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Résumé

L’ablation par radiofréquence (ARF) de tumeurs abdominales est rendue difficile par
l’absence de planification spécifique à un patient donné. En particulier, l’influence
des vaisseaux sanguins et les variations spatiales et temporelles de la conductivité
thermique compliquent la prédiction de l’étendue de l’ablation. Cela peut se traduire
par des traitements incomplets et l’augmentation des risques de récurrences com-
promettant le résultat final. En fournissant des outils prédictifs, les modèles bio-
physiques peuvent aider les cliniciens à planifier et guider efficacement la procédure.
Pour que ces modèles soient utiles en routine clinique, le calcul doit être rapide et
précis.

Nous présentons d’abord un modèle mathématique détaillé des mécanismes bio-
physiques impliqués dans l’ARF des tumeurs hépatiques tels que la diffusion de la
chaleur, la nécrose cellulaire et le flux sanguin hépatique. Ce modèle simule l’étendue
de l’ablation à partir de l’emplacement de la sonde et de certains paramètres bi-
ologiques tels que la conductivité ou la capacité calorifique des tissus. Le modèle est
basé sur des images médicales, à partir desquelles des modèles personnalisés du foie,
des vaisseaux visibles et des tumeurs sont reconstruits. Une nouvelle approche pour
résoudre ces équations aux dérivées partielles basée sur la méthode de Lattice Boltz-
mann est introduite. Le modèle est mis en oeuvre avec une accélération matérielle
liée à la carte graphique qui permet d’atteindre un temps de calcul presque égal au
temps réel. Les simulations obtenues sont vérifiées précisément avec une solution
analytique.

Dans un deuxième temps, nous voulons valider le modèle. Il est d’abord évalué
sur des données cliniques de patients qui ont subi une ARF de tumeurs du foie.
L’importance de la prise en compte du flux sanguin et de l’estimation des paramètres
sont mises en évidence. Ensuite, un protocole expérimental complet combinant des
images multi-modales, anatomiques et fonctionnelles, pré et post-opératoires, ainsi
que le suivi de la température et de la puissance délivrée pendant l’intervention est
présenté. Il permet une validation pré-clinique totale qui considère des données les
plus complètes possible pour la validation du modèle.

Enfin, nous estimons automatiquement des paramètres personnalisés en utilisant
des algorithmes de résolution de problèmes inverses, afin de mieux prédire l’ablation.
Cette stratégie de personnalisation a été testée et validée sur sept ablations dans
trois cas cliniques. A partir de l’étude pré-clinique, nous pouvons aller plus loin dans
la personnalisation en comparant la température et la puissance délivrée simulées
avec la température et la puissance délivrée mesurées pendant la procédure. Cette
seconde stratégie de personnalisation a été testée et validée sur douze ablations dans
cinq cas pré-cliniques. Ces contributions ont abouti à des résultats prometteurs, et
ouvrent de nouvelles perspectives pour planifier et guider l’ARF.

Mots clés: Modélisation d’ARF; Foie; Personnalisation; Diffusion de la
Chaleur; Nécrose Cellulaire; Mécanique des Fluides; Modèle Informatique; Méth-
ode de Lattice Boltzmann; Estimation de Paramètres; Etude Pré-Clinique; Imagerie
Medicale
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Abstract

The outcome of radiofrequency ablation (RFA) treatment for abdominal tumors is
challenged by lack of patient-specific planning. In particular, the presence of blood
vessels, time- and spatial-varying thermal conductivity make the prediction of the
extent of ablated tissue difficult. This results in possible incomplete treatments
and increased risks of recurrence and may compromise the overall outcome. By
providing predictive tools, biophysical models can help clinicians to plan and guide
the procedure for an effective treatment. For such models to be useful in clinical
routine, the computation has to be fast and accurate.

We first present a detailed computational model of the biophysical mechanisms
involved in RFA of hepatic tumors such as heat diffusion, cellular necrosis and
hepatic blood flow. This model simulates the extent of ablated tissue given the probe
location and some biological parameters such as tissue conductivity or heat capacity.
The model is based on medical images, from which patient-specific models of the
liver, visible vessels and tumors are built. A new approach for solving these partial
differential equations based upon the Lattice Boltzmann Method is introduced. The
model is implemented with a material speed-up thanks to the graphics card to
reach near real-time computation. The resulting simulations are thoroughly verified
against an analytical solution.

In a second step, we aim at validating the model. It is first evaluated against
clinical data of patients who underwent RFA of liver tumors. The importance of
taking into account the blood flow and of estimating the parameters is highlighted.
Then, a comprehensive pre-clinical experiment combining multi-modal, pre- and
post-operative anatomical and functional images, as well as the interventional mon-
itoring of the temperature and delivered power is presented. This enables an end-to-
end pre-clinical evaluation framework that considers the most comprehensive data
set for model validation.

Then, we automatically estimate patient-specific parameters using inverse prob-
lem algorithms, to better predict the ablated tissue. This personalization strategy
has been tested and evaluated on seven ablations from three clinical cases. From
the pre-clinical study, we can go further in the personalization by comparing the
simulated temperature and delivered power with the actual temperature and deliv-
ered power measured during the procedure. This second personalization strategy
has been tested and evaluated on twelve ablations from five pre-clinical cases. These
contributions have led to promising results, and open new perspectives in RFA guid-
ance and planning.

Keywords: RFA Modeling; Liver; Patient-Specific; Heat Transfer; Cellular
Necrosis; Computational Fluid Dynamics; Computer Model; Lattice Boltzmann
Method; Parameter Estimation; Pre-clinical Study; Medical Imaging
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1.1 Motivation

1.1.1 Clinical Context

The World Health Organization (WHO) estimated that 782,000 new liver cancer
cases occurred worldwide in 2012, and that it is the second most common cause
of death from cancer. The WHO estimated it to be responsible for nearly 745,000
deaths in 2012 that is to say 9.1% of the total cancer death worlwide [Ferlay 2015].
Hepatocellular carcinoma (HCC) for example is one of the most common malig-
nancies encountered throughout the world (more than 1 million cases per year),
with increasing frequency in Western countries due to the changing prevalence of
hepatitis C [El-Serag 2003]. The prognosis for liver cancer is very poor (overall
ratio of mortality to incidence of 0.95) [Ferlay 2015], since treatment of primary
and metastatic malignancies in the liver remains a significant challenge in spite of
recent advances in cancer therapy. Unfortunately, only less than 25% of patients
with primary or secondary liver cancer are candidates for resection or transplanta-
tion, which are considered as the most effective treatments. These limitations are
due to the patient’s condition, the location, size and number of tumors. Proxim-
ity to vital organs like vascular and biliary structures is a problem. For example,
many patients with cirrhosis or with multiple tumors have inadequate hepatic re-
serve to tolerate resection [Curley 1997]. Surgical resection are currently restricted
to patient with solitary HCC, with liver function extremely well-preserved, without
portal hypertension and without abnormal bilirubin. Whilst liver transplantation
is limited by the number of donors [Bruix 2002]. Consequently, minimally invasive
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ablative therapies such as radiofrequency ablation (RFA), high intensity focused ul-
trasound (HIFU), cryotherapy, microwave tumor coagulation and laser ablation have
raised increasing interest for the treatment of liver tumors. Amongst them, RFA is
the most widely used approach [Garrean 2008], but it is not yet a reliable alterna-
tive in clinical routine. There is a need for training tools for the less-experienced
clinicians to improve outcome rates since the success rate increases quickly with ex-
perience [Hildebrand 2006]. For the same physician, survival rate of treated patients
increased twofolds over a four years period. This learning curve is partly due to the
difficult assessment of the cooling effect of the large vessels, porous circulation and
blood coagulation, which results in suboptimal ablation and local recurrences in up
to 60% of the cases [Kim 2006]. Nevertheless, RFA technology has increasingly been
utilized for unresectable hepatic malignancies, is commonly used in the ablation of
aberrant conduction pathways in the heart and has become a primary procedure in
the treatment of cardiac arrhythmias [Bilchik 2001].

1.1.2 Role of Medical Imaging

Coagulation of living tissue by means of heat was mentioned around 3000 B.C. in
the Edwin Smith papyrus, a copy of part of an ancient Egyptian textbook on trauma
surgery [Rieder 2013]. It describes 8 cases of tumors or ulcers of the breast that were
removed by cauterization with a tool called the fire drill. The writing says about the
disease, "There is no treatment"1. Nowadays, coagulation of living tissue by means
of heat is used in clinical routine: radiofrequency ablation (RFA) is an established
treatment for liver cancer when resection is not possible. Yet, incomplete treatment
and an increased risk of recurrence are common. A tool that would enable the
accurate planning of RFA is hence necessary.

To give additional guidance to radiologists or surgeons, several research groups
are working on automatic tools to extract information from images and simulate
the RFA behaviour in the liver parenchyma. Patient-specific anatomy is not enough
since the optimal delivery of RFA is challenged by the presence of large blood vessels
and the time-varying thermal conductivity of biological tissue. The effect of the
blood flow, the temperature and the cell death on the tissue properties have to be
accounted for, thus simulation is necessary. The idea is to combine anatomical data
and the knowledge of biological mechanisms in order to build biophysical models
that can reproduce the RFA in a patient-specific anatomy and therefore provide
predictive tools. By simulating the outputs of the therapy in silico, these models
might help clinicians to plan individual treatment for each patient since they would
be able to study the effect of the probe position or the heat duration for example
on the treatment output.

Theoretical models and computer simulations are powerful tools since they pro-
vide vital information on the thermal behavior of ablation rapidly and at low cost.
They could provide efficient training tools for the less-experienced clinicians. They
could also facilitate the feasibility of new probe geometries, and new RFA protocols.

1www.cancer.org/the-history-of-cancer-pdf Retrieved 2015-07-15.
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But, the two most important issues involved in the modeling of RFA include first the
experimental validation of the proposed model and secondly the lack of an accurate
characterization of the biological tissues [Berjano 2006].

1.1.3 Objectives

Within this scope, the objective of this work is to investigate new computerized pre-
dictive tools for patient-specific guidance and therapy planning of radiofrequency
ablation (RFA) procedure. Patient-specific simulations may allow clinicians to bet-
ter understand the intricacy of this procedure and could even allow to rehearse on
a virtual patient-specific anatomy. These challenges require many improvements
regarding the state of the art. The main questions, that we aim to answer in this
thesis, are:

• How to simulate the radiofrequency ablation of hepatic tumors in computa-
tional time compatible with clinical settings while taking into account the
main occurring biophysical phenomena ?

• Which parameters of this RFA model can be personalized and based on which
data ?

• How to validate such RFA model on pre-clinical and clinical data ?

1.2 Main Contributions and Manuscript Organization

1.2.1 Main Contributions

During this PhD study, four main contributions to the modeling of RFA and its
validation were proposed.

• A detailed computational model of the biophysical mechanisms (heat transfer,
cellular necrosis, hepatic blood flow) involved in RFA of abdominal tumors
based on patient images.

• A new implementation of the bio-heat equations coupled with a cellular necro-
sis model using the Lattice Boltzmann Method on Graphics Processing Units
(GPU), which allows near real-time computation.

• The automatic estimation of the main parameters of the model. Two person-
alization strategies are tested and evaluated on clinical and pre-clinical data.

• The evaluation of the proposed model on clinical data as well as preclinical
data from a comprehensive experimental set-up specially designed for RFA
model validation.
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1.2.2 Organization of the Thesis

The manuscript is organized following the published and submitted works. It
follows rather well the studies performed during this thesis in chronological order:
from the modeling of RFA to its main parameters personalization and finally to
its evaluation on pre-clinical data. Figure 1.1 illustrates how the chapters are
connected, and the available data used in each chapter.

RFA Modeling 

 

 

 

 

 

 

Model  

Validation 

Model  

Personnalization 

Pre-clinical 

Data: 

Chapter 6 

 

 

 

 

Clinical  

Data: 

Chapter 4 

 

 

 

 

 

 

Chapter  4                                    Chapter  5 
 

Chapter 3 

Chapter  7                                   Chapter  7 

 

Figure 1.1: A schematic diagram showing how the chapters are connected and the
different available data used in each chapter.

This thesis focuses on hepatic tumors and the associated RF ablation proce-
dures. Chapter 2 introduces the background on hepatic anatomy and hepatic
functions as well as details on radiofrequency ablation and other minimally invasive
ablation techniques. Then, an introduction to the modeling of radiofrequency
ablation establishes the state of the art, shows the different models and methods
used in the literature, highlight their limits and those further used in our choice of
RFA modeling.
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Chapter 3 describes our first contribution, published in [Audigier 2013a] and
further developed in [Audigier 2015a]. It consists of a new method to compute
the extent of ablation based on the Lattice Boltzmann Method (LBM) and
patient-specific, pre-operative images. To the best of our knowledge, this is the
first time such a complete model, based on medical images has been proposed. A
detailed anatomical model of the liver is obtained from volumetric images. Then
a computational model of heat diffusion, cellular necrosis, and blood flow through
the vessels and liver is employed to compute the extent of ablated tissue given the
probe location, ablation duration and biological parameters. Furthermore, a second
and improved patient-specific model of blood flow through liver and parenchyma is
presented. We rely on the Lattice Boltzmann Method (LBM) to compute not only
the heat transfer and cellular death mechanisms but also the blood and parenchyma
flow in the liver tissue. This latter method is based on a Computational Fluid
Dynamics (CFD) solver which incorporates a porous part to deal with the liver
parenchyma. This second framework is particularly efficient for the modeling as
it provides a fast solver and naturally accounts for the flow transition between
veins and parenchyma. Finally, the model is verified against an analytical solution,
showing good consistency.

In Chapter 4, based on [Audigier 2013a] and [Audigier 2015a], we evaluated
the predictive power of the proposed framework on ten patients who underwent
RFA, for whom pre- and post-operative images were available. Implemented on
graphics processing units (GPU), our method simulates 1 minute of ablation
in 1.14 minutes, allowing near real-time computation. This represents a 24%

speed-up with respect to state of the art computation [Payne 2011]. By providing
near real-time computation, our method may enable model-based planning of
RFA in clinical settings. Comparisons between the computed ablation extent
and ground truth, as observed in post-operative images, were promising (DICE
index: 42%, sensitivity: 67%, positive predictive value: 38%). A mean point
to mesh error between predicted and actual ablation extent of 10.17 mm is
achieved. The clinical criterion is satisfied as the tumor is totally covered by
the induced thermal lesion in all cases. The effect of liver perfusion while sim-
ulating electrical-heating ablation was also considering. In addition, the results
of this chapter demonstrate the need for personalization of tissue properties,
as illustrated in one patient. The heat conductivity was adjusted to reduce the
point-to-mesh error with the ground-truth from 8.25 mm to 3.85mm for this patient.

Motivated by the results obtained in chapter 4, Chapter 5 presents a framework
for parameter estimation in order to model patient-specific radiofrequency ablation
of multiple lesions in the case of metastatic diseases, published in [Audigier 2014a].
The proposed forward model is based upon the computational model of heat
diffusion, cellular necrosis and blood flow through vessels and liver which relies
on patient images presented in chapter 3. We identify the most sensitive material
parameters, that need to be personalized from the available clinical imaging and
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data. The selected parameters are the heat conductivity d̄t and the porosity ε.
These parameters are then estimated using a gradient-free optimization method
such that the point-to-mesh distance between the computed necrotic area and
observed lesions is minimized. Based on the personalized parameters, the ablation
of the remaining lesions are predicted. The framework is applied to a data set of
seven lesions from three patients including pre- and post-operative CT images. In
each case, the parameters were estimated on one tumor and RFA was simulated on
the other tumor(s) using these personalized parameters, assuming the parameters
to be spatially invariant within the same patient. Results showed significantly good
correlation between predicted and actual ablation extent (average point-to-mesh
errors of 4.03 mm).

In order to evaluate the RFA model in a more control environment, a pre-clinical
study is proposed in Chapter 6. It is an experimental study especially designed for
the validation of subject-specific multi-physics model of liver tumor radiofrequency
ablation. The comprehensive experimental set-up is described first. It combines
multi-modal, pre-, intra- and post-operative anatomical and functional images, as
well as the interventional monitoring of the temperature and delivered power. The
RFA model we aim to validate is then introduced. The RFA computation becomes
subject-specific after several levels of personalization: anatomic, hemodynamics,
heat transfer and an extended cellular necrosis model. Finally, a full processing
pipeline required before using the image information into the model is presented.
It copes with image noise, resolution and anisotropy. Methods of segmentation,
registration and the estimation of smooth vessel tree tailored for computational fluid
dynamics simulations are presented. This leads to an end-to-end pre-clinical valida-
tion framework that considers the most comprehensive data set for model evaluation.

In Chapter 7, results on the pre-clinical data are presented. The evaluation
study encompasses twelve ablations from five healthy pigs: a mean point to
mesh error between predicted and actual ablation extent of 5.3 mm is achieved,
sufficient for clinical application as it is significantly lower than the difference
of 1 cm in diameter configurations of the probe. We evaluate the error induced
by each step of the pre-processing. After a sensitivity analysis of the model
parameters, we also investigate the estimation of the cellular necrosis and heat
transfer models parameters. By fitting the delivered power and the cooling
temperatures measured by the RFA probe, key physiological parameters of the
model can be correctly estimated as it leads to realistic predictions in terms of
necrotic area, power and temperature. Such a framework would therefore not
require any necrosis information, and would be better suited for clinical applications.

We conclude on the presented contributions and discuss perspectives in Chap-
ter 8.

Finally, Appendix A gives the derivation of the Lattice Boltzmann equation
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with the details of the required calculations. The derivations of diffusion equation,
advection-diffusion equation and reaction-advection-diffusion equation are studied.
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2.1 Structure and Function of the Liver

Building an efficient and accurate computational model of RFA requires a high
knowledge of the structure and function of the liver.

Figure 2.1: Anatomy of the human liver. Image from the internet 1.

The liver is a vital organ, which has a wide range of functions, including detoxifi-
cation of various metabolites, protein synthesis, and the production of biochemicals
necessary for digestion 2. A human liver has four lobes of unequal size and shape,
whereas pig liver has five lobes. The liver is connected to two large blood vessels,
the hepatic artery and the portal vein represented in Figure. 2.1. The hepatic portal
vein delivers approximately 75% of the liver’s blood supply, and carries blood rich
in digested nutrients from the entire gastrointestinal tract, its associated organs and
also from the spleen and pancreas. The hepatic artery supply arterial blood to the
liver, accounting for the remaining quarter of its blood flow. It carries oxygen-rich
blood from the aorta. 3 Oxygen is provided from both sources; approximately half
of the liver’s oxygen demand is met by the hepatic portal vein, and half is met by

1https://repairstemcell.wordpress.com/liver-failure-and-stem-cells/ Retrieved 2015-06-26.
2Anatomy and physiology of the liver - Canadian Cancer Society. Cancer.ca. Retrieved 2015-

06-26.
3Medscape: Medscape Access. Emedicine.medscape.com. 2015-03-09. Retrieved 2015-06-26.
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the hepatic arteries. Blood flows through the liver sinusoids and empties into each
central vein. The central veins coalesce into hepatic veins, which leave the liver and
drain into the inferior vena cava. The biliary tree, or biliary tract is derived from
the branches of the bile ducts. It is the path by which bile is secreted by the liver
then is transported to the first part of the small intestine, the duodenum.

2.2 Radiofrequency Ablation

2.2.1 Radiofrequency Ablation Procedure

During RFA procedure, the clinician places one or more probes using percutaneous,
laparoscopic or open surgical (celiotomy) techniques within the target area in the
liver parenchyma, within the malignant tissue. Although open surgical RFA proce-
dure is more invasive, it allows repeated placement of the RFA probe at different
locations to ablate several or large tumors, it can also be performed more eas-
ily [Minami 2011]. RF ablation relies on a complete electrical circuit to conduct RF
current. This electrical circuit is created from the active probe through the body
and is closed by surface electrodes (ground pads) as shown in Figure. 2.2.

Figure 2.2: A schematic diagram showing an RF needle deployed in a liver tumor.
A complete electrical circuit is then created through the patient body allowing the
alternating current of RF energy to go between the needle active electrode and the
grounding pads. The white area is the targeted tumor, and the surrounding orange
area, the necrosis lesion produced by RFA. Image from [Curley 2003].

From the active electrodes at the tip of the probe, a high frequency alternating
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electric current flows through the surrounding region and heating is induced due to
the electric resistance of the living tissue as illustrated in Figure. 2.3.

Figure 2.3: Drawing depicts how the heat expands around the needle electrodes into
the surrounding tissue to form a thermal sphere during RFA intervention. In this
case, the RFA probe just has 4 tips. Image from Internet 4.

Depending on the tumor size and the type of RFA probe used, the probe tips are
deployed at a certain diameter in order to achieve a desired volume of ablation. This
volume is established pre-operatively, ideally to destroy the visible tumor plus a 1
cm safety margin of ablation around it [Lencioni 2005]. Most of the time, in clinical
settings, a temperature-controlled mode is used: the delivered RF energy increases
up to a given maximum power until the given targeted electrode temperature is
reached. Power is then scaled to maintain this temperature during a given ablation
time. Following the ablation, the tips of the probe are retracted inside the main axis
and the probe tract is cauterized as the RFA needle is withdrawn. This results in
thermal coagulative necrosis at temperatures above 50◦C due to irreversible protein
denaturation of the cells.

Unlike extirpative therapies, the RFA treatment is difficult to monitor in vivo to
prevent recurrence: success of the procedure depends on the complete coverage of the
tumor by the thermal zone, which relies on optimal probe placements and the extent
of conductive heat delivery controlled by the heating time. However, the latter is
challenged by the hepatic blood vessels and the parenchyma perfusion that dissipate
heat and make the size and shape of the ablation zone difficult to control thus
potentially reducing RFA efficiency and increasing risks of recurrence [Kim 2006].
For example, Figure. 2.4 shows a liver extraction where the effect of the blood vessels
on the necrotic area created on an in vivo RFA on a pig liver can be seen. Another
great challenge for abdominal tumor treatment with RFA is the pre-interventional
planning of the therapy, which has to be accurate in order to achieve a complete
destruction of all the tumor cells.

In clinical practice, the planning is based on a 3D CT scan or MR image of
the patient acquired pre-operatively. The clinician has to take into account the

4http://www.radiologyinfo.org/en/info.cfm?pg=rfaliver. Retrieved 2015-07-16.
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Blood vessels 

Necrotic 
 lesion 

Figure 2.4: Liver extraction showing RFA-induced lesion after in vivo ablation on
a pig liver.

patient individual anatomy to successfully achieve thermal treatment of cancer cells.
However the probe is inserted most of the time under ultrasound (US) guidance.
The clinician mentally integrate the multi-modality data by visualizing the anatomy
of the patient given by the pre-operative CT scan or the MR image and use the 2D
slice visualization of the US alone in order to get the most appropriate position of
the RFA probe, while, at the same time, manipulating the RFA probe. Once the
RFA probe is implanted the probe location can be check in 3D by an anatomical
MRI or a CT scan for example, like in Figure 2.5.
Besides the poor quality of the U.S guidance, the biophysical aspects have to be
accounted for during the intervention. Even if a perfect guidance is achieved, the
RFA outcome might still not be optimal. These are the reasons why guidance the
RFA protocol for a specific patient is a challenging task and mathematical modeling
has the potential to assist the radiofrequency ablation of liver tumors.

2.2.2 Monitoring of RFA based on MR Thermometry

Currently, the most widespread imaging technique for monitoring RFA of liver tu-
mors is ultrasonography (US). However, real time MR temperature imaging covering
the entire tumor and its surrounding area seems to be a more relevant strategy as it
could be employed to interactively guide the RF probe to the targeted tumor and to
monitor the effect of the therapy [Berjano 2006]. With temperature-based therapies
such as RFA, a close relationship exists between cell death and the accumulated
thermal dose (TD), which is dependent on both temperature increase and time of
exposure [Sapareto 1984]. In their work [Lepetit-Coiffé 2010] show that it is possi-
ble to compute voxel-specific TD maps after the suppression of the electromagnetic
interference by efficient filtering of the RF signal harmonics at the MR frequency
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Figure 2.5: A CT slice showing radiofrequency ablation probe in the liver. Image
from Wikipedia 5

performed like in [Seror 2008], as this otherwise interferes with the measurements
of the scanner. They demonstrated in two cases that RF ablation did not result
in complete tumor ablation by showing insufficient coverage of the tumors. For
ablation under MR guidance, the clinician could be notified in real-time that the
end-point of the procedure is not reached whatever the source of the problem (heat-
sink effect of flow, difficulties in tumor targeting) using MR thermometry. However,
despite being the most sensitive imaging modality in detecting liver tumors, MR
remains inefficient due to excessive positioning time that results from difficulty in
accessing the patient and due to long procedure time [Guenette 2010]. Today, probe
thermistors are used to assess the temperature at the tips of the probe. .

2.3 Percutaneous Tumor Ablation Techniques

Radiofrequency ablation (RFA) is the most common minimally-invasive technique.
However other percutaneous techniques can be used to ablate tumors. We will
present most of the currently used techniques in this section.

5Radiofrequency ablation. (2015, July 13). In Wikipedia, The Free Encyclopedia. Retrieved
16:44, August 14, 2015, from https://en.wikipedia.org/w/index.php?title=Radiofrequency_
ablation&oldid=671315922

 https://en.wikipedia.org/w/index.php?title=Radiofrequency_ablation&oldid=671315922
 https://en.wikipedia.org/w/index.php?title=Radiofrequency_ablation&oldid=671315922


2.3. Percutaneous Tumor Ablation Techniques 15

2.3.1 High Intensity Focused Ultrasound

High Intensity Focused Ultrasound (HIFU) is a medical procedure that applies
high-intensity focused ultrasound energy to locally heat and destroy diseased
or damaged tissue through ablation 6. This technique creates short and local
elevations of temperature at the focus of an ultrasonic therapy transducer and
exposure time on the order of few seconds, inducing irreversible local coag-
ulation necrosis. HIFU has advantages of no-invasiveness, good penetration,
good selectiveness and easy power control [Zhang 2006]. Currently, further stud-
ies are needed to explore its treatment value for liver or prostate cancer for example.

2.3.2 Microwave Ablation

Microwave Ablation (MWA) is a form of thermal ablation used in interventional ra-
diology to treat cancer. MWA uses electromagnetic waves in the microwave energy
spectrum (300 MHz to 300 GHz) to produce tissue-heating effects. The oscillation
of polar molecules produces frictional heating, ultimately generating tissue necrosis
within solid tumors to damage and kill cancer cells or to make cancer cells more
sensitive to the effects of radiation and certain anticancer drugs 7. Theoretically,
MWA has the potential advantages over RFA to generate larger zones of ablation in
a shorter time and to generate higher temperatures. However, microwave power is
inherently more difficult to generate and deliver safely and efficiently to the tissue
when compared to RF power. Currently available microwave systems face technical
limitations including large diameter probes, underpowered systems, shaft heating,
long and relatively thin ablation zones and unpredictability of the size and shape
of the zone of ablation. Further study and continued development of more robust
clinical systems is still needed [Lubner 2010].

2.3.3 Cryotherapy

Cryotherapy (also called cryoablation or cryosurgery) is a clinical technique similar
to RFA since the energy is delivered directly into the tumor by a probe, which is
inserted through the skin. But rather than killing the tumor with heat, cryoablation
uses an extremely cold gas (usually argon) to freeze it at a temperature of 233K
to 248K. As the gas flows through the needle, a ball of ice crystals forms around
the tip of the probe, thus immediately leading to cellular death of the surrounding
tissue. This technique has been used for many years by surgeons in the operating

6High-intensity focused ultrasound. (2015, May 4). In Wikipedia, The Free Encyclope-
dia. Retrieved 14:08, August 5, 2015, from https://en.wikipedia.org/w/index.php?title=
High-intensity_focused_ultrasound&oldid=660711436

7Microwave ablation. (2014, May 10). In Wikipedia, The Free Encyclopedia. Re-
trieved 14:10, August 5, 2015, from https://en.wikipedia.org/w/index.php?title=Microwave_
ablation&oldid=607944914

 https://en.wikipedia.org/w/index.php?title=High-intensity_focused_ultrasound&oldid=660711436
 https://en.wikipedia.org/w/index.php?title=High-intensity_focused_ultrasound&oldid=660711436
https://en.wikipedia.org/w/index.php?title=Microwave_ablation&oldid=607944914
https://en.wikipedia.org/w/index.php?title=Microwave_ablation&oldid=607944914
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room, but in the last few years, the needles have become small enough to be
used by interventional radiologists through a small nick in the skin without the
need for an operation. This technique has been applied to treat many kinds of
tumors, such as breast cancer, primary or metastatic liver neoplasms, renal, lung,
pancreas, and prostate cancer [Talbot 2014]. Cryotherapy may be less painful
than RFA or MWA and ice ball can be visualized in real time (using CT, MRI
or ultrasound) since there is no interference of the procedure with the imaging
system. But the set-up is more complicated involving cryogens and tubing, the
procedure duration is longer, the maneuverability of catheter is more difficult and
it generates too small lesion size. Moreover, RFA allows the use of expandable
electrodes and placement of multiple probes, which is not possible with cryoablation.

2.3.4 Laser Ablation

Percutaneous Laser Ablation (LA) is a technique for image-guided local tumor
ablation within solid organs. Laser illumination of the optical fibers introduced
into the target lesion delivers energy to the tumor [Pompili 2010], the targeted
tissue is heated by the absorbed laser energy and evaporates or sublimates.
It can be used on benign and malignant lesions in various organs. The main
applications currently involve the destruction of primary and secondary malignant
liver lesions. Laser ablation can make deeper lesions and does not predis-
pose to blood clot formation. Yet, there still is a risk of damaging surrounding
structures and a very limited experience with laser even during open-heart surgery. 8

2.3.5 Electroporation

Electroporation is a molecular biology technique in which an electrical field is
applied to cells to increase the permeability of the cell membrane, that allows
chemicals, drugs, or DNA to be introduced into the cell [Neumann 1982]. Irre-
versible electroporation (IRE) applies short, high-voltage pulses to the tissue to
permeabilize cell membranes and induce cellular apoptosis [Weiss 2013]. It can
be relevant and efficient in organ like the pancreas, where the other technologies
presented previously lack safety and efficacy owing to the risk of thermal damage
to adjacent structures and significant thermal dissipation from large adjacent
blood vessels. IRE is now used to treat pancreatic cancer previously thought to
be unresectable.9 One potential benefit of IRE is that it generates less heat than
RFA. Also, because the heat is generated during the pulses but dissipates while
the electrode rests, there is not a constant cooking effect as with RFA, leading
to potentially less damage to non targeted tissues. However, clinical experiences

8 http://www.heartracing.com/physicians/cryo.vs.rf.asp
9 "A Potential Boon for Pancreatic Cancer Patients". Johns Hopkins Surgery: News From the

Johns Hopkins Department of Surgery. 2014-06-23.

http://www.heartracing.com/physicians/cryo.vs.rf.asp
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are still limited before establishing the efficacy of IRE, whereas RFA have been
time-tested for nearly three decades. Multiple needle placements are required
within a prescribed distance, which can be challenging, and parallel placement of
the probes may be hindered by issues such as intervening ribs. The actual timing
of imaging follow-up and the best modality are still being determined. IRE also
poses a unique challenge to the current imaging response criteria because unlike
other ablation modalities, there is a marked decrease in the size of a successfully
treated lesion [Narayanan 2013].

2.4 Technical Background

Computational models of RFA are divided into 3 different modeling parts: an elec-
trical heating model, a heat transfer in living tissue model, and a cellular necrosis
model. These models are coupled as illustrated on Figure. 2.6 and described in the
following sections.

Source     

electrical energy 

Heat Propagation in Liver Tissue: 

 change in temperature 

 (Sec 2.3.2) 

From Electrical Energy  

to Heat Energy 

 (Sec 2.3.1) 

Tissue Degradation:  

change in parameters 

(Sec 2.3.3) 

Figure 2.6: Sketch of the coupled modeling steps of the biophysical RFA model.

2.4.1 Models of Electrical Heating

Different types of radiofrequency (RF) probe can be used, either the cool-tip single
probe or the RITA probe (StarBurst Radiofrequency Ablation, AngioDynamics,
Latham, NY; www.angiodynamics.com) with three, four or six umbrella shaped
prongs which can be deployed within the tumor (Figure. 2.7).

In the literature, both probe configurations are simu-
lated [Tungjitkusolmun 2002, Panescu 1995]. The temperature and the voltage are
usually set to be constant numbers on the surface of RF electrode probe needle
and the potential field generated around the probe is solved numerically, using the
Laplace equation (Eq. 2.1) for the electrical field in conductive media [Doss 1982].

∇.σ∇V = 0 (2.1)
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Figure 2.7: RITA probe representation from [Payne 2011].

where V is the voltage and σ, the electrical conductivity. The Laplace equation
(Eq. 2.1) allows to compute the current density J and the electric field intensity E,
using the distributed heat source due to Joule loss q, given by Eq. 2.2:

q = J.E (2.2)

which can also be written as:
q = |∇V |2 (2.3)

Even if this approach is theoretically accurate, it requires a fine volume mesh on
the surface of the very thin probe tips and then suffers from a high computational
cost. Furthermore, the exact position of the whole electrode probe is not always
available and the imperfect needle positioning has been found to severely affect
the outcome of RFA procedure [Khlebnikov 2010]. The electric field strength is not
high, most of the Joule effect heating is generated within the space 1 mm around the
electrode surface [Panescu 1995] and most of the ablation zone at distances farther
from the electrode is created by thermal conduction [Schramm 2006]. Moreover, the
particular details of the heating point sources appear to have only a limited effect
on the final lesion size [Payne 2011]. Thus, in our framework, the electrical heating
is modeled with a Dirichlet boundary conditions fixing the delivered temperature
either on a sphere, whose radius is defined pre-operatively by the protocol followed
by the clinician if the position of the probe is unknown, or on the probe model itself
if we know the probe position.

