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Résumé court en français:

La prise de décision stratégique concernant des ressources de valeur devrait

tenir compte du degré d’aversion au risque. D’ailleurs, de nombreux domaines

d’application mettent le risque au cœur de la prise de décision. Toutefois, ce n’est

pas le cas de l’apprentissage automatique. Ainsi, il semble essentiel de devoir

fournir des indicateurs et des algorithmes dotant l’apprentissage automatique de

la possibilité de prendre en considération le risque dans la prise de décision. En

particulier, nous souhaiterions pouvoir estimer ce dernier sur de courtes séquences

dépendantes générées à partir de la classe la plus générale possible de processus

stochastiques en utilisant des outils théoriques d’inférence statistique et d’aversion

au risque dans la prise de décision séquentielle. Cette thèse étudie ces deux

problèmes en fournissant des méthodes algorithmiques prenant en considération

le risque dans le cadre de la prise de décision en apprentissage automatique. Un

algorithme avec des performances de pointe est proposé pour une estimation

précise des statistiques de risque avec la classe la plus générale de processus

ergodiques et stochastiques. De plus, la notion d’aversion au risque est introduite

dans la prise de décision séquentielle (apprentissage en ligne) à la fois dans les

jeux de bandits stochastiques et dans l’apprentissage séquentiel antagoniste.

English Title: Machine Learning for Decision-Making Under Uncertainty

Short English Abstract:

Strategic decision-making over valuable resources should consider risk-averse

objectives. Many practical areas of application consider risk as central to decision-

making. However, machine learning does not. As a result, research should provide

insights and algorithms that endow machine learning with the ability to consider

decision-theoretic risk. In particular, in estimating decision-theoretic risk on short

dependent sequences generated from the most general possible class of processes

for statistical inference and through decision-theoretic risk objectives in sequential

decision-making. This thesis studies these two problems to provide principled

algorithmic methods for considering decision-theoretic risk in machine learning.

An algorithm with state-of-the-art performance is introduced for accurate esti-

mation of risk statistics on the most general class of stationary–ergodic processes



ii

and risk-averse objectives are introduced in sequential decision-making (online

learning) in both the stochastic multi-arm bandit setting and the adversarial

full-information setting.

Mots clés: Apprentissage Automatique, Algorithme d’apprentissage incrémen-

tal, Prise de Décision (statistique), Bootstrap (statistique), Risque, Prise de

Décision, Optimisation, Bandit manchot (Mathématiques)

English Keywords: Machine Learning, Online Learning, Sequential Decision-

Making, Bootstrap, Risk-Aversion, Decision-Making, Multi-Arm Bandit, Learning

with Expert Advice
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Abstract

Strategic decision-making over valuable resources should consider risk-averse ob-

jectives. Many practical areas of application consider risk as central to decision-

making. However, machine learning does not. As a result, research should provide

insights and algorithms that endow machine learning with the ability to consider

decision-theoretic risk. The thesis highlights the impact of risk-averse objectives in

machine learning, while the algorithms are meant to introduce principled methods

for integrating decision-theoretic risk through accurate estimation of risk statistics

and risk-averse objectives in sequential decision-making (online learning). Many

machine learning algorithms for decision making focus on estimating performance

with regard to the expectation. In many practical problems, measuring perfor-

mance according to the expectation may not be very meaningful. This thesis

provides principled algorithmic methods for accurate estimation of risk statistics

on the most general class of stationary–ergodic processes and risk-averse objec-

tives are introduced in sequential decision-making (online learning) in both the

stochastic multi-arm bandit setting and the adversarial full-information setting.
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Chapter 1

Introduction

Risk is central to decision-making in many domains. A non-exhaustive list includes

economics [Knight, 2012], insurance [Dorfman and Cather, 2012], banking [Bessis,

2011], portfolio management [Grinold and Kahn, 1999], investments [Crouhy et al.,

2014], financial institution risk [Hull, 2012], enterprise risk [Lam, 2014], operations

management [Ritchie and Angelis, 2011], business management [Pritchard et al.,

2014], engineering [Ayyub, 2014] and environmental science [O’Riordan, 2014].

Machine learning applications to both decision-making and decision-support are

growing. Further, with each successful application, learning algorithms are gain-

ing increased autonomy and control over decision-making. As a result, research

into intelligent decision-making algorithms continues to improve. For example,

the Stanford Research Institute’s Cognitive Assistant that Learns and Organizes

project focuses on creating an intelligent desktop assistant with the capability to

learn and reason. The aim is for an intelligent virtual assistant to autonomously

handle tasks. Another example is Watson, which after outperforming the top

players in the human question–answer game Jeopardy, was repositioned as an

intelligent decision support tool. Current application areas include financial plan-

ning, drug research, medicine and law. Many of these application domains deal

with an underlying randomness of choice distributions that is unknown a priori.

Specific example problems include fundamental infrastructure repairs [Li et al.,

2014], predicting severe weather [McGovern et al., 2014], predicting aviation tur-

bulence [Williams, 2014], tax audits [Kong and Saar-Tsechansky, 2014] and privacy

breach detection [Menon et al., 2014]. The performance of machine learning al-

gorithms directly depends on how explicit the unique aspects of the domain are

formalized [Rudin and Wagstaff, 2014]. Considering the increasing autonomy of

machine learning algorithms in decision-making, it is natural to consider notions
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of decision-theoretic risk with respect to this unknown randomness. When applied

to decision-making, machine learning algorithms do not generally consider risk ob-

jectives. Including risk formally within the learning objective allows the algorithm

to weight decisions according to their risk. This thesis introduces machine learn-

ing algorithms that consider such risk-averse objectives. In particular, this thesis

considers accurate estimation of complex risk statistics on dependent processes,

managing risk-aversion under partial-information in sequential decision-making,

and exploiting full-information sequential decision-making with the protection of

a benchmark.

This thesis studies decision-theoretic risks and does not directly study, propose

or evaluate risk measures (for a full review of statistical measures of risk, please see

Schied [2006], Rockafellar [2007]). The aim is to highlight risk-averse objectives in

machine learning, when machine learning is used for decision-making or decision-

support. The concept of risk covers many domains with diverse interpretations

(for a full review of decision-theoretic risk, please see e.g., Peterson [2009], Gilboa

[2009]). Willett [1901] referred to it as an “objectified uncertainty regarding the oc-

currence of an undesirable event”. Knight [1921] described risk as “knowing with

certainty the mathematical probabilities of possible outcomes”, and uncertainty

as when “the likelihood of outcomes cannot be expressed with any mathematical

precision”. Machine learning literature often refers to the “risk” of learning, but

this is related to the sub-optimal performance due to the uncertainty intrinsically

present in (random) samples [Hastie et al., 2009]. This thesis only considers risk

observing objectives and their impact on machine learning algorithms used for

decision-making. Two popular, well-studied, risk objectives come from economics

and finance. The primary economic model for decision-making is expected utility

theory [Neumann and Morgenstern, 1947]. Expected utility theory maps utilities

over observations and requires an explicit utility function. Extensions introduce

alternatives for how utility functions are specified. The general principle of map-

ping values to utilities remains. The financial literature bases its decision-making

model on a simpler principle of trading-off risk versus reward. Initially introduced

in the literature by Markowitz [1952] as the Mean–Variance model, the risk–reward
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Figure 1.1: Fully specified distributions.

principle is a natural way to characterize a preference over risks. Extensions to

the Mean–Variance model maintain the risk–reward trade-off, while considering

alternatives to the mean and variance. The advantage in using the Mean–Variance

model is that it is composed of unbiased estimators and allows for a natural and

intuitive notion of a risk preference [Markowitz, 2014]. It also allows a consis-

tent preference ordering over the set of all probability distributions with bounded

support in a finite real interval [Chiu, 2007]. Markowitz [2014] specifically showed

consistency for the Mean–Variance objective for quadratic utilities with arbitrarily

distributed rewards, arbitrary utilities with normally distributed rewards and log

normally distributed rewards according to a Pratt [1964] coefficient of absolute risk

aversion. Consider the evaluation of the fully specified distributions in Figure 1.1.

The standard expectation maximization objective used in machine learning algo-

rithms for decision-making prefers the Green distribution. The variance-averse

objective prefers the Red distribution, and the Mean–Variance objective prefers

the Blue distribution.

These models can be linked by assuming that the specific Mean–Variance

model approximates expected utility [Levy and Markowitz, 1979]. Though both

models are often criticized, subsequent extensions have not replaced their un-

derlying principles. Additionally, asset management and trading models within

finance also consider “hedging” rewards through measurable benchmarks [Bychuk

and Haughey, 2011]. The principle is to reduce risk by anticipating the possi-

ble underperformance to some acceptable benchmark performance. Rather than
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mapping values to utilities or trading-off rewards against risk, “hedging” focuses

on reducing risk exposure. Under this model, risk is limited to the performance of

the benchmark. Statistical tools are required to reduce uncertainty and improve

decision-making.

Consider the case where only a limited number of dependent samples are avail-

able. Estimation of risk-averse objectives on limited samples from a dependent

sequence is challenging, yet critical for decision-making under uncertainty. Many

estimators are designed for specific statistics or make restrictive structural as-

sumptions. They also require accurate parameter selection to guarantee consis-

tent estimates. This can be challenging when the true measure of the statistic is

unknown or the full correlation structure of the data is unspecified. Further, with-

out a correct model, these procedures may fail. In some cases, simple asymptotic

estimators, that only rely on the samples, provide the most efficient estimates.

In particular, independent and identically distributed (i.i.d.) data has no corre-

lation structure, so unbiased estimates for simple moment statistics, such as the

mean and variance, are fast. Dependent processes can be much more challeng-

ing due to their correlation structure. This additional structure might result in

complex behaviors that might not even be revealed, especially in short samples.

Risk statistics, such as the “max” or “min” of a distribution, can also increase

estimation difficulty. These challenges might require much longer observation se-

quences for accurate estimation, or multiple independent samples of dependent

observation sequences, which may not be possible. One example statistic is the

maximum drawdown, which is much harder to estimate because it is an extremum

statistic for a distribution conditioned on the ordering and length of a sequence. It

measures the distance between a peak and subsequent nadir over an observation

sequence (for more information, please see e.g., Casati and Tabachnik [2013]).

Further, restrictive assumptions on the process limit applicability of estimation

tools in the case where the characteristics of the process are unknown and limit

consistency to specific processes. Careful selection of estimation tools is required

when decision-making to avoid restricting the measurability of statistics or events

of interest. Chapter 2 presents a novel nonparametric Bootstrap approach based
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on replacements and an information-theoretic iterative Bootstrap algorithm that

applies to the most general class of dependent processes possible, with performance

validated on the challenging maximum drawdown statistic.

As noted earlier, sequential decision-making algorithms rely on policies to eval-

uate choices. We study the impact of risk-averse objectives on sequential decision-

making by studying two information regimes. First, Chapter 3 studies how policies

manage risk-averse objectives in the partial information setting, where observa-

tions are only revealed from selected choices. This setting intrinsically captures

the exploration–exploitation dilemma, which is the challenge of exploring choices

to improve estimation confidence, while exploiting the best choice observed so far.

A natural choice for this study is the stochastic environment, which fixes the distri-

butions generating observations and does not give the environment enough power

to confound our results. Next, Chapter 4 studies the full-information setting. It is

common to use parametric models or make restrictive assumptions on the process

generating observations in this setting, so we study an adversarial environment,

where no statistical assumptions are made on the process. This allows us to con-

sider any possible class of processes generating observations. Existing algorithms

applicable to adversarial full-information setting can become quite complicated

and ad hoc depending on the particular problem setting. These special-purpose

policies may or may not consider an intuitive notion of decision-theoretic risk and

may ultimately be limited by their particular application. Chapter 4 introduces an

intuitive and flexible structure that lower bounds risk to a fixed, changing or adap-

tive benchmark, that can even learn, for any possible process, without restrictions

on its problem setting.

Three specific problems are studied in this thesis, with state-of-the-art algo-

rithms presented in each case. First, accurate estimation of complex statistics

for stationary processes, where an algorithm is introduced that significantly out-

performs all state-of-the-art nonparametric approaches on a complex dependent

process and several real datasets. Next, the problem of managing a risk-averse

objective while managing the exploration–exploitation dilemma, where two algo-

rithms are presented. Finally, the problem of risk-aversion in the most general
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adversarial full-information setting, where a flexible state-of-the-art algorithm is

introduced to provide a principled and flexible structure to “hedge” risk with a

benchmark.

Structure of the Thesis

Chapter 2: The Replacement Bootstrap

Applications that deal with time-series data often require evaluating complex

statistics for which each time series is essentially one data point. When only

a few time series are available, Bootstrap methods are used to generate additional

samples that can be used to evaluate empirically the statistic of interest. In this

chapter, we introduce a novel replacement Bootstrap principle and R-Boot, an it-

erative replacement Bootstrap algorithm, which is shown to have some asymptotic

consistency guarantees under the only assumption that the time series are station-

ary and ergodic. This contrasts previously available results that impose mixing or

finite-memory assumptions on the data. R-Boot is empirically evaluated on both

simulated and real datasets, demonstrating its capability on a practically relevant

and complex extrema statistic.

Chapter 3: Risk-Averse Multi-Arm Bandits

Stochastic multi–armed bandits solve the Exploration–Exploitation dilemma and

ultimately maximize the expected reward. Nonetheless, in many practical prob-

lems, maximizing the expected reward is not the most desirable objective. In this

chapter, we introduce a novel setting based on the principle of risk–aversion where

the objective is to compete against the arm with the best risk–return trade–off.

This setting proves to be intrinsically more difficult than the standard multi-arm

bandit setting due in part to an exploration risk which introduces a regret as-

sociated to the variability of an algorithm. Using variance as a measure of risk,

we introduce two new algorithms, investigate their theoretical guarantees, and re-

port preliminary empirical results. While MV-LCB shows a small regret of order
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O
(

log T
T

)
on “easy” problems, we showed that it has a constant worst–case regret.

On the other hand, we proved that ExpExp has a vanishing worst–case regret at

the cost of worse performance on “easy” problems. To the best of our knowledge

this is the first work introducing risk–aversion in the multi–armed bandit setting

and it opens a series of interesting questions.

Chapter 4: Online Learning with a Benchmark

We consider the problem of online optimization, where a learner chooses a decision

from a given decision set and suffers some loss associated with the decision and

the state of the environment. The learner’s objective is to minimize its cumulative

regret against the best fixed decision in hindsight. Over the past few decades nu-

merous variants have been considered, with many algorithms designed to achieve

sub-linear regret in the worst case. However, this level of robustness comes at a

cost. Proposed algorithms are often over-conservative, failing to adapt to the ac-

tual complexity of the loss sequence which is often far from the worst case. In this

chapter we introduce (A,B)-Prod, a general-purpose algorithm which receives a

learning algorithm A and a benchmark strategy B as inputs and guarantees the

best regret between the two. We derive general theoretical bounds on the regret of

the proposed algorithm. Further, we evaluate the algorithm with the benchmark

set to algorithms that exploit “easy” data, with worst-case protection provided by

the structure of (A,B)-Prod. Then we discuss its implementation in a wide range

of applications, notably solving the COLT open problem of learning with shifting

experts. Finally, we provide numerical simulations in the setting of prediction

with expert advice with comparisons to the state-of-the-art.
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1 Introduction

Decision making requires full distributional knowledge for each of the actionable

choices a priori [Peterson, 2009] to execute a policy. In practice, it is not always

the case that full distributional knowledge is available. Policy evaluation can be

problematic when statistical properties of the process are unknown, and must be

estimated. In this chapter, we remove decision-making and study estimating risk

over a general class of processes and complex statistics for decision support.

In many practical applications, such as in finance [Chatfield, 2013], there is

generally only a single sequence available for analysis, which is only one of many

possible histories that could have been generated by the underlying process. Some-

times it is also the case that these sequences are composed of multiple regimes or

complex behaviors that are not i.i.d. or stationary, but the result of linear and
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nonlinear dependencies. Specific patterns or behaviors in the resulting dependent

sequence can be very hard to analyze. In some cases, the sequence length is too

short to fully exhibit these complex dynamics or these patterns are low probability

events that require very long histories to appear. In many practical applications,

such as measuring rare events in financial time series [Taleb, 2007] or rare sequence

variants in genome sequencing [Steinthorsdottir et al., 2014, Hu et al., 2014], this is

not feasible. As a result, when only a single short dependent sequence is observed,

estimating complex statistics can be very challenging.

In absence of the process or additional samples, the Bootstrap principle treats

the sample distribution as the true distribution, approximating the variability of

the true distribution by sampling, with replacement, from the observed sample.

The Bootstrap principle achieves excellent estimation performance without mak-

ing restrictive limiting assumptions on the process. The original i.i.d. Bootstrap

[Efron, 1979] assumes independence of sample observations, so it is inconsistent

on dependent data [Lahiri, 1999]. Dependent data variations are a popular ap-

proach to estimating complex statistics from a single short dependent sequence

of observations. They apply more generally, while only requiring strong exponen-

tial mixing rates, where the correlations in observation data decay at exponential

rates with a growing sample size [Lahiri, 2003] (for a comprehensive review of these

methods, see e.g., Berkowitz and Kilian [2000], Bose and Politis [1992], Bühlmann

[2002], Lahiri [2003], Härdle et al. [2003], Hongyi Li and Maddala [1996], Politis

[2003], Kreiss and Lahiri [2012], Paparoditis and Politis [2009], Ruiz and Pascual

[2002]). Two popular nonparametric approaches for dependent data are the block

and Markov Bootstrap. Block methods directly generalize the Bootstrap princi-

ple to dependent data, where the original sequence is segmented into blocks and

these blocks are randomly sampled with replacement to construct each bootstrap

sequence. The ability of these methods to model serial dependence depends on

accurate block width selection (notice that setting the block width to 1 reduces

these methods to the original i.i.d. Bootstrap, which does not model serial de-

pendence). The Markov Bootstrap assumes that a Markov model generates the

sequence [Kulperger and Rao, 1989] and exceeds the optimal performance of the
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block Bootstrap [Horowitz, 2003] only when the process generating the sequence

is Markov and the correct model size is specified.

In the case of short sequences, performance for both of these methods depend

on the dependency structure of the process decaying inside the realized observation

sequence. Correlations between realizations must go to zero inside the realized

observation sequence for these methods to work. When this is not the case, and

the dependency extends beyond the sequence length, both methods fail. Complex

observation sequences are common in practice, where the dependency between

data points extends beyond the realized sequence. In this case, standard tools are

limited. It might be the case that the risk measure only appears infrequently or

that the statistic is a complex extremum statistic. This can be problematic when

there are not enough realizations to fully characterize the statistical properties of

the risk measure. This is akin to having little to no samples to measure from.

When a policy must evaluate choices according to such a statistic, this limitation

can be quite problematic. As a result, we choose to drop this restrictive assumption

on the exponential mixing rates and study the most basic assumptions that can

be made on a process, while still performing statistical inference. We choose to

study processes that are both stationary and ergodic (stationary–ergodic), where

a stationary process only depends on the relative, and not absolute, position of

observations, and ergodic in that statistical dependence vanishes asymptotically.

No Bootstrap algorithms exist for the general class of stationary–ergodic pro-

cesses. Further, both variations on the block Bootstrap and Markov Bootstrap fail

to capture the serial dependence structure in this general class without making

restrictive exponential mixing assumptions. Here we propose a novel, principally

different, approach to generating Bootstrap sequences, that is based on replace-

ments. The replacement Bootstrap relies on estimating the conditional replacement

distribution of a specific observation (symbol) in the sequence, given observations

in its past and future. Rather than generating new sequences (bootstraps) from

scratch, the replacement Bootstrap leverages the available sample by introducing

changes (replacements) according to an estimated conditional replacement distri-

bution. The intention is to preserve the underlying structure of the sample, while
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introducing changes that conform to the structure of the process, observed from

the sample sequence. The performance of the method depends on the number

of replacement points R. First, R positions are randomly selected. Then, a re-

placement distribution is estimated on the R positions from the full observation

sequence. And finally, R symbols are drawn simultaneously from the estimated

replacement distribution to replace the R positions.

This chapter introduces an iterative replacement Bootstrap algorithm,R-Boot,
that estimates the replacement distribution according to the universal measure

R [Ryabko, 1988, 2008]. Theoretical consistency guarantees for the conditional (re-

placement) distribution, that hold for arbitrary stationary–ergodic distributions,

are proven, without relying on finite-memory or mixing conditions. Further, we

empirically study the accuracy of the proposed method on a particularly challeng-

ing extrema statistic, the maximum drawdown (note that theoretical consistency

results for this complex statistic are not studied). Theoretical results establish the

consistency of the proposed method for generating new time-series and empirical

results for the maximum drawdown are evaluated (note that empirical estimation

performance for the mean and standard deviation are also included for complete-

ness). To our knowledge, this is the first theoretically grounded attempt to use

the Bootstrap for such a general class of stationary–ergodic processes.

The organization of the chapter is as follows. First, notation is set in Section

2. Then the nonparametric Bootstrap Principle, i.i.d. Bootstrap, block Bootstrap

and Markov Bootstrap are formalized in 3. Section 4 introduces the replacement

Bootstrap principle for dependent data, the iterative R-Boot algorithm and con-

sistency guarantees. Section 5 presents numerical results comparing R-Boot with
standard Bootstrap approaches on simulated and real dependent data, using a

practically relevant and complex extrema statistic. Finally, Section 6 concludes

the chapter and Section 7 presents future work.
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2 Preliminaries

In this section we introduce the notation used throughout the chapter. A sequence

XT = (X1, . . . , XT ) is generated by a process P over a finite alphabet A, where

the capital letter indicates that Xt is a random variable. Denote by X<t =

(X1, . . . , Xt−1), X>t = (Xt+1, . . . , XT ), and X t:t′ = (Xt, . . . , Xt′), the past, future,

and internal subsequences ofXT . Note thatX1:T = (X1, . . . , XT ) can also be used

to indicate the range from 1 to T . Finally, U([a, b]) denotes a uniform distribution

on the interval [a, b].

We assume the following:

Assumption 1. The process P is stationary, i.e., for any m, τ , and word vm =

(a1, . . . , am) ∈ Am,

P(X1 = a1, . . . , Xm = am) = P(X1+τ = a1, . . . , Xm+τ = am),

and

Assumption 2. The process P is ergodic, i.e., for any word vm = (a1, . . . , am)

the empirical frequency of vm in a sequence XT tends to its probability,

νXT
(a1, . . . , am)

T
→ P(X1 = a1, . . . , Xm = am), a.s.,

where

νXT
(a1, . . . , am) = #{s ≤ T : Xs = am, . . . , Xs−m+1 = a1},

denotes the number of occurrences of word vm in XT .

The latter definition of ergodicity is equivalent to the standard definition involving

shift-invariant sets [Gray, 1988].

We recall the definition of the Kullback-Leibler (KL) divergence used to mea-

sure the accuracy of estimated distributions. Given two distributions P and Q
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Input:

• Symbols a ∈ A
• Sample XT , of length T

• Bootstrap algorithm BT : AT  AT

• Number of Bootstraps B

For i = 1, 2, . . . , B, repeat

biT = BT (XT )

end for

Figure 2.1: The Bootstrap Protocol

over A, the KL divergence between P and Q is defined as,

KL(P ;Q) =
∑
a∈A

P (a) log
P (a)

Q(a)
. (2.1)

We also recall that the Shannon entropy of a random variable X distributed ac-

cording to P is,

h(X) := −
∑
a∈A

P (X = a) logP (X = a),

with the convention that 0 log 0 = 0. In general, the k-order entropy of a process

P is defined as,

hk(P ) := EX1:k
[h(Xk+1|X1:k)],

which is non-increasing with k. Since it is non-negative, the sequence hk(P ),

k ∈ N has a limit, which is denoted by h∞(P ) and is called the entropy rate of

the time-series distribution P .

3 The Bootstrap

While estimating a statistic f̂ on a limited sample sequence XT , nonparametric

Bootstrap algorithms make no parametric assumptions on the process P , relying

solely on the input sequence XT to generate bootstrap sequences. Statistics of

interest are then computed on these bootstrap sequences. A Bootstrap algorithm
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Input:

• Symbols a ∈ A
• Sample XT , of length T

Compute: νXT
(a) = #{t : Xt = a}

For t = 1, 2, . . . , T , repeat

bt ∼ νXT
(a)

T

end for
Output: bT

Figure 2.2: i.i.d. Bootstrap Algorithm

BT (·) is a random mapping BT : AT  AT , such that given a sequence XT ,

BT (XT ) returns a (random) Bootstrap sequence bT (a formal protocol is presented

in Figure 2.1). The intuition is that the sampling distribution (based on a sample

sequence XT ) provides enough information to generate realistic sequences which

are likely to have been generated by P . Consistency guarantees depend on the

continuity of mapping the sampling distribution to the population distribution.

As the latter distribution is unavailable, it is approximated using the Bootstrap

distribution.

The original i.i.d. Bootstrap computes the symbol frequencies νXT
(a) =

#{t : Xt = a}, for any a ∈ A, placing probability mass 1
T

on each observa-

tion, and generates Bootstrap sequences Biid
T (XT ) = bT , such that bt ∼ νXT

(a)

T

(the algorithm is formally presented in Figure 2.2). Given B bootstrap sequences

b1
T , . . . , b

B
T , the Bootstrap estimator θ̃T = 1

B

∑B
i=1 f̂

(
biT
)
is likely closer to the

statistic of interest θT = E[f̂(XT )], than by simply using the asymptotic estima-

tor θ̂T = f̂ (XT ). Convergence results require that B →∞, so that the Bootstrap

estimator converges to the Bootstrap distribution. A common application area

is in finance [Cogneau and Zakamouline, 2010], where an a priori analytic study

or assumptions on either the process or statistic is not possible. Other applica-

tions include estimating distribution functions, residuals, generating confidence

intervals or performing hypothesis tests.

Under certain circumstances, the original i.i.d. Bootstrap of Efron [1979] out-

performs asymptotic estimators (based on the central limit theorem). When the es-
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Input:

• Block width m

• Sample X1:T

For t = 1, . . . ,
⌈
T
m

⌉
, repeat

u ∼ U([1, T −m+ 1])

b(t−1)∗m+1,...,t∗m = Xu,...,u+m−1

end for
Output: b = b1,...,T

Figure 2.3: Block Bootstrap Algorithm

timator is a smooth function of moments on the process, MacKinnon [2006] shows

that the i.i.d. Bootstrap improves on the simple asymptotic estimator. Horowitz

[2001] shows that finite sample improvements are only possible for asymptotically

pivotal statistics, that is, statistics with an asymptotic distribution that does not

depend on the unknown population parameters or form of the process. In the

case of asymptotically pivotal statistics with symmetric distributions, the Boot-

strap converges to the empirical cumulative distribution function (cdf)1 at a rate of

O
(
T−

3
2

)
, while asymptotic estimates converge at a rate of O

(
T−

1
2

)
. This is quite

an advantage. Unfortunately, negative results have been shown for dependent se-

quences, extrema statistics, boundary parameters and several other distributions

(for a review of negative results, see e.g. Horowitz [2001]). As a result, dependent

data alternatives need to be considered when dealing with a dependent observation

sequence.

