
HAL Id: tel-01256612
https://theses.hal.science/tel-01256612

Submitted on 15 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated support of the variability in configurable
process models

Nour Assy

To cite this version:
Nour Assy. Automated support of the variability in configurable process models. Software Engineering
[cs.SE]. Université Paris-Saclay, 2015. English. �NNT : 2015SACLL001�. �tel-01256612�

https://theses.hal.science/tel-01256612
https://hal.archives-ouvertes.fr

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Automatiser le support de la variabilité dans les modèles de processus configurables

Mots clés : Modèles de processus configurables, support automatisée, fragments de processus
configurables, configuration guidée, fouille de fragments configurables

Résumé : Avec l'évolution rapide des exigences
dans les environnements d'entreprises
d'aujourd'hui, la modélisation des processus
métiers à partir de zéro devient une tâche
fastidieuse. Motivé par le paradigme «
Conception par Réutilisation », les modèles de
processus configurables gagnent récemment de
l’élan grâce à leur capacité de représenter
explicitement les parties communes et variables
de processus similaires en un seul modèle
personnalisable. Un modèle de processus
configurable doit être configuré en fonction des
exigences spécifiques d'une organisation afin de
dériver une variante de processus.

Puisque les modèles de processus configurables
ont tendance à être larges et complexes, leur
conception et configuration sans aucune
assistance deviennent des tâches fastidieuses.

Dans cette thèse, nous proposons une approche
automatisée d’aide à la conception et à la
configuration des modèles de processus
configurables. Nous ciblons assister les
utilisateurs (i) à concevoir leurs modèles de
processus configurables d’une manière fine afin
d’éviter des résultats larges et complexes et (ii)
à configurer des modèles existants selon leurs
besoins spécifiques. Pour ce faire, nous
proposons d’apprendre de l’expérience acquise
grâce à la modélisation et à la configuration
précédentes des processus métiers afin de (i)
recommander des fragments de processus
configurables qui peuvent être intégrés dans un
modèle en cours de modélisation et (ii)
recommander des choix de configuration afin de
personnaliser un processus configurable
existant.

Title: Automated support for configurable process models

Keywords: Configurable process models, automated support, configurable process fragments,
configuration guidance model, configurable process discovery.

Abstract: With the rapidly changing demands
in today's business environments, modeling
business processes from scratch becomes a
time-consuming and error prone task.
Motivated by the “Design by Reuse” paradigm,
configurable process models are recently
gaining momentum due to their capability of
explicitly representing the common and
variable parts of similar processes into one
customizable model. A configurable process
model needs to be configured to suit the
specific requirements of an organization.

Since configurable process models tend to be
large and complex, their design and
configuration without any assistance become
tedious tasks.

In this thesis, we propose an automated
approach to assist the design and configuration
of configurable process models. Our aim is to
assist users (i) to complete the design of their
configurable process models in a fine-grained
way in order to avoid large and complex results
and (ii) to configure existing models according
to their specific needs. To do so, we propose to
learn from the experience gained through
previous process modeling and configuration in
order to (i) recommend configurable fragments
that can be integrated into an ongoing designed
process and (ii) recommend configuration
choices to customize an existing configurable
process.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

3

to my family

Acknowledgment
G

I thank God for making all things possible for me and giving me strengthen
to go. A thesis journey is not always easy, but with the supervision, support and
encouragement of many people, I have never regretted that I started it.

I would like to thank all members of the jury. I thank Professor Lionel Seinturier
and Professor Marlon Dumas for accepting being my thesis reviewers and for their
attention and thoughtful comments. I also thank Professor François Charoy, Professor
Jan Mendling and Dr. Imen Grida Ben Yahia for accepting being my thesis examiners.

I would like to express my appreciation and gratitude to my supervisor Walid
Gaaloul. His valuable advice, enthusiasm and constant support during this thesis
allowed me to acquire new understandings and extend my experiences. He was not
only an advisor but also a good listener and a friend who showed me just what I was
able to achieve even when I did not see it myself. Thank you for taking me on this
journey and for your guidance, it has been a true pleasure and I hope that we can
continue our collaboration.

I am also grateful to my supervisor Bruno Defude for allowing me to join his team.
His wide knowledge and logical way of thinking have been of great value for me.

I owe my deepest gratitude and warmest affection to the members of the computer
science department of Telecom SudParis. I would like to thank Brigitte Houassine for
her kind help and assistance. A special thank you to my office mates Emna, Rami,
Mourad, Chan, Olfa and our new companion Souha for the lovely moments we spent.

I am forever thankful to my family: my father, my mother, my sister and my
brothers who were always there for me with encouraging words whenever I started
doubting myself. Your encouragement made me go forward and made me want to
succeed. I express my deepest gratitude to my loving husband Abdallah. His love,
encouragement, understanding and support helped me to get through many difficult
times. Thank you so much for having faith in me! I cannot forget our new family
member, my beautiful niece Batoul. You supported me without even you know it. I
love you so much. I dedicate this thesis to all of you, my wonderful family.

5

6

Abstract

Nowadays, companies are increasingly adopting Process-Aware Information Systems
for managing and executing their processes on the basis of process models referred to
as business process models. With the rapidly changing demands in today’s business
environments, modeling business processes from scratch becomes a time-consuming
and error prone task. Motivated by the “Design by Reuse” paradigm, configurable
process models are recently gaining momentum due to their capability of explicitly
representing the common and variable parts of similar processes into one customizable
model. A configurable process model needs to be configured to suit the specific
requirements of an organization. In this way, new process variants are derived with
minimal design efforts.

The design and configuration of configurable process models is involving more and
more many researches in both academics and industry. On the one hand, the manual
design of configurable process models is undoubtedly a labor-intensive task. Although
automated approaches have been proposed in the literature, they all targeted to
construct an entire configurable process model at once. This led to large and complex
processes which are difficult to reuse. On the other hand, with an increasing number
of configurable elements in the process model and many interdependencies between
their configuration choices, the users need means of support to configure the process.
Many approaches have been proposed in the literature to build configuration support
systems that assist users selecting desirable configuration choices according to their
needs. However, these systems are currently manually created by domain experts
which is certainly cumbersome, time-consuming and error-prone.

In this thesis, we address the above shortcomings by proposing an automated ap-
proach for supporting the design and configuration of configurable process models.
We target to assist business analysts (i) designing their configurable process mod-
els in a fine-grained way to avoid complex and large results and (ii) creating their
configuration support systems with a minimal manual effort. To do so, we realize
that previously designed and configured process models contain implicit and useful
knowledge for process design and configuration. Therefore, we propose to learn fr-om
this past experience in order to automatically (i) derive configurable process fragments
that are close to business analysts interests and (ii) extracting configuration guidance
models that guide business analysts in the creation of their configuration support sys-
tems. To validate our approach, we (i) develop three proof of concepts as extensions
of existing business process modeling tools, (ii) perform experiments on real process
models from two large datasets and (iii) conduct a case study with professional and
academics. Experimental results show that our approach is feasible, accurate and has
good performance in real use-cases.

7

8

Table of contents

1 Introduction 19

1.1 Research context . 19

1.2 Research problem: How to propose automated support for configurable
process models? . 23

1.2.1 On assisting configurable process design 24

1.2.2 On supporting business process configuration 24

1.3 Motivating example . 25

1.4 Thesis principles, objectives and contributions 31

1.4.1 Thesis principles . 31

1.4.2 Thesis objectives . 31

1.4.3 Thesis contributions . 32

1.5 Thesis outline . 34

2 Related Work 37

2.1 Introduction . 37

2.2 On facilitating configurable process design 38

2.2.1 Configurable process modeling 38

2.2.2 Business Process variant retrieval 42

2.2.3 Business process merging . 45

2.2.4 Business process mining . 47

2.2.5 Synthesis . 48

2.3 On supporting business process configuration 50

2.3.1 Domain-based approaches . 50

2.3.2 Process-based approaches . 53

2.3.3 Synthesis . 55

2.4 Conclusion . 56

3 Preliminaries 57

3.1 Basic Notations . 57

3.2 Process Modeling Standards . 58

3.2.1 Business Process Model and Notation (BPMN) 59

3.2.2 Configurable BPMN (C-BPMN) 60

3.2.3 Petri Nets . 62

3.3 Process Graphs . 64

3.4 Event Logs . 66

9

10 Table of contents

4 Assisting Process Design with Configurable Process Fragments 69

4.1 Introduction . 69

4.2 Aggregated Neighborhood Context Graph 70

4.3 Deriving Aggregated Neighborhood Context Graphs 75

4.3.1 Extracting Neighborhood Context Graphs 76

4.3.2 Clustering Neighborhood Context Graphs 78

4.3.3 Merging Neighborhood Context Graphs 80

4.3.3.1 Merging vertices/edges 81

4.3.3.2 Defining edges’ labels 83

4.3.3.3 Handling edges sharing their source or target 89

4.3.4 Behavior Preservation of the Merging Algorithm 89

4.3.5 Computational Complexity . 90

4.4 From Aggregated Neighborhood Context Graph to C-BPMN 91

4.5 Conclusion . 92

5 Supporting Process Configuration with Configuration Guidance Mod-
els 95

5.1 Introduction . 95

5.2 Motivating Example . 96

5.3 Configuration Guidance Model . 99

5.4 Approach Overview . 102

5.5 Extracting configuration guidelines from existing process models . . . 103

5.5.1 Retrieving process elements’ configurations 103

5.5.2 Apriori-based approach for deriving configuration guidelines . . 106

5.6 Inferring Configuration Steps order . 108

5.7 Formalizing Configuration Guidelines Dependencies Relations 110

5.7.1 Deriving a transition system from configuration guidelines . . . 110

5.7.2 Deriving a Petri-Net using Theory of Regions 113

5.8 Conclusion . 114

6 Using event Logs for Configurable Process Design and Configuration117

6.1 Introduction . 117

6.2 Deriving Configurable Process Fragments from Event Logs 120

6.2.1 Extracting Log-based Neighborhood Contexts 121

6.2.2 Mining Configurable Process Fragments 123

6.3 Mining Ranked Configuration Guidelines 125

6.3.1 A frequency suffix tree for configuration executions 125

6.3.2 Deriving ranked configuration guidelines 128

6.4 Conclusion . 131

Table of contents 11

7 Evaluation and Validation 133
7.1 Introduction . 134
7.2 Proof of Concept . 135

7.2.1 Signavio Extension . 135
7.2.2 ProM Plug-in . 137

7.3 Experimentation . 139
7.3.1 Configurable Process Design Experiments 140

7.3.1.1 Approach feasibility and parameter impact 141
7.3.1.2 Results quality . 143
7.3.1.3 Algorithm performance 145
7.3.1.4 Synthesis . 146

7.3.2 Process Configuration Experiments 147
7.3.2.1 Results quality and parameter impact 148
7.3.2.2 Approach accuracy and parameter impact 150
7.3.2.3 Synthesis . 151

7.3.3 Log-based Experiments . 152
7.3.3.1 Configurable fragments quality 153
7.3.3.2 Configuration guidelines efficiency 155
7.3.3.3 Synthesis . 156

7.4 Case Study . 156
7.4.1 Case Study Objective . 157
7.4.2 Design, Data Collection and Execution 157
7.4.3 Results Analysis and Findings 158
7.4.4 Threats to Validity . 160

7.5 Conclusion . 160

8 Conclusion and Future Works 163
8.1 Contributions . 163
8.2 Future work . 166

8.2.1 Improving automated support quality 166
8.2.2 Business process configuration in the cloud 167

Appendices 169

A Proof for TSG is a directed acyclic graph 171

B List of Publications 173

C Proof of Concepts 175

D Résumé 177

12 Table of contents

List of Tables

2.1 Synthesis on the merging and mining approaches for assisting the con-
figurable process design according to our principles 49

2.2 Synthesis on process configuration support approaches that satisfy our
principles . 55

3.1 Configuration constraints of configurable gateways 61
3.2 Example of event log for a process that handle fines [1] 67

5.1 An excerpt of the configuration guidelines for the configurable process
model in Figure 5.1 . 98

5.2 An excerpt of a configuration matrix 107

6.1 L1: Event log of the process variant in Figure 6.2a 119
6.2 L2: Event log of the process variant in Figure 6.2b 119
6.3 L2

a41
: Log-based event log extracted from L1 in Table 6.1 123

6.4 L2
a42

: Log-based event log extracted from L2 in Table 6.2 123
6.5 the configuration log Lconf derived from Lmerged 127

7.1 Statistics of the dataset [2] . 141
7.2 The overall minimum, maximum and average number of recommended

fragments and their compression with different kth-layer values/ with
and without clustering . 142

7.3 Comparison of the compression factor values with existing works . . . 143
7.4 Structural complexity metrics for the configurable fragments and the

average of their corresponding merged fragments 144
7.5 The execution time of our proposed algorithm compared with the ex-

isting works . 146
7.6 Statistics of the clusters and the configurable process models 148
7.7 Number of guidelines for different minimum support threshold values

and a minimum confidence threshold C = 0.8 149
7.8 The average number of possible configurations 155
7.9 The average time in man-hour unit spent to build a configuration sup-

port system with and without the assistance of configuration guidance
models . 159

13

14 List of Tables

List of Figures

1.1 Configuration and individualization of a configurable process model . . 21

1.2 Configurable process models in the BPM lifecycle (inspired from [3]) . 22

1.3 Research problem . 23

1.4 Three process variants of a travel booking process 26

1.5 BPR: An ongoing design of a travel booking process 28

1.6 A configurable fragment that contains the activity “Select a flight” . . 28

1.7 A configurable travel booking process 30

2.1 A configurable process model in C-EPC notation (before configuration,
after configuration, and resulting EPC [4] 39

2.2 The Provop process variant lifecycle [5] 41

2.3 A feature diagram, a business process model and a mapping between
them [6] . 51

2.4 An overview of the questionnaire-based approach [7] 52

3.1 A configurable activity and it possible configuration choices 61

3.2 Configurable events and their possible configuration choices 62

3.3 An example of a Petri net . 62

3.4 An example of a process graph . 65

3.5 The process discovered from the event log in Table 3.2 [1] 68

4.1 BP c: An incomplete configurable reference travel booking process . . 70

4.2 Two process variants of a travel booking process 71

4.3 Two neighborhood context graphs with 2 layers 74

4.4 Ga12: The aggregated neighborhood context graph resulted from merg-
ing the neighborhood context graphs in Figure 4.3 75

4.5 A dendrogram illustrating the result of the AHC algorithm 80

4.6 The aggregated neighborhood context graph after merging the vertices
and edges . 83

4.7 FA1 : One possible alignment of F1 and F2 85

4.8 FA2 : One possible alignment of F1 and F2 85

4.9 The merging result of the alignments in Figure 4.7 87

4.10 The aggregated neighborhood context graphs during the definition of
the edges’ labels . 88

4.11 A C-BPMN derived from the aggregated neighborhood context graph
in Figure 4.4 . 92

5.1 P c: A configurable travel booking process 97

5.2 An excerpt of the configuration guidance model extracted for the con-
figurable process model in Figure 5.1 100

15

16 List of Figures

5.3 An excerpt of the configuration system derived from the configuration
guidelines in Table 5.1 . 101

5.4 A configured process variant derived from the process model in Fig-
ure 5.1 and the selected configurations 104

5.5 (a) An implication graph and (b) its derived optimal spanning tree . . 109
5.6 An excerpt of a transition system TSG derived from the configuration

guidelines in Table 5.1 . 112
5.7 Transition system . 112
5.8 Regions . 112
5.9 Synthesized petri net . 112

6.1 An ongoing design of a travel booking process 118
6.3 The discovered configurable fragment of the activity a4 within 2-layers

and the ranked configuration guidelines attached to the configurable
elements as text annotations . 120

6.4 An example of an event log with parallel relations 122
6.5 The fragment corresponding to the event log in Figure 6.4 122
6.6 The neighborhood context graph of the activity g in the process frag-

ment in Figure 6.7 . 122
6.7 The parallel relations in neighborhood context graphs 122
6.8 The process fragment discovered from the logs L2

a21
and L2

a42
in Ta-

ble 6.3 and Table 6.4 respectively . 123
6.9 The resulted configurable process fragment after applyinh the shared/unshared

activity strategy . 124
6.10 An excerpt of a frequency suffix tree derived from Lmerged 126
6.11 The suffix tree Sconf of the configuration log Lconf 127
6.12 The representation of the three relations AND, XOR and OR using

the set theory . 130

7.1 A screen-shot of the graphical interface for configurable process mod-
eling in Signavio . 136

7.2 A screen-shot of the Signavio graphical interface for visualizing the
configuration guidelines . 137

7.3 A screen-shot of the Signavio graphical interface for visualizing the
configuration guidelines dependencies’ in Petri-nets 138

7.4 A screen-shot of the mineFrag plugin in ProM 138
7.5 An activity selected in an existing business process for which a config-

urable fragment and its configuration guidelines will be discovered . . 139
7.6 The configuration of the process fragment assisted with the ranked

configuration guidelines . 140
7.7 Number of configurations per guideline and per element for different

minimum support thresholds and a minimum confidence threshold C =
0.8 . 149

List of Figures 17

7.8 The average precision and recall values with different support and con-
fidence thresholds . 151

7.9 Precision and recall metrics values with different kth-layer values . . . 154

18 List of Figures

Chapter 1

Introduction

Contents

1.1 Research context . 19

1.2 Research problem: How to propose automated support for con-
figurable process models? . 23

1.2.1 On assisting configurable process design 24

1.2.2 On supporting business process configuration 24

1.3 Motivating example . 25

1.4 Thesis principles, objectives and contributions 31

1.4.1 Thesis principles . 31

1.4.2 Thesis objectives . 31

1.4.3 Thesis contributions . 32

1.5 Thesis outline . 34

1.1 Research context

The increasing pressure from competitive business environments forces companies to
provide effective Information Technology (IT) support for achieving excellence and
performance in the management and execution of their processes [8, 9]. To this end,
there has been recently an increasing adoption of Process-Aware Information Systems
(PAIS) which are software systems that manage and execute operational processes
involving people, applications, and/or information sources on the basis of process
models [10]. Examples of such systems are Business Process Management (BPM)
systems [11–15].

The key ingredient of a PAIS system is the explicit representation of a process
model referred to as business process model. A business process model describes the
logical and temporal order in which organizational tasks have to be performed to
realize a given goal [16]. The PAIS lifecycle (also known as BPM lifecycle) involves
repeated steps to carry out continuous improvement of the business process models.
It consists of four steps: (1) process design, (2) process implementation, (3) pro-
cess execution and (4) process diagnosis. In the process design phase, the business

19

20 Introduction

process is modeled using graphical notations proposed in the literature such as Petri
nets [17], Yet Another Workflow Language (YAWL) [18], Event-Driven Process Chain
(EPC) [18], Business Process Model and Notation (BPMN) [19], UML Activity Di-
agram [20], etc. In the implementation phase, the designed business process model
is implemented and enhanced with technical information that facilitates the enact-
ment of the process by the system. Once implemented, the process can be executed.
During execution, data is recorded in log files. Recorded data is then analyzed in
the diagnosis phase to identify problems and improve the designed business process
model using techniques such as process mining techniques [21].

Although through BPM organizations can derive significant time and cost sav-
ings [22], new challenges arise for effective management of business processes in
today’s fast changing business needs. In such a highly dynamic environment, the
business process design, which is the initial and key phase of business process de-
velopment [11], becomes time-consuming, error-prone, and costly [22, 23]. Therefore,
seeking reuse [24] and adaptability [25] is a strong requirement for a successful busi-
ness process design. On the one hand, it would be inefficient if every time a company
engages in modeling or re-designing its process, it did so “from scratch” without
any consideration of design experiences, best practices or how other companies per-
form similar processes. To this end, many efforts on assisting business process design
through reuse have been proposed such as using process templates [26] or reference
processes [24], measuring the similarity between business process models [27,28] and
recommending activities [29, 30]. On the other hand, business processes need to be
flexible so that they can quickly adapt to new requirements [31, 32]. Owing to this
fact, a broad research area has addressed the flexibility and adaptability in business
process models [33–40].

Configurable process models introduced in [34, 41] were a step toward enabling a
process design by reuse while providing flexiblility. They allow an explicit represen-
tation of the common and variable parts of similar processes into one customizable
model. A configurable process model is a generic model that integrates multiple pro-
cess variants of a same business process in a given domain through variation points.
These variation points are referred to as configurable elements and allow for multiple
design options in the process. A configurable process model allows process analysts
to have a global view on the commonalities and differences between multiple variants
of a business process. It needs to be configured according to a specific requirement
by selecting one design option for each configurable element. Once configured, an
individualized process variant is derived from the set of selected configurations with
a minimal design effort.

To understand how a configurable process model is configured and individualized,
we illustrate a simple example in Figure 1.1. On the left-hand side of the figure, a
configurable process modeled with the Configurable BPMN (C-BPMN) notation is
depicted (More details on BPMN and C-BPMN are discussed in Chapter 3). Briefly,
BPMN consists of three main elements for modeling the control-flow in a business

Research context 21

process: event, activity, and gateway. An event is represented with a circle and
denotes something that happens. An activity describes the kind of work which must
be done and is graphically modeled with a rectangle. Three main types of gateways,
OR (inclusive choice), XOR (exclusive choice) and AND (parallel flow) are used to
model the splits and joins in the model. C-BPMN allows the control-flow elements
to be configurable. Configurable elements are graphically modeled with thick lines.
Returning back to our example, the configurable process process contains 5 activities:

A

C D

B’B

Configurable
process model

A

C D

B’B

A

B

Process configuration 1
Process individualization –

Process variant 1

C D

A

C D

B’B

A

B’

Process configuration 2
Process individualization –

Process variant 2

C D

Desgin-time choice

Desgin-time choice

Figure 1.1: Configuration and individualization of a configurable process model

A, B, B′, C and D. B and B′ are connected through a configurable XOR (denoted as
XORc). C and D are connected through a “normal” OR. Unlike a “normal” BPMN
gateway, the XORc does not represent a run-time decision. Instead, it represents a
design choice that will need to be made by an analyst to adapt the configurable process
model to a particular setting, such as a project or an organization. For instance, one
may choose to exclude the functionality implemented by the task B′. In terms of
configuration, this corresponds to blocking the path of XORc leading to B′ (see
Process configuration 1 in Figure 1.1). Once configuration choices are selected, the
individualization phase consists of (i) deriving a process variant from the configured
process that does not contain the elements excluded during configuration and (ii)
mapping the configurable elements to normal ones. For example, in Figure 1.1, the
derived variant (see Process individualization 1 - Process variant 1) does not contain

22 Introduction

B′ and the configurable XOR gateways are mapped onto sequences. This variant does
not contain any configurable element and therefore can be executed by the PAIS.

Recent research activities on configurable process models have led to the speci-
fication of many configurable modeling notations as for example configurable EPC
(C-EPC) [34] and configurable YAWL (C-YWAL) [41] that extend the EPC and
YAWL notations respectively with configurable elements. Since then, the issue of
building and configuring configurable process models has been investigated. As con-
figurable process models tend to be very complex with a large number of config-
urable elements [42], many automated approaches have been proposed to assist their
design [43–47]. These research results highlight the need for means of support to
configure the process. Therefore, many approaches have been proposed to build a
configuration support system for assisting end users selecting desirable configuration
choices according to their requirements [6, 7, 48–50].

Process
diagnosis

Configurable
Process design

Configuration

+ individualization

Process
implementation

Process
execution

Configuration
support system

creation

Process Provider

Process User

Design-time

Thesis scope

Figure 1.2: Configurable process models in the BPM lifecycle (inspired from [3])

To resume, we illustrate in Figure 1.2 the configurable process development steps
in the BPM lifecycle that is inspired from [3]. Besides the traditional BPM lifecycle
phases, the configuration+individualization phase is added. Moreover, the process
design phase is replaced with configurable process design (detailed in Section 1.2.1)
and it is enhanced with the creation of a configuration support system phase (detailed
in Section 1.2.2). The configurable process design and the creation of a configuration
support system are the scope of this thesis work. The three phases configurable process
design, configuration support system creation and configuration+individualization are

Research problem: How to propose automated support for configurable process
models? 23

performed at design-time. The lifecycle steps are split into two roles (i) the process
provider who is responsible of designing the configurable process, building a config-
uration support system and performing the diagnosis of the designed configurable
process, and (ii) the process user who is responsible of configuring and individualiz-
ing the configurable process assisted with the configuration support system and then
executing and performing the diagnosis phases.

1.2 Research problem: How to propose automated sup-
port for configurable process models?

As we mentioned in Section 1.1, the design and configuration of configurable process
models has been an active research area over the last years. Configurable process
models tend to be very complex with a large number of configurable elements and
many interdependencies between their configuration choices. Therefore, the process
providers need means of support in order to create their configurable process models
and configuration support systems. This research problem is illustrated in Figure 1.3.

Figure 1.3: Research problem

First, the design from scratch of a configurable process model that includes all
possible functionalities in a given domain is undoubtedly a tedious, if not impossible
task. Therefore, automated approaches should be proposed to assist their design (see
Section 1.2.1). Second, once designed, the model is provided to the process users
(e.g. organizations, companies, departments, etc.) who are responsible of configuring
it according to their specific needs. However, the manual configuration of a process
model without any support is an error-prone and time consuming task. Therefore,
process users should be assisted with configuration support systems in order to have
recommendations on the suitable configuration choices (see Section 1.2.2).

24 Introduction

1.2.1 On assisting configurable process design

Motivated by the “Design by Reuse” paradigm, many approaches have proposed
to take into consideration the previous design experience, best practices and how
other companies perform similar processes in order to assist the design of configurable
process models.

To this end, several works have proposed to merge similar process models into
configurable one [43–45, 51–53] or mine a configurable process from a collection of
execution logs [46, 47, 54]. However, they all targeted to merge or mine entire pro-
cesses which result in large and complex models that are difficult to understand and
reuse [42]. Moreover, merging and mining entire process models cost much compu-
tation time especially when there exists a high number of large input models. In
some cases a compromise between the computational complexity and the quality of
results [28,55,56] needs to be found.

On the other hand, recommending entire configurable processes provides only the
possibility to configure and (re)use the entire process model ; while in some circum-
stances, the process providers may be interested in only some parts of the process
model. For instance, a process provider may look for specific process fragments that
are suitable to fill a missing part (e.g. see the process in the left of Figure 1.3) or
that can replace some parts causing efficiency degradation in his process. In this
case, assisting the process provider with an entire configurable business process is not
helpful. Instead, fine-grained and focused configurable fragments are more suitable
and straightforward.

In light of these limitations, our first objective is to facilitate the design of config-
urable process models without confusing the process providers with large and complex
results. We aim at recommending configurable fragments that are relevant to selected
positions of an ongoing designed process. We follow the “Design by Reuse” paradigm
by using existing data (previous process models, execution logs) to recommend fo-
cused and comprehensible results. We also want to avoid the computational com-
plexity problem. To address this research problem, we need to answer the following
questions:

1. How to identify fragments that are close to process provider interests?

2. How to derive configurable fragments?

3. Can execution logs be useful? and how?

4. How efficient our approach is (in terms of configurable fragments complexity
and computation time)?

1.2.2 On supporting business process configuration

As configurable process models should be carefully configured to derive correct vari-
ants [57], many approaches have been proposed to preserve the structural and behav-

Motivating example 25

ioral [58,59] correctness during configuration and to derive valid variants considering
specific domain constraints (e.g. using Questionnaire models [7], rules [49], feature
models [6, 50], etc.).

While structural and behavioral based approaches are automated, the domain
based approaches still require a significant manual work. Indeed, domain experts are
actually in total charge of creating configuration support systems that assist process
users selecting valid configuration choices according to their specific needs and to the
domain constraints. Most of these systems are business-oriented. They abstract from
the process technical details and recommend (1) the order in which the configuration
steps are performed and (2) the suitable configuration choices according to a set of
identified domain constraints (see CSS in Figure 1.3).

Unfortunately, manually ordering the configuration steps through dependencies’
relations according to the expert knowledge is far from trivial, especially for complex
process models with a large number of configurable elements and many interdependen-
cies between their configuration choices. In addition, manually identifying all possible
domain constraints is undoubtedly a tedious and error prone task. Finally, in todays’
dynamic and fast changing requirements, configurable process models may be subject
to dynamic changes [3]. Therefore, each change in the configurable process model
requires the intervention of the domain expert in order to update the configuration
support system according to the process model modifications. This task manually
performed is challengeable and unrealistic and may affect the configuration perfor-
mance.

In light of these limitations, our second objective is to assist the creation of con-
figuration support systems. We aim at learning from the experience gained through
previous process configurations, in order to extract implicit and useful knowledge for
the configuration decision making. By doing so, we target to integrate, for the first
time, the process users’ experience in the creation of configuration support systems
which has been recognized as successful for the configuration experience [3, 34] . To
address this research problem, we need to answer the following questions:

1. How to assist the creation of configuration support systems?

• How to assist the identification of configuration steps order?

• How to assist the identification of domain constraints?

2. Can execution logs be useful? and how?

3. How efficient our approach is (in terms of results quality and accuracy)?

1.3 Motivating example

We present in the following a scenario to illustrate and motivate our approach. It is
also used to explain our approach in the next chapters.

26 Introduction

We consider a travel booking agency that has multiple branches in different cities
and countries. These branches execute different variants of the same process that
may differ in their structure and behavior according to the country and customers
needs. In Figure 1.4, we show three variants of the travel booking process executed
by three different branches: branch1, branch2 and branch3 which are modeled with
BPMN 2.0. Please note that, although our processes are modeled with BPMN, the de-
facto process modeling notation, our work can be easily extended to other graph-based
business process modeling notations such as EPC.

Starty(S1)

Searchyflightsy
(a1)

Selectyayflighty
(a2) AND2

Requestycredity
cardyinfoy(a4)

Requesty
personalyinfoy

(a3)

AND3

Confirmy
paymenty(a5)

Sendyemaily
confirmationy

(a6)
Endy(E2)

XOR1

Endy(E1)

Messagey(M1)

(a) BP1 of branch1: A flight booking process variant

Startn0S1A

Searchnflightsn
0a1A

choosenan
flightn0a2A XOR2

Searchnhotelsn
0a6A

Processnrequestn0T1A

Validaten
paymentn0a5A

Endn0E1A

GetnUsern
personalninforn

0a3A

Getnusern
creditncardn

infon0a4A

XOR1

Selectnanhoteln
0a7A

Recommendn
flightsn0a0A

AND3
AND4

(b) BP2 of branch2: A flight and hotel booking process variant

StartM5S1)

SearchMtrainsM
5a1)

SelectMaMtrainM
5a2)

XOR1

SearchMaMcarM
5a3)

SelectMaMcarM
5a4)

XOR2

PackageM
discountM5a6)

XOR3

CancelMrequestM5Er1)

EndM5E1)

MakeM
ReservationM5M1)

EnterM
personalMinfoM

5a7)

SendM
paymentM5a8)

EndM5E2)

ProceedMtoM
paymentM5a5)

(c) BP3 of branch3: A train and car booking process variant

Figure 1.4: Three process variants of a travel booking process

The first variant BP1 (in Figure 1.4a) corresponds to a simple flight booking
process. The traveler starts by searching for available flights (activity a1) according
to a set of selected criteria (e.g. date, departure city, arrival city, etc.). He can select
a one (activity a2) or cancel the request (end event E1) and terminates the processes.
In case of a selected flight, the traveler proceeds to the payment step. He enters his
personal and credit card info (activities a3 and a4) and confirms the payment (activity
a5). A confirmation email is then sent (activity a6) and the process terminates. The

Motivating example 27

second variant BP2 (in Figure 1.4b) corresponds to a flight booking process with
the option of booking a hotel. The steps are approximately the same as the first
variant with the addition of the recommendation functionality (activity a0) and the
hotel reservation related activities (activities a6 and a7). The third variant BP3 (in
Figure 1.4c) corresponds to a train booking process with the option of renting a car.
The traveler starts by searching and then selecting a train (activities a1 and a2).
Thereafter, he has the option to rent a car (activities a3 and a4) and can benefit from
a discount offer (activity a6). If he doesn’t like the offer, he can cancel the request
(cancel event Er1) and terminate the process. Otherwise, he proceeds to enter his
personal information (activity a7) and finally he sends the payment (activity a8) and
the process terminates.

Suppose now that branch1 notices that its customers often search for a hotel after
booking their flights while branch2 notices that its customers often search for a car
after booking their flights and hotels. Since each of these branches’ processes do not
support the combination of the aforementioned functionalities, the customers search
for the requested services in an ad-hoc manner. In order to answer the new business
needs and develop more and more value added processes, the process provider, decides
to (1) modify BP1 in order to integrate the hotel booking functionality and (2) modify
BP2 in order to integrate the car rental functionality. After a while, the agency decides
to open a new branch “branch 4” that needs to define its own process. The general
requirements for the new branch process are transmitted to the process provider. In
his turn, the process provider notes that the new process should allow for a flight
booking, a hotel reservation and a car rental service. The process should also offer
promotions and discounts to the clients. Therefore, he decides to combine these
functionalities in a new process BP4.

In such a changing business environment, an ad-hoc process design becomes time-
consuming and costly. Indeed, as the business requirements evolve, the process
provider is engaged in modeling a new business process or adapting an existing one in
order to answer the varying customers’ needs and remain competitive in market and
business survival. Therefore, the process provider decides to consolidate its expertise
in travel booking by designing a generic configurable reference model that can be
customized and used by different process users (i.e. the agency branches) according
to their specific needs.

At this stage, the process provider needs some assistance in order to design the
process. He could use existing approaches such as process merging and process mining
to create a configurable process model from the existing ones. However, the returned
models can be very large and complex when they are derived from a high number of
process models. This can make the process provider confused and unable to control
and manage the variable parts in his process.

Therefore, the process provider decides to rely on his experience to rapidly sketch-
out the reference travel booking process with some basic activities as given in Fig-
ure 1.5. He marks the unknown parts with a ‘?’ symbol. Mainly, the sketched

28 Introduction

activities are those that are well known and common for all travel booking processes
while the unknow parts are those that represent alternatives such as booking a hotel
or a train, renting a car, offering discounts, etc.

Select a flight
Send email

confirmation?
Request

credit card
info

?

Figure 1.5: BPR: An ongoing design of a travel booking process

At this stage, he would like to know how the outlined activities are connected to
others in previously modeled processes. Using our approach, we propose to recom-
mend configurable process fragments that are close to the process provider interests
and that inspire him to complete the missing parts. Concretely, the process provider
selects an activity for which he desires to have propositions on how it is connected to
the missing parts in the process. By capturing the activities’ relations to their closest
neighbors in a fragment-based structure referred to as neighborhood context graph [2],
our approach can extract, cluster and merge all fragments from different process mod-
els that contain an activity similar to the selected one into configurable fragments.
For example, suppose that the designer selects the activity “Select a flight” in the
process in Figure 1.5. We detect that the activities “Select a flight” and “choose a
flight” in BP1 and BP2 in Figure 1.4 have a similar functionality. Therefore, based on
the neighborhood context graph definition, we (i) extract the fragments that include
these activities and their relations to their closest neighbors, (ii) cluster them based
on their similarity and (iii) merge the created clusters into configurable fragments.
An example of the resulted configurable fragment is shown in Figure 1.6. It contains
the activity selected by the designer (i.e. “Select a flight”) which is the result of
merging the activities “Select a flight” and “choose a flight”, and its relations to its
activities’ neighbors through configurable elements.

Select a flight

Make a
reservation

Request credit
card info

Request
personal info

Recommend
flights

Cancel request

Search flights

Search hotels

Figure 1.6: A configurable fragment that contains the activity “Select a flight”

By recommending configurable fragments to specific positions in the process, pro-

Motivating example 29

cess providers can interactively complete the design of their processes. They can
select activities from the recommended fragments in order to have more recommen-
dations and extend the ongoing designed processes. Also, recommending configurable
fragments give them the hand to specify the configurable parts in their processes for
a better variability control and management.

Suppose that the process provider completes the design of the configurable travel
booking process as shown in Figure 1.7. This process includes four main functional-
ities: (1) flight booking with alternatives (i.e. the process flow in the green dashed
rectangle), (2) recommendation (i.e. the process flow in the red dashed rectangle),
(3) discount offer (i.e. the process flow in the red dashed rectangle) and (4) payment
(i.e. the process flow in the orange dashed rectangle).

This process is shared between different process users. It is configured according to
their specific needs. However, the process provider receives complaints from the pro-
cess users as they encounter difficulties during the configuration of the process. They
claim that they had to analyze and understand the large and complex configurable
process model in order to (i) detect how the configuration choices are interrelated in
the process and (ii) select those that suit best their needs following a logical config-
uration steps order. The dependencies between different configuration choices may
come from specific domain constraints. For example, in the travel booking domain,
one may identify that the discount offer is frequently proposed if the process includes
a recommendation functionality. Therefore, in the configurable process in Figure 1.7,
the configuration of the elements in the discount offer part depends on those in the
recommendation functionality part. For instance, if the process user blocks the con-
figurable activity “Get Package discount” (i.e. exclude it from the process), then it
is recommended that he also blocks the outgoing flow of the configurable gateway
XORc1 starting with the “Recommendation functionality” part.

In order to ease the process configuration experience, the process provider de-
cides to build a configuration support system that assists the process users during the
configuration of the process model. The configuration support system should guide
the process users step by step to configure the process by (1) presenting the order in
which the configurable elements are configured and (2) recommending suitable config-
uration choices for each configurable element taking into account the already chosen
ones. However, relying solely on the process provider knowledge to create the config-
uration support system is error-prone and inefficient. In our approach, we propose to
assist process providers building their configuration support systems. We realize that
existing process models in the same domain contain implicit and useful information
for process configuration. Therefore, we propose to learn from the experience gained
through previous process modeling and configuration in order to recommend process
providers relevant information for the creation of configuration support systems. Ba-
sically, we recommend them a plan for the configuration steps order and (ii) a set of
configuration guidelines that can be mapped to domain constraints.

30 Introduction

Start95STD

Search9
flights95aTD

Select9a9flight9
5aFD

Get9Package9
discount95aT6D

Book95aT7D

Cash9payment9
5aT9D

End95EFD

New9user9
5a9D

Analyze9user9
profile95aTWD

Recommend9
flights95aTTD

Select9package9
5aTOD

Recommendation9
functionality

Discount9offer

Recommend9
hotels95aTFD

Recommend9
cars95aTbD

Request9
credit9card9
info95aT8D

Request9
personal9info9

5aFWD

Recommend9
trains95aTXD

Make9a9reservation95MTD

Send9a9confirmation95MFD

End95ETD

Wait9a9while9
5TTD

Select9a9hotel9
5a6D

Select9a9car9
5a7D

Select9a9train9
5a8D

Search9hotels9
5abD

Search9cars9
5aXD

Search9trains9
5aOD

Flight9booking9
with9alternatives

Payment

XORc
T

XORc
F

XORc
X

ORc
7ORc

O

ORc
6

ORc
8

XORc
TW

XORb

XOR9

ORc
TT

ORc
TF

Cancel9request
5ErTD

Figure 1.7: A configurable travel booking process

Thesis principles, objectives and contributions 31

1.4 Thesis principles, objectives and contributions

1.4.1 Thesis principles

In our approach we consider the following principles:

• Automation: The approach should propose automated techniques in order to
support the design and configuration of configurable process models.

• Implicit knowledge exploitation: The approach should be driven by the
“Design by Reuse” and “Configuration by Reuse” paradigms. Consequently, it
should extract and utilize implicit knowledge hidden in existing and accessible
PAIS data such as designed process models and execution logs.

• Focused results: To not confuse the process providers, the approach should
recommend focused results that are close to their interest.

• Balanced computation: The approach should make a compromise between
the computational complexity and the quality of results.

It is noteworthy that the proposed work in this thesis needs to be (i) validated
through proof of concepts and (ii) evaluated through different experiments on real
datasets and returned users’ feedback. Therefore, the implementation, experiments,
and case study results with end users should be detailed.

1.4.2 Thesis objectives

In this thesis, we aim at proposing automated support for configurable process
models. Our objective is twofold: (i) assist the design of configurable process models
by proposing fine-grained results that are close to process providers’ interests and (ii)
assist the creation of configuration support systems that assist the business process
configuration.

To achieve the first objective, we propose to learn from the experience gained
through past process modeling in order to assist process providers with configurable
process fragments. The recommended fragments are close to process providers in-
terests and inspire them to complete the missing parts in their ongoing designed
processes.

To achieve the second objective, we realize that previously designed and config-
ured process models contain implicit and useful knowledge for process configuration.
Therefore, we propose to benefit from the past experience in order to automatically
derive relevant and useful information for the creation of configuration support sys-
tem.

Since process models are not always explicitly modeled (as for example in hospital
information systems [60]) and do not always provide the real behavior of their execu-
tions, we realize that we could use the execution logs (referred to as event logs) which

32 Introduction

are available in all today’s information systems in order to achieve our objectives.
Therefore, we also propose to recommend configurable process fragments along with
a configuration assistance using available event logs.

1.4.3 Thesis contributions

To recommend configurable fragments, we define a process fragment as the neighbor-
hood context graph [2] of an activity that consists of relations between the associated
activity and its neighbors. This definition is focused and granular so that it enables
process providers to view the possible interactions of an activity to its closest neigh-
bors. For an activity selected by the process provider, we propose to discover the
neighborhood context graphs around the activities having a functionality similar to
the selected one in different processes. Since the neighbor context presents the be-
havior of the associated activity within the process, we expect that similar activities
show many similarities between their neighborhood context graphs. Therefore, these
graphs are extracted, clustered and merged into configurable process fragments. The
resulted configurable fragments contain the selected activity and its relations to its
closest neighbors in different processes through configurable elements.

To support the creation of configuration support systems, we introduce the new
concept configuration guidance model which provides information on (i) the configu-
ration guidelines for selecting desirable configuration choices in a configurable process
and (ii) the configuration steps order to be followed. We propose an automated two-
step approach to extract configuration guidance models from existing business process
repositories. The first step consists of extracting configuration guidelines from exist-
ing business process models. These guidelines reveal how the configuration decisions
are interrelated in a configurable process model. To do so, we propose to use Data
Mining techniques [61], in particular Association Rule Mining [62].

We notice that the derived configuration guidelines should be carefully and cor-
rectly applied to avoid inconsistent configuration results. Therefore, we push farther
our work and propose to formalize the configuration guidelines dependencies’ using
Petri nets [63]. We identify three main dependencies’ relations that may exist be-
tween different configuration guidelines, mainly causality (i.e. in which order the
guidelines can be applied), concurrency (i.e. which guidelines can be applied in par-
allel) and exclusivity (i.e. which guidelines exclude the application of each others).
These relations are automatically derived using the Theory of Regions [64].

The second step consists of inferring the order in which the configuration steps
are performed. To do so, we propose to infer a partial order between the config-
urable elements of the process model. We notice that the process structure imposes a
partial order between the configurable elements, however this latter does not reflect
their dependency from a configuration point of view. Therefore, we propose another
approach that takes into account the dependencies between the elements’ configura-
tion choices and constructs a tree-like structure consisting of configurable elements in

Thesis principles, objectives and contributions 33

parent-child relations (i.e. the parent element is configured before the child element).
We use Graph Theory techniques and map the problem to the derivation of optimal
spanning trees [65].

Finally, we propose a log-based approach for assisting the design and configura-
tion of configurable process models using process mining techniques. We propose to
discover configurable process fragments from existing logs using a log-based definition
of an activity neighborhood context. We also propose to discover ranked configura-
tion guidelines for assisting the configuration of the discovered configurable fragment.
These guidelines take into account the importance of activities’ execution which is
reflected by their occurrence in the event logs. We use suffix trees [66] and Set The-
ory to derive the guidelines and their probabilities of occurrence expressed in terms
of rankings.

We validated our approach in three steps. Firstly, we developed three proof-of-
concepts FragMerg, ConfRule and MineFrag as extensions of Signavio process edi-
tor [67], a web-based process modeling tool and ProM [68], an extensible framework
for process mining tools. FragMerg is an extension of Signavio and recommends con-
figurable process fragments for a selected activity in a business process. ConfRule
is also an extension of Signavio and extracts a configuration guidance model for a
designed configurable process. MineFrag is a plugin of ProM and recommends config-
urable process fragments with ranked guidelines for a selected activity in an existing
business process.

Secondly, we performed experiments on two large datasets of process models from
IBM [69] and the SAP reference model [70]. We evaluated the feasibility, efficiency
and accuracy of our proposed solutions. We made statistics on the results to estimate
their quality, computed the Precision and Recall values and measured the performance
of our algorithms based on the computation time. We also analyzed the parameters
that impact our results quality.

Thirdly, we carried-out a case study with professional and academics in order to
show the practical usefulness of a frequency-based approach for process configuration.
Through this case study, we aimed to assess the usefulness of our configuration guid-
ance models when process providers build their configuration support systems using
existing manual approaches.

In summary, our contributions in this thesis are as followings:

1. An automated approach to assist the design of configurable process
models with configurable process fragments:

• An algorithm that extracts, clusters and merges process fragments for se-
lected positions in a business process into configurable ones.

2. An automated approach to support the creation of configuration sup-
port systems:

34 Introduction

• The new concept configuration guidance model that provides information
on the (i) configuration guidelines and (ii) the configuration steps order
which should be implemented by a configuration support system;

• A data mining based approach to extract configuration guidelines from
previously modeled and configured process models;

• A Theory of Regions based approach to formalize the dependencies’ rela-
tions between the configuration guidelines.

• A Graph Theory based approach to infer the configuration steps order be-
tween the configurable elements;

3. A log-based approach to assist the design and configuration of con-
figurable process models:

• An algorithm for discovering configurable process fragments from existing
event logs.;

• A frequency-based approach using suffix-trees and Set Theory to mine ranked
configuration guidelines for assisting the configuration of the discovered
fragment.

4. A three-step validation approach:

• Three proof-of-concepts for each contribution implemented as extensions
of Signavio process editor and ProM framework;

• Experiments on two large datasets from IBM and the SAP reference model
to demonstrate the feasibility, efficiency and accuracy of our proposed so-
lutions;

• A case-study conducted with professionals and academics to show the prac-
tical usefulness of a frequency-based approach for process configuration.

1.5 Thesis outline

This thesis is organized as follows: Chapter 2 presents a background on our research
context. It starts by presenting the concept of variability management that has been
widely studied in the context of Software Product Line Engineering and then in the
context of Business Process Management. We then present the different proposed
configurable process modeling approaches for enabling a design-time variability mod-
eling in business processes. Next, we study different approaches for supporting the
design and configuration of configurable process models. We introduce their models
and analyze their solutions. This analysis allows us to justify the need for proposing
an automated support for configurable process models.

Chapter 3 presents some concepts’ definitions used throughout the thesis. We
give some basic mathematical notations, the different modeling formalisms that we

Thesis outline 35

use (mainly BPMN, C-BPMN and Petri Nets) and an abstract representation of
process models using process graphs. We also give some definitions related to event
logs.

Chapters 4, 5 and 6 are the core of our thesis which elaborate our approach to
support the design and configuration of configurable process models.

In Chapter 4, we present our solution to assist the design of configurable process
models with configurable process fragments. We present the definition of a process
fragment based on the notion of neighborhood context graph. Then, we present our
approach for deriving configurable process fragments. We propose an algorithm for
extracting, clustering and merging process fragments into configurable fragments. We
show that, by construction, the resulted configurable fragment preserves the behavior
of the merged ones.

In Chapter 5, we present our automated approach for supporting the creation of
configuration support systems. We introduce the new concept configuration guidance
model that provides information on (i) the configuration guidelines and (ii) the con-
figuration steps order that a configuration support system has to include. Then, we
propose an automated approach for extracting configuration guidance models from
existing business process repositories.

In Chapter 6, we present a log-based approach for assisting the design and config-
uration of configurable process models using process mining techniques. We examine
the available execution logs in order to derive configurable process fragments. Then,
we present an approach to mine ranked configuration guidelines that assist the con-
figuration of the discovered fragment.

In chapter 7, we present the proof of concepts that we implemented, the exper-
iments that we performed and the case study that we conducted to validate our
approach.

Finally, Chapter 8 concludes this thesis by summarizing the work presented and
discussing possible extensions.

36 Introduction

Chapter 2

Related Work

Contents

2.1 Introduction . 37

2.2 On facilitating configurable process design 38

2.2.1 Configurable process modeling . 38

2.2.2 Business Process variant retrieval 42

2.2.3 Business process merging . 45

2.2.4 Business process mining . 47

2.2.5 Synthesis . 48

2.3 On supporting business process configuration 50

2.3.1 Domain-based approaches . 50

2.3.2 Process-based approaches . 53

2.3.3 Synthesis . 55

2.4 Conclusion . 56

2.1 Introduction

In this chapter, we review the existing works in the literature relevant to the topic
of supporting the variability in configurable process models by means of design and
configuration. In Section 2.2, we study existing solutions for facilitating the design of
configurable process models. We classify them into four categories: (i) configurable
process modeling, (ii) business process variant retrieval, (iii) business process merging
and (iv) business process mining. Next, in Section 2.3, we discuss existing works on
supporting the configuration of process models. We review the proposed approaches
for guiding the configuration process. These approaches can be classified into two
main categories: (i) domain-based approaches and (ii) process-based approaches. We
present shortcomings of the related approaches, identify the difference and bring out
the advantages of our approach.

37

38 Related Work

2.2 On facilitating configurable process design

Configurable process models allow to explicitly represent the commonalities and dif-
ferences between different variants of a business process. Their design requires two
main steps: (i) identify the different variants that may exist for a specific business
process and (ii) aggregate the identified variants into one customizable process model.
Many configurable process modeling approaches and languages have been proposed
to facilitate the design of configurable process models. However, the experience re-
vealed that manually constructing a configurable process is a time-consuming and
error-prone task. Therefore, automated approaches have been proposed in the liter-
ature to assist their design by learning from the experience gained through previous
process modeling.

In this section, we review existing approaches for facilitating the configurable pro-
cess design and classify them into four categories: (i) configurable process modeling
(Section 2.2.1), (ii) business process variant retrieval (Section 2.2.2), (iii) business
process merging (Section 2.2.3) and (iv) business process mining (Section 2.2.4). In
Section 2.2.5, the proposed approaches are evaluated against our four principles pre-
sented in Section 1.4.1: (i) automation, (ii) implicit knowledge exploitation, (iii)
focused results and (iv) balanced computation.

2.2.1 Configurable process modeling

Business process modeling allows to represent business processes by means of suit-
able graphical notations [12]. Explicitly designing process models allows to filter out
the complexity of the real world so that efforts can be directed toward the most
important parts of the system [71]. Over the last decade, many process modeling lan-
guages have been proposed to describe business processes such as Unified Modeling
Language (UML), Event-driven process chain (EPC), Business Process Model and
Notation (BPMN), Yet Another workflow Language (YAWL), XML Process Defini-
tion Language (XPDL), Extended Business Modeling Language (xBML), and so on.
However, these languages are not able to capture the variability in business processes
for the purpose of modeling configurable processes. Therefore, various configurable
process modeling languages have been proposed over the recent years to facilitate
the configurable process design [5, 33, 34, 41, 72–82]. Most of them extend existing
languages such as EPC [83] (e.g. [34, 72–74]), BPMN [19] (e.g. [5, 33, 75–80]) and
UML [20] (e.g. [81]) with variable elements. For a comprehensive survey, please refer
to [4].

Rosemann et al. [34, 72] propose a Configurable EPC (C-EPC) notation which
extends EPC with variable elements in order to improve the configurability of En-
terprise systems and reference models such as SAP R/3 reference model. Basically,
the EPC notation consists of three main control-flow elements: event, function and
gateway. An event can be seen as a pre- and/or post-condition that triggers a func-
tion. A function describes the kind of work which must be done. Three types of

On facilitating configurable process design 39

connectors, OR, exclusive OR (XOR) and AND are used to model the splits and
joins. C-EPC adds two constructs to the EPC language: configurable nodes and con-
figuration requirements and guidelines. An example of a configurable process model
in the C-EPC notation is illustrated in Figure 2.1. The configurable nodes are used
to explicitly model the differences among the variants. They are the active elements
of the EPC notation, i.e. functions and connectors. They are graphically modeled
with a thick line. For example, in Figure 2.1, the functions A, D and E and the con-
nector OR (represented as ∨) are configurable. The configuration requirements and

Figure 2.1: A configurable process model in C-EPC notation (before configuration,
after configuration, and resulting EPC [4]

guidelines assist the users selecting the right configuration choices. The configuration
requirements can be seen as hard constraints while the configuration guidelines are
soft constraints. Both requirements and guidelines are expressed as logical predicates
and are depicted as tags attached to the involved nodes. For example, in Figure 2.1,
the requirement “if A = OFF then OR = AND” means that whenever the user se-
lects the configuration choice OFF of the function A, the configuration choice AND
of the configurable OR is recommended.

The C-EPC notation is extended in various ways. La Rosa et al. [73] propose to

40 Related Work

take into account the configuration at the resource and data perspectives. The au-
thors propose to associate the process functions to a variable number of resources and
data objects through configurable connectors having a range parameter. The range
allows to specify the minimal and maximal elements to be selected in a configuration
choice. Vervuurt et al. [74] evaluate existing business process modeling notations,
namely extended EPC, C-EPC and BPMN, based on a set of variability modeling
criteria. In light of the identified limitations, different process variability modeling
alternative solutions have been suggested such as: Feature-EPC which combines C-
EPC with feature diagrams [84] and configuration rules, COV-EPC which extends
C-EPC with Change-Oriented Versioning [85], PCL-EPC which utilizes Proteus Con-
figuration Language [86] that in turn models the configurations and their structural
variability with an object-oriented language.

Gottschalk et al. [87] present a theoretical approach for process configuration.
They introduce the hiding and blocking operators to enable configurable workflow
modeling using Labeled Transition Systems (LTSs). The hiding and blocking opera-
tors can be applied on the LTS edges which are its active elements. Blocking an edge
means that the corresponding path in the LTS cannot be taken anymore. Hiding
an edge means that the corresponding path is a silent one, i.e. it is traversed but
it is unobserved. In [41], the Configurable YAWL (C-YAWL) language that extends
YAWL with hiding and blocking operators for the activities has been developed.

Hallerbach et al. [5,75] introduce Provop (PROcess Variant by OPtions) to manage
and model process variants. Different from [34, 72] which derive process variants by
restricting the model behavior, the Provop method is based on deriving a process
variant from a reference model referred to as base model by applying a set of change
operations (INSERT/DELETE/MOVE fragment, MODIFY attribute). Figure 2.2
illustrates the process lifecycle with Provop which consists of continuous and repeated
steps of Process modeling - Configuration of variants - Process execution - Process
Optimization. In the process modeling phase, a base model is designed based on
one of five policies: (i) it could be the standard or reference process, (ii) the most
frequently used process, (iii) a process model that is the minimal average distance
between itself and all its variants [88], (iv) the result of merging all the process variants
or (v) the intersection of the common parts of all process variants. Adjustment points,
where change operations can be applied, are explicitly annotated in the base model
to allow configuration. Since the number of variants that are derived from the change
operations may be very large, Provop allows to group a set of change operations
(e.g. those that co-occur frequently together) into Options. It also allows to specify
option constraints that are similar to the configuration guidelines and requirements
proposed by [34, 72]. These constraints depict five relations between the options: (i)
implication (i.e. the selection of an option implies another), (ii) mutual exclusion (i.e.
the selection of an option excludes another), (iii) application order (i.e. the order in
which the options are applied), (iv) hierarchy (i.e. allows to group the implication and
implication order relations) and (v) at most n-out-of-m options (i.e. a process variant

On facilitating configurable process design 41

Figure 2.2: The Provop process variant lifecycle [5]

is created by applying between n and m options). In the configuration phase, the user
selects a sequence of options to configure the process and derive the desired variant.
In the execution phase, the configured process variant is deployed and executed by a
Workflow Management System. Finally, the process variants that evolve over time as
a result of configuration are analyzed for possible optimization of the base model.

Despite the great support of various configurable process modeling approaches
and languages, the design of configurable process models from scratch is a well-known
tedious and complex task. Indeed, a configurable process model contains the behavior
of several process variants. These variants are not new but rather operational in
different organizations [3]. Therefore, the starting point for building a configurable
process model should be the information available about these best-practice process
variants [3, 43]. In our work, we exploit such information in existing repositories of
business process models and execution history. We propose to incrementally assist
the process designer to complete the design of his configurable process by proposing
configurable process fragments for selected positions in the process.

To represent our configurable process fragments, we choose the approaches that
use configurable nodes [34] for two reasons. First, this approach has solid fundamental
since it is built on top of the theoretical study on process model configuration con-
ducted in [87]. Second, as it is highlighted in [87], configurable nodes based approaches
allow a generic-monolithic approach for model re-use. That means, a “configurable
model must be able to provide a complete, integrated set of all possible process con-
figurations”. This is indeed a desirable property for the Off-the-shelf packages such
as SAP that need to be configured by restricting their behavior to suit the specific
requirements of an organization.

42 Related Work

2.2.2 Business Process variant retrieval

Traditional approaches for separate modeling of process variants create many redun-
dancies as these variants share many commonalities and the newly modeled ones are
often a result of copy-pasting [89]. Therefore, the foundational base of process con-
figuration approaches is that having one consolidated process is better than many
process variants’ versions [43, 90]. Automatic comparison and detection of similari-
ties between process models is essential for retrieving the different variants of a given
business process. It is considered as a prerequisite for aggregating the discovered pro-
cess variants and constructing a configurable process [43]. Similarity search includes
two main research streams: (i) the development of similarity measures for computing
the similarity between process models [55,56,91–99] and (ii) the development of effi-
cient algorithms for retrieving process (fragment) models that are similar to a given
one [27,28,89,100,101].

Similarity measures can be classified into three categories [91]: (i) labels’ similarity
metrics that are based on the comparison of the activities’ labels in the business
processes, (ii) structural similarity metrics that are based on the comparison of the
business processes’ graph structures and (iii) behavioral similarity metrics that are
based on the comparison of the behavior obtained from process executions.

The authors in [91] compute the similarity between two process models using a
combination of metrics from the three categories. The similarity between the ac-
tivities’ labels is computed based on the string edit distance [102] which counts the
minimal number of atomic character operations (insert, delete, substitute) needed to
transform one string into another. To compute the structural similarity [55], they
represent the business process models as directed attributed graphs and adopt the
graph-edit distance [103] which counts the minimal number of atomic graph opera-
tions (substitute node/edge, insert/delete node/edge) needed to transform one graph
into another. For the behavioral similarity, they define causal footprint vectors [99]
which represent the execution orders of the activities in process models. Then, the
similarity between footprint vectors is computed using vector space model, i.e. the
cosine value of the angle created by the corresponding vectors.

A structural similarity based on high-level change operations is proposed by Li
et. al. [95]. Different from [91] which measures the difference based on the num-
ber of deletions/insertions/substitutions of nodes, the authors take into account the
execution orders between activities and measure the difference based on the dele-
tions/insertions/movements of activities. They target to keep the execution orders
when transforming one process model to the other to guarantee the soundness of the
business process.

Yan et. al. [28] propose to compute the similarity between two process models
based on the labels and structural similarity metrics. Similarly to [91], they use the
string edit distance [102] to compute the activities’ labels similarity. Regarding the
structural similarity, they define the structural features of a process model as its

On facilitating configurable process design 43

connection elements including start, end, sequence, split and join. They compute the
similarity between two structural features by computing the average number of input
and output paths of the corresponding connection elements.

Ehrig et. al [96] propose to measure the similarity between Petri-nets process
models semantically modeled with the Web Ontology Language (OWL) [104]. They
use a combination of labels and structural similarity measures. The similarity be-
tween the process elements’ labels is computed based on syntactic (using string edit
distance [102] and ontology based similarity [105]) and linguistic (using WordNet
database [106] and specific UML profile [107]) metrics. For the structural similarity,
they make use of the hierarchical ontology structure and take into account the context
of the concept instances represented by their properties’ values. They model the con-
cepts instances and their context in a tree-like structure and compute the similarity
by matching the tree elements.

The activities’ labels matching used by the aforementioned approaches are im-
proved in two ways. Mueller et al. [97] propose a new metric to increase the recall
of process model matching. The authors propose to treat each activity label as a
bag of words and apply word stemming techniques [108,109] for better comparability.
Then, the words are pruned from the longer label and the similarity of two labels is
computed based on the pruned words. A combination of syntactic (string edit dis-
tance [102]) and linguistic (based on Lin [110] metric) metrics is used to compute the
overall similarity. The ICoP framework proposed by Weidlich et. al [56] overcome
the limitations of existing labels’ similarity metrics that allow only for 1:1 matching.
This framework is tailored to deal with complex 1:n matches, i.e. each activity can
be matched to an arbitrary number of other activities.

A behavioral-based metric is proposed in [93] to compare two business process
models based on their execution semantics. The authors use Petri-nets to model
the business processes. The executions of these models are recorded as sequences of
activities, called log traces, and their frequencies. The similarity between two business
process models is evaluated with respect to the precision and recall metrics. These
metrics are computed based on the fitness between the log traces of the two processes
and their frequencies.

The behavioral metrics proposed in [93, 99] rely on exhaustive searching, i.e. the
query model is compared with each model in the repository. In order to overcome
this issue, Kunze et al. [92] propose a behavioral similarity metric based on the be-
havioral profiles [111] which satifies the triangle inequality [112], i.e. the minimum
and maximum distances of two objects can be determined without calculating it, if
their pairwise distance to a third object is given. A behavioral profile is an abstract
representation of a process model. It is defined as an n × n matrix where n is the
number of activities in the process. Each cell contains one out of three relations
based on the activities’ execution order: strict order, exclusive order or interleaving.
For each of the identified relations, they define a corresponding similarity based on
the Jaccard coefficient. The overall similarity between two behavioral profiles is one

44 Related Work

minus the weighted sum of their relations’ similarities.

The behavioral metric proposed by [92] may mishandle several types of constructs
such as silent transitions, duplicate tasks, and cycles. Therefore, in [98], a behavioral
metric that computes the similarity between two process models and describe their
differences via textual statements is proposed. The behaviors of two process mod-
els are canonically represented using Asymmetric Event Structure [113]. Then, the
behavioral equivalence is computed based on visible-pomset equivalence [114].

The similarity search helps to identify and retrieve process variants that are similar
to a given process. It assists process designers to rapidly search for business processes
that can be integrated into a configurable process model. However, this may be
efficient with small-size business processes, i.e. with few activities and operations. In
contrast, the large-size business processes, e.g. consist of hundreds of activities and
operations, may consume much computation time. Moreover, they may make process
designers confused and hard to detect how the business processes are similar and which
parts should be used for the design of the configurable process model. In addition, the
matching of the whole business processes often leads to the graph-matching problem,
which is NP-complete [115], and they, e.g. [28, 55, 56], have to deal with the trade-
off among the complexity, accuracy (efficiency) and system performance. In our
approach, we focus partially on the business process and take into account only the
different variant fragments related to an activity neighborhood context for retrieval.
Consequently, we retrieve the corresponding fragments without facing the complexity
problem.

Efficient algorithms for querying large repositories of process models to retrieve ex-
act or approximate process (fragment) models are currently being developed. Dumas
et al. [101] seek to address the problem of many duplicates referred to as exact clones
in large repositories of process models. The authors present an indexing structure
called RPSDAG [116] that supports fast detection of clones in large repositories of
process models for the purpose of refactoring into separate sub-processes. The RPS-
DAG index also allows them to efficiently answer fragment queries. Their method
is based on Refined Process Structure Tree (RPST) and code-based graph indexing.
The RPST represents the process models taken as input in a tree of single entry sin-
gle exit (SESE) fragments. Then the process models are indexed and duplicate SESE
fragments (clones) are identified. Ekanayake et al. [89] identify approximate clones,
i.e. similar SESE fragments based on the same index structure. A matrix storing the
similarity between each pair of SESE fragments is constructed and used to cluster the
SESE fragments. The fragments within the same cluster are considered as approxi-
mate clones. The identified clusters of approximate clones are then refactored to their
medoid. Detecting approximate clones help to retrieve similar process fragments for
possible configurable process fragment design. Different from them, in our approach
we do not restrict ourselves to SESE fragments. Our neighborhood context definition
as a process fragment model allows for more flexibility since it does not impose the
well structuredness of the process models.

On facilitating configurable process design 45

2.2.3 Business process merging

In case a collection of process models exist, configurable process models can be
(semi) automatically constructed by merging the similar process models in the pro-
cess repository. The original models used as inputs correspond to configurations of
the resulted configurable model. The model merging has been addressed in several
works [43–45,51,53,82,88,117–119].

Li et al. [88] develop a method that merges variants into one reference model.
Their method creates a reference (generic) process model from a given set of similar
process variants. This process model is constructed in such way that the change
distance (for example insert, delete or move actions) is minimal between the reference
model and the process variants used as inputs. However, their approach only works
for block-structured process models with AND and XOR blocks.

Sun et al. [118] describe the problem of merging block-structured workflow nets.
The algorithm first finds the mapping pairs (i.e. points in the workflow to be merged)
and then merges the models by applying a set of “merge patterns” (sequential, par-
allel, conditional and iterative). However, the resulted merged workflow is not con-
figurable but rather a combined representation of the input process variants. The
merge can be lossless or lossy. The last one refers to the fact that it is not guaranteed
that all tasks of initial models remain in the merged model. Therefore, the behavior-
preservation property is not guaranteed. Another drawback is that the proposed
method is not fully automated.

The methods of Li et al. [88] and Sun et al. [118] do not guarantee the behavior
preservation property. Gottschalk et al. [45] address this limitation. In their method,
one can see the behavior of the input process models and also additional possible
behaviors of the process. Their method, which is based on EPC, works in three
phases. In the first phase, the input EPC process models are reduced to their active
behavior (reduction of an EPC by removing the gateway nodes and adding them on
the arcs connecting functions) and represented as functional graphs. The resulting
functional graphs are then merged into a new function graph that shows the combined
behavior of the input EPC models. Finally, the merged functional graph is converted
back to EPC. The resulted merged EPC is not configurable and does not allow the
process designer to explicitly see the commonalities and differences between the EPC
input models. The function graph used in this approach is similar to our process
fragment model. However, their model does not support the full expressiveness of
process models since it does not allow for a chain of connectors between functions.

Mendling et al. [51] propose a method for merging two process models (EPC) that
represent the same business process but from different views. The resulted model is
also not configurable but a combined representation of different views. Different views
could be two EPC describing the process of receiving customer inquiry. One of the
processes is from the Project Management branch and the other from Sales and Distri-
bution branch. These two EPC represent similar processes and share common parts.

46 Related Work

The proposed method consists of three steps. The first step is to identify the semantic
relationship of the two input EPC process models. This step is manually performed
by the process designer who identifies the equivalence and the sequential order of
functions and events in the two EPC models. The similarity can only be defined in
terms of functions and events; connectors and more complex graph topologies are not
taken into account. Then, as a second step, an integrated EPC is created from the
two input EPCs. This is achieved by first creating an integrated EPC where all the
elements of the two input EPCs are included. Then, nodes that capture the same
thing in the process are merged into one node and the incoming and outgoing arcs
are managed with split and join connectors. In the last step a set of restructuring
rules that cleans the integrated EPC model from unnecessary structures by removing
redundant arcs and eliminating connectors with only one input and one output arc
are applied.

To overcome the limitations related to the lack of behavior preservation and ex-
plicit modeling of the variability in the merged model, La Rosa et al. [43] propose a
process model merging method that at the same time allows process analysts to trace
back the input process models from the merged model. The algorithm first extracts
the common parts of the input process models and creates a copy in the configurable
process model. Then, the remaining parts in the input models (i.e. the different
parts) are added to the configurable process and connected to the common parts
through configurable connectors. Finally the algorithm cleans the process model by
eliminating the redundant elements and useless connectors (i.e. connectors with one
input and one output branch).

The merging algorithm proposed by La Rosa et al. [43] and Gottshalck et al. [45]
allows to merge a pair of process models and can be iteratively applied to merge
multiple process models. Derguech et al. [44] make a new contribution by proposing
an algorithm that enables merging a set of process models at once. However, their
experiments show that this approach is efficient for a few number of process models.
The matching problem becomes more complex when trying to match a large number
of process models. In our approach, we we do not face such problem since we merge
small fragments that, in most cases, include only the relation of an activity to its
closet neighbors, we can deal with a relatively high number of process fragments.

Schunselaar et al. [82] leverage the problem of deriving configurable process models
that produce sound process variants. Furthermore, they must be fully reversible, i.e.,
the input process variants should be instantiations of the configurable process model.
They propose fulfilling the above stated requirements by introducing CoSeNet process
models. CoSeNets is a tree-like block structured process models that capture the
business processes. The CoSeNet process models are read from left to right with each
leaf representing a task and each parent node representing an operator (sequence,
logical connectors OR, AND, data-driven XOR and event-driven XOR). The parent
connectors are linked through VOID nodes (linked with edges to the parent nodes).
The configuration of CoSeNet process models is achieved by blocking and/or hiding

On facilitating configurable process design 47

VOID nodes.

Kuster et al. [117] introduce a method for assisting process designers in the merg-
ing procedure. Their approach is divided into three steps. In the first step, the dif-
ferences between models are detected, using correspondences between process models
and the SESE fragment technique they present in [120]. In the second step, they vi-
sualize the differences, and in the last step, the process models are iteratively merged
based on the process designer’s input.

To summarize, the merging approaches proposed in [45,51,88,118] do not explic-
itly represent the variability in the resulted merged model. Some of the approaches
ensure that the merged model subsumes the behavior of all the input models [43–45]
while others do not guarantee the behavior-preservation requirement [51,88,118]. The
approaches in [43, 44] allow to trace back the input models from the merged models.
The approaches by [82,118] work only with block-structured processes. All of the pro-
posed approaches target to merge whole process models and can therefore encounter
the problem of managing the complexity of merged models when input models are
large and varied [42]. In our approach, we explicitly represent the variable parts in the
merged fragments using configurable nodes. We guarantee the behavior preservation
property but do not address the traceability requirement. This is because, differ-
ent from existing approaches which target to maintain large repositories of process
models by refactoring similar variants, our objective is to assist the design of new
configurable process models. Therefore, the traceability property is not important in
this context. We also do not impose the structuredness of the input models. And
last, we do not face the problem of computation and model complexity since (i) we
merge small fragments instead of entire process models and (ii) our fragment model
represents a functional aggregated representation which allows us to speed up the
matching phase.

2.2.4 Business process mining

Today’s information systems, such as workflow management systems (e.g.Staffware),
ERP systems (e.g. SAP), case handling systems (e.g. FLOWer), PDM systems
(e.g.Windchill), CRM systems (e.g. Microsoft Dynamics CRM), middle ware (e.g.
IBM’s WebSphere), hospital information systems (e.g. Chipsoft), etc., record their
business transactions as event logs [60]. These logs back up not only the business
execution but also the knowledge related to the a-priori business process models.
The goal of process mining [21] is to extract information from these logs in order
to exploit the hidden knowledge that may be helpful for the business analysis for
discovering the process models [121–127] from an enormous set of log traces. Process
mining can be used to mine the business constraints to check the conformance of
a-priori models [93, 128]. It can also detect execution errors [129, 130], observe social
behaviors between groups of users [131], etc.

Business process mining is a discipline that sits between machine learning and data

48 Related Work

mining on the one hand and process modeling and analysis on the other hand [132]. It
was firstly introduced in 1995 [133] and was proven as a powerful technique to discover
behaviors observed from event logs. It has involved the development of many tools
and techniques that support mining event logs [134–137].

Business process mining techniques can be used to mine a configurable process
model from a collection of event logs. Gottschalk et al. [47] presented two different
approaches for mining configurable process models but these were not supported by
concrete discovery algorithms. Buijs et al. [46] proposed four approaches for min-
ing configurable models with concrete discovery algorithms from which the first two
approaches are those proposed by [47]. In their work, the authors propose to use
a tree-like representation to create a configurable process tree. The first approach
is the merging of individually discovered process models. As a result, all process
models are rooted in the configurable process tree, where a simple choice between
the children of the root derives a process model. The second approach merges all
event logs in a single event log, and then discovers a process model reflecting the
common behavior. Afterwards, each log and the common process model are used to
discover individual process models that later on are merged to create a configurable
process tree using [82]. The third approach merges event logs and then creates a
configurable process model. Thus, to derive process models for each variant, it uses
the corresponding event log and the configurable process model; however, the model
has low precision. The fourth approach is a novel technique that takes all event logs
and then discovers at the same time a configurable process model and a single model
for each original event log. All approaches use discovery algorithms that are based
on the Evolutionary Tree Miner (ETM) [138].

Oirschot [139] uses trace clustering to create a configurable process model using
a process tree representation. First, groups of behaviorally similar traces using hier-
archical trace clustering are found. In the second step insights are provided to the
end-user, and finally a configurable process tree using selections of groups of traces
in the hierarchical clustering is created. This work offers a new technique that uses a
heuristic way to discover configurations.

In our approach, we also use process mining techniques to assist the design of con-
figurable process models. However, our target is not to discover an entire configurable
process but to propose a configurable fragment that is close to designers’ interests.
We propose to project a collection of event logs on the neighborhood context of an
activity and mine a configurable fragment from the projected logs. We also propose
a frequency-based approach to derive ranked configurations from the event logs.

2.2.5 Synthesis

Many automated approaches have been proposed to assist the design of configurable
process models [43–47,47,51,53,82,88,117,118]. They merged similar process variants
into one consolidated process model [43–45, 51, 53, 82, 88, 117, 118] and mined config-

On facilitating configurable process design 49

urable process models from a collection of event logs [46, 47, 47]. All of them dealt
with merging or mining the whole business process model. Therefore, they
encountered the problem of managing the complexity of the resulted models when
input models are large and varied [42]. They had to deal with the NP-complexity
problem of the graph matching when searching for similar process variants and they
needed to find a trade-off between the computational complexity and the quality of
results or implement other strategies.

Table 2.1 shows a synthesis on the presented approaches in terms of the four
principles identified in Section 1.4.1: (i) automation, (ii) focused results, (iii) implicit
knowledge exploitation, and (iv) balanced computation. We further decompose the
implicit knwoledge exploitation into two sub-principles: (iii-1) explicit variations and
(iii-2) behavior preservation. The explicit variations principle stands for the explicit
representation of the configuration in the recommended results. The behavior preser-
vation stands for the fact that the proposed merging or mining algorithms generate
configurable process models that preserve the behavior of the input models. ‘+’ indi-
cates that the corresponding principle is fulfilled by the corresponding approach, ‘-’
indicates that the corresponding principle is not fulfilled and ‘+/- indicates that the
corresponding principle is partially fulfilled.

Approaches
Principles

Automation
focused explicit Behavior Balanced
results variations preservation computation

[43] [44] [46] [47] [139] [82] + - + + +/-
[45] + - - + +/-
[51] +/- - - +/- +/-

[88] [118] + - - +/- +/-
[53] - - - + +/-
[117] +/- - + +/- +/-

Table 2.1: Synthesis on the merging and mining approaches for assisting the config-
urable process design according to our principles

The configurable process modeling and process variant retrieval approaches are
not shown in the table since they are used as prerequisite by most of the merging and
mining approaches to derive configurable process models.

In our approach, we focus on specific parts of the business process model. We aim
at assisting the process designers completing the design of their configurable process
models. We define the neighborhood context graph around an activity as a process
fragment model and propose to construct a configurable fragment for a selected ac-
tivity in the process. The configurable fragment inspires the designer to complete
the design of his process by showing him the relations of the selected activity to its
closet neighbors. We exploit the existing business process models or the execution
logs to automatically derive the configurable fragment. Our approach does not face
the complexity problem as (i) we deal with specific and small parts of the process
and (ii) our fragment model based on the neighborhood context definition allows us

50 Related Work

to efficiently match the input fragments.

2.3 On supporting business process configuration

While configuration facilities in a configurable process model allow for an easy adap-
tation to individual needs, the configuration decisions cannot be taken freely [57]. In
fact, a derived process variant needs to be correct from a strucutral, behavioral and
domain perspective [3]. The structural and behavioral correctness [58,59] ensure that
after individualization of the configured process model, the derived process variant
is technically executable, i.e. the model does not contain disconnected nodes and is
deadlock free. The domain-based correctness ensures the validity of the configuration
choices regarding specific requirements. For instance, the configuration decisions to
implement the process for a travel agency are different from the decisions made for
a travel booking website in the internet. While structural and behavioral correctness
approaches are completely automated, most of the domain-based approaches still need
a considerable manual effort from domain experts.

In this section, we review existing approaches for guiding the configuration of
process models according to domain constraints. We classify them into two categories:
(i) domain-based approaches which propose a configuration guidance that abstracts
from the technical details of the process models (Section 2.3.1) and (ii) process-based
approaches which propose a direct configuration guidance on the designed process
model (Section 2.3.2). In Section 2.3.3, the approaches are evaluated against our
four principles presented in Section 1.4.1: (i) automation, (ii) implicit knowledge
exploitation, (ii) focused results and (iv) balanced computation.

2.3.1 Domain-based approaches

Domain-based approaches for process configuration [6, 7, 48, 50, 76, 140–144] propose
to abstract from the process technical details. They are motivated by the fact that
the configuration decision-making is of the business experts responsibility who are
not aware of the process modeling technical details. Most of these approaches have
been inspired from configuration management in Software Product Line Engineering
(SPLE) [145]. They propose to model the process variability in a domain-based model
and perform the configuration on it. A mapping between the process and the domain
model should be established so that the domain-based configuration decisions are
translated into process-based configuration decisions.

SPLE based approaches have been used by [6,50,141,142] to support the configu-
ration of business process models. Within the domain of SPLE, product variability is
managed with the use of feature models [146]. A feature model consists of one or more
feature diagrams that are represented as a tree structure. At the top of the tree, high
level features are depicted. Then they are decomposed into sub-features. The features
can be either mandatory or optional. Constraints among sub-features are graphically

On supporting business process configuration 51

represented in a diagram. The foundational relations in a feature diagram are AND
(all the sub-features must be selected), XOR (only one feature can be selected) and
OR (one or several of the sub-features can be selected). A process model is configured
by selecting/deselecting features from a feature model. In order to do so, a mapping
should be established between the features on the one hand, and the variants of the
variation points in the process model on the other hand. An example of a feature
diagram, a process model and a mapping between them is illustrated in Figure 2.3.
Once a feature configuration has been completed, an algorithm uses this mapping
to select the right variant(s) for each variation point of the process model. Then an
individualization algorithm, if available, is triggered to individualize the customized
process model.

Figure 2.3: A feature diagram, a business process model and a mapping between
them [6]

The SPLE based approaches require the domain experts to be familiar with
the feature modeling. La Rosa et al. [7, 140] address this issue by proposing a
questionnaire-driven approach for configuring reference models. They describe a
framework to capture the system variability based on a set of questions defined by do-
main experts and answered by designers (Figure 2.4). The process model variability is
captured with Boolean domain facts at each configurable node. A questionnaire model
is built that is connected with the facts and the nodes. The user answers questions by
choosing from alternative responses. These responses are in turn connected with facts
and nodes. Depending on the answers, the configuration (i.e actions) is triggered by

52 Related Work

configuring the respective node with the selected alternatives and removing irrelevant
paths.

Figure 2.4: An overview of the questionnaire-based approach [7]

Lapouchnian et al. [144] propose a goal-driven configuration approach. They em-
ploy goal models to capture business goals and to analyze the variability (the various
ways these goals can be attained) in the business domain. In order to configure the
process, quality attributes such as customer satisfaction are used as a selection crite-
ria for choosing among the business process alternatives induced by the goal models.
These high-level variability goal models are then used in a semi-automatic variability-
preserving transformation to generate configurable executable business processes.

Huang et al. [48] propose an ontology-based framework for specifying configura-
tion guidelines using Semantic Web Rule Language (SWRL). They use two types of
ontologies: a business rule ontology which is specified by a domain expert, and a pro-
cess variation points ontology based on the C-EPC language. Using these ontologies,
they derive SWRL rules that guide the configuration process.

The aforementioned approaches require considerable manual steps from a domain
expert to create the domain model. Schunselaar et al. [143] overcome this issue by
proposing an automated approach to derive a domain model referred to as consis-
tency graph from a business process model. A consistency graph consists of a concept
graph and a set of rules to ensure the consistency of that graph. The concept graph
is a domain abstract representation of the activities in a business process model. It
is constructed by decomposing the process activities into concepts (business objects,
actions, and business object modifiers) and link them based on their ordering. After-
wards, the user selects which concepts and relations are to be taken into account in
the configuration process. However, the consistency graph does not provide recom-

On supporting business process configuration 53

mendations for taking the configuration decisions.

In summary, domain-based approaches for assisting the configuration of process
models require an expensive manual work from experts. This can be a labor-intensive
task especially for large process models that have an exponential number of possible
configurations. In addition, these approaches are only based on the expert knowledge
while, as highlighted in [3,34], a successful process configuration has to integrate the
experience gained through previous configurations. Therefore, in our work, we address
this research gap by proposing an automated approach for assisting the configuration
of process models using previously configured processes.

2.3.2 Process-based approaches

Direct configuration guidance on the designed process model has been proposed by
many approaches [5, 34, 43, 44, 46, 49, 54, 72, 75, 139]. Some of them require a domain
expert to define configuration constraints [5, 34, 49, 72, 75] while others proposed to
retrieve process configurations from previously configured process models [43, 44, 46,
54,139].

Rosemann et al. [34] defined the requirements for a configurable process mod-
eling technique before proposing the C-EPC notation. They highlighted the need
for configuration guidelines that guide the configuration process. These guidelines
should clearly depict the interrelationships between the configuration decisions and
can include the frequency information. Based on the identified requirements, they
developed the C-EPC notation which extends EPC with configurable nodes and con-
figuration guidelines and requirements (Section 2.2.1). These guidelines are logical
expressions over the configuration choices of configurable elements and are defined by
domain experts.

The Provop approach [5, 75] (Section 2.2.1) allows a similar guidance but w.r.t.
change operations instead of configurable nodes. The authors defined the notion of
option constraints that consist of inclusive, exclusive, application order, hierarchy and
most n-out-of-m relations between the change operations. Particularly, the applica-
tion order relation overcomes the drawback of the configuration guidelines proposed
by Rosemann et al. [34] since it allows to define the order in which the constraints
should be applied to avoid inconsistent configurations. A graphical interface is also
provided to ease the modeling of such relations.

Templates and configuration rules are proposed by Kumar et al. [49] in order to
configure a reference process template using the configuration rules. The rules can
be used to configure the template by restricting or extending its behavior via change
operations. Change operations affect (i) the control-flow perspective (by deleting,
inserting, replacing or moving a single task or a process fragment), (ii) the resource
perspective (by assigning a role to a task), and (iii) the data perspective (by assigning
a value to a data attribute or changing the value of a role’s property or of a task’s
input or output data). It is also possible to change the status of a process among four

54 Related Work

predefined values (normal, expedite, urgent and OFF). Rules associate change opera-
tions with a Boolean condition, so that if the condition is satisfied, the corresponding
change operation is applied onto the process template. Depending on the type of
operation, the approach differentiates between control-flow rules, data rules, resource
rules and hybrid rules (the latter incorporating multiple process perspectives). These
rules are defined and validated by domain experts and have priority numbers in order
to specify the order in which they are applied.

Different from [5,34,49,72,75], some approaches propose to aid the configuration
by recommending a previously configured process variant satisfying some require-
ments. The merging approaches proposed by [43] and [44] generate configurable
process models in which the configurable nodes are annotated with a multiset of
(process variant id, configuration choice) pairs. Each pair depicts the configuration
choice in one process variant. A user specifies a process variant identifier for which
the corresponding configuration choices are recommended.

The approaches proposed in [46, 54, 139] use process mining techniques instead
of business process models to assist the configuration process. Buijs et al. [46] and
Oirschot [139] propose a genetic algorithm that, given a configurable process tree
and a collection of event logs, derive the configuration choices for each event log.
Different from them, Jansen-Vullers et al. [54] propose an approach to derive the
frequently executed configuration (i.e an EPC model) given that a C-EPC exists and
a log containing only data on the frequency of executed activities. They formulate the
problem as an Integer Linear Programming in order to find the best configuration.

Process-based approaches allow a configuration guidance directly applied on the
process. They release the process and domain experts from the burden of mapping
the business oriented domain models to the technical oriented process models (as
in the domain-based approaches). They can also be automated by learning from the
previous experience in process configuration. However, they are difficult to use by the
users who are not aware of process modeling technical details. We believe that such
approaches are tailored to assist the process analysts analyzing and understanding
the variability in their processes. They may be a starting point for a diagnosis and
optimization step of the guidance models provided by the domain-based approaches.
Moreover, since they operate on a fine-grained level (i.e. at the level of process
elements), the manual approaches [5,34,49,72,75] may become quickly infeasible when
process models are large and contain many configurable elements. On the other side,
the existing automated approaches [43,44,46,54,139] are not suited for a configuration
guidance as they return complete process variants instead of interactively assisting
the user deriving the elements’ configurations.

In our work, we propose a process-based approach that combines the features of
process-based and domain-based approaches. We propose to automatically extract a
configuration guidance model from previously configured process variants that inter-
actively assists the user during the configuration of his process model. We explore
the implicit configuration knowledge in existing process models in order to infer (i)

On supporting business process configuration 55

a plan for the configuration steps order and (ii) a set of configuration guidelines for
assisting the configuration decision-making.

2.3.3 Synthesis

Many approaches have been proposed for supporting the configuration of business pro-
cess models [5–7, 34, 43, 44, 46, 48–50, 54, 72, 75, 76, 139–144]. Some of them proposed
to guide the configuration on the designed process [5, 34, 43, 44, 46, 49, 54, 72, 75, 139]
while others propose to abstract from the process technical details and guide the
configuration on a domain-based model [6, 7, 48, 50, 76, 140–144]. Many of them rely
on the domain expert knowledge and require an expensive manual work to
build the guidance model. However, as highlighted in [3, 34], a successful process
configuration has to integrate the experience gained through previous configurations.
Some automated approaches as for example [43, 44, 46, 54, 139] take this requirement
into account and derive process configurations from existing process models and event
logs. However, these approaches fail to guide the user step by step during the con-
figuration process. They return entire process models that may confuse the user and
require him to re-verify the configuration decisions that have been taken.

Table 2.2 shows a synthesis on the presented approaches in terms of our principles
identified in Section 1.4.1: (i) automation, (ii) implicit knowledge exploitation (iii)
focused results and (iv) balanced computation. We further decompose the focused
results principle into two sub-principles relevant to the configuration context which
are (ii-1) configuration steps guidance and (ii-2) configuration decision guidance. The
configuration steps guidance sub-principle refers to the approaches that provide an in-
teractive step-by-step guidance to the end users. The configuration decision guidance
sub-principle refers to the approaches that provide recommendations on the suitable
configuration choices to the end users. These two sub-principles refer to the guidance
granularity provided by existing approaches.

Approaches
Principles

Automation
Focused results

Implicit Configuration Configuration Balanced
knowledge steps guidance decision guidance Computation

[7] [140] - - + + manual
[141] [142] [6]

- - +/- - manual
[50] [76]

[143] +/- + +/- - manual
[48] [34] [72] - - - + manual

[144] - - - + manual
[75] [5] [49] - - + + manual

[43] [44] + - - + +/-
[46] [139] [41]

Table 2.2: Synthesis on process configuration support approaches that satisfy our
principles

The results show that any of the approaches meet all of our identified principles.

56 Related Work

The automation principle is met by only few works, namely the process-based ap-
proaches for merging [43,44] and mining [41,46,139] configurable process models and
the approach by Schunselaar et al. [143]. This latter approach exploits the implicit
knowledge in the activities of the configurable process model to derive a domain-
based abstract model. Different from them, in our approach we exploit the implicit
knowledge hidden in existing business process models to infer useful information for
process configuration. The results show also that all of the approaches that meet our
two sub-principles, configuration steps guidance or configuration decision guidance,
are manual.

In our approach, we address this research gap by proposing an automated approach
for automatically deriving configuration guidance models that meet the four identified
principles. Our configuration guidance models assist the users step by step during the
configuration of the process by presenting them (i) the order in which the configuration
steps are performed and (ii) the configuration decisions that are suitable taking into
account the already chosen ones. We use the implicit knowledge on configuration
decisions inferred from previously configured processes as well as event logs.

2.4 Conclusion

In this chapter we presented different approaches that support the design and con-
figuration of configurable process models. We classified the design-based approaches
into four categories: configurable business process modeling, business process variant
retrieval, business process merging and business process mining. For the configura-
tion approaches, we classified them into two categories: domain-based approaches and
process-based approaches. We briefly introduced these approaches and identified their
principles. We showed that most of the existing design approaches are automated but
do not generate focused results and encounter the computational complexity problem.
Regarding the existing configuration approaches, we showed that most of them are
currently manual and that the few automated ones still miss guidance features to
facilitate the process configuration. We also present the difference between current
approaches and our approach.

We start presenting in detail our approach in the next chapters. In chapter 3,
we present some formal definitions related to the process modeling languages used in
this thesis. We also present the definition of event logs. In chapter 4, we elaborate
on how we assist the design of configurable process models with configurable process
fragments derived from existing business process models. In chapter 5, we present
our approach for supporting the process configuration with configuration guidance
models. In chapter 6, we show how we can use event logs to assist the design and
configuration of configurable process models.

Chapter 3

Preliminaries

Contents

3.1 Basic Notations . 57

3.2 Process Modeling Standards . 58

3.2.1 Business Process Model and Notation (BPMN) 59

3.2.2 Configurable BPMN (C-BPMN) 60

3.2.3 Petri Nets . 62

3.3 Process Graphs . 64

3.4 Event Logs . 66

This chapter presents the preliminaries used in the remainder of this thesis. In
Section 3.1, we introduce some basic mathematical notations. In Section 3.2, we
present different graph based (configurable) process modeling standards used to il-
lustrate this work. Then, in Section 3.4 we introduce event logs, the data input for
process mining techniques.

3.1 Basic Notations

In this section, we introduce the basic notations, for sets, multisets, sequences and
functions.

We define sets as follows:

Definition 3.1.1 (Sets). A set S is a possible infinite collection of elements. The
elements in the set are listed between braces, e.g. , S = {a, b, c}. The empty set is
represented by φ. |S| denotes the size of the set. For example, |S| = 3. P(S) denotes
the powerset of S, i.e. the set of all subsets of A, including the empty set and S itself.
For example P(S) = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Three operations, union, intersection and difference are defined over sets. Let
S1 = {a, b, c} and S2 = {a, b, d} be two sets. The union of S1 and S2 denoted as S1∪S2

is a set containing all the elements of S1 and S2. For example S1 ∪ S2 = {a, b, c, d}.
The intersection of S1 and S2 denoted as S1 ∩ S2 is a set containing the common
elements between S1 and S2. For example, S1 ∩ S2 = {a, b}. The difference between

57

58 Preliminaries

S1 and S2 denoted as S1 \S2 is a set containing all the elements in S1 that are not in
S2. For example S1 \ S2 = {c}.

Multisets, also known as bags are defined as follows:

Definition 3.1.2. A multiset M over a set S is a possible infinite collection of ele-
ments of S, where each element may appear more than once. The elements in the mul-
tiset are listed between square brackets. An example of a multiset M over S = {a, b}
is M = [a, a, b] also denoted as M = [a2, b]. We denote by M(a) the number of times
the element a appears in M . For example, M(a) = 2, M(b) = 1 and M(c) = 0
∀c /∈ S. A set A ⊆ S can be viewed as a multiset where each element occurs once.
The empty multiset is denoted as []. We denote by M(S) the set of all multisets over
S.

The union, intersection and difference operations defined over sets are also appli-
cable for multisets. For example [a, b] ∪ [a, a, c] = [a, a, a, b, c]; [a, b] ∩ [a, a, c] = [a, a];
[a, b] \ [a, a, c] = [b] and the size |[a, b]| = 2.

We define sequences and projection on sequences as follows:

Definition 3.1.3 (Sequence, Projection). Let S be a set. A sequence σ =< s1, s2, ..., sn >∈
S∗ is an ordered list of elements si ∈ A, 1 ≤ i ≤ |S|. The empty sequence is denoted
as <>. The projection of σ on a subset S′ ⊆ S denoted as σ↓S′ is a subsequence of σ
containing only the elements of S′. For example < a, a, b, d >↓{a,d}=< a, a, d >.

We define functions as follows:

Definition 3.1.4 (functions). Let S1 and S2 be two non-empty sets. A function f
from S1 to S2, denoted as f : S1 → S2, is a relation from S1 to S2, where every
element of S1 is associated with an element of S2. We denote by dom(f), cod(f) and
Rng(f) the domain, codomain and range of f respectievely.

3.2 Process Modeling Standards

Process models allow to explicitly represent the behavior of a business process ac-
cording to its three perspectives: (i) control flow which describes the logical order
between the process tasks (ii) resource flow which describes the physical objects and
human performers required to accomplish a task and (iii) data flow which describes
the data exchanged between the tasks [147]. In this thesis we mainly focus on the
control flow perspective of the processes, and therefore the models are used to capture
the ordering between the process tasks.

A wide range of graphical process modeling languages has been proposed over the
last decade to represent a business process such as BPMN, EPC, YAWL, UML activity
diagram, etc. Despite their variances in expressiveness and modeling notations, they
all share the common concepts of tasks, events, gateways, artifacts and resources,
as well as relations between them, such as transition flows [126]. Without loss of

Process Modeling Standards 59

generality, we select and use BPMN in our approach as it is one of the most popular
business process modeling language. Therefore, in Section 3.2.1, we present the main
elements of BPMN. Configurable BPMN which extends BPMN with configurable
elements is then discussed in Section 3.2.2. In Section 3.3, we present some definitions
related to an abstract representation of a (configurable) process model, referred to as
(configurable) process graph, to which most of the process modeling languages can
be mapped. And last, we present Petri nets, a formal process modeling notation used
frequently in process mining.

3.2.1 Business Process Model and Notation (BPMN)

The Business Process Model and Notation (formerly know as Business Process Model-
ing Notation) (BPMN) was first released in 2004 by the Business Process Management
Initiative (BPMI) [19]. BPMN is a standard for business process modeling that allows
to create and document process models. It is considered as the de facto process mod-
eling notation that is widely used in industry. In its latest versions, BPMN has been
enhanced with executable semantics enabling the execution of the modeled process.

BPMN provides a rich set of elements to capture different perspectives of the busi-
ness process at different levels of detail. The BPMN elements can be categorized into
a core set which contains the basic elements to model a business process and an ex-
tended set which contains more specialized elements to specify more complex business
scenarios [148]. Overall, BPMN defines 50 constructs grouped into four categories:
Flow objects, Connecting objects, Swimlanes and Artifacts. Flow Objects allow to
model the control flow perspective of a business process in terms of activities, events
and gateways. An activity is the main element of a process model and describes the
kind of work that must be done. It is graphically represented as a rectangle (see Fig-
ure 1.4 for an example of a process model in BPMN notation). An event is something
that happens during the execution of a business process. There are three main types
of events: Start, Intermediate and End events which may be specialized to Message
(i.e. an event that can either send a message to a communication partner or react on
the arrival of message), Error (i.e. an event that reacts on a canceled transaction),
etc. An event is graphically represented with a circle. A gateway allows to model
the splits and joins in the process model. Three main types are used to represent
different behaviors in a business process: AND (parallel forking and synchroniza-
tion), XOR (exclusive choice and merging) and OR (inclusive choice and merging).
Although there exist other more specialized gateways in BPMN such as event-based
gateway and complex gateways, they can all be mapped to one of the three main types
OR, AND or XOR. The flow objects elements are connected through the Sequence
flow element in Connecting objects category. They determine the order in which the
activities will be performed in a process.

The Artifacts, Swimlanes and other elements in Connecting objects allow to model
the resource and data perspectives in the process. For instance, the Pools and Lanes

60 Preliminaries

elements in Swimlanes allow to group a set of activities that are executed by a spe-
cific role. The Data object element in Artifacts provides information about the data
required by an activity. An Association element in Connecting objects is used to
associate Data objects with a flow or connect them to activities.

3.2.2 Configurable BPMN (C-BPMN)

A configurable process model is a process model with configurable elements. A con-
figurable element allows process analysts to make a design-time choice in addition
to traditional run-time choices [34, 87]. It is graphically modeled with a thick line.
For example, in the configurable process model in Figure 1.7, the gateway XORc1 is
configurable while XOR3 is not. The main difference between these two elements is
that XOR3 represents a simple run-time choice, i.e. the choice to execute either a3 or
a4 is based on the run-time execution data. While XORc1 has a design-time choice in
addition to the run-time choice. The design-time choice, referred to as configuration
choice, allows to choose one design option from multiple ones. In our example, a
choice can be taken to keep or remove one of the outgoing branches of XORc1 (i.e.
XORc2 or XOR3) from the model. