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Nomenclature 

Subscript  
𝑟     Radius direction 

𝜃     Azimuthal direction 

𝑧     Axial direction 

𝑖     Inner cylinder 

𝑜     Outer cylinder 

𝑝     Polymer 

𝑠     Solvent 

𝑐     Critic value 

Solution properties 
𝜌     Density 

𝜈𝑠     Kinematic viscosity of the solvent 

𝜈𝑝     Polymer contribution to the kinematic viscosity 

𝜈     Total kinematic viscosity of the solution 

𝜏𝜈 =
𝑑2

𝜈
     Viscous time 

𝜏     Relaxation time 

𝜏𝑒     Relaxation time measured by elongation rheometer 

𝜏𝑁1     Relaxation time estimated by 𝑁1 

𝜏𝑚     Relaxation time estimated by molar mass 

𝐶𝑖     Polymer concentration  

𝑇     Temperature 

𝐸 =
𝜏

𝜏𝜈
=

𝜏𝜈

𝑑2
    Elasticity  

𝑆 =
𝜈𝑝

𝜈
     Viscosity ratio 

𝐸𝑆 =
𝜏𝜈𝑝

𝑑2
    Polymer elasticity 

Magnetic fluid properties 
𝜈𝑚     Magnetic diffusivity 

𝑅𝑚     Magnetic Reynolds number 
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𝜎𝑒     Electric conductivity  

𝜇0     Permeability of free space  

𝐹𝑙⃗⃗  ⃗     Lorentz force 

�̿�𝑀     Magnetic stress tensor 

Geometry parameters 
𝑙     Length of the cylinders 

Ω𝑖      Angular velocity of the inner cylinder 

Ω𝑜     Angular velocity of the outer cylinder 

𝐿     Angular momentum 

𝑎     Radius of the inner cylinder 

𝑏     Radius of the outer cylinder 

𝑟     Radius 

𝑟𝑔 = √𝑎𝑏    Geometric mean radius  

𝑟𝑎 =
𝑎+𝑏

2
    Arithmetic mean radius 

𝑑 = 𝑏 − 𝑎    Gap length 

Γ =
𝑙

𝑑
     Aspect ratio 

Γ𝜃 =
𝜋(1+𝜂)

1−𝜂
    Azimuthal aspect ratio 

𝜂 =
𝑎

𝑏
     Radius ratio 

𝜇 =
Ω𝑜

Ω𝑖
     Angular velocity ratio 

�̂� =
𝑟

𝑑
     Dimensionless radius 

Flow parameters 

�⃗⃗� = (𝑈, 𝑉,𝑊)𝑡    Velocity vector 

𝐴, 𝐵     Coefficients of the base flow 

Ω =
𝑉

𝑟
     Azimuthal angular velocity 

Ω̅ = Ω(𝑟𝑔)    Geometric mean angular velocity 

𝑅Ω =
2Ω̅

�̇�
    Rotational number 

〈𝜔〉 =
∫ 𝑟Ω(𝑟)𝑑𝑟
𝑏

𝑎

∫ 𝑟𝑑𝑟
𝑏

𝑎

    Mean angular velocity 
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Π = 𝑝 + 𝜌𝑔𝑧    Generalized pressure 

𝑔     Gravity acceleration constant 

�⃗⃗�      Vorticity  

�̿� = (

𝑇𝑟𝑟 𝑇𝑟𝜃 𝑇𝑟𝑧
𝑇𝑟𝜃 𝑇𝜃𝜃 𝑇𝜃𝑧
𝑇𝑟𝑧 𝑇𝜃𝑧 𝑇𝑧𝑧

)   Stress tensor 

�̿�𝑠     Solvent stress tensor 

�̿�𝑝     Polymer stress tensor 

�̿�𝑝 = �̿�
𝑝 +

𝜌𝜈𝑝

𝜏
𝐼 ̿   Modified polymer stress tensor 

�⃗� 𝑝1, �⃗� 𝑝2, �⃗� 𝑝3    Polymer analog of the magnetic field 

𝐵0 = √
𝜌𝜈𝑝

𝜏
     Characteristic of the polymer analog of the magnetic field 

�̇� =
|Ω𝑖𝑎−Ω𝑜𝑏|

𝑑
    Shear rate 

𝛾�̇� =
2|Ω𝑖−Ω𝑜|𝑎𝑏

𝑏2−𝑎2
    Dynamic based shear rate 

𝑁1 = 𝑇𝜃𝜃 − 𝑇𝑟𝑟     First normal stress difference 

𝑁2 = 𝑇𝑟𝑟 − 𝑇𝑧𝑧     Second normal stress difference 

𝑅𝑒 = 𝜏𝜈�̇� =
|Ω𝑖𝑎−Ω𝑜𝑏|𝑑

𝜈
  Reynolds number 

𝑅𝑒𝑠 = 𝜏𝜈𝛾�̇� =
2|Ω𝑖−Ω𝑜|𝑎𝑏𝑑

2

(𝑏2−𝑎2)𝜈
  Shear Reynolds number 

𝑅𝑖 = 𝜏𝜈�̇�𝑖 =
Ω𝑖𝑎𝑑

𝜈
   Reynolds number associated with the inner cylinder 

𝑅𝑜 = 𝜏𝜈�̇�𝑜 =
Ω𝑜𝑏𝑑

𝜈
   Reynolds number associated with the outer cylinder 

𝑇𝑎 = √
2𝑑

𝑅𝑖+𝑅𝑜
𝑅𝑒     Taylor number 

𝑊𝑖 = 𝜏�̇� = 𝜏
|Ω𝑖𝑎−Ω𝑜𝑏|

𝑑
   Weissenberg number 

𝑊𝑖𝑖 = 𝜏�̇�𝑖 =
𝜏Ω𝑖𝑎

𝑑
   Weissenberg number associated with the inner cylinder 

𝑊𝑖𝑜 = 𝜏𝛾�̇� =
𝜏Ω𝑜𝑏

𝑑
   Weissenberg number associated with the inner cylinder 

𝑊𝑖𝑠 = 𝜏𝛾�̇� = 𝜏
2|Ω𝑖−Ω𝑜|𝑎𝑏

𝑏2−𝑎2
  Shear Weissenberg number 
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𝐾 = √
𝑆𝑑

𝑟𝑎
𝑊𝑖    Modified Weissenberg number 

𝐾𝑠 = √
𝑆𝑑

𝑟𝑔
𝑊𝑖𝑠    Modified shear Weissenberg number 

𝑚     Azimuthal wave number 

𝑘     Axial wave number 

𝜆 =
1

𝑘
     Axial wavelength  

𝑞 = 2𝜋𝑑𝑘    Dimensionless axial wave number 

𝑠 = 𝜎 + 𝑖𝜔    Complex growth rate 

𝜎     Growth rate 

𝜔     Angular frequency  

𝑓     Frequency 

Rayleigh criterion 
Φ𝑟     Rotational Rayleigh discriminant  

Φ𝑒𝑟     Elasto-rotational Rayleigh discriminant 

𝜔𝑒𝑝
𝑟  = √Φ𝑟     Rotational epicyclic frequency 

𝜔𝑒𝑝
𝑒𝑟  = √Φ𝑒𝑟    Elasto-rotational epicyclic frequency 

Ψ𝑟 =
Φ𝑟

Ω𝑖
2    Dimensionless rotational Rayleigh discriminant 

Ψ𝑒𝑟 =
Φ𝑒𝑟

Ω𝑖
2     Dimensionless elasto-rotational Rayleigh discriminant 

Φ𝑚𝑟     Magneto-rotational discriminant of the Michael criterion 
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Chapter 1: Introduction 

1.1 Accretion disk & Magnetorotational instability (MRI) 

According to the current accepted Solar Nebular theory, stars are created from dense 

interstellar clouds of dusts and gases in the space. One interstellar cloud is called a nebula. If the 

mass of a nebula is greater than certain critical value, the central part of the cloud will collapse to a 

proto-star while the surrounding part will rotate around it [Woolfson2000].  As more matter 

collapses into the proto-star, the surrounding cloud rotates faster since the angular momentum is 

conserved in a nebula; and it flattens to disk shape along the equator.  This disk-like structure of the 

interstellar cloud around a proto-star is known as an accretion disk [Hoyle1960, Cassen1981]. The 

accretion process continues until sufficient mass accretes into the proto-star to initiate 

thermonuclear fusion leading to the creation of a new star. 

However it is not clear how the angular momentum in an accretion disk is transported out of 

the system in order to allow the dusts and gases collapse into the proto-star [Balbus2011]. Viscous 

friction could cause kinetic energy dissipation and momentum transportation but it is largely 

inefficient as the interstellar cloud is too sparse and too cold. Turbulent flow in an accretion disk may 

cause large momentum transportation, but previous theoretical works indicate that purely 

hydrodynamic turbulence is inadequate [Pringle1981, Balbus1998]. In 2006 Ji et al. [Ji2006] have 

studied experimentally the Newtonian quasi-Keplerian flow comparable to an astrophysical accretion 

disk. They have observed no hydrodynamic instabilities that should be responsible for the large 

angular momentum transportation. 

An electrically conducting fluid in an accretion disk could be destabilized with weak axial 

magnetic field when the Velikhov-Chandrasekhar criterion (angular velocity decreases with the 

radius) is fulfilled [Chandrasekhar1960]. In 1990’s Balbus and Hawley have linked this instability to 

the momentum transportation of accretion disks and have verified numerically the implication of the 

MRI in astrophysical accretion disks [Balbus1991]. They have proposed that the MRI in an accretion 

disk can be explained by the “dumbbell” model represented in figure 1.1. In a perfectly conducting 

fluid, co-rotating fluid elements attract each other by Lorentz force, which acts as elastic strings.  In 

an accretion disk, the Keplerian velocity distribution Ω(𝑟) ∝ 𝑟−3/2 is applied, so that an element on 

the inner orbit rotates faster than its neighbor on the outer orbit. Being retarded by the “elastic 

string”, the inner element loses angular momentum, then it goes to even inner orbit and rotates 

faster, while, on the other way, the outer element gains angular momentum and goes outer and then 

slows down. This process leads to the MRI.  

In practice the MRI can be of different types by different dominating magnetic fields. The MRI 

that appears in the axial magnetic fields is called the standard MRI (SMRI) while the MRI that appears 

in the azimuthal magnetic fields is called the azimuthal MRI (AMRI) and the MRI that appears when 

both axial and azimuthal magnetic fields are present is called the helical MRI (HMRI). 

The direct experiments to detect the SMRI are found difficult. Until now no positive results 

have been reported [Ji2013]. 
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Figure 1.1: The “dumbbell” model to explain the mechanism of the SMRI proposed by Balbus. 

(http://www.scholarpedia.org/article/Magnetorotational_instability) 

In 2005 Hollerbach and Rüdiger have suggested through theoretical analyses that the HMRI is 

easier to realize than the SMRI, and that it might be relevant to cooler astrophysical disks 

[Hollerbach2005]. A year later the HMRI was observed experimentally with liquid metal alloy GaInSn 

by Stefani et al. [Stefani2006] [Stefani2007] [Stefani2009]. Recently the AMRI was observed 

experimentally [Seilmayer2014]. But unluckily these observations are not realized in Keplerian 

regime. Recently several analytical studies [Kirillov2013] [Kirillov2014] and numerical studies 

[Child2015] have predicted that the HMRI and AMRI could be observed in the Keplerian regime in 

certain condition. But to our knowledge no experimental observation of HMRI or AMRI in the 

Keplerian flow is reported till now. 

1.2. Analogy between MRI and viscoelastic instability 

As it is difficult to realize the SMRI in experiments with liquid metals, it looks reasonable to 

replace the fluid with something easier to control. The dumbbell model that explains the SMRI 

inspires us of the viscoelastic fluids which can be described by dumbbell models [Bird1977]. Among 

all the molecular models Ogilvie & Proctor [Ogilvie2003] have suggested that the viscoelastic fluids of 

Oldroyd-B model can be considered as an analog to the electrically conducting fluids [Ogilvie03]. This 

analogy was analyzed theoretically and the investigation of the MRI through the study of viscoelastic 

instabilities (VEI) in the quasi-Keplerian flow was proposed [Ogilvie08]. This analogy leads us to a 

bypass to know better about the SMRI and the turbulence in accretion disks. 

The only experimental research on the analogy between SMRI and VEI was reported by 

Boldyrev et al. [Boldyrev09]. However the viscoelastic solutions of this work were not well 

characterized and they seem not to fit the Oldroyd-B model. The authors have got only qualitative 

agreement with the theoretical prediction of Ogilvie & Potter [Ogilvie08].  

On the other hand the viscoelastic instabilities are unsolved problems because there are no 

universal equations to describe the viscoelastic fluids and it is not easy to get fluids that fit perfectly 

the Oldroyd-B model. Beside these practical difficulties, the complexity of the viscoelastic fluids 

makes the study of the viscoelastic instability (VEI) a difficult task. So before all, we need to resume 

the main researches of the VEI available in literature. 

http://www.scholarpedia.org/article/Magnetorotational_instability
http://www.scholarpedia.org/article/File:MRISB1.jpg
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1.3. The viscoelastic instability 

We consider dilute polymer solutions composed of long-chain macromolecules with high 

molecular weight. These fluids are called viscoelastic fluids because they show not only viscous 

behaviors but also elastic behaviors. The most significant properties of the viscoelastic fluids are the 

shear-thinning effect and the elastic effects among which the Weissenberg effect is the most famous. 

The shear-thinning effect consists in the decrease in the viscosity in strong shear flows. Illustrated in 

figure 1.2 (a), the fluid viscosity stays constant at small shear rate which forms the so called 

Newtonian plateau and it decreases with the shear rate after certain critical value. The Weissenberg 

effect consists in the fluid climbing through a rotating rod as illustrated in figure 1.2 (b). As the rod 

rotates in a viscoelastic fluid, it induces shear that stretches the ‘spring’ that connects the fluid 

parcels so that the fluid shrinks around the rod and the fluid parcels ‘climb’ the rod. 

Figure 1.2: (a) Shear thinning effect, (b) Weissenberg effect. 

The most important discovery of the viscoelastic liquids described by the Oldroyd-B model 

(liquid solutions with constant shear viscosity) is the observation of the purely elastic instability by 

Larson and Shaqfeh [Larson1990]. These authors have shown theoretically and experimentally that a 

viscoelastic fluid of Oldroyd-B model can be destabilized in a rotating flow by the elastic force with 

very weak (almost vanishing) shear rate. The figure 1.3 presents the photo of the purely elastic 

instability when it is fully developed. A drawback of this research is that the authors have used only 

approximate equations in the limit of small gap and only axisymmetric modes were considered. 

Shear rate (1/𝑠) 

Viscosity 

(𝑃𝑎 ⋅ 𝑠) Newtonian fluid 

Shear thinning 
effect 

Newtonian 
plateau 

(a) (b) 
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Figure 1.3: Photo of the purely elastic instability provided by Larson & Shaqfeh [Larson 1990]. 

To explain the purely elastic instability, Larson et al. [Larson1990] have proposed a 

destabilization scenario based on the “dumbbell” model (figure 1.4) which is similar to the model 

that Balbus has used to describe the mechanism the MRI.  

 

Figure 1.4: “Dumbbell” model proposed by Larson & Shaqfeh [Larson1990]. 

Later on Joo & Shaqfeh have conducted linear stability analysis of the inertia-elastic instability 

with approximate equations used by Larson-Muller-Shaqfeh [Joo1992]. The competition between the 

inertial instability and the purely elastic instability was analyzed numerically. 

In 1993 Avgousti et al. [Avgousti1993] have conducted the linear stability analysis with 

complete governing equations of the Oldroyd-B model in a Couette-Taylor system. They have 

predicted that the VEI critical mode could be either axisymmetric or non-axisymmetric depending on 

the elasticity values. 

In 1997 a new dissipative mode has been observed experimentally by Groisman and Steinberg 

[Groisman1997] when decreasing the shear rate of the destabilized viscoelastic flow of highly elastic 

polymer solutions. This mode appears as distinct vortex pairs or “diwhirls”. 
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Different critical modes were observed experimentally by Baumert & Muller [Baumert1997, 

Baumert1999] with fluids of low and medium elasticity. They have reported also flow patterns of 

shear rate higher than the critical values in different rotational velocity ratio of the cylinders. 

The VEI was also studied experimentally in LOMC where three different critical modes for 

fluids of different elasticities have been reported by Crumeyrolle Kelai, Latrache [Crumeyrolle2005] 

[Kelai2011] [Latrache2012]. However despite various situations were investigated, none of them was 

conducted in the Keplerian or quasi-Keplerian regime 

1.4. Plan of this thesis 

The purpose of this thesis is to study theoretically and experimentally the VEI of Oldroyd-B 

model in order to get better understanding of the MRI and the momentum transportation in 

accretion disks.  

In chapter 2, we will present the general equations of the Hydrodynamics of the viscoelastic 

fluids and of the magneto-hydrodynamics (MHD) of electrically conducting fluids, in order to show 

the conditions of the analogy between the VEI and the MRI. In chapter 3 the properties of the 

viscoelastic circular Couette flows are analyzed, the polymer analogs of the magnetic fields are 

presented to prepare the construction of the analogy of VEI with the MRI.   

The chapter 4 addresses the revisited theoretical studies of the VEI. First the rotational 

Rayleigh discriminant is generalized to the elastic-rotational flow which is an analog of the Rayleigh 

criterion of the rotating flow in the presence of the magnetic field. Then the perturbation equations 

and the numerical methods of the linear stability analysis are presented together with the validation 

of our codes. The chapter 5 describes the experimental setup, the working fluids and their rheology, 

and the measurements of the relaxation time elasticity of polymer solutions.  

The following chapters contain the theoretical and experimental results obtained in different 

rotating regimes and the conclusions drawn from them. In chapter 6, we study the VEI in shear flows 

by rotating one cylinder of the Couette-Taylor system. The experimental results are compared to the 

linear stability analysis results and the results of the other authors. In chapter 7 the VEI is studied in 

quasi-Keplerian flow and anti-Keplerian flow. The analogy between the MRI and VEI is then discussed. 

The chapter 8 discusses the case of an intermediate rotation regime in which both the centrifugal 

force and the elasticity force are the driving mechanisms of instability. The chapter 9 is concerned 

with the special case of the purely elastic instability in the limit of infinite elasticity of polymer 

solutions. It yields a new insight in this instability which was investigated by Larson et al [Larson, JFM 

1990] in the 1990’s. The thesis ends with a general conclusion and an outlook of further 

developments of the present work. 
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Chapter 2: General equations 

In this chapter, we introduce the general hydrodynamic equations of the electrically 

conducting fluids and the viscoelastic fluids of Oldroyd-B model. Then these equations are compared 

to bring out the analogy between these fluids. 

2.1. Hydrodynamic equations of Newtonian fluids 

An isothermal and incompressible flow is governed by the equations of conservation of mass 

and momentum: 

 ∇ ∙U⃗⃗ = 0 2.1 

 
ρ(
∂U⃗⃗ 

∂t
+ U⃗⃗ ∙ ∇U⃗⃗ ) = −∇Π + ∇ ⋅ T̿ +  𝐹  

 

2.2 

where T̿ is the total stress tensor,  Π = p + ρgz is the general pressure and 𝐹  is the external force 

density.  

In order to solve these equations, constructive models of the fluids are needed. For a 

Newtonian fluid, the stress is proportional to the strain. The constitutive equation which connects 

the stress tensor �̿� and the strain tensor �̿� = ∇U⃗⃗ + (∇U⃗⃗ )
T

 of a Newtonian flow is written as: 

 �̿� = −𝜌𝜈�̿� 2.3 
where 𝜌 is the density of the fluid and 𝜈 is the kinematic viscosity of the fluid. So that the momentum 

conservation equation of Newtonian fluids (2.2) becomes: 

 ρ(
∂U⃗⃗ 

∂t
+ U⃗⃗ ∙ ∇U⃗⃗ ) = −∇Π+ 𝜌𝜈∇2�⃗⃗� + 𝐹  2.4 

2.2. Magneto-Hydrodynamic (MHD) equations  

A special class of Newtonian fluids is the electrically conducting fluids in the presence of the 

magnetic field. The magneto-hydrodynamics (MHD) studies the dynamics of electrically conducting 

fluids which include plasmas and liquid metals. In an electrically conducting fluid moving with 

velocity �⃗⃗� , the magnetic field  �⃗�  exerts on the charged fluid parcels a Lorentz force  𝐹𝑙⃗⃗  ⃗ : 

 𝐹𝑙⃗⃗  ⃗ =
1

𝜇0
∇⃗⃗ × �⃗� × �⃗�  2.5 

Where 𝜇0   is the permeability. Hence the equation of the momentum conservation becomes: 

 ρ (
∂U⃗⃗ 

∂t
+ U⃗⃗ ∙ ∇U⃗⃗ ) = −∇Π + 𝜌𝜈∇2�⃗⃗� +

1

𝜇0
∇⃗⃗ × �⃗� × �⃗�  2.6 

In a well conducting liquid, the magnetic field obeys the following dynamic equation:  

 𝜕�⃗� 

𝜕𝑡
+ �⃗⃗� ⋅ ∇�⃗� = �⃗� ⋅ ∇�⃗⃗� + 𝜈𝑚∇

2 �⃗�  2.7 
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where𝜈𝑚 = 1/(𝜎𝑒𝜇0)is the magnetic diffusivity, 𝜎𝑒 is the electrical conductivity of the liquid. The 

equation 2.7 is an analog of the vorticity equation.  

Thus, the momentum conservation equation 2.6 and the induction equation 2.7 together 

with the mass conservation equation 2.1 constitute the MHD governing equations. 

2.3. Hydrodynamic equations of viscoelastic fluids  

In many industrial applications, polymer solutions made of long-chain molecules are involved. 

These solutions do not satisfy the Newtonian law when they are sheared. Instead, their constitutive 

laws are much more complicated. These fluids are a class of non-Newtonian fluids. There exist many 

models to describe the non-Newtonian fluids, depending on their rheology: dependence of the 

viscosity on shear rate, presence of the elasticity ... The fluids that possess both viscosity and 

elasticity due to polymer molecules are called viscoelastic fluids.  

One of the simplest models used to describe the viscoelastic fluids is the Upper-convected 

Maxwell (UCM) model. The UCM model considers fluid parcels as Brownian beads connected by an 

infinitely extensible spring [Bird1977]. The constitutive equation of the UCM model is written as 

follows, where 𝜏 is relaxation time of the viscoelastic fluid. 

 �̿� + 𝜏 [
𝜕

𝜕𝑡
�̿� + �⃗⃗� ⋅ ∇�̿� − ((∇�⃗⃗� )

𝑇
⋅ �̿� + �̿� ⋅ (∇�⃗⃗� ))] = 𝜌𝜈�̿�  2.8 

The UCM model neglects the solvent contribution to the viscosity, it may be suitable to the 

thick polymer solutions or polymer melts. A better model to describe the dilute polymer solutions is 

the Oldroyd-B model [Oldroyd1950]. In this model, the stress tensor is decomposed into the 

polymeric stress tensor �̿�𝑝 and the Newtonian solvent stress tensor �̿�𝑠: 

 �̿� = �̿�𝑝 + �̿�𝑠 2.9 

The viscosity of the total solution 𝜈 is the sum of the solvent viscosity 𝜈𝑠 and the polymer 

contribution of the viscosity 𝜈𝑝. Both 𝜈𝑝 and 𝜈𝑠 are assumed to be independent to the shear rate, the 

fluid viscosity 𝜈 is independent to shear rate: 

𝜈 = 𝜈𝑝 + 𝜈𝑠 2.10 

So the Oldroyd-B model is used to describe viscoelastic fluids with a constant viscosity. 

As the solvent stress tensor �̿�𝑠 satisfies the Newtonian constitutive equation 2.3, the momentum 

conservation equation writes as follows, where 𝜈𝑠 is the solvent viscosity.  

 𝜌 (
𝜕�⃗⃗� 

𝜕𝑡
+ �⃗⃗� ∙ ∇�⃗⃗� ) = −∇Π+ ∇ ∙ �̿�𝑝 + 𝜌𝜈𝑠∇

2�⃗⃗�  2.11 

As the polymeric stress tensor 𝑇𝑝̿̿̿̿  satisfies the UCM model, we have the constitutive equation of the 

Oldroyd-B model as follow: 

 
�̿�𝑝 + 𝜏 [

𝜕�̿�𝑝

𝜕𝑡
+ �⃗⃗� ∙ ∇�̿�𝑝 − (∇�⃗⃗� )

𝑇
∙ �̿�𝑝 − �̿�𝑝 ∙ ∇�⃗⃗� ] = 𝜌𝜈𝑝[∇�⃗⃗� + (∇𝑈)⃗⃗ ⃗⃗ 

𝑇] 

 

2.12 
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Hence the equations 2.11 and 2.12 together with the mass conservation equation 2.1 

constitute the governing equations of the viscoelastic fluids of the Oldroyd-B model. 

By taking the divergence of the momentum equation 2.11 we obtain the pressure equation as 

follow, where Ω2 = Ω̿Ω̿ , Σ2 = Σ̿Σ̿ , Ω̿ = 1/2 (∇⃗⃗ �⃗⃗� − (∇⃗⃗ �⃗⃗� )
𝑡
) , Σ̿ = 1/2 (∇⃗⃗ �⃗⃗� + (∇⃗⃗ �⃗⃗� )

𝑡
)  are the 

antisymmetric and symmetric parts of the velocity gradient tensor ∇�⃗⃗� .  

 ΔΠ = −∇⃗⃗ ⋅ [(�⃗⃗� ⋅ ∇⃗⃗ )�⃗⃗� ] + ∇⃗⃗ ⋅ (∇⃗⃗ ⋅ �̿�𝑝)         𝑜𝑟        ΔΠ =
𝜌

2
(Ω2 − Σ2) + ∇⃗⃗ ⋅ (∇⃗⃗ ⋅ �̿�𝑝) 2.13 

 

By applying the curl operator to the momentum equation (2.11), the vorticity equation is obtained, 

where 𝜈𝑠 is the kinematic viscosity of the solvent. 

 
𝜕�⃗⃗� 

𝜕𝑡 
+ (�⃗⃗� ⋅ ∇⃗⃗ )�⃗⃗� = (�⃗⃗� ⋅ ∇⃗⃗ )�⃗⃗� + 𝜈𝑠Δ�⃗⃗� +

1

𝜌
∇⃗⃗ × (∇⃗⃗ ⋅ �̿�𝑝) 2.14 

The polymer stress tensor �̿�𝑝 yields a supplementary contribution to the pressure and to the 

vorticity generation.  

The Oldroyd-B model gives good predictions for the so called Boger fluids which are fluids with 

very large solvent viscosity [Mackay1987]. This model has only one relaxation time𝜏, however a real 

polymer solution displays several distinct time constants [MagdaLarson1988]. Therefore the model 

will not capture all the features of the real polymer solution dynamics.  

2.4. Analogy between MHD fluids and Oldroyd-B fluids 

In their investigation of the MHD, Ogilvie and Proctor have first discovered the similarity 

between MHD equations and the viscoelastic equations of Oldroyd-B model [Ogilvie03]. They 

rewrote the MHD equations (equations 2.1, 2.6, 2.7) by introducing a modified magnetic stress 

tensor �̿�𝑚 : 

 �̿�𝑚 =
�⃗� �⃗� 

𝜇0
 2.15 

Then the MHD equations become: 

 

{
 
 

 
 𝛻 ∙ �⃗⃗� = 0       

𝜌 (
𝜕�⃗⃗� 

𝜕𝑡
+ �⃗⃗� ∙ 𝛻�⃗⃗� ) = −𝛻Π + 𝛻�̿�𝑚 + 𝜌𝜈𝛻

2�⃗⃗� 

𝜕�̿�𝑚
𝜕𝑡

+ �⃗⃗� ∙ ∇�̿�𝑚 − (∇�⃗⃗� )
𝑇
∙ �̿�𝑚 − �̿�𝑚 ∙ ∇�⃗⃗� =

𝜈𝑚
𝜇0
(�⃗� ∇2�⃗� + (∇2�⃗� )�⃗� ) 

 2.16 

It is possible to rewrite the viscoelastic equations of Oldroyd-B model (equations 2.1 2.11 

2.12) by introducing the modified polymeric stress tensor, where 𝐼  ̿is an identity tensor. 

 �̿�𝑝 = �̿�
𝑝 +

𝜌𝜈𝑝

𝜏
𝐼  ̿ 2.17 

So that the viscoelastic governing equations become: 
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{
 
 

 
 𝛻 ∙ �⃗⃗� = 0       

𝜌 (
𝜕�⃗⃗� 

𝜕𝑡
+ �⃗⃗� ∙ 𝛻�⃗⃗� ) = −𝛻Π + 𝛻�̿�𝑝 + 𝜌𝜈𝑠𝛻

2�⃗⃗� 

𝜕�̿�𝑝
𝜕𝑡

+ �⃗⃗� ∙ ∇�̿�𝑝 − (∇�⃗⃗� )
𝑇
∙ �̿�𝑝 − �̿�𝑝 ∙ ∇�⃗⃗� = −

1

𝜏
(�̿�𝑝 −

𝜌𝜈𝑝
𝜏
𝐼)̿

 2.18 

In the limit of small magnetic diffusivity 𝜈𝑀  and long relaxation time 𝜏, the terms of  
𝜈𝑚

𝜇0
(�⃗� ∇2�⃗� + (∇2�⃗� )�⃗� ) and −

1

𝜏
(�̿�𝑝 −

𝜌𝜈𝑝

𝜏
𝐼)̿ are negligible. The remaining terms of the equations are 

exactly the same, so that we have a strict analogy between the MHD fluid and the Oldroyd-B fluid. 

This analogy can be expressed symbolically as follows: 

 lim
𝜈𝑚→0

(𝑀𝐻𝐷 𝑓𝑙𝑢𝑖𝑑) = lim
𝜏→∞

(𝑂𝑙𝑑𝑟𝑜𝑦𝑑 − 𝐵 𝑓𝑙𝑢𝑖𝑑) 2.19 

So that the analogy between MHD fluid and Oldroyd-B fluid holds only in the case of an ideally 

conducting liquid.  

2.5. Dimensionless form of the Oldroyd-B fluid equations 

 The characteristic length and velocity are 𝑑 and 𝑈0 respectively. The pressure and the stress 

tensor are scaled by 𝑈0
2 . The resulting dimensionless equations of the Oldroyd-B fluid read:  

 

∇ ∙�⃗⃗� = 0 

𝑅𝑒 (
𝜕�⃗⃗� 

𝜕𝑡
+ �⃗⃗� ∙ ∇�⃗⃗� ) = −∇Π+ ∇ ∙ �̿�𝑝 + (1 − 𝑆)∇2�⃗⃗�  

�̿�𝑝 + 𝐸𝑅𝑒 [
𝜕�̿�𝑝

𝜕𝑡
+ �⃗⃗� ∙ ∇�̿�𝑝 − (∇�⃗⃗� )

𝑇
∙ �̿�𝑝 − �̿�𝑝 ∙ ∇�⃗⃗� ] = 𝑆[∇�⃗⃗� + (∇𝑈)⃗⃗ ⃗⃗ 𝑇] 

2.20 

where we have introduced the following control parameters :  

 𝑅𝑒 = 𝜏𝜈�̇� =
𝑑𝑈0
𝜈
            𝐸 =

𝜏

𝜏𝜈
=
𝑊𝑖

𝑅𝑒
           𝐸𝑅𝑒 = 𝜏�̇� = 𝑊𝑖          𝑆 =

𝜈𝑝

𝜈
 2.21 

 

where �̇� = 𝑈0/𝑑 is the characteristic shear rate; 𝜏𝜈 = 𝑑
2/𝜈  is the diffusion time; 𝑅𝑒 is the Reynolds 

number, 𝑊𝑖 is the Weissenberg number, 𝐸 is the elasticity number and 𝑆 is the viscosity ratio of the 

solution.  The choice of the shear rate �̇� will depend on the flow configuration under consideration. 

This will be discussed in the next chapter in the case of the Couette-Taylor flow.  