3.1 Block Bootstrap

When applying the Bootstrap to time series, special handling of the sample data

is required to retain the dependence structure and generate realistic variability.

The most general nonparametric Bootstrap approach for time series is the block

Bootstrap (see e.g., Figure 2.3, for a full review of block methods, see e.g., Kreiss

and Lahiri [2012]). Block methods capture the dependence structure at lag dis-

1Note that anytime we report “convergence” results in this chapter, we are referring to the
convergence to the empirical cdf of a symmetric probability distribution.
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tances defined by a block width. These methods segment data into blocks to retain

the in–block temporal dependency and generate bootstrap sequences by sampling

blocks with replacement and joining them end-to-end. As the distribution of

blocks implicitly models the dependency structure of the process, block selection

probability can optionally be altered through “tilting” (weighting) probabilities

[Hall and Yao, 2003] or by “matching” blocks according to their Markov transition

probabilities [Carlstein et al., 1998]. Block construction methods include moving

blocks [Kuensch, 1987, Liu and Singh, 1992], non-overlapping blocks [Carlstein,

1986], circular blocks [Politis and Romano, 1992], tapered blocks [Paparoditis and

Politis, 2001], matched blocks [Carlstein et al., 1998] and stationary blocks [Poli-

tis and Romano, 1994] (for a relative performance overview, please see e.g., Lahiri

[1999], Nordman et al. [2009]).

The process of segmenting data into blocks disrupts the dependency structure

of the data, so estimator performance is very sensitive to block width. The choice

of smaller than optimal block width increases the bias of the estimator, while se-

lecting a larger than optimal block width increases its variance. The stationary

Bootstrap reduces block sensitivity by drawing block widths according to a geo-

metric distribution, but it is asymptotically inefficient compared to the circular

block Bootstrap, which assumes data lie on a circle [Horowitz, 2001].

Consistency results for block Bootstrap estimators rely on asymptotically op-

timal block width selection, which is defined as the block width that minimizes

the asymptotic mean-square error of the block Bootstrap estimator, and require

that processes are both stationary and strongly exponentially mixing. Hall et al.

[1995] derives optimal block selection rules as a function of the autocovariance

function of the time series, showing that the (expected) block size should increase

at the rate of O
(
T

1
3

)
. Zvingelis [2003], Politis and White [2004], Patton et al.

[2009] extend this to an automatic block width selection procedure (for the cir-

cular and stationary block Bootstrap algorithms) based on estimates for both the

autocovariance and spectral density. Assuming that the optimal block width is

chosen, then block Bootstrap estimators for symmetric probabilities converge a.s.

O
(
T−

6
5

)
[Hall et al., 1995].
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Input:

• Markov Model size k

• Symbols a ∈ A
• Sample X1:T

Compute:

• Frequencies νXT
,

νXT
(a) = #{t : Xt = a}

• k-Markov patterns vk = (v1, . . . , vk) ∈ Ak,

νXT
(a|vk) = #{s < T : Xs = a;Xs−k = v1, .., Xs−1 = vk}

For i = 1, . . . , k, repeat

bt ∼
νXT

(a)∑
c∈A νXT

(c) + |A|

end for
For i = k + 1, 2, . . . , T , repeat

bt ∼
νXT

(a|vk)∑
c∈A νXT

(c|vk) + |A|

end for
Output: bT

Figure 2.4: Markov Bootstrap Algorithm

Block methods have also been shown to be inconsistent estimators of the means

for some strongly dependent and long-range dependent processes [Lahiri, 1993], as

well as heavy tails, distributions of the square of a sample average, distributions

of the maximum of a sample and parameters on a boundary of the parameter

space [Horowitz, 2001]. These methods necessarily ignore and necessarily break

long-range dependence and fail under poor block width selection [Lahiri, 1999].

3.2 Markov Bootstrap

The Markov Bootstrap estimates the Markov transition density according to a

(specified) k-order Markov model using any nonparametric Markov estimator.

Bootstrap sequences are then sequentially generated by iteratively sampling T

symbols from the estimated Markov model, which are conditioned on the previous
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k symbols generated along the Bootstrap sequence. This procedure is referred to

as “Markov conditional Bootstrap” and is not a replacement for the block Boot-

strap, but an attractive alternative when in addition to the standard assumptions,

the process has finite-memory and generated using a Markov model. Under these

additional restrictive conditions, the Markov Bootstrap convergence rate (for sym-

metrical probabilities) is a.s. O
(
T−(3/2+ε)

)
, for any ε > 0 [Horowitz, 2003]. Accu-

rately modeling the dependency of a process with the Markov Bootstrap requires

correct model specification. Setting an incorrect model size results in complete

failure Horowitz [2003], where setting it too small results in an estimator with too

much bias and setting it too large results in an estimator with too much variance.

4 The Replacement Bootstrap

In this chapter, we consider a set of assumptions that are far more general than

those considered in the block and Markov Bootstrap. In the case of short se-

quences, where data correlations do not fully decay (not strongly exponential

mixing), or processes which are not finite memory, standard Bootstrap methods

are not consistent. Our results allow us to consider this much larger class of pro-

cesses. By considering the general class of stationary–ergodic processes, we do not

require that the process reduces to a correct Markov model size or block width.

Further, as mixing conditions do not hold for this general class, it is not possible to

apply standard analysis methods, so we instead focus on studying the consistency

of the estimated conditional replacement distribution of values in the observation

sequence.

Here we introduce a novel approach to the Bootstrap for dependent sequences,

where bootstraps sequences are generated by replacing symbols in the original

sequence according to an estimate of their probabilities, conditioned on val-

ues observed both before and after each of the symbols, in the observed se-

quence. The replacement Bootstrap randomly selects a set of R points at positions

ti ∼ U({1, . . . , T}), i = 1, . . . , R, in the original sequence XT , simultaneously re-

placing symbols (Xt1 , . . . , XtR) with symbols (bt1 , . . . , btR), ideally drawn from the
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conditional distribution

P(a1, . . . , aR|XT \ {Xt1 , Xt2 , . . . , XtR}).

As the conditional distribution is unavailable, it must be estimated. A few points

need to be noted. First, in constructing bootstrap sequences according to the

traditional Bootstrap principle, symbols (or blocks) are drawn according to their

frequency distribution in the sample sequence. This is traditionally modeled by a

block size or Markov model size. Here, symbols are drawn according to a condi-

tional replacement distribution that additionally integrates information on their

position in the sequence. This differs from existing techniques in that neigh-

borhood information is restricted to a specific block width or model size, while

the replacement Bootstrap leverages much more information from the observa-

tion sequence. As the number of replacements R increases, the variability of the

generated bootstrap sequence grows due to an increasing bias from errors in the

conditional probability estimates. Each increase in R, increases the degrees of free-

dom for possible bootstrap sequences, defining how much of the original sequence

is preserved. Consequently, small R increases estimator bias and large R increases

variance. This replacement strategy simultaneously exploits the full sequence to

determine symbol replacements, while partially preserving the temporal structure

of the original sample observation sequence.

This replacement based approach depends on an accurate estimate of the con-

ditional replacement distribution. This is unknown by the nature of the setting. To

gain an intuition for the conditional replacement distribution, let us consider the

simpler case of R = 1, i.e., replacing a single symbol in a single random location

t. While Xt could simply be replaced with the estimated conditional distribution

P(a|X<t), the prediction estimate, this only uses the past information to compute

the conditional probability. Note that the Markov Bootstrap leverages a predic-

tion estimate based on a single k-order Markov model, estimated from the sample

series, and only conditions on the previous k generated symbols while generating

a Bootstrap sequence. Further, unlike the Markov Bootstrap, the replacement
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p
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1-p 1-p

Figure 2.5: A simple 1-Markov chain.

Bootstrap does not assume or require the explicit specification of a model size.

The conditional replacement probability used in the replacement Bootstrap

is estimated on the whole sequence, except the portion which is to be re-

placed, e.g. P(a|X<t,X>t). Note that this reasoning holds for any value of R,

where the conditional replacement probability for any value of R ≥ 1 is simply

P(a1, . . . , aR|XT \ {Xt1 , . . . , XtR}). This procedure results in greater estimation

accuracy over the symbol replacement distribution at Xt, capturing as much of

the dependency structure as possible from the sample observation sequence.

In general, it is possible to construct examples where the entropy of the process

conditioned on X<t,X>t tends to zero as the length of the past X<t and future

X>t tends to infinity, while the process itself has a non-zero entropy. Thus, this

results in a more accurate estimate of the conditional replacement distribution for

symbols by better reproducing the unknown dependency structure of the process.

4.1 Comparing the Replacement Probability to the Predic-

tion Probability

We now present a simple example illustrating the potential advantage of estimat-

ing the replacement distribution, rather than the prediction distribution. As an

illustration of this advantage, consider the simple case of replacing one symbol

(R = 1) in a series generated by a 2-state Markov chain, as represented in Figure

2.5.

Let P be the 2-state Markov chain with an initial distribution equally dis-
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tributed over state 0 and 1 and parameter 0 ≤ p ≤ 0.5. Given a sequence XT

generated from P , we want to replace a symbol at t. In particular, we consider a

sequence where,

(. . . , Xt−1, Xt, Xt+1, . . .) = (. . . 010 . . .).

Following an approach similar to the i.i.d. Bootstrap, we simply replace Xt with a

new symbol bt drawn from the empirical frequency νXT
(·)

T
which tends to converge

to 0.5 (the probability of 0 and 1). On the other hand, we could use a prediction

approach generating bt from the conditional distribution P(·|X<t). Since P is

1-Markov,

P(·|X<t) = P(·|Xt−1),

and we have,

P(0|Xt−1) = 1− p,

and

P(1|Xt−1) = p.

Finally, the replacement distribution conditioned on both past and future around

Xt results in,

P(0|X<t,X>t) = P(0|Xt−1, Xt+1) =
(1− p)2

(1− p)2 + p2
.

It is easy to see that the entropy of the replacement distribution is much smaller

than for prediction and i.i.d. distributions, implying that replacing Xt with bt,

drawn from the replacement distribution, is much more accurate than for these

other approaches. For instance, for p = 0.1 we have,

hiid(bt) = 1,

hprediction(bt) = 0.469,

and

hreplacement(bt) = 0.095.
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4.2 The R-Boot Algorithm

A direct implementation of the replacement Bootstrap requires an estimate of the

probability,

P(a1, . . . , aR|XT \ {Xt1 , Xt2 , . . . , XtR}),

which corresponds to the probability of a word v = (a1, . . . , aR) in R random

locations t1, . . . , tR, conditioned on the remainder of the sequence, i.e., the por-

tion of the sequence that is not replaced. Unfortunately, this requires estimating

probabilities for an alphabet of size |A|R conditioned on different subsets of the

sequence, which would rapidly become infeasible as R increases. Therefore, we

propose a sequential process based on the estimation of the one-symbol replace-

ment probability,

P(·|X<t,X>t),

which results in a feasible and much more efficient procedure. Although a variety

of methods can be used to estimate the conditional distribution, the algorithm

presented here, R-Boot, adapts a universal predictor (see e.g., Ryabko [2010])

to estimate the one-symbol conditional replacement distribution. Relying on a

universal predictor to compute a consistent estimate of P(·|X<t,X>t) allows us

to consider the wide class of stationary–ergodic processes and avoid restrictive

model and/or parametric assumptions on the process P .

Definition 1. A measure ρ is a universal predictor if for any stationary and

ergodic process P ,

1

T

T∑
t=1

EX<t

[
KL
(
P(·|X<t); ρ(·|X<t)

)]
→ 0, (2.2)

where the expectation is w.r.t. P .

Several predictors with this property are known. Although a predictor ρ could

be directly used to replace a symbol Xt by drawing a new symbol from the pre-
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diction distribution ρ(·|X<t), we show that a universal predictor can be adapted

to estimate the conditional distribution P(·|X<t,X>t). Thus, more accurate re-

placements can be achieved by taking into consideration not only the past X<t,

but also the future X>t.

R-Boot builds on the universal measure R [Ryabko, 1988, 2008], which un-

like other universal predictors (e.g., the Ornstein predictor [Ornstein, 1978]) or

compression-based predictors (e.g., Ryabko and Monarev [2005], Ryabko [2009]),

is both resource and data efficient. It is defined as a combination of varying order

Krichevsky predictors [Krichevsky, 1968] that only consider X<t (e.g., the past)

to estimate the prediction probability P(·|X<t) and is defined in Definition 2.

Definition 2. For any m ≥ 0, the Krichevsky predictor of order m estimates

P(Xt = a|X<t) as,

Km(Xt = a|Xt−m = v1, . . . , Xt−1 = vm) =


νXT

(a|vm)+ 1
2∑

c∈A νXT
(c|vm)+

|A|
2

, t > m

1
|A| , t ≤ m

where word,

vm = (v1, . . . , vm) ∈ Am,

contains the m symbols up to t− 1 observed in XT , and νXT
represents the word

count in XT up to t− 1, that is for any vm and a,

νXT
(a|vm) = #{s < t : Xs = a;Xs−m = v1, .., Xs−1 = vm},

with the convention that if m = 0, then v = ∅ and νXT
(a|∅) = νXT

(a) = #{s <
t : Xs = a}.

Additive factors 1
2
and |A|

2
make the Krichevsky predictor minimax optimal for

any fixed sequence length and set of Markov sources, when the error is measured

with the expected KL divergence. For sake of reference, notice that the additive
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factors in the Laplace predictor are simply 1 and |A|, resulting in the predictor

Lm(Xt = a|Xt−m = v1, . . . , Xt−1 = vm) =


νXT

(a|vm)+1∑
c∈A νXT

(c|vm)+|A| , t > m

1
|A| , t ≤ m

which is not minimax optimal. While other divergences would give different pre-

dictors, the KL divergence is a natural choice for this problem. Therefore, it is

used in our theoretical analysis. From the conditional distribution in Definition 2,

the predictor Km(X1:T ) is computed as,

Km(X1:T ) =
T∏
t=1

Km(Xt|X t−m:t−1).

The measure R is then defined as follows.

Definition 3 (Ryabko [1988]). For any t, the measure R is defined as,

R(X1:T ) =
∞∑
m=0

ωm+1Km(X1:T ), (2.3)

with weights,

ωm = (log(m+ 1))−1 − (log(m+ 2))−1 .

Thus, the measure R is an estimator constructed directly from XT and does

not rely on any parametric assumptions on the process. As proved in Ryabko

[1988], R is a consistent universal estimator of the conditional probability for any

stationary–ergodic process (see Definition 1) as T →∞.

In this novel replacement Bootstrap setting, the whole sequence XT is used

to compute the counters νXT
. This is in contrast to the standard Krichevsky

predictor that does not consider the “future” of the sequence. Here we propose

the following method of using R to generate Bootstrap sequences. Let t ≤ T be

an arbitrary point in the original sequence. We replace the original symbol Xt

with a new symbol bt drawn from the conditional replacement distribution, i.e.,
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Input:

• Sequence XT

• Replacements R

• Maximum pattern size KT

Set b0
T = XT

For all m = 0, . . . ,KT , repeat

Compute counts νXT
(a|vm) for any a ∈ A, vm ∈ Am

end for
For all r = 1, . . . , R, repeat

1. Draw the replacement point tr ∼ U([1, T ])

2. Draw btr ∼ RXT
(·|br−1

<tr ; br−1
>tr )

3. Set brT = (br−1
<tr , btr , b

r−1
>tr )

end for

Figure 2.6: Pseudo-code of the R-Boot algorithm.

P(·|X<t,X>t), estimated using the R measure,

RXT
(Xt = a|X<t,X>t) =

RXT
(X<t; a;X>t)∑

c∈ARXT
(X<t; c;X>t)

. (2.4)

Once the conditional replacement probability is estimated, R-Boot substitutes
Xt in the original sequence with bt drawn from RXT

(·|X<t,X>t), thus obtaining

the new sequence z1
T = (X<t, bt,X>t). Here RXT

(resp. KiXT
) refers to the mea-

sure R (resp. Krichevsky predictor) with frequency counts ν(·) from Definition 2,

computed only once from the original sequence XT . Once Xt is replaced by bt,

resulting in z1
T , the counts are not recomputed on z1

T . RXT
is used as an estimate

of the conditional replacement distribution for all subsequent replacements. This

process is iterated R times, such that, at each replacement r, a random point

tr is chosen and the new symbol btr is drawn from RXT
(·|zr−1

<tr , z
r−1
>tr ). Finally,

the sequence bT = zRT is returned. The pseudo-code of R-Boot is reported in

Figure 2.6.

Briefly, the idea of R-Boot is to iteratively replace a single random position, in

the current iteration of the Bootstrap sequence, until R points have been replaced.
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Estimating the conditional distribution at each iteration translates to estimating

the conditional distribution for each of the possible symbols a ∈ A for that position

in the sequence. The replacement symbol is then drawn according to this estimated

replacement distribution to replace the current symbol in that position.

4.3 Impact of Replacement Parameter R

The replacement parameter R has the same expected impact on iterative replace-

ments as it has on simultaneous replacements. The number of replacements R

defines how much of the original sequence is preserved, where small R increases

bias for the original sequence and large R favors greater variance. In particular,

the temporal structure of the original sequence is preserved for smaller values of R,

while larger values of R increase variability and noise. In general, the incremental

nature ofR-Boot requires large R (generally greater than T ) to compensate for the

iterative (versus simultaneous) nature of replacements. Though unlikely, the ran-

dom selection of replacement points might result in repeated selection of the same

position in the series. This can cause problems in that the aim is to cover the series

and not to localize replacements to a single neighborhood. Conversely, we found

that some repeated selection actually improved performance by introducing vari-

ability through the iterative process. For example, for Xtr , at step r, R-Boot uses
the current sequence zr−1

T to define the conditional probability RXT
(·|zr−1

T , zr−1
T ).

As a result, changes to the symbols Xt1 , . . . , Xtr−1 in the original sequence may

later trigger changes in other locations and this source of variability was a positive

contributer to good performance. In testing, we found that removing duplicate

replacement points caused a noticeable reduction in performance. As a result, it is

important to retain random selection, while taking care to notice potential issues

with small values of R.

4.4 Implementation details

This section simplifies Equation 2.4 to show how the conditional replacement dis-

tribution can be efficiently computed. Combining an infinite number of Krichevsky
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predictors in the measure R can be computed in polynomial time by setting the

maximum Krichevsky model size to KT = O(log T ). Estimates of order m only

uses m samples in the past, so this considerably reduces the number of computa-

tions needed to estimate the measure R. This results in R replacements of order

O
(
(T +R log T ) log2(T )|A|2

)
to generate a single Bootstrap sequence.

First note that replacing infinity with any KT increasing to infinity with T

does not affect the asymptotic convergence properties of the measure R. Next,

frequency estimates in Km for m � O(log T ) are not consistent, so they only

add noise to the estimate. Therefore, setting KT to O(log T ) is meaningful, while

also efficiently computable, in that it retains meaningful structure, while also

significantly reducing computational complexity.

We begin by first elaborating Equation 2.4. First, replacement points are

drawn at random from a uniform distribution, i.e., t ∼ U([1, T ]). The probability

that a (new) sequence has symbol a ∈ A in position t given that the rest of the

sequence is equal to the original sequence XT is,

P(Xt = a|X<t,X>t),

and is estimated with measure R as,

RXT
(Xt = a|X<t,X>t) =

RXT
(X<t; a;X>t)∑

c∈ARXT
(X<t; c;X>t)

(2.5)

=

∑∞
i=0 ωiKiXT

(X<t; a;X>t)∑
c∈A
∑∞

j=0 ωjKjXT
(X<t; c;X>t)

=
∞∑
i=0

ωiKiXT
(X<t; a;X>t)∑

c∈A
∑∞

j=0wjKjXT
(X<t; c;X>t)

=
∞∑
i=0

[∑
c∈A

∞∑
j=0

ωj
ωi

KjXT
(X<t; c;X>t)

KiXT
(X<t; a;X>t)

]−1

. (2.6)

Although the previous expression could be computed directly by using the defini-

tion of the Krichevsky predictors, the values returned by KjXT
(X<t; c;X>t) and

KiXT
(X<t; a;X>t) would rapidly fall below the precision threshold, thus intro-

ducing significant numerical errors. We reformulate the previous expression to
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manage this problem.

For any i, j 6= 0, let yc = {X<t; c;X>t}, ya = {X<t; a;X>t} and t′i,j = t +

max{i, j}, then,

KjXT
(X<t; c;X>t)

KiXT
(X<t; a;X>t)

=
T∏
s=1

KjXT
(ycs|yc<s)

KiXT
(yas |ya<s)

=
t−1∏
s=1

KjXT
(ycs|yc<s)

KiXT
(yas |ya<s)

T∏
s=t

KjXT
(ycs|yc<s)

KiXT
(yas |ya<s)

=
t−1∏
s=1

KjXT
(Xs|X<s)

KiXT
(Xs|X<s)

T∏
s=t

KjXT
(ycs|yc<s)

KiXT
(yas |ya<s)

=
t−1∏
s=1

KjXT
(Xs|Xs−j:s−1)

KiXT
(Xs|Xs−i:s−1)

T∏
s=t

KjXT
(ycs|ycs−j, . . . , ycs−1)

KiXT
(yas |yas−i, . . . , yas−1)

=
t−1∏
s=1

KjXT
(Xs|Xs−j:s−1)

KiXT
(Xs|Xs−i:s−1)

t′i,j∏
s=t

KjXT
(ycs|ycs−j, . . . , ycs−1)

KiXT
(yas |yas−i, . . . , yas−1)

T∏
s=t′i,j+1

KjXT
(ycs|ycs−j, . . . , ycs−1)

KiXT
(yas |yas−i, . . . , yas−1)

=
t−1∏
s=1

KjXT
(Xs|Xs−j:s−1)

KiXT
(Xs|Xs−i:s−1)

t′i,j∏
s=t

KjXT
(ycs|ycs−j, . . . , ycs−1)

KiXT
(yas |yas−i, . . . , yas−1)

T∏
s=t′i,j+1

KjXT
(Xs|Xs−j:s−1)

KiXT
(Xs|Xs−i:s−1)

= πi,j,1:t−1

t′i,j∏
s=t

KjXT
(ycs|ycs−j, . . . , ycs−1)

KiXT
(yas |yas−i, . . . , yas−1)

πi,j,t′i,j+1:T ,

where for any t1 and t2, we define,

πi,j,t1:t2 =

t2∏
s=t1

KjXT
(Xs|Xs−j:s−1)

KiXT
(Xs|Xs−i:s−1)

.

Finally, from the definition of π, we have that computations can occur in either

direction using the following recursive equations,

πi,j,t1:t2+1 = πi,j,t1:t2

KjXT
(Xt2|Xt2−j, . . . , Xt2−1)

KiXT
(Xt2 |Xt2−i, . . . , Xt2−1)

,

πi,j,t1:t2 = πi,j,t1+1:t2

KjXT
(Xt1|Xt1−j, . . . , Xt1−1)

KiXT
(Xt1 |Xt1−i, . . . , Xt1−1)

.

The previous expression is still valid for either i = 0 or j = 0 with the conven-
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tion that K0(ybs|yb<s) = K0(ybs). Furthermore, for any t1 and t2, when i = j, the

corresponding πi,j,t1:t2 = 1, while for any i 6= j πi,j,t1:t2 = π−1
j,i,t1:t2

, thus the number

of computations is halved for i and j. We are left with computing the expression

KiXT
(ys|ys−i, . . . , ys−1) (for y = ya and y = yc) over the sequence of values depen-

dent on the replacement at t. Let ys = a and ys−i, . . . , ys−1 = vi, where vi is some

word of length i, then,

KiXT
(ys|ys−i, . . . , ys−1) =

νXT
(a|vi) + 1

2∑
c∈A νXT

(c|vi) + |A|
2

=
νXT

(a|vi) + 1
2

νXT
(vi) + |A|

2

.

Each term is computable since they are only as small as 2−i, so the ratios for each

s and their product continue to be well conditioned. Even in the case that for

some pairs i and j the numbers become too small, they are just added (in the

summation over c and j), so this no longer poses any numerical approximation

errors. This results in the following optimized computation of the measure R,

RXT
(Xt = a|X<t,X>t) =

KT∑
i=0

[
KT∑
j=0

ωj
ωi
πi,j,1:t−1πi,j,t′i,j+1:T

(∑
c∈A

t′i,j∏
s=t

KjXT
(ycs|ycs−j, . . . , ycs−1)

KiXT
(yas |yas−i, . . . , yas−1)

)]−1

. (2.7)

Next, we notice significant improvements in computational complexity can be

achieved by storing repeated computations. More specifically, initializing counts

ν and coefficients π, over alphabet A, to compute the first replacement distribu-

tion RXT
(·|X<t,X>t), requires a full scan through the sequence XT and has a

complexity of O(TK2
TA

2). By storing repeated calculations overlapping between

replacements and only updating when necessary, the computational complexity

of subsequent replacements can be dramatically reduced. In fact, only the coeffi-

cients πi,j,t1:t2 are directly affected by replacing Xt by bt. Therefore, it is possible

to compute all subsequent replacements for R > 1 with complexity O(K3
TA

2) by

simply updating πi,j,t1:t2 and recycling repeated calculations. The following struc-

tures are introduced to improve computational complexity. Let K be a matrix of
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dimension (KT + 1)× T , such that for any i = 0, . . . , KT and s = 1, . . . , T ,

Ki,s = KiXT
(Xs|Xs−i:s−1).

We define the multi-dimensional matrix R, of dimensions (KT +1)× (KT +1)×T ,
such that for any i, j = 0, . . . , KT and s = 1, . . . , T ,

Ri,j,s =
Kj,s

Ki,s

.

Then we compute πprev and πpost as,

πi,j,prev =
t−1∏
s=1

Ri,j,s

πi,j,post =
T∏

s=t′i,j+1

Ri,j,s.

Similarly we define the multi-dimensional matrix K ′, of dimensions,

(KT + 1)× |A| × (tend − t),

where tend = min{t′i,j, T}, and,

Ki,a,s = KiXT
(yas |yas−i, . . . , yas−1).

