaled normal vector of the planar
limb surface). Availability of this quantity allows to then retrieve the full 3-D
structure of the observed targets.

In Chapt. 5 some simulative and experimental results will be reported to fully
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confirm the validity of the theoretical analysis presented here and, in particular,
the ability of the proposed active estimation strategy to improve, in all cases, the
transient response of the estimation error.
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Chapter 5

Experiments and simulations of
active structure from motion

In this chapter we show some experimental results meant to validate the the-
oretical developments of Chapt. 4. For all of the case studies presented there
(point features, planar objects and spherical and cylindrical targets) we show

here the advantages of adopting an active strategy for selecting on line the best
camera linear velocity direction (the velocity norm is kept constant) for the sake of
maximizing the convergence rate of the SfM estimator.

The experiments were run by employing a Point Grey Dragonfly2 greyscale
camera (Fig. 5.1(a)). This has a resolution of 640 × 480 px and a framerate of
30 fps. The open-source ViSP library [MSC05] was used to accurately calibrate the
intrinsic parameters of the camera before running the experiments. Also the image
processing and feature tracking were implemented using ViSP as it will be detailed

(a) (b)

Figure 5.1 – Experimental setup. The Point Grey Dragonfly2 greyscale camera Fig. (a)
and the 6-DOFs Gantry robot Fig. (b) used for all experiments.
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in the next sections.

The camera was mounted on the end-effector of a 6-DOFs Gantry robot, a
picture of which is shown in Fig. 5.1(b). This robot has 3 linear orthogonal axes
and a spherical wrist. This configuration is particularly convenient for our goals
as it minimizes the number of kinematic singularities. The employment of the
presented techniques on other robotic platforms such as, e.g., anthropomorphic
serial manipulators, is certainly possible but might require to explicitly deal with
the presence of robot kinematic singularities, a topic that is well assessed in the
literature, but out of the scope of this thesis. The robot geometric Jacobian can be
expressed as:

JE =



s4s5c56 + c4s56 −c4s5c56 + s4s56 c5c56 l56s5c56 0 0

−s4s5s56 + c4c56 c4s5s56 + s4c56 −c5s56 −l56s5s56 0 0

−s4c5 c4c5 s5 −l56c5 0 0

0 0 0 c5c56 s56 0

0 0 0 −c5s56 c56 0

0 0 0 s5 −γ56 1


with ci = cos (qi), si = sin (qi), c56 = cos (q6 − γ56q5), s56 = sin (q6 − γ56q5), l56 =

0.06924 m, and γ56 = 0.009091.

Since the robot only accepts velocity commands, the acceleration signal gener-
ated by the proposed control strategies was numerically integrated before being sent
to the robot as a joint velocity command. The SfM observers and the controllers
(and their internal states) were updated at 1 kHz, while the commands were sent to
the robot at 100 Hz. The estimation and control algorithms were implemented in
Matlab/Simulink where as the communication with the robot is ensured by ViSP
in a compiled C++ executable. The communication between the two software com-
ponents is ensured by the Robot Operating System (ROS) with the framework
described in [10].

Videos representing some of the experiments and simulations shown here can
be downloaded from the pages associated with the publications [1, 2, 3, 4, 5, 6] at
http://ieeexplore.ieee.org. The videos are also available at the following links:

• for the point feature and for spherical and cylindrical targets: https://www.
youtube.com/watch?v=i-9xxNNV82Q;

• for the planar case using point features and discrete image moments: https:
//www.youtube.com/watch?v=QNXrkZj4NU0;

• for the planar case using adaptive discrete image moments: https://www.
youtube.com/watch?v=5PtrbXuhtd0.
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5. Experiments and simulations of active structure from motion

5.1 Active structure estimation for a point

5.1.1 Comparison of planar and spherical projection models

We start by comparing via simulation results the effects of adopting a planar and
spherical projection model for the depth estimation of a point feature as extensively
discussed in Sect. 4.5.1.1 and Sect. 4.5.1.2. We considered three cases differing for
the location on the image plane at which the point feature was (purposely) kept
exploiting the camera angular velocity ω:

case I: the point feature was kept at the center of the image plane (red line in
the following plots);

case II: the point feature was kept at one of the corners of an image plane with
the same size of the camera used in the experiments (green line in the
following plots);

case III: the point feature was kept at one of the corners of an image plane with
a size five times larger than case II (blue line in the following plots).

In all cases, a constant camera velocity v(t) ≡ v(t0) = const was kept during
motion, with the initial condition v(t0) chosen so as to comply with the optimality
conditions discussed in Sects. 4.5.1.1 and 4.5.1.2 for letting σ2

1 = σ2
max (e.g., with

v(t0) being a solution of (4.33) in the planar projection case).

Figure 5.2(a) shows the behavior of χ̃(t) for the three cases when using a planar
projection model. We can then note how the convergence rate of the estimation
error increases from case I (slowest convergence) to case III (fastest convergence)
as predicted by the theory (for the same ‖v‖ a larger ‖π‖ results in a larger σ2

max).
Similarly, Fig. 5.2(b) reports the behavior of σ2

1(t) for the three cases: as expected,
σ2

1(t) results largest for case III. Note also how σ2
1(t) for case II (green line) is only

slightly larger than case I (red line). This is due to relatively small size of the image
plane of case II whose dimensions were set as those of the real camera used for the
experiments. Finally, Fig. 5.2(c) shows the behavior of the perturbation term d(x̃, t)

in the three cases: here, one can verify how d = 0 for case I, with then an increasing
|d| for cases II and III. Indeed, as discussed in Sect. 4.5.1.1, the ‘amplification’ effect
on σ2

max obtained by increasing ‖π‖ comes at the price of an increased magnitude
of the perturbation d. This is also evident in Fig. 5.2(a) where the ideal response
of (4.15) is plotted with dashed lines for the three considered cases. We can thus note
how χ̃(t) in case I presents a perfect match with its corresponding ideal response,
with then an increasing (albeit very limited) mismatch in the other two cases due
to the increased effect of the perturbation d.
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As for the spherical projection model, Fig. 5.2(d) reports the behavior of the
estimation error χ̃(t) for the three cases under consideration, together with the
ideal response (4.15). Here, the symbol χ̃s(t) is used to denote the estimation error
in the spherical projection case in order to distinguish it from the error obtained
with the planar projection model. All the plots result perfectly superimposed as
expected from the analysis of Sect. 4.5.1.2. Indeed, in the spherical projection case,
σ2
max = ‖v‖2 regardless of the location of η and d(t) ≡ 0. However, absence of

perturbation terms is obtained at the expense of the convergence rate of χ̃s(t),
which indeed results slower or equal to that of χ̃(t) in the planar projection case.
This is shown in Fig. 5.2(e) where the behavior of χ̃(t) − χ̃s(t) is reported for the
three cases. We can then note how χ̃(t) − χ̃s(t) = 0 only in case I, as the planar
and spherical models coincide when the feature point is at the center of the image
plane.

These results then fully confirm the validity of the theoretical analysis reported
in Sects. 4.5.1.1 and 4.5.1.2. However, we also note the marginal effects of the
two projection models on the estimation performance when applied to an image
plane of size comparable to that of the real camera used in our experimental setup.
Therefore, in the following experimental results we will only consider the case of
planar projection model.
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Figure 5.2 – Simulation results comparing the planar and spherical projection
models for the depth estimation of a point feature. The following color coding is
adopted for the three considered cases: red–case I, green–case II, blue–case III. Fig. (a)
behavior of the estimation error χ̃(t) in the planar projection case (solid lines) with super-
imposed the corresponding ideal response (4.15) (dashed lines). The convergence results
slowest in case I and fastest in case III with, however, a corresponding increasing mismatch
among χ̃(t) and its ideal response (as expected). Fig. (b) behavior of σ2

1(t) for the three cases
with, again, the largest σ2

1(t) in case III. Fig. (c) behavior of the perturbation term d(x̃, t)

for the three cases. As expected, d(t) ≡ 0 in case I, and it is largest in case III (thus, explain-
ing the increasing mismatch among χ̃(t) and the corresponding ideal response). Fig. (d)
behavior of the estimation error χ̃s(t) for the spherical projection model in the three cases.
The three plots result exactly superimposed as predicted by the theory (no influence of the
location of η on the estimation convergence). Fig. (e) behavior of χ̃(t)− χ̃s(t). As expected,
the two projection models give rise to the same estimation error dynamics only in in case I
(feature point at the center of the image plane).

5.1.2 Depth estimation for a point feature

We here report some experimental results for the depth estimation of a point fea-
ture under a planar projection model (Sect. 4.5.1.1). The following experiments
are meant to demonstrate how the proposed active estimation framework can be
exploited to select online the ‘best’ camera motion. As visual target, we made use
of a circular white dot of 5 mm radius painted on a planar black surface and suf-
ficiently far from the camera in order to safely consider it as a ‘point feature’ (see
Fig. 5.3(a)).

Figure 5.4(a) shows the evolution of the estimation error χ̃(t) = 1/Ẑ(t)−1/Z(t)

for two experiments1 in which ‖v(t)‖ = ‖v0‖ but with its direction being either

case I: optimized to maximize the estimation convergence rate (red line) or
1The ground truth Z0(t) was obtained from a previous offline estimation of the 3-D position

p in the world frame, and by then using the information on the camera position provided by the
robot forward kinematics.
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(a) (b) (c)

Figure 5.3 – Camera snapshots for the point feature Fig. (a), the sphere Fig. (b) and the
cylinder Fig. (c) experiment. The result of the image processing is highlighted in red.
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Figure 5.4 – Experimental results for the depth estimation of a point feature.
Fig. (a): behavior of the estimation error for case I (solid red line) and case II (solid blue
line), and for an ‘ideal’ second order system (4.15) with desired poles at σ2

max (dashed black
line). The two vertical dashed lines indicate the times T1 = 3.54 s and T2 = 5.81 s at which
the estimation error drops below the threshold of 3 cm. Fig. (b): behavior of σ2

1(t) for case I
(red line) and case II (blue line). Fig. (c): camera linear velocity norm ‖v‖ for case I (red
line) and case II (blue line). Fig. (d): Camera trajectories for case I (red line) and case II
(blue line) with arrows indicating the direction of the camera optical axis. Note how the
use of an active strategy for optimizing the direction of the camera linear velocity results
in improved performance of the estimation for the same control effort (i.e. same velocity
norm).
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case II: kept constant so that v(t) = v0 = const (blue line).

This effect was obtained by using the following control law (equivalent to (4.23))

v̇ = −k1
v

‖v‖2
(κ− κd) + k2

(
I3 −

vvT

‖v‖2

)
JTv,1 (5.1)

with k1 > 0, k2 ≥ 0, κ = 1
2v

Tv, κd = 1
2v

T
0 v0, and Jv,1 given by (4.31). In fact,

the first term in (5.1) enforces the constraint ‖v(t)‖ = ‖v0‖ (same control effort in
both cases), while the second term (maximization of σ2

1 within the null-space of the
first constraint) allows to implement either case I (k2 > 0) or case II (k2 = 0). In
both cases, the angular velocity ω was exploited for keeping the point feature at the
center of the image plane (x, y)→ (0, 0). We note that, as discussed in Sect. 4.5.1.1,
when (x, y) = (0, 0) one has σ2

max = v2
x + v2

y from (4.32) and σ2
1 = σ2

max iff vz = 0

(circular motion around the point feature). The experiments were run with the
following parameters: α = 103, c1 = c∗1 forD1 in (4.8), v(t0) = v0 = (0.03, 0,−0.04)

m/s, k1 = 5 and k2 = 104, thus resulting in the maximum value σ2
max = 0.0025 for

the eigenvalue σ2
1.

As clear from Fig. 5.4(d), while in case II the camera gets closer to the point
feature, the use of the active strategy of case I results in a null component of v along
the projection ray of the point feature (i.e., vz = 0) and in an associated circular
trajectory centered on the tracked point as predicted by the theoretical analysis
of Sect. 5.1.1. This then allows to move faster in the ‘useful’ directions (while
keeping the same constant ‖v‖), and, thus, to increase the value of σ2

1 towards
its theoretical maximum σ2

max = 0.0025 (Fig. 5.4(b)), resulting in an overall faster
convergence for the estimation error (Fig. 5.4(a)). Furthermore, Fig. 5.4(a) also
reports the ideal response of (4.15) with desired poles at σ2

max (dashed black line).
We can then note the almost perfect match with case I (solid red line): indeed,
as explained in Remark 4.1, imposing a σ2

1(t) = const allows to exactly obtain the
ideal behavior governed by (4.15). It is finally worth noting the accuracy of the
reconstructed depth: Fig. 5.4(a) reports two vertical dashed lines indicating, for the
two cases under consideration, the times T1 = 3.54 s and T2 = 5.81 s at which the
estimation error χ̃(t) becomes smaller than 3 cm. We then obtained a standard
deviation of approx. 7.5 and 8.4 mm evaluated on a time window of 1 s after the
times T1 and T2, respectively. These results then also confirm the robustness of
the proposed estimation approach despite the unavoidable presence of noise and
discretization in the image acquisition. Note also that, as expected, the estimation
error in the (active) case I reaches ‘convergence’ (i.e., drops below the threshold of
3 cm) significantly faster than case II (T1 < T2).

113



Active Visual Estimation and Control of Robotic Systems

5.1.3 Comparison between the nonlinear observer and the EKF

In this section we propose a basic comparison between the nonlinear observer scheme
introduced in Sect. 3.2.3, and used in the rest of this thesis, and the probabilistic
EKF described in Sect. 3.3.3. Figure 5.5(a) shows the behavior of the estimation
error when employing an EKF for estimating the (inverse) depth of the point feature
using the same experimental data and camera trajectory as in the previous cases I
and II. We notice that, also when using the EKF, the estimation performance still
benefits from the use of an active strategy for choosing the best camera trajectory
in order to improve observability. In fact, the times at which the estimation error
χ̃(t) becomes smaller than 3 cm, are T1 = 2.64 s in case I and T2 = 2.84 s in case II
(vertical dashed lines in Fig. 5.5(a)). Moreover, we obtained a standard deviation
of approx. 3.7 and 6.4 mm evaluated on a time window of 1 s after the times T1

and T2, respectively. These results are not surprising since, from the developments
in Chapt. 3, observability is a property of the system itself and not of the estimation
algorithm and therefore one should expect any estimation scheme (EKF included)
to benefit from an optimization of the camera trajectory. This is further confirmed
by the fact that the control law (5.1) does not depend on any estimated quantity,
but only on the measurements. We also notice that, in both cases I and II, the
EKF filter outperforms the nonlinear observer for the final covariance. This fact,
however, is still expected from the theoretical analysis. Indeed, the use of the
measured s (the (x, y) coordinates of the point feature) in place of the estimated ŝ
in the prediction step of the EKF transforms the nonlinear system dynamics in a
linear time-varying one with an additional disturbing term due to the non perfect
cancellation of the dynamics of χ, see also [GBSO13]. Since the EKF is optimal
for linear time-varying systems, it (correctly) outperforms the nonlinear observer,
especially in case I where, thanks to the active camera velocity optimization, the
depth of the point feature remains constant and the disturbing term disappears.
On the other hand, the EKF has, in general, less predictable stability properties
and convergence rate than the nonlinear filter. For instance, one cannot expect, for
the EKF, to obtain a good match with the dynamics of a second order system as
the one shown in Fig. 5.4(a) for the nonlinear observer. Moreover, the convergence
time of the EKF also depends on the initialization of the state covariance matrix
Σ0. Figure 5.5(b) shows, in fact, with a green line, the results obtained when
the state covariance is initialized with a value 10 times smaller than in the previous
case I. As one can see, with this initialization, the EKF convergences slower than the
nonlinear observer. Other works, such as [GBSR15], have also shown that nonlinear
estimation techniques can, in some cases, perform better than the EKF. Because of
all these considerations, we decided to use the nonlinear observer (3.11) for the rest
of our experiments.
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Figure 5.5 – Experimental results for the depth estimation of a point feature
using an EKF. Fig. (a): behavior of the estimation error for case I (solid red line) and
case II (solid blue line). The two vertical dashed lines indicate the times T1 = 2.64 s and
T2 = 2.84 s at which the estimation error drops below the threshold of 3 cm. Note how the
use of an active strategy for optimizing the direction of the camera linear velocity results,
again, in improved performance of the estimator. Fig. (b): behavior of the estimation error
for the nonlinear observer (solid red line) and the EKF (solid blue line) in case I. The green
line (labeled EKF* in the legend) finally represents the estimation error for the EKF in
case I when the estimator is initialized with a covariance of χ̂(t0) 10 times larger than in
the blue line case.

Figure 5.6 – Experimental set-up for plane estimation with the dotted pattern and
the topographic map used for feature extraction and tracking.

5.2 Active structure estimation for a plane

This section reports some experimental results meant to illustrate and compare
the various plane estimation methods introduced in Sect. 4.5.2. In the first set of
experiments (Sects. 5.2.1 and 5.2.2) a simple dotted pattern was used for feature
extraction and matching. This solution was meant to reduce as much as possible
the variability between each experimental run by ensuring tracking of the very
same set of points across all trials. In the last experiment (Sect. 5.2.3) a more
realistic scene was considered with the Pyramidal Kanade Lucas Tomasi feature
tracker (KLT) implemented in OpenCV used for tracking points on the surface of
a (planar) topographic map (see Fig. 5.6).

The convergence rate of methods B and C was optimized by actively maximizing
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the minimum eigenvalue σ2
m in (4.43) for method B, and the smallest eigenvalue σ2

1

of the 3× 3 matrix ΩΩT from (4.48) for method C. Exploiting (4.22), and recalling
that the Jacobian Jv can be computed in closed form in both cases, the update
rule (5.1) was implemented also in this case with k1 > 0 and k2 ≥ 0. This allows,
again, to optimize the direction of the camera velocity so as to maximize the SfM
estimation convergence while keeping ‖v(t)‖ = const.

As for the angular velocity ω, it was exploited, in the experiments in Sects. 5.2.1
and 5.2.2, to keep the centroid of the tracked point features at the center of the
image and, in the experiments in Sect. 5.2.3, to align the camera optical axis with
the (estimated) plane normal n̂. Indeed, we remark again that matrix Ω(s, v)

in (3.10) does not depend on ω and thus one can freely choose the camera angular
velocity without affecting the estimation convergence.

5.2.1 Plane estimation from 3-D points (method B)

We report here the results in estimating the plane parameters (n, d) with method B:
plane fitting from an estimated point cloud. The experiment started from an initial
guess (n̂(t0), d̂(t0)) with an error of 40 deg w.r.t the true n(t0) and a relative
error of 50% w.r.t. the true d(t0). The initial depths of all the tracked points πk
were initialized so as to force p̂k(t0) to belong to the estimated plane described
by (n̂(t0), d̂(t0)). In order to demonstrate the importance of the active camera
velocity optimization, we first ran a set of four experiments starting from the same
initial conditions but using different initial camera velocities with the same norm
‖v(t0)‖ = 0.0224m/s. In these experiments we used k1 = 10 in (5.1) but we either
substituted k2J

T
v with a random acceleration vector (purple dashed line) or we set

k2 = 0, thus keeping a v(t) = v(t0) = const during motion (green, red and cyan
dashed lines). Finally we started the experiment again from the same initial camera
velocity as in the experiment that performed worst in the previous set (cyan line)
and we adopted the update rule (5.1) with k1 = 10 and k2 = 1.

Finally, for the sake of allowing a fair comparison between the convergence
rates of methods B and C, we first collected all the data during a first execution
of all trajectories, and then ran the two estimation schemes offline on the collected
dataset by properly adjusting the estimation gains αB and αC of both methods2.
Indeed, let σ2

m = 1
T

∫ t0+T
t0

σ2
m(τ)dτ and σ2

1 = 1
T

∫ t0+T
t0

σ2
1(τ)dτ be the average values

of the eigenvalues σ2
m(t) and σ2

1(t) during motion in the active estimation cases,
with T representing the experiment duration (blue lines in Figs. 5.7 and 5.8). After
having computed σ2

m and σ2
1 during the first run, the estimation gains αB and

αC were chosen so as to satisfy αBσ2
m = αCσ

2
1 for imposing the same closed-loop

2This is possible because the control law (5.1) does not depend on any estimated quantity.
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dynamics to both methods B and C3. This resulted in gain αB = 1043.4 (used in
these experiments), and in gain αC = 20000 (used in the experiments of the next
Sect. 5.2.2).

Fig. 5.7(a) shows the behavior of the norm of the estimation error χ̃ between
the real and estimated inverse feature depths, normalized w.r.t. its initial value.
The normalization is meant to allow a comparison of this plot with the analogous
one in Fig. 5.8(b). The angle between vectors n(t) and n̂(t) and the relative error
(d̂(t) − d(t))/d(t) are also shown in Fig. 5.7(b). We can then note how the plane
estimation task is solved in all cases (the estimation errors converge towards zero)
but, clearly, in the active case (blue line) the error convergence is significantly faster
than in the other experiments. This is further evident from Fig. 5.7(c) where the
value of the αBσm(t) is shown for all experiments (same color code): thanks to the
active optimization of the direction of v(t), during the active experiment, αBσm(t)

results approximately 12.5 times larger than in the worst experiment (cyan) which
started from the same initial camera velocity.

Finally, Figs. 5.7(e) and 5.7(f) depict the camera trajectory in all cases with ar-
rows indicating the direction of the camera optical axis. The green patch represents
the location of the plane to be estimated. We encourage the reader to also look at
the attached video for better appreciating the effects of the active strategy on the
camera trajectory.

5.2.2 Plane estimation from discrete image moments (method C)

In this second set of experiments we show the results of using the weighted discrete
image moments for the estimation of the plane parameters. As before the initial
guess for χ̂(t0) has an error of approximately 40◦ w.r.t. n(t0) and a relative error of
around 50% w.r.t. d(t0). Again, we first ran a set of four experiments starting from
the same initial conditions but using different initial camera velocities with the same
norm ‖v(t0)‖ = 0.0206m/s and using (5.1) with k1 = 10 and either substituting
k2J

T
v with a random acceleration vector (purple dashed line) or setting k2 = 0, thus

keeping a v(t) = v(t0) = const during motion (green, red and cyan dashed lines).
Finally, in the active case we started again from the initial camera velocity of the
experiment that performed worst in the previous set (cyan line), and we adopted the
update rule (5.1) with k1 = 10 and k2 = 1. In all cases, as explained in Sect. 5.2.1,
we set αC = 20000.

We show again in Fig. 5.8(a) the behavior of the normalized norm of the esti-
mation error χ̃. The angle between the actual and estimated normal direction n(t)

3As explained in [1], the convergence rate of the SfM scheme (3.11) is actually dictated by the
smallest eigenvalue of ΩΩT times the chosen estimation gain α.
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Figure 5.7 – Experimental results for the estimation of the plane parameters using
3-D points (method B) with an active strategy (blue lines) or a random acceleration (purple
line) or a constant linear velocity (green, red and cyan lines). Fig. (a): normalized norm
of the estimation error χ̃; Fig. (b): relative error between estimated and actual distance d
and angle between the estimated and actual normal n. Fig. (c): smallest eigenvalue σ2

m of
the N ×N matrix ΩΩT multiplied by αB . Fig. (d): camera linear velocity norm. Fig. (e)
and Fig. (f): geometric 3-D trajectory of the camera with arrows indicating the optical axis
and a green patch representing the plane to be estimated.
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and the relative error on d(t) are shown in Fig. 5.8(b). As evident from the plots,
the active strategy results again in a faster convergence of the estimation error, as
also clear from Fig. 5.8(c) where the behavior of αCσ2

1(t) is shown for all cases. The
trajectory of the camera in the various experiments is finally shown in Figs. 5.8(e)
and 5.8(f).

5.2.3 Comparison of the three methods A, B and C

This set of experiments is meant to provide a comparative analysis of the differ-
ences between methods B and C against the classical method A taken as a baseline
condition. The ‘convergence’ of method A for the estimation of the plane normal
direction is, in general, faster w.r.t. the other two methods due to its algebraic
nature (no filtering process is present in this case). On the other hand the use of
an estimation scheme in methods B and C allows for the possibility of tuning the
estimation gain α (a free parameter) against the noise level present in the system
(i.e., trading off convergence speed for noise robustness).

In order to test the three methods in a more challenging scenario, we added to
the scene a small planar picture with a non-negligible inclination w.r.t. the main
plane (see Fig. 5.9) so as to introduce the presence of some ‘outliers’ w.r.t. the
main dominant plane4. The picture was located to be in visibility at the beginning
of the experiment and to leave the camera FOV shortly after. The camera linear
velocity was optimized via (5.1) by maximizing the smallest eigenvalue σ2

1 of the
matrix ΩΩT for the image moment case, and then the same trajectory, depicted in
Figs. 5.10(e) and 5.10(f), was used for the other two methods. This resulted in a
non-optimal, but still observable, trajectory for method B.

As done in the previous experimental sections, for the sake of obtaining a fair
comparison between the convergence rates of methods B and C, we adjusted the
estimation gains of both methods in such a way that αBσ2

m = αCσ
2
1, where σ

2
m and

σ2
1 are the average values of the smallest eigenvalues for the two estimators along

the (this time common) trajectory. This resulted in αB = 200 for method B and
αC = 26179 for method C.

The behavior of the estimation error on the plane parameters is depicted in
Figs. 5.10(a) and 5.10(b) for method A (green lines), method B (blue lines) and
method C (red lines). In Fig. 5.10(c) the products αBσ2

m(t) and αCσ2
1(t) are plotted.

4Of course one could utilize a RANdom SAmple Consensus (RANSAC) based classification
(exploiting the homography constraint) for preliminarily segmenting the two planes so as to only
consider the points belonging to the main dominant plane for the estimation task. However, in
a real situation, the accuracy of any classification method can never be perfect and some outliers
will fail to be detected. Therefore, in this experiment we intentionally decided to not include
any preliminary RANSAC based pruning in order to just assess the “intrinsic” robustness of the
proposed algorithms (which would clearly be improved by any preliminary outlier rejection step).
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Figure 5.8 – Experimental results for the estimation of the plane parameters using
discrete image moments method C with an active strategy (blue lines) or a random
acceleration (purple line) or a constant linear velocity (green, red and cyan lines). Fig. (a):
normalized norm of the estimation error χ̃. Fig. (b): relative error between estimated and
actual distance d and angle between the estimated and actual normal n. Fig. (c): smallest
eigenvalue σ2

1 of the 3× 3 matrix ΩΩT multiplied by αC . Fig. (d): camera linear velocity
norm. Fig. (e) and Fig. (f): geometric 3-D trajectory of the camera with arrows indicating
the optical axis and a green patch representing the plane to be estimated.
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5. Experiments and simulations of active structure from motion

Figure 5.9 – Experimental setup for the estimation of the plane parameters in
presence of outlier measurements. Note the introduction of the inclined picture in the
observed scene on the right.

It can be noticed that in all three cases at the beginning of the experiment (i.e. when
the ‘outlier’ effect of the inclined image over the main planar scene is more present)
the error in the estimation of the normal is significant although not diverging. All
methods estimate a plane with an intermediate normal direction (as one would
expect). Subsequently, the estimation errors for method C and method B start
converging toward zero at t ≈ 8 s (first dashed vertical line), that is, when the
outlier image starts leaving the image plane. However, note how the homography
method still yields a very noisy estimation during this phase. Furthermore, once
all the outliers are lost (t ≈ 20.3 s and second vertical dashed lines in the plots)
all the methods yield a converging estimation error. However we can still notice
two facts:(i ) method C results in the fastest convergence. This is also because the
weight w of the outliers starts approaching 0 as they get close to the image border
(and thus their disturbing effect is more quickly discarded); (ii ) method A has a
faster convergence rate w.r.t. method B once all the outliers are lost, but it also
yields a noisier estimation until the end of the experiment. In particular one can
notice the presence of considerable “jumps” in the estimation of method A due to
the reinitialization performed each time the number of matched features falls below
a given threshold.