In the case of the MHD, the dimensionless control parameter that estimates the magnetic 

diffusivity is the magnetic Reynolds number 𝑅𝑚 = 𝑈0𝑑/𝜈𝑚. So that the expression 2.19 of the 

analogy between MHD fluids and viscoelastic fluids can be written as:  

 lim
𝑅𝑚→∞

(𝑀𝐻𝐷 𝑓𝑙𝑢𝑖𝑑) = lim
𝑊𝑖→∞

(𝑂𝑙𝑑𝑟𝑜𝑦𝑑 − 𝐵 𝑓𝑙𝑢𝑖𝑑) 2.22 

 

The cylindrical system of coordinates (𝑟, 𝜃, 𝑧) is suitable for the description of the flow in the 

Couette-Taylor system. In this case, equations 2.20 read  
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1

𝑟

𝜕(𝑟𝑈𝑟)

𝜕𝑟
+
1

𝑟

𝜕𝑈𝜃
𝜕𝜃

+
𝜕𝑈𝑧
𝜕𝑧

= 0 

 

𝑅𝑒 (
𝜕𝑈𝑟
𝜕𝑡

+ (�⃗⃗� ⋅ ∇⃗⃗ )𝑈𝑟 −
𝑈𝜃
2

𝑟
) = −

𝜕Π

𝜕𝑟
− (

1

𝑟

𝜕(𝑟𝑇𝑟𝑟)

𝜕𝑟
+
1

𝑟

𝜕𝑇𝜃𝑟
𝜕𝜃

+
𝜕𝑇𝑧𝑟
𝜕𝑧

−
𝑁1
𝑟
) + (1 − 𝑆) (Δ𝑈𝑟 −

2

𝑟2
𝜕𝑈𝜃
𝜕𝜃

) 

𝑅𝑒 (
𝜕𝑈𝜃
𝜕𝑡

+ (�⃗⃗� ⋅ ∇⃗⃗ )𝑈𝜃 +
𝑈𝑟𝑈𝜃
𝑟
) = −

𝜕Π

𝜕𝑟
− (

1

𝑟2
𝜕(𝑟2𝑇𝑟𝜃)

𝜕𝑟
+
1

𝑟

𝜕𝑇𝜃𝜃
𝜕𝜃

+
𝜕𝑇𝑧𝜃
𝜕𝑧

) + (1 − 𝑆) (Δ𝑈𝜃 +
2

𝑟2
𝜕𝑈𝑟
𝜕𝜃

) 

𝑅𝑒 (
𝜕𝑈𝑧
𝜕𝑡

+ (�⃗⃗� ⋅ ∇⃗⃗ )𝑈𝑧) = −
𝜕Π

𝜕𝑟
− (

1

𝑟

𝜕(𝑟𝑇𝑟𝑧)

𝜕𝑟
+
1

𝑟

𝜕𝑇𝜃𝑧
𝜕𝜃

+
𝜕𝑇𝑧𝑧
𝜕𝑧

) + (1 − 𝑆)(Δ𝑈𝑧) 

𝑇𝑟𝑟 + 𝐸𝑅𝑒 [
𝜕𝑇𝑟𝑟
𝜕𝑡

+ (�⃗⃗� ∙ ∇)𝑇𝑟𝑟 −
2𝑈𝜃𝑇𝑟𝜃
𝑟

− 2 (
𝜕𝑈𝑟
𝜕𝑟

𝑇𝑟𝑟 + (
1

𝑟

𝜕𝑈𝑟
𝜕𝜃

−
𝑈𝜃
𝑟
) 𝑇𝜃𝑟 +

𝜕𝑈𝑟
𝜕𝑧

𝑇𝑧𝑟)] = 2𝑆
𝜕𝑈𝑟
𝜕𝑟

 

𝑇𝑟𝜃 + 𝐸𝑅𝑒 [
𝜕𝑇𝑟𝜃
𝜕𝑡

+ (�⃗⃗� ∙ ∇)𝑇𝑟𝜃 +
𝑈𝜃(𝑇𝑟𝑟 − 𝑇𝜃𝜃)

𝑟

− (
𝜕𝑈𝑟
𝜕𝑟

𝑇𝑟𝜃 + (
1

𝑟

𝜕𝑈𝑟
𝜕𝜃

−
𝑈𝜃
𝑟
) 𝑇𝜃𝜃 +

𝜕𝑈𝑟
𝜕𝑧

𝑇𝜃𝑧 +
𝜕𝑈𝜃
𝜕𝑟

𝑇𝑟𝑟 + (
1

𝑟

𝜕𝑈𝜃
𝜕𝜃

+
𝑈𝑟
𝑟
)𝑇𝑟𝜃

+
𝜕𝑈𝜃
𝜕𝑧

𝑇𝑟𝑧)] = 𝑆 (
𝜕𝑈𝜃
𝜕𝑟

+
1

𝑟

𝜕𝑈𝑟
𝜕𝜃

−
𝑈𝜃
𝑟
) 

𝑇𝜃𝜃 + 𝐸𝑅𝑒 [
𝜕𝑇𝜃𝜃
𝜕𝑡

+ (�⃗⃗� ∙ ∇)𝑇𝜃𝜃 +
𝑈𝜃
𝑟
(𝑇𝑟𝜃 + 𝑇𝜃𝑟) − 2 (

𝜕𝑈𝜃
𝜕𝑟

𝑇𝑟𝜃 + (
1

𝑟

𝜕𝑈𝜃
𝜕𝜃

+
𝑈𝑟
𝑟
) 𝑇𝜃𝜃 +

𝜕𝑈𝜃
𝜕𝑧

𝑇𝑧𝜃)]

= 2𝑆 (
1

𝑟

𝜕𝑈𝜃
𝜕𝜃

+
𝑈𝑟
𝑟
) 

𝑇𝑟𝑧 + 𝐸𝑅𝑒 [
𝜕𝑇𝑟𝑧
𝜕𝑡

+ (�⃗⃗� ∙ ∇)𝑇𝑟𝑧 −
𝑈𝜃
𝑟
𝑇𝜃𝑧

− (
𝜕𝑈𝑟
𝜕𝑟

𝑇𝑟𝑧 + (
1

𝑟

𝜕𝑈𝑟
𝜕𝜃

−
𝑈𝜃
𝑟
) 𝑇𝜃𝑧 +

𝜕𝑈𝑟
𝜕𝑧

𝑇𝑧𝑧 +
𝜕𝑈𝑧
𝜕𝑟

𝑇𝑟𝑟 +
1

𝑟

𝜕𝑈𝑧
𝜕𝜃

𝑇𝜃𝑟 +
𝜕𝑈𝑧
𝜕𝑧

𝑇𝑧𝑟)]

= 𝑆 (
𝜕𝑈𝑧
𝜕𝑟

+
𝜕𝑈𝑟
𝜕𝑧
) 

𝑇𝜃𝑧 + 𝐸𝑅𝑒 [
𝜕𝑇𝜃𝑧
𝜕𝑡

+ (�⃗⃗� ∙ ∇)𝑇𝜃𝑧 +
𝑈𝜃
𝑟
𝑇𝑟𝑧

− (
𝜕𝑈𝜃
𝜕𝑟

𝑇𝑟𝑧 + (
1

𝑟

𝜕𝑈𝜃
𝜕𝜃

+
𝑈𝑟
𝑟
) 𝑇𝜃𝑧 +

𝜕𝑈𝜃
𝜕𝑧

𝑇𝑧𝑧 +
𝜕𝑈𝑧
𝜕𝑟

𝑇𝑟𝜃 +
1

𝑟

𝜕𝑈𝑧
𝜕𝜃

𝑇𝜃𝜃 +
𝜕𝑈𝑧
𝜕𝑧

𝑇𝑧𝜃)]

= 𝑆 (
1

𝑟

𝜕𝑈𝑧
𝜕𝜃

+
𝜕𝑈𝜃
𝜕𝑧

) 

𝑇𝑧𝑧 + 𝐸𝑅𝑒 [
𝜕𝑇𝑧𝑧
𝜕𝑡

+ (�⃗⃗� ∙ ∇)𝑇𝑧𝑧 − 2(
𝜕𝑈𝑧
𝜕𝑟

𝑇𝑟𝑧 +
1

𝑟

𝜕𝑈𝑧
𝜕𝜃

𝑇𝜃𝑧 +
𝜕𝑈𝑧
𝜕𝑧

𝑇𝑧𝑧)] = 2𝑆
𝜕𝑈𝑧
𝜕𝑧

 

 

2.23 

where 

 �⃗⃗� ∙ ∇= 𝑈𝑟
𝜕

𝜕𝑟
+
𝑈𝜃
𝑟

𝜕

𝜕𝜃
+ 𝑈𝑧

𝜕

𝜕𝑧
 2.24 

The boundary conditions are the no-slip conditions at the cylindrical surfaces bounding the 

fluid in the radial direction.  

These equations contain two limit cases: the Newtonian case (𝐸 =  0, 𝑆 = 0) and the pure 

inertialess case (𝐸 →  ∞, 𝑅𝑒 → 0 keeping 𝑊𝑖 =  𝐸𝑅𝑒  finite). The stability of the latter case has 

been investigated in details by Larson et al. [Larson1990] and Joo & Shaqfeh [Joo1992].   

2.6. Conclusion 

In this chapter we have presented the general equations governing the dynamics of 

viscoelastic fluids within the Oldroyd-B model and their analogy with the MHD equations. This 

analogy will be developed in the next chapters within the linear stability analysis and it will be used 

to realize experiments that should give insight in the magneto-rotational instability (MRI).    
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Figure 3.1: A scheme of the 

Couette-Taylor flow system. 

Ω𝑜 

𝑑 𝑏 𝑎 

𝑙 

Ω𝑖 

𝑧 

Chapter 3: Viscoelastic Couette flow 

The general equations presented in chapter 2 are independent of the flow configuration. In 

this chapter,   we will solve them for the specific case of the viscoelastic circular Couette flow in the 

gap between two differentially rotating coaxial cylinders, the so-called Couette-Taylor system.  

3.1. The Couette- Taylor system 

The Couette –Taylor flow consists of a fluid confined in 
the gap between 2 coaxial cylinders, rotating at different angular 
velocities (Fig.3.1) The radius of the inner and outer cylinder is 
denoted by 𝑎  and 𝑏  respectively, which makes the gap 
𝑑 = 𝑏 − 𝑎. The length of the cylinders is denoted 𝑙. The two 
cylinders rotate separately with the angular velocities 𝛺𝑖 and 𝛺𝑜. 

The Couette-Taylor system has been chosen as a 
hydrodynamic prototype for the investigation of flow 
instabilities in closed systems because of its large group of 
symmetries: translation symmetry in the axial and azimuthal 
directions, rotation symmetry around the axis, reflection 
symmetry about the plane that passes the central cross section; 
the system can be invariant in time. 

The following dimensionless parameters are widely 
used to characterize the flow regimes in the Couette-Taylor 
system: the length aspect ratio Γ = 𝑙/𝑑, the radius ratio  
𝜂 = 𝑎/𝑏, the angular velocity ratio : 𝜇 = 𝛺𝑜/𝛺𝑖. The radius ratio is related to the azimuthal aspect 
ratio by the expression 𝛤𝜃 = 𝜋(1 + 𝜂)/(1 − 𝜂). 

According to different values of the angular velocity ratio 𝜇, we can define different rotational 
regimes of the Couette-Taylor system. The most investigated regime is the one for which the inner 
cylinder rotates while the outer cylinder is fixed i.e. 𝜇 = 0. On the opposite side, we can fix the inner 
cylinder and rotate the outer cylinder, in this case 𝜇 = ∞. We can also rotate the two cylinders at the 
same time with a fixed rotation ratio.  

Since the aim of this thesis is to investigate the analogy of viscoelastic instability in the 
Couette-Taylor with the magneto-rotational instability (MRI) that is supposed to be responsible of 

turbulence in the accretion disk which rotates in Keplerian distribution of 𝛺(𝑟) ∝ 𝑟−3/2, we will focus 

our study to Keplerian regime where the two cylinders rotate with Ω𝑖/Ω𝑜 = (𝑎/𝑏)
−3/2  𝑜𝑟 𝜇 = 𝜂3/2. 

We may inverse the Keplerian regime to get the anti-Keplerian regime where 𝜇 = 𝜂−3/2. Beside 
these regimes we have also studied the regime of 𝜇 = 𝜂3  which lies between 𝜇 = 0 and the 
Keplerian regime. 

3.2. Viscoelastic Couette flow 

In a Couette-Taylor system with a large aspect ratio (𝛤 ≫ 1), the boundary effects on the top 

and bottom can be neglected. Before the flow is destabilized it is laminar and is called circular 

Couette flow. In the cylindrical coordinates (𝑟, 𝜃, 𝑧),  it possesses only the azimuthal velocity: 
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 �⃗⃗� = 𝑉(𝑟)𝑒𝜃⃗⃗⃗⃗  3.1 

As there is no stress in the 𝜃𝑧 and 𝑟𝑧 planes, �̿�𝑝 is written a priori: 

 �̿�𝑝 = (

𝑇𝑟𝑟(𝑟) 𝑇𝑟𝜃(𝑟) 0

𝑇𝑟𝜃(𝑟) 𝑇𝜃𝜃(𝑟) 0

0 0 𝑇𝑧𝑧(𝑟)
) 3.2 

In the Couette flow the velocity and the stress tensor are both invariant in  𝜃𝑧 planes ( 
𝜕𝑉

𝜕𝑧
=

𝜕𝑉

𝜕𝜃
= 0,

𝜕�̿�

𝜕𝑧
=

𝜕�̿�

𝜕𝜃
= 0) and in time (

𝜕𝑉

𝜕𝑡
= 0,

𝜕�̿�

𝜕𝑡
= 0).  

By substituting the base flow expressions 3.1 and 3.2 to the dimensional Oldroyd-B equations 

2.18, the equations of the base flow in a cylindrical annulus of infinite length read: 

 
𝜌
𝑉2

𝑟
=
𝑑Π

𝑑𝑟
−
𝑇𝜃𝜃 − 𝑇𝑟𝑟

𝑟
  ⇔ 

𝑑Π

𝑑𝑟
= 𝜌

𝑉2

𝑟
+
𝑁1
𝑟

 

0 =
1

𝑟2
𝑑(𝑟𝑇𝑟𝜃)

𝑑𝑟
 

3.3 

The first equation is the balance between the pressure gradient and the centrifugal force reinforced 

by the elasticity force i.e. the contribution of the first normal stress difference 𝑁1 = 𝑇𝜃𝜃 − 𝑇𝑟𝑟. The 

second one gives the conservation of the momentum in the radial direction.  

The Oldroyd-B constitutive equations are simplified to 

 

𝑇𝑟𝑟 = 0 

𝑇𝑟𝜃 = 𝜌𝜈𝑝 (
𝑑𝑉

𝑑𝑟
−
𝑉

𝑟
) 

𝑇𝜃𝜃 = 2 𝜌𝜈𝜏 (
𝑑𝑉

𝑑𝑟
−
𝑉

𝑟
)
2

 

𝑇𝑧𝑧 = 0 

3.4 

Note that the second normal stress difference 𝑁2 = 𝑇𝑟𝑟 − 𝑇𝑧𝑧 vanishes identically. 

 The boundary conditions for cylindrical annulus are  

 𝑉(𝑟 = 𝑎) = Ω𝑖𝑎            𝑉(𝑟 = 𝑏) = Ω𝑜𝑏 3.5 

 

a. Base flow velocity profile 
  

The solution of the second equation of the system 3.3 is straightforward and reads    

 𝑉(𝑟) = 𝐴𝑟 +
𝐵

𝑟
               𝐴 =

𝛺𝑜𝑏
2 − 𝛺𝑖𝑎

2

𝑏2 − 𝑎2
            𝐵 =

(𝛺𝑖 − 𝛺𝑜)𝑎
2𝑏2

𝑏2 − 𝑎2
 3.6 

which is the same velocity profile as the Newtonian Couette flow. The non-vanishing component of �̇� 

reads: 

 �̇�𝑟𝜃 =
𝑑𝑉

𝑑𝑟
−
𝑉

𝑟
         𝑜𝑟        �̇�𝑟𝜃 =

2𝐵

𝑟2
= −

2(Ω𝑖 − Ω𝑜)𝑎
2𝑏2

(𝑏2 − 𝑎2)𝑟2
 3.7 
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The velocity profile of the circular Couette flow velocity and the shear strain rate are not affected by 

the viscosity nor by the elasticity properties. 

The angular velocity Ω(𝑟) of the Couette flow is then determined as follow: 

 Ω(𝑟) =
𝑉(𝑟)

𝑟
= 𝐴 +

𝐵

𝑟2
 

3.8 
 

The angular velocity depends on the radial position r, so we can define also the mean angular 

velocity 〈𝜔〉 of the base flow as follows: 

 〈𝜔〉 =
∫ 𝑟Ω(𝑟)𝑑𝑟
𝑏

𝑎

∫ 𝑟𝑑𝑟
𝑏

𝑎

=  𝐴 + 2𝐵
ln(𝑏/𝑎)

(𝑏2 − 𝑎2)
 3.9 

Non-dimenstionlized by Ω𝑖, this mean angular velocity reads: 

 
〈𝜔〉

Ω𝑖
=
𝜇 − 𝜂2

1 − 𝜂2
[1 −

1 − 𝜇

𝜇 − 𝜂2
𝜂2

1 − 𝜂2
ln(𝜂2)] 3.10 

For the five different regimes studied, the velocity profiles of the circular Couette flow are presented 

in figure 3.2. 

 

Figure3.2: The velocity of the base flow for five different rotation regimes for 𝜂 =  0.8. 

 
 

 

Keplerian regime 
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b. Stress tensor components  
  

Substituting the base flow profile 3.6 into the Oldroyd-B equations 3.4, we get finally the following 

result for the relations between stress tensor and strain tensor components in the Oldroyd B model 

for the circular Couette flow  

 �̿�𝑝 = (
0 𝑇𝑟𝜃 0
𝑇𝑟𝜃 𝑇𝜃𝜃 0
0 0 0

)           with        𝑇𝑟𝜃 =
−2𝜌𝜈𝑝𝐵

𝑟2
            𝑇𝜃𝜃 =

8𝜌𝜈𝑝𝜏𝐵
2

𝑟4
 3.11 

 

Only the component 𝑇𝜃𝜃 contains the elasticity while the shear one is independent of 𝜏  

The first normal stress difference 𝑁1 is given by   

 𝑁1 = 𝑇𝜃𝜃 =
8𝜌𝜈𝑝𝜏𝐵

2

𝑟4
 3.12 

The radial pressure gradient is then given by 

 
𝑑𝛱

𝑑𝑟
= 𝜌(𝐴2𝑟 +

2𝐴𝐵

𝑟
+
𝐵2

𝑟3
) +

8𝜌𝜈𝑝𝜏𝐵
2

𝑟5
 3.13 

The profile of the pressure gradient from 3.13 is plotted in figure 3.3 for five different 

rotation regimes for both Newtonian and viscoelastic flows. For all regimes the viscoelastic flows 

have larger pressure gradients than the Newtonian flows and the contribution from the first normal 

stress difference 𝑁1 is larger near the inner cylinder than near the outer cylinder.  

 

Figure 3.3: Radial profile of the pressure gradient for five rotation regimes for 𝜂 = 0.8, 𝐸𝑆 = 1. Solid 

lines represent the Newtonian flows while dashed lines represent the viscoelastic flows.  
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3.3 Control parameters for viscoelastic Couette flows  

Assuming the infinite length of the cylinders, i.e. Γ ≫ 1, the geometric parameter of the 

Couette flow is the radius ratio 𝜂 =  𝑎/𝑏. As seen in the chapter 2, the shear rate �̇� = 𝑈0/𝑑 enters 

the definition of the dimensionless control parameters 𝑅𝑒 and 𝑊𝑖. The characteristic length of the 

Couette flow is the gap width 𝑑 =  𝑏 − 𝑎 between the rotating cylinders. Therefore the question is 

how to choose the characteristic velocity 𝑈0 in the case of two differentially rotating cylinders.  

Most of studies use the shear rate at the cylindrical surfaces, therefore defining the Reynolds 

numbers associated with the rotating cylinders [Andereck1986]:  

 𝑅𝑖 =
�̇�𝑖𝑑

2

𝜈
=
Ω𝑖𝑎𝑑

𝜈
                     𝑅𝑜 =

𝛾�̇�𝑑
2

𝜈
=
Ω𝑜𝑎𝑑

𝜈
 3.14 

and correspondingly the Weissenberg numbers associated with the inner and outer cylinders:  

 𝑊𝑖𝑖 = 𝜏�̇�𝑖 =
𝜏Ω𝑖𝑎

𝑑
                       𝑊𝑖𝑜 = 𝜏𝛾�̇� =

𝜏Ω𝑜𝑏

𝑑
 3.15 

For viscoelastic solutions between differentially rotating cylinders, neither the two Reynolds 

numbers nor the two Weissenberg numbers are relevant for the dynamics. It is more appropriate to 

define an average shear rate, and therefore one Reynolds number and one Weissenberg number.   

There is no unique way to define the mean shear rate. We give some common choices used in 

literature. The simplest definition of the average shear rate is given by the analogy with the plane 

Couette flow (Fig. 3.4) and we will call it “traditional”: 

 �̇� =
|Ω𝑖𝑎− Ω𝑜𝑏|

𝑑
 3.16 

Here 𝑈0 = |Ω𝑖𝑎− Ω𝑜𝑏| is the relative velocity of the cylinders.  The second control parameter will 

be then the rotation ratio 𝜇 = Ω𝑜/Ω𝑖. 

Dubrulle et al. [Dubrulle2005] have defined the shear rate determined at the geometric mean 

radius 𝑟𝑔 = √𝑎𝑏 i.e.  

 𝛾�̇� = |𝑟
𝑑

𝑑𝑟
(
𝑉

𝑟
)|
𝑟𝑔

=
|2𝐵|

𝑟𝑔
2 =

2|Ω𝑖 − Ω𝑜|𝑎𝑏

𝑏2 − 𝑎2
 3.17 

Here the characteristic velocity is  

 𝑈0 =
|Ω𝑖 −Ω𝑜|𝑎𝑏

(𝑎 + 𝑏)/2
= |Ω𝑖 − Ω𝑜|

𝑟𝑔
2

𝑟𝑎
= Ω𝑖𝑎

2|𝜇 − 1|

1 + 𝜂
 3.18 

where 𝑟𝑎 = (𝑎 + 𝑏)/2 is the arithmetic mean radius. This definition introduces a second parameter 

which is the angular velocity of the rotating frame.  This angular velocity Ω̅ is determined at the 

characteristic radius 𝑟𝑔 i.e.  

 Ω̅ ≡ Ω(𝑟𝑔) =
Ω𝑖𝑎 + Ω𝑜𝑏

𝑏 + 𝑎
  3.19 

This angular velocity defines the rotation number 

 𝑅Ω =
2Ω̅

𝛾�̇�
 3.20 
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Figure 3.4: Average shear rate: (a) traditional definition, (b) dynamic definition [Dubrulle2015]. 

The table below gives the control parameters defined according these definitions. 

Traditional control parameters Dynamics-motivated parameters 

Shear rate 
�̇� =

|Ω𝑖𝑎 − Ω𝑜𝑏|

𝑑
 

 
𝛾�̇� =

2|Ω𝑖 − Ω𝑜|𝑎𝑏

𝑏2 − 𝑎2
 

Reynolds 
number 

𝑅𝑒 = 𝜏𝜈�̇� =
|Ω𝑖𝑎 − Ω𝑜𝑏|𝑑

𝜈
= |𝑅𝑖 − 𝑅𝑜| 

Shear  
Reynolds 
number 

𝑅𝑒𝑠 = 𝜏𝜈𝛾�̇� =
2|Ω𝑖 − Ω𝑜|𝑎𝑏𝑑

2

(𝑏2 − 𝑎2)𝜈

=
2

1 + 𝜂
|𝑅𝑖 − 𝜂𝑅𝑜| 

Rotation 
ratio 

𝜇 =
Ω𝑜
Ω𝑖

 
Rotation 
number 𝑅Ω =

2Ω̅

𝛾�̇�
=
(Ω𝑖𝑎 + Ω𝑜𝑏)(𝑏 − 𝑎)

|Ω𝑖 − Ω𝑜|𝑎𝑏

=
1 − 𝜂

𝜂

𝜇 + 𝜂

|1 − 𝜇|
 

Weissenberg 
number 

𝑊𝑖 = 𝜏�̇� = 𝜏
|Ω𝑖𝑎 − Ω𝑜𝑏|

𝑑
 

Shear 
Weissenberg 
number 

𝑊𝑖𝑠 = 𝜏𝛾�̇� = 𝜏
2|Ω𝑖 − Ω𝑜|𝑎𝑏

𝑏2 − 𝑎2
 

Taylor 
number 𝑇𝑎 = √

𝑑

𝑟𝑎
𝑅𝑒 

Shear Taylor 
number 𝑇𝑎𝑠 = √

𝑑

𝑟𝑔
𝑅𝑒𝑠 

Modified 
Weissenberg  
number 

𝐾 = √
𝑑𝑆

𝑟𝑎
𝑊𝑖 

Modified 
shear 
Weissenberg 
number 

𝐾𝑠 = √
𝑑𝑆

𝑟𝑔
𝑊𝑖 

Table 3.1: Main control physical parameters of the viscoelastic Couette flow. 

The different Weissenberg numbers are related as follows: 

 𝑊𝑖 =
|𝜂−𝜇|

𝜂
𝑊𝑖𝑖                     𝑊𝑖 =

|𝜂−𝜇|(1+𝜂)

2𝜂|1−𝜇|
𝑊𝑖𝑠 3.21 
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In the present study, we will use the “traditional” definition of the shear rate. The control 

parameters of the viscoelastic Couette flow are resumed in Table 3.2 

 

Characteristic velocity 

Dimensional form 

𝑈0 = |Ω𝑖𝑎 − Ω𝑜𝑏| 

Dimensionless form 

1 

Azimuthal velocity  

𝑉(𝑟) = 𝐴𝑟 +
𝐵

𝑟
 

𝐴 =
𝛺𝑜𝑏

2 − 𝛺𝑖𝑎
2

𝑏2 − 𝑎2
 

𝐵 =
(𝛺𝑖 − 𝛺𝑜)𝑎

2𝑏2

𝑏2 − 𝑎2
 

𝐴 =
μ − η2

𝜂(1 + 𝜂)
 

𝐵 =
(1 − 𝜇)𝜂

(1 − 𝜂)(1 − 𝜂2)
 

Shear strain rate 
𝑇𝑟𝜃 = −

2𝜇𝑝𝐵

𝑟2
 𝑇𝑟𝜃 = −

2𝑆 𝐵

𝑟2
 

Azimuthal strain rate 
𝑇𝜃𝜃 =

8𝜇𝑝𝜏𝐵
2

𝑟4
 𝑇𝜃𝜃 =

8 𝑊𝑖 𝑆𝐵2

𝑟4
 

First Normal stress 
difference 𝑁1 =

8𝜇𝑝𝜏𝐵
2

𝑟4
 𝑁1 =

8 𝑊𝑖 𝑆𝐵2

𝑟4
 

Pressure gradient 𝑑𝛱

𝑑𝑟
= 𝜌 (𝐴2𝑟 +

2𝐴𝐵

𝑟
+
𝐵2

𝑟3
) +

8𝜇𝑝𝜏𝐵
2

𝑟5
 

𝑑𝛱

𝑑𝑟
= 𝑅𝑒 (𝐴2𝑟 +

2𝐴𝐵

𝑟
+
𝐵2

𝑟3
) +

8𝑊𝑖𝑆𝐵2

𝑟5
 

Table 3.2: Base flow characteristics in the Couette-Taylor system. 

3.4 Magnetic analogy of the viscoelastic Couette flow   

Following Ogilvie & Proctor [Ogilvie2003], we introduce a set of 3 auxiliary fields �⃗� 𝑖 (𝑖 =

1, 2, 3) such that the component of the polymer stress tensor can be written as follows 

 𝑇𝑝
𝑖𝑗
= 𝐵𝑝1

𝑖 𝐵𝑝1
𝑗
+ 𝐵𝑝2

𝑖 𝐵𝑝2
𝑗
+𝐵𝑝3

𝑖 𝐵𝑝3
𝑗

 3.22 

The polymer stress tensor for the base flow 3.2 yields the modified polymer stress tensor �̿�𝑝 for the 

base flow, the form of which suggests that  

 𝐵𝑝3
1 = 𝐵𝑝3

2 = 𝐵𝑝1
3 = 𝐵𝑝2

3 = 0       and      𝐵𝑝3
3 𝐵𝑝3

3 =
𝜌𝜈𝑝
𝜏
⇒ 𝐵𝑝3

3 = 𝐵0 3.23 

Here 𝐵0 = √𝜌𝜈𝑝/𝜏 is the characteristic polymer analog of the magnetic field. 

The remaining components satisfy the following system:  

 

{
 
 

 
 𝐵𝑝1

1 𝐵𝑝1
1 + 𝐵𝑝2

1 𝐵𝑝2
1 =

𝜌𝜈𝑝
𝜏

𝐵𝑝1
1 𝐵𝑝1

2 + 𝐵𝑝2
1 𝐵𝑝2

2 =
2𝜌𝜈𝑝𝐵

𝑟2

𝐵𝑝1
2 𝐵𝑝1

2 +𝐵𝑝2
2 𝐵𝑝2

2 =
8𝜌𝜈𝑝𝜏𝐵

2

𝑟4

 3.24 

There are 4 unknowns in the system of three equations; this suggests two choices of these auxiliary 

fields, either  

 �⃗� 𝑝1 =
𝐵0

√2
(
1
0
0
)        �⃗� 𝑝2 =

𝐵0

√2
(

1
2𝜏𝐵

𝑟2

0

)        �⃗� 𝑝3 = 𝐵0 (
0
0
1
) 3.25 
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or 

 �⃗� 𝑝1 = 𝐵0 (

1
2𝜏𝐵

𝑟2

0

)        �⃗� 𝑝2 = 𝐵0(

0

2√2𝜏𝐵

𝑟2

0

)        �⃗� 𝑝3 = 𝐵0 (
0
0
1
) 3.26 

 In the dimensionless form, the polymer analog of the azimuthal component of the magnetic fields 

becomes: 

 �⃗� 𝑝2 = 𝐵0(

1
(1 − 𝜇)

(𝜂 − 𝜇)(1 + 𝜂)

√2𝑊𝑖𝑎2

𝑟2

0

)        𝑜𝑟       �⃗� 𝑝2 = 𝐵0(

0
(1 − 𝜇)

(𝜂 − 𝜇)(1 + 𝜂)

2√2𝑊𝑖𝑎2

𝑟2

0

) 3.27 

The axial field 𝐵𝑝3⃗⃗ ⃗⃗ ⃗⃗  = 𝐵0𝑒𝑧⃗⃗  ⃗ will dominate the azimuthal field if  

 
(1 − 𝜇)

(𝜂 − 𝜇)(1 + 𝜂)

√2𝑊𝑖𝑎2

𝑟2
≪ 1 3.28 

which yields a critical Weissenberg number 𝑊𝑖∗ defined by: 

 𝑊𝑖∗ ≡ min
𝑟

(𝜂 − 𝜇)(1 + 𝜂)

(1 − 𝜇)

𝑟2

√2𝑎2
 3.29 

For example, for the geometry with 𝜂 =  0.8, using 𝑟 = 𝑎 we get 𝑊𝑖∗ ∼ 0.76.  

 Therefore, in the case of the Keplerian rotation regime, the destabilization of the viscoelastic 

Couette flow with 𝑊𝑖 ≪ 𝑊𝑖∗ may be interpreted as an analog of the standard MRI (SMRI). In the 

opposite case, when 𝑊𝑖 ≫ 𝑊𝑖∗, the dominating polymer analog of the azimuthal component of the 

magnetic field may lead to the analog of the azimuthal MRI (AMRI) or the Michael instability.  

 For intermediate values of 𝑊𝑖, both the axial and the azimuthal components will contribute 

to the viscoelastic instability which reminds the helical MRI (HMRI).   

 In the viscoelastic analog, the polymeric analog of the azimuthal magnetic field possesses a 

profile of 𝐵𝑝 ∝ 1/𝑟
2, while current experiments of HMRI with liquid metal [Stefani06] [Stefani07] 

[Seilmayer2014] have azimuthal magnetic field profile of 𝐵 ∝ 1/𝑟. 

3.5 Conclusion  

 In this chapter we have presented the viscoelastic base flow in the Couette-Taylor system, 

named viscoelastic Couette flow, with control parameters defined in both dimensional and 

dimensionless form. The polymer stress tensor of the viscoelastic Couette flow can be expressed in 

analogy with some effective magnetic fields. Full details of the analogy will be given in section 7.3. 
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Chapter 4:  
Stability of viscoelastic Couette flow 

4.1. Rayleigh criterion of stability 

a. Rotational Rayleigh discriminant and epicyclic frequency 
The stability of a circular Couette flow is predicted by the inviscid condition established by Lord 

Rayleigh in 1916 and named circulation Rayleigh criterion. A rotating flow can be destabilized by 

axisymmetric perturbations only if the Rayleigh discriminant Φ𝑟(𝑟) is negative somewhere in the 

flow. The Rayleigh discriminant is given by  

 Φ𝑟(𝑟) =
1

𝑟3
𝑑(𝑟𝑉(𝑟))

2

𝑑𝑟
|

𝑟

=
1

𝑟3
𝑑𝐿2

𝑑𝑟
|
𝑟

 4.1 

where the subscript 𝑟 denotes “rotation”.  Otherwise stated, an inviscid rotating flow is stable if the 

angular momentum 𝐿 = 𝑟2Ω or the circulation increases monotonically outward (positive 

stratification of the angular momentum or the circulation). We substitute the expression of 𝑉(𝑟) 

(equations 3.6) into equation 4.1 and we have: 

 Φ𝑟(𝑟) = 4𝐴 (𝐴 +
𝐵

𝑟2
) 4.2 

Then we scale the Rayleigh discriminant by Ω𝑖
2 i.e.  Ψ𝑟(�̂�) = Φ𝑟(�̂�)/Ω𝑖

2 with �̂� = 𝑟/𝑑 to get the 

dimensionless Rayleigh   discriminant: 

 Ψ𝑟(�̂�) =
4(𝜂2 − μ)

(𝜂2 − 1)2
((𝜂2 − μ) + (μ − 1) (

𝜂

1 − 𝜂
)
2 1

�̂�2
) 4.3 

 

Figure 4.1: Stability diagram of the circular Couette flow according to circulation Rayleigh criterion. 
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Equation 4.2 Implies that a circular Couette flow is potentially unstable only if 𝜇 < 𝜂2. So 

that the Keplerian regime, anti-Keplerian regime and 𝜇 = ∞ regime are potentially stable as 

Ψ𝑟(�̂�) > 0 while the 𝜇 = 0 regime and the 𝜇 = 𝜂3 regime are potentially instable as Ψ𝑟(�̂�) < 0. 

In the potentially stable zone i.e. when the discriminant is positive, the radially displaced 

particles may oscillate with a frequency called epicyclic frequency 𝜔𝑒𝑝 in the Astrophysics of the 

accretion disks assumed to be axisymmetric [Balbus2009]:     

 𝜔𝑒𝑝
𝑟  (𝑟) = √Φ𝑟(𝑟) 4.4 

The epicyclic frequency is used to determine the boundaries of the accretion disks when the 

discriminant becomes negative and therefore unstable to small perturbations.  

The instabilities of a Newtonian flow in a Couette-Taylor system already have been 

investigated by many researchers. An experimental diagram of different states observed in circular 

Couette flow was provided by Andereck in 1986, it gives a clear evidence of the validity of Rayleigh  

criterion (see figure 4.2). A recent state diagram including high turbulence has been established by 

the Twente group [Huisman2014]. 