Thus the matrix R′, of dimensions,

(KT + 1)× (KT + 1)× |A| × |A| × (tend − t),

is,

R′i,j,a,b,s =
Kj,b,s

Ki,a,s

.

Once these structures are computed, the final probability of replacement for a



32 Chapter 2. The Replacement Bootstrap

For any fixed i, j

πi,j,prev(l) πi,j,post(l)

t(l) t′i,j(l)

πi,j,prod(l) = πi,j,prev(l)× πi,j,post(l)

πi,j,prod(l + 1) =
πi,j,prod(l)×πi,j,cur(l+1)

πi,j,next(l)

πi,j,next(l)

πi,j,curr(l + 1)

zl+1
n

zl
n

t(l+1) t′i,j(l +1)

Figure 2.7: Computation of other replacement points (i.e., l ≥ 1).

letter a in position t is efficiently computed as,

R(Xt = a|X<t,X>t) =

KT∑
i=0

[ KT∑
j=0

wj
wi
πi,j,prevπi,j,post

(∑
b∈A

t′i,j∏
s=t

R′i,j,a,b,s

)]−1

. (2.8)

We now use l = 1, . . . , L as an index for the replacement points; t(l) as the time

index of the l-th replacement point, zT (l) as the sequence obtained after l replace-

ment points (i.e., zT (0) = XT ), and πi,j,prev(l) and πi,j,post(l) as the products of

probabilities computed on the l-th sequence. Furthermore, we assume that the

position of the replacement points is known in advance (i.e., t(l) is chosen for all

l = 1, . . . , L at the beginning). Following the efficient computation of the initial

replacement l = 1, where the structures K, R, K ′, R′ must be computed from

scratch, we notice that for any i = 1, . . . , KT , and for any s such that s < t(l),

or s > t(l) + i, then Ki,s(l + 1) = Ki,s(l). Thus, for any i, only Ki,s must be

recomputed for t(l) ≤ s ≤ t(l) + i, which correspond to O(K2
T ) updates. At the
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first iteration l = 0, we compute

πi,j,prev(0) =
t−1∏
s=1

Ri,j,s(0), πi,j,post(0)

=
T∏

s=t′i,j+1

Ri,j,s(0),

and the additional structures

πi,j,prod(0) = πi,j,prev(0)× πi,j,post(0),

πi,j,next(0) =

t′i,j(1)∏
s=t(1)

Ri,j,s(0).

Once the replacement is completed and z1
T is computed, the Ri,j,s values affected

by the change are recomputed (updated) and used at the beginning of the new

iteration to compute,

πi,j,cur(1) =

t′i,j(0)∏
s=t(0)

Ri,j,s(1),

which allows computation of the πprod terms for the next iteration as,

πi,j,prod(1) =
πi,j,prod(0)πi,j,cur(1)

πi,j,next(0)
.

In general, after the first iteration, at any iteration l ≥ 1, the computation of the

previous elements can be iteratively updated as,

πi,j,prod(l) =
πi,j,prod(l − 1)πi,j,cur(l)

πi,j,next(l − 1)
,

where,

πi,j,next(l) =

t′i,j(l+1)∏
s=t(l+1)

Ri,j,s(l), πi,j,cur(l) =

t′i,j(l−1)∏
s=t(l−1)

Ri,j,s(l).

Finally, the computational complexity of R-Boot to generate a single Bootstrap
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with R replacements is O((T +R log T ) log2(T )A2).

4.5 A Comparison with Markov Bootstrap

While the replacement Bootstrap is very different from the block Bootstrap and

does not assume the Markov property, it does share similarities with the Markov

Bootstrap. For example, the R-Boot algorithm uses Krichevsky predictors to esti-

mate k-order Markov approximations of the process for k = 1, . . . , O(log T ). The

measureR is then used to create a weighted combination of the KT predictors, im-

plicitly adapted on the prediction performance of each predictor. The Krichevsky

predictor only considers the past k values in estimating the prediction probabil-

ity P(·|X<t). More specifically, recall that the k-order Krichevsky predictor is

computed as,

Kk(X1:T ) =
T∏
t=1

Kk(Xt|X t−k:t−1).

First, this is limited to the k-order estimate of the model size. Second, this is

quite limiting in comparison to the measure R, which we recall is estimated as2,

R(X1:T ) =
∞∑
k=0

ωk+1

T∏
t=1

Kk(Xt|X t−k:t−1).

Finally, the Markov Bootstrap is limited to probabilities drawn only from esti-

mates conditioned on a k-order model that only conditions predictions on the k

previous predictions. Whereas R-Boot fully leverages all the available information

both before and after each replacement by using an estimate of the replacement

probability, PXT
(·|X<t,X>t). R-Boot can be viewed as a combination of k-

order Markov estimators, but this is a severely limited perspective. Unlike the

Markov Bootstrap, R-Boot does not assume the Markov property, finite–memory

or strongly exponential mixing times. The general space of stationary–ergodic

processes is so rich and so much larger than the space of finite-memory processes,

one could not expect to simulate any stationary–ergodic measure with some (even

2k is used in place of m to illustrate the similarity.
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the best) k-order Markov measure. Next, as explained, the replacement Bootstrap

does not generate the whole sequence based on the estimated distribution. It is

more “conservative” (with regard to data) in that it retains the original sequence,

only (sequentially) changing R symbols, selected at random, and based on the esti-

mated replacement distribution. In fact, the measure R could be used to generate

bootstrap sequences from scratch to directly generalize the Markov Bootstrap to

the case of stationary–ergodic processes (which to our knowledge is a contribution

in itself), but this would still only utilize the estimated prediction probability,

and not the conditional replacement probability, which does not exploit the given

sample sequence as effectively.

4.6 Theoretical Guarantees

A desirable property for an effective and consistent Bootstrap method is to produce

an accurate distributional estimate from a finite sample sequence (i.e., P(XT )).

Unfortunately, this is not possible in the case of stationary–ergodic processes. This

is in stark contrast to the classes of processes considered in existing Bootstrap algo-

rithms, where estimating P(X1:m) for a critical m� T (e.g., m = k+1 in the case

of k-order Markov processes) results in a sufficiently accurate estimate of P(X1:T ).

While considering the general case of stationary–ergodic distributions significantly

increases the applicability of the Bootstrap, it also prevents theoretical guaran-

tees on the Bootstrap distribution estimate P(X1:T ). Moreover, it is provably

impossible to establish any nontrivial rates of convergence for stationary–ergodic

processes. Consequently, the following analysis will focus on asymptotic consis-

tency guarantees for the individual replacements step in the R-Boot Bootstrap

algorithm.

At a high level, if the sequence length of at least one side of the replacement

is sufficiently long, then, on average, the probability distribution for the inserted

symbol converges to the true unknown probability distribution, of the symbol in

that position, given the observations on both sides of the replacement, herein

referred to as the past and future. Moreover, as the length of the sequence, both

in the past and in the future, with respect to the replacement goes to infinity, the
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probability distribution over symbols approaches the double-sided entropy rate.

Here, we introduce additional notation. A stationary distribution over one-way

infinite sequences X1, X2, . . . can be uniquely extended to a distribution over two-

way infinite sequences . . . , X−1, X0, X1, . . . . We assume this extension whenever

necessary. Recall that for stationary processes, the k-order entropy rate can be

written as,

hk(P ) = EX−k:−1
[h(X0|X−k:−1)].

Similar to the entropy rate, one can define the two-sided entropy,

hk,m(P ) = EX−k:−1,X1:mh(X0|X−k:−1,X1:m),

which is non-decreasing with k and m, and whose limit limk,m→∞ hk,m we denote

by h∞×∞, where limk,m→∞ is an abbreviation for “for every pair of increasing

sequences (kl)l∈N , (ml)l∈N , liml→∞.” Obviously the double sided entropy rate

h∞×∞ ≤ h∞(P ) and it is easy to construct examples when the inequality is strict.

We also introduce a short-hand notation for the KL divergence between the process

P and measure R as,

δ(Xt|X<t) = KL (P (Xt|X<t);R(Xt|X<t)) .

Finally, whenever we use E[δ(Xt|X<t)], the expectation is taken over X<t.

Theorem 1. For all m ∈ N we have,

(i) lim
T→∞

E

[
T∑
t=m

δ(Xt−m+1|X0:t−m,Xt−m+2:t)

T −m

]
= 0,

(ii) lim
T→∞

E

[
T∑
t=m

δ(X−t+m−1|X−t:−t+m,X−t+m−2:0)

T −m

]
= 0,

(iii) lim
m→∞

lim
T→∞

− E

[
T∑
t=m

logR(Xt−m+1|X0:t−m,Xt−m+2:t)

T −m

]
= h∞×∞,

(iv) lim
T→∞

lim
m→∞

− E

[
T∑
t=m

logR(Xt−m+1|X0:t−m,Xt−m+2:t)

T −m

]
= h∞×∞.

The following proof of Theorem 1 relies heavily on the consistency of the R
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measure as a predictor [Ryabko, 1988].

Proof. For the first statement, first note that,

E [δ(Xt−m+1|X0:t−m,X t−m+2:t)] = E [δ(X t−m+1:t|X0:t−m)− δ(X t−m+2:t|X0:t−m)]

≤ E [δ(X t−m+1:t|X0:t−m)] ,

where the inequality follows from the fact that the KL divergence is non-negative.

The first statement follows from the consistency of R as a predictor: for every

m ∈ N we have (see Ryabko [1988, 2008]),

lim
T→∞

1

T
E

[
T∑
t=m

δ(X t−m+1:t|X0:t−m)

]
→ 0. (2.9)

The proof of the second statement is analogous to that of the first, except that we

need the consistency of R as a predictor “backwards”. That is, when the sequence

extends to the past rather than to the future. The proof of this consistency

is analogous to the proof of the usual (forward) consistency (2.9). Since it is

important for exposing some further ideas, we give it here. We consider the case

m = 1. The general case follows by replacing Yi = Xi:i+m for every i and noting

that if the distribution of Xi is stationary–ergodic, then so is the distribution of

Yi. We have,

E

[
T∑
t=0

δ(X−t|X0:−t+1)

]
= −

T∑
t=0

EX0:−t+1

[
EX−t

[
log

(R(X−t|X0:−t+1)

P (X−t|X0:−t+1)

)]]
= −EX0:−T

[
log

(R(X−T :0)

P (X−T :0)

)]
= −E [logR(X−T :0)] + E [logP (X−T :0)] .

Noting that E
[∑T

t=0 δ(X−t|X0:−t+1)
]
is non-negative, it is enough to show that

lim− 1
T
E [logR(X−T :0)] ≤ h∞(P ) to establish the consistency statement.
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For every k ∈ N ,

−E [logR(X−T :0)]− Th∞(P ) = −E
[

log
∞∑
i=1

wi+1Ki(X−T :0)

]
− Th∞(P )

= −E
[

log
∞∑
i=1

wi+1Ki(X−T :0)

]
− Thk(P ) + Thk(P )− Th∞(P )

≤ −E
[
logKk(X−T :0)

]
− Thk(P )− logwk+1 + Tεk

= o(T ) + Tεk,

where εk = hk(P ) − h∞(P ) and the last equality follows from the consistency of

Kk. Since the statement holds for each k ∈ N , it remains to notice that εk → 0.

The third statement follows from the first by noting that,

E [δ(Xt−m+1|X0:t−m,X t−m+2:t)] = −E [logR(X t−m+1|X0:t−m,X t−m+2:t)] + ht,m,

and that by definition limt,m→∞ ht,m = h∞×∞. Analogously, the fourth statement

follows from the second, where we additionally need the stationarity of P to shift

the time-index by t to the right.

One could wish for a stronger consistency statement than those established in

Theorem 1. For example, a statement that we would like to demonstrate is the

following,

lim
m,t→∞

−E [logR(X0|X−t:−1,X1:m)] = h∞×∞.

There are two differences with respect to (iii) and (iv): first, the limits are taken

simultaneously, and, second, there is no averaging over time. We conjecture that

this statement is possible to prove. The reason for this conjecture is that it is

possible to prove this for some other predictors (other than R). Namely, the

consistency proof for the Ornstein predictor [Ornstein, 1978], as well as those of

its improvements and generalizations in Morvai et al. [1996] can be extended to

our case. These predictors are constructed by taking frequencies of events based

on growing segments of the past; however, unlike R, they are very wasteful of

data, which is perhaps the reason why they have never been used (to the best



5. Empirical Evaluation 39

Original: Maximum Drawdown (RED) Distance

V
a

lu
e

n

RBoot: Maximum Drawdown (RED) Distance

V
a

lu
e

n

Figure 2.8: (LEFT) Sequences generated from the true process P along with an illus-
tration of the maximum drawdown (RED) on the black sequence. (RIGHT) Bootstrap
sequences generated by R-Boot from the black trajectory.

of our knowledge) beyond theoretical analysis. Another possible extension is to

prove “almost sure” analogues to the statements of the theorem. This is indeed

possible, since the asymptotic consistency holds for R as a predictor; however, in

this case time-averaging is essential, as is also established in Ryabko [1988].

Finally, notice that for standard Bootstrap methods it is often possible to

derive asymptotic convergence rates without relatively strong assumptions on the

generative process (e.g., exponentially mixing). The class of all stationary–ergodic

processes is also so large that this type of analysis is provably impossible. Further,

finite-time error bounds (and finite-time optimality analysis) are also impossible

since the convergence rates of any non-trivial estimates can be arbitrary slow

for this class of processes [Shields, 1996]. Thus, a direct theoretical comparison

between R-Boot and other Bootstrap methods using methods which rely on tra-

ditional Bootstrap analysis are not possible for this class of processes and we rely

on the empirical investigation, in the next section, to evaluate their differences.

5 Empirical Evaluation

An empirical comparison of R-Boot is presented against the circular block Boot-

strap3 and the Markov Bootstrap on both simulated and real datasets with

3The circular block Bootstrap has better finite sample properties than the Moving Block
Bootstrap because it samples points with equal probability by assuming points lie along a circle,
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B = 1, 000 bootstraps for each method in the estimation of the maximum draw-

down statistic, a challenging statistic used in optimization, finance and economics

to characterize the drawdown or “adverse excursion” risk. Synthetic sequences are

simulated using a real-valued mean-reverting fractional Brownian motion (FBM)

process P with mean µ = 0, standard deviation σ = 1 and Hurst exponent

H = 0.25 [Mandelbrot and van Ness, 1968]4. We sample 10, 000 sequences from P

of lengths Toriginal = 1001, differencing (Xt −Xt−1, t = 2, . . . , 1001) observations

within each sequence into stationary increments of length T = 1000. In order

to avoid complicated adaptive quantization schemes, which could introduce con-

founding effects in the result, we use a simple binary discretization: the sequence

XT is such that Xt = −1 for negative increments and Xt = 1 for positive. From

XT , the corresponding cumulative sequence Y T , where Yt =
∑t

s=1Xt, is computed

(representing, e.g., a price sequence). The maximum drawdown is illustrated in

Figure 2.8 and defined as,

f̂(XT ) = max
t=1,...,T

(
max
s=1,...,t

Ys − Yt
)
, (2.10)

and the maximum drawdown θT = E
[
f̂(XT )

]
of the process is then computed

by averaging the raw estimates θ̂T = f̂(XT ) over 107 sequences. As θT is an

increasing function of T , we normalize it by its rate of growth T and compute the

estimation error as,

MSE(B) = E

[
(θT − θ̃BT )2

T

]
,

where the bootstrap estimator is defined as

θ̃BT =
1

B

∑
j

f̂(bjT )

and a single bootstrap is defined by bT = B(XT ).

where blocks extending past T continue along the start of the sample sequence.
4The FBM is a parameterized process with stationary increments, long-range dependence

and level of self-similarity set using the Hurst index H, where H = 0.5 recovers the standard
geometric Brownian motion, H < 0.5 results in mean-reversion and H > 0.5 generates trending
behavior.



5. Empirical Evaluation 41

For circular block Bootstrap, theoretical guidelines provided in the literature

(see e.g., Hall et al. [1995], Zvingelis [2003], Politis and White [2004], Patton et al.

[2009]) suggest that block width should be of order O(T
1
3 ), while for Markov Boot-

strap any tuning of the k-order appropriate for the series would require knowledge

of the process. In the following, we report results for Markov and circular block

Bootstrap methods according to carefully tuned parameters. The block width for

each value of T for circular block Bootstrap is optimized in the range of block–

widths over [1, 20] (thus always including the theoretical value up to 2n
1
3 )5 and

the k-order model size for the Markov Bootstrap is optimized over [1, 20] on all

10, 000 sequences. Notice that such tuning is not possible in practice since only

a single sample sequence is available from the true process and the true statistics

of the process are obviously unknown. These best parameters for circular block

Bootstrap and Markov Bootstrap are intended to upper bound the performance

that can be achieved by these methods. Furthermore, the best order for Markov

Bootstrap also represents an upper bound for any other method using a mixture of

Markov models of different order, such as a direct use of the R measure in Def. 3

to generate sequences sampling from P(Xt|X<t) or the sieve Bootstrap [Bühlmann

et al., 1997] that automatically selects the order.

R-Boot6, circular block Bootstrap and Markov Bootstrap are compared on

FBM data in Figure 2.9. circular block Bootstrap is run with its best block width,

while Markov Bootstrap is run with its best model size. R-Boot is run with

KT = b1.5 log(T )c and two values for R, 0.75n and 3.5n. Notice that the largest

k-order model used by R-Boot is 4 and always less than the largest model used

5The optimal constant in O(T 1/3) depends on the (unknown) autocovariance and spectral
density functions of the process. The automated block width selection procedure in Politis and
White [2004], Patton et al. [2009] was tested on a stationary–ergodic process as well as both
the easier FBM and currency datasets presented here, but did not perform well. The best block
width is not the per realization block length, but the best block width averaged over 10, 000 of
the best block widths per specific length in the FBM dataset and separately averaged over the
best block width for each of the currency datasets.

6No implementations of the measure R were available, so the heavily optimized extension to
the replacement Bootstrap principle for R-Boot in Section 4.4 was implemented in C/C++. Due
to the scale of experiments, especially due to the scan of best block–width for the circular block
Bootstrap and best k-order Markov model size for the Markov Bootstrap, all algorithms were
designed for large scale grid job scheduling through hybrid OpenMP–MPI and deployed on the
9–site Grid 5000 computing infrastructure, www.grid5000.fr. A highly optimized implementation
of R-Boot is available in C/C++ upon request.
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Figure 2.9: MSE on the FBM process for the maximum drawdown statistic.

by the Markov Bootstrap, 20. R-Boot R = 0.75n achieves better performance

than circular block Bootstrap and the simple asymptotic estimator θ̂T = f̂(XT )

(single sequence), demonstrating that approximated replacement distributions are

accurate enough to guarantee bootstraps which resemble the original process. R =

0.75n corresponds with approximately 30% replacements to the original sequence,

which generates too little variability as compared to Markov Bootstrap, which

generates bootstraps from scratch. We increase variability by setting R = 3.5n

and notice replacements increase to approximately 140% and R-Boot R = 3.5n

significantly outperforms Markov Bootstrap under all values of T . Note that the

setting for R = 3.5n was set arbitrarily and further work is necessary to find

methods for setting the best R value based on a single observation sequence. As

illustrated in the sensitivity analysis that follows, better MSE values are possible

for all values of n, given a better setting of R. The increase in MSE with n is

indicative of greater variance with the selected value of R = 3.5n.

For completeness, we also include the estimation performance of the mean and

standard deviation in Figure 2.10, the most common statistics measured using

the Bootstrap. These results further demonstrate the superior performance of R-
Boot in statistical estimation. While all methods converge to the same level of

performance as T increases, R-Boot R = 3.5n replicates the process with enough
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Figure 2.10: Bootstrap estimation performance for the mean (LEFT) and standard
deviation(RIGHT).

accuracy to outperform the best performance of other Bootstrap methods by a

factor of approximately 2 in the case of the mean and 4 in the case of the standard

deviation for very short sequences of length T = 100.

A sensitivity analysis of the presented algorithms demonstrates that while sub-

optimal tuning negatively impacts both circular block Bootstrap and Markov

Bootstrap performance, R-Boot is quite robust in that a wide range of R val-

ues consistently outperform circular block Bootstrap and Markov Bootstrap by

a significant margin. In the results, we considered two values for parameter R

to show R-Boot is competitive w.r.t. careful tuning of circular block Bootstrap

and Markov Bootstrap. Here we explore the parameter sensitivity of these three

methods, showing the potential significant advantage of R-Boot. In Figure 2.11

we report the MSE performance of each method for a full range of parameters.

Circular block Bootstrap obtains a very poor performance for block sizes that are

too small while an increasing block width improves performance, but as noticed

in Section 5, fails to achieve decisively improved performance against the single

sequence estimator. On the other hand, Markov Bootstrap significantly outper-

forms circular block Bootstrap and the single sequence estimator. Nonetheless,

Figure 2.11 illustrates the dependence on correct model size specification to good

performance. In fact, small orders introduce too much bias (i.e., the process can-

not be described accurately enough with 1 or 2-Markov models), while large orders

suffer from large variance, where model sizes above the optimal order overfit noise.

Furthermore, we notice that the best model size changes with T , where longer se-
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Figure 2.11: Sensitivity analysis of circular block Bootstrap, Markov Bootstrap,
and R-Boot with respect to their parameters (block width, Markov order, and
number of replacements R as a percentage of T ) in the FBM experiment for
T = 200 (notice the difference in scale for circular block Bootstrap).

quences allow for larger orders without significantly increasing the variance. As

a result, properly tuning optimal order Markov Bootstrap from one sequence is

challenging and a poor parameter choice can significantly impact performance.

Finally, we report the performance of R-Boot w.r.t. the number of replace-

ments. As discussed in Sect. 4, R corresponds to the number of attempted replace-

ments. The need for large values is due to R-Boot’s sequential nature. In fact, as

the sequence zrT changes, the replacements in a specific position t may have dif-

ferent outcomes because of the conditioning in computing RXT
(·|zr−1

<tr , z
r−1
>tr ). As

a result, we need R to be large enough to allow for a sufficient number of actual

changes in the original sequence to generate a consistent Bootstrap sequence. In

order to provide an intuition about the actual replacements, let R′ be the number

of times the value zr−1
tr is changed across R iterations. For R = 0.75n, we obtain

on average R′ ≈ 0.30n, meaning that less than 30% of the original sequence is

actually changed. Similar results are observed from different values of R in both

FBM and the real datasets. As illustrated in Figure 2.11, both choices of R used

in the experiments are suboptimal, since the performance further improves for

larger R (before deteriorating as the choice of R grows too large). Nonetheless,

the change in performance is quite smooth and R-Boot outperforms both optimal

block width circular block Bootstrap and optimal model size Markov Bootstrap

for a large range of R values.
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ESTIMATOR USD/CHF EUR/USD GBP/USD USD/JPY

Asymptotic (single sequence) 93.0018 66.6727 72.8849 119.1314

Circular Block Bootstrap (optimal) 93.2946± 2.0745 66.9138± 1.7844 73.1951± 3.3746 119.2367± 3.319

R-Boot (100% actual replacements) 44.6137± 2.582 31.7459± 1.661 37.0970± 2.2582 50.5639± 2.5812

Markov Bootstrap (optimal) 43.7268± 2.3188 29.4964± 1.537 36.5849± 2.126 47.5460± 2.3711

Figure 2.12: Maximum drawdown MSE performance (with standard errors) on
multiple real datasets.

5.1 Currency Datasets

We proceed to test R-Boot on real data; namely, differenced high-frequency 1-

minute currency pair data. Currency pairs are relative value comparisons between

two currencies. We assume the differenced, and therefore stationarized, series is

ergodic according to Bassler et al. [2007]. This data is useful for analysis because

of its availability, high liquidity, 24-hour nature and minimal gaps in the data

due to non-trading times. This final feature is important because it reduces the

noise caused by activities during non-trading hours, such as stock or economic

news. Although these series do not strictly conform to the stationary–ergodic

assumptions needed for R-Boot to work well, we evaluate these approaches and

report the results.

We estimate the maximum drawdown statistic using Bootstrap methods on

four pairs of currencies considering the ratio of the first currency over the second

currency. For example, the British Pound to U.S. Dollar cross is calculated as

GBP/USD. We work with the one-minute closing price. One-minute data is a

compressed representation of the actual sequence which includes four data points

for each one-minute time interval: the open, high, low and close prices. The

data7 used in this chapter was segmented into single day blocks of T = 1440

minutes. Days which were partially open due to holidays or announced closures

were removed from the data set for consistency. A total of 300 days (1.5 years

excluding holidays and weekends) of daily sequential samples from the underlying

daily generative process were used for each currency pair.

In Figure 2.12, we report estimation performance across all the currency

datasets for best order Markov Bootstrap (with model size selected in [1, 20]),
7We downloaded the one-minute historical data from http://www.forexhistorydatabase.com/.
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Figure 2.13: Sensitivity to parameters for different Bootstrap methods for the
USDCHF currency (notice the difference in scale for circular block Bootstrap).

best block width circular block Bootstrap (with width selected in [1, 20]), and R-
Boot with R = 3.5n (chosen to match the value used in the FBM experiments). As

we noted in the FBM analysis, a large value of R does not necessarily correspond

to a large value of replacements. In fact, we observed that the actual number

of replacements in the FBM sequences with R = 3.5n were approximately 140%

replacements. On these datasets, circular block Bootstrap has constant behav-

ior and cannot beat the simple asymptotic estimator (single sequence). On the

other hand, R-Boot and Markov Bootstrap significantly improve the maximum

drawdown estimation and they always perform similarly across different curren-

cies (notice that the small advantage of Markov Bootstrap is never statistically

significant).

The full range of parameters for each of these methods is reported in Fig-

ure 2.13. These results mostly confirm the analysis on synthetic data, where

Markov Bootstrap achieves very good performance for a specific range of model

sizes, while performance rapidly degrades in model sizes that are too large and

too small. Finally, R-Boot confirms a similar behavior, as in the FBM, with a

performance which gracefully improves as R increases with a gradual degradation

thereafter.

6 Conclusions

Statistical estimation on a single short dependent time series sequence is hard.

The Bootstrap is one of few tools capable of handling this estimation problem.
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Consistency results for existing methods rely on restrictive assumptions on the

generative process. Convergence rates depend on optimally set parameters. These

methods are sensitive to correct parameter specification. Poor settings result in

poor performance. This was demonstrated in the sensitivity analysis in Section

5 and 5.1. Further, we demonstrated that even when parameters are optimally

set, block methods completely fail as estimators of complex statistics. It is also

clear that even when over-fitting for the optimal Markov model size per value T ,

the Markov Bootstrap is sensitive to correct model specification. It is clear that

existing methods do not perform well for dependent processes, complex statis-

tics or short sequences that do not reveal the full structure of the process. We

approached this problem by introducing R-Boot, an iterative replacement Boot-

strap algorithm. R-Boot successfully managed these challenging circumstances

under several synthetic and real world datasets. The basis of R-Boot is the novel

replacement Bootstrap principle presented in this chapter. This principle generates

bootstrap sequences by simultaneously replacing symbols using an estimated re-

placement distribution. Preliminary theoretical and empirical results suggest that

the replacement Bootstrap can significantly improve the estimation of complicated

statistics in the general class of stationary–ergodic processes.