In order to demonstrate the effectiveness of the adopted weighting functions
in the computation of the discrete moments, the behavior of m00(t) is shown
in Fig. 5.10(d). This is meant to illustrate how the number of active points changes
over time due to losses at the image border or detection of new features. The pres-
ence of the weighting strategy function guarantees the desired continuity of m00(t)

(and similarly of all other image moments not plotted here).

Finally Fig. 5.11 shows the evolution of the individual switching functions w1(x),
w2(y) and w3(τ), and of their product w = w1w2w3 for three representative point
features. At t ≈ 3 s the red feature starts leaving the image plane (first along the
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Figure 5.10 – Experimental results for plane estimation in presence of outlier
measurements using homography decomposition (method A – green lines), 3-D points
estimation (method B – blue lines) or image moments (method C – red lines). Fig. (a):
relative error between estimated and actual distance d; Fig. (b): angle between the estimated
and actual normal n; Fig. (c): product ασ methods B and C; Fig. (d): evolution of the
image moment m00; Fig. (e) and Fig. (f): geometric 3-D trajectory of the camera with
arrows indicating the optical axis and a green patch representing the plane to be estimated.
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Figure 5.11 – Evolution of the switching functions and of their product for three
representative point features. On the right: detailed views of the corresponding plots
on the left in the time interval immediately following the introduction of the blue feature
in the estimator.

x direction and then along the y direction) and its total weight goes to zero by the
action of both w1(x) and w2(y). After the feature has completely left the plane, the
tracker detects a new feature (the blue one) at t ≈ 12 s. Being far from the image
border, it is smoothly taken into account thanks to the effect of weight w3(t) (note
the zoomed views on the right side of the plots where the smooth rise of w3(t) can
be seen). Finally, the green feature is close to the border of the image at the time
of detection. In this case, even if weight w3(t) is rising towards 1, the total wight
of the feature is kept small by the action of w2(y).

5.2.4 Simulation results for the use of adaptive moments

In this section we report some numerical simulations concerning the use of the
adactive strategy described in Sect. 4.5.2.3 to select online the best discrete image
moments to use for estimating the structure of a plane. All the following simulations
consider a free-flying camera observing a planar scene P consisting ofN = 30 points,
and with plane parameters n = (0, 0,−1) and d = 1.5 m in 0FC (the initial camera
frame at t = t0). The initial estimations of the plane normal and distance are
always taken as n̂(t0) = (−0.87, 0, −0.49) and d̂(t0) = 1 m, thus representing an
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Figure 5.12 – Simulation results obtained by employing the classical discrete mo-
ment set (xg, yg, µ20 + µ02) and optimizing for the camera linear velocity v. In this case
ΦD(t) keeps very close to zero (the scale of Fig. (a) is 10−9) and as a consequence the
estimation error χ̃(t) does not converge (Fig. (b)).

initial incertitude of ≈ 60 deg on the real normal direction and of 0.5 m on the real
distance to the plane. Finally, the point features pk, k = 1 . . . N , are sampled at
60 Hz and then corrupted component-wise by a uniformly distributed random noise
of magnitude 2 pixels before being processed for evaluating the image moments.
The camera motion (and the optimization (4.64)) is instead updated at 100 Hz.

5.2.4.1 Unconstrained polynomial basis

We start with the results obtained by making use of the unconstrained polynomial
basis (4.55) of fixed degree δ introduced in Sect. 4.5.2.3. We tested our method by
considering a set of m = 3 weighted moments s = (mw(θ1), mw(θ2), mw(θ3)) ∈ R3

with degree δ = 2 defined as in (4.56), with then θi ∈ R5, i = 1 . . . 3, and θ =

(θ1, θ2, θ3) ∈ Rh, h = 15. This choice was meant to provide a direct comparison
against the use of:

1. the more ‘classical set’ (xg, yg, µ20 + µ02) that, as explained, is known to be
an optimal choice for controlling the camera translational motion but also to
yield poor results when employed for SfM purposes;

2. the set of five moments (xg, yg, µ20, µ11, µ02) which, as reported in Sect. 5.2.2,
does allow for a converging estimation but at cost of an increased complexity
(need of propagating five image moments).

The goal of the comparison is to prove that estimation of vector χ is, instead, fully
possible when a suitable combination of just three moments of order up to 2 is
selected.
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Figure 5.13 – Simulation results for plane estimation employing three adaptive
moments of degree δ = 2 and optimizing for both vector θ and the camera linear
velocity v (solid lines). Fig. (a): the value of ΦD is now ≈ 107 times larger than in the
previous case of Fig. 5.12(a). This then allows for a quick convergence of the error quantities
χ̃(t) (Fig. (b)), d̃(t) (Fig. (c)) and ñ(t) = arccos(nT (t)n̂(t)) (Fig. (d)). For a comparison,
in all plots dashed lines correspond to the use of the five moments (xg, yg, µ20, µ11, µ02): it
is worth noting how, despite the increased measurement set (five moments vs. only three),
the estimation convergence results still slower than in the weighted moment case.

Figures 5.12(a) and 5.12(b) start showing the results obtained by employing the
set (xg, yg, µ20 + µ02) for estimating vector χ while, at the same time, optimizing
the camera linear velocity v by implementing the first row of (4.64) with kv = 1

(similarly to previous experiments). The linear velocity was initially set to v(t0) =

[0 0.1 0]T m/s with then ‖v(t)‖ = ‖v(t0)‖ = 0.1 m/s during the camera motion.
As expected, and even despite the velocity optimization, the value of ΦD(t) keeps
(numerically) very close to 0 with a maximum of≈ 1.2·10−9 (Fig. 5.12(a)). Thus, the
chosen set (xg, yg, µ20 +µ02) is not able to provide enough information for allowing
convergence of the SfM scheme, and indeed the estimation error χ̃(t) = χ̂(t)−χ(t)

even starts diverging (Fig. 5.12(b)).

On the other hand, exploiting the three weighted moments of degree 2 yields a
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much more satisfactory estimation performance: Fig. 5.13 reports in solid lines the
results obtained by implementing (4.64) with kv = 1 and kθ = 3, and by taking
again v(t0) = [0 0.1 0]T m as in the previous case. The parameter vector θ was
instead chosen at random under the constraint ‖θi(t0)‖ = 1, i = 1 . . . 3.

Looking at Fig. 5.13(a) one can then verify how now ΦD(t) attains an overall
quite larger value compared to Fig. 5.12(a), with a maximum of ≈ 1.8 · 10−2 (thus,
more than 107 times larger than in the previous case). As a result, the estimation
error χ̃(t) is able to quickly converge towards ∅3 in about 4 s (Fig. 5.13(b)). For
a better appreciation of the estimation performance, Figs. 5.13(c) and 5.13(d) also
report the behavior of d̃(t) = d̂(t)− d(t) (the error in estimating the plane distance
d) and ñ = arccos(nT (t)n̂(t)) (the angular error in estimating the direction of the
plane normal n) with d̂ = 1/ ‖χ̂‖ and n̂ = −χ̂/ ‖χ̂‖. Finally, Fig. 5.13 superimposes
in dashed lines the behavior of ΦD(t) and of the estimation errors when instead
relying on the set of m = 5 moments (xg, yg, µ20, µ11, µ02) for estimating χ: in
this case, the estimation error does actually converge (as expected from the results
in Sect. 5.2.2), but nevertheless at a slower rate compared to the weighted moment
case (indeed, the maximum value of ΦD(t) is now ‘only’ ≈ 5.9 · 10−4). We then
believe these results clearly show the advantages of the proposed approach: the
SfM scheme has its best performance when relying on the optimization (4.64) for
automatically selecting (online) the best combination of three moments of order up
to 2.

As an additional evaluation, Fig. 5.14 shows the results obtained when only
optimizing the parameter vector θ while keeping a constant linear velocity v(t) =

v(t0) during the whole motion (thus, by setting kv = 0 in (4.64)). This case is meant
to assess the optimization performance in a situation in which the camera velocity
cannot be arbitrarily adjusted but it must be considered as ‘given’ by an external
source. Thus, the only possibility for improving the conditioning of the observability
matrix ΩΩT is to act on vector θ, i.e., on the moment shape. Nevertheless also
in this situation ΦD(t) still reaches a range of values comparable with the previous
case, with indeed max ΦD(t) ≈ 1.05 · 10−2 against the previous 1.6 · 10−2 (thus, still
≈ 107 times larger than when employing the classical set (xg, yg, µ20 + µ02)). As a
result, vector χ̃(t) keeps converging to ∅3 in about 4 s (Fig. 5.14(b)) even if slightly
more slowly w.r.t. the previous case of Fig. 5.13(b) (as one could expect because
of the smaller value of ΦD(t)). In any case, we believe it is worth noting how the
sole optimization of the moment shape (via vector θ) is still able to yield a very
satisfactory SfM performance even for a non-optimal camera motion.

We finally remark that in all simulations the camera angular velocity ω was
exploited for keeping the centroid of the observed point features πi at the center
of the image plane (we recall that matrix Ω and, thus, ΦD(t) do not depend on ω
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Figure 5.14 – Simulation results for plane estimation employing three adaptive
moments of degree δ = 2 and only optimizing for vector θ. Fig. (a): note how ΦD(t)
still reaches a range of values comparable with the previous case of Fig. 5.13(a) despite the
lack of any optimization of the camera velocity v. The other figures show the behavior of
the error quantities χ̃(t) (Fig. (b)), d̃(t) (Fig. (c)) and ñ(t) (Fig. (d)).

that can then be freely chosen without affecting the estimation performance).

5.2.4.2 Constrained polynomial basis

We now address the case of the constrained polynomial basis (4.57–4.58)) described
in Sect. 4.5.2.3 and meant to smoothly take into account the loss/gain of point
features because of the camera limited FOV. We consider again a set of m = 3

weighted moments m = (mw(θ1), mw(θ2), mw(θ3)) ∈ R3 with both functions wx(·)
and wy(·) taken as the fifth-order polynomials given in (4.59) with, therefore, a
total of hx + hy − 8 = 4 parameters to be optimized. The initial camera velocity
v(t0) was set as in the previous cases, and the optimization action (4.64) was again
implemented with kv = 1 and kθ = 3. The camera angular velocity ω was instead
kept null for facilitating the loss or point features during motion.

Figure 5.15(a) shows the camera trajectory during the estimation task, and
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Figure 5.15 – Simulation results for plane estimation employing three constrained
adaptive moments, a camera with limited FOV, and optimizing for both vector
θ and the linear velocity v (solid lines). Fig. (a): camera trajectory and direction of
the optical axis during the estimation task. Fig. (b): number Np of tracked point features
over time. Fig. (c): behavior of ΦD(t) which reaches a maximum of ≈ 2.9 · 10−4 before
starting to decrease because of the fewer tracked points. Finally the other figures show the
behavior of the error quantities χ̃(t) (Fig. (d)), d̃(t) (Fig. (e)) and ñ(t) (Fig. (f). In dashed
lines, the behavior that all quantities would have had in case no optimization of θ had been
performed.
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Figure 5.16 – Four snapshots of the weighting function w(x, y, θ1) taken during the
camera motion. It is interesting to visualize how function w(·) automatically adjusts its
shape as a function of the observed scene (e.g., it tends to peak around clusters of points).

Fig. 5.15(b) reports the number Np(t) of tracked features over time: after about
5 s some points start being lost, dropping from a total of 30 to a minimum of 6 at
t = 10 s. Nevertheless, thanks to the adopted constrained weighted moments, the
scene structure is still correctly estimated without suffering from discontinuities or
numerical instabilities because of the lost features. Figure 5.15(c) reports again the
behavior of ΦD(t) (blue solid line) that reaches a maximum of ≈ 2.9 · 10−4 before
starting to decrease at t ≈ 5 s because of the fewer tracked points. As a comparison,
Fig. 5.15(c) also reports the superimposed behavior of ΦD(t) in case no optimization
of vector θ had been performed (the almost horizontal red dashed line). In this
case, the maximum attained value for ΦD(t) would have been ≈ 1.2 · 10−6 (100

times smaller), thus proving again the importance of properly optimizing the shape
of the chosen weighting function w(·). Figures 5.15(d) to 5.15(f) then show (in solid
lines) the behavior of the estimation error χ̃(t) and of the corresponding quantities
d̃(t) and ñ(t) that smoothly reach convergence in about 10 s of motion despite the
loss of point features. Again, for a comparison, Figs. 5.15(d) to 5.15(f) also report
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the superimposed behavior (in dashed lines) of the estimation errors in case of no
optimization of vector θ (all quantities have a slower convergence rate as expected).

Finally, Fig. 5.16 depicts four snapshots of the shape of function w(x, y, θ1)

used to compute the first constrained weighted moment. One can then appreciate
how the function shape evolves over time and, in particular, automatically polarizes
its peaks around the location of the tracked point features.

5.2.5 Simulation results of plane estimation from dense image
moments

We conclude the analysis of the planar case by showing some preliminary simulative
results of the active estimation framework applied to the case of dense image mo-
ments discussed in Sect. 4.5.2.4. As explained, in this case the problem is ‘square’:
3 available measurements (area and barycenter coordinates) for 3 unknowns (vec-
tor ν). Let JTv,1 be the Jacobian associated with the first (smallest) eigenvalue σ2

1

of matrix ΩΩT from (4.67), the control law (5.1) can be used also in this case to
maximize σ2

1 while keeping a constant norm of v. Similarly to what done for the
point feature case, two simulations were run in which ‖v(t)‖ = ‖v0‖ but with its
direction being either

case I: optimized to maximize the estimation convergence rate (red line) us-
ing (5.1) or

case II: kept constant so that v(t) = v0 = const (blue line).

In particular, we used: α = 5 · 104, s̃(t0) = ∅3, χ̃(t0) = [−2.16 4.5 1.27]T , v(t0) =

[0.02 − 0.05 − 0.005]T , k1 = 10, k2 = 100 in case I and k2 = 0 in case II, and
κd = 1

2v
T
0 v0. The moments were generated from a planar circle of radius R = 0.2

(see Fig. 5.17(c)).

For this simulation, we also exploited the camera angular velocity ω in order to
keep the observed barycenter (xg, yg) stationary during motion. As explained at
the end of Sect. 4.4, this was meant to (partially) mitigate the effects of a non-zero
ẏ when inverting (4.22), with y = [a xg yg n20 n11 n02] for the moment case.

Figure 5.17(b) depicts the behavior of the three eigenvalues σ2
1(t), σ2

2(t), and
σ2

3(t) over time for case I (red lines) and case II (blue lines). We can then note how,
while the smallest eigenvalue σ2

1(t) is correctly maximized, in case I, by the effect of
the control law (5.1), the other two eigenvalues (σ2

2(t), σ2
3(t)) (which are not being

controlled) are larger in case II. The consequence of this is that, at the beginning,
the error convergence rate in case II is faster than in case I, see Fig. 5.17(a). Nev-
ertheless, once the fastest modes have converged, the slowest one, associated with

130



5. Experiments and simulations of active structure from motion

time [s]
0 5 10

ke @k

0

2

4

6
case I
case II

(a)

0 5 10

<
2 3

#10 -3

0

2

4 case I case II

0 5 10

<
2 2

#10 -4

0

2

4

time [s]
0 5 10

<
2 1

#10 -5

0

1

2

(b)
Yw [m]

0-0.2-0.4-0.60.20-0.2

Xw [m]

-0.4

0.6

0.4

0

0.2

Z
w

[m
]

case I
case II

(c)

Figure 5.17 – Simulation results for the dense moments case. Fig. (a): behavior
of ‖χ̃(t)‖ for case I (red lines) and case II (blue lines). Fig. (b): behavior of the three
eigenvalues of matrix ΩΩT for case I (red lines) and case II (blue lines). Note how the
convergence rate of case II is initially faster than in case I due to a higher value of the two
largest eigenvalues σ2

2 , σ
2
3 (see Fig. (b)) which are not being controlled. However, once the

smallest eigenvalue σ2
1 becomes dominant, the maximization of σ2

1 operated in case I results,
as expected, in a faster convergence rate of the estimation error. Fig. (c): 3-D Cartesian
trajectory followed by the camera for case I (red line) and case II (blue line) together with
the planar circle used to generate image moments. In case I, the camera has a larger velocity
along the Z-axis that results in a larger σ2

1 .

σ2
1(t), dominates the error behavior and, as a consequence, having maximized σ2

1(t)

results in an overall faster convergence in case I. This then confirms the validity of
our analysis also in the case of dense image moments. Finally, Fig. 5.17(c) shows
the 3-D trajectory followed by the camera for case I (red line) and case II (blue
line): one can note how(i ) the camera keeps looking at the barycenter as expected,
and how (ii ) in case I the camera velocity has a larger component along the Z-axis
that results in an increase of σ2

1(t).

5.3 Active structure estimation for a sphere

We now discuss some experimental results concerning the estimation of the radius
of a spherical target: indeed, as explained in Sect. 4.5.3, estimation of R allows to
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fully recover the sphere 3-D position p0 = sR where vector s is directly obtainable
from image measurements, see (4.70).

As object to be tracked, we made use of a white table tennis ball placed on a
black table and with a radius of 1.9 cm (see Fig. 5.3(b)). As explained in Sect. 4.5.3,
the convergence rate of the estimation error for the sphere case only depends on the
norm of the linear velocity ‖v‖ and not on its direction. This fact is proven by the
first experiment where the estimation task is run twice starting from two different
positions and imposing two different camera velocities but with same norm. These
values were used during the experiments: α = 2 · 103, c1 = c∗1 = 2

√
ασ for D1

in (4.8), and v = (−0.05, 0, 0) m/s for case I and v = (0, 0.045, 0.02) m/s for
case II, with ‖v‖ = 0.05 m/s in both cases. The camera angular velocity ω was
exploited to keep (sx, sy) ' (0, 0) (centered sphere).

Figure 5.18(a) shows the behavior of the estimation errors (solid blue and red
lines): note how the error transient response for the two cases is essentially coinci-
dent, and also equivalent to that of the reference second order system (4.15) with
the desired poles, i.e., by setting σ2

1 = ‖v‖2 = const and c1 = c∗1 in (4.15) (dashed
black line). The higher noise level in case II (red line) is due to the larger distance
between the camera and the spherical target (see Fig. 5.18(b)) which negatively
affects the estimation task. The standard deviation of the radius estimation error,
computed on a time window of 1 s after χ̃(t) has become smaller than 1 mm (vertical
dashed lines in the plot), is 0.3 mm for case I and 0.2 mm for case II: we can note,
again, the very satisfactory results obtained with the proposed estimation scheme
in terms of accuracy of the reconstructed sphere radius. Note also how, in the two
cases, the estimation error χ̃(t) drops below the threshold of 1 mm at essentially the
same time, as expected (same error transient response).

Since the direction of the velocity does not play any role in this case, no optimiza-
tion of σ2

1 can be performed under the constraint ‖v‖ = const. On the other hand,
the analysis of Sect. 4.3 clearly indicates the importance of choosing a proper value
of c1 for the damping matrix D1 in (4.8). To show this fact, we report here three
experiments characterized by the same camera trajectory of the previous case I, but
by employing three different values for c1, that is, c∗1, 2c∗1 and 0.5c∗1. These corre-
spond to a critically damped, overdamped and underdamped response for the ideal
system (4.15), respectively. The experimental results reported in Fig. 5.19 show
that the behavior of the estimation error χ̃ (solid lines) has an excellent match with
that of (4.15) (represented by dashed lines), thus fully confirming(i ) the validity of
the proposed theoretical analysis, and (ii ) the importance of choosing the ‘right’
damping matrix D1 for optimizing the convergence speed in addition to a proper
regulation of σ2

1.
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Figure 5.18 – Experimental results for the estimation of the radius of a sphere
using different constant camera velocities with the same norm. Fig. (a): behavior
of the estimation error χ̃(t) for the two cases (solid blue and red lines), and for an ‘ideal’
second order system with poles at the desired locations (dashed black line). The vertical
dashed lines indicate the times at which the estimation error χ̃(t) drops below the threshold
of 1 mm. Fig. (b): camera trajectories for case I (blue line) and case II (red line) with arrows
indicating the direction of the camera optical axis.
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Figure 5.19 – Experimental results for the estimation of the radius of a sphere
with different damping factors: c1 = c∗1 (blue line), c1 = 2c∗1 (green line) and c1 = 0.5c∗1
(red line). The dashed lines represent the response of an ‘ideal’ second order system with
the corresponding poles. Note again the almost perfect match between the plots.
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5.4 Active structure estimation for a cylinder

In this final section we report some experimental results concerning the active esti-
mation of the radius of a cylindrical object. Indeed, as in the sphere case, knowledge
of R allows to fully recover the 3-D point p0 = Rs, with vector s from (4.81) and
the cylinder axis a in (4.83) being directly obtainable from image measurements.
For these experiments we used a white cardboard cylinder placed on a black table
(see Fig. 5.3(c)). The radius of the cylinder was approximately 4.2 cm.

In the cylinder case, the convergence rate of the estimation error depends both
on the norm of the camera linear velocity v and on its direction w.r.t. the cylinder
axis a, see (4.86). It is then interesting to optimize the direction of v under the
constraint ‖v‖ = const for maximizing the eigenvalue σ2

1 (i.e., so as to obtain the
fastest convergence rate for a given ‘control effort’ ‖v‖).

From (4.87), maximization of σ2
1(t) w.r.t. vector v can be obtained by choosing

v̇ = JTv,1 − J
†
v,1Ja,1 [a]×ω, (5.2)

with, i.e., by following the gradient of σ2
1 w.r.t. v and by compensating for the

(known) effects of input ω. In order to additionally enforce the constraint ‖v‖ =

const during the eigenvalue maximization, (5.2) can be modified, similarly to (5.1),
as

v̇ = −k1
v

‖v‖2
(κ− κd) + k2

(
I3 −

vvT

‖v‖2

)
(JTv,1 − J

†
v,1Ja,1 [a]×ω), (5.3)

with k1 > 0 and k2 > 0. Analogously to the point feature case, the first term in (5.3)
asymptotically guarantees ‖v(t)‖ = ‖v0‖ while the second term projects (5.2) onto
the null-space of the constraint ‖v(t)‖ = const. As for the angular velocity ω, we
exploited it for keeping the axis of the cylinder at the center of the image plane by
regulating (sx, sy) to (0, 0).

We now present three experimental results structured as follows:

case I: in the first experiment, the update rule (5.3) is fully implemented (k1 > 0,
k2 > 0) for actively optimizing the direction of v;

case II: in the second experiment, the camera starts from the same initial pose
and velocity as in case I, but (5.3) is implemented with k1 > 0 and
k2 = 0, i.e., without performing any optimization of σ2

1;

case III: finally, in the third experiment, the camera starts from a different initial
pose and with a different velocity direction (but same norm) w.r.t. the
previous two cases, and (5.3) is again fully implemented. This last case
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Figure 5.20 – Experimental results for the estimation of the radius of a cylinder
with the following color coding: blue – case I, red – case II, green – case III. Fig. (a):
behavior of σ2

1(t) for the three cases (coincident for cases I and III and larger than in
case II). Fig. (b): behavior of χ̃(t). The three vertical dashed lines indicate the times T1 =
2.74 s , T2 = 4.78 s and T3 = 2.66 s at which the estimation error drops below the threshold
of 2 mm. Note how T1 ≈ T3 and T1 < T2 as expected. Fig. (c): two views of the camera
trajectories for the three cases with arrows indicating the direction of the camera optical
axis.

is meant to show how the convergence properties of the estimator are
not affected by the direction of the camera linear velocity as long as it
stays orthogonal to the cylinder axis a.

The experiments were run with the following conditions: α = 500, c1 = c∗1 for
D1 in (4.8), k1 = 10, k2 = 1 for cases I and III, and k2 = 0 for case II. As for
the linear velocity, we set v(t0) = v0 = (−0.01, 0.05, 0.05) m/s for cases I and II,
and v(t0) = v0 = (−0.05, 0.05, 0.01) m/s for case III (note how ‖v0‖2 = 5.1× 10−3

m2/s2 in all three cases).

The behavior of σ2
1(t) is shown in Fig. 5.20(a): as explained at the end of

Sect. 4.5.4, under the constraint ‖v‖ = const, one has maxv σ
2
1 = ‖v‖2 as the

largest possible value for σ2
1 (obtained when vTa = 0). It is then possible to verify
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that, indeed, σ2
1(t)→ ‖v0‖2 in cases I and III despite the different initial conditions

of the experiments (different camera pose and direction of v). The optimization
in (5.3) results in a null component of v along a, thus allowing to move faster in the
‘useful’ directions (while keeping a constant ‖v‖), and to increase the value of σ2

1

to its maximum possible value. Also, note how the value of σ2
1(t) for case II results

smaller than in the other two cases (as expected) since no optimization is present
in this case.

The behavior of the estimation error χ̃(t) is shown in Fig. 5.20(b): again, we can
note that the transient response for cases I and III results essentially coincident and
in almost perfect agreement with that of the reference system (4.15) with desired
poles (dashed black line). As expected, the response for case II (red line) is slower
than in cases I and III. As in the point feature case, Fig. 5.20(b) reports, for the
three cases under consideration, the times T1 = 2.74 s, T2 = 4.78 s and T3 = 2.66 s

at which the estimation error drops below the threshold 2 mm (vertical dashed
lines). The standard deviation of the error evaluated on a time window of 1 s

after convergence has been ‘reached’ resulted in the values of 0.4, 0.6 and 0.7 mm,
respectively. We can then appreciate, again, the high accuracy of the proposed
approach in estimating the cylinder radius R while also optimizing online for the
camera motion. The higher estimation error in case III can be ascribed to the larger
distance between the camera and the observed target, which increases the effect of
discretization errors. Note also how T1 ≈ T3 < T2 thanks to the active optimization
of the error convergence rate. Finally, Fig. 5.20(c) depicts the camera trajectories
for the three experiments with arrows indicating the direction of the optical axis. In
case II the camera simply travels along a straight line (v(t) ≡ v0), while in cases I
and III the direction of v is suitably modified resulting in a trajectory lying on a
plane orthogonal to a.

5.5 Conclusions

In this chapter we reported a large collection of simulation and experimental trials
meant to validate the theoretical results of Chapt. 4 in the context of active structure
estimation from motion.

All of the geometric primitives considered in Sect. 4.5 (i.e. point features, planes,
spheres and cylinders) were re-discussed, in this chapter, from a numerical/experi-
mental point of view. The experiments were run on a 6-DOFs manipulator equipped
with a camera in-hand. We showed that, even in non ideal experimental conditions,
the use of the nonlinear observer described in Sect. 3.2.3 allows to obtain a good
match between the dynamics of the SfM estimation error and that of a linear sec-
ond order system with assigned poles when the quantity to be estimated is a single
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scalar (i.e. for the point feature, sphere and cylinder cases) in agreement with
Remark 4.1. More importantly, we experimentally demonstrated that the use of
an active strategy for selecting the camera motion policy can, as predicted by the
theoretical analysis, increase the convergence rate of the estimation and reduce the
final estimation covariance for the same control effort (same camera linear velocity
norm). This latter result is also true regardless of the chosen estimation scheme
and, in particular, a brief comparison between the adopted nonlinear observer and
a standard EKF scheme demonstrated that the camera trajectory optimization is
also beneficial for this latter alternative estimation algorithm.

For the point feature case, we also compared, in simulation, the two different
estimation schemes, proposed in Sect. 4.5.1.1, based on either a planar or a spherical
projection model. We pointed out the differences between the two approaches in
terms of robustness and estimation convergence rate. We also demonstrated how-
ever, that for our real camera parameters, the difference between the two projection
models is negligible.

For the planar case, we experimentally compared the active plane estimation
strategies introduced in Sects. 4.5.2.1 and 4.5.2.2 with a more standard homography
based reconstruction technique showing the advantages of the former in terms of
intrinsic robustness w.r.t. the presence of outliers. Moreover we presented some
simulations in which the use of an adaptive strategy for selecting the image moments
to use for plane estimation was investigated showing very promising results in terms
of additional improvement of the estimation convergence rate. Finally, we reported
some simulation results showing how the proposed machinery could be extended to
the case of dense image moments.

For the sphere case, we showed that, due to the symmetry of the scene, the
direction of the camera linear velocity does not affect the convergence rate of the
estimation, however it is still possible to tune the observer gains online so as to fix
a desired damping coefficient of the error dynamics.

Finally, for the cylinder case, we experimentally proved that, similarly to the
sphere, as long as the camera does not translate along the direction of the cylin-
der axis, the direction of the camera velocity does not affect the estimation error
converge rate.

The results reported in this chapter confirm, in our opinion, the theoretical
analysis of Chapt. 4.
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Chapter 6

Coupling active SfM and IBVS

In the first part of this thesis, we introduced the basic concepts behind
computer vision, robot control and state estimation. We showed that a camera
is a scale invariant sensor in the sense that the perspective projection that it

operates, transforms the 3-D world in a 2-D image in which the information about
the scale is lost. In general, if one wishes to use a camera to control the full pose of
a robot, knowledge of this scale will become necessary for either reconstructing the
complete camera state (in PBVS frameworks) or for correctly estimating the feature
interaction matrix of a IBVS control scheme (see Sect. 2.1.3.3 and Sect. 2.3.2 and
[MMR10]). The scale can be estimated by taking multiple images from different
camera positions and feeding them to, e.g., one of the estimation schemes discussed
in Chapt. 3. Due to the nonlinearity of the problem, however, the estimation is
only possible if the camera trajectory is sufficiently persistently exciting and thus
enough information is collected. A IBVS controller, e.g., should then be able to
realize the main visual task while, at the same time, ensuring a sufficient level of
information gain for allowing an accurate state estimation.

In Part II we put the classical IBVS control problem to the side and we con-
centrated on the estimation problem. In particular we devised and experimentally
validated an estimation/control strategy that gives full control over the eigenvalues
of the estimation error dynamics (which is made equivalent to that of a second order
linear system) by acting online on the estimation gains and, more importantly, on
the camera velocity. While doing this, we considered the structure estimation as
the main task that had to be accomplished by the robot and we did not constrain
the camera velocity in any way, apart from requiring a constant norm.

In this chapter, and in the next one, we consider, instead, a more common
situation in which the estimation is not directly the main task that the robot is
required to accomplish but still some estimated quantities are used to compute
the robot control law and thus the accuracy of the estimation affects the control
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performance. In particular, we investigate the possible coupling between the frame-
work for active SfM introduced in Part II and the execution of a standard IBVS
task. The main idea is to project any optimization of the camera motion (aimed
at improving the SfM performance) within the null-space of the considered task in
order to not degrade the servoing execution (see Sect. 2.2.4.3). For any reasonable
IBVS application, however, a simple null-space projection of a camera trajectory
optimization (as in (2.26)) turns out to be ineffective because of a structural lack
of redundancy. Therefore, in order to gain the needed freedom for implementing
the SfM optimization, we suitably exploit and extend the redundancy framework
introduced in [MC10] which grants a large projection operator by considering the
norm of the visual error as main task. In addition, an adaptive mechanism is also
introduced with the aim of activating/deactivating online the camera trajectory op-
timization as a function of the accuracy of the estimated 3-D structure. Thanks to
this addition, it is then possible to enable the SfM optimization only when strictly
needed such as, e.g., when the 3-D estimation error grows larger than some desired
minimum threshold.

As discussed in depth in Sect. 3.4, there exists a vast literature on the topic of
trajectory optimization for improving the identification/estimation of some unknown
parameters/states. Similarly, a large number of works has addressed the so-called
Next Best View (NBV) problem, i.e., loosely speaking, how to actively control the
motion of a vision sensor so as to reconstruct the 3-D shape of an object of interest or
of the surrounding environment while, e.g., minimizing the estimation uncertainty,
the traveled distance, the number of acquired images, or any other meaningful
criterion. However, many of these strategies are meant for an offline use (a whole
trajectory is planned, executed, and then possibly re-planned based on the obtained
results), and, in any case, do not take into account the online realization of a visual
task concurrently to the optimization of the estimation performance. At the other
end of the spectrum, several works have already investigated how to plug the online
estimation of the 3-D structure into a IBVS loop (i.e., considering the realization
of a visual task), but without any concurrent optimization of the camera motion
for improving the estimation performance, see, e.g., [MHMM09, FKS07, DOR08,
PCCB10, Cor10, MS12]. In all of these works, the SfM scheme is just fed with the
camera trajectory generated by the IBVS controller which, on the other hand, has
no guarantee of generating a sufficient level of excitation w.r.t. the estimation task.

With respect to this previous literature, this chapter provides, instead, a unified
and online solution to the problem of concurrently optimizing execution of a IBVS
task (visual control) and performance of the 3-D structure estimation (active per-
ception). We also wish to stress that the proposed machinery is not restricted to
the sole class of IBVS problems considered in this work: indeed, one can easily gen-

142



6. Coupling active SfM and IBVS

eralize the reported ideas to other servoing tasks, or apply them to other contexts
not necessarily related to visual control (as long as the chosen robot trajectory has
an effect on the state estimation performance).

The rest of the chapter is organized as follows: after a short introduction in
Sect. 6.1, Sect. 6.2 details the machinery needed for coupling IBVS execution and
optimization of the 3-D structure estimation, with a particular emphasis on the
second-order extension of the strategy described in [MC10] for increasing the re-
dundancy w.r.t. the considered visual task. Subsequently, Sect. 6.3 introduces an
extension of the strategy detailed in Sect. 6.2 for allowing a smooth activation/deac-
tivation of the camera trajectory optimization as a function of the current estimation
accuracy. Finally, Sect. 6.4 concludes the chapter with some final considerations.

Some (quite) preliminary results in this context were presented in [7]. W.r.t. this
previous work, we provide, in this chapter, a more complete analysis from both a
theoretical and experimental point of view. Most of the material presented here can
be found in [9] which, at the time of writing, is under consideration for publication.
Part of these more recent results were also presented in [8].

6.1 Problem description

Let us consider again the classical situation of a robot manipulator with joint con-
figuration vector q ∈ Rn carrying an eye-in-hand camera that measures a set of
visual features s ∈ Rm (e.g., the x and y coordinates of a point feature). We have
already discussed in Sect. 2.3.2 some control strategies that allow to regulate s to a
desired constant value sd. As already anticipated in Remark 2.1, whatever the par-
ticular case (redundant/non-redundant, feasible/non-feasible), any implementation
of (2.32–2.33) (or variants) must also deal with the lack of a direct measurement of
vector χ which prevents the exact on-line computation of J . A common workaround
is to replace the exact task Jacobian J(s, χ, q) with an estimation Ĵ = J(s, χ̂, q)

evaluated on some approximation χ̂ of the unknown true vector χ, for instance the
value at the desired pose χ̂ = χd = const [CH06], assuming that this is known
or easily measurable in advance by additional sensors. In this approximated case,
assuming for simplicity q̈w ≡ ∅m, the closed-loop dynamics, obtained by, plug-
ging (2.32–2.33) into (2.31), becomes

ė = −λJĴ†e. (6.1)

Local stability of (6.1) in a neighbourhood of e = ∅m is then determined by the
eigenvalues of matrix J(sd, χd, q)J(sd, χ̂, q)†.

In case the approximation χ̂ = χd is used, then (6.1) will be locally asymptoti-
cally stable around e = ∅m (with, however, a possibly small convergence domain).
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Nonetheless, in this case, the ideal closed-loop behavior (2.20) will no longer be
obtained (even in the feasible case ρ = m) because of the approximation in eval-
uating Ĵ away from the desired pose. In addition to this shortcoming, different
choices of χ̂ (including rough estimations of the true χd at the final pose) may also
move (a subset of) the eigenvalues of (6.1) to the right-half complex plane, and thus
yield an unstable closed-loop system (and failure of the servoing) even when start-
ing arbitrarily close to the final pose. An illustrative example of such instability is
demonstrated in Sect. 7.1.3, while further discussions about the robustness of visual
servoing schemes against uncertainties on χ̂ can be found in [MMR10].

Special approximations such as χ̂ = χd can then, at best, only guarantee local
stability in a neighbourhood of sd and, in any case, require some prior knowledge on
the scene (the value of χd must be obtained independently from the execution of the
servoing task). Additionally, too rough estimations of the final χd (or other approx-
imation choices for χ̂) may result in a poor, or even unstable, closed-loop behavior
for the servoing causing, e.g., loss of feature tracking. In this context, the use of an
incremental filtering (SfM) scheme able to generate a converging χ̂(t)→ χ(t) from
(ideally) any initial approximation χ̂(t0) can represent an effective alternative. In-
deed, a SfM scheme can improve the servoing execution by approximating the ideal
closed-loop behavior (2.20) also when far from the desired pose and without needing
special assumptions/approximations of χ, since as χ̂(t) → χ(t) one obviously has
Ĵ → J (see, e.g., [DOR08]).

We now note that, in this conceptual framework, the estimation of the 3-D struc-
ture χ can then take place only during the transient phase of the servoing task, i.e.,
while the camera is in motion towards its goal location. Being this phase of limited
duration, with the camera reaching a full stop at the end of the servoing, one should
clearly aim at imposing the fastest possible convergence to the estimation error for
a given camera displacement (from initial to final pose). As demonstrated in the
previous chapters, other factors (e.g., estimation gains) being equal, the conver-
gence rate of a SfM scheme is mainly affected by the particular trajectory followed
by the camera w.r.t. the observed scene, with some trajectories being more informa-
tive/exciting than other ones. Therefore, the IBVS controller should select (online)
the ‘most informative’ camera trajectory, among all the possible ones solving the
visual task, for the sake of obtaining the fastest possible SfM convergence during
the servoing transient. Chapter 4 described a strategy for generating such an infor-
mative camera motion policy. The rest of this chapter will, instead, detail how to
exploit the results of Chapt. 4 for improving the performance of a IBVS controller
by suitably taking advantage of (and possibly maximizing) the redundancy of the
considered visual task.
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6.2 Plugging active sensing in IBVS schemes

The execution of a servoing task can be naturally coupled with the (concurrent)
optimization of the estimation of vector χ by exploiting vector q̈w in (2.32) for
projecting any action aimed at maximizing, e.g., the smallest eigenvalue σ2

1 of the
PE matrix ΩΩT in the null-space of the visual task. The expression in (4.22)
shows that optimization of σ2

1(t) requires an action at the joint acceleration level.
In particular, since

∇q̇σ2
1 =

(
∇vσ2

1
T∇q̇vT

)T
= JTv J

T
σv (6.2)

(where the relationship v = Jv(q)q̇ was used), local maximization of σ2
1 can be

achieved by just following its positive gradient via a joint acceleration vector

q̈σ = kσ∇q̇σ2
1 = kσJ

T
v J

T
σv , kσ > 0. (6.3)

Following the developments of Sect. 2.2.4.4 and being ė = Jq̇ and, thus, ë =

Jq̈+ J̇ q̇, the second-order/acceleration level counterpart of the classical law (2.32)
for regulating the error vector e(t) to ∅m is simply

q̈ = q̈e = J†(−kvė− kpe− J̇ q̇) + P q̈w (6.4)

with kp > 0 and kv > 0. Therefore, by setting q̈w = q̈σ in (6.4), one would obtain the
desired maximization of σ2

1 (i.e., of the convergence rate of the 3-D estimation error)
concurrently to the execution of the main visual task. This straightforward strategy,
although appealing for its simplicity, is unfortunately not viable in most practical
situations because of the structural lack of enough redundancy for implementing
action (6.3) (or any equivalent one) in the null-space of the main visual task in (6.4).
This important limitation is illustrated by the following Proposition.

Proposition 6.1. Assume rank(Ls) = 6, that is, the chosen set of visual features
s allows controlling the full 6-DOFs camera pose. Then, for any scalar function
w(v(q̇)), one has P∇q̇w = ∅n.

Proof. We first note that, thanks to the assumption rank(Ls) = 6 (which implies
m ≥ 6 and, thus, full column-rank for Ls), one has ker(LsJC) = ker(JC). Being P
the orthogonal projector on ker(J), the following then holds

PJT = PJTC L
T
s = PJTC = ∅n.

On the other hand, ∇q̇w = JTv ∇q̇wT . Since JTv belongs to the range space of JTC
(see (2.29)), it follows that P∇q̇w = ∅n as claimed.
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Proposition 6.1 formalizes an intuitive consideration: if the feature set s is rich
enough to constrain all the camera DOFs, then no optimization of the camera linear
velocity v can be performed via the null-space projector operator P since (obviously)
the camera motion is already fully specified by the chosen visual task. Being classical
VS tasks purposely built upon a feature set s able to ensure full (visual) control
over the free camera DOFs, Prop. 6.1 clearly prevents any optimization meant to
affect the value of σ2

1 during the servoing execution1. This fundamental limitation
motivates the development of the alternative strategy presented in the following
section.

6.2.1 Second-order VS using a Large Projection Operator

An alternative control strategy that is able to circumvent the limitations imposed by
Prop. 6.1 can be devised by suitably exploiting the redundancy framework originally
proposed in [MC10]. In this work it is shown how regulation of the full visual error
vector e (a m-dimensional task) can be replaced by the regulation of its norm ‖e‖
(a 1-dimensional task). This manipulation results in a null-space of (maximal)
dimension n− 1 available for additional optimizations including, in our case, those
prevented by Prop. 6.1.

The machinery presented in [MC10] can be exploited as follows: by letting
ν = ‖e‖, we have

ν̇ =
eTJ

‖e‖
q̇ = Jν q̇, Jν ∈ R1×n,

and, at second-order,

ν̈ = Jν q̈ + J̇ν q̇.

Regulation of ν(t)→ 0 can then be achieved by the following control law

q̈ = q̈ν = J†ν(−kvν̇ − kpν − J̇ν q̇) + Pν q̈w, (6.5)

with kp > 0, kv > 0, J†ν = ‖e‖
eTJJT e

JTe and Pν = In − JT eeTJ
eTJJT e

being the null-space
projection operator of the error norm with rank n− 1 (see [MC10]).

By implementing controller (6.5) in place of (6.4) one can thus still obtain reg-
ulation of the whole visual task error since, obviously, ν(t) = ‖e(t)‖ → 0 implies
e(t) → ∅m. However, contrarily to (6.4), the new null-space projector Pν allows
implementing a broader range of optimization actions including (6.3) or equiva-
lent ones. In this respect, next Sect. 6.2.2 addresses the design of a suitable cost

1Note that, if n > m ≥ 6, there would still be room in (6.4) for implementing an action in the
null-space of the main task. However, presence of this redundancy would be useless for the sake
of optimizing the camera trajectory as it would only result in an internal reconfiguration of the
robotic arm without effects on the camera motion.
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function V(v(q̇)) able to trade off maximization of σ2
1 with the boundedness of the

camera/robot self-motions in the null-space of the main visual task.

We also note, however, that controller (6.5) suffers from some shortcomings: in
particular, the Jacobian Jν is singular for ‖e‖ = 0, while the projection matrix Pν
and the pseudoinverse J†ν are not well-defined for ‖e‖ = 0 and for e ∈ ker(JT ). As
discussed in [MC10], the singularity at ‖e‖ = 0 can be avoided by switching from
controller (6.5) to the classical law (6.4) when ‘close enough’ to convergence (i.e.,
when ‖e‖ becomes sufficiently small). However, since the ‘first-order’ switching
strategy proposed in [MC10] is not directly transposable to the second-order case,
Sect. 6.2.3 details a suitable ‘second-order’ strategy able to guarantee a proper
switching from (6.5) to the classical law (6.4).

Remark 6.1. We wish to emphasize the different roles of the two singularities
‖e‖ = 0 and e ∈ ker(JT ) affecting controller (6.5). The singularity occurring
at ‖e‖ = 0 is a consequence of the choice of controlling the norm of the error
vector and, thus, it does not affect other schemes such as the classical one (6.4)
(therefore one can safely switch to (6.4) when ‖e‖ → 0). The other singularity
e ∈ ker(JT ) corresponds, instead, to a local minimum for the servoing itself since,
if e ∈ ker(JT ), no camera motion can instantaneously realize the task. Therefore,
any ‘local’ control action (including (6.4) and (6.5)) would be equally affected by the
condition e ∈ ker(JT ), and no simple switching strategy could be employed in this
case (local minima escaping strategies, such as random walks or global optimizations,
are out of the scope of this thesis).

6.2.2 Optimization of the 3-D Reconstruction

Being the convergence rate of the 3-D estimation error χ̃(t) = χ̂(t)−χ(t) determined
by the eigenvalue σ2

1, a straightforward choice is to attempt maximization of a cost
function in the form

V(q̇) = kσσ
2
1(v(q̇)), kσ > 0, (6.6)

in a similar way to what done in Part II. This would result in the joint acceleration
q̈σ in (6.3) to be plugged in vector q̈w in (6.5). However, a cost function such as (6.6)
is unbounded from above w.r.t. q̇ (sup‖q̇‖ V(q̇) =∞) since, in general, the faster the
camera motion the larger σ2

1. Indeed, on the one hand, σ2
1 ∝ ‖v‖2 (see (4.31) for

the point feature case) and, on the other hand, ‖v‖2 ∝ ‖q̇‖2 being ‖Jv‖ in (2.29)
a bounded quantity. Therefore, maximization of (6.6) via (6.3) would simply make
the camera velocity to grow unbounded in the null-space of the main servoing task.

In order to cope with this issue, it is then necessary to modify (6.6) for allowing
existence of a finite upper bound w.r.t. ‖q̇‖. The addition of a classical quadratic
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Figure 6.1 – A representative graph of the cost function used to calculate the
IBVS secondary task in (6.8) plotted against ‖q̇‖ for kσ = 1, kd = 0.2, γ = 0.1, and
assuming σ2

1 = ‖q̇‖2. Note the presence of a finite upper bound for V(q̇) as desired.

penalty (damping) term in the form

V(q̇) = kσσ
2
1(q̇)− kd

2
‖q̇‖2, kd > 0, (6.7)

is, nevertheless, still not a valid solution: as both terms in (6.7) are proportional to
‖q̇‖2, existence of a finite (non-zero) upper bound would depend, case by case, by
the particular combination of gains and of the camera trajectory. Because of these
considerations, we then opted for the following cost function

V(q̇) = kσγ log

(
γ + σ2

1(q̇)

γ

)
− kd

2
‖q̇‖2, γ > 0, (6.8)

for which a representative graph is depicted in Fig. 6.1. This choice is motivated

by considering that, for large velocities (‖q̇‖ → ∞), the damping term
kd
2
‖q̇‖2 will

always be dominant w.r.t. the first term regardless of the choice of gains or of the
particular camera trajectory. Indeed, since σ2

1 ∝ ‖q̇‖2 and since log(x) = o(g(x))

for any polynomial function g(x), it follows that

lim
‖q̇‖→∞

V(q̇) = −∞.

Therefore, maximization of V(q̇) in (6.8) will guarantee maximization of σ2
1 with,

embedded, a bound on the maximum allowed joint velocity ‖q̇‖. The location of
this maximum and of the slope of (6.8) for ‖q̇‖ → 0 and ‖q̇‖ → ∞ is determined
by the gains kσ, γ and kd. Maximization of V(q̇) is then obtained by plugging in
vector q̈w in (6.5) the following joint acceleration vector

q̈V = ∇q̇V =
kσγ

γ + σ2
1

∇q̇σ2
1 − kdq̇T . (6.9)
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6.2.3 Second-order Switching Strategy

We now discuss a second-order switching strategy meant to avoid the singularity
of controller (6.5) when ν(t) = ‖e(t)‖ → 0. We start noting that, in closed-loop,
controller q̈ν in (6.5) imposes the following second-order dynamics to the error norm

ν̈ + kvν̇ + kpν = 0. (6.10)

Define ν‖e‖(t) as the solution of (6.10) for a given initial condition (ν(t0), ν̇(t0)):
ν‖e‖(t) thus represents the ‘ideal’ evolution of the error norm, that is, the behavior
one would obtain if controller (6.5) could be implemented ∀t ≥ t0.

Let now t1 > t0 be the time at which the switch from controller (6.5) to the
classical law q̈e in (6.4) occurs (e.g., triggered by some threshold on ‖e‖ as proposed
in [MC10]). For t ≥ t1, controller q̈e, under the assumption2 rank(J) = ρ = m,
yields in closed-loop

ë+ kvė+ kpe = 0. (6.11)

Let e∗(t) be the solution of (6.11) with initial conditions (e(t1), ė(t1)), and let
ν∗(t) = ‖e∗(t)‖ be the corresponding behavior of the error norm. Ideally, one would
like to have

ν∗(t) ≡ ν‖e‖(t), ∀t ≥ t1. (6.12)

In other words, the behavior of the error norm should not be affected by the control
switch at time t1, but ν∗(t) (obtained from (6.11)) should exactly match the ‘ideal’
evolution ν‖e‖(t) generated by (6.10) as if no switch had taken place.

While condition (6.12) is easily satisfied at first-order [MC10], this is not neces-
sarily the case at the second-order level. Indeed, when moving to the second-order
the following result can be shown (see Appendix A.5.1)

Proposition 6.2. For the second-order error dynamics (6.10–6.11), condition (6.12)
holds iff, at the switching time t1, vectors e(t1) and ė(t1) are parallel.

It is then necessary to introduce an intermediate phase, before the switch, during
which any component of ė orthogonal to e is made negligible.

To this end, let

Pe =

(
Im −

eeT

eTe

)
∈ Rm×m

be the null-space projector spanning the (m − 1)-dimensional space orthogonal to
vector e. Let also

δ = Peė = PeJq̇. (6.13)
2If ρ < m, as in the case studies reported in Chapt. 7, the ideal behavior (6.11) can, in general,

only be approximately imposed, see Sect. 2.3.2.
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The scalar quantity δTδ ≥ 0 provides a measure of the misalignment among the
directions of vectors e and ė (δTδ = 0 iff e and ė are parallel, ∀e 6= ∅m, ė 6= ∅m).
One can then minimize δTδ compatibly with the main task (regulation of the error
norm) by choosing vector q̈w in (6.5) as

q̈δ = −kδ
2
∇q̇(δTδ) = −kδJTPeJq̇ = −kδJTδ (6.14)

where the properties Pe = P T
e = PePe were used.

A possible switching strategy, shown in the flowchart in Fig. 6.2, then consists
of the following three different control phases:

phase 1): apply the norm controller q̈ν given in (6.5) with the null-space vector
q̈w = q̈V as defined in (6.9) as long as ν(t) ≥ νT , with νT > 0 being a
suitable threshold on the error norm. During this phase, the error norm
will be governed by the closed-loop dynamics (6.10) and the convergence
rate in estimating χ̂ will be maximized thanks to (6.9);

phase 2): when ν(t) = νT , keep applying controller q̈ν but replace (6.9) with (6.14)
in vector q̈w. Stay in this phase as long as some terminal condition on
the minimization of δTδ is reached. In our case, we opted for a threshold
δT on the minimum norm of vector ‖PνJδ‖ as an indication of when no
further minimization of δTδ is possible in the null-space of the error norm.
Note also that, during this second phase, ν(t) keeps being governed by the
closed-loop dynamics (6.10) since q̈w acts in the null-space of the error
norm (i.e., no distorting effect is produced on the behavior of ν(t) by the
change in q̈w);

phase 3): when δTδ has been minimized, switch to the classical controller q̈e given
in (6.4) until completion of the task. The minimization of δTδ will ensure
a smooth switch as per Prop. 6.2.

We finally note that this strategy could cause a discontinuity in the commanded
acceleration q̈ when moving from phase 1) to phase 2) because of the instantaneous
change of vector q̈w from (6.9) to (6.14). If needed, this discontinuity could be easily
dealt with by resorting to a smoothing procedure as that proposed in [MC10]. As
for the switch from phase 2) to phase 3), discontinuities in the commanded q̈ are,
instead, avoided thanks to the alignment among vector e and ė occurring during
phase 2).

Before concluding this section we remark that the proposed scheme (active
SfM (3.11) coupled to the second-order VS (6.4–6.5)), null-space terms (6.9–6.14)
and associated switching strategy of Fig. 6.2) only requires, as measured quantities,
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phase 1):
use (6.5) with
q̈w = q̈V in (6.9)

start

ν(t) ≥ νT

phase 2):
use (6.5) with

q̈w = q̈δ in (6.14)

‖PνJδ‖ ≥ δT

phase 3):
use (6.4)

no

yes

no

yes

Figure 6.2 – Flowchart representation of the basic switching control strategy.

the visual features s, the robot joint configuration vector q and the joint veloci-
ties q̇ (in addition to the usual assumption of known intrinsic and camera-to-robot
parameters). Indeed from the estimated χ̂, a (possibly approximated) evaluation
of all the other quantities entering the various steps of the second-order control
strategy (e.g., the task Jacobians J , Jν and their time derivatives J̇ , J̇ν) can be
obtained from (s, χ̂, q) and q̇ (the only ‘velocity’ information actually needed). We
also note that the level of approximation is clearly a monotonic function of ‖χ̂−χ‖
(i.e., the uncertainty in knowing χ): thus, all the previous quantities will asymptot-
ically match their real values as the estimation error χ̃(t) = χ̂(t) − χ(t) converges
to zero (thus, the faster the convergence of χ̃(t), the sooner the ideal closed-loop
behaviors (6.10–6.11) will be realized).

We finally remark that, due to the nonlinear nature of the estimation and servo-
ing schemes, stability of each individual block does not imply, in general, stability
of their composition since one cannot invoke the separation principle only valid for
linear time-invariant systems3. Nevertheless, the experimental results reported in
Chapt. 7 show a promising level of robustness in this sense.

6.3 Adaptive switching

We now propose a further improvement to the strategy detailed in Sect. 6.2. The
goal is to introduce an automatic mechanism for adaptively activating/deactivat-

3Analogous theoretical difficulties affect any (non-trivial) robotic application in which an esti-
mation step is plugged into a control loop (e.g., whenever exploiting an EKF for feeding online a
motion controller with the estimated state).
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ing optimization of the 3-D structure estimation as a function of the accuracy in
estimating χ(t). This modification is motivated by the following considerations
w.r.t. the flowchart of Fig. 6.2:

• the optimization of σ2 is active during the whole phase 1), i.e., as long as
the error norm is larger than some predefined threshold (i.e., ν(t) ≥ νT ).
However, this is obtained at the expense of a possible distortion of the camera
trajectory as it will be shown in, e.g., Figs. 7.1(d) and 7.3(d) which depict the
camera spiralling motion due to action (7.1) while approaching the final pose.
Clearly, a more efficient strategy would implement (7.1) only when strictly
needed, e.g., as long as the estimation error ‖χ̃(t)‖ = ‖χ̂(t) − χ(t)‖ is larger
than some minimum threshold;

• similarly, once in phases 2) and 3), the flowchart of Fig. 6.2 does not allow
any reactivation of the optimization of σ2. On the other hand, a reactivation
could be necessary in case of unforeseen events such as, e.g., an unpredictable
motion of the target that would make the estimation error ‖χ̃(t)‖ to abruptly
increase.

We then now detail a modification of the previous strategy of Sect. 6.2 for
addressing these issues. To this end, we first introduce a way to quantify the
uncertainty level in the estimation of the unknown vector χ(t). Since the estimation
error χ̃(t) is (obviously) not directly measurable, we consider instead the following
measurable quantity

E(t) =
1

T

∫ t

t−T
s̃T (τ)s̃(τ)dτ, T ≥ ε > 0, (6.15)

where T represents the integration window and s̃ = ŝ−s is the feedback term driving
observer (3.11). Indeed, as discussed in Appendix A.5.2, E(t) plays a role compara-
ble with the unmeasurable χ̃(t), that is, it provides a measure of the uncertainty of
the estimated χ̂ vs. the actual χ. In particular, provided the camera trajectory is
sufficiently exciting (i.e., σ2

1(t) > 0 during motion), E(t) ≡ 0 iff ‖χ̃(t)‖ ≡ 0 (i.e., the
estimation has converged) and E(t) > 0 otherwise . One can then leverage knowl-
edge of E(t) for, e.g.,(i ) automatically switching from phase 1) to phase 2) when
the estimation error becomes smaller than a desired threshold, (ii ) automatically
switching from phase 3) back to phase 1) when the estimation error grows larger
than a desired threshold, and (iii ) adaptively weighting the first term in action (6.9)
for smoothly activating/deactivating the optimization of σ2

1.

Let then 0 ≤ E < E be a fixed minimum/maximum threshold for E(t) and
define

kE(E) : [E, E] 7→ [0, 1]
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Figure 6.3 – Qualitative plot of the adaptive gain kE(E) for E = 1 × 10−5 and
E = 1× 10−4 used to tune the effect of the active camera velocity optimization depending
on the current status of the structure from motion estimation.

as a monotonically increasing smooth map from the interval [E, E] to the interval
[0, 1]. For instance, one could take

kE(E) =


0 if E ≤ E
1

2
− 1

2
cos

(
π
E − E
E − E

)
if E < E < E

1 if E ≥ E

(6.16)

for which the graph for E = 1 × 10−5 and E = 1 × 10−4 is depicted in Fig. 6.3.
Function kE(E) can be exploited for suitably weighting the optimization of σ2

1: a
simple but effective possibility is to just modify the cost function (6.8) as

VE(q̇, E) = kσkE(E)γ log

(
γ + σ2

1(q̇)

γ

)
− kd

2
‖q̇‖2, (6.17)

resulting in the new optimization action

q̈VE = ∇q̇VE =
kσkE(E)γ

γ + σ2
1

JTv J
T
σv − kdq̇ (6.18)

to be plugged in vector q̈w in (6.5). This modification clearly grants a smooth
modulation of the first term in (6.18) from a full activation in case of large estimation
inaccuracies (kE(E) = 1 for E ≥ E), to a full deactivation in case of small estimation
inaccuracies (kE(E) = 0 for E ≤ E).

Exploiting E(t) and the modified optimization action (6.18), we then propose the
new (adaptive) switching strategy depicted in Fig. 6.4. This new strategy consists
of the same three phases of Sect. 6.2.3, but it now exploits knowledge of E(t) for
implementing an improved switching policy among the various phases:

• at the beginning of the servoing task start in phase 3) (instead of phase 1)),
thus implementing the classical controller (6.4). Remain in this phase while
E(t) ≤ E or ν(t) ≤ νT , otherwise switch to phase 1);
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phase 1):
use (6.5) with

q̈w = q̈VE in (6.18)

ν(t) ≥ νT
and E ≥ E

phase 2):
use (6.5) with

q̈w = q̈δ in (6.14)

E > E and
ν(t) ≥ νT

‖PνJδ‖ ≥ δT

phase 3):
use (6.4)

E ≤ E or
ν(t) < νT

no

yes

no

yes

no

yes

start

yes

no

Figure 6.4 – Flowchart representation of the adaptive switching strategy exploiting
the measurable error energy for triggering changes of status.

• when in phase 1), implement the norm controller (6.5) with the new opti-
mization action (6.18). Stay in phase 1) as long as E(t) ≥ E and ν(t) ≥ νT ,
otherwise switch to phase 2);

• when in phase 2), implement the norm controller (6.5) with the optimization
action (6.14). If E(t) ≥ E and ν(t) ≥ νT , switch back to phase 1), otherwise,
if ‖PνJδ‖ ≤ δT (terminating condition for the alignment among vectors e and
ė) switch to phase 3).

We highlight the following features of this new adaptive strategy: first of all, the
initial (possible) switch from phase 3) to phase 1) is performed only if E(t) ≥ E (the
estimation error is large enough for justifying an optimization of the camera motion)
and ν(t) ≥ νT (the visual error norm is large enough for preventing singularities
in (6.5)). As illustration, two scenarios will typically trigger this switch:(i ) a camera
starting far enough from the desired pose and with a poor enough initial estimation
χ̂(t0), or (ii ) an unpredicted motion of the target object during the servoing task
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that causes an increase in the error norm and in the estimation uncertainty. The
experiments of the next Sects. 7.2 and 7.3 will indeed address these two practical
cases. Furthermore, while in phase 1), the optimization of the camera motion will be
performed only until either a good enough accuracy has been reached (E(t) < E), or
controller (6.5) is close to become singular (ν(t) < νT ). The new switching condition
E(t) < E will then help in minimizing the distortion of the camera trajectory by
allowing a quick switch to phase 2) as soon as the estimation accuracy reaches a
satisfactory level (see again the experiments in Sects. 7.2 and 7.3).

As a final step, we comment about the choice of the two thresholds E and E

exploited for triggering the various switches and for modulating the activation of
the optimization of σ2

1 in (6.18). Assume the range of possible values of E(t) during
the camera motion can be lower/upper bounded as 0 ≤ Emin ≤ E(t) ≤ Emax. It
would obviously be meaningful to choose E and E such that Emin ≤ E < E ≤ Emax
for properly tuning the adaptive switching strategy.

Concerning the lower bound Emin, being E(t) ≥ 0, a straightforward choice
would be Emin = 0. However, presence of measurement noise and other non-
idealities can, in practice, prevent E(t) to fall below some minimum value even
after convergence of the estimation error (up to some residual noise). If needed,
this minimum value can be, e.g., experimentally determined by simply averaging,
across a sufficient number of different camera trajectories, the (steady-state) value
reached by E(t) once the estimation has converged4. As for Emax, any (arbitrarily
large) positive value would in principle be a valid choice since, the larger the initial
approximation error ‖χ̃(t0)‖ = ‖χ̂(t0)−χ(t0)‖, the wider the possible range of E(t).
It is, however, possible to show that, exploiting the properties of observer (3.11)
and, in particular, its port-Hamiltonian nature, the following bound holds (see
Appendix A.5.2)

E(t) ≤ ‖χ̃(t0)‖2

α
. (6.19)

Therefore, if an upper bound ‖χ̃(t0)‖ ≤ zmax on the initial estimation error can be
assumed (as in most practical situations), one can exploit (6.19) and set

Emax =
z2
max

α
. (6.20)

6.4 Conclusions

In this chapter we investigated how to couple the execution of a VS task with an
active SfM strategy meant to optimize the reconstruction of the 3-D scene structure.
This result was achieved by projecting the active SfM action within the null-space

4This is indeed the solution adopted for the experiments in Sects. 7.2 and 7.3.
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of the considered IBVS task. In general IBVS, however, tasks are intentionally
constructed in such a way that all the camera DOFs are constrained and, there-
fore, they typically lack any additional redundancy to exploit for optimizing the
estimation convergence using, e.g., some of the techniques proposed in Chapt. 4.
To cope with this problem, we proposed to suitably extend to the second order the
framework originally introduced in [MC10] for granting the needed redundancy for
an effective optimization of the camera motion by controlling the task error norm
instead of the task itself. A thorough analysis of the closed-loop convergence perfor-
mance, including a switching strategy meant to avoid some structural singularities
of [MC10], was also provided. As an additional contribution, we detailed an adap-
tive strategy able to automatically activate/deactivate and, more in general, tune
the optimization of the SfM convergence as a function of the current accuracy of
the estimated 3-D structure. This was obtained by exploiting the prediction error
s̃ (in particular the average of its norm over a finite time interval) as an indication
of the current convergence status of the estimation relying, for this, the prediction
error and the pH nature of the error system dynamics.

The next Chapt. 7 will report a thorough experimental validation of all of the
theoretical results obtained in this chapter.
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Chapter 7

Experimental results of coupling
active SfM and IBVS

This section reports the results of several experiments meant to vali-
date the approach proposed in Chapt. 6 for coupling the execution of a VS
task with the concurrent optimization of the 3-D structure estimation. All

experiments were run by making use of the same experimental setup described in
Chapt. 5.

In the reported experiments, we considered, as visual task, the regulation of N =

4 point features πi with, thus, s = (π1, . . . , πN ) ∈ Rm, and Ls = (Ls1 , . . . , LsN ) ∈
Rm×6, m = 8, with Lsi being the standard 2 × 6 interaction matrix for a point
feature (2.10). As for vector χ, we then have χ = (χ1, . . . , χN ) ∈ Rp, p = 4, where
χi = 1/Zi as explained in Sect. 4.5.1. For most of the experiments, the tracked
points were black non-coplanar dots belonging to the surface of a white cube and
with relative 3-D positions Opi (w.r.t. the center of the cube)

Op1 = [−0.03, −0.03, −0.0575]T ,Op2 = [−0.03, 0.03, −0.0575]T ,

Op3 = [0.03, 0.03, −0.0575]T ,Op4 = [0.03, 0.0575, 0.03]T .

Knowledge of these 3-D coordinates was exploited in a standard pose estimation
algorithm for obtaining the ground truth value of χ(t) from the known object model
and the measured features s(t).

Because of the high contrast between black dots and white cube surface, the
segmentation and tracking of the N points could be easily obtained at video-rate
via the blob tracker available in ViSP. Besides easing the image processing step, this
experimental setting made it also possible the reproduction of (practically) identical
initial experimental conditions across the several trials illustrated in the following
sections. The results reported in Sect. 7.3 will instead resort to a KLT tracker for
segmenting and tracking a generic set of points lying on a much less structured
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target object in order to show the viability of our method also in more realistic
situations.

As for what concerns the optimization of the 3-D reconstruction, we note that
each feature point is characterized by its own (independent) eigenvalue σ2

1,i. Opti-
mization of the estimation of the whole vector χ (i.e., of the depth of all points)
was then obtained by considering the average of the N eigenvalues

σ2 =
1

N

N∑
i=1

σ2
1,i

as quantity to be optimized. This obviously corresponds to using the A-optimality
condition introduced in (4.24), normalized w.r.t. the number of points. Being,
obviously,

∇q̇σ2 =
1

N
JTv

N∑
i=1

JTσvi

the acceleration command (6.9) was then simply replaced by

q̈V =
1

N

kσγ

γ + σ2
JTv

N∑
i=1

JTσvi
− kdq̇ (7.1)

during phase 1) of all the following experiments.

The rest of the chapter is organized as follows: Sect. 7.1 is meant to validate
the basic machinery, described in Sect. 6.2, for coupling IBVS execution and opti-
mization of the 3-D structure estimation. Subsequently, in Sect. 7.2, we will report
the results of some experiments using the strategy detailed in Sect. 6.3 for allowing
a smooth activation/deactivation of the camera trajectory optimization as a func-
tion of the current estimation accuracy. This extension is then further validated in
Sect. 7.3 in a more typical experimental scenario. Section 7.4 concludes the chapter
with some final considerations.

Videos for the experiments shown in this chapter can be downloaded from
the web page associated with the publication [7] at http://ieeexplore.ieee.
org. Additional videos are also available at https://www.youtube.com/watch?v=
IYX6C2qYInA and https://www.youtube.com/watch?v=kgoWUu-9fhs.

7.1 Using a basic switching strategy

7.1.1 First set of experiments

In this first set of experiments we aim at illustrating the benefits arising from the
coupling between the execution of a VS task and the concurrent active optimization
of the 3-D structure estimation. To this end, we consider the following four different
cases, all starting from the same initial conditions:
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case I: the full strategy (three phases) illustrated in Sect. 6.2 and Fig. 6.2 is
implemented for regulating the visual error e(t). The estimator (3.11) is
run in parallel to the servoing task for generating the estimated χ̂(t) fed
to all the various control terms. The active optimization of the camera
motion (7.1) takes place for the whole duration of phase 1);

case II: the classical control law (6.4) is implemented for regulating the visual
error e(t). The estimator (3.11) is still run in parallel to the servoing
task for generating the estimated χ̂(t) fed to all the various control terms.
However, in this case, no optimization of the estimation error convergence
is performed;

case III: the classical control law (6.4) is again implemented for regulating the
visual error e(t). However, the estimator (3.11) is not run and vector
χ̂(t) is taken coincident with its value at the desired pose, i.e., χ̂(t) =

χd = const, as customary in many VS applications;

case IV: finally, as a reference ‘ground truth’, the classical control law (6.4) is
again implemented but by exploiting knowledge of the ground truth value
χ̂(t) = χ(t) during the whole servoing execution. This case then rep-
resents the ‘ideal’ behavior one could obtain were χ(t) available from
direct measurement.

The following gains and thresholds were used in the experiments: α = 2000

in (3.11), kp = 0.0225 and kv = 0.3 in (6.4–6.5). Moreover, only for case I, we used
kσ = 20, γ = 0.001 and kd = 18 in (7.1), νT = 0.21 and δT = 0.004 in the flowchart
of Fig. 6.2 and finally kδ = 100 in (6.14). Furthermore, in cases I and II, vector χ̂
was initialized as χ̂(t0) = χd, that is, starting from the (assumed known) value at
the desired pose χd also exploited in case III.
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Figure 7.1 – Regulation of 4 point features. Fig. (a): behavior of the error norm ν(t)

when using the full strategy of Sect. 6.2 and the estimated χ̂(t) (case I – blue line); the clas-
sical controller (6.4) and the estimated χ̂(t) (case II – red line); the classical controller (6.4)
by employing χ̂(t) = χd (case III – green line); the classical controller (6.4) by using the
ground truth χ(t) (case IV – black dashed line). Fig. (b): behavior of the norm of the
approximation error ‖χ̃(t)‖ = ‖χ̂(t)−χ(t)‖ with the same color code. Fig. (c): behavior of
σ2(t) when actively optimizing the camera motion (case I – blue line) or not performing any
optimization (case II – red line). In the previous plots, the (practically coincident) vertical
dashed blue lines represent the switching times between the various control phases used in
case I. Fig. (d): 3-D camera trajectory during case I with arrows representing the camera
optical axis and square and circular markers representing the camera initial and final poses
respectively. The three phases of Sect. 6.2.3 are denoted by the following color code: blue
– phase 1), red – phase 2), green – phase 3). Fig. (e): trajectory of the four point features
in the image plane during case I using the same color code, and with crosses indicating the
desired feature positions. Superimposed, the initial and final camera images. Finally, solid
lines represent the result of (correctly) implementing phase 2), while dashed lines represent
the effects of a direct switch from phase 1) to phase 3) without the action of vector q̈w = q̈δ

in (6.14).

Figures 7.1(a) and 7.1(b) show the evolution of the error norm ν(t) and of the
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estimation error norm ‖χ̃(t)‖ = ‖χ̂(t) − χ(t)‖ for the four cases. Figure 7.1(c)
reports, instead, the evolution of the average eigenvalue σ2(t) for case I (blue line)
and case II (red line), and finally Figs. 7.1(d) and 7.1(e) depict the camera and
feature trajectory for case I.

Let us first focus on Fig. 7.1(b): from the plots one can note how the use of
observer (3.11) in cases I and II makes it possible for the estimation/approximation
error ‖χ̃(t)‖ to converge faster than in case III where convergence is reached only
at the end of the task, when χ(t) → χ̂ = χd (as obvious). Furthermore, the
convergence of ‖χ̃(t)‖ is clearly faster in case I (about 4 s) than in case II (about 12 s,
thus three times slower). This improvement is due to the active optimization of the
camera velocity occurring during phase 1) of case I. Indeed, looking at Fig. 7.1(c),
one can note how the value of σ2(t) of case I (blue line) is approximately 4 times
larger than in case II (red line) for the whole duration of phase 1) as a result of
the more ‘exciting’ trajectory performed by the camera under the action of the
optimization term (7.1).

A similar pattern can also be found in Fig. 7.1(a): indeed, the behavior of
ν(t) for case I (blue line)(i ) quickly reaches a good match with the ideal behavior
of case IV (dashed black line), and, more importantly, (ii ) keeps monotonically
decreasing during all the various phases. This is clearly achieved thanks to the fast
convergence of ‖χ̃(t)‖ → 0 that translates into a fast accurate evaluation of the task
Jacobian Ĵ and any related quantity. On the other hand, due to the larger error
in estimating χ(t), both cases II and III present an initial divergence of the error
norm ν(t) that starts increasing (rather than decreasing as in case I) because of the
poorer approximation in the evaluation of the task Jacobian Ĵ . It is worth noting
how this initial divergent phase has, nevertheless, a shorter duration for case II
w.r.t. case III thanks, again, to the use of observer (3.11) which is eventually able
to provide a sufficiently accurate estimation of χ(t) starting from t ≈ 12 s.

The camera trajectory, depicted in Fig. 7.1(d), is also helpful for better under-
standing the effects of the active optimization of the camera motion during phase 1)
of case I. Note, indeed, how the camera initially moves along an approximately circu-
lar path (blue line) because of the null-space term (7.1) that generates an ‘exciting’
motion for the estimation of the four point depths Zi. This then allows to quickly
reduce the estimation error ‖χ̃(t)‖ as reported in Fig. 7.1(b). It is also possible
to, again, appreciate the benefits of having employed the norm controller (6.5)
during phase 1): indeed, it is only thanks to the large redundancy granted by
controller (6.5) that the camera is made able to follow a quite ‘unusual’ trajec-
tory while, at the same time, ensuring a convergent behavior for the error norm
ν(t) (Fig. 7.1(a)). For completeness, the red line in Fig. 7.1(d) represents (the quite
short) phase 2) of the switching strategy (i.e., the alignment among vectors e and ė),
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while the green line represents phase 3), i.e., the use of the classical controller (6.4)
for completing the servoing task. Finally in Fig. 7.1(e) the image plane trajectory
of the four point features is reported exploiting the same color code of Fig. 7.1(d).

As a supplementary evaluation of the theoretical analysis of Sect. 6.2.3, we now
report, for case I only, an additional experiment aimed at assessing the importance
of having introduced phase 2) in the switching strategy of Sect. 6.2.3 (i.e., of having
enforced the alignment of e and ė before switching to the classical controller (6.4).
To this end, Fig. 7.2(a) shows the behavior of the error norm ν(t) for the previous
case I (blue line) together with the behavior of ν(t) when not implementing phase 2)
but, instead, directly switching from phase 1) to phase 3) (cyan line). The two
(almost coincident) blue vertical lines represent the switch from phase 1) to phase 2)
and then phase 3) for the first experiment, and the direct switch from phase 1)
to phase 3) for the second experiment. One can then note how, in the second
experiment, the error norm ν(t) has a large overshoot when switching to phase 3)
because of the misalignment of vectors e and ė at the switching time. In particular,
this overshoot makes the error norm temporarily increase instead of monotonically
decrease as desired. This overshoot is, instead, clearly not present in the first
experiment where ν(t) keeps (correctly) converging during all phases.

Similarly, Fig. 7.2(b) reports the behavior of ‖δ‖ from (6.13), i.e., the mea-
sure of misalignment among vectors e and ė minimized during phase 2). One can
then verify how, in the first experiment, ‖δ‖ is correctly (and very quickly) mini-
mized at the end of phase 2) thanks to the action of (6.14). Finally, the effects of
implementing/non-implementing phase 2) are also illustrated in Fig. 7.1(e), where
the point feature trajectory with phase 2) activated (solid lines) and deactivated
(dashed lines) are reported. One can again note how, in this latter case, the point
features are subject to a significant overshoot at the switching time which is, instead,
avoided when implementing phase 2).

7.1.2 Second set of experiments

We now discuss a second set of experiments that involve the same four cases I to IV
introduced at the beginning of the previous section but with the camera starting
from a different initial pose and with a different desired configuration sd w.r.t. the
previous run. The results are reported in Fig. 7.3 by following the same pattern
and color codes of the previous Fig. 7.1.

As compared to Fig. 7.1, it is worth noting how the sole case I (blue line in
Fig. 7.3(a)) results in a successful regulation of the visual task error e(t) thanks,
again, to the fast convergence of the estimation error ‖χ̃(t)‖ during the active opti-
mization of phase 1) (blue line in Fig. 7.3(b)). The servoing fails instead in case II
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Figure 7.2 – Importance of implementing phase 2) of Fig. 6.2 in the regulation
of 4 point features. Behavior of the error norm ν(t) (Fig. (a)) and of ‖δ‖, the measure
of misalignment between vectors e and ė (Fig. (b)). In both plots, the blue lines represent
the behavior of case I (full implementation of the switching strategy of Sect. 6.2.3), while
cyan lines represent the direct switch from phase 1) to phase 3) without the action of vector
q̈w = q̈δ in (6.14). The small picture-in-picture plots provide a zoomed view of the switching
phase.

(red line in Fig. 7.3(a)), i.e., when coupling the classical controller (6.4) with ob-
server (3.11) but without optimizing for the convergence rate of ‖χ̃(t)‖. In fact,
in this case, the very small value of σ(t) during the camera motion (red line in
Fig. 7.1(c)) makes the estimation task ill-conditioned w.r.t. noise and other unmod-
eled effects (including the disturbance d(χ̃, t) in (3.12)), resulting in a divergence of
the estimation error ‖χ̃(t)‖ at t ≈ 9 s (red line in Fig. 7.3(b)). On the other hand,
the active optimization of case I is able to increase σ(t) by approximately a factor
of 40 w.r.t. case II, thus ensuring a sufficiently high level of excitation for the cam-
era motion and, consequently, a quick convergence of the estimation error ‖χ̃(t)‖.
Failure of the servoing is finally obtained also in case III, i.e., when exploiting the
exact final value χ̂(t) = χd, because of the large initial error of the visual task that
causes the features to leave the camera FOV (green line in Fig. 7.3(a)).

Finally, Figs. 7.3(d) and 7.3(e) depict the camera and feature trajectories during
case I. One can again appreciate, in Fig. 7.3(d), the initial spiralling motion of the
camera that allows the increase of σ(t) during phase 1). It is also worth noting how,
in case I, the error norm ν(t) keeps a monotonic decrease during the whole motion
(as desired) despite the various switches among the three phases and the ‘unusual’
initial camera trajectory (blue line in Fig. 7.3(a)).

Analogously to what done in Sect. 7.1.1, we conclude by highlighting again
the fundamental role played by phase 2) for ensuring a monotonic convergence of
the error norm ν(t). To this end, Fig. 7.4(a) shows the behavior of ν(t) when
activating (blue line) or not activating (cyan line) phase 2). One can note, again,
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Figure 7.3 – Regulation of 4 point features starting from a different initial camera
pose w.r.t. the experiments reported in Fig. 7.1. The plot pattern and color codes are the
same as in Fig. 7.1. Note how, this time, a correct realization of the servoing task is obtained
only in case I (blue line in Fig. 7.3(a)). In case II, the estimation error ‖χ̃(t)‖ diverges (red
line in Fig. 7.3(b)) because of the too small value of σ2(t) (red line in Fig. 7.3(c)) during
the camera motion which makes the estimation task ill-conditioned. In case III, the visual
task error starts diverging because of the too rough approximation χ̂ = χd and the point
features leave the camera FOV (green line in Fig. 7.3(a)). Note also the initial spiralling
motion of the camera (blue line in Fig. 7.3(d)) that allows maximization of the value of
σ2(t) during phase 1) of case I.
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Figure 7.4 – Importance of implementing phase 2) of Fig. 6.2 in the regulation of
4 point features starting from a different initial camera pose. Behavior of the error
norm ν(t) (Fig. (a)) and of ‖δ(t)‖, the measure of misalignment between vectors e and ė
(Fig. (b)). In both plots, the blue lines represent the behavior of case I (full implementation
of the switching strategy of Sect. 6.2.3), while cyan lines represent the direct switch from
phase 1) to phase 3) without the action of vector q̈w = q̈δ in (6.14). The small picture-in-
picture plots provide a zoomed view of the switching phase.

the large overshoot (and temporary divergence) introduced at the switching time
when parallelism among vectors e and ė is not enforced. Figure 7.4(b) depicts the
associated behavior of the misalignment measure ‖δ(t)‖ that proves, again, how
the action (6.14) during phase 2) (blue line) is able to quickly minimize ‖δ(t)‖ as
desired.

7.1.3 Third set of experiments

In this section, we report the results of two experiments meant to show how even
relatively small inaccuracies in determining the value χd at the desired pose can
cause failure of the servoing when setting χ̂(t) = χd as classically done in many
visual servoing applications. The two experiments involve the same setting of the
previous cases (regulation of 4 point features) and differ from the starting location
of the camera w.r.t. the target object: in the first experiment, the camera starts
(relatively) far from the desired pose while, in the second experiment, the camera
starts at almost the desired pose. In both cases, the classical second order con-
trol (6.4) by taking χ̂ = (Ip + diag(ε))χd with ε ∈ Rp being a random vector with
magnitude 0.09 (thus, simulating an uncertainty of 9% in the accuracy of χd).

Figure 7.5(a) shows the behavior of the error norm ν(t) for both cases: in the
first experiment (blue line), the visual error starts converging from its initial (large)
value but then, at about t ≈ 8 s, the servoing diverges and the features leave the
camera FOV. An even more interesting result is obtained in the second experiment
(red line): in this case, the error ν(t) starts at a very small value since the camera
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Figure 7.5 – IBVS of 4 point features using a constant approximation χ(t) = χd
where the value of χd is corrupted by a relative error of 9%. In the first experiment the
camera starts far from the desired pose, while in the second experiment the camera starts
at almost the desired pose. Fig. (a): behavior of the error norm ν(t) for the first (blue line)
and second (red line) experiments. Because of the approximated value of χd, the servoing
is not able to converge in both cases (thus also when starting very close to the desired
pose), resulting in a loss of tracking for the point features. Fig. (b): image plane trajectory
of the 4 point features during the first experiment. The four crosses indicate the desired
feature positions, and the initial and final (i.e., until loss of tracking) camera images are
superimposed.

is already quite close to its desired pose. However, controller (6.4) is not able to
impose a stable closed-loop behavior, and the error norm starts diverging until loss
of tracking of the feature points at about t ≈ 2.5 s.

These results then provide an experimental demonstration of the effects dis-
cussed in Sect. 2.3.2 and originally introduced in [MMR10]: a (rather small) error
in approximating χd can be sufficient to move part of the eigenvalues of matrix
−J(sd,χd, q)Ĵ(sd, χ̂, q)† to the right-half complex plane, thus resulting in an un-
stable closed-loop dynamics even when starting arbitrarily close to the desired pose.
By, instead, resorting to an online (and optimized) estimation of χ(t), one can ob-
tain a considerably larger degree of robustness against uncertainties in evaluating
χd or similar approximation errors as extensively shown by the previous results.

7.2 Using an adaptive switching strategy

For the experiments in this section, we considered the same experimental setup of
Sect. 7.1, that is, regulation of N = 4 point features belonging to the surface of a
cube. However, we now employed the full adaptive strategy described in Sect. 6.3
for triggering the activation/deactivation of the optimization of the 3-D structure
estimation (switch from phase 3) to phase 1) and vice-versa) and, more in general,
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for tuning its effect (when in phase 1)) as a function of the accuracy in estimating
χ(t)

As done in the previous experiments, we initialized the SfM observer (3.11) with
vector χ̂(t0) taken coincident with the (assumed known) χd at the final pose, and
ŝ(t0) = s(t0). As explained in Appendix A.5.2, this results in a bound ‖χ̃(t0)‖2/α =

5.3e−3 in (6.19). As for the adaptive strategy thresholds, we set E = 10−5 and
E = 10−4. The results of the experiment are reported in Fig. 7.6: during the
trial, the target object is purposely displaced at t ≈ 5.9 s, t ≈ 10.6 s and t ≈
17.2 s for introducing an “external disturbance” able to increase both the servoing
and the estimation errors above their minimum thresholds with a corresponding
(re-)activation of the camera motion optimization.

At the beginning of the motion (phase 3)), the eigenvalue σ2
1 is considerably

small due to the low information content of the camera trajectory (Fig. 7.6(c)) and,
analogously to case II in Sect. 7.1.2, the estimation error χ̃(t) even starts diverging
because of measurement noise, the disturbance term d in (3.12), and other non-
idealities (Fig. 7.6(b)). At time t ≈ 1.1 s, however, the quantity E(t) increases over
the threshold E because of the high uncertainty in the estimated χ̂ (Fig. 7.6(d)),
thus triggering the switch to phase 1) and the corresponding optimization of the
camera motion. The optimization action (6.18) results in a fast increase of the
mean eigenvalue σ(t) (Fig. 7.6(c)) and, as a consequence, in a fast convergence of
the estimation error χ̃(t) (Fig. 7.6(b)) that practically vanishes at time t ≈ 4 s.
As a consequence, E(t) decreases again below the minimum threshold E indicating
that a sufficient level of accuracy has been reached. This then triggers the (very
quick) switch to phase 2) and, then, the switch back to phase 3) at t ≈ 4.4 s. Note
how the adaptive gain kE(E) used in (6.18) correctly (and smoothly) activates and
deactivates the optimization of σ2 during phase 1) as clear from Fig. 7.6(e).

It is worth noting that the switch from phase 1) to phase 3) occurs when the error
norm ν(t) is still well above the threshold νT indicating singularity of controller (6.5).
Therefore, the distortion of the camera trajectory (depicted in Fig. 7.6(f)), needed
to maximize σ2, lasts considerably less than in the non-adaptive case where the
switch would have occurred only at ν(t) = νT . Finally, one can also appreciate
how the error norm ν(t) correctly converges monotonically towards zero once the
estimation error χ̃(t) becomes small enough, i.e., for t ≥ 4 s, see Fig. 7.6(a). At
t ≈ 5.9 s the target object is purposely displaced, as explained, causing both the
servoing and the estimation error to grow with a corresponding increase of E(t)

above the threshold E. This, in turn, triggers the switch to phase 1) at t ≈ 6.1 s

for (re-)activating the optimization of the camera motion until convergence of the
estimation error is again reached at t ≈ 9.1 s. The same pattern then repeats two
more times at t ≈ 10.6 s and t ≈ 17.2 s because of the two additional displacements
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of the target object during the camera motion.

As explained in Sect. 6.3, the switch from phase 1) to phase 3) (and vice-versa)
is also a function of the current value of the error norm ν(t) for avoiding possible
singularities in (6.5). This is, indeed, the case of the third switch from phase 1)
to phase 3) triggered at t ≈ 13.3 s by the error norm falling below the threshold
νT with E(t) still above the minimum value E. Similarly, the fourth switch from
phase 3) to phase 1) at t ≈ 17.9 s is triggered only when ν(t) ≥ νT even though E(t)

has already grown over the threshold E. By looking at Fig. 7.6(d), it is finally worth
noting how E(t) always keeps below the theoretical bound ‖χ̃(t0)‖2/α = 5.3e−3

given in (6.19) despite the three intentional target displacements occurred during
the servoing (see Appendix A.5.2).

7.3 Using a standard Kanade Lucas Tomasi feature
tracker

This last experiment is meant to illustrate the feasibility of our approach in more
realistic conditions compared to the use of simple black dots on a white background
as done so far. To this end, we considered regulation of 10 point features belonging
to a much less structured object, that is, the shrunken piece of textured paper shown
in Fig. 7.7(g). Extraction and tracking of the 10 features was achieved by exploiting
the well-known KLT algorithm implemented in OpenCV. Finally, we made use of
the threshold E = 0.0015 and E = 0.03, and initialized χ̂(t0) = χd as before, with,
in this case, ‖χ̃(t0)‖2/α = 6.3e−3 for bound (6.19).

Figure 7.7 reports the results of the experiment: the robot starts in phase 3)
driven by the classical law (6.4) but, being the mean eigenvalue σ2 rather small
during this phase, the estimation error χ̃(t) does not converge, and likewise the error
norm ν(t) because of the too rough approximation in χ̂. However, the quantity E(t)

starts to grow and, at t ≈ 1 s, it exceeds the threshold E triggering the switch to
phase 1) (Fig. 7.7(d)). During this phase (which lasts until t ≈ 5 s) the optimization
of the camera motion is then able to maximize the eigenvalue σ2 resulting in a
quick convergence of the estimation error that practically vanishes at t ≈ 4.5 s.
Similarly, the quantity E(t) first reaches a maximum peak value (which is anyway
lower than the theoretical bound (6.19) as expected), and then starts decreasing
back to zero thus allowing a smooth deactivation of the optimization action thanks
to the adaptive gain kE (Fig. 7.7(e)). Finally, at t ≈ 5 s the error norm ν(t) falls
below the threshold νT inducing a quick switch to phase 2) (alignment of e and ė)
followed by a last switch back to phase 3) until completion of the servoing task.

Looking at these results, it is then possible to appreciate how the overall behavior

168



7. Experimental results of coupling active SfM and IBVS

time [s]
0 20 40 60

8

0

0.1

0.2

0.3

0.4

0.5
ph. 1)
ph. 2)
ph. 3)

(a)

time [s]
0 20 40 60

ke @k

0

1

2

3

4
ph. 1)
ph. 2)
ph. 3)

(b)

time [s]
0 20 40 60

<
2

#10 -3

0

1

2

3

4

5
ph. 1)
ph. 2)
ph. 3)

(c)

time [s]
0 20 40 60

E

#10 -3

0

0.3

0.6

0.9

1.2
ph. 1)
ph. 2)
ph. 3)

(d)

time [s]
0 20 40 60

k
E
(E

)

0

0.2

0.4

0.6

0.8

1
ph. 1)
ph. 2)
ph. 3)

(e)

0.4

Yw [m]

0.2
0

-0.20.4
0.2

0

Xw [m]

-0.2
-0.4

-0.6

-0.4

-0.2

0

Z
w

[m
]

ph. 1)
ph. 2)
ph. 3)

(f)

Figure 7.6 –Regulation of 4 point features using the adaptive strategy of Sect. 6.3.
The three phases of Fig. 6.4 are denoted by the following color code: blue – phase 1), red –
phase 2), green – phase 3). Fig. (a): behavior of the error norm ν(t) with superimposed a
horizontal dashed black line indicating the threshold νT . Fig. (b): behavior of the norm of
the estimation error ‖χ̃(t)‖ = ‖χ(t)− χ̂(t)‖. Fig. (c): behavior of the mean eigenvalue σ2.
Fig. (d): behavior of E(t) with, superimposed, two dashed horizontal lines indicating the
minimum and maximum thresholds E and E. Fig. (e): behavior of the adaptive gain kE(E).
In all of the previous plots, vertical dashed lines represent the times at which the target
object was intentionally displaced. Fig. (f): camera 3-D trajectory with arrows representing
the camera optical axis and square and circular markers representing the camera initial and
final poses, respectively.
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of the adaptive strategy is essentially equivalent to what obtained in the previous
case studies, thus confirming that the proposed approach can be seamlessly applied
to more complex/realistic situations. We also believe it is particularly worth noting
how, again, the error norm ν(t)(i ) starts decreasing as soon as the estimation error
χ̃(t) becomes small enough in t ≈ 3 s (Fig. 7.7(a)), and (ii ) keeps a monotonic
convergence (as desired) until the end of the servoing despite the various switches
among the phases and the ‘distorted’ camera motion during phase 1).
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(g)

Figure 7.7 – Regulation of 10 point features on an unstructured object using a KLT
tracker and the adaptive strategy of Sect. 6.3. The same quantities of the previous Fig. 7.6
are reported here with the only exception of Fig. (g) that depicts the trajectory of the
10 point features on the image plane with crosses indicating the desired feature position
and, superimposed, two (semi-transparent) camera screenshots taken at the initial and final
robot configuration.

7.4 Conclusions

This chapter was entirely dedicated to the experimental validation of the strategy
introduced in Chapt. 6 for coupling the execution of a IBVS task with the con-
current active optimization of the camera velocity meant to maximize performance
in the reconstruction of 3-D scene. The reported experimental campaign clearly
shows, in our opinion, the benefits gained by using the proposed strategy in terms
of:(i ) obtaining a faster convergence of the structure estimation error during the ser-
voing transient w.r.t. non-active cases, (ii ) imposing an improved closed-loop IBVS
behavior by significantly mitigating the negative effects of an inaccurate knowledge
of the scene structure, (iii ) minimizing the deformation of the camera trajectory
(consequence of the active SfM action) thanks to the adaptive activation/deacti-
vation of the SfM optimization. The last point, in particular, allows to seamlessly
deal with the unexpected growth of the estimation error due to unpredicted distur-
bances (the target object being purposely displaced). The experiments were run
under different initial camera configurations and using different feature trackers (a
simple dot tracker and a more standard KLT one) demonstrating the robustness of
our approach.
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Chapter 8

Conclusions and future work

In this last chapter of the thesis, we wish to summarize the main theoretical
and experimental contributions of this work highlighting some of the issues that
still remain unsolved and suggesting, whenever possible, some directions for

improvement and further investigation.

8.1 Summary and contributions

The goal of this thesis was to investigate the problem of active sensing and control of
robotic systems, in particular by emphasizing the relation between the two aspects.
After a short introduction to the basic tools that would serve our analysis, we started
the thesis by focusing on the estimation problem. In this context, we proposed to
employ a nonlinear observer stemming from the adaptive control literature (see,
e.g., [MT95]) and already exploited in [RDO08, DOR08] for SfM applications. The
advantage of this choice lies in the fact that, for such an observer, one can fully
characterize and control the dynamics of the estimation error. In particular we
demonstrated that:

(i) the dynamics of the estimation error has a clear port-Hamiltonian form;

(ii) by tuning the observer gains online as a function of measurable quantities only,
one can impose to the estimation error a dynamics (approximately) equivalent
to that of a second order linear system with assigned poles and, in particular,

(iii) by actively controlling the direction of the camera linear velocity one can max-
imize the performance of the estimation for a given threshold on the maximum
admissible control effort (the camera velocity norm);

(iv) in addition to this, one can also gain additional performance by adaptively
changing the measurements that are used for the estimation, e.g., by using
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a generalized definition of image moments with some weight parameters that
can be changed online to maximize the “excitation” of the system.

The theoretical results were then applied to the reconstruction of the structure for
different geometric primitives hereafter summarized:

(v) point features: we compared the effects of using a planar and a spherical pro-
jection model showing how the former can potentially lead to faster conver-
gence of the estimation error at the cost of a higher sensitivity to disturbance
and noise w.r.t. the latter.

(vi) planar scenes: we proposed a comparison between the standard homography
based reconstruction technique and two “active” strategies based on either
the extraction of a plane from an actively estimated point cloud (using least-
squares techniques) or on the direct estimation of the plane parameters from
discrete or dense image moments. Finally, as already mentioned, we suggested
an adaptive strategy to automatically select on line the best image moments
to use for the estimation.

(vii) spherical objects: we showed that, using a suitable parametrization suggested
by [FC09], the estimation problem can be recast in such a way that the only
unknown is the constant sphere radius, thus granting globally exponential
stability properties of the observer. Due to the spherical symmetry in this case,
the direction of the camera motion does not have any effect on the estimation
performance, however, it is still possible to tune at will the “damping factor”
of the error dynamics.

(viii) cylindrical objects: we proposed a novel parametrization that, similarly to the
sphere case, reduces the estimation problem to that of retrieving a constant
parameter: the cylinder radius. This results, again, in a globally exponential
stability of the observer. Differently from the spherical case, however, here
the estimation performance does depend on the camera motion and thus our
active strategy allows, again, to maximize the convergence rate.

We reported an extensive simulative and experimental validation of our approach
that, in our opinion, fully confirmed the validity of the theoretical claims.

After this, we moved our attention to the more challenging, but also more in-
teresting, problem of simultaneous structure estimation and control of a robot. We
considered, in particular, the case of a IBVS control task for which we showed that:

(ix) the performance of a IBVS scheme clearly benefits from the use of an active
strategy that deforms online the trajectory of the camera, during the servo-
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ing transient, so as to maximize the observability of the unmeasurable 3-D
quantities that appear in the feature interaction matrix;

(x) the redundancy of the system can be conveniently maximized by using a sec-
ond order extension of the strategy originally proposed in [MC10] which grants
a large null-space projection operator by considering the regulation of the vi-
sual task norm instead of the task itself;

(xi) the deforming effects on the camera trajectory of the active observability max-
imization strategy can be effectively reduced by using an adaptive technique
that allows to activate/deactivate, and, more in general, tune it as a function
of the current estimation status.

Again, all of the theoretical claims were supported by a number of different experi-
ments run on a real robotic manipulator equipped with a in-hand camera. The re-
sults demonstrated, in particular, the robustness of the proposed approach w.r.t. un-
modeled disturbances such as sudden unexpected displacements of the target object
used for the definition of the visual task.

8.2 Open issues and future perspectives

The results of this thesis, although encouraging, also show a number of limitations
that affect our approach.

First of all the camera trajectory optimization strategy that we propose is local.
In fact it is based on the greedy optimization of the instantaneous version of the PE
condition (3.13). This has two drawbacks:(i ) it can, in general, only produce locally
optimal solutions and might fail to produce a globally optimal camera trajectory
and, more importantly, (ii ) it does not allow to tackle applications in which the
number of available measurements is smaller than the number of unknown since,
in this case, (3.13) is never full-rank and its smallest eigenvalue is identically zero.
To overcome this limitation one should consider the original integral version of the
PE condition (3.9) (we remind the reader that this is the only necessary condition
for convergence of the estimation, with (3.13) being, instead, a sufficient but not
necessary one). The error transient dynamics analysis proposed in Sect. 4.2 could
be generalized by using averaging techniques [SB11], i.e. by considering the system:

˙̃sav = lim
T→∞

∫ t+T

t

(
−Hs̃+ ΩT χ̃

)
dτ = fs̃av(s̃av, χ̃av)

˙̃χav = lim
T→∞

∫ t+T

t
(−αΩs̃+ d) dτ = fχ̃av(s̃av, χ̃av)
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instead of (3.12). In fact, we expect the eigenvalues of this system to be related to
the PE integral condition (3.9). Note however that the maximization of (some norm
of) (3.9) requires, as already stressed, the evaluation of matrix Ω(τ) in the future,
i.e. for τ > t. This, in turn, requires a prediction of the future measurements s(τ) for
τ > t which is only possible if the structure of the scene (χ) is known. In some works,
such as, e.g. [WM13, WSM14] this issue is solved by planning and executing multiple
experimental trajectories, each time leveraging the information retrieved during
the previous experiment to obtain a better estimation of the unknown quantities
that is then exploited in the new planning stage. The possible solution that we
envision, instead, would employ a Model Predictive Control (MPC)-like strategy
[GPM89, LHD06]: the optimization of the camera trajectory could be done, at time
t, by maximizing (3.9) over a finite horizon T , using the current estimation χ̂(t) to
predict the future measurements s(τ), τ ∈ [t, t + T ]; only a small portion (lasting,
say ∆t� T ) of the resulting trajectory would, however, actually be executed, this
would allow to collect some additional information about χ that would result in an
improved estimation χ̂(t + ∆t); the optimization process would then be repeated
again, based on this more accurate estimation of the scene 3-D geometry, until full
convergence of the estimation error.

Another limitation of our approach is the fact that we do not explicitly model the
effect of noise. To cope with this, one could adopt a probabilistic estimation/control
framework instead of the fully deterministic one proposed in this work. On the one
hand this would potentially result in improved robustness w.r.t. non deterministic
disturbances; on the other hand, however, one would probably have to give up on a
formal characterization of the estimation error dynamics such as the one proposed
here. An approach that we find particularly interesting in this context, because of
its potential to address a large number of applications, is that of POMDPs. The
significant required computational effort remains, however, and to the best of our
knowledge, a major limitation of this approach.

As for the estimation problem, we are currently investigating novel strategies for
eliminating (or reducing to the minimum) the need of preliminary image processing
techniques for extraction and tracking of features. We are, in particular, interested
in the class of direct/photometric methods [HS81, MKS89, CM11, BCM13] in which
the camera images (i.e. the intensity level of each pixel) are used directly “as they
are” to estimate the scene or control the robot motion. We believe that the use of
photometric information directly could allow the estimation of a dense pixel-level
depth map in an extremely efficient way. In fact, if one can ensure that the esti-
mation algorithm can be run for each pixel using information that is both local in
space (e.g. it uses the intensity level of the neighbour pixels only) and in time (us-
ing recursive estimation techniques) then the resulting observer would be perfectly
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suitable for a highly parallel implementation on parallel hardware architectures such
as FPGAs or GPUs with potentially extremely high performance both in terms of
computation time and in terms of energy efficiency, see [AAM14]. These factors are
particularly crucial for embedded systems applications. Some preliminary results
in this context can be found in Appendix B.

As for the last part of this thesis, we note that the stability properties of the
coupling between active SfM and IBVS are still to be investigated. In fact, due
to the nonlinear dynamics of the system, one can not invoke, as in the linear case,
the principle of separation: the fact that both the SfM and IBVS algorithms are
separately stable does not imply that the overall system will converge. Although
the experimental results are encouraging from this point of view, a more formal
analysis should be done in the future. In a similar way, we are also concerned about
the possibility that the active optimization of the estimation performance might
excessively deform the camera trajectory to the point that, e.g. the camera loses
track of the features or the robot reaches one of the joint limits. In this respect
two possible approaches could be taken. The first possibility would be to use a
more advanced kinematics resolution framework such as, e.g., the ones proposed in
[MC07, MKK09], that allow to deal with the presence of multiple motion constraints
that can be activated/deactivate online based on priorities and on the system status.
Another possibility for dealing with the limited camera FOV would be to employ
one of the techniques proposed in, e.g., [FC05, CDW+14] to allow for a temporary
loss of the feature track by resorting on a prediction of the feature motion. We note
that such a prediction could obviously benefit from the observability maximization
strategy proposed here since it would be based on the most recent estimation of the
3-D parameters associated with the features that went out of the FOV.

Another interesting direction, certainly worth further investigation, is the adap-
tion of the proposed machinery to mobile and flying robots. We have already briefly
commented that the difficulty with this kind of platforms mainly comes from the
presence of non-holonomic constraints and non negligible dynamics as well as from
the higher level of non idealities that affect their actuation which results in the
difficulty of retrieving a reliable estimation of the camera velocity, especially for
its linear component (for the angular one, the use of good quality gyroscopes can
alleviate this issue). Usually a measurement of the camera acceleration is, instead,
more accessible thanks to the presence of on-board accelerometers. The nonlinear
observer exploited in this work can be extended to use acceleration measurements
instead of the camera linear velocity (see [GBSR15]). Note, however, that, in this
case, the PE condition would impose constraints on the camera acceleration (e.g.
the robot needs to keep accelerating during the estimation, see again [GBSR15])
that are, in general, harder to deal with from a practical point of view than the
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velocity ones, especially if the instantaneous version of the PE condition (3.13) is
considered.

Finally, the use of mobile and flying robots also opens the way to a number
of new potential applications of the proposed machinery in the context of multi-
robot systems. In many situations, in fact, a team of robot is required to perform
some collaborative estimation task concerning either the internal formation state
(e.g. estimation of the degree of connectivity [RFSB13] or of the rigidity [ZFBR14]
or of the scale [ZFR14] of the formation) or some external quantity (e.g. local-
ization of the formation in the environment [NRM09] and/or reconstruction of a
3-D scene [TL05] and so on). In these applications, the estimation problem is typ-
ically nonlinear and the trajectory followed by the agents does have an effect on
the observability of the system so that the use of an active strategy for deciding
an optimal motion policy can have a significant impact, especially considering the
high number of DOFs that these systems typically have. For instance, the authors
of [MM13] use simplified process and measurement models to address the problem
of controlling the motion of a flock of aerial vehicles in order to minimize the un-
certainty in both agent self-localization and multiple target tracking. The case of
multi-robot systems also introduces an additional challenge: for most applications,
due to technological limitations and scalability considerations, it is not possible (or
at least not desirable) to rely on a central node that processes all the information
collected by the agents. Each of the agents should instead be able to independently
perform the estimation task and take decisions as to which trajectory to follow in
a completely decentralized way using only local information collected by its own
sensors or by a subset of agents in its neighbourhood.
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Appendix A

Technical details

This appendix includes additional technical details about the derivations
and results contained in the rest of thesis. The material included here is
not essential for the understanding of the main results, but provides further

insights to the interested reader.

A.1 Derivation of the optimal Kalman-Bucy filter

This section contains some additional technical details concerning the derivation of
the optimal Kalman Filter (KF) equations for continuous-time, linear time-varying
systems. The developments in this section are mainly based upon [AT67] which is
extended here to the case of correlated input and measurement noise. Alternative
derivations of the optimal KF equations can also be found in the original work
[KB61] as well as in many other optimal estimation textbooks, such as [LXP07].

A.1.1 Propagation equation for the error covariance matrix

We are interested in finding the dynamic differential equation governing the evolu-
tion of the estimation error covariance matrix Σ(t) = E

{
x̃(t)x̃(t)T

}
. Thanks to

the linearity of the derivative and expected value operations one can write

Σ̇(t) = E

{
d

dt

[
x̃(t)x̃(t)T

]}
= E

{
x̃(t) ˙̃x(t)

T
+ ˙̃x(t)x̃(t)T

}
= E

{
x̃(t) ˙̃x(t)

T
}

+
(

E
{

x̃(t) ˙̃x(t)
T
})T (A.1)

Plugging (3.29) in (A.1), and dropping time dependence, one obtains

E
{

x̃(t) ˙̃x(t)
T
}

= E
{

x̃[(A−KC) x̃− (G−KH)w +Kv]T
}

= Σ(A−KC)T − E
{
x̃wT

}
(G−KH)T + E

{
x̃vT

}
KT .
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The solution of (3.29) can be written as

x̃(t) = Φ(t, t0)x̃(t0) +

∫ t

t0

Φ(t, τ){K(τ)v(τ)− [G(τ)−K(τ)H(τ)]w(τ)}τ dτ

where Φ(t, τ) is the state transition matrix of (A−KC), therefore one can write

E
{

x̃(t)w(t)T
}

= Φ(t, t0) E
{

x̃(t0)w(t)T
}

+

∫ t

t0

Φ(t, τ)K(τ) E
{
v(τ)w(t)T

}
dτ

−
∫ t

t0

Φ(t, τ) [G(τ)−K(τ)H(τ)] E
{
w(τ)w(t)T

}
dτ.

(A.2)

Since x(t0) and w(t) were assumed to be independent, E
{

x̃(t0)w(t)T
}

= ��Oq×w and
the first term in (A.2) disappears. Using (3.27), equation (A.2) reduces to

E
{
x̃wT

}
=

∫ t

t0

Φ(t, τ) {K(τ)M(t)− [G(τ)−K(τ)H(τ)]Q(t)} δ(t− τ) dτ

=
1

2
KM − 1

2
(G−KH)Q

because the integral interval stops exactly at the impulse position and therefore we
consider only half of the impulse weight. A similar strategy can be used to show
that

E
{
x̃vT

}
=

1

2
KR− 1

2
(G−KH)MT

so that one can conclude

Σ̇ = (A−KC) Σ + Σ(A−KC)T + (G−KH)Q(G−KH)T

+KRKT −KM(G−KH)T − (G−KH)MTKT .
(A.3)

A.1.2 Derivation of the optimal Kalman Filter gain

Given the matrix differential equation (A.3) with the initial condition Σ(t0) = Σ0,
we seek to find the optimal gain matrix K(t), t ∈ [t0, tf ] that minimizes, at the
terminal time tf , the cost functional

J = E
{

x̃(tf )T x̃(tf )
}

= E
{

tr
[
x̃(tf )x̃(tf )T

]}
= tr (Σ(tf )),

where tr (·) indicates the trace operation. As suggested in [AT67], this problem
can be solved by regarding it as an optimal control problem where the elements
of matrix K(t) are the “control variables” to be optimized w.r.t. a cost functional
defined in terms of the “state variables” given by the elements of Σ(t). One can
then resort on the Pontryagin’s minimum principle [PBGM62] to find the optimal
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solution. To this end we define a co-state matrix P (t) ∈ Rq×m and the Hamiltonian
function

H(t) = tr
[
Σ̇(t)P (t)T

]
and the we impose the Pontryagin’s necessary optimality conditions

∂H(t)

∂K(t)

∣∣∣∣K(t)=K̊(t)

Σ(t)=Σ̊(t)

= ��Oq×m

˙̊
P (t) = − ∂H(t)

∂Σ(t)

∣∣∣∣K(t)=K̊(t)

Σ(t)=Σ̊(t)

P̊ (tf ) =
∂J

∂Σ(tf )

∣∣∣∣K(t)=K̊(t)

Σ(t)=Σ̊(t)

(A.4a)

(A.4b)

(A.4c)

where (̊·) indicates the optimal value of the corresponding quantity and we used the
concept of gradient matrix as in [AT67], e.g.

∂H(t)

∂K(t)
=


∂H(t)
∂K1,1(t) . . . ∂H(t)

∂K1,m(t)
...

. . .
...

∂H(t)
∂Kq,1(t) . . . ∂H(t)

∂Kq,m(t)

 ∈ Rq×m.

From (A.3) and using the matrix differentiation rules in [AT67], (A.4b) returns the
matrix Ordinary Differential Equation (ODE)

˙̊
P (t) = −P̊ (t)T

[
A(t)− K̊(t)C(t)

]
−
[
A(t)− K̊(t)C(t)

]T
P̊ (t). (A.5)

Moreover, from (A.4c), one obtains that P̊ (tf ) = Iq. Since (A.5) is linear and P̊ (tf )

is symmetric and positive definite, then one also has P̊ (t) = P̊ (t)
T � 0,∀t ∈ [t0, tf ].

Finally, using again (A.3), the optimality condititon (A.4a) results in

P̊
[
−ΣCT −G

(
QHT +MT

)
+ K̊

(
R+HQHT +HMT +MHT

)]
= ��Oq×m.

Since we have already demonstrated that P̊ (t) is positive definite, we canclude that
the optimal gain is given by

K̊ =
[
ΣCT + M̌

]
Ř−1 (A.6)

with
M̌ = G

[
QHT +MT

]
,

Ř = HQHT +R+HMT +MHT .

Note that the Pontryagin’s minimum principle imposes only necessary optimal-
ity conditions. Nevertheless, in the case of Kalman filtering, these conditions are
also sufficient to prove optimality as discussed in [AT67].
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A.2 Dynamics of the weighted image moments

Let 

mx
ij =

∞∑
k=1

∂w

∂x
(xk, yk, t− tk)xiky

j
k

my
ij =

∞∑
k=1

∂w

∂y
(xk, yk, t− tk)xiky

j
k

mt
ij =

∞∑
k=1

∂w

∂t
(xk, yk, t)x

i
ky
j
k

(A.7)

and χ = n/d = (A, B, C). By leveraging on the developments of [TC05], the
dynamics of the (i, j)-th weighted moment (4.49) is given by

ṁij = [mvx mvy mvz mwx mwy mwz]

[
v

ω

]
+mt

ij (A.8)

with

mvx =A(−imi,j −mx
i+1,j) +B(−imi−1,j+1 −mx

i,j+1)

+ C(−imi−1,j −mx
i,j)

mvy =A(−jmi+1,j−1 −my
i+1,j) +B(−jmi,j −my

i,j+1)

+ C(−jmi,j−1 −my
i,j)

mvz =A(jmi+1,j + imi+1,j +mx
i+2,j +my

i+1,j+1)

+B(imi,j+1 + jmi,j+1 +mx
i+1,j+1 +my

i,j+2)+

+ C(jmi,j + imi,j +mx
i+1,j +my

i,j+1)

mwx = jmi,j+1 + imi,j+1 + jmi,j−1 +mx
i+1,j+1 +my

i,j +my
i,j+2

mwy = − imi+1,j − jmi+1,j − imi−1,j −mx
i,j −m

y
i+1,j+1 −m

x
i+2,j

mwz = imi−1,j+1 − jmi+1,j−1 −my
i+1,j +mx

i,j+1.

We can note that the dynamics (A.8) involves moments of order up to (i+j+2)

associated to the terms mx
ij and m

y
ij . Also, it is easy to check that in the unweighted

case (w ≡ 1 and mx
ij = my

ij = mt
ij ≡ 0), one obviously recovers the classical moment

dynamics reported in [TC05].

A.3 Time-derivative of the limb surface parameters
for a spherical target

Differentiation of χ from (4.69) w.r.t. time yields

χ̇ =
ṗ0K − p0K̇

K2
=
ṗ0K − 2p0p

T
0 ṗ0

K2
(A.9)
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which, being ṗ0 = −v− [ω]× p0 and exploiting the property pT0 [ω]× p0 = 0, can be
rewritten as

χ̇ = − v
K
−

[ω]× p0

K
+ 2

p0p
T
0 v

K2
= − v

K
− [ω]×χ+ 2χχTv. (A.10)

Letting sz = Z0/R (sz > 1), one also has

χTχ− 1

s2
z

χ2
z =

X2
0 + Y 2

0 + Z2
0

K2
− R2

Z2
0

Z2
0

K2
=

1

K
. (A.11)

This then shows how 1/K can be expressed in terms of χ and of s2
z, with sz being

directly obtainable from image measurements, as shown in [FC09] and further dis-
cussed in (4.70). Having estimated χ, one can consequently retrieve p0 = χK and

R =
√
pT0 p0 −K.

A.4 Estimation of the limb surface parameter for a
cylindrical target

In order to estimate the parameters of the limb surface associated to a cylindrical
object, one could consider as measurement the 2 + 2 angle-distance parameters
(θi, ρi) of the straight lines resulting from the projection of the cylinder on the
image plane. From [CBBJ96, Cha04], the interaction matrix in this case is given
by:

L =


λρ1c1 λρ1s1 −λρ1ρ1 (1 + ρ2

1)s1 −(1 + ρ2
1)c1 0

λθ1c1 λθ1s1 −λθ1ρ1 −ρ1c1 −ρ1s1 −1

λρ2c2 λρ2s2 −λρ2ρ2 (1 + ρ2
2)s2 −(1 + ρ2

2)c2 0

λθ2c2 λθ2s2 −λθ2ρ2 −ρ2c2 −ρ2s2 −1

 (A.12)

with si = sin θi, ci = cos θi, and{
λρi = − (χxρici + χyρisi + χz)

λθi = χyci − χxsi
. (A.13)

Therefore, being (A.12–A.13) linear in the unknown χ, one can again apply the
estimation scheme (3.11) with s taken as the vector of measured quantities on the
image plane, i.e., s = (ρ1, θ1, ρ2, θ2).

As for the dynamics of χ, since (4.69) still holds for a cylindrical object (see
[Cha04]), one can again exploit (A.9) with, however, in this case

ṗ0 = −
(
I3 − aaT

)
v − [ω]× p0

and thus
χ̇ = −

(
1

K
I3 − 2χχT

)(
I3 − aaT

)
v − [ω]×χ.

Finally, one can invoke (A.11) in order to express 1/K as a function of χ and s2
z,

with sz being the third element of vector s in (4.81).
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A.5 Derivation of equation (4.84)

We note that the cylinder axis a can be determined by the intersection of two planes
Pi : nTi X − di = 0, i = 1, 2, with

n1 =
[a]× p0

‖p0‖
, d1 = 0, n2 = − p0

‖p0‖
, d2 = ‖p0‖, (A.14)

see Fig. 4.5. In particular, plane P1 passes through the camera optical center, it is
orthogonal to plane P2, and both planes contain the axis a passing through p0 (by
construction).

Since Rs = p0 and p0 belongs to the cylinder axis a, we have RnTi s − di = 0,
i = 1, 2 (the point Rs belongs to both planes Pi). Taking the time derivative of
these latter constraints (with R = const), one has

nTi ṡ =
1

R
ḋi − sT ṅi, i = 1, 2. (A.15)

Since ṅi = [ni]×ω and ḋi = nTi v (see [RDO08]), eq. (A.15) can be rewritten as

nTi ṡ =
1

R
nTi v − sT [ni]×ω, i = 1, 2. (A.16)

Finally, from aTp0 = 0 and p0 = Rs we have aTs = 0 implying that

aT ṡ = −sT ȧ = −sT [a]×ω. (A.17)

We now note that equations (A.16–A.17) provide three linear constraints for ṡ
which, by using (A.14), can be rearranged in matrix form as the following linear
system 

pT0
‖p0‖
aT(

[a]× p0

)T
‖p0‖

 ṡ =
1

R


pT0
‖p0‖

v

−pT0 [a]×ω

‖p0‖aTω +

(
[a]× p0

)T
‖p0‖

v

 . (A.18)

It is easy to verify that the 3×3 matrix on the left hand side of (A.18) is orthonormal:
by then solving (A.18) for ṡ and performing some simplifications we finally obtain
the sought result

ṡ =

[
− 1

R

(
I3 − aaT

)
[s]×

]
u.

A.5.1 Proof of Prop. 6.2

Let Φ(t) = [Φij(t)] ∈ R2×2 be the state-transition matrix associated to the linear
time-invariant system (6.10). From classical system theory [Kai98], we have

ν‖e‖(t) = Φ11(t− t1)ν1 + Φ12(t− t1)ν̇1, ∀t ≥ t1, (A.19)
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where we set ν1 = ν(t1) and ν̇1 = ν̇(t1) for simplicity.

We also note that (6.11) is governed, component-wise, by the same dynamics
of (6.10). Therefore, the solution of (6.11) is

e∗(t) = Φ11(t− t1)e1 + Φ12(t− t1)ė1, ∀t ≥ t1, (A.20)

where, again, e1 = e(t1) and ė1 = ė(t1).

If e1 and ė1 are parallel then (6.12) holds: assuming e1 and ė1 are parallel,
vector ė1 can be expressed as

ė1 = ‖ė1‖
e1

‖e1‖
= ‖ė1‖

e1

ν1
. (A.21)

Therefore, (A.20) becomes

e∗(t) =

(
Φ11(t− t1) + Φ12(t− t1)

‖ė1‖
ν1

)
e1, ∀t ≥ t1,

resulting in an error norm ‖e∗(t)‖

‖e∗(t)‖ = ν∗(t) =

(
Φ11(t− t1) + Φ12(t− t1)

‖ė1‖
ν1

)
‖e1‖

=

(
Φ11(t− t1) + Φ12(t− t1)

‖ė1‖
ν1

)
ν1

= Φ11(t− t1)ν1 + Φ12(t− t1)‖ė1‖, ∀t ≥ t1.

(A.22)

Now, being ν = ‖e‖ one has

ν̇1 =
eT1 ė1

ν1
(A.23)

which, exploiting (A.21), yields ν̇1 = ‖ė1‖eT1 e1/ν
2
1 = ‖ė1‖. Plugging ‖ė1‖ = ν̇1

in (A.22) finally results in

ν∗(t) = Φ11(t− t1)ν1 + Φ12(t− t1)ν̇1, ∀t ≥ t1,

thus showing that ν∗(t) ≡ ν‖e‖(t), i.e. fulfilment of condition (6.12) as claimed.

If (6.12) holds then e1 and ė1 are parallel: from (A.19–A.20) we have (omit-
ting the time dependency for brevity)

ν2
‖e‖ = Φ2

11ν
2
1 + 2Φ11Φ12ν1ν̇1 + Φ2

12ν̇
2
1 (A.24)

and
‖e∗(t)‖2 =Φ2

11e
T
1 e1 + 2Φ11Φ12e

T
1 ė1 + Φ2

12ė
T
1 ė1

=Φ2
11ν

2
1 + 2Φ11Φ12ν1ν̇1 + Φ2

12ė
T
1 ė1

(A.25)
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where (A.23) was used. By imposing condition (6.12) to (A.24–A.25) we then have

ν2
‖e‖ ≡ ‖e

∗(t)‖2 =⇒ Φ2
12ν̇

2
1 ≡ Φ2

12ė
T
1 ė1 =⇒ ν̇1 = ‖ė1‖. (A.26)

Since ν̇1 is just the projection of vector ė1 along the direction of e1 (see again (A.23)),
condition (A.26) necessarily requires vectors e1 and ė1 to be parallel as claimed.

A.5.2 Properties of E(t)

Relationship between E(t) and the estimation error χ̃(t): if σ2
1(t) > 0

during the camera motion then E(t) ≡ 0 iff ‖χ̃(t)‖ ≡ 0 (i.e., the estimation has
converged) and E(t) > 0 otherwise (i.e., the estimation has not yet converged).

In order to prove this claim, we start by showing the following facts:

Proposition A.1. If the camera motion is exciting (i.e., σ2
1(t) > 0), then ‖s̃(t)‖ ≡

0 ⇐⇒ ‖χ̃(t)‖ ≡ 0 and ‖s̃(t)‖ > 0 a.e. ⇐⇒ ‖χ̃(t)‖ > 0 a.e.

Proof. Being σ2
1 the smallest eigenvalue of matrix ΩΩT , the hypothesis σ2

1 > 0

implies full row-rankness of the (low-rectangular) p×m matrix Ω. Considering now
the error dynamics (3.12), the following holds

• ‖s̃(t)‖ ≡ 0 =⇒ ‖χ̃(t)‖ ≡ 0: if ‖s̃(t)‖ ≡ 0 then s̃(t) ≡ ∅m and ˙̃s(t) ≡ ∅m.
The first row of (3.12) then reduces to ΩT χ̃ ≡ ∅m which implies ‖χ̃(t)‖ ≡ 0

since matrix Ω is full row-rank by hypothesis;

• ‖χ̃(t)‖ ≡ 0 =⇒ ‖s̃(t)‖ ≡ 0: if ‖χ̃(t)‖ ≡ 0, the first row of (3.8) reduces
to ˙̃s = −Hs̃. Being the matrix gain H positive definite, it follows that, at
steady-state, the only possible solution is s̃(t) ≡ ∅m.

These two implications then prove the first item of the Proposition, that is, ‖s̃(t)‖ ≡
0 ⇐⇒ ‖χ̃(t)‖ ≡ 0. The proof is concluded by noting that the remaining two
(reverse) implications ‖χ̃(t)‖ > 0 a.e. =⇒ ‖s̃(t)‖ > 0 a.e. and ‖s̃(t)‖ > 0 a.e.
=⇒ ‖χ̃(t)‖ > 0 a.e. (needed for proving the second item of the Proposition) are
just the logical negations the two ones listed above.

Prop. A.1 can now be exploited for proving the initial main claim. Indeed,
since E(t) is defined as the moving average of signal ‖s̃(t)‖2 (see (6.15)), it follows
that E(t) = 0 if ‖χ̃(t)‖ ≡ 0 over (at least) the integration window T . Therefore,
convergence of the estimation error χ̃(t) will necessarily make the quantity E(t)

vanish as desired. It now remains to show that the reverse condition ‖χ̃(t)‖ > 0 a.e.
=⇒ E(t) > 0 holds as well, i.e., that E(t) = 0 only if convergence of the estimation
error has been reached. This again easily follows from Prop. A.1: since ‖χ̃(t)‖ > 0
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a.e. =⇒ ‖s̃(t)‖ > 0 a.e., the moving average (6.15) over any non-infinitesimal
integration window T ≥ ε > 0 will necessarily stay positive, thus implying that
E(t) > 0.

We conclude with the following remarks: since E(t) > 0 as long as the estimation
error has not converged, the adaptive gain kE(E) in (6.18) is also guaranteed to
never vanish during the estimation transient (by properly placing, if needed, the
minimum threshold E). As a consequence, the optimization of the camera motion
(i.e., of σ2

1(t)) will always be active during phase 1). We also note that, in general, no
special characterization is possible for the behavior of E(t) during the estimation
transient (apart from the above-mentioned condition E(t) > 0). Nevertheless, if
σ2

1(t) ≈ const > 0 during motion, then the error system (3.12) behaves (in its
dominant dynamics) as a second-order critically-damped linear system, with χ̃(t)

playing the role of the ‘position variables’ and s̃(t) that of ‘velocity variables’, see
Sect. 4.2. In this situation, ‖s̃(t)‖2 (and, thus, E(t) as well) will approximate a
‘bell-shaped’ profile with a monotonic increase towards a maximum value followed
by a monotonic decrease towards zero. By looking at Figs. 7.6(d) and 7.7(d), it
is worth noticing that this is indeed the profile followed by E(t) during the active
phases of all the reported experiments, since maximization of (6.17) does result (as
a byproduct) in an approximately constant σ2

1(t) ≈ const.

Proof of bound (6.19): this bound can be easily proven by exploiting the pH
interpretation of the error dynamics (3.8) briefly introduced in Sect. 4.1. The
Hamiltonian function (4.3) decreases over time towards its global minimum at
(s̃, χ̃) = (∅m, ∅p), provided the usual hypothesis of an exciting camera motion
(σ2

1(t) > 0) is satisfied. Therefore, along the trajectories of (3.8) it is

0 ≤ H(s̃(t), χ̃(t)) ≤ H(s̃(t0), χ̃(t0)), ∀t ≥ t0. (A.27)

We now note that, being the feature vector s a measurable quantity, one can always
initialize ŝ(t0) = s(t0) resulting in s̃(t0) = ∅m. By employing this initialization
(adopted in all the reported case studies), and exploiting (4.3–A.27), the following
bound easily follows

1

2
‖s̃(t)‖2 ≤ H(s̃(t), χ̃(t)) ≤ H(s̃(t0), χ̃(t0)) =

1

2α
‖χ̃(t0)‖2. (A.28)

The proof is then completed by noting that, from standard calculus,

E(t) =
1

T

∫ t

t−T
s̃T (τ)s̃(τ)dτ ≤ max

τ∈[t−T, t]

(
s̃T (τ)s̃(τ)

)
≤ ‖χ̃(t0)‖2

α
. (A.29)

For the interested reader, this result can be given an interesting energetic in-
terpretation as a consequence of the pH structure of the dynamics (3.8). In this
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interpretation, the Hamiltonian (4.3) represents the total energy of system (3.8) and
consists of two energy storages: Hm(s̃) = 1

2 s̃
T s̃ (the energy of the measurable states)

and Hu(χ̃) = 1
2α χ̃

T χ̃ (the energy of the unmeasurable states). Matrix Ω in (3.8)
modulates the (power-preserving) interconnection between the two storages, while
matrix H implements a dissipative action on the storage Hm(s̃). Full-rankness of
matrix ΩΩT (i.e., the usual condition σ2

1(t) > 0) then translates into requiring a per-
sistent energy exchange among Hm(s̃) and Hu(χ̃) until full depletion of the initial
stored energy H(s̃(t0), χ̃(t0)) via the dissipation induced by H. The bound (A.28)
then simply states that, over time, the energy stored in Hm(s̃) cannot exceed the
total initial energy at time t = t0 which, thanks to the initialization ŝ(t0) = s(t0),
takes the expression 1

2α‖χ̃(t0)‖2.

We conclude by noting that (A.27) (and, as a consequence, (A.28–A.29) as well)
is obviously no longer valid in presence of (unmodeled) perturbations such as the
several target displacemets discussed in Sect. 7.2. In this case, an external amount of
energy could (in general) be injected into system (3.8) with a consequent increase of
the total energy H(t) and violation of bound (A.27) (a violation which, nevertheless,
did not occur in the experimental results of Sect. 7.2 because of the limited ‘extra’
energy produced by the unmodeled target motion).

188



Appendix B

Dense photometric structure
estimation from motion

All of the structure estimation problems analyzed so far in this the-
sis concerned a limited number of 3-D geometric structures (e.g. points,
planes and so on) whose projection was assumed to correspond to a certain

(limited) amount of visual features that could be identified and tracked on each im-
age of a video sequence. In practice feature identification, tracking and matching are
significantly complex tasks. Although very effective strategies have been proposed
in the literature (which explains the successful experimental results reported in this
thesis) the process is still prone to failure. In this appendix we wish to report some
preliminary results in the context of photometric structure estimation from motion,
where the term “photometric” is used with reference to a set of visual estimation
and control techniques that are based on the direct use of the images (intended as
a pixel light intensity map) without any (or limiting as much as possible the need
for) preliminary processing step. Photometric techniques have been shown to be ef-
fective for the visual control of robotic manipulators in [CM11, BCM13]. As for the
estimation problem, a certain amount of literature has been produced in this con-
text, especially concerning the evaluation of optical flow from image sequences. The
seminal works [HS81] and [LK81] demonstrated, for example, how a dense optical
flow can be calculated using variational methods or local least squares optimization
techniques respectively.

Note that, in principle, once the optical flow has been calculated from an image
sequence, then, if the camera velocity is known, a dense depth map can be estimated
by, e.g., inverting (2.10) (in a least-squares sense). One difficulty that arises when
trying to estimate optical flow, however, is that the problem is highly ill-posed due
to the fact that the brightness constancy condition (typically used as a model for the
image brightness propagation) imposes only one constraint which is not sufficient to
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completely determine the two dimensional optical flow vector field. The introduction
of priors or regularization terms, usually based on the L2 or L1 norms of the optical
flow gradient, is therefore necessary, see [BJB94, BSL+11].

Variational methods can also be used to estimate the disparity map directly from
two consecutive images and knowledge of the camera velocity as shown in [ZAR12a].
Even in this case, regularization terms based on the L2 or L1 norm of the disparity
map gradient can be used to “fill-in” the areas where the problem is ill-conditioned
due to scarcely textured images, and to increase robustness w.r.t. noise.

Rough disparity measurements based on differentiating consecutive images can
be incorporated in the calculation of innovation terms in asymptotic incremen-
tal depth estimators based on Kalman Filters [MSK88] or deterministic observers
[ZAR12b]. The prediction, in this case, is based on the known camera velocity. This
strategy allows to reduce the effect of noise and discretization errors.

All these methods require the differentiation of consecutive images over time
which potentially introduces noise. An improvement in this sense can be obtained by
considering a larger number of sampled images when performing the differentiation
[BJB94].

Another possibility is to use region-based matching methods [BJB94] that try
to find the image displacement that maximizes some similarity measure between
the current image and the previous one. Similarity criteria include Sum of Squared
Difference (SSD) and mutual information [XMX+10].

The main difference between the method discussed in this appendix and the ones
mentioned above is that we avoid a direct differentiation of the video sequence, but
we still keep the calculation local in time (we only consider the last received image
in the calculation of the update term) by exploiting a recursive observer similar to
the ones used in the rest of the thesis. Our strategy is, therefore, mainly inspired
to the one reported in [AAM14] for the real-time computation of a dense optical
flow. By doing so, we expect to obtain an estimation less sensitive to discretization
noise, especially at a higher frame rate, but still very efficient (we do not use any
batch technique).

The rest of the appendix is organized as follows. First we derive the system of
partial differential equations governing the dynamics of the image and the dispar-
ity map using a planar (Appendix B.1) or a spherical (Appendix B.2) projection
model. In Appendix B.3 we propose an asymptotic observer for estimating the
dense disparity map using the photometric information and the camera velocity
and we informally discuss observability and stability issues. In Appendix B.4 we
introduce a strategy for dealing with the lack of observability in certain areas of
the image by introducing an adaptive smoothing term in the estimated disparity
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map propagation dynamics. Appendix B.5 discusses how to model and propagate
depth discontinuities. In Appendix B.6 we provide details on the actual numeri-
cal implementation of the observer Partial Differential Equations (PDEs). Finally
Appendix B.7 concludes the chapter with comments on current results and future
research directions.

This work was done in collaboration with Prof. Robert Mahony at the Aus-
tralian National University branch of the Australian Research Council Centre of
Excellence for Robotic Vision1. We also wish to thank Juan David Adarve for his
fruitful suggestions.

B.1 System dynamics with planar projection

As discussed in the introduction of this chapter, we now consider as measurement
the luminance Y (t,π) of a pixel located at a point π (in homogeneous coordinates)
at a time t. This is a scalar mapping:

Y : R× P2 7→ R+, (t,π) 7→ Y (t,π).

The luminance map represents the flux of the (light) electro-magnetic power, at
time t, through an infinitesimal area region of the image plane centered in π. The
value of Y (t,π) is determined by both geometric (shape and position of the objects
at time t) and physical (absorption, reflectivity and transmissivity of the materials
as well as position and intensity of light sources) properties of the environment.
The exact physics of the image formation process is extremely complex to model
but different approximations have been proposed in the literature. In particular, we
make the assumption that the materials in the scene obey a Lambertian reflectance
model [Lam60, BJ03], i.e., they absorb and reflect (part of) the light that hits
their surface with equal (isotropic) intensity in all directions. This simple model
approximates reasonably well the physics of image formation for “matte” objects and
has been used in many vision applications. Finally, we assume that the environment
is static. A direct consequence of these choices is the constant brightness assumption

d

dt
Y (t,π) = 0, (B.1)

that essentially states that, as the image of the environment moves (due to camera
motion), its brightness does not change, see, e.g. [HS81]. We are interested in the
way the intensity changes, in a fixed position on the image, due to camera motion,
i.e. in the quantity:

lim
∆t→0

Y (t+ ∆t,π)− Y (t,π)

∆t
=
∂Y

∂t
. (B.2)

1http://roboticvision.org/
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Using (B.1), one can write:

dY

dt
= ∇πY T π̇ +

∂Y

∂t
= 0 ⇐⇒ ∂Y

∂t
= −∇πY T π̇ (B.3)

If π is associated with a point of constant luminance, then it follows that its
time derivative is determined by the optic flow Φ (see (2.10))

π̇ = Φ(t,π) = Ψ(t,π) + Θ(t,π) =
1

Z(t,π)
ψ(t,π) + Θ(t,π)

= ζ(t,π)ψ(t,π) + Θ(t,π)

(B.4)

where Z(t,π) is the depth map, ζ(t,π) is its inverse, also called the disparity map,
and Θ(t,π) and ψ(t,π) are, respectively, the angular and scaled linear components
of the optical flow, given by (see, again, (2.10)):

ψ(t,π) = [e3]× [π]× v(t)

Θ(t,π) = − [e3]× [π]2×ω(t).
(B.5)

The depth and disparity maps must be considered as scalar functions

Z : t× P2 7→ R+, (t,π) 7→ Z(t,π)

ζ : t× P2 7→ R+, (t,π) 7→ ζ(t,π),

constituting an ego-centric representation of the environment: for each direction π
at each time t there is a ray radiating out from the optic center that intercepts the
closest point of the environment in the 3-D point p(t,π) = Z(t,π)π. Substituting
(B.4) in (B.3) one finally obtains

∂Y

∂t
= −∇πY TΘ(t,π)− ζ(t,π)∇πY Tψ(t,π). (B.6)

Now let us compute, similarly to (B.2), how the disparity map changes in time,
in a fixed position on the image plane, due to camera motion, i.e. the quantity:

lim
∆t→0

ζ(t+ ∆t,π)− ζ(t,π)

∆t
=
∂ζ

∂t
.

We start by noting that, as already discussed (4.27),

dZ

dt
= −eT3 v + ZeT3 [π]×ω

and hence we can write

dζ

dt
= − 1

Z2
Ż = ζ2eT3 v − ζeT3 [π]×ω. (B.7)

Then, analogously to the case of the luminance, we can write

dζ

dt
= ∇πζT π̇ +

∂ζ

∂t
, (B.8)
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and, comparing (B.8) with (B.7) and introducing (B.4), we conclude:

∂ζ

∂t
= −∇πζTΘ(t,π)− ζ(t,π)∇πζTψ(t,π) + ζ(t,π)2eT3 v(t)− ζ(t,π)eT3 [π]×ω(t)

Dropping function arguments, we finally write the system dynamics as:
∂Y

∂t
= −∇πY TΘ− ζ∇πY Tψ

∂ζ

∂t
= −∇πζTΘ− ζ∇πζTψ + ζeT3

(
ζv − [π]×ω

)
.

(B.9a)

(B.9b)

B.2 System dynamics with spherical projection

A similar strategy can be applied to the spherical projection model. In this case we
consider as measurement the (scalar) luminance Y (t,η) of a pixel located in η (in
spherical coordinates) at a time t. Again, this is a scalar mapping:

Y : R× S2 7→ R+, (t,η) 7→ Y (t,η).

Following identical steps to the planar projection case, one can use the constant
brightness assumption (B.1), the dynamics of the inverse range map δ = 1/ ‖p‖
in (4.34) and the spherical version of the point feature interaction matrix (2.11) to
show that 

∂Y

∂t
= −∇ηY TΘ− δ∇ηY Tψ

∂δ

∂t
= −∇ηδTΘ− δ∇ηδTψ + δ2ηTv.

(B.10a)

(B.10b)

where Θ(t,η) and ψ(t,η) are, respectively, the angular and scaled linear components
of the optical flow, given by (see, again, (2.11))

ψ(t,η) = −
(
I3 − ηηT

)
v(t)

Θ(t,η) = [η]×ω(t).
(B.11)

B.3 A nonlinear observer for photometric Structure
from Motion

We can immediately notice that both (B.9) and (B.10) present a similar structure
to the, well known by now, dynamics (3.10) with s = Y and χ = ζ or χ = δ and
hence m = p = 1. In particular, for the planar projection case (similar results can
be found for the spherical one), defining

fs(s,ω(t)) = −∇πsTΘ(ω(t),π)

Ω(s,v(t)) = −∇πsTψ(v(t),π)

fχ(ζ,v(t),ω(t)) = −∇πζTΦ(v(t),ω(t),π) + ζeT3
(
ζv(t)− [π]×ω(t)

)
,

(B.12)
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we can rewrite the system equations (B.9), as2
∂s

∂t
= fs(s,ω) + Ω(s,v)T ζ

∂χ

∂t
= fχ(ζ,v,ω)

(B.13)

and devise an observer as:
∂ŝ

∂t
= fs(s,ω) + Ω(s,v)T ζ̂ − h s̃

∂χ̂

∂t
= fχ(χ̂,v,ω)− αΩ(s,v)s̃.

(B.14)

where h and α are positive gain (maps). Following the developments of Sect. 4.3,
the gain h can be chosen as:

h(t) = h(π,v) = 2|Ω(π,v)| (B.15)

so that the dynamics results critically damped with natural frequency αΩ(π,v)2.

Remark B.1. To completely cancel the image dynamics, the gradient needed to
calculate fs(s,ω) and Ω(s,v) in (B.14) should be computed on s = Y (the last
measured image) and not on ŝ (the estimated image). This has some consequences
on the numerical implementation of the integration scheme, as it will be discussed
in Appendix B.6.

Remark B.2. The similarity between (B.14) and (3.11) should be regarded with
care and “suspicion”. In fact one should never forget that, while (3.11) is a finite
dimensional system, (B.14) is an infinite dimensional one. Some of the consid-
erations, and in particular, the stability proof, that hold for the former may not
trivially extend to the latter. At the moment, we have not yet worked out a formal
stability analysis for system (B.14). However we wish to immediately highlight one
important difference w.r.t (3.11) for what concerns the effects of the disturbing term
d = fχ(χ̂)− fχ(χ): from (B.12) to (B.14), one has

d(π, ζ, ζ̂,v,ω) = fχ(π, ζ̂,v,ω)− fχ(π, ζ,v,ω)

=−∇π ζ̃TΘ−
(
∇π ζ̂T ζ̂ −∇πζT ζ

)
ψ +

(
ζ̂2 − ζ2

)
eT3 v − ζ̃ [π]×ω

=−∇π ζ̃TΘ− 1

2
∇π
(
ζ̂2 − ζ2

)T
ψ +

(
ζ̂2 − ζ2

)
eT3 v − ζ̃ [π]×ω.

Due to the presence of some gradients in this expression, for the disturbance d to be
vanishing, one needs the estimation error ζ̃(π) → 0, to go to zero everywhere, i.e.
for all image points π. In other words, the presence of spacial derivatives (disparity

2Note that Ω is actually a scalar map, but the transpose was included for a better visual
resemblance with (3.10).
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map gradients) makes the estimation error on a certain image point π have some
effects on a neighbourhood of π. As a consequence, we expect the disturbing term
to have a more significant impact on the estimation performance w.r.t. the finite
dimensional cases considered in the rest of this thesis.

Remark B.3. By looking at the PE 1 × 1 matrix Ω(s,v)Ω(s,v)T = σ2(s,v) =

(∇πsT lvv)
2, one can notice the following (intuitive) facts:

• one cannot estimate the depth map if the camera does not translate (‖v‖ = 0);

• one cannot estimate the depth map in areas of the environment that are not
sufficiently textured (‖∇πY ‖ ≈ 0);

• the “informative” camera velocities are those that make the image move in the
direction of the image gradient, i.e. orthogonally to the luminance level sets
(the objects contours);

• if one has control over the camera linear velocity v, an optimization strat-
egy, similar to the ones used for the other SfM case studies, can be devised
to maximize observability. Note however that care must be taken to ensure
that the optimization does not attempt to increase “excitation” for areas of the
image that are scarcely textured (this would happen, e.g. if one tried to naively
maximize minπ σ

2(t,π)) and therefore are intrinsically less observable. In this
context it would probably make more sense, instead, to try to maximize the ex-
citation level for the highly textured areas and then rely on some regularization
term, as those discussed in Appendix B.4, to “fill-in” the untextured parts. One
also needs to make sure that the entire image is sufficiently excited at least for
a short time. In this context, finite horizon planning techniques would prob-
ably be more suited than the instantaneous greedy optimization strategy used
for the other case studies.

Figure B.1 shows some simulation results obtained by applying observer (B.14)
to estimate the structure of a simple scene. The simulated scenario contains only a
plane with a surface texture that is uniform in a central rectangular area and grows
parabolically from its borders, see Fig. B.1(a). As a consequence the image resulting
from the projection process on the simulated camera, contains uniform region, see
the top lines of Figs. B.1(b) to B.1(d). The camera moves along a square trajectory
whose sides are parallel to the sides of the uniform region (see, again, Fig. B.1(a))
at a constant velocity norm ‖v(t)‖ = 1 m/s and for a total time T = 6 s. By doing
so, it maintains a constant distance of 5 m from the plane.
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Figure B.1 – Photometric depth estimation for a planar scene. Fig. (a): camera
trajectory with arrows indicating the direction of the camera optical axis and the observed
textured plane. In the other plots: evolution of the image s = Y , observability eigenvalue
σ2, and disparity estimation error χ̃ maps for the first (Fig. (b)) and second (Fig. (c))
quarters of period and for the second half of the time (Fig. (d)). Note that a RGB color
map was used for these plots for better readability, however all of these maps are scalar.
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As a result, the camera image first translates horizontally to the left (Fig. B.1(b)),
then vertically to the bottom (Fig. B.1(c)), and then again horizontally and verti-
cally but in the opposite direction (Fig. B.1(d)). In other words, for each quarter of
a period of the whole trajectory (lasting T/4 = 1.5 s), the image translates parallel
to either the horizontal or the vertical sides of the central uniform region. The error
on χ was initialized to a constant value of χ̃(0,π) = 0.5 ∀π. The observer (B.14)
was used with h chosen as in (B.14) and α = 5. The image gradient ∇πs was calcu-
lated exploiting the algebraic model of the parabolic texture where as the gradient
of the estimated disparity map ∇πχ̂ was approximated using first order upwind
finite differences, see [Tho13b]. Finally we used a simulation time-step of 1 ms.

As predicted by the theory, in the first part of the trajectory (Fig. B.1(b)), the
observability index σ2 (second series of plots) is different from zero only on the left
and right side of the uniform region. In fact(i ) in the central area the image gradient
is zero, and (ii ) in the top and bottom areas the image gradient is orthogonal to the
direction of the linear optical flow ψ. As a result only in the observable regions the
error correctly starts converging towards zero. In the second quarter of trajectory
(Fig. B.1(c)), the camera changes direction of motion by 90 deg and, consequently,
now the areas on the top and on the bottom of the uniform region are “excited”
(see σ2 in the second series of plots) and the error starts converging there too. The
areas on the left and right side of the uniform region are not observable in this case
because the image gradient, in these areas, is orthogonal to the direction of the
linear optical flow ψ. Thanks to the practically ideal conditions of the simulation
(e.g. absence of noise), however, the error does not significantly grow. In the second
half of trajectory the above process is repeated again and, if one kept using this
trajectory, for this particular texture, almost the entire image would be observable
for at least half of the time. Nevertheless due to the uniformity of the central area,
the geometry of the environment is never observable in this region and by no meas
one can expect to ever obtain a correct estimation of the depth in this part, unless
some additional prior is considered. This is, in fact, the topic addressed in the next
Appendix B.4.

B.4 Surface regularization and smoothing

Regardless of the specific observer, as underlined in Remark B.3, convergence prop-
erties will depend, for each pixel, on the level of “excitation” measured as:

σ2(t,π) =
(
∇πY Tψ(t,π)

)2
, or σ2(t,η) =

(
∇ηY Tψ(t,η)

)2
.

In general, there will always be areas of the image where σ2 is small due to low
texture level or (possibly temporarily) non-optimal camera velocity (image sliding
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along luminance level contours). In such areas the estimation will be undetermined
and the observer will be highly affected by noise and other unmodeled effects. To
overcome this problem it is necessary to introduce some smoothing/regularization
based on priors on the underlying 3-D structure of the scene. Some regularization
could also be introduced, if desired, in the areas with high level of information
to increase robustness w.r.t. noise and discretization effects. More in general, the
amount of regularization can be locally fine tuned based on the value of σ2 in each
pixel position.

One way of addressing the regularization problem, is to model it as a heat
diffusion process (see, e.g. [Wid76]): intuitively the information about the disparity
map ζ̂ should be “diffused” from the areas in which the estimation is well defined
(that can be thought of as “sources of disparity”, similarly to heat sources), to those
in which it is unobservable. This is similar to the way heat is diffused in an object
from some sources, displaced in certain positions, to the rest of the material. As
well known the two-dimensional heat diffusion, in absence of sources, is described
by the parabolic PDE

du

dt
= q∇2

(x,y)u (B.16)

where u(x, y) is the temperature map and q > 0 represents the material thermal
diffusivity. Equation (B.16) converges to an equilibrium state in which,

∇2
(x,y)u = 0. (B.17)

This equilibrium condition is particularly interesting because it allows us to give
another physically intuitive interpretation of the regularization process. Let us first
consider a one-dimensional case: that of an elastic band stretched between two fixed
points in x = 0 and x = l, see Fig. B.2 and [CH66]. In the assumption that the
band is infinitely thin, one can neglect the forces associated with the torsion of the
band and only consider the elastic forces due to stretching. In other words the band
can be modeled as a sequence of elementary springs connected to each other. As
well known the potential energy of a spring is associated with its length and thus,
intuitively, the equilibrium position will correspond to the minimum length of the
band which is obtained when the band is straight. As a matter of fact, let us assume
that the band is curved as in the red line in Fig. B.2 and let us call u(x) the amount
of deflection from the straight configuration. If the deformation is small, the length
of an elementary component of the band going from x to x+ ∆x is given by:

∆L ≈
√

[u(x+ ∆x)− u(x)]2 + ∆x2 ≈
√

[u(x) + ux∆x− u(x)]2 + ∆x2 = ∆x2
√

1 + ux2

where ux is the derivative of u w.r.t. x. For ∆x→ 0, and summing the contribution
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u(x)

x0 l

Figure B.2 – Simple model of a deformed elastic band. The band is rigidly attached
at the two extrema and, in the equilibrium condition, it assumes a straight configuration
between the two (black line) thus having a length l. The red line represents a deformed
elastic band with u(x) representing the amount of deflection w.r.t. the straight configuration.

of each elementary term, one concludes:

L ≈
∫ l

0

√
1 + u2

x dx.

The difference of potential energy w.r.t. the equilibrium configuration is proportional
to the change in length

L− l =

∫ l

0

(√
1 + u2

x − 1
)

dx ≈ 1

2

∫ l

0
u2
xdx

where we used a Taylor series expansion to the first order of
√

1 + u2
x. One can

then conclude that the potential energy is given by:

U =
1

2
q

∫ l

0
u2
xdx

where q is now the elastic coefficient of the band.

The two-dimensional equivalent of the elastic band is the thin membrane un-
der tension (see [CH66]). In this case one can assume the potential energy to be
proportional to the surface area of the membrane which can be computed as∫∫

S

√
1 + u2

x + u2
y dx dy ≈

∫∫
S

1 +
1

2
(u2
x + u2

y) dx dy

where S represents the membrane domain. Apart from a constant factor that can
be ignored, the potential energy is then given by

U =
1

2
q

∫∫
S

∥∥∇(x,y)u
∥∥2

dx dy. (B.18)

The equilibrium configuration for the membrane is given by the deformation u(x, y)

that minimizes the potential energy (B.18) and satisfies additional boundary condi-
tions assigned on the boundary of S. It can be shown (see [CH66]) that finding such
minimum is equivalent to solving the boundary value problem for the PDE (B.17)
with the assigned boundary conditions. One can conclude that, if (B.16) were used
as an additional term to update the estimated disparity map, the solution would
tend to a membrane-like shape of the depth map: in the observable regions the
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value of ζ̂ would be imposed by the estimation algorithm; in the non observable
regions the disparity map ζ̂ would tend to the minimum surface solution which is
the minimum curvature interpolation of the conditions imposed at its boundaries
(by the observable areas). This regularization term, then, has similar effects to the
classical minimization of the L2 norm of the disparity map (or, equivalently, of the
optical flow) gradient exploited in many other works, e.g. [HS81]. The surface with
minimum curvature is the plane and therefore the solution will tend, as much as
possible and compatibly with the boundary conditions, to be linear in π. Note that,
assuming a linear ζ in π (or equivalently a linear δ in η) is equivalent to assuming
that the unobservable object is a plane in the 3-D space. In fact, as shown in (4.45),
the variation of ζ for a planar object is linear in the image coordinates.

As for the regularization gain q, it would make sense to construct it as a function
of σ2 in such a way that in areas with more information a good match between the
estimation and actual geometry is obtained and, conversely, smoothness is favoured
in areas with poor information. One possibility would be, e.g.,

q(t,π) = sat

(
1

σ2(t,π)

)
= q(π,v,∇πY T )

where sat refers to a generic monotonic and saturated function of the argument.
This choice might however result in a strongly time-varying q. A better solution
might be to use an averaged value of σ2 over a finite time window.

q(t,π) = sat

(
1

1
T

∫ t
t−T σ

2(τ,π)dτ

)

Another problem arises when the camera does not translate (‖v‖ = 0). In this
case, obviously σ2 = 0 everywhere and the regulation would be active on the en-
tire disparity map thus making the estimation converge to a solution that is “flat”
everywhere. To avoid this, one could also consider the norm of the camera linear
velocity in the calculation of q, e.g.:

q(t,π) = sat

(
‖v‖

σ2(t,π)

)
= q(π,v,∇πY T ).

Finally, from a computation point of view, it might be convenient to use |Ω| =
√
σ2,

instead of σ2, since this is less expensive to compute and it is already involved in
the calculation of h in (B.15). Adding this kind of regularization term to (B.8) one
obtains a new observer in the form:

∂ŝ

∂t
= fs(s,ω) + Ω(s,v)ζ̂ − h(t)s̃

∂χ̂

∂t
= fχ(χ̂,v,ω)− αΩ(s,v)s̃+ q(t,π)∇2

πχ̂.

(B.19)
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Figure B.3 – Photometric depth estimation for a planar scene with regularization
of the disparity map. Evolution of the image s = Y , regularization gain q, and disparity
estimation error χ̃ maps for the first (Fig. (a)) and second (Fig. (b)) quarters of period and
for the second half of the time (Fig. (c)). A RGB color map was used for these plots for
better readability, however all of these maps are scalar. Note how the regularization term
is mostly active in the unobservable areas (compare q here with the plots of σ2 in Fig. B.1).

In Fig. B.3 we report the result obtained for the same simulation of Fig. B.1, but
now introducing a regularization term as in (B.19) and with

q(t,π) = 200 ‖v‖ 1

h+ 1
,

where h is computed as in (B.15). With this choice, we clearly have q ≈ 200 if h� 1

and q ≈ 0 if h � 1. The evolution of the smoothing gain q during the simulation
is reported in the central plot sequences of Figs. B.3(a) to B.3(c). Note how this is
“complementary” to the observability index σ2 in Figs. B.1(b) to B.1(d). The use of
the regularization term allows to(i ) increase the converge rate of the areas that are
only temporarily (50% of the time) observable and, more importantly, (ii ) attain
convergence in the central uniform area. Note, however, that the exact convergence,
in this central area, is only possible because the observed scene, in this simulation,
is actually planar in this region. For a general 3-D structure, the estimation error
will not converge to zero in unobservable areas as expected from Remark B.3.

Before concluding this section, we briefly note that this solution could also be
extended to operate an anisotropic regularization by using a smoothing term in the
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form:

(∇πTQ∇π)χ̂

where Q ∈ R2×2 is a symmetric gain. This should allow, e.g., to smoothen the
disparity map only (or mainly) in the direction orthogonal to edges/discontinuities.

B.5 Propagation of depth discontinuities

Equations (B.9–B.10) represent the correct evolution of the system only under the
assumption that all involved derivatives are defined and continuous. In the general
case, it is hard to make any smoothness assumption on the luminance Y since the
image texture can present discontinuities (contours). However, in principle, one
might be able to apply the same model to a low pass filtered version of the input
image, thus assuring continuity of the inputs. Moreover, in the actual implemen-
tation of the observer, the continuous space gradients are substituted by discrete
numerical differences which will, in fact, induce some low-pass filtering effect.

The satisfaction of the continuity and differentiability assumptions for ζ, instead,
depends on the convexity of the observed scene. As it is shown in Fig. B.4(a), the
presence of an occlusion will, in fact, induce a discontinuity in Z from Zh to Zl and
hence in ζ from ζh = 1/Zh to ζl = 1/Zl. In general we can expect ζ(π, t) to present
some jump discontinuities in presence of occlusions. Note that, differently from
Z(π, t), which can grow to infinity for far objects, if we assume that Z(π, t) > 0, the
disparity map ζ(π, t) will always remain limited, therefore ζ(π, t) will not present
asymptotic discontinuities.

To understand how to model the evolution of ζ in presence of such discontinu-
ities, it is convenient to restrict our attention to a simpler one dimensional case: let
us assume that v = (vx(t), 0, 0) and ω = (0, 0, 0) with then π̇ = (−ζvx, 0, 0). Let
us also consider the behavior of ζ(π, t) along the image line π = (x, 0, 1), i.e. the
horizontal line passing through the center of the image. In this case (B.9b) can be
rewritten as:

∂

∂t
ζ(x, t)− vx(t)ζ(x, t)

∂

∂x
ζ(x, t) = 0. (B.20)

If ζ ∈ C1, the equation can also be rewritten as:

∂

∂t
ζ(x, t) +

∂

∂x
f(ζ(x, t), t) = 0. (B.21)

with

f(ζ(x, t), t) = −1

2
vx(t)ζ(x, t)2. (B.22)

Equation (B.21) is called the conservative form of (B.20) and f(ζ, t) in (B.22) is
the flux functional. From a numerical point of view, it is usually better to deal
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Figure B.4 – Depth discontinuities in presence of an occlusion. Fig. (a): depth
discontinuity in presence of an occlusion. The environment Ve is represented in blue. The
green area Vo is occluded. The camera is represented by a circle with an arrow indicating
the direction of the optical axis which is assumed coincident with the Z-axis. Fig. (b):
shock and rarefaction waves interpretation in the geometry reconstruction. The red region
represents the area that is being uncovered or occluded depending on whether the camera
moves from right to left or from left to right respectively. The blue dashed line and the blue
dots represent a triple valued solution and its geometrical interpretation. The gray line and
grey dots represent the first double valued solution in Fig. B.5(b). Finally the red line and
red dots represent the correct solution.

with (B.21) rather than (B.20), see [Tho13b, Tho13a]. In particular (B.21) leads
to the conservation law associated with (B.20). This latter is obtained by integrat-
ing (B.21) in the interval [x1, x2]:

d

dt

∫ x2

x1

ζ(x, t) dx =
d

dt
ζ(t) = −f(ζ(x, t), t)

∣∣∣∣x2
x1

, (B.23)

where ζ(t) is the average value of ζ(x, t) over the interval [x1, x2]. Equation (B.23)
signifies that the total variation of the average inverse depth over time in the interval
is only due to the difference of “flux of inverse depth” through the left and the right
boundaries of the interval. Equations in the form of (B.21) appear very often in
physics for instance when modelling fluid dynamics, see [Tho13a, LeV02] for some
examples.

By differentiating the flux function f(ζ, t), one obtains the quasi-linear form of
the conservation law (B.21):

∂

∂t
ζ(x, t) + f ′(ζ(x, t), t)

∂

∂x
ζ(x, t) = 0, (B.24)
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where f ′(ζ, t) = ∂
∂ζ f(ζ, t). One can easily verify that, along any curve X(t) satisfy-

ing the ODE

Ẋ(t) = f ′(ζ(X(t), t)) = vx(t)ζ(X(t), t) (B.25)

one has ζ̇(X(t), t) = 0. Equation (B.25) is called the characteristic curve of the
PDE. If vx(t) = vx = const, since ζ is constant along the curve X(t), then,
from (B.25), also Ẋ(t) is constant and therefore the characteristic curve is a straight
line in the plane (x, t) starting from X(0) and with slope vxζ(X(0), 0). If vx is time-
varying, instead, then the characteristic lines are generic curves described by the
integral of (B.25) over time, but one always has ζ(X(0)+

∫ t
0 Ẋ(τ)dτ, t) = ζ(X(0), 0).

In a linear conservation law one has f(ζ, t) = a(t)ζ + b(t) and hence all the
characteristic curves, starting from any point X(0), are parallel since Ẋ(t) = a(t)

does not depend on X. In this case, therefore, the solution ζ is simply translating in
space-time. If a is also constant, one simply has ζ(x, t+T ) = ζ(x−aT, t). In our case,
however, we have f ′ = f ′(ζ(x, t), t), i.e. the flux derivative depends on ζ. Assuming,
for simplicity vx = const, for each X(t), the characteristic lines will still be straight,
but with a (possibly) different slope, determined by vxζ(X(0), 0). In other words, in
the nonlinear case, the characteristic lines are not all parallel, and, as a consequence,
they can diverge or intersect each other. To understand what happens in this case,
it is convenient to consider a more intuitive physical example sharing the same
dynamics of our case. Equations (B.21–B.22), with constant vx, are a particular
example of the so called inviscid Burgers’ equation [Bur74], a simplification of the
Navier-Stokes equation describing the dynamics of a free incompressible fluid when
neglecting pressure. In this case, the average momentum of fluid particles ν in a
space region, only changes, over time, due to the difference between the kinetic
energy f = 1

2mν
2 flowing to/from the left and the right boundary of the region,

therefore, assuming unitary particles mass, one has

∂ν

∂t
+

∂

∂x

(
1

2
ν2

)
= 0, (B.26)

or, equivalently
∂ν

∂t
+ ν

∂ν

∂x
= 0.

Equation (B.21) can be written as (B.26) by defining ν = vxζ. Burgers’ equa-
tion (B.26) is probably the most typical textbook example of nonlinear flux conser-
vation law, see, e.g. [LeV02, Tho13a]. As already mentioned, due to the nonlinear-
ity, the characteristic curves are not parallel since Ẋ(t) = ν(X(t)). The solution
of such equation does not simply translate uniformly in space-time but, instead,
it deforms. In particular, since the characteristic curves are not parallel they can
converge to the same position or diverge from a point in the plane (x, t). These two
phenomenons are called shock and rarefaction waves respectively.
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Figure B.5 – Time-space evolution of a rarefaction and shock wave. Fig. (a): evo-
lution of a rarefaction wave. Fig. (b): evolution of a shock wave. For both figures, from
bottom to top we show: (i) the initial condition ν(x, 0), (ii) some of the characteristic curves
emanating from x = −10 + k with k = 0, 1, . . . , 20, and (iii) the final condition ν(x, 10).
This picture is similar to some reported in [LeV02].

B.5.1 Rarefaction waves

Figure B.5(a) shows some of the characteristic curves of (B.26) starting fromX(0) =

−10 + k with k = 1, 2, . . . , 20 and with an initial condition:

ν(x, 0) =

νr = .5 if x > 0

νl = .1 if x < 0
.

One can notice that these curves diverge from the point x = 0, t = 0.

This effect is called a rarefaction wave. It presents itself whenever the cam-
era is moving in the direction that reduces an occluded region as it is the case
in Fig. B.4(b) if the camera moves from the right to the left configuration. In this
situation new parts of the environment (the red region in Fig. B.4(b)) appear in the
camera FOV and the information contained in the initial condition is not sufficient
to reconstruct ζ in the discovered area. Simply integrating (B.21) will result in the
solution represented by the dashed line in the top plot of Fig. B.5(a). This solution
would correspond to the actual evolution of ζ only if the initially occluded area
(green plus red region in Fig. B.4(b)) were actually part of the environment (i.e. if
nothing is actually being discovered). However the actual depth map, for the case
depicted in Fig. B.4(b), instead, remains discontinuous in the new camera position.
We stress the fact that there is not much one can do to fix this situation: since
the information about the occluded area is not present in the initial condition, it is
impossible, in general, to correctly reconstruct the depth map in the new camera
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configuration by simply integrating the initial depth map. Given these premises, we
can accept the natural hypothesis produced by the simple propagation of the initial
condition as a plausible solution for the actual depth map, and rely on the innova-
tion part of the observer for improving the depth map if such hypothesis turns out
to be wrong.

To give an example, in Fig. B.6 we report some simulation results for the propa-
gation (α = h = q = 0 in (B.19)) of a disparity rarefaction wave. For this simulation
we considered a one-dimensional image and we constrained the camera to move only
on the (X,Z) plane in the camera reference frame. The simulated camera had a res-
olution of 640 px and intrinsic parameters fdx = 300, joC = 319.5 in (2.4). Finally,
we used an integration time step of 0.002 s. The camera is observing a simple envi-
ronment that contains a single jump discontinuity, see the gray area in Fig. B.6(b).
The trajectory of the camera, represented by a black dashed line in Fig. B.6(b), is
traveled at a constant velocity v = [.8 0 0]Tm/s and ‖ω‖ = 0 from the right to the
left of the figure. The position of the camera at some equally spaced iterations is
represented by coloured arrows, indicating the direction of the camera optical axis.
For the same iterations, and with the same color code, we represented, with dashed
lines, in Fig. B.6(a), the actual value of the disparity map in the camera normalized
coordinate x. The dashed lines in Fig. B.6(a) represent, instead, a reconstruction
of the environment from the above disparity map, calculated using the parametric
expression

Wp(π, t) =
1

χ(π, t)
CRWπ +WtC(t). (B.27)

Note that the dependence of this reconstructed environment on t is due to the fact
that, depending on the camera position (that changes with time) different portions
of the environment are occluded as it can be seen in Fig. B.6(b) (the dashed lines
are not all coincident). In other words, in the discontinuity, (B.8) is violated and
new source terms (i.e. contributions to the total time derivative of the disparity
map) appear. This effect will also characterize the shock waves. The solid lines in
Figs. B.6(a) and B.6(b) finally represent the estimation of the depth map and the
corresponding environment reconstruction, when using (B.19) with α = h = q = 0

from an initial value of χ̂(π, 0) = χ(π, 0). As a numerical scheme, we opted for an
upwind finite difference method (see [LeV02]) using the conservative version of the
PDE for χ, i.e.

∂χ̂

∂t
= − ∂

∂x

(
1

2
vxχ̂

2

)
.

As expected from the developments of this section, the propagation maintains the
initial hypothesis about the structure of the environment in the area that was oc-
cluded in the first frame (the one used for initialization). The environment re-
construction (solid lines in Fig. B.6(b)) remains (almost) constant in accordance
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Figure B.6 – Photometric depth estimation for a rarefaction wave. Fig. (a) evolution
of the actual (dashed) and numerically propagated (solid) disparity map at equally spaced
iterations (check the legend). Fig. (b) reconstruction of the environment from the actual
(dashed) and numerically propagated depth maps with arrows representing the camera
position and the direction of the optical axis, and using the same color code as in Fig. (a).

with the fact that, in these conditions, one obtains, from (B.7), dζ
dt = 0. The only

small (but rather important) variation is due to the dissipation introduced by the
numerical differentiation which smoothens the depth map at each iteration.

B.5.2 Shock waves

A dual situation to the rarefaction waves is the one represented in Fig. B.5(b),
which shows some of the characteristic curves starting from X(0) = −10 + k, with
k = 1, 2, . . . , 20, but now with:

ν(x, 0) =

νr = .1 if x > 0

νl = .5 if x < 0
.

In this case the characteristic curves intersect and the solution becomes triple-valued
(dashed line in the top plot of Fig. B.5(b)). This effect is called a shock wave.
Obviously such a solution is not physically acceptable for the particles dynamics
case: fluid particles can only have one momentum in each position. When modeling
physical systems, such non-physical solutions in general appear when some viscosity
is neglected in the modeling phase. Moreover, the use of a numerical scheme to
integrate (B.21) will always introduce some level of numerical diffusion or dissipation
which is due to the approximation of the derivatives with finite differences. Finally,
we have already commented that some diffusion term can be added to smoothen
the depth map, especially in the areas that are scarcely observable. The PDE that
one ends up solving is then:

∂

∂t
ζ(x, t) +

∂

∂x
f(ζ(x, t)) = ε

∂2

∂x2
ζ(x, t). (B.28)
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Figure B.7 – Shock speed propagation on the plane (x, t). Figure modified from
[LeV02].

with ε > 0. Equation (B.28) is also called the viscous form of the differential
equation and a solution to (B.28) for ε→ 0 is called a vanishing-viscosity solution
for (B.26), see [LeV02]. Using the vanishing-viscosity approach, it can be shown
that the correct solution can be obtained from the nonphysical multi-valued one
buy applying the equal area rule: this rule is a consequence of the conservation law
and imposes the physical solution to have a discontinuity in a position such that
the area “under” the multi-valued solution is the same as the one under the single-
valued one or, equivalently, that the areas added (violet) and removed (orange)
from the nonphysical solution are equal. A direct consequence of this is that the
discontinuity will travel at a velocity vs given by the average between the velocities
(the slope in the plane (x, t)) of the characteristic lines to the right and to the left
of the discontinuity. This last result can also be obtained by looking at the integral
of the conservation law (B.23) as shown in [LeV02]. Suppose that the shock wave
is moving at a constant velocity vs from x1 to x1 + ∆x in a time ∆t (see Fig. B.7).
Integrating the conservation law (B.23) in the region [x1, x1 +∆x]× [t1, t1 +∆t] one
obtains ∫ x1+∆x

x1

ν(x, t1 + ∆t) dx−
∫ x1+∆x

x1

ν(x, t1) dx =∫ t1+∆t

t1

f(ν(x1, t)) dt−
∫ t1+∆t

t1

f(ν(x1 + ∆x, t)) dt.

The space-time region [x1, x1 + ∆x] × [t1, t1 + ∆t] is divided (see Fig. B.7) into
a left and a right triangles in which the value of ν is roughly equal to νl and νr

respectively, therefore one obtains

∆xνl −∆xνr ≈ ∆tf(νl)−∆tf(νr),

and, in the limit ∆t→ 0, one has, for (B.26)

∆x

∆t
≈ Ẋ = vs =

f(νr)− f(νl)

νr − νl
,
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which, for (B.26), results in

vs =
1

2

ν2
r − ν2

l

νr − νl
=
νr + νl

2
. (B.29)

In the camera projection system (B.9), shock waves appear whenever some part
of the environment is occluded as it is the case in Fig. B.4(b) if the camera moves
from the left to the right position. The dashed blue line in Fig. B.4(b) represents
the double valued solution returned by the equal area rule that intersects the initial
environment hypothesis (given by Ve ∪ Vo) in the two blue dots in the figure. Note
that, differently from the particles case, however, the disparity dynamics does not
contain any viscosity (apart from the artificial one due to numerical discretization or
regularization) and the two points in which the camera intersects the environment in
presence of an occlusion have completely independent dynamics. Hence the solution
of (B.28) does not represent correctly the evolution of the system in this situation.
The correct solution in the projection case is clearly the one represented in red
in Figs. B.4(b) and B.5(b), which preserves the position of the occlusion. To obtain
this solution we need to introduce a “source” term (an additional contribution to
the total derivative of ζ) in the PDE that corresponds to the areas represented in
green and orange in Fig. B.5(b). For an integration time ∆t, this area is given by

∆A = (νl − νr)[f ′(νl)− vs]∆t =
1

2
(νl − νr)2∆t

and hence for ∆t→ 0 one has the source term

∆A

∆t
→ dA

dt
=

1

2
(νl − νr)2. (B.30)

We note that the introduction of this term requires, in principle, the identifica-
tion and tracking of the shock-type depth discontinuities which would make the
implementation more complex and less suited for parallelization. However, since
the additional term is proportional to the squared first order difference between
the disparity levels of neighbour pixels (the ones on each side of the discontinuity),
its effect should be negligible in the areas in which the disparity map is smooth.
Therefore we expect that introducing this additional source term everywhere in the
image (and not only on the sides of a discontinuity of the disparity map) should
not affect the propagation in a unacceptable way, with, on the other hand, signif-
icant advantages from the point of view of the simplicity and parallelizability of
the algorithm. The only problematic areas, could be the rarefaction-type occlusions
that present depth discontinuities but do not require the addition of this source
term. This areas, should, however, be easy to recognize since one has, for them,
∂ζ
∂t = −∂f(ζ)

∂π ≤ 0 (i.e. the disparity map does not grow in these region) and checking
this condition requires, again, only local information.
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We demonstrate the effects of this additional source term by running a similar
simulation as in Fig. B.6, but now with the camera traveling in the opposite direction
(i.e. from left to right), see Fig. B.8(b).

The results of the simulation are reported in Fig. B.8 with, as before, dashed lines
representing the ground truth and solid lines representing the results of the pure
propagation (α = h = q = 0) of (B.19) from an initial estimation error χ̃ = 0. The
first series of plots, Figs. B.8(a) and B.8(b), show the results obtained without the
source term (B.30). As one can see, the propagation is correct before the formation
of the shock wave (around iteration 240, green lines in the plots). After this, the
propagation starts accumulating delays w.r.t. the ground truth. This is due to the
fact that the shock wave is propagated at a velocity vs = 1

2(χl + χr)ψ, as predicted
using (B.29), instead of χrψ, where χr and χl are the values of χ at the right and
left of the discontinuity. The point in which the environment reconstruction lines
intersect in Fig. B.8(b) corresponds to the depth value of Z =

[
1
2(χl + χr)

]−1 ≈
0.66 m, i.e. to the point that is actually supposed to travel at the shock speed vs.
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Figure B.8 – Photometric depth estimation for a shock wave. Fig. (a) evolution of
the actual (dashed) and numerically propagated (solid) disparity map at equally spaced
iterations (check the legend) and for a time step calculated in such a way that the shock
wave moves by exactly one pixel per iteration. Fig. (b) reconstruction of the environment
from the actual (dashed) and numerically propagated depth maps with arrows representing
the camera position and the direction of the optical axis, and using the same color code as
in Fig. (a). The same kind of plots are reported in Fig. (c) and Fig. (d) for the case in which
the additional source term (B.30) is used to improve the shock wave propagation. Finally
Fig. (e) and Fig. (f) report the results obtained by still using the source term (B.30) but
with a time step of 2 ms, i.e. smaller than in the previous case.

Figures B.8(c) and B.8(d) represent the results obtained by introducing the addi-
tional source term (B.30) in the propagation equation for χ̂. One can note that now
the propagation is correct both before and after the formation of the shock wave.
In this case, however, (as in the previous one) the time step for the propagation was
chosen in such a way that the shock wave moved by exactly one pixel per iteration.
This was obtained with δt ≈ 2.08 ms. By repeating the simulation with a time-step
of δt = 2 ms, one can see that the propagation of the shock wave is again not per-
fect, see Figs. B.8(e) and B.8(f) even though it is still significantly better than in
Figs. B.8(c) and B.8(d). We want to stress that the fact that the source term (B.30)
seems to only work correctly when the discontinuity moves by exactly one pixel per
iteration is a significant limitation to its use. In fact, in general, the observed scene
will contain more that one shock-type depth discontinuities each moving at different
speeds and, therefore, we cannot expect this condition to be realized in practice.
The reasons why this happens are still not clear, but we suspect that this might be
related to numerical discretization.
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B.6 Notes on the numerical implementation

In an actual implementation, the continuous time observer equations of (B.14)
or (B.19) are approximated using a numerical resolution scheme. The discussion
about the choice of the particular method to use could take an entire thesis, and,
in fact, many books have been written on the topic, see again [Tho13b, Tho13a,
LeV02]. We are, in particular, interested in finite difference and finite volume meth-
ods for their potential to be implemented in a highly parallel architecture. To give
just a simple example, a naive numerical scheme for integrating (B.14) or (B.19)
could be obtained by using first order central differences in space and forward differ-
ences in time to approximate all the derivatives. Considering just a one dimensional
case one could then write, e.g., for the first row of (B.14)

ŝk+1
i − ŝki
δt

= −
ŝki+1 − ŝki−1

2δx
(Θk

i + ψki ζ̂
k
i )− hs̃ki

where ski = s(x = xk, t = tk) (and similarly for the other quantities) and δx and δt
are the spatial and temporal discretization steps respectively. One can then “isolate”
the new estimation as

ŝk+1
i = ŝki +

(
−
ŝki+1 − ŝki−1

2δx
(Θk

i − ψki ζ̂ki )− hs̃ki

)
δt.

Note how the amount of calculation required is always constant at each iteration and
it is identical for each pixel. Moreover, for each pixel, the calculation only requires
to access the observer state and the measurements in a small neighbourhood of the
pixel (in this case only the pixels to the left and to the right) and only at the time tk.
This properties make it possible to envision an implementation of this technique on
highly parallel computer architectures such as GPUs and FPGAs, with potentially
extremely high performance, see [AAM14].

In general, an important aspect to consider is that the stability of numerical
methods for solving PDEs depends, in general on the relationship between the
spatial and temporal discretization steps. A large class of methods, e.g., becomes
numerically unstable if the characteristic curves move by more than one pixel per
iteration, i.e. in the one-dimensional case, if

Ẋ = f ′ >
δx

δt
.

Increasing δx introduces a larger discretization error thus affecting the overall accu-
racy. It might seem obvious that δx (and similarly for δy) should correspond to the
actual camera pixel distances, however the spacial resolution can be both increased
and reduced at will with some effects on the performance of the estimation. On the
other hand, reducing δt clearly has a positive impact on the stability at the cost
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of a higher computational effort. Note that, as for the spatial one, the time step
for the time discretization does not have to correspond to the camera frame rate.
In fact, depending on the camera velocity and on the distance of the environment
(which enter in the calculation of f ′), the time ∆t passing between two frames might
be considerably larger than the minimum integration time step necessary to obtain
a stable numerical scheme. Given these considerations it is useful to distinguish
in (B.19) a propagation term and an innovation component. The former is meant
to align the previous estimate to the latest measurement while the latter uses the
actual measurement to update the estimation. Let us indicate with (ŝk, χ̂k) the
state of the observer at time t = T k = t0 + k∆t when the image sk becomes avail-
able. Let us also indicate with (ŝk+, χ̂k+) the value obtained by integrating the
following PDE obtained by setting h = α = 0 in (B.19)


∂ŝ

∂t
= fs(s

?,ω) + Ω(s?,v)ζ̂

∂χ̂

∂t
= fχ(χ̂,v,ω) + q(t,π)∇2

πχ̂.

(B.31)

from the initial condition (ŝk, χ̂k) for a time ∆T . When a new camera image is
available, we calculate the new estimate at time T k+1 as

 ŝk+1 = ŝk+ − h∆T
(
ŝk+ − sk+1

)
χ̂k+1 = χ̂k+ − α∆TΩ(s?,v)

(
ŝk+ − sk+1

)
.

(B.32)

As highlighted by the presence of the question mark s? in (B.31–B.32), a problem
that one faces when implementing (B.31–B.32) is that of choosing which image
s to use for the calculation of fs and Ω (both depend, in fact, on the gradient
of s). If the latest measurement s = sk = Y k is used and the integration time
step for (B.31) is smaller than the camera time step, the risk is that, during the
“inner” integration steps of (B.31), s is not aligned with the other quantities3. One
possible solution would be to propagate the last measurement Y k together with the
observer state during the propagation part of the estimation. However this implies
a considerable computational burden. Another possibility would be, instead, to use
the estimated image ŝ = Ŷ in the calculation of fs and Ω. To show the effect of
this choice more clearly, we prefer to consider again the fully continuous observer
dynamics (B.14) and to write the explicit expression of the different quantities. The

3Note that, in principle, a similar issue existed for the other SfM problems considered in this
thesis, whenever the integration step of the observer was chosen smaller than the camera frame rate.
However, while in the other cases its effects where negligible, as demonstrated by the experimental
results, initial simulation tests seem to indicate a higher sensitivity w.r.t. this problem in the dense
case.
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observer dynamics, for the planar case, would hence be written as

∂Ŷ

∂t
= −∇πŶ TΘ−∇πŶ Tψζ̂ − hỸ

∂ζ̂

∂t
= −∇π ζ̂TΘ−∇π ζ̂Tψζ̂ + α∇πŶ TψỸ

+ζ̂eT3

(
ζ̂v − [π]×ω

)
+ q∇2

π ζ̂,

and the error dynamics would become

∂Ỹ

∂t
= −∇πỸ TΦ− hỸ −∇πŶ Tψζ̃

∂ζ̃

∂t
= −∇π ζ̃TΦ + α∇πŶ TψỸ + q∇2

π ζ̂

−∇π ζ̂Tψζ̃ − ζ̃ [π]×ω +
(
ζ̂2 − ζ2

)
eT3 v.

(B.34a)

(B.34b)

The expression (B.34) presents some intuitive interpretations whose actual implica-
tions are still to be investigated. First of all we can still recognize a skew-symmetric
structure with dissipation term h as in the other cases, but now with the coupling
matrix being Ω(ŝ,v) = ∇πŶ Tψ instead of Ω(s,v). Secondly we can notice the
presence of an additional term in the form

∂Ỹ

∂t
= −∇πỸ TΦ

∂ζ̃

∂t
= −∇π ζ̃TΦ

.

This term is a linear (Φ depends on ζ and not ζ̂) variable-coefficient convection
equation (see [Tho13b]) for the image and the disparity map that should not either
reduce or increase the error but just “move it around” with a velocity determined
by the optical flow Φ.

Another important effect of the use of a numerical resolution scheme is the,
already mentioned, introduction of undesired numerical dissipation/smoothing ef-
fects. We have already seen this phenomenon in the propagation of the depth map
in Fig. B.6. More important, however, are the effects on the propagation of the
image ŝ. As a matter of fact, due to numerical damping, the prediction error s̃ will
not only reflect the depth estimation error, but it will also be due to numerical ef-
fects. This clearly affects the effectiveness of s̃ in the update phase. We believe that,
since only the low frequency components of ŝ are preserved during the propagation
(which tends to damp the high frequency ones), these are the only ones that should
be relied on during the innovation step. One possible solution that we envision,
then, is to apply a low-pass filtering action to the prediction error s̃ before calculat-
ing the update term (B.32) of the filter. The optimal shape and pass-band of such
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filter, however, are still to be determined. Finally it might be worth investigating
the use of alternative metrics for the discrepancy between ŝ and s such as, e.g. the
mutual information successfully exploited in [TM12] for visual control purposes.

B.7 Conclusions

In this appendix we reported some preliminary results in the context of dense pho-
tometric structure estimation from motion. We modeled the system dynamics with
a system of PDEs and we proposed an observer (also in the form of a system of
PDEs) characterized by a structure reminiscent of the one used for the other ge-
ometric primitives presented in this thesis. We also underlined, however, some
important differences between this case and the other sparse estimation problems
addressed in this work. Due to the infinite dimensionality of the problem, for in-
stance, one cannot simply extend the finite dimensional case stability proof to this
infinite dimensional case. We also discussed some intuitive observability properties
of the system that are similar to those characterizing the other SfM problems. Af-
ter this, we proposed a physically inspired regularization strategy that can improve
the estimation in areas that are scarcely observable, especially if the environment
is planar in these areas. We then pointed out the limitations of this modeling and
estimation strategy when dealing with occlusions and consequent depth discontinu-
ities. Finally we briefly discussed some practical considerations that might suggest
the use of some alternative observer structure (use of the estimated image in the
propagation phase and low-pass filtering of the prediction error).

At the moment, we have obtained promising results for simple simulated con-
ditions, but we still lack a proper validation in more realistic scenarios. However,
we believe that our approach has some potential and we are working towards the
resolution of the current issues.
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Appendix C

A primer on
port-Hamiltonian systems

In this appendix we wish to provide a short and informal overview on the
topic of port-Hamiltonian (pH) systems. For a more complete and formal
survey on the topic we suggest to refer to [van06], from which most of this

material is inspired, or to the many classical works referenced therein. We also
give, at the end of the chapter, a brief introduction to bond-graphs, often used for
a graphical representation of pH systems.

C.1 Introduction to port-Hamiltonian systems

Port-Hamiltonian systems theory historically originates from the combination of
two very classical frameworks: on one hand the Hamiltonian approach which was
initially developed in the context of analytic mechanics and, on the other hand, the
network approach commonly used in many electrical engineering applications. The
pH framework, in fact, provides a powerful tool to analyze (and, more importantly,
control) complex systems that can be thought of as an interconnection of simpler
Hamiltonian systems. The “appeal” of the pH framework also comes from the fact
that it can often generate intuitive physical interpretations for very complex control
systems.

Let us consider a very simple example: a mass-spring system. As well known,
the dynamics of this system are governed by the second-order differential equation

mẍ+ kx = e (C.1)

where m is the mass, k is the spring elastic coefficient, e is an external force and x
is the system configuration variable, i.e. the position of the mass. Equation (C.1)
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can also be rewritten in terms of the linear momentum p = mẋ as

ṗ+ kx = e.

Defining the state vector x = [x, p]T and the system Hamiltonian

H(x) =
p2

2m
+

1

2
kx2 ≥ 0, (C.2)

the dynamics (C.1) can then be rewritten as

ẋ =

[
ẋ

ṗ

]
=

[
0 1

−1 0

][
∂H(x,p)
∂x

∂H(x,p)
∂p

]
+

[
0

1

]
e = S∇xH(x) +Be, (C.3)

which is the canonical Hamiltonian equation for a mechanical system, see e.g.
[FM06]. Note that matrix

S =

[
0 1

−1 0

]
= −ST ,

also called the system structure matrix, is skew-symmetric. Matrix B is, instead
called the input matrix. This structure has important consequences on the system
energy balance as it will be explained in the following.

If the system also contains some viscous friction, then one has

mẍ+ dẋ+ kx = e

where d ≥ 0 is the damping coefficient and (C.3) becomes

ẋ =

([
0 1

−1 0

]
−

[
0 0

0 d

])[
∂H(x,p)
∂x

∂H(x,p)
∂p

]
+

[
0

1

]
e = (S −R)∇xH(x) +Be (C.4)

where

R =

[
0 0

0 d

]
� 0

is also called the system resistive matrix and H is still given by (C.2). Equa-
tion (C.4) can be further generalized by making the structure matrix S, the resistive
matrix R and the input matrix B state dependent. By doing so, one obtains the
generic form of input-state-output port-Hamiltonian systems that represent a large
class of physical processes. The dynamics of these systems have the from{

ẋ = [S(x)−R(x)]∇xH(x) +B(x)u

y = B(x)T∇xH(x)
(C.5)

where x is an element of a q-dimensional manifold X , S(x) = −S(x)T , R(x) =

R(x)T � 0, u ∈ Rv is a control input and y ∈ Rv is the system output.
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As already mentioned, these systems have very interesting energy balance prop-
erties. To show this, let us compute the dynamics of H(x) for a system in the
form (C.5). One easily finds that

Ḣ(x) = ∇xH(x)T ẋ = −∇xH(x)TR(x)∇xH(x) + yTu

which, integrated back, gives

H(x(t)) = H(x(t0))−
∫ t

t0

∇xH(x(τ))TR(x(τ))∇xH(x(τ))dτ +

∫ t

t0

y(τ)Tu(τ)dτ.

Now let us assume that H is lower bounded and that, w.l.o.g., H ≥ 0 as it is the
case for (C.2). Under this assumption, one can conclude that

H(x(t0)) = H(x(t)) +

∫ t

t0

∇xH(x(τ))TR(x(τ))∇xH(x(τ))dτ −
∫ t

t0

y(τ)Tu(τ)dτ

≤ −
∫ t

t0

y(τ)Tu(τ)dτ

i.e. the amount of energy that can be extracted from the system in the interval
[t0, t] (represented by the last term) cannot be larger than the initial amount of
energy, H(x(t0)), contained in the system at time t0. In other words, if H is lower
bounded, the pH system (C.5) does not internally generate energy and, therefore,
it is said to be passive. The couple (u,y) can be used to inject or extract energy
from the system and, for this reason, it is also called a power port.

Passivity is a very important concept in control theory because it guarantees
some stability properties: intuitively, if a system cannot generate energy on its own,
then, if the external input u is set to zero, the system will either start oscillating
or (if R � 0) it will converge to an equilibrium, but the system trajectories will
never diverge. This intuitive fact can be formally demonstrated using Lyapunov’s
analysis.

While passivity gives an overall energy characterization of a system from an
input-output point of view, the pH framework provides more insights also on the
internal structure of a system and on how the energy is actually exchanged between
its components. To show this, let us consider again the simple mass-spring sys-
tem. This latter can also be thought of as an interconnection between two different
subsystems (the mass and the spring) connected in a “feedback” configuration (see
Fig. C.1) with

U :

 ẋ = uU

yU =
∂HU
∂x

= kx
, K :


ṗ = uK

yK =
∂HK
∂p

=
p

m

,

and
HU (x) =

1

2
kx2, HK(p) =

1

2m
p2, H = HU (x) +HK(p).
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e +
K

uK

U

yK

uUyU

−

Figure C.1 – Representation of the mass-spring system as an interconnection
between two subsystems. K is associated to the mass and stores the kynetic energy of
the system. U is associated to the spring and stores the potential energy of the system.

Note that both K and U have a pH structure (C.5) with xU = x and xK = p

respectively, and with SU = SK = 0, RU = RK = 0 and BU = BK = 1. These two
systems represent two energy storage elements associated with the potential and
kinetic energies of the mass-spring system given by HU and HK respectively. The
full system energy is given by the sum of these two contributions and its dynamics
is

Ḣ(x, p) =
∂H
∂x

ẋ+
∂H
∂p

ṗ =
∂H
∂p

e = ẋe

and thus the mass-spring system is passive, as expected, and it can exchange energy
with the environment through the power variables (e, ẋ). The two subsystems also
have their own power ports, in fact:

ḢU =
∂HU
∂x

ẋ = yUuU , ḢK =
∂HK
∂p

ṗ = yKuK

and, through them, they can exchange energy between each other in a conservative
way (due to passivity, no energy can either be created or destroyed “inside” the
mass-spring system). This internal energy exchange is regulated, in fact, by the
power-preserving feedback connection[

uU

uK

]
=

[
0 1

−1 0

][
yU

yK

]
+

[
0

e

]
,

between the two systems, that results in the skew-symmetric structure matrix S
in (C.3).

When modeling complex physical systems one often ends up with a system of
both differential and algebraic equations (DAEs). These can be modeled in the
pH framework by replacing the structure matrix S(x) with a more general Dirac
structure defined as follows. Let F be a finite-dimensional vector space, called the
flow space and let F∗ be its dual space (i.e. the space of linear functions on F),
called the effort space. In general the state space of the pH system X is a manifold
and the flow space is its tangent space TxX at x where as the effort space is the co-
tangent space T ∗xX . The space of power variables is given by the Cartesian product
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Physical domain Flow f Effort e
Electric Current Voltage
Magnetic Voltage Current
Potential (mechanics) Velocity Force
Kinetic (mechanics) Force Velocity
Potential (hydraulic) Volume flow Pressure
Kinetic (hydraulics) Pressure Volume flow
Chemical Molar flow Chemical potential
Thermal Entropy flow Temperature

Table C.1 – Power variables for some physical domains

fR eR

fS eS

fI

eI

fC

eC
D

Dissipative elements

Environement

Energy-storage elements (H)

Control port

Figure C.2 –General structure of a port-Hamiltonian system with the Dirac structure
D in the center and the four ports representing internal energy-storage (S) and dissipative
(R) elements and the interconnection with the control action (C) and the environment (I).

between the two F ×F∗ where the power is defined by the duality product between
efforts and flows:

W = 〈f |e〉 , f ∈ F , e ∈ F∗

In table C.1 we report a list of power variables for some typical modeling domains.
On F × F∗ one can define the canonical symmetric bilinear form 〈 , 〉F×F∗ as

〈(f1, e1), (f2, e2)〉F×F∗ = 〈f1|e1〉+ 〈f2|e2〉 , fi ∈ F , ei ∈ F∗

Given a subspace D ∈ F × F∗, its orthogonal complement w.r.t. the bilinear form
is defined as:

D⊥ =
{

(f1, e1) ∈ F × F∗|〈(f1, e1), (f2, e2)〉F×F∗ = 0, ∀(f2, e2) ∈ D
}

If D = D⊥ then D is a constant Dirac structure. Note that one has

dimD = dimD⊥ = dim(F × F∗)− dimD = 2 dimF − dimD ⇐⇒ dimD = dimF .

The Dirac structure defines a power-preserving or power-continuous relation be-
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tween the power variables, in fact if (f , e) ∈ D, then (f , e) ∈ D⊥ and the bilinear
form returns:

〈(f , e), (f , e)〉F×F∗ = 2 〈f |e〉 = 0.

In the most general case, then, a pH system can be represented formally, as a Dirac
structure with four power ports (see Fig. C.2):

S is interconnected to internal energy-storage elements. The energy is defined
by the Hamiltonian function H : X 7→ R and the power balance can be written
as Ḣ = −〈fS |eS〉;

R is interconnected to internal energy-dissipation elements. The power variables
at this port satisfy the constraint 〈fR|eR〉 ≤ 0;

C is interconnected to the control action;

I is the port associated with the interaction of the system with its environment.

The interest in pH systems comes from the fact that they have some modularity
properties: as shown for the mass-spring example, an interconnection between two
pH systems through a Dirac structure is, again, a pH system with total energy
(the Hamiltonian function) given by the sum of the energies of the two subsystems.
Furthermore, if its Hamiltonian function H is lower bounded, then a pH system is
passive. Conversely, most passive systems can be written in the pH form.

Further generalizations of the pH systems are also possible. In particular, the
concept can be extended to infinite dimensional systems governed by algebraic and
partial differential equations. We believe that this could be useful to analyze the
stability of dense structure estimation schemes as those described in Appendix B,
but, at the moment, this is more of a conjecture. For more information about pH
systems we suggest, again, to refer to [van06].

C.2 Bond-graphs

A convenient graphical representation of pH systems, that highlights their network
properties, is that of bond-graphs, see Fig. C.3. In these graphs each system element
is represented by a node and the links between different nodes (called bonds) rep-
resent, in general, power connections. The power variables associated to each bond
are usually written in the middle of the bond with the effort variable conventionally
on the top (or left) and the flow variable on the bottom (or right). The direction
in which the power flows positively through the bond is indicated by a half-arrow
pointing in the direction of the flow variable. Finally a vertical trait indicates the
causality of the bond, i.e. the side of the bond on which the effort is imposed.
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Se: e 1

R: d

C: k

I: m
e

ẋ

em

ẋ

ek ẋ

ed ẋ

Figure C.3 – Bond graph representation of the mass-spring-damper system.
The constitive equations for each element are R: ed = dẋ; I: ek = k

∫
ẋ(τ)dτ ; C:

ẋ = 1
m

∫
em(τ)dτ , and finally, for the 1-junction, e − ek − ed − em = 0 where the signs

in the summation were chosen according to the direction of positive power represented by
the half-arrows.

Bond graphs can also contain “signal bonds”, i.e. connections in which the amount
of power exchanged is negligible. These are represented by full arrows and they
are used to indicate measurements or parameters. The basic elements that can be
represented on the bond graph are:

C elements describe integral relations between flow and effort, e.g. e(t) =
1
C

∫
f(τ)dτ . They are used to represent energy storage elements such as elec-

tric capacitors;

I elements describe integral relations between effort and flow , e.g. f(t) =
1
L

∫
e(τ)dτ . They are used to represent dual energy storage elements such as

electric inductors;

R elements describe algebraic relations between flow and effort, e.g. e = Rf .
They are used to represent dissipative elements such as electric resistors or
viscous friction;

Se sources of effort represent constraints on the effort variable, i.e. they fix the
effort independently on the flow. They are used to represent effort generators
such as electric voltage supplies;

Sf sources of flow represent constraints on the flow variable, i.e. they fix the flow
independently on the effort. They are used to represent flow generators such
as electric current supplies.

The interconnection between different elements can be done via power-continuous
nodes in which energy can only flow and can never be created/accumulated/dissi-
pated:
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0 junctions represent interconnections in which all power ports have the same
effort and the flows sum to zero. They are equivalent to parallel electric
connections and represent the Kirchoff’s current law;

1 junctions represent interconnections in which all power ports have the same
flow and the efforts sum to zero. They are equivalent to serial electric con-
nections and represent the Kirchhoff’s voltage law;

TF transformers describe relations between efforts and flows at the input and
output ports, e.g. e2 = ae1 and aTf2 = f1. Note that the power conserva-
tion imposes eT2 f2 = eT1 f1. Transformers can also be modulated (MTF) in
the sense that the transformation can depend on some external signal. The
velocity transformation described by the robot Jacobian is an example in this
sense where one has f2 = ṙ = J(q)q̇ = J(q)f1, and, because of the power
conservation condition, e1 = τ = J(q)T ε = J(q)Te2.

GY gyrators describe crossed relations between efforts and flows at the input and
output ports, e.g. e2 = af1 and aTf2 = e1. Again note that eT2 f2 = eT1 f1.
As for transformers, also gyrators can be modulated (MGY).

To give a simple example, the mass-spring-damper system could be represented,
using bond-graphs, as in Fig. C.3. For more information about bond graphs and
their use for modeling pH systems one can refer to, e.g., [DMSB09].
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