 

Figure 4.2: State diagram of Newtonian Couette-Taylor instabilities for different rotational regimes 

with 𝜂 = 0.883; 𝑅𝑖 and 𝑅𝑜 are the Reynolds numbers of the inner and outer cylinders respectively 

[Andereck1986]. The red line represents the condition of Φ𝑟 = 0. The flow in the positive Φ𝑟 zone is 

predicted to be stable Couette flow, all states were found in the region where  Φ𝑟 < 0. 

b. Elasto-rotational Rayleigh  discriminant   

Following the lead of the circulation Rayleigh criterion, we have made our first step in the 

study of the elastic instability in the Couette-Taylor system by generalizing the circulation Rayleigh 

criterion to elastic fluids within the Oldroyd-B model. 

Φ𝑟 > 0 
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We consider a fluid particle in a differential rotating laminar flow. The particle rotates at the 

orbit of the radius r because of the balance between the centrifugal force and the pressure gradient 

modified by the contribution of the first normal stress difference. If this particle is moved from its 

orbit into a nearby orbit 𝑟 + 𝑑𝑟 so quickly that 𝜏𝑑𝑖𝑠𝑝 ≪ (𝜏𝜈  , 𝜏) , no dissipation nor relaxation occurs 

and the momentum of the fluid particle is conserved. The net force acting on the displaced fluid 

particle at the new orbit 𝑟 + 𝑑𝑟 can be written as follow: 

 𝑑𝑓 = −𝜌Φ𝑒𝑟(𝑟)𝑑𝑟 + 𝑜(𝑑𝑟
2) 4.5 

 

where we have introduced the generalized Rayleigh discriminant Φ𝑒𝑟(𝑟) that can be called elasto-

rotational discriminant where the subscript 𝑒𝑟 denotes “elasto-rotational” : 

 Φ𝑒𝑟(𝑟) = Φ𝑟(𝑟) +
1

𝜌𝑟

𝑑𝑁1
𝑑𝑟

|
𝑟
 4.6 

For the circular Couette viscoelastic flow, the elasto-rotational discriminant is expressed: 

 Φ𝑒𝑟(𝑟) = Φ𝑟(𝑟) + Φ𝑒(𝑟) = 4𝐴 (𝐴 +
𝐵

𝑟2
) −

32𝜇𝑝𝜏𝐵
2

𝜌

1

𝑟6
 4.7 

where the elasto-rotational Rayleigh discriminant Φ𝑒𝑟(𝑟) is composed of the rotation contribution 

Φ𝑟(𝑟) and the elastic contribution Φ𝑒(𝑟). Then the non-dimensional elasto-rotational Rayleigh 

discriminant reads: 

Ψ𝑒𝑟(�̂�) =
4(𝜂2 − μ)

(𝜂2 − 1)2
((𝜂2 − μ) + (μ − 1) (

𝜂

1 − 𝜂
)
2 1

�̂�2
) −

32𝐸𝑆(μ − 1)2

(𝜂2 − 1)2
(
𝜂

1 − 𝜂
)
4 1

�̂�6
 4.8 

where the product 𝐸𝑆 represents the polymer contribution to the elasticity of the solution.  

 

 

Figure 4.3: Rotational Rayleigh discriminant Ψ𝑟(�̂�)  and elasto-rotational Rayleigh discriminant 

Ψ𝑒𝑟(�̂�)  for flows with 𝐸𝑆 = 1 in five rotation regimes.  

Potentially unstable 

Potentially stable 
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In figure 4.3, we have plotted the rotation Rayleigh discriminant  Ψ𝑟(�̂�)  and the elasto-

rotational Rayleigh discriminant  Ψ𝑒𝑟(�̂�)  for a solution with 𝐸𝑆 = 1 for five rotation regimes. We set 

�̂� ∈ [4,5] corresponding to 𝜂 =  0.8. We can see that the curves of the elasto-rotational Rayleigh 

discriminant for all regimes are located below the corresponding curves of the rotational Rayleigh 

discriminant. The contribution from the elasticity force is the enhancement of the potential 

instability. 

The rotational and elasto-rotational epicyclic frequencies 𝜔𝑒𝑝
𝑟 (�̂�) and 𝜔𝑒𝑝

𝑒𝑟(�̂�)corresponding to 

the rotational and elasto-rotational Rayleigh discriminant are defined by: 

 𝜔𝑒𝑝
𝑟 (�̂�) = √Ψ𝑟(�̂�)               𝜔𝑒𝑝

𝑒𝑟(�̂�) = √Ψ𝑒𝑟(�̂�)  4.9 

 

In figure 4.4 the profiles of the rotational epicyclic frequencies 𝜔𝑒𝑝
𝑟  and the elastic epicyclic frequency 

𝜔𝑒𝑝
𝑒𝑟  are plotted for solutions of 𝐸𝑆 = 1 in respect to �̂� for the regimes with positive Ψ(�̂�). In the 

regimes of 𝜇 = ∞ and 𝜇 = 𝜂−3/2, both the 𝜔𝑒𝑝
𝑟 (�̂�) and 𝜔𝑒𝑝

𝑒𝑟(�̂�) increase with �̂�. However in the 

Keplerian regime, 𝜔𝑒𝑝
𝑟 (�̂�) decreases with �̂� while 𝜔𝑒𝑝

𝑒𝑟(�̂�) increases with �̂�. 

 

Figure 4.4: Rotational epicyclic frequency 𝜔𝑒𝑝
𝑟  and elasto-rotational epicyclic frequency 𝜔𝑒𝑝

𝑒𝑟  with  

𝐸𝑆 = 1 for five regimes. 

The elastic force does not only enhance the centrifugal instability, but also it can induce an 

elastic instability when the outer cylinder rotates faster than the inner cylinder when the centrifugal 

force is no more destabilizing the Newtonian flow. This is the case for the Keplerian flow with a 

viscoelastic fluid with 𝐸𝑆 =  1. In figure 4.3, the elasto-rotational Rayleigh discriminant is negative 

near the inner cylinder, so that such a flow is potentially unstable to elasticity-driven perturbations.   

c. Potentially stable and unstable zone  
The elasto-rotational Rayleigh discriminant Ψ𝑒𝑟(�̂�) is a function of �̂�  and it depends on three 

control parameters: 𝜂, 𝜇 and 𝐸𝑆. For each set of control parameters of (𝜇, 𝜂, 𝐸𝑆) , we calculate the 
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minimum  Ψ𝑒𝑟 = min(𝛹𝑒𝑟(�̂�))  among all possible values of �̂� ∈ [4, 5]. Then the flow is unstable if 

the smallest Rayleigh discriminant along �̂� ∈ [4, 5] is negative (Ψ𝑒𝑟 < 0). We plot in figure 4.5 the 

nodal surface Ψ𝑒𝑟 = 0 in the 3D parameter space of (𝜂2, 𝜇, 𝐸𝑆). The color on the surface represents 

the magnitude of 𝜂2. The parameter space is separated into three zones: unstable zones for large 

and small 𝜇 and stable zone for 𝜇 ∼ 1. For solutions with large values of 𝐸𝑆, small rotation velocity 

difference (𝜇 approaches 1) is enough to destabilize the flow.  

 

 

Figure 4.5: 3D plot of the nodal surface of the elastic Rayleigh discriminant. 

To be more precise, we plot in figure 4.6 in the plane of (𝜇, 𝜂2) the Rayleigh lines Ψ𝑒𝑟 = 0 

for different 𝐸𝑆 together with the Keplerian and anti-Keplerian lines. The rotational Rayleigh line 

corresponds to the value 𝐸𝑆 = 0. We observe that the Rayleigh lines (solid lines) with different 

polymer elasticity 𝐸𝑆 intersect the Keplerian and anti-Keplerian lines (dashed lines) at different 

values of the radius ratio 𝜂. For different values of  𝜂, there exist different values of polymer elasticity 

𝐸𝑆∗ such that a flow in the Keplerian or anti-Keplerian regime can be destabilized. The values 𝐸𝑆𝑘
∗ 

and 𝐸𝑆𝑎𝑘
∗  of the polymer elasticity in Keplerian and anti-Keplerian regime are plotted against  

𝜂 ∈ [0.1, 0.95] in figure 4.7; they increase with 𝜂 . This means that to get elasticity-driven 

perturbations with less polymer elasticity, it is necessary to use cylindrical annulus with large gap i.e 

with small values of 𝜂. For the annular configuration with 𝜂 = 0.8, we found  𝐸𝑆𝑘
∗ = 0.672 and 

𝐸𝑆𝑎𝑘
∗ = 3.451. 

Unstable 

Unstable 

Stable 
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Figure 4.6: Rayleigh lines for different 𝐸𝑆 on (𝜇, 𝜂2) diagram. 

 

Figure 4.7: Critical polymer elasticity 𝐸𝑆∗ in respect to radius ratio 𝜂 on Keplerian and anti-Keplerian 

regime. 

To summarize, we plot a schematic diagram (figure 4.8) to present the two effects of the 

elastic contribution to the instability. In the diagram, the solid green line is the Rayleigh line on which 

the rotational Rayleigh discriminant vanishes. The solid orange lines are the Rayleigh lines on which 

the elasto-rotational Rayleigh discriminant vanishes.  The position of the Rayleigh line moves with 𝐸𝑆. 

For larger 𝐸𝑆, the elastic Rayleigh lines approach the solid body rotation line.  
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Figure 4.8: Schematic stability diagram according to elasto-rotational Rayleigh discriminant. 

d. Analogy with the Michael criterion of MHD 
The elasto-rotational Rayleigh discriminant has the same structure as the generalized Rayleigh 

discriminant in the rotating flow in the presence of an azimuthal magnetic field 𝐵𝜃. In this case, a 

rotating hydro-magnetic flow of ideal electrically conducting fluids is potentially unstable with 

respect to axisymmetric perturbations if [Davidson2013][Michael1954]:  

 Φ𝑚𝑟 = Φ𝑟 −
𝑟

𝜌𝜇0

𝑑

𝑑𝑟
(
𝐵𝜃
𝑟
)
2

< 0  4.10 

We define Φ𝑚𝑟 as a magneto-rotational discriminant. If the magnetic field 𝐵𝜃 varies with the 

radius as 𝐶/𝑟2, Φ𝑚𝑟 becomes: 

 Φ𝑚𝑟 = Φ𝑟 +Φ𝑚 = Φ𝑟 +
6𝐶2

𝜌𝜇0𝑟
6

 4.11 

In this case both the magnetic contribution Φ𝑚 and elastic contribution Φ𝑒 (expression 4.7) vary with 

the radius as 1/𝑟6. Hence the elasto-rotational Rayleigh discriminant Φ𝑒𝑟 is analog to Φ𝑚𝑟 and the 

elasto-rotational criterion is analog to the Michael critierion. 

4.2. Linear stability analysis (LSA) 
The elasto-rotational Rayleigh discriminant allows us to predict the potential instability in a 

Couette-Taylor system. However this criterion does not provide the sufficient condition because it 

assumes that the fluids are inviscid. Therefore, it is necessary to perform the linear stability analysis 

(LSA) of the flow to obtain precise predictions of the first instability of a viscoelastic laminar flow. As 

mentioned in chapter 1, many authors have performed the LSA of the viscoelastic fluid with Oldroyd-


i
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B model, but these studies have treated only special cases: axisymmetric modes [Shaqfeh1996] 

[Kupferman1998], non-axisymmetric modes but without the variation of the viscosity ratio 𝑆 

[Avgoust1993]. The present study aims to address a thorough investigation of the stability of the 

viscoelastic flows for different values of 𝑆, 𝜂 and for different cases of the differential rotation of the 

cylinders: stationary outer cylinder, stationary inner cylinder, co-rotating cylinders in the Keplerian 

ratio or in the anti-Keplerian ratio.  

Starting from this section, the dimensionless radius �̂� is replaced by 𝑟 as only dimensionless 

equations are used from now on. 

a. Linear stability equations  
The linear stability of viscoelastic fluid in Couette-Taylor system consists in addition of 

infinitesimally small perturbations to the dimensionless flow equations 2.23 and linearization about 

this base state (equation 3.6). As the base state depends only on the radial coordinate 𝑟 and it is 

axisymmetric i.e. it is invariant along the cylinder axis and around the azimuthal direction, the small 

perturbations can be developed in normal modes of the form of [𝑠𝑡 + 𝑖(𝑚𝜃 + 𝑞𝑧)]  . Here 

𝑠 = 𝜎 + 𝑖𝜔, in which 𝜎 is the growth rate and 𝜔 is the angular frequency;  𝑚 and 𝑞 are azimuthal 

and axial wavenumbers.  So that the variables with perturbations are written as follows 

 

�⃗⃗� (𝑟) = (
 0
𝑉(𝑟)
0
) + (

𝑢(𝑟)
𝑣(𝑟)
𝑤(𝑟)

) 𝑒(𝑠𝑡+𝑖𝑚𝜃+𝑖𝑞𝑧) 

Π(r) = Π(𝑟) + 𝑝(𝑟)𝑒(𝑠𝑡+𝑖𝑚𝜃+𝑖𝑞𝑧) 

𝑇𝑝̿̿̿̿ (𝑟) = (
0 𝑇𝑟𝜃(𝑟) 0

𝑇𝑟𝜃(𝑟) 𝑇𝜃𝜃(𝑟) 0
0 0 0

) + (

𝑡𝑟𝑟(𝑟) 𝑡𝑟𝜃(𝑟) 𝑡𝑟𝑧(𝑟)
𝑡𝑟𝜃(𝑟) 𝑡𝜃𝜃(𝑟) 𝑡𝜃𝑧(𝑟)

𝑡𝑟𝑧(𝑟) 𝑡𝜃𝑧(𝑟) 𝑡𝑧𝑧(𝑟)
) 𝑒(𝑠𝑡+𝑖𝑚𝜃+𝑖𝑞𝑧) 

4.12 

Then we substitute the expressions 4.12 to the dimensionless governing equations (2.23) and 

linearize the resulting equations by retaining only the terms of first order of the perturbations. We 

get the following dimensionless linearized perturbation equations: 

 

𝑢

𝑟
+ 𝐷𝑢 +

𝑖𝑚𝑣

𝑟
+ 𝑖𝑞𝑤 = 0 

  𝑅𝑒 ((𝑠 +
𝑖𝑚𝑉

𝑟
)𝑢 −

2𝑉𝑣

𝑟
) = −𝐷𝑝 + (

𝑡𝑟𝑟

𝑟
+ 𝐷𝑡𝑟𝑟 +

𝑖𝑚𝑡𝑟𝜃

𝑟
+ 𝑖𝑞𝑡𝑟𝑧 −

𝑡𝜃𝜃

𝑟
) + (1 − 𝑆) (

𝐷𝑢

𝑟
−

𝑢

𝑟2
+ 𝐷2𝑢 −

𝑚2𝑢

𝑟2
− 𝑞2𝑢 −

2𝑖𝑚𝑣

𝑟2
) 

 𝑅𝑒 ((𝑠 +
𝑖𝑚𝑉

𝑟
)𝑣 +

𝑉𝑢

𝑟
+ 𝐷𝑉𝑢) = −

𝑖𝑚𝑝

𝑟
+ (

2𝑡𝑟𝜃

𝑟
+ 𝐷𝑡𝑟𝜃 +

𝑖𝑚𝑡𝜃𝜃

𝑟
+ 𝑖𝑞𝑡𝜃𝑧) +

(1 − 𝑆) (
𝐷𝑣

𝑟
−

𝑣

𝑟2
+ 𝐷2𝑣 −

𝑚2𝑣

𝑟2
− 𝑞2𝑣 +

2𝑖𝑚𝑢

𝑟2
) 

 𝑅𝑒 (𝑠 +
𝑖𝑚𝑉

𝑟
)𝑤 = −𝑖𝑘𝑝 + (

𝑡𝑟𝑧

𝑟
+ 𝐷𝑡𝑟𝑧 +

𝑖𝑚𝑡𝜃𝑧

𝑟
+ 𝑖𝑞𝑡𝑧𝑧) + (1 − 𝑆) (

𝐷𝑤

𝑟
+ 𝐷2𝑤 −

𝑚2𝑤

𝑟2
−

𝑞2𝑤) 

  (1 + 𝐸𝑅𝑒𝑠 + 𝐸𝑅𝑒
𝑖𝑚𝑉

𝑟
) 𝑡𝑟𝑟 − 𝐸𝑅𝑒

2𝑖𝑚𝑇𝑟𝜃𝑢

𝑟
= 2𝑆𝐷𝑢 

 (1 + 𝐸𝑅𝑒𝑠 + 𝐸𝑅𝑒
𝑖𝑚𝑉

𝑟
) 𝑡𝑟𝜃 +  𝐸𝑅𝑒 [𝐷𝑇𝑟𝜃𝑢 +

𝑉𝑡𝑟𝑟

𝑟
− 𝑇𝑟𝜃𝐷𝑢 −

𝑖𝑚𝑇𝜃𝜃𝑢

𝑟
− 𝐷𝑉𝑡𝑟𝑟 −

4.13 



33 
 

𝑖𝑚𝑇𝑟𝜃𝑣

𝑟
−
𝑢𝑇𝑟𝜃

𝑟
] = 𝑆 [𝐷𝑣 +

𝑖𝑚𝑢

𝑟
−
𝑣

𝑟
] 

  (1 + 𝐸𝑅𝑒𝑠 + 𝐸𝑅𝑒
𝑖𝑚𝑉

𝑟
) 𝑡𝑟𝑧 − 𝐸𝑅𝑒

𝑖𝑚𝑇𝑟𝜃𝑤

𝑟
= 𝑆[𝐷𝑤 + 𝑖𝑞𝑢] 

 (1 + 𝐸𝑅𝑒𝑠 + 𝐸𝑅𝑒
𝑖𝑚𝑉

𝑟
) 𝑡𝜃𝜃 + 𝐸𝑅𝑒 [𝐷𝑇𝜃𝜃𝑢 +

2𝑉𝑡𝑟𝜃

𝑟
+
2𝑇𝑟𝜃𝑣

𝑟
− 2𝐷𝑉𝑡𝑟𝜃 − 2𝑇𝑟𝜃𝐷𝑣 −

2𝑖𝑚𝑇𝜃𝜃𝑣

𝑟
−
2𝑇𝜃𝜃𝑢

𝑟
] = 𝑆 [

2𝑖𝑚𝑣

𝑟
+
2𝑢

𝑟
] 

 (1 + 𝐸𝑅𝑒𝑠 + 𝐸𝑅𝑒
𝑖𝑚𝑉

𝑟
) 𝑡𝜃𝑧 + 𝐸𝑅𝑒 [

𝑉𝑡𝑟𝑧

𝑟
− 𝐷𝑉𝑡𝑟𝑧 − 𝑇𝑟𝜃𝐷𝑤 −

𝑖𝑚𝑇𝜃𝜃𝑤

𝑟
] = 𝑆 [

𝑖𝑚𝑤

𝑟
+ 𝑖𝑞𝑣] 

 (1 + 𝐸𝑅𝑒𝑠 + 𝐸𝑅𝑒
𝑖𝑚𝑉

𝑟
) 𝑡𝑧𝑧 = 2𝑆𝑖𝑞𝑤 

The boundary conditions require that the perturbations vanish on the cylindrical surfaces 𝑟 = 𝑎 and 

𝑟 = 𝑏: 

 𝑢 = 𝑣 = 𝑤 = 0,      
𝑑𝑢

𝑑𝑟
= 0  4.14 

b. Numerical methods 
To solve the linear equations 4.13 together with the boundary conditions 4.14, we rewrite them 

as an eigenvalue problem in form:  

 �̿�𝑋 = 𝑠�̿�𝑋  4.15 

where 𝑋 = (𝑢 𝑣 𝑤 𝑝 𝑡𝑟𝑟  𝑡𝑟𝜃 𝑡𝑟𝑧 𝑡𝜃𝜃 𝑡𝜃𝑧 𝑡𝑧𝑧)
𝑇 is the perturbation variables, �̿� and �̿� are second order 

matrices. This eigenvalue problem is solved by the Chebyshev collocation method with the Matlab 

solver “eigs”.  

The variable vector 𝑋  is projected on a discrete Chebyshev series 𝑆𝑐 and then transformed to the 

mesh vector 𝑆𝑟 which is concentrated on the boundaries of the domain: 

 𝑆𝑟  =  
𝑆𝑐 + 1

2
+
𝑎

𝑑
 4.16 

The calculation of the eigenvalues depends also on the mesh grid number 𝑁, but the results 

converge as 𝑁 gets larger. After several tests, we have chosen 𝑁 = 100 which is large enough to 

assure the right results and small enough to reduce the calculation time. When the mesh size is fixed, 

the eigenvalue 𝑠 of the system is a function of the control parameters 𝑅𝑒, 𝐸, 𝜂, 𝜇, 𝑆,𝑚, 𝑞. Among all 

these control parameters,  𝑅𝑒 and 𝜇 control the shear rate and rotation, 𝐸 and 𝑆 characterize the 

fluid properties, and  𝑚 and 𝑞 define the perturbations. 

For a given set of parameters, there exist more than one eigenvalue that fit the eigenvalue 

problem. Taking for example 𝑅𝑒 = 500, 𝐸 = 0.03, 𝜂 = 0.8 , 𝑆 = 0.7, 𝑚 = 0, 𝑞 = 10 on Keplerian 

regime 𝜇 = 𝜂3/2, we find that the eigenvalues are complex numbers presented by dots in figure 4.9. 

Among all the eigenvalues presented in figure 4.9, most of them converge along the mesh size. The 

converging eigenvalue which possesses the largest growth rate 𝜎 corresponds to the most unstable 

mode.   
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Figure 4.9: Eigenvalues of the linear equation with the parameters of 𝑅𝑒 = 500, 𝐸 = 0.03, 𝜂 = 0.8 , 

𝑆 = 0.7, 𝑚 = 0, 𝑞 = 10, on Keplerian regime 𝜇 = 𝜂3/2. 

For fixed control parameters of 𝑅𝑒, 𝐸, 𝜂  and 𝑆, the eigenvalues with the largest growth rate 

vary for different wave numbers 𝑚 ∈ 𝑍 and 𝑞 ∈ 𝑅. So we change 𝑚 and 𝑞 to find the eigenvalue 

with the largest growth rate 𝜎 𝑚𝑎𝑥 among all possible 𝑚 and 𝑞.  

For each fixed elasticity 𝐸 and viscosity ratio 𝑆 we calculated critical shear rate �̇�𝑐 which makes 

the largest growth rate 𝜎𝑚𝑎𝑥 = 0 among a series of 𝑚 and 𝑞. The 𝑚 and 𝑞 that minimize the �̇�𝑐 are 

called critical wave numbers 𝑚𝑐 and 𝑞𝑐 while the correspond frequency 𝜔𝑐 is the critical angular 

frequency. The critical control parameters like 𝑅𝑒𝑐, 𝑇𝑎𝑐, 𝑊𝑖𝑐, 𝐾𝑐  are deduced. To understand better 

the critical mode we investigate also the eigenfunctions of the variables 𝑋  corresponding to 𝑆𝑐 and 

the azimuthal vorticity defined by: 

 𝜔𝜃 =
𝜕𝑉

𝜕𝑧
−
𝜕𝑊

𝜕𝑟
 4.17 

c. Code validations 
We have used our code to compute some cases found in literature in order to validate our 

code. Starting from the Newtonian fluids in the 𝜇 = 0 regime, we have got the same critical Taylor 

number 𝑇𝑎𝑐 and critical wave number 𝑞𝑐 for several 𝜂 as previous researches [Swinney1981]. Then 

we have studied the purely elastic instability 𝑅𝑒 = 0 of axisymmetric mode 𝑚 = 0 at small gap 

approximation 𝜂 ∼ 1 and compared with the results provided by Larson & Shaqfeh [Larson1990]. In 

figure 4.10 we compare the results of Larson & Shaqfeh together with our calculations in terms of 

parameters used by Larson & Shaqfeh [Larson1990]. We have obtained similar critical curves with 

the same behavior. However our critical values are about 10% higher than the results of Larson & 

Shaqfeh.  

𝜎 
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Figure 4.10: Critical curves of the most unstable axisymmetric mode of the purely elastic instability 

when 𝑅𝑒 = 0 and 𝑚 = 0 at the small gap limitation 𝜂 ∼ 1. (a) Results of Larson & Shaqfeh. (b) Our 

results. All syntaxes in both figures are defined by the way of Larson & Shaqfeh [Larson1990].  

Joo & Shaqfeh have provided LSA results of the inertia-elastic instability with 𝑅𝑒 ≠ 0 using the 

same simplified equations of small gap and axisymmetric mode [Joo1992]. They have found a 

competition between the purely elastic instability and the centrifugal instability which is represented 

by the crossed critical curves of two modes in figure 4.11 (a). Using the same control parameters of 

𝑆 = 0.8, we have obtained the similar critical curves of two modes: an inertia-elasticity mode at large 

𝑅𝑒 and a purely elasticity mode at large 𝑊𝑖. Although our critical curves are still about 10% higher 

than the results of Joo & Shaqfeh the same instabilities and similar critical curves are reproduced. 

 

Figure 4.11: Critical curves 𝑅𝑒𝑐 −𝑊𝑖𝑐 represent two different unstable modes: purely elastic mode 

and inertia-elastic mode. 𝑆 = 0.8, 𝑚 = 0, 𝜂 ∼ 1. (a) Results of Joo et al. (b) Our results. 

Larson & Shaqfeh [Larson1990] and Joo & Shaqfeh [Joo1992] have used simplified equations 

from the Oldroyd-B model, while we have used the exact equations. That is the reason why our 

a b 

𝑾𝒊𝒄 
a b 

S=0.8 

Unstable 

Stable 
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numerical results differ quantitatively from their results; and they are more precise than those of the 

previous studies.  

The second test was done with control parameters of Avgousti who have used the same 

complete equations of Oldroyd-B model [Avgousti1993]. We plot in figure 4.12 (a) (b) the critical 

curves of Avgousti and ours, for a specific wavenumber 𝑞 = 3.12 for 𝜈𝑠/𝜈𝑝 = 3.76, 𝜂 = 0.95, 

𝜇 = 0.5 defined by Avgousti. The comparison between our results and those of Avgousti shows 

perfect agreement, so we confirm that our codes are reliable. 

 

  

Figure 4.12: Critical curves for different azimuthal wavenumber (denoted by 𝜉 for figure (a), 𝑚 for 

figure (b)) for a specific wavenumber 𝑞 = 3.12 for 𝜈𝑠/𝜈𝑝 = 3.76, 𝜂 = 0.95, 𝜇 = 0.5 defined by 

Avgousti. (a) Results of Avgousti. (b) Our results. 

 

We have also studied the inertia-elasticity instability in the Keplerian regime with 𝜂 =

0.95, 𝑆 = 0.5, which is the case studied by Ogilvie & Potter [Ogilvie2008]. Comparing our results to 

those of Ogilvie & Potter in figure 4.13, we can see similar critical curve with similar growth rate 

distribution and the same spiral mode. However our critical curve is about 10% higher than that of 

Ogilvie & Potter who have declared that they have only qualitative agreements with Avgousti et al 

[Avgousti 1993]. So we believe that our results are more reliable than those of Ogilvie & Potter. 

 

a b 
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Figure 4.13: (a) (b): Contours of the growth rate 𝑠 optimized with respect to 𝑚 and 𝑞 on map of 

(𝑅𝑒,𝑊𝑖) for Keplerian case at 𝜂 = 0.95, 𝑆 = 0.5. (a) Results of Ogilvie & Potter where the white line 

represents the critical curve; (b) our results where the white zone represents negative growth rate. (c) 

(d): Eigenfunction of the preferred mode on a specific set of (𝑅𝑒,𝑊𝑖) along the critical curve for 

𝑅𝑒 = 40. The azimuthal velocity perturbation is indicated by color scale. (c) Results of Ogilvie & 

Potter (d) our results. 

4.3 Conclusion 
In this chapter we have introduced the theoretical methods to study the viscoelastic 

instability in a Couette-Taylor flow. We start by generalizing the rotational Rayleigh discriminant to 

include the elasticity. This has led us to the elasto-rotational Rayleigh discriminant. The analysis of 

these discriminants shows that the elasticity force enhances the centrifugal instability and can induce 

the purely elasticity-induced instability when the flow is centrifugally stable. The elasto-rotational 

Rayleigh discriminant is analog to the Michael’s instability criterion for the circular Couette flow of 

conducting fluids in the presence of an azimuthal magnetic field  

To get more precise predictions on the critical parameters, we have formulated the linear 

stability analysis of a viscoelastic flow with the complete Oldroyd-B model.  The resulting eigenvalue 

problem was solved using our numerical code based on Matlab environment and using the 

Chebyshev collocation method. The code has been validated with comparison with some cases from 

the literature. The critical curves and critical modes that fit our experiments will be presented in the 

following chapters.  

(c) 

(a) (b) 

𝑅𝑒 

𝑊𝑖 

𝑧 

(d) 
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Chapter 5:  
Experimental setup & Working fluids  

This chapter describes the experimental setup and the working fluids. As the working fluids 

are viscoelastic, their rheology properties and the elastic properties are all well characterized before 

and after experiments.  

5.1. Experimental setup  

The experiments were conducted in a Couette Taylor system which consists of a flow in the 

gap between two vertical coaxial cylinders with the length 𝑙 = 45𝑐𝑚. The inner cylinder is made by 

Plexiglas with the radius 𝑎 = 4𝑐𝑚 and the outer cylinder is made by Delrin with the radius 𝑏 = 5𝑐𝑚. 

So the gap width of our Couette-Taylor system 𝑑 = 1𝑐𝑚, the radius ratio 𝜂 = 0.8  and the aspect 

ratio Γ = 45. 

Each cylinder is connected to a step motor so that the 2 cylinders can be controlled separately. 

The rotational velocity can reach 200 r/min, beyond this value the system will vibrate. The end plates 

of the top and the bottom rotate with the outer cylinder. As we have used cylinders of large aspect 

ratio Γ, the influence of the border effect on the central part of the cylinders can be ignored.  

The Couette-Taylor system is immerged in a water tank of 30𝑐𝑚 × 30𝑐𝑚 × 45𝑐𝑚 connected 

by tubes to a thermostatic bath. We set the water circulation temperature to 20°𝐶, however as the 

water tank is large, the water circulation is non-axisymmetric, and the rotation of viscous polymer 

solutions dissipates energy, we cannot control precisely the temperature in the Couette-Taylor 

system. Several temperature tests show that the temperature in the Couette-Taylor system is 

20°𝐶 ± 0.4°𝐶. 

For visualization, we have added 2% Kalliroscope in our working fluids. Such a concentration 

does not modify the viscosity of the working fluid.  The front view of the flow patterns can be 

observed using light spot while the cross section in the plane (𝑟, 𝑧) is obtained. The flow patterns are 

recorded by a CCD camera supported by the Streampix software, and then the films are analyzed 

with the help of Matlab. 

In each experiment, the gap between the two cylinders was filled with the prepared working 

fluids and the rotation velocities of the cylinders were increased step by step with a waiting period 

longer than 10 𝑚𝑖𝑛 on each step. As soon as the laminar base flow is entirely destabilized we 

recorded the critical velocity of the cylinders and the flow patterns with both gap view and front view. 

The transition from laminar flow to unstable flow is also recorded. 
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Figure 5.1: Experimental setup and its environment.  

5.2. Preparation of working fluids  

 

   
 

Figure 5.2: (a) Monomer of PEO and PEG (b) PEO sealed in a flacon. 

The working fluid used in our experiments is the polymer solution of Polyoxyethylene (PEO) 

dissolved in mixture of Polyethylen glycol (PEG) and water. The PEO and the PEG are both neutral 

polymers with flexible linear chains of similar chemical properties. They are polymers of the same 
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monomer (presented in figure 5.2 (a)), while they differ from each other only by the degree of 

polymerization 𝑛. According to our supplier, the PEO we used has an average molar mass of 8 × 106 

so  𝑛𝑃𝑂𝐸 ∼ 1.8 × 10
5while the PEG we used has an average molar mass of 2 × 104 so 𝑛𝑃𝐸𝐺 ∼ 450. 

As the PEO has long chain and it is easily degradable, the PEO is sealed in small flacons of 2ml 

(presented in figure 5.2 b) and is stored in a freezer of -10°C. The PEG is stored in plastic bottles in lab 

temperature. 

In the final solutions, PEO works as the source of elasticity and viscosity while PEG contributes 

only to the viscosity. However the interaction between PEO and PEG affects also the final elasticity of 

the solution. The mixture of water and PEG is considered as the solvent to PEO as it has constant 

viscosity independent to the shear rate. In order to get large elasticity, we use 1000 ppm of PEO for 

all solutions, which is the maximum dissolvable quantity of PEO.  The concentration of the PEG is 

changed from 2.5% to 25% by weight for different solutions. We have also added 2.5% of isopropyl 

alcohol to help the dissolution of PEO and its stabilization.  We have added 2% of Kalliroscope for 

visualization. 

Solution preparation protocol 
The following protocol was followed to prepare the working solutions. Taking a solution of 

1000 ppm PEO and 10% PEG as an example, first we prepared a solution of PEO (solution 1) and a 

solution of PEG (solution 2) separately, and then mixed  them to get the final working solution.  

Preparation of the solution 1 

1. Weight 50g isopropyl alcohol in a beaker of 1L.  

2. Weight 2000mg PEO and disperse it into the isopropyl alcohol.  

3. Fill the beaker with demineralized and degassed water to total weight of 1kg. 

4. Do not agitate. 

5. Seal the beaker by a piece of cellophane and keep it in a fridge of 8°C for 3 to 5 days. 

Preparation of the solution 2 

1. Weight 200g PEG in a beaker. 

2. Fill the beaker with demineralized and degassed water to a total weight of 1kg. 

3. Stir the turbid liquid with a magnetic agitator until the solution becomes transparent.   

4. Seal the beaker by a piece of cellophane and keep it in a fridge of 8°C for 3 to 5 days. 

Mixing the solutions 1 and 2 

1. Take out solution 1 and solution 2 from the fridge and leave them in laboratory until they 

returned to laboratory temperature. 

