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Chapter 1: Introduction

1.1 Accretion disk & Magnetorotational instability (MRI)

According to the current accepted Solar Nebular theory, stars are created from dense
interstellar clouds of dusts and gases in the space. One interstellar cloud is called a nebula. If the
mass of a nebula is greater than certain critical value, the central part of the cloud will collapse to a
proto-star while the surrounding part will rotate around it [Woolfson2000]. As more matter
collapses into the proto-star, the surrounding cloud rotates faster since the angular momentum is
conserved in a nebula; and it flattens to disk shape along the equator. This disk-like structure of the
interstellar cloud around a proto-star is known as an accretion disk [Hoyle1960, Cassen1981]. The
accretion process continues until sufficient mass accretes into the proto-star to initiate
thermonuclear fusion leading to the creation of a new star.

However it is not clear how the angular momentum in an accretion disk is transported out of
the system in order to allow the dusts and gases collapse into the proto-star [Balbus2011]. Viscous
friction could cause kinetic energy dissipation and momentum transportation but it is largely
inefficient as the interstellar cloud is too sparse and too cold. Turbulent flow in an accretion disk may
cause large momentum transportation, but previous theoretical works indicate that purely
hydrodynamic turbulence is inadequate [Pringle1981, Balbus1998]. In 2006 Ji et al. [Ji2006] have
studied experimentally the Newtonian quasi-Keplerian flow comparable to an astrophysical accretion
disk. They have observed no hydrodynamic instabilities that should be responsible for the large
angular momentum transportation.

An electrically conducting fluid in an accretion disk could be destabilized with weak axial
magnetic field when the Velikhov-Chandrasekhar criterion (angular velocity decreases with the
radius) is fulfilled [Chandrasekhar1960]. In 1990’s Balbus and Hawley have linked this instability to
the momentum transportation of accretion disks and have verified numerically the implication of the
MRI in astrophysical accretion disks [Balbus1991]. They have proposed that the MRI in an accretion
disk can be explained by the “dumbbell” model represented in figure 1.1. In a perfectly conducting
fluid, co-rotating fluid elements attract each other by Lorentz force, which acts as elastic strings. In
an accretion disk, the Keplerian velocity distribution Q(r) « r=3/2js applied, so that an element on
the inner orbit rotates faster than its neighbor on the outer orbit. Being retarded by the “elastic
string”, the inner element loses angular momentum, then it goes to even inner orbit and rotates
faster, while, on the other way, the outer element gains angular momentum and goes outer and then
slows down. This process leads to the MRI.

In practice the MRI can be of different types by different dominating magnetic fields. The MRI
that appears in the axial magnetic fields is called the standard MRI (SMRI) while the MRI that appears
in the azimuthal magnetic fields is called the azimuthal MRI (AMRI) and the MRI that appears when
both axial and azimuthal magnetic fields are present is called the helical MRI (HMRI).

The direct experiments to detect the SMRI are found difficult. Until now no positive results
have been reported [Ji2013].



Figure 1.1: The “dumbbell” model to explain the mechanism of the SMRI proposed by Balbus.
(http://www.scholarpedia.org/article/Magnetorotational instability)

In 2005 Hollerbach and Riidiger have suggested through theoretical analyses that the HMRI is
easier to realize than the SMRI, and that it might be relevant to cooler astrophysical disks
[Hollerbach2005]. A year later the HMRI was observed experimentally with liquid metal alloy GalnSn
by Stefani et al. [Stefani2006] [Stefani2007] [Stefani2009]. Recently the AMRI was observed
experimentally [Seilmayer2014]. But unluckily these observations are not realized in Keplerian
regime. Recently several analytical studies [Kirillov2013] [Kirillov2014] and numerical studies
[Child2015] have predicted that the HMRI and AMRI could be observed in the Keplerian regime in
certain condition. But to our knowledge no experimental observation of HMRI or AMRI in the
Keplerian flow is reported till now.

1.2. Analogy between MRI and viscoelastic instability

As it is difficult to realize the SMRI in experiments with liquid metals, it looks reasonable to
replace the fluid with something easier to control. The dumbbell model that explains the SMRI
inspires us of the viscoelastic fluids which can be described by dumbbell models [Bird1977]. Among
all the molecular models Ogilvie & Proctor [Ogilvie2003] have suggested that the viscoelastic fluids of
Oldroyd-B model can be considered as an analog to the electrically conducting fluids [Ogilvie03]. This
analogy was analyzed theoretically and the investigation of the MRI through the study of viscoelastic
instabilities (VEI) in the quasi-Keplerian flow was proposed [Ogilvie08]. This analogy leads us to a
bypass to know better about the SMRI and the turbulence in accretion disks.

The only experimental research on the analogy between SMRI and VEI was reported by
Boldyrev et al. [Boldyrev09]. However the viscoelastic solutions of this work were not well
characterized and they seem not to fit the Oldroyd-B model. The authors have got only qualitative
agreement with the theoretical prediction of Ogilvie & Potter [Ogilvie08].

On the other hand the viscoelastic instabilities are unsolved problems because there are no
universal equations to describe the viscoelastic fluids and it is not easy to get fluids that fit perfectly
the Oldroyd-B model. Beside these practical difficulties, the complexity of the viscoelastic fluids
makes the study of the viscoelastic instability (VEI) a difficult task. So before all, we need to resume
the main researches of the VEI available in literature.


http://www.scholarpedia.org/article/Magnetorotational_instability
http://www.scholarpedia.org/article/File:MRISB1.jpg

1.3. The viscoelastic instability

We consider dilute polymer solutions composed of long-chain macromolecules with high
molecular weight. These fluids are called viscoelastic fluids because they show not only viscous
behaviors but also elastic behaviors. The most significant properties of the viscoelastic fluids are the
shear-thinning effect and the elastic effects among which the Weissenberg effect is the most famous.
The shear-thinning effect consists in the decrease in the viscosity in strong shear flows. Illustrated in
figure 1.2 (a), the fluid viscosity stays constant at small shear rate which forms the so called
Newtonian plateau and it decreases with the shear rate after certain critical value. The Weissenberg
effect consists in the fluid climbing through a rotating rod as illustrated in figure 1.2 (b). As the rod
rotates in a viscoelastic fluid, it induces shear that stretches the ‘spring’ that connects the fluid
parcels so that the fluid shrinks around the rod and the fluid parcels ‘climb’ the rod.

AN
Viscosity
(Pa -s) Newtonian fluid

Newtonian;
plateau

Shear thinning
effect

\ 4

Shear rate (1/s)

(a) (b)
Figure 1.2: (a) Shear thinning effect, (b) Weissenberg effect.

The most important discovery of the viscoelastic liquids described by the Oldroyd-B model
(liquid solutions with constant shear viscosity) is the observation of the purely elastic instability by
Larson and Shaqgfeh [Larson1990]. These authors have shown theoretically and experimentally that a
viscoelastic fluid of Oldroyd-B model can be destabilized in a rotating flow by the elastic force with
very weak (almost vanishing) shear rate. The figure 1.3 presents the photo of the purely elastic
instability when it is fully developed. A drawback of this research is that the authors have used only
approximate equations in the limit of small gap and only axisymmetric modes were considered.



Figure 1.3: Photo of the purely elastic instability provided by Larson & Shagfeh [Larson 1990].

To explain the purely elastic instability, Larson et al. [Larson1990] have proposed a
destabilization scenario based on the “dumbbell” model (figure 1.4) which is similar to the model
that Balbus has used to describe the mechanism the MRI.

Figure 1.4: “Dumbbell” model proposed by Larson & Shagfeh [Larson1990].

Later on Joo & Shagfeh have conducted linear stability analysis of the inertia-elastic instability
with approximate equations used by Larson-Muller-Shagfeh [Joo1992]. The competition between the
inertial instability and the purely elastic instability was analyzed numerically.

In 1993 Avgousti et al. [Avgoustil993] have conducted the linear stability analysis with
complete governing equations of the Oldroyd-B model in a Couette-Taylor system. They have
predicted that the VEI critical mode could be either axisymmetric or non-axisymmetric depending on
the elasticity values.

In 1997 a new dissipative mode has been observed experimentally by Groisman and Steinberg
[Groisman1997] when decreasing the shear rate of the destabilized viscoelastic flow of highly elastic
polymer solutions. This mode appears as distinct vortex pairs or “diwhirls”.



Different critical modes were observed experimentally by Baumert & Muller [Baumert1997,
Baumert1999] with fluids of low and medium elasticity. They have reported also flow patterns of
shear rate higher than the critical values in different rotational velocity ratio of the cylinders.

The VEI was also studied experimentally in LOMC where three different critical modes for
fluids of different elasticities have been reported by Crumeyrolle Kelai, Latrache [Crumeyrolle2005]
[Kelai2011] [Latrache2012]. However despite various situations were investigated, none of them was
conducted in the Keplerian or quasi-Keplerian regime

1.4. Plan of this thesis

The purpose of this thesis is to study theoretically and experimentally the VEI of Oldroyd-B
model in order to get better understanding of the MRI and the momentum transportation in
accretion disks.

In chapter 2, we will present the general equations of the Hydrodynamics of the viscoelastic
fluids and of the magneto-hydrodynamics (MHD) of electrically conducting fluids, in order to show
the conditions of the analogy between the VEI and the MRI. In chapter 3 the properties of the
viscoelastic circular Couette flows are analyzed, the polymer analogs of the magnetic fields are
presented to prepare the construction of the analogy of VEI with the MRI.

The chapter 4 addresses the revisited theoretical studies of the VEI. First the rotational
Rayleigh discriminant is generalized to the elastic-rotational flow which is an analog of the Rayleigh
criterion of the rotating flow in the presence of the magnetic field. Then the perturbation equations
and the numerical methods of the linear stability analysis are presented together with the validation
of our codes. The chapter 5 describes the experimental setup, the working fluids and their rheology,
and the measurements of the relaxation time elasticity of polymer solutions.

The following chapters contain the theoretical and experimental results obtained in different
rotating regimes and the conclusions drawn from them. In chapter 6, we study the VEI in shear flows
by rotating one cylinder of the Couette-Taylor system. The experimental results are compared to the
linear stability analysis results and the results of the other authors. In chapter 7 the VEI is studied in
quasi-Keplerian flow and anti-Keplerian flow. The analogy between the MRI and VEl is then discussed.
The chapter 8 discusses the case of an intermediate rotation regime in which both the centrifugal
force and the elasticity force are the driving mechanisms of instability. The chapter 9 is concerned
with the special case of the purely elastic instability in the limit of infinite elasticity of polymer
solutions. It yields a new insight in this instability which was investigated by Larson et al [Larson, JFM
1990] in the 1990’s. The thesis ends with a general conclusion and an outlook of further
developments of the present work.
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Chapter 2: General equations

In this chapter, we introduce the general hydrodynamic equations of the electrically
conducting fluids and the viscoelastic fluids of Oldroyd-B model. Then these equations are compared
to bring out the analogy between these fluids.

2.1. Hydrodynamic equations of Newtonian fluids

An isothermal and incompressible flow is governed by the equations of conservation of mass
and momentum:

vViUi=0 2.1

ot 2.2

au . - .
pl=—+U-VU)=-VII+V-T+ F
where T is the total stress tensor, Il = p + pgzis the general pressure and F is the external force
density.

In order to solve these equations, constructive models of the fluids are needed. For a
Newtonian fluid, the stress is proportional to the strain. The constitutive equation which connects

= = — T
the stress tensor T and the strain tensor D = VU + (VU) of a Newtonian flow is written as:

T = —pvﬁ 2.3
where p is the density of the fluid and v is the kinematic viscosity of the fluid. So that the momentum
conservation equation of Newtonian fluids (2.2) becomes:

ol _ S
p{ 5 +U-VU)=—VIl+pvV0 + F 2.4

2.2. Magneto-Hydrodynamic (MHD) equations

A special class of Newtonian fluids is the electrically conducting fluids in the presence of the
magnetic field. The magneto-hydrodynamics (MHD) studies the dynamics of electrically conducting
fluids which include plasmas and liquid metals. In an electrically conducting fluid moving with

velocity l_f, the magnetic field B exerts on the charged fluid parcels a Lorentz force F{ :

e 1 — - -
F,=—VXBXB 2.5
Ho
Where g is the permeability. Hence the equation of the momentum conservation becomes:

p{=—+U-VU)=—-VII+pvW?U+—VXB XB 2.6
ot Ho
In a well conducting liquid, the magnetic field obeys the following dynamic equation:
B - - - _
E+U-VB=B-VU+vmVZB 2.7
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where v, = 1/(0,1) is the magnetic diffusivity, g, is the electrical conductivity of the liquid. The
equation 2.7 is an analog of the vorticity equation.

Thus, the momentum conservation equation 2.6 and the induction equation 2.7 together
with the mass conservation equation 2.1 constitute the MHD governing equations.

2.3. Hydrodynamic equations of viscoelastic fluids

In many industrial applications, polymer solutions made of long-chain molecules are involved.
These solutions do not satisfy the Newtonian law when they are sheared. Instead, their constitutive
laws are much more complicated. These fluids are a class of non-Newtonian fluids. There exist many
models to describe the non-Newtonian fluids, depending on their rheology: dependence of the
viscosity on shear rate, presence of the elasticity ... The fluids that possess both viscosity and
elasticity due to polymer molecules are called viscoelastic fluids.

One of the simplest models used to describe the viscoelastic fluids is the Upper-convected
Maxwell (UCM) model. The UCM model considers fluid parcels as Brownian beads connected by an
infinitely extensible spring [Bird1977]. The constitutive equation of the UCM model is written as
follows, where T is relaxation time of the viscoelastic fluid.

THe|.T+U VT - (VU) -T+T-(VU)||=pvD 2.8

The UCM model neglects the solvent contribution to the viscosity, it may be suitable to the

thick polymer solutions or polymer melts. A better model to describe the dilute polymer solutions is
the Oldroyd-B model [Oldroyd1950]. In this model, the stress tensor is decomposed into the

polymeric stress tensor TP and the Newtonian solvent stress tensor TS:

T=TP+TS 2.9
The viscosity of the total solutionvis the sum of the solvent viscosity vy and the polymer
contribution of the viscosity v,,. Both v, and v are assumed to be independent to the shear rate, the

fluid viscosity v is independent to shear rate:

V=", + Vs 2.10
So the Oldroyd-B model is used to describe viscoelastic fluids with a constant viscosity.

As the solvent stress tensor T satisfies the Newtonian constitutive equation 2.3, the momentum
conservation equation writes as follows, where v; is the solvent viscosity.

—

aU 4 - = —
p<E+U-VU>=—V1'I+V-Tp+vaV2U 2.11

As the polymeric stress tensor TP satisfies the UCM model, we have the constitutive equation of the
Oldroyd-B model as follow:

TP 7| —=+U-VT — (VU) -TP —TP -VU| = pv,[VU + (VU)"] 512

12



Hence the equations 2.11 and 2.12 together with the mass conservation equation 2.1
constitute the governing equations of the viscoelastic fluids of the Oldroyd-B model.

By taking the divergence of the momentum equation 2.11 we obtain the pressure equation as
== == = — —> ——\ L = —— — s\t
follow, where 02 =00,52=355, 0=1/2(V0- (V) ),E=1/2(V0 + (VU) ) are the

antisymmetric and symmetric parts of the velocity gradient tensor vU.

All=-V-[(U-V)U]+V-(V-TP) or AH:%(QZ—ZZHV-(V-?P) 2.13

By applying the curl operator to the momentum equation (2.11), the vorticity equation is obtained,
where v, is the kinematic viscosity of the solvent.

aa = =\ ] N 1 — ]
§+(U-v)w=(w-v)U+vsAw+/—Jv><(v-Tp) 2.14
The polymer stress tensor TP yields a supplementary contribution to the pressure and to the
vorticity generation.

The Oldroyd-B model gives good predictions for the so called Boger fluids which are fluids with
very large solvent viscosity [Mackay1987]. This model has only one relaxation time 7, however a real
polymer solution displays several distinct time constants [Magdalarson1988]. Therefore the model
will not capture all the features of the real polymer solution dynamics.

2.4. Analogy between MHD fluids and Oldroyd-B fluids

In their investigation of the MHD, Ogilvie and Proctor have first discovered the similarity
between MHD equations and the viscoelastic equations of Oldroyd-B model [Ogilvie03]. They
rewrote the MHD equations (equations 2.1, 2.6, 2.7) by introducing a modified magnetic stress

tensor 7="m :
7 BB
= 2.15
m Uo
Then the MHD equations become:
7-U=0
ou - _ .
pl=—+U-VU|=-V1+VT, +pvV?U
at 2.16
7+U-VTm—(VU) -Tm—Tm-VU=E(Bv B + (V?B)B)

It is possible to rewrite the viscoelastic equations of Oldroyd-B model (equations 2.1 2.11

2.12) by introducing the modified polymeric stress tensor, where Tisan identity tensor.

= = Vy =
Tp=Tp+p—”1

T 2.17

So that the viscoelastic governing equations become:
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S

( v-U=0

v . _ -
p|==+U-VU)= -V +VT, + pv,V?U

t 2.18

T, - - T = = _= 1,2 pvy=
p _ p
\52+U VT, —(V0) T, T, v0 = ——(T, -=21)
In the limit of small magnetic diffusivity vj; and long relaxation time 7, the terms of
L—’Z (§V2§ + (VZE)E) and —%(7:",, - %I:) are negligible. The remaining terms of the equations are

exactly the same, so that we have a strict analogy between the MHD fluid and the Oldroyd-B fluid.
This analogy can be expressed symbolically as follows:

limO(MHD fluid) = lim (Oldroyd — B fluid) 2.19
Ym— T—>00

So that the analogy between MHD fluid and Oldroyd-B fluid holds only in the case of an ideally
conducting liquid.

2.5. Dimensionless form of the Oldroyd-B fluid equations

The characteristic length and velocity are d and U, respectively. The pressure and the stress
tensor are scaled by Ug . The resulting dimensionless equations of the Oldroyd-B fluid read:

V-U=0

ou . ., _ .
Re|—+U-VU|=-VII+V TP + (1 - S)V2U

at 2.20
= 67=1p - = —\T = = - — —,
TP+ ERe|——+U VTP - (VU) -TP —TP-vU|=S[VU + (VU)']
where we have introduced the following control parameters :
Re = 1,y = 20 E=L=Y BRe=g=wi s=2 221
e=T,y = " =5 " Re e=t1y=Wi = .

where y = U,/d is the characteristic shear rate; 7, = d?/v is the diffusion time; Re is the Reynolds
number, Wi is the Weissenberg number, E is the elasticity number and S is the viscosity ratio of the
solution. The choice of the shear rate y will depend on the flow configuration under consideration.
This will be discussed in the next chapter in the case of the Couette-Taylor flow.

In the case of the MHD, the dimensionless control parameter that estimates the magnetic
diffusivity is the magnetic Reynolds number R,,, = Uyd/v,,. So that the expression 2.19 of the
analogy between MHD fluids and viscoelastic fluids can be written as:

Rlim (MHD fluid) = I/l}i_m (Oldroyd — B fluid) 2.22
'm0 1—o0o

The cylindrical system of coordinates (, 8, z) is suitable for the description of the flow in the
Couette-Taylor system. In this case, equations 2.20 read
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i-v=v,2+% 2 1y, 2
S Tor r ae “oz

2.23

2.24

The boundary conditions are the no-slip conditions at the cylindrical surfaces bounding the

fluid in the radial direction.

These equations contain two limit cases: the Newtonian case (E = 0,S = 0) and the pure
inertialess case (E — oo,Re — 0 keeping Wi = ERe finite). The stability of the latter case has

been investigated in details by Larson et al. [Larson1990] and Joo & Shaqgfeh [J001992].

2.6. Conclusion

In this chapter we have presented the general equations governing the dynamics of
viscoelastic fluids within the Oldroyd-B model and their analogy with the MHD equations. This
analogy will be developed in the next chapters within the linear stability analysis and it will be used

to realize experiments that should give insight in the magneto-rotational instability (MRI).
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Chapter 3: Viscoelastic Couette flow

The general equations presented in chapter 2 are independent of the flow configuration. In
this chapter, we will solve them for the specific case of the viscoelastic circular Couette flow in the
gap between two differentially rotating coaxial cylinders, the so-called Couette-Taylor system.

3.1. The Couette- Taylor system Ao>

The Couette —Taylor flow consists of a fluid confined in R
the gap between 2 coaxial cylinders, rotating at different angular
velocities (Fig.3.1) The radius of the inner and outer cylinder is
denoted by a and b respectively, which makes the gap
d = b — a. The length of the cylinders is denoted [. The two
cylinders rotate separately with the angular velocities £2; and (2,,.

The Couette-Taylor system has been chosen as a
hydrodynamic prototype for the investigation of flow
instabilities in closed systems because of its large group of
symmetries: translation symmetry in the axial and azimuthal
directions, rotation symmetry around the axis, reflection
symmetry about the plane that passes the central cross section;

I

I

I

I

I

I

I

I

I

I

I

I
’.-:::t._.:: S
y y | 9 \

the system can be invariant in time. I&/\’

The following dimensionless parameters are widely Figure 3.1: A scheme of the
used to characterize the flow regimes in the Couette-Taylor
system: the length aspect ratio[' =1[/d, the radius ratio
n = a/b, the angular velocity ratio : ¢ = ,/£2;. The radius ratio is related to the azimuthal aspect
ratio by the expression Iy = (1 +7n)/(1 — 7).

Couette-Taylor flow system.

According to different values of the angular velocity ratio u, we can define different rotational
regimes of the Couette-Taylor system. The most investigated regime is the one for which the inner
cylinder rotates while the outer cylinder is fixed i.e. u = 0. On the opposite side, we can fix the inner
cylinder and rotate the outer cylinder, in this case u = co. We can also rotate the two cylinders at the
same time with a fixed rotation ratio.

Since the aim of this thesis is to investigate the analogy of viscoelastic instability in the
Couette-Taylor with the magneto-rotational instability (MRI) that is supposed to be responsible of
turbulence in the accretion disk which rotates in Keplerian distribution of 2(r) r~3/2, we will focus
our study to Keplerian regime where the two cylinders rotate with Q;/Q, = (a/b)~3/? or u = n3/2.
We may inverse the Keplerian regime to get the anti-Keplerian regime where u = n~3/2. Beside
these regimes we have also studied the regime of u =13 which lies between u = 0 and the
Keplerian regime.

3.2. Viscoelastic Couette flow

In a Couette-Taylor system with a large aspect ratio (I' > 1), the boundary effects on the top
and bottom can be neglected. Before the flow is destabilized it is laminar and is called circular
Couette flow. In the cylindrical coordinates (r, 8, z), it possesses only the azimuthal velocity:
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U=V@)eg 3.1
As there is no stress in the 8z and rz planes, T? is written a priori:

Trr (T) Tre (T) 0

TP = Tg(r) Tee(r) O 3.2
0 0 T,,(1r)
In the Couette flow the velocity and the stress tensor are both invariant in 8z planes (Z—Z = g—g =0,
aT _ aT o v _ . oT _
5——9—0)and|nt|me(E—O, E_O)'

By substituting the base flow expressions 3.1 and 3.2 to the dimensional Oldroyd-B equations
2.18, the equations of the base flow in a cylindrical annulus of infinite length read:

V2 dll Ty — Ty dn vz N,
p— =
T dr T dr T T 33

~r2 ar
The first equation is the balance between the pressure gradient and the centrifugal force reinforced

by the elasticity force i.e. the contribution of the first normal stress difference N; = Tgg — T)-- The
second one gives the conservation of the momentum in the radial direction.

The Oldroyd-B constitutive equations are simplified to

T.,=0
o (dV V)
oo (dV V)2 '
g0 = 4 pVT dr 1
T,, =0
Note that the second normal stress difference N, = T,.,. — T,, vanishes identically.
The boundary conditions for cylindrical annulus are
Vir=a)=Qa V(r=>b)=Q,b 3.5
a. Base flow velocity profile
The solution of the second equation of the system 3.3 is straightforward and reads
B N,b? — 0;a* 2; — 2,)a%b?
Vi) =art Twee P moa >0
which is the same velocity profile as the Newtonian Couette flow. The non-vanishing component of y
reads:
.o av. v . 2B 2(Q - Q,)a?b? 3.7
e = Ty N (e '
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The velocity profile of the circular Couette flow velocity and the shear strain rate are not affected by
the viscosity nor by the elasticity properties.

The angular velocity Q(r) of the Couette flow is then determined as follow:

V(r) B 3.8
Q) =—"=4+—
T T

The angular velocity depends on the radial position r, so we can define also the mean angular

velocity (w) of the base flow as follows:

_Pra@ar In(b/a)
(0)>—W—A+28m 3.9

Non-dimenstionlized by ();, this mean angular velocity reads:

(wy _p=n*[ 1-p 7n°
Q 1-n*[ p-n*1-n?

In(n?) 3.10

For the five different regimes studied, the velocity profiles of the circular Couette flow are presented

in figure 3.2.
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Figure3.2: The velocity of the base flow for five different rotation regimes forn = 0.8.
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b. Stress tensor components

Substituting the base flow profile 3.6 into the Oldroyd-B equations 3.4, we get finally the following
result for the relations between stress tensor and strain tensor components in the Oldroyd B model
for the circular Couette flow

_ 0 Tp O _ —2pv,B 8pv, TB?
Tp = TT‘B ng 0 Wlth TTG = —2 ng = —4 311
0 0 0 r r

Only the component Tyg contains the elasticity while the shear one is independent of T

The first normal stress difference N is given by

8pv,TB?
Ny =Tog = —— 3.12
The radial pressure gradient is then given by
dil 2AB B*\ 8pv,TB?
—=p|Ar+—+ = |+ —— 3.13
dr r r3 rs

The profile of the pressure gradient from 3.13 is plotted in figure 3.3 for five different
rotation regimes for both Newtonian and viscoelastic flows. For all regimes the viscoelastic flows
have larger pressure gradients than the Newtonian flows and the contribution from the first normal
stress difference Nj is larger near the inner cylinder than near the outer cylinder.

14 . . .
12w 1
\
\ Newtonian flow p=0 regime
1r \ 1 | ====- Viscoelastic flow p=0 regime
N Newtonian flow p=w« regime
L S J Viscoelastic flow p=« regime
0.8 ~
dI/dr N Newtonian flow Keplerian regime
o ~ e | = Viscoelastic flowKeplerian regime
067 AN . Newtonian flow anti-Keplerian regime
- Rl Viscoelastic flow anti-Keplerian regime
04 ."""-..‘_“ S - Newtonian flow p=n>
S— -...._“'""--...._ Ty | mmm- Viscoelastic flow p=n> regime
0 I _-.-|__¥
4 42 4.4 46 4.8 5
I

Figure 3.3: Radial profile of the pressure gradient for five rotation regimes forn = 0.8, ES = 1. Solid
lines represent the Newtonian flows while dashed lines represent the viscoelastic flows.
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3.3 Control parameters for viscoelastic Couette flows

Assuming the infinite length of the cylinders, i.e. T > 1, the geometric parameter of the
Couette flow is the radius ration = a/b. As seen in the chapter 2, the shear ratey = U,/d enters
the definition of the dimensionless control parameters Re and Wi. The characteristic length of the
Couette flow is the gap widthd = b — a between the rotating cylinders. Therefore the question is
how to choose the characteristic velocity Uj in the case of two differentially rotating cylinders.

Most of studies use the shear rate at the cylindrical surfaces, therefore defining the Reynolds
numbers associated with the rotating cylinders [Andereck1986]:

v 2 . . 32
R, = vid” _ Qiad R, = Yod” _ Qoad 3.14
v v v v
and correspondingly the Weissenberg numbers associated with the inner and outer cylinders:
t0;a tQ,b
Wii = T‘;'/i = Tl Wlo = ‘[)/0 = do 3.15

For viscoelastic solutions between differentially rotating cylinders, neither the two Reynolds
numbers nor the two Weissenberg numbers are relevant for the dynamics. It is more appropriate to
define an average shear rate, and therefore one Reynolds number and one Weissenberg number.
There is no unique way to define the mean shear rate. We give some common choices used in
literature. The simplest definition of the average shear rate is given by the analogy with the plane
Couette flow (Fig. 3.4) and we will call it “traditional”:

. |-Qia - Qobl
y=—_"°

d
Here U, = |Q;a — Q,b| is the relative velocity of the cylinders. The second control parameter will

be then the rotation ratio u = Q,/Q;.
Dubrulle et al. [Dubrulle2005] have defined the shear rate determined at the geometric mean

radius Ty = Vabi.e.

3.16

.. d (V) _ [2B| B 2|1Q; — Q,lab
Ys = rdr r . = ng = b2 — g2 3.17
Here the characteristic velocity is
Q; — Q,lab 17 2lu—1
o= Dl 1o, g, L = g 3.18
(a+b)/2 T, 1+n

where r, = (a + b)/2 is the arithmetic mean radius. This definition introduces a second parameter
which is the angular velocity of the rotating frame. This angular velocity Q is determined at the
characteristic radius 7 i.e.

— Qia + Qob
Q=0 =— 3.19
() b+a
This angular velocity defines the rotation number
P 3.20
2 '
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Figure 3.4: Average shear rate: (a) traditional definition, (b) dynamic definition [Dubrulle2015].

The table below gives the control parameters defined according these definitions.

Traditional control parameters

Dynamics-motivated parameters

Shear rate . 1Qa—Q,b| . 210; —Qplab
i — il v
Reynolds . 19a—=Q,bld | Shear 2|9 — Q,labd?
Re=1,y=——— Res = 7,Ys =
number v Reynolds (b% — a?)v
= |R; = Ro| | number 3 IR R
Rotation _Q Rotation 20 (Qa+Q,b)(b—a)
ratio H= Q; number Ro = Ve 10, — Q,|ab
_lznutn
n_|1—y
Weissenberg Wi =7 — [Qia — Q,b| Shear Wi = 17, — 21Q; — Q,lab
number L= =t d Weissenberg s =TWs =1 b2 — g2
number
Taylor Shear Taylor d
d
number Ta = |—Re number Ta; = |—Re;
T, Tg
a
Moéified ds Modified ~ ds
Weissenberg K= |—Wi shear K = r—Wl
number Ta Weissenberg 9
number
Table 3.1: Main control physical parameters of the viscoelastic Couette flow.
The different Weissenberg numbers are related as follows:
Wi = '"_“|Wi- _ In—ul(1+n)Wl. 321
n ' 2n|1-pl s '
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In the present study, we will use the “traditional” definition of the shear rate. The control

parameters of the viscoelastic Couette flow are resumed in Table 3.2

Dimensional form

Dimensionless form

Characteristic velocity Uy = |Q;a — Q,b]| 1
Azimuthal velocity s 0,b% — 0;a* _op—n?
V(r):Ar+E - b?2-a? T n(1+1)
" 5 _ @—0,)a%? o (—wn
b% —a S a-ma-n)
Shear strain rate Tp=— ZMZB Ty=— ZSZB
r r
Azimuthal strain rate _ 8u,tB? 7 8Wi SB?
00 = 3 00 =2
First Normal stress 8MPTBZ _8wi SB?
difference Ny = ) 1 r4
Pressure gradient am _ ) (Azr N 2AB N B_z) N 8u,TB* | dil _ Re <A2r . 2AB . B_2> N 8WiSB?
dr T r3 S dr r 3 5

Table 3.2: Base flow characteristics in the Couette-Taylor system.

3.4 Magnetic analogy of the viscoelastic Couette flow

Following Ogilvie & Proctor [Ogilvie2003], we introduce a set of 3 auxiliary fields ﬁi (i=
1, 2, 3) such that the component of the polymer stress tensor can be written as follows

J_ pi pJ i pJ i pJ
T, = le7pr1 + lenzsz + leJ3Bp3

3.22

The polymer stress tensor for the base flow 3.2 yields the modified polymer stress tensor Tp for the

base flow, the form of which suggests that

By3 =Bj3=Bp, =By, =0 and Bj3Bj; = % = By3 = By 3.23
Here By = W is the characteristic polymer analog of the magnetic field.
The remaining components satisfy the following system:
( BL,BL, + B3,Bl, =2
Bj1Byy + BpaBp, = ZPTLZ”B 3.24
\Bp1Bj1 + Bj2Bp2 = SPV+4TBZ

There are 4 unknowns in the system of three equations; this suggests two choices of these auxiliary
fields, either

1
1 0
R B, - By [ 2B
B’“_ﬁ@ =\ B”:B"(?) 2
0



or

1 0
0
- 2TB - 2\/7‘[3 -
Bpl = BO 'r_z sz = BO 5 Bp3 - BO (0) 3.26
r
0 0 1
In the dimensionless form, the polymer analog of the azimuthal component of the magnetic fields
becomes:
1 0
_ ;2 . _ ;2
B,, = B, a-u ‘/EV'Z”I or By =B, a-u Zﬁvl/‘a 3.27
m-w@+n) r m-w@+n
0 0

The axial field B—p3) = Bye, will dominate the azimuthal field if

1-w 2Wia?

m-w@+n r?
which yields a critical Weissenberg number Wi* defined by:

3.28

—w@a+ r?
Wi* = min (7 — 1)( n) 3.29

r 1-w)  +2a2

For example, for the geometry withnn = 0.8, usingr = a we get Wi* ~ 0.76.

Therefore, in the case of the Keplerian rotation regime, the destabilization of the viscoelastic
Couette flow with Wi «< Wi* may be interpreted as an analog of the standard MRI (SMRI). In the
opposite case, when Wi >»> Wi*, the dominating polymer analog of the azimuthal component of the
magnetic field may lead to the analog of the azimuthal MRI (AMRI) or the Michael instability.

For intermediate values of Wi, both the axial and the azimuthal components will contribute
to the viscoelastic instability which reminds the helical MRI (HMRI).

In the viscoelastic analog, the polymeric analog of the azimuthal magnetic field possesses a
profile of B, & 1/r2, while current experiments of HMRI with liquid metal [StefaniO6] [Stefani07]
[Seilmayer2014] have azimuthal magnetic field profile of B o< 1/7.

3.5 Conclusion

In this chapter we have presented the viscoelastic base flow in the Couette-Taylor system,
named viscoelastic Couette flow, with control parameters defined in both dimensional and
dimensionless form. The polymer stress tensor of the viscoelastic Couette flow can be expressed in
analogy with some effective magnetic fields. Full details of the analogy will be given in section 7.3.
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Chapter 4:
Stability of viscoelastic Couette flow

4.1. Rayleigh criterion of stability

a. Rotational Rayleigh discriminant and epicyclic frequency

The stability of a circular Couette flow is predicted by the inviscid condition established by Lord
Rayleigh in 1916 and named circulation Rayleigh criterion. A rotating flow can be destabilized by
axisymmetric perturbations only if the Rayleigh discriminant @,.(r) is negative somewhere in the
flow. The Rayleigh discriminant is given by

1d(rv(m)°

r3 dr

_ 1 dL?

r3 dr
r s

where the subscript r denotes “rotation”. Otherwise stated, an inviscid rotating flow is stable if the

d,.(r) = 4.1

angular momentum L =1r?Q or the circulation increases monotonically outward (positive
stratification of the angular momentum or the circulation). We substitute the expression of V(r)
(equations 3.6) into equation 4.1 and we have:

B

Then we scale the Rayleigh discriminant by Q7 i.e. W,.(#) = ®,(#)/Q? with# =r/d to get the
dimensionless Rayleigh discriminant:

. 4m*-w n \*1
W, () = W((UZ -+ -1 (m) f_Z) 4.3
nzl\
1 (1,1
Unstable
Unstable
o
Il
3
Stable

N
7

0 U

Figure 4.1: Stability diagram of the circular Couette flow according to circulation Rayleigh criterion.
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Equation 4.2 Implies that a circular Couette flow is potentially unstable only if u < n2. So
that the Keplerian regime, anti-Keplerian regime and y = oo regime are potentially stable as
Y, (#) > 0 while the u = 0 regime and the u = 13 regime are potentially instable as ¥,.(#) < 0.

In the potentially stable zone i.e. when the discriminant is positive, the radially displaced
particles may oscillate with a frequency called epicyclic frequency we, in the Astrophysics of the
accretion disks assumed to be axisymmetric [Balbus2009]:

wgy () =/ @(1) 4.4
The epicyclic frequency is used to determine the boundaries of the accretion disks when the
discriminant becomes negative and therefore unstable to small perturbations.

The instabilities of a Newtonian flow in a Couette-Taylor system already have been
investigated by many researchers. An experimental diagram of different states observed in circular
Couette flow was provided by Andereck in 1986, it gives a clear evidence of the validity of Rayleigh
criterion (see figure 4.2). A recent state diagram including high turbulence has been established by
the Twente group [Huisman2014].
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Figure 4.2: State diagram of Newtonian Couette-Taylor instabilities for different rotational regimes
with n = 0.883; R; and R,, are the Reynolds numbers of the inner and outer cylinders respectively
[Andereck1986]. The red line represents the condition of ®,. = 0. The flow in the positive ®,. zone is
predicted to be stable Couette flow, all states were found in the region where @, < 0.

b. Elasto-rotational Rayleigh discriminant

Following the lead of the circulation Rayleigh criterion, we have made our first step in the
study of the elastic instability in the Couette-Taylor system by generalizing the circulation Rayleigh
criterion to elastic fluids within the Oldroyd-B model.
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We consider a fluid particle in a differential rotating laminar flow. The particle rotates at the
orbit of the radius r because of the balance between the centrifugal force and the pressure gradient
modified by the contribution of the first normal stress difference. If this particle is moved from its
orbit into a nearby orbit 7 + dr so quickly that 745, < (7,,,7), no dissipation nor relaxation occurs
and the momentum of the fluid particle is conserved. The net force acting on the displaced fluid
particle at the new orbit r + dr can be written as follow:

df = —p®,,.(r)dr + o(dr?) 4.5

where we have introduced the generalized Rayleigh discriminant ®,,.(r) that can be called elasto-

|u .

rotational discriminant where the subscript er denotes “elasto-rotationa

1dN,;
@ (r) = O,(r) + or dr |, 4.6
For the circular Couette viscoelastic flow, the elasto-rotational discriminant is expressed:
B\ 32u,TB*1
Gur(r) = &, (1) + 0, ) = 44 (A +3) - 4.7

where the elasto-rotational Rayleigh discriminant ®,,.(r) is composed of the rotation contribution
®,.(r) and the elastic contribution ®,(r). Then the non-dimensional elasto-rotational Rayleigh
discriminant reads:

o A0 - n V1) 32ES(u—17%/ n \*1
Wer (7)) = W((TIZ —wW+{@-1) (ﬂ) 772) T =1 (1 — Tl) 76 4.8

where the product ES represents the polymer contribution to the elasticity of the solution.
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Figure 4.3: Rotational Rayleigh discriminant W,.(#) and elasto-rotational Rayleigh discriminant
Y,..(7) for flows with ES = 1 in five rotation regimes.
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In figure 4.3, we have plotted the rotation Rayleigh discriminant W,.(#) and the elasto-
rotational Rayleigh discriminant W,,.(#) for a solution with ES = 1 for five rotation regimes. We set
7 € [4,5] corresponding ton = 0.8. We can see that the curves of the elasto-rotational Rayleigh
discriminant for all regimes are located below the corresponding curves of the rotational Rayleigh
discriminant. The contribution from the elasticity force is the enhancement of the potential
instability.

The rotational and elasto-rotational epicyclic frequencies wg, () and wgy, (#)corresponding to
the rotational and elasto-rotational Rayleigh discriminant are defined by:

Wep (F) =/ Pr(F) wep (F) = \/ Per(P) 4.9

In figure 4.4 the profiles of the rotational epicyclic frequencies wg, and the elastic epicyclic frequency
wgp are plotted for solutions of ES = 1in respect to 7 for the regimes with positive W (7). In the
regimes of = oo and u =732, both the wgp (F) and wgy, () increase with #. However in the

Keplerian regime, wg, () decreases with 7 while wgy, () increases with 7.
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Figure 4.4: Rotational epicyclic frequency wg,, and elasto-rotational epicyclic frequency mS{, with

ES = 1 for five regimes.

The elastic force does not only enhance the centrifugal instability, but also it can induce an
elastic instability when the outer cylinder rotates faster than the inner cylinder when the centrifugal
force is no more destabilizing the Newtonian flow. This is the case for the Keplerian flow with a
viscoelastic fluid with ES = 1. In figure 4.3, the elasto-rotational Rayleigh discriminant is negative
near the inner cylinder, so that such a flow is potentially unstable to elasticity-driven perturbations.

c. Potentially stable and unstable zone
The elasto-rotational Rayleigh discriminant W,,.(7) is a function of # and it depends on three
control parameters: i, u and ES. For each set of control parameters of (u,n, ES), we calculate the
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minimum W, = min('{’er(f)) among all possible values of # € [4, 5]. Then the flow is unstable if
the smallest Rayleigh discriminant along 7 € [4, 5] is negative (¥,,, < 0). We plot in figure 4.5 the
nodal surface ¥,,, = 0 in the 3D parameter space of (72, 4, ES). The color on the surface represents
the magnitude of n2. The parameter space is separated into three zones: unstable zones for large
and small u and stable zone for u ~ 1. For solutions with large values of ES, small rotation velocity
difference (1 approaches 1) is enough to destabilize the flow.
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Figure 4.5: 3D plot of the nodal surface of the elastic Rayleigh discriminant.

To be more precise, we plot in figure 4.6 in the plane of (i, n?) the Rayleigh lines W, = 0
for different ES together with the Keplerian and anti-Keplerian lines. The rotational Rayleigh line
corresponds to the value ES = 0. We observe that the Rayleigh lines (solid lines) with different
polymer elasticity ES intersect the Keplerian and anti-Keplerian lines (dashed lines) at different
values of the radius ratio 1. For different values of 1, there exist different values of polymer elasticity
ES™ such that a flow in the Keplerian or anti-Keplerian regime can be destabilized. The values ES
and ESy;, of the polymer elasticity in Keplerian and anti-Keplerian regime are plotted against
n € [0.1,0.95]in figure 4.7; they increase with n. This means that to get elasticity-driven
perturbations with less polymer elasticity, it is necessary to use cylindrical annulus with large gap i.e
with small values of n. For the annular configuration withn = 0.8, we found ES; = 0.672 and
ES,, = 3.451.
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Figure 4.7: Critical polymer elasticity ES™ in respect to radius ratio  on Keplerian and anti-Keplerian

regime.

To summarize, we plot a schematic diagram (figure 4.8) to present the two effects of the
elastic contribution to the instability. In the diagram, the solid green line is the Rayleigh line on which
the rotational Rayleigh discriminant vanishes. The solid orange lines are the Rayleigh lines on which
the elasto-rotational Rayleigh discriminant vanishes. The position of the Rayleigh line moves with ES.
For larger ES, the elastic Rayleigh lines approach the solid body rotation line.

30



Elasticity induced instability Elasto-rotational Rayleigh lines
(move with ES)

Centrifugal instability
enhanced by elasticity

Elasticity induced instability

>
Q

0

Figure 4.8: Schematic stability diagram according to elasto-rotational Rayleigh discriminant.

d. Analogy with the Michael criterion of MHD

The elasto-rotational Rayleigh discriminant has the same structure as the generalized Rayleigh
discriminant in the rotating flow in the presence of an azimuthal magnetic field Bg. In this case, a
rotating hydro-magnetic flow of ideal electrically conducting fluids is potentially unstable with
respect to axisymmetric perturbations if [Davidson2013][Michael1954]:

r d (B

Dy = Py — '_(—9) <0 4.10
puodr \ r

We define ®,,,,- as a magneto-rotational discriminant. If the magnetic field By varies with the

; 2 :
radius as C/r*, ®,,,,- becomes:

6C?

— 4.11
PltoT

D, =0+, =0, +
In this case both the magnetic contribution @,, and elastic contribution ®, (expression 4.7) vary with

the radius as 1/7°. Hence the elasto-rotational Rayleigh discriminant @, is analog to ®@,,,, and the
elasto-rotational criterion is analog to the Michael critierion.

4.2. Linear stability analysis (LSA)

The elasto-rotational Rayleigh discriminant allows us to predict the potential instability in a
Couette-Taylor system. However this criterion does not provide the sufficient condition because it
assumes that the fluids are inviscid. Therefore, it is necessary to perform the linear stability analysis
(LSA) of the flow to obtain precise predictions of the first instability of a viscoelastic laminar flow. As
mentioned in chapter 1, many authors have performed the LSA of the viscoelastic fluid with Oldroyd-
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B model, but these studies have treated only special cases: axisymmetric modes [Shaqfeh1996]
[Kupferman1998], non-axisymmetric modes but without the variation of the viscosity ratio S
[Avgoust1993]. The present study aims to address a thorough investigation of the stability of the
viscoelastic flows for different values of S,  and for different cases of the differential rotation of the
cylinders: stationary outer cylinder, stationary inner cylinder, co-rotating cylinders in the Keplerian
ratio or in the anti-Keplerian ratio.

Starting from this section, the dimensionless radius 7 is replaced by r as only dimensionless
equations are used from now on.

a. Linear stability equations

The linear stability of viscoelastic fluid in Couette-Taylor system consists in addition of
infinitesimally small perturbations to the dimensionless flow equations 2.23 and linearization about
this base state (equation 3.6). As the base state depends only on the radial coordinate r and it is
axisymmetric i.e. it is invariant along the cylinder axis and around the azimuthal direction, the small
perturbations can be developed in normal modes of the form of [st + i(m6 + qz)] . Here
s = 0 + iw, in which g is the growth rate and w is the angular frequency; m and g are azimuthal
and axial wavenumbers. So that the variables with perturbations are written as follows

0 u(r)
ﬁ(r) = <V(r)) +1 v(r) e (st+imb+iqz)
0 w(r)

N(r) = (r) + p(r)estHimo+iaz) 4.12

TP(r) = | To(r) Tog(r) 0]+|tra(r) toa(r) to (1) |elt+imo+ias
0 0 0 trz (T) t@z (7") tzz (7")
Then we substitute the expressions 4.12 to the dimensionless governing equations (2.23) and
linearize the resulting equations by retaining only the terms of first order of the perturbations. We
get the following dimensionless linearized perturbation equations:

_ ( 0 T.o(r) 0) tr (1) trg(r)  try(71)

u imv
—+Du+—+igw =20
T r

Re<(5+imTV u—¥)=—Dp+(%+Dtrr lmtre+lqtrz—te—9)+(1 S)(——

m2u P Zimu)
72

Re((s+ﬂ)v+ +DVu ) —ZP 4 (224 Dt

_ v_v 2, _mv_ 2imu 4.13
1 S)(r r2+Dv — —qv+t r2)
2
Re(s+—)w——lkp+(”+DtrZ "Z+zqtzz)+(1—5)( + D2w mrzw—
2
q*w)
(1+ ERes + ERe ™) t,,, — ERe Z™*% = 25Du
(1+ ERes + ERe ™) t,g + ERe [DT,qu + 2= — T,oDu — 1% — pyt,, —
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imT,gv . uTrg] - [Dv + ﬂ _ z]
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imw ]

imT .
— DVt,, — TrgDw — 2| = 5|22 1 iqu
(1+ ERes + ERe ™) t,,, = 2Siqw

The boundary conditions require that the perturbations vanish on the cylindrical surfaces r = a and
r=b:

u=v=w=0 —=0 4.14

b. Numerical methods
To solve the linear equations 4.13 together with the boundary conditions 4.14, we rewrite them
as an eigenvalue problem in form:

AX = sBX 4.15

where X = (U VWDt trg try tog tos tzz)T is the perturbation variables, A and B are second order
matrices. This eigenvalue problem is solved by the Chebyshev collocation method with the Matlab
solver “eigs”.

The variable vector X is projected on a discrete Chebyshev series S, and then transformed to the
mesh vector S, which is concentrated on the boundaries of the domain:

Sc+1 a

_ += 4.16
" 2 d

The calculation of the eigenvalues depends also on the mesh grid number N, but the results

converge as N gets larger. After several tests, we have chosen N = 100 which is large enough to
assure the right results and small enough to reduce the calculation time. When the mesh size is fixed,
the eigenvalue s of the system is a function of the control parameters Re, E, 1, 1, S, m, q. Among all
these control parameters, Re and p control the shear rate and rotation, E and S characterize the
fluid properties, and m and q define the perturbations.

For a given set of parameters, there exist more than one eigenvalue that fit the eigenvalue
problem. Taking for example Re = 500,E =0.03,n=0.8,5=0.7, m=0, g =10 on Keplerian

3/2 we find that the eigenvalues are complex numbers presented by dots in figure 4.9.

regimeyu =mn
Among all the eigenvalues presented in figure 4.9, most of them converge along the mesh size. The
converging eigenvalue which possesses the largest growth rate o corresponds to the most unstable

mode.
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Figure 4.9: Eigenvalues of the linear equation with the parameters of Re = 500, F = 0.03,n = 0.8,
$=0.7,m=0,q = 10, on Keplerian regime u = n3/2.

For fixed control parameters of Re, E, n and S, the eigenvalues with the largest growth rate
vary for different wave numbersm € Z and g € R. So we change m and q to find the eigenvalue
with the largest growth rate o 4, among all possible m and q.

For each fixed elasticity E and viscosity ratio S we calculated critical shear rate y,. which makes
the largest growth rate g,,,, = 0 among a series of m and q. The m and g that minimize the y, are
called critical wave numbers m. and g, while the correspond frequency w, is the critical angular
frequency. The critical control parameters like Re., Ta., Wi., K. are deduced. To understand better
the critical mode we investigate also the eigenfunctions of the variables X corresponding to S, and
the azimuthal vorticity defined by:

v ow

we—g—ﬁ 4.17

c. Code validations

We have used our code to compute some cases found in literature in order to validate our
code. Starting from the Newtonian fluids in the u = 0 regime, we have got the same critical Taylor
number Ta, and critical wave number g, for several n as previous researches [Swinney1981]. Then
we have studied the purely elastic instability Re = 0 of axisymmetric mode m = 0 at small gap
approximationn ~ 1 and compared with the results provided by Larson & Shagfeh [Larson1990]. In
figure 4.10 we compare the results of Larson & Shagfeh together with our calculations in terms of
parameters used by Larson & Shaqgfeh [Larson1990]. We have obtained similar critical curves with
the same behavior. However our critical values are about 10% higher than the results of Larson &
Shagfeh.
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Figure 4.10: Critical curves of the most unstable axisymmetric mode of the purely elastic instability
when Re = 0 and m = 0 at the small gap limitationn ~ 1. (a) Results of Larson & Shagfeh. (b) Our
results. All syntaxes in both figures are defined by the way of Larson & Shagfeh [Larson1990].

Joo & Shagfeh have provided LSA results of the inertia-elastic instability with Re # 0 using the
same simplified equations of small gap and axisymmetric mode [Joo1992]. They have found a
competition between the purely elastic instability and the centrifugal instability which is represented
by the crossed critical curves of two modes in figure 4.11 (a). Using the same control parameters of
S = 0.8, we have obtained the similar critical curves of two modes: an inertia-elasticity mode at large
Re and a purely elasticity mode at large Wi. Although our critical curves are still about 10% higher
than the results of Joo & Shagfeh the same instabilities and similar critical curves are reproduced.
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Figure 4.11: Critical curves Re, — Wi, represent two different unstable modes: purely elastic mode
and inertia-elastic mode. S = 0.8, m = 0, n ~ 1. (a) Results of Joo et al. (b) Our results.

Larson & Shagfeh [Larson1990] and Joo & Shaqgfeh [Joo1992] have used simplified equations
from the Oldroyd-B model, while we have used the exact equations. That is the reason why our
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numerical results differ quantitatively from their results; and they are more precise than those of the
previous studies.

The second test was done with control parameters of Avgousti who have used the same
complete equations of Oldroyd-B model [Avgousti1l993]. We plot in figure 4.12 (a) (b) the critical
curves of Avgousti and ours, for a specific wavenumber q = 3.12 for vs/v, = 3.76, n = 0.95,
u = 0.5 defined by Avgousti. The comparison between our results and those of Avgousti shows
perfect agreement, so we confirm that our codes are reliable.
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Figure 4.12: Critical curves for different azimuthal wavenumber (denoted by ¢ for figure (a), m for
figure (b)) for a specific wavenumber q = 3.12 for vs/v, = 3.76, n = 0.95, u = 0.5 defined by
Avgousti. (a) Results of Avgousti. (b) Our results.

We have also studied the inertia-elasticity instability in the Keplerian regime withn =
0.95,S = 0.5, which is the case studied by Ogilvie & Potter [Ogilvie2008]. Comparing our results to
those of Ogilvie & Potter in figure 4.13, we can see similar critical curve with similar growth rate
distribution and the same spiral mode. However our critical curve is about 10% higher than that of
Ogilvie & Potter who have declared that they have only qualitative agreements with Avgousti et al
[Avgousti 1993]. So we believe that our results are more reliable than those of Ogilvie & Potter.
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Figure 4.13: (a) (b): Contours of the growth rate s optimized with respect to m and g on map of
(Re, W) for Keplerian case atn = 0.95,5 = 0.5. (a) Results of Ogilvie & Potter where the white line
represents the critical curve; (b) our results where the white zone represents negative growth rate. (c)
(d): Eigenfunction of the preferred mode on a specific set of (Re, Wi) along the critical curve for
Re = 40. The azimuthal velocity perturbation is indicated by color scale. (c) Results of Ogilvie &
Potter (d) our results.

4.3 Conclusion

In this chapter we have introduced the theoretical methods to study the viscoelastic
instability in a Couette-Taylor flow. We start by generalizing the rotational Rayleigh discriminant to
include the elasticity. This has led us to the elasto-rotational Rayleigh discriminant. The analysis of
these discriminants shows that the elasticity force enhances the centrifugal instability and can induce
the purely elasticity-induced instability when the flow is centrifugally stable. The elasto-rotational
Rayleigh discriminant is analog to the Michael’s instability criterion for the circular Couette flow of
conducting fluids in the presence of an azimuthal magnetic field

To get more precise predictions on the critical parameters, we have formulated the linear
stability analysis of a viscoelastic flow with the complete Oldroyd-B model. The resulting eigenvalue
problem was solved using our numerical code based on Matlab environment and using the
Chebyshev collocation method. The code has been validated with comparison with some cases from
the literature. The critical curves and critical modes that fit our experiments will be presented in the
following chapters.
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Chapter 5:
Experimental setup & Working fluids

This chapter describes the experimental setup and the working fluids. As the working fluids
are viscoelastic, their rheology properties and the elastic properties are all well characterized before
and after experiments.

5.1. Experimental setup

The experiments were conducted in a Couette Taylor system which consists of a flow in the
gap between two vertical coaxial cylinders with the length [ = 45cm. The inner cylinder is made by
Plexiglas with the radius a = 4cm and the outer cylinder is made by Delrin with the radius b = 5cm.
So the gap width of our Couette-Taylor system d = 1cm, the radius ration = 0.8 and the aspect
ratio[’ = 45.

Each cylinder is connected to a step motor so that the 2 cylinders can be controlled separately.
The rotational velocity can reach 200 r/min, beyond this value the system will vibrate. The end plates
of the top and the bottom rotate with the outer cylinder. As we have used cylinders of large aspect
ratio I, the influence of the border effect on the central part of the cylinders can be ignored.

The Couette-Taylor system is immerged in a water tank of 30cm X 30cm X 45cm connected
by tubes to a thermostatic bath. We set the water circulation temperature to 20°C, however as the
water tank is large, the water circulation is non-axisymmetric, and the rotation of viscous polymer
solutions dissipates energy, we cannot control precisely the temperature in the Couette-Taylor
system. Several temperature tests show that the temperature in the Couette-Taylor system is
20°C £ 0.4°C.

For visualization, we have added 2% Kalliroscope in our working fluids. Such a concentration
does not modify the viscosity of the working fluid. The front view of the flow patterns can be
observed using light spot while the cross section in the plane (7, z) is obtained. The flow patterns are
recorded by a CCD camera supported by the Streampix software, and then the films are analyzed
with the help of Matlab.

In each experiment, the gap between the two cylinders was filled with the prepared working
fluids and the rotation velocities of the cylinders were increased step by step with a waiting period
longer than 10 min on each step. As soon as the laminar base flow is entirely destabilized we
recorded the critical velocity of the cylinders and the flow patterns with both gap view and front view.
The transition from laminar flow to unstable flow is also recorded.
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Figure 5.1: Experimental setup and its environment.

5.2. Preparation of working fluids

(a) (b)

Figure 5.2: (a) Monomer of PEO and PEG (b) PEO sealed in a flacon.

The working fluid used in our experiments is the polymer solution of Polyoxyethylene (PEO)
dissolved in mixture of Polyethylen glycol (PEG) and water. The PEO and the PEG are both neutral
polymers with flexible linear chains of similar chemical properties. They are polymers of the same
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monomer (presented in figure 5.2 (a)), while they differ from each other only by the degree of
polymerization n. According to our supplier, the PEO we used has an average molar mass of 8 x 10°
S0 Npog ~ 1.8 X 10°while the PEG we used has an average molar mass of 2 X 10* so npg; ~ 450.
As the PEO has long chain and it is easily degradable, the PEO is sealed in small flacons of 2ml
(presented in figure 5.2 b) and is stored in a freezer of -10°C. The PEG is stored in plastic bottles in lab
temperature.

In the final solutions, PEO works as the source of elasticity and viscosity while PEG contributes
only to the viscosity. However the interaction between PEO and PEG affects also the final elasticity of
the solution. The mixture of water and PEG is considered as the solvent to PEO as it has constant
viscosity independent to the shear rate. In order to get large elasticity, we use 1000 ppm of PEO for
all solutions, which is the maximum dissolvable quantity of PEO. The concentration of the PEG is
changed from 2.5% to 25% by weight for different solutions. We have also added 2.5% of isopropyl
alcohol to help the dissolution of PEO and its stabilization. We have added 2% of Kalliroscope for
visualization.

Solution preparation protocol

The following protocol was followed to prepare the working solutions. Taking a solution of
1000 ppm PEO and 10% PEG as an example, first we prepared a solution of PEO (solution 1) and a
solution of PEG (solution 2) separately, and then mixed them to get the final working solution.

Preparation of the solution 1

1. Weight 50g isopropyl alcohol in a beaker of 1L.

2. Weight 2000mg PEO and disperse it into the isopropyl alcohol.

3. Fill the beaker with demineralized and degassed water to total weight of 1kg.

4. Do not agitate.

5. Seal the beaker by a piece of cellophane and keep it in a fridge of 8°C for 3 to 5 days.
Preparation of the solution 2

1. Weight 200g PEG in a beaker.

2. Fill the beaker with demineralized and degassed water to a total weight of 1kg.

3. Stir the turbid liquid with a magnetic agitator until the solution becomes transparent.

4. Seal the beaker by a piece of cellophane and keep it in a fridge of 8°C for 3 to 5 days.
Mixing the solutions 1 and 2

1. Take out solution 1 and solution 2 from the fridge and leave them in laboratory until they
returned to laboratory temperature.
Agitate each solution moderately for 30 minutes to 2 hours with a magnetic agitator.
Measure 0.95 kg liquid of each solution in a 2L beaker.
Agitate the mixture with a magnetic agitator for 1 to 4 hours.
Seal the beaker with a piece of cellophane and keep it in lab temperature for 3 to 5 days.

ok wnN

Add 2% of Kalliroscope into the solution and agitate it moderately for 10 minutes. Then the
solution is good for rheology tests and experiments.
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5.3. Viscosity measurements

The viscosity of a fluid measures the friction between fluid molecules in a shear flow. As our fluid
is a mixture of two polymers, there are the solvent viscosity pv; and the total viscosity pv to measure.
These viscosities are measured by a shear stress rheometer (Anton Paar MC300) with a cone —plane
measuring cell of radius R = 24.984 mm and cone angle a = 0.5° (see figure 5.3).

R=24.984mm @ uid
~ sample

(b)
Figure 5.3: (a) The shear stress rheometer (Anton Paar MC300). (b) The cone-plane measuring cellule.

To measure the viscosities, we fill the gap between the cone and the base plate with fluid
sample and we rotate the cone in a constant rotational velocity (1 so that the shear rate y ~ Q/a is
fixed. Then the rheometer measures the torque T that the cone receives and calculate the shear
stress T,.g. As we increase the shear rate y step by step while waiting enough time for the cone to
finish one complete tour at each step, the dynamic viscosity of the fluid sample pv is measured by
the ratio between shear stress and the shear rate pv = T,4 /7.

The working temperature of the cone-plane cell is kept in 20 + 0.01°C which is the same
temperature of our Couette-Taylor cell.

a. Solvent viscosity

We have prepared the PEG solvents separately for rheological tests following the preparation
protocol of solution 2. The viscosities of the solvents are measured by swapping the shear rate from
10° (1/s) to 10%(1/s) by step of 10%1(1/s) and the results are presented in figure 5.4. We verified
that the solvent viscosities are constant within shear rates from 1 to 100 (1/s). The average viscosity
of each solvent along tested shear rates is considered as the solvent viscosity pvs. The solvent
viscosity increases from 0.0025 (Pa - s) to 0.1418 (Pa - s) when the PEG concentration increases from
2.5% to 25%. This viscosity represents the friction between PEG molecules as the molecules of the
water and isopropyl alcohol are too small to be negligible before the PEG molecules.
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Figure 5.4: Solvent viscosity with respect to shear rates for PEG concentration from 2.5% to 25%.

b. Fluid viscosity

The viscosities of our working fluids are measured by swapping the shear rate from 107%3 (1/s)
to 103(1/s) by a step of 10%1(1/s). Each solution is tested before and after the Couette-Taylor
experiments and multiple solutions are prepared at each concentration of PEG. We recall that the
PEO concentration is fixed to 1000ppm for all solutions. The results are presented in figure 5.5.

We observe that the fluid viscosity increases with the PEG concentration. As we have fixed
the PEO concentration to 1000 ppm for all solutions, more PEG a solution contains, larger viscosity it
has. The viscosities decrease slowly with the shear rate so that the shear thinning effect is weak. The
more PEG a solution contains, the weaker is the shear thinning. Even for the most shear-thinning
solution (the one containing 2.5% PEG) the viscosity decreases by 60% in a shear rate range of 3.5
decades. As our experiments cover only 1 decade (1 to 10 s*), the shear-thinning effect is negligible.
So our working fluids almost fit the Oldroyd-B model.

When the shear rate becomes larger than a certain critical value the viscosity raises again
because the flow is no longer laminar and instability appears. The instability appears at smaller shear
rate for a solution which contains more PEG and has higher viscosity.

It is known that the polymer solutions are sensible to the condition of preparation (waiting
time, agitation time, agitation magnitude...) as the PEO molecules are long and fragile, the solutions
of the same PEG concentration may have different viscosities. The viscosity was measured before
and after each experiment and it decreases because the rotation breaks polymer chains.

The total solution viscosity pv is determined at the plateau of the measured viscosity curve (i.e.
in the limit of vanishing shear rate) for each solution. With total fluid viscosity v and the solvent
viscosity vy , the polymer viscosity is then calculated by v, = v — v .
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Figure 5.5: Dynamic viscosity of working fluids of different PEG concentrations in respect to shear
rate. Each PEG concentration is represented by one color in the diagram. Dashed lines — working
range of experiments.

c. Variation of the viscosity with PEG concentration

To get a clear view of the dependence of the viscosities to the PEG concentration (Cpgs ) we
plotted the three viscosities (pvs, pv, pvp) in respect to the Cpgg in figure 5.6. We found that the
Cprc functions of all the three viscosities follow exponential laws. However the polymer viscosity
includes not only the friction between POE molecules and also the friction between POE and PEG
molecules. So the polymer viscosity pv, increases with Cpgg. In figure 5.6 the viscosity error is
smaller than the mark.
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Figure 5.6: Total solution viscosity pv, polymer viscosity pv,, and solvent viscosity pvs with respect to
the PEG concentrations and their fitting curves for Cpgp = 1000 ppm.

As presented in figure 5.6 the polymer viscosity pv, increases slower than the total viscosity
pv so the viscosity ratio § = v, /v decreases with Cpgs. We present S with respect to Cpgg in figure

5.7 and we can see that S decreases linearly with Cpg.
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Figure 5.7: Viscosity ratio S with respect to PEG concentration.
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5.4. Relaxation time of the solutions

The measurement of the relaxation time of a viscoelastic fluid is an unresolved problem,
where different methods provide different results. In this thesis three different methods were
applied to estimate the relaxation time, these relaxation times are denoted by 7, for the extensional
relaxation time, 7, for the molar mass relaxation time and ty4 for the first normal stress difference
relaxation time.

a. Three relaxation times

The extensional relaxation time is measured by an extensional rheometer (CaBER), presented
in figure 5.8, which consists of 2 steel plates and a laser system. To measure the relaxation time, we
first fill the gap between the two plates of radius r = 3mm and the initial gap d; = 3.0mm with a
sample of working fluid. Then we stretch the upper plate quickly to its final position of the final gap
df ~ 8.7mm while the bottom plate is fixing. Hence the fluid between the two plates is stretched
and broken into 2 smaller drops. In the meantime, the filament connecting the drops gets thinner
and thinner until finally it breaks up. The laser system which lies in the middle of the 2 plates
measures the filament diameter D as a function of time. The temperature of the measuring cell is
stabilized by a thermostatic bath to 20 + 0.1°C.

linear drive
moving plate photo
receiver
liguid thread ===~~~ -

laser diode

. fixed plate s

(a) (b)

Figure 5.8: The photo of extensional relaxation time and the principle of the measurement.
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Figure 5.9: Variation of the filament diameter with the time, experimental data for a solution of 10%
PEG and 1000 ppm PEO measured by CaBER.

Taking a fluid of 10% PEG and 1000 ppm PEO as an example, the filament diameter data in
respect to time is presented in figure 5.9. The data are separated into two processes, where the first
process is largely affected by the gravity while in the second process the elastic force of the fluid
dominates the evolution of the filament. In the second process, the filament diameter D is
proportional to an exponential function of time:

D(t) o e~t/3% 5.1
where the extensional relaxation time 7, appears as a parameter (see CaBER manual). So the
extensional relaxation time 7, is obtained by fitting the experimental data to the equation 5.1. For
each measurement five tests are taken to get 7.

The molar mass relaxation time 7, is determined by the molecular model of viscoelastic
fluids [Bird1977] where the t,, is defined by equation 5.2. In this equation C; is the mole number of
the PEO in the solution, R is the perfect gas constant and T is the temperature.

PVp
Ty = .
™~ C;RT >-2
The first normal stress difference relaxation time 7, is defined by:
N 5.3
TNl = ~ .5 .
2vyy?
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where N is measured by the shear stress rheometer (Anton Par MC300) and then adjusted by the
centrifugal force of the cone. Taking a solution of 15%PEG and 1000 ppm PEO as an example, the
experimental data of a shear stress in figure 5.10 show that the adjusted N, is proportional to y? at
large 72 so that the equation 5.3 is validated.

10000 N
e ’ \
1000 Pointsusedto 7 1
calculate ty; e
e '
' '
4 7
100 > /. 5 Vs
' 4
4 7
4 , 7
10 . U o
N,(Pa) X - 7
1 ~
0.1
—0—PEG15% before TC
0.01 experiments ...
0.001 —8—-PEG15% after TC
experiments
0.0001
0.1 100 1000

10
Shear Rate (1/s)

Figure 5.10: Adjusted first normal stress difference N; in respect to the shear rate y. The points in the
red dashed rectangular are used to estimate Tp;.

b. Variation of the relaxation with the PEG concentration

Because of the degradation of the polymer solutions during Couette-Taylor experiments, the 3
relaxation times are measured or estimated before and after the Couette-Taylor experiments. We
plot the three relaxation times of all tested solutions as function of the PEG concentration Cpgg in
figure 5.11. In general, the relaxation times increase with Cpg;. The molar mass relaxation time t,,
follows an exponential low while the other relaxation times are respectively disordered, as their
coefficient of determination (R?) is small.

Except for one solution of 15% PEG, for which 7, > 1,,, the relaxation times of all solutions follow
the inequality

Te > T > T 5.4
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Figure 5.11: Variation of the relaxation times T with PEG concentration.

With these relaxation times, we defined three elasticities by E, = 7, /7, E;yy = T,/Ty and
Eyny = Ty1/Ty, Where T, = d?/v is the viscous diffusion time. We plotted in figure 5.12 the
elasticities with respect to Cpgg. With no surprise, like the relaxation times, the elasticities increase
with Cpge and we have E, > E,, > Ey, except for one solution of 15% PEG. However the E, and Ey4
are less disordered comparing to the 7, and 7, and they correspond better to an exponential law.

At last we plotted in figure 5.13 the elasticities E in respect to the viscosity ratio S as they are
the most important dimensionless parameters to characterize a viscoelastic fluid. Generally speaking,
E decreases with S.
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Figure 5.12: Variation of the Elasticities E with the PEG concentration.
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5.5. Conclusion

In this chapter we have presented the experimental setup, the basic experimental procedures
and the working fluids which consist of POE, PEG water and isopropyl alcohol and their preparation
protocols. The solvent viscosity pvg and the total solution viscosity pv were measured by a shear
rheometer (Anton Paar MC300). The viscosity of our working fluids show weak shear thinning effect,
so that they are considered as fluids which fit approximately the Oldroyd-B model.

As we have fixed the POE concentration to 1000ppm and varied the PEG concentration Cpgg,
for all solutions the viscosities pv, pv, pv,, increase with Cpg while the viscosity ratio S decreases
with Cpgg. The relaxation time of the working fluids is estimated with three different ways. Denoted
by T, T, Ty1 these relaxation times could differ from each other by more than 20 times for the
same fluid. For most solutions the relaxation times 7,,T,,, Ty1 and the elasticities E,, Ep,, Enq
increase with Cpgg.
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Chapter 6: Viscoelastic instability in the
annulus with one rotating cylinder

In the present chapter, we will present the theoretical and experimental results obtained in
the case when either the inner cylinder or the outer is rotating the other being fixed (1 = 0 and

p = ).

6.1. Annular flow for u =0

The stability of viscoelastic flow in the Couette flow when only the inner cylinder is rotating
has been widely investigated by many authors. The present study has revisited the analysis of this
flow and it sheds new light on the aspects that were ignored so far in the experimental and
theoretical studies. A particular attention is drawn on the role of the polymer elasticity parameter ES.

6.1.1. LSA results
The stability analysis of the circular Couette flow with u = 0 described in the chapter 3 is
performed using the LSA codes described in section 4.2.

a. Marginal stability curves

The growth rate of the eigenvalue problem in the Keplerian regime forn = 0.8 is a function of
parameters asag = f(Ta,E,S, q,m). The marginal stability is given by the largest growth rate that
leads to instabilityi.e.c = Oor f(Ta,E,S,q,m) = 0. For a fixed value of E and S, the hypersurface
reduces to a marginal surface f(Ta,q,m) = 0. In practice, we fix m and look for the marginal curve
of Ta(q) for different m, the value of w is determined simultaneously. We plot in figure 6.1 the
marginal stability curves Ta(q) for different values of the azimuthal wavenumber m and for
E = 0.01,0.1, 1. The shape of these curves is very sensitive to the elasticity number E. For small E
(Figure 6.1 (a, b)), the marginal curve of m = 0 has a clear minimum which determines the critical
point (q., Ta.) of the critical mode. For E = 0.01, the critical mode is axisymmetric and stationary
while for E = 0.1, critical mode is non-axisymmetric and oscillatory. But for larger E (Figure 6.1 ©)
the bottom of the marginal curve of m = 1 is so flat that it is difficult to define the critical mode. In
this case, several perturbation modes of different g may interact with each other. So, for large values
of the elasticity number, within linear stability analysis, the critical mode is a linear superposition of
non-axisymmetric modes in the neighborhood of the apparent “q.”.
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b. Variation of the critical parameters with E

The critical values (Tac, q., m¢, w;) depend on the solution parameters E,S. We have fixed
the viscosity ratio S and have computed the critical parameters Ta, and g, for a chosen value of the
azimuthal wavenumber m. In Figure 6.2, the curve of the Ta.(E) is plotted for different m for
S = 0.6. We observe that for m = 0, 1,2 the Ta, decreases slowly with increasing E for E < 0.1, and
then rises suddenly forming a sharp peak, and again it decreases. The sharp peak corresponds to a
change of mode, where 2 critical modes of different w, and g, compete with each other. Taking the
mode m = 0 as an example, the critical mode is stationary (w. = 0) before the peak (E < 0.08),
and it is oscillatory (w. # 0) after the peak (E > 0.08). The mode m = 1 does not show any peaks
when T'a. decreases with E.
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45,
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E

Figure 6.2: Variation of the critical values of Ta, with E for different m at fixed S = 0.6.

Comparing these modes, we can see that the most unstable mode ism = 0 at E < 0.03 and
m =1 atlarge E > 0.03. However the mode m = 1 can also be separated into 2 parts by the sign of
critical frequency, w, < 0at0.03 < E < 0.38and w. > 0 at E > 0.38. In Figures 6.3, the variation
of the critical parameters with the elasticity number are plotted for § = 0.6. For small values of
E < 0.03, critical modes are stationary and axisymmetric, they are Taylor vortices (TVF) as in the
case of Newtonian liquid. For E > 0.03 the critical modes are oscillatory non axisymmetric modes
withw, < 0orw, > 0. The axial wavenumber of the Taylor Vortex Flow is almost constant while
that of oscillatory non-axisymmetric modes increases with E up to 2.6 times q.(E =0)
corresponding to vortices of size d/2.6, i.e. almost three vortices in the gap. The frequency |w,| of
the non-axisymmetric modes decreases with E for E € [0.03, 0.38] and then weakly increases with E
uptow, = 0.02forE =1.
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For each polymer solution (i.e. for a given value of S), there exist a point in the plane (E, Ta,)

where two modes with different spatio-temporal properties can coexist. This point is called

codimension-two point. For S = 0.6, the properties of this codimension-two point is given in the

Table:
E Ta, qc me w,
3.47 0 0
0.03 37 3.51 1 -0.11

Table 6.1: Codimension-two point for S = 0.6 in 4 = 0 regime.

The color maps in figure 6.4 show flow patterns of different critical modes, from which we

observe that form = 1 the flow pattern inclines to the inner cylinder when w, < 0 while it inclines

to the outer cylinder when w, > 0. To provide more details about the non-axisymmetric critical

mode, we present in figures 6.5 — 6.7 the velocity field, the azimuthal vorticity and the variations of

pressure and normal stress differences (N; and N,) in the gap for the cases of E = 0.01, E = 0.1,

and E = 1. The inner cylinder is on the left and the outer cylinder is on the right. The ratio N, /N;
decreases with E from 100 (for E = 0.01) to 1 (for E = 1), suggesting that the perturbations of the
first normal stress difference dominate the second normal stress difference in the purely elastic

regime where E — oo,

10

-2

E

10

Figure 6.4: Color: Vorticity wg of the critical modes in the gap for different values of the elasticity

number E andforS = 0.6in u = 0 regime. Solid line: critical curve Ta,(E).
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c. Effect of the viscosity ratio on the critical states

The second step was to determine the role of the viscosity ratio S in the viscoelastic instability.
We have computed the critical curves for different values of S from 0.05 to 0.9 and super-imposed
the critical curves corresponding to different S in one figure. We plot in figure 6.8 the critical curves
Ta.(E) for different S. At small E all curves approach the same critical Taylor number of Ta, = 44.7
which is the critical Taylor number at the Newtonian limit of E = 0. At larger E, Ta, decreases
rapidly with E but for large E, the decrease of Ta, slows down when Ta. < 1 corresponding to the
onset of the purely elastic instability. Theoretically the critical curves cross the horizontal axis only on
the purely elastic limitation of E = oo. The curves with S = {0.6,0.7,0.8,0.9} intersect each other in
a small area around the point (E* = 0.3,Ta; = 13.5) such that the polymer viscosity is stabilizing
on the left of the intersection and destabilizing on the right. The solutions with very small S < 0.1
have critical curves which do not intersect each other at least for E < 10.
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Figure 6.8: Critical curves Ta.(F) for different S in u = 0 regime.

Beside the solution elasticity E, it is possible to introduce the parameter {E} = ES which
represents the polymer elasticity. In figure 6.9 we present the critical Taylor number Ta, in respect
to ES. For small values of ES (< 2.1073), all curves tend to form a unique limiting curve insensitive
to S with S destabilizing the flow. The effect of the elasticity on the threshold becomes sensitive as
soon as ES > 1073. For large values of ES, the curves are distinct and Ta, increases with it, which
means that the polymer viscosity has a stabilizing effect on the flow .
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Figure 6.9: Critical curves Ta.(ES) for different S in u = 0 regime.
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Figure 6.10: Critical curves Re.(Wi,) at critical wave numbers for different S in u = 0 regime.
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As Re and Wi are the most studied control parameter of the viscoelastic instability, we have
plotted in figure 6.10 the critical curves of Re.(Wi,. ) for different S. We can see that all curves cross
the vertical axis of Wi = 0 at the same point of Re, = 94.7 corresponding to the Newtonian case;
then Re, decreases with Wi.. Although the values of Wi are not presented for small Re, we know
that the critical curves of Re.(Wi.) cross the horizontal axis of Re = 0 at certain Wi, that
corresponds to the onset of the purely elastic instability. The case of the purely elastic instability will
be discussed in chapter 9.

Another control parameter related to the Wiis the modified Weissenberg number K. =

\/WWL'C, defined by Groisman & Steinberg [groisman1998] which includes the viscosity
ratio and the curvature. Figure 6.11 presents the critical curves of Ta.(K.), we can see that except
for the curves of the two very low values of S (§ = 0.05,5 = 0.1), all critical curves cross each other
around K; =24+ 0.1,Ta; =21+ 1. The line K. = K/ separates the plane (K., Ta.) into two
zones where the polymer viscosity plays opposite roles: for K. < K, the polymer viscosity
destabilizes the flow but for K, > K, it stabilizes the flow.
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Figure 6.11: Critical curves Ta.(K,) for different values of S in u = 0 regime. The insert figure on the
right top corner is a zoom in around the “intersection point”.

The variations of the frequency and axial wavenumber of the critical modes for different S
with ES are plotted in figure 6.12 and 6.13 respectively. In figure 6.12 we can see that the sign change
of w, in the mode m = 1 exists only for large S. For small viscosity ratio S €{0.05,0.1,0.2,0.3} the
angular frequency w is always negative in the calculated range of elasticity E € {1073,101}. The
critical frequency curves in the plane (ES, w.) intersect each other at one common point (ES* ~
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0.055, w; ~ —0.04). The effect of the polymer elasticity on the critical wavenumber becomes
significant for ES > 2 - 1073 when q, starts to increase with ES (figure 6.13). The critical curves for
large S € {0.5, 0.9}, which possess positive frequencies w, > 0 with m = 1, show a sudden increase
at large ES, while the critical curves with small S € {0.05,0.3} tend asymptotically to constant
values at large ES.
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Figure 6.12: Variation of the critical angular frequency w, with ES for different S in u = 0 regime.
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Figure 6.13: Variation of the critical wave number q. with E for different S in u = 0 regime.
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6.1.2. Experimental results

We have followed the experimental procedures described in chapter 5. The inner cylinder was
rotating and the outer cylinder was fixed. The experimental results are presented and compared with
some of the LSA predictions.

To present the experimental results, both dimensional and dimensionless frequencies
(f and w) and wavenumbers (k and q) are used. The elasticity defined by the molar mass
relaxation time E,,, (see section 5.4) is used to introduce the flow patterns as it is the most widely
used elasticity in the literature.

a. Flow patterns

In figure 6.14, 6.15, 6.17 we present one by one the gap view, the front view and the space-
time diagram of the three critical modes: stationary axisymmetric vortices or Taylor vortices for small
elasticity E, standing waves also called ribbons for intermediate values of E and disordered vortices
for large values of E. In the figures are shown only the central parts of the flow patterns away from
the endplates. The vertical shadows in the front view are nothing but a reflection of a support pillar
of the setup, and this reflection shadow will appear at all the following front view photos. The gap
view is captured by the refection of a laser sheet which sweeps the (7, z) plane. The space-time
diagram is created by superposition of recorded vertical lines at regular time intervals.

The Taylor vortex mode have the same structure as in the Newtonian case (figure 6.14) with
m, = 0w, = 0. This agrees with the LSA which predicted axisymmetric and stationary mode for
small values of ES (see figure 6.2).

The Ribbons mode is composed of counter propagating waves (figure 6.15), they are non-
axisymmetric and oscillatory (m, # 0,w. # 0). The Ribbons mode is composed of counter
propagating waves which can be obtained by complex demodulation. Figure 6.16 represents the
resulting left and right propagating waves from demodulation of the Ribbons mode. The LSA has
predicted critical mode of (m, = 1, w, < 0) for intermediate ES. However as it is difficult to
determine the azimuthal wave number m, and the sign of w. experimentally, we may say the non-
axisymmetric and oscillatory mode agrees with the LSA prediction for intermediate ES.

Like the Ribbons mode, the disordered vortices mode is composed of non-regular and non-
stationary waves (figure 6.17) (m, # 0, w. # 0). The horizontal fine black lines in front view of the
cylinder (figure 6.17 b) are the central of counter rotating pairs of vortices These central lines of the
counter rotating vortices are inclined which means that this mode is not axisymmetric. The space-
time diagram (figure 6.17 c) exhibits the chaotic behavior of the pattern.

We compare the long-time acquisition of space-time diagrams of these modes in figure 6.17 to
provide a general impression of these three modes. The central lines of the counter rotating vortices
pairs tend to approach each other and merge into new vortices, while new vortices appear randomly
from the left area. Thus, the disordered waves mode is composed of non-axisymmetric and unsteady
vortices which are created and vanish randomly.
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Figure 6.14: Taylor vortex mode observed in a solution of 1000ppm PEO and 2.5% PEG (Ta. =
28.8,E,, = 0.011,S = 0.87) in u = 0 regime: (a) gap view, (b) front view, (c) space-time diagram of

the front view.
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Figure 6.15: Critical mode of Ribbons at Ta, = 28.4, E,;, = 0.0168, S = 0.81in u = 0 regime for a
solution of 1000ppm PEO and 5% PEG. (a) gap view (b) front view (c) space-time diagram of the front
view.
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Figure 6.16: Demodulation of the space-time diagram of the Ribbons mode. (a) demodulated left
wave (b) space-time diagram (c) demodulated right wave.

0 2 4 6 0 2 4 3] 8 10 12 14 16 18 20
r(em) t[s
(b) c)

Figure 6.17: Critical mode of Disordered Vortices at Ta, = 12.1,E,, =0.131,§=0.61inu =20
regime for a solution of 1000ppm PEO and 15% PEG. (a) gap view (b) front view (c) space-time
diagram of 20s of the front view.
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Figure 6.18: Space-time diagram of 600s for 3 different modes: (a) Taylor Vortex (b) Ribbons (c)
Disordered vortices.

To study more precisely the critical axial wave number g, and the critical frequency w. we
have applied the 2D Fourier transformation on the long-time space-time diagram (figure 6.18) of
each working fluid. Then we non-dimensionlize k. to the critical wave number by q. = 2ndk, and
the critical angular velocity f. by w. = 2nf./y. These critical values are then compared with the
previous LSA results.

The Taylor vortex mode and the Ribbons mode have a well-defined wave number and
frequency in the spectra. The disordered vortices modes have smooth spectra (figure 6.19), so that
no evident critical wavenumber k. nor critical frequency f, can be identified from them, except the
flicker frequency of the spotlight (black dashed line).
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Figure 6.19: Fourier spectra of the Disordered Vortices for a solution of 1000ppm PEO and 15% PEG
(Ta, =12.1,E,, =0.131,5S = 0.61) in u = O regime: (a) space spectrum (b) time spectrum. Red
dashed line —the frequency of the inner cylinder. Black dashed line — the flicker frequency of the spot
light.
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While the Taylor Vortex and the ribbons appear suddenly and everywhere along all the
length of the cylinders, the Disordered Vortices appear first at the top or bottom endplate and then
propagate slowly to the other endplate (figure 6.20-a). The fast Fourier transform of the space-time
diagram of the transient state returns smooth spectra of f and k (figure 6.20 (b) (c)).
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Figure 6.20: Transition to Disordered Vortices for a solution of 1000ppm PEO and 15% PEG
(Ta, =12.1,E,, = 0.131,S = 0.61) in u = 0 regime. (a) Space-time diagram of the transient state,
(b) space spectrum, (c) time spectrum. The y axis of the spectrums is the magnitude of the Fourier
transformation.

b. Comparison with LSA results

Three different relaxation times (7., T,n, Ty1) are used to define the experimental values of the
solution elasticity E and the polymer elasticity ES. We plotted in figure 6.21 the experimental critical
Taylor number Ta, versus the parameter ES, against three values of ES corresponding to different
relaxation times (figure 6.21). The critical curves predicted by LSA corresponding to the working
solutions are plotted for values of S between 0.5 and 0.9. The experimental values of Ta. decrease
with ES in the same way as the theoretical values of Ta, from LSA: they decrease slightly at small ES
then decrease quickly at large ES. The threshold of stationary vortices is almost independent of ES.
The decrease of Ta, corresponds to the ribbon state and to disordered waves. The critical curves
Ta.(ES) from LSA lie between those corresponding to elasticity defined by molar mass relaxation
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time and the extensional relaxation time. At larger ES, the LSA critical curves are closer to those with
elasticity defined with the extensional time.
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Figure 6.21: Variation of the critical values of Ta with the polymer elasticity ES in u = 0 regime. Solid
points represent experimental critical values, 3 colors correspond to 3 different definitions of
elasticity. Within each definition of elasticity (see section 5.4), each point represents one tested
solution. Continuous lines are the LSA critical curves for different S.

In figure 6.22, we keep only the elasticity defined by the molar mass. The critical modes occur
in form of different types depending on the polymer elasticity ES. So, the critical points can be
gathered into three different groups: for small values of ES, the critical modes are the Taylor Vortex,
for intermediate values of ES, the critical modes are the ribbons and for large ES, the critical modes
are Disordered Vortices. The separation lines of the axisymmetric stationary mode and the non-
axisymmetric oscillatory mode from LSA are situated near the edge of the Taylor vortex mode and
the ribbons mode. Considering the difficulty to estimate the elasticity, the experimental critical
modes correspond to the LSA predictions.

Then we sum up the w, of all the experimental critical modes and the LSA predictions in
figure 6.23. The experimental angular frequencies follow qualitatively the behavior of the theoretical
values: at small elasticity, the Taylor Vortex mode has null frequency; for intermediate values of ES,
the ribbons mode has a finite frequency which decreases with ES; for disordered vortices, there is no
well-defined frequency because of their chaotic behavior.
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Figure 6.22: Variation of the critical values of Ta, with the polymer elasticity ES defined by the mass
molar relaxation time in u = 0 regime. Solid points represent experimental critical values. Dashed
rectangles are groups of different critical modes. Continuous lines are LSA critical curves for different
values of S. Dashed lines separate the stationary axisymmetric mode and the non-axisymmetric
oscillatory mode from LSA.
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Figure 6.23: Variation of the critical angular frequency |w.| with ES defined with molecular
relaxation time in 4 = 0 regime. Solid points — experimental critical values. Dashed rectangles —
groups of different critical modes. Continuous lines — theoretical critical angular frequencies for
different S.

In figure 6.24 we present the dimensionless wave number q. with the LSA predictions. The
critical wavenumbers gq. of the Taylor Vortex mode and the Ribbons follow qualitatively the
predictions of the LSA, however the q. of the Disordered Vortices stays away from the LSA
predictions. As shown in figure 6.1 ©, the marginal curves of large E have flat bottom. This makes it
hard to distinguish a dominant wave number, which means waves of several wave numbers coexist.
Our experimental space-time diagram and the spectra confirm the existence of many waves yielding
the chaotic vortices via the superposition of these waves.
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Figure 6.24: Dimensionless critical axial wave number g, in u = 0 regime. Solid lines — LSA critical
wave numbers for different S. Solid points — experimental critical values. Dashed circle — group of
different critical modes

c. Comparison with previous results

We have observed the disordered vortices mode for fluid with ES > 0.035. Compared to the
purely elastic mode first observed by Larson et al. [Larson1990], the disordered vortices (DV) mode
has the same flow pattern as the purely elastic mode. However, the purely elastic mode is observed
for fluids of very large E and at negligible Ta,.

The same flow pattern corresponding to the purely elastic mode were also observed for fluid
of E =15,5 = 0.13atTa, = 0.056 by Baumert & Muller [Baumert1999] in a Couette-Taylor system
ofn = 0.827.

In the same system of n = 0.827, Baumert & Muller have observed also stationary counter-
rotating vortices for less elastic fluid (E = 0.0562,S = 0.13) at Ta, = 14.5. For fluids of similar
elasticity (0.017 < E < 0.031) we have observed the Ribbons mode. The Taylor vortex (TV) mode is
only observed for less elastic fluids.

In a system of n = 0.829, Groisman & Steinberg [Groissman1998] have observed the Taylor
vortex mode for solutions with E < 0.08 and disordered oscillations mode for 0.08 < E < 30 when
increasing the rotation velocity. The critical Weissenberg number for the first transition is
comparable to our experimental results.
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Previously in LOMC, Fagal Kelai has done similar experiments with the same setupn = 0.8
and the similar working solutions in the ¢ = 0 regime [Kelai2011]. He has used solutions of small
viscosity ratio S € (0.05,0.3), except for the Taylor vortex mode which was obtained in shear-
thinning solutions. His points lie on the left side of ours because our solutions have larger S. He has
also observed three different modes and recorded the corresponding critical values.
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Figure 6.25: Critical values on regime of u = 0. Continuous lines — LSA critical curves. Solid points —
Kelai’s experiments. Open points — our experiments. Violet triangle — Baumert’s experiment.

In figure 6.25, we compare our experimental values with those of Kelai and of Baumert
together with LSA data, we observe that the experimental results of Kelai have larger Ta. than ours
and they fit better the LSA critical curves. The Ta, of the less elastic fluid of Baumert is found smaller
than our results and far away from the LSA critical curves. Note that the radius ration of the
cylinders used by Baumert is different from ours, and the waiting time of Baumert is much longer
than ours.

d. Supercriticality or subcriticality

We recall that all the previous results are obtained by increasing step by step the rotation
velocity of the inner cylinder. We have also decreased the rotation velocity of the inner cylinder step
by step to see if the instability disappears at the same critical values. We found out that the Taylor
Vortex mode and the Ribbons mode disappear as long as the cylinder rotates slower than the critical
velocity observed when increasing it, while the Disordered Vortices mode stays unstable at velocities
smaller than the critical velocity when increasing it. So the Taylor Vortex mode and the Ribbons

73



mode are supercritical instability modes while the Disordered Vortices mode is a subcritical instability
mode.

6.2. Annular flow with y =

When we rotate the outer cylinder while fixing the inner cylinder, the fluid in the outer part
rotates faster than inner part and the centrifugal force is no longer destabilizing, only the elastic
force may destabilize the flow.

6.2.1. LSA results

Analyzing by the same LSA code with the base flow of 4 = oo regime, we have found out that
the most unstable mode is always axisymmetric with m. = 0. Taking S = 0.7 as an example, we plot
in figure 6.26 the marginal stability curves Ta(q) for different values of mat E = 1. The lowest
marginal curve of m = 0 possesses very flat bottom that makes it difficult to determine the critical
wavenumber q.. So several perturbation modes of different g may coexist .
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Figure 6.26: Marginal curves Ta(q) for differentmatS =0.7and E = 1.

Figure 6.27 presents the variation of the critical Taylor number Ta, with the solution elasticity
E for different azimuthal wave number m. For all m calculated, Ta. decreases with E. The Ta,. of the
axisymmetric mode m = 0 is much smaller than the other modes (m = 1 and m = 2) so that the
axisymmetric mode m = 0 is the most unstable mode for all calculated values of E.
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Figure 6.28: Critical curves, Ta.(E) for different S in u = oo regime.
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Then we super-impose in figure 6.28 the critical curves Ta.(E) for differentS € [0.5,0.8].
We observe that the critical curves of Ta.(E) for different S are very close to each other, which
means that for the u = oo regime the viscosity ratio S has weak effects on the viscoelastic instability.
As the centrifugal force is no longer destabilizing in the u = oo regime, the only destabilizing force is
the elastic force which is independent to the polymer viscosity ratio S. The critical curve can be fitted
by a power law Ta.(E) = AE~* with « = 1.048,4 = 10.295, and the coefficient of determination
R? = 0.9996.

We present in Figure 6.29 the critical curves in the plane (Wi, , Re.) for different S. Unlike in
the u = 0 regime, Re, increases with Wi, and the critical curves for different S do not cross each
other. For all calculated values of Wi, , larger S reduces Re. showing that polymer viscosity
destabilizes the flow. The intersection points between the critical curves and the horizontal axis
determine the onsets Wi, to the purely elastic instability. This will be discussed in chapter 9.
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Figure 6.29: Critical curves Re.(Wi,) for different S in u = oo regime.

Then we look into the axisymmetric critical mode. We plot in figure 6.30 the critical angular
frequency w. and the critical axial wave number g, in respect to E for different S. We observe that
the critical modes are not stationary as the critical frequency is not zero (w, # 0) and the angular
frequency increases with E. The axial wave number q. decreases with E. In the calculated range of
E € {0.1,103}, q. > 10, or the corresponding wavelength 1./2 < d, so that the critical mode occurs
in the form of flattened vortices. Similar to figure 6.29, the critical curves of w, and g, for different S
are almost parallel to each other, the larger S makes larger critical values of w, and g,
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Figure 6.30: Variation of the critical parameters with E for different values of S in u = oo regime: (a)
angular frequency w, (b) axial wave number q..

To provide a general view of the critical modes in u = oo regime, we plot in figure 6.31 the
flow patterns for solution of S =0.7, E =1, Ta, = 4.73 withm, =0, q. = 14.4, w. = 0.050. The
flow properties including velocity field, the vorticity, the pressure variation and the N; variation are
plotted in the section of (1,z). The pressure variation and the N, variation presented by figure
6.300 © are negligible compared to the N; variation and the vortices are flattened and instability

lies near the inner cylinder (left wall).

streamiines & U, vorticity Pressure variation 147 N, variation N, variation <107
5 004  5prm 25 15
k
45 003 45 2
’ k
s 4 \ 15 !
0.02 i
35 35F 11
oot i 105
3B ' 3 \ 0.5
N 25 F10 N2.5\ 10 10
= ) 1-05
2 e L 2 \
-’.;;__'% -0.01
B k -1 1-0.5
1.5 == 1.5
= | -0.02 \
- = ] \ 15 .
E= -0.03 ! 2
= ——= 05 :\
N == 004 ol 23 15
4 45 5 4 45 5 4 45 5

" (a)

 (c)

"(d)

" (e)

Figure 6.31: Critical mode for §S=0.7,E=1,Ta., =473 on u=o, withm=20, q. = 14.4,
w. = 0.050. (a) Black arrows represent the velocity field in (7, z) direction while the colors represent
the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N; variation © the N,
variation. Color maps of (b, c, d, e) represent the relative amplitude.
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6.2.2. Experimental results

In the regime of u = o, we repeat the same procedure on the all solutions used inu =0
regime, but only the solutions of large elasticity could be destabilized. As predicted by the LSA we
have observed only one critical mode in form of the Disordered Vortices as described inyu =0
regime.

a. Flow patterns

To show the experimental critical mode, we present in figure 6.32 the gap view, the front view,
the space-time diagrams and the Fourier spectrums of the critical Disorder Vortices mode. Although
we may observe temporal oscillations of certain flow patterns in figure 6.32 © which do not exist in
u = 0 regime, this mode is the same Disordered Vortices mode as in the ¢ = 0 regime. Because this
oscillation is not related to any propagating waves, it reflects the rotation of the outer cylinder.
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Figure 6.32: Critical mode of Disordered Vortices at Ta, = 15.4,E,, = 0.131,§ = 0.61,u = oo for a
solution of 1000ppm PEO and 15% PEG. (a) gap view (b) front view (c) space-time diagram of 20s of
the front view (d) long-time space-time diagram © space spectrum (f) time spectrum. Red dashed
line —the frequency of the inner cylinder. Black dashed line — the flicker frequency of the spot light.

b. Comparison with LSA results
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Figure 6.33: Critical values of the transition from laminar flow to unstable flow on regime of u = co.
Solid lines — LSA critical curves for different S. Solid points — experimental transient values, 3 colors
represent 3 different definitions of elasticity. Within each definition of elasticity, each point
represents one solution tested.
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To compare the experimental results to the LSA predictions, we resume the critical values of
Ta.(E) measured experimentally by three different relaxation times together with the LSA critical
curves in figure 6.33. We use E instead of ES as the control parameter because the LSA critical
curves of different S are close to each other on Ta.(E) (figure 6.27). We remove the LSA critical
curves of § = 0.8 because the viscosity ratio S of the solutions that can be experimentally
destabilized in the u = o regime lies in the range of S € (0.5,0.7). We observe that the
experimental critical values Ta, decrease with E defined by three relaxation times. This follows the
trend of the LSA critical curves. The points corresponding to the elasticity E, defined by the
extensional relaxation time fit perfectly with the LSA critical curves.