7 Future Work

R-Boot incrementally approximates the simultaneous replacements in the replace-

ment Bootstrap. Empirical results in Section 5 are promising. An intermediate

approach between incremental and simultaneous replacements can be achieved

using blocks. The sample can be mapped from a single symbol sequence to a

sequence of blocks. R-Boot can then be run on the new symbols to achieve block

replacements. Another extension is to construct mixtures over multiple block sizes.

We leave this for future work.

The measure R is designed for stationary–ergodic processes. No known rates

exist for processes with specific structure. We conjecture that other replacement

Bootstrap algorithms are possible using alternative density estimation methods.
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Future work should also extend theoretical guarantees. Specifically, guarantees on

the Bootstrap process and processes with specific structure (e.g., mixing, auto-

regressive). Future work on computational complexity should focus on reducing

redundant calculations across bootstraps. This can significantly reduce computa-

tions by finding and removing overlapping calculations. Finally, another extension

might consider extending the measure R over several time frames.

The conditional replacement distribution estimation step in R-Boot is equiva-
lent to model-free distribution-based missing data imputation [Van Buuren, 2012].

It is natural to study this relationship and extend R-Boot to this problem. Equiv-

alently, it seems reasonable to leverage the estimated conditional replacement

distributions in Outlier Detection. Each replacement step results in a conditional

distribution over symbols and reveals insights on the probability of events in a

time series.

An alternative application is to Bootstrap ensemble outputs. Ensemble per-

formance is often limited by limited sample size. Bootstrapping ensemble outputs

would approximate the dependent output sequences. These bootstrap sequences

would be very useful in “Model Compression” Bucilua et al. [2006]. The per-

formance of “Model compression” depends directly on sample size. A common

practice is to generate pseudo samples through convolutions or noise. This is

problematic as it does not approximate the true process. Bootstrap samples avoid

this problem by generated samples from the sampling distribution.
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1 Introduction

In the previous chapter, we introduced the novel R-Boot iterative Bootstrap al-

gorithm to address this problem for the most general class of stationary–ergodic

processes and demonstrated its performance on the particularly challenging max-

imum drawdown statistic. Though we studied the problem of estimation in the

previous chapter, we did not study the performance of interleaving the estima-

tion of a risk objective and decision-making. Here, we study the multi-arm bandit

problem [Robbins and Monro, 1951, Thompson, 1933, 1935], which naturally char-

acterizes this problem as the exploration-exploitation dilemma. By only evaluating
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the risk-averse policy according to observations it selects, the uncertainty, result-

ing from partial observation of the choice distributions, can be directly attributed

to the performance of the policy. Additionally, we revert to a simple risk-averse

objective (Markowitz [1952] Mean-Variance) for which estimation is unbiased and

efficient, to avoid problems with statistical estimation. Thus, since statistical es-

timation is no longer a problem, we can directly study the policy performance

under uncertainty.

The multi–armed bandit [Robbins, 1952] elegantly formalizes the problem of

online learning with partial feedback, which encompasses a large number of real–

world applications, such as clinical trials [Robbins and Monro, 1951], online ad-

vertising [Amin et al., 2012], adaptive routing [Avner et al., 2012], cognitive radio

[Gai et al., 2010] and auction mechanisms [Gonen and Pavlov, 2007]. In this

setting, a learner chooses among several arms (e.g., different treatments), each

characterized by an independent reward distribution (e.g., the treatment effec-

tiveness). At each point in time, the learner selects one arm and receives a noisy

reward observation from that arm (e.g., the effect of the treatment on one pa-

tient). This is the partial information nature of the setting. This process repeats

until a known fixed horizon or unknown anytime horizon. Given a finite horizon

(e.g., number of patients involved in the clinical trial), the learner faces a dilemma

between repeatedly exploring all arms (treatments) to collect reward information

versus exploiting current reward estimates by selecting the arm with the highest

estimated reward (most effective treatment observed so far). The standard objec-

tive (expectation maximization) relies on unbiased estimates of the mean, so it

ignores the estimation problem in Chapter 2. The learning objective is to solve

this exploration–exploitation dilemma by simultaneously accumulating as much

reward as possible, while minimizing cumulative regret. Regret accumulates from

having pulled suboptimal arms, where the per-step regret is defined as the dif-

ference between the selected arms and the optimal arm in hindsight. A positive

result is defined by an algorithm that has a per-step regret that goes to zero as

time grows. This algorithm is then referred to as a “no-regret” algorithm.

Many algorithms have been developed around this simple objective. In par-
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ticular, Thompson sampling [Chapelle and Li, 2011] and upper confidence bound

(UCB) [Auer et al., 2002] algorithms have been shown to have logarithmic regret,

which is known to be optimal [Lai and Robbins, 1985]. UCB algorithms use the

“Optimism in the Face of Uncertainty” principle introduced by Lai and Robbins

[1985] to select arms based on their UCB. Thompson sampling assumes a prior

distribution over arms and uses probability matching to select arms. After each

realization, a conditional probability distribution of the mean is updated for the

selected arm. Arm observations are then simulated from the estimated distribu-

tion and the arm with the highest simulated mean is selected. This chapter focuses

on algorithms using a UCB strategy1.

In many practical problems, maximizing the expectation may not be the most

desirable objective. Solutions that guarantee high rewards in expectation may

be too “risky” from a risk-averse perspective. For instance, in clinical trials, the

treatment which works best on average might also have considerable variability ;

resulting in adverse side effects for some patients. In the standard objective,

treatments with equal means and contrasting variance are treated equally. Risk-

aversion weigh these arms according to some measure of risk. If variance measures

an arm’s risk, less variance equates to less risk. In this particular example, a

treatment which is less effective on average, but consistently effective on different

patients, may be preferable w.r.t. an effective but risky treatment. This chapter

introduces the Markowitz [1952] Mean–Variance objective to the stochastic multi-

arm bandit setting with the aim of studying the impact of risk–averse objectives on

the exploration–exploitation dilemma. Recall that the choice of working with the

mean and variance is driven by a desire to study the influence of online estimation

on decision-making. The mean and variance are both unbiased estimators and

allows us to avoid problems with estimation.

This work is the first to study online estimation of a risk objective in the

stochastic multi-arm bandit problem. The only other analysis studies estimation

risk, which is unrelated to our study. In particular, Audibert et al. [2009] analyze

1For a survey of the multi-arm bandit, please see e.g., Cesa-Bianchi and Lugosi [2003]. For
a review of UCB algorithms, please see e.g., Bubeck and Cesa-Bianchi [2012]. For a review of
Thompson sampling, please see e.g., Kaufmann et al. [2012]
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the distribution of the pseudo-regret when the regret deviates from its expectation,

revealing that an anytime version of UCB algorithms based only on the sample

mean UCB1 [Auer et al., 2002], and an extension based on empirical Bernstein

bounds relying also on the sample variance UCB-V [Audibert et al., 2009], might

have large regret with some non-negligible probability2. They note that an anytime

horizon suffers a greater risk of deviation due to an uncertainty associated to the

evaluation time, while a fixed horizon effectively manages this deviation risk be-

cause the evaluation time is known from the first round. Without a clearly defined

evaluation time, the anytime setting challenges how the exploration–exploitation

should be managed. Ultimately, better concentration around the expectation can

be achieved by adapting the “aggressiveness” of the exploration rate to reduce the

risk of deviating from the expected performance. This result applies generally to

any objective relying on empirical estimates and a UCB and not to specifically

to the expectation–maximization objective being studied. Salomon and Audibert

[2011] extended this analysis to prove negative results showing that no anytime

algorithm can achieve a regret with both a small expected regret and exponential

tails (i.e., low regret in high probability).

In Section 2, we introduce notation and the stochastic multi-arm bandit prob-

lem, reviewing existing results in the (standard) expectation maximization ob-

jective. Section 3 introduces additional notation and define the Mean–Variance

bandit problem, where we introduce a novel risk-averse objective. In Section 4 we

introduce a confidence–bound algorithm for this risk-averse objective and study its

theoretical properties. In Section 5 we introduce a (non-UCB) algorithm that ex-

plicitly splits exploration and exploitation phases. Numerical results on synthetic

data validating the theoretical results are reported in Section 6. Section 7 presents

a sensitivity analysis, Section 8 provides a brief discussion, and finally, Section 9

concludes the chapter with suggestions on future work. We briefly review their

contribution to our work in Section 10.

2Although the analysis is mostly directed to the pseudo–regret, as commented in Remark 2
at page 23 of Audibert et al. [2009], it can be extended to the true regret.
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2 The Multi–Arm Bandit Problem

In the following, we present notation and review the relevant literature on the

stochastic multi-arm bandit problem and risk in more detail.

2.1 Notation, Setting and Definitions

The fixed horizon stochastic multi–arm bandit problem is defined over T rounds

and considers K independent arms, each characterized by a distribution νi, with

mean µi and variance σ2
i , with observations (rewards) Xi bounded in the interval

[0, b]. We denote by Xi,s ∼ νi the s-th i.i.d. random reward observation drawn

from the distribution of arm i. At each round t, an algorithm selects arm It and

observes sample Zt = XIt,Ni,t , where Ni,t is the number of samples observed from

arm i up to time t (i.e., Ni,t =
∑t

s=1 I{It = i}) and the aim is to select the optimal

arm i∗ having the largest expected reward

µi∗ = max
i=1,...,K

µi.

Given {Xi,s}ts=1 i.i.d. samples from the distribution νi, we define the empirical

mean of an arm i with t samples as,

µ̂i,t =
1

t

t∑
s=1

Xi,s,

and the empirical variance as,

σ̂2
i,t =

1

t

t∑
s=1

(
Xi,s − µ̂i,t

)2
. (3.1)

The empirical mean for learning algorithm A over T rounds is defined as,

µ̂T (A) =
1

T

T∑
t=1

Zt. (3.2)
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We measure the performance of the learning algorithm A according to its cumu-

lative regret,

RT (A) =
T∑
t=1

Xi∗,t −
T∑
t=1

Zt. (3.3)

The aim is for a policy to have an expected (cumulative) regret E[RT ] that is as

small as possible, which is equivalent to maximizing the total expected reward

achieved up to time T. Accordingly, the expected regret can be expressed as,

E[RT (A)] ,
K∑
i=1

E[Ni,T ]∆i, (3.4)

where ∆i = µi∗,T−µT (A) is the expected loss of playing arm i. Hence, a policy that

aims at minimizing the expected regret should minimize the expected sampling

times of suboptimal arms over the horizon.

2.2 Optimism in the Face of Uncertainty Principle

Lai and Robbins [1985] introduced parametric UCB algorithms within a minimax

framework as an approach to solving the stochastic multi–arm bandit problem.

This approach follows what is referred to as the “optimism in the face of uncer-

tainty principle”. These algorithms use sample means along with a UCB on each

arm which concentrate according to the number of samples drawn from each arm.

As long as an arm is never chosen, its bound is infinite, so the aim of UCB algo-

rithms is to explore the possible arms with the aim of identifying the arm with

the highest expected reward as fast as possible. The algorithm exploits the arm

with the highest expectation, with some probability. It is also natural to initialize

arm estimates with a minimum number of samples. This is an unavoidable cost in

this setting. The cumulative regret of UCB algorithms grows with order O(log T ).

UCB algorithms use bounds based on the empirical mean, as in the UCB1 algo-

rithm [Auer et al., 2002]. The pseudocode for UCB1 is presented in Figure 3.1.

The expected regret is presented in Theorem 2.
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Input:

• Rounds T

• Arms 1, . . . ,K

For all t = 1, . . . , T , repeat

1. For all i = 1, . . . ,K, repeat

Bi,Ni,t−1 = µ̂i,Ni,t−1 + b

√
log T

Ni,t−1

end for

2. Learner chooses It = arg maxi=1,...,K Bi,Ni,t−1

3. Learner updates NIt,t = NIt,t−1 + 1

4. Learner observes XIt,NIt,t
∼ νIt

5. Learner updates µ̂It,NIt,t

end for

Figure 3.1: UCB1

Theorem 2. The expected pseudo-regret for UCB1 [Auer et al., 2002] defined by

the upper confidence bound,

Bi,Ni,t−1
= µ̂i,Ni,t−1

+ b

√
log T

Ni,t−1

,

satisfies,

E[RT ] ≤
∑
i:∆i>0

[
8b2

∆i

log T + 2∆i

]
.

Audibert et al. [2009] provide a thorough analysis of UCB algorithms, while

introducing empirical Bernstein bounds based on the empirical variance. Unlike

UCB1, the index policy of UCB-V considers both the empirical mean µ̂i,t and

empirical variance,

σ̂2
i,t =

1

t

t∑
s=1

(Xi,s − µ̂i,t)2.

An explicit regret bound is presented in Theorem 3, while pseudo-code is presented

in Figure 3.2. Audibert et al. [2009] show that algorithms using the empirical
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Input:

• Rounds T

• Arms 1, . . . ,K

For all t = 1, . . . , T , repeat

1. For all i = 1, . . . ,K, repeat

Bi,Ni,t−1 = µ̂i,Ni,t−1 +

√
2ζσ̂2

k,Ni,t−1
log T

Ni,t−1
+ c

3ζ log T

Ni,t−1

end for

2. Learner chooses It = arg maxi=1,...,K Bi,Ni,t−1

3. Learner updates NIt,t = NIt,t−1 + 1

4. Learner observes XIt,NIt,t
∼ νIt

5. Learner updates µ̂It,NIt,t and σ̂
2
It,NIt,t

end for

Figure 3.2: UCB-V

variance outperform those that only rely on the empirical mean, as long as the

variance of suboptimal arms is much smaller than the squared upper bound on

rewards, b2.

Theorem 3. Let c = 1 and ε = ζ log t, for ζ > 1. Then there exists a constant

cζ that depends on ζ only such that for any K ≥ 2, the expected pseudo-regret for

UCB–V [Audibert et al., 2009] defined by the upper confidence bound,

Bi,Ni,t−1
= µ̂i,Ni,t−1

+

√
2ζσ̂2

i,Ni,t−1
log T

Ni,t−1

+ c
3ζ log T

Ni,t−1

,

satisfies

E[RT ] ≤ cζ
∑
i:∆i>0

(
σ2
i

∆2
i

+ 2

)
log T. (3.5)

For instance, for ζ = 1.2, the result holds with cζ = 10.
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3 Mean–Variance Multi–arm Bandit

3.1 Additional Notation, Setting and Definitions

The Mean–Variance multi–arm bandit problem is defined similarly to the standard

stochastic multi-arm bandit. While in the standard objective, the aim is to select

the arm leading to the highest reward in expectation (the arm with the largest

expected value µi), here we focus on the problem of finding the arm that efficiently

trades off risk versus reward (risk–reward). Although many risk objectives have

been proposed, here we focus on the Mean–Variance model proposed by Markowitz

[1952], where the empirical means represent the arm reward value and empirical

variance represents the arm risk.

Definition 4. The Mean–Variance of an arm i with mean µi, variance σ2
i and

coefficient of absolute risk tolerance ρ is defined as3 MVi = σ2
i − ρµi.

Thus, it easily follows that the arm best minimizing the Mean–Variance is,

i∗ = arg min
i=1,...,K

MVi.

We notice that we can obtain a full range of settings according to the value of risk

tolerance ρ. As ρ → ∞, the Mean–Variance of arm i tends to the opposite of its

expected value µi, with the objective reducing to the standard expected reward

maximization setting traditionally considered in multi–arm bandit problems. With

ρ = 0, the Mean–Variance reduces to minimizing the variance σ2
i , where the

objective becomes variance minimization.

Given {Xi,s}ts=1 i.i.d. samples from the distribution νi, we define the empirical

Mean–Variance of an arm i with t samples as,

M̂Vi,t = σ̂2
i,t − ρµ̂i,t,

We now consider a learning algorithm A and its corresponding performance over

3The coefficient of risk tolerance is the inverse of the Pratt [1964] coefficient of absolute risk
aversion A = 1

ρ .
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T rounds. Similar to a single arm i, we define its empirical Mean–Variance as,

M̂VT (A) = σ̂2
T (A)− ρµ̂T (A), (3.6)

where the variance of an algorithm is defined as,

σ̂2
T (A) =

1

T

T∑
t=1

(
Zt − µ̂T (A)

)2
. (3.7)

This leads to a natural definition of the (random) regret at each single run of the

algorithm as the difference in the Mean–Variance performance of the algorithm

compared to the best arm.

Definition 5. The regret for a learning algorithm A over T rounds is defined as,

RT (A) = M̂VT (A)− M̂Vi∗,T . (3.8)

Given this definition, the objective is to design an algorithm whose regret

decreases as the number of rounds increases (in high probability or in expectation).

We notice that the previous definition actually depends on unobserved samples.

In fact, M̂Vi∗,T is computed on T samples i∗ which are not actually observed

when running A. This matches the definition of true regret in standard bandits

(see e.g., Audibert et al. [2009]). Thus, in order to clarify the main components

characterizing the regret, we introduce additional notation. Let,

Yi,t =


Xi∗,t if i = i∗

Xi∗,t′ with t′ = Ni∗,T +
∑

j 6=i,j 6=i∗
Nj,T + t, otherwise

be a renaming of the samples from the optimal arm, such that while the algorithm

was pulling arm i for the t-th time, Yi,t is the unobserved sample from i∗. Then

we define the corresponding mean and variance as,

µ̃i,Ni,T =
1

Ni,T

Ni,T∑
t=1

Yi,t, σ̃2
i,Ni,T

=
1

Ni,T

Ni,T∑
t=1

(
Yi,t − µ̃i,Ni,T

)2
. (3.9)
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Given these additional definitions, we can now rewrite the regret as,

RT (A) =
1

T

∑
i 6=i∗

Ni,T

[
(σ̂2

i,Ni,T
− ρµ̂i,Ni,T )− (σ̃2

i,Ni,T
− ρµ̃i,Ni,T )

]
+

1

T

K∑
i=1

Ni,T

(
µ̂i,Ni,T − µ̂T (A)

)2 − 1

T

K∑
i=1

Ni,T

(
µ̃i,Ni,T − µ̂i∗,T

)2
. (3.10)

Since the last term is always negative and small4, our analysis focuses on the first

two terms which reveal two interesting characteristics of A. First, an algorithm A
suffers a regret whenever it chooses a suboptimal arm i 6= i∗ and the regret cor-

responds to the difference in the empirical Mean–Variance of i w.r.t. the optimal

arm i∗. Such a definition has a strong similarity with the definition of regret in 3.3,

where i∗ is the arm with the highest expected value and the regret depends on the

number of times suboptimal arms are pulled and their respective gaps w.r.t. the

optimal arm i∗. In contrast to the standard formulation of regret, A also suffers

an additional regret from the variance σ̂2
T (A), which depends on the variability of

pulls Ni,T over different arms. Recalling the definition of the mean µ̂T (A) as the

weighted mean of the empirical means µ̂i,Ni,T with weights Ni,T
T

(see eq. 3.7), we

notice that this second term is a weighted variance of the means and represents

a penalty associated with the algorithm switching between arms between rounds.

In fact, if an algorithm simply selects and pulls a single arm from the beginning, it

would not suffer any penalty from this term (secondary regret), since µ̂T (A) would

coincide with µ̂i,Ni,T for the chosen arm and all other components would have zero

weight. On the other hand, an algorithm accumulates this “switching” cost as the

mean µ̂T (A) deviates from any specific arm; where the maximum penalty peaks

at the mean µ̂T (A) furthest from all arm means. This makes sense in that it

suggests an algorithm that equally pulls all arms has no preference for any of the

arms, so it fails to identify any of the arms as optimal. In the next sections we

introduce and study two simple algorithms. We study how well they trade-off the

two components of the regret.

4More precisely, it can be shown that this term decreases with rate O
(
K log( 1

δ )

T

)
with prob-

ability 1− δ.
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The previous definition of regret can be further elaborated to obtain the upper

bound

RT (A) ≤ 1

T

∑
i 6=i∗

Ni,T ∆̂i +
1

T 2

K∑
i=1

∑
j 6=i

Ni,TNj,T Γ̂2
i,j, (3.11)

where

∆̂i = (σ̂2
i,Ni,T

− σ̃2
i,Ni,T

)− ρ(µ̂i,Ni,T − µ̃i,Ni,T ),

and

Γ̂2
i,j = (µ̂i,Ni,T − µ̂j,Nj,T )2,

First, we elaborate on the two mean terms in the regret as,

µ̂i∗,T =
1

T

K∑
i=1

Ni,T∑
t=1

Yi,t

=
1

T

K∑
i=1

Ni,T µ̃i,Ni,T ,

and

µ̂T (A) =
1

T

K∑
i=1

Ni,T∑
t=1

Xi,t

=
1

T

K∑
i=1

Ni,T µ̂i,Ni,T .

Similarly, the two variance terms can be written as,

σ̂2
T (A) =

1

T

K∑
i=1

Ni,T∑
t=1

(
Xi,t − µ̂T (A)

)2

=
1

T

K∑
i=1

Ni,T∑
t=1

(
Xi,t − µ̂i,Ni,T

)2

+
1

T

K∑
i=1

Ni,T∑
t=1

(
µ̂i,Ni,T − µ̂T (A)

)2
+

2

T

K∑
i=1

Ni,T∑
t=1

(
Xi,t − µ̂i,Ni,T

)(
µ̂i,Ni,T − µ̂T (A)

)
=

1

T

K∑
i=1

Ni,T σ̂
2
i,Ni,T

+
1

T

K∑
i=1

Ni,T

(
µ̂i,Ni,T − µ̂T (A)

)2
+ 0,
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and

σ2
i∗,T =

1

T

K∑
i=1

Ni,T∑
t=1

(
Yi,t − µ̂i∗,T

)2

=
1

T

K∑
i=1

Ni,T∑
t=1

(
Yi,t − µ̃i,Ni,T

)2

+
1

T

K∑
i=1

Ni,T∑
t=1

(
µ̃i,Ni,T − µ̂i∗,T

)2
+

2

T

K∑
i=1

Ni,T∑
t=1

(
Yi,t − µ̃i,Ni,T

)(
µ̃i,Ni,T − µ̂i∗,T

)
=

1

T

K∑
i=1

Ni,tσ̃
2
i,Ni,T

+
1

T

K∑
i=1

Ni,T

(
µ̃i,Ni,T − µ̂i∗,T

)2
+ 0.

Combining these terms, we obtain the following regret,

RT (A) =
1

T

∑
i 6=i∗

Ni,T

[
(σ̂2

i,Ni,T
− σ̃2

i,Ni,T
)− ρ(µ̂i,Ni,T − µ̃i,Ni,T )

]
+

1

T

K∑
i=1

Ni,T

(
µ̂i,Ni,T − µ̂T (A)

)2 − 1

T

K∑
i=1

Ni,T

(
µ̃i,Ni,T − µ̂i∗,T

)2
. (3.12)

If we further elaborate the second term, we obtain,

1

T

K∑
i=1

Ni,T

(
µ̂i,Ni,T − µ̂T (A)

)2
=

1

T

K∑
i=1

Ni,T

(
µ̂i,Ni,T −

1

T

K∑
j=1

Nj,T µ̂j,Nj,T

)2

=
1

T

K∑
i=1

Ni,T

(
K∑
j=1

Nj,T

T
(µ̂i,Ni,T − µ̂j,Nj,T )

)2

≤ 1

T

K∑
i=1

Ni,T

K∑
j=1

Nj,T

T
(µ̂i,Ni,T − µ̂j,Nj,T )2

=
1

T 2

K∑
i=1

∑
j 6=i

Ni,TNj,T (µ̂i,Ni,T − µ̂j,Nj,T )2.

Using the definitions,

∆̂i = (σ̂2
i,Ni,T

− σ̃2
i,Ni,T

)− ρ(µ̂i,Ni,T − µ̃i,Ni,T ),

and

Γ̂2
i,j = (µ̂i,Ni,T − µ̂j,Nj,T )2,
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we finally obtain the following upper–bound on the regret,

RT (A) ≤ 1

T

∑
i 6=i∗

Ni,T ∆̂i +
1

T 2

K∑
i=1

∑
j 6=i

Ni,TNj,T Γ̂2
i,j. (3.13)

In the following, we rely on the terms,

R∆̂
T =

1

T

∑
i 6=i∗

Ni,T ∆̂i

and

RΓ̂
T =

1

T 2

K∑
i=1

∑
j 6=i

Ni,TNj,T Γ̂2
i,j.

Unlike the definition in eq. 3.10, this upper bound explicitly illustrates the rela-

tionship between the regret and the number of pulls Ni,T ; suggesting that a bound

on the pulls is sufficient to bound the regret. This formulation also allows us to

have a better understanding of how the regret is composed. Let consider the case

of ρ = 0 (variance minimization problem). In this case, ∆̂i represents the different

in the empirical variances and Γ̂i,j is the difference in the empirical means. Even

in a problem where all the arms have a zero variance (i.e., ∆̂i = 0), an algorithm

pulling all the arms uniformly would suffer a constant regret due to the variance

introduced by pulling arms with different means. Finally, we can also introduce a

definition of the pseudo-regret.

Definition 6. The pseudo regret for a learning algorithm A over T rounds is

defined as,

R̃T (A) =
1

T

∑
i 6=i∗

Ni,T∆i +
2

T 2

K∑
i=1

∑
j 6=i

Ni,TNj,TΓ2
i,j, (3.14)

where ∆i = MVi −MVi∗ and Γi,j = µi − µj.

In the following, we denote the two components of the pseudo–regret as,

R̃∆
T (A) =

1

T

∑
i 6=i∗

Ni,T∆i, and R̃Γ
T (A) =

2

T 2

K∑
i=1

∑
j 6=i

Ni,TNj,TΓ2
i,j. (3.15)
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Where R̃∆
T (A) constitutes the standard regret derived from the traditional formu-

lation of the multi-arm bandit problem and R̃Γ
T (A) denotes the exploration risk5.

This regret can be shown to be close to the true regret up to small terms with

high probability.

Lemma 1. Given definitions 5 and 6,

RT (A) ≤ R̃T (A) + (5 + ρ)

√
2K log

(
1
δ

)
T

+ 4
√

2
K log

(
1
δ

)
T

,

with probability at least 1− 6nKδ.

The proof of Lemma 1 follows,

Proof. (Lemma 1)

We define a high–probability event in which the empirical values and the true

values only differ for small quantities,

E =

{
∀i = 1, . . . , K, ∀s = 1, . . . , T,

∣∣µ̂i,s − µi∣∣ ≤
√

log 1
δ

2s
and

∣∣σ̂2
i,s − σ2

i

∣∣ ≤ 5

√
log 1

δ

2s

}
.

Using Chernoff–Hoeffding inequality and a union bound over arms and rounds,

we have that P[EC ] ≤ 6nKδ. Under this event, the empirical ∆̂i can be upper–

bounded by,

∆̂i = ∆i − (σ2
i − σ2

i∗) + ρ(µi − µi∗) + (σ̂2
i,Ni,T

− σ̃2
i,Ni,T

)− ρ(µ̂i,Ni,T − µ̃i,Ni,T )

≤ ∆i + 2(5 + ρ)

√
log 1

δ

2Ni,T

,

and similarly, Γ̂i,j can be upper–bounded by,

|Γ̂i,j| = |Γi,j − µi + µj + µ̂i,Ni,T − µ̂j,Nj,T |

≤ |Γi,j|+
√

log 1
δ

2Ni,T

+

√
log 1

δ

2Nj,T

.

5Notice that the factor 2 in front of the second term is due to a rough upper bounding used
in the proof of Lemma 1.
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Thus the regret can be written as,

RT (A) ≤ 1

T

∑
i 6=i∗

Ni,T

∆i + 2(5 + ρ)

√
log 1

δ

2Ni,T


+

1

T 2

K∑
i=1

∑
j 6=i

Ni,TNj,T

|Γi,j |+
√

log 1
δ

2Ni,T
+

√
log 1

δ

2Nj,T

2

≤ 1

T

∑
i 6=i∗

Ni,T∆i +
5 + ρ

T

∑
i 6=i∗

√
2Ni,T log

1

δ
+

2

T 2

K∑
i=1

∑
j 6=i

Ni,TNj,TΓ2
i,j

+
2
√

2

T 2

K∑
i=1

∑
j 6=i

Nj,T log
1

δ
+

2
√

2

T 2

K∑
i=1

∑
j 6=i

Ni,T log
1

δ

≤ 1

T

∑
i 6=i∗

Ni,T∆i +
2

T 2

K∑
i=1

∑
j 6=i

Ni,TNj,TΓ2
i,j + (5 + ρ)

√
2K log 1

δ

T
+ 4
√

2
K log 1

δ

T
.

where in the next to last passage we used Jensen’s inequality for concave functions

and rough upper bounds on other terms (K−1 < K,
∑

i 6=i∗ Ni,T ≤ T ). By recalling

the definition of R̃T (A), we finally obtain,

RT (A) ≤ R̃T (A) + (5 + ρ)

√
2K log 1

δ

T
+ 4
√

2
K log 1

δ

T
,

with probability 1 − 6nKδ. Thus we can conclude that any upper bound on the

pseudo–regret R̃T (A) is a valid upper bound for the true regret RT (A), up to a

decreasing term of order O
(√

K
T

)
.

The previous lemma shows that any (high–probability) bound on the pseudo–

regret immediately translates into a bound on the true regret. Thus, we report

most of the theoretical analysis according to R̃T (A). Nonetheless, it is interesting

to notice the major difference between the true and pseudo–regret when compared

to the standard bandit problem. In fact, it is possible to show in the risk-averse

case that the pseudo–regret is not an unbiased estimator of the true regret, i.e.,

E[RT ] 6= E[R̃T ]. Thus, in order to bound the expectation of RT we build on the

high–probability result from Lemma 1.
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Input:

• Confidence δ

• Rounds T

• Arms K

For all t = 1, . . . , T , repeat

1. For all t = 1, . . . ,K, repeat

Bi,Ni,t−1 = M̂Vi,Ni,t−1 − (5 + ρ)

√
log 1

δ

2Ni,t−1

end for

2. Learner chooses It = arg mini=1,...,K Bi,Ni,t−1

3. Learner updates Ni,t = Ni,t−1 + 1

4. Learner observes XIt,Ni,t ∼ νIt
5. Learner updates M̂Vi,Ni,t

end for

Figure 3.3: Pseudo-code of the MV-LCB algorithm.

4 Mean–Variance Lower Confidence Bound Algo-

rithm

In this section we introduce a novel risk-averse bandit algorithm whose objective

is to identify the arm which best trades off risk and return. The algorithm is a

natural extension of UCB1 [Auer, 2000] and we report a theoretical performance

analysis on how well it balances the exploration needed to identify the best arm

versus the risk of pulling arms with different means.

We propose an index–based bandit algorithm which estimates the Mean–

Variance of each arm and selects the optimal arm according to the optimistic

confidence–bounds on the current estimates. A sketch of the algorithm is re-

ported in Figure 3.3. For each arm, the algorithm keeps track of the empirical

Mean–Variance M̂Vi,s computed according to s samples. We can build high–

probability confidence bounds on empirical Mean–Variance through an application

of the Chernoff–Hoeffding inequality (see e.g., Antos et al. [2010] for the bound

on the variance) on terms µ̂ and σ̂2.
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Lemma 2. Let {Xi,s} be i.i.d. random variables bounded in [0, 1] from the distri-

bution νi with mean µi and variance σ2
i , and the empirical mean µ̂i,s and variance

σ̂2
i,s computed as in Equation 3.1, then,

P

∃i = 1, . . . , K, s = 1, . . . , T, |M̂Vi,s −MVi| ≥ (5 + ρ)

√
log 1

δ

2s

 ≤ 6nKδ,

The algorithm in Figure 3.3 implements the principle of optimism in the face

of uncertainty, where the algorithm computes upper confidence bounds for all the

arms and chooses the arm with the highest bound. On the basis of the previous

confidence bounds, we define a lower–confidence bound on the Mean–Variance of

arm i when it has been pulled s times as,

Bi,s = M̂Vi,s − (5 + ρ)

√
log 1

δ

2s
, (3.16)

where δ is an input parameter of the algorithm. Given the index of each arm

at each round t, the algorithm simply selects the arm with the smallest Mean–

Variance index, i.e., It = arg miniBi,Ni,t−1
. We refer to this algorithm as the

Mean–Variance lower–confidence bound (MV-LCB) algorithm. We notice that

the algorithm reduces to UCB1 whenever ρ→∞. This is coherent with the fact

that for ρ → ∞ the Mean–Variance problem reduces to the maximization of the

cumulative reward, for which UCB1 is already known to be nearly-optimal. On the

other hand, for ρ = 0, which leads to the problem of cumulative reward variance

minimization, the algorithm plays according to a lower–confidence–bound on the

variances.

The algorithm can also be easily improved by using tighter bounds on the

mean and variance estimates. In particular, we can use Bernstein’s inequality

on the mean (see e.g., Audibert et al. [2009]) and a tighter deviation on the
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variance Maurer and Pontil [2009], obtaining the index6,

BV
i,s,t =

σ̂i,s +

√
log
(

1
δ

)
2s

2

− ρ

µ̂i,s + σ̂i,s

√
log
(

1
δ

)
s

+
log
(

1
δ

)
s

 .

While this version of MV-LCB should work better whenever the variance of the

arms is small, its theoretical properties would not differ much w.r.t. MV-LCB

(see Audibert et al. [2009] for a comparison between UCB-V and UCB).

The MV-LCB algorithm is parameterized by a parameter δ which defines the

confidence level of the bounds employed in the definition of the index (3.16). In

Theorem 4 we show how to optimize the parameter when the horizon T is known

in advance. On the other hand, if T is not known, it is possible to design an

anytime version of MV-LCB by defining a non-decreasing exploration sequence

(εt)t instead of the term log 1
δ
.

4.1 Theoretical Analysis

In this section we report the analysis of the regretRT (A) of MV-LCB (Fig. 3.3). It

is enough to analyze the number of pulls for each of the arms to recover a bound

on the regret. The proofs are mostly based on similar arguments to the proof

of UCB. We first report a high–probability bound on the number of pulls. The

high–probability event over which the statement holds coincides with the event

form of Lemma 1 which thus allows us to combine the two results and obtain a

high–probability bound for the true regret RT (A).

Lemma 3. Let b = 2(5+ρ), for any δ ∈ (0, 1), the number of times each suboptimal

arm i 6= i∗ is pulled by MV-LCB is,

Ni,T ≤
b2

∆2
i

log
1

δ
+ 1, (3.17)

with probability of at least 1− 6nKδ.

6We notice that in this case the estimated variance is computed as σ̂2
i,s = 1

s−1

∑s
s′=1X

2
i,s′ −

µ̂2
i,s.
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From the previous result, we derive the following regret bound in high proba-

bility and expectation.

Theorem 4. Let the optimal arm i∗ be unique and b = 2(5 + ρ), the MV-LCB

algorithm achieves a pseudo–regret bounded as,

R̃T (A) ≤ b2 log 1
δ

T

(∑
i 6=i∗

1

∆i

+ 4
∑
i 6=i∗

Γ2
i∗,i

∆2
i

+
2b2 log 1

δ

T

∑
i 6=i∗

∑
j 6=i
j 6=i∗

Γ2
i,j

∆2
i∆

2
j

)
+

5K

T
,

with probability at least 1 − 6nKδ. Similarly, if MV-LCB is run with δ = T−2

then,

E[R̃T (A)] ≤ 2b2 log T

T

(∑
i 6=i∗

1

∆i

+ 4
∑
i 6=i∗

Γ2
i∗,i

∆2
i

+
4b2 log T

T

∑
i 6=i∗

∑
j 6=i
j 6=i∗

Γ2
i,j

∆2
i∆

2
j

)
+ (17 + 6ρ)

K

T
.

Proof. (Lemma 3 and Theorem 4)

We begin by defining a high–probability event E as,

E =

{
∀i = 1, . . . , K, ∀s = 1, . . . , T,

∣∣µ̂i,s − µi∣∣ ≤
√

log 1
δ

2s
and

∣∣σ̂2
i,s − σ2

i

∣∣ ≤ 5

√
log 1

δ

2s

}
.

Using Chernoff–Hoeffding inequality and a union bound over arms and rounds, we

have that P[EC ] ≤ 6nKδ.

We now introduce the definition of the algorithm. Consider any time t when

arm i 6= i∗ is pulled (i.e., It = i). By definition of the algorithm in Figure 3.3,

i is selected if its corresponding index Bi,Ni,t−1
is bigger than for any other arm,

notably the best arm i∗. By recalling the definition of the index and the empirical
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Mean–Variance at time t, we have

σ̂2
i,Ni,t−1

− ρµ̂i,Ni,t−1
− (5 + ρ)

√
log 1

δ

2Ni,t−1

= Bi,Ni,t−1

≤ Bi∗,Ni∗,t−1

= σ̂2
i∗,Ni∗,t−1

− ρµ̂i∗,Ni∗,t−1
− (5 + ρ)

√
log 1

δ

2Ni∗,t−1

.

Over all the possible realizations, we now focus on the realizations in E . In this

case, we can rewrite the previous condition as,

σ2
i − ρµi − 2(5 + ρ)

√
log 1

δ

2Ni,t−1

≤ Bi,Ni,t−1
≤ Bi∗,Ni∗,t−1

≤ σ2
i∗ − ρµi∗ .

Let time t be the last time when arm i is pulled until the final round T , then

Ni,t−1 = Ni,T − 1 and,

Ni,T ≤
2(5 + ρ)2

∆2
i

log
1

δ
+ 1,

which suggests that the suboptimal arms are pulled only few times with high prob-

ability. Plugging the bound in the regret in eq. 3.14 leads to the final statement,

R̃T (A) ≤ 1

T

∑
i 6=i∗

b2 log 1
δ

∆i

+
1

T

∑
i 6=i∗

4b2 log 1
δ

∆2
i

Γ2
i∗,i +

1

T 2

∑
i 6=i∗

∑
j 6=i
j 6=i∗

2b4(log 1
δ
)2

∆2
i∆

2
j

Γ2
i,j +

5K

T
,

with probability 1− 6nKδ.

We now move from the previous high–probability bound to a bound in expec-

tation. The pseudo–regret is (roughly) bounded as R̃T (A) ≤ 2 + ρ (by bounding

∆i ≤ 1 + ρ and Γ ≤ 1), thus,

E[R̃T (A)] = E
[
R̃T (A)I{E}

]
+ E

[
R̃T (A)I{EC}

]
≤ E

[
R̃T (A)I{E}

]
+ (2 + ρ)P

[
EC
]
.
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By using the previous high–probability bound and recalling that P[EC ] ≤ 6nKδ,

we have,

E[R̃T (A)] ≤ 1

T

∑
i 6=i∗

b2 log 1
δ

∆i

+
1

T

∑
i 6=i∗

4b2 log 1
δ

∆2
i

Γ2
i∗,i

+
1

T 2

∑
i 6=i∗

∑
j 6=i
j 6=i∗

2b4(log 1
δ
)2

∆2
i∆

2
j

Γ2
i,j +

5K

T
+ (2 + ρ)6nKδ.

The final statement of the lemma follows by tuning the parameter δ = T−2 so as

to have a regret bound decreasing with T .

While a high–probability bound for RT can be immediately obtained from

Lemma 1, the expectation of RT is reported in the next proof.

Proof. Since the Mean–Variance −ρ ≤ M̂V ≤ 1
4
, the regret is bounded by −1

4
−ρ ≤

RT (A) ≤ 1
4

+ ρ. Thus we have,

E[RT (A)] ≤ uP[RT (A) ≤ u] +

(
1

4
+ ρ

)
P[RT (A) > u].

By taking u equal to the previous high–probability bound and recalling that

P[EC ] ≤ 6nKδ, we have,

E[RT (A)] ≤ 1

T

∑
i 6=i∗

b2 log 1
δ

∆i

+
1

T

∑
i 6=i∗

4b2 log 1
δ

∆2
i

Γ2
i∗,i

+
1

T 2

∑
i 6=i∗

∑
j 6=i
j 6=i∗

2b4(log 1
δ
)2

∆2
i∆

2
j

Γ2
i,j +

5K

T

+ b

√
K log 1

δ

2n
+ 4
√

2
K log 1

δ

T
+

(
1

4
+ ρ

)
6nKδ.

The final statement of the lemma follows by tuning the parameter δ = T−2 so as

to have a regret bound decreasing with T .

Bound

Let ∆min = mini 6=i∗ ∆i and Γmax = maxi |Γi|, then a rough simplification of the
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previous bound leads to,

E[R̃T (A)] ≤ O
(

K

∆min

log T

T
+K2 Γ2

max

∆4
min

log2 T

T 2

)
.

First we notice that the regret decreases as O
(

log T
T

)
, implying that MV-LCB

is a consistent algorithm. As already highlighted in Definition 5, the regret is

mainly composed by two terms. The first term is due to the difference in the

Mean–Variance of the best arm and the arms pulled by the algorithm, while the

second term denotes the additional variance introduced by the exploration risk of

pulling arms with different means. In particular, it is interesting to note that this

additional term depends on the squared difference in the means of the arms Γ2
i,j.

Thus, if all the arms have the same mean, this term would be zero.

4.2 Worst–Case Analysis

We can further study the result of Theorem 4 by considering the worst–case per-

formance of MV-LCB, that is the performance when the distributions of the arms

are chosen so as to maximize the regret. In order to illustrate our argument we

consider the simple case of K = 2 arms, ρ = 0 (variance minimization), µ1 6= µ2,

and σ2
1 = σ2

2 = 0 (deterministic arms)7. In this case we have a variance gap ∆ = 0

and Γ2 > 0. According to the definition of MV-LCB, the index Bi,s would simply

reduce to,

Bi,s =

√
log 1

δ

s
,

thus forcing the algorithm to pull both arms uniformly (i.e., N1,T = N2,T = T
2
up

to rounding effects). Since the arms have the same variance, there is no direct

regret in pulling either one or the other. Nonetheless, the algorithm has an addi-

tional variance due to the difference in the samples drawn from distributions with

7Note that in this case (i.e., ∆ = 0), Theorem 4 does not hold, since the optimal arm is not
unique.
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different means. In this case, the algorithm suffers a constant (true) regret,

RT (MV-LCB) =
N1,TN2,T

T 2
Γ2

=
1

4
Γ2,

independent from the number of rounds T . This argument can be generalized to

multiple arms and ρ 6= 0, since it is always possible to design an environment

(i.e., a set of distributions) such that ∆min = 0 and Γmax 6= 08. This result is not

surprising. In fact, two arms with the same Mean–Variance are likely to produce

similar observations, thus leading MV-LCB to pull the two arms repeatedly over

time, since the algorithm is designed to try to discriminate between similar arms.

Although this behavior does not suffer from any regret in pulling the “suboptimal”

arm (the two arms are equivalent), it does introduce an additional variance, due

to the difference in the means of the arms (Γ 6= 0), which finally leads to a

regret the algorithm is not “aware” of. This argument suggests that, for any T ,

it is always possible to design an environment for which MV-LCB has a constant

regret. This is particularly interesting since it reveals a huge gap between the

Mean–Variance problem and the standard expected regret minimization problem

and will be further investigated in the numerical simulations presented in Section 6.

In fact, in the latter case, UCB is known to have a worst–case regret per round

of Ω
(
T−

1
2

)
[Audibert et al., 2010], while in the worst case, MV-LCB suffers a

constant regret. In the next section we introduce a simple algorithm able to deal

with this problem and achieve a vanishing worst–case regret.

5 Exploration–Exploitation Algorithm

Although for any fixed problem (with ∆min > 0) the MV-LCB algorithm has a

vanishing regret, for any value of T , it is always possible to find an environment for

which its regret is constant. In this section, we analyze a simple algorithm where

exploration and exploitation are two distinct phases. As shown in Figure 3.4,
8Notice that this is always possible for a large majority of distributions for which the mean

and variance are independent or mildly correlated.
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Input: Length of the exploration phase τ , Rounds T , Arms K
Exploration Phase
For all t = 1, . . . , τK , repeat

For all t = 1, . . . ,K, repeat

Learner observes Xi,t ∼ νi

end for

end for
Learner computes the estimates M̂Vi, τ

K

Learner computes î∗ = arg mini M̂Vi, τ
K

Exploitation Phase
For all t = τ + 1, . . . , T , repeat

Learner selects î∗

end for

Figure 3.4: Pseudo-code of the ExpExp algorithm.

the ExpExp algorithm divides the time horizon T into two distinct phases of

length τ and T − τ respectively. During the first phase all the arms are explored

uniformly, thus collecting τ
K

samples each9. Once the exploration phase is over, the

Mean–Variance of each arm is computed and the arm with the smallest estimated

Mean–Variance M̂Vi, τ
K

is repeatedly pulled until the end.

5.1 Theoretical Analysis

The MV-LCB is specifically designed to minimize the probability of pulling the

wrong arms, so whenever there are two equivalent arms (i.e., arms with the same

Mean–Variance), the algorithm tends to pull them the same number of times, at

the cost of potentially introducing an additional variance which might result in

a constant regret. On the other hand, ExpExp stops exploring the arms after τ

rounds and then elicits one arm as the best and keeps pulling it for the remaining

T − τ rounds. Intuitively, the parameter τ should be tuned so as to meet different

requirements. The first part of the regret (i.e., the regret coming from pulling the

suboptimal arms) suggests that the exploration phase τ should be long enough for

the algorithm to select the empirically best arm î∗ at τ equivalent to the actual
9In the definition and in the following analysis we ignore rounding effects.
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optimal arm i∗ with high probability; and at the same time, as short as possible

to reduce the number of times the suboptimal arms are explored. On the other

hand, the second part of the regret (i.e., the variance of pulling arms with different

means) is minimized by taking τ as small as possible (e.g., τ = 0 would guarantee

a zero regret). During the exploitation phase the algorithm pulls arm î∗ with the

smallest empirical variance estimated during the exploration phase of length τ .

As a result, the number of pulls of each arm is,

Ni,T =
τ

K
+ (T − τ)I{i = î∗} (3.18)

We analyze the two terms of the regret separately, where,

R̃∆
T =

1

T

∑
i 6=i∗

( τ
K

+ (T − τ)I{i = î∗}
)

∆i

=
τ

nK

∑
i 6=i∗

∆i +
T − τ
T

∑
i 6=i∗

∆iI{i = î∗}︸ ︷︷ ︸
(a)

.

The following theorem illustrates the optimal trade-off between these terms.

Theorem 5. Let ExpExp be run with τ = K
(
T
14

)2/3, then for any choice of

distributions {νi} the expected regret is,

E[R̃T (A)] ≤ 2
K

T 1/3
. (3.19)

Proof. We notice that the only random variable in this formulation is the best

arm î∗ at the end of the exploration phase. We thus compute the expected value
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of R̃∆
T , where,

E[(a)] = P[i = î∗]∆i

= P[∀j 6= i, σ̂2
i,τ/K ≤ σ̂2

j,τ/K ]∆i

≤ P[σ̂2
i,τ/K ≤ σ̂2

i∗,τ/K ]∆i

= P
[
(σ̂2

i,τ/K − σ2
i ) + (σ2

i∗ − σ̂2
i∗,τ/K) ≤ ∆i

]
∆i

≤ 2∆i exp
(
− τ

K
∆2
i

)
.

The second term in the regret can be bounded as follows.

R̃Γ
T =

1

T 2

K∑
i=1

∑
j 6=i

( τ
K

+ (T − τ)I{i = î∗}
)( τ

K
+ (T − τ)I{j = î∗}

)
Γ2
i,j

=
1

T 2

K∑
i=1

∑
j 6=i

(
τ 2

K2
+ (T − τ)2I{i = î∗}I{j = î∗}+

τ

K
(T − τ)I{j = î∗}+

τ

K
(T − τ)I{i = î∗}

)
Γ2
i,j

=
τ 2

T 2K2

K∑
i=1

∑
j 6=i

Γ2
i,j + 2

(T − τ)τ

KT 2

K∑
i=1

∑
j 6=i

Γ2
i,jI{i = î∗}

≤ τ

T 2
+ 2

(T − τ)τ

T 2
≤ 2

τ

T
.

Grouping all the terms, ExpExp has an expected regret bounded as,

E[R̃T (A)] ≤ 2
τ

T
+ 2

∑
i 6=i∗

∆i exp
(
− τ

K
∆2
i

)
.

We can now move to the worst–case analysis of the regret. Let f(∆i) =

∆i exp
(
− τ
K

∆2
i

)
, the “adversarial” choice of the gap is determined by maximiz-

ing the regret, which corresponds to,

f ′(∆i) = exp
(
− τ

K
∆2
i

)
+ ∆i

(
−2

τ

K
∆i exp

(
− τ

K
∆2
i

))
=
(

1− 2
τ

K
∆2
i

)
exp

(
− τ

K
∆2
i

)
= 0,
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and leads to a worst–case choice for the gap of,

∆i =

√
K

2τ
.

The worst–case regret is then,

E[R̃T (A)] ≤ 2
τ

T
+ (K − 1)

√
2K

1√
τ

exp(−0.5) ≤ 2
τ

T
+K3/2 1√

τ
.

We can now choose the parameter τ minimizing the worst–case regret. Taking the

derivative of the regret w.r.t. τ we obtain,

dE[R̃T (A)]

dτ
=

2

T
− 1

2

(
K

τ

)3/2

= 0,

thus leading to the optimal parameter τ =
(
T
4

)2/3
K. The final regret is thus

bounded as,

E[R̃T (A)] ≤ 3
K

T 1/3
.

We first notice that this bound suggests that ExpExp performs worse than

MV-LCB on easy problems. In fact, Theorem 4 demonstrates that MV-LCB has

a regret decreasing as O
(
K log(T )

T

)
whenever the gaps ∆ are not small compared

to T , while in the remarks of Theorem 4 we highlighted the fact that for any

value of T , it is always possible to design an environment which leads MV-LCB

to suffer a constant regret. On the other hand, the previous bound for ExpExp is

distribution independent and indicates the regret is still a decreasing function of

T even in the worst case. This opens the question whether it is possible to design

an algorithm which works as well as MV-LCB on easy problems and as robustly

as ExpExp on difficult problems.

The previous result can be improved by changing the exploration strategy

used in the first τ rounds. Instead of a pure uniform exploration of all the arms,
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Figure 3.5: MV-LCB Regret (LEFT) and worst-case performance of MV-LCB
versus ExpExp, for different values of T × 103(RIGHT).

we could adopt a best–arm identification algorithms such as Successive Reject or

UCB-E, which maximize the probability of returning the best arm given a fixed

budget of rounds τ (see e.g., Audibert et al. [2010]).

6 Numerical Simulations

In this section we report numerical simulations aimed at validating the main theo-

retical findings reported in the previous sections. In the following graphs we study

the true regret RT (A) averaged over 500 runs. We first consider the variance min-

imization problem (ρ = 0) with K = 2 Gaussian arms set to µ1 = 1.0, µ2 = 0.5,

σ2
1 = 0.05, and σ2

2 = 0.25 and run MV-LCB10. In Figure 3.5 we report the true

regret RT (as in the original definition in eq. 3.12) and its two components R∆̂
T

and RΓ̂
T (these two values are defined as in eq. 3.15 with ∆̂ and Γ̂ replacing ∆ and

Γ). As expected (see e.g., Theorem 4), the regret is characterized by the regret

realized from pulling suboptimal arms and arms with different means (Exploration

Risk) and tends to zero as T increases. Indeed, if we considered two distributions

with equal means (µ1 = µ2), the average regret coincides with R∆̂
T . Furthermore,

as shown in Theorem 4 the two regret terms decrease with the same rate O
(

log T
T

)
.

10Notice that although in this chapter we assumed the distributions to be bounded in [0, 1] all
the results can be extended to sub-Gaussian distributions.
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Figure 3.6: Regret RT of MV-LCB.

7 Sensitivity Analysis

Here we detail the impact of ∆ and Γ on the performance of MV-LCB and compare

the worst–case performance of MV-LCB to ExpExp (see Figure 3.5). In order to

have a fair comparison, for any value of T and for each of the two algorithms, we

select the pair ∆w,Γw which corresponds to the largest regret (we search in a grid

of values with µ1 = 1.5, µ2 ∈ [0.4; 1.5], σ2
1 ∈ [0.0; 0.25], and σ2

2 = 0.25, so that

∆ ∈ [0.0; 0.25] and Γ ∈ [0.0; 1.1]). As discussed in Section 5, while the worst–case

regret of ExpExp keeps decreasing over T , it is always possible to find a problem

for which regret of MV-LCB stabilizes to a constant.

We consider the variance minimization problem (ρ = 0) with K = 2 Gaussian

arms with different means and variances. In particular, we consider a grid of values

with µ1 = 1.5, µ2 ∈ [0.4; 1.5], σ2
1 ∈ [0.0; 0.25], and σ2

2 = 0.25, so that ∆ ∈ [0.0; 0.25]

and Γ ∈ [0.0; 1.1] and number of rounds T ∈ [50; 2.5 × 105]. Figures 3.6 and 3.7

report the mean regret for different values of T . The colors are renormalized in
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Figure 3.7: Regret RT of ExpExp.

each plot so that dark blue corresponds to the smallest regret and red to the

largest regret. The results confirm the theoretical findings of Theorem 4 and 5.

In fact, for simple problems (large gaps ∆) MV-LCB converges to a zero–regret

faster than ExpExp, while for ∆ close to zero (i.e., equivalent arms), MV-LCB

has a constant regret which does not decrease with T and the regret of ExpExp

slowly decreases to zero.

In Section 6 we report numerical results demonstrating the composition of

the regret and performance of algorithms with only two arms in the case of vari-

ance minimization. Here we report results for a wide range of risk tolerance

ρ ∈ [0.0; 10.0] and K = 15 arms. We set the mean and variance for each of the 15

arms so that a subset of arms is always dominated (i.e., for any ρ, MVρ
i > MVρ

i∗ρ
)

demonstrating the effect of different ρ values on the position of the optimal arm

i∗ρ.

In Figure 3.5 we arranged the true values of each arm along the red frontier

and the ρ-directed performance of the algorithms in a standard deviation–mean
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Arm µ σ2

α1 0.10 0.05
α2 0.20 0.34
α3 0.23 0.28
α4 0.27 0.09
α5 0.32 0.23
α6 0.32 0.72
α7 0.34 0.19
α8 0.41 0.14
α9 0.43 0.44
α10 0.54 0.53
α11 0.55 0.24
α12 0.56 0.36
α13 0.67 0.56
α14 0.71 0.49
α15 0.79 0.85

Arm µ σ2

α1 0.1 0.05
α2 0.2 0.0725
α3 0.27 0.09
α4 0.32 0.11
α5 0.41 0.145
α6 0.49 0.19
α7 0.55 0.24
α8 0.59 0.28
α9 0.645 0.36
α10 0.678 0.413
α11 0.69 0.445
α12 0.71 0.498
α13 0.72 0.53
α14 0.765 0.72
α15 0.79 0.854

Figure 3.8: Configuration 1 and Configuration 2.

plot. The green and blue lines show the standard deviation and mean for the per-

formance of each algorithm for a specific ρ setting and fixed horizon T , where each

point represents the resulting mean–standard deviation of the sequence of pulls

on the arms by the algorithm with that specific value of ρ. The gap between the

ρ specific performance of the algorithm and the corresponding optimal arm along

the red frontier represents the regret for the specific ρ value. Accordingly, the

gap between the algorithm performance curves represents the gap in performance

with regard to MV-LCB versus ExpExp. Where a lot of arms have big gaps (e.g.,

all the dominated arms have a large gap for any value of ρ), MV-LCB tends to

perform better than ExpExp. The series of plots represent increasing values of T

and demonstrate the relative algorithm performance versus the optimal red fron-

tier. The set of plots represent the two settings reported in Figure 3.8. We chose

the values of the arms so as to have configurations with different complexities. In

particular, configuration 1 corresponds to “easy” problems for MV-LCB since the

arms all have quite large gaps (for different values of ρ) and this should allow it to

perform well. On the other hand, the second configuration has much smaller gaps

and, thus, higher complexity. According to the bounds for MV-LCB we know that

a good proxy for its learning complexity is represented by the term
∑

i
1

∆2
i,ρ
.
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Figure 3.9: Risk tolerance sensitivity of MV-LCB and ExpExp for Configuration 1.
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Figure 3.10: Risk tolerance sensitivity of MV-LCB and ExpExp for Configuration 2.
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As we notice, in both configurations the performance of MV-LCB and ExpExp

approach one of the optimal arms i∗ρ for each specific ρ as T increases. Nonetheless,

in configuration 1 the large number of suboptimal arms (e.g., arms with large gaps)

allows MV-LCB to outperform ExpExp and converge faster to the optimal arm

(and thus zero regret). On the other hand, in configuration 2 there are more arms

with similar performance and for some values of ρ ExpExp eventually achieves

better performance than MV-LCB.

8 Discussion

In this chapter, we evaluate the risk of an algorithm in terms of the variability of

the sequences of samples that it actually generates. Although this notion might

resemble other analyses of UCB-based algorithms (see e.g., the high-probability

analysis in Audibert et al. [2009]), it captures different features of the learning algo-

rithm. Whenever a bandit algorithm is run over T rounds, its behavior, combined

with the arms’ distributions, generates a probability distribution over sequences of

T rewards. While the quality of this sequence is usually defined by its cumulative

sum (or average), here we say that a sequence of rewards is good if it displays

a good trade-off between its (empirical) mean and variance. It is important to

notice that this notion of risk-return trade–off does not coincide with the variance

of the algorithm over multiple runs.

Let us consider a simple case with two arms that deterministically generate 0s

and 1s respectively, and two different algorithms. Algorithm A1 pulls the arms in

a fixed sequence at each run (e.g., arm 1, arm 2, arm 1, arm 2, and so on), so that

each arm is always pulled T
2
times. Algorithm A2 chooses one arm uniformly at

random at the beginning of the run and repeatedly pulls this arm for T rounds.

Algorithm A1 generates sequences such as 010101... which have high variability

within each run, incurs a high regret (e.g., if ρ = 0), but has no variance over

multiple runs because it always generates the same sequence. On the other hand,

A2 has no variability in each run, since it generates sequences with only 0s or only

1s, suffers no regret in the case of variance minimization, but has high variance
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over multiple runs since the two completely different sequences are generated with

equal probability. This simple example demonstrates that an algorithm with a

very small standard regret w.r.t. the cumulative reward (e.g., A1), might result

in a very high variability in a single run of the algorithm, while an algorithm with

small mean-variance regret (e.g., A2) could have a high variance over multiple

runs.

9 Conclusions

The majority of multi–armed bandit literature focuses on the minimizing the re-

gret w.r.t. the arm with the highest return in expectation. In this chapter, we

introduced a novel multi–armed bandit setting where the objective is to perform

as well as the arm with the best risk–return trade–off. In particular, we relied on

the Mean–Variance objective introduced in Markowitz [1952] to measure the per-

formance of the arms and to define the regret of a learning algorithm. The impact

of this particular risk objective is the need to manage variance over multiple runs

versus the variability over a single run. The later case highlights an interesting

effect on the regret. Decision-making, while managing the variability within a sin-

gle sequence, is tricky. In particular, controlling the variance over multiple runs

does not necessarily control the risk of variability over a single run. We proposed

two novel algorithms to solve the Mean–Variance bandit problem and we reported

their corresponding theoretical analysis. While MV-LCB shows a small regret of

order O
(

log T
T

)
on “easy” problems (i.e., where the Mean–Variance gaps ∆ are big

w.r.t. T ), we showed that it has a constant worst–case regret. On the other hand,

we proved that ExpExp has a vanishing worst–case regret at the cost of worse

performance on “easy” problems. To the best of our knowledge this is the first

work introducing risk–aversion in the multi–armed bandit setting and it opens a

series of interesting questions.

Lower–bound. MV-LCB has a regret of order O
(√

K
T

)
on easy problems and

O(1) on difficult problems, while ExpExp achieves the same regret O
(
KT−

1
3

)
over all problems. The primary open question is whether O

(
KT−

1
3

)
is actually
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the best possible achievable rate (in the worst–case) for this problem or a better

rate is possible. This question is of particular interest since the standard reward

expectation maximization problem has a known lower–bound of Ω
(
T−

1
2

)
, while

the minimax rate of Ω
(
T−

1
3

)
for the Mean–Variance problem would imply that

the risk-averse bandit problem is intrinsically more difficult than the standard

bandit problem.

Multi-period Risk. The notion of optimality in a risk sensitive setting depends

on the best sequence of arms. Under a Mean–Variance objective, the best sequence

of arms corresponds to the best single arm, so both the single and multi-period

cases happen to coincide. This is not necessarily the case for other popular mea-

sures of risk, such as the conditional–value–at–risk or value–at–risk. In particular,

the optimal single-period risk corresponds to a single arm, while the optimal multi-

period risk sequence of choices is defined by the minimum risk over the best se-

quence of arms. In the case of the standard expectation maximization setting, the

cumulative expected reward is simply the sum of single-period expected rewards

by linearity of expectation. Under a risk objective, where objectives are mostly

nonlinear, risk does not typically decompose into a sum over single-period risks.

As a result, evaluating arms according to their single-period risk does not imply a

correct preference with respect to a multi-period risk objective. For example, the

variance of the sum of T independent realizations of the same random variable

is simply T times its variance. For other measures of risk (e.g., α value–at–risk),

this is not necessarily the case. As a result, an arm with the smallest single-period

risk might not be the optimal choice over a horizon of T rounds. Therefore, the

performance of a learning algorithm should be compared to the smallest risk that

can be achieved by any sequence of arms over T rounds, thus requiring a new

definition of regret.

Alternative risk statistics. There are several alternative notions of risk that are

straightforward extensions to this work. In fact, while the cumulative distribution

of a random variable can be reliably estimated (see e.g., Massart [1990]), estimating

the quantile might be more difficult. In Artzner et al. [1999], axiomatic rules are

listed to define coherent measures of risk. Though α value–at–risk violates these
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rules, conditional value at risk passes these rules as a coherent measure of risk. One

can easily imagine a lower confidence bound algorithm based on Brown [2007] in

the same composition as MV-LCB which replaces the variance by the conditional

value at risk.

10 Subsequent Work

Subsequent to the introduction of risk objectives to the stochastic multi-arm ban-

dit problem in the original publication of this work, several additional works have

been published.

Galichet et al. [2013] considers an objective defined by the conditional value at

risk, a coherent measures of risk [Artzner et al., 1999]. Their focus is on applica-

tions where the exploration of the environment is risky, with the aim of learning

a policy that trades-off between exploration, exploitation and safety. Under the

assumption that the best arm w.r.t. its essential infimum is equivalent to the

best arm w.r.t. its expectation, they show that their algorithm MIN , achieves

the same regret as UCB1. Under the additional assumptions that the empirical

minimum value for every arm converges exponentially fast towards its essential

infimum and, with high probability over all arms, the empirical minimum values

are exponentially close to their essential minimum, where the probability increases

exponentially fast with the number of iterations, they show that MIN might out-

perform UCB1.

Zimin et al. [2014] considers a risk objective that evaluates the quality of an

arm by some general function of the mean and the variance, generalizing our result

from a linear to arbitrary functions. They present conditions under which learning

is possible for continuous and discontinuous functions, proposing algorithms with

log regret under both function settings. In the discontinuous case, they make the

assumption that arms should not hit the discontinuity points of the risk measure.

They also present examples for which no natural algorithm can achieve sublinear

regret.
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Yu and Nikolova [2013] consider the problem of minimizing the value-at-risk,

the average value-at-risk, and the mean-variance risk over a single and multiple

time periods, along with PAC accuracy guarantees given a finite number of reward

samples. In particular, they study the complexity of estimating decision-theoretic

risk in sequential decision-making as the number of arms increases and in the

best arm identification setting. When considering single-period risk, they show

that the arm with the least risk requires not many more samples than the arm

with the highest expected reward. Under the multi-period setting, they present

an algorithm for estimating the value-at-risk with comparable sample complexity

under additional assumptions.

Tran-Thanh and Yu [2014] introduce the functional bandit problem to finite-

horizon best-arm identification, where the objective is to find the arm that opti-

mizes a known functional of the (unknown) arm distributions under a known time

horizon. They propose the Batch Elimination algorithm, which combines func-

tional estimation and arm elimination to achieve efficient performance guarantees.

Maillard [2013] study the standard expectation maximization objective instead

of the risk objective introduced in this work. Similar to Audibert et al. [2009],

they study the risk of the regret deviating from its expectation. In particular, they

characterize risk according to the variability of the arm distributions and control

this risk using a coherent measure of risk on the tail of the regret distribution.
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1 Introduction

In the previous chapter, we studied the influence of online estimation of a risk ob-

jective on decision-making in the stochastic multi-arm bandit setting. By setting a

stochastic environment, it was possible to study the decision-making policy under

efficient and unbiased estimates. The impact on performance could be directly

attributed to the decision policy and its ability to evaluate the risk objective.

We showed that the regret performance depends on the difficulty of discriminat-

ing the mean and variance gap between arms and that identifying the optimal

arm according to a risk objective was challenging. The impact of identifying the

gap was illustrated in detail through detailed sensitivity analysis. A sequential

decision-making algorithm relying on an upper confidence bound and active de-

cision policy, making several choices over the horizon, suffered a constant regret
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in the worst-case, while a policy that makes a single decision relying on best arm

identification, in an explicit exploration phase, resulted in relatively poor regret

guarantees. Thus suggesting that estimating risk objectives, while simultaneously

evaluating choices, adversely impacts sequential decision-making, and that man-

aging risk objectives, under partial information, is hard. While results for stable

distributions (stochastic environment) and partial observation were challenging,

here we deepen our study to unstable distributions (adversarial environment) and

full observation. Thus allowing us to study the impact of risk objectives on policies

from an alternative perspective.

Here we study adversarial1 full-information online learning. Accordingly, we

make no statistical assumptions on the process and performance guarantees hold

in for any possible sequence of observations. This means that results hold for

any nonstationary, stationary or stochastic process. Variations on the shape of

the decision set and loss functions give this setting its generality. Example prob-

lem settings include online convex optimization, sequential investment, prediction

with expert advice and tracking the best expert, with applications in online port-

folio selection, stock prediction, resource allocation, time series forecasting and

data aggregation, among others (see e.g.,Cesa-Bianchi and Lugosi [2006] for an

overview).

One setting that is often studied is Learning with Expert Advice, where algo-

rithms maintain a set of beliefs over experts. A decision policy evaluates beliefs

and the algorithm chooses which action to take at each round. Their aim is to

perform close to the single best expert in hindsight, where the difference between

the algorithm’s choice and this best expert at each round is called the instanta-

neous regret. A positive result for this setting is when the cumulative per-step

regret goes to zero or average per-step regret is constant as time goes to infinity,

1In particular, we assume an “oblivious” adversary. Note that this is not equal to a non-
oblivious, adaptive, full or reactive adversary that chooses loss values according to the algo-
rithm’s actions on all previous rounds. This environmental setting assumes that the adversary is
deterministic and has unlimited computational power, which implies that the adversary can com-
pute an optimal policy for reacting to any possible sequence of actions chosen by the algorithm
(please see e.g., Cesa-Bianchi and Lugosi [2006] for an overview). Throughout this chapter, we
drop “oblivious” when referring to an “oblivious” adversary and make clear any references to an
adaptive adversary.
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and is referred to as a “no-regret” result. These robust regret guarantees are for

any possible sequence, but it does not consider any notion of risk in the way the

performance of experts is evaluated.

Two previous works study risk-aversion in this setting. Even-Dar et al. [2006]

studies the average regret, while Warmuth and Kuzmin [2012] studies the cumu-

lative regret. Each work studies risk-aversion from the Markowitz Mean–Variance

perspective [Markowitz, 1952]. They show “no-regret” results under both regret

settings in the case that the risk measure is measurable from the observed history

of observations [Even-Dar et al., 2006] or fully revealed by the environment [War-

muth and Kuzmin, 2012], while [Even-Dar et al., 2006] proves a negative result in

the case of partial observation of the risk measure. Thus demonstrating that the

sequential decision-making policy requires a risk measure that is fully observable

(measurable) or revealed by the environment to properly evaluate choices.

First, Even-Dar et al. [2006] study average regret (per-step) with a Markowitz

[1952] Mean–Variance objective defined by the mean and standard deviation,

where the regret is measured in terms of the Mean–Variance of the algorithm

compared with the Mean–Variance of the best expert in hindsight2. They prove

that no algorithm can achieve a “no-regret” result and that this is even true when

the observation sequence is fully observed. No algorithm relying on any possible

Mean-Variance objective can avoid a constant (average) regret. Their analysis re-

veals an unavoidable regret penalty caused by changing decisions between rounds.

Recall, this switching penalty also exists in the bandit setting, studied in Chapter

3. Even-Dar et al. [2006] remove this penalty by introducing an alternative risk

measure based on fully observable (and measurable) historical observations, which

results in a positive result for the average regret. Second, Warmuth and Kuzmin

[2012] study cumulative regret with a decision set defined over mixtures of experts

and a Markowitz [1952] Mean-Variance objective defined by a loss and covari-

ance matrix (Variance–Loss) revealed at each round by the environment (e.g., the

2Many alternative definitions of the Mean–Variance exist. The most common change is
replacing the variance term by the standard deviation. Another modification is with regard
to observations. The optimization expression is over mean values [Even-Dar et al., 2006] or
per-round observations [Warmuth and Kuzmin, 2012].
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learner must solve a Variance–Loss optimization problem at each round). Thus,

as in Even-Dar et al. [2006], this setting also has access to an accurate measure of

risk, achieving a positive result for the cumulative regret.

The Mean-Variance objective was selected in the previous chapter to study

a particular characteristic of the decision-making process. Results in the online

learning literature confirm that risk objectives require observable measures of risk,

which are either revealed by the environment [Warmuth and Kuzmin, 2012] or

observable from the data [Even-Dar et al., 2006]. By requiring a fully specified

risk measure or limiting its impact to the past, the literature demonstrates that

such risk measures are unrealistic in adversarial environments, where no actual

distribution is defined. In practice, this is not always possible. Further, we may

need to characterize risk with reference to some existing signal or algorithm. A

natural choice of managing risk is to “hedge” risk to some benchmark. Unrelated

to risk objectives in online learning, Even-Dar et al. [2008] introduce a novel

regret analysis that measures performance based on simultaneous regret bounds

to the best expert in hindsight and a fixed allocation over experts. This chapter

extends the fixed benchmark of D-Prod to a flexible risk “hedging” structure

in (A,B)-Prod, accepting any fixed, changing or adaptive benchmark that can

even learn. (A,B)-Prod mixes over the decisions of a learning algorithm A,
with worst-case guarantees, and any benchmark B to achieve the best possible

performance from either algorithm. This novel risk-aware structure results in a

principled mechanism to “hedge” risk in any full-information sequential decision-

making problem. Our method guarantees a constant regret w.r.t. any existing

benchmark strategy together with small regret against the best strategy in

hindsight. This is particularly useful in domains where the learning algorithm

should be safe and never worsen the performance of an existing strategy.

This chapter studies the application of exploiting “easy” data, while dealing

with sequences of “easy” and “hard” data sequences. The benchmark is set to an

algorithm that focuses on exploiting “easy” data sequences. This problem recently

received much attention in a variety of settings (see, e.g., [de Rooij et al., 2014]

and [Grunwald et al., 2013]).
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Input: Decision set S, Rounds T , Function class f ∈ F
For all t = 1, 2, . . . , T , repeat

1. Simultaneously

• Environment chooses ft ∈ F .
• Learner chooses decision xt ∈ S.

2. Environment reveals ft.

3. Learner suffers loss ft(xt).

4. Learner updates beliefs.

end for

Figure 4.1: Online Learning Protocol

The structure of the chapter is as follows. First, the adversarial full-information

setting is introduced in Section 2.1. An overview of risk-sensitive online learning

is presented in Section 3. In Section 4, (A,B)-Prod is introduced along with

theoretical guarantees. Section 5 presents results on multiple problem settings

in the “easy” and “hard” benchmark setting. Finally, empirical performance on

standard loss sequences is presented in Section 6.

2 Preliminaries

We now formally introduce the online learning setting, with the interaction proto-

col described in Figure 4.1. The basic protocol is as follows. First, the environment

chooses a loss function ft : S → [0, 1]. Simultaneously, the learner chooses a deci-

sion xt ∈ S, based on previous observations and possibly some external source of

randomness. Next, the environment reveals ft and the learner suffers loss ft(xt).

Finally, the learner updates its beliefs.

2.1 Online Learning with Full Information

We consider the general class of online (sequential) decision-making problems fol-

lowing the protocol in Fig. 4.1, where the learner’s objective is to minimize its
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Input: Experts {1, . . . ,K}, Decision set S = ∆K , Rounds T , Function class F ∈
[0, 1]K .
Initialize: wi,1 = 1,∀i.
For all t = 1, . . . , T , repeat

1. Simultaneously

• Environment chooses lt ∈ F .
• Learner chooses decision xt = arg minx∈S x

>wt.

2. Environment reveals lt.

3. Learner suffers loss ft(xt) = x>t lt.

4. Learner updates weights wt+1, where wi,t+1 = wi,t + li,t,∀i.

end for

Figure 4.2: Follow the Leader (FTL)

cumulative loss,

LT =
T∑
t=1

ft(xt),

and achieve a cumulative loss close to the single best decision (expert3) in hind-

sight,

L∗T = arg min
x∈S

T∑
t=1

ft(x),

where performance is measured with regard to its cumulative regret,

RT = LT − L∗T ,

That is, the difference between the cumulative loss of the algorithm LT and that

of the best single decision in hindsight L∗T . Ultimately, the learner’s objective is

to achieve a sublinear cumulative regret, RT = o(T ). Note that throughout this

chapter, we denote the regret of an algorithm A with respect to a sequence of

decisions x = {x1, . . . , xT} by R(A,x).

3Recall that decisions in the full information setting are referred to as experts as opposed to
the bandit setting in Chapter 3, where they are referred to as arms.
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2.2 Prediction with Expert Advice

We first consider the most basic online optimization problem of learning with

expert advice. Here, S is the K-dimensional simplex ∆K =
{
x ∈ RK

+ :
∑K

i=1 xi =

1
}
and the loss functions are linear, that is, the loss of any decision x ∈ ∆K in

round t is given as the inner product ft(x) = x>lt and lt ∈ [0, 1]K is the loss vector

in round t. Accordingly, the family F of loss functions can be represented by the

set [0, 1]K .

2.3 Weighted Majority Algorithms

This chapter studies WM algorithms that use a multiplicative update to iteratively

maintain expert weights (for a review of the WM method, please see e.g., Arora

et al. [2012]). Many algorithms are known to achieve the optimal regret guarantee

of O(
√
T logK) in this setting, including Hedge (Vovk [1990], Littlestone and

Warmuth [1994], Freund and Schapire [1997]) and Follow the Perturbed Leader

FPL introduced by Hannan [1957] and later rediscovered by Kalai and Vempala

[2005]. When the learning rate is appropriately tuned, WM algorithms guarantee

worst–case regret of order O(
√
T ) in this setting [Cesa-Bianchi and Lugosi, 2006],

where results hold for any (possibly adversarial) assignment of the loss sequence.

Thus, these algorithms are guaranteed to achieve “no–regret” performance even

in the worst–case. Furthermore, there exist sequences of loss functions where the

learner suffers Ω(
√
T ) regret no matter what algorithm is used, so these guarantees

are “unimprovable” in the worst-case.

One simple WM algorithm is Follow the Leader (FTL) (see, e.g., Cesa-Bianchi

and Lugosi [2006] and Figure 4.2), which chooses the decision that minimizes

the observed sequence of losses. When assuming a benign adversary or i.i.d. loss

vectors in the expert setting, FTL guarantees O(log T ) regret. This guarantee also

holds in several other settings, such as online convex optimization (see e.g.,Hazan

et al. [2007a]), where the assumption is that all loss functions are strongly convex.

Unfortunately, FTL only learns on easy observations, such as i.i.d., and fails to

learn in the worst-case, suffering Ω(T ) regret.
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Input: Learning rate η > 0, Experts {1, . . . ,K}, Decision set S = ∆K , Rounds T ,
Function class F ∈ [0, 1]K .
Initialize: wi,1 = 1,∀i.
For all t = 1, . . . , T , repeat

1. Simultaneously

• Environment chooses lt ∈ F .
• Learner chooses decision xt ∈ S, where xi,t =

wi,t∑K
i=1 wi,t

, ∀i.

2. Environment reveals lt.

3. Learner suffers loss ft(xt) = x>t lt.

4. Learner updates weights wt+1, where wi,t+1 = wi,t exp(−ηli,t),∀i.

end for

Figure 4.3: Hedge

Hedge, otherwise known as the aggregating algorithm or exponentially

weighted forecaster (see e.g., Figure 4.3), reduces to FTL when the learning rate

is set to η = ∞. Worst–case regret guarantees are reported in Theorem 6 along

with a proof.

Theorem 6. [Cesa-Bianchi and Lugosi, 2006, Chapter 2] For any T , η > 0 and

learning rate η =
√

8 logK
T

, the regret upper bound of Hedge satisfies,

RT (Hedge,x) ≤
√
T

2
logK,

for any x ∈ S.

Proof. [Cesa-Bianchi and Lugosi, 2006, Chapter 2]

Set finite time horizon T , experts K, weights Wt =
∑K

i=1 wi,t, loss li,t ∈ [0, 1] and

update wi,t+1 = exp(−ηli,t). Initialize ∀iwi,1 = 1, where W1 = K.



2. Preliminaries 95

Then, ∀i ∈ {1, . . . , K},

log
WT

W1

= log(WT )− logW1 (4.1)

= log

(
K∑
k=1

wi,T

)
− logK (4.2)

≥ log

(
max

i=1,...,K
exp(−ηLi,T )

)
− logK (4.3)

= −η min
i=1,...,K

Li,T − logK (4.4)

= −ηLi∗,T − logK.

(
i∗ = min

i=1,...,K
Li,T

)
(4.5)

Furthermore, for t = 1, 2, . . . , T ,

log
Wt+1

Wt

= log

(∑
i

wi,t exp (−ηli,t)
Wt

)
(Update Rule) (4.6)

= log

(∑
i

wi,t
Wt

exp (−ηli,t)
)

(4.7)

≤ η2

8
− η

K∑
i

pi,tli,t, (Chernoff–Hoeffding Bound) (4.8)

where pi,t is the probability of expert i at time t. Summing up for all t and

combining the above inequalities, we get,

−ηLi∗,T − logK ≤
T∑
t=1

(
η2

8
− η

K∑
i

pi,tli,t

)
(4.9)

η
T∑
t=1

K∑
i

pi,tli,t − ηLi∗,T ≤
Tη2

8
+ logK, (4.10)

where we divide by η to get the regret,

RT ≤
Tη

8
+

logK

η
, (4.11)
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Input: Learning rate η ∈
(
0, 1

2

]
, Experts {1, . . . ,K}, Decision set S = ∆K ,

Rounds T , Function class F ∈ [0, 1]K .
Initialize: wi,1 = 1, ∀i.
For all t = 1, . . . , T , repeat

1. Simultaneously

• Environment chooses lt ∈ F .
• Learner chooses decision xt ∈ S, where xi,t =

wi,t∑K
i=1 wi,t

,∀i.

2. Environment reveals lt.

3. Learner suffers loss ft(xt) = x>t lt.

4. Learner updates weights wt+1, where wi,t+1 = wi,t(1− ηli,t),∀i.

end for

Figure 4.4: Prod

and finally, solve with optimized η =
√

8 logK
T

, to get the result,

RT (Hedge,x) ≤
√
T

2
logK, (4.12)

for any x ∈ S.

Prod [Cesa-Bianchi et al., 2007] is another WM algorithm, also known as

the multilinear forecaster in Cesa-Bianchi and Lugosi [2006], which achieves the

second-order bounds reported in Theorem 7 to any individual expert. One differ-

ence between Prod and Hedge (that will be elaborated in the discussion towards

the end of the chapter) is the difference in updates, where the weight of an expert

k at time t is no longer updated exponentially as in wk,t+1 = wk,t exp(−ηlk,t), but
linearly through wk,t+1 = wk,t(1 − ηlk,t) (for details see e.g., Cesa-Bianchi et al.

[2007]).

Theorem 7. [Cesa-Bianchi and Lugosi, 2006, Chapter 2] For any T and learning

rate 0 ≤ η ≤ 1
2
, Prod satisfies the following second-order regret bound,

RT (Prod, i) ≤ ηT +
logK

η
. (4.13)

for any x ∈ S and the following regret bound with optimized learning rate η =
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√
logK
T

,

RT (Prod,x) ≤ 2
√
T logK. (4.14)

Proof. Set finite time horizon T , experts K, weights Wt =
∑K

i=1wi,t, loss `i,t ∈
[0, 1] and update wi,t+1 = (1− ηli,t). Initialize wi,1 = 1,∀i, where W1 = K. Then,

∀i ∈ {1, . . . , K},

log
WT+1

W1

= logWT+1 − logK (4.15)

≥ log
T∏
t=1

(1− ηli,t)− logK (4.16)

=
T∑
t=1

log(1− ηli,t)− logK (4.17)

≥ −ηLi,t − η2

T∑
t=1

l2i,t − logK, (4.18)

where we used the inequality log(1−X) ≥ −X −X2, for all 0 ≤ X ≤ 1
2
. Further-

more, for any t = 1, 2, . . . , T , we have,

log
Wt+1

Wt

= log

(
K∑
i

wi,t
Wt

(1− ηli,t)
)

(4.19)

= log

(
K∑
i

pi,t(1− ηli,t)
)

(4.20)

= log

(
1− η

K∑
i

pi,tli,t

)
(4.21)

≤ −η
K∑
i

pi,tli,t, (4.22)

where we use the inequality, log(1−X) ≤ −X. Summing up for all t and combining
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the above inequalities, we get,

−ηLi,t − η2

T∑
t=1

l2i,t − logK ≤ −η
T∑
t=1

K∑
i

pi,tli,t (4.23)

η

T∑
t=1

K∑
i

pi,tli,t − ηLi,t ≤ η2

T∑
t=1

l2i,t + logK, (4.24)

where we divide by η,

LT − Li,T ≤ η
T∑
t=1

l2i,t +
logK

η
, (4.25)

and upper bound
∑T

t=1 l
2
i,t ≤ 1,

LT − Li,T ≤ ηT +
logK

η
, (4.26)

setting Li,t to the best expert L∗t ,

LT − L∗T ≤ ηT +
logK

η
, (4.27)

to get the second-order regret bound,

RT (Prod, k) ≤ ηT +
logK

η
. (4.28)

and finally, solve with optimized η =
√

logK
T

, to get the result,

RT (Prod,x) ≤ 2
√
T logK, (4.29)

for any x ∈ S.
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3 Risk in Online Learning

3.1 Risk Sensitive Online Learning

Even-Dar et al. [2006] study risk–averse online learning in signed games4. The

setting is the same as in prediction with expert advice, except that the choice at

each round is a single expert It ∈ {1, . . . , K}. Further, the regret is no longer

measured w.r.t. the mean loss5 but it rather focuses on the mean and variance of

the losses incurred by the algorithm. More precisely, each expert k is evaluated

according to

MDT (k) = µk,T + σk,T , (4.30)

where µk,T = 1
T

∑T
t=1 lk,t and σk,T =

√
1
T

∑T
t=1(lk,t − µk,t)2 are computed from

the instantaneous losses lk,t. Similarly, the performance of an algorithm A, which
selects an expert It at each step t is evaluated according to

MDT (A) = µA,T + σA,T , (4.31)

where µA,T = 1
T

∑T
t=1 lIt,t and σA,T =

√
1
T

∑T
t=1(lIt,t − µA,t)2. Finally, the objec-

tive of an algorithm is to minimize the (per-step) regret

rT (A, k) = MDT (A)−min
k∈K

MDT (k) ,

and in particular to obtain a regret which vanish to zero as T increases. The

first result derived by Even-Dar et al. [2006] is that unfortunately there exists no

algorithm A with decreasing regret, as stated in the following theorem.

Theorem 8. Let ρ ≥ 0 be a constant. Then, the regret of any online algorithm

with respect to the metric µ + ρσ is lower bounded by some positive constant C
4Note that the original objective, µi,T−σi,T in Even-Dar et al. [2006] is for rewards in [−1,∞],

with the aim of maximization. Here we assume losses in [0, 1] and the aim of minimization, so
we change the subtraction to an addition.

5Notice by dividing the cumulative regret RT by T , we obtain the so-called per-step regret
rT = RT

T which compares the average loss of the algorithm to the average loss of the best expert
in hindsight.
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Input: Weighted Majority Algorithm A, Learning rate η, Rewards li,t ∈ [0, 1], Experts
{1, . . . ,K}, Decision set S = ∆K , Rounds T , Function class F ∈ [0, 1]K .
Initialize: It = A(U([1,K])).
For all t = 1, . . . , T , repeat

1. Simultaneously

• Environment chooses lt.

• Learner chooses expert It = A (i.e., the expert suggested by algorithm A)

2. Environment reveals lt.

3. Learner computes pseudo-loss l̃k,t = lk,t − ξk,t
4. Learner updates algorithm A with pseudo-losses {l̃k,t}Kk=1

end for

Figure 4.5: Mean–Deviation [Even-Dar et al., 2006]

that depends on the risk aversion parameter ρ, that is:

rT (A, k) = MDT (A)−MDT (k) ≥ C.

This represents a strong negative result on the possibility to achieve a risk-

averse objective in online learning. They conjecture that this risk sensitive ob-

jective introduces a “switching cost” not present in the standard setting, where

“no-regret” algorithms are possible because the learner is not directly penalized

for switching between experts. According to their analysis, it is impossible to

determine the best expert in the case of unrealized variance.

A clear support to this conjecture is provided by the positive results that can

be achieved by slightly modifying the definition of variance. In particular, they

introduce an alternative risk measure restricted to the observable history of losses,

defined as,

Pk,T =
T∑
t=2

(
lk,t −

d−1∑
s=0

lk,t−s
d

)2

=
T∑
t=2

ξk,t, (4.32)

where the variance is now computed by considering only a fixed-size window mean
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Input: Learning rate η, Experts {1, . . . ,K}, Decision set S = ∆K , Rounds T ,
Function class F ∈ [0, 1]K .
Initialize: wi,1 = 1,∀i.
For all t = 1, . . . , T , repeat

1. Simultaneously

• Environment chooses lt and Ct.

• Learner chooses decision xt ∈ S, where xi,t =
wi,t∑K
i=1 wi,t

, ∀i.

2. Environment reveals lt and Ct.

3. Learner suffers loss V Lt(xt) = ρx>t lt + x>t Ctxt.

4. Learner updates weights wt+1, where wi,t+1 = wi,t exp(−η(ρli,t + (Ctxt)i)), ∀i.

end for

Figure 4.6: Variance–Loss [Warmuth and Kuzmin, 2012]

of size d and ξk,t is the risk of k at time t. Given the definition of PT (k), MDT (k)

is then replaced by

MPT (k) = µk,T +
Pk,T
T

, (4.33)

and the regret is redefined accordingly. Even-Dar et al. [2006] show that any no-

regret algorithm can then be easily employed to solve this problem. In fact, it is

enough the create a pseudo-loss

l̃k,t = lk,t − ξk,t, (4.34)

and use it as input for an algorithm A as illustrated in Figure 4.5 to achieve a

zero-regret for the regret minimization w.r.t. the objective MPT .

Theorem 9. Let A be a WM algorithm with updates based on the pseudo-loss in

Eq. 4.34 and η =
√

log(K)
T

. Then for large enough T , any losses lk,t ∈ [0, 1], the

per-step regret upper bound satisfies for any expert k

rT (A, k) ≤ O
(
d

√
logK

T − d

)
. (4.35)
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3.2 Online Variance–Loss Minimization

Warmuth and Kuzmin [2012] use a variance–loss objective to update Hedge in

an online convex optimization setting (see e.g., Zinkevich [2003]). This is simply

the Mean–Variance objective for instantaneous losses instead of the mean. The

algorithm is formally presented in Figure 4.6. At each round, the environment

reveals a loss lt and the covariance matrix Ct and the learner must minimize the

variance–loss tradeoff,

V Lt(xt) = ρx>t lt + x>t Ctxt

according to a given risk aversion parameter 0 ≤ ρ ≤ ∞. Though they note

that the covariance in this setting can be estimated, it is unrealistic in practice

to assume the availability of the actual covariance matrix at the end of each step.

The learner’s cumulative loss is defined as,

V LT =
T∑
t=1

V Lt(xt),

and the aim of the learner is to achieve a performance close to the best single

mixture over experts in hindsight,

V L∗T = arg min
x∈∆K

(
ρx

T∑
t=1

lt + x>

(
T∑
t=1

Ct

)
x

)
,

and to minimize the cumulative regret,

RV L
T (A, x) = V LT − V L∗T .

The regret bounds match those of Zinkevich [2003] and are presented in Theorem

10.

Theorem 10. [Warmuth and Kuzmin, 2012] Let 0 ≤ ρ ≤ ∞ be the risk aversion

parameter, C1, . . . ,CT be an arbitrary sequence of covariance matrices such that

maxi,j |[Ct]i,j| ≤ r
2
and l1, . . . , lT be an arbitrary sequence of loss vectors such that

li,t ∈ [0, 1]. Additionally assume an upper bound on the losses L ≥ ρx
∑T

t=1 lt +
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x>
(∑T

t=1 Ct

)
x, for all x ∈ ∆K. Then Hedge on the K-dimensional probability

simplex with uniform start vector w0 =
(

1
K
, . . . , 1

K

)
and learning rate

η =
2
√

logK
QL

(r − 2ρ)

r +
√

logK
QL

(r + ρ)2
,

where Q = (r+ρ)2

r
, has the following (cumulative) regret,

RT (Hedge,x) ≤ 2

R

√
QL logK +

Q

R
logK + LP.

where R = (r−2ρ)2

r(r+2ρ)
and P =

(
2ρ(3r−2ρ)
(r−2ρ)2

)
.

Note that it is quite unrealistic to assume that the environment reveals the

true covariance function or that it can effectively be estimated at each round by

any estimator to avoid impacting the regret. This assumption is very strong on

the environment. In many applications, especially in finance, accurately estimat-

ing the covariance matrix is very hard. This is the case in all types of observation

sequences, including simple i.i.d. sequences, over a single observation. By assum-

ing the environment reveals the actual covariance matrix at each time step, this

setting avoids the complex estimation problem of learning the covariance struc-

ture between experts within the adversarial setting. Note that unlike the simple

i.i.d. setting that would assume a fixed covariance matrix over all rounds, where

each sample at each round from each expert can be used to improve covariance

matrix estimates, the adversarial setting assumes no fixed covariance over rounds.

In application areas such as finance, where the covariance plays a significant role

in risk estimation, the divergence between the empirical and actual covariance

matrix has been studied and results show the estimation error can be substantial

Vershynin [2012]. Further, misspecification of the covariance matrix can result in

highly inaccurate allocations Ledoit and Wolf [2004].

3.3 Risk to the Best versus Risk to the Average

Even-Dar et al. [2008] introduce a bicriteria interpretation of the regret that ex-
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Input: Losses li,t ∈ [0, 1], Experts {1, . . . ,K}, Expert D, Decision set S = ∆K , Rounds T ,

Learning rate η =
√

logK
T , Initial weights µi = η

K , ∀i ∈ {1, . . . ,K}, µ0 = 1 − η, Function
class F ∈ [0, 1]K .
Initialize: wi,1 = µi, ∀i ∈ {0, . . . ,K}.
For all t = 1, . . . , T , repeat

1. Simultaneously

• Environment chooses lt ∈ F .
• Learner chooses decision xt ∈ S, where

xi,t =
wi,t∑K
i=0wi,t

,

for i ∈ {0, . . . ,K}.

2. Environment reveals lt.

3. Learner gains ft(lt) = x>t lt.

4. Learner updates weights wt+1, where,

wi,t+1 = wi,t(1− η(li,t − l0,t)),∀i ∈ {1, . . . ,K}.

end for

Figure 4.7: D-Prod [Even-Dar et al., 2008]

tends the standard regret of performing well against the best expert to include

performance against any (given) fixed distribution. The learning objective is to

perform within a constant of a given (fixed) benchmark, while also achieving a

loss close to the best expert in hindsight. Their theoretical results show that dif-

ference algorithms (such as Weighted Majority/Exponential Weights, Follow the

Perturbed Leader, and Prod) that simply select experts based on the difference

in their cumulative loss, where the individual losses are bounded in [0, 1], achieve

O(
√
T ) (cumulative) regret to the best expert over a sequence of T rounds, while,

in the worst case, suffering Ω(
√
T ) regret to any (fixed) allocation over experts.

They then note that the product of these regrets is Ω(T ) in the worst case and

reveal that this performance bottleneck can only be overcome by “restarts”, where

weights are reset to the uniform allocation, or favoring weight updates for experts

that show improved performance. This result is reported in Theorem 11.

Theorem 11. Let L ≤ T be an upper bound on the cumulative loss for any expert
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and D be a fixed uniform average allocation over experts. For any ϕ such that

0 ≤ ϕ ≤ 1
2
, set the Exponential Weights algorithm EW = EW (η), with learning

rate η = L−( 1
2

+ϕ). Then the bicriteria regret bound satisfies

RT (EW,x) ≤ L
1
2

+ϕ(1 + logK),

for any x ∈ S and

RT (EW,D) ≤ L
1
2
−ϕ.

They resolve this limitation by exploiting the second-order regret bounds to

a specific expert in Prod, where a special “zero” expert is set to a fixed (given)

allocation over experts is used as a Benchmark to difference individual expert

losses in the Prod loss update in D-Prod (see Figure 4.7). This Benchmark is

not used in the expert weight updates and results in a cancellation of the first

term in the second-order bound (this will be explored in detail in Section 4.2).

The simultaneous regret bounds for D-Prod are reported in Theorem 12.

Theorem 12. Let η =
√(

logK
T

)
, µ0 = 1 − η, and µi = η

K
for i ∈ {1, . . . , K}.

Then the bicriteria regret bound satisfies

RT (D-Prod,x) = O
(√

T logK +

√
T

logK
log T

)
,

for any x ∈ S and

RT (D-Prod, D) = O(1),

against any fixed allocation over experts D.

4 Online Learning with a flexible Benchmark

This chapter introduces (A,B)-Prod by modifying the structure of D-Prod to

support a more general notion of benchmark that allows fixed, changing or adap-

tive strategy that can even learn. This endows a flexible interpretation that has

many practical advantages. Learning algorithms with order-optimal regret bounds
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are constructed by extending D-Prod, while also guaranteeing a cumulative loss

within a constant factor of some pre-defined strategy referred to as a benchmark.

We stress that this property is much stronger than simply guaranteeing O(1) re-

gret with respect to some (given) fixed distribution D, as in [Even-Dar et al.,

2008], since comparisons can now be made to any fixed strategy that is allowed

to learn and adapt to the problem. More specifically, D-Prod is constrained to a

(given) fixed benchmark mixture over experts, intrinsically defined by the experts

setting. We extend this in generality to any problem setting by adding the flexibil-

ity of an adaptive algorithm that accepts a benchmark strategy that is allowed to

learn, while also exploiting any advantage in mixing predictions with benchmark

alternatives. Now that a brief review of previous works is complete, we move to a

more formal introduction of our contribution.

4.1 (A,B)-Prod

Let A and B be two online learning algorithms that map observation histories

to decisions in a possibly randomized fashion. For a formal definition, we fix

a time index t ∈ [T ] = {1, 2, . . . , T} and define the observation history (or in

short, the history) at the end of round t − 1 as Ht−1 = (f1, . . . , ft−1), where

ft takes values in [0, 1] from the function class F . H0 is defined as the empty

set, ∅. Furthermore, we define the random variables Ut and Vt, drawn from the

standard uniform distribution, independently ofHt−1 and each other. The learning

algorithms A and B are formally defined as mappings from F∗ × [0, 1] to S with

their respective decisions given as

at
def
= A(Ht−1, Ut) and bt

def
= B(Ht−1, Vt).

Finally, we define a hedging strategy C that produces a decision xt based on the

history of decisions proposed by A and B, with the possible help of some external

randomness represented by the uniform random variable Wt as

xt = C
(
at,bt,H∗t−1,Wt

)
.
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Here, H∗t−1 is the simplified history consisting of(
f1(a1), f1(b1), . . . , ft−1(at−1), ft−1(bt−1)

)
and C bases its decisions only on

the past losses incurred by A and B without using any further information on the

loss functions. The total expected loss of C is defined as L̂T (C) = E[
∑T

t=1 ft(xt)],

where the expectation integrates over the possible realizations of the internal

randomization of A,B and C. The total expected losses of A, B and any fixed

decision x ∈ S are similarly defined.

Our goal is to define a hedging strategy with low regret against a benchmark

strategy B, while also enjoying near-optimal guarantees on the worst–case regret

against the best decision in hindsight. The (expected) regret of C against any

fixed decision x ∈ S and against the benchmark, are defined as

RT (C,x) = E

[
T∑
t=1

(
ft(xt)− ft(x)

)]
, (4.36)

RT (C,B) = E

[
T∑
t=1

(
ft(xt)− ft(bt)

)]
. (4.37)

Our hedging algorithm (A,B)-Prod (shown in Figure 4.8) is based on the

observation that an adaptive benchmark that is allowed to learn can be used in

place of the fixed distribution D in the definition of the benchmark. (A,B)-Prod

maintains two weights, balancing the advice from a learning algorithm A and an

adaptive benchmark B. The benchmark weight is defined as wB,1 ∈ (0, 1) and is

kept unchanged during the entire learning process. The initial weight assigned to

A is wA,1 = 1−wB,1, and in the remaining rounds t = 2, 3, . . . , T is updated as

wA,t+1 = wA,1

t∏
s=1

(
1− η

(
fs(as)− fs(bs)

))
,

where the difference between the losses of A and B is used. Output xt is set to at

with probability st =
wA,t

wA,t+wB,1
, otherwise it is set to bt

6. The following theorem

states the performance guarantees for (A,B)-Prod.

6For convex decision sets SK and loss families F , one can directly set xt = stat + (1− st)bt
at no expense.
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Input: Experts {1, . . . ,K}, Decision set S, Learning rate η ∈
(
0, 1

2

]
, Weights

wB,1 = (0, 1), wA,1 = 1 − wB,1, Algorithms A and B, Rounds T , Function
class F
Initialize: a1 = A(∅, U1) and b1 = B(∅, V1)
For all t = 1, 2, . . . , T , repeat

1. Let st =
wA,t

wA,t+wB,1
.

2. Simultaneously

• Environment chooses ft ∈ F .

• Learner predicts xt =

{
at with probability st,

bt with probability 1− st.

3. Environment reveals ft.

4. Learner suffers loss ft(xt).

5. Learner draws uniform random variables Ut and Vt.

6. Learner observes at = A({fs}ts=1, Ut) and bt = B({fs}ts=1, Vt).

7. Learner updates δt = ft(at)− ft(bt).
8. Learner updates wA,t+1 = wA,t (1− ηδt).

end for

Figure 4.8: (A,B)-Prod

Theorem 13 (cf. Lemma 1 in Even-Dar et al. [2008]). For any assignment of

the loss sequence, the total expected loss of (A,B)-Prod initialized with weights

wB,1 ∈ (0, 1) and wB,1 = 1−wA,1 simultaneously satisfies

L̂T ((A,B)-Prod) ≤ L̂T (A) + η

T∑
t=1

(
ft(bt)− ft(at)

)2 − logwA,1
η

and

L̂T ((A,B)-Prod) ≤ L̂T (B)− logwB,1
η

.

The proof is a simple adaptation from the proof of Theorem 7.

We now suggest a parameter setting for (A,B)-Prod that guarantees constant

regret against the benchmark B and O(
√
T log T ) regret against the learning al-

gorithm A in the worst–case.

Corollary 1. Let C ≥ 1 be an upper bound on the total expected benchmark loss

L̂T (B). Then setting η = 1
2

√
logC
C

< 1
2
and wB,1 = 1−wA,1 = 1−η simultaneously
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guarantees

RT

(
(A,B)-Prod,x

)
≤ RT (A,x) + 2

√
C logC

for any x ∈ S and

RT

(
(A,B)-Prod,B

)
≤ 2 log 2

against any assignment of the loss sequence.

Proof. (Corollary 1) The second part follows from the fact that log(1−η)
η

is a de-

creasing function on η ∈
(
0, 1

2

)
. For the first part, we study two cases. In the first

case, we assume that L̂T (B) ≤ L̂T (A) holds, which proves the statement for this

case. For the second case, we assume L̂T (A) ≤ L̂T (B) and notice that

T∑
t=1

(
ft(bt)− ft(at)

)2 ≤
T∑
t=1

(
ft(bt)2 + ft(at)2

)
≤

T∑
t=1

(ft(bt) + ft(at))

≤ LT (B) + LT (A)

≤ 2LT (B)

≤ 2C.

Plugging this result into the first bound of Theorem 13 and substituting the choice

of η gives the result.

Notice that for any x ∈ S, the previous bounds can be written as

RT ((A,B)-Prod,x) ≤ min
{
RT (A,x) + 2

√
C logC,RT (B,x) + 2 log 2

}
,

which states that (A,B)-Prod achieves the minimum between the regret of the

benchmark B and learning algorithm A plus an additional regret of O(
√
C logC).

If we consider that in most online optimization settings, the worst–case regret for

a learning algorithm is O(
√
T ), (see, e.g., the expert setting studied in Sect. 5.1),

the previous bound shows that at the cost of an additional factor of O(
√
T log T )

in the worst–case, (A,B)-Prod performs as well as the benchmark, which is very

useful whenever RT (B, x) is small. This suggests that if we set A to a learning
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Initialize: Experts {1, . . . ,K}, Decision set S, Learning rate η1 = 1
2 , wB,1 =

(0, 1), wA,1 = 1− wB,1, Algorithms A and B, Rounds T , Function class F .
Initialize: a1 = A(∅, U1) and b1 = B(∅, V1)
For all t = 1, 2, . . . , T , repeat

1. Learner updates st =
ηtwA,t

ηtwA,t+
wB,1

2

.

2. Simultaneously

• Environment chooses ft ∈ F .

• Learner predicts xt =

{
at with probability st,
bt with probability 1− st.

3. Environment reveals ft.

4. Learner suffers loss ft(xt).

5. Learner observes at = A({fs}ts=1, Ut) and bt = B({fs}ts=1, Vt).

6. Learner updates δt = ft(at)− ft(bt).

7. Learner updates ηt+1 =
(
1 +

∑t
s=1 δ

2
t

)− 1
2

8. Learner updates wt+1,A = wt,A (1− ηtδt)
ηt+1
ηt .

end for

Figure 4.9: (A,B)-Prod (Anytime)

algorithm with worst–case guarantees and set B to any benchmark, then (A,B)-

Prod successfully manages the downside risk exposure of any problem by finding

a suitable mixture of A and B.

Finally, we note that the parameter proposed in Corollary 1 can hardly be

computed in practice, since an upper-bound on the loss of the benchmark L̂T (B)

is rarely available. Fortunately, we can adapt an improved version of Prod with

adaptive learning rates recently proposed by Gaillard et al. [2014] and obtain an

anytime version of (A,B)-Prod.

Algorithm 4.9 presents the adaptation of the adaptive-learning-rate Prod vari-

ant recently proposed by Gaillard et al. [2014] to our setting. Following their anal-

ysis, we can prove the following performance guarantee concerning the adaptive

version of (A,B)-Prod.

Theorem 14. Let L̂T (B) be the total benchmark loss. Then anytime (A,B)-Prod
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simultaneously guarantees

RT ((A,B)-Prod,x) ≤ RT (A,x) +KT

√
L̂T (B) + 1 + 2KT

for any x ∈ S and

RT ((A,B)-Prod,B) ≤ 2 log 2 + 2KT

against any assignment of the loss sequence, where KT = O(log log T ).

There are some notable differences between the guarantees given by the above

theorem and Theorem 13. The most important difference is that the current

statement guarantees an improved regret of O(
√
T log log T ) instead of

√
T log T

in the worst–case. However, this comes at the price of an O(log log T ) regret

against the benchmark strategy.

4.2 Discussion

Here we provide some intuition why D-Prod works with the linear update in

Prod and not with the exponential update in Hedge. As discussed by Even-

Dar et al. [2008], any difference algorithm such as Hedge, Prod and FPL that

base decisions solely on the cumulative difference between ft(at) and ft(bt) suffer

an additional regret of O(
√
T ) on both A and B. A similar observation has

been made by de Rooij et al. [2014], who discuss the possibility of combining a

robust learning algorithm and FTL by Hedge and conclude that this approach

is insufficient for their goals (see also Section 5.1). Difference algorithms (DA)

achieve bicriteria bounds

RT (DA,x) ≤ O(
√
T ),

for any x ∈ S and

RT (DA,D) ≤ Ω(
√
T ),
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to a fixed uniform allocation over experts D. In the worst case, the product of

these regrets is Ω(T ). Even-Dar et al. [2008] noted that, gradually increasing

expert weights, in favor of the expert showing improved performance, results in

breaking this performance bottleneck. [Even-Dar et al., 2008] introduce a simple

trick to achieve this momentum update. The second-order regret upper bound in

Prod, to any individual expert, satisfies

RT (Prod, k) ≤ η
T∑
t=1

l2k,t︸ ︷︷ ︸
Expert-specific term

+
logK

η
,

for any x ∈ S. By computing losses as the difference to the special expert D, a

fixed distribution over experts {1, . . . , K},

RT (Prod, D) ≤ η
T∑
t=1

(li,t − lD,t)2 +
logK

η
,

[Even-Dar et al., 2008] satisfy the following regret bound to the fixed allocation

D,

RT (Prod, D) ≤ logK

η
.