2. Agitate each solution moderately for 30 minutes to 2 hours with a magnetic agitator. 

3. Measure 0.95 kg liquid of each solution in a 2L beaker. 

4. Agitate the mixture with a magnetic agitator for 1 to 4 hours. 

5. Seal the beaker with a piece of cellophane and keep it in lab temperature for 3 to 5 days. 

6. Add 2% of Kalliroscope into the solution and agitate it moderately for 10 minutes. Then the 

solution is good for rheology tests and experiments. 
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5.3. Viscosity measurements 

The viscosity of a fluid measures the friction between fluid molecules in a shear flow. As our fluid 

is a mixture of two polymers, there are the solvent viscosity 𝜌𝜈𝑠 and the total viscosity 𝜌𝜈 to measure. 

These viscosities are measured by a shear stress rheometer (Anton Paar MC300) with a cone –plane 

measuring cell of radius 𝑅 = 24.984 𝑚𝑚 and cone angle 𝛼 = 0.5° (see figure 5.3). 

 

Figure 5.3: (a) The shear stress rheometer (Anton Paar MC300). (b) The cone-plane measuring cellule. 

To measure the viscosities, we fill the gap between the cone and the base plate with fluid 

sample and we rotate the cone in a constant rotational velocity Ω so that the shear rate �̇� ∼ Ω/𝛼   is 

fixed. Then the rheometer measures the torque 𝑇 that the cone receives and calculate the shear 

stress 𝑇𝑟𝜃. As we increase the shear rate �̇� step by step while waiting enough time for the cone to 

finish one complete tour at each step, the dynamic viscosity of the fluid sample 𝜌𝜈 is measured by 

the ratio between shear stress and the shear rate 𝜌𝜈 = 𝑇𝑟𝜃/�̇�.  

The working temperature of the cone-plane cell is kept in 20 ± 0.01°𝐶 which is the same 

temperature of our Couette-Taylor cell.  

a. Solvent viscosity 
We have prepared the PEG solvents separately for rheological tests following the preparation 

protocol of solution 2. The viscosities of the solvents are measured by swapping the shear rate from 

100 (1/s) to 102(1/s) by step of 100.1(1/s) and the results are presented in figure 5.4. We verified 

that the solvent viscosities are constant within shear rates from 1 to 100 (1/s). The average viscosity 

of each solvent along tested shear rates is considered as the solvent viscosity 𝜌𝜈𝑠. The solvent 

viscosity increases from 0.0025 (Pa ⋅ s) to 0.1418 (Pa ⋅ s) when the PEG concentration increases from 

2.5% to 25%. This viscosity represents the friction between PEG molecules as the molecules of the 

water and isopropyl alcohol are too small to be negligible before the PEG molecules. 

0.5° 
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R=24.984mm 

(a) (b) 
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Figure 5.4: Solvent viscosity with respect to shear rates for PEG concentration from 2.5% to 25%. 

b. Fluid viscosity 
The viscosities of our working fluids are measured by swapping the shear rate from 10−0.5 (1/s) 

to 103(1/s) by a step of 100.1(1/s). Each solution is tested before and after the Couette-Taylor 

experiments and multiple solutions are prepared at each concentration of PEG. We recall that the 

PEO concentration is fixed to 1000ppm for all solutions. The results are presented in figure 5.5. 

We observe that the fluid viscosity increases with the PEG concentration. As we have fixed 

the PEO concentration to 1000 ppm for all solutions, more PEG a solution contains, larger viscosity it 

has. The viscosities decrease slowly with the shear rate so that the shear thinning effect is weak. The 

more PEG a solution contains, the weaker is the shear thinning. Even for the most shear-thinning 

solution (the one containing 2.5% PEG) the viscosity decreases by 60% in a shear rate range of 3.5 

decades. As our experiments cover only 1 decade (1 to 10 s-1), the shear-thinning effect is negligible. 

So our working fluids almost fit the Oldroyd-B model. 

When the shear rate becomes larger than a certain critical value the viscosity raises again 

because the flow is no longer laminar and instability appears. The instability appears at smaller shear 

rate for a solution which contains more PEG and has higher viscosity. 

It is known that the polymer solutions are sensible to the condition of preparation (waiting 

time, agitation time, agitation magnitude…) as the PEO molecules are long and fragile, the solutions 

of the same PEG concentration may have different viscosities. The viscosity was measured before 

and after each experiment and it decreases because the rotation breaks polymer chains.   

The total solution viscosity 𝜌𝜈 is determined at the plateau of the measured viscosity curve (i.e. 

in the limit of vanishing shear rate) for each solution. With total fluid viscosity 𝜈 and the solvent 

viscosity 𝜈𝑠 , the polymer viscosity is then calculated by 𝜈𝑝 = 𝜈 − 𝜈𝑠 . 
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Figure 5.5: Dynamic viscosity of working fluids of different PEG concentrations in respect to shear 

rate. Each PEG concentration is represented by one color in the diagram. Dashed lines – working 

range of experiments. 

c. Variation of the viscosity with PEG concentration    
To get a clear view of the dependence of the viscosities to the PEG concentration (𝐶𝑃𝐸𝐺 ) we 

plotted the three viscosities (𝜌𝜈𝑠, 𝜌𝜈, 𝜌𝜈𝑝) in respect to the 𝐶𝑃𝐸𝐺 in figure 5.6. We found that the 

𝐶𝑃𝐸𝐺  functions of all the three viscosities follow exponential laws. However the polymer viscosity 

includes not only the friction between POE molecules and also the friction between POE and PEG 

molecules. So the polymer viscosity 𝜌𝜈𝑝 increases with 𝐶𝑃𝐸𝐺. In figure 5.6 the viscosity error is 

smaller than the mark. 
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Figure 5.6: Total solution viscosity 𝜌𝜈, polymer viscosity 𝜌𝜈𝑝 and solvent viscosity 𝜌𝜈𝑠 with  respect to 

the PEG concentrations and their fitting curves for 𝐶𝑃𝐸𝑂 = 1000 𝑝𝑝𝑚. 

As presented in figure 5.6 the polymer viscosity 𝜌𝜈𝑝 increases slower than the total viscosity 

𝜌𝜈 so the viscosity ratio 𝑆 = 𝜈𝑝/𝜈 decreases with 𝐶𝑃𝐸𝐺. We present 𝑆 with respect to 𝐶𝑃𝐸𝐺 in figure 

5.7 and we can see that 𝑆 decreases linearly with 𝐶𝑃𝐸𝐺. 

 

Figure 5.7: Viscosity ratio 𝑆 with respect to PEG concentration. 
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5.4. Relaxation time of the solutions 

The measurement of the relaxation time of a viscoelastic fluid is an unresolved problem, 

where different methods provide different results. In this thesis three different methods were 

applied to estimate the relaxation time, these relaxation times are denoted by 𝜏𝑒 for the extensional 

relaxation time, 𝜏𝑚 for the molar mass relaxation time and 𝜏𝑁1 for the first normal stress difference 

relaxation time. 

a. Three relaxation times 
The extensional relaxation time is measured by an extensional rheometer (CaBER), presented 

in figure 5.8, which consists of 2 steel plates and a laser system. To measure the relaxation time, we 

first fill the gap between the two plates of radius 𝑟 = 3𝑚𝑚 and the initial gap 𝑑𝑖 = 3.0𝑚𝑚 with a 

sample of working fluid. Then we stretch the upper plate quickly to its final position of the final gap 

𝑑𝑓 ∼ 8.7𝑚𝑚 while the bottom plate is fixing. Hence the fluid between the two plates is stretched 

and broken into 2 smaller drops. In the meantime, the filament connecting the drops gets thinner 

and thinner until finally it breaks up. The laser system which lies in the middle of the 2 plates 

measures the filament diameter 𝐷 as a function of time. The temperature of the measuring cell is 

stabilized by a thermostatic bath to 20 ± 0.1°𝐶. 

 

Figure 5.8: The photo of extensional relaxation time and the principle of the measurement. 

(a) (b) 
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Figure 5.9: Variation of the filament diameter with the time, experimental data for a solution of 10% 

PEG and 1000 ppm PEO measured by CaBER. 

Taking a fluid of 10% PEG and 1000 ppm PEO as an example, the filament diameter data in 

respect to time is presented in figure 5.9. The data are separated into two processes, where the first 

process is largely affected by the gravity while in the second process the elastic force of the fluid 

dominates the evolution of the filament. In the second process, the filament diameter 𝐷  is 

proportional to an exponential function of time: 

 𝐷(𝑡) ∝ 𝑒−𝑡/3𝜏𝑒 5.1 
where the extensional relaxation time 𝜏𝑒 appears as a parameter (see CaBER manual). So the 

extensional relaxation time 𝜏𝑒 is obtained by fitting the experimental data to the equation 5.1. For 

each measurement five tests are taken to get 𝜏𝑒.  

The molar mass relaxation time 𝜏𝑚 is determined by the molecular model of viscoelastic 

fluids [Bird1977] where the 𝜏𝑚 is defined by equation 5.2. In this equation 𝐶𝑖 is the mole number of 

the PEO in the solution, 𝑅 is the perfect gas constant and 𝑇 is the temperature.  

 𝜏𝑚 ≡
𝜌𝜈𝑝
𝐶𝑖𝑅𝑇

 5.2 

The first normal stress difference relaxation time 𝜏𝑁1 is defined by: 

 𝜏𝑁1 ≡
𝑁1

2𝜈𝑝�̇�
2

 5.3 
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where 𝑁1 is measured by the shear stress rheometer (Anton Par MC300) and then adjusted by the 

centrifugal force of the cone. Taking a solution of 15%PEG and 1000 ppm PEO as an example, the 

experimental data  of a shear stress in figure 5.10 show that the adjusted 𝑁1 is proportional to �̇�2 at 

large �̇�2 so that the equation 5.3 is validated. 

 

Figure 5.10: Adjusted first normal stress difference 𝑁1 in respect to the shear rate �̇�. The points in the 

red dashed rectangular are used to estimate 𝜏𝑁1.  

b. Variation of the relaxation with the PEG concentration 
Because of the degradation of the polymer solutions during Couette-Taylor experiments, the 3 

relaxation times are measured or estimated before and after the Couette-Taylor experiments. We 

plot the three relaxation times of all tested solutions as function of  the PEG concentration 𝐶𝑃𝐸𝐺 in 

figure 5.11. In general, the relaxation times increase with 𝐶𝑃𝐸𝐺. The molar mass relaxation time 𝜏𝑚 

follows an exponential low while the other relaxation times are respectively disordered, as their 

coefficient of determination (𝑅2) is small.  

Except for one solution of 15% PEG, for which 𝜏𝑁1 > 𝜏𝑚, the relaxation times of all solutions follow 

the inequality 

 𝜏𝑒 > 𝜏𝑚 > 𝜏𝑁1 5.4 
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Figure 5.11: Variation of the relaxation times 𝜏 with PEG concentration. 

With these relaxation times, we defined three elasticities by 𝐸𝑒 = 𝜏𝑒/𝜏𝜈, 𝐸𝑚 = 𝜏𝑚/𝜏𝜈 and 

𝐸𝑁1 = 𝜏𝑁1/𝜏𝜈 , where 𝜏𝜈 = 𝑑
2/𝜈  is the viscous diffusion time. We plotted in figure 5.12 the 

elasticities with respect to 𝐶𝑃𝐸𝐺. With no surprise, like the relaxation times, the elasticities increase 

with 𝐶𝑃𝐸𝐺 and we have 𝐸𝑒 > 𝐸𝑚 > 𝐸𝑁1 except for one solution of 15% PEG. However the 𝐸𝑒 and 𝐸𝑁1 

are less disordered comparing to the 𝜏𝑒 and 𝜏𝑁1 and they correspond better to an exponential law. 

At last we plotted in figure 5.13 the elasticities 𝐸 in respect to the viscosity ratio 𝑆 as they are 

the most important dimensionless parameters to characterize a viscoelastic fluid. Generally speaking, 

𝐸 decreases with 𝑆.   
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Figure 5.12: Variation of the Elasticities 𝐸 with the PEG concentration. 

 

Figure 5.13: Variation of the Elasticities 𝐸 with the viscosity ratio 𝑆. 
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5.5. Conclusion 

In this chapter we have presented the experimental setup, the basic experimental procedures 

and   the working fluids which consist of POE, PEG water and isopropyl alcohol and their preparation 

protocols. The solvent viscosity 𝜌𝜈𝑠 and the total solution viscosity 𝜌𝜈 were measured by a shear 

rheometer (Anton Paar MC300). The viscosity of our working fluids show weak shear thinning effect, 

so that they are considered as fluids which fit approximately the Oldroyd-B model.   

As we have fixed the POE concentration to 1000ppm and varied the PEG concentration 𝐶𝑃𝐸𝐺, 

for all solutions the viscosities 𝜌𝜈, 𝜌𝜈𝑠, 𝜌𝜈𝑝 increase with 𝐶𝑃𝐸𝐺 while the viscosity ratio 𝑆 decreases 

with 𝐶𝑃𝐸𝐺.  The relaxation time of the working fluids is estimated with three different ways. Denoted 

by 𝜏𝑒 , 𝜏𝑚, 𝜏𝑁1 these relaxation times could differ from each other by more than 20 times for the 

same fluid. For most solutions the relaxation times 𝜏𝑒 , 𝜏𝑚, 𝜏𝑁1  and the elasticities 𝐸𝑒 , 𝐸𝑚, 𝐸𝑁1 

increase with 𝐶𝑃𝐸𝐺. 
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Chapter 6: Viscoelastic instability in the 
annulus with one rotating cylinder 

In the present chapter, we will present the theoretical and experimental results obtained in 

the case when either the inner cylinder or the outer is rotating the other being fixed (𝜇 = 0 and 

𝜇 = ∞). 

6.1. Annular flow for  𝝁 = 𝟎 

The stability of viscoelastic flow in the Couette flow when only the inner cylinder is rotating 

has been widely investigated by many authors. The present study has revisited the analysis of this 

flow and it sheds new light on the aspects that were ignored so far in the experimental and 

theoretical studies. A particular attention is drawn on the role of the polymer elasticity parameter ES.  

6.1.1. LSA results 
The stability analysis of the circular Couette flow with 𝜇 = 0 described in the chapter 3 is 

performed using the LSA codes described in section 4.2.   

a. Marginal stability curves 

The growth rate of the eigenvalue problem in the Keplerian regime for 𝜂 =  0.8 is a function of 

parameters as 𝜎 =  𝑓(𝑇𝑎, 𝐸, 𝑆, 𝑞,𝑚). The marginal stability is given by the largest growth rate that 

leads to instability i.e. 𝜎 =  0 or 𝑓(𝑇𝑎, 𝐸, 𝑆, 𝑞,𝑚)  = 0.  For a fixed value of 𝐸 and 𝑆, the hypersurface 

reduces to a marginal surface  𝑓(𝑇𝑎, 𝑞,𝑚)  =  0. In practice, we fix 𝑚 and look for the marginal curve 

of 𝑇𝑎(𝑞) for different 𝑚, the value of 𝜔 is determined simultaneously. We plot in figure 6.1 the 

marginal stability curves 𝑇𝑎(𝑞) for different values of the azimuthal wavenumber  𝑚 and for 

𝐸 = 0.01, 0.1, 1. The shape of these curves is very sensitive to the elasticity number 𝐸. For small 𝐸 

(Figure 6.1 (a, b)), the marginal curve of 𝑚 = 0 has a clear minimum which determines the critical 

point (𝑞𝑐 , 𝑇𝑎𝑐) of the critical mode. For 𝐸 =  0.01, the critical mode is axisymmetric and stationary 

while for 𝐸 =  0.1, critical mode is non-axisymmetric and oscillatory. But for larger 𝐸 (Figure 6.1 ©) 

the bottom of the marginal curve of  𝑚 = 1 is so flat that it is difficult to define the critical mode. In 

this case, several perturbation modes of different 𝑞 may interact with each other. So, for large values 

of the elasticity number, within linear stability analysis, the critical mode is a linear superposition of 

non-axisymmetric modes in the neighborhood of the apparent “𝑞𝑐”. 
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Figure 6.1: Marginal curves 𝑇𝑎(𝑞) for different 𝑚  at chosen 𝐸  for 𝑆 = 0.6. (a) 𝐸 = 0.01, 𝑇𝑎𝑐 =

41.31, 𝑞𝑐 = 3.3, 𝑚𝑐 = 0,𝜔𝑐 = 0 (b) 𝐸 = 0.1, 𝑇𝑎𝑐 = 25.62, 𝑞𝑐 = 4.35,𝑚𝑐 = 1,𝜔𝑐 = −0.034 < 0  (c) 

𝐸 = 1, 𝑇𝑎𝑐 = 5.74, 𝑞𝑐 = 5.95, 𝑚𝑐 = 1,𝜔𝑐 = 0.014 > 0. 

 

(a) 

(b) 

(c) 

𝐸 = 0.01 

𝐸 = 1 

𝐸 = 0.1 
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b. Variation of the critical parameters with 𝐸 

The critical values  (𝑇𝑎𝑐 , 𝑞𝑐 ,𝑚𝑐 , 𝜔𝑐) depend on the solution parameters 𝐸, 𝑆. We have fixed 

the viscosity ratio 𝑆 and have computed the critical parameters 𝑇𝑎𝑐  and 𝑞𝑐  for a chosen value of the 

azimuthal wavenumber 𝑚. In Figure 6.2, the curve of the 𝑇𝑎𝑐(𝐸) is plotted for different 𝑚 for 

𝑆 = 0.6. We observe that for 𝑚 = 0, 1,2 the 𝑇𝑎𝑐 decreases slowly with increasing 𝐸 for 𝐸 ≤ 0.1, and 

then rises suddenly forming a sharp peak, and again it decreases. The sharp peak corresponds to a 

change of mode, where 2 critical modes of different 𝜔𝑐 and 𝑞𝑐 compete with each other. Taking the 

mode 𝑚 = 0 as an example, the critical mode is stationary (𝜔𝑐 = 0) before the peak (𝐸 <  0.08), 

and it is oscillatory (𝜔𝑐 ≠ 0) after the peak (𝐸 >  0.08). The mode 𝑚 = 1 does not show any peaks 

when 𝑇𝑎𝑐 decreases with 𝐸.  

  

Figure 6.2: Variation of the critical values of 𝑇𝑎𝑐 with 𝐸 for different 𝑚 at fixed 𝑆 = 0.6.  

Comparing these modes, we can see that the most unstable mode is 𝑚 = 0 at 𝐸 < 0.03 and 

𝑚 = 1 at large 𝐸 > 0.03. However the mode 𝑚 = 1 can also be separated into 2 parts by the sign of 

critical frequency, 𝜔𝑐 < 0 at 0.03 < 𝐸 < 0.38 and 𝜔𝑐 > 0 at 𝐸 > 0.38. In Figures 6.3, the variation 

of the critical parameters with the elasticity number are plotted for 𝑆 =  0.6. For small values of 

𝐸 <  0.03, critical modes are stationary and axisymmetric, they are Taylor vortices (TVF) as in the 

case of Newtonian liquid. For 𝐸 >  0.03 the critical modes are oscillatory non axisymmetric modes 

with 𝜔𝑐 <  0 or 𝜔𝑐  >  0. The axial wavenumber of the Taylor Vortex Flow is almost constant while 

that of oscillatory non-axisymmetric modes increases with 𝐸  up to 2.6 times 𝑞𝑐(𝐸 = 0)  

corresponding to vortices of size 𝑑/2.6, i.e. almost three vortices in the gap. The frequency |𝜔𝑐| of 

the non-axisymmetric modes decreases with 𝐸 for 𝐸 ∈ [0.03, 0.38] and then weakly increases with 𝐸 

up to 𝜔𝑐 =  0.02 for 𝐸 = 1. 
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Figure 6.3: Variation of the critical parameters with the elasticity number 𝐸 for 𝑆 =  0.6 in 𝜇 = 0 

regime: a) 𝑎𝑐(𝐸) ; b) 𝑞𝑐(𝐸) ; c) 𝜔𝑐(𝐸) . Loose dashed vertical line separates critical azimuthal wave 

numbers 𝑚𝑐. Dense vertical line separates the positive and negative angular frequency.  
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For each polymer solution (i.e. for a given value of S), there exist a point in the plane (𝐸, 𝑇𝑎𝑐) 

where two modes with different spatio-temporal properties can coexist. This point is called 

codimension-two point. For 𝑆 =  0.6, the properties of this codimension-two point is given in the 

Table : 

𝐸 𝑇𝑎𝑐 𝑞𝑐 𝑚𝑐 𝜔𝑐 

 

0.03 

 

37 

3.47 0 0 

3.51 1 -0.11 

 Table 6.1: Codimension-two point for 𝑆 = 0.6 in 𝜇 = 0 regime. 

The color maps in figure 6.4 show flow patterns of different critical modes, from which we 

observe that for 𝑚 = 1 the flow pattern inclines to the inner cylinder when 𝜔𝑐 < 0 while it inclines 

to the outer cylinder when 𝜔𝑐 > 0. To provide more details about the non-axisymmetric critical 

mode, we present in figures 6.5 – 6.7 the velocity field, the azimuthal vorticity and the variations of 

pressure and normal stress differences (𝑁1 and 𝑁2) in the gap for the cases of 𝐸 = 0.01, 𝐸 = 0.1, 

and 𝐸 = 1. The inner cylinder is on the left and the outer cylinder is on the right. The ratio 𝑁2/𝑁1 

decreases with 𝐸 from 100 (for 𝐸 =  0.01) to 1 (for 𝐸 =  1), suggesting that the perturbations of the 

first normal stress difference dominate the second normal stress difference in the purely elastic 

regime where 𝐸 → ∞. 

 

Figure 6.4: Color: Vorticity 𝜔𝜃 of the critical modes in the gap for different values of the elasticity 

number 𝐸  and for 𝑆 =  0.6 in 𝜇 = 0 regime.   Solid line: critical curve 𝑇𝑎𝑐(𝐸). 

𝑚𝑐 = 0 

𝜔𝑐 = 0 
𝑚𝑐 = 1 

𝜔𝑐 < 0 
𝑚𝑐 = 1 
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Figure 6.5: Critical mode for 𝑆 = 0.6,𝐸 = 0.01, 𝑇𝑎𝑐 = 41.3 on 𝜇 = 0, with 𝑚 = 0, 𝑞𝑐 = 3.28, 𝜔𝑐 = 0. 

(a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors represent the 

azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 variation © the 𝑁2 

variation. Color maps of (b, c, d, e) represent the relative amplitude. 

 

Figure 6.6: Critical mode for 𝑆 = 0.6, 𝐸 = 0.1, 𝑇𝑎𝑐 = 27.2 in 𝜇 = 0 regime, with 𝑚 = 1, 𝑞𝑐 = 4.37, 

𝜔𝑐 = −0.034. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors 

represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 variation 

© the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 
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Figure 6.7: Critical mode for 𝑆 = 0.6:  𝐸 = 1, 𝑇𝑎𝑐 = 5.74 in 𝜇 = 0 regime, with 𝑚 = 1, 𝑞𝑐 = 6.03, 

𝜔𝑐 = 0.014. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors represent 

the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 variation © the 𝑁2 

variation. Color maps of (b, c, d, e) represent the relative amplitude. 

  

c. Effect of the viscosity ratio on the critical states 

The second step was to determine the role of the viscosity ratio 𝑆 in the viscoelastic instability. 

We have computed the critical curves for different values of 𝑆 from 0.05 to 0.9 and super-imposed 

the critical curves corresponding to different 𝑆 in one figure. We plot in figure 6.8 the critical curves 

𝑇𝑎𝑐(𝐸)  for different 𝑆. At small 𝐸 all curves approach the same critical Taylor number of 𝑇𝑎𝑐 = 44.7 

which is the critical Taylor number at the Newtonian limit of 𝐸 = 0. At larger 𝐸, 𝑇𝑎𝑐 decreases 

rapidly with 𝐸 but for large 𝐸, the decrease  of 𝑇𝑎𝑐  slows down when 𝑇𝑎𝑐 <  1 corresponding to the 

onset of the purely elastic instability. Theoretically the critical curves cross the horizontal axis only on 

the purely elastic limitation of 𝐸 = ∞.  The curves with 𝑆 = {0.6, 0.7, 0.8, 0.9}  intersect each other in 

a small area around the point (𝐸∗ =  0.3, 𝑇𝑎𝑐
∗  = 13.5) such that the polymer viscosity is stabilizing 

on the left of the intersection and destabilizing on the right. The solutions with very small 𝑆 <  0.1 

have critical curves which do not intersect each other at least for 𝐸 <  10.    

(a) (b) (c) (d) (e) 
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Figure 6.8: Critical curves 𝑇𝑎𝑐(𝐸) for different 𝑆 in 𝜇 = 0 regime. 

Beside the solution elasticity 𝐸, it is possible to introduce the parameter {𝐸} = 𝐸𝑆 which 

represents the polymer elasticity. In figure 6.9 we present the critical Taylor number 𝑇𝑎𝑐 in respect 

to 𝐸𝑆. For small values of 𝐸𝑆 (<  2. 10−3), all curves tend to form a unique limiting curve insensitive 

to 𝑆 with 𝑆 destabilizing the flow. The effect of the elasticity on the threshold becomes sensitive as 

soon as 𝐸𝑆 >  10−3. For large values of 𝐸𝑆, the curves are distinct and 𝑇𝑎𝑐  increases with it, which 

means that the polymer viscosity has  a stabilizing effect on  the flow .  

𝐸∗ = 0.3 
𝑇𝑎∗ = 13.5 

Cross point 

𝑆 = 0.05 

𝑆 = 0.9 
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Figure 6.9: Critical curves 𝑇𝑎𝑐(𝐸𝑆) for different 𝑆 in 𝜇 = 0 regime. 

 

 

Figure 6.10: Critical curves 𝑅𝑒𝑐(𝑊𝑖𝑐) at critical wave numbers for different 𝑆 in 𝜇 = 0 regime. 

𝑆 = 0.9 

𝑆 = 0.05 
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As 𝑅𝑒 and 𝑊𝑖 are the most studied control parameter of the viscoelastic instability, we have 

plotted in figure 6.10 the critical curves of 𝑅𝑒𝑐(𝑊𝑖𝑐 ) for different 𝑆. We can see that all curves cross 

the vertical axis of 𝑊𝑖 = 0 at the same point of 𝑅𝑒𝑐 = 94.7 corresponding to the Newtonian case; 

then 𝑅𝑒𝑐 decreases with 𝑊𝑖𝑐. Although the values of  𝑊𝑖 are not presented for small 𝑅𝑒, we know 

that the critical curves of 𝑅𝑒𝑐(𝑊𝑖𝑐)   cross the horizontal axis of 𝑅𝑒 = 0  at certain 𝑊𝑖0  that  

corresponds to the onset of the  purely elastic instability. The case of the purely elastic instability will 

be discussed in chapter 9. 

Another control parameter related to the 𝑊𝑖 is the modified Weissenberg number 𝐾𝑐 =

√2𝑆𝑑 (𝑎 + 𝑏)⁄ 𝑊𝑖𝑐, defined by Groisman & Steinberg [groisman1998] which includes the viscosity 

ratio and the curvature. Figure 6.11 presents the critical curves of 𝑇𝑎𝑐(𝐾𝑐), we can see that except 

for the curves of the two very low values of 𝑆 (𝑆 = 0.05, 𝑆 =  0.1), all critical curves cross each other 

around 𝐾𝑐
∗ = 2.4 ± 0.1, 𝑇𝑎𝑐

∗ = 21 ± 1. The line 𝐾𝑐 = 𝐾𝑐
∗  separates the plane (𝐾𝑐 , 𝑇𝑎𝑐)  into two 

zones where the polymer viscosity plays opposite roles: for 𝐾𝑐  <  𝐾𝑐
∗ , the polymer viscosity 

destabilizes the flow but for 𝐾𝑐 > 𝐾𝑐
∗, it stabilizes the flow.   

 

Figure 6.11: Critical curves 𝑇𝑎𝑐(𝐾𝑐) for different values of 𝑆 in 𝜇 = 0 regime. The insert figure on the 

right top corner is a zoom in around the “intersection point”.  

The variations of the frequency and axial wavenumber of the critical modes for different 𝑆 

with ES are plotted in figure 6.12 and 6.13 respectively. In figure 6.12 we can see that the sign change 

of 𝜔𝑐 in the mode 𝑚 = 1 exists only for large 𝑆. For small viscosity ratio 𝑆{0.05, 0.1, 0.2, 0.3}  the 

angular frequency 𝜔 is always negative in the calculated range of elasticity 𝐸 ∈ {10−3, 101}. The 

critical frequency curves in the plane (𝐸𝑆, 𝜔𝑐) intersect each other at one common point (𝐸𝑆∗ ∼

𝐾𝑐
∗ = 2.3 ± 0.1 
𝑇𝑎𝑐

∗ = 21 ± 1 

Cross point 
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0.055,𝜔𝑐
∗ ∼ −0.04). The effect of the polymer elasticity on the critical wavenumber becomes 

significant for 𝐸𝑆 >  2 ⋅  10−3 when 𝑞𝑐 starts to increase with 𝐸𝑆 (figure 6.13). The critical curves for 

large 𝑆 ∈ {0.5, 0.9}, which possess positive frequencies 𝜔𝑐 > 0 with 𝑚 = 1, show a sudden increase 

at large 𝐸𝑆, while the critical curves with small 𝑆 ∈ {0.05, 0.3} tend asymptotically to  constant 

values at  large 𝐸𝑆. 

 

Figure 6.12: Variation of the critical angular frequency 𝜔𝑐 with 𝐸𝑆 for different 𝑆 in 𝜇 = 0 regime. 

 

Figure 6.13: Variation of the critical wave number 𝑞𝑐 with 𝐸 for different 𝑆 in 𝜇 = 0 regime. 
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6.1.2. Experimental results 
We have followed the experimental procedures described in chapter 5. The inner cylinder was 

rotating and the outer cylinder was fixed. The experimental results are presented and compared with 

some of the LSA predictions. 

To present the experimental results, both dimensional and dimensionless frequencies 

(𝑓 and 𝜔)  and wavenumbers  (𝑘 and 𝑞)  are used. The elasticity defined by the molar mass 

relaxation time 𝐸𝑚 (see section 5.4) is used to introduce the flow patterns as it is the most widely 

used elasticity in the literature. 

a. Flow patterns 

In figure 6.14, 6.15, 6.17 we present one by one the gap view, the front view and the space-

time diagram of the three critical modes: stationary axisymmetric vortices or Taylor vortices for small 

elasticity 𝐸, standing waves also called ribbons for intermediate values of 𝐸 and disordered vortices 

for large values of 𝐸. In the figures are shown only the central parts of the flow patterns away from 

the endplates. The vertical shadows in the front view are nothing but a reflection of a support pillar 

of the setup, and this reflection shadow will appear at all the following front view photos. The gap 

view is captured by the refection of a laser sheet which sweeps the (𝑟, 𝑧) plane. The space-time 

diagram is created by superposition of recorded vertical lines at regular time intervals.   

The Taylor vortex mode have the same structure as in the Newtonian case (figure 6.14) with 

𝑚𝑐 = 0 𝜔𝑐 = 0 . This agrees with the LSA which predicted axisymmetric and stationary mode for 

small values  of  𝐸𝑆 (see figure 6.2).  

The Ribbons mode is composed of counter propagating waves (figure 6.15), they are non-

axisymmetric and oscillatory (𝑚𝑐 ≠ 0,𝜔𝑐 ≠ 0) . The Ribbons mode is composed of counter 

propagating waves which can be obtained by complex demodulation. Figure 6.16 represents the 

resulting left and right propagating waves from demodulation of the Ribbons mode. The LSA has 

predicted critical mode of (𝑚𝑐 = 1,𝜔𝑐 < 0) for intermediate 𝐸𝑆 . However as it is difficult to 

determine the azimuthal wave number 𝑚𝑐 and the sign of 𝜔𝑐 experimentally, we may say the non-

axisymmetric and oscillatory mode agrees with the LSA prediction for intermediate 𝐸𝑆.  

Like the Ribbons mode, the disordered vortices mode is composed of non-regular and non-

stationary waves (figure 6.17) (𝑚𝑐 ≠ 0,𝜔𝑐 ≠ 0). The horizontal fine black lines in front view of the 

cylinder (figure 6.17 b) are the central of counter rotating pairs of vortices These central lines of the 

counter rotating vortices are inclined which means that this mode is not axisymmetric. The space-

time diagram (figure 6.17 c) exhibits the chaotic behavior of the pattern.   

We compare the long-time acquisition of space-time diagrams of these modes in figure 6.17 to 

provide a general impression of these three modes. The central lines of the counter rotating vortices 

pairs tend to approach each other and merge into new vortices, while new vortices appear randomly 

from the left area. Thus, the disordered waves mode is composed of non-axisymmetric and unsteady 

vortices which are created and vanish randomly.  
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Figure 6.14: Taylor vortex mode observed in a solution of 1000ppm PEO and 2.5% PEG  (𝑇𝑎𝑐 =

28.8, 𝐸𝑚 = 0.011, 𝑆 = 0.87) in 𝜇 = 0 regime: (a) gap view, (b) front view, (c) space-time diagram of 

the front view.  

 

Figure 6.15: Critical mode of Ribbons at 𝑇𝑎𝑐 = 28.4, 𝐸𝑚 = 0.0168, 𝑆 = 0.81 in 𝜇 = 0 regime for a 

solution of 1000ppm PEO and 5% PEG. (a) gap view (b) front view (c) space-time diagram of the front 

view.  

(a) (b) (c) 

(b) (c) (a) 
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Figure 6.16: Demodulation of the space-time diagram of the Ribbons mode. (a) demodulated left 

wave (b) space-time diagram (c) demodulated right wave. 

 

Figure 6.17: Critical mode of Disordered Vortices at 𝑇𝑎𝑐 = 12.1, 𝐸𝑚 = 0.131, 𝑆 = 0.61 in 𝜇 = 0 

regime for a solution of 1000ppm PEO and 15% PEG. (a) gap view (b) front view (c) space-time 

diagram of 20s of the front view.  

(a) (b) (c) 

(b) (c) (a) 
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Figure 6.18: Space-time diagram of 600s for 3 different modes: (a) Taylor Vortex (b) Ribbons (c) 

Disordered vortices. 

To study more precisely the critical axial wave number 𝑞𝑐 and the critical frequency 𝜔𝑐 we 

have applied the 2D Fourier transformation on the long-time space-time diagram (figure 6.18) of 

each working fluid. Then we non-dimensionlize 𝑘𝑐 to the critical wave number by  𝑞𝑐 = 2π𝑑𝑘𝑐 and 

the critical angular velocity 𝑓𝑐 by 𝜔𝑐 = 2π𝑓𝑐/�̇�. These critical values are then compared with the 

previous LSA results. 

The Taylor vortex mode and the Ribbons mode have a well-defined wave number and 

frequency in the spectra. The disordered vortices modes have smooth spectra (figure 6.19), so that 

no evident critical wavenumber 𝑘𝑐 nor critical frequency 𝑓𝑐 can be identified from them, except the 

flicker frequency of the spotlight (black dashed line).  

 

Figure 6.19: Fourier spectra of the Disordered Vortices for a solution of 1000ppm PEO and 15% PEG 

(𝑇𝑎𝑐 = 12.1, 𝐸𝑚 = 0.131, 𝑆 = 0.61) in 𝜇 = 0 regime:  (a) space spectrum (b) time spectrum. Red 

dashed line – the frequency of the inner cylinder. Black dashed line – the flicker frequency of the spot 

light.  

(b) (c) (a) 

(a) (b) 
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While  the Taylor Vortex and the ribbons appear suddenly and everywhere along all the 

length of the cylinders, the Disordered Vortices appear first at the top or bottom endplate and then 

propagate slowly to the other endplate (figure 6.20-a). The fast Fourier transform of the space-time 

diagram of the transient state returns smooth spectra of 𝑓 and 𝑘 (figure 6.20 (b) (c)).   

 

Figure 6.20: Transition to Disordered Vortices for a solution of 1000ppm PEO and 15% PEG 

(𝑇𝑎𝑐 = 12.1, 𝐸𝑚 = 0.131, 𝑆 = 0.61) in 𝜇 = 0 regime. (a) Space-time diagram of the transient state, 

(b) space spectrum, (c) time spectrum. The y axis of the spectrums is the magnitude of the Fourier 

transformation. 

b. Comparison with LSA results 

Three different relaxation times (𝜏𝑒 , 𝜏𝑚, 𝜏𝑁1) are used to define the experimental values of the 

solution elasticity 𝐸 and the polymer elasticity 𝐸𝑆. We plotted in figure 6.21 the experimental critical 

Taylor number 𝑇𝑎𝑐 versus the parameter 𝐸𝑆, against three values of 𝐸𝑆 corresponding to different 

relaxation times (figure 6.21). The critical curves predicted by LSA corresponding to the working 

solutions are plotted for values of 𝑆 between 0.5 and 0.9. The experimental values of 𝑇𝑎𝑐 decrease 

with 𝐸𝑆 in the same way as the theoretical values of 𝑇𝑎𝑐 from LSA: they decrease slightly at small 𝐸𝑆 

then decrease quickly at large 𝐸𝑆. The threshold of stationary vortices is almost independent of 𝐸𝑆. 

The decrease of 𝑇𝑎𝑐 corresponds to the ribbon state and to disordered waves. The critical curves 

𝑇𝑎𝑐(𝐸𝑆) from LSA lie between those corresponding to elasticity defined by molar mass relaxation 

(b) 

(c) (a) 
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time and the extensional relaxation time. At larger 𝐸𝑆, the LSA critical curves are closer to those with 

elasticity defined with the extensional time. 

 

Figure 6.21: Variation of the critical values of Ta with the polymer elasticity 𝐸𝑆 in 𝜇 = 0 regime. Solid 

points represent experimental critical values, 3 colors correspond to 3 different definitions of 

elasticity. Within each definition of elasticity (see section 5.4), each point represents one tested 

solution. Continuous lines are the LSA critical curves for different 𝑆.  

In figure 6.22, we keep only the elasticity defined by the molar mass.  The critical modes occur 

in form of different types depending on the polymer elasticity 𝐸𝑆. So, the critical points can be 

gathered into three different groups: for small values of 𝐸𝑆, the critical modes are the Taylor Vortex, 

for intermediate values of 𝐸𝑆, the critical modes are the ribbons and for large 𝐸𝑆, the critical modes 

are   Disordered Vortices.  The separation lines of the axisymmetric stationary mode and the non-

axisymmetric oscillatory mode from LSA are situated near the edge of the Taylor vortex mode and 

the ribbons mode. Considering the difficulty to estimate the elasticity, the experimental critical 

modes correspond to the LSA predictions. 

Then we sum up the 𝜔𝑐 of all the experimental critical modes and the LSA predictions in 

figure 6.23. The experimental angular frequencies follow qualitatively the behavior of the theoretical 

values: at small elasticity, the Taylor Vortex mode has null frequency; for intermediate values of 𝐸𝑆, 

the ribbons mode has a finite frequency which decreases with 𝐸𝑆; for disordered vortices, there is no 

well-defined frequency because of their chaotic behavior.  
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Figure 6.22: Variation of the critical values of 𝑇𝑎𝑐 with the polymer elasticity 𝐸𝑆 defined by the mass 

molar relaxation time in 𝜇 = 0 regime. Solid points represent experimental critical values. Dashed 

rectangles are groups of different critical modes. Continuous lines are LSA critical curves for different 

values of 𝑆.  Dashed lines separate the stationary axisymmetric mode and the non-axisymmetric 

oscillatory mode from LSA. 
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Figure 6.23: Variation of the critical angular frequency |𝜔𝑐|  with 𝐸𝑆  defined with molecular 

relaxation time in 𝜇 = 0 regime. Solid points – experimental critical values. Dashed rectangles – 

groups of different critical modes. Continuous lines – theoretical critical angular frequencies for 

different 𝑆.  

In figure 6.24 we present the dimensionless wave number 𝑞𝑐 with the LSA predictions. The 

critical wavenumbers  𝑞𝑐  of the Taylor Vortex mode and the Ribbons follow qualitatively the 

predictions of the LSA, however the 𝑞𝑐  of the Disordered Vortices stays away from the LSA 

predictions.  As shown in figure 6.1 ©, the marginal curves of large 𝐸 have flat bottom. This makes it 

hard to distinguish a dominant wave number, which means waves of several wave numbers coexist. 

Our experimental space-time diagram and the spectra confirm the existence of many waves yielding 

the chaotic vortices via the superposition of these waves. 
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Figure 6.24: Dimensionless critical axial wave number 𝑞𝑐 in 𝜇 = 0 regime. Solid lines – LSA critical 

wave numbers for different 𝑆. Solid points – experimental critical values. Dashed circle – group of 

different critical modes 

c. Comparison with previous results 

We have observed the disordered vortices mode for fluid with 𝐸𝑆 > 0.035. Compared to the 

purely elastic mode first observed by Larson et al. [Larson1990], the disordered vortices (DV) mode 

has the same flow pattern as the purely elastic mode. However, the purely elastic mode is observed 

for fluids of very large 𝐸 and at negligible 𝑇𝑎𝑐. 

The same flow pattern corresponding to the purely elastic mode were also observed for fluid 

of 𝐸 = 15, 𝑆 = 0.13 at 𝑇𝑎𝑐 = 0.056 by Baumert & Muller [Baumert1999] in a Couette-Taylor system 

of 𝜂 = 0.827. 

In the same system of 𝜂 = 0.827, Baumert & Muller have observed also stationary counter-

rotating vortices for less elastic fluid (𝐸 = 0.0562, 𝑆 = 0.13) at 𝑇𝑎𝑐 = 14.5. For fluids of similar 

elasticity (0.017 < 𝐸 < 0.031) we have observed the Ribbons mode. The Taylor vortex (TV) mode is 

only observed for less elastic fluids.  

In a system of 𝜂 = 0.829, Groisman & Steinberg [Groissman1998] have observed the Taylor 

vortex mode for solutions with 𝐸 < 0.08 and disordered oscillations mode for 0.08 < 𝐸 < 30 when 

increasing the rotation velocity. The critical Weissenberg number for the first transition is 

comparable to our experimental results. 
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Previously in LOMC, Façal Kelai has done similar experiments with the same setup 𝜂 = 0.8 

and the similar working solutions in the 𝜇 = 0 regime [Kelai2011]. He has used solutions of small 

viscosity ratio 𝑆 ∈ (0.05, 0.3), except for the Taylor vortex mode which was obtained in shear-

thinning solutions.  His points lie on the left side of ours because our solutions have larger 𝑆. He has 

also observed three different modes and recorded the corresponding critical values.  

 

Figure 6.25: Critical values on regime of 𝜇 = 0. Continuous lines – LSA critical curves. Solid points – 

Kelai’s experiments. Open points – our experiments. Violet triangle – Baumert’s experiment. 

In figure 6.25, we compare our experimental values with those of  Kelai  and of  Baumert 

together with LSA data, we observe that the experimental results of Kelai have larger 𝑇𝑎𝑐 than ours 

and they fit better the LSA critical curves. The 𝑇𝑎𝑐 of the less elastic fluid of Baumert is found smaller 

than our results and far away from the LSA critical curves. Note that the radius ratio 𝜂 of the 

cylinders used by Baumert is different from ours, and the waiting time of Baumert is much longer 

than ours. 

d. Supercriticality or subcriticality 

We recall that all the previous results are obtained by increasing step by step the rotation 

velocity of the inner cylinder. We have also decreased the rotation velocity of the inner cylinder step 

by step to see if the instability disappears at the same critical values. We found out that the Taylor 

Vortex mode and the Ribbons mode disappear as long as the cylinder rotates slower than the critical 

velocity observed when increasing it, while the Disordered Vortices mode stays unstable at velocities 

smaller than the critical velocity when increasing it. So the Taylor Vortex mode and the Ribbons 
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mode are supercritical instability modes while the Disordered Vortices mode is a subcritical instability 

mode. 

6.2. Annular flow with 𝝁 = ∞ 
When we rotate the outer cylinder while fixing the inner cylinder, the fluid in the outer part 

rotates faster than inner part and the centrifugal force is no longer destabilizing, only the elastic 

force may destabilize the flow.  

6.2.1. LSA results 
Analyzing by the same LSA code with the base flow of 𝜇 = ∞ regime, we have found out that 

the most unstable mode is always axisymmetric with 𝑚𝑐 = 0. Taking 𝑆 = 0.7 as an example, we plot 

in figure 6.26 the marginal stability curves 𝑇𝑎(𝑞) for different values of 𝑚 at 𝐸 = 1. The lowest 

marginal curve of 𝑚 = 0 possesses very flat bottom that makes it difficult to determine the critical 

wavenumber 𝑞𝑐.  So several perturbation modes of different 𝑞 may coexist . 

 

Figure 6.26: Marginal curves 𝑇𝑎(𝑞) for different 𝑚 at 𝑆 = 0.7 and 𝐸 = 1. 

Figure 6.27 presents the variation of the critical Taylor number 𝑇𝑎𝑐 with the solution elasticity 

𝐸 for different azimuthal wave number 𝑚. For all 𝑚 calculated, 𝑇𝑎𝑐 decreases with 𝐸. The 𝑇𝑎𝑐 of the 

axisymmetric mode 𝑚 = 0 is much smaller than the other modes (𝑚 = 1 and 𝑚 = 2) so that the 

axisymmetric mode 𝑚 = 0 is the most unstable mode for all calculated values of 𝐸.  
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Figure 6.27: Critical curves 𝑇𝑎𝑐  (𝐸) for different 𝑚 at fixed 𝑆 = 0.7 in 𝜇 = ∞ regime. 

 

Figure 6.28: Critical curves, 𝑇𝑎𝑐(𝐸) for different 𝑆 in 𝜇 = ∞ regime. 

 



76 
 

Then we super-impose in figure 6.28 the critical curves 𝑇𝑎𝑐(𝐸)  for different 𝑆 ∈ [0.5, 0.8]. 

We observe that the critical curves of 𝑇𝑎𝑐(𝐸) for different S are very close to each other, which 

means that for the 𝜇 = ∞ regime the viscosity ratio 𝑆 has weak effects on the viscoelastic instability. 

As the centrifugal force is no longer destabilizing in the  𝜇 = ∞ regime, the only destabilizing force is 

the elastic force which is independent to the polymer viscosity ratio 𝑆. The critical curve can be fitted 

by a power law 𝑇𝑎𝑐(𝐸) = 𝐴𝐸
−𝛼  with 𝛼 = 1.048, 𝐴 = 10.295, and the coefficient of determination 

𝑅2 = 0.9996.  

We present in Figure 6.29 the critical curves in the plane (𝑊𝑖𝑐  , 𝑅𝑒𝑐) for different 𝑆. Unlike in 

the 𝜇 = 0 regime, 𝑅𝑒𝑐 increases with 𝑊𝑖𝑐 and the critical curves for different 𝑆 do not cross each 

other. For all calculated values of  𝑊𝑖𝑐  , larger 𝑆  reduces 𝑅𝑒𝑐  showing that polymer viscosity 

destabilizes the flow. The intersection points between the critical curves and the horizontal axis 

determine the onsets 𝑊𝑖𝑐 to the purely elastic instability.  This will be discussed in chapter 9. 

 

Figure 6.29: Critical curves 𝑅𝑒𝑐(𝑊𝑖𝑐) for different 𝑆 in 𝜇 = ∞ regime. 

Then we look into the axisymmetric critical mode. We plot in figure 6.30 the critical angular 

frequency 𝜔𝑐 and the critical axial wave number 𝑞𝑐 in respect to 𝐸 for different 𝑆. We observe that 

the critical modes are not stationary as the critical frequency is not zero (𝜔𝑐 ≠ 0) and the angular 

frequency increases with 𝐸. The axial wave number 𝑞𝑐 decreases with 𝐸. In the calculated range of 

𝐸 ∈ {0.1 ,10}, 𝑞𝑐 > 10, or the corresponding wavelength  𝜆𝑐/2 < 𝑑, so that the critical mode occurs 

in the form of flattened vortices. Similar to figure 6.29, the critical curves of 𝜔𝑐 and 𝑞𝑐 for different 𝑆 

are almost parallel to each other, the larger 𝑆 makes larger critical values of 𝜔𝑐 and 𝑞𝑐 
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Figure 6.30: Variation of the critical parameters with E for different values of 𝑆 in 𝜇 = ∞ regime: (a) 

angular frequency 𝜔𝑐 (b) axial wave number 𝑞𝑐. 

To provide a general view of the critical modes in 𝜇 = ∞ regime, we plot in figure 6.31 the 

flow patterns for solution of 𝑆 = 0.7, 𝐸 = 1 , 𝑇𝑎𝑐 = 4.73 with 𝑚𝑐 = 0, 𝑞𝑐 = 14.4, 𝜔𝑐 = 0.050. The 

flow properties including velocity field, the vorticity, the pressure variation and the 𝑁1 variation are 

plotted in the section of (𝑟, 𝑧). The pressure variation and the 𝑁2 variation presented by figure 

6.30© © are negligible compared to the 𝑁1 variation and the vortices are flattened and instability 

lies near the inner cylinder (left wall). 

 

Figure 6.31: Critical mode for 𝑆 = 0.7 ,𝐸 = 1  , 𝑇𝑎𝑐 = 4.73  on 𝜇 = ∞ , with 𝑚 = 0 , 𝑞𝑐 = 14.4 , 

𝜔𝑐 = 0.050. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors represent 

the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 variation © the 𝑁2 

variation. Color maps of (b, c, d, e) represent the relative amplitude. 

(a) (b) 

(a) (b) (c) (d) (e) 
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6.2.2. Experimental results 
In the regime of 𝜇 = ∞, we repeat the same procedure on the all solutions used in 𝜇 = 0 

regime, but only the solutions of large elasticity could be destabilized. As predicted by the LSA we 

have observed only one critical mode in form of the Disordered Vortices as described in 𝜇 = 0 

regime.  

a. Flow patterns 

To show the experimental critical mode, we present in figure 6.32 the gap view, the front view, 

the space-time diagrams and the Fourier spectrums of the critical Disorder Vortices mode. Although 

we may observe temporal oscillations of certain flow patterns in figure 6.32 © which do not exist in 

𝜇 = 0 regime, this mode is the same Disordered Vortices mode as in the 𝜇 = 0 regime. Because this 

oscillation is not related to any propagating waves, it reflects the rotation of the outer cylinder.  

 

(a) (b) (c) 

(d) 
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Figure 6.32: Critical mode of Disordered Vortices at 𝑇𝑎𝑐 = 15.4, 𝐸𝑚 = 0.131, 𝑆 = 0.61, 𝜇 = ∞ for a 

solution of 1000ppm PEO and 15% PEG. (a) gap view (b) front view (c) space-time diagram of 20s of 

the front view (d) long-time space-time diagram © space spectrum (f) time spectrum. Red dashed 

line – the frequency of the inner cylinder. Black dashed line – the flicker frequency of the spot light.  

b. Comparison with LSA results 

 

Figure 6.33: Critical values of the transition from laminar flow to unstable flow on regime of 𝜇 = ∞. 

Solid lines – LSA critical curves for different 𝑆. Solid points – experimental transient values, 3 colors 

represent 3 different definitions of elasticity. Within each definition of elasticity, each point 

represents one solution tested.  
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To compare the experimental results to the LSA predictions, we resume the critical values of 

𝑇𝑎𝑐(𝐸) measured experimentally by three different relaxation times together with the LSA critical 

curves in figure 6.33. We use 𝐸 instead of 𝐸𝑆 as the control parameter because the LSA critical 

curves of different S are close to each other on 𝑇𝑎𝑐(𝐸) (figure 6.27). We remove the LSA critical 

curves of 𝑆 = 0.8  because the viscosity ratio 𝑆  of the solutions that can be experimentally 

destabilized in the 𝜇 = ∞  regime lies in the range of 𝑆 ∈ (0.5,0.7) . We observe that the 

experimental critical values 𝑇𝑎𝑐 decrease with 𝐸 defined by three relaxation times. This follows the 

trend of the LSA critical curves. The points corresponding to the elasticity 𝐸𝑒 defined by the 

extensional relaxation time fit perfectly with the LSA critical curves.  

As explained in the previous section, it is very difficult to determine experimentally the 

critical values of the Disorder vortices mode, so it is not surprising that the experimental 𝜔𝑐 and 𝑘𝑐 

show only weak agreements to the LSA predictions (see figure 6.34 and 6.35). 

 

 

Figure 6.34: Variation of the critical angular velocity 𝜔𝑐   in 𝜇 = ∞ regime with solid points – 

experimental critical values for 𝐸 defined by extensional relaxation time. Continuous lines – the LSA 

critical curves for different 𝑆.  
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Figure 6.35: Variation of the critical axial wave number 𝑞𝑐 with 𝐸 in 𝜇 = ∞ regime. Solid points – 

experimental critical values for 𝐸 defined by extensional relaxation time. Continuous lines – LSA 

critical curves for different S.  

 

c. Comparison to the previous results  

 In rotating the outer cylinder while fixing the inner cylinder, both Baumert and Kelai have 

observed the purely elastic mode [Baumert1997] [Kelai2011]. We super-impose in figure 6.36 the 

critical values of the experiments of Baumert, Kelai and ours together with the LSA critical curves. 

The experimental elasticity for all the authors is estimated by the molar mass. We can see that the 

critical values of all these experiments show good coherence between each other and parallel to the 

LSA critical curves.  
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Figure 6.36: Critical values on regime of 𝜇 = ∞. Continuous lines – LSA critical curves. Blue circle –our 

experiments. Red triangle – experiments of Kelai. Violet squire – experiment of Baumert.  

6.3. Conclusion 
In this chapter we have compared our LSA results and experimental results in the rotation 

regimes of 𝜇 = 0 and 𝜇 = ∞. We found that they agree with each other qualitatively in almost all the 

cases and agree with each other quantitatively in some cases. In both regimes, 𝑇𝑎𝑐 decreases with 𝐸, 

but we have observed theoretically and experimentally three different critical modes from small 𝐸 to 

large 𝐸: Taylor vortex mode, Ribbons mode and Disordered vortices mode for  𝜇 = 0 regime, while 

for  𝜇 = ∞ regime,  only one axisymmetric oscillatory  mode was critical. The LSA critical curves of 

𝑇𝑎𝑐(𝐸) lie between the experimental points elasticity of which is defined by the molar mass 

relaxation time  (𝐸𝑚) and the extensional relaxation time (𝐸𝑒) for  𝜇 = 0 regime while they lie 

exactly on the 𝐸𝑒 defined experimental points for 𝜇 = ∞ regime.  For the 𝜇 = 0 regime, the LSA 

critical curves are much closer to the 𝐸𝑒 defined points than the others when the critical mode is 

disordered vortices mode. As the elasticity 𝐸 indicates the elastic force of the fluid, we may conclude 

that the disordered vortices mode appears when the elastic force dominates the flow which 

corresponds to the cases of large 𝐸 in 𝜇 = 0 regime and the 𝜇 = ∞ regime where the centrifugal 

force stabilizes the flow. The extensional relaxation time defined elasticity 𝐸𝑒 is the best parameter 

that characterizes the elastic force. In the 𝜇 = 0 regime, the change of critical modes indicates that 

the dominant destabilizing force switches from centrifugal force to elastic force as the fluid elasticity 

𝐸  increases. We observe the Taylor vortices mode as in the Newtonian fluid at small 𝐸  and 

disordered vortices mode which is the same as 𝜇 = ∞ regimes. So that the Ribbons mode can be 

considered as the critical mode in which the centrifugal force is comparable to the elastic force. 

Besides, we have found theoretically that in the 𝜇 = 0 regime the viscosity ratio 𝑆 destabilizes the 

flow at small modified Weissenberg number 𝐾 while it stabilizes the flow at large 𝐾. 
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Chapter 7: Viscoelastic instability in 
Keplerian regime and the MRI analogy 

The present chapter is devoted to the analogy between the viscoelastic instability (VEI) in the 

Couette-Taylor system and the magnetorotational instability (MRI) responsible of angular 

momentum transportation in accretion disks in Astrophysics. After the LSA and experimental results 

in the Keplerian regime, we study the anti-Keplerian regime in order to discriminate the modes that 

are not MRI-analogs.  

7.1. The Keplerian regime 
According to Rayleigh stability criterion discussed in chapter 4, the Newtonian Couette flow in 

the Keplerian rotation regime (𝜇 = 𝜂3/2) is stable, while the viscoelastic Couette flow can be 

destabilized, which yields to elasto-rotational instability modes. Our study will focus on the Keplerian 

regime in annular geometry with radius ratio 𝜂 =  0.8  corresponding to the experimental 

configuration i.e. 𝜇 =   0.716.     

7.1.1. LSA results 

a. Marginal stability curves  

In figure 7.1, we have plotted the marginal stability curves 𝑇𝑎(𝑞) for 𝑆 =  0.6 and four 

different values of 𝐸 = {0.01, 0.028, 0.1, 1.0}. 

 
(a) 

𝐸 = 0.01 

𝑞 
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(b) 

𝐸 = 0.035 

𝑞 

(c) 

𝐸 = 0.1 

𝑞 
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Figure 7.1: Marginal curves 𝑇𝑎(𝑞)  for different 𝑚  at chosen 𝐸 . (a) 𝐸 = 0.01(b) 𝐸 = 0.036, (c) 

𝐸 = 0.1, (d) 𝐸 = 1. 

We can see from figure 7.1 (a) that for small 𝐸 the 𝑇𝑎𝑐 of 𝑚 = 0 is clearly separated from the 

other 𝑚, so that the axisymmetric mode 𝑚 = 0 dominates. But for larger 𝐸 figure 7.1 (b) (c) the 𝑇𝑎𝑐 

of several 𝑚 are close to each other, so that several modes may become critical and interact with 

each other. For large 𝐸 (figure 7.1 (d)), the bottom of the marginal curve is so flat that several modes 

of different 𝑞 are critical and may interact with each other.  

b. Variation of the critical parameters with 𝑬  

Figure 7.2 illustrates the variation of the critical Taylor number 𝑇𝑎𝑐 with 𝐸 for 𝑆 = 0.6 with 

different azimuthal wave number 𝑚 ∈ {0, 1 , 2, 3}. The critical values  𝑇𝑎𝑐 decrease with 𝐸 and the 

curves for different 𝑚 are close to each other. In the vanishing elasticity solution, the threshold tends 

to infinity in agreement with the stability of the Newtonian flow in the Keplerian rotation regime.  

The decrease of the critical value 𝑇𝑎𝑐 with the elasticity of the polymer solution means that the 

elasticity plays a destabilizing role in the Keplerian regime.  

(d) 

𝐸 = 1 

𝑞 
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Figure 7.2: Critical curves, 𝑇𝑎𝑐(𝐸) for different 𝑚, 𝑆 = 0.6 on Keplerian regime. 

For each value of the elasticity 𝐸, we plot the lowest value of 𝑇𝑎𝑐 among  𝑚 ∈ (0 ,1 , 2, 3 ). 

The resulting critical curve 𝑇𝑎𝑐(𝐸)  determines the instability threshold and it is plotted in figure 7.3 

together with critical 𝑚𝑐, and the color map of vorticity of the critical modes.  The variations of the 

critical angular frequency 𝜔𝑐 and axial wave number 𝑞𝑐  with 𝐸 are plotted in figure 7.4 and figure 

7.5. The axisymmetric mode is stationary as 𝜔 = 0 and the corresponding vortices are flattened as 

𝑞𝑐 > 2𝜋 i.e. the corresponding wavelength 𝜆𝑐 < 𝑑 while the non-axisymmetric modes are non-

stationary as 𝜔𝑐 ≠ 0.  
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Figure 7.3: Variation of the critical curve 𝑇𝑎𝑐(𝐸) for 𝑆 =  0.6 on Keplerian regime. Black dashed lines 

separate critical azimuthal wave number 𝑚𝑐. Color maps – vorticity 𝜔𝜃 in the gap plane (𝑟, 𝑧), where 

red represents positive values and blue represents negative values .  

 

Figure 7.4: Variation of the critical frequency of the critical modes with 𝐸 and 𝑆 = 0.6 in Keplerian 

regime. Dashed vertical lines separate different 𝑚𝑐. 

𝑚𝑐 = 0 
𝑚𝑐 = 2 

𝑚𝑐 = 1 

𝑚𝑐 = 1 

𝑚𝑐 = 0 𝑚𝑐 = 2 𝑚𝑐 = 1 

𝑚𝑐 = 1 
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Figure 7.5: Variation of the critical axial wavenumber 𝑞𝑐 of the critical modes with 𝐸 for 𝑆 = 0.6 on 

Keplerian regime. Dashed vertical lines separate different 𝑚𝑐. 

For each polymer solution (i.e. for a given value of 𝑆), there exist codimension-two points in 

the plane (𝐸, 𝑇𝑎𝑐) where two modes with different spatio-temporal properties can coexist. For 

𝑆 =  0.6, we have  3 codimension-two points whose properties are given in the Table : 

𝐸 𝑇𝑎𝑐 𝑞𝑐 𝑚𝑐 𝜔𝑐 

 

0.034 

 

10.1 

6.31 0 0 

5.99 1 -0.21 

 

0.038 

 

9.3 

5.99 1 -0.21 

5.52 2 -0.41 

 

0.377 

 

2.28 

4.47 2 -0.39 

4.62 1 -0.18 

 Table 7.1: Codimension-two points for 𝑆 =  0.6 in Keplerian regime 

Thus, for a rotating flow in the Keplerian regime of a solution with 𝑆 =  0.6, the critical mode 

depends on the solution elasticity: it is axisymmetric and stationary at small 𝐸, while the critical 

mode is composed by the interaction of several non-axisymmetric modes at large 𝐸. This property is 

also validated for other 𝑆. To provide more details about different critical modes, we present from 

figure 7.6 to 7.9 the gap view of the features of the critical modes including the velocity fields, the 

vorticity, the variation of pressure 𝑁1 and 𝑁2. The perturbations of the 𝑁1 and 𝑁2 are comparable for 

the stationary axisymmetric modes and the disordered wave modes; while for the purely elastic 

mode, the 𝑁2 is negligible compared to the perturbation of the 𝑁1. 

𝑚𝑐 = 0 𝑚𝑐 = 2 𝑚𝑐 = 1 

𝑚𝑐 = 1 
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Figure7.6: Critical mode for 𝑆 = 0.6 , 𝐸 = 0.01 , 𝑇𝑎𝑐 = 273  in Keplerian regime, with 𝑚 = 0 , 

𝑞𝑐 = 10.3, 𝜔𝑐 = 0. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors 

represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 variation 

© the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

 

Figure7.7: Critical mode for 𝑆 = 0.6 , 𝐸 =0.035, 𝑇𝑎𝑐 = 97.4  in Keplerian regime, with 𝑚 = 1 , 

𝑞𝑐 = 5.98, 𝜔𝑐 = −0.207. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the 

colors represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 

variation © the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 
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Figure7.8: Critical mode for 𝑆 = 0.6 , 𝐸 = 0.1 , 𝑇𝑎𝑐 = 48.6  in Keplerian regime, with 𝑚 = 2 , 

𝑞𝑐 = 4.62, 𝜔𝑐 = −0.406. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the 

colors represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 

variation © the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

 

Figure 7.9: Critical mode for 𝑆 = 0.6, 𝐸 = 1, 𝑇𝑎𝑐 = 12.5 in Keplerian regime, with 𝑚 = 1, 𝑞𝑐 = 4.75, 

𝜔𝑐 = −0.178. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors 

represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 variation 

© the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

 

 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 
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c. Effect of the viscosity ratio on the critical states  

The variation of the threshold 𝑇𝑎𝑐(𝐸)  with 𝑆 is plotted in figure 7.10. For 𝐸 <  1, the curves 

are distinct and for each value of 𝐸, solution with large 𝑆 are more unstable. For 𝐸 >  1, all curves 

converge into one curve, the threshold becomes independent of 𝑆 and tends to a small value of 

𝑇𝑎𝑐 =  0.  This suggests that the instability mode has changed: for 𝐸 <  1, both the rotation and the 

elasticity intervene to generate the elasto-rotational instability (ERI) while for 𝐸 > 1, the instability 

is induced by the elasticity as predicted by the generalized Rayleigh criterion.  The latter is called 

purely elastic instability (PEI). 

 

Figure 7.10: Critical curves  𝑇𝑎𝑐(𝐸) for different 𝑆 in Keplerian regime. 

The variation of the critical modified Weissenberg number 𝐾𝑐 = √2𝑆𝑑 (𝑎 + 𝑏)⁄ 𝑊𝑖𝑐  (see 

[Groisman1998]) with the solution elasticity 𝐸 is plotted in figure 7.11 and yields a cross point of all 

curves with different values of 𝑆 at 𝐸∗ = 0.27,𝐾∗ = 0.45. For 𝐸 < 𝐸∗ , the viscosity ratio is 

destabilizing while for 𝐸 > 𝐸∗, it is stabilizing. 

When we plot the critical Taylor number 𝑇𝑎𝑐 versus 𝐸𝑆 instead of 𝐸, all curves of different 𝑆 

converge into one curve (figure 7.12). It means that for the Keplerian regime, the polymer viscosity 

𝐸𝑆 is a better control parameter than the solution elasticity 𝐸. The elasto-rotational Rayleigh line 

separates the unstable area into the elasto-rotational unstable zone (on the left) and purely elastic 

unstable zone (on the right). The elasto-rotational unstable zone is then separated by different 

critical modes: stationary axisymmetric mode for small 𝐸𝑆 and oscillatory non-axisymmetric mode 

for large 𝐸𝑆. 
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Figure 7.11: Critical curves 𝐾𝑐(𝐸) for different 𝑆 in Keplerian regime. 

 

Figure 7.12: Critical curves, 𝑇𝑎𝑐(𝐸𝑆) for different 𝑆: the black dashed line is the elasto-rotational 

Rayleigh line 𝐸𝑆∗ = 0.672 that separates the potential stable from the potentially unstable zone to  

the elasticity-induced perturbations. The colored dashed lines separate the stationary axisymmetric 

mode and oscillatory non-axisymmetric mode.  

𝐾∗ = 0.57 

𝐸∗ = 0.28 

Cross point 

Stable 

Unstable 

Elasto-rotational 
 instability 

Purely elastic 

 instability 

𝑚𝑐 = 0 
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Figure 7.13 presents the critical curves of 𝑇𝑎𝑐(𝐾𝑐) which shows that all curves cross at one 

point  of 𝐾𝑐
∗ = 0.86, 𝑇𝑎𝑐

∗ = 1.5. This figure shows in a clear manner that the polymer viscosity plays 

two opposite roles: the polymer viscosity destabilizes the flow together with the elasticity when 

𝐾𝑐 < 𝐾𝑐
∗ while when 𝐾𝑐 > 𝐾𝑐

∗ it stabilizes the flow and the elasticity remains the sole destabilizing 

factor. In particular, purely elastic instability mode is suppressed by the increase of the viscosity ratio 

𝑆. From practical point of view, the best solvents to realize purely elastic instability are those with 

large viscosity while those appropriate to realize elasto-rotational instability are those with large 

values of 𝑆.   

  

Figure 7.13: Critical curves 𝑇𝑎𝑐(𝐾𝑐) for different 𝑆 in Keplerian regime.  

In the intersection point, the viscosity ratio 𝑆 has no influence on the critical parameter 𝑇𝑎𝑐. 

The intersection occurs between curves corresponding to oscillatory states (waves). The point 

(𝐾∗, 𝑇𝑎∗)  corresponds to values of 𝐸𝑆 ∈ [0.32,0.48]  for 𝑆 ∈ [0.3,0.8]   well below the value 

𝐸𝑆∗ = 0.672. According to elasto-rotational Rayleigh criterion, the modes observed before the 

intersection point are due to the combined destabilizing effect from the rotation and the elasticity 

and are called elasto-rotational instability. The modes observed after the intersection point are 

destabilized only by the elasticity and can be attributed to purely elastic instability.    