As explained in the previous section, it is very difficult to determine experimentally the
critical values of the Disorder vortices mode, so it is not surprising that the experimental w. and k.
show only weak agreements to the LSA predictions (see figure 6.34 and 6.35).
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Figure 6.34: Variation of the critical angular velocity w. in p = oo regime with solid points —
experimental critical values for E defined by extensional relaxation time. Continuous lines — the LSA
critical curves for different S.
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Figure 6.35: Variation of the critical axial wave number q. with E in u = oo regime. Solid points —
experimental critical values for E defined by extensional relaxation time. Continuous lines — LSA
critical curves for different S.

c. Comparison to the previous results

In rotating the outer cylinder while fixing the inner cylinder, both Baumert and Kelai have
observed the purely elastic mode [Baumert1997] [Kelai2011]. We super-impose in figure 6.36 the
critical values of the experiments of Baumert, Kelai and ours together with the LSA critical curves.
The experimental elasticity for all the authors is estimated by the molar mass. We can see that the
critical values of all these experiments show good coherence between each other and parallel to the
LSA critical curves.
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Figure 6.36: Critical values on regime of 4 = oo. Continuous lines — LSA critical curves. Blue circle —our
experiments. Red triangle — experiments of Kelai. Violet squire — experiment of Baumert.

6.3. Conclusion

In this chapter we have compared our LSA results and experimental results in the rotation
regimes of 4 = 0 and u = co. We found that they agree with each other qualitatively in almost all the
cases and agree with each other quantitatively in some cases. In both regimes, T'a,. decreases with E,
but we have observed theoretically and experimentally three different critical modes from small E to
large E: Taylor vortex mode, Ribbons mode and Disordered vortices mode for u = 0 regime, while
for u = oo regime, only one axisymmetric oscillatory mode was critical. The LSA critical curves of
Ta.(E) lie between the experimental points elasticity of which is defined by the molar mass
relaxation time (E,,) and the extensional relaxation time (E,) for u = 0 regime while they lie
exactly on the E, defined experimental points for u = oo regime. For the u = 0 regime, the LSA
critical curves are much closer to the E, defined points than the others when the critical mode is
disordered vortices mode. As the elasticity E indicates the elastic force of the fluid, we may conclude
that the disordered vortices mode appears when the elastic force dominates the flow which
corresponds to the cases of large E in u = 0 regime and the u = o regime where the centrifugal
force stabilizes the flow. The extensional relaxation time defined elasticity E, is the best parameter
that characterizes the elastic force. In the u = 0 regime, the change of critical modes indicates that
the dominant destabilizing force switches from centrifugal force to elastic force as the fluid elasticity
E increases. We observe the Taylor vortices mode as in the Newtonian fluid at small E and
disordered vortices mode which is the same as u = o regimes. So that the Ribbons mode can be
considered as the critical mode in which the centrifugal force is comparable to the elastic force.
Besides, we have found theoretically that in the u = 0 regime the viscosity ratio S destabilizes the
flow at small modified Weissenberg number K while it stabilizes the flow at large K.

82



Chapter 7: Viscoelastic instability in
Keplerian regime and the MRI analogy

The present chapter is devoted to the analogy between the viscoelastic instability (VEI) in the
Couette-Taylor system and the magnetorotational instability (MRI) responsible of angular
momentum transportation in accretion disks in Astrophysics. After the LSA and experimental results
in the Keplerian regime, we study the anti-Keplerian regime in order to discriminate the modes that
are not MRI-analogs.

7.1. The Keplerian regime

According to Rayleigh stability criterion discussed in chapter 4, the Newtonian Couette flow in
the Keplerian rotation regime (u = n3/?)is stable, while the viscoelastic Couette flow can be
destabilized, which yields to elasto-rotational instability modes. Our study will focus on the Keplerian
regime in annular geometry with radius ratio n = 0.8 corresponding to the experimental
configurationi.e.y = 0.716.

7.1.1. LSA results
a. Marginal stability curves

In figure 7.1, we have plotted the marginal stability curves Ta(q) forS = 0.6 and four
different values of E = {0.01, 0.028, 0.1, 1.0}.
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Figure 7.1: Marginal curves Ta(q) for different m at chosen E. (a) E = 0.01(b) E = 0.036, (c)
E=01,(d)E =1.

We can see from figure 7.1 (a) that for small E the Ta, of m = 0 is clearly separated from the
other m, so that the axisymmetric mode m = 0 dominates. But for larger E figure 7.1 (b) (c) the Ta,
of several m are close to each other, so that several modes may become critical and interact with
each other. For large E (figure 7.1 (d)), the bottom of the marginal curve is so flat that several modes
of different g are critical and may interact with each other.

b. Variation of the critical parameters with E

Figure 7.2 illustrates the variation of the critical Taylor number T'a, with E for § = 0.6 with
different azimuthal wave numberm € {0, 1, 2, 3}. The critical values Ta, decrease with E and the
curves for different m are close to each other. In the vanishing elasticity solution, the threshold tends
to infinity in agreement with the stability of the Newtonian flow in the Keplerian rotation regime.
The decrease of the critical value Ta, with the elasticity of the polymer solution means that the
elasticity plays a destabilizing role in the Keplerian regime.
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Figure 7.2: Critical curves, Ta.(E) for different m, S = 0.6 on Keplerian regime.

For each value of the elasticity E, we plot the lowest value of Ta, among m € (0,1,2,3).
The resulting critical curve Ta.(E) determines the instability threshold and it is plotted in figure 7.3
together with critical m., and the color map of vorticity of the critical modes. The variations of the
critical angular frequency w, and axial wave number g. with E are plotted in figure 7.4 and figure
7.5. The axisymmetric mode is stationary as w = 0 and the corresponding vortices are flattened as
q. > 2mi.e. the corresponding wavelength 1. < d while the non-axisymmetric modes are non-
stationary as w, # 0.
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Figure 7.3: Variation of the critical curve Ta.(E) for S = 0.6 on Keplerian regime. Black dashed lines
separate critical azimuthal wave number m_. Color maps — vorticity wg in the gap plane (r, z), where
red represents positive values and blue represents negative values .
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Figure 7.4: Variation of the critical frequency of the critical modes with E and S = 0.6 in Keplerian
regime. Dashed vertical lines separate different m,.
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Figure 7.5: Variation of the critical axial wavenumber g, of the critical modes with E for S = 0.6 on
Keplerian regime. Dashed vertical lines separate different m..

For each polymer solution (i.e. for a given value of S), there exist codimension-two points in
the plane (E,Ta.) where two modes with different spatio-temporal properties can coexist. For
S = 0.6, we have 3 codimension-two points whose properties are given in the Table :

E Ta, qc me We
6.31 0 0
0.034 10.1 5.99 1 -0.21
5.99 1 -0.21
0.038 9.3 5.52 2 -0.41
4.47 2 -0.39
0.377 2.28 4.62 1 -0.18

Table 7.1: Codimension-two points for S = 0.6 in Keplerian regime

Thus, for a rotating flow in the Keplerian regime of a solution with S = 0.6, the critical mode
depends on the solution elasticity: it is axisymmetric and stationary at small E, while the critical
mode is composed by the interaction of several non-axisymmetric modes at large E. This property is
also validated for other S. To provide more details about different critical modes, we present from
figure 7.6 to 7.9 the gap view of the features of the critical modes including the velocity fields, the
vorticity, the variation of pressure N; and N,. The perturbations of the N; and N, are comparable for
the stationary axisymmetric modes and the disordered wave modes; while for the purely elastic
mode, the N, is negligible compared to the perturbation of the N;.
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Figure7.6: Critical mode for S =0.6, E =0.01, Ta, = 273 in Keplerian regime, with m =20,
q. = 10.3, w, = 0. (a) Black arrows represent the velocity field in (r, z) direction while the colors
represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N; variation

© the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.
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Figure7.7: Critical mode for S = 0.6, E =0.035, Ta, = 97.4 in Keplerian regime, withm=1,
q. = 5.98, w,
colors represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N;

—0.207. (a) Black arrows represent the velocity field in (r, z) direction while the

variation © the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.
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Figure7.8: Critical mode for S=0.6, E =0.1, Ta, = 48.6 in Keplerian regime, with m =2,

qc = 4.62, w,

—0.406. (a) Black arrows represent the velocity field in (r, z) direction while the
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Figure 7.9: Critical mode for S = 0.6, E = 1, Ta, = 12.5 in Keplerian regime, withm = 1, q, = 4.75,
w, = —0.178. (a) Black arrows represent the velocity field in (r,z) direction while the colors
represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N; variation
© the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.
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c. Effect of the viscosity ratio on the critical states

The variation of the threshold Ta.(E) with S is plotted in figure 7.10. For E < 1, the curves
are distinct and for each value of E, solution with large S are more unstable. For E > 1, all curves
converge into one curve, the threshold becomes independent of S and tends to a small value of
Ta. = 0. This suggests that the instability mode has changed: for E < 1, both the rotation and the
elasticity intervene to generate the elasto-rotational instability (ERI) while for E > 1, the instability
is induced by the elasticity as predicted by the generalized Rayleigh criterion. The latter is called
purely elastic instability (PEI).
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Figure 7.10: Critical curves Ta.(E) for different S in Keplerian regime.

The variation of the critical modified Weissenberg number K, = \/mWiC (see
[Groisman1998]) with the solution elasticity E is plotted in figure 7.11 and yields a cross point of all
curves with different values of S at E* = 0.27,K* = 0.45. For E < E*, the viscosity ratio is
destabilizing while for E > E*, it is stabilizing.

When we plot the critical Taylor number Ta, versus ES instead of E, all curves of different S
converge into one curve (figure 7.12). It means that for the Keplerian regime, the polymer viscosity
ES is a better control parameter than the solution elasticity E. The elasto-rotational Rayleigh line
separates the unstable area into the elasto-rotational unstable zone (on the left) and purely elastic
unstable zone (on the right). The elasto-rotational unstable zone is then separated by different
critical modes: stationary axisymmetric mode for small ES and oscillatory non-axisymmetric mode
for large ES.
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Figure 7.11: Critical curves K.(E) for different S in Keplerian regime.
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Figure 7.13 presents the critical curves of Ta.(K.) which shows that all curves cross at one
point of K; = 0.86, Ta; = 1.5. This figure shows in a clear manner that the polymer viscosity plays
two opposite roles: the polymer viscosity destabilizes the flow together with the elasticity when
K. < K. while when K, > K it stabilizes the flow and the elasticity remains the sole destabilizing
factor. In particular, purely elastic instability mode is suppressed by the increase of the viscosity ratio
S. From practical point of view, the best solvents to realize purely elastic instability are those with
large viscosity while those appropriate to realize elasto-rotational instability are those with large

values of S.
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Figure 7.13: Critical curves Ta.(K,) for different S in Keplerian regime.

In the intersection point, the viscosity ratio S has no influence on the critical parameter Ta,.
The intersection occurs between curves corresponding to oscillatory states (waves). The point
(K*,Ta") corresponds to values of ES € [0.32,0.48] for S € [0.3,0.8] well below the value
ES* = 0.672. According to elasto-rotational Rayleigh criterion, the modes observed before the
intersection point are due to the combined destabilizing effect from the rotation and the elasticity
and are called elasto-rotational instability. The modes observed after the intersection point are
destabilized only by the elasticity and can be attributed to purely elastic instability.

Figure 7.13 indicates that the modified Weissenberg number K contains some meaningful
information for the viscoelastic instability in the Keplerian regime. This suggests to link it to the
elastic number E.

As the Re and Wi are widely used as the control parameters of the viscoelastic instability in
the Couette-Taylor system, we plot in figure 7.14 the critical curves in the plane (Wi, Re) for
different S. Note that in the LSA calculation the elasticity is varied so that Wi is denoted as Wi, as it
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is deduced by Wi, = E - Re.. We observe that when Wi, decrease the Re, increase and the critical
curves Re.(Wi.) will never cross the vertical axis. The threshold Re. decreases with Wi, and the
critical curves cross the horizontal axis of Re, = 0 at certain Wi, corresponding to the onset of the
purely elastic instability which will be discussed later. The role of polymer viscosity is inverted (from
destabilization to stabilization) for small and large values of Wi, as the critical curves intersect each
other as Wi, increases.
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Figure 7.14: Critical curves, Re.(Wi,) for different S in Keplerian regime.

7.1.2. Experimental results

The experiments were conducted by increasing the rotation velocity of the cylinders in the
Keplerian ratio u = n3/2 = 0.716 step by step and then waiting at least 20 min on each step. The
inner cylinder and the outer cylinder share the same acceleration rate to avoid spurious instabilities.
The increase of the rotation velocity was done until the pattern was formed in the flow. We waited
about 20 min before recording the flow. The higher instability modes were not investigated in this
experiment because we were interested in the detection of the onset and the nature of the flow
patterns. A ramping up and down was also done to check the critical nature of the transition
(supercritical or subcritical).

a. Flow patterns

Different types of flow patterns were observed in the Keplerian rotation regime when the
rotation velocity of the cylinders exceeded a critical value, which depends on the elasticity and
viscosity ratio of the flow solution. As the Newtonian flow is stable in the Keplerian regime, we were
guided by the results of the linear stability analysis. For, we choose a solution with a given elasticity
E and viscosity ratio S, this allowed to minimize the search of the critical states. The observed flow
patterns show three different types: axisymmetric stationary vortices, disordered waves, disordered
waves with solitary vortices and purely elastic mode.
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Axisymmetric stationary vortices

For small values of the elasticity number, the critical mode appears in form of stationary
axisymmetric vortices. Their size is smaller than the gap width; in fact their dimensionless
wavenumber g, varies between 6 and 10 for the solutions we have worked with. Figure 7.15 is an
illustration of this mode for a solution with E,;, = 0.017, S = 0.81. The spectra of the space-time
diagram (figure 7.15-c) are given in figure 7.16. The peak of the dominant wavenumber is evidenced
in the space spectrum (figure 7.16-a), it yields A, = 0.96 cm < 2d = 2 cm. The frequency peaks
in the temporal spectrum (figure 7.16-b) correspond to either the cylinder rotation frequencies or
their combinations.
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Figure 7.15: Flow patterns and space-time diagram on Keplerian regime at Ta,. = 8.50, E,;, = 0.017,
S =0.81. (a) Gap view by laser sheet, (b) Front view, (c) Space-time diagram. The space-time
diagram seems wavy, however all the wavy frequencies are related to the rotational cylinders.
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Figure 7.16: Fourier spectra of the space-time diagram on Keplerian regime at Ta, = 8.50,
E,, =0.017,5 = 0.81. (a) space spectrum, (b) time spectrum. Red lines — rotation frequencies of
the inner and outer cylinder and the mean rotation of them. Green dashed line — a combination of
frequencies of the cylinders (2Q, — £;). Black dashed line — flicker frequency of the spot light.
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The stationary axisymmetric vortices observed in the Keplerian rotation regime are distinct
from the Taylor vortices that were observed in the case of u = 0 for small values of the elasticity. In
fact, these new vortices are flatten (their size 4. /2 < d) while the Taylor vortices in 4 = 0 regime
have a circular shape (1./2 =~ d). The flattening of these vortices (f = (d — A./2)/d) increases
as ES decreases. A comparison of the stationary axisymmetric vortices observed in the Keplerian
rotation regime and Taylor vortices observed in the case of 4 = 0 is given in the figure 7.17, where
the front view and the longtime space-time diagram are compared.
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Figure 7.17: Comparison between the critical modes: (a) (b) Front view of the Taylor Vortex mode (a)
and the Stationary and Axisymmetric mode (b); (c) (d) space-time diagram of 10 mins of the Taylor
Vortex mode (c) and the Stationary and Axisymmetric mode (d).

Disordered waves mode

For intermediate values of ES i.e. 0.03 < ES < 0.1, the critical mode appears in form of the
disordered waves (figure 7.18). These waves are formed by counter propagating waves. In fact, they
are generated from the endplates and they propagate until they reach each other in the central part
of the flow system. As long as the waves have not met in the central part, they have a single
frequency and wavenumber. But as soon as they meet, they interact strongly and the nonlinear
effects dominate and generate the Disordered Waves.
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Figure 7.18: Flow patterns and space-time diagram of the Disordered Waves mode on Keplerian
regime atTa, = 2.86, E,;, = 0.13,S = 0.61. (a) Gap view by laser sheet (b) Front view (c) Space-
time diagram.

The Fourier spectrum presented in figure 7.19 (b) indicates that the repeat of certain flow
pattern in figure 7.18 (c) has the same frequency of the rotation of the outer cylinder because it is
the only peak beside the spot light flick. The small hill in figure 7.19 (b) at small frequency is related
to the difference between the mean frequency and the outer cylinder rotation (Q, — (w)). In the
other cases, the main peak may also be the mean frequency (w) of the two cylinders. These kinds of
peaks that are related to the rotation of the cylinders are not related to the flow patterns.
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Figure 7.19: Fourier spectrums of the space-time diagram on Keplerian regime atTa,. = 2.86,
E,, = 0.13,S = 0.61 (a) space spectrum (b) time spectrum. Red dashed line — the frequency of the
inner cylinder. Black dashed line — the flicker frequency of the spot light. Green dashed line — the
frequency difference of Q, — (w) .
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Then we look into the space-time diagram and its spectra at the transition. The instability
appears at the bottom of the cell and propagates very slowly to the top end. We present in figure
7.20 (a) the space-time diagram of the bottom part (z € [30,45](¢m)), from which we can see
waves on the border of the stable and unstable zone. The corresponding space and time Fourier
spectra (figure 7.20 (b)(c)) exhibit clear pics of the critical wave number k. and the critical frequency
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Figure 7.20: Space-time diagram and Fourier spectra of the Disordered Waves mode on Keplerian
regime atTa, = 2.86, E,, = 0.13, S = 0.61 for a wave generated near the bottom endplate. (a)
Space-time diagram (b) space spectrum (c) time spectrum. Red solid line — outer cylinder rotation
frequency. Red dashed line — inner cylinder rotation frequency.

We have demodulated the space-time diagram at the transition. A zoom in space-time
diagram of 20s and the demodulated waves, show that the k. and f, correspond to the waves on
the edge of the unstable zone. The zoom in space-time diagram and the demodulated waves are
presented in figure 7.21.
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Figure 7.21: Demodulation of the zoom in space-time diagram of the transition. Ta, = 2.86,
E,, = 0.13,S = 0.61. (b) Space-time diagram of the transition (a) (c) Demodulated wave.

The demodulation of the space-time diagram of the saturated wave yields two counter
propagating waves (Figure 7.22).
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Figure 7.22: Demodulation of the space-time diagram of the Disordered Waves mode. Ta, = 2.86,

E,, = 0.13,S = 0.61. (a) Demodulated left wave (b) Space-time diagram of the saturated flow (c)
Demodulated right wave.

99



We compare these two modes by presenting in figure 7.23 (a) (b) the longtime space-time
diagram of the Disordered Vortices mode and the Disordered Waves mode. These modes are similar
to each other as in both of them the counter rotating vortices pairs (represent by dark lines) tend to
approach each other and immerge while new vortices pairs are created randomly. However when
the transient space-time diagrams are compared (figure 7.23 (c)(d)) we can see that there exists no
waves in the disordered vortices mode.
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Figure 7.23: Comparison between the critical modes: (a) (b) longtime space-time diagram of
Disordered Vortices mode (a) and Disordered Waves mode (b); (c) (d) transient space-time diagram
of Disordered Vortices mode(c) and Disordered Waves mode (d).

Disordered waves with solitary vortices

For fluids of E = 0.29,S = 0.62 and E = 0.43,S = 0.55 quasi-stationary stable vortices are
formed in the disordered wave patterns (figure 7.24). These vortices are called solitary vortices. They
result from strong nonlinear interactions of the disordered waves and they are sustained by these
waves. The Fourier spectra show also the coexistence of the steady vortices (peaks with small space
wave number k in figure 7.24 e) and the disordered waves (pic distinct to the rotational frequencies
in figure 7.24 f).
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Figure 7.24: Flow patterns and space-time diagram of the Solitary Vortices mode on Keplerian regime
atTa, = 2.15,E,, = 0.29,S = 0.62. (a) Gap view by laser sheet (b) Front view (c) Space-time
diagram. (d) long time space-time diagram. © space spectrum (f) time spectrum. Red line and dashed
line — the frequency of the inner and outer cylinder. Black dashed line — the flicker frequency of the
spot light. Green dashed line — the mean frequency (w) .
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The Solitary Vortices mode can be demodulated into counter propagating waves. As the
propagating waves are separate to the solitary vortices, it is easier to distinguish its critical
wavenumber and critical angular velocity. The space-time diagram and its demodulated waves are
presented in figure 7.25.
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Figure 7.25: Demodulation of the space-time diagram of the Solitary Vortices mode at Ta, = 2.15,
E,, = 0.29,5 = 0.62. (a) Demodulated stationary mode (b) Demodulated left wave (c) Space-time
diagram (d) Demodulated right wave.

Purely elastic modes

For large values of the elasticity, the instability is driven by the elastic force and its threshold
should be very small. This is the situation encountered in the experiment when ES > 1. To reach
this mode, more elastic fluids are needed.

Supercritical vs subcriticality of the instability

To test the subcritical or supercritical nature of the transition to the different modes observed
in the Keplerian case, we have tested the existence of the hysteresis between the ramping up and
the ramping down the rotation of the cylinders. No significant hysteresis was found for the
stationary axisymmetric modes; they appear and disappear at the same critical velocity. Instead, the
transition to disordered waves and their disappearance when ramping down occur at different
rotation velocities of the cylinders. Thus, the transition to stationary axisymmetric mode is
supercritical while the transition to the Disordered Vortices mode is subcritical.
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b. Comparison with LSA results

We plot in figure 7.26 the critical Taylor number from experiments and from LSA as a function
of the polymer elasticity. The dashed line ES = 0.672 is the border between the potentially stable
and unstable zones according to elasto-rotational Rayleigh criterion which predicts that the purely
elastic instability (PEI) should appear on the right side of the dashed line. The instability modes
observed on the left of this line should be related to the coupling between the rotation-induced and
the elasticity-induced effects. They will be called elasto-rotational instability (ERI) modes. This
phenomenon confirms the previous conclusion that the polymer viscosity is a source of instability in
the elastic rotational flow.
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Figure 7.26: critical values of the transition from laminar flow to unstable flow on Keplerian regime.
Solid lines — LSA critical curves for differentS. Dashed line ES* = 0.672 is predicted by elasto-
rotational Rayleigh discriminant. Solid points — experimental transient values, 3 colors present 3
different definitions of elasticity. Within each definition of elasticity, each point presents one solution
tested. Dashed rectangular — group of different flow patterns.

Figure 7.26 shows that for every elasticity definition, all the critical points Ta.(ES) form more
or less one monotonically decreasing curve: for all definitions of elasticities, Ta, decreases when ES
increases. The solutions with large polymer elasticity ES require less shearing rate to be destabilized
in the Keplerian rotation regime. This result is in good agreement with the LSA conclusion.
Moreover, the polymer elasticity ES is the best coordinate appropriate to describe the polymer
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elasticity in Keplerian regime. Among the 3 different definitions of elasticity, the molar mass elasticity
E,, fits the best to LSA predictions.

The critical modes observed in the experiment can be classified into 2 groups (figure 7.27):
stationary axisymmetric vortex mode for small values of ES and large values of Ta., and disordered
modes for large values of the ES and small values of Ta.. The disordered modes appear in form of
disordered waves in space but with a definite frequency for intermediate values of ES, or in form of
disordered waves with solitary vortices (indicated in figure 7.27). The LSA cannot predict the
disordered modes which are nonlinear as they result from strong coupling between linear modes.

The value ES™ which is determined from the elasto-rotational Rayleigh discriminant lies on
the right side of most of the experimental points. This suggests that these modes are driven both by
the rotation and the elasticity effects. It is reasonable to assume that experiments with fluids of
larger E would show purely elastic instability modes. The colored point lines separate the stationary
axisymmetric mode and the oscillatory non-axisymmetric mode from LSA. These lines are situated
near the edge of the experimental groups of stationary axisymmetric vortex and disordered modes.
Considering the difficulty to estimate the elasticity of polymer solutions, the experimental critical
modes correspond to the LSA predictions.
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Figure 7.27: Comparison of the critical modes on Keplerian regime; E is defined with the molecular
relaxation time. Solid lines — LSA critical curves for different S. Dashed line (ES™ = 0.672) gives the
separation between stable and unstable zones to elasticity driven perturbations. Solid points —
experimental critical values. Dashed contour — different modes. Solid circle — location of the Solitary
Vortices mode. Colored point lines separate the stationary axisymmetric mode and the oscillatory
non-axisymmetric mode from LSA.
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Then we nondimensionlize the experimental critical wave number k. by q, = 2ndk, and
compare it to the LSA predictions in figure 7.28 and compare the experimental critical angular
velocity in the dimensionless form w. and the LSA predictions of w./m in figure 7.29.

The experimental values of the axial wavenumber g, follow the same trend as those
obtained from the LSA: the axial wavenumber q. decreases with ES and then remains steady around
q. ~ 4.5 for ES > 0.03. The experimental w, follows the trend predicted by LSA, where w,. is null for
the stationary mode and almost constant for the disordered modes. However it is 10 times higher
than the LSA prediction.
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Figure 7.28: Variation of the critical axial wave number with ES defined by molecular relaxation time.
Solid lines — LSA predictions for different S. Solid points — experimental critical wave numbers.
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Figure 7.29: Variation of the critical frequency with ES defined by molecular relaxation time. Solid
lines — LSA predictions for different S. Solid points — experimental critical angular frequency

7.2. The anti-Keplerian regime u = n=3/?

In the Keplerian regime both centrifugal force and the elastic force contribute to the
viscoelastic instability. In order to better understand the effects of the elastic force in the Keplerian
regime, we have inversed the rotational velocities of the cylinders and studied the so called anti-

-3/2 2 _

Keplerian regime wherey =17 . In our experimental geometryn = 0.8, we have u = =3/

1.398.

7.2.1. LSA results

To illustrate the LSA results, we present the theoretical critical curves Ta.(E) for different m
and for fixed value S = 0.7 (figure 7.30). The most unstable mode for all values of E is the oscillatory
axisymmetric mode (m = 0,w # 0). The critical curves Ta.(E) for different values of S are
presented in figure 7.31: the threshold of the instability decreases with E for all values of S and
becomes almost independent of S for E > 0.6. The critical curves Ta.(ES) for different values of S
are presented in figure 7.32 with the elasto-rotational Rayleigh discriminant ES* = 3.451. The
critical curves in the plane (Wi,, Re;) show the same trend (figure 7.33) as those of Ogilvie & Potter
in the same regime forn = 0.95and S = 0.5. There is an elastic instability with a given threshold
Wi.(Re = 0) > 23 (see chapter 9) which increases as the shear increases, i.e. the elastic instability
is suppressed by the shear. The variations of the critical wavenumber q. and the critical frequency
w, with the elasticity E for different S are shown in figure 7.34. The critical wavenumber has a very
large value compared to the other cases investigated so far and especially with respect to the
Newtonian case: the corresponding vortices should have small sizes compared to the gap width.
Figure 7.35 illustrates the patterns of the few properties of the critical mode in the gap for S = 0.7,
E=1,Ta.=0976, m=0, q. = 24.2, w, = 0.02. The critical modes are flattened and the
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instability develops near the inner cylinder. Besides, the N, variations are negligible in comparison
with the N; variation while the pressure variation is small, just as the case of u = . So we can
conclude that the anti-Keplerian regime and y = oo regime share the same critical modes.
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Figure 7.30: Critical curves Ta.(F) for different m at fixed S = 0.7.
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Figure 7.31: Critical curves Ta.(E) for different S.
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Figure 7.34: (a) The angular frequency w, of the critical modes in respect to E for different S in anti-
Keplerian regime. (b) The axial wave number g, of the critical modes in respect to E for different S.
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Figure 7.35: Pattern properties of the critical mode in the gap view for S = 0.7,E = 1, Ta, = 0.976,
m=0, q. = 24.2, w. = 0.02 in anti-Keplerian regime. (a) Black arrows represent the velocity field
while the colors represent the azimuthal velocity V(;. 5y (b) the vorticity wg, (c) the pressure variation,
(d) the N; variation. Color maps of (b, c, d) represent the relative amplitude.

The anti-Keplerian regime bears some common behaviors with the rotation regime u = oo:
the critical curves Ta.(E) or Re.(Wi.) have similar shapes even if the threshold of the elastic
instability are different; the critical modes are oscillatory axisymmetric and the critical wavenumbers
are very large corresponding to small vortices in the gap (Figure. 6.31, Figure. 7.35). This strong
similarity indicates that the critical mode in the anti-Keplerian regime is a purely elastic mode.
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7.2.2. Experimental results
We have realized experiments in the case of the anti-Keplerian regime for some solutions with
viscosity ratio which were supposed to exhibit instability at acceptable values of shear rate.

a. Flow patterns

The critical flow patterns and the spectra in space and time are illustrated in figure 7.36 for the
solution with E,;;, = 0.34and S = 0.51. The flow patterns are disordered in space and in time
(figure 7.36 c-d) and only frequencies of the cylinders’ rotation are observed (figure 7.36 f). These
patterns are similar to those observed in the case when u = oo (figure 6.30).
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Figure 7.36: Flow patterns and space-time diagram in anti-Keplerian regime at Ta, = 7.34,
E,, = 0.34,S = 0.51. (a) Gap view (b) Front view by laser sheet (c) Space-time diagram of 20s (d)
Longtime space-time diagram © space spectrum (f) time spectrum. Red dashed line — the frequency
of the inner cylinder. Black dashed line — the flicker frequency of the spot light.

b. Comparison with LSA results
From the LSA results, the best parameter for the characterization of the solution is the

elasticity E and not the polymer elasticity ES. We have compared the experimental data with
theoretical ones in figure 7.37. The theoretical results agree well with the experiment if one uses the
extensional relaxation time 7. to define the elasticity. This situation was encountered also in the
U = oo regime.

In the anti-Keplerian regime the only viscoelastic solutions that could be destabilized have the
viscosity ratio S limited in the interval [0.5,0.7].

The critical angular frequency and the critical axial wavenumbers of the experiments and LSA
are compared in figure 7.38 and 7.39 with extensional elasticity. We can see that good agreement is
obtained for g, while the experimental w, is distinct from the LSA prediction.
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Figure 7.38: Critical values w.(F) in the anti-Keplerian regime. Solid lines — LSA critical curves for
different S. Solid points — experimental critical values defined by extensional elasticity.
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Figure 7.39: Critical values q.(E) in the anti-Keplerian regime. Solid lines — LSA critical curves for
different S. Solid points — experimental critical values defined by extensional elasticity.

7.3. Discussion of the VEI in the Keplerian rotation and MRI analogy

a. Application of Rayleigh criterion and Velikhov-Chandrasekhar criterion

The linear stability analysis and the experiments have shown the existence of critical modes
in the zone where the elasto-rotational Rayleigh discriminant did not predict the instability i.e. for
ES < 0.672 forn = 0.8. The existence of this instability suggests that the polymer molecules in the
liquid play the same role of tensile force as the magnetic field tension. The polymer analog of the
magnetic field BTB = Bye, plays the role of the axial magnetic field required for the SMRI. In the
quasi-Keplerian zone, ®@,.(r) > 0 while dQ)/dr < 0, so that the Velikhov-Chandrasekhar criterion of
the instability is satisfied. However the elasto-rotational instability (ERI) where ®,,.(r) < 0is not
analog of MRI. So that the MRI analog zone is determined by @, () > 0, dQ/dr < 0, ®,, (r) > 0.
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Figure 7.40: Application of the Velikhov-Chandrasekhar criterion for ERI.

b. Condition for VEI analogs : axial field dominant or azimuthal field dominant
The polymer analog of the magnetic field has three possibilities, two of which have non zero

azimuthal components which depend on Wi. According to equation 3.29, the axial field will
dominate over the azimuthal field if Wi < Wi* ~ 0.76. In this case the destabilization of the
viscoelastic flow in the Keplerian regime will lead to the VEI analog of the standard MRI (SMRI) which
is an axisymmetric instability. Thus, the stationary axisymmetric modes which have been observed
for small values of Wi are the analogs of the SMRI.

For Wi > Wi*, both the axial and azimuthal fields are comparable and the destabilization
will lead to ERI analog of the helical MRI (HMRI). We may conclude that the disordered waves mode
which is the superposition of the counter-propagating waves is the analog of the HMRI.

For Wi >» Wi*, one may observe the purely elastic instability predicted by the elasto-
rotational Rayleigh criterion which should be the analog of the similar Michael’s criterion of MHD for
the stability of conducting liquid in the azimuthal magnetic field [Michael1954] [Davidson2013]:

1 d )
O(r) — —3—(7’39)2 >0 and (Qr)?<B; 7.1
por> dr

According to this criterion, the instability should be axisymmetric. We expect this instability in the
extreme case of E — oo which corresponds to the purely elastic instability (see chapter 9). In the case
of large but finite E, non-axisymmetric mode with m,. = 1 is predicted by LSA. This may be analog of
the azimuthal MRI (AMRI) which is a non-axisymmetric instability.

The figure 7.41 presents the experimental and LSA critical values Ta.(ES) (figure 7.26)
together with the criteria of Wi* that separate VEI analog to different types of the MRI.
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experimental transient values defined by molar mass elasticity. Dashed rectangular — group of
different flow patterns. Colored point lines — criterion of Wi = Wi* for different S.

c. Alfvén waves

The characteristic polymeric analog of the magnetic field B, = W (see expression 3.23)
suggests the existence of a characteristic velocity U, = thich is the analog of the Alfvén
velocity defined asV, = B/\/M in MHD. We shall call this characteristic velocity U, the polymeric
Alfvén velocity I//'lp

By Vp
=—= [— 7.2
\/; T

For a fixed polymeric viscosity (vp) of the solution, i.e. for a solution with a given elasticity,

qu

the polymer viscosity defines the polymeric Alfvén velocity. When scaled with the viscous diffusion

velocity v/d, the dimensionless polymeric Alfvén velocity I&p is

S
pr = |= 7.3
A E

If one uses the characteristic rotation velocity U; = dy, one gets
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where B, is the dimensionless polymeric analog of the magnetic characteristic field By.

d. Comparison with results of Ogilvie & Potter and experiments of Boldyrev

Ogilvie & Potter [Ogilvie2008] performed the LSA for the only case of n = 0.95and S = 0.5,
this case has been used to test our code. We have investigated the viscoelastic regime in more detail
for the annular flow geometry withn = 0.8 both in Keplerian and anti-Keplerian regimes (u =
n3/2,u = n73/2) and with different values of viscosity ratio S.

In the Keplerian regime, Ogilvie & Potter predicted a critical mode in form of “ribbon”
structure, we have not found this mode neither in the LSA nor in the experiment because of the
difference in radius ration. Instead, we found stationary axisymmetric mode for small E and
disordered waves mode which is a superposition of counter-propagating waves for intermediate E
from LSA. For Ogilvie & Potter, no stationary axisymmetric mode was obtained because of the small
gap and of the value of S = 0.5, so that no SMRI analog is observed.

Boldyrev et al . [Boldyrev2009] reported experimental observation of stationary axisymmetric
modes (m = 0) and helicoidal mode (m = 1) in high molecular aqueous polymer solutions which
were shear thinning in a cylindrical annulus with 1n =0.903 and viscosity ratio
S €{0.983,0.991,0.995}. These authors have observed helicoidal modes in the same range of the
elasticity E as in our case of disordered waves mode, but they reported axisymmetric mode for large
but finite values of E for which the LSA predicts the non-axisymmetric modes corresponding to the
analog of HMRI.

15 T T oo T T T T T T
i S=0.9
| me#0 $=0.95
we # 0 $=0.99
R s ES'=3.95
————— - mode separation $=0.9
0 ... —_n |V | === - mode separation $=0.95 |
mode separation $=0.99
Ta O  exp boldyrev m=0 $=0.995
c O exp boldyrev m=1 $=0.991
o O exp boldyrev m=1 $=0.983
5 - 4
0 -3 B 2
10 10

Figure 7.42 Threshold curve for the polymer solutions used in the experiment by Boldyrev et al.
(2009) and corresponding experimental values for n = 0.903,S € {0.983,0.991, 0.995}.
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We have performed the linear stability analysis with the conditions of the experiments of
Boldyrev et al. (n = 0.903) the critical curves are plotted in the figure 7.42. For weak values of ES
the critical mode is axisymmetric and stationary while it is non-axisymmetric and oscillatory for large
values of ES. The curve of the critical axial wavenumber is similar to the curve obtained forn = 0.8
while the critical azimuthal wavenumber takes values from 0 to 3. The experimental points reported
by Boldyrev et al. are located above the theoretical curve, moreover, the stationary axisymmetric
mode is found in the zone of non-axisymmetric modes.

We have computed the critical modes for different values of viscosity ratio and elasticity and
performed experiments with many solutions with well-controlled rheology. We have provided a
more complete set of results of the VEI in Keplerian and anti-Keplerian regimes than previous studies.
The experimental results are in good agreement with the LSA results so that the analogy between the
VEI and the SMRI and HMRI is confirmed.

7.4. Conclusion

In this chapter we have studied theoretically and experimentally the viscoelastic instability in
the Keplerian regime (,u = r]3/2) and the anti-Keplerian regime (u = n_3/2). The analogy between
the VEI at different E and SMRI or HMRI has been established theoretically and confirmed
experimentally with viscoelastic fluids

In the Keplerian regime, we have found a good agreement between the experimental and
theoretical critical curves Ta.(ES) if the elasticity is defined with the molecular relaxation time. We
have observed two different modes in the Keplerian regime which are the Stationary and
Axisymmetric vortex mode at small ES (analogy with SMRI) and the disordered modes at larger ES
(analogy with HMRI). These two modes are different from the Taylor Vortex mode or the disordered
vortices mode observed in the u = 0 regime. The stationary axisymmetric mode is supercritical while
the different disordered modes are subcritical. For large values of ES, the critical mode should be the
purely elastic instability mode.

The anti-Keplerian regime is very similar to the u = oo regime: critical modes are disordered
vortices and the critical curves have the same shape and are parametrized by the elasticity E instead
of the ES.
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Chapter 8: Viscoelastic instability in the
intermediate regime of u = n3

Following the theoretical analysis of Ogilvie-Potter [Ogilvie2008], we have analyzed the regime
u =13 where both the centrifugal force and the elasticity force intervene together as driving
mechanisms of instability. This regime may be considered as an intermediate regime between the
Keplerian regime and the inner cylinder rotating regime of u = 0. The study of Ogilvie-Potter was
limited ton = 0.95and S = 0.5, we have investigated the case whenn = 0.8and S € [0.5,0.8]
corresponding to the experimental data.

8.1. LSA results

According to Rayleigh stability criterion discussed in chapter 4, the Newtonian Couette flow in
the intermediate rotation regime (u = 13)is unstable. In figure 4.1 the rotation line of u = n3
appears between p = 0 and u = 13/2. In the geometry of our experimental configurationn = 0.8 we
have u = 0.512.

a. Marginal stability curves

The marginal stability curves Ta.(q) are plotted in figure 8.1 for different values of the
azimuthal wavenumber m and for E £{0.01, 0.028, 0.1, 1} for fixed S = 0.7. For small E the marginal
curves of different m are close to each other while for large E the bottom of the lowest marginal
curve (m = 1) is too flat to choose the critical wavenumber q. [4.3,5.8].
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Figure 8.1: Marginal stability curves Ta.(q) for different m for S = 0.7 (a) E = 0.01 (b) E = 0.028 (c)
E=0.1(d)E = 1linregimeu =n3.
b. Variation of the critical parameters with E
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Figure 8.2: Critical curves, Ta.(E) for different m for a solution with S = 0.7 in regime u = n°.
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From the marginal stability curves, we illustrate the critical curves Ta.(E) for different m.
Taking S = 0.7 as an example (figure 8.2), the critical curves for different m are close to each other
and Ta, decreases with E.

The critical curves corresponding to the lowest values of Ta.(E) and to the critical
wavenumbers g, and frequency w, are plotted in figure 8.3. AtE = 0, the curves intersect the
vertical axis at the value Ta, = 27.77 corresponding to the pure centrifugal instability. For very low
values of E < 0.027, the critical modes are stationary axisymmetric modes and their wavenumber
increases from q. = 3.12 very slowly with E. For values of E > 0.027, the critical modes are
oscillatory non-axisymmetric modes (m. # 0, w. # 0), their wavenumber increases linearly with E
up to E ~ 1.5. For larger E, the critical wavenumber g, increases sharply with E as the elasticity is
dominant the centrifugal force.
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Figure 8.3: Variation of the critical parameters with E for S = 0.7 in u = 1> regime: (a) Threshold
Ta, (b) critical wavenumber q., (c) critical frequency w,.

The non-axisymmetric modes depend on the elasticity E. There are three codimension 2
points, critical parameters of which are given in table 8.1.

E Ta. qc me we
3.80 0 0
0.027 18.1
3.84 1 -0.178
3.88 1 -0.177
0.034 16.9
3.90 2 -0.354
4.44 2 -0.312
0.189 8.09
4.48 1 -0.132

Table 8.1: Codimension-two points for S = 0.7 in the intermediate rotation regime u = 3.

The cross—section (7, z) of flow patterns of the azimuthal component of the vorticity are
shown in figure 8.4. More properties of these four flow patterns are shown from figure 8.5 to figure
8.8. The shape of the azimuthal vorticity distribution in the gap changes as the elasticity increases
from stationary to nonaxisymmetric modes. The instability generates the second normal stress
difference and the ratio N, /N; decreases with E suggesting that in the purely elastic modes, the first
normal stress difference plays a crucial role while the second one should be neglected. This result
should be verified in DNS.
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Figure 8.4: Cross-section (7, z) of the azimuthal component of the vorticity for S = 0.7 inu =13

regime.
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Figure 8.5: Critical mode for § =0.7, E =0.01, Ta, =86.6 in u = n3 regime, with m =20,
qc. = 349, w, = 0. (a) Black arrows represent the velocity field in (r, z) direction while the colors
represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N; variation
© the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.
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Figure 8.6: Critical mode for § =0.7, E =0.028, Ta, =524 in u = n3 regime, withm=1,
q. = 3.84, w, = —0.178. (a) Black arrows represent the velocity field in (r, z) direction while the
colors represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N;
variation © the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.
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Figure 8.7: Critical mode forS§ = 0.7, E =0.1,Ta, =322inu = n3 regime, withm = 2, q,. = 4.25,
w, = —0.327. (a) Black arrows represent the velocity field in (r,z) direction while the colors
represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N; variation
© the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.
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Figure 8.8: Critical mode for S =0.7, E =1, Ta, = in u =13 regime, withm =1, q. = 5.03,
w, = —0.122. (a) Black arrows represent the velocity field in (r,z) direction while the colors
represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N; variation
© the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.

The comparison of the critical modes of the intermediate regime with the other regimes
(4 = O regime , figure 6.3 — 6.7) and the Keplerian regime, figure 7.3 — 7.9) shows the similarity of
critical modes and critical curves between the intermediate regime and the yu = 0 regime at small E :
the critical modes are stationary axisymmetric modes (the Taylor Vortex) due to centrifugal force.
While for large values of E, the intermediate regime yields results similar to those of the Keplerian
regime.

c. Effect of the viscosity ratio S on the critical states

To complete the comparison the critical curves of Ta.(ES) for different S are presented in
figure 8.9. For ES < 0.08, different critical curves are merged into one curve, and for E > 0.08,
the critical curves diverge slightly from each other and the viscosity ratio becomes stabilizing.

The variation of the critical curves Re. (Wi,) for different S is given in figure 8.10. The critical
curves for different S cross the vertical axis of Wi, = 0 at the same point of Re; = 58.9.The critical
curves decrease with Wi, and cross the horizontal axis of Re, = 0 at different values of Wi,
threshold of the elastic instability, which depend on the value of S.

The variation of Ta, with the modified Weissenberg number K, for different S (figure 8.11)
shows that the curves start at the same point corresponding to the threshold of the pure centrifugal
instability (K, = 0) . Then they diverge as Wi, increases. The different curves intersect all in the
cross point K* = 1.72,Ta; = 5.6. Like in the Keplerian regime, this cross point separates state
diagram into two zones in which the viscosity ratio plays opposite role: is destabilizing for K, < K*
and stabilizing for K. > K*. The presence of the precise cross point is another evidence of the
similarity between the intermediate regime and the Keplerian regime at large E. The colored dashed
lines separate the stationary axisymmetric mode and the oscillatory non-axisymmetric mode.
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Figure 8.9: Critical curves Ta.(ES) for different S in u = 13 regime. The colored dashed lines
separate the stationary axisymmetric mode from the oscillatory non-axisymmetric mode by LSA.
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Figure 8.10: Critical curves, Re.(Wi,) for different S in u = n® regime.
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Figure 8.11: Critical curves, Ta.(K,) for different S in 4 = n3 regime.

8.2. Experimental results

In the experiment, five viscoelastic solutions have been tested in the intermediate regime

u=n

a. Flow patterns

Among the five experimental points, we have observed 2 different unstable modes: the
Ribbons mode at small ES (figure 8.12) and the Disordered Waves mode at large ES (figure 8.13).
The Ribbons mode is the same mode observed in the u = 0 regime while the Disordered Waves
mode is the same mode observed in the Keplerian regime.
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Figure 8.12: Flow patterns and space-time diagram of the Ribbons mode on u = 13 regime for
a. =13.73,E,, = 1.06,S = 0.47. (a) Gap view (b) Front view by laser sheet (c) Space-time
diagram. (d) Longtime space-time diagram.
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Figure 8.13: Flow patterns and space-time diagram of the Disordered Waves mode on . = 3 regime
atTa, = 4.66,E,, = 0.34,S = 0.5. (a) Gap view (b) Front view by laser sheet (c) Space-time diagram.
(d) Longtime space —time diagram.

To make sure that the unstable mode at large ES is the Disordered Waves mode not the
Disordered Vortices mode, we plot also in figure 8.14 the transient space-time diagram from laminar
flow to unstable flow and the Fourier spectrums related to this diagram. Counter propagating waves
interact to form propagating ribbons and the disordered waves and the peak of the wave in the time
spectrum is distinct from the rotating cylinders.
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Figure 8.14: Transient space-time diagram and Fourier spectrums of the Disordered Waves mode on
u =n3regime atTa, = 4.66, E,, = 0.34,S = 0.5. (a) Space-time diagram (b) space spectrum (c)
time spectrum. Red solid line — outer cylinder rotation frequency. Red dashed line — inner cylinder
rotation frequency. Black dashed line — flicker frequency of the spot light.

b. Comparison with LSA results

The experimental critical values Ta.(ES) with E defined by three different relaxation times
(Te, Tm, Ty1) are plotted together with the LSA critical curves (figure 8.15). We observe that the
experimental critical points decrease with ES as predicted by the LSA critical curves. The LSA critical
curves go through the three definitions of the elasticity: at small values of ES , the LSA critical curves
are close to experimental points with E defined with N; and at large ES the LSA critical curves are
close to experimental points with E defined with the extensional relaxation time. The colored dashed
lines separate the stationary axisymmetric mode form the oscillatory non-axisymmetric mode by LSA.
It is difficult to say whether these mode separation lines correspond to the experiments or not
because of the lack of experiments of stationary axisymmetric mode in small ES.

We resume the variation of the experimental w, and g, with ES defined by the molecular
relaxation time together with the LSA predictions is shown in figure 8.16 and 8.17, though we have
only tested five solutions in this regime. We can see that the experimental w, and q. follow the
trend of the LSA prediction.
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Figure 8.15: Variation of the critical values with ES on u = n3 regime. Solid lines — LSA critical curves
for different S. Solid points — experimental transient values, 3 colors represent the 3 different
definitions of elasticity. The colored dashed lines separate the stationary axisymmetric mode form
the oscillatory non-axisymmetric mode by LSA.
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Figure 8.16: Variation of the critical angular velocity with ES defined by the molecular relaxation time.
Solid lines — LSA predictions for different S. Solid points — experimental angular velocity.
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Figure 8.17: Variation of the critical axial wave number with ES defined by the molecular relaxation
time. Solid lines — LSA predictions for different S. Solid points — experimental critical wave numbers.

8.3 Conclusion

To conclude the analysis of this intermediate regime of u =13, we have found that the
viscoelastic instability in the g = n3 regime resembles the u = 0 regime for small E while it
resembles the Keplerian regime for large E. For very large values of the elasticity, the purely elasticity
mode should be critical for small values of shear rate.
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Chapter 9: Pure elastic instability

In this chapter we revisit the special case of the purely elastic instability for all investigated
regimes in the limit Re — 0 corresponding to E — c.The goal is to search for the universal scaling
between flow parameters to get a better description of the purely elastic instability.

In the limit of Re = 0 and E = oo with finite Wi = ERe, the dimensionless general equations
2.20 reduce to:

v-U=0
0=-VII+V-TP + (1—S)V2U
9.1

_ TP T = = - R
TP + Wi aait+U-VTp—(VU)T-Tp—Tp-VU = S[VU + (VU)T]

9.1. LSA results

The purely elastic instability was first studied theoretically and experimentally by Larson et al.
[Larson1990]. However their linear stability analysis is limited to the small gap limit. We have already
recalculated the case of Larson et al. and similar critical curves are observed (see figure 4.8). Based
on the equations 9.1 we calculated the critical Weissenberg number Wi, and the corresponding
critical wave numbers q. and m, and critical frequency w, for differentS and different rotational
regimes.

a. Marginal stability curves

The marginal stability curves Wi(q) are plotted in figure 9.1 for different m for S = 0.5 and
S = 0.8. For § = 0.5 the lowest marginal curve m = 1 possesses a clear minimum so that it is easy to
determine a critical wavenumber q.. For S = 0.8, the bottom of the marginal curve (m = 0) is so flat
that several axisymmetric modes of different q€[12,14.6] are critical. A similar result was obtained
by Joo & Shagfeh [J001992]. These modes may interact with each other and lead to more complex
dynamics, analysis of which is beyond the framework of the LSA.
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Figure 9.1: Marginal stability curves of the purely elastic limit in Keplerian regime for (a) S = 0.5 and
(b) S = 0.8.
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b. Variation of the critical modes with S
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Figure 9.2: Critical curves Wi(S) for different m at q. on Keplerian regime.

Taking the Keplerian regime as an example, we plot in figure 9.2 the critical curves of Wi(S)
for different m. We observe that as S increases, Wi decreases to a minimal value of WiforS <
So and then increases forS > S,. The value S, yielding the minimum of Wi depends on m. The
mode m = 1 possesses the smallest Wi atSy, = 0.375so that it is the most unstable mode for
S < §; with §S; = 0.695. When § > §;, the axisymmetric mode m = 0 becomes most unstable. So in
the Keplerian regime, the viscoelastic solution with a viscosity ratio S, = 0.375 requires a minimal
shear rate to generate a purely elastic instability in form of oscillating non axisymmetric modes. For
solutions with S > 0.695, the critical modes are oscillatory axisymmetric. The point (S, Wi;) is a
codimension 2 point.

The variation with S of the smallest values of Wi which are the critical values of the purely
elastic instability is shown in figure 9.3 for different rotational regimes. The critical curves are
ordered from top to bottom Wi(u=n"3/%)>Wi(u =) > Wi =0)>Wi(u =1 >
Wi(y = 173/2). These curves are similar to each other, meaning that they may not depend on the
rotation rate. In particular, they share the same S, = 0.375 for the minimum of Wi and the same
abscissa §; = 0.695 of the codimension 2 point which separates the non-axisymmetric mode and the
axisymmetric mode.
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Figure 9.3: Critical curves Wi(S) for different rotation regimes.

This similarity suggests to search for an appropriate parametrization which may allow
merging all these curves into one single curve. If we replace Wi by the shear Weissenberg number
defined by Wi; = 7y with the shear rate defined at the mean radius i.e.
Y =1Q; — Q,|(R; + R,)/2d, then the critical curves of all the studied regimes collapse in to one
same curve (figure 9.3), since the purely elastic instability is driven only by the elastic force and not
by the inertial force. So the critical shear Weissenberg number Wi is independent to the rotational
regimes. Besides, the critical wavenumber q. is also independent when Re = 0 for different regimes.
In the codimension 2 point, the axial wavenumber pertains a discontinuity. Unlike the critical values
Wi and q., which are represented by single curves (figure 9.4a-b), the critical angular frequency w,
changes for different rotational regimes (figure 9.4-c). In each regime, the variation of the critical
frequency is quite small for each mode (m = 0andm = 1). At the codimension 2 point, the
frequency pertains a strong discontinuity.
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Figure 9.5: Azimuthal vorticity patterns in the gap.

In figure 9.5, we have represented the azimuthal vorticity component of the critical mode in
the Keplerian rotation regime for S = 0.5 and § = 0.8. All rotational regimes share the same critical
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mode. Both types of the critical modes are flattened vortices. The non-axisymmetric mode m, = 1
are located near the outer cylinder while the axisymmetric mode m,. = 0 is located near the inner
cylinder. The critical dimensionless wavenumbers g, of these modes are larger than =, this means
that the critical vortices have size which is smaller than the gap width (figure 9.5).

9.2. Experimental results

Larson et al. have found the purely elastic instability in the experiments with polymer solution
that had very long relaxation time. Estimated by the normal stress difference N; their solutions has
Ty1 ~ 7.85 which is more than 20 times larger than our most elastic solution which has Ty, ~ 0.36s.
So it is difficult for us to reach the purely elastic limit of E — oo as Larson et al. have done. However
the previous discussion of the u = oo regime and the anti-Keplerian regime showed that the purely
elastic instability with limited E can be reached by rotating the outer cylinder much faster than the
inner cylinder. We found that the experimental critical values defined by the extensional relaxation
time E, agree very well with the LSA predictions in these two regimes

We surmise the experimental Ta, in respect to the extensional defined elasticity E, of all the
five studied regimes in figure 9.6. We see that for all regimes Ta, decreases with E, and at large E,
all points approach the horizontal axis Ta, = 0.
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Figure 9.6: Experimental critical value Ta.(E,) of five rotational regimes.

The variation of the critical shear Weissenberg Wi, for the five regimes both for experimental
values and LSA values with E, for S = 0.5 is represented in figure 9.7. The specific value of S = 0.5
is chosen to compare with the experimental points because this value fits better to the five most
elastic solutions that are relatively close to the purely elastic limit. As E increases, both the
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experimental and the LSA predicted Wi, of all regimes converge to the critical Wig = 15 of the
purely elastic limit for § = 0.5.
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Figure 9.7: Experimental and LSA critical values Wi (E,) of five regimes. Solid points: experimental
critical values. Solid lines: LSA predictions of S = 0.5. Dashed black line: the LSA prediction of the
WigatS = 0.5.

The comparison of the experimental curve Wi (S) with the theoretical curve is given in
figure 9.8. All the experimental points lie above, but close to the theoretical curve from LSA. The
discrepancy between the theoretical and the experimental results is due to the fact that the
experimental solutions in all regimes have finite elasticity.
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Figure 9.8: Experimental and LSA critical values Wi4(S) of five regimes. Solid points: experimental
critical values. Solid line: LSA prediction.

9.3. Conclusion

The stability of the infinite-elasticity solutions has allowed determining a unique critical curve
Wi, (S) for the pure elastic instability independent to rotational regimes. The pure elastic instability
appears in form of the oscillatory non axisymmetric modes for values of S < 0.695 while it appears
in form of oscillatory axisymmetric modes for S > 0.695. The experimental data obtained in
solutions with finite elasticity show a trend to a unique curve as the elasticity is increased large
enough. The experimental investigation is worth of continuation especially with solutions of large
elasticity (E > 10).
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General conclusion

In this thesis the viscoelastic instability (VEI) of a polymer solution governed by the Oldroyd-B
model is studied theoretically and experimentally in the Couette-Taylor system with different
rotation regimes. The analogy between VEI and magnetorotational instability (MRI) is discussed
theoretically so that the experiments of VEI may help in the deepening of the understanding of the
MRI and the momentum transportation in accretion disks.

The rotational Rayleigh discriminant has been generalized to include the elasticity effects of
the polymer solutions, the resulting elasto-rotational Rayleigh discriminant predicts that the elastic
force enhances the centrifugal instability and induces the purely elastic instability in a circular
Couette flow potentially stable to centrifugal perturbations. This elasto-rotational Rayleigh
discriminant is analog of the Michael’s criterion of instability of conducting fluids in the presence of
an azimuthal magnetic field.

We have conducted linear stability analysis (LSA) based on the complete Oldroyd-B equations
and experiments with polymer solutions of 1000ppm POE with various concentration of PEG (2.5% -
25%). The working solutions were thoroughly characterized by the rheology measurements to test
the validity of the Oldroyd-B model. The viscosities and the relaxation times were measured by
different methods. The viscosities v, vy, v, and the relaxation times 7., 7,,, Ty; were found to
increase with the polyethylene glycol concentration in water Cpg; so that the elasticities E,, Ey,, Enq
increase with Cpg; while the viscosity ratio S decreases with Cpgg.

The LSA and experimental test were performed for the flow in the Couette-Taylor system
with a radius ratio n = 0.8. The aspect ratio of the experimental setup was I' = 45.7 which is large
enough to allow comparison with theoretical results obtained in the infinite aspect ratio.

In the case of the sole rotating inner cylinder (4 = 0), we have observed theoretically and
experimentally three different critical modes from small E to large E: Taylor vortex mode, Ribbons
mode and Disordered vortices. The Taylor vortex mode and the Ribbons mode are supercritical while
the disordered modes occur via a subcritical transition. The threshold Ta. , axial wavenumber g, and
angular frequency w, of the critical modes show good agreement between experiments and LSA
predictions. Qualitative agreements are also found between our experimental results and those of
Baumert [Baumert1999], Groisman [Groisman1998] and Kelai [Kelai2011]. The viscosity ratio S is
found to play opposite roles: destabilizing for small values of the elasticity and stabilizing for large
values of the elasticity and in particular in the purely elastic regime.

In the Keplerian regime (u = 773/2), instability modes were predicted and observed in the
zone where they were not predicted even by the elasto-rotational Rayleigh criterion. These modes
appear in form of the stationary axisymmetric vortices for small values of ES (analog of SMRI) and in
form of the disordered modes for large ES (analog of HMRI). These modes are different from the
Taylor Vortex mode or the disordered vortices observed in the ¢ = 0 regime. Among the disordered
modes solitary vortices appear for intermediate values of ES. The stationary axisymmetric mode is
supercritical while the disordered modes are subcritical. For large values of the elasticity, the critical
mode is the purely elastic instability mode. In this Keplerian regime, the polymer elasticity ES
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appears to be a better control parameter than E, in fact the critical curves Ta.(ES) converge into a
single curve for different S. This single curve fits the experimental thresholds of the critical modes
when the elasticity is defined with the molecular relaxation time 7,,.

Two other situations where there is no centrifugal instability in Newtonian flows have been
investigated for the viscoelastic fluids. The case when only the outer cylinder is rotating (u = oo
regime) and the anti-Keplerian regime (u = n_3/2) in which the outer cylinder rotates faster than
the inner one. The VEI occurs in form of axisymmetric and oscillatory modes. The LSA critical curves
of the thresholds Ta.(E) are independent to S and they fit perfectly the experimental critical values
when the elasticity is defined with the extensional relaxation time.

In the intermediate regime of u = 13, the VEI resembles the u = 0 regime for small E while
it resembles the Keplerian regime for large E.

In the limit of Re = 0 and E — oo with finite Wi, a unique critical curve Wig(S) for the pure
elastic instability for all rotational regimes is predicted by the LSA where the shear rate has been
determined at the mean radius. The pure elastic instability appears in the form of the oscillatory non-
axisymmetric modes for values of § < §; while it appears in form of oscillatory axisymmetric modes
forS > §;. The experimental data obtained in solutions with finite elasticity show a trend to a
unique curve as the elasticity is large enough. The experimental investigation is worth of
continuation especially with solutions of large elasticity (E > 10).

The present investigation of the VEI in Keplerian regime confirms the analogy between VEI at
small elasticity and SMRI where the elastic force field is analog to the axial magnetic field that
destabilizes accretion disks. Different types of MRI are distinct from each other by the form of
magnetic field. The analysis of the polymer analog §p of the magnetic field, suggests that in Keplerian
regime, the VEI is analog to the SMRI when Wi « Wi*, while the VEI is analog to the HMRI when
Wi = Wi* and the VEI could be an analog to the AMRI or Michael instability when Wi > Wi*. The
stationary axisymmetric vortex mode is the analog to the SMRI while the disordered waves mode is
the analog to the HMRI. Is the purely elastic mode at Wi > Wi* and large E the analog of the AMRI
remains an open issue to be investigated in forthcoming work.

This thesis was limited to the first instability modes of the viscoelastic flows both in the
theoretical analysis and in the experiments. The behavior of some marginal curves and the existence
of multiple codimension 2 points suggest the necessity of non-linear analysis to investigate the mode
coupling. There is a need for DNS of the flow equations to compute the torque and the radial
transport of the momentum. PIV measurements will permit to characterize in more details the
critical modes, the higher instability modes and the turbulence in the Keplerian regime of the
viscoelastic flows. Moreover, measurements of the torque on the cylinders will give complementary
data on the momentum transportation in viscoelastic flows and bring a new break in the validation of
the analogy between the VEI and MRI in accretion disks.
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Re = 40. The azimuthal velocity perturbation is indicated by color scale. (c) results of Ogilvie &
Potter (d) our results.

Figure 5.1: Experimental setup and its environment.

Figure 5.2: (a) Monomer of PEO and PEG (b) PEO sealed in a flacon.

Figure 5.3: (a) The shear stress rheometer (Aanton Par MC300). (b) The plan-cone measuring cellule.
Figure 5.4: Solvent viscosity with respect to shear rates for PEG concentration from 2.5% to 25%.

Figure 5.5: Dynamic viscosity of working fluids of different PEG concentrations in respect to shear
rate. Each PEG concentration is represented by one color in the diagram. Dashed lines — working
range of experiments.

Figure 5.6: Total solution viscosity pv, polymer viscosity pv,, and solvent viscosity pvs with respect to

the PEG concentrations and their fitting curves for Cpgp = 1000 ppm .
Figure 5.7: Viscosity ratio S with respect to PEG concentration.
Figure 5.8: The photo of extensional relaxation time and the principle of the measurement.

Figure 5.9: Variation of the filament diameter with the time, experimental data for a solution of 10%
PEG and 1000 ppm PEO measured by CaBER .
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Figure 5.10: Adjusted first normal stress difference N; in respect to the shear rate y. The points in the
red dashed rectangular are used to estimate Ty .

Figure 5.11: Variation of the relaxation times T with PEG concentration.
Figure 5.12: Variation of the Elasticities E with the PEG concentration.
Figure 5.13: Variation of the Elasticities E with the viscosity ratio S.

Figure 6.1: Marginal curves Ta(q) for differentm at chosen E for S = 0.6. Colored dashed lines
indicate g, and Ta, for differentm (a) E =0.01,m; =0,w, =0 (b) E=0.1,m, =1, w, <
O()E=1m,=1,w;. > 0.

Figure 6.2: Variation of the critical values of Ta, with E for different m at fixed S = 0.6.

Figure 6.3: Variation of the critical parameters with the elasticity number E forS = 0.6inu=20
regime: a) a.(E) ; b) q.(E); c) w.(E) . Loose dashed vertical line separates critical azimuthal
wave numbers m,.. Dense vertical line separates the positive and negative angular frequency.

Figure 6.4: Color: Vorticity wg of the critical modes in the gap for different values of the elasticity
number E and forS = 0.6in u = 0 regime. Solid line: critical curve a.(E) .

Figure 6.5: Critical mode for § = 0.6,E = 0.01, Ta, = 41.3 onu =0, withm =0, q. = 3.28, w, = 0.
(a) Black arrows represent the velocity field in (r, z) direction while the colors represent the
azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N; variation © the
N, variation. Color maps of (b, ¢, d, e) represent the relative amplitude.

Figure 6.6: Critical mode forS = 0.6, E = 0.1, Ta, = 27.2in u = 0 regime, withm =1, q. = 4.37,
w. = —0.034. (a) Black arrows represent the velocity field in (r, z) direction while the colors
represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N;
variation © the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.

Figure 6.7: Critical mode forS =0.6, E =1, Ta, = 5.74 in u = Oregime, withm =1, q, = 6.03,
w; = 0.014. (a) Black arrows represent the velocity field in (r, z) direction while the colors
represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N;
variation © the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.

Figure 6.8: Critical curves Ta.(E) for different S in 4 = 0 regime.
Figure 6.9: Critical curves Ta,(ES) for different S in u = 0 regime.
Figure 6.10: Critical curves Re.(Wi,) at critical wave numbers for different S in u = 0 regime.

Figure 6.11: Critical curves Ta.(K,) for different values of S in u = 0 regime. The insert figure on the
right top corner is a zoom in around the “intersection point”.

Figure 6.12: Variation of the critical angular frequency w, with ES for different S in u = Oregime.
Figure 6.13: Variation of the critical wave number g, with E for different S in u = 0 regime.

Figure 6.14: Critical mode of Taylor Vortex observed in a solution of 1000ppm PEO and 2.5% PEG
(Ta, = 28.8,E,, = 0.011,5S = 0.87) in u = 0 regime: (a) gap view, (b) front view, (c) space-
time diagram of the front view.
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Figure 6.15: Critical mode of Ribbons at Ta, = 28.4,E,, = 0.0168, S = 0.81 in u = 0 regime for a
solution of 1000ppm PEO and 5% PEG. (a) gap view (b) front view (c) space-time diagram of
the front view.

Figure 6.16: Demodulation of the space-time diagram of the Ribbons mode. (a) demodulated left
wave (b) space-time diagram (c) demodulated right wave.

Figure 6.17: Critical mode of Disordered Vortices at Ta, = 12.1,E,, = 0.131,§=061inu =20
regime for a solution of 1000ppm PEO and 15% PEG. (a) gap view (b) front view (c) space-time
diagram of 20s of the front view.

Figure 6.18: Space-time diagram of 600s for 3 different modes: (a) Taylor Vortex (b) Ribbons (c)
Disordered vortices.

Figure 6.19: Fourier spectra of the Disordered Vortices for a solution of 1000ppm PEO and 15% PEG
(Ta, =12.1,E,, = 0.131,5S = 0.61) in u = 0 regime: (a) space spectrum (b) time spectrum.
Red dashed line — the frequency of the inner cylinder. Black dashed line — the flicker frequency
of the spot light.

Figure 6.20: Transition to Disordered Vortices for a solution of 1000ppm PEO and 15% PEG
(Ta. =12.1,E,, = 0.131,S = 0.61) in u = 0 regime. (a) Space-time diagram of the transient
state, (b) space spectrum, (c) time spectrum.

Figure 6.21: Variation of the critical values of Ta, with the polymer elasticity ES in u = 0 regime.
Solid points represent experimental critical values, 3 colors correspond to 3 different
definitions of elasticity. Within each definition of elasticity (see section 5.4), each point
represents one tested solution. Continuous lines are the LSA critical curves for different S.

Figure 6.22: Variation of the critical values of Ta, with the polymer elasticity ES defined by the mass
molar relaxation time inu = 0 regime. Solid points represent experimental critical values.
Dashed rectangles are groups of different critical modes. Continuous lines are LSA critical
curves for different values of S.

Figure 6.23: Variation of the critical angular frequency with ES defined with molecular relaxation
time in u = 0 regime. Solid points — experimental critical values. Dashed rectangles — groups of
different critical modes. Continuous lines — theoretical critical angular frequencies for different
S.

Figure 6.24: Dimensionless critical axial wave number g, in g = 0 regime. Solid lines — LSA critical
wave numbers for different S. Solid points — experimental critical values. Dashed circle — group
of different critical modes.

Figure 6.25: Critical values on regime of 4 = 0. Continuous lines — LSA critical curves. Solid points —
experiments of Kelai. Open points — our experiments. Violet triangle — experiment of Baumert.

Figure 6.26: Marginal curves Ta(q) for differentmatS =0.7and E = 1.
Figure 6.27: Critical curves Ta.(E) for different m at fixed S = 0.7 in y = oo regime.

Figure 6.28: Critical curves, Ta.(E) for different S in u = oo regime.
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Figure 6.29: Critical curves Re.(W1i,) for different S in 4 = oo regime.

Figure 6.30: Variation of the critical parameters with E for different values of S in u = oo regime: (a)
angular frequency w, (b) axial wave number q..

Figure 6.31: Critical mode for S=0.7,E=1,Ta, =473 onu=0o, withm=20, q. = 14.4,
w. = 0.050. (a) Black arrows represent the velocity field in (7, z) direction while the colors
represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N;
variation © the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.

Figure 6.32: Critical mode of Disordered Vortices at Ta, = 15.4,E,, = 0.131,5§ = 0.61,u = oo for a
solution of 1000ppm PEO and 15% PEG. (a) gap view (b) front view (c) space-time diagram of
20s of the front view (d) long-time space-time diagram © space spectrum (f) time spectrum.
Red dashed line — the frequency of the inner cylinder. Black dashed line — the flicker frequency
of the spot light.

Figure 6.33: Critical values of the transition from laminar flow to unstable flow on regime of u = oo.
Solid lines — LSA critical curves for different S. Solid points — experimental transient values, 3
colors present 3 different definitions of elasticity. Within each definition of elasticity, each
point present one solution tested.

Figure 6.34: Variation of the critical angular velocity w, in g = oo regime. solid points — experimental
critical values for E defined by extensional relaxation time. Continuous lines — LSA critical
curves for different S.

Figure 6.35: Variation of the critical axial wave number g, with E in yu = oo regime. Solid points —
experimental critical values for E defined by extensional relaxation time. Continuous lines —the
LSA critical curves for different S.

Figure 6.36: Critical values on regime of u = co. Continuous lines — LSA critical curves. Blue circle —
our experiments. Red triangle — experiments of Kelai. Violet squire — experiment of Baumert.

Figure 7.1: Marginal curves Ta(q) for different m at chosen E. (a) E = 0.01(b) E = 0.036, (c)
E=01,(d)E=1.

Figure 7.2: Critical curves, Ta.(E) for different m, S = 0.6 on Keplerian regime.

Figure 7.3: Variation of the critical curve Ta.(E) for S = 0.6 on Keplerian regime. Black dashed lines
separate critical azimuthal wave number m. Color maps — vorticity wg in the gap plane (7, z),
where red represents positive values and blue represents negative values .

Figure 7.4: Variation of the critical frequency of the critical modes with E and S = 0.6 in Keplerian
regime. Dashed vertical lines separate different m..

Figure 7.5: Variation of the critical axial wavenumber g, of the critical modes with E for S = 0.6 on
Keplerian regime. Dashed vertical lines separate different m..

Figure 7.6: Critical mode for S = 0.6, E = 0.01, Ta, = 273 in Keplerian regime, with m =0,
q. = 10.3, w, = 0. (a) Black arrows represent the velocity field in (r, z) direction while the
colors represent the azimuthal velocity V' (b) the vorticity wg (c) the pressure variation (d) the
N; variation © the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.
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Figure 7.7: Critical mode for S = 0.6, E =0.035, Ta, = 97.4 in Keplerian regime, withm =1,
q. = 5.98, w, = —0.207. (a) Black arrows represent the velocity field in (7, z) direction while
the colors represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d)
the N; variation © the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.

Figure 7.8: Critical mode for S =0.6, E = 0.1, Ta, = 48.6 in Keplerian regime, with m =2,
q. = 4.62, w, = —0.406. (a) Black arrows represent the velocity field in (7, z) direction while
the colors represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d)
the N; variation © the N, variation. Color maps of (b, ¢, d, e) represent the relative amplitude.

Figure 7.9: Critical mode for S = 0.6, E = 1, Ta, = 12.5 in Keplerian regime, withm =1, q, = 4.75,
w. = —0.178. (a) Black arrows represent the velocity field in (7, z) direction while the colors
represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N;
variation © the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.

Figure 7.10: Critical curves Ta.(F) for different S in Keplerian regime.
Figure 7.11: Critical curves K. (E) for different S in Keplerian regime.

Figure 7.12: Critical curves, Ta.(ES) for different S: the vertical dashed line is the elasto Rayleigh line
that separates the potential stable from the potentially unstable zone to the elasticity-induced
perturbations.

Figure 7.13: Critical curves Ta.(K,) for different S in Keplerian regime.
Figure 7.14: Critical curves, Re.(Wi,.) for different S in Keplerian regime.

Figure 7.15: Flow patterns and space-time diagram on Keplerian regime at Ta,. = 8.50, E,;, = 0.017,
S = 0.81. (a) Gap view by laser sheet, (b) Front view, (c) Space-time diagram. The space-time
diagram seems wavy, however all the wavy frequencies are related to the rotational cylinders.

Figure 7.16: Fourier spectra of the space-time diagram on Keplerian regime at Ta, = 8.50,
E, =0.017,5S =0.81. (a) space spectrum, (b) time spectrum. Red lines — rotation
frequencies of the inner and outer cylinder and the mean rotation of them. Green dashed line
— a combination of frequencies of the cylinders (20, — Q;). Black dashed line — flicker
frequency of the spot light.

Figure 7.17: Comparison between the critical modes: (a) (b) Front view of the Taylor Vortex mode (a)
and the Stationary and Axisymmetric mode (b); (c) (d) space-time diagram of 10 mins of the
Taylor Vortex mode (c) and the Stationary and Axisymmetric mode (d).

Figure 7.18: Flow patterns and space-time diagram of the Disordered Waves mode on Keplerian
regime atTa, = 2.86, E,,, = 0.13,S = 0.61. (a) Gap view by laser sheet (b) Front view (c)
Space-time diagram.

Figure 7.19: Fourier spectrums of the space-time diagram on Keplerian regime atTa, = 2.86,
E,, = 0.13, S = 0.61 (a) space spectrum (b) time spectrum. Red dashed line — the frequency
of the inner cylinder. Black dashed line — the flicker frequency of the spot light. Green dashed
line — the frequency difference of Q, — (w) .
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Figure 7.20: Space-time diagram and Fourier spectra of the Disordered Waves mode on Keplerian
regime atTa, = 2.86, E,,;, = 0.13,S = 0.61 for a wave generated near the bottom endplate.
(a) Space-time diagram (b) space spectrum (c) time spectrum. Red solid line — outer cylinder
rotation frequency. Red dashed line — inner cylinder rotation frequency.

Figure 7.21: Demodulation of the zoom in space-time diagram of the transition. Ta, = 2.86,
E,, = 0.13,S = 0.61. (a) Space-time diagram of the transition (b) Demodulated waves.

Figure 7.22: Demodulation of the space-time diagram of the Disordered Waves mode. Ta, = 2.86,
E,, = 0.13,S = 0.61. (a)Demodulated left wave (b) Space-time diagram of the saturated flow
(c) Demodulated right wave.

Figure 7.23: Comparison between the critical modes: (a) (b) longtime space-time diagram of
Disordered Vortices mode (a) and Disordered Waves mode (b); (c) (d) transient space-time
diagram of Disordered Vortices mode(c) and Disordered Waves mode (d).

Figure 7.24: Flow patterns and space-time diagram of the Solitary Vortices mode on Keplerian regime
atTa,. = 2.15, E,, = 0.29, S = 0.62. (a) Gap view by laser sheet (b) Front view (c) Space-time
diagram. (d) long time space-time diagram. © space spectrum (f) time spectrum. Red line and
dashed line — the frequency of the inner and outer cylinder. Black dashed line — the flicker
frequency of the spot light. Green dashed line — the mean frequency (w) .

Figure 7.25: Demodulation of the space-time diagram of the Solitary Vortices mode at Ta, = 2.15,
E, =0.29,5 = 0.62. (a) Demodulated left wave (b) Space-time diagram (c) Demodulated
right wave.

Figure 7.26: Critical values of the transition from laminar flow to unstable flow on Keplerian regime.
Solid lines — LSA critical curves for different S. Dashed line ES* = 0.672 is predicted by elasto-
rotational Rayleigh discriminant. Solid points — experimental transient values, 3 colors present
3 different definitions of elasticity. Within each definition of elasticity, each point present one
solution tested. Dashed rectangular — group of different flow patterns.

Figure 7.27: Location of the Solitary Vortices mode on Ta.(ES) on Keplerian regime; E is defined
with the molecular relaxation time. Solid lines — LSA critical curves for different S. Dashed line
(ES* = 0.672) gives the separation between stable and unstable zones to elasticity driven
perturbations. Solid points — experimental critical values. Dashed circle — different modes.
Solid circle — location of the Solitary Vortices mode. Colored point lines separate the stationary
axisymmetric mode from the oscillatory non-axisymmetric mode by LSA.

Figure 7.28: Variation of the critical axial wave number with ES defined by molecular relaxation time.
Solid lines — LSA predictions for different S. Solid points — experimental critical wave numbers.

Figure 7.29: Variation of the critical frequency with ES defined by molecular relaxation time. Solid
lines — LSA predictions for different S. Solid points — experimental critical angular frequency.

Figure 7.30: Critical curves Ta.(E) for different m at fixed S = 0.7.

Figure 7.31: Critical curves Ta.(E) for different S.
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Figure 7.32: Critical curves Ta.(ES) for different S. Dashed line represents the ES* = 3.451from
elasto-rotational Rayleigh discriminant.

Figure 7.33: Critical curves Re (Wi,) for different S.

Figure 7.34: (a) The angular frequency w of the critical modes in respect to E for different S in anti-
Keplerian regime. (b) The axial wave number g of the critical modes in respect to E for
different S.

Figure 7.35: Pattern properties of the critical mode in the gap view for S = 0.7,E = 1, Ta, = 0.976,
m,=0,q, = 24.2, v, = 0.02 in anti-Keplerian regime. (a) Black arrows represent the velocity
vectors of while the colors represent the azimuthal velocity V(;. ;) (b) the vorticity wg, (c) the
pressure variation, (d) the N; variation. Color maps of (b, ¢, d) represents the relative
amplitude.

Figure 7.36: Flow patterns and space-time diagram in anti-Keplerian regime at Ta, = 7.34,
E,, = 0.34,S = 0.51. (a) Gap view (b) Front view by laser sheet (c) Space-time diagram of 20s
(d) Longtime space-time diagram © space spectrum (f) time spectrum. Red dashed line — the
frequency of the inner cylinder. Black dashed line — the flicker frequency of the spot light.

Figure 7.37: Critical values Ta.(E) in the anti-Keplerian regime. Solid lines — LSA critical curves for
different S. Solid points — experimental critical values, 3 colors present 3 different definitions
of elasticity.

Figure 7.38: Critical values w.(F) in the anti-Keplerian regime. Solid lines — LSA critical curves for
different S. Solid points — experimental critical values defined by extensional elasticity.

Figure 7.39: Critical values q.(E) in the anti-Keplerian regime. Solid lines — LSA critical curves for
different S. Solid points — experimental critical values defined by extensional elasticity.

Figure 7.40: Application of the Velikhov-Chandrasekhar criterion for ERI.

Figure 7.41: Critical values on Keplerian regime. Solid lines — LSA critical curves for different S.
Dashed line ES* = 0.672 is predicted by elasto-rotational Rayleigh discriminant. Solid points —
experimental transient values, 3 colors present 3 different definitions of elasticity. Dashed
rectangular — group of different flow patterns. Colored point lines — criterion of Wi = Wi* for
different S.

Figure 7.42 Threshold curve for the polymer solutions used in the experiment by Boldyrev et al.
(2009) and corresponding experimental values for n = 0.903,5 € {0.983,0.991, 0.995}.

Figure 8.1: Marginal stability curves Ta.(q) for differentm for S = 0.7 (a) E = 0.01 (b) E = 0.028 (c)
E=0.1(d)E = 1linregimeu =n3.

Figure 8.2: Critical curves, Ta.(E) for different m for a solution with S = 0.7 in regime u = 3.

Figure 8.3: Variation of the critical parameters with E for S = 0.7 in u = 13 regime: (a) Threshold
Ta,, (b) critical wavenumber q., (c) critical frequency w,.

Figure 8.4: Cross-section (r,z) of the azimuthal component of the vorticity forS = 0.7 inu =13
regime.
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Figure 8.5: Critical mode for S=0.7, E=0.01, Ta, =86.6 in u = 773 regime, with m =20,
q. = 3.49, w. = 0. (a) Black arrows represent the velocity field in (r, z) direction while the
colors represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the
Nj variation © the N, variation. Color maps of (b, c, d, e) represent the relative amplitude.

Figure8.6: Critical mode for S =0.7, E=0.028, Ta, =524 in u= n3 regime, with m=1,
q. = 3.84, w, = —0.178. (a) Black arrows represent the velocity field in (7, z) direction while
the colors represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d)
the N; variation © the N, variation. Color maps of (b, ¢, d, e) represent the relative amplitude.

Figure 8.7: Critical mode for§ = 0.7, E =0.1,Ta, =322inu = n3 regime, withm = 2, q. = 4.25,
w, = —0.327. (a) Black arrows represent the velocity field in (r, z) direction while the colors
represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N;
variation © the N, variation. Color maps of (b, ¢, d, e) represent the relative amplitude.

Figure 8.8: Critical mode for S =0.7, E =1, Ta, = in u =13 regime, withm =1, q. = 5.03,
w, = —0.122. (a) Black arrows represent the velocity field in (r, z) direction while the colors
represent the azimuthal velocity V (b) the vorticity wg (c) the pressure variation (d) the N;
variation © the N, variation. Color maps of (b, ¢, d, e) represent the relative amplitude.

Figure 8.9: Critical curves Ta.(ES) for different S in u = n3 regime. The colored dashed lines
separate the stationary axisymmetric mode from the oscillatory non-axisymmetric mode by LSA.

Figure 8.10: Critical curves, Re.(Wi,) for different S in u = 13 regime.
Figure 8.11: Critical curves, Ta.(K,) for different S in u = n3 regime.

Figure 8.12: Flow patterns and space-time diagram of the Ribbons mode on u = 13 regime for
Ta, =13.73,E,, = 1.06, S = 0.47. (a) Gap view (b) Front view by laser sheet (c) Space-time
diagram. (d) Longtime space-time diagram.

Figure 8.13: Flow patterns and space-time diagram of the Disordered Waves mode on . = 3 regime
atTa. = 4.66,E,, = 0.34,5 = 0.5. (a) Gap view (b) Front view by laser sheet (c) Space-time
diagram. (d) Longtime space —time diagram.

Figure 8.14: Transient space-time diagram and Fourier spectrums of the Disordered Waves mode on
u = n3 regime at Ta, = 4.66,E,, = 0.34,S = 0.5. (a) Space-time diagram (b) space spectrum
(c) time spectrum. Red solid line — outer cylinder rotation frequency. Red dashed line — inner
cylinder rotation frequency. Black dashed line — flicker frequency of the spot light.

Figure 8.15: Variation of the critical values with ES on u = 13 regime. Solid lines — LSA critical curves
for different S. Solid points — experimental transient values, 3 colors represent the 3 different
definitions of elasticity. The colored dashed lines separate the stationary axisymmetric mode
form the oscillatory non-axisymmetric mode by LSA.

Figure 8.16: Variation of the critical angular velocity with ES defined by the molecular relaxation time.
Solid lines — LSA predictions for different S. Solid points — experimental angular velocity.

Figure 8.17: Variation of the critical axial wave number with ES defined by the molecular relaxation
time. Solid lines — LSA predictions for different S. Solid points — experimental critical wave
numbers.
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Figure 9.1: Marginal stability curves of the purely elastic limit in Keplerian regime for (a) S = 0.5 and
(b) § = 0.8.

Figure 9.2: Critical curves Wi(S) for different m at g, on Keplerian regime.
Figure 9.3: Critical curves Wi(S) for different rotation regimes.

Figure 9.4: Variation of the critical parameters: (a) is(S), (b) g:(S) , (c) w.(S).
Figure 9.5: Azimuthal vorticity patterns in the gap.

Figure 9.6: Experimental critical value Ta.(E,) of five rotational regimes.

Figure 9.7: Experimental and LSA critical values Wi (E,) of five regimes. Solid points: experimental
critical values. Solid lines: LSA predictions of S = 0.5. Dashed black line: the LSA prediction of
the Wig at S = 0.5.

Figure 9.8: Experimental and LSA critical values Wig(S) of five regimes. Solid points: experimental
critical values. Solid line: LSA prediction.
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Résumé

L'instabilité magnéto-rotationnelle (MRI) apparait dans un écoulement dans des liquides
conducteurs électriques en rotation différentielle en présence d’un champ magnétique, lorsque la
vitesse angulaire décroit avec la distance de I’axe de rotation. Cette instabilité est considérée comme
la clé pour comprendre la turbulence et le transport de moment cinétique angulaire dans les disques
d’accrétion astrophysiques. A ce jour, il n’existe pas de observations directes de la MRI dans un
écoulement képlérien. Selon Ogilvie et Proctor, I'instabilité viscoélastique (IVE) est analogue a la
MRI : la force élastique due aux polymeres joue le role de champ magnétique. Cette analogie est
basée sur la ressemblance entre les équations des écoulements viscoélastiques du modeéle
d’Oldroyd-B et les équations de la mangéto-hydrodynamique (MHD). A la suite de cette analogie, il
existe une seule expérience, mais avec une solution viscoélastique qui ne satisfait pas le modele
d’Oldroyd-B. Cette thése est consacrée a une étude expérimentale et théorique afin de vérifier cette
analogie dans un écoulement képlérien, et mieux comprendre 'origine du transport du moment
dans les disques d'accrétion.

La premiere tache a consisté a généraliser le discriminant de Rayleigh aux écoulements
viscoélastiques. Le critere de Rayleigh généralisé (élasto-rotationnel) stipule qu’un écoulement
viscoélastique est instable si la somme de discriminant de Rayleigh Newtonien et la stratification
radiale de la différence du contraint normal N;est négative. La force élastique peut renforcer
I'instabilité centrifuge ou induire elle-méme l'instabilité purement élastique. Dans le régime
képlérien, on peut avoir de l'instabilité purement élastique quand I’élasticité polymérique ES est
supérieure a une valeur critique ES* qui dépend du rapport des rayons. L’analogue de la MRI se
trouve en dehors de la zone d’instabilité purement élastique. Le critere de Rayleigh elasto-
rotationnel est analogue au critére d'instabilité de Michael pour de fluides de conducteurs
électriques en présence d'un champ magnétique azimutal.

Pour analyser I'lVE, nous avons effectué I'analyse de stabilité linéaire basée sur les équations
complétes du modele d’Oldroyd-B. Le probleme de valeurs propres résultant a été résolu en utilisant
un code numérique développé sur Matlab et en utilisant la méthode de collocation de Chebyshev. Le
code a été validé par la comparaison avec les résultats disponibles dans la littérature.

Les expériences ont été réalisées dans un systeme de Couette-Taylor qui consiste en
I’écoulement dans I'entrefer entre deux cylindres coaxiaux avec un rapport de rayonn = 0,8. Le
rapport d'aspect du dispositif expérimental était ' = 45,7 qui est suffisamment grand pour
comparer avec les résultats théoriques obtenus dans le rapport d'aspect infini. Nous avons utilisé des
solutions aqueuses de 1000 ppm de polyoxyéthylene (POE) et de polyéthyléene glycol (PEG) de
concentration variable (2,5% - 25%). Les solutions ont été bien caractérisées par des tests
rhéologiques pour s’assurer qu'elles correspondent au modele d’Oldroyd-B. La viscosité de
cisaillement de la solution polymere et du solvant de PEG sont mesurées par un rhéometre de
cisaillement. Ces deux viscosités augmentent avec la concentration de PEG tandis que le rapport de
la viscosité polymérique et de la solution totale S dimunue avec la concentration de PEG. Le temps
de relaxation de la solution de polymeére est estimé par trois méthodes différentes : mesure par un
rhéometre extensionnel (CABER); mesure par la premiére différence de contraintes normales Ny,
détermination par la relation de ce temps avec la viscosité du polymeére et la masse molaire. Pour la
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plupart des solutions, les temps de relaxations et I’élasticité calculée avec ces temps de relaxation
augmentent avec la concentration de PEG.

En tournant le cylindre intérieur et fixant le cylindre extérieur (régime u = 0 ou u est le
rapport de vitesse entre le cylindre extérieur et intérieur), nous avons observé trois modes
différents pour de solutions de petite a grande élasticité E: le vortex de Taylor, le mode rubans, et
des tourbillons désordonnés. Le mode de vortex de Taylor est supercritique et les deux restes sont
sous-critiques. Cette observation est en accord avec la prédiction de LSA qui dit que le mode critique
est axisymétrique et stationnaire pour de faibles valeurs de E et non-axisymétrique et oscillant pour
de grandes valeurs de E. Le mode des tourbillons désordonnés correspond a l'instabilité purement
élastique. Pour de faibles valeurs de E, le seuil théorique et expérimental de l'instabilité Ta, est
guasiment constant et coincide avec la valeur critique du fluide Newtonien. Ce seuil décroit
rapidement quand E devient grand. Ceci confirme que I'élasticité renforce I'lVE. Le rapport de
viscosité S joue deux rdles opposés: déstabilisant pour les petites valeurs de ['élasticité et de
stabilisation pour les grandes valeurs de I'élasticité et en particulier dans le régime purement
élastique. Le nombre d’onde critique et la fréquence critique sont aussi calculés par LSA et ils se
trouvent en accord avec de I'expérience qualitativement. Des accords qualitatifs sont également
observés entre nos résultats expérimentaux et ceux de la littérature.

En régime képlérien (u = 1n3/?), nous avons observé le mode de vortex axisymétrique et
stationnaire pour de faibles valeurs de ES et le mode des ondes désordonnées pour de grandes
valeurs de ES. Le mode de vortex axisymétrique est formé par des tourbillons aplatis avec une
longueur d’onde axiale inférieure a la taille de I'entrefer; le mode des ondes désordonnées est formé
par des ondes contra-propagatives. Parmi les modes désordonnées, des tourbillons solitaires
apparaissent dans une petite plage de valeurs de ES. Le mode axisymétrique stationnaire est
supercritique tandis que les modes désordonnés sont sous-critiques. Tous ces modes se trouvent
dans la zone ES < ES™, donc ils ne sont pas dus a l'instabilité purement élastique. En accord avec de
I’expérience, la stabilité linéaire montre que le mode critique est axisymétrique et stationnaire pour
de faibles valeurs de E et non-axisymétrique et oscillant pour de grandes valeurs de E. Le paramétre
S, caractérisant I'élasticité polymérique, semble étre le meilleur parameétre de contrdle que
I’élasticité E en régime képlérien parce que toutes les courbes critiques Ta.(ES) convergent en une
courbe pour différentes valeurs de S. Et cette courbe correspond mieux aux seuils expérimentaux de
I'instabilité lorsque le nombre élastique est défini avec le temps de relaxation déterminé par la
masse molaire. La stabilité linéaire montre aussi que le rapport de viscosité S est une source
déstabilisante quand le nombre de Weissenberg modifié K est petit et stabilitsante quand K est
grand.

En tournant seulement le cylindre extérieur (régime u = o) ou en anti-képlérien (u = n=3/2),
le cylindre extérieur tourne plus vite que l'intérieur, la force centrifuge n’est plus de source de
I'instabilité, donc l'instabilité purement élastique est induite par la seule force élastique. Dans ces
deux cas, nous avons observé quand méme de l'instabilité avec de solution de grande élasticité en
forme de mode désordonné dans le temps et dans I'espace. La stabilité linéaire prédit que le mode
critique est axisymétrique et oscillant et elle montre que les courbes critiques de Ta. (E) sont
indépendantes de S. Ces courbes s’adaptent parfaitement aux valeurs critiques expérimentales
lorsque I'élasticité est définie par le temps de relaxation extensionnel.
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Dans un régime intermédiaire (1 = n3) entre le régime u = 0 et le régime képlérien, nous
avons observé des modes critiques de différente nature: le mode de rubans qui est la méme mode
en régime u = 0 est observé pour de faibles valeurs de E et le mode des ondes désordonnés qui est
la méme mode en régime képlérien est observé pour de grandes valeurs de E.

A la limite de trés grande élasticité (E — o0), nous avons trouvé une courbe critique unique
Wi, (S) de I'instabilité purement élastique pour tous les régimes de rotation dans la limite (Ta = 0)
ou le nombre Weissenberg Wi, est défini par le taux de cisaillement au milieu de I'entrefer.
L'instabilité purement élastique apparait sous la forme des modes non axisymétriques oscillatoires
pour de S < S* alors qu'elle apparait sous forme de modes axisymétriques oscillatoires si S > S*.
Les données expérimentales obtenues avec les solutions de I'élasticité finie montrent une tendance a
une courbe unique dés que I'élasticité devient assez grande.

Cette thése a confirmé I'analogie entre I'IVE et la MRI standard (SMRI) en régime képlérien
ou les molécules de polymeres jouent un role analogue a celui des lignes de champ magnétique axial
qui déstabilise les disques d'accrétion. Différents types de MRI sont distincts les uns des autres par la
forme du champ magnétique. L'analyse de I'analogue polymérique du champ magnétique montre
qgue dans le régime képlérien, le mode de vortex axisymétrique de I'IVE est analogue a la SMRI
quand Wi est inférieur a une valeur critique Wi*, tandis que le mode désordonné est analogue a la
MRI hélicoidale (HMRI) lorsque Wi est en méme ordre de Wi* .

Cette these est limitée a I'étude théorique et expérimentale de la premiéere instabilité du
fluide viscoélastique. Le comportement de certaines courbes marginales et I'existence de multiples
points de codimension 2 suggérent la nécessité d'une analyse non linéaire pour étudier le couplage
des modes. Les mesures de PIV permettront de caractériser en détail les modes critiques, les modes
supérieurs d'instabilité plus élevés et la turbulence dans le régime de képlérien viscoélastique. La
DNS permettra de calculer le couple et le transport du moment dans la direction radiale y compris
sur les cylindres. Ces études devraient apporter de nouveaux arguments a la validation de I'analogie
entre I'IVE et I'MRI pour une meilleure compréhension de la dynamique complexes des disques
d'accrétion.
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Abstract

This thesis is devoted to the verification of the analogy between the viscoelastic instability
(VEl) and the magnetorotational instability (MRI) in a Keplerian flow, in order to get better
understanding of the momentum transportation in accretion disks.

The elasto-rotational Rayleigh discriminant is deduced to clarify the role of the elasticity in
the VEI. The linear stability analysis (LSA) with Oldroyd-B model is performed to predict critical
parameters of viscoelastic modes, and it reveals the influence of the elasticity, polymer viscosity on
the VEI. Experiments with well controlled aqueous solutions of polyoxyethylene (POE) and
polyethylene glycol (PEG) are conducted. We have observed supercritical stationary axisymmetric
mode with solutions of small elasticity and subcritical disordered modes with solutions of large
elasticity. Both the flow patterns and the critical values of these modes are in good agreement with
the LSA predictions. According to the analogy, the stationary axisymmetric mode is likely the analog
of the standard MRI while the disordered mode is likely the analog of the helical MRI.

The thesis contains also theoretical and experimental results with four other rotation
regimes and the limit case of infinite elasticity.

Mots clés: instabilité viscoélastique, instabilité magnéto-rotationnel, écoulement képlérien, systeme
de Couette-Taylor, model d’Oldroyd-B, analyse de stabilité linéaire, rhéologie.

Résumé

Cette these est consacrée a la vérification de I'analogie entre l'instabilité viscoélastique (VEI)
et l'instabilité magnéto-rotationnel (MRI) dans un écoulement képlérien, afin de mieux comprendre
le transport du moment dans les disques d'accrétion.

Le discriminant de Rayleigh élasto-rotationnel est établi pour clarifier le réle de I'élasticité
dans le VEI. L'analyse de stabilité linéaire (LSA) avec le modéle d’Oldroyd-B est effectuée pour prédire
les parameétres critiques des modes viscoélastiques. Il fait apparaitre également l'influence de
|'élasticité, la viscosité polymérique et d'autres parametres de contrdle pour le VEI. Des expériences
bien contrélées avec des solutions aqueuses de polyoxyéthyléne (POE) et de polyéthyléne glycol (PEG)
sont effectuées. Nous avons observé le mode stationnaire axisymétrique supercritique avec des
solutions de faible élasticité et modes désordonnés sous-critiques avec des solutions de grande
élasticité. Les formes et les valeurs critiques de ces modes sont en bon accord avec les prédictions
théoriques de LSA. Selon I'analogie, le mode axisymétrique stationnaire est probablement I'analogue
de MRI standard, tandis que le mode désordonné est probable que I'analogue de MRI hélicoidale.

La thése contient aussi des résultats théoriques expérimentaux sur quatre autres régimes de
rotation et un cas de limite d'élasticité infinie.
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