By choosing a fixed expertD that is not updated with the base experts {1, . . . , K},
D acts as an effective benchmark, enabling D-Prod to achieve an excellent bicrite-

ria regret bound. This result is not possible with the first–order bounds in Hedge

that contain a fixed first term, ηT
8
.

The impact of the first term results from the difference in updates. The Prod

linear update wi,t+1 = wi,t(1 − η`i,t), is close to the exponential Hedge update

wi,t+1 = wi,t exp(−η`i,t), for small η, up to second-order quantities [Cesa-Bianchi

et al., 2007]. This “approximate” exponential update results in the necessary

momentum for resolving the limitation of difference algorithms in Theorem 11.

The updates are illustrated in the following table inside of our proposed (A,B)

adaptation structure, comparing (A,B)-Prod, with update wA,t+1 = wA,t(1 −
η(`A,t − `B,t)), to an alternative exponential (Hedge) update in (A,B)-Hedge,

with update wA,t+1 = wA,t exp(−η(`A,t − `B,t)). We set losses fA,t = 0, 1, 0, . . . , 1
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Figure 4.10: Impact of Prod update.

and fB,t = 1, 0, 1, . . . , 0, with a large starting weight in favor of the benchmark B
and a learning rate set to η = 0.5. The following table illustrates the updates,

t fA,t (A,B)-Prod (A,B)-Hedge

0 initialize wA,0 = 1
K

wA,0 = 1
K

1 0 wA,1 = 1
K

(
3
2

)
= 3

2K
wA,1 = 1

K
exp

(
1
2

)
2 1 wA,2 = 1

K

(
1
2

) (
3
2

)
= − 3

4K
wA,2 = 1

K
exp

(
1
2

)
exp

(
−1

2

)
= 1

K
...

...
...

...

100 1 wA,100 = 1
K

(
1
2

)50 (3
2

)50 ≈ 0 wA,100 = exp
(

1
2

)50
exp

(
−1

2

)50
= 1

K
...

...
...

...

Due to the large starting weight in favor of benchmark B, and the repeated series

of 0, 1 losses, (A,B)-Prod quickly prefers the benchmark B, while (A,B)-Hedge

indecisively flips back and forth between the two experts. The result is further

illustrated in Figure 4.10.

5 Applications

In this chapter, we defined an algorithm that provides a general structure that can

be instantiated in a wide range of settings by simply plugging in the most appro-

priate choice of two algorithms. A straightforward application of the benchmark

in (A,B)-Prod is a learning algorithm that exploits “easy” data sequences, while
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providing worst-case guarantees on “hard” sequences. Given a learning algorithm

A, with worst-case performance guarantees, and a benchmark strategy B, exploit-
ing a specific structure within the loss sequence, (A,B)-Prod smoothly adapts

to “easy” and “hard” problems. (A,B)-Prod achieves the best possible guaran-

tees on both types of loss sequences, while providing the protection of worst-case

guarantees on “hard” sequences. In the following subsections, we explore algo-

rithms in disparate problem settings, where the benchmark is set to a problem

specific learning algorithm that exploits the structure in easy data sequences as

the (A,B)-Prod benchmark.

5.1 Prediction with expert advice

de Rooij et al. [2014] note that prediction with expert advice algorithms are usually

too conservative to exploit “easily learnable” loss sequences and might be signif-

icantly outperformed by FTL (see e.g., Figure 4.2), which exploits the structure

of losses to achieve regret sublinear in K and is known to be optimal in the case

of i.i.d. losses, where it achieves a regret of O(log T ). As a direct consequence of

Corollary 1, we can use the general structure of (A,B)-Prod to match the perfor-

mance of FTL on “easy” data, and at the same time, obtain the same worst–case

guarantees of standard algorithms for prediction with expert advice. In particular,

if we set FTL as the benchmark B and AdaHedge (see de Rooij et al. [2014]) as

the learning algorithm A, we obtain the following.

Theorem 15. Let S = ∆K and F = [0, 1]K. Running (A,B)-Prod with A =

AdaHedge and B = FTL, with the parameter setting suggested in Corollary 1

simultaneously guarantees,

RT ((A,B)-Prod,x) ≤ RT (AdaHedge,x) + 2
√
C logC

≤
√
L∗T (T − L∗T )

T
logK + 2

√
C logC,

for any x ∈ S, where L∗T = minx∈∆N
LT (x), and,

RT

(
(A,B)-Prod,FTL

)
≤ 2 log 2,
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Figure 4.11: Performance comparison of FTL and HEDGE on easy versus hard
data.

against any assignment of the loss sequence.

While we recover the worst–case guarantee of O(
√
T logK) plus an additional

regret O(
√
T log T ) on “hard” loss sequences, on “easy” problems we inherit the

good performance of FTL. Note that a straightforward modification of D-Prod

guarantees worst–case regret of O(
√
C logC logK), which is asymptotically infe-

rior to the guarantees given by Theorem 15. In the special case where the total

loss of FTL and the regret of AdaHedge are equivalent to Θ(
√
T ), D-Prod guar-

antees a regret of O(T
1
4 ), while the (A,B)-Prod guarantee remains at O(

√
T ).

5.1.1 Comparison with FlipFlop

The FlipFlop algorithm proposed by de Rooij et al. [2014] addresses the problem

of constructing algorithms that perform nearly as well as FTL on “easy” problems

while retaining optimal guarantees on all possible loss sequences. More precisely,

FlipFlop is a Hedge algorithm where the learning rate η alternates between

infinity (corresponding to FTL) and the value suggested by AdaHedge depending

on the cumulative mixability gaps over the two regimes. The resulting algorithm

is guaranteed to achieve the regret guarantees of

RT (FlipFlop,x) ≤ 5.64RT (FTL,x) + 3.73

and

RT (FlipFlop,x) ≤ 5.64

√
L∗T (T − L∗T )

T
logK +O(logK)
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against any fixed x ∈ ∆K at the same time. The latter bound is a so-called

second-order regret bound with the property of being small whenever L∗T is close

to 0 or T . Regardless of the actual realization of losses, this result implies that

the regret of FlipFlop is of optimal order.

Notice that while the guarantees in Theorem 15 are very similar in nature to

those of de Rooij et al. [2014] concerning FlipFlop, the two results are slightly

different. The worst–case bounds of (A,B)-Prod are inferior by a factor of order
√
T log T . In fact, the worst–case for our bound is realized when C = Ω(T ), which

is precisely the case when AdaHedge has excellent performance as it will be seen

in Sect. 6. On the positive side, our guarantees are much stronger when FTL

outperforms AdaHedge. To see this, observe that their regret bound can be

rewritten as

LT (FlipFlop) ≤ LT (FTL) + 4.64
(
LT (FTL)− infxLT (x)

)
+ 3.73,

whereas our result replaces the last two terms by 2 log 2. While one can

parametrize FlipFlop so as to decrease the gap between these bounds, the bound

on LT (FlipFlop) is always going to be linear in RT (FlipFlop, x). The other

advantage of our result is that we can directly bound the total loss of our algo-

rithm in terms of the total loss of AdaHedge (see Theorem 13). This is to be

contrasted with the result of de Rooij et al. [2014], who upper bound their re-

gret in terms of the regret bound of AdaHedge, which may not be as tight and

may be much worse in practice than the actual performance of AdaHedge. All

these advantages of our approach stem from the fact that we smoothly mix the

predictions of AdaHedge and FTL, while FlipFlop explicitly follows one policy

or the other for extended periods of time, potentially accumulating unnecessary

losses when switching too late or too early. Finally, we note that as FlipFlop

is a sophisticated algorithm specifically designed for balancing the performance

of AdaHedge and FTL in the expert setting, so we cannot reasonably expect

to outperform it in every respect by using our general-purpose algorithm. Notice

however that the analysis of FlipFlop is difficult to generalize to other learning
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Figure 4.12: Performance comparison of (A,B)-Prod, FTL and HEDGE on easy
versus hard data.

settings such as the ones we discuss in the sections below.

5.2 Tracking the best expert

We now turn to the problem of tracking the best expert, where the goal of the

learner is to control the regret against the best fixed strategy that is allowed to

change its prediction at most S times during the entire decision process (see, e.g.,

Herbster and Warmuth [1998], György et al. [2012]). The regret of an algorithm A
producing predictions a1, . . . , aT against an arbitrary sequence of decisions y1:T ∈
ST is defined as

RT (A, y1:T ) =
T∑
t=1

(
ft(at)− ft(yt)

)
.

Regret bounds in this setting typically depend on the complexity of the sequence

y1:T as measured by the number decision switches

C(y1:T ) = {t ∈ {2, . . . , T} : yt 6= yt−1} .

For example, a properly tuned version of the Fixed-Share (FS) algorithm of

Herbster and Warmuth [1998] guarantees that

RT (FS, y1:T ) = O
(
C(y1:T )

√
T logK

)
.

This upper bound can be tightened to O(
√
ST logK) when the learner knows an

upper bound S on the complexity of y1:T . While this bound is unimprovable in
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general, one might wonder if it is possible to achieve better performance when the

loss sequence is “easy”. This precise question was posed very recently as a COLT

open problem by Warmuth and Koolen [2014]. The generality of our approach

allows us to solve their open problem by using (A,B)-Prod as a master algorithm

to combine an opportunistic strategy with a principled learning algorithm. The

following theorem states the performance of the (A,B)-Prod-based algorithm.

Theorem 16. Let S = ∆K, F = [0, 1]K and y1:T be any sequence in S with

known complexity S = C(y1:T ). Running (A,B)-Prod with an appropriately tuned

instance of A = FS (see Herbster and Warmuth [1998]), with the parameter setting

suggested in Corollary 1 simultaneously guarantees

RT

(
(A,B)-Prod, y1:T

)
≤ RT (FS, y1:T ) + 2

√
C logC

= O(
√
ST logK) + 2

√
C logC

and

RT

(
(A,B)-Prod,B

)
≤ 2 log 2,

against any assignment of the loss sequence.

The remaining problem is then to find a benchmark that works well on “easy”

problems, notably when the losses are i.i.d. in S (unknown) segments of the rounds

1, . . . , T . Out of the strategies suggested by Warmuth and Koolen [2014], we

analyze a windowed variant of FTL (referred to as FTL(w)) that bases its decision

at time t on losses observed in the time window [t−w− 1, t− 1] and picks expert

bt = arg minx∈∆K
x>
∑t−1

m=t−w−1 `m. The next proposition (proved in the appendix)

gives a performance guarantee for FTL(w) with an optimal parameter setting.

Proposition 1. Assume that there exists a partition of [1, T ] into S intervals

I1, . . . , IS, such that the i-th component of the loss vectors within each interval

Is are drawn independently from a fixed probability distribution Ds,i dependent on
the index s of the interval and the identity of expert i. Furthermore, assume that

at any time t, there exists a unique expert i∗t and gap parameter δ > 0 such that

E
[
`t,i∗t
]
≤ E [`t,i]− δ holds for all i 6= i∗t . Then, the regret FTL(w) with parameter
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w > 0 is bounded as

E [RT (FTL(w), y1:T )] ≤ wS +KT exp

(
−wδ

2

4

)
,

where the expectation is taken with respect to the distribution of the losses. Setting

w =

⌈
4 log

(
KT
S

)
δ2

⌉
,

the bound becomes

E [RT (FTL(w), y1:T )] ≤ 4S log
(
KT
S

)
δ2

+ 2S.

Proof. The proof is based on upper bounding the probabilities qt = P [bt 6= it∗] for
all t. First, observe that the contribution of a round when bt = i∗t to the expected

regret is zero, thus the expected regret is upper bounded by
∑T

t=1 qt. We say that

t is in the w-interior of the partition if t ∈ Is and t > min {Is}+ w hold for some

s, so that bt is computed solely based on samples from Ds. Let ˆ̀
t =

∑t−1
m=t−w−1 `m

and ¯̀
t = E [`t]. By Hoeffding’s inequality, we have that

qt = P [bt 6= i∗t ] ≤ P
[
∃i : ˆ̀

i∗t ,t
> ˆ̀

i,t

]
≤

K∑
i=1

P
[(

¯̀
i,t − ¯̀

i∗t ,t

)
− (ˆ̀

i,t − ˆ̀
i∗t ,t

)
> δ
]

≤ K exp

(
−wδ

2

4

)
holds for any t in the w-interior of the partition. The proof is concluded by

observing that there are at most wS rounds outside the w-interval of the partition

and using the trivial upper bound on qt on such rounds.

5.3 Online convex optimization

Here we consider the problem of online convex optimization (OCO), where S is

a convex and closed subset of RK and F is the family of convex functions on S.
In this setting, if we assume that the loss functions are smooth (see Zinkevich
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[2003]), an appropriately tuned version of the online gradient descent (OGD) is

known to achieve a regret of O(
√
T ). As shown by Hazan et al. [2007a], if we

additionally assume that the environment plays strongly convex loss functions and

tune the parameters of the algorithm accordingly, the same algorithm can be used

to guarantee an improved regret of O(log T ). Furthermore, they also show that

FTL enjoys essentially the same guarantees. Hazan et al. [2007b] studied whether

the two guarantees could be combined. They present the adaptive online gradient

descent (AOGD) algorithm that guarantees O(log T ) regret when the aggregated

loss functions Ft =
∑t

s=1 fs are strongly convex for all t, while retaining the

O(
√
T ) bounds if this is not the case. The next theorem shows that we can

replace their complicated analysis by our general argument and show essentially

the same guarantees.

Theorem 17. Let S be a convex closed subset of RK and F be the family of

smooth convex functions on S. Running (A,B)-Prod with an appropriately tuned

instance of A = OGD (see Zinkevich [2003]) and B = FTL, with the parameter

setting suggested in Corollary 1 simultaneously guarantees

RT ((A,B)-Prod,x) ≤ RT (OGD,x) + 2
√
C logC

= O(
√
T ) + 2

√
C logC

for any x ∈ S and

RT

(
(A,B)-Prod,FTL

)
≤ 2 log 2.

against any assignment of the loss sequence. In particular, this implies that

RT ((A,B)-Prod,x) = O(log T )

if the loss functions are strongly convex.

Similar to the previous settings, at the cost of an additional regret of

O(
√
T log T ) in the worst–case, (A,B)-Prod successfully adapts to the “easy”

loss sequences, which in this case corresponds to strongly convex functions, on

which it achieves a O(log T ) regret. Notice that the same guarantees may be ob-
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tained with any other pair of online convex optimization algorithms with similar

properties (e.g., replacing FTL by the Online Newton Step method or OGD with

a 1
Ht

step size [Hazan et al., 2007a].).

5.4 Learning with two-points-bandit feedback

We consider the multi-armed bandit problem with two-point feedback. This is

a special case of the partial-information game recently studied by Seldin et al.

[2014]. A similar model has also been studied as a simplified version of online

convex optimization with partial feedback [Agarwal et al., 2010]. We assume that

in each round t, the learner picks one arm It in the decision set S = {1, 2, . . . , K}
and also has the possibility to choose and observe the loss of another arm Jt.

The learner suffers the loss ft(It). Unlike the settings considered in the previous

sections, the learner only gets to observe the loss function for arms It and Jt. While

this setting does not entirely conform to our assumptions concerning A and B,
observe that a hedging strategy C defined over A and B only requires access to the

losses suffered by the two algorithms and not the entire loss functions. Formally,

we give A and B access to the decision set S, and C to S2. The hedging strategy

C selects the pair (It, Jt) based on the arms suggested by A and B as:

(It, Jt) =

(at, bt) with probability st,

(bt, at) with probability 1− st.

The probability st is a well-defined deterministic function of H∗t−1, thus the regret

bound of (A,B)-Prod can be directly applied. In this case, “easy” problems

correspond to i.i.d. loss sequences (with a fixed gap between the expected losses),

for which the UCB algorithm of Auer et al. [2002] is guaranteed to have a O(log T )

regret, while on “hard” problems, we can rely on the Exp3 algorithm of Auer et al.

[2002] which suffers a regret ofO(
√
TK) in the worst–case. The next theorem gives

the performance guarantee of (A,B)-Prod when combining UCB and Exp3.

Theorem 18. Consider the multi-armed bandit problem with K arms and two-

point feedback. Running (A,B)-Prod with an appropriately tuned instance of
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A = Exp3 (see Auer et al. [1995]) and B = UCB (see Auer et al. [2002]), with

the parameter setting suggested in Corollary 1 simultaneously guarantees

RT ((A,B)-Prod,x) ≤ RT (Exp3,x) + 2
√
C logC = O(

√
TK logK) + 2

√
C logC

for any arm x ∈ {1, 2, . . . , K} and

RT

(
(A,B)-Prod,UCB

)
≤ 2 log 2.

against any assignment of the loss sequence. In particular, if the losses are gen-

erated in an i.i.d. fashion and there exists a unique best arm x∗ ∈ S, then

E
[
RT ((A,B)-Prod,x)

]
= O(log T ),

where the expectation is taken with respect to the distribution of the losses.

This result shows that even in the multi-armed bandit setting, we can achieve

nearly the best performance in both “hard” and “easy” problems given that we are

allowed to pull two arms at the time. This result is to be contrasted with those

of Bubeck and Slivkins [2012], who consider the standard one-point feedback set-

ting where only a single evaluation in each round is allowed. They propose an

algorithm called SAO that uses a very sophisticated decision rule to switch be-

tween an aggressive UCB-like strategy to the more safe Exp3 in case of “hard”

loss sequences. The heavily technical analysis of Bubeck and Slivkins [2012] shows

that SAO achieves O(log2 T ) regret in stochastic environments and O(
√
T log

3
2 T )

regret in the adversarial setting. While our result holds under stronger assump-

tions, Theorem 18 shows that (A,B)-Prod is not restricted to work only in full-

information settings. Once again, we note that such a result cannot be obtained

by simply combining the predictions of UCB and Exp3 by a generic learning al-

gorithm as Hedge. An algorithm designed specifically for the one–armed bandit

setting is Exp3++ [Seldin and Slivkins, 2014], which is a variant of the Exp3

algorithm that simultaneously guarantees O(log2 T ) regret in the stochastic envi-

ronment, while retaining the regret bound of O(
√
TK logK) in the adversarial.
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6 Empirical Results

We study the performance of (A,B)-Prod in the experts setting to verify the

theoretical results of Theorem 15, show the importance of the (A,B)-Prod

update rule and compare its performance to FlipFlop. We report performance

results for FTL, AdaHedge, FlipFlop, AdaNormalHedge [Luo and Schapire,

2015], an anytime version of D-Prod, (A,B)-Hedge, a variant of (A,B)-Prod

where an exponential weighting scheme is used, and both finite and anytime

versions of (A,B)-Prod. While the original D-Prod is designed for the finite

time setting, we extend it to the adaptive–learning–rate Prod variant recently

proposed by Gaillard et al. [2014] and also replace the fixed “special” expert D

in its original design with FTL. Both (A,B)-Prod, and (A,B)-Hedge are set

with B = FTL and A = AdaHedge. Algorithms are evaluated on the datasets

proposed by de Rooij et al. [2014], where deterministic data involving two experts

is designed to illustrate four particular cases. In each case, data consists of an ini-

tial hand-crafted loss vector, followed by a sequence of 1999 loss vectors of either

(0, 1) or (1, 0). The data are generated by sequentially appending the loss vector

to bring the cumulative loss difference L1,t−L2,t closer to a target function fψ(t),

where ψ ∈ {1, 2, 3, 4} indexes a particular experiment. Each fψ : [0,∞)→ [0,∞)

is a nondecreasing function with fψ(0) = 0. Intuitively, it expresses how much

better expert 2 is compared to expert 1, as a function of time. The functions fψ

change slowly enough that it has the property |L1,t − L2,t − fψ(t)| ≤ 1 for all t.

For more details on each of these settings, please refer to de Rooij et al. [2014].

Results for the following configurations are reported in Figure 4.13.
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6.1 Settings

Setting 1. This setting illustrates the worst case performance for FTL. It is

defined by l1 = (1
2
, 0) and f1(t) = (0). This results in the following loss matrix,

 1
2

0 1 0 1 . . .

0 1 0 1 0 . . .

>

Setting 2. This setting illustrates the best case performance for FTL. It is defined

by l1 = (1
2
, 0) and f2(t) = (0). This results in the following loss matrix,

 1 1 0 1 0 . . .

0 0 1 0 1 . . .

>

Setting 3. This setting illustrates when weights do not concentrate in Ada-

Hedge. It is defined by l1 = (1
2
, 0) and f3(t) = t0.4. The first few loss vectors

are equivalent to the setting in Experiment 2, but loss vectors are repeated on

occasion. This causes a small performance gap between the experts.

Setting 4. This setting illustrates when weights concentrate in AdaHedge. This

experiment is defined by l1 = (1, 0) and f4(t) = t0.6. This experiment is similar to

the setting in Experiment 3, but with a larger performance gap between experts.

First, notice that (A,B)-Prod always performs comparably with the best

algorithm between A and B. In setting 1, although FTL suffers linear regret,

(A,B)-Prod rapidly adjusts the weights towards AdaHedge and finally achieves

the same order of performance. In settings 2 and 3, the situation is reversed since

FTL has a constant regret, while AdaHedge has regret of order O(
√
T ). In

this case, after a short initial phase where (A,B)-Prod has an increasing regret,

it stabilizes on the same performance as FTL. In setting 4, both AdaHedge

and FTL have a constant regret and (A,B)-Prod attains the same performance.

These results match the behavior predicted in the bound of Theorem 15, which

guarantees that the regret of (A,B)-Prod is roughly the minimum of FTL and

AdaHedge.

As discussed in Section 3, the Prod update rule used in (A,B)-Prod plays
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Figure 4.13: Hand tuned loss sequences from de Rooij et al. [2014]

a crucial role to obtain a constant regret against the benchmark, while other

rules, such as the exponential update used in (A,B)-Hedge, may fail in finding

a suitable mix between A and B. As illustrated in settings 2 and 3, (A,B)-

Hedge suffers a regret similar to AdaHedge and it fails to take advantage of

the good performance of FTL, which has a constant regret. In setting 1, (A,B)-

Hedge performs as well as (A,B)-Prod because FTL is constantly worse than

AdaHedge and its corresponding weight is decreased very quickly, while in setting

4 both FTL and AdaHedge achieves a constant regret and so does (A,B)-Hedge.

Finally, we compare (A,B)-Prod and FlipFlop. As discussed in Section 3, the

two algorithms share similar theoretical guarantees with potential advantages of

one on the other depending on the specific setting. In particular, FlipFlop

performs slightly better in settings 2, 3, and 4, whereas (A,B)-Prod obtains

smaller regret in setting 1, where the constants in the FlipFlop bound show

their teeth. While it is not possible to clearly rank the two algorithms, (A,B)-

Prod clearly avoids the pathological behavior exhibited by FlipFlop in setting

1. Finally, we note that the anytime version of D-Prod is slightly better than
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(A,B)-Prod, but no consistent difference is observed.

7 Conclusions

This chapter introduced (A,B)-Prod. (A,B)-Prod uses a flexible protection

mechanism to enhance decision-theoretic risk tools in online learning. Further,

(A,B)-Prod guarantees order-optimal regret bounds, while also guaranteeing a

cumulative loss within a constant factor of some pre-defined benchmark. We stress

that this property is much stronger than simply guaranteeing O(1) regret with re-

spect to some fixed distributionD, as done by Even-Dar et al. [2008]. (A,B)-Prod

allows comparisons to any fixed, changing or adaptive benchmark. This property

is very important in practical risk-sensitive settings. In particular, (A,B)-Prod

can replace any existing solution at a (guaranteed) negligible cost in output per-

formance, with additional strong guarantees in the worst-case. We showed that

whenever A is a learning algorithm with worst-case performance guarantees and B
is an opportunistic strategy exploiting a specific structure within the loss sequence,

we obtain an algorithm which smoothly adapts to “easy” and “hard” problems.
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Conclusion

This thesis introduces novel algorithms for considering decision-theoretic risks in

machine learning. An algorithm is presented for the accurate estimation of any

statistic for any process, when only a short dependent sequence of observations are

available, risk-averse algorithms are introduced to the multi-arm bandit setting,

and finally, a flexible algorithm is introduced to provide a principled and flexible

structure to “hedge” risk in the adversarial full-information setting.

First, the problem of accurate statistical estimation on a single short depen-

dent time series sequence is considered. A novel information-theoretic iterative

Bootstrap algorithm R-Boot is introduced based on the replacement Bootstrap

principle. This newly introduced principle generates bootstrap sequences by simul-

taneously replacing symbols using an estimated replacement distribution. R-Boot
is successfully demonstrated on both synthetic and real datasets. Preliminary

theoretical and empirical results suggest that the replacement Bootstrap can sig-

nificantly improve the estimation of complicated statistics in the general class of

stationary–ergodic processes.

Next, a novel multi-armed bandit setting is introduced, where the objective is

to perform as well as the arm with the best risk–return trade-off. The decision-

theoretic risk associated to the variance over multiple runs and risk of variability

associated to a single run of an algorithm are studied. Two algorithms are intro-

duced, MV-LCB and ExpExp, with theoretical results to solve the Mean–Variance

bandit problem. While MV-LCB shows a small regret of order O
(

log T
T

)
on “easy”

problems (i.e., where the Mean–Variance gaps ∆ are big w.r.t. T ), we showed that

it has a constant worst–case regret. On the other hand, we proved that ExpExp

has a vanishing worst–case regret at the cost of worse performance on “easy” prob-

lems. This is the first work to study risk–aversion in the stochastic multi–armed
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bandit setting.

Finally, the problem of introducing a flexible and intuitive risk-averse structure

is considered in the adversarial full-information setting. We introduce (A,B)-

Prod as a flexible protection mechanism to enhance risk-averse tools in online

learning. Order-optimal regret bounds are provided, while also guaranteeing a cu-

mulative loss within a constant factor of some pre-defined benchmark. This allows

comparisons to any fixed, changing or adaptive benchmark, that can optionally

learn. This allows (A,B)-Prod to replace any existing online decision-making

algorithm at a (guaranteed) negligible cost in performance, with additional strong

guarantees in the worst-case. Results are provided in several problem settings.

This thesis successfully introduces several ways to consider decision-theoretic risk

in machine learning. Future works should consider extending these results in both

application and theory. Though three specific settings are considered, many other

settings should be extended to consider risk. Many areas consider risk as centrally

important to decision-making.
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