Figure 7.13 indicates that the modified Weissenberg number 𝐾 contains some meaningful 

information for the viscoelastic instability in the Keplerian regime. This suggests to link it to the 

elastic number 𝐸.  

As the 𝑅𝑒 and 𝑊𝑖 are widely used as the control parameters of the viscoelastic instability in 

the Couette-Taylor system, we plot in figure 7.14 the critical curves in the plane (𝑊𝑖, 𝑅𝑒) for 

different S. Note that in the LSA calculation the elasticity is varied so that 𝑊𝑖 is denoted as 𝑊𝑖𝑐 as it 

𝐾∗ = 0.86 

𝑇𝑎∗ = 1.5 

Cross point 

Stable  
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is deduced by 𝑊𝑖𝑐 = 𝐸 ⋅ 𝑅𝑒𝑐. We observe that when 𝑊𝑖𝑐 decrease the 𝑅𝑒𝑐 increase and the critical 

curves 𝑅𝑒𝑐(𝑊𝑖𝑐) will never cross the vertical axis. The threshold 𝑅𝑒𝑐  decreases with 𝑊𝑖𝑐, and the 

critical curves cross the horizontal axis of 𝑅𝑒𝑐 = 0 at certain 𝑊𝑖0, corresponding to the onset of the 

purely elastic instability which will be discussed later. The role of polymer viscosity is inverted (from 

destabilization to stabilization) for small and large values of 𝑊𝑖𝑐 as the critical curves intersect each 

other as 𝑊𝑖𝑐 increases.  

 

Figure 7.14: Critical curves, 𝑅𝑒𝑐(𝑊𝑖𝑐) for different 𝑆 in Keplerian regime. 

7.1.2. Experimental results 
The experiments were conducted by increasing the rotation velocity of the cylinders in the 

Keplerian ratio 𝜇 = 𝜂3/2  =  0.716 step by step and then waiting at least 20 min on each step. The 

inner cylinder and the outer cylinder share the same acceleration rate to avoid spurious instabilities. 

The increase of the rotation velocity was done until the pattern was formed in the flow. We waited 

about 20 min before recording the flow. The higher instability modes were not investigated in this 

experiment because we were interested in the detection of the onset and the nature of the flow 

patterns.  A ramping up and down was also done to check the critical nature of the transition 

(supercritical or subcritical).   

a. Flow patterns 

Different types of flow patterns were observed in the Keplerian rotation regime when the 

rotation velocity of the cylinders exceeded a critical value, which depends on the elasticity and 

viscosity ratio of the flow solution.  As the Newtonian flow is stable in the Keplerian regime, we were 

guided by the results of the linear stability analysis. For, we choose a solution with a given elasticity  

𝐸 and viscosity ratio 𝑆, this allowed to minimize the search of the critical states. The observed flow 

patterns show three different types: axisymmetric stationary vortices, disordered waves, disordered 

waves with solitary vortices and purely elastic mode. 
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Axisymmetric stationary vortices 

For small values of the elasticity number, the critical mode appears in form of stationary 

axisymmetric vortices. Their size is smaller than the gap width; in fact their dimensionless 

wavenumber 𝑞𝑐 varies between 6 and 10 for the solutions we have worked with. Figure 7.15 is an 

illustration of this mode for a solution with 𝐸𝑚 = 0.017,  𝑆 = 0.81. The spectra of the space-time 

diagram (figure 7.15-c) are given in figure 7.16. The peak of the dominant wavenumber is evidenced 

in the space spectrum (figure 7.16-a), it yields 𝜆𝑐  =  0.96 𝑐𝑚 <  2𝑑 =  2 𝑐𝑚.  The frequency peaks 

in the temporal spectrum (figure 7.16-b) correspond to either the cylinder rotation frequencies or 

their combinations.  

 

Figure 7.15: Flow patterns and space-time diagram on Keplerian regime at 𝑇𝑎𝑐 = 8.50, 𝐸𝑚 = 0.017, 

𝑆 = 0.81. (a) Gap view by laser sheet, (b) Front view, (c) Space-time diagram. The space-time 

diagram seems wavy, however all the wavy frequencies are related to the rotational cylinders. 

 

Figure 7.16: Fourier spectra of the space-time diagram on Keplerian regime at 𝑇𝑎𝑐 = 8.50 , 

𝐸𝑚 = 0.017, 𝑆 = 0.81.  (a) space spectrum,  (b) time spectrum. Red lines – rotation frequencies of 

the inner and outer cylinder and the mean rotation of them. Green dashed line – a combination of 

frequencies of the cylinders (2Ω𝑜 −Ω𝑖). Black dashed line – flicker frequency of the spot light. 

     (a)   (b)            (c) 

(a)     (b) 

𝜆𝑐
−1 = 1.04 𝑐𝑚−1 
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The stationary axisymmetric vortices observed in the Keplerian rotation regime are distinct 

from the Taylor vortices that were observed in the case of  𝜇 = 0 for small values of the elasticity.  In 

fact, these new vortices are flatten (their size 𝜆𝑐  /2 <  𝑑) while the Taylor vortices in 𝜇 = 0 regime 

have a circular shape (𝜆𝑐/2 ≈  𝑑). The flattening of these vortices (𝑓 = (𝑑 − 𝜆𝑐 2⁄ )/𝑑) increases 

as 𝐸𝑆 decreases. A comparison of the stationary axisymmetric vortices observed in the Keplerian 

rotation regime and Taylor vortices observed in the case of 𝜇 =  0 is given in the figure 7.17, where 

the front view and the longtime space-time diagram are compared. 

 

Figure 7.17: Comparison between the critical modes: (a) (b) Front view of the Taylor Vortex mode (a) 

and the Stationary and Axisymmetric mode (b); (c) (d) space-time diagram of 10 mins of the Taylor 

Vortex mode (c) and the Stationary and Axisymmetric mode (d). 

Disordered waves mode 

For intermediate values of 𝐸𝑆 i.e. 0.03 <  𝐸𝑆 <  0.1, the critical mode appears in form of the 

disordered waves (figure 7.18). These waves are formed by counter propagating waves. In fact, they 

are generated from the endplates and they propagate until they reach each other in the central part 

of the flow system. As long as the waves have not met in the central part, they have a single 

frequency and wavenumber. But as soon as they meet, they interact strongly and the nonlinear 

effects dominate and generate the Disordered Waves.  

(c) (d) (a) (b) 
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Figure 7.18: Flow patterns and space-time diagram of the Disordered Waves mode on Keplerian 

regime at 𝑇𝑎𝑐 = 2.86, 𝐸𝑚 = 0.13, 𝑆 = 0.61. (a) Gap view by laser sheet (b) Front view (c) Space-

time diagram.  

The Fourier spectrum presented in figure 7.19 (b) indicates that the repeat of certain flow 

pattern in figure 7.18 (c) has the same frequency of the rotation of the outer cylinder because it is 

the only peak beside the spot light flick. The small hill in figure 7.19 (b) at small frequency is related 

to the difference between the mean frequency and the outer cylinder rotation (Ω𝑜 − 〈𝜔〉). In the 

other cases, the main peak may also be the mean frequency 〈𝜔〉 of the two cylinders. These kinds of 

peaks that are related to the rotation of the cylinders are not related to the flow patterns.  

 

Figure 7.19: Fourier spectrums of the space-time diagram on Keplerian regime at 𝑇𝑎𝑐 = 2.86, 

𝐸𝑚 = 0.13, 𝑆 = 0.61 (a) space spectrum (b) time spectrum. Red dashed line – the frequency of the 

inner cylinder. Black dashed line – the flicker frequency of the spot light.  Green dashed line – the 

frequency difference of Ω𝑜 − 〈𝜔〉 .  

(a)                       (b)                                                          (c) 

(a)     (b) 
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Then we look into the space-time diagram and its spectra at the transition. The instability 

appears at the bottom of the cell and propagates very slowly to the top end. We present in figure 

7.20 (a) the space-time diagram of the bottom part (𝑧 ∈ [30, 45](𝑐𝑚)), from which we can see 

waves on the border of the stable and unstable zone. The corresponding space and time Fourier 

spectra (figure 7.20 (b)(c)) exhibit clear pics of the critical wave number 𝑘𝑐 and the critical frequency 

𝑓𝑐.  

 

Figure 7.20: Space-time diagram and Fourier spectra of the Disordered Waves mode on Keplerian 

regime at 𝑇𝑎𝑐 = 2.86, 𝐸𝑚 = 0.13, 𝑆 = 0.61  for a wave generated near the bottom endplate. (a) 

Space-time diagram (b) space spectrum (c) time spectrum. Red solid line – outer cylinder rotation 

frequency. Red dashed line – inner cylinder rotation frequency. 

We have demodulated the space-time diagram at the transition. A zoom in space-time 

diagram of 20𝑠 and the demodulated waves, show that the 𝑘𝑐 and 𝑓𝑐 correspond to the waves on 

the edge of the unstable zone. The zoom in space-time diagram and the demodulated waves are 

presented in figure 7.21. 

(b) 

(c) (a) 
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Figure 7.21: Demodulation of the zoom in space-time diagram of the transition. 𝑇𝑎𝑐 = 2.86, 

𝐸𝑚 = 0.13, 𝑆 = 0.61. (b) Space-time diagram of the transition (a) (c) Demodulated wave.  

The demodulation of the space-time diagram of the saturated wave yields two counter 

propagating waves (Figure 7.22).  

 

Figure 7.22: Demodulation of the space-time diagram of the Disordered Waves mode. 𝑇𝑎𝑐 = 2.86, 

𝐸𝑚 = 0.13, 𝑆 = 0.61. (a) Demodulated left wave (b) Space-time diagram of the saturated flow (c) 

Demodulated right wave. 

 

(c) (b) (a) 

    (a)                    (b)    (c) 
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We compare these two modes by presenting in figure 7.23 (a) (b) the longtime space-time 

diagram of the Disordered Vortices mode and the Disordered Waves mode. These modes are similar 

to each other as in both of them the counter rotating vortices pairs (represent by dark lines) tend to 

approach each other and immerge while new vortices pairs are created randomly. However when 

the transient space-time diagrams are compared (figure 7.23 (c)(d)) we can see that there exists no 

waves in the disordered vortices mode. 

 

Figure 7.23: Comparison between the critical modes: (a) (b) longtime space-time diagram of 

Disordered Vortices mode (a) and Disordered Waves mode (b); (c) (d) transient space-time diagram 

of Disordered Vortices mode(c) and Disordered Waves mode (d).  

Disordered waves with solitary vortices 

For fluids of 𝐸 = 0.29, 𝑆 = 0.62 and 𝐸 = 0.43, 𝑆 = 0.55 quasi-stationary stable vortices are 

formed in the disordered wave patterns (figure 7.24). These vortices are called solitary vortices. They 

result from strong nonlinear interactions of the disordered waves and they are sustained by these 

waves. The Fourier spectra show also the coexistence of the steady vortices (peaks with small space 

wave number 𝑘 in figure 7.24 e) and the disordered waves (pic distinct to the rotational frequencies 

in figure 7.24 f). 

Z [cm] 
(c) (d) (a) (b) 
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Figure 7.24: Flow patterns and space-time diagram of the Solitary Vortices mode on Keplerian regime 

at 𝑇𝑎𝑐 = 2.15, 𝐸𝑚 = 0.29, 𝑆 = 0.62. (a) Gap view by laser sheet (b) Front view (c) Space-time 

diagram. (d) long time space-time diagram. © space spectrum (f) time spectrum. Red line and dashed 

line – the frequency of the inner and outer cylinder. Black dashed line – the flicker frequency of the 

spot light.  Green dashed line – the mean frequency 〈𝜔〉 . 

   (a)           (b)   (c)  

(d) 

(e) (f) 
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The Solitary Vortices mode can be demodulated into counter propagating waves. As the 

propagating waves are separate to the solitary vortices, it is easier to distinguish   its critical 

wavenumber and critical angular velocity. The space-time diagram and its demodulated waves are 

presented in figure 7.25.   

 

Figure 7.25: Demodulation of the space-time diagram of the Solitary Vortices mode at 𝑇𝑎𝑐 = 2.15, 

𝐸𝑚 = 0.29, 𝑆 = 0.62. (a) Demodulated stationary mode (b) Demodulated left wave (c) Space-time 

diagram (d) Demodulated right wave. 

 

Purely elastic modes 

For large values of the elasticity, the instability is driven by the elastic force and its threshold 

should be very small.  This is the situation encountered in the experiment when 𝐸𝑆 >  1. To reach 

this mode, more elastic fluids are needed.   

 

Supercritical vs subcriticality of the instability 

To test the subcritical or supercritical nature of the transition to the different modes observed 

in the Keplerian case, we have tested the existence of the hysteresis between the ramping up and 

the ramping down the rotation of the cylinders.  No significant hysteresis was found for the 

stationary axisymmetric modes; they appear and disappear at the same critical velocity. Instead, the 

transition to disordered waves and their disappearance when ramping down occur at different 

rotation velocities of the cylinders. Thus, the transition to stationary axisymmetric mode is 

supercritical while the transition to the Disordered Vortices mode is subcritical. 

 

 

   (a)    (b)    (c)    (d) 
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b. Comparison with LSA results 

We plot in figure 7.26 the critical Taylor number from experiments and from LSA as a function 

of the polymer elasticity. The dashed line 𝐸𝑆 =  0.672 is the border between the potentially stable 

and unstable zones according to elasto-rotational   Rayleigh criterion which predicts that the purely 

elastic instability (PEI) should appear on the right side of the dashed line. The instability modes 

observed on the left of this line should be related to the coupling between the rotation-induced and 

the elasticity-induced effects. They will be called elasto-rotational instability (ERI) modes. This 

phenomenon confirms the previous conclusion that the polymer viscosity is a source of instability in 

the elastic rotational flow. 

 

Figure 7.26: critical values of the transition from laminar flow to unstable flow on Keplerian regime. 

Solid lines – LSA critical curves for different 𝑆. Dashed line 𝐸𝑆∗ = 0.672 is predicted by elasto-

rotational Rayleigh discriminant. Solid points – experimental transient values, 3 colors present 3 

different definitions of elasticity. Within each definition of elasticity, each point presents one solution 

tested. Dashed rectangular – group of different flow patterns.  

Figure 7.26 shows that for every elasticity definition, all the critical points  𝑇𝑎𝑐(𝐸𝑆) form more 

or less one monotonically decreasing curve:  for all definitions of elasticities,  𝑇𝑎𝑐 decreases when 𝐸𝑆 

increases. The solutions with large polymer elasticity 𝐸𝑆 require less shearing rate to be destabilized 

in the Keplerian rotation regime. This result is in good agreement with the LSA conclusion.   

Moreover, the polymer elasticity 𝐸𝑆 is the best coordinate appropriate to describe the polymer 
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elasticity in Keplerian regime. Among the 3 different definitions of elasticity, the molar mass elasticity 

𝐸𝑚 fits the best to LSA predictions. 

The critical modes observed in the experiment can be classified into 2 groups (figure 7.27): 

stationary axisymmetric vortex mode for small values of 𝐸𝑆 and large values of 𝑇𝑎𝑐, and disordered 

modes for large values of the 𝐸𝑆 and small values of 𝑇𝑎𝑐. The disordered modes appear in form of 

disordered waves in space but with a definite frequency for intermediate values of 𝐸𝑆, or in form of 

disordered waves with solitary vortices (indicated in figure 7.27). The LSA cannot predict the 

disordered modes which are nonlinear as they result from strong coupling between linear modes.  

The value 𝐸𝑆∗ which is determined from the elasto-rotational Rayleigh discriminant lies on 

the right side of most of the experimental points. This suggests that these modes are driven both by 

the rotation and the elasticity effects. It is reasonable to assume that experiments with fluids of 

larger 𝐸 would show purely elastic instability modes. The colored point lines separate the stationary 

axisymmetric mode and the oscillatory non-axisymmetric mode from LSA. These lines are situated 

near the edge of the experimental groups of stationary axisymmetric vortex and disordered modes. 

Considering the difficulty to estimate the elasticity of polymer solutions, the experimental critical 

modes correspond to the LSA predictions. 

 

Figure 7.27: Comparison of the critical modes on Keplerian regime; 𝐸 is defined with the molecular 

relaxation time. Solid lines – LSA critical curves for different S. Dashed line (𝐸𝑆∗ = 0.672) gives the 

separation between stable and unstable zones to elasticity driven perturbations.  Solid points – 

experimental critical values. Dashed contour – different modes. Solid circle – location of the Solitary 

Vortices mode. Colored point lines separate the stationary axisymmetric mode and the oscillatory 

non-axisymmetric mode from LSA.  
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Then we nondimensionlize the experimental critical wave number 𝑘𝑐 by 𝑞𝑐 = 2𝜋𝑑𝑘𝑐 and 

compare it to the LSA predictions in figure 7.28 and compare the experimental critical angular 

velocity in the dimensionless form 𝜔𝑐 and the LSA predictions of 𝜔𝑐/𝑚 in figure 7.29.  

The experimental values of the axial wavenumber 𝑞𝑐  follow the same trend as those 

obtained from the LSA: the axial wavenumber  𝑞𝑐 decreases with 𝐸𝑆 and then remains steady around 

𝑞𝑐 ∼ 4.5 for 𝐸𝑆 > 0.03. The experimental 𝜔𝑐 follows the trend predicted by LSA, where 𝜔𝑐 is null for 

the stationary mode and almost constant for the disordered modes. However it is 10 times higher 

than the LSA prediction. 

 

 

Figure 7.28: Variation of the critical axial wave number with 𝐸𝑆 defined by molecular relaxation time. 

Solid lines – LSA predictions for different 𝑆. Solid points – experimental critical wave numbers.   
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Figure 7.29: Variation of the critical frequency with 𝐸𝑆 defined by molecular relaxation time. Solid 

lines – LSA predictions for different 𝑆. Solid points – experimental critical angular frequency  

7.2. The anti-Keplerian regime 𝝁 = 𝜼−𝟑/𝟐 
In the Keplerian regime both centrifugal force and the elastic force contribute to the 

viscoelastic instability. In order to better understand the effects of the elastic force in the Keplerian 

regime, we have inversed the rotational velocities of the cylinders and studied the so called anti-

Keplerian regime where 𝜇 = 𝜂−3/2. In our experimental geometry 𝜂 = 0.8, we have 𝜇 = 𝜂−3/2 =

1.398.  

7.2.1. LSA results 
To illustrate the LSA results, we present the theoretical critical curves 𝑇𝑎𝑐(𝐸) for different 𝑚 

and for fixed value  𝑆 = 0.7 (figure 7.30). The most unstable mode for all values of 𝐸 is the oscillatory 

axisymmetric mode (𝑚 =  0,𝜔 ≠  0) . The critical curves 𝑇𝑎𝑐(𝐸)  for different values of 𝑆  are 

presented in figure 7.31: the threshold of the instability decreases with 𝐸 for all values of 𝑆 and 

becomes almost independent of 𝑆 for 𝐸 >  0.6. The critical curves 𝑇𝑎𝑐(𝐸𝑆) for different values of 𝑆 

are presented in figure 7.32 with the elasto-rotational Rayleigh discriminant 𝐸𝑆∗ = 3.451. The 

critical curves in the plane (𝑊𝑖𝑐 , 𝑅𝑒𝑐) show the same trend (figure 7.33) as those of Ogilvie & Potter 

in the same regime for 𝜂 =  0.95 and 𝑆 =  0.5. There is an elastic instability with a given threshold 

𝑊𝑖𝑐(𝑅𝑒 =  0) > 23 (see chapter 9) which increases as the shear increases, i.e. the elastic instability 

is suppressed by the shear.  The variations of the critical wavenumber 𝑞𝑐 and the critical frequency 

𝜔𝑐 with the elasticity 𝐸 for different 𝑆 are shown in figure 7.34. The critical wavenumber has a very 

large value compared to the other cases investigated so far and especially with respect to the 

Newtonian case: the corresponding vortices should have small sizes compared to the gap width. 

Figure 7.35 illustrates the patterns of the few properties of the critical mode in the gap for 𝑆 = 0.7, 

𝐸 = 1  , 𝑇𝑎𝑐 = 0.976, 𝑚 = 0 , 𝑞𝑐 = 24.2 , 𝜔𝑐 = 0.02 . The critical modes are flattened and the 
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instability develops near the inner cylinder.  Besides, the 𝑁2 variations are negligible in comparison 

with the 𝑁1 variation while the pressure variation is small, just as the case of 𝜇 = ∞. So we can 

conclude that the anti-Keplerian regime and 𝜇 = ∞ regime share the same critical modes. 

 

Figure 7.30: Critical curves 𝑇𝑎𝑐(𝐸) for different 𝑚 at fixed 𝑆 = 0.7. 

 

Figure 7.31: Critical curves 𝑇𝑎𝑐(𝐸) for different 𝑆. 

𝑇𝑎𝑐 = 20𝐸
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Figure 7.32: Critical curves 𝑇𝑎𝑐(𝐸𝑆) for different 𝑆. Dashed line represents the 𝐸𝑆∗ = 3.451from 

elasto-rotational Rayleigh discriminant. 

 

Figure 7.33: Critical curves 𝑅𝑒𝑐(𝑊𝑖𝑐) for different 𝑆  
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Figure 7.34: (a) The angular frequency 𝜔𝑐 of the critical modes in respect to 𝐸 for different 𝑆 in anti-

Keplerian regime. (b) The axial wave number 𝑞𝑐 of the critical modes in respect to 𝐸 for different 𝑆. 

 

Figure 7.35: Pattern properties of the critical mode in the gap view for 𝑆 = 0.7,𝐸 = 1, 𝑇𝑎𝑐 = 0.976, 

𝑚 = 0, 𝑞𝑐 = 24.2, 𝜔𝑐 = 0.02 in anti-Keplerian regime. (a) Black arrows represent the velocity field 

while the colors represent the azimuthal velocity 𝑉(𝑟,𝑧) (b) the vorticity 𝜔𝜃, (c) the pressure variation, 

(d) the 𝑁1 variation. Color maps of (b, c, d) represent the relative amplitude.   

The anti-Keplerian regime bears some common behaviors with the rotation regime 𝜇 = ∞:  

the critical curves 𝑇𝑎𝑐(𝐸) or 𝑅𝑒𝑐(𝑊𝑖𝑐) have similar shapes even if the threshold of the elastic 

instability are different; the critical modes are oscillatory axisymmetric and the critical wavenumbers 

are very large corresponding to small vortices in the gap (Figure. 6.31, Figure. 7.35). This strong 

similarity indicates that the critical mode in the anti-Keplerian regime is a purely elastic mode. 

 

(a) (b) 

(a) (c) (d) (e) (b) 
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7.2.2. Experimental results 
We have realized experiments in the case of the anti-Keplerian regime for some solutions with 

viscosity ratio which were supposed to exhibit instability at acceptable values of shear rate.  

a. Flow patterns 

The critical flow patterns and the spectra in space and time are illustrated in figure 7.36 for the 

solution with 𝐸𝑚 = 0.34 and 𝑆 =  0.51. The flow patterns are disordered in space and in time 

(figure 7.36 c-d) and only frequencies of the cylinders’ rotation are observed (figure 7.36 f). These 

patterns are similar to those observed in the case when 𝜇 = ∞ (figure 6.30). 

 
(d) 

(c)  (b)  (a)  
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Figure 7.36: Flow patterns and space-time diagram in anti-Keplerian regime at 𝑇𝑎𝑐 = 7.34 , 

𝐸𝑚 = 0.34, 𝑆 = 0.51. (a) Gap view (b) Front view by laser sheet (c) Space-time diagram of 20s (d) 

Longtime space-time diagram © space spectrum (f) time spectrum. Red dashed line – the frequency 

of the inner cylinder. Black dashed line – the flicker frequency of the spot light. 

b. Comparison with LSA results 

From the LSA results, the best parameter for the characterization of the solution is the 

elasticity 𝐸 and not the polymer elasticity 𝐸𝑆. We have compared the experimental data with 

theoretical ones in figure 7.37. The theoretical results agree well with the experiment if one uses the 

extensional relaxation time e to define the elasticity. This situation was encountered also in the 

𝜇 = ∞ regime.  

In the anti-Keplerian regime the only viscoelastic solutions that could be destabilized have the 

viscosity ratio 𝑆 limited in the interval [0.5, 0.7].  

The critical angular frequency and the critical axial wavenumbers of the experiments and LSA 

are compared in figure 7.38 and 7.39 with extensional elasticity. We can see that good agreement is 

obtained for 𝑞𝑐 while the experimental 𝜔𝑐 is distinct from the LSA prediction. 

(e) (f) 
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Figure 7.37: Critical values 𝑇𝑎𝑐(𝐸) in the anti-Keplerian regime. Solid lines – LSA critical curves for 

different 𝑆. Solid points – experimental critical values, 3 colors present 3 different definitions of 

elasticity.  

 

Figure 7.38: Critical values 𝜔𝑐(𝐸) in the anti-Keplerian regime. Solid lines – LSA critical curves for 

different 𝑆. Solid points – experimental critical values defined by extensional elasticity. 
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Figure 7.39: Critical values 𝑞𝑐(𝐸) in the anti-Keplerian regime. Solid lines – LSA critical curves for 

different 𝑆. Solid points – experimental critical values defined by extensional elasticity. 

 

7.3. Discussion of the VEI in the Keplerian rotation and MRI analogy  
 

a. Application of Rayleigh criterion and Velikhov-Chandrasekhar criterion  

The linear stability analysis and the experiments have shown the existence of critical modes 

in the zone where the elasto-rotational Rayleigh discriminant did not predict the instability i.e. for 

𝐸𝑆 < 0.672 for 𝜂 = 0.8. The existence of this instability suggests that the polymer molecules in the 

liquid play the same role of tensile force as the magnetic field tension. The polymer analog of the 

magnetic field 𝐵𝑝3⃗⃗ ⃗⃗ ⃗⃗  = 𝐵0𝑒𝑧⃗⃗  ⃗ plays the role of the axial magnetic field required for the SMRI. In the 

quasi-Keplerian zone, Φ𝑟(𝑟) > 0 while 𝑑Ω/𝑑𝑟 < 0, so that the Velikhov-Chandrasekhar criterion of 

the instability is satisfied. However the elasto-rotational instability (ERI) where Φ𝑒𝑟(𝑟) < 0 is not 

analog of MRI. So that the MRI analog zone is determined by Φ𝑟 (𝑟) > 0, 𝑑Ω/𝑑𝑟 < 0,Φ𝑒𝑟 (𝑟) > 0. 
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Figure 7.40: Application of the Velikhov-Chandrasekhar criterion for ERI. 

b. Condition for VEI analogs : axial field dominant or azimuthal field dominant 

The polymer analog of the magnetic field has three possibilities, two of which have non zero 

azimuthal components which depend on 𝑊𝑖. According to equation 3.29, the axial field will 

dominate over the azimuthal field if 𝑊𝑖 ≪ 𝑊𝑖∗ ∼ 0.76. In this case the destabilization of the 

viscoelastic flow in the Keplerian regime will lead to the VEI analog of the standard MRI (SMRI) which 

is an axisymmetric instability. Thus, the stationary axisymmetric modes which have been observed 

for small values of 𝑊𝑖 are the analogs of the SMRI. 

For 𝑊𝑖 > 𝑊𝑖∗, both the axial and azimuthal fields are comparable and the destabilization 

will lead to ERI analog of the helical MRI (HMRI). We may conclude that the disordered waves mode 

which is the superposition of the counter-propagating waves is the analog of the HMRI.  

For 𝑊𝑖 ≫ 𝑊𝑖∗, one may observe the purely elastic instability predicted by the elasto-

rotational Rayleigh criterion which should be the analog of the similar Michael’s criterion of MHD for 

the stability of conducting liquid in the azimuthal magnetic field [Michael1954] [Davidson2013]: 

 Φ(𝑟) −
1

𝜌𝜇0𝑟
3

𝑑

𝑑𝑟
(𝑟𝐵𝜃)

2 > 0      and      (Ω𝑟)2 < 𝐵𝜃
2 7.1 

According to this criterion, the instability should be axisymmetric. We expect this instability in the 

extreme case of 𝐸 → ∞ which corresponds to the purely elastic instability (see chapter 9). In the case 

of large but finite 𝐸, non-axisymmetric mode with 𝑚𝑐 = 1 is predicted by LSA. This may be analog of 

the azimuthal MRI (AMRI) which is a non-axisymmetric instability. 

The figure 7.41 presents the experimental and LSA critical values 𝑇𝑎𝑐(𝐸𝑆) (figure 7.26) 

together with the criteria of 𝑊𝑖∗ that separate VEI analog to different types of the MRI.  
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Figure 7.41: Critical values on Keplerian regime. Solid lines – LSA critical curves for different 𝑆. 

Dashed line 𝐸𝑆∗ = 0.672 is predicted by elasto-rotational Rayleigh discriminant. Solid points – 

experimental transient values defined by molar mass elasticity. Dashed rectangular – group of 

different flow patterns. Colored point lines – criterion of 𝑊𝑖 = 𝑊𝑖∗ for different 𝑆. 

c. Alfvén waves 

 The characteristic polymeric analog of the magnetic field 𝐵0 = √𝜌𝜈𝑝/𝜏  (see expression 3.23) 

suggests the existence of a characteristic velocity 𝑈𝑐 = √𝜈𝑝/𝜏 which is the analog of the Alfvén 

velocity defined as 𝑉𝐴 = 𝐵/√𝜌𝜇0 in MHD. We shall call this characteristic velocity 𝑈𝑐 the polymeric 

Alfvén velocity  𝑉𝐴
𝑝

 

 𝑉𝐴
𝑝
=
𝐵0

√𝜌
= √

𝜈𝑝

𝜏
 7.2 

 For a fixed polymeric viscosity (𝜈𝑝) of the solution, i.e. for a solution with a given elasticity, 

the polymer viscosity defines the polymeric Alfvén velocity.  When scaled with the viscous diffusion 

velocity 𝜈/𝑑, the dimensionless polymeric Alfvén velocity  �̂�𝐴
𝑝

 is 

 �̂�𝐴
𝑝
= √

𝑆

𝐸
 7.3 

 If one uses the characteristic rotation velocity 𝑈𝑐
𝑟 = 𝑑�̇�, one gets   

0

5

10

15

20

25

0.0005 0.005 0.05 0.5 5

Tac 

ES 

LSA S=0.5

LSA S=0.6

LSA S=0.7

LSA S=0.8

LSA S=0.9

experiments, molar mass elasticity

Elastic Rayleigh's discriminant ES*

Wi* S=0.5

Wi* S=0.6

Wi* S=0.7

Wi* S=0.8

Wi* S=0.9

Stationary 

axisymmetric 

vortex 

Disordered 

modes 

𝑊𝑖<𝑊𝑖* 
SMRI analog 

𝑊𝑖∼𝑊𝑖* 
HMRI analog 



116 
 

 �̂�𝐴
𝑝
=
1

𝑅𝑒
√
𝑆

𝐸
=
√𝐸𝑆

𝑊𝑖
= �̂�0 7.4 

where �̂�0 is the dimensionless polymeric analog of the magnetic characteristic field 𝐵0.  

d. Comparison with results of Ogilvie & Potter and experiments of Boldyrev  

Ogilvie & Potter [Ogilvie2008] performed the LSA for the only case of 𝜂 = 0.95 and 𝑆 = 0.5, 

this case has been used to test our code. We have investigated the viscoelastic regime in more detail 

for the annular flow geometry with 𝜂 = 0.8 both in Keplerian and anti-Keplerian regimes (𝜇 =

𝜂3/2, 𝜇 = 𝜂−3/2)  and with different values of viscosity ratio 𝑆.  

In the Keplerian regime, Ogilvie & Potter predicted a critical mode in form of “ribbon” 

structure, we have not found this mode neither in the LSA nor in the experiment because of the 

difference in radius ratio 𝜂. Instead, we found stationary axisymmetric mode for small 𝐸  and 

disordered waves mode which is a superposition of counter-propagating waves for intermediate 𝐸 

from LSA. For Ogilvie & Potter, no stationary axisymmetric mode was obtained because of the small 

gap and of the value of 𝑆 = 0.5, so that no SMRI analog is observed. 

Boldyrev et al . [Boldyrev2009] reported experimental observation of stationary axisymmetric 

modes (𝑚 =  0) and helicoidal mode (𝑚 =  1) in high molecular aqueous polymer solutions which 

were shear thinning in a cylindrical annulus with 𝜂 = 0.903 and viscosity ratio 

𝑆 ∈ {0.983, 0.991, 0.995}. These authors have observed helicoidal modes in the same range of the 

elasticity 𝐸 as in our case of disordered waves mode, but they reported axisymmetric mode for large 

but finite values of 𝐸 for which the LSA predicts the non-axisymmetric modes corresponding to the 

analog of HMRI. 

 

Figure 7.42 Threshold curve for the polymer solutions used in the experiment by Boldyrev et al. 

(2009) and corresponding experimental values for  𝜂 = 0.903, 𝑆 ∈ {0.983, 0.991, 0.995}. 

𝑚𝑐 = 0 
𝜔𝑐 = 0 

𝑚𝑐 ≠ 0 
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We have performed the linear stability analysis with the conditions of the experiments of 

Boldyrev et al. (𝜂 = 0.903) the critical curves are plotted in the figure 7.42. For weak values of 𝐸𝑆 

the critical mode is axisymmetric and stationary while it is non-axisymmetric and oscillatory for large 

values of 𝐸𝑆. The curve of the critical axial wavenumber is similar to the curve obtained for 𝜂 =  0.8 

while the critical azimuthal wavenumber takes values from 0 to 3. The experimental points reported 

by Boldyrev et al. are located above the theoretical curve, moreover, the stationary axisymmetric 

mode is found in the zone of non-axisymmetric modes.  

We have computed the critical modes for different values of viscosity ratio and elasticity and 

performed experiments with many solutions with well-controlled rheology. We have provided a 

more complete set of results of the VEI in Keplerian and anti-Keplerian regimes than previous studies. 

The experimental results are in good agreement with the LSA results so that the analogy between the 

VEI and the SMRI and HMRI is confirmed.  

7.4. Conclusion  
In this chapter we have studied theoretically and experimentally the viscoelastic instability in 

the Keplerian regime (𝜇 = 𝜂3/2) and the anti-Keplerian regime (𝜇 = 𝜂−3/2). The analogy between 

the VEI at different 𝐸  and SMRI or HMRI has been established theoretically and confirmed 

experimentally with viscoelastic fluids 

In the Keplerian regime, we have found a good agreement between the experimental and 

theoretical critical curves 𝑇𝑎𝑐(𝐸𝑆) if the elasticity is defined with the molecular relaxation time. We 

have observed two different modes in the Keplerian regime which are the Stationary and 

Axisymmetric vortex mode at small 𝐸𝑆 (analogy with SMRI) and the disordered modes at larger 𝐸𝑆 

(analogy with HMRI). These two modes are different from the Taylor Vortex mode or the disordered 

vortices mode observed in the 𝜇 = 0 regime. The stationary axisymmetric mode is supercritical while 

the different disordered modes are subcritical. For large values of 𝐸𝑆, the critical mode should be the 

purely elastic instability mode.  

The anti-Keplerian regime is very similar to the 𝜇 = ∞ regime: critical modes are disordered 

vortices and the critical curves have the same shape and are parametrized by the elasticity 𝐸 instead 

of the 𝐸𝑆.  
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Chapter 8: Viscoelastic instability in the 
intermediate regime of 𝜇 = 𝜂3 

Following the theoretical analysis of Ogilvie-Potter [Ogilvie2008], we have analyzed the regime 

𝜇 = 𝜂3  where both the centrifugal force and the elasticity force intervene together as driving 

mechanisms of instability. This regime may be considered as an intermediate regime between the 

Keplerian regime and the inner cylinder rotating regime of 𝜇 = 0. The study of Ogilvie-Potter was 

limited to 𝜂 =  0.95 and 𝑆 =  0.5, we have investigated the case when 𝜂 =  0.8 and 𝑆 ∈ [0.5, 0.8] 

corresponding to the experimental data.   

8.1. LSA results 
According to Rayleigh stability criterion discussed in chapter 4, the Newtonian Couette flow in 

the intermediate rotation regime (𝜇 = 𝜂3) is unstable. In figure 4.1 the rotation line of 𝜇 = 𝜂3 

appears between 𝜇 = 0 and 𝜇 = 𝜂3/2. In the geometry of our experimental configuration 𝜂 = 0.8 we 

have 𝜇 =   0.512.  

a. Marginal stability curves  

The marginal stability curves 𝑇𝑎𝑐(𝑞) are plotted in figure 8.1 for different values of the 

azimuthal wavenumber  𝑚 and for 𝐸{0.01, 0.028, 0.1, 1} for fixed 𝑆 = 0.7. For small 𝐸 the marginal 

curves of different 𝑚 are close to each other while for large 𝐸 the bottom of the lowest marginal 

curve (𝑚 = 1) is too flat to choose the critical wavenumber 𝑞𝑐[4.3, 5.8]. 

 
(a) 

𝐸 = 0.01 
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𝐸 = 0.028 

(c) 

𝐸 = 0.1 
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Figure 8.1: Marginal stability curves 𝑇𝑎𝑐(𝑞) for different 𝑚 for 𝑆 = 0.7 (a) 𝐸 = 0.01 (b) 𝐸 = 0.028 (c) 

𝐸 = 0.1 (d) 𝐸 = 1 in regime 𝜇 = 𝜂3. 

b. Variation of the critical parameters with 𝑬 

 

Figure 8.2: Critical curves, 𝑇𝑎𝑐(𝐸) for different 𝑚 for a solution with  𝑆 = 0.7 in regime 𝜇 = 𝜂3. 

𝐸 = 1 

(d) 



122 
 

From the marginal stability curves, we illustrate the critical curves 𝑇𝑎𝑐(𝐸) for different 𝑚. 

Taking 𝑆 = 0.7 as an example (figure 8.2), the critical curves for different 𝑚 are close to each other 

and 𝑇𝑎𝑐 decreases with 𝐸.  

The critical curves corresponding to the lowest values of 𝑇𝑎𝑐(𝐸)  and to the critical 

wavenumbers 𝑞𝑐 and frequency 𝜔𝑐 are plotted in figure 8.3. At 𝐸 =  0, the curves intersect the 

vertical axis at the value 𝑇𝑎𝑐 = 27.77 corresponding to the pure centrifugal instability. For very low 

values of 𝐸 <  0.027, the critical modes are stationary axisymmetric modes and their wavenumber  

increases from 𝑞𝑐 = 3.12 very slowly with 𝐸. For values of 𝐸 >  0.027, the critical modes are 

oscillatory non-axisymmetric modes (𝑚𝑐 ≠ 0,𝜔𝑐 ≠ 0), their wavenumber increases linearly  with 𝐸 

up to 𝐸 ∼  1.5. For larger 𝐸, the critical wavenumber 𝑞𝑐 increases  sharply with 𝐸 as the elasticity is 

dominant the centrifugal force.   
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Figure 8.3: Variation of the critical parameters with 𝐸 for 𝑆 =  0.7 in 𝜇 = 𝜂3 regime: (a) Threshold 

𝑇𝑎𝑐, (b) critical wavenumber 𝑞𝑐, (c) critical frequency 𝜔𝑐.   

The non-axisymmetric modes depend on the elasticity 𝐸. There are three codimension 2 

points, critical parameters of which are given in table 8.1.  

 

𝐸 𝑇𝑎𝑐 𝑞𝑐 𝑚𝑐 𝜔𝑐 

0.027 18.1 
3.80 0 0 

3.84 1 -0.178 

0.034 16.9 
3.88 1 -0.177 

3.90 2 -0.354 

0.189 8.09 
4.44 2 -0.312 

4.48 1 -0.132 

Table 8.1: Codimension-two points for 𝑆 =  0.7 in the intermediate rotation regime 𝜇 = 𝜂3. 

The cross–section (𝑟, 𝑧) of flow patterns of the azimuthal component of the vorticity are 

shown in figure 8.4. More properties of these four flow patterns are shown from figure 8.5 to figure 

8.8. The shape of the azimuthal  vorticity distribution in the gap changes as the elasticity increases 

from stationary to nonaxisymmetric modes. The instability generates the second normal stress 

difference and the ratio 𝑁2/𝑁1 decreases with 𝐸 suggesting that in the purely elastic modes, the first 

normal stress difference plays a crucial role while the second one should be neglected. This result 

should be verified in DNS.  

𝑚𝑐 = 1 

𝑚𝑐 = 0 𝑚𝑐 = 2 𝑚𝑐 = 1 

(c) 
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Figure 8.4: Cross-section (𝑟, 𝑧) of the azimuthal component of the vorticity for S = 0.7 in 𝜇 = 𝜂3 

regime. 

 

Figure 8.5: Critical mode for 𝑆 = 0.7 , 𝐸 = 0.01 , 𝑇𝑎𝑐 = 86.6  in 𝜇 = 𝜂3  regime, with 𝑚 = 0 , 

𝑞𝑐 = 3.49, 𝜔𝑐 = 0. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors 

represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 variation 

© the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 
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Figure 8.6: Critical mode for 𝑆 = 0.7 , 𝐸 = 0.028 , 𝑇𝑎𝑐 = 52.4  in 𝜇 = 𝜂3  regime, with 𝑚 = 1 , 

𝑞𝑐 = 3.84, 𝜔𝑐 = −0.178. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the 

colors represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 

variation © the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

 

Figure 8.7: Critical mode for 𝑆 = 0.7, 𝐸 = 0.1, 𝑇𝑎𝑐 = 32.2 in 𝜇 = 𝜂3 regime, with 𝑚 = 2, 𝑞𝑐 = 4.25, 

𝜔𝑐 = −0.327. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors 

represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 variation 

© the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

(a) (b) (c) (d) (e) 

(a) (b) (c) (d) (e) 
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Figure 8.8: Critical mode for 𝑆 = 0.7 , 𝐸 = 1 , 𝑇𝑎𝑐 =  in 𝜇 = 𝜂3  regime, with 𝑚 = 1 , 𝑞𝑐 = 5.03 , 

𝜔𝑐 = −0.122. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors 

represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 variation 

© the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

The comparison of the critical modes of the intermediate regime with the other regimes 

(𝜇 = 0 regime , figure 6.3 – 6.7) and the Keplerian regime, figure 7.3 – 7.9) shows the similarity of 

critical modes and critical curves between  the intermediate regime and the 𝜇 = 0 regime at small 𝐸 : 

the critical modes are stationary axisymmetric modes (the Taylor Vortex) due to centrifugal force. 

While for large values of 𝐸, the intermediate regime yields  results  similar to those of the Keplerian 

regime. 

c. Effect of the viscosity ratio 𝑺 on the critical states 

To complete the comparison the critical curves of  𝑇𝑎𝑐(𝐸𝑆) for different 𝑆 are presented in 

figure 8.9. For 𝐸𝑆 <  0.08, different critical curves are merged into one curve, and for 𝐸 >  0.08, 

the critical curves diverge  slightly from each other and  the viscosity ratio becomes stabilizing.  

The variation of the critical curves 𝑅𝑒𝑐  (𝑊𝑖𝑐) for different 𝑆 is given in figure 8.10. The critical 

curves for different 𝑆 cross the vertical axis of 𝑊𝑖𝑐 = 0 at the same point of 𝑅𝑒0 = 58.9.The critical 

curves decrease with 𝑊𝑖𝑐  and cross the horizontal axis of 𝑅𝑒𝑐 = 0 at different values of 𝑊𝑖0 , 

threshold  of the elastic instability, which depend on the value of 𝑆.  

The variation of  𝑇𝑎𝑐 with the modified Weissenberg number 𝐾𝑐 for different 𝑆 (figure 8.11) 

shows that the curves start at the same point corresponding to the threshold of the pure centrifugal 

instability (𝐾𝑐 = 0) . Then they diverge as 𝑊𝑖𝑐 increases.  The different curves intersect all in the 

cross point 𝐾∗ = 1.72, 𝑇𝑎𝑐
∗ =  5.6 . Like in the Keplerian regime, this cross point separates state 

diagram into two zones in which the viscosity ratio plays opposite role: is destabilizing for 𝐾𝑐 < 𝐾
∗ 

and stabilizing for 𝐾𝑐 > 𝐾
∗. The presence of the precise cross point is another evidence of the 

similarity between the intermediate regime and the Keplerian regime at large 𝐸. The colored dashed 

lines separate the stationary axisymmetric mode and the oscillatory non-axisymmetric mode. 

(a) (b) (c) (d) (e) 
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Figure 8.9: Critical curves  𝑇𝑎𝑐(𝐸𝑆) for different 𝑆 in 𝜇 = 𝜂3  regime. The colored dashed lines 

separate the stationary axisymmetric mode from the oscillatory non-axisymmetric mode by LSA. 

 

Figure 8.10: Critical curves, 𝑅𝑒𝑐(𝑊𝑖𝑐) for different 𝑆 in 𝜇 = 𝜂3 regime. 
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Figure 8.11: Critical curves, 𝑇𝑎𝑐(𝐾𝑐) for different 𝑆 in 𝜇 = 𝜂3 regime. 

 

 

8.2. Experimental results 
In the experiment, five viscoelastic solutions have been tested in the intermediate regime 

𝜇 = 𝜂3.  

a. Flow patterns 

Among the five experimental points, we have observed 2 different unstable modes: the 

Ribbons mode at small 𝐸𝑆 (figure 8.12) and the Disordered Waves mode at large 𝐸𝑆 (figure 8.13).  

The Ribbons mode is the same mode observed in the 𝜇 = 0 regime while the Disordered Waves 

mode is the same mode observed in the Keplerian regime.  

𝐾∗ = 1.72 

𝑇𝑎∗ = 5.6 

Cross point 
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Figure 8.12: Flow patterns and space-time diagram of the Ribbons mode on 𝜇 = 𝜂3 regime for 

𝑇𝑎𝑐 = 13.73, 𝐸𝑚 = 1.06, 𝑆 = 0.47. (a) Gap view (b) Front view by laser sheet (c) Space-time 

diagram. (d) Longtime space-time diagram. 

(d)  

(a)  (c)  (b)  
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Figure 8.13: Flow patterns and space-time diagram of the Disordered Waves mode on 𝜇 = 𝜂3 regime 

at 𝑇𝑎𝑐 = 4.66, 𝐸𝑚 = 0.34, 𝑆 = 0.5. (a) Gap view (b) Front view by laser sheet (c) Space-time diagram. 

(d) Longtime space –time diagram. 

To make sure that the unstable mode at large 𝐸𝑆 is the Disordered Waves mode not the 

Disordered Vortices mode, we plot also in figure 8.14 the transient space-time diagram from laminar 

flow to unstable flow and the Fourier spectrums related to this diagram. Counter propagating waves 

interact to form propagating ribbons and the disordered waves and the peak of the wave in the time 

spectrum is distinct from the rotating cylinders. 

(d)  

(a)  (c)  (b)  
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Figure 8.14: Transient space-time diagram and Fourier spectrums of the Disordered Waves mode on 

𝜇 = 𝜂3 regime at 𝑇𝑎𝑐 = 4.66, 𝐸𝑚 = 0.34, 𝑆 = 0.5. (a) Space-time diagram (b) space spectrum (c) 

time spectrum. Red solid line – outer cylinder rotation frequency. Red dashed line – inner cylinder 

rotation frequency. Black dashed line – flicker frequency of the spot light. 

b. Comparison with LSA results 

The experimental critical values 𝑇𝑎𝑐(𝐸𝑆)  with E defined by three different relaxation times 

(𝜏𝑒 , 𝜏𝑚, 𝜏𝑁1)  are plotted together with the LSA critical curves (figure 8.15). We observe that the 

experimental critical points decrease with 𝐸𝑆 as predicted by the LSA critical curves. The LSA critical 

curves go through the three definitions of the elasticity: at small values of  𝐸𝑆 , the LSA critical curves 

are close to experimental points with 𝐸 defined with 𝑁1 and at large 𝐸𝑆 the LSA critical curves are 

close to experimental points with 𝐸 defined with the extensional relaxation time. The colored dashed 

lines separate the stationary axisymmetric mode form the oscillatory non-axisymmetric mode by LSA. 

It is difficult to say whether these mode separation lines correspond to the experiments or not 

because of the lack of experiments of stationary axisymmetric mode in small 𝐸𝑆. 

We resume the variation of the experimental 𝜔𝑐 and 𝑞𝑐 with 𝐸𝑆 defined by the molecular 

relaxation time together with the LSA predictions is shown in figure 8.16 and 8.17, though we have 

only tested five solutions in this regime. We can see that the experimental 𝜔𝑐 and 𝑞𝑐  follow the 

trend of the LSA prediction. 

(b) 

(c) (a) 
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Figure 8.15: Variation of the critical values with ES on 𝜇 = 𝜂3 regime. Solid lines – LSA critical curves 

for different S. Solid points – experimental transient values, 3 colors represent the 3 different 

definitions of elasticity. The colored dashed lines separate the stationary axisymmetric mode form 

the oscillatory non-axisymmetric mode by LSA. 

 

Figure 8.16: Variation of the critical angular velocity with 𝐸𝑆 defined by the molecular relaxation time. 

Solid lines – LSA predictions for different 𝑆. Solid points – experimental angular velocity. 
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Figure 8.17: Variation of the critical axial wave number with 𝐸𝑆 defined by the molecular relaxation 

time. Solid lines – LSA predictions for different 𝑆. Solid points – experimental critical wave numbers.  

8.3 Conclusion  
To conclude the analysis of this intermediate regime of 𝜇 = 𝜂3, we have found that the 

viscoelastic instability in the 𝜇 = 𝜂3  regime resembles the  𝜇 = 0  regime for small 𝐸  while it 

resembles the Keplerian regime for large 𝐸. For very large values of the elasticity, the purely elasticity 

mode should be critical for small values of shear rate.   
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Chapter 9: Pure elastic instability   

In this chapter we revisit the special case of the purely elastic instability for all investigated 

regimes in the limit 𝑹𝒆 → 𝟎 corresponding to 𝑬 → ∞.The goal is to search for the universal scaling 

between flow parameters to get a better description of the purely elastic instability. 

 In the limit of 𝑅𝑒 = 0 and 𝐸 = ∞ with finite 𝑊𝑖 = 𝐸𝑅𝑒, the dimensionless general equations 

2.20 reduce to: 

 

∇ ∙�⃗⃗� = 0 

0 = −∇Π+ ∇ ∙ �̿�𝑝 + (1 − 𝑆)∇2�⃗⃗�  

�̿�𝑝 +𝑊𝑖 [
𝜕�̿�𝑝

𝜕𝑡
+ �⃗⃗� ∙ ∇�̿�𝑝 − (∇�⃗⃗� )

𝑇
∙ �̿�𝑝 − �̿�𝑝 ∙ ∇�⃗⃗� ] = 𝑆[∇�⃗⃗� + (∇𝑈)⃗⃗ ⃗⃗ 𝑇] 

9.1 

9.1. LSA results 
The purely elastic instability was first studied theoretically and experimentally by Larson et al. 

[Larson1990]. However their linear stability analysis is limited to the small gap limit. We have already 

recalculated the case of Larson et al. and similar critical curves are observed (see figure 4.8). Based 

on the equations 9.1 we calculated the critical Weissenberg number 𝑊𝑖0 and the corresponding 

critical wave numbers 𝑞𝑐 and 𝑚𝑐 and critical frequency 𝜔𝑐 for different 𝑆 and different rotational 

regimes. 

a. Marginal stability curves 

The marginal stability curves 𝑊𝑖(𝑞) are plotted in figure 9.1 for different 𝑚 for  𝑆 = 0.5 and 

𝑆 = 0.8. For 𝑆 = 0.5 the lowest marginal curve 𝑚 = 1 possesses a clear minimum so that it is easy to 

determine a critical wavenumber 𝑞𝑐. For 𝑆 = 0.8, the bottom of the marginal curve (𝑚 = 0) is so flat 

that several axisymmetric modes  of different 𝑞[12, 14.6] are critical.  A similar result was obtained 

by Joo & Shaqfeh [Joo1992]. These modes may interact with each other and lead to more complex 

dynamics, analysis of which is beyond the framework of the LSA. 
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Figure 9.1: Marginal stability curves of the purely elastic limit in Keplerian regime for (a) 𝑆 = 0.5 and 

(b) 𝑆 = 0.8. 

 

 

 

(a) 

𝑆 = 0.5 

(b) 

𝑆 = 0.8 
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b. Variation of the critical modes with 𝑆 

 

Figure 9.2: Critical curves 𝑊𝑖(𝑆) for different 𝑚 at 𝑞𝑐 on Keplerian regime.  

Taking the Keplerian regime as an example, we plot in figure 9.2 the critical curves of 𝑊𝑖(𝑆) 

for different 𝑚. We observe that as 𝑆 increases, 𝑊𝑖 decreases to a minimal value of 𝑊𝑖 for 𝑆 <

 𝑆0 and then increases for 𝑆 >  𝑆0. The value 𝑆0 yielding the minimum of 𝑊𝑖 depends on 𝑚. The 

mode 𝑚 = 1 possesses the smallest 𝑊𝑖 at 𝑆0 =  0.375 so that it is the most unstable mode for 

𝑆 < 𝑆1  with 𝑆1 = 0.695. When 𝑆 > 𝑆1, the axisymmetric mode 𝑚 = 0 becomes most unstable. So in 

the Keplerian regime, the viscoelastic solution with a viscosity ratio 𝑆0 =  0.375 requires a minimal 

shear rate to generate a purely elastic instability in form of oscillating non axisymmetric modes. For 

solutions with 𝑆 >  0.695, the critical modes are oscillatory axisymmetric. The point (𝑆1,𝑊𝑖1) is a 

codimension 2 point.   

The variation with 𝑆 of the smallest values of 𝑊𝑖 which are the critical values of the purely 

elastic instability is shown in figure 9.3 for different rotational regimes. The critical curves are 

ordered from top to bottom 𝑊𝑖(𝜇 = 𝜂−3/2) > 𝑊𝑖(𝜇 = ∞) > 𝑊𝑖(𝜇 = 0) > 𝑊𝑖(𝜇 = 𝜂3) >

𝑊𝑖(𝜇 = 𝜂3/2). These curves are similar to each other, meaning that they may not depend on the 

rotation rate. In particular, they share the same 𝑆0 = 0.375 for the minimum of 𝑊𝑖 and the same 

abscissa 𝑆1 = 0.695 of the codimension 2 point which separates the non-axisymmetric mode and the 

axisymmetric mode.  
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Figure 9.3: Critical curves 𝑊𝑖(𝑆) for different rotation regimes.  

This similarity suggests to search for an appropriate parametrization which may allow 

merging all these curves into one single curve. If we replace 𝑊𝑖 by the shear Weissenberg number 

defined by 𝑊𝑖𝑠 =  𝜏�̇�  with the shear rate defined at the mean radius i.e. 

�̇� = |Ω𝑖 − Ω𝑜|(𝑅𝑖 + 𝑅𝑜) 2𝑑⁄  , then the critical curves of all the studied regimes collapse in to one 

same curve (figure 9.3), since the purely elastic instability is driven only by the elastic force and not 

by the inertial force.  So the critical shear Weissenberg number 𝑊𝑖𝑠 is independent to the rotational 

regimes. Besides, the critical wavenumber 𝑞𝑐 is also independent when 𝑅𝑒 = 0 for different regimes. 

In the codimension 2 point, the axial wavenumber pertains a discontinuity. Unlike the critical values 

𝑊𝑖𝑠 and 𝑞𝑐, which are represented by single curves (figure 9.4a-b), the critical angular frequency 𝜔𝑐 

changes for different rotational regimes (figure 9.4-c). In each regime, the variation of the critical 

frequency is quite small for each mode (𝑚 = 0 and 𝑚 = 1). At the codimension 2 point, the 

frequency pertains a strong discontinuity.  

𝑚𝑐 = 1 𝑚𝑐 = 0 
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𝑚𝑐 = 1 𝑚𝑐 = 0 

(a) 

(b) 

𝑚𝑐 = 1 𝑚𝑐 = 0 
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Figure 9.4: Variation of the critical parameters: (a) 𝑖𝑠(𝑆) , (b) 𝑞𝑐(𝑆) , (c) 𝜔𝑐(𝑆). 

 

Figure 9.5: Azimuthal vorticity patterns in the gap. 

In figure 9.5, we have represented the azimuthal vorticity component of the critical mode in 

the Keplerian rotation regime for 𝑆 = 0.5 and 𝑆 = 0.8. All rotational regimes share the same critical 

(c) 

𝑚𝑐 = 1 

𝑚𝑐 = 0 

𝑚𝑐 = 1 𝑚𝑐 = 0 



141 
 

mode. Both types of the critical modes are flattened vortices. The non-axisymmetric mode 𝑚𝑐 = 1 

are located near the outer cylinder while the axisymmetric mode 𝑚𝑐 = 0 is located near the inner 

cylinder. The critical dimensionless wavenumbers 𝑞𝑐 of these modes are larger than , this means 

that the critical vortices have size which is smaller than the gap width (figure 9.5).  

9.2. Experimental results 
Larson et al. have found the purely elastic instability in the experiments with polymer solution 

that had very long relaxation time. Estimated by the normal stress difference 𝑁1 their solutions has 

𝜏𝑁1 ∼ 7.8𝑠 which is more than 20 times larger than our most elastic solution which has 𝜏𝑁1 ∼ 0.36𝑠. 

So it is difficult for us to reach the purely elastic limit of 𝐸 → ∞ as Larson et al. have done. However 

the previous discussion of the 𝜇 = ∞ regime and the anti-Keplerian regime showed that the purely 

elastic instability with limited 𝐸 can be reached by rotating the outer cylinder much faster than the 

inner cylinder. We found that the experimental critical values defined by the extensional relaxation 

time 𝐸𝑒 agree very well with the LSA predictions in these two regimes 

We surmise the experimental  𝑇𝑎𝑐 in respect to the extensional defined elasticity 𝐸𝑒 of all the 

five studied regimes in figure 9.6. We see that for all regimes 𝑇𝑎𝑐 decreases with 𝐸𝑒 and at large 𝐸𝑒 

all points approach the horizontal axis 𝑇𝑎𝑐 = 0.  

 

Figure 9.6: Experimental critical value 𝑇𝑎𝑐(𝐸𝑒) of five rotational regimes. 

The variation of the critical shear Weissenberg 𝑊𝑖𝑠 for the five regimes both for experimental 

values and LSA values with 𝐸𝑒 for 𝑆 =  0.5 is represented in figure 9.7. The specific value of 𝑆 = 0.5 

is chosen to compare with the experimental points because this value fits better to the five most 

elastic solutions that are relatively close to the purely elastic limit. As 𝐸  increases, both the 
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experimental and the LSA predicted 𝑊𝑖𝑠 of all regimes converge to the critical 𝑊𝑖𝑠  ≈ 15 of the 

purely elastic limit for 𝑆 =  0.5.  

 

Figure 9.7: Experimental and LSA critical values 𝑊𝑖𝑠(𝐸𝑒) of five regimes. Solid points: experimental 

critical values. Solid lines: LSA predictions of 𝑆 = 0.5. Dashed black line: the LSA prediction of the 

𝑊𝑖𝑠 at 𝑆 = 0.5. 

The comparison of the experimental curve 𝑊𝑖𝑠(𝑆) with the theoretical curve is given in 

figure 9.8. All the experimental points lie above, but close to the theoretical curve from LSA. The 

discrepancy between the theoretical and the experimental results is due to the fact that the 

experimental solutions in all regimes have finite elasticity. 
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Figure 9.8: Experimental and LSA critical values 𝑊𝑖𝑠(𝑆) of five regimes. Solid points: experimental 

critical values. Solid line: LSA prediction. 

9.3. Conclusion 
The stability of the infinite-elasticity solutions has allowed determining a unique critical curve 

𝑊𝑖𝑠(𝑆) for the pure elastic instability independent to rotational regimes. The pure elastic instability 

appears in form of the oscillatory non axisymmetric modes for values of 𝑆 <  0.695 while it appears 

in form of oscillatory axisymmetric modes for 𝑆 >  0.695. The experimental data obtained in 

solutions with finite elasticity show a trend to a unique curve as the elasticity is increased large 

enough. The experimental investigation is worth of continuation especially with solutions of large 

elasticity (𝐸 ≫ 10). 
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General conclusion 

In this thesis the viscoelastic instability (VEI) of a polymer solution governed by the Oldroyd-B 

model is studied theoretically and experimentally in the Couette-Taylor system with different 

rotation regimes. The analogy between VEI and magnetorotational instability (MRI) is discussed 

theoretically so that the experiments of VEI may help in the deepening of the understanding of the 

MRI and the momentum transportation in accretion disks.  

The rotational Rayleigh discriminant has been generalized to include the elasticity effects of 

the polymer solutions, the resulting elasto-rotational Rayleigh discriminant predicts that the elastic 

force enhances the centrifugal instability and induces the purely elastic instability in a circular 

Couette flow potentially stable to centrifugal perturbations. This elasto-rotational Rayleigh 

discriminant is analog of the Michael’s criterion of instability of conducting fluids in the presence of 

an azimuthal magnetic field. 

We have conducted linear stability analysis (LSA) based on the complete Oldroyd-B equations 

and experiments with polymer solutions of 1000ppm POE with various concentration of PEG (2.5% - 

25%). The working solutions were thoroughly characterized by the rheology measurements to test 

the validity of the Oldroyd-B model. The viscosities and the relaxation times were measured by 

different methods. The viscosities 𝜈, 𝜈𝑠, 𝜈𝑝  and the relaxation times 𝜏𝑒 , 𝜏𝑚, 𝜏𝑁1  were found to 

increase with the polyethylene glycol concentration in water 𝐶𝑃𝐸𝐺 so that the elasticities 𝐸𝑒 , 𝐸𝑚, 𝐸𝑁1 

increase with 𝐶𝑃𝐸𝐺 while the viscosity ratio 𝑆 decreases with 𝐶𝑃𝐸𝐺. 

The LSA and experimental test were performed for the flow in the Couette-Taylor system 

with a radius ratio 𝜂 = 0.8. The aspect ratio of the experimental setup was Γ =  45.7 which is large 

enough to allow comparison with theoretical results obtained in the infinite aspect ratio.  

In the case of the sole rotating inner cylinder (𝜇 = 0), we have observed theoretically and 

experimentally three different critical modes from small 𝐸 to large 𝐸: Taylor vortex mode, Ribbons 

mode and Disordered vortices. The Taylor vortex mode and the Ribbons mode are supercritical while 

the disordered modes occur via a subcritical transition. The threshold 𝑇𝑎𝑐 , axial wavenumber 𝑞𝑐  and 

angular frequency 𝜔𝑐 of the critical modes show good agreement between experiments and LSA 

predictions. Qualitative agreements are also found between our experimental results and those of 

Baumert [Baumert1999], Groisman [Groisman1998] and Kelai [Kelai2011]. The viscosity ratio 𝑆 is 

found to play opposite roles:  destabilizing for small values of the elasticity and stabilizing for large 

values of the elasticity and in particular in the purely elastic regime.    

 In the Keplerian regime (𝜇 = 𝜂3/2), instability modes were predicted and observed in the 

zone where they were not predicted even by the elasto-rotational Rayleigh criterion.  These modes 

appear in form of the stationary axisymmetric vortices for small values of  𝐸𝑆 (analog of SMRI) and in 

form of the disordered modes for large 𝐸𝑆 (analog of HMRI). These modes are different from the 

Taylor Vortex mode or the disordered vortices observed in the 𝜇 = 0 regime. Among the disordered 

modes solitary vortices appear for intermediate values of 𝐸𝑆. The stationary axisymmetric mode is 

supercritical while the disordered modes are subcritical. For large values of the elasticity, the critical 

mode is the purely elastic instability mode. In this Keplerian regime, the polymer elasticity 𝐸𝑆 
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appears to be a better control parameter than 𝐸, in fact the critical curves 𝑇𝑎𝑐(𝐸𝑆) converge into a 

single curve for different 𝑆. This single curve fits the experimental thresholds of the critical modes 

when the elasticity is defined with the molecular relaxation time 𝜏𝑚.   

 Two other situations where there is no centrifugal instability in Newtonian flows have been 

investigated for the viscoelastic fluids. The case when only the outer cylinder  is rotating ( 𝜇 = ∞ 

regime) and the anti-Keplerian regime (𝜇 = 𝜂−3/2)  in which the outer cylinder rotates faster than 

the inner one. The VEI occurs in form of axisymmetric and oscillatory modes. The LSA critical curves 

of the thresholds 𝑇𝑎𝑐(𝐸) are independent to  𝑆 and they fit perfectly the experimental critical values 

when the elasticity is defined with the extensional relaxation time.  

In the intermediate regime of 𝜇 = 𝜂3, the VEI resembles the  𝜇 = 0 regime for small 𝐸 while 

it resembles the Keplerian regime for large 𝐸.  

In the limit of 𝑅𝑒 = 0 and 𝐸 → ∞ with finite 𝑊𝑖, a unique critical curve 𝑊𝑖𝑠(𝑆) for the pure 

elastic instability for all rotational regimes is predicted  by the LSA where the shear rate has been 

determined at the mean radius. The pure elastic instability appears in the form of the oscillatory non-

axisymmetric modes for values of 𝑆 < 𝑆1 while it appears in form of oscillatory axisymmetric modes 

for 𝑆 >  𝑆1. The experimental data obtained in solutions with finite elasticity show a trend to a 

unique curve as the elasticity is large enough. The experimental investigation is worth of 

continuation especially with solutions of large elasticity (𝐸 ≫ 10).  

 The present investigation of the VEI in Keplerian regime confirms the analogy between VEI at 

small elasticity and SMRI where the elastic force field is analog to the axial magnetic field that 

destabilizes accretion disks. Different types of MRI are distinct from each other by the form of 

magnetic field. The analysis of the polymer analog �⃗� 𝑝 of the magnetic field, suggests that in Keplerian 

regime, the VEI is analog to the SMRI when 𝑊𝑖 ≪ 𝑊𝑖∗, while the VEI is analog to the HMRI when 

𝑊𝑖 ≈  𝑊𝑖∗ and the VEI could be an analog to the AMRI or Michael instability when 𝑊𝑖 ≫ 𝑊𝑖∗. The 

stationary axisymmetric vortex mode is the analog to the SMRI while the disordered waves mode is 

the analog to the HMRI. Is the purely elastic mode at 𝑊𝑖 ≫ 𝑊𝑖∗ and large 𝐸 the analog of the AMRI 

remains an open issue to be investigated in forthcoming work.   

 This thesis was limited to the first instability modes of the viscoelastic flows both in the 

theoretical analysis and in the experiments. The behavior of some marginal curves and the existence 

of multiple codimension 2 points suggest the necessity of non-linear analysis to investigate the mode 

coupling. There is a need for DNS of the flow equations to compute the torque and the radial 

transport of the momentum.   PIV measurements will permit to characterize in more details the 

critical modes, the higher instability modes and the turbulence in the Keplerian regime of the 

viscoelastic flows. Moreover, measurements of the torque on the cylinders will give complementary 

data on the momentum transportation in viscoelastic flows and bring a new break in the validation of 

the analogy between the VEI and MRI in accretion disks. 
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Figure 6.15: Critical mode of Ribbons at 𝑇𝑎𝑐 = 28.4, 𝐸𝑚 = 0.0168, 𝑆 = 0.81 in 𝜇 = 0 regime for a 
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Figure 6.26: Marginal curves 𝑇𝑎(𝑞) for different 𝑚 at 𝑆 = 0.7 and 𝐸 = 1. 
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Figure 6.29: Critical curves 𝑅𝑒𝑐(𝑊𝑖𝑐) for different 𝑆 in 𝜇 = ∞ regime. 

Figure 6.30: Variation of the critical parameters with E for different values of 𝑆 in 𝜇 = ∞ regime: (a) 

angular frequency 𝜔𝑐 (b) axial wave number 𝑞𝑐. 

Figure 6.31: Critical mode for 𝑆 = 0.7 ,𝐸 = 1  , 𝑇𝑎𝑐 = 4.73  on 𝜇 = ∞ , with 𝑚 = 0 , 𝑞𝑐 = 14.4 , 

𝜔𝑐 = 0.050. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors 

represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 

variation © the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

Figure 6.32: Critical mode of Disordered Vortices at 𝑇𝑎𝑐 = 15.4, 𝐸𝑚 = 0.131, 𝑆 = 0.61, 𝜇 = ∞ for a 

solution of 1000ppm PEO and 15% PEG. (a) gap view (b) front view (c) space-time diagram of 

20s of the front view (d) long-time space-time diagram © space spectrum (f) time spectrum. 

Red dashed line – the frequency of the inner cylinder. Black dashed line – the flicker frequency 

of the spot light. 

Figure 6.33: Critical values of the transition from laminar flow to unstable flow on regime of 𝜇 = ∞. 

Solid lines – LSA critical curves for different S. Solid points – experimental transient values, 3 

colors present 3 different definitions of elasticity. Within each definition of elasticity, each 

point present one solution tested. 

Figure 6.34: Variation of the critical angular velocity 𝜔𝑐   in 𝜇 = ∞ regime. solid points – experimental 

critical values for 𝐸 defined by extensional relaxation time. Continuous lines – LSA critical 

curves for different 𝑆. 

Figure 6.35: Variation of the critical axial wave number 𝑞𝑐 with 𝐸 in 𝜇 = ∞ regime. Solid points – 

experimental critical values for 𝐸 defined by extensional relaxation time. Continuous lines –the 

LSA critical curves for different 𝑆. 

Figure 6.36: Critical values on regime of 𝜇 = ∞. Continuous lines – LSA critical curves. Blue circle – 

our experiments. Red triangle – experiments of Kelai. Violet squire – experiment of Baumert. 

Figure 7.1: Marginal curves 𝑇𝑎(𝑞)  for different 𝑚  at chosen 𝐸 . (a) 𝐸 = 0.01(b) 𝐸 = 0.036, (c) 

𝐸 = 0.1, (d) 𝐸 = 1. 

Figure 7.2: Critical curves, 𝑇𝑎𝑐(𝐸) for different 𝑚, 𝑆 = 0.6 on Keplerian regime. 

Figure 7.3: Variation of the critical curve 𝑇𝑎𝑐(𝐸) for 𝑆 =  0.6 on Keplerian regime. Black dashed lines 

separate critical azimuthal wave number 𝑚𝑐. Color maps – vorticity 𝜔𝜃 in the gap plane (𝑟, 𝑧), 

where red represents positive values and blue represents negative values .  

Figure 7.4: Variation of the critical frequency of the critical modes with 𝐸 and 𝑆 = 0.6 in Keplerian 

regime. Dashed vertical lines separate different 𝑚𝑐. 

Figure 7.5: Variation of the critical axial wavenumber 𝑞𝑐 of the critical modes with 𝐸 for 𝑆 = 0.6 on 

Keplerian regime. Dashed vertical lines separate different 𝑚𝑐. 

Figure 7.6: Critical mode for 𝑆 = 0.6 , 𝐸 = 0.01 , 𝑇𝑎𝑐 = 273  in Keplerian regime, with 𝑚 = 0 , 

𝑞𝑐 = 10.3, 𝜔𝑐 = 0. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the 

colors represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 

𝑁1 variation © the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 
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Figure 7.7: Critical mode for 𝑆 = 0.6, 𝐸 =0.035, 𝑇𝑎𝑐 = 97.4 in Keplerian regime, with 𝑚 = 1 , 

𝑞𝑐 = 5.98, 𝜔𝑐 = −0.207. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while 

the colors represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) 

the 𝑁1 variation © the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

Figure 7.8: Critical mode for 𝑆 = 0.6 , 𝐸 = 0.1 , 𝑇𝑎𝑐 = 48.6  in Keplerian regime, with 𝑚 = 2 , 

𝑞𝑐 = 4.62, 𝜔𝑐 = −0.406. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while 

the colors represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) 

the 𝑁1 variation © the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

Figure 7.9: Critical mode for 𝑆 = 0.6, 𝐸 = 1, 𝑇𝑎𝑐 = 12.5 in Keplerian regime, with 𝑚 = 1, 𝑞𝑐 = 4.75, 

𝜔𝑐 = −0.178. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors 

represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 

variation © the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

Figure 7.10: Critical curves  𝑇𝑎𝑐(𝐸) for different 𝑆 in Keplerian regime. 

Figure 7.11: Critical curves 𝐾𝑐(𝐸) for different 𝑆 in Keplerian regime. 

Figure 7.12: Critical curves, 𝑇𝑎𝑐(𝐸𝑆) for different 𝑆: the vertical dashed line is the elasto Rayleigh line 

that separates the potential stable from the potentially unstable zone to  the elasticity-induced 

perturbations.   

Figure 7.13: Critical curves 𝑇𝑎𝑐(𝐾𝑐) for different 𝑆 in Keplerian regime.  

Figure 7.14: Critical curves, 𝑅𝑒𝑐(𝑊𝑖𝑐) for different 𝑆 in Keplerian regime. 

Figure 7.15: Flow patterns and space-time diagram on Keplerian regime at 𝑇𝑎𝑐 = 8.50, 𝐸𝑚 = 0.017, 

𝑆 = 0.81. (a) Gap view by laser sheet, (b) Front view, (c) Space-time diagram. The space-time 

diagram seems wavy, however all the wavy frequencies are related to the rotational cylinders. 

Figure 7.16: Fourier spectra of the space-time diagram on Keplerian regime at 𝑇𝑎𝑐 = 8.50 , 

𝐸𝑚 = 0.017, 𝑆 = 0.81 .  (a) space spectrum,  (b) time spectrum. Red lines – rotation 

frequencies of the inner and outer cylinder and the mean rotation of them. Green dashed line 

– a combination of frequencies of the cylinders (2Ω𝑜 − Ω𝑖). Black dashed line – flicker 

frequency of the spot light. 

Figure 7.17: Comparison between the critical modes: (a) (b) Front view of the Taylor Vortex mode (a) 

and the Stationary and Axisymmetric mode (b); (c) (d) space-time diagram of 10 mins of the 

Taylor Vortex mode (c) and the Stationary and Axisymmetric mode (d). 

Figure 7.18: Flow patterns and space-time diagram of the Disordered Waves mode on Keplerian 

regime at 𝑇𝑎𝑐 = 2.86, 𝐸𝑚 = 0.13, 𝑆 = 0.61. (a) Gap view by laser sheet (b) Front view (c) 

Space-time diagram.  

Figure 7.19: Fourier spectrums of the space-time diagram on Keplerian regime at 𝑇𝑎𝑐 = 2.86, 

𝐸𝑚 = 0.13, 𝑆 = 0.61 (a) space spectrum (b) time spectrum. Red dashed line – the frequency 

of the inner cylinder. Black dashed line – the flicker frequency of the spot light.  Green dashed 

line – the frequency difference of Ω𝑜 − 〈𝜔〉 .  
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Figure 7.20: Space-time diagram and Fourier spectra of the Disordered Waves mode on Keplerian 

regime at 𝑇𝑎𝑐 = 2.86, 𝐸𝑚 = 0.13, 𝑆 = 0.61  for a wave generated near the bottom endplate. 

(a) Space-time diagram (b) space spectrum (c) time spectrum. Red solid line – outer cylinder 

rotation frequency. Red dashed line – inner cylinder rotation frequency. 

Figure 7.21: Demodulation of the zoom in space-time diagram of the transition. 𝑇𝑎𝑐 = 2.86, 

𝐸𝑚 = 0.13, 𝑆 = 0.61. (a) Space-time diagram of the transition (b) Demodulated waves.  

Figure 7.22: Demodulation of the space-time diagram of the Disordered Waves mode. 𝑇𝑎𝑐 = 2.86, 

𝐸𝑚 = 0.13, 𝑆 = 0.61. (a)Demodulated left wave (b) Space-time diagram of the saturated flow 

(c) Demodulated right wave. 

Figure 7.23: Comparison between the critical modes: (a) (b) longtime space-time diagram of 

Disordered Vortices mode (a) and Disordered Waves mode (b); (c) (d) transient space-time 

diagram of Disordered Vortices mode(c) and Disordered Waves mode (d).  

Figure 7.24: Flow patterns and space-time diagram of the Solitary Vortices mode on Keplerian regime 

at 𝑇𝑎𝑐 = 2.15, 𝐸𝑚 = 0.29, 𝑆 = 0.62. (a) Gap view by laser sheet (b) Front view (c) Space-time 

diagram. (d) long time space-time diagram. © space spectrum (f) time spectrum. Red line and 

dashed line – the frequency of the inner and outer cylinder. Black dashed line – the flicker 

frequency of the spot light.  Green dashed line – the mean frequency 〈𝜔〉 . 

Figure 7.25: Demodulation of the space-time diagram of the Solitary Vortices mode at 𝑇𝑎𝑐 = 2.15, 

𝐸𝑚 = 0.29, 𝑆 = 0.62. (a) Demodulated left wave (b) Space-time diagram (c) Demodulated 

right wave. 

Figure 7.26: Critical values of the transition from laminar flow to unstable flow on Keplerian regime. 

Solid lines – LSA critical curves for different 𝑆. Dashed line 𝐸𝑆∗ = 0.672 is predicted by elasto-

rotational Rayleigh discriminant. Solid points – experimental transient values, 3 colors present 

3 different definitions of elasticity. Within each definition of elasticity, each point present one 

solution tested. Dashed rectangular – group of different flow patterns.  

Figure 7.27: Location of the Solitary Vortices mode on 𝑇𝑎𝑐(𝐸𝑆)  on Keplerian regime; 𝐸 is defined 

with the molecular relaxation time. Solid lines – LSA critical curves for different 𝑆. Dashed line 

(𝐸𝑆∗ = 0.672) gives the separation between stable and unstable zones to elasticity driven 

perturbations.  Solid points – experimental critical values. Dashed circle – different modes. 

Solid circle – location of the Solitary Vortices mode. Colored point lines separate the stationary 

axisymmetric mode from the oscillatory non-axisymmetric mode by LSA. 

Figure 7.28: Variation of the critical axial wave number with 𝐸𝑆 defined by molecular relaxation time. 

Solid lines – LSA predictions for different 𝑆. Solid points – experimental critical wave numbers.   

Figure 7.29: Variation of the critical frequency with 𝐸𝑆 defined by molecular relaxation time. Solid 

lines – LSA predictions for different 𝑆. Solid points – experimental critical angular frequency.  

Figure 7.30: Critical curves 𝑇𝑎𝑐(𝐸) for different 𝑚 at fixed 𝑆 = 0.7. 

Figure 7.31: Critical curves 𝑇𝑎𝑐(𝐸) for different 𝑆. 
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Figure 7.32: Critical curves 𝑇𝑎𝑐(𝐸𝑆) for different 𝑆. Dashed line represents the 𝐸𝑆∗ = 3.451from 

elasto-rotational Rayleigh discriminant. 

Figure 7.33: Critical curves 𝑅𝑒𝑐(𝑊𝑖𝑐) for different 𝑆. 

Figure 7.34: (a) The angular frequency 𝜔 of the critical modes in respect to 𝐸 for different 𝑆 in anti-

Keplerian regime. (b) The axial wave number 𝑞 of the critical modes in respect to 𝐸 for 

different 𝑆. 

Figure 7.35: Pattern properties of the critical mode in the gap view for 𝑆 = 0.7,𝐸 = 1, 𝑇𝑎𝑐 = 0.976, 

𝑚𝑐 = 0, 𝑞𝑐 = 24.2, 𝜔𝑐 = 0.02 in anti-Keplerian regime. (a) Black arrows represent the velocity 

vectors of while the colors represent the azimuthal velocity 𝑉(𝑟,𝑧) (b) the vorticity 𝜔𝜃, (c) the 

pressure variation, (d) the 𝑁1  variation. Color maps of (b, c, d) represents the relative 

amplitude.   

Figure 7.36: Flow patterns and space-time diagram in anti-Keplerian regime at 𝑇𝑎𝑐 = 7.34 , 

𝐸𝑚 = 0.34, 𝑆 = 0.51. (a) Gap view (b) Front view by laser sheet (c) Space-time diagram of 20s 

(d) Longtime space-time diagram © space spectrum (f) time spectrum. Red dashed line – the 

frequency of the inner cylinder. Black dashed line – the flicker frequency of the spot light. 

Figure 7.37: Critical values 𝑇𝑎𝑐(𝐸) in the anti-Keplerian regime. Solid lines – LSA critical curves for 

different 𝑆. Solid points – experimental critical values, 3 colors present 3 different definitions 

of elasticity. 

Figure 7.38: Critical values 𝜔𝑐(𝐸) in the anti-Keplerian regime. Solid lines – LSA critical curves for 

different 𝑆. Solid points – experimental critical values defined by extensional elasticity. 

Figure 7.39: Critical values 𝑞𝑐(𝐸) in the anti-Keplerian regime. Solid lines – LSA critical curves for 

different 𝑆. Solid points – experimental critical values defined by extensional elasticity. 

Figure 7.40: Application of the Velikhov-Chandrasekhar criterion for ERI. 

Figure 7.41: Critical values on Keplerian regime. Solid lines – LSA critical curves for different 𝑆. 

Dashed line 𝐸𝑆∗ = 0.672 is predicted by elasto-rotational Rayleigh discriminant. Solid points – 

experimental transient values, 3 colors present 3 different definitions of elasticity. Dashed 

rectangular – group of different flow patterns. Colored point lines – criterion of 𝑊𝑖 = 𝑊𝑖∗ for 

different 𝑆. 

Figure 7.42 Threshold curve for the polymer solutions used in the experiment by Boldyrev et al. 

(2009) and corresponding experimental values for  𝜂 = 0.903, 𝑆 ∈ {0.983, 0.991, 0.995}. 

Figure 8.1: Marginal stability curves 𝑇𝑎𝑐(𝑞) for different 𝑚 for 𝑆 = 0.7 (a) 𝐸 = 0.01 (b) 𝐸 = 0.028 (c) 

𝐸 = 0.1 (d) 𝐸 = 1 in regime 𝜇 = 𝜂3. 

Figure 8.2: Critical curves, 𝑇𝑎𝑐(𝐸) for different 𝑚 for a solution with  𝑆 = 0.7 in regime 𝜇 = 𝜂3. 

Figure 8.3: Variation of the critical parameters with 𝐸 for 𝑆 =  0.7 in 𝜇 = 𝜂3 regime: (a) Threshold 

𝑇𝑎𝑐, (b) critical wavenumber 𝑞𝑐, (c) critical frequency 𝜔𝑐.   

Figure 8.4: Cross-section (𝑟, 𝑧) of the azimuthal component of the vorticity for 𝑆 =  0.7 in 𝜇 = 𝜂3 

regime. 
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Figure 8.5: Critical mode for 𝑆 = 0.7 , 𝐸 = 0.01 , 𝑇𝑎𝑐 = 86.6  in 𝜇 = 𝜂3  regime, with 𝑚 = 0 , 

𝑞𝑐 = 3.49, 𝜔𝑐 = 0. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the 

colors represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 

𝑁1 variation © the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

Figure8.6: Critical mode for 𝑆 = 0.7 , 𝐸 = 0.0 28, 𝑇𝑎𝑐 = 52.4  in 𝜇 = 𝜂3  regime, with 𝑚 = 1 , 

𝑞𝑐 = 3.84, 𝜔𝑐 = −0.178. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while 

the colors represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) 

the 𝑁1 variation © the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

Figure 8.7: Critical mode for 𝑆 = 0.7, 𝐸 = 0.1, 𝑇𝑎𝑐 = 32.2 in 𝜇 = 𝜂3 regime, with 𝑚 = 2, 𝑞𝑐 = 4.25, 

𝜔𝑐 = −0.327. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors 

represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 

variation © the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

Figure 8.8: Critical mode for 𝑆 = 0.7 , 𝐸 = 1 , 𝑇𝑎𝑐 =  in 𝜇 = 𝜂3  regime, with 𝑚 = 1 , 𝑞𝑐 = 5.03 , 

𝜔𝑐 = −0.122. (a) Black arrows represent the velocity field in (𝑟, 𝑧) direction while the colors 

represent the azimuthal velocity 𝑉 (b) the vorticity 𝜔𝜃 (c) the pressure variation (d) the 𝑁1 

variation © the 𝑁2 variation. Color maps of (b, c, d, e) represent the relative amplitude. 

Figure 8.9: Critical curves  𝑇𝑎𝑐(𝐸𝑆) for different 𝑆 in 𝜇 = 𝜂3  regime. The colored dashed lines 

separate the stationary axisymmetric mode from the oscillatory non-axisymmetric mode by LSA. 

Figure 8.10: Critical curves, 𝑅𝑒𝑐(𝑊𝑖𝑐) for different 𝑆 in 𝜇 = 𝜂3 regime. 

Figure 8.11: Critical curves, 𝑇𝑎𝑐(𝐾𝑐) for different 𝑆 in 𝜇 = 𝜂3 regime. 

Figure 8.12: Flow patterns and space-time diagram of the Ribbons mode on 𝜇 = 𝜂3 regime for 

𝑇𝑎𝑐 = 13.73, 𝐸𝑚 = 1.06, 𝑆 = 0.47. (a) Gap view (b) Front view by laser sheet (c) Space-time 

diagram. (d) Longtime space-time diagram. 

Figure 8.13: Flow patterns and space-time diagram of the Disordered Waves mode on 𝜇 = 𝜂3 regime 

at 𝑇𝑎𝑐 = 4.66, 𝐸𝑚 = 0.34, 𝑆 = 0.5. (a) Gap view (b) Front view by laser sheet (c) Space-time 

diagram. (d) Longtime space –time diagram. 

Figure 8.14: Transient space-time diagram and Fourier spectrums of the Disordered Waves mode on 

𝜇 = 𝜂3 regime at 𝑇𝑎𝑐 = 4.66, 𝐸𝑚 = 0.34, 𝑆 = 0.5. (a) Space-time diagram (b) space spectrum 

(c) time spectrum. Red solid line – outer cylinder rotation frequency. Red dashed line – inner 

cylinder rotation frequency. Black dashed line – flicker frequency of the spot light. 

Figure 8.15: Variation of the critical values with ES on 𝜇 = 𝜂3 regime. Solid lines – LSA critical curves 

for different 𝑆. Solid points – experimental transient values, 3 colors represent the 3 different 

definitions of elasticity. The colored dashed lines separate the stationary axisymmetric mode 

form the oscillatory non-axisymmetric mode by LSA. 

Figure 8.16: Variation of the critical angular velocity with 𝐸𝑆 defined by the molecular relaxation time. 

Solid lines – LSA predictions for different 𝑆. Solid points – experimental angular velocity. 

Figure 8.17: Variation of the critical axial wave number with 𝐸𝑆 defined by the molecular relaxation 

time. Solid lines – LSA predictions for different S. Solid points – experimental critical wave 

numbers.  
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Figure 9.1: Marginal stability curves of the purely elastic limit in Keplerian regime for (a) 𝑆 = 0.5 and 

(b) 𝑆 = 0.8. 

Figure 9.2: Critical curves 𝑊𝑖(𝑆) for different 𝑚 at 𝑞𝑐 on Keplerian regime.  

Figure 9.3: Critical curves 𝑊𝑖(𝑆) for different rotation regimes.  

Figure 9.4: Variation of the critical parameters: (a) 𝑖𝑠(𝑆) , (b) 𝑞𝑐(𝑆) , (c) 𝜔𝑐(𝑆). 

Figure 9.5: Azimuthal vorticity patterns in the gap. 

Figure 9.6: Experimental critical value 𝑇𝑎𝑐(𝐸𝑒) of five rotational regimes. 

Figure 9.7: Experimental and LSA critical values 𝑊𝑖𝑠(𝐸𝑒) of five regimes. Solid points: experimental 

critical values. Solid lines: LSA predictions of 𝑆 = 0.5. Dashed black line: the LSA prediction of 

the 𝑊𝑖𝑠 at 𝑆 = 0.5. 

Figure 9.8: Experimental and LSA critical values 𝑊𝑖𝑠(𝑆) of five regimes. Solid points: experimental 

critical values. Solid line: LSA prediction. 
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Re sume   

L’instabilité magnéto-rotationnelle (MRI) apparait dans un écoulement dans des liquides 

conducteurs électriques en rotation différentielle en présence d’un champ magnétique, lorsque la 

vitesse angulaire décroît avec la distance de l’axe de rotation. Cette instabilité est considérée comme 

la clé pour comprendre la turbulence et le transport de moment cinétique angulaire dans les disques 

d’accrétion astrophysiques. A ce jour, il n’existe pas de observations directes de la MRI dans un 

écoulement képlérien. Selon Ogilvie et Proctor, l’instabilité viscoélastique (IVE) est analogue  à  la 

MRI :   la force élastique due aux polymères joue le rôle de champ magnétique. Cette analogie est 

basée sur la ressemblance entre les équations des écoulements viscoélastiques du modèle 

d’Oldroyd-B et les équations de la mangéto-hydrodynamique (MHD). À la suite de cette analogie, il 

existe une seule expérience, mais avec une solution viscoélastique qui ne satisfait pas le modèle 

d’Oldroyd-B. Cette thèse est consacrée à une étude expérimentale et théorique afin de vérifier cette 

analogie dans un écoulement képlérien, et  mieux  comprendre l’origine du transport  du moment 

dans les disques d'accrétion. 

 La première tâche a consisté à généraliser le discriminant de Rayleigh  aux écoulements 

viscoélastiques. Le critère de Rayleigh généralisé (élasto-rotationnel) stipule qu’un écoulement 

viscoélastique est instable si la somme de discriminant de Rayleigh Newtonien et la stratification 

radiale de la différence du contraint normal 𝑁1est négative. La force élastique peut renforcer 

l’instabilité centrifuge ou induire elle-même l’instabilité purement élastique. Dans le régime 

képlérien, on peut avoir de l’instabilité purement élastique quand l’élasticité polymérique 𝐸𝑆 est 

supérieure à une valeur critique 𝐸𝑆∗ qui dépend du rapport des rayons. L’analogue de la MRI se 

trouve en dehors de la zone d’instabilité purement élastique. Le critère de Rayleigh elasto-

rotationnel est analogue au critère d'instabilité de Michael pour de fluides de conducteurs 

électriques en présence d'un champ magnétique azimutal.  

Pour analyser l’IVE,  nous avons effectué l’analyse de stabilité linéaire basée sur les équations 

complètes du modèle d’Oldroyd-B. Le problème de valeurs propres résultant a été résolu en utilisant 

un code numérique développé sur Matlab et en utilisant la méthode de collocation de Chebyshev. Le 

code a été validé par la  comparaison avec  les résultats disponibles dans la littérature.  

Les expériences ont été réalisées dans un système de Couette-Taylor qui consiste  en 

l’écoulement dans l’entrefer entre deux cylindres coaxiaux avec un rapport de rayon 𝜂 =  0,8. Le 

rapport d'aspect du dispositif expérimental était 𝛤 =  45,7 qui est suffisamment grand  pour 

comparer avec les résultats théoriques obtenus dans le rapport d'aspect infini. Nous avons utilisé des 

solutions aqueuses de 1000 ppm de polyoxyéthylène (POE) et de polyéthylène glycol (PEG) de 

concentration variable (2,5% - 25%). Les solutions ont été bien caractérisées par des tests 

rhéologiques pour s’assurer qu'elles correspondent au modèle d’Oldroyd-B. La viscosité de 

cisaillement de la solution polymère et du solvant de PEG sont mesurées par un rhéomètre de 

cisaillement. Ces deux viscosités augmentent avec la concentration de PEG tandis que le rapport de 

la viscosité polymérique et de la solution totale 𝑆 dimunue avec la concentration de PEG. Le temps 

de relaxation de la solution de polymère est estimé par trois méthodes différentes : mesure par un 

rhéomètre extensionnel (CABER) ; mesure par la première différence de contraintes normales 𝑁1, 

détermination  par la relation de ce temps avec la viscosité du polymère et la masse molaire. Pour la 
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plupart des solutions, les temps de relaxations et l’élasticité calculée avec  ces temps de relaxation 

augmentent avec la concentration de PEG. 

En tournant le cylindre intérieur et fixant le cylindre extérieur (régime 𝜇 = 0 où 𝜇 est le 

rapport de vitesse entre le cylindre extérieur et intérieur), nous avons observé trois modes 

différents pour de solutions de petite à grande élasticité 𝐸: le vortex de Taylor,  le mode rubans, et 

des tourbillons désordonnés.  Le mode de vortex de Taylor est supercritique et les deux restes sont 

sous-critiques. Cette observation est en accord avec la prédiction de LSA qui dit que le mode critique 

est axisymétrique et stationnaire pour de faibles valeurs de 𝐸 et non-axisymétrique et oscillant pour 

de grandes valeurs de 𝐸. Le mode des tourbillons désordonnés correspond à l’instabilité purement 

élastique.  Pour de faibles valeurs de 𝐸, le seuil théorique et expérimental de l’instabilité 𝑇𝑎𝑐 est 

quasiment constant et coïncide avec la valeur critique du fluide Newtonien. Ce seuil décroit 

rapidement quand 𝐸 devient grand. Ceci confirme que l’élasticité renforce l’IVE. Le rapport de 

viscosité 𝑆 joue deux rôles opposés: déstabilisant pour les petites valeurs de l'élasticité et de 

stabilisation pour les grandes valeurs de l'élasticité et en particulier dans le régime purement 

élastique. Le nombre d’onde critique et la fréquence critique sont aussi calculés par LSA et ils se 

trouvent en accord avec de l’expérience qualitativement. Des accords qualitatifs sont également 

observés  entre nos résultats expérimentaux et ceux de la littérature. 

En régime képlérien  (𝜇 = 𝜂3/2), nous avons observé le mode de vortex axisymétrique et 

stationnaire pour de faibles valeurs de 𝐸𝑆 et le mode des ondes désordonnées pour de grandes 

valeurs de 𝐸𝑆. Le mode de vortex axisymétrique est formé par des tourbillons aplatis avec une 

longueur d’onde axiale inférieure à la taille de l’entrefer; le mode des ondes désordonnées est formé 

par des ondes contra-propagatives. Parmi les modes désordonnées,  des tourbillons solitaires 

apparaissent dans une petite plage de valeurs de 𝐸𝑆. Le mode axisymétrique stationnaire est 

supercritique tandis que les modes désordonnés sont sous-critiques. Tous ces modes se trouvent 

dans la zone 𝐸𝑆 < 𝐸𝑆∗, donc ils ne sont pas dus à  l’instabilité purement élastique. En accord avec de 

l’expérience, la stabilité linéaire montre que le mode critique est axisymétrique et stationnaire pour 

de faibles valeurs de 𝐸 et non-axisymétrique et oscillant pour de grandes valeurs de 𝐸. Le paramètre 

𝑆  , caractérisant l’élasticité polymérique, semble être le meilleur paramètre de contrôle que 

l’élasticité 𝐸 en régime képlérien parce que toutes les courbes critiques 𝑇𝑎𝑐(𝐸𝑆) convergent en une 

courbe pour différentes valeurs de  𝑆. Et cette courbe correspond mieux aux seuils expérimentaux de 

l’instabilité lorsque le nombre élastique est défini  avec le temps de relaxation déterminé par la 

masse molaire. La stabilité linéaire montre aussi que le rapport de viscosité 𝑆 est une source 

déstabilisante quand le nombre de Weissenberg modifié 𝐾 est petit et stabilitsante quand  𝐾 est 

grand. 

En tournant seulement le cylindre extérieur (régime 𝜇 = ∞) ou en anti-képlérien (𝜇 = 𝜂−3/2), 

le cylindre extérieur tourne plus vite que l’intérieur, la force centrifuge n’est plus de source de 

l’instabilité, donc l’instabilité purement élastique est induite par la seule force élastique. Dans ces 

deux cas, nous avons observé quand même de l’instabilité avec de solution de grande élasticité en 

forme de mode désordonné dans le temps et dans l’espace. La stabilité linéaire prédit que le mode 

critique est axisymétrique et oscillant et elle montre que les courbes critiques de 𝑇𝑎𝑐  (𝐸) sont 

indépendantes de 𝑆 . Ces courbes s’adaptent parfaitement aux valeurs critiques expérimentales 

lorsque l'élasticité est définie par le temps de relaxation extensionnel. 
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Dans un régime intermédiaire (𝜇 = 𝜂3) entre le régime 𝜇 = 0 et le régime képlérien, nous 

avons observé des modes critiques de différente nature: le mode de rubans qui est la même mode 

en régime 𝜇 = 0 est observé pour de faibles valeurs de  𝐸 et le mode des ondes désordonnés qui est 

la même mode en régime képlérien est observé pour de grandes valeurs de  𝐸.  

A la limite de très grande élasticité (𝐸 → ∞) , nous avons trouvé une courbe critique unique  

𝑊𝑖𝑠(𝑆) de l’instabilité purement élastique pour tous les régimes de rotation dans la limite (𝑇𝑎 = 0 ) 

où le nombre Weissenberg 𝑊𝑖𝑠 est défini par le taux de cisaillement au milieu de l’entrefer. 

L'instabilité purement élastique apparaît sous la forme des modes non axisymétriques oscillatoires 

pour de 𝑆 <  𝑆∗ alors qu'elle apparaît sous forme de modes axisymétriques oscillatoires si 𝑆 >  𝑆∗. 

Les données expérimentales obtenues avec les solutions de l'élasticité finie montrent une tendance à 

une courbe unique dès que l'élasticité devient assez grande. 

Cette thèse a confirmé l’analogie entre l’IVE et la MRI standard (SMRI) en régime képlérien 

où les molécules de polymères jouent un rôle analogue à celui des lignes de champ magnétique axial 

qui déstabilise les disques d'accrétion. Différents types de MRI sont distincts les uns des autres par la 

forme du champ magnétique. L'analyse de l'analogue polymérique du champ magnétique montre 

que dans le régime képlérien, le mode de vortex  axisymétrique de l’IVE est analogue à la SMRI  

quand 𝑊𝑖 est inférieur à une valeur critique 𝑊𝑖∗ , tandis que le mode désordonné est analogue à la 

MRI hélicoïdale (HMRI) lorsque  𝑊𝑖 est en même ordre de 𝑊𝑖∗ .  

Cette thèse est limitée à l’étude théorique et expérimentale de la première instabilité du 

fluide viscoélastique. Le comportement de certaines courbes marginales et l'existence de multiples 

points de codimension 2 suggèrent la nécessité d'une analyse non linéaire pour étudier le couplage 

des modes. Les mesures de PIV permettront de caractériser en détail les modes critiques, les modes 

supérieurs d'instabilité plus élevés et la turbulence dans le régime de képlérien viscoélastique. La  

DNS permettra de calculer le couple et le transport du moment dans la direction radiale y compris 

sur les cylindres. Ces études devraient apporter de nouveaux arguments à la validation de l'analogie 

entre l’IVE  et l'MRI pour une meilleure compréhension de la dynamique complexes des disques 

d'accrétion. 
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Abstract 

This thesis is devoted to the verification of the analogy between the viscoelastic instability 

(VEI) and the magnetorotational instability (MRI) in a Keplerian flow, in order to get better 

understanding of the momentum transportation in accretion disks. 

 The elasto-rotational Rayleigh discriminant is deduced to clarify the role of the elasticity in 

the VEI. The linear stability analysis (LSA) with Oldroyd-B model is performed to predict critical 

parameters of viscoelastic modes, and it reveals the influence of the elasticity, polymer viscosity on 

the VEI. Experiments with well controlled aqueous solutions of polyoxyethylene (POE) and 

polyethylene glycol (PEG) are conducted. We have observed supercritical stationary axisymmetric 

mode with solutions of small elasticity and subcritical disordered modes with solutions of large 

elasticity. Both the flow patterns and the critical values of these modes are in good agreement with 

the LSA predictions. According to the analogy, the stationary axisymmetric mode is likely the analog 

of the standard MRI while the disordered mode is likely the analog of the helical MRI. 

 The thesis contains also theoretical and experimental results with four other rotation 

regimes and the limit case of infinite elasticity. 

 

Mots clés: instabilité viscoélastique, instabilité magnéto-rotationnel, écoulement képlérien, système 

de Couette-Taylor, model d’Oldroyd-B, analyse de stabilité linéaire, rhéologie. 

Résumé 

 Cette thèse est consacrée à la vérification de l'analogie entre l'instabilité viscoélastique (VEI) 

et l'instabilité magnéto-rotationnel (MRI) dans un écoulement képlérien, afin de mieux  comprendre 

le  transport  du moment dans les disques d'accrétion. 

Le discriminant de Rayleigh élasto-rotationnel est établi pour clarifier le rôle de l'élasticité 

dans le VEI. L'analyse de stabilité linéaire (LSA) avec le modèle d’Oldroyd-B est effectuée pour prédire 

les paramètres critiques des modes viscoélastiques. Il fait apparaître également l'influence de 

l'élasticité, la viscosité polymérique et d'autres paramètres de contrôle pour le VEI. Des expériences  

bien contrôlées avec des solutions aqueuses de polyoxyéthylène (POE) et de polyéthylène glycol (PEG) 

sont effectuées. Nous avons observé le mode stationnaire axisymétrique supercritique avec des 

solutions de faible élasticité et modes désordonnés sous-critiques avec des solutions de grande 

élasticité. Les formes et les valeurs critiques de ces modes sont en bon accord avec les prédictions 

théoriques de LSA. Selon l'analogie, le mode axisymétrique stationnaire est probablement l'analogue 

de MRI standard, tandis que le mode désordonné est probable que l'analogue de MRI hélicoïdale. 

La thèse contient aussi des résultats théoriques expérimentaux sur quatre autres régimes de 

rotation et un cas de limite d'élasticité infinie. 

 