2.4.2 Biophysical Models of Heat Transfer in Tissue

Computing heat diffusion in biological tissues amounts to solving the coupled bio-
heat equations derived from the theory of porous media (Eq. 2.4), where each ele-
mentary volume is assumed to comprise both tissue and blood with a certain frac-
tion [Nakayama 2008].

(1− ε)ρcti
∂Tti
∂t

= (1− ε)Q︸ ︷︷ ︸
source

+(1− ε)∇ · (d∇Tti)︸ ︷︷ ︸
diffusion

+H(Tbl − Tti) (2.4a)

ερcbl(
∂Tbl
∂t

+ v.∇Tbl︸ ︷︷ ︸
advection

) = εQ+ ε∇ · (d∇Tbl)−H(Tbl − Tti) (2.4b)
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In theses equations, T , Q, v, ε stand for temperature, source term, blood velocity,
blood volume fraction (fraction of blood volume over total volume) and subscripts ’ti’
and ’bl’ refer to tissue and blood phase respectively. The other parameters are listed
in Table 2.1. Different models similar to (Eq. 2.4) have been proposed in the litera-

Table 2.1: Values from literature [Payne 2011] of the parameters used in the com-
putation of RFA.

parameter description value
ρ blood and tissue densities 1.06× 103 kg m−3

cbl blood heat capacity 4.18× 103 J(kg K)−1

cUti , c
V
ti tissue heat capacity 3.6× 103 J(kg K)−1

cNti tissue heat capacity in necrotic cells 0.67× 103 J(kg K)−1

d blood and tissue heat conductivities 0.512× (1 + 0.00161× (T − 310)) W(m K)−1

H convective transfer coefficient 24.4× 105 W (m3 K)−1

ε blood volume fraction 0.1
κ permeability 4.0× 10−11 m2

µ dynamic viscosity of the blood 0.0035Pa s

ϕvcin vena cava inflow 2.0 L min−1

ϕi flow through the inlets of the hepatic veins 1.6 L min−1

p0 vena cava outlet pressure 3mmHg

k̄f forward rate constant 3.33× 10−3 s−1

kb backward rate constant 7.77× 10−3 s−1

Tk parameter of cell state model 40.5◦C

ture [Roetzel 1998, Khaled 2003, Nakayama 2001, Shrivastava 2009]. Some models
include a metabolic heat generation term [Mahjoob 2009], which can be neglected
since it has been shown to be insignificant in thermal ablation [Labonté 1994]. The
advection term in the blood bio-heat equation (Eq. 1.1b) is sometimes simplified by
considering an averaged perfused tissue volume [Shrivastava 2009] but we preserve it
in our model as it is essential when modeling the heat transfer between the tissue and
the small vessels with low blood velocity magnitude. To account for the heat transfer
associated with the transcapillary fluid exchange, some models include an additional
perfusion heat transfer term [Nakayama 2008]. However, it has been proven that this
term can be neglected as the blood in the capillary network usually reaches equilib-
rium with tissue temperature [Chato 1980]. Some bioheat models examined counter-
current heat transfer in arterial-venous vessels (the venous flow is warmed through
heating from the nearby arteries) [Mitchell 1968, Roetzel 1998, Chato 1980].

One common simplification of the coupled bio-heat equations is the Pennes
model [Pennes 1948] where the blood temperature is assumed constant, which is
valid within and close to large vessels, where the blood velocity magnitude is high.
In this case, the coupled bio-heat equations (Eq. 2.4) reduce to one unique equa-
tion with only one temperature distribution T describing the temperature inside the
liver:

ρcti
∂T

∂t
= Q+∇ · (d∇T ) + cblω(Tb0 − T ) (2.5)
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where ω represent the blood volumetric perfusion rate.
This simplification has been used widely in the literature to model the electrical-

thermal heating process happening in RFA. However, this model assumes that the
blood is a volumetric heat sink and that it is uniformly distributed throughout the
tissue [Peng 2011]. Hence the term accounting for heat-transfer convection between
tissue and blood in the Pennes equation is oversimplified. This simplification may
be suitable for low vascularized organs like the heart or the kidney and so it can be
used more accurately to model cardiac ablation or kidney cryotherapy [Linte 2013b,
Talbot 2014] but it is not appropriate for the liver which is highly vascularized.
Therefore, we have to account for the perfusion in the parenchyma in another way.
Studies [Peng 2011] demonstrate that microvasculature perfusion does not act as a
spatially homogeneous heat sink, which invalidates the fundamental assumption of
the Pennes model when applied to the liver in which different types of vessels are
present. For these reasons another simplification has been proposed, which results in
the Wulff-Klinger (WK) model [Klinger 1974, Wulff 1974]. It assumes equilibrium
between tissue and blood temperature which is accurate for highly perfused organ
with small vessels where the blood velocity magnitude is low and accounts for the
directional effect of the blood flow, with a blood volume fraction ε� 1:

(1− ε)ρcti
∂T

∂t
= (1− ε)Q+ (1− ε)∇ · (d∇T )− ερcblv · ∇T (2.6)

This equation holds in a porous medium where tissue is dominating. The main
difference between these two models lies in their cooling terms (last term of the right-
hand side). The former is a reaction term and acts as a volumetric homogeneous
heat sink whilst the latter is an advection term accounting for the directional effect
of blood flow on the tissue temperature. It can be shown [Peng 2011] analytically
and computationally but in 1D that the coupled bio-heat equations (Eq. 2.4) can be
simplified into the Pennes model in the case of large vessels, and to the WK model
in the case of small vessels.

2.4.3 Models of Cellular Necrosis

Thermal treatments aim at transporting heat energy within the cancerous tu-
mor then creating a zone of dead cells surrounded by tissue which could even-
tually recover after the ablation procedure. For a cell to go to an apopto-
sis state, a critical temperature should be exceeded during a sufficient time du-
ration, due to the thermal tolerance of cells. Various cellular necrosis mod-
els [Berjano 2006, Diller 2008, ONeill 2011] have been studied.

The simplest one is to use a single temperature threshold above which cells
stop instantaneously functioning, and below which cells remain fully functional. Al-
though different values have been used for this threshold, the in vivo lesion volume
(i.e. necrotic tissue after RF ablation) can be defined by the volume enclosed by
the 50 ◦C isothermal surface [Panescu 1995], which has been widely used for RFA
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computational simulations. This isothermal model does not take into account the
duration for which cells are at high temperatures although this factor has an influ-
ence on the cellular response since tissue damage is a function of both temperature
and time [ONeill 2011].

Arrhenius-based models have been proposed [Henriques Jr 1947, Moritz 1947],
which extend the Arrhenius law proposed for chemical reaction rates. The rate
of cell damage is then proportional to exp(−Ea/RT ), where Ea is an activation
energy, R is the universal gas constant, and T is the temperature. In this case, the
tissue damage increases linearly with time and hyperbolically with temperature.

Thermal dose models have also been proposed. The earliest work was based on
the concept of "equivalent minutes" [Sapareto 1984], where they characterize the
thermal dose in an equivalent time at a temperature fixed at 43◦C. The thermal
dose in equivalent minutes at 43◦C can be computed at each position according to
this empirical model:

t43 =

tc∑
t=0

C(43−T̄ )∆t (2.7)

where t43 is the thermal dose in equivalent minutes at 43◦C, T̄ is the average
temperature during the time interval ∆t, and C is a constant resulting from the
Arrhenius model:

C = 0.5 when T̄ ≥ 43◦C

C = 0.25 when T̄ < 43◦C

A thermal dose of 240 (in equivalent minutes at 43◦C) is considered lethal. This
model is based on the concept of a thermal dose, whereby cumulative damage leads
to cell death. However, the possibility for a cell to recover is not allowed with this
model as the thermal dose is monotonically increasing.

In [Linte 2013b], the authors define cumulative exposure as a measure of induced
tissue injury. Cumulative exposure is the area under the temperature-time curve
calculated on a voxel-basis over the duration of the ablation, which takes into ac-
count the voxel exposure prior to reaching the cell-death temperature (i.e., reversible
damage and lesion penumbra) and also the voxel exposure beyond cell-death tem-
perature for 5 s or longer (i.e., irreversible damage and core lesion). Their proposed
exposure criterion yields consistent results with Arrhenius and the 50◦C isotherm
tissue injury criteria but at a lower computational expense.

Cell-death models based on the Arrhenius law are widely used [Pop 2010,
Chen 2009a, Chang 2004, Schwarzmaier 1998], but are limited since the interpre-
tation of model parameters characterizing the cell damage formulation is not easy
to find. These models compute the degree of tissue damage at a tissue location r,
using [Pearce 1995]:

Ω(r, t) = ln

{
[C(r, 0)]

[C(r, t)]

}
=

∫ t

0
Ae

Ea
RT (r, τ)dτ (2.8)
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where Ω(r, t) is the thermal damage index (dimensionless), τ denotes the ex-
posure time (s), A is the frequency constant (s−1), Ea is the activation energy (J
mol−1) and R is the universal gas constant (8.314 J mol−1K−1). The thermal dam-
age is defined as the logarithm of the ratio of the original concentration of native
tissue at time zero: C(r,0), to the remaining native state tissue at time t: C(r,t). A
value of 1 (respectively 4.6) for Ω represents 63% (respectively 99%) of the cells in a
damaged state. In some cases, this model is coupled to the heat transfer model: the

perfusion term is multiplied by α =
1

Ω
, since once tissue coagulation occurs, tissue

perfusion ceases [Chang 2004].
Those models are sensitive to small changes in parameters, and they are not

able to predict cellular injury over a wide hyperthermic temperature range and
throughout the entire heating process [Feng 2011]. To tackle these drawbacks, two-
compartment models have been proposed containing either fully alive or fully dead
cells [Feng 2008, Feng 2011]. In order to characterize the biological state changes,
transitions between the two compartments are usually modeled with first-order rate
processes.

Finally a three-compartment cell death model [ONeill 2011] can be used to sim-
ulate both fast and slow cell death over a temperature range extending to 100◦C.
This last model uses a single continuous function where a backward, recovery pro-
cess is accounted for by adding a vulnerable state of the cell from which cells can
either die or heal and return to the alive compartment. In this model, thermal-based
necrosis depends on both the heating temperature and the heating time. This model
accounts for the recovery process of the cells, allows to define three different states
for the cell properties, however, it required to estimate several parameters.

2.5 State of the Art of Existing Radiofrequency Ablation
Models

2.5.1 Computational Models of RFA

Several research groups are working on methods to extract information from the
images, and on models to simulate the RFA behaviour. More specifically, such
models could potentially calculate the size, the shape and the location of the necrotic
area, given the position and settings of the ablation probe in the abdomen. Thus
they could give additional guidance to clinicians in deciding where to place the
heating probe and for how long heating must be applied in order to fully ablate
the tumor and limit the number of recurrences. For instance, the placement of the
probe has been optimized in [Schumann 2015] by using segmentation masks and
by the exploration of the set of pareto-efficient solutions, in order to improve the
established planning of RFA.

Several approaches have been developed to describe and simulate RFA of liver
tumors. They differ in their choice of the biophysical phenomena considered and
the type of experimental data used to design and validate them.
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All simulations are based on the bio-heat equation considering a cooling
effect that is either expanded [Chen 2009b] or localized at neighboring ves-
sels [Altrogge 2012, Jiang 2010, Payne 2011, Audigier 2015a]. Those studies couple
radiofrequency electrical fields to thermal transport. They have been developed to
compute heat diffusion in the liver, predict the temperature distribution during the
procedure, study the biophysical impact of the temperature and eventually evaluate
the optimal placement of the RFA probes [Kröger 2010].

Early studies use simplified 3D geometries to determine tissue temperature
distribution during RF hepatic ablation [Tungjitkusolmun 2002]. Other stud-
ies [Chen 2009b, Jiang 2010] simulate the heat transfer on generic human anatomies
but they do not rely on patient-specific data. Few authors [Altrogge 2012,
Audigier 2015a, Payne 2011] have proposed to simulate RFA on realistic subject-
specific geometries extracted from images and only [Audigier 2013a] has personal-
ized biophysical parameters on patient data in order to minimize the discrepancy
between simulated and measured necrotic (ablated) regions, which is paramount
since parameters in the literature often come from experiments of tissue from dif-
ferent species ex-vivo [Hall 2015].

Some authors simulated the bio-heat equation based on the most com-
mon discretization method: the Finite Element Method (FEM) [Chen 2009b,
Altrogge 2012, Jiang 2010], Instead we introduced the Lattice-Boltzmann Method
(LBM) [Audigier 2015a, Audigier 2013a]. The traditional method to discretize RF
ablation PDE is indeed the Finite-Element Method (FEM). However, the use of
classic FEM is often more computationally demanding (execution time is usually
in the range of hours, which is not suitable for clinical purposes nor therapy guid-
ance) than using recent numerical methods such as the Lattice Boltzmann Method
(LBM) [Rapaka 2012]. Other authors proposed simplified model using a weighted
distance-based method [Rieder 2011, Schumann 2015] to approximate the ablation
zone in real-time utilizing the GPU, but the analysis of the effect of using an approx-
imation instead of the complex numerical simulation has not been done yet. Fur-
thermore, a preprocessed thermal equilibrium representation of the liver parenchyma
and blood vessels is needed to incorporate its cooling effect. In [Rieder 2011], they
only compare the ablation zone given by their method with the coagulative necrosis
mask from the numerical simulation in complex vascular situations, indicating a
good correlation.

2.5.2 Model Simplification

In most of the developed models, numerous simplifications are assumed, such as
the homogeneity and the isotropy of the tissue, a blood perfusion rate unaffected
by the heating process, no boiling of tissue during heating [Berjano 2006]. Also the
tissue itself is neither isotropic nor homegeneous, particularly in diseased states,
which are cases where ablative treatment are commonly used [Payne 2010]. In this
work, the properties of the tissue (heat capacity, etc) vary with respect to its state
and different parameters are related to different location inside the liver. The reac-
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tion coefficient, H and the porosity, ε are related to large vessels, and parenchyma
respectively. Nevertheless, some models include the water evaporation during the
RFA procedure [Yang 2007, Pätz 2010], porous circulation [Crezee 1990], or blood
coagulation [Chang 2004]. An important issue is the relationship between tissue
characteristics and temperature. RF ablation procedures involves heating at tem-
perature around 105◦C, the parameters values found in the literature may not be
correct in this range of temperature. Some models ignore the thermal dependence
of the heat diffusivity of tissues [Chen 2009b, Jiang 2010], but it is still not clear
if this dependence of the tissue properties have an important impact on the RFA
output. For this reason, we keep in this work the definition used in [Payne 2011],
where the heat diffusivity is temperature-dependent (Table 2.1).

The liver is a very complex thermal organ due to its inhomegeneity. It
is composed of three different types of blood vessels (hepatic arteries, portal
veins, hepatic veins), which have different diameters and different flow veloci-
ties [Tungjitkusolmun 2002]. The large blood vessels have a significant cooling ef-
fect on RF lesions as it has been shown on ex-vivo porcine liver [Lehmann 2009].
The heterogeneous cooling effect of large neighboring vessels have been stud-
ied [Patterson 1998], but the effect of the perfusion is still not totally defined.
For these reasons, the vascular system of the liver has to be considered, and
we model it in this work but it is often neglected or simplified in most of
the studies. Moreover, blood flow circulation is often not computed based on
patient-specific clinical information, whereas it is the case in this work. To
give an example, the blood temperature in the large vessels is unaffected by the
thermal field in the surrounding tissue in [Tungjitkusolmun 2002]. Other mod-
els [Pennes 1948, Panescu 1995, Labonté 1994] used convective boundary conditions
at the tissue - vessels interfaces to simulate the heat transfer due to blood flow, but in
order to achieve accurate prediction of RFA output, blood flow needs to be included
in the model [Jain 2000].

It is also particularly important to take into account the effect of perfusion, which
is often neglected in these models, it is done in this work, as in [Audigier 2015a,
Payne 2011] where the cooling effect due to venous flow in the liver parenchyma is
considered.

2.5.3 Model Validation

Subject-specific modeling of liver tumor radiofrequency ablation (RFA) needs fur-
ther validation before impacting clinical use.

Up to now, the comparison between simulated and measured necrotic regions
has been used by several authors [Altrogge 2012, Payne 2011, Audigier 2015a] as
the main criteria of success in calculating the effect of RFA on abdominal tumors,
for either model validation or personalization. In [Payne 2011], the authors compare
the simulated volume with the measured one on two pigs and they have an average
error of 40% on the volume. Whereas, in our work, point-to-mesh errors of 5 mm
on average are computed between the simulated and the actual lesion.
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Computational models of RFA depend on a large number of different parameters,
which depend mostly on the patient, the temperature or the current state of the
tissue. They also have a high computationnal cost. RFA model validation is then
challenging with clinical data but is more feasible on pre-clinical data in a more
controlled environment. This extensive validation step is important prior to any
translation into clinical settings. It is paramount because the size and the location
of the RFA lesion has to be predictable and controllable for clinical applications.
A comprehensive understanding of detailed multi-physics model is required first
to simplify only the aspects that are not needed, which could then enable model
personalization or simplification and eventually computational models of RFA can
be helpful for interventional guidance or therapy planning. Several experimental
validation of RFA modeling have been proposed, but they rely on ex vivo or in vitro
data [Linte 2013a, Jain 2000]. In [Linte 2013a], an ex vivo study on two beef muscle
samples is performed to validate an endocardial tissue RFA model by comparing the
predicted versus the experimentally measured temperature at 2 locations. Validation
on in vivo data has been performed as well [Payne 2011], but the validation is done
by comparing the volumes of the simulated and post-operative lesions on two pigs
only, with nominal biophysical parameters coming from the literature.

2.5.4 Model Personalization

The accuracy of the RFA computation is challenged by the inter-subject variability
in anatomies and tissue characteristics [Hall 2015]. Tissue properties depend upon
both the tissue state and the temperature. There is little information available on
tumor or disease tissue, which are of interest in our case [Payne 2010]. Because tissue
properties are patient-specific and can depend on the current state of the tissue, a
proper estimation of those parameters is needed but has been often overlooked in
the modeling of RFA.

In cardiac modeling, model personalization, i.e. estimation of patient-specific
model parameters has been studied. The tissue conductivity as well as the bio-
physical model parameters for the electrophysiology are estimated in [Relan 2011],
whereas in [Marchesseau 2013], the mechanical parameters of an electromechanical
model of the heart are personalized.

In RFA modeling, studies [Altrogge 2012, Chen 2009b, Jiang 2010] have inves-
tigated the Finite Element Method (FEM) to simulate the heat transfer on generic
human anatomies. Simulations with animal-specific [Payne 2011] or patient-specific
anatomies were also recently considered [Audigier 2013a] with the inclusion of cool-
ing effects computed from simulated hepatic venous flow and hepatic parenchymal
flow. However, nominal tissue parameters were employed in these studies with val-
ues often based on ex vivo experiments on animal tissue sometimes with a large
varying range between published studies [Hall 2015]. In [Altrogge 2012], the un-
certainty associated with biophysical tissue properties (electrical conductivity and
thermal diffusivity) is taking into account. The RFA output is evaluated for certain
realizations of tissue parameters at an extremely high computational cost. However,
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they do not tackle the problem of patient-specific parameters by trying to obtain
more accurate material parameters, as the uncertainty is considered as an intrinsic
attribute of the modeling process.

In this work, we first attempt to estimate patient-specific parameters by mini-
mizing the error between the simulated necrosis and the post-operative registered
ground-truth, in the case of multiple lesions ablated per patient [Audigier 2014a].
However, the necrosis of tissue is the resultant of several combined physical phe-
nomena, mainly the heat transfer and cell death mechanisms, meaning that a given
ablated region may be explained by several combinations of parameters. In addition
to this identifiability issue, the size of the tumor extent can only be known reliably
from post-operative imaging and its shape may be highly asymmetric [Hall 2015],
which makes it difficult to eventually update the ablation plan during the proce-
dure, which is the clinical end-point. A method that relies also on pre-operative or
interventional data for personalization is therefore required for RFA models to be
clinically useful. Those observations are complementary information to the necrotic
extent for model evaluation and personalization. A patient-specific tool showing the
extent of ablation given the probe position, the heat duration, personnalized param-
eters and patient images will potentially be beneficial in providing a personalized
treatment planning and guidance, as it could improve the current clinical outcome.

2.5.5 Surrogate Model for Optimization of the Probe Placement

Inserting the RFA probe in the liver parenchyma requires considerable experience
and constitutes a significant mental task for the clinician. During the procedure,
multiple criteria for all possible trajectories have to be taken into account like
the effect of the large blood vessels, the distance to the lungs, the ribs, etc. For
these reasons, several methods to determine the optimal access path have been pro-
posed [Chen 2009a, Altrogge 2012, Schumann 2015].

Some automatic and semi-automatic approaches concentrate on calculation and
simulation of the ablation zone and the resulting optimal probe placement with
respect to the coverage of the tumor. In [Chen 2009a], the probe placement is opti-
mized on a simplified geometry such that the resulting necrotic lesion totally covers
the targeted area. The probe placement can be optimized by maximizing the min-
imum temperature inside the tumor area such that the volume of destroyed tumor
tissue is maximized [Altrogge 2012]. Whereas in [Schumann 2015], the optimization
of the probe placement is based on numerical optimization and on image processing:
segmentations of the area of interest like vessels, lungs, ribs, tumors, liver.

Other methods propose to optimize the planning of the trajectory for percu-
taneous needle insertions by taking into account the critical structures but also
the instrument shape and penetration angle. Methods taking theses constraints
into account in order to automatically compute insertion trajectories [Villard 2004,
Villard 2005, Baegert 2007, Seitel 2011] have been proposed. A simplified radiofre-
quency ablation simulator can be used [Villard 2003] to get an automatic plan-
ning of needle positions considering the tumor environment. The necrosis zone is
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represented by spheroid deformed by the surrounding vessels to take into account
the heat-sink effect. In [Seitel 2011], they use pareto optimality to have a weight-
independent approach whereas in [Baegert 2007] the planning of the automatic tra-
jectory in the abdomen is done by a weighting of the different constraints.

2.6 MR Thermometry

MRI provides excellent soft-tissue contrast anatomical images as well as a contin-
uous temperature monitoring, thanks to the combination with proton resonance
frequency shift (PRFS) based MR thermometry [Ishihara 1995]. Hence, MR ther-
mometry could estimate the resulting lesion sizes of any thermal ablation and thus
provide an adequate therapy end point [Quesson 2000]. However, precise tempera-
ture measurements using PRF require to elaborate correction techniques, if motion
and magnetic field variations are present during the treatment [De Senneville 2007].
More recently, thermal tissue properties have been estimated using MR thermome-
try during HIFU [Cornelis 2011].

2.6.1 Thermal Tissue Properties Acquisition during HIFU based
on MR Thermometry

The development of MR hybrid hyperthermia systems with thermal imaging capabil-
ity has opened the door to acquisition of thermal tissue properties during heating.
In [Cornelis 2011], the authors evaluate quantitatively in vivo the tissue thermal
properties during high-intensity focused ultrasound (HIFU) heating of pig kidneys
monitored in real time by volumetric MR thermometry. The analysis of the volumet-
ric temperature distribution during the HIFU intervention allows the determination
of the thermal parameters, and may therefore improve the quality of the planning
of noninvasive therapy with MR-guided HIFU.

2.6.2 MR Thermometry Filtered by Bioheat Equation

Extending MR temperature imaging to include the entire targeted area and its
vicinity with a high accuracy is a difficult problem as the trade-off among spatial
resolution, temporal resolution, and volume coverage is inherent in MRI. In addition,
the precision of real time MR-thermometry for therapy guidance is generally limited
by the available signal-to-noise ratio (SNR) and the influence of physiological noise.
In [De Senneville 2013], they generate 3D temperature maps by combining 2D slices
measured by MR thermometry and a priori knowledge of 3-D data derived from
predictions based on a physical model (the bio-heat transfer equation model) using
an extended Kalman filter (EKF). This is done to monitor HIFU intervention but
could be applicable to RFA.
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version [Audigier 2015a] for the description of the model.

3.1 Introduction

Turning computational models of RFA into clinical practice remains challenging.
The lack of an integrated, efficient, patient-specific framework for RFA modeling
based on patient data is the major difficulty encountered. Studies based on in vivo
animal images have been reported, but time-consuming FEM computations are still
required [Payne 2011]. Because of the expensive computation time needed by FEM,
current approaches cannot enable a personalization of the model-based planning of
RFA in a clinical setting. Therefore a fast and efficient model would help to optimize
the treatment protocol pre-operatively.
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As a first step towards efficient patient-specific planning of RFA, we propose an
integrated multi-physics approach that combines, the computation of the hepatic
blood flow with a biophysical model of the heat transfer and cellular necrosis to
simulate RFA therapies in patients and predict the extent of ablation. The com-
putational model of heat transfer and cellular death during RFA is only based on
volumetric image of the anatomies estimated from CT (Sec. 3.2.3).

This chapter presents the Lattice Boltzmann Method (LBM) for heat in bio-
logical tissue. This method is a kinetic-based approach for fluid flow computations
which has been successfully used as an alternative numerical method for solving
Navier-Stokes type equations [Chen 1998]. In a first step, the computation of the
hepatic blood flow is done using a Computational Fluid Dynamics (CFD) method in
the large vessels and Darcy’s law in the parenchyma. We will refer to this method
throughout the manuscript as the Decoupled FEM Porous - Vessels CFD Model.
To go further, an improved hepatic blood flow computation is presented, in which
we rely on LBM to compute not only heat diffusion, cellular necrosis as previously
proposed but also blood and parenchyma flow in the liver tissue. This latter method
is based on a CFD solver which incorporates a porous part to deal with the liver
parenchyma. We will refer to this method throughout the manuscript as the Fully
Coupled LBM CFD Model. This second framework is particularly efficient for the
personalization as it provides a fast solver and naturally accounts for the flow tran-
sition between veins and parenchyma. This framework is adapted to situation where
no temperature map is available.

A detailed convergence analysis against an analytical solution of the heat trans-
fer equation in Sec. 3.4.1 and a computational efficiency study in Sec. 3.4.2 are
presented.

3.2 Method

As illustrated in Fig. 3.1, and detailed in the following section, we first estimate
a comprehensive level set representation of the liver, including parenchyma, blood
vessels and tumors from medical CT images. Then a computational model of heat
propagation, cellular necrosis and blood flow through the vessels and liver is solved
to estimate the extent of the ablated tissue.

3.2.1 Model of the Patient Hepatic Blood Circulation System

The heat diffusion in liver tissue, involved during the RFA procedure depends on
the velocity field of the hepatic blood flow. In this section, we first propose a De-
coupled FEM Porous-Vessels CFD Model to estimate the blood flow in the liver
parenchyma. The 3D blood flow is first computed on the large vessels and then the
porous flow in the liver parenchyma is computed using the Finite Element Method
(FEM) on a tetrahedral mesh. As this method relies on FEM, meshing techniques
have to be employed, which increases the complexity of the model and the computa-
tional errors. For this reason a second Fully Coupled LBM CFD Model is proposed,
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Figure 3.1: Steps of the proposed method (green: input, blue: processes, red: out-
put).

where the blood flow in the large vessels as well as in the liver parenchyma are
computed simultaneously on a Cartesian grid using an Lattice Boltzmann (LBM)
implementation.

3.2.1.1 Decoupled FEM Porous-Vessels CFD Model

In this section, we present our first approach: the Decoupled FEM Porous-Vessels
CFD Model. The modeling pipeline is illustrated on Figure 3.2, and Algo. 1 presents
the RFA computation method.

Algorithm 1 Computational model of RFA
1: Estimate patient-specific model of liver anatomy
2: Compute 3D blood flow in hepatic veins, vena cava and portal vein
3: Compute blood velocity field inside parenchyma
4: while t < tend do
5: Update temperature T using Pennes model in the large vessels, Wulff-Klinger

model elsewhere
6: Update cell-state

Heat transfer in liver tissue is highly dependent on the blood flow circulation.
To solve the WK model (Eq. 2.6), we need the blood velocity field v everywhere
in the parenchyma. The blood inside the liver is modeled as a Newtonian fluid
with pre-specified density ρ and viscosity µ. v is calculated according to Darcy’s
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Figure 3.2: Steps of the proposed method using the Decoupled FEM Porous-Vessels
CFD Model (green: input, blue: processes, red: output).

law [Brinkman 1949]:
v = −κ/(µε2/3)∇p (3.1)

where p is the pressure. Because of mass conservation, this amounts to solving the
Laplace equation:

∇ · (−κ/(µε2/3)∇p) = 0 (3.2)

At the border of the liver, Neumann boundary conditions are employed (no flow
is leaking). Dirichlet boundary conditions are applied at the tip of the portal and
hepatic veins, to define the pressure drop between them. As we cannot estimate
these pressures in vivo, we rely on a CFD model of the hepatic venous circulation
system to estimate them (Fig. 3.3).

We used a full 3D CFD solver (unsteady incompressible Navier-Stokes equations
with viscous terms, expressed in an Eulerian framework which embeds the domain
boundary using a level set representation of the segmented vessels [Ralovich 2012]).
From the segmentation, a tetrahedral multi-domain mesh is generated based on the
resulting multi-label mask image using CGAL [Alliez 2011] (www.cgal.org) to com-
pute the porous flow, which is then calculated using FEM on the linear multi-domain
tetrahedral mesh. The resulting flow is tri-linearly rasterized on the Cartesian grid
after computation. In this work, the effect of heat on the viscosity of the flow is
neglected to decouple flow-related from the heat diffusion calculation for computa-
tional efficiency. CFD and porous flow are calculated only once at the beginning of
the algorithm.

Let ϕvcin be the vena cava inflow, ϕp the portal vein inflow and ϕvc = ϕvcin +ϕp
the vena cava outflow (conservation of mass, the hepatic artery is neglected in this
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Figure 3.3: Model of the hepatic circulatory system. Arrows denote blood flow.
Circles and squares denote portal and hepatic vessel tips. See text for details.

study but could be added without modification into the framework). We also set
the vena cava outlet pressure p0 = 3mmHg in the range of physiological values of
healthy patients. The values are listed in Table 2.1. First, we compute the 3D blood
flow and pressure distribution within the vena cava and hepatic veins as follows: a
plug profile velocity field is applied at the inlets (squares in Fig. 3.3), computed from
the outflow ϕp and the cross-sectional area of each inlet. The CFD calculation gives
the downstream pressures p−i and the 3D blood flow ϕi for each inlet of the hepatic
vein. Then we estimate the upstream pressure p+, assumed constant, of the portal
vein outlets (circles in Fig. 3.3). We solve Darcy’s law and optimize over p+ such
that the computed perfused flow through the hepatic vein inlets ϕi matches the one
computed at the first step using the 3D CFD model. Then once p+ is estimated, we
compute the blood flow using the 3D CFD solver. Finally, we compute the blood
velocity field inside the parenchyma using Eq. 3.1.

3.2.1.2 Fully Coupled LBM CFD Model

In order to go further and reduce the rasterization errors introduced by the FEM
part of the former model, an improved hepatic blood flow computation is pre-
sented: a Fully Coupled LBM CFD solver. This method is based on a compu-
tational fluid Dynamics (CFD) solver which incorporates a porous part to deal with
the liver parenchyma, and is implemented using the Lattice Boltzmann Method
(LBM) to compute simultaneously the blood flow in the large vessels and in the
liver parenchyma. The modeling pipeline is modified and illustrated in Fig. 3.4.

As detailed in the following section, we still rely on an estimation of a compre-
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Figure 3.4: Steps of the proposed improved method (green: input, blue: processes,
red: output). The blood flow is computed in the large vessels and in the parenchyma
simultaneously.

hensive level set representation of the liver, including parenchyma, blood vessels and
tumor from medical CT images. The computational model of heat propagation and
cellular necrosis remains unchanged. However the blood flow computation through
the vessels and liver parenchyma is done simultaneously. This method enables to
estimate the extent of the ablated tissue as well. Algo. 3 presents the modified RFA
computation method, with the differences with the previous model highlighted in
red.

Algorithm 3 Computational model of RFA
1: Estimate patient-specific model of liver anatomy
2: Compute 3D blood flow in hepatic veins, vena cava, portal vein, and inside

parenchyma simultaneously
3: while t < tend do
4: Update temperature T using Pennes model in the large vessels, Wulff-Klinger

model elsewhere
5: Update cell-state

Description
The blood in the main vessels and in the parenchyma are combined in the gen-

eralized 3D incompressible Navier-Stokes equation for fluid flow in porous media,
thus considerably easing the definition of boundary conditions between vessels and
parenchyma, improving on the previous method [Audigier 2013a, Audigier 2015a].
More precisely, writing v as the blood velocity and p the pressure inside the liver,
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we solve:
∂v

∂t
+ v.∇v = −1

ρ
∇p+

µ

ρ
∇2.v + F F = −µ(1−ε)2

ρα2ε2
v (3.3)

The added force F represents the total body force due to the presence of a porous
medium [Guo 2002]. F depends on the porosity coefficient ε (fraction of blood
volume over the total volume) whose default values are 1 in the CT-visible vessels,
0.1 in the porous parenchyma [Payne 2011], and 0.04 in the vessel walls to model
an impermeable medium. Experiments have been performed to obtain a sufficiently
small porosity (0.04) to avoid flowing through the vessel wall. In Eq. 3.3, ρ stands
for the blood density, µ, the dynamic viscosity of the blood and α2 an effective
parameter. At the border of the liver, no flux boundary conditions are used whereas
Dirichlet boundary conditions are applied at the inlets of portal vein and vena cava
and at the outlet of the vena cava: the portal vein and vena cava inflow, ϕp and
ϕvcin are fixed as well as the vena cava outlet pressure p0 (see Figure 3.5 for more
details). This method makes the boundary conditions simple to treat: no boundary
conditions are fixed on the extremities of the vessels inside the parenchyma thanks
to the use of the porosity map. This framework mainly avoids the occurrence of
shear stress on the vessel walls due to their much lower value of porosity. Figure 3.5
illustrates flows calculated in a patient-specific geometry.

Parenchyma= Porous media 

p0 

φp 

φvcin 

Figure 3.5: Set-up and results of the hepatic blood flow computation with a zoom
inside the vena cava on the right and at the extremities of the hepatic veins on the
left.

Link between the Decoupled FEM Porous-Vessels CFD and the Fully
Coupled LBM CFD Models

In the Decoupled FEM Porous - Vessels CFD Model(Section 3.2.1.1), the blood
flow is computed according to Darcy’s law: Eq. 3.1 [Brinkman 1949]. In the Fully
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Coupled LBM CFD Model (Section 3.2.1.2), the blood flow is computed according
to the generalized 3D incompressible Navier-Stokes equation for fluid flow in porous
media: Eq. 3.3. At steady state, Eq. 3.3 gives the blood velocity as a function of
the gradient of the pressure:

v = − α2ε2

µ(1− ε)2
∇p (3.4)

α2 = d2
p/150, where dp is the diameter of the solid particle [Guo 2002]. From

(Eq. 3.1) and (Eq. 3.4), the same law should link the velocity and the gradient of
the pressure. To this end, the value of dp is set to dp = 1.5mm after computing
both coefficients with biophysical values of parameters from Table. 2.1.

Numerical Resolution using LBM
Eq. 3.3 is solved using the Lattice Boltzmann Method (LBM) for fast computa-

tion on general purpose graphics processing units (GPU). LBM has been developed
for CFD and is now a well-established discretization method [Chen 1998]. In RFA,
it has been validated in [Audigier 2013a] through a comparison with an analytical
solution, for a similar accuracy as FEM. In this case, LBM is used to compute the
porous and blood flow circulation in the liver. To this end, an isotropic Carte-
sian grid with 19-connectivity topology (D3Q19 scheme defined in Figure 3.6) and
Neumann boundary conditions is employed.
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Figure 3.6: D3Q19 scheme used in the LBM computation of the blood flow.

A Multiple-Relaxation-Time (MRT) model is used for increased stabil-
ity [Pan 2006]. At position x for the edge ei, the governing equation is:

f(x + ei∆x, t+ ∆t) = f(x, t) + A[f eq(x, t)− f(x, t)] + ∆tg(x, t). (3.5)

In this equation, f(x) = {fi(x)}i=1..19 is the vector of distribution function with
fi(x) being the probability of finding a particle travelling along the edge ei of the
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node x at a given time; c = ∆x/∆t; c2
s = 1/3; ∆x is the spacing;

feqi (x, t) = ωiρ[1 +
ei.v

cc2
s

] gi(x, t) = ωiρ
ei.F
c2s

(3.6)

ω = {ωi}i=1..19 is the vector of weighting factors and A the MRT matrix. The
fluid mass density and velocity are computed from the LBM distributions as:

ρ =
19∑
i=1

fi(x, t) ρv =
∑19

i=1 eifi(x, t) + ∆t
2 ρF (3.7)

The fluid mass density and the velocity are updated at every node of the grid
for every timestep ∆t.

3.2.1.3 Differences between the Decoupled FEM Porous-Vessels CFD
Model and the Fully Coupled LBM CFD Model

We first proposed the Decoupled FEM Porous-Vessels CFD Model to compute the
blood flow in the hepatic vessels and in the liver parenchyma. This model requires
two steps: first the computation of the blood flow in the large vessels using a Com-
putational Fluid Dynamics (CFD) solver and then the computation of the blood
flow in the parenchyma using Laplace equation and Darcy’s law. This method re-
quires mesh generation and a significant computational time. For these reasons,
we proposed a second method where both flows (in large vessels and parenchyma)
are computed simultaneously on the Cartesian grid using the Lattice Boltzmann
Method (LBM).

There are differences in practice between those two methods. The Decoupled
FEM Porous-Vessels CFD Model requires two decoupled computations. Those two
computations are computationally demanding and we have to fit the values found
by the second computation at the tips of the hepatic and portal veins to those
found by the first computation. Moreover, the computation of the porous flow is
done using the Finite Element Method (FEM). The computed flow is tri-linearly
rasterized on the Cartesian grid to be used in the heat transfer model, which in-
troduced interpolation errors. On the other hand, the Fully Coupled LBM CFD
Model considerably eases the definition of boundary conditions between vessels and
parenchyma: no boundary conditions are fixed on the extremities of the vessels in-
side the parenchyma thanks to the use of a porosity map, which is generated from
the vessel mask. Secondly, no advanced meshing techniques are required, reducing
the rasterization errors. Fig 3.7 shows the results of the two different computations
on a patient-specific geometry.
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Figure 3.7: (Left): Blood flow computation with the Decoupled FEM Porous-Vessels
CFD Model; (Right): Blood flow computation with the Fully Coupled LBM CFD
Model. In both cases, only the flow going through the portal inlet circled in white
are shown. We can see differences between the results given by both computations.
The area circled in black shows flow lines, which appear with the first computation
and not the second one.

3.2.2 Fully Coupled Model of Heat Transfer in Liver Tissue and
Cellular Necrosis

3.2.2.1 Model of Heat Transfer in Liver Tissue

This model describes how the heat flows from the probe through the liver while
accounting for the cooling effect of the main vessels and parenchyma.

As current imaging techniques do not support an accurate measurement of the
ratio between blood and liver tissue (large vessels can be clearly identified, but small
capillaries are difficult to image), we use two simplifications of the coupled bioheat
equation (Eq. 2.4) in the parenchyma and in visible blood vessels. Both equations
can be easily implemented in a modular way to cope with tissue inhomogeneity.
Continuity between the two models has to be ensured at the extremities of the large
vessels. To that end, reaction coefficient (H or R) are chosen large enough in order
to reduce the effect of the high temperatures relative to normal body temperature,
i.e 37◦C. In our framework, a two-compartment model is used according to the
spatial location within the anatomy: either the Pennes model or the WK model is
used. Assuming that large blood vessels and surrounding tissue are isolated from
each other, we compute the temperature by solving the diffusion equation:

ρcti
∂T

∂t
= Q+∇ · (d∇T ) (3.8)

everywhere in the domain, to which we add the cooling term:
H(Tb0− T )/(1− ε) when a point belongs to a large vessel, where blood velocity

is high, (Pennes model) or −ερcblv · ∇T/(1−ε) when it belongs to the parenchyma,
where tissue is dominating (WK model). T , Q, v and Tb0 stand for temperature,
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source term, blood velocity and the mean temperature (assumed constant) of the
blood in large vessels.

In the case of a Fully Coupled LBM CFD Model, as the porosity ε vary spatially
inside the liver, the temperature T is computed by solving the following equations: a
reaction-diffusion equation in the large vessels, and an advection-diffusion equation
in the liver parenchyma:

ρcti
∂T

∂t
= Q+∇ · (d∇T )

{
+R(Tb0 − T )

−αvρbcbv · ∇T
(3.9)

where ρ, c, d are the density, heat capacity, conductivity; subscripts ti and b

stand for tissue and blood respectively. Q is the source term, αv, the advection
coefficient, R, the reaction coefficient and Tb0 the blood temperature (assumed con-
stant) in large vessels. In order to be consistent with the previous model R is set to
R = 27.1× 104W (m3K)−1 and αv = 0.11.

It can be shown [Peng 2011] analytically and computationally but in 1D that
the coupled bio-heat equations (Eq. 2.4) can be simplified into the Pennes model in
the case of large vessels, and to the WK model in the case of small vessels.

Our model includes the heat sink of all hepatic vessels (veins and arteries) as
well as the effect of the blood flow within the parenchyma considered as a porous
medium. A weakly coupling model is considered: the blood flow has an influence on
the temperature distribution through the WK model and through the reaction term
in the Pennes model but the temperature does not affect the blood flow (coagulation
is not considered here), which allows us to speed up the calculations since the blood
flow distribution is computed only once, at the beginning of the simulation. The
CFD solver is run until a steady state is reached.

3.2.2.2 Cellular Necrosis Model

General Formulation
Tissue necrosis is calculated based on the computed temperatures using a three-

state model [ONeill 2011, Breen 2002], coupled with the bio-heat equation. Each
cell has a probability to be either undamaged (U), vulnerable (V) or necrotic (N).
Those probabilities vary with the temperature spatially and temporally according
to the following transition diagram (Eq. 3.10):

[U]
β(T )−−−→←−
γ

[V]
δ(T )−−−→ [N] (3.10)

where β(T ) = β̄eT/Tk , δ(T ) = αβ(T ) are the rates of cell damage and γ is the rate of
recovery. Unlike in [ONeill 2011], a constant α is introduced. This diagram results
in three coupled ODEs (Eq. 3.11), solved with a first order explicit scheme on the
same grid and with the same time step as the bio-heat equation:
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

dU

dt
= −β(T )U + γV

dV

dt
= β(T )U − (γ + δ(T ))V

dN

dt
= δ(T )V

(3.11)

The following property is also imposed at each point:

U + V +N = 1 (3.12)

The initial conditions are chosen as in [ONeill 2011]: U = 0.99, V = 0.01 and
N = 0. We solve the resulting three coupled ODEs with a first order explicit
scheme at each vertex of a Cartesian grid, yielding a spatially-varying cell state field
used in the bio-heat solver. The computation is done on the same grid and with
the same time step as the bio-heat equation. For both heat transfer and cell death
models, parameters are initially set to values from the literature [Pennes 1948]
reported in Table 2.1. The cell death model is strongly coupled to the bio-heat
equation as the heat capacity depends on the state of the cell (cUt , cVt and
cNt correspond respectively to the heat capacity of undamaged, vulnerable and
necrotic tissue) and the conductivity dt depends on the temperature through
dt = d̄t ∗ (1 + 1.61 ∗ (T − 310).10−3) as in [Payne 2011]. All the remaining
parameters are constant.

Nominal Formulation from [ONeill 2011]
To get the same equation as in [ONeill 2011], we set α = 1, and the two damage

rate coefficient are equal. In this case, we rename the parameters for the sake of
clarity and Eq. 3.10 becomes Eq. 3.13:

U
kf (T )

−−−→←−
kb

V
kf (T )
−−−→ N (3.13)

kf (T ) = k̄fe
T/Tk(1−U) and kb are the rates of cell damage and recovery respectively.

k̄f is a scaling constant and Tk is a parameter that sets the rate of the exponential
increase with respect to the temperature.

This diagram results in three coupled ODEs (Eq. 3.14):

dU

dt
= −kf (T )U + kbV

dV

dt
= kf (T )U − (kb + kf (T ))V

dN

dt
= kf (T )N

(3.14)

In this case, a single damage process incorporates all physiological damage mech-
anisms, thus the transitions U −→ V and V −→ N are the same. The vulnerable state
is an arbitrary position representing the "point of no return", it is not a change in
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Figure 3.8: Cell state evolution over time when tissue is heated at 105◦C during 10
minutes.

the mechanism of thermal damage [ONeill 2011]. To avoid stagnation in its initial
condition due to the formula of kf (T ), an initial fraction of the cells has to be in the
vulnerable compartment: the initial conditions are still chosen as in [ONeill 2011]:
U = 0.99, V = 0.01 and N = 0. One percent seems reasonable since very small
RMS error is achieved in [ONeill 2011] indicating a high quality of model fit to
experimental data.

Figure 3.8 represents the solution of (Eq. 3.14) at one vertex over time if a
constant temperature of 105◦C is applied.

3.2.2.3 Numerical Resolution using LBM

We rely on the Lattice Boltzmann Method (LBM) where a statistical description
of the system is used to compute heat diffusion and cellular necrosis in the liver
tissue. LBM is a new computational method, which discretizes the velocity space
on a grid, with mass, momentum and energy conservation conditions. To meet
these three conservation conditions, two separate distribution functions are usu-
ally used [Mai 2010]. In the Decoupled FEM Porous-Vessels CFD approach, FEM
solvers (CFD solver in the large vessels and porous solver in the parenchyma) give
the blood flow distribution in the liver and enforce the mass and momentum conser-
vation. Energy conservation is modeled using a distribution function for the thermal
energy. Whereas, in the case of Fully Coupled LBM CFD solver, to meet the three
conservation conditions of mass, momentum and energy, two separate distribution
functions are used as in [Mai 2010]. In this approach, two LBM solvers (one CFD
solver in the large vessels and in the parenchyma and one heat transfer solver) are
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used, the first one gives the blood flow distribution in the liver and the second one
the temperature and cell state distributions.

LBM has emerged as a powerful technique for efficient computation of second
order elliptic partial-differential equations [Yoshida 2010]. It is used in Computa-
tional Fluid Dynamics to solve Navier-Stokes equations [Chen 1998], in heat trans-
fer problem [Dawson 1993], or in cardiac electrophysiology [Rapaka 2012] to solve
reaction-diffusion equations. Contrary to FEM, this discretization method uses a
grid, allowing an easy parallelisation. We used an isotropic Cartesian grid and, LBM
is performed with a D3Q7 scheme (DnQm denotes m discrete velocities in n dimen-
sions): 6 directions are considered + the current point [Rapaka 2012] as described
in Figure 3.9.

Figure 3.9: The D3Q7 scheme used in the heat diffusion solver from [Yoshida 2010].

Numerically, LBM uses fictitious particles, which perform consecutive collision
and streaming processes over the discrete lattice mesh. When there is a non-zero
probability that particle distributions move to the same node from different direc-
tions, then the probability of having particle distributions at that node with a given
velocity direction is changed due to the application of a collision operator. The
governing equation at position x = (x, y, z) for the direction defined by the vector
ei is given by the two equations (Eq. 3.15, Eq. 3.16).

f(x) = {fi(x)}i=1..7 is the vector of the temperature energy distribution function
with fi(x), the probability of finding a particle traveling along the vector ei of the
node x at a given time.

f̂(x) describes the post-collision distribution.
ω = {ωi}i=1..7 = (1/4, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8) is the vector of weighting

factors [Rapaka 2012] that depends on the lattice connectivity.
First, the collision step is:
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f̂(x, t+∆t) = f(x, t)+M−1Ŝ[Mf eq(x, t)−Mf(x, t)]+ω∆tH(Tb0−T (x, t)) (3.15)

and then, the streaming step is:

fi(x + ei∆x, t+ ∆t) = f̂i(x, t+ ∆t) ∀i ∈ 1...7 (3.16)

with:
feqi (x, t) = ωiT (x, t)[1 +

ei.v

cc2
s

]

We denote c = ∆x/∆t, c2
s = 1/4 and ∆x as the spacing. The set of vectors ei is

defined as:

[e1, e2, e3, e4, e5, e6, e7]T =

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1


At each time step, the entire 3D lattice domain is traversed and for each cell,

new distribution function values are computed from its six neighbors (plus itself).
The temperature corresponding to the 0th moment is computed as:

T (x, t) =
7∑
i=1

fi(x, t) (3.17)

Only the data of the cell and its six neighbors are used, so the lattice can be tra-
versed in any order since values from the neighbors are computed from the previous
time step. The LBM offers high parallel scalability, second order accuracy in space
and the simplicity of an implementation on a uniform Cartesian grid [Rapaka 2012].
The relation between LBM equations (Eq. 3.15, Eq. 3.16) and the continuous model
can be derived by employing the Chapman-Enskog expansion, (a formal multi-scale
expansion) [Chen 1998]. The derivation are given in Appendix A. For stability rea-
son, we use a Multiple-Relaxation-Time model since the numerical stability can be
improved by separating the relaxation rates of the conserved and non-conserved mo-
ments [d’Humières 2002]. First, f is brought to a new basis in which each component
corresponds to a certain moment of the vector Mf (0th order is the temperature T ).
Then each component relaxes to the equilibrium Mfeq with a different relaxation
coefficient. Finally, the vector is projected back onto the original seven-dimension
space [Yoshida 2010]. In (Eq. 3.15), instead of writing A = M−1ŜM = 1/τI, the
relaxation towards equilibrium is performed in the moment space, where

M =



1 1 1 1 1 1 1

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

6 −1 −1 −1 −1 −1 −1

0 2 2 −1 −1 −1 −1

0 0 0 1 1 −1 −1


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and Ŝ = diag(1, 1/τ, 1/τ, 1/τ, 1/τ1, 1/τ1, 1/τ1) is the collision matrix in moment
space. The relaxation time τ is directly related to the diffusion coefficient D
through τ = 1/2 + 4D∆t/∆x2 [Yoshida 2010]. After a stability analysis, we chose
τ1 = 1.33 [Rapaka 2012] to get a stable and well-behaved solution. Based on the
Chapman-Enskog expansion, this value does not change the accuracy of the solution
but it affects its stability.
No-flux boundary conditions are applied at the border of the liver. The bound-
aries are treated according to the level set representation of the liver computed
from the segmentation using linear interpolation without requiring advanced mesh-
ing techniques. We use a second-order accuracy model for curved walls presented
by [Bouzidi 2001] who proposed a simple boundary condition based on interpolation
and the bounce back scheme. This method needs to treat the boundary conditions
separately for two cases: ∆ ≤ 1

2 or ∆ > 1
2 , i.e either the boundary is closer to the

lattice point which is inside the domain or it is closer to the lattice point which is
not in the domain. ∆ represents the fraction of an intersected link in the domain
of interest (Figure 3.10 illustrated the description of ∆) and is computed based on
the level-set representation of the liver.

Δx 

ΔΔx 
Boundary 
      wall 

out 0 – level  
        set  

Figure 3.10: Layout of the isotropic Cartesian grid for the implementation of LBM
boundary condition with a curved wall boundary.

If the node from which the post collision values travels (x − eα∆x) is outside
the domain, then the value of fα(x, t+ ∆t) is:

for ∆ >
1

2
:fα(x, t+ ∆t) =

1

2∆
f̂ᾱ(x, t+ ∆t) +

2∆− 1

2∆
f̂α(x, t+ ∆t)

for ∆ ≤ 1

2
:fα(x, t+ ∆t) = 2∆f̂ᾱ(x, t+ ∆t) + (1− 2∆)f̂ᾱ(x− eᾱ∆x, t+ ∆t)

where eᾱ = −eα.
Finally, we model the heat source term through a Dirichlet boundary condition

at the location of the probe. We emulated the RFA protocol by computing a sphere
centered at the center of the tumor and with the radius defined pre-operatively by the
clinician given the size and the location of the tumor, as illustrated on Figure 3.11.
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The temperature of the points inside the sphere is enforced at 105◦C for a duration
defined also pre-operatively.

Sphere simulating the probe  

Tumor 
RFA Probe 

Figure 3.11: Scheme showing the modeling of the RFA probe with a sphere centered
at the center of the tumor.

3.2.3 Estimation of Anatomical Model from Patient Images

The pre- and post-operative images are semi-automatically segmented, yielding a
detailed anatomical model of the patients liver. The user provides different strokes
for the background and the foreground of the image, and the strokes can be modified
interactively [Criminisi 2008]. Finally the resulting segmentation is manually refined
using itk-snap [Yushkevich 2006]. We generate volumetric binary images of the
parenchyma, tumors, hepatic veins, vena cava, portal vein, hepatic artery whenever
visible (Figure 3.12). The duration of the full segmentation process depends on the
extent of the visible vessels. For example, typically for one patient, it took 20 min
to segment the liver mask, 10 min for the tumor, 35 min for the vena cava and 15
min for the portal vein, i.e 1 hour 20 minutes in total. A multi-label mask image
is created to identify the different structures of this detailed anatomical model of
patient’s liver and circulation tree as well. To define the computational domain, a
level set representation of the liver, without tumor and vessels is computed.

The Decoupled FEM-LBM CFD solver rely on FEM. In this case, a smooth
polygonal surface mesh is created for each region. A multi-label mask image is also
created to identify the structures of interest for the computation.

Contrarily, the Fully Coupled LBM CFD solver does not rely on polygonal
meshes at all, but the porosity needs to be defined everywhere in the computational
domain. In this case, we do not generate a surface mesh but instead a porosity
map is necessary. From the vessel masks, a porosity map is created to identify the
porous parenchyma and the vessels. Because non-visible, the walls of the vessels
are extrapolated using 26 connectivities dilatation of the vessels masks. The vessel
extremities, which do not have walls are manually identified.
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Volumetric model of liver anatomy 

Parenchyma 

Vena cava  

Portal vein 
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Hepatic veins 

Liver segmentation 

overlaid on CT Image 

Figure 3.12: A detailed anatomical model of the liver is estimated from a standard
clinical CT image. See text for details.

3.3 Heating Power and Cooling Temperature Computa-
tion

During the heating period, a Dirichlet boundary conditions is used to fix the deliv-
ered temperature either on a sphere, whose radius is defined pre-operatively by the
protocol followed by the clinician if the position of the probe is unknown, or on the
probe model itself if we know the probe position. In this case, RFA is simulated
by imposing as input the temperatures measured at the five thermistors and the
four remaining tips temperature are linearly interpolated from these values. The
heating stops at time t = ta. During this period (t < ta) the heating power can be
computed, whereas the cooling temperature can be computed when (t > ta).

3.3.1 Heating Stage

We assume that the measured power is strongly correlated (proportional) to the
heat power P (t) delivered through radio-frequency to heat the liver tissue. Propor-
tionality is assumed to account for power dissipation due to electrical resistance,
and the unknown surface ratio of the probe being heated. The heat power P (t)

delivered to the tissue can be computed at each time step of the simulation from
the bio-heat equation according to Fourier’s law:

P (t) = α

∫
S
dt
∂T (t)

∂n
dS (3.18)

where S is the probe surface, n is the outer normal at that surface and α, the
proportionality coefficient (α = 0.4469), found by matching the peak value of the
measured power for pig 1 with the peak value of the simulated power with person-
alized parameters. This value is then used in all the computations.
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3.3.2 Cooling Stage

In the absence of any delivered heat power, the nine tips of the probe cool down
at a speed which depends on the local conductivity dt and the heat capacity ct.
Thus, during the cooling period tc − ta (cooling stops at time t = tc), the cooling
temperature can be simulated.

3.4 Model Verification

The computer hardware used in all the experiments was a Windows 7 desktop
machine (Intel Xeon, 2.80 GHz, 45GB RAM, 24 CPUs) with a Nvidia Quadro 6000
1.7 GB with 448 CUDA cores.

3.4.1 Quantitative Verification of the Heat Transfer Model
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Figure 3.13: Synthetic set-up for the verification against analytical solution: (Left):
Synthetic set-up used in the quantitative verification of the framework at time t = 0
s. (Right): Initial temperature distribution along the x-axis of the cuboid domain.
See text for details.

3.4.1.1 Experimental protocol

To evaluate the LBM heat transfer solver, its behavior is compared on a regular
cuboid domain with an analytical solution. For a source released at x0 at time t0, the
3D analytical solution of the advection-diffusion equation: ∂T

∂t +v · ∇T = ∇ · (D∇T )

is:

T (x, t) =
M

[4π(t− t0)D]3/2
exp

(
−‖x− x0 − (t− t0)v‖2

4D(t− t0)

)
To have the same conditions as the RFA computation on a patient’s liver, parameters
were chosen to get the heat diffusion in a physiological range. We set a Gaussian-
shape source of 70◦C at the center of the cuboid at time t = 0 (Figure 3.13) with
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this set of parameters: D = 0.1mm2/s, v = (2, 0, 0)mm/s, M = 35000 ◦C.mm3,
t0 = −50 s. We initialized the temperature values at each point of the domain with
the analytical solution at time t = 0, then the advection-diffusion equation is solved
using our LBM solver. The temperature at a typical point of the domain is reported
and compared with the analytical solution values. Neumann boundary conditions
were used at the border of the domain, which was chosen to be large enough to get
rid of the boundary effect at the probed points.

3.4.1.2 LBM Convergence Analysis

We performed a spatial and a temporal convergence analysis of the solution com-
puted by the LBM solver. The solutions are compared to the analytical solution at
one typical point of the domain (Figure 3.14).

Figure 3.14: (Left): Spatial convergence analysis for a fixed time step of 0.01 s for
one point in the domain described in Figure 3.13. As one can see, the proposed
framework quickly converges to the analytical solution of the advection-diffusion
equation. (Right): The computed solution for a resolution of 1mm and a time-step
of 0.075 s compared to the analytical solution for the same point. The RMS error
is reduced to 0.26◦C.

Spatial Convergence Analysis First, the time-step is fixed to a constant value
and different solutions with different resolutions are computed. As shown in (Fig-
ure 3.14, Left), the smaller the spatial resolution, the closer the computed solution
is to the analytical one. Quantitatively, the Root-Mean-Square (RMS) errors be-
tween the computed solution and the analytical one decreased with the resolution
(Table. 3.1).

This analysis confirms qualitatively and quantitatively the accuracy of the im-
plementation of the heat transfer model with LBM.

Temporal Convergence Analysis For a given resolution, an upper and lower
bound for the time step were provided by the simulated physics from the
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Table 3.1: The Root-Mean-Square (RMS) errors between the computed solution
and the analytical with respect to the resolution for a fixed time step of 0.01 s .

Resolution RMS
5mm 11.86◦C

2mm 2.42◦C

1mm 0.55◦C

0.5mm 0.11◦C

LBM implementation and the Courant-Friedrichs-Lewy conditions: |v∆t/∆x| ≤
1 [Courant 1928]. A time-step of 75ms and a resolution of 1−2mm appeared to be
a good compromise between accuracy and computational cost (Figure 3.14, Right).

3.4.2 Computational Efficiency

A GPU-based version of our model has been developed, relying on the CUDA toolkit
(dedicated software for NVIDIA’s GPUs) since LBM is easily parallelizable. In
our model, the values of interest are the temperature related to the distribution
function and the state (alive, vulnerable, or dead) of the cell computed at each vertex
separately. This implementation uses classic parallelization methods, similarly to
a CPU parallel approach: each thread is dedicated to one vertex and computes
the contribution of the temperature and state of the cell for this vertex ensuring a
tiled access in memory. Two distribution functions are actually needed (at time t
and time t− 1: fpast and fpresent), to avoid concurrency reading and writing when
one thread writes a vertex value while another thread attempts to read it. The
implementation is described in Algorithm 4.

Algorithm 4 Implementation of LBM RFA
1: Initialization of each vertex temperature T.
2: Computation of each vertex distribution functions f .
3: while t < tRFA do
4: Enforce temperature at the probe points.
5: Compute the corresponding distribution functions f .
6: Compute f̂ and then f

7: Compute the cell state and the temperature T.
8: Update τ , cti and d.
9: Do fpast = fpresent.

In order to show the benefit of our GPU-based approach, it is compared against a
CPU implementation with multithreading. The same synthetic set-up as described
in Figure 3.13 is used. As reported in Figure 3.15, experiments showed a maxi-
mum speed-up of 11 with multithreading and 22 threads (OpenMP) and 45 with
graphical processing units (GPU) implemented in CUDA with respect to a single-
core implementation of LBM. Moreover, after a quantitative verification of the FEM
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computation against the analytical solution, experiments showed that a 60× speed-
up was obtained with respect to an FEM implementation on CPU for a similar
accuracy.
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Figure 3.15: (Left): Computation time for simple CPU implementation without
any parallelization, for multithreading implementation with OpenMP and 22 threads
and GPU implementation with CUDA. (Right): Computation speed-up with respect
to the number of threads used (parallel optimization with OpenMP).

3.5 Discussion

3.5.1 Summary

We have presented two multi-physics models for efficient patient-specific planning
of RFA based on medical CT images. In a first approach, we rely on LBM to
solve the bioheat equations and the level set representations of the structures are
directly computed from images, but this framework still requires advanced meshing
techniques to compute the flow in porous media, adding one step in the processing
pipeline with the associated computation time, errors and parameters. To solve this
issue, we propose a second model, where we rely on LBM not only to solve the
bioheat equations and the cellular necrosis model, but also to compute the blood
flow simultaneously in the large visible vessels and in the parenchyma. The coupled
computation of the porous and hepatic flow eliminates the difficulties in the setting
of boundary conditions in the parenchyma, and the occurence of shear stress on the
vessels wall is avoided as the Pennes Model is used in the big vessels where the flow
is not accounted for.

3.5.2 Model Limitations

In this study, a two-compartment model was used to describe the heat propa-
gation, coming from two simplifications of the coupled bio-heat equations which
are accurate in the cases of small and large vessels respectively, whereas previous
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studies suggested that heat dissipation may arise precisely in the medium vessels
[El-Serag 2003]. This simplification was motivated by the fact that the liver is highly
vascularized with different types of vessels of different diameters. For example, the
large hepatic veins have a diameter of 6 mm on average and the capillaries, a diam-
eter of 8 10−3 mm [Peng 2011]. With the resolution of the images used in clinical
settings, we cannot segment such small vessels and thus we cannot include them in
the current modeling pipeline. Modeling the impact of all vessels is not practical in
clinical practice. However, it will be interesting to study the effect of the vasculature
on the necrosis, using a synthetic case with a deeply detailed vessel tree for example.
Those experiments are necessary to understand the impact of every hepatic blood
vessels. It will be interesting to know until which resolution it is necessary to go in
order to get an accurate prediction of the ablation extent. Only then computational
models could be simplified and used in clinical settings.

3.6 Conclusion

Turning computational models of RFA into clinical practice is a challenging task,
which can be beneficial for therapy understanding. Through the use of the Lattice
Boltzmann Method, our radiofrequency ablation (RFA) model allows near real time
and state of the art computations of heat transfer that are suitable for model-based
therapy planning or guidance in the future, even if the target is to go beyond real-
time, as we need to stay under 1-2 minutes of computation time for clinical use.
Based on our approach, the clinician could test different therapeutical strategies
in-silico, assess their outcome before the intervention and finally choose the most
appropriate therapy for a specific patient. The model has been verified against an
analytical solution, evaluation on clinical data is presented in the next chapter.
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Based On: the conference paper [Audigier 2013a] and on the extended journal
version [Audigier 2015a] for the clinical evaluation of the model on ten patients who
underwent radiofrequency ablation (RFA) of hepatic tumors.

4.1 Introduction

In this chapter, we describe the application of the framework described in the pre-
vious chapter, on fourteen tumors from ten patients. The Decoupled FEM Porous-
Vessels CFD Model is used to compute the blood flow (the work presented here has
been realized at the beginning of this work and at that time, the Fully Coupled LBM
CFD Model was not introduced yet), the nominal formulation from [ONeill 2011]
of the cell death model (with α = 1) is used, and different hypotheses are tested in
Section 4.4. The comparison with the real outcome extracted from post-operative
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data in terms of necrotic area suggests a promising correlation between the pre-
dicted and actual ablation extent, but also the importance of considering the blood
perfusion inside the parenchyma. The generalization of the biophysical model with
respect to tissue properties (i.e. we simulated a RFA procedure by using patient-
specific geometry and boundary conditions but generic tissue parameters) shows
that reasonable results can be achieved (average values of point-to-mesh distance:
10.17±8.52mm, DICE: 41.8%, sensitivity: 66.9%, positive predictive value: 38.3%).
This study presents the generalization of the biophysical model with respect to tis-
sue properties tested on ten patients data, and an analysis of the perfusion effect on
the necrotic area. A first experiment of tissue parameters fitting has been performed
on one patient. It highlighted a more accurate prediction power but also the need
for personalization.

4.2 Available Clinical Data

Our database is made of CT scans from ten patients who underwent RFA of one
or several hepatic tumors. Figure 6.1 illustrates the case of patient 04. For each
patient, pre- and post-operative late venous phase CT are available. We generate
volumetric binary images of the parenchyma, tumors, hepatic veins, vena cava, por-
tal vein, without the hepatic artery since only single-phase CT images are available.
The clinical data were processed off-line. The results were not available to the inter-
ventionist during the RFA procedure. This set of patient data come from the Johns
Hopkins Hospital in Baltimore, MD, USA.

Tumor Post-op lesion 

Hepatic  
vein 

Figure 4.1: (Left) Pre-operative image of patient 04. The tumor is visible. (Right)
Post-operative image for patient 04, the necrotic area is visible around hepatic vein.
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4.3 Patient-Specific RFA Computation

4.3.1 Experimental Protocol

The computation using the RFA model has been described in the previous chap-
ter and is now evaluated on clinical, retrospective data from ten patients, with
fourteen ablations (some patient had several tumors ablated) for whom pre- and
post-operative CT images were available. In this chapter, the nominal formulation
from [ONeill 2011] of the cell death model (with α = 1) is used to compute necrotic
extent and the Decoupled FEM Porous-Vessels CFD Model is used to compute the
blood flow. For all patients, nominal tissue parameters were employed (Table 2.1).
Clinical RFA protocol requires that the probe is deployed within the tumor with
a probe diameter defined pre-operatively according to the size of the tumor, and
then maintained for 7 minutes after the target temperature of 105◦C was reached,
as measured by the probe thermistors. For large tumors, the process was iterated
with sequentially increasing diameters. In all cases, a single probe placement was
utilized (no separate overlapping ablations). After anatomical model extraction,
we emulated the RFA protocol by placing the virtual probe at the center of the
tumor. Cells around the probe tip within the probe diameter sphere were heated at
105◦C during 7 minutes or twice 7 minutes. In all cases, the computation contin-
ued for 3 additional minutes without the probe so that each cell reaches a steady
state. In order to evaluate the results of the computation, we compared the com-
puted necrotic region with the patient-specific ground truth. For each patient, the
lesion is manually segmented by an expert on the post-operative image and then
non-rigidly registered to the pre-operative image. The elastic registration from the
Advanced Normalization tools (ANTS) is used [Avants 2009] with the vessels and
parenchyma binary images employed as landmarks. Indeed, the thermal induced
lesion on the post-operative image creates registration issues, especially in the area
of interest (Figure 4.2). Finally the accuracy of the registration is visually checked
by the expert.

4.3.2 Computation Time

One minute of ablation is computed in almost one minute. In comparison, using
FEM on CPUs, the identical process takes around one hour. To the best of our
knowledge, this is the first time that near real-time physiological computations of
RF ablation has been achieved. A single probe ablation of 7 minutes is computed
in around 8 minutes depending on the liver size, while an increased probe diameter
ablation of 14 minutes is computed in around 15 minutes.
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Preoperative image Registered postoperative image Overlay between preoperative 
 and registered postoperative  

images 

Figure 4.2: The registration is performed using masks with vessels and parenchyma
as landmarks. The post-operative mask is registered (Right) to the pre-operative
mask (Left), with an elastic registration algorithm using ANTS [Avants 2009]. Pre-
sented here are the results for patient 10.

4.4 Evaluation on Patient Data

4.4.1 Systematic Study

Qualitatively, computed ablation followed closely the boundaries of the vessels, due
to the heat sink effects of the blood (Figure 4.3).

           Ground truth                                       Without advection                                With advection 
Portal vein 

Tumor Post-op lesion Computed lesions 

Figure 4.3: Results of the computation for patient 04, the streamlines represent the
parenchyma flow and are color-coded with respect to the velocity magnitude. As
one can see the lesion computed with advection follows the blood flowing from the
portal vein to the sushepatic veins. See text for details.

The shape of the ablated area is also dependent on the heat advection through
the liver parenchyma (Figure 4.3 and Figure 4.5). Cell death area computed
using the model compared qualitatively well with the observed post-operative
necrosis zone as we can see on Figure 4.3 and Figure 4.5. Quantitatively,
in most of the cases, average point-to-mesh errors were within clinical accep-
tance as they were significantly lower than the different diameter configurations of
the probes (3 to 5 cm), as shown on Figure 4.4. The values are reported in Table 4.1.
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Given Vm and Vs, the volume of measured (respectively simulated) necrotic area,
then the DICE score (DICE), the sensitivity (S) and the Positive Predictive Value
(PPV ) are defined as:

DICE =
2|Vm ∩ Vs|
|Vm|+ |Vs|

S =
|Vm ∩ Vs|
|Vm|

PPV =
|Vm ∩ Vs|
|Vs|

Table 4.1: Evaluation of the RFA modeling on patient data (PPV: Positive Predic-
tive Value).

Patient Probe diameter
(cm)

Point-to-mesh
error (mm)

DICE
(%)

Sensitivity
(%)

PPV
(%)

01 3 8.24 ± 8.48 54.3 46.0 66.2
02 4 then 5 8.25 ± 5.92 61.7 45.6 95.6
03 4 21.65 ± 16.96 17.7 22.7 14.5
04 4 then 5 10.91 ± 8.67 31.4 89.5 19.0
05-1 4 7.28 ± 7.03 45.0 80.8 31.2
05-2 3.5 6.80 ± 6.25 54.2 44.8 68.5
06 4 then 5 10.77 ± 5.01 37.6 90.7 23.7
07-1 4 then 5 8.34 ± 6.79 40.8 66.4 29.4
07-2 4 then 5 12.92 ± 12.32 45.2 63.8 35.0
07-3 4 then 5 11.61 ± 11.92 40.3 93.6 25.7
08-1 3 7.97 ± 5.41 30.6 32.1 29.1
08-2 3 5.32 ± 4.76 61.6 65.5 58.2
09 3 11.96 ± 8.50 21.3 98.9 11.9
10 4 then 5 10.33 ± 11.20 44.1 96.8 28.5

Mean - 10.17 ± 8.52 41.8 66.9 38.3

More importantly, in all but one case (patient 01) the computation predicted that
the selected protocols completely covered the entire tumor, which is the clinical cri-
terion for ablation planning. The sensitivity is also reasonable (67% on average).
The average Positive Predictive Value (PPV) of 38% is low as the values are drasti-
cally different for each patient (from 95.6% for patient 02 to 11.9% for patient 09).
Some cases presented a computed lesion far from the registered post-operative one.
For example, as one can see on Figure 4.12, the computed lesion in red is different
and far from the registered post-operative lesion in white for patient 03 (PPV of
14.5%). This may be due to the uncertainty of the actual probe position used in
the clinical protocol or to registration errors as discussed in the following section
(Section 4.5). Some cases presented a larger necrosis area compared to the ground
truth (Figure 4.3) or a smaller one (Figure 4.14, Left). The diffusion coefficient used
from the literature was either too high or too low to get a perfect match, as exposed
in the following experiment. It may be due to the general state of the liver, which
can be cirrhotic or hyperperfused [Van Beers 2001].
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Figure 4.4: Box plot of the error on the 14 ablations. (Left): Point-to-Mesh error in
mm computed on the surface of the lesion. (Right): Similarity scores in % computed
on the volume of the lesion.

           Ground truth                          Without advection                             With advection 
Portal vein 

Tumor 
Post-op lesion 

Computed lesion Computed lesion 

Figure 4.5: Results of the computation for patient 01, the streamlines represent the
parenchyma flow and are color-coded with respect to the velocity magnitude. As
one can see the lesion computed with advection is closer to the ground truth as it
follows the blood flow path from one inlet of the portal vein to the vena cava. See
text for details.

4.4.2 Effect of Advection

In order to better understand the effect of advection, we perform the computations
on the same data and we remove the blood flow in the parenchyma. The evaluation
results are shown on Figure 4.6 and the values are reported in Table 4.2. Qualita-
tively, we can observe that the advection has an impact on the shape, the extent
and the size of the lesion (Figure 4.3 and Figure 4.5). As the blood flow in the
parenchyma tends to go from the extremities of the portal vein to the hepatic veins
(the extremities of the vena cava), the temperature follows the same path. Notably,
if the tumor is close to the portal vein, the advection will tend to enlarge the extent
of the necrotic region as the blood flow will evacuate the temperature inside the
liver parenchyma, whereas if the tumor is closer to the vena cava, the advection will
tend to reduce the size of the necrotic core as the temperature will be dissipated
in the general blood flow vasculature. Therefore, we can claim that the effect of
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the advection is roughly proportional to the signed geodesic distance between the
vena cava and the portal vein. Thus the impact of parenchyma perfusion is highly
dependent on the tumor location.

Table 4.2: Evaluation of the RFA modeling on patient data without advection.

Patient Point-to-mesh
error (mm)

DICE (%) Sensitivity (%) PPV (%)

01 9.03 ± 9.74 52.4 43.7 65.3
02 8.00 ± 5.01 64.6 48.9 95.2
03 24.44 ± 20.91 18.3 22.4 15.5
04 10.57 ± 5.59 28.8 96.6 16.9
05-1 5.56 ± 5.20 51.7 83.8 37.4
05-2 6.19 ± 4.56 54.5 59.8 50.1
06 8.25 ± 5.92 37.9 82.6 24.6
07-1 6.06 ± 3.99 55.3 79.7 42.3
07-2 7.98 ± 5.05 56.8 71.2 47.2
07-3 4.73 ± 3.30 67.8 87.9 55.2
08-1 6.70 ± 4.43 38.8 51.6 31.0
08-2 5.07 ± 4.45 60.5 61.3 59.7
09 6.91 ± 4.65 33.0 97.9 19.9
10 6.76 ± 4.08 51.5 98.8 34.8

Mean 8.30 ± 6.21 48.0 70.4 42.5
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Figure 4.6: Box plot of the error on the 14 ablations computed without the advection
term. (Left): Point-to-Mesh error in mm computed on the surface of the lesion.
(Right): Similarity scores in % computed on the volume of the lesion.
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4.4.3 Effect of the Probe Position

The position of the probe is a major unknown in our experiments. We assumed that
the clinician put the probe at the center of the tumor (Figure 4.7, Left) but it may
not always be the case. To check the sensitivity of the computations to the probe
position, a new computation is performed for patient 06. The same configuration was
used except that the probe center is at the barycenter of the registered post-op lesion
(Figure 4.7, Right), not anymore at the center of the tumor. With this technique,
the results are significantly improved (Table. 4.3 and illustrated on Figure 4.8). The
probe position affects the error measured between the computed necrotic area and
the ground truth (Figure 4.9).

spheres simulating the probe 

Tumor 

Post-op 
lesion 

Portal vein 

                        Hypothesis 1                                                                 Hypothesis 2 

Figure 4.7: The 2 different hypotheses used for the probe placement (patient 06).
(Hypothesis 1 ): The probe is placed at the center of the tumor = regular hypothesis.
(Hypothesis 2 ): The probe is placed at the center of the post-op registered lesion.

Table 4.3: Evaluation of the effect of the probe placement with the two hypotheses
described in Figure 4.7.

Patient 06 Point-to-mesh error DICE Sensitivity PPV
Hypothesis 1 10.77 ± 5.01 mm 37.6 % 90.7 % 23.7 %
Hypothesis 2 8.01 ± 6.50 mm 50.0 % 96.3 % 33.8%

Point-to-mesh error  
(mean)  

(%) 
(mm) 

Figure 4.8: Evaluation of the effect of the probe placement with the two hypotheses
described in Figure 4.7.
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                 Ground truth                                  Hypothesis 1                                      Hypothesis 2                               

Portal vein 

Tumor 

Post-op lesion 

Computed lesion Computed lesion 

Figure 4.9: The different results in red with the different hypotheses are presented.
(Left): Post-operative lesion registered to the pre-operative image. (Middle): Com-
puted lesion with the first hypothesis. (Right): Computed lesion with the second
hypothesis. The boundary of second lesion is closer the one of the ground truth
(patient 06).

4.4.4 Effect of the Segmentation

The segmentation also has an influence on the computed lesion (Table. 4.4 and illus-
trated on Figure 4.10). To notice the effect of user variability on the segmentation,
the expert segmented twice the data of patient 03. This second segmentation was
done independently and weeks apart from the first one. Figure 4.11 shows the su-
perposition of the two segmentations. Based on these two segmented datasets, we
computed twice the RFA ablation and compared the two computed lesions (Fig-
ure 4.12). It can be noted that the main difference between the two computations
lies in the CFD results which is really sensitive to the segmentation, especially the
segmentation of the vessels inlets.

Table 4.4: Evaluation of the effect of the segmentation on the simulated lesion for
patient 03.

Patient 03 Point-to-mesh error DICE Sensitivity PPV
Segmentation 1 21.65 ± 16.96 mm 17.7 % 22.7 % 14.5 %
Segmentation 2 19.07 ± 17.11 mm 22.8 % 28.4 % 19.0%
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Figure 4.10: Evaluation of the effect of the segmentation on the simulated lesion for
patient 03.

2 segmentations of the same patient Portal vein Vena cava 

Segmentation 1 

Segmentation 2 

Figure 4.11: Two segmentations of the same patient (patient 03) performed by the
same expert several weeks apart. The parenchyma boundaries are similar, but the
vessel segmentation differ greatly from one segmentation to the other.

Portal vein 
Tumor 

        Segmentation 1                                                        Segmentation 2 

Ground Truth 

Computed lesions 

Figure 4.12: The two computed lesions for patient 03, the streamlines represent
the parenchyma flow and are color-coded with respect to the velocity magnitude.
The total blood flow is the liver is the same (around 25 mL/s) but the parenchyma
blood does not flow similarly in both cases due to the differences in the extremities
segmentations.
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4.4.5 Effect of Biophysical Parameters

The accuracy of the computation depends on the material properties since they are
patient-specific, temperature- and space-dependent and they cannot be easily mea-
sured in vivo. Nominal tissue parameters were employed, with values often based on
ex vivo experiments on animal tissue sometimes with a large varying range between
published studies [Tiesler 2011]. A proper estimation of those parameters is needed
but has often been overlooked due to its difficulty. A first step towards the person-
alization of those parameters is to perform a sensitivity study of the computation
to the main parameters. From the results based on nominal parameters for patient
02, we can see that the heat conductivity is too low. For a heat conductivity 8
times greater than the nominal value ( 4.096 W (mK)−1), we manage to have a bet-
ter outcome (Figure 4.14). Qualitatively, Figure 4.13 shows the variation in term
of point-to-mesh error and similarity scores with respect to the diffusivity value.
Quantitatively, Table 4.5 shows improvements in the point-to-mesh error (from 8.25
± 5.92 mm to 3.85 ± 3.21 mm) and in the Dice index (from 61.7 % to 82.3 %).
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Figure 4.13: Effect of the diffusivity parameter on the mean and standard deviation
of the point to mesh error, the DICE, Sensitivity and PPV scores (patient 02). D x
8 gives the larger DICE score and the smaller point-to-mesh error.
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Table 4.5: Estimation of the heat conductivity on patient 02 (PPV: Positive Pre-
dictive Value). D x 8 gives the larger DICE score and the smaller point-to-mesh
error.

Patient 02
Probe diameter:
4 cm then 5 cm

Point-to-mesh
error (mm)

DICE (%) Sensitivity (%) PPV (%)

D 8.25 ± 5.92 61.7 45.6 95.6
D x 2 6.97 ± 5.26 68.2 54.1 92.2
D x 4 5.17 ± 4.07 76.3 67.3 88.0
D x 6 4.17 ± 3.38 80.8 77.5 84.4
D x 8 3.85 ± 3.21 82.3 84.8 80.1
D x 10 4.15 ± 3.38 81.3 89.3 74.6
D x 12 4.88 ± 3.87 78.6 92.0 68.6
D x 14 5.83 ± 4.53 75.0 93.6 62.6

Post-op lesion 

Computed 
lesion 

  Simulation with nominal parameters                         Simulation with personalized parameters 

Portal vein 
Tumor 

Computed 
lesion 

Figure 4.14: (Left): computed lesion in red is smaller than the post-op lesion in
blue. (Right): A better match is achieved between the computed lesion and the
ground truth with adjusted heat conductivity for the same patient (patient 02).
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4.5 Discussion

We have evaluated the first multi-physics model proposed for efficient patient-specific
planning of RFA based on medical CT images. Despite possible biases in establishing
correspondences between the post- to the pre-operative images due to registration
or segmentation errors, and the use of nominal biological parameters, which are not
patient-specific, our model provided promising results, opening new opportunities
for RFA planning and guidance.

4.5.1 Effect of Large Vesssels

The computed lesions show that large vessels act as heat sinks as the lesion follows
the large vessel’s walls. A generic vena cava pressure, inflow and flow through the
inlets of the hepatic veins were used for all computations. Since these values were not
available, we assumed the pressure and the flow to be a constant in the physiological
range of healthy patients. Yet, the pressure and the flow should be personalized as
it can vary from patient to patient but also spatially and temporally inside the liver.
And the blood flow should instead be modeled as a pulsatile flux. These parameters
could be adjusted based on catheter or imaging information such as Phase-Contrast
MRI, which can measure the flow in the visible vessels.

This study was performed with a weak coupling of heat propagation and CFD.
Change in blood viscosity was neglected as we compute the blood flow only once,
at the beginning and then we focused on the heat propagation and cellular necrosis
only. A fully coupled computation where the blood viscosity and coagulation are
considered could improve the outcome of the RFA model, i.e the extent of ablation
and may provide insights on the entire physical mechanisms involved in RFA and
tissue properties for long-term therapy prognosis. This aspect of RFA modeling will
be investigated in future work.

4.5.2 Effect of Advection

The results of the fourteen ablations computed with the complete model and with-
out the advection term demonstrate that the perfusion in the parenchyma does have
an effect on the shape and the extent of the thermal induced lesion, depending on
the location of the tumor. Therefore the perfusion in the liver may be an important
factor to quantify the extent of ablation and predict therapies. Recent experimental
studies on pig livers show an increase in the thermal conductivity with decreased
distance to large blood vessels and with the perfusion rate and significant direc-
tional differences in thermal conductivity [Podhajsky 2009]. In this study, nominal
values were used for the advection coefficient, which control the extent of the heat
transport. Yet, this parameter could be estimated and animal data could help to
better understand this phenomenon [Cheng 2002] using MRI-thermometry acquired
intra-operatively for example.
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4.5.3 Effect of the Probe Position

We showed that the probe position is an important unknown and the RFA com-
putation could be improved by adding this information. As the probe insertion
during the RF ablation is done under ultrasound guidance, 3D ultrasound images
could be used to know the exact position of the probe. Additionally, the simula-
tion of the probe using Dirichlet boundary condition is simplistic, and a geometrical
model describing the exact shape of the probe would probably be beneficial for this
framework.

4.5.4 Effect of the Segmentation

We saw that the advection and large vessels may have an important effect on the
size, shape, and extent of the lesion. More extensive sensitivity analysis of this effect
with respect to the segmentation of the vessels should be performed. Modification
of the reconstructed anatomy, in particular in the circulation system tree may have
an important impact on the parenchyma blood flow and therefore on the advection
influence, as shown for patient 03 on Figure 4.12.

In this study, as only late venous phase CT images were available, we could not
segment the hepatic arteries, thus the effects of the arterial flow were not considered
to predict the extent of ablation. Yet, it is worth noting that the veins account for
more than 70 % of the blood inflow of the liver parenchyma [Schenk Jr 1962]. A
complete study would benefit from including the hepatic artery inflow, accounting
for about one fifth of the hepatic blood inflow, but which comes at a higher pressure
and pulsation characteristics compared to the portal vein inflow. If the three phases
(arterial, portal and venous) CT images were available, it would be straightforward
to include hepatic arteries as well as more venous vessels without any modifications
for improved accuracy, our framework being modular.

4.5.5 Towards Personalization

Finally, tissue properties in the liver are spatially-varying and may also vary with the
disease-state of the liver (e.g cirrhosis), but they are difficult to estimate from clinical
data since they cannot be quantified from CT imaging for instance. In this study,
all patients had normal liver parenchyma without cirrhosis or steatosis and heat
propagation was modeled with standard tissue parameters reported in the literature
for all patients. However our method makes it possible to estimate global patient-
specific tissue parameters, which may increase the accuracy of the computation
as it is the case in adjusting the heat conductivity for one patient in this study.
Moreover, the perfusion of the tumor was not taken into account which can impact
its thermal conductivity. Yet, the border zone beyond the margin of the tumor is of
greater interest and is considered as regular hepatic tissue. Further investigations
and experiments on patient-specific tissue parameters will be necessary to include
these new findings into our model.
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Preliminary experiments suggest that systematic sensitivity analysis and person-
alized computations with patient-specific and not nominal parameters are necessary
to get a better match with the actual outcome [Audigier 2014a].

4.6 Conclusion

Before deploying model-based therapy planning or guidance in clinical settings, clin-
ical validation is a necessary step. The computational model of RFA needs to be
validated on extensive data from a large population dataset. The proposed frame-
work make it possible due to its level of integration. Our system may thus constitute
a first step towards clinical application of a RFA computational model.

From a research point of view, the proposed framework paves the way to the
quantitative and systematic evaluation of computational models of RFA. There
is growing evidence that patient-specific anatomical models are necessary to fully
comprehend RFA treatments, in particular in the light of recent in vivo studies
[El-Serag 2003]. By providing a complete system for patient-specific modeling, our
system may be used as input to more comprehensive inverse problem studies, and
constitute a useful surrogate tool for RFA planning, potentially improving the out-
comes for the patients.
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,

5.1 Introduction

Motivated by the promising results obtained by fitting the diffusivity in the last
chapter (section 4.4.5), we present in this chapter, a framework for the personal-
ization of RFA which enables patient-specific parameter estimation in the case of
multiple hepatic lesions. The forward model relies on the computational model
of heat transfer and cellular death during RFA, presented in Chapter 3 and it is
based on anatomies estimated from CT (Section. 3.2.3). The computation model
of the blood flow is the Fully Coupled LBM CFD model so the Lattice Boltzmann
Method (LBM) is used to compute not only the heat diffusion and cellular necrosis
as in [Audigier 2013a] but also blood and parenchyma flow in the liver tissue. This
framework is particularly efficient for the personalization as it provides a fast solver
and naturally accounts for the flow transition between veins and parenchyma. The
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effect of the small vasculature inside the liver which are not visible on the CT data
is taking into account.

The model is then personalized based on a first ablation. Our framework is
adapted to situation where no temperature map is available. This information is
used to plan subsequent ablation(s) of the same or additional lesions to treat for a
more refined, targeted ablation that minimizes probabilities of recurrence. This can
be validated in case of the ablation of multiple tumors inside the liver, assuming
that the parameters are spatially invariant within the same patient.

In Section. 5.4, heat conductivity and porosity were selected as the most sensi-
tive parameters for predicting the necrosis extent. After their estimation on patient-
specific data, we demonstrate improved prediction accuracy. We discuss the contri-
butions of this chapter and perspectives in Section. 5.5.

5.2 Available Clinical Data

In this chapter, the personalization method used constrains us to consider only pa-
tients who had several tumors ablated. Our database is a subset of the database pre-
sented in Section. 4.2, which comes from the Johns Hopkins Hospital in Baltimore,
MD, USA. Our database is made of CT scans from three patients who underwent
RFA of several hepatic tumors. For each patient, pre- and post-operative late venous
phase CT are available. We generate volumetric binary images of the parenchyma,
tumors, hepatic veins, vena cava, portal vein, without the hepatic artery since only
single-phase CT images are available.

5.3 Mathematical Model of RFA Simulation

5.3.1 Forward Model

The forward model used in this chapter relies on the computational model of RFA,
presented in Chapter 3. The simulation of heat transfer and cellular death inside
the liver depends on the patient-specific anatomy (Section. 3.2.3). The nominal
formulation from [ONeill 2011] of the cell death model (with α = 1) is used to com-
pute necrotic extent. The computation model of the blood flow is the Fully Coupled
LBM CFD model so the Lattice Boltzmann Method (LBM) is used to compute not
only the heat diffusion and cellular necrosis but also the blood flow inside the main
vessels and the parenchyma considered as a porous medium (Section 3.2.2). This
latter method is based on a computational fluid Dynamics (CFD) solver which in-
corporates a porous part to deal with the liver parenchyma. The different steps of
our method are illustrated in Figure 5.1. The main parameters of the model of heat
transfer and cellular necrosis in liver tissue are optimized to match the observed
extent of the necrosis.
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Figure 5.1: Estimation of the personalized parameters and the forward model (blue:
input, green: processes, purple: output).

5.3.2 Parameter Estimation

As parameters in the heat transfer and cellular necrosis equation are customarily
taken from the literature, we aim to personalize them given the observed extent of
the necrotic region measured post-operatively as temperature maps are not readily
available. Most of the parameters are defined as constant whereas the heat capacity
ct and conductivity dt = d̄t ∗ (1 + 0.00161) ∗ (T − 310)W (mK)−1 are temperature
dependent and therefore spatially distributed [Audigier 2013a]. Using DAKOTA 1,
we first perform a sensitivity analysis to know which parameters mostly influence
the volume and the point-to-mesh error [Zheng 2007] of the computed necrosis area.
Then, we optimize the most sensitive ones: the heat conductivity and the porosity,
as to minimize the average point-to-mesh error between computed and observed
necrotic region. To this end, we use a gradient-free optimization method, the Con-
strained Optimization BY Linear Approximations (COBYLA), which required only
a few numbers of forward simulations.

5.3.2.1 Global Sensitivity Analysis: Variance-Based Decomposition

In order to know which parameters of the model mostly influence the output of the
RFA simulation, we first perform a global sensitivity analysis using a variance-based
decomposition.

Variance-based Decomposition (VBD) is a global sensitivity method that sum-
marizes how the uncertainty in the model output can be apportioned to uncertainty
in individual input variables [Adams 2014]. VBD uses two primary measures called
the Sobol indices: the main effect sensitivity indice Si and the total effect indice Ti.

1http://dakota.sandia.gov - multilevel framework for sensitivity analysis
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Let us call Y, the given output of the computation (in our case, it is either the
volume of the necrosis or the point-to-mesh error between the simulated necrosis
and the ground truth). Y is a function of m input variables: Y = f(x). We also
consider: x−i = (x1, ..., xi−1;xi+1, ..., xm). The Sobol indices can be computed as
follow:

Si =
V arxi[E(Y |xi)]

V ar(Y )
(5.1)

and:

Ti =
E(V ar(Y |x−i))

V ar(Y )
=
V ar(Y )− V ar(E[Y |x−i])

V ar(Y )
(5.2)

The main effect sensitivity index, Si corresponds to the fraction of the un-
certainty in the output, Y , that can be attributed to input xi alone. The
main effect sensitivity index compares the variance of the conditional expectation
V arxi [E(Y |xi)] against the total variance V ar(Y ). Whilst, the total effect index,
Ti corresponds to the fraction of the uncertainty in the output, Y , that can be
attributed to input xi and its interactions with other variables. It should be noted
that:

∑m
i=1 Ti ≥ 1, due to the fact that the interaction effect between two different

input variables is counted twice [Adams 2014].

5.4 Experiments and Results

All experiments were executed on a Windows 7 desktop machine (Intel Xeon, 2.80
GHz, 45GB RAM, 24 CPUs) with a Nvidia Quadro 6000 1.7 GB (448 CUDA cores).

5.4.1 Evaluation of the CFD Solver on a Synthetic Case

φp p0 

Φin Φout 

20             Z axis (mm)                    80 100 

(mm/s)            

Φin Φout 

20                    Z axis (mm)             80 100 

Case 1: vessel    Case 2: vessels + porous 

Figure 5.2: Synthetic case used to validate the CFD solver. (Top Left): A cylindrical
mesh with spherical inlet and outlet is used. The boundary conditions are the inflow
and the outlet pressure. (Top Right): The velocity field given by the CFD solver
in the second case. (Down Left): The porosity field used in the first case. (Down
Right): The porosity field used in the second case.
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A synthetic case, presented on Figure 5.2, is used to validate the CFD solver.
A cylindrical mesh with spherical inlet and outlet is used. Blood flow is set at the
inlet and pressure at the outlet. Two cases are considered. The first case presented
on (Figure 5.2, Left), simulate a single vessel, with porosity set to 1 inside the
vessel, 0.04 in the endothelium and 0.1 outside. In the second case, presented on
(Figure 5.2, Right), the porosity map is used to emulate two veins and the liver
parenchyma. The mass conservation is verified by comparing the flow through the
surface of the "vessel" at z = 20mm: Φin and at z = 80mm: Φout. The computation
is run in both cases with a spatial resolution of 0.5 mm and until a steady state
is reached (tolerance: 10−4). In the first case, the difference between these two
fluxes is 3%, whereas in the second case, 2.8% difference between these two flux is
achieved.

5.4.2 Sensitivity Analysis

We want to know the sensitivity of four uncertain parameters of our model: d̄t,
H, k̄f , ε on the volume of the computed necrosis but also on the point-to-mesh
error between the computed necrosis area and the one computed with the nominal
parameters from the literature. To this end, a synthetic case has been setup to
speed-up the process (Figure 5.3).

φp 
p0 

(mm/s)            

Figure 5.3: Set-up of the synthetic case for the verification of the optimization frame-
work. (Top): The cylinder with the porosity field used. The boundary conditions
are the output pressure and the input flow. (Down): The heat distribution initially
applied and the velocity distribution used.

The range of parameters values used [Altrogge 2012] are reported in Table 5.1.
These parameters of interest were modeled with a uniformly distributed uncer-

tainty, and the sensitivity analysis was performed using variance based decomposi-
tion to compute the global sensitivity indices (so-called Sobol indices). d̄t has the
largest total effect (0.58) as compared with k̄f , H and ε (0.16, 0.15, 0.43) on the
volume of the lesion, whereas ε and d̄t have the same larger total effect (0.37) as
compared with k̄f and H (0.16, 0.35) on the point-to-mesh error with respect to



74 Chapter 5. Parameter Estimation For Personalization of RFA

Notation Parameter Name Min - Max
H convective transfer coefficient 24.4×104 48.8×104 W (m3 K)−1

d̄t heat conductivity 0.25 1.24 W(m K)−1

k̄f damage rate coefficient 3.2×10−3 3.4×10−3 s−1

ε porosity 0.1 0.9

Table 5.1: Ranges of parameters values explored in the sensitivity analysis.

lesion obtained with nominal values. Thoses values are reported in Table 5.2. As it
is not reasonable to try to estimate all of these four parameters at once, we decided
to estimate only two of them: we chose d̄t for its effect on the volume, as the nominal
value of k̄f [ONeill 2011] seemed accurate and ε. H was choosen large enough to
maintain a constant temperature of 37◦C in the CT-visible vessels. We fixed the
other parameters to nominal values for the personalization on patient data.

Total Sobol indices
Parameters volume point-to-mesh error

d̄t 0.58 0.37
H 0.15 0.35
k̄f 0.16 0.16
ε 0.43 0.37

Table 5.2: Total Sobol indices on the volume of the lesion and the average point-to-
mesh error with respect to lesion obtained with nominal parameters.

5.4.3 Verification of the Optimization Framework

In order to confirm the accuracy of the optimization framework, we considered a
synthetic case on a regular cuboid domain (Figure 5.3) where all the phenomena
occuring during RFA were present (diffusion, reaction and advection) and with
nominal parameters of tissue properties. First we simulated a necrotic area with
generic parameters by emulating the clinical RFA protocol: during 7 minutes, we
heated at 105◦C, the simulation continued for 3 more minutes without heating so
that each cell reached a steady state. Then, the main parameters: d̄t and ε are
estimated by minimizing the mean of the point-to-mesh error between the computed
necrotic region and the one created at the first step. We managed to obtain the
estimated parameters with 6.1% of error on d̄t and 2.1% on ε in 32 minutes after 36
iterations with a mean of the point-to-mesh error of 10−3 mm. The convergence of
the COBYLA algorithm is illustrated on Figure 5.4.

5.4.4 Evaluation on Patient Data

We evaluated our model on 3 patients, with 7 ablations (several tumors ablated for
each patient) for whom pre- and post-operative CT images were available. Clinical
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Figure 5.4: Convergence analysis of the optimisation framework. We use DAKOTA
and manage to estimate two parameters (d̄t and ε) in 32 minutes after 36 iterations
with a mean of the point-to-mesh error of 10−3 mm.

RFA protocol was simulated: the probe was deployed within the tumor and cells in
a diameter defined pre-operatively around the center of the tumor probe tip were
heated at 105◦C during 7 minutes or 2 times 7 minutes. The diameter and heat du-
ration were iteratively increased according to the size of the tumor. The simulation
continued for 3 more minutes without any heat source so that each cell reached a
steady state. The parameters were considered spatially invariant within the same
patient. To the best of our knowledge, all the proposed computational models of
RFA assume numerous simplifications, such as the homogeneity and isotropy of the
tissue. All the characteristics (electrical, thermal, etc) are normally considered to
be isotropic. Nevertheless, the cell death model locally changes the properties of
the tissue, and different parameters are related to different location inside the liver.
For instance the heat capacity of the tissue (ct) is different from the heat capacity
of the blood (cb). Moreover, the way the heat is propagating depends on the loca-
tion inside the liver. There is a reaction term (H, convective transfer coefficient) in
the large vessels, and an advection term in the parenchyma, which depends on the
porosity ε, but we consider that they have a constant value.

The parameters are estimated on one tumor by reducing the error with the
ground-truth. Then, we computed the cell death area of the other tumor(s) of this
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patient with the personalized parameters. The computed cell death area compared
qualitatively well with the observed post-operative necrosis zone for tumor located at
different place inside the liver, close to large vessels, or on the border. The predicted
lesion was manually segmented by an expert and registered to pre-operative image.
Figure 5.5 illustrates the results of the personalization framework for each patient
on one tumor.

      Patient 2-2                                           Patient 1-2                                            Patient 3-2  

Figure 5.5: Computed necrosis compared qualitatively well with the predicted lesion
after personalization on the first tumor of each patient.

Table 5.3: Evaluation of the parameter estimation framework on patient data: 7
tumors from 3 patients are considered.

Estimated Parameters
patient tumor

size
probe

diameter
point-to-mesh
error (mm)

DICE d̄t
W(m K)−1

ε

1-1 5 cm 4 cm then 5 cm 4.06 ± 2.56 72.0% 0.250 0.0997
1-2 3.5 cm 4 cm then 5 cm 4.65 ± 3.52 74.9%
1-3 4.2 cm 4 cm then 5 cm 4.62 ± 3.32 69.0%
2-1 1.5 cm 4 cm 2.57 ± 1.89 77.2% 0.275 0.1028
2-2 1 cm 3.5 cm 5.66 ± 4.25 60.9%
3-1 1 cm 3 cm 3.01 ± 2.05 74.0% 0.489 0.1
3-2 1 cm 3 cm 3.64 ± 2.89 74.1%

Mean - - 4.03 ± 2.92 72.4% - -

Quantitatively, average point-to-mesh errors (Table 5.3) were within tolerance in
clinical routine for the four tumors estimated with the personalization of the main
biological parameters, as the probes can be deployed in steps of 1 cm. Figure 5.6
shows the error in term of point-to-mesh errors and Dice scores for the 7 ablations
simulated with personalized parameters. The estimated heat conductivities were
lower than the nominal value (0.512 W(m K)−1), whereas the porosity was very
close (0.1), as illustrated on Figure 5.7.
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Figure 5.6: Box plot of the error on the 7 ablations with personalized parameters.
(Left): Point-to-Mesh error in mm computed on the surface of the lesion). (Right):
DICE score in % computed on the volume of the lesion.
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Figure 5.7: Comparison of the parameters (the porosity ε, and the heat conductivity
d̄t) personalized on three patients against the nominal values from the literature.
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Patient 2 presents a quite large Dice difference between the two cases. It might
be due to segmentation or registration issues, and potentially to model limitations
(assumptions made, etc.), which will be further investigated in a pre-clinical setup.

The main parameters are first considered with nominal values taken from the
literature and then optimized to match the observed extent of the necrosis. Current
errors can be explained by segmentation and registration processes but also by the
limited number (2) of personalized parameters.

Other experiments on patient 1 showed also a significant improvement of the
correlation between predicted and actual ablation extent compared to the prediction
using only nominal parameters (average point-to-mesh errors of 4.44 mm vs 4.98 mm,
average Dice score of 72.0% vs 68.5%). Those results are illustrated on Figure 5.8,
Figure 5.9 and Figure 5.10. The comparative results with simulations with nominal
parameters for patient 1 are reported on Table 5.4 and Table 5.5.

Ground truth 

Vena 

Portal vein 

Tumor 
Post-op lesion Computed lesion 

cava  

Computed lesion 
With nominal parameters 

Ground truth + 
personalized lesion  

Personalized lesion Ground truth +  
lesions 

Personalized Parameters Nominal Parameters 

Figure 5.8: Parameter Estimation on the first tumor of the first patient (patient
1-1). (Left): The post-operative lesion appears around the tumor. (Middle-Left):
Computed necrosis with personnalised parameters. (Middle-Right): Overlay of the
computed lesion with personnalized parameters and ground truth. (Right): Overlay
of the computed lesions with nominal parameters, with personalized parameters and
ground truth. In each case, the blood flow in the area of interest is represented by
streamlines in white.

patient tumor
size

probe
diameter

point-to-mesh
error (mm)

DICE
(%)

d̄t
(W(m K)−1)

ε

1-1 5 cm 4 cm then 5 cm 4.8 ± 3 67 0.512 0.1
4.1 ± 3 72 0.250 0.0997

Table 5.4: Parameter estimation on the first tumor of the first patient (patient 1-
1). The values in black come from computation with nominal parameters, and the
values in red from computation with personalized parameters. The nominal values
of d̄t and ε are reminded in black, the estimated values for this specific patient are
in red.
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patient tumor size probe diameter point-to-mesh error DICE
1-2 3.5 cm 4 cm then 5 cm 4.9 ± 3 mm 4.7 ± 4 mm 73% 75%
1-3 4.2 cm 4 cm then 5 cm 5.3 ± 4 mm 4.6 ± 3 mm 66% 69%

Table 5.5: Evaluation of the parameter estimation of patient 1. The parameters es-
timated on the first tumor (patient 1-1) reduce the point-to-mesh error and increase
the DICE score (values in red) between the computed lesion and the ground truth,
compared to the lesion computed with nominal parameters (values in black) on the
two other tumors for the same patient (patient 1-2 and patient 1-3).
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Computed  
lesion 

cava  

Overlay between 
ground truth and 
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Computed lesion 
 with personalized 
parameters 

Estimated Parameters Nominal Parameters 

Figure 5.9: Evaluation of the parameter estimation on the second tumor of the first
patient (patient 1-2). (Left): The post-operative lesion appears around the tumor.
(Middle): Computed necrosis with personnalised parameters. (Right): Overlay of
the computed lesion with personnalized parameters and ground truth. In each case,
the blood flow in the area of interest is represented by streamlines in white.

5.5 Discussion

The personalization of the sensitive tissue parameters allows to have a better es-
timation of the necrosis and to predict the outcome of RFA in case of multiple
tumors inside the liver. As we are using the Fully Coupled LBM CFD solver, our
framework totally rely on LBM, no advanced meshing techniques are required. All
the computations are directly done from patient images: heat propagation and cell
death modeling as well as the heat sink effect of blood vessels and porous circulation
in the liver. The current method needs several tumors for validation and is worth
using only when no temperature maps are available, but it could be easily translated
into clinical settings. Adaptation for RFA under image-guidance is considered: RFA
procedure is usually done in several steps (increase in probe diameters for example).
An intra-operative image is acquired at the end of the first step and used to person-
alize key parameters, providing a powerful guidance tool. No post-operative images
are required. A necessary step before deploying this method in clinical settings is
a pre-clinical validation with extensive data on larger populations to evaluate the
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Figure 5.10: Evaluation of the parameter estimation on the third tumor of the first
patient (patient 1-3). (Left): The post-operative lesion appears around the tumor.
(Middle): Computed necrosis with personnalised parameters. (Right): Overlay of
the computed lesion with personnalized parameters and ground truth. In each case,
the blood flow in the area of interest is represented by streamlines in white. One
area of the post-operative lesion, circled in white, is not covered by the computed
lesion.

computational model of RFA and to consider potential safety issue of the proposed
application. Even if promising results are achieved with the use of patient-specific
parameters, the impact of possible biases in the post- to the pre-operative image
registration like the impact of the average simulation of the probe need to be in-
vestigated as well as the sensitivity of the results with respect to segmentation and
registration.
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Based On: the conference paper [Audigier 2015b] and on an extended journal
version under preparation for the pre-processing of the pre-clinical data.

6.1 Introduction

In this chapter, we introduce a pre-clinical study for the validation of RFA model,
based on pre-, intra- and post-operative data.

The sophisticated experimental protocol is described first (Section 6.3), followed
by the RFA model we aim at validating. The computational model relies on subject-
specific anatomies estimated from Computed Tomography (CT) (Section 6.4). Heat
transfer is computed according to the bio-heat equation (Eq. 2.4) and the Fully
Coupled LBM CFD Model is used: a Computational Fluid Dynamics (CFD) solver
incorporates a porous part to deal with large vessels and the liver parenchyma
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hepatic blood flow simultaneously as described in Section 3.2.2. Moreover, this is
coupled with a novel cellular necrosis model.

Finally, we present the data analysis required before using the information from
the pre-clinical images into the model (Section 6.5).

Section 6.6 concludes this chapter.

6.2 Available Pre-clinical Data

Our database is made of CT scans, MR images, invasive and device-based measure-
ments from five pigs who underwent RFA of one or several hepatic surrogate tumors.
Figure 6.1 illustrates the case of Pig 5. For each pig, pre-, intra-, and post-operative
images are available. We generate volumetric binary images of the parenchyma,
tumors, hepatic veins, vena cava, portal vein and the hepatic artery since three
phases CT images are available. The pre-clinical data were processed off-line. The
results were not available to the interventionist during the RFA procedure. This set
of swine data has been undertaken at the IHU of Strasbourg in France.

Surrogate  

Tumor 
Post-op 

lesion 

Gall Bladder 

Figure 6.1: (Left) Venous phase of the pre-operative CT of Pig 5. The surrogate
tumor is visible, as well as the gall bladder. (Right) Post-operative MRI T2 for Pig
5, the necrotic area is visible around the surrogate tumor, as well as the gall bladder.

6.3 Pre-clinical Experiment

6.3.1 A Pre-clinical Study for RFA Model Validation

A comprehensive animal experiment has been realized for model validation and
parameter identification including several modalities at pre-, intra- and post-
operative stages. Figure 6.2 illustrates the available pre-clinical data (in blue), the
different pre-processing steps needed (in red, green and white) before performing
the computation (in grey).
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Figure 6.2: Pipeline presenting the available clinical data in blue, the pre-processing
needed to use those data (segmentation in green, registration in red), the different
computations done in grey and finally a possible personalization framework.

We have developed this pre-clinical study specifically for the validation of the
model developed in chapter 3. We have seen that this model is based on patient
images. For this reason a pre-operative CT scan of the liver with the implanted sur-
rogate tumors is acquired in order to get an accurate representation of the anatomy.
We showed in chapter 4 that the large vessels play an important role in the shape of
the lesion, so we acquired pre-operative CT images with the three available phases
including portal, venous and arterial phases. One limitation of the proposed model
is the probe representation and its location, as described in section 4.5.3. To tackle
this issue, a CT scan of the probe alone was first acquired to get an accurate model
of the RFA probe, and then an anatomical MR image was acquired after the inser-
tion of the probe to know exactly its position. The boundary conditions of the CFD
solver were fixed with nominal flow and pressure values coming from the literature,
as described in section 4.5.1. To get a more personalized computation, Phase-
Contrast MR images were acquired to get a subject-specific blood flow and pressure
measurements from catheter were performed to get invasively the subject-specific
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pressure. The clinical protocol employed for each specific patient was unknown,
so in this study, we decided to register for each ablation procedure the delivered
power and the temperature distribution at the thermistors provided by five tips of
the probe. Finally, as the evaluation of the model relies on the comparison with the
actual necrotic lesion segmented on the post-operative image, we decided to acquire
post-operative images of the lesion two days after the intervention.

6.3.2 Experimental Set-up

The present experimental study (No. 38.2014.01.063) received approval from the lo-
cal Ethical Committee on Animal Experimentation. All animals used in the exper-
imental laboratory were managed according to French laws for animal use and care
and according to the directives of the European Community Council (2010/63/EU).

Pigs are considered as a relevant animal model as their hepatic system is similar
to the human one. Several surrogate tumors (diameters < 3cm) are inserted on
five swines at various locations of the liver (close to vessels or the Glisson capsule)
under ultrasound (US) guidance (SIEMENS ACUSON S3000), followed by the ac-
quisition of pre-operative CT images including portal, venous and arterial phases
(CT scanner: SIEMENS Somatom Definition A5). The surrogate tumors are made
of a specific gel (a mix of biocompatible gelatin, alginate and nanoparticles) which
exhibits an hyper-intense signal in CT and MRI as illustrated in Figure 6.3.

Tumor models 

1 

Figure 6.3: Two CT images of Pig 1 before and after surrogate tumors implantation.
(Left): Before tumor implantation; (Right): After tumor implantation.

The surrogate tumors are mainly made of gelatin, whose thermal properties can
be found in the literature. In [Culjat 2010], the gelatin density is reported to be 1050
kg.m−3, which is close to the value used in this work (1060 kg.m−3 for blood and
tissue density). In [Dunmire 2013], the gelatin heat capacity is reported to be 3.6
kJ(kg K)−1, which is exactly the value used for the heat capacity of healthy tissue
in this work. However, the reported value of conductivity is approximately 0.303 +
0.0012 (T - 310) W(mK)−1 if T is in Kelvin , which differs from the value used: 0.512
(1 + 0.00161 (T - 310)) W(mK)−1. In order to know how the surrogate nature of the
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”tumors” impacts the heat transfer and subsequent ”necrosis”, it could be possible
to run the experiments by setting this specific value at the points belonging to the
surrogate tumor. However as we used the conductivity value of the tissue for the
tumor cells in the clinical study (Chapter 4), similarly we kept this assumption in
the pre-clinical study.

Invasive catheter is introduced through the jugular vein to get the free and the
wedge pressure in a subhepatic vein and in the vena cava. An MR-compatible
RFA probe, the radiofrequency interstitial tumor ablation (RITA) probe (StarBurst
RFA, AngioDynamics; www.angiodynamics.com), is deployed at 2 cm of diameter
(the diameter of the area defined by the tips of the probe is 2cm) under US guidance
(Figure 6.4) next to the targeted surrogate tumor. An MR image is then acquired
to get the position of the probe in the liver (SIEMENS Magnetom Aera 1.5T) and
flow data. The temperature and delivered power are monitored and recorded intra-
operatively during and after the ablation. Finally, a post-operative CT, T2 or T1 +
gadolinium MRI is acquired two days after the ablation to assess the extent of the
necrotic areas. Overall, pre-, intra- and post-operative images are available, along
with interventional device measurements (Figure 6.2). To the best of our knowledge,
no such validation set-up has been reported previously in the literature.

RFA probe 

liver 
Tips of the 
probe 

RFA 
probe 

tumor 

Figure 6.4: (Left): Photo of the probe inside the pig liver; (Right): U.S image of
the probe next to the surrogate tumor. The probe diameter is shown in red, the
tumor diameter in green.

6.4 Computational Experiment

6.4.1 Overview

Model validation can be performed, as it is done in chapter 4 through a comparison
between the computed necrotic extent and the actual lesion observed on the post-
operative image. We will proceed as in chapter 4, where all the computations
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are performed on the pre-operative image, and the accuracy of the computation is
evaluating by a comparison with the post-operative image. We rely on the RFA
computation described in chapter 3 to compute the heat transfer from the bio-heat
equations (Eq. 2.4). To compute the hepatic blood flow, the Fully Coupled LBM
CFD Model described in Section 3.2.2 is used as we want to obtain simultaneously
the blood flow in the large vessels, in the arteries and in the parenchyma. Chapter 5
also showed the importance of patient-specific parameters. In this chapter, we rely
on intra-operative data (the delivered power and the probe temperature) to show
that subject-specific parameters can be estimated.

6.4.2 RFA Modeling

6.4.2.1 Blood Flow Computation

The Fully Coupled LBM CFD Model described in Section 3.2.2 is used to compute
simultaneously the flow in the main vessels, in the arteries and in the parenchyma.
This model depends on the porosity coefficient ε (fraction of blood volume over
the total volume) defined in this chapter through a porosity map (Figure 6.13) as
described later in the next section (section 6.5.3.4).

6.4.2.2 Boundary Conditions

This method makes the boundary conditions simple to treat: no boundary conditions
are fixed on the extremities of the vessels inside the parenchyma thanks to the use
of the porosity map, contrary to [Audigier 2015a]. At the border of the liver, no flux
boundary conditions are used (Neumann) whereas Dirichlet boundary conditions are
applied at the inlets of portal vein, vena cava and hepatic artery and at the outlet
of the vena cava and hepatic artery. Pre-operative Phase-Contrast MR images are
used to set the portal vein, vena cava and arterial inflows, ϕp, ϕvcin and ϕa, whereas
invasive pressure measurements through catheter are used to set the vena cava and
arterial outlet pressure p0 and pa. Figure 6.5 illustrates boundary conditions on a
subject-specific geometry.

6.4.2.3 Heat Transfer Model

In this chapter, the heat transfer model described in chapter 3 is used. It depends on
the patient-specific anatomy (the segmentation process is presented in Section 6.5.2)
and on the blood flow inside the main vessels and the parenchyma considered as a
porous medium (Section 6.5.3.4). The Pennes Model is solved in the large visible
vessels and the WK model in the liver parenchyma. Nominal values of parameters
reported on Table 6.1, are used.

6.4.2.4 Adapted Formulation of Cellular Necrosis Model

The three-state model described in section 3.2.2.2 is used to compute tissue necrosis.
Unlike in [ONeill 2011], the constant α is different than 1 ( α = δ̄/β̄(1 + 10N)) to
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Figure 6.5: Model of the hepatic circulatory system. Black arrows (resp. grey
arrows) denote blood flow (resp. outlet pressures) which are fixed by the boundary
conditions. See text for details.

Table 6.1: Nominal parameter values.

Notation Parameter Name Nominal
Tk (◦C) parameter of cell death model 40.5
β̄ (s−1) damage rate coefficient 3.3×10−3

γ (s−1) recovery rate coefficient 7.7×10−3

δ̄ (s−1) vulnerable rate coefficient 3.3×10−3

cVt (J(kg K)−1) heat capacity of vulnerable tissue 3.6 ×103

cNt (J(kg K)−1) heat capacity of necrotic tissue 0.67×103

cUt (J(kg K)−1) heat capacity of undamaged tissue 3.6 ×103

d̄t (W(m K)−1) heat conductivity 0.512
R (W (m3K)−1) reaction coefficient 27.1×104

αv advection coefficient 0.11

decouple the damage rate coefficient from the vulnerable rate coefficient, so that
three distinct transition rates are considered to allow cells to reach the vulnerable
state. Figure 6.6 represents the solution of Eq. 3.11 at one vertex over time if a
constant temperature of 105◦C is applied.
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Figure 6.6: Cell state evolution over time when tissue is heated at 105◦C during 10
minutes with the adapted cellular necrosis model proposed in this chapter.

6.4.3 Numerical Computation using LBM

For a time step of ∆t = 0.5 s and a spatial resolution of ∆x = 0.5 mm, better
than real-time computation can be achieved on a desktop machine (Windows 7,
Intel Xeon, 3.30GHz, 16GB RAM, 12 CPUs, Nvidia Quadro K5000 4.0 GB). For
example, it took 577 seconds to compute 1000 s of ablation of tumor 4-1.

6.4.4 Parameter Estimation from Probe Measurements

During the intervention, the delivered power and the temperature distribution are
measured by the ablation probe itself. We explore how this can be used to estimate
the parameters of the model. During the heating phase, the simulated heat power Ps
can be compared to the measured one Pm. During the cooling phase, the simulated
temperatures Ts can be compared with the measurements Tm, read from five tips
of the probe (four tips do not have any thermistors).

In this study, the parameters in the heat transfer and cellular necrosis equation
come from the literature. After a sensitivity analysis reported in the next section 7.4,
we choose to estimate the heat capacity cUt and the constant part of the conductivity
d̄t as they mainly influence the delivered power, the temperature distribution and
the size of ablated regions.

As temperature maps are not readily available, these two parameters are per-
sonalized from probe measurements (temperature and power) by minimizing the
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following cost function:

arg min
cUt ,d̄t

(
1

ta

t=ta−dtm∑
t=0

(Pm(t)− Ps(t))2

σ2
Pm

+
1

tc − ta

t=ta+tc∑
t=ta

(mTm(t)−mTs(t))
2

σ2
Tm

)
(6.1)

where dtm is the time step of the measurements, σPm and σTm are the standard
deviations associated with the heat power and the temperature, both of them eval-
uated from the variability in the available observations (equal to 13.3 W and 5.1 ◦C

in our experiments). σPm is the standard deviation of the power of all the twelve
ablations at one time point during the heating phase (t= 50 s), which acts as a
normalization factor in Eq. 6.1. We chose t = 50 s to define σPm since all the power
curves are coherent at that time. Moreover, as illustrated in Figure 6.7, this time is
a good compromise since it is not too early, avoiding the boundary conditions effect,
and not too late, before the cell death could affect the delivered power.

Figure 6.7: Plot of the power delivered for the 12 ablations for the first 200 seconds.
The mean and standard deviation are computed at time t = 50 s.

Figure 6.7 represents the power delivered for the 12 ablations for the first 200
seconds. However, the applied RFA protocol is not exactly the same for all ablations.
Eight ablations are performed through several short cooling and heating periods, in
this case, the delivered power is reduced during the different cooling stages. On
the other hand, the other four ablations included only one long final cooling stage
after a continuous heating period (red, blue, cyan and green curves in Figure. 6.7).
Figure. 6.8 shows the four cases whose the delivered power over ablation is a long
heating phase followed by a cooling stage, and one typical case whose ablation is
performed through several short cooling and heating periods (pig 5 - tumor 1).
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Figure 6.8: (Left): Delivered power for the four ablations included only one long
final cooling stage after a continuous heating period; (Right): Delivered power for
pig5 - tumor 1, for which ablation was performed through several short cooling and
heating periods. In both case, the grey area represents the domain considered in
Figure. 6.7

σPm is defined as detailed here:

mP =
1

12

12∑
i=1

Pi(t = 50s)

σP
2
m =

1

12

12∑
i=1

(Pi(t = 50s)−mP )2

σTm is the standard deviation of the temperature computed from one ablation
during the cooling phase (we did not use all the twelve ablations as their cooling
stage did not start at the same time), where all the temperature curves at the 5 tips
of the probe are coherent. It is defined as follow:

mT (t) =
1

5

5∑
i=1

Ti(t)

σT
2
m =

1

tc

t=ta+tc∑
t=ta

(
1

5

5∑
i=1

(Ti(t)−mT (t))2)

To cope with the uncertainty in the rotation of the probe along its axis, the mean
tip temperature mT (t) is used for the personalization instead of directly mapping
the tip temperatures.

6.5 Data Pre-processing

The model is based on a representation of the anatomy obtained from pre-operative
images. It takes as inputs the geometry and the location of the probe and as
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boundary conditions blood flows and pressures. Finally the validation of the model
outcome is based on a comparison with the actual lesion observed post-operatively.
In order to get this information, data pre-processing is required. Segmentations
of the RFA probe and of subject-specific anatomy coming from the pre- and post-
operative images are needed. The position of the RFA probe is known from an intra-
operative anatomical MR image, but its registration to the pre-operative image is not
straightforward, given the artifacts induced by the RFA probe during the acquisition.
Moreover, the segmentations of the visible vessels come from anisotropic images. To
get stable solution of the CFD solver, smooth vessel trees have to be generated.
Since the acquisition process of the Phase-Contrast MR images was complex, pre-
processing of the images was necessary to get coherent settings of the boundary
conditions. Finally the registration of the post-operative image to the pre-operative
image was extremely challenging. It required the use of a robust and advanced
registration algorithm. We present here one registration method which gave the
most significant results out of several methods which have been tried.

6.5.1 3D Modeling of the RFA Probe

The position and the geometry of the probe are inputs of the RFA model, thus
we need to extract these information from images. The geometry of the probe
deployed at 2 cm is acquired from a CT image (resolution: 0.2x0.2x0.9 mm) of the
probe alone. A 3D mesh is then reconstructed by thresholding the image intensity
(Figure 6.9, left panel), and manually registered to the pre-operative CT using the
main axis of the probe and intra-operative MR data.

Geometrical model  
of the RFA probe 

Tips of the probe 

Figure 6.9: (Left): Mesh model of the probe with the 9 tips derived from a CT
image of the probe only; (Right): Anatomical MRI with the MRI-compatible probe
implanted in the liver. Four tips of the probe are visible.
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The manual rigid registration is done using Paraview 1 and is visually checked
by an expert up to a rotation along the probe axis while the main axis is clearly
visible as well as three or four tips (depending on the ablation considered) but the
MR resolution does not allow to distinguish between the nine tips of the probe
individually (Figure 6.9, right panel).

6.5.2 Segmentation

As each structure of interest is needed as input of the RFA computational model,
the segmentation of patient images is a determinant task. From the pre-operative
CT data, the following anatomical and pathological regions are segmented semi-
automatically and meshed by the tools of Visible Patient, Strasbourg, France (Fig-
ure 6.10): parenchyma, hepatic veins, vena cava, portal vein, hepatic arteries and
all tumors. These regions are then used to define the computational domain. The
meshes are rasterized and a multi-label mask image is created to identify the dif-
ferent structures. To define the computational domain, a level set representation of
the liver without tumor and vessels is computed. From post-operative CT or MR
data, necrotic areas are segmented and meshed as well.

Figure 6.10: Segmentation of the liver in magenta, arterial vessels in red, portal and
hepatic networks in light blue and dark blue respectively, surrogate tumors in dark
green and gall bladder in light green. (Left): Overlay of the segmented areas on
pre-operative CT image. (Middle): Creation of the 3D model. (Right): Vessels and
liver parenchyma.

6.5.3 CFD Computational Domain

6.5.3.1 Vessel Trees

The pre-operative images from which the vessels are segmented have anisotropic
resolution. To avoid unstable solution of the CFD solver, smooth vessel trees have
to be generated from the semi-automatic segmentations. To this end, centerlines are
extracted from each vessel segmentation using VMTK 2 (Figure 6.11, left panel).
Along each branch of the centerline, the mean radius is computed and the smooth

1http://www.paraview.org/
2The Vascular Modeling Toolkit website, www.vmtk.org.
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vessel tree is generated by overlaying cylinders having this mean radius in a piecewise
fashion (Figure 6.11, right panel). All those cylinders are rasterized on a single
image.

Portal vein 

Vena Cava 

Centerlines Smooth vessels: the color encodes 

      the mean radius of  

       each tube 

Figure 6.11: (Left): Centerlines extraction from the vessel segmentation. The seg-
mentation gives non-smooth vessels due to the anisotropy and the low resolution of
the input image. (Right): Smooth vessels generated from the centerlines.

6.5.3.2 Blood flow from Phase-Contrast MRI

The computational model of RFA requires as inputs the blood flow entering the
vena cava, the portal vein and the hepatic artery. Instead of fixing nominal values
from the literature, several Phase-Contrast MR images have been acquired in order
to impose subject-specific values as boundary conditions.

2D+t Phase-Contrast MRI have been acquired pre-operatively before the probe
implantation. For each pig, several 2D+time sequences are acquired at different
time points, for the reproducibility of data, but also at different locations: at the
inlet of the hepatic artery, at the inlet of the portal vein and at the inlet of the vena
cava. Given one 2D+t Phase-Contrast MRI sequence acquired at one time point,
the user places a single seed in the vessel of interest in the first image and then an
automatic method is used to segment this vessel on each 2D slice (Figure 6.12, right
panel) [Gulsun 2006, Guetter 2011]. Using the vessel area defined by the segmenta-
tion, the mean blood flow can be computed at each time. If N 2D+t sequences are
acquired at the same location but at N different time points, this is done N times
and the RMS of the mean of those N curves is used. The acquisition process of
flow is complex to handle and requires a significant learning curve. Due to the non-
reproducible and non-coherent measures on the first four pigs, the measures of Pig 5
are used for the five pigs in all the computations (Figure 6.12). We assume that flow
would not vary so much from pig to pig. It is a reasonable assumption, since it was
demonstrated that liver weight and hepatic blood flow in all mammalian species
could be readily related to body weight by a simple equation [Boxenbaum 1980].
The 5 pigs used in the experiments were all healthy, of similar age (3-4 months) and
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weight (33, 29.6, 26.7, 25, and 28.4 kg), that is why we assumed that the blood flow
would not vary so much from pig to pig.

For Pig 5 (vena cava), the acquisition has been done at 3 different time points
(N = 3). The RMS of the mean of those three curves is used (Figure 6.12, left
panel) since numerical results have shown that pulsatile velocity profile in large
blood vessels has little difference in effect on the thermal lesion region of tissue
compared with uniform or parabolic velocity profile [Horng 2007].

Figure 6.12: (Left): Velocity in the vena cava of Pig 5 from Phase-Contrast MRI
with respect to trigger time (all measures are registered on the cardiac pulse). In
cyan, the mean of different measurements at different times (red, blue, green curves).
The RMS of this curve (black curve) is then used as boundary conditions in the
computation as ϕvcin. (Right): Phase-Contrast MRI of Pig 5: the vena cava is
segmented in green, the portal vein in blue and the aorta in yellow.

6.5.3.3 Pressure from invasive measurements

The computational model of RFA requires also vena cava and hepatic artery blood
pressures as inputs. In order to impose subject-specific values as boundary condi-
tions, these blood pressures have been measured to avoid the use of nominal values
from the literature.

The pressures at the outlet of the vena cava and the hepatic artery have been
measured invasively by catheter introduced through the jugular vein. The same
values (from Pig 5) are used as boundary conditions in the five pigs, as it is the case
for the blood flow measurements.

6.5.3.4 Porosity Map

The porosity has to be defined everywhere in the computational domain as it is an
input of the CFD solver. The vessel walls are defined as follow. The smooth vessel
trees are rasterized on a single image. On this image, we perform a 26-connexity
dilation on the voxels of the vessels to model the endothelium and avoid the flow
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to go through the vessel wall. The extremities are detected using the centerlines
previously used and the porosity at the extremities is set to the parenchyma porosity
value. Figure 6.13 shows an example of porosity map. The porosity value is 1 in the
CT-visible vessels, 0.1 in the porous parenchyma [Payne 2011], modeled then as a
porous medium. Experiments are performed to obtain a sufficiently small porosity
(0.04) in the vessel walls (impermeable medium) to avoid the occurrence of shear
stress on the vessel walls (leakage).

Figure 6.13: (Left): The porosity map of Pig 1 created from the vessels segmenta-
tion. The porosity is 1 in the vessels (in white), 0.04 in the endothelium (in black)
and 0.1 in the parenchyma. (Right): Zoom on the porosity map. The extremities of
the vessels are detected using the centerlines so that the blood flow can go through
the vessel extremities.

6.5.4 Post-To-Pre Registration

Due to ethical reasons, CT with contrast agent could not be acquired two days after
intervention, making accurate post- to pre-operative registration challenging. In
order to compare the results of the computation with the ground truth given by the
post-operative images, registration of the post-operative image to the pre-operative
image is performed. For each pig, the pre-operative image (CT from different phases)
does not necessarily belong to the same modality as the post-operative image (CT
or MRI (T2 or T1 + gad)) due to individual experimental changes. Moreover, the
pigs are neither in a similar position nor a similar condition, as they had an empty
stomach the day of the intervention, which was not true two days after. Breathing
has also an important impact on the shape of the liver. For those reasons, we
choose to register the post-operative meshes to the pre-operative image instead of
pure image-to-image registration. From the semi-automatic segmentation of the
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post-operative image, a tetrahedral mesh is generated using CGAL 3. From the
segmentation of the pre-operative image, a binary mask of the liver including vessels
and arteries is generated. Using the SOFA framework 4, the post-operative mesh is
deformed elastically to match the intensity profile in the pre-operative image using
the Finite Element Method (FEM) and a co-rotational model [Faure 2012].

Before Registration 

After Registration 

Figure 6.14: (Left): Superposition of the post-operative mesh model in red on
the pre-operative binary image; (Right): Comparison between the registered post-
operative vessel mesh and the pre-operative one.

First-order implicit Euler time integration is employed and the system of equa-
tion is solved with the conjugate gradient algorithm. Figure 6.14 shows the pre-
operative binary image with the surface of the post-operative mesh before the reg-
istration (Figure 6.14, Up) and after the registration (Figure 6.14, Down).

The computed deformation field is then applied to the necrotic surface mesh
using a barycentric mapping between the coordinates of the surface mesh and the
tetrahedral mesh. The registration is fast to perform. As an example, it took 110
seconds for Pig 5 to register the post-operative mesh to the pre-operative image.

6.6 Conclusion

In this chapter, we presented a sophisticated pre-clinical set-up to validate a com-
plete and complex multi-physics model of radiofrequency ablation (RFA). This com-
prehensive validation is based on pre-, intra-, post-operative images and device-

3www.cgal.org.
4www.sofa-framework.org.
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based measurements. To our knowledge, it is the most complete validation set-up
proposed in the literature. The RFA computational model considered takes into
account the main occurring biophysical phenomena (heat transfer, cellular necro-
sis, hepatic blood flow). The advection effect of the porous circulation in the
parenchyma [Audigier 2013a] is taken into account by including a CFD model, ro-
bust to image noise and anisotropy to compute the venous and arterial blood flow in
the liver parenchyma. By adding such a component, the proposed model is further
improved.

The pre-clinical validation approach is difficult to establish. The experimental
set-up requires different acquisitions of different modalities (CT, MRI, US), at dif-
ferent times (pre-, intra-, post-operative images). The different images at Day 1
(day of intervention) should be acquired quickly, as the anesthesia of the pig cannot
be too long since the pig will be kept alive for 2 additional days. Due to the high
complexity of the experimental set-up, pre-processing is necessary. The segmenta-
tion was performed semi-automatically, but the vessel meshes had to be smoothed in
order to avoid unstable solution of the CFD solver. The probe was segmented from
a CT image with a good resolution, the probe geometry considered in the model
is convincing. However the artifacts induced by the probe and the bad resolution
of the interventional MR images, did not allow to accurately register the probe po-
sition. The setting of subject-specific boundary conditions for the blood flow and
the pressure was not straightforward, as the acquisition process of Phase-Contrast
MR images was complex to handle and required a significant learning curve. Due
to the non-reproducible and non-coherent measures on the first four pigs, the mea-
sures of blood flows and pressures of Pig 5 only were used for the five pigs in all
the computations. Finally, after several trials of registration algorithms, we were
able to reliably estimate the deformation between pre- and post-operative imaging
for a precise validation of the necrosis extent prediction. The validation of the RFA
model on the pre-clinical data presented in this chapter is performed in the following
chapter.
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7.1 Introduction

In this chapter, the pre-clinical study presented in chapter 6 is used for the evaluation
of RFA model. Since our approach relies on pre-clinical data of healthy pigs in
a controlled environment, the evaluation leads to an increased confidence in the
computed information.

The computational model evaluated here was presented in the last chapter (Sec-
tion 6.4). An evaluation of each pre-processing steps is performed first (Section 7.2).
In Section 7.6, the model is evaluated on twelve ablations from five healthy pigs, to
which surrogate tumors have been implanted. We demonstrate accurate predictions
on pre-clinical data both for temperature, power evolution and necrotic region ex-
tension: the mean error between measured and simulated temperature (respectively
power) is 5.1 ◦C (respectively 25.9 W), which is good compared to the targeted
ablation temperature of 105 ◦C and the maximal power of 150 W. The mean point-
to-mesh error between predicted and actual ablation extent is 5.3 ± 3.6 mm, which
is smaller than the diameter of the targeted surrogate lesions (around 2 to 3 cm).
As we have a LBM implementation on graphics processing units (GPU), a single
simulation is faster than real time, which allows us to adjust model parameters for
a better evaluation in Section 7.6.2. Key biophysical parameters (heat conductivity
and heat capacity) are estimated from this pipeline to show that parameter person-
alization could be achieved. We use inverse modeling to minimize the error between
the computed power and cooling temperature and the observed values (the deliv-
ered power directly measured by the RFA device itself and the observed temperature
drop during cooling measured at the 5 tips of the probe). Section 7.9 concludes this
chapter.
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7.2 Evaluation of the Pre-processing

7.2.1 Evaluation of the Registration

First, in each case, the accuracy of the registration was visually checked by an expert
as it is illustrated on Figure 7.1.

Figure 7.1: Results of the Post-to-Pre registration on the liver of Pig 1. (Up):
Superposition of the post-operative liver in red with the pre-operative liver before
the registration; (Down): Superposition of the post-operative liver in red with the
pre-operative liver after the registration.

Table 7.1: Evaluation of the registration: Point-to-mesh errors from the pre-
operative meshes to the post-operative meshes in millimeter before and after the
registration for Pig 2 are computed. Before the non-rigid registration, all the meshes
are centered.

Mesh Before Registration After Registration
hepatic veins 4.53 ± 2.13 2.30 ± 0.97
portal vein 6.13 ± 3.81 4.88 ± 4.38
arteries 21.34 ± 23.25 17.60 ± 19.71
tumor 1 2.25 ± 1.38 2.80 ± 1.49
tumor 2 8.80 ± 6.51 5.28 ± 4.50
liver 6.91 ± 3.57 3.53±1.60
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Whenever available, the non-rigid transformation between pre- and post-
operative images is applied to the post-operative vessel and/or tumor meshes and we
can compare them to their pre-operative equivalent meshes. Point-to-mesh errors
from pre-operative meshes to registered post-operative meshes are computed and
reported in Table 7.1 for Pig 2. Before the non-rigid registration, all the meshes are
centered. The error is decreased after the non-rigid registration except for tumor
1 where the two meshes are already in good agreement before the registration. As
illustrated in Figure 7.2, the point-to-mesh errors are high for the arteries as the
segmented vessels differ in both segmentations of Pig 2.

Mesh from 
Pre-op image 

Before 
registration 

After 
registration 

Figure 7.2: Comparison between the pre-operative arterial mesh in blue and the
post-operative meshes (in red: before the registration and in green: after the regis-
tration) of Pig 2. It is clear that the arterial vessels segmented on the pre-operative
mesh differ from the one segmented on the post-operative mesh. However, the main
part of the vessel (vertical part) is correctly registered.

Figure 7.3 shows the results of the registration algorithm on the liver meshes of
Pig 2. In this case, the registration improves widely the correspondence between
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the post- and the pre-operative mesh as suggested by the point-to-mesh errors (Ta-
ble 7.1).

Mesh from 
Pre-op image Before 

registration 

After 
registration 

Figure 7.3: Comparison between the pre-operative arterial mesh in blue and the
post-operative meshes (in red: before the registration and in green: after the reg-
istration) of Pig 2. The correspondence between the post- and the pre-operative
meshes is improved.

7.2.2 Evaluation of the Smooth Vessels Trees

In order to evaluate the creation of the smooth vessels trees, DICE, Positive Pre-
dictive Value (PPV) and sensitivity scores between the original and the smoothed
vessel images are computed. The values for Pig 4 are reported in Table 7.2. They
show a good correlation between the original segmented vessels and the generated
ones.

Table 7.2: Evaluation of the smooth vessel trees: Dice, Positive Predictive Value
(PPV) and sensitivity between the original and the smoothed vessel images are
computed for Pig 4.

Mesh DICE (%) PPV (%) Sensitivity (%)
arteries 93.1 93.9 92.3
portal vein 91.3 85.3 98.3
hepatic veins 84.9 93.8 77.5

DICE, Positive Predictive Value (PPV) and sensitivity scores have already been
defined in Chapter 4 in Section 4.4.1, but we will repeat the definition here for the
sake of clarity.

Given Vm and Vs, the volume of measured (respectively simulated) necrotic area,
then the DICE score (DICE), the sensitivity (S) and the Positive Predictive Value
(PPV ) are defined as:
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DICE =
2|Vm ∩ Vs|
|Vm|+ |Vs|

S =
|Vm ∩ Vs|
|Vm|

PPV =
|Vm ∩ Vs|
|Vs|

Figure 7.4 illustrates the inconsistent areas, which explained the errors in DICE,
PPV and sensitivity for Pig 4 (Table 7.2).

Portal vein after 
smoothing 

Portal vein before 
smoothing 

Arteries after 
smoothing 

Arteries before 
smoothing 

Figure 7.4: (Left): Comparison between the arterial meshes before and after the
smoothing process of Pig 4. Some vessels, which have a strong stenosis are can-
celed after the smoothing process. (Right): Comparison between the portal vein
meshes before and after the smoothing process. Irregularities in the segmentation
are smoothed as illustrated by the green circles.

7.3 Verification of the Parameter Estimation Framework

7.3.1 Synthetic Data Generation

In order to verify the parameter estimation framework, we consider a synthetic
case on a regular cuboid domain to speed up the process (Figure 7.5). As we try to
estimate the heat conductivity and the heat capacity, only the diffusion is considered
in this case.

Personalized parameters found in Section 7.8 are used. We apply the typical
clinical RFA protocol: during three minutes, we increase linearly the temperature
at the tips of the probe, then we heat at 105 ◦C for six minutes, and finally no
temperature is imposed for 3 more minutes as illustrated on Figure 7.6, right panel.
With this protocol, a necrotic area, the delivered power and the temperature during
the cooling are simulated as shown on Figure 7.6. Those data are then used as
ground truth. The main parameters: d̄t and ct are estimated by minimizing the cost
function defined in Eq. 6.1. The range of parameters values used [Altrogge 2012]
are reported in Table 7.3 and the other parameters are fixed to the nominal values,
reported in Table 6.1.
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X-axis 

Figure 7.5: Set-up of the synthetic case. (Left): The temperature map around one
tip of the probe. (Right): In red, the necrotic area created around the probe in
dark.

cooling heating heating cooling 

Figure 7.6: (Left): The computed delivered power curve over ablation. (Right): The
temperature distribution over ablation on the synthetic case. During the heating
period, the temperatures are imposed at the nine tips of the probe and the delivered
power is simulated. During the cooling period, the temperatures are simulated.

7.3.2 Evaluation

We compare two gradient-free optimization methods available in DAKOTA1: the
Constrained Optimization BY Linear Approximations (COBYLA) and the pattern
search method (PS). Those methods are sequential trust-region algorithms. Ini-
tially, the total domain of parameters is visited (Table 7.3) and then the region is
contracted. Using COBYLA, we manage to obtain the estimated parameters with
0.8% error on d̄t and 0.6% on ct in 30 minutes after 22 iterations with an error of 7.8
10−5 of the cost function and a mean of the symmetric point-to-mesh error of 10−4

mm. Similarly, using PS, we manage to obtain the estimated parameters with 0.4%

of error on d̄t, 0.3% on ct in 154 minutes after 117 iterations with an error of 7.2

1http://dakota.sandia.gov - multilevel framework for sensitivity analysis.
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Notation Parameter Name Min - Max
d̄t heat conductivity 0.256 0.768 W(m K)−1

cUt heat capacity of undamaged tissue 18 54 J(kg K)−1

Table 7.3: Ranges of parameters values explored in the optimization framework.

10−6 of the cost function and a similar mean of the symmetric point-to-mesh error
of 10−4 mm. The convergence curves of both algorithms are shown on Figure 7.7.
We choose the COBYLA method to perform the personalization on the pigs as it
requires less iterations of the forward model to estimate the parameters with similar
accuracy as PS.

Figure 7.7: Convergence curves of the COBYLA algorithm in blue and of the pattern
search algorithm in green. The two optimization algorithms are compared on a
synthetic case.

7.4 Sensitivity Analysis of the Model Parameters

In order to reduce the number of parameters to estimate for the personalization
of the model, a sensitivity analysis on a synthetic case is performed. We use the
same synthetic case as the one used in the previous section 7.3 and described in
Figure 7.5. During the heating phase, the temperature at the tips of the probe is
imposed as it is shown in Figure 7.6. For this reason, we chose to show only the
cooling phase of the temperature. To assess the effect of one given parameter, we
manually change its value and run different simulations, all other things remaining
equal. Figure 7.8 illustrates the effect of the heat capacity of undamaged cells, cUt
on the delivered power and on the cooling temperature distribution, especially on
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the time of the peak value of the delivered power.

cooling heating heating cooling 

Figure 7.8: Sensitivity analysis on the heat capacity of undamaged cells cUt . It
affects strongly the time of the peak value of the delivered power. (Left): Effect on
the delivered power. (Right): Effect on the cooling temperature.

Figure 7.9 illustrates the effect of the heat capacity of vulnerable cells cVt on the
delivered power and on the cooling temperature distribution. This parameter as an
effect both on the delivered power and on the cooling temperature distribution.

cooling heating heating cooling 

Figure 7.9: Sensitivity analysis on the heat capacity of vulnerable cells cVt . (Left):
Effect on the delivered power. (Right): Effect on the cooling temperature.

Figure 7.10 illustrates the effect of the heat capacity of necrotic cells, cNt on the
delivered power and on the cooling temperature distribution. This parameter does
not largely affect the delivered power neither the cooling temperature.

Finally, Figure 7.11 illustrates the effect of the heat conductivity, d̄t on the
delivered power and on the cooling temperature distribution. The heat conductivity
has a clear impact on the cooling temperature distribution.
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cooling heating heating cooling 

Figure 7.10: Sensitivity analysis on the heat capacity of necrotic cells cNt . (Left):
Effect on the delivered power. (Right): Effect on the cooling temperature.

cooling heating heating cooling 

Figure 7.11: Sensitivity analysis on the heat conductivity d̄t. (Left): Effect on the
delivered power. (Right): Effect on the cooling temperature.

We chose to estimate the heat conductivity, d̄t for its effect on the cooling tem-
perature and the heat capacity of undamaged cells cUt for its effect on the time of
the peak value of the delivered power.

7.5 Evaluation on Synthetic Data

We want to verify the use of our parameter estimation framework in the case where
the considered liver is not healthy. To do so, we use a synthetic case on a regular
cuboid domain as the available data come from healthy pigs. We consider the case
of a cirrhotic liver, where it is known that there is an “oven effect”. The propagation
of the temperature is more difficult in a cirrhotic liver than in a healthy liver,
the cirrhotic tissue behave like a thermal insulator, preventing heating outside the
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tumor targeted for the ablation [Livraghi 1999]. In order to mimic this effect, the
heat conductivity is divided by two. With this value, we apply the typical clinical
RFA protocol, and we obtain a “cirrhotic” necrotic area, the delivered power and the
temperature during the cooling phase, which differs from those obtained with the
nominal value, as illustrated on Figure 7.12, right panel. Those data are then used
as ground truth in order to estimate the main parameters: d̄t and ct by minimizing
the cost function defined in Eq. 6.1.

Simulated lesion with  
nominal parameters 

Simulated lesion with  
“cirrhosis” parameters 

Figure 7.12: (Left): The parameter estimation framework proposed is able to per-
fectly find the “cirrhotic” heat conductivity. (Right): The lesion obtained with the
“cirrhotic” heat conductivity in green is enclosed within the lesion obtained with the
nominal conductivity coefficient in blue.

The parameter estimation framework is used, and we are able to find exactly
the cirrhotic value of the heat conductivity as illustrated on Figure 7.12, left panel.
We show on a synthetic case, that our method allows to find “cirrhotic ” value of the
heat conductivity in the case of a diseased liver. We can now evaluate our method
on the available swine data, whose liver tissue are healthy.
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7.6 Evaluation on Swine Data

7.6.1 Systematic Study

During our experiments, the measured electrical power appears consistently to reach
its maximum during the increase in temperature, before reaching the plateau of
105◦C (Figure 7.13, left panel) in all cases.

heating       cooling      

Figure 7.13: (Left): The computed delivered power curves over ablation are com-
pared with the measured one. (Right): The temperature distribution after ablation
of tumor 4-3. During the heating phase, five temperatures are directly imposed
from the five thermistors measurements (superposition of green and black curves)
and the four remaining temperatures are imposed from a linear interpolation from
those measurements (four green curves). After the use of personalized parameters,
the error between the measurement and the computation is reduced from 18.9 to
8.8 W for the power and from 3.5 to 3.0 ◦C for the temperature. A zoom on the
cooling phase is presented in the following Figure 7.14.

This phenomena cannot be explained by a constant heat capacity which would
lead to a peak after the plateau is reached. Instead, this observation suggests that
the cells reach their vulnerable state faster. Thus we update our necrosis model
accordingly: after studying the ODEs of the model and a sensitivity analysis on its
parameters non reported here, δ̄ is modified such that tissues reach very fast their
vulnerable state which entails a significant change of heat capacity (Table 7.4).

The model is evaluated on twelve ablations performed in five swines (several
surrogate tumors ablated for some pigs). To understand the effect of the perfusion
on the necrotic lesion, the simulations are performed first without the advection
term. We only take into account the cooling effect of the blood vessels, and we will
account for the hepatic perfusion later by adding the advection term in a second
step (Section 7.7.1).

The applied RFA protocol is not exactly the same for all ablations. Eight abla-
tions are performed through several short cooling and heating periods, whereas the
other four ablations included only one long final cooling stage after a continuous
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cooling      

Figure 7.14: Zoom on the cooling phase of the temperature distribution after ab-
lation from tumor 4-3. The personalized parameters do not affect the cooling tem-
peratures.

heating period (it is the case for tumor 4-3 as shown on Figure 7.13). For all pigs,
nominal values of parameters (reported on Table 6.1) are employed. In each case,
the simulated lesion was compared with the registered ground-truth. Figure 7.15
shows results for tumor 4-2.

Hepatic  
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Figure 7.15: Comparison between the simulated and the post-operative necrotic
areas on tumor 4-2. (Left): The simulated lesion is showed around the RFA probe
in the subject-specific geometry. (Right): Zoom on the ablation area, the simulated
lesion is qualitatively close to the registered post-operative lesion. For this tumor,
the point-to-mesh error is 4.6± 3.9 mm.
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Quantitatively, symmetric point-to-mesh errors implemented like in [Zheng 2007]
computed between the simulated lesion and the registered post-operative ground-
truth showed good prediction of the necrotic extent (average over all ablations of
5.32 ± 3.62 mm of mean point-to-mesh error) as illustrated in red on Figure 7.16.
Similarity scores are also computed and shown on Figure 7.17 in red: average over
all ablations: DICE of 44.2%, Sensitivity of 47.0%, and PPV of 52.7%. We achieved
errors of 25.9 W and 5.1 ◦C on average between measured and simulated values of
cooling temperature and delivered power (Figure 7.18 in red).

MEAN         S.D 

Figure 7.16: Point-to-Mesh error in mm computed on the surface of the lesion for
three different computations: with nominal parameters, with personalized param-
eters and with the advection term. For the computation with the advection term,
only 6 ablations are considered. (Left): Mean of the point to mesh (Right): Standard
deviation of the point to mesh error.

Values computed with nominal parameters (nominal) and without the advection
term are reported in Table 7.10 for Pig 1 and Pig 4, Table 7.11 for Pig 2, Table 7.12
for Pig 3 and Table 7.13 for Pig 5. The prediction of the necrosis extent was valid
up to 5mm on average which can be considered as sufficient for clinical applications.
Qualitatively, as one can see on Figure 7.19 (red curves), the simulated heat power
and temperature were close to the heat power and the temperature given by the
RFA probe itself.
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DICE         SENSITIVITY              PPV 

Figure 7.17: Similarity scores in % computed on the volume of the lesion for three
different computations: with nominal parameters, with personalized parameters and
with the advection term. For the computation with the advection term, only 6 ab-
lations are considered. (Left): DICE scores (Middle): Sensitivity (Right): Positive
Predictive Value.

Error on:     Power (W)                  Temperature (C) 

Figure 7.18: Error in term of delivered power and temperature for three different
computations: with nominal parameters, with personalized parameters and with the
advection term. For the computation with the advection term, only 6 ablations are
considered. (Left): delivered power in W (Right): temperature in ◦C.
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heating       cooling   h      c         h        c         h          c          h     

Figure 7.19: Comparison between the simulated and the measured temperature on
tumor 3-1 for 2 different computations: with nominal parameters and with personal-
ized parameters. During the heating phase, the temperature is imposed, the power
is simulated and compared to the measured one. On average, the error is reduced af-
ter the use of personalized parameters: from 35.1 W to 29.8 W. It is mainly reduced
on the first heating period (from 50.3 W to 26.5 W). During the cooling phase, the
simulated (non-imposed) temperature is compared to the measured one, whenever
measurement is available (the RFA power was turned off during the cooling phases).
On average, the error is also reduced: from 5.9 ◦C to 1.9 ◦C.
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heating       cooling   h      c         h        c         h          c          h     

Figure 7.20: Comparison between the simulated and the measured temperature
on tumor 3-1 for 2 different computations: with and without the advection term.
During the heating phase, the temperature is imposed, the power is simulated and
compared to the measured one. The error in term of delivered power is constant
(35.0 W versus 35.1 W). During the cooling phase, the simulated (non-imposed)
temperature is compared to the measured one, whenever measurement is available
(the RFA power was turned off during the cooling phases). There is no real difference
in term of cooling temperature error: 6.3 ◦C versus 5.9 ◦C.
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7.6.2 Towards Personalization

As illustrated on the pipeline of Figure 6.2, the framework enables parameter es-
timation too. COBYLA is used to minimize the cost function (Eq. 6.1) as only a
few forward simulations (typically 20) are required as described in Section 7.3. The
data came from healthy pigs of similar age and weight, we hypothesize that the
parameters would be the same for all of them. The vulnerable rate coefficient is
also adjusted to match the raise in delivered power as detailed in Section 7.6.1. As
the effect of the hepatic perfusion has not been clearly identified so far, we do not
consider the advection in the parenchyma in this part of the study. We run the sim-
ulation without taking into account the effect of the blood flow in the parenchyma,
but only the heat sink effect of the blood flow in the large visible vessels. The results
of the personalization are then compared with simulations where the advection term
is not accounted as well: (perso) versus (nominal).

This is a proof of concept not only for the ability to personalize the model but
also for its predictive power by evaluating the simulation results on ten different
tumors. Briefly, the minimization of the error between measured and simulated
values of power and temperature was done only on two tumors with a long final
cooling stage (2 different tumors: Pig 1 and Tumor 4-3 of Pig 4) as it was long
enough to observe reliably the effect of the conductivity d̄t, yielding two sets of
personalized values. In both cases, the values independently found were really close:
the same value of heat capacity cUt was estimated, and the conductivity values were
almost equal to the nominal value, as expected. The values are reported on Table 7.4
and shown on Figure 7.21.

Table 7.4: Comparisons between personalized and nominal values of estimated pa-
rameters.

Notation Nominal Personalized Values Automatic
Value on tumor 1 on tumor 4-3 optimization

δ̄ 3.3×10−3 1×10−4 1×10−4 No
cUt 3.6 ×103 3.6 ×101 3.6 ×101 Yes
d̄t 0.512 0.614 0.512 Yes

The estimated heat capacity and the nominal conductivity were then used to
simulate RFA on the ten remaining cases and errors in temperature, heat power
and necrosis size were evaluated (Table 7.10 for Pig 1 and Pig 4, Table 7.11 for Pig
2, Table 7.12 for Pig 3, Table 7.13 for Pig 5, (perso)).

Small errors were obtained in those cases too, without previously having fit the
parameters for those tumors. With those changes, the simulated electrical power
matches much better the measured one in terms of time to peak: average error
between measured power and simulated power reduces from 25.9 W to 20.4 W on
average (Figure 7.18 in green, left panel). However the mean point-to-mesh error
(5.99 mm on average) and the error in temperature (7.8 ◦C on average) do not change
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Figure 7.21: Comparison of the parameters (the vulnerable rate coefficient of the
cell death model δ̄, the heat capacity of undamaged cells cUt , the heat conductivity
d̄t) personalized on two tumors from two different pigs against the nominal values
from the literature.

significantly (in green in Figure 7.16 and Figure 7.18, right panel) as well as the
similarity scores: Dice of 42.2%, Sensitivity of 43.0% and PPV of 54.6% on average
(Figure 7.17 in green). Figure 7.22 and Figure 7.13 illustrate the improvement in
term of delivered power after personalization on Pig 1 and tumor 4-3 (red curves
versus green curves).

Although the personalization has only been performed on two pigs, we can see
this improvement on tumor 3-1. Figure 7.19 shows how the first cooling phase is
closer to the measurement given by the RFA probe itself with personalized param-
eters (green curve) rather than with the nominal parameters (red curve). The heat
capacities of the vulnerable neither the necrotic cells (cVt , cNt ) were modified, thus
the simulations with personalized parameters and with nominal parameters of the
delivered power for the following heating phases are similar. As the estimated value
of d̄t after personalization is the nominal value, the personalized parameters do not
have any impact on the cooling temperature, not on the tumors where the per-
sonalization has been performed (Figure 7.23), neither on the others (Figure 7.19,
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cooling heating 

Figure 7.22: Personalization of the heat capacity and the conductivity using (Left)
the delivered power curve over ablation (Right) the temperature distribution after
ablation from tumor 1. The error between the measurement and the computation
is reduced from 19.9 to 7.5 W for the power, whereas it is constant for the cooling
temperature (11.1 ◦C versus 10.3 ◦C). A zoom on the cooling phase is presented on
the following Figure 7.23.

cooling heating 

Figure 7.23: Zoom on the cooling temperature distribution after ablation from tumor
1. The personalized parameters do not affect the cooling temperatures.

Down). We do not have the measured cooling temperatures for this tumor 3-1,
however we can see that this value of d̄t give accurate simulations, since there is no
jump between the computed temperatures at the end of a given cooling period and
the measured temperatures at the beginning of the following heating period for the
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different heating/cooling stages at times: t = 300s, t = 480s, t = 680s and t = 890s

(Figure 7.19, Down).

7.7 Sensitivity Analysis on Swine Data

7.7.1 Effect of the Advection

In order to quantify the effect of hepatic perfusion, the simulations were performed
by adding the advection term for all pigs whenever possible. In some cases (Pig 2
and Pig 4), the segmentation of the inlet of vena cava was not possible, thus the
impossibility to get results from the CFD solver. Nominal values of parameters
(reported on Table 6.1) were employed as well.
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Figure 7.24: Comparison between the simulated and the post-operative necrotic
areas on Pig 1. (Left): The post-operative lesion is showed around the RFA probe
in the subject-specific geometry. (Right): Zoom on the ablation area, the simulated
lesions with and without advection are compared to the registered post-operative
lesion. The advection has an effect on the shape of the lesion, however in this case,
it does not improve the point-to-mesh error: 6.9 ± 5.2 mm versus 4.8 ± 4.4 mm.

The quantitative results are reported in Table 7.10 for Pig 1, Table 7.12 for
Pig 3 and Table 7.13 for Pig 5. (nominal) stands for computation without the
advection term and (advection) with the advection term. On average, the effect
of the advection cannot be clearly highlighted. The mean of the point-to-mesh
error over the 6 ablations computed with advection is 4.96± 3.50 mm (Figure 7.16
in blue), the average DICE score is 45.6%, the average sensitivity is 41.8% and
the average PPV is 53.4% (Figure 7.17 in blue). On average, the error on the
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simulated power is 22.1 W and 4.7◦C on the temperature (Figure 7.18 in blue).
Those values are comparable to the values obtained without the advection term.
However, even if it is not the case globally, the advection has an effect on the
computed lesion as well as the computed temperature and power depending on the
ablation location. In some cases, the advection reduces the error in term of necrotic
extent and temperature distribution (tumor 5-1), however it is not true in every
case (Pig 1), but the advection term do change the shape of the necrotic extent
(Figure 7.24). Quantitatively, this effect of the advection on the lesion shape can
be seen on Table 7.14 for Pig 1 and Pig 3, Table 7.15 for Pig 5. In the cases where
the advection has an effect, the sphericity of the lesion decreases and the maximum
diameter of the lesion increases. The advection has an effect on the temperature
distribution at the tips of the probe as well, depending on the ablation location
(Figure 7.25).

Tumor 

Probe 

Post-op  
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Probe 
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Figure 7.25: Effect of the location of the ablation on the temperature dispersion.
(Left): Pig 1, the probe is close to vessels, the tips do not cool down similarly
(Figure 7.27). (Right): Tumor 3-1, the probe is far from vessels, the tips cool down
similarly (Figure 7.20). In this case, we could not segment any post-op lesion.

If the ablation location is close the vessels (Pig 1, Figure 7.25, left panel), during
the cooling phase, the measured and simulated temperature are more spread if the
advection is considered (Figure 7.27), while if it is not the case (Tumor 3-1, Fig-
ure 7.25, right panel), the measured temperature cool down similarly (Figure 7.20).
The perfusion has also an effect on the delivered power needed to maintain the
targeted ablation temperature of 105 ◦C in the case of a long heating period, as
illustrated on Figure 7.26, left panel. If the advection is accounted for, more power
is necessary to maintain the targeted ablation temperature than if the simulation is
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heating cooling 

Figure 7.26: Effect of the advection on (Left) the delivered power curve over abla-
tion (Right) the temperature distribution after ablation from tumor 1. The error
between the measurement and the computation is reduced from 10.3 ◦C to 9.7 ◦C

for the cooling temperature with the advection, whereas it does not really affect the
delivered power (19.9 W to 20.8 W). A zoom on the cooling phase is presented on
the following Figure 7.27.

cooling heating 

Figure 7.27: Zoom on the cooling temperature distribution after ablation for tumor
1. When the advection term is taken into account, the cooling temperatures at the
different tips of the probe do not have to same cooling speed (blue curves). Whereas,
they cool down similarly without the advection term (red curves).

run without advection. In this case, it could be explained by the fact than the perfu-
sion tends to cool down the parenchyma and thus more power is needed to maintain
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the targeted temperature. In the case of short heating and cooling stages, we do not
observe this phenomena (Figure 7.20), it might be because the liver temperature
drops quickly when the delivered power is decreased.

7.7.2 Effect of the Registration

One part of the evaluation of the computation is done by a comparison between
the simulated necrotic extent and a lesion segmented on a post-operative image
registered to the pre-operative image. The modality of the post-operative image is
not always the same (Table. 7.5).

Table 7.5: Modalities of the pre- and post-operative images used. The segmentations
of liver, vessels, tumor on the pre-operative image and of necrosis on post-operative
image do not come from the same modality for each pig.

Pig pre-op image post-op image
1 CT CT
2-1 CT T1 + gad
2-2 CT T2
3-1 CT-Venous N.A
3-2 " T2
3-3 " "
4-1 CT CT
4-2 " "
4-3 " "
5-1 CT-Port T2
5-2 " "
5-3 " "

In some case, the resolution and the size of the post-operative image do not
allow an accurate registration of the lesion. It is the case for tumor 2-2 for example
(resolution: 0.78x0.78x4.8 mm, size: 384x384x36 mm). To check the sensitivity of
the computation to the registration, a new registration of the post-operative lesion
is performed for this tumor. We assume that the barycenter of the post-operative
lesion is the same as the barycenter of the simulated necrotic extent, and we rigidly
translate the post-operative lesion to align the two barycenters (Figure 7.28, right
panel).

With this simple registration method, the results are significantly improved
(Table. 7.6). The lesion registration strongly affects the error measured between
the computed necrotic area and the ground truth.
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Figure 7.28: Effect of the registration on Pig 2 (Left): The post-operative lesion after
the non-rigid registration is showed in the subject-specific geometry. The point-to-
mesh error is 8.4 ± 5.0 mm (Right): The post-op lesion after a single translation.
The poinr-to-mesh error reduces to 3.6 ± 2.9 mm.

Table 7.6: Evaluation of the effect of the registration on Pig 2-2: on average, point-
to-mesh errors are divided by 2 and DICE scores multiplied by more than 3.

Pig 2-2
registration

point-to-mesh error in mm (mean,
sd, min, max, median, P95)

Dice
(%)

Sensitivity
(%)

PPV
(%)

non-rigid
(nominal-0.5) 8.52, 5.03, 0.11, 23.30, 8.37, 16.59 13.8 9.8 23.3
(nominal-0.1) 8.03, 4.85, 0.10, 22.28, 7.83, 15.58 16.8 13.1 23.5

(perso) 8.44, 5.00, 0.10, 22.99, 8.27, 16.35 14.3 10.4 22.6
translation
(nominal-0.5) 3.87, 2.95, 0.10, 18.00, 2.98, 10.78 57.3 40.7 96.5
(nominal-0.1) 3.12, 2.65, 0.11, 17.08, 2.31, 9.38 66.3 51.7 92.1

(perso) 3.63, 2.87, 0.14, 17.68, 2.70, 10.24 60.1 43.9 94.9

7.7.3 Effect of the Probe Position

The position of the probe is known from an intra-operative anatomical MRI. In
some cases, the resolution and the image size do not allow an accurate registration
of the probe. It is the case for tumor 3-2 for example (resolution: 1x1x3.5 mm,
size: 320x250x30 mm).

A new computation is performed for this tumor in order to check the sensitivity
of the computations to the probe position. The same configuration was used except
that we manually put the probe inside the registered post-operative necrotic area
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(position 2 in Figure 7.29). With this probe position, the results are significantly
improved (Table. 7.7). The probe position affects also the error measured between
the computed necrotic area and the ground truth (Figure 7.29). It is equivalent to
a registration error since by moving the probe, we move the computed necrosis.

Position 1 

Position  
     2 

Position 2 Position 1 

Post-op 
lesion 

Simulated 
lesion 

Simulated 
    lesion 

Figure 7.29: Comparison between the simulated and the post-operative necrotic
areas on tumor 3-2. (Left): The post-operative lesion is showed around 2 possible
positions of the RFA probe. (Right): Zoom on the ablation area, the simulated
lesion is closer to the registered post-operative lesion when the probe is in position
2. The point-to-mesh error is 12.6 ± 7.7 mm in Position 1 and 6.2 ± 4.0 mm in
Position 2.



7.7. Sensitivity Analysis on Swine Data 125

Table 7.7: Quantitative evaluation of the probe position on Pig 3-2: on average,
point-to-mesh errors decrease significantly and DICE scores increase by a factor 2.

Pig 3-2
Probe in

Power error
(W)

Temperature
error (◦C)

point-to-mesh error in
mm (mean, sd, min,
max, median, P95)

Dice
(%)

Sensitivity
(%)

PPV
(%)

Position 1
(nominal-0.5) 51.9, 43.3,

32.6, 30.7, 36.7
5.4, 1.2,
15.5, 14.4

12.13, 7.53, 0.11, 29.78,
11.51, 24.59

20.0 35.4 13.9

(nominal-0.1) 67.1, 59.9,
47.8, 46.1, 59.1

1.8, 4.8,
10.2, 8.6

12.61, 7.71, 0.06, 31.63,
12.18, 25.77

19.9 40.3 13.2

(perso) 52.0, 59.5,
48.4, 46.3, 59.2

2.7, 5.0, 9.8,
8.4

12.61, 7.70, 0.06, 31.51,
12.14, 25.59

19.9 40.3 13.2

Position 2
(nominal-0.5) 47.9, 57.3,

45.1, 42.6, 55.6
4.0, 2.5,
12.6, 11.1

5.96, 3.88, 0.02, 17.15,
6.11, 12.42

47.8 86.6 33.0

(nominal-0.1) 65.4, 57.8,
44.3, 42.3, 55.4

3.0, 1.8,
13.1, 11.3

6.19, 4.02, 0.07, 17.42,
6.43, 12.74

46.8 89.0 31.8

(perso) 49.6, 40.2,
29.9, 28.9, 32.0

6.8, 2.4,
18.5, 17.2

5.59, 3.57, 0.08, 16.13,
5.57, 11.80

49.8 89.0 31.8

7.7.4 Cell Death Model Evaluation

As the parameters of the cell death model have been modified after parameter
estimation, the accuracy of the model has to be verified. We compare the simulated
necrotic extent for tumor 2-2 with the results of a lethal thermal dose model, often
used in clinical settings [Sapareto 1984] (Figure 7.30). The thermal dose at each
voxel is calculated according to this empirical model:

t43 =

tc∑
t=0

C(43−T̄ )∆t (7.1)

where t43 is the thermal dose in equivalent minutes at 43◦C, T̄ is the average
temperature during the time interval ∆t, and C is a constant resulting from the
Arrhenius model.

C = 0.5 when T̄ ≥ 43◦C

C = 0.25 when T̄ < 43◦C

A thermal dose of 240 (in equivalent minutes at 43◦C) is considered lethal.
Quantitatively, both models give similar point-to-mesh errors and DICE scores

(Table. 7.8), however the volume and maximum diameter of the necrotic extent are
larger with the thermal dose model (Table. 7.9). The thermal dose model gives
really spherical necrotic extents (Table. 7.9, sphericity values closer to 1 for thermal
dose model). A more throughout study is necessary to understand the differences
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Figure 7.30: Effect of the cell death model (Left): The simulated lesion computed
using the cell death model is showed in the subject-specific geometry of Pig 2.
(Right): The area where at least a thermal dose of 240 in equivalent minutes at 43
◦C is shown. The post-op lesion appears in dark in both cases.

between those two models of cellular necrosis. However, the proposed three-state
model enables a spatial and time-varying heat capacity (cUt ,cVt ,cNt , for undamaged,
vulnerable and necrotic cells). We saw in Section 7.4 that those parameters affect
the delivered power and the cooling temperature. With the thermal dose model,
only two states of the cells could be considered: they are either undamaged (if
TD < 240) or necrotic (if TD ≥ 240). Thus only two values of the heat capacity
could be used.

Table 7.8: Evaluation of the effect of the cell death model - thermal Dose at 240 on
the point-to-mesh errors and DICE scores between the simulated lesion and ground
truth on Pig 2-2.

Pig 2-2 point-to-mesh error in mm
(mean, sd, min, max, median,

P95)

Dice
(%)

Sensitivity
(%)

PPV
(%)

Thermal Dose
(nominal-0.5) 8.25, 5.71, 0.03, 21.1, 7.36, 18.87 13.9 23.2 9.9
(nominal-0.1) 9.05, 6.50, 0.06, 24.99, 7.76, 21.10 14.3 29.9 9.4

(perso) 8.68, 6.13, 0.15, 22.77, 7.61, 20.09 13.9 25.9 9.5
Cell Death
(nominal-0.5) 8.52, 5.03, 0.11, 23.30, 8.37, 16.59 13.8 9.8 23.3
(nominal-0.1) 8.03, 4.85, 0.10, 22.28, 7.83, 15.58 16.8 13.1 23.5

(perso) 8.44, 5.00, 0.10, 22.99, 8.27, 16.35 14.3 10.4 22.6
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Table 7.9: Quantitative evaluation of model prediction: Effect of the cell death
model on the shape of the simulated lesion.

Pig 2-2 sphericity volume
(mm3)

max diameter
(mm)

(GT) 0.45 12853 50.09
(GT-smooth) 0.71 5356 30.43

Thermal Dose
(nominal-0.5) 0.96 12519 34.19
(nominal-0.1) 0.93 17019 37.39

(perso) 0.94 14641 35.37
Cell Death
(nominal-0.5) 0.90 5406 23.96
(nominal-0.1) 0.90 7193 26.32

(perso) 0.90 5933 24.78

7.8 Discussion

We have presented a multi-physics model based on multi-modal medical images,
evaluated on pre-clinical data. We rely on LBM to solve the bioheat equations
and to compute the blood flow in the liver. Despite possible biases in the probe
location and in establishing correspondences between the post to the pre-operative
images due to registration errors, our model provided new insights, and we show
that parameter estimation is possible to reduce the bias introduced by the use of
nominal parameters. This opens new opportunities for RFA planning and guidance.

7.8.1 Model Limitations

The impact of the segmentation process has to be taken into account as well as the
model limitations (assumptions: we assume that the measured power is actually the
heat power through radio-frequency, with no loss, etc).

We are not able to accurately locate the position where we measure the pressure,
but we assume that there is no variation in pressure in a small neighborhood of the
two outlets.

The Neumann Boundary condition applied on the border of the liver can be
discussed. If the ablation location is subcaspsular (tumor 5-1, tumor 4-1, tumor
3-3), the volume of the necrotic area is larger than in the other cases (Table 7.14,
Table 7.15), as the heat does not dissipate through the liver capsule but reflects
on the border and increases artificially the heat diffusion inside the liver as it is
illustrated in Figure 7.31. However, the liver has a high regulation capacity thanks
to its rich vascular system. If the heating is applied close to the border of the liver, it
is not clear how the heat will dissipate, whether or not it will affect the neighboring
organs.

Finally, during the RFA computation, the temperature at the tips of the probe
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Figure 7.31: (Left): The simulated necrotic extent around the RFA probe, close to
the border of the liver from tumor 3-3. The post-operative lesion is shown in brown.
(Right): The liver extraction confirms that the necrotic lesion is subcapsular.

is imposed. It will be more accurate to directly impose the delivered power and thus
simulate the cooling as well as the heating temperature distribution. It should be
done in the future, but going from a Dirichlet boundary condition on the temperature
at the tips of the probe to a Dirichlet boundary condition on the delivered power is
not straightforward.

7.8.2 Effect of the Registration

It should be noted that the registration method used in this paper differs from the
registration used in [Audigier 2015b]. In [Audigier 2015b], due to the uncertainty in
the registration of the post-operative image to the pre-operative image, the necrotic
lesion segmented on the post-operative image was registered rigidly to the pre-
operative image by aligning its barycenter with the barycenter of the simulated
necrosis which could introduce bias in the analysis. The impact of those registration
processes has been evaluated on one tumor in this chapter.

7.8.3 Towards Personalization

In clinical RFA of liver tumors, we cannot assume that the biophysical parame-
ters are the same for all patients, as assumed here for the five pigs, and parameter
personalization is therefore required. Here, we propose to adjust model parame-
ter for a better evaluation of RFA, based on the delivered electrical power during
ablation and the temperature drop during cooling. Since our approach does not
rely on ablated regions, the parameter estimation leads to an increased confidence
in the computed temperature, in the case where no temperature map is available.
By fitting the temperature and the delivered heat power, the novel approach can
estimate the temperature around each tumor at any time during the ablation. This
additional information could be used as surrogate to assess the amount and location
of damaged tissue during the intervention (cells receiving excessive heat but without
being necrosed) surrounding the ablated region.
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Furthermore, the probe temperature and delivered power are information that
are readily available, in real-time, from the RF system and therefore could be used
for therapy guidance. Even if the computation time does not allow an interventional
set-up yet, it is a first step towards the personalization of RFA computation.

The extent of the necrotic area is mainly controlled by the conductivity d̄t and
the heat capacity of vulnerable cells cVt (not of undamaged ones cUt ). Since d̄t was not
changed after optimization, there was no significant difference in terms of necrotic
area after personalization (mean of the point-to-mesh error of 5.99 mm versus 5.32
mm on average) or cooling temperature (error of 7.8 ◦C versus 5.1 ◦C), despite a
better match for the measured power (error of 20.4 W versus 25.9 W) as illustrated
on Figure 7.19 and Figure 7.22, and reported in Table 7.10, Table 7.11, Table 7.12,
Table 7.13. Moreover the point-to-mesh errors were of the order of 5mm; it suggests
that simulations with optimized d̄t and cUt are realistic in terms of necrotic area,
power and temperature predictions which was the objective. These results confirmed
the stability of the personalization framework.

7.9 Conclusion

In this chapter, we evaluated our model on a pre-clinical data. The approach is
evaluated on five swines and twelve ablations. It gives promising results, but more
importantly provides several lessons learned.

Despite a very comprehensive model and a complete pre-clinical study for its
validation, many errors are involved, at the modeling level, but also especially at
each step of the pre-processing. We manage to identify most of those errors thanks
to the pre-clinical study. It would not have been possible on clinical data. The use
of invasive catheter to measure the pressure could not be done on a clinical study,
neither the acquisition of Phase-Contrast MRI, intra-operative MRI with the probe,
injected CT scans with the three different phases, which are not part of the standard
clinical workflow for RFA.

Even if model personalization is premature since the computation time has to
be reduced first, we show that it can be done based on intra-operatively simple
quantities (the probe temperature and delivered power) since we rely on a LBM
implementation on graphics processing units (GPU): a forward simulation is faster
than real time. As a first step towards personalization, we evaluate the discrepancy
in terms of temperature and delivered power, and we show that key biophysical
parameters can be estimated leading to promising predictions. In clinical settings,
due to the large variety of diseases treated by RFA (cirrhosis, fibrosis, etc), the
proposed method should be suitable to get patient-specific parameters from easily
accessible data.

A study of the errors is a necessary next step before using model-based therapy in
the clinical routine. A study of how the pre-processing errors (due to segmentation,
post-to-pre registration, probe registration, vessels smoothing) propagate to the
final computational outcome will be of great interest. It will help to understand the
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modeling errors as well and be more confident on the resulting necrotic lesion for
example. The evaluation could be improved by the acquisition of images of better
resolution for the intra-operative MRI with the probe for example, but taking into
account that with the current framework, the acquisition time is limited by the
well-being of the pig. The acquisition of the Phase-Contrast MRI could be improved
as well. Moreover, even if today MR thermometry does not provide such a good
resolution (Figure 7.32 shows MR thermometric images acquired during the ablation
of tumor 4-1), in the future, it could add more information on the spatial extent of
the temperature to further improve the validation.

45 – 60 °C 
60 – 75 °C 
75 – 88 °C 
  

                         Before Ablation                                    During Ablation 

Figure 7.32: MR thermometric images acquired during the ablation of tumor 4-
1. (Left): image acquired before the ablation, showing an isotropic and constant
temperature around the RFA probe (liver temperature). (Right): image acquired
during the ablation, when the RF power is decreased. It shows the temperature
distribution around the RFA probe.
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Table 7.10: Quantitative evaluation of model prediction. The mean errors between
simulated and measured values are computed for each ablation. For the eight abla-
tions which are performed through several cooling and heating periods, the different
error values for each period are reported. For each tumor, several computations are
performed, with nominal parameters and two different time-step (nominal-dt), with
personalized parameters, and with advection. The parameter estimation has been
performed on Pig 1 and tumor 4-3 and gave a set of personalized parameters, which
are used in every case (perso). When it is not specify, the time-step is dt = 0.1 s. For
computation with nominal parameters (respectively with personalized parameters),
on average, mean errors of 25.9 W (resp. 20.4 W), 5.1 ◦C (resp. 7.8 ◦C) and 5.32
mm (resp. 5.99 mm) of mean of the point-to-mesh error are achieved. This table
presents results for Pig 1 and Pig 4.

Pig Power error
(W)

Temperature
error (◦C)

point-to-mesh error
in mm

(mean, sd, min,
max, median, P95)

Dice
(%)

Sensitivity
(%)

PPV
(%)

1
(nom-0.5) 21.9 8.3 5.14, 4.77, 0.14,

21.38, 3.51, 16.13
36.8 25.9 63.9

(nom-0.1) 19.9 10.3 4.79, 4.36, 0.09,
20.55, 3.58, 15.08

41.1 31.5 59.1

(perso) 7.5 11.1 5.06, 4.68, 0.19,
21.34, 3.52, 16.00

37.4 26.8 62.0

(adv) 20.8 9.7 6.90, 5.20, 0.13,
22.91, 5.53, 16.78

24.9 22.9 27.3

4-1
(nom-0.5) 12.2, 13.3,

20.9, 31.9
11.2, 10.7,

10.6
6.29, 3.71, 0.17,
13.3, 6.24, 11.95

23.7 81.9 13.8

(nom-0.1) 16.8, 10.3,
5.1, 6.2

9.0, 7.3, 6.0 7.30, 3.91, 0.13,
14.73, 7.37, 13.19

20.2 89.0 11.4

(perso) 13.4, 8.6,
5.8, 5.7

7.2, 5.3, 4.3 6.78, 3.79, 0.16,
13.97, 6.83, 12.61

22.0 86.0 12.6

4-2
(nom-0.5) 16.7, 19.2,

20.1
3.0, 7.8 4.85, 4.41, 0.12,

18.00, 3.31, 15.51
25.6 16.7 54.7

(nom-0.1) 24.9, 16.9,
9.4

0.5, 3.7 4.62, 3.88, 0.15,
17.23, 3.32, 14.21

30.3 21.7 50.4

(perso) 4.2, 10.0,
9.3

18.9, 4.7 4.73, 4.14, 0.12,
17.80, 3.30, 14.93

27.5 18.8 51.5

4-3
(nom-0.5) 12.9 1.7 2.39, 1.64, 0.07,

8.82, 2.05, 5.96
70.0 61.1 81.8

(nom-0.1) 18.9 3.5 2.07, 1.32, 0.06,
7.16, 1.77, 4.78

75.6 73.8 77.5

(perso) 8.8 3.0 2.20, 1.45, 0.05,
8.05, 1.93, 5.30

73.2 67.1 80.5
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Table 7.11: Quantitative evaluation of model prediction. This table presents results
for Pig 2.

Pig Power error
(W)

Temperature
error (◦C)

point-to-mesh error
in mm

(mean, sd, min,
max, median, P95)

Dice
(%)

Sensitivity
(%)

PPV
(%)

2-1
(nom-0.5) 7.4 2.6 2.93, 2.66, 0.18,

15.83, 2.05, 8.88
59.8 44.1 92.8

(nom-0.1) 16.0 1.5 2.46, 2.28, 0.09,
14.65, 1.64, 7.06

66.9 54.3 87.0

(perso) 10.6 1.3 2.81, 2.55, 0.12,
15.25, 1.97, 8.42

62.0 46.8 92.0

2-2
(nom-0.5) 47.5 3.1 8.52, 5.03, 0.11,

23.30, 8.37, 16.59
13.8 9.8 23.3

(nom-0.1) 62.3 5.0 8.03, 4.85, 0.10,
22.28, 7.83, 15.58

16.8 13.1 23.5

(perso) 50.0 4.5 8.44, 5.00, 0.10,
22.99, 8.27, 16.35

14.3 10.4 22.6
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Table 7.12: Quantitative evaluation of model prediction. The tumor 3-1 was ablated
twice with two consecutive heating periods, thus the simulated necrosis cannot be
compared with any ground truth. This table presents results for Pig 3.

Pig Power error
(W)

Temperature
error (◦C)

point-to-mesh error
in mm

(mean, sd, min,
max, median, P95)

Dice
(%)

Sensitivity
(%)

PPV
(%)

3-1
(nom-0.5) 37.4, 26.0,

16.4, 19.4, 23.5
2.1

(nom-0.1) 50.3, 38.5,
35.6, 30.4, 20.5

5.9 N.A N.A N.A N.A

(perso) 26.5, 36.0,
33.9, 31.5, 20.9

1.9

(adv) 50.4, 38.8,
35.6, 30.2, 20.1

6.3

3-2
(nom-0.5) 51.9, 43.3,

32.6, 30.7, 36.7
5.4, 1.2,
15.5, 14.4

12.13, 7.53, 0.11,
29.78, 11.51, 24.59

20.0 35.4 13.9

(nom-0.1) 67.1, 59.9,
47.8, 46.1, 59.1

1.8, 4.8,
10.2, 8.6

12.61, 7.71, 0.06,
31.63, 12.18, 25.77

19.9 40.3 13.2

(perso) 52.0, 59.5,
48.4, 46.3, 59.2

2.7, 5.0,
9.8, 8.4

12.61, 7.70, 0.06,
31.51, 12.14, 25.59

19.9 40.3 13.2

3-3
(nom-0.5) 17.7, 13.7, 39.2 2.9, 5.4 2.62, 1.75, 0.11,

10.04, 2.29, 6.14
72.4 57.9 96.4

(nom-0.1) 29.6, 20.8, 19.1 1.7, 9.4 2.03, 1.36, 0.06,
8.84, 1.71, 4.66

80.0 72.0 90.1

(perso) 15.4, 19.7, 18.9 1.0, 9.8 2.20, 1.50, 0.06,
9.68, 1.86, 5.12

77.8 67.1 92.4

(adv) 29.6, 20.7, 20.2 0.8, 5.9 3.26, 2.18, 0.06,
10.95, 2.80, 7.65

68.0 65.2 71.0
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Table 7.13: Quantitative evaluation of model prediction. This table presents results
for Pig 5.

Pig Power error
(W)

Temperature
error (◦C)

point-to-mesh error
in mm

(mean, sd, min,
max, median, P95)

Dice
(%)

Sensitivity
(%)

PPV
(%)

5-1
(nom-0.5) 9.6, 23.0, 25.2,

28.8
3.1, 10.6,
6.3, 4.8

5.06, 3.10, 0.13,
13.35, 4.68, 10.96

45.6 41.0 51.3

(nom-0.1) 16.2, 40.6,
17.7, 15.9

1.4, 6.7,
6.9, 3.9

4.89, 2.72, 0.11,
11.75, 4.62, 9.57

48.7 49.4 48.0

(perso) 3.9, 10.9, 15.8,
15.8

16.4, 21.9,
6.8, 3.7

4.91, 2.85, 0.14,
12.45, 4.53, 9.96

47.9 45.8 50.2

(adv) 16.2, 40.6,
17.7, 15.9

1.4, 6.7,
6.9, 3.9

4.89, 2.73, 0.11,
11.75, 4.59, 9.58

48.6 48.9 48.3

5-2
(nom-0.5) 13.5, 21.2,

20.0, 25.2
6.8, 9.3, 5.3 5.34, 4.19, 0.09,

17.40, 4.28, 13.50
44.4 29.6 89.3

(nom-0.1) 19.6, 14.0, 6.8,
10.3

4.9, 6.4, 1.8 4.58, 3.80, 0.09,
16.64, 3.41, 12.45

51.0 36.9 82.6

(perso) 8.5, 13.2, 7.1,
9.9

19.1, 7.0,
1.8

4.89, 4.02, 0.08,
17.13, 3.68, 12.99

48.4 33.8 85.6

(adv) 19.6, 14.0, 6.8,
10.3

4.9, 6.4, 1.8 4.61, 3.82, 0.09,
16.64, 3.44, 12.51

50.8 36.5 83.2

5-3
(nom-0.5) 5.7, 19.5, 14.4 6.6, 3.1 5.39, 3.77, 0.12,

18.25, 4.74, 12.95
32.4 27.7 39.2

(nom-0.1) 12.1, 14.1, 9.2 4.9, 1.7 5.15, 3.60, 0.10,
17.36, 4.46, 11.83

35.9 34.8 37.2

(perso) 2.8, 13.8, 9.0 19.4, 1.1 5.26, 3.68, 0.16,
18.08, 4.60, 12.30

34.3 31.0 38.4

(adv) 12.1, 14.1, 9.2 4.9, 1.7 5.15, 3.59, 0.10,
17.36, 4.50, 11.83

35.8 34.2 37.4
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Table 7.14: Quantitative evaluation of model prediction on the shape of the com-
puted lesion. Results for Pig 1, Pig 2 and Pig 3 are reported here.

Pig sphericity volume
(mm3)

max diameter
(mm)

1 (GT) 0.71 10228 43.46
1 (nominal -0.5) 0.83 4137 27.48
1 (nominal -0.1) 0.84 5450 29.27

1 (perso) 0.83 4423 28.05
1 (advection) 0.82 8568 35.86

2-1 (GT) 0.77 13337 42.67
2-1 (nominal-0.5) 0.90 6344 24.41
2-1 (nominal-0.1) 0.90 8316 26.65

2-1 (perso) 0.90 6781 24.88

2-2 (GT) 0.45 12853 50.09
2-2 (nominal-0.5) 0.90 5406 23.96
2-2 (nominal-0.1) 0.90 7193 26.32

2-2 (perso) 0.90 5933 24.78

3-1 (GT) N.A N.A N.A
3-1 (nominal-0.5) 0.84 13662 33.76
3-1 (nominal-0.1) 0.83 17616 37.22

3-1 (perso) 0.84 16004 36.18
3-1 (advection) 0.83 17593 38.69

3-2 (GT) 0.61 18105 57.80
3-2 (nominal-0.5) 0.87 46048 48.96
3-2 (nominal-0.1) 0.86 55386 52.44

3-2 (perso) 0.86 53008 51.79

3-3 (GT) 0.69 21722 45.18
3-3 (nominal-0.5) 0.89 13059 32.89
3-3 (nominal-0.1) 0.89 17370 35.64

3-3 (perso) 0.89 15781 34.66
3-3 (advection) 0.87 19934 39.53
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Table 7.15: Quantitative evaluation of model prediction on the shape of the com-
puted lesion. Results for Pig 4 and Pig 5 are reported here.

Pig sphericity volume
(mm3)

max diameter
(mm)

4-1 (GT) 0.66 1849 23.94
4-1 (nominal-0.5) 0.89 10956 31.70
4-1 (nominal-0.1) 0.89 14436 34.73

4-1 (perso) 0.89 12574 33.03

4-2 (GT) 0.84 13066 35.86
4-2 (nominal - 0.5) 0.88 4001 22.98
4-2 (nominal - 0.1) 0.89 5621 24.94

4-2 (perso) 0.88 4755 23.77

4-3 (GT) 0.86 11322 35.19
4-3 (nominal-0.5) 0.86 8466 30.33
4-3 (nominal-0.1) 0.85 10778 32.65

4-3 (perso) 0.85 9441 31.50

5-1 (GT) 0.80 15849 42.59
5-1 (nominal-0.5) 0.88 12667 32.45
5-1 (nominal-0.1) 0.88 16040 35.19

5-1 (perso) 0.88 14486 33.97
5-1 (advection) 0.88 16040 35.19

5-2 (GT) 0.71 19129 51.72
5-2 (nominal-0.5) 0.80 6339 28.79
5-2 (nominal-0.1) 0.79 8562 31.62

5-2 (perso) 0.79 7552 30.43
5-2 (advection) 0.79 8398 31.21

5-3 (GT) 0.69 7432 35.89
5-3 (nominal-0.5) 0.85 5237 24.70
5-3 (nominal-0.1) 0.85 6939 26.76

5-3 (perso) 0.85 6001 25.98
5-3 (advection) 0.85 6799 26.76
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Summary and Perspectives

Essentially, all models are wrong,
but some are useful.

George E. P. Box
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Each chapter of this manuscript contains conclusions and perspectives on the
performed work. We now conclude on the main achievements of this PhD work.
Then, we suggest possible improvements related to this work.

8.1 Main Contributions

8.1.1 Modeling of Radiofrequency Ablation with LBM

We have presented an integrated framework for fast modeling of Radiofrequency
Ablation (RFA), which computes and predicts RFA interventional outcome in terms
of necrotic zone, delivered power and temperature distribution throughout the liver.
Our detailed computational model of the biophysical mechanisms (heat transfer,
cellular necrosis, hepatic blood flow) involved in RFA of abdominal tumors is based
on patient images. We focused on modeling heat propagation and cellular necrosis
based on a patient image while considering the heat sink effect of blood vessels and
porous circulation in the liver. It is implemented on Graphics Processing Units
(GPU) using the Lattice Boltzmann Method to take advantage of the computation
capacity of the Graphics Card and thus to reach near real-time computation. Fast
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computation is necessary to enable parameter estimation, to test the generalization
of a biophysical model in terms of tissue properties, but also for the expected clinical
applications. For interventional training, interactive therapy planning or procedure
guidance, faster than real-time computations would be ideal. We have not reached
this point yet, but with our LBM implementation, near real-time computation can
be achieved on a standard machine.

To resume, this thesis presents novel contributions in RFA computational simu-
lation, which can be summarized as follows:

1. A complete patient-specific geometry including hepatic venous and arterial
circulation system;

2. The patient-specific modeling including simultaneously the cooling effect of
large vessels and of the perfusion within the parenchyma;

3. The discretization method (LBM), which is fast and verified against an ana-
lytical solution.

8.1.2 Model Evaluation on Clinical Data

A necessary step before deploying model-based therapy planning or guidance in
clinical settings is a clinical validation with extensive data on larger populations to
evaluate the computational model of RFA. We showed that it will be possible due to
the level of integration of the proposed framework. As a first step towards clinical
application of a RFA computational model, this thesis presents a clinical evalua-
tion on a database of ten patients of the developed RFA computational simulation.
The results we obtained by comparing the real necrotic lesions from post-operative
images with the simulated lesions suggest a promising correlation. The effect of
the blood perfusion inside the liver parenchyma as well as the blood flow through
the large vessels has also been highlighted. Finally, a first experiment of tissue
parameter adjustment on one patient indicates the need of model personalization.
Our system constitutes a first step towards the clinical validation of RFA modeling,
which can be summarized as follows:

1. The evaluation of the proposed RFA model on a dataset of ten patients;

2. Experiments testing several hypotheses in the discussion: effect of the probe
position, effect of the segmentation;

3. The effect of the parenchyma and venous blood flow on the resulting necrotic
lesion (ablated tissue);

4. The importance of the personalization of the model biophysical parameters.

8.1.3 Towards Model Personalization

In clinical RFA of liver tumors, due to the large variety of diseases treated (cirrhosis,
fibrosis, etc) we cannot assume that the biophysical parameters are the same for all
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patients, and parameter personalization is therefore required. We showed that the
proposed method could be suitable to get patient-specific parameters from easily
accessible data. As we rely on the Fully Coupled LBM CFD solver, no advanced
meshing techniques are required. All the computations are directly done from pa-
tient images using LBM: heat propagation and cell death modeling as well as the
heat sink effect of blood vessels and porous circulation in the liver. Since we rely
on an implementation on graphics processing units (GPU): a forward simulation is
faster than real time. Two personalization strategies were tested and evaluated on
clinical and pre-clinical data.

First, an automatic estimation of the main parameters of the model is proposed
and evaluated on clinical data. In this case, the optimization algorithm minimizes
the error between the ground truth and the computed necrotic lesion. Therefore,
the method needs several tumors for validation. Promising results are achieved with
the use of patient-specific parameters on three patients and seven tumors ablated.

Then, a second personalization strategy was presented. In this case, the opti-
mization algorithm minimizes the error between the computed values of the probe
temperature and delivered power and the actual values measured by the RFA de-
vice. It is evaluated on a pre-clinical dataset of five swines. The personalization
of the sensitive tissue parameters has been performed on two surrogate tumors and
its predictive power evaluated on the remaining ten surrogate tumors. We showed
that key biophysical parameters can be estimated leading to promising predictions.
This method is based on intra-operative simple quantities (the probe temperature
and delivered power) that are readily available, in real-time, from the RF system
and therefore could be used for therapy guidance.

Even if the computation time does not allow an interventional set-up yet, we
showed that model personalization can be done based on intra-operative quantities.
It is a first step towards the personalization of RFA computation.

8.1.4 Pre-clinical Model Evaluation

The proposed model has been evaluated on pre-clinical data from a comprehensive
experimental set-up specially designed for radiofrequency ablation (RFA) model
validation. To the best of our knowledge, it constitutes the largest and most com-
prehensible in vivo study reported so far. The model considered is complete and
takes into account the main biophysical mechanisms (heat transfer, cellular necrosis,
hepatic blood flow) involved in RFA. The pre-clinical dataset includes five swines
and twelve ablations, leading to promising evaluation results, but more importantly
to several lessons learned. Our pre-clinical study was challenging to establish due
to the complexity of the experimental protocol. Many images from different modal-
ities and at different times of acquisition were involved. Before accounting for all
the information from the images into the RFA model, an impressive amount of pre-
processing was required: segmentation, vessel smoothing, probe modeling, probe
registration, image registration. Moreover, the setting of subject-specific boundary
conditions for the blood flows and blood pressure was not straightforward. Many
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errors are then involved, coming from the model as well as the pre-processing. How-
ever, thanks to the pre-clinical dataset used, we manage to identify most of them,
that will not be possible with a clinical study. The effects of the segmentation, the
probe registration, the post-operative lesion registration and the vessel smoothing
have been evaluated. At the modeling level, the effects of the advection, the probe
position, the cell death model as well as the sensitivity of the model biophysical
parameters were highlighted.

8.2 Perspectives

8.2.1 Model Improvements

Although the implemented model includes the main important biophysical mecha-
nisms involved in radiofrequency ablation of hepatic tumors (heat transfer, cellular
necrosis, hepatic blood flow), several improvements can be performed. For instance,
a weak coupling between the blood flow and the heat transfer model is currently
considered. The blood flow has an influence on the temperature distribution through
the WK model and through the reaction term in the Pennes model but the tem-
perature does not affect the blood flow. This weakly coupling model allows us to
speed up the calculations since the blood flow distribution is computed only once, at
the beginning of the simulation. But a full coupling of blood flow and heat transfer
models should give more accurate predictions, and enable us to consider coagulation
and water evaporation, thus improving on the presented model.

Furthermore, we realized through the pre-clinical study that the delivered power
is information that can be available easily in real-time from the RFA probe itself.
In the current implementation of the model, the probe temperature is imposed
through Dirichlet boundary conditions during the heating phase. We are then able
to simulate completely the delivered power but to simulate the probe temperature
during the cooling phases only. By imposing the delivered power instead of the
probe temperature, the model will be improved and we will be able to simulate the
probe temperature during the total duration of the procedure. Imposing Dirichlet
boundary condition on the power in the current LBM implementation is not straight-
forward, but it is worth investigating this aspect. It would be a more coherent way
of simulating RFA.

Finally, some interesting aspects to improve the ongoing RFA intervention have
not been considered in this work, but the current RFA model opens possibilities
to an automatic estimation of the optimal locations of the probe and the electrical
power to deliver in order to achieve a proper tumor ablation for example.

8.2.2 Model Validation

A study of the modeling errors is a necessary next step before using model-based
therapy in the clinical routine. Understanding how the pre-processing errors (due to
segmentation, post-to-pre registration, probe registration, vessels smoothing) prop-



8.3. Conclusion 141

agate to the final computational outcome is necessary. It will help to make the
model more realistic and to have a confidence measure on the resulting necrotic
lesion for example. Especially, we saw that the segmentation has a high impact
on the computed lesion as the blood flow computation through the CFD solver is
strongly correlated with the vessel segmentation. The post-to-pre and the probe
registrations influence the validation of the model output. Since modeling of RFA
is still an open challenge, the present RFA model is a valuable asset, and future
directions include a more throughout validation on a larger cohort of patients.

Moreover, the validation could be improved by the acquisition of good resolution
and reliable MR thermometric images. As data acquisition techniques improve
quickly, we believe that it would be possible in the near future. It could add more
information on the spatial extent of the temperature even far from the RFA probe
and thus further improve the validation.

8.2.3 Model Personalization

Model personalization is premature since the computation time has to be reduced
first. But we showed on clinical data that it can be done in the case of multiple
tumors inside the liver. Adaptation for RFA under image-guidance using intra-
operative image and no post-operative image has been considered. However, a
necessary step before deploying this method in clinical settings is a pre-clinical
validation to evaluate the computational model of RFA and also to consider potential
safety issues of the proposed application.

By evaluating the discrepancy in terms of temperature and delivered power on
pre-clinical data, we showed that intra-operative simple quantities (the probe tem-
perature and delivered power) can be used for personalization of model-based ther-
apy. Moreover, since this approach does not rely on ablated regions, the parameter
estimation leads to an increased confidence in the computed temperature, in the case
where no temperature map is available. It can estimate the temperatures around
each tumor at any time during the ablation. This additional information could be
used as surrogate to assess the amount and location of damaged tissue during the
intervention (cells receiving excessive heat but without being necrosed) surrounding
the ablated region, helping the clinical monitoring during the RFA intervention.

8.3 Conclusion

Several research groups have already proposed different frameworks for the modeling
of radiofrequency ablation (RFA). They have showed the potential benefits of such
models but they have also pointed out the challenges involved. Through this thesis
study, we showed that important advances have been made in the patient-specific
modeling of RFA of hepatic tumor. The results we obtained are promising and after
further future improvements, we believe that such personalized model could be used
in clinical environment. Although our research was focused mainly on the RFA
of hepatic tumor, the same pipeline of methods can be used for tumors located in
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other organs, and could be adapted easily to other percutaneous ablative techniques
like High Intensity Focus Ultrasound, Microwave Ablation or Laser Ablation for
example, according to the properties of the current ablation procedure considered.
However, more research is required to tackle the issues we faced at each step of the
work flow (segmentation, registration, model validation and so on...). The study
and validation of model simplification will be necessary before its integration in
the medical practice. As data acquisition techniques and our understanding of the
biophysical mechanisms involved in RFA improve quickly, such models will become
more accurate and more realistic in the near future. We believe that patient-specific
simulations will become a common tool in the therapy planning and guidance for a
specific patient.



List of Publications

The presented work led to several published and submitted publications as first
author.

Journal Papers

• [Audigier 2015a] This paper details the presented RFA model and its evalua-
tion on clinical data.
Audigier, Chloé and Mansi, Tommaso and Delingette, Hervé and Rapaka,
Saikiran and Mihalef, Viorel and Boctor, Emad and Choti, Michael and Ka-
men, Ali and Ayache, Nicholas and Comaniciu, Dorin. Efficient Lattice Boltz-
mann Solver for Patient-Specific Radiofrequency Ablation of Hepatic Tumors.
IEEE Transaction in Medical Imaging, 2015, pp. 14.

• Submitted This paper will present the pre-clinical study and the model evalu-
ation on the pre-clinical data.
Audigier, Chloé and Mansi, Tommaso and Delingette, Hervé and Rapaka,
Saikiran and Passerini, Tiziano and Mihalef, Viorel and Jolly, Marie-Pierre,
and Pop, Raoul and Diana, Michele and Soler, Luc and Kamen, Ali and Co-
maniciu, Dorin and Ayache, Nicholas. Comprehensive Pre-Clinical Evaluation
of a Multi-physics Model of Liver TumorRadiofrequency.

• Under Preparation This paper will present the pre-clinical protocol used for the
Radiofrequency Ablation of the surrogate tumors implanted on pig liver.

Peer-reviewed Conference Papers

• [Audigier 2013a] This paper details the presented RFA model and its validation
against analytical solution.
Audigier, Chloé and Mansi, Tommaso and Delingette, Hervé and Rapaka,
Saikiran and Mihalef, Viorel and Sharma, Puneet and Kamen, Ali and
Carnegie, Daniel and Boctor, Emad and Choti, Michael and Comaniciu, Dorin
and Ayache, Nicholas. Lattice Boltzmann Method for Fast Patient-Specific
Simulation of Liver Tumor Ablation from CT images. In Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2013 (pp. 323-
330). Springer Berlin Heidelberg.

• [Audigier 2014a] This paper presents an improved RFA model and its param-
eter estimation. The personalization is evaluated on clinical data.
Audigier, Chloé and Mansi, Tommaso and Delingette, Hervé and Rapaka,
Saikiran and Mihalef, Viorel, and Carnegie, Daniel and Boctor, Emad and
Choti, Michael and Kamen, Ali and Comaniciu, Dorin and Ayache, Nicholas.



144 Chapter 8. Summary and Perspectives

Parameter Estimation For Personalization of Liver Tumor Radiofrequency Ab-
lation. In MICCAI Workshop on Abdominal Imaging–Computational and
Clinical Applications 2014 (pp. 3-12).

• [Audigier 2015b] This paper details the evaluation of the RFA model on
pre-clinical data.
Audigier, Chloé and Mansi, Tommaso and Delingette, Hervé and Rapaka,
Saikiran and Passerini, Tiziano and Mihalef, Viorel and Pop, Raoul and
Diana, Michele and Soler, Luc and Kamen, Ali and Comaniciu, Dorin and
Ayache, Nicholas. Challenges to Validate Multi-physics Model of Liver Tumor
Radiofrequency Ablation from Pre-clinical Data. In MICCAI Workshop
on Computational Biomechanics for Medicine X, Springer International
Publishing, 2015, pp.29-40.

Patent Application

• [Audigier 2013b] This US patent describes the method for patient-specific mod-
eling of RFA.
Audigier, Chloé and Mansi, Tommaso and Mihalef, Viorel and Kamen, Ali and
Comaniciu, Dorin and Sharma, Puneet and Rapaka, Saikiran and Delingette,
Hervé and Ayache, Nicholas. System and Method for Patient Specific Model-
ing of Liver Tumor Ablation. US Patent App. 14/071,688, 5 nov. 2013.

• [Audigier 2014b] This US patent describes the interactive patient specific sim-
ulation of radiofrequency ablation therapy of RFA.
Audigier, Chloé and Mansi, Tommaso and Mihalef, Viorel and Kamen, Ali
and Comaniciu, Dorin and Sharma, Puneet and Rapaka, Saikiran. System
and Method for Interactive Patient Specific Simulation of Radiofrequency Ab-
lation Therapy. PCT/US2014/017886, 24 feb. 2014.

• [Audigier 2015c] This US patent describes personalized computation of tissue
ablation extent based on medical images.
Audigier, Chloé and Mansi, Tommaso and Rapaka, Saikiran and Kamen, Ali
and Mihalef, Viorel and Delingette, Hervé and Ayache, Nicholas and Comani-
ciu, Dorin. System and Method for Personalized Computation of Tissue Ab-
lation Extent Based on Medical Images. US2015/0242588 A1, 27 aug. 2015.

Invited Talks

• Chloé Audigier, Simulation of radio-frequency ablation. Second Scientific IHU
Day about Computational Simulation for Medicine, April, 3rd, 2013, IRCAD,
Strasbourg.



8.3. Conclusion 145

• Chloé Audigier, Parameter Estimation For Personalization of Liver Tumor
Radiofrequency Ablation. Siemens Corporate Research, December, 4th, 2014,
Princeton, USA.

Awards

• Outstanding Paper Award at the 6th International Workshop on Abdom-
inal Imaging: Computational and Clinical Applications, 2014.





Appendix A

The Lattice Boltzmann Method

A.1 The Boltzmann Equation

A.1.1 Boltzmann Transport Equation

A statistical description of a system can be explained by the distribution function
(probability of finding particles within a certain range of velocities at a certain range
of locations at a given time) f(r, c, t) where f(r, c, t) is the number of molecules
at time t positioned between r and r + dr which have velocities between c and
c+dc [Mohamad 2011]. An external force F will change the velocity of the molecule
from c to c + Fdt and its position from r to r + cdt. The number of molecules
f(r, c, t), before applying the external force is equal to the number of molecules
after the disturbance f(r + cdt, c + Fdt, t + dt) if no collisions take place between
the molecules:

f(r + cdt, c + Fdt, t+ dt)drdc− f(r, c, t)drdc = 0

However, collisions can take place between the molecules. The rate of change be-
tween final and initial status of the distribution function is called collision operator,
Ω. Hence:

f(r + cdt, c + Fdt, t+ dt)drdc− f(r, c, t)drdc = Ω(f)drdcdt

Dividing the above equation by drdcdt and as the limit dt→ 0, yields

df

dt
= Ω(f)

This equation states that the total rate of change of the distribution function is
equal to the rate of the collision. The total rate of change can be expressed as:

df =
∂f

∂r
dr +

∂f

∂c
dc +

∂f

∂t
dt

Dividing by dt:
df

dt
=
∂f

∂r

dr

dt
+
∂f

∂c

dc

dt
+
∂f

∂t

And:
df

dt
=
∂f

∂r
c +

∂f

∂c
a +

∂f

∂t
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where a is
dc

dt
, the acceleration and can be related to force F by Newton’s law:

a =
F

m

Therefore, the Boltzmann transport equation can be written as:

∂f

∂t
+
∂f

∂r
c +

∂f

∂c

F

m
= Ω(f)

The relations between the above equation and macroscopic quantities such as
fluid temperature T , fluid velocity vector u are:

T (r, t) =

∫
f(r, c, t)dc

T (r, t)u(r, t) =

∫
cf(r, c, t)dc

A.1.2 The BGKW Approximation

It is difficult to solve Boltzmann equation because the collision term is very compli-
cated. Bhatnagar, Gross and Krook (BGK) in 1954 introduced a simplified model
for collision operator:

Ω(f) =
1

τ
(feq − f)

where τ is called the relaxation factor. The local equilibrium distribution func-
tion is denoted by feq, which is Maxwell-Boltzmann distribution function.

After introducing BGKW approximation, the Boltzmann equation (without ex-
ternal forces) can be approximated as:

∂f

∂t
+ c.∇f =

1

τ
(feq − f)

In Lattice Boltzmann Method, the above equation is discretized and assumed
valid along specific directions. Hence, along a specific direction, the discrete Boltz-
mann equation can be written:

∂fi
∂t

+ c.∇fi =
1

τ
(feqi − fi)

This equation can be discretized as:

fi(r + ci∆t, t+ ∆t) = fi(r, t) +
∆t

τ
[feqi (r, t)− fi(r, t)]

Let us consider:
w =

∆t

τ

Then:
fi(r + ci∆t, t+ ∆t) = fi(r, t) + w[feqi (r, t)− fi(r, t)]
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A.1.3 Equilibrium Distribution Function

The key element in applying LBM for different problems is the equilibrium distri-
bution function feq. For particles moving in a medium with macroscopic velocity
u, the normalized Maxwell’s distribultion function can be written as:

feq =
T

2π/3
e−

3
2

(c−u)2

which can be written as,

feq =
T

2π/3
e−

3
2
c2e3(c.u−u2/2)

where c2 = c.c and u2 = u.u.
Using Taylor series expansion for ex and expanded around the stationary state:

feq =
T

2π/3
e−

3
2
c2 [1 + 3c.u− 3

2
u2 + ...]

Let us write the general form of the equilibrium function as:

feqi = Tωi[A+Bci.u + C(ci.u)2 +Du2 + ...]

where A, B, C, and D are constants and need to be determined. T stands for
scalar parameter (in our case: the fluid temperature), which is equal to summation
of all the distribution functions, i.e:

T =
N∑
i=1

feqi

where N is the number of lattice links.
In our case, we will just consider:

feqi = Tωi[A+Bci.u]

And let us consider:
ci = cei

where c = dr/dt and ei are vectors with coefficient 1 or -1.
We have the following properties (called the isotropic properties) which should

be true to keep the lattices symmetries [Chai 2013]:

N∑
i=1

ωi = 1

N∑
i=1

ωiei = 0

N∑
i=1

ωie
T
i .ei = c2

sI
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where 0 and I are respectively the zero matrix and identity matrix. The value
of cs vary from one configuration to another (depends on the number of lattices).
The last equation can also be written as :

N∑
i=1

ωiei,αei,β = c2
sδα,β

where δα,β is the Kronecker’s delta.
The last isotropic property is:

∀(α, β, γ) ∈ {1, ..,M}
N∑
i=1

ωiei,αei,βei,γ = 0

The first momentum equation is:

T =

N∑
i=1

feqi

By taking the sum, we get:
A = 1

The second momentum equation gives:

Tu =
N∑
i=1

feqi cei

So:

Tu =

N∑
i=1

Tωi[1 +Bci.u]cei =

N∑
i=1

Tωi[Bci.u]cei

By expanding the scalar product:

u = Bc2
N∑
i=1

ωi[
M∑
α=1

ei,α.uα]ei

where M is the spatial dimension of the problem. For each coordinates we get:

∀β ∈ [1, ..,M ] uβ = Bc2
N∑
i=1

ωi

M∑
α=1

ei,αuαei,β

∀β ∈ [1, ..,M ] uβ = Bc2
M∑
α=1

uα

N∑
i=1

ωiei,αei,β

According to the last isotropic properties, we get:

B =
1

c2
sc

2
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Due to the last isotropic property, we have:

N∑
i=0

feqi ei
2 = c2T

N∑
i=0

wi[1+ci.u]ei
2 = c2T [c2

s+
N∑
i=0

wici.uei
2] = c2T [c2

s+
N∑
i=0

wi

M∑
α=0

ci,αuα

M∑
β=0

e2
i,β]

The last term can be written as:

c3
N∑
i=0

wi

M∑
α=0

ei,αuα

N∑
β=0

e2
i,β = c3

M∑
β=0

M∑
α=0

N∑
i=0

wiei,αe
2
i,βuα = 0

The third momentum is:

Tc2c2
s =

N∑
i=0

feqi c
2ei

2

This could also be written in a matrix, since:

N∑
i=0

feqi
tei.ei = T

N∑
i=0

wi[1 + ci.u] tei.ei

As:

( tei.ei)α,β =

M∑
k=0

( tei)α,k(ei)k,β = ei,αei,β

Each element of the matrix can be written as:

(
N∑
i=0

feqi
tei.ei)α,β = T

N∑
i=0

wi[1+ci.u]ei,αei,β = Tc2
sδα,β +Tc

M∑
γ=0

uγ

N∑
i=0

wiei,γei,αei,β

The last term is zero, so:

Tc2c2
sI =

N∑
i=0

feqi c
2 tei.ei

A.2 Advection-Diffusion Equation

A.2.1 1D Formulation

In 1D, the advection-diffusion process can be written as,

∂T

∂t
+ u

∂T

∂x
= d

∂2T

∂x2

where u is the velocity and d the diffusion coefficient.
The Lattice Boltzmann equation for advection-diffusion problem is still the same:

fi(x+ ei∆x, t+ ∆t) = fi(x, t) + w[feqi (x, t)− fi(x, t)] (A.1)

with:
feqi (x, t) = ωiT (x, t)[1 +

eiu

cc2
s

]

where c =
∆x

∆t
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Chapman-Enskog Expansion

The advection-diffusion equation can be scaled spatially : x is set to x/ε, where ε
is a small parameter:

∂T

∂t
+ uε

∂T

∂x
= dε2∂

2T

∂x2

Now, if we scale time t with t/ε2 as it is done for diffusion equation, then the
first term on the left-hand side of the equation balances the diffusion term on the
right hand side of the equation, hence the effect of advection term will be neglected.
If we scale time t with 1/ε, in this case there will be a balance between the first
and the second term of the left-hand side of the equation, and the effect of diffusion
term will be neglected. To resolve this issue, we need to introduce dual time scales,
i.e:

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2

Hence, the first term in the above equation balances the advection term and the
second term balances the diffusion term.

For one-dimensional problem with N lattice velocity components (ci, i =

1, 2, .., N), the temperature can be expressed as,

T (x, t) =

N∑
i=1

fi(x, t)

Equation A.1 can be expanded using Taylor series:

fi(x+ci∆t, t+∆t) = fi(x, t)+
∂fi
∂t

∆t+
∂fi
∂x

ci∆t+
∆t2

2
(
∂2fi
∂t2

+2
∂2fi
∂t∂x

ci+
∂2fi
∂x2

c2
i )+0(∆t)3

Introducing scaling, keeping term up to ε2 we get:

fi(x+ cei∆t, t+ ∆t) = fi(x, t) + ε
∂fi
∂t1

∆t+ ε2∂fi
∂t2

∆t+ ε
∂fi
∂x

cei∆t

+
∆t2

2
(ε2∂

2fi
∂t21

+ 2ε2 ∂2fi
∂t1∂x

cei + ε2∂
2fi
∂x2

c2e2
i ) + 0(∆t)3

Substituting this equation in equation A.1:

ε
∂fi
∂t1

∆t+ε2∂fi
∂t2

∆t+ε
∂fi
∂x

cei∆t+
∆t2

2
(ε2∂

2fi
∂t21

+2ε2 ∂2fi
∂t1∂x

cei+ε
2∂

2fi
∂x2

c2e2
i )+0(∆t)3 = w[feqi (x, t)−fi(x, t)]

The distribution function can be expanded in terms of the small parameter ε as,

fi(x, t) = f0
i (x, t) + εf1

i (x, t) + ε2f2
i (x, t) +O(ε3)

Collecting the term of order ε0 gives:

f0
i (x, t) = feqi (x, t)
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Since:
N∑
i=1

feqi (x, t) = T (x, t)

Then:
N∑
i=1

f0
i (x, t) = T (x, t)

As:
N∑
i=1

fi(x, t) = T (x, t)

This first equation gives:

N∑
i=1

f ji (x, t) = 0 for j 6= 0

Collecting the term of order ε1 gives:

∂f0
i

∂t1
∆t+

∂f0
i

∂x
cei∆t = −wf1

i = −∆t

τ
f1
i

Hence:

∂f0
i

∂t1
+
∂f0

i

∂x
cei = −1

τ
f1
i

By taking the summation over all the values of i, we obtain:

N∑
i=1

∂f0
i

∂t1
+

N∑
i=1

∂f0
i

∂x
cei = −1

τ

N∑
i=1

f1
i

Finally:

N∑
i=1

∂f0
i

∂t1
+

N∑
i=1

∂f0
i

∂x
cei = 0 (A.2)

since the right hand side is zero, and according to the momentum equations:

N∑
i=1

f0
i = T

N∑
i=1

f0
i ci = Tu

The above equation formulate as:
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∂T

∂t1
+
∂(uT )

∂x
= 0 (A.3)

which is the advection equation.
Latter we will need the derivative of f1

i with respect to t1 and x:

−1

τ

∂f1
i

∂t1
=
∂2f0

i

∂t21
+

∂2f0
i

∂x∂t1
cei

and:

−1

τ

∂f1
i

∂x
=

∂2f0
i

∂t1∂x
+
∂2f0

i

∂x2
cei

These two equation gives:

−1

τ
(
∂f1

i

∂t1
+ cei

∂f1
i

∂x
) =

∂2f0
i

∂t21
+ 2

∂2f0
i

∂t1∂x
cei +

∂2f0
i

∂x2
ce2
i (A.4)

Collecting the term of order ε2 gives:

∂f1
i

∂t1
+
∂f0

i

∂t2
+
∂f1

i

∂x
cei +

∆t

2
(
∂2f0

i

∂t21
+ 2

∂2f0
i

∂t1∂x
cei +

∂2f0
i

∂x2
c2e2

i ) = −1

τ
f2
i

Using equation A.4

∂f0
i

∂t2
+ (

∆t

2
− τ)(

∂2f0
i

∂t21
+ 2

∂2f0
i

∂t1∂x
cei +

∂2f0
i

∂x2
c2e2

i ) = −1

τ
f2
i

Hence:

∂f0
i

∂t2
+ (

∆t

2
− τ)(

∂

∂t1
(
∂f0

i

∂t1
+
∂f0

i

∂x
ci) +

∂2f0
i

∂t1∂x
cei +

∂2f0
i

∂x2
c2e2

i ) = −1

τ
f2
i

Summing the above equation over all states:

N∑
i=1

∂f0
i

∂t2
+(

∆t

2
−τ)(

∂

∂t1
(

N∑
i=1

∂f0
i

∂t1
+

N∑
i=1

∂f0
i

∂x
cei)+

N∑
i=1

∂2f0
i

∂t1∂x
cei+

2∑
i=1

∂2f0
i

∂x2
c2e2

i ) = −1

τ

2∑
i=1

f2
i

The right hand side is zero as well as the second term of the left hand side
according to equation A.2.

N∑
i=1

∂f0
i

∂t2
+ (

∆t

2
− τ)(

2∑
i=1

∂2f0
i

∂t1∂x
cei +

N∑
i=1

∂2f0
i

∂x2
c2e2

i ) = 0

And:
N∑
i=1

f0
i e

2
i = Tc2

s

So we get:
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∂T

∂t2
+ (

∆t

2
− τ)(

∂2uT

∂t1∂x
+ c2c2

s

∂2T

∂x2
) = 0

Finally:

∂T

∂t2
+ c2c2

s(
∆t

2
− τ)

∂2T

∂x2
+ (

∆t

2
− τ)

∂2uT

∂t1∂x
= 0 (A.5)

So by adding these 2 equations A.3 + A.5, we get:

∂T

∂t
+
∂(uT )

∂x
+ ε(

∆t

2
− τ)

∂2uT

∂t1∂x
= c2c2

s(τ −
∆t

2
)
∂2T

∂x2

There is an error term: ε(∆t
2 −τ) ∂

2uT
∂t1∂x

. The relaxation parameter can be related
to the diffusion coefficient as:

d = (τ − ∆t

2
)c2
sc

2

A.2.2 3D Formulation

In 3D, the advection-diffusion process can be written as,

∂T

∂t
+ u.∇T = ∇.(d∇T )

where u is the velocity and d the diffusion coefficient.
The Lattice Boltzmann equation for advection-diffusion problem is still the same:

fi(p + ei∆p, t+ ∆t) = fi(p, t) + w[feqi (p, t)− fi(p, t)] (A.6)

where p = (x, y, z) and ∆p = ∆x = ∆y = ∆z with:

feqi (p, t) = ωiT (p, t)[1 +
ei.u

cc2
s

]

where c =
∆p

∆t

Chapman-Enskog Expansion

The advection-diffusion equation can be scaled spatially : p is set to p/ε, where ε
is a small parameter:

∂T

∂t
+ εu.∇T = ε2∇.(d∇T )

Now, as in 1D, we introduce dual time scales, i.e:

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
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For thre-dimensional problem with N lattice velocity components (ci, i = 0..N),
the temperature can be expressed as,

T (x, t) =
N∑
i=0

fi(x, t)

Equation A.6 can be expanded using Taylor series:

fi(p + cei∆t, t+ ∆t) = fi(p, t) +
∂fi
∂t

∆t+ ∆tcei.∇fi +
∆t2

2
(
∂2fi
∂t2

+ 2
∂

∂t
(cei.∇fi)

+c2∇∇ : tei.ei(fi)) + 0(∆t)3

where the operator : represents tensor contraction.
Introducing scaling, keeping term up to ε2 we get:

fi(p + cei∆t, t+ ∆t) = fi(p, t) + ε
∂fi
∂t1

∆t+ ε2∂fi
∂t2

∆t+ εei.∇fic∆t

+
∆t2

2
(ε2∂

2fi
∂t21

+ 2ε2 ∂

∂t1
(cei.∇fi) + ε2c2∇∇ : fi

tei.ei) + 0(∆t)3

Substituting this equation in equation A.6:

ε
∂fi
∂t1

∆t+ ε2∂fi
∂t2

∆t+ εei.∇fic∆t+
∆t2

2
(ε2∂

2fi
∂t21

+ 2ε2 ∂

∂t1
(cei.∇fi) + ε2c2∇∇ : fi

tei.ei) + 0(∆t)3

= w[feqi (p, t)− fi(p, t)]

The distribution function can be expanded in terms of the small parameter ε as:

fi(p, t) = f0
i (p, t) + εf1

i (p, t) + ε2f2
i (p, t) +O(ε3)

Collecting the term of order ε0 gives:

f0
i (p, t) = feqi (p, t)

Since:
N∑
i=0

feqi (p, t) = T (p, t)

Then:
N∑
i=0

f0
i (p, t) = T (p, t)

As:
N∑
i=0

fi(p, t) = T (p, t)

This first equation gives:

N∑
i=0

f ji (p, t) = 0 for j 6= 0
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Collecting the term of order ε1 gives:

∂f0
i

∂t1
∆t+ ∆tcei.∇f0

i = −wf1
i = −∆t

τ
f1
i

Hence:

∂f0
i

∂t1
+ cei.∇f0

i = −1

τ
f1
i

By taking the summation over all the values of i, we obtain:

N∑
i=0

∂f0
i

∂t1
+

N∑
i=0

ei.∇f0
i c = −1

τ

N∑
i=0

f1
i

Finally:

N∑
i=0

∂f0
i

∂t1
+∇(

N∑
i=0

ceif
0
i ) = 0 (A.7)

since the right hand side is zero, and according to the momentum equations:

N∑
i=0

f0
i = T

N∑
i=0

f0
i ci = Tu

Indeed it is assumed here that the fluid is incompressible:

∇.u = 0

The above equation formulate as:

∂T

∂t1
+ u.∇T = 0

which is the advection equation.
Latter we will need the derivative of f1

i with respect to t1 and space:

−1

τ

∂f1
i

∂t1
=
∂2f0

i

∂t21
+

∂

∂t1
(cei.∇f0

i )

and:
−1

τ
cei.∇f1

i =
∂

∂t1
(cei.∇f0

i ) + c2∇∇ : fi
tei.ei)

These two equation gives:

−1

τ
(
∂f1

i

∂t1
+ cei.∇f1

i ) =
∂2f0

i

∂t21
+ 2

∂

∂t1
(cei.∇f0

i ) + c2∇∇ : fi
tei.ei)
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Collecting the term of order ε2 gives:

∂f1
i

∂t1
+
∂f0

i

∂t2
+ cei.∇f1

i +
∆t

2
(
∂2f0

i

∂t21
+ 2

∂

∂t1
(cei.∇f0

i ) + c2∇∇ : f0
i

tei.ei) = −1

τ
f2
i

Using equation A.7:

∂f0
i

∂t2
+ (

∆t

2
− τ)(

∂2f0
i

∂t21
+ 2

∂

∂t1
(cei.∇f0

i ) + c2∇∇ : f0
i

tei.ei) = −1

τ
f2
i

Hence:

∂f0
i

∂t2
+ (

∆t

2
− τ)(

∂

∂t1
(
∂f0

i

∂t1
+ cei.∇f0

i ) +
∂

∂t1
(cei.∇f0

i ) + c2∇∇ : f0
i

tei.ei) = −1

τ
f2
i

Summing the above equation over all states:

N∑
i=0

∂f0
i

∂t2
+ (

∆t

2
− τ)(

∂

∂t1
(
N∑
i=0

∂f0
i

∂t1
+ c

N∑
i=0

ei.∇f0
i ) +

∂

∂t1
(
N∑
i=0

cei.∇f0
i ) + c2∇∇ :

N∑
i=0

fi
tei.ei))

= −1

τ

N∑
i=0

f2
i

The right hand side is zero as well as the second term of the left hand side
according to equation A.7.

N∑
i=0

∂f0
i

∂t2
+ (

∆t

2
− τ)(

∂

∂t1
(

N∑
i=0

cei.∇f0
i ) + c2∇∇ :

N∑
i=0

fi
tei.ei)) = 0

And:
N∑
i=0

f0
i

tei.ei = Tc2
sI

So we get:

∂T

∂t2
+ (

∆t

2
− τ)(

∂

∂t1
[∇.(uT )] + c2c2

s∇2T ) = 0

Finally:

∂T

∂t2
+ c2c2

s(
∆t

2
− τ)∇2T + (

∆t

2
− τ)

∂

∂t1
[∇.(uT )] = 0

So by adding the first equation times ε and the second one times ε2, we get:

∂T

∂t
+∇.(uT ) = c2c2

s(τ −
∆t

2
)∇2T + ε(τ − ∆t

2
)
∂

∂t1
[∇.(uT )]
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There is an error term: ε(τ − ∆t
2 ) ∂

∂t1
[∇.(uT )] . The relaxation parameter can

be related to the diffusion coefficient as:

d = (τ − ∆t

2
)c2
sc

2

Let us consider the error term:

E = ε(τ − ∆t

2
)
∂

∂t1
[∇.(uT )] = ε

d

c2
sc

2

∂

∂t1
[∇.(uT )]

To interpret this term, let us consider u as a constant, by taking the gradient of
the advection equation we found and multiplying by u , we get:

εu.∇(
∂T

∂t1
) + ε2u2∇2T = 0

Thus the error term can be written as:

E = −ε2 d

c2
sc

2
u2∇2T

And then the second equation becomes:

∂T

∂t
+∇.(uT ) = d(1− u2

c2
sc

2
)∇2T

Therefore, the error term amounts to an undesired correction to the diffusion coeffi-
cient, proportional to the square of the advection velocity [Chopard 2009]. Parame-
ters d and u are given by the physical problem, they are independent of the chosen
time and space discretization ∆p and ∆t. Thus the correction to the diffusion co-
efficient scale as ( ∆t

∆p)2. If we take the limits ∆t → 0 and ∆p → 0, with ∆p2/∆t

constant (natural limit for a diffusion process), then the correction to the diffusion
coefficient is of order O(∆t). The scheme is thus first order accurate in time and
second order accurate in space. But if we take ∆t → 0 and ∆p → 0, with ∆p/∆t

constant, then the error is of order O(ε0) and the scheme is zeroth order accurate.
The error term can be eliminated if we consider:

Ω(fi) =
1

τ
(feqi − fi) + tici.δji

A.3 Implementation

We use D3Q7 configuration, and for each lattice site, the seven distribution functions
are calculated according to :

fi(r + ci∆t, t+ ∆t) = fi(r, t) + w[feqi (r, t)− fi(r, t)]
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with:

w =
∆t

τ

τ =
∆t

2
+

d

c2
sc

2

feqi = ωiT (p, t)[1 +
ei.u

cc2
s

]

c =
∆p

∆t

T (p, t) =
6∑
i=0

fi(p, t)

where:

c2
s =

1

4

ω0 =
1

4

ωi =
1

8
for i 6= 0

e0 = (0, 0, 0)

e1 = (1, 0, 0)

e2 = (−1, 0, 0)

e3 = (0, 1, 0)

e4 = (0, 1, 0)

e5 = (0,−1, 0)

e6 = (0, 0, 1)

e7 = (0, 0,−1)

A.4 Advection-Diffusion-Reaction Equation

We are interested in the 3D advection-diffusion-reaction equation:

∂T

∂t
+ u.∇T = ∇.(d∇T ) + S(T )

where S(T ) = R(T − T0) in our case but can be any fonction of T.
In this case the lattice Boltzmann equation is changed to:

fi(p + ei∆p, t+ ∆t) = fi(p, t) + w[feqi (p, t)− fi(p, t)] + ∆tωiS (A.8)

Chapman-Enskog Expansion

The advection-diffusion-reaction equation can be scaled spatially : p is set to p/ε,
where ε is a small parameter and a dual time scale is introduced:



A.4. Advection-Diffusion-Reaction Equation 161

ε
∂T

∂t1
+ ε2 ∂T

∂t2
+ εu.∇T = ε2∇.(d∇T ) + S

The fonction S should also be expanded in terms of the small parameter ε as:

S = S0 + εS1 + ε2S2 +O(ε3)

Introducing this expression in the above equation yields:

ε
∂T

∂t1
+ ε2 ∂T

∂t2
+ εu.∇T = ε2∇.(d∇T ) + S0 + εS1 + ε2S2

Clearly, it can be noted that S0 = 0.
For thre-dimensional problem with N lattice velocity components (ci, i = 0..N),

the temperature can be expressed as:

T (x, t) =
N∑
i=0

fi(x, t)

Equation A.8 can be expanded using Taylor series:

fi(p + cei∆t, t+ ∆t) = fi(p, t) +
∂fi
∂t

∆t+ ∆tcei.∇fi

+
∆t2

2
(
∂2fi
∂t2

+ 2
∂

∂t
(cei.∇fi) + c2∇∇ : tei.ei(fi)) + 0(∆t)3

where the operator : represents tensor contraction.
Introducing scaling, keeping term up to ε2 we get:

fi(p + cei∆t, t+ ∆t) = fi(p, t) + ε
∂fi
∂t1

∆t+ ε2∂fi
∂t2

∆t+ εei.∇fic∆t

+
∆t2

2
(ε2∂

2fi
∂t21

+ 2ε2 ∂

∂t1
(cei.∇fi) + ε2c2∇∇ : fi

tei.ei) + 0(∆t)3

Substituting this equation in equation A.8:

ε
∂fi
∂t1

∆t+ ε2∂fi
∂t2

∆t+ εei.∇fic∆t+
∆t2

2
(ε2∂

2fi
∂t21

+ 2ε2 ∂

∂t1
(cei.∇fi) + ε2c2∇∇ : fi

tei.ei) + 0(∆t)3

= w[feqi (p, t)− fi(p, t)] + ∆tωi(εS1 + ε2S2)

The distribution function can be expanded in terms of the small parameter ε as:

fi(p, t) = f0
i (p, t) + εf1

i (p, t) + ε2f2
i (p, t) +O(ε3)

Collecting the term of order ε0 gives:

f0
i (p, t) = feqi (p, t)

Since:
N∑
i=0

feqi (p, t) = T (p, t)
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Then:
N∑
i=0

f0
i (p, t) = T (p, t)

As:
N∑
i=0

fi(p, t) = T (p, t)

This first equation gives:

N∑
i=0

f ji (p, t) = 0 for j 6= 0

Collecting the term of order ε1 gives:

∂f0
i

∂t1
∆t+ ∆tcei.∇f0

i = −wf1
i + ∆tωiS1 = −∆t

τ
f1
i + ∆tωiS1

Hence:

∂f0
i

∂t1
+ cei.∇f0

i = −1

τ
f1
i + ωiS1

By taking the summation over all the values of i, we obtain:

N∑
i=0

∂f0
i

∂t1
+

N∑
i=0

ei.∇f0
i c = −1

τ

N∑
i=0

f1
i + S1

Finally:

N∑
i=0

∂f0
i

∂t1
+∇(

N∑
i=0

ceif
0
i ) = S1 (A.9)

Since the first term of right hand side is zero, and according to the momentum
equations:

N∑
i=0

f0
i = T

N∑
i=0

f0
i ci = Tu

Indeed it is assumed here that the fluid is incompressible:

∇.u = 0

The above equation formulate as:
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∂T

∂t1
+ u.∇T = S1

which is the advection equation.
Latter we will need the derivative of f1

i with respect to t1 and space:

−1

τ

∂f1
i

∂t1
=
∂2f0

i

∂t21
+

∂

∂t1
(cei.∇f0

i )

and:
−1

τ
cei.∇f1

i =
∂

∂t1
(cei.∇f0

i ) + c2∇∇ : fi
tei.ei)

These two equation gives:

−1

τ
(
∂f1

i

∂t1
+ cei.∇f1

i ) =
∂2f0

i

∂t21
+ 2

∂

∂t1
(cei.∇f0

i ) + c2∇∇ : fi
tei.ei) (A.10)

Collecting the term of order ε2 gives:

∂f1
i

∂t1
+
∂f0

i

∂t2
+cei.∇f1

i +
∆t

2
(
∂2f0

i

∂t21
+2

∂

∂t1
(cei.∇f0

i )+c2∇∇ : f0
i

tei.ei) = −1

τ
f2
i +ωiS2

Using equation A.10:

∂f0
i

∂t2
+ (

∆t

2
− τ)(

∂2f0
i

∂t21
+ 2

∂

∂t1
(cei.∇f0

i ) + c2∇∇ : f0
i

tei.ei) = −1

τ
f2
i + ωiS2

Hence:

∂f0
i

∂t2
+(

∆t

2
−τ)(

∂

∂t1
(
∂f0

i

∂t1
+cei.∇f0

i )+
∂

∂t1
(cei.∇f0

i )+c2∇∇ : f0
i

tei.ei) = −1

τ
f2
i +ωiS2

Summing the above equation over all states:

N∑
i=0

∂f0
i

∂t2
+ (

∆t

2
− τ)(

∂

∂t1
(
N∑
i=0

∂f0
i

∂t1
+ c

N∑
i=0

ei.∇f0
i ) +

∂

∂t1
(
N∑
i=0

cei.∇f0
i ) + c2∇∇ :

N∑
i=0

fi
tei.ei))

= −1

τ

N∑
i=0

f2
i + S2

The first term of the right hand side is zero and according to equation A.9:

N∑
i=0

∂f0
i

∂t2
+ (

∆t

2
− τ)(

∂S1

∂t1
+

∂

∂t1
(

N∑
i=0

cei.∇f0
i ) + c2∇∇ :

N∑
i=0

fi
tei.ei)) = S2
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And:
N∑
i=0

f0
i

tei.ei = Tc2
sI

So we get:

∂T

∂t2
+ (

∆t

2
− τ)(

∂S1

∂t1
+

∂

∂t1
[∇.(uT )] + c2c2

s∇2T ) = S2

Finally:

∂T

∂t2
+ c2c2

s(
∆t

2
− τ)∇2T + (

∆t

2
− τ)

∂

∂t1
[∇.(uT ) + S1] = S2

So by adding the first equation times ε and the second one times ε2, we get:

∂T

∂t
+ u.∇T = c2c2

s(τ −
∆t

2
)∇2T + ε(τ − ∆t

2
)
∂

∂t1
[∇.(uT ) + εS1] +R

There is an error term: ε2(τ − ∆t
2 ) ∂

∂t1
[∇.(uT + S1)] . The relaxation parameter

can be related to the diffusion coefficient as:

d = (τ − ∆t

2
)c2
sc

2

A.5 Boundary Condition

We use Neumann Boundary condition, with an assumption of zero flux through the
boundary. Thus, if r is on the boundary and r+ ceα∆t is outside the domain, then:

for ∆ ≥ 1
2

fᾱ(r, t+ ∆t) =
1

2∆
[f̂α(r, t+ ∆t)] +

2∆− 1

2∆
[f̂ᾱ(r, t+ ∆t)]

for ∆ < 1
2

fᾱ(r, t+ ∆t) = 2∆[f̂α(r, t+ ∆t)] + (1− 2∆)[f̂α(r + ceᾱ∆t, t+ ∆t)]

where eᾱ = −eα and f̂i(r, t) = fi(r, t) + w[feqi (r, t)− fi(r, t)]
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Computational Modeling of Radiofrequency Ablation for the
Planning and Guidance of Abdominal Tumor Treatment

Abstract: The outcome of radiofrequency ablation (RFA) treatment for abdom-
inal tumors is challenged by lack of patient-specific planning. In particular, the
presence of blood vessels, time- and spatial-varying thermal conductivity makes the
prediction of the extent of ablated tissue difficult. This results in possible incom-
plete treatments and increased risks of recurrence and may compromise the overall
outcome. By providing predictive tools, biophysical models can help clinicians to
plan and guide the procedure for an effective treatment. For such models to be
useful in clinical routine, the computation has to be fast and accurate.

We first present a detailed computational model of the biophysical mechanisms
involved in RFA of hepatic tumors such as heat diffusion, cellular necrosis and
hepatic blood flow. This model simulates the extent of ablated tissue given the
probe location and some biological parameters such as tissue conductivity or heat
capacity. The model is based on medical images, from which patient-specific models
of the liver, visible vessels and tumors are build. A new approach for solving these
partial differential equations based the Lattice Boltzmann Method is introduced.
The model is implemented with a material speed-up thanks to the graphics card to
reach near real-time computation. The resulting simulations are thoroughly verified
against an analytical solution.

In a second step, we aim at validating the model. It is first evaluated against
clinical data of patients who underwent RFA of liver tumors. The importance of
taking into account the blood flow and of estimating the parameters is highlighted.
Then, a comprehensive pre-clinical experiment combining multi-modal, pre- and
post-operative anatomical and functional images, as well as the interventional mon-
itoring of the temperature and delivered power is presented. This enables an end-to-
end pre-clinical validation framework that considers the most comprehensive data
set for model validation.

Then, we automatically estimate patient-specific parameters using inverse prob-
lem algorithms, to better predict the ablated tissue. This personalization strategy
has been tested and evaluated on seven ablations from three clinical cases. From
the pre-clinical study, we can go further in the personalization by comparing the
simulated temperature and delivered power with the actual temperature and deliv-
ered power measured during the procedure. This second personalization strategy
has been tested and evaluated on twelve ablations from five pre-clinical cases. These
contributions have led to promising results, and open new perspectives in RFA guid-
ance and planning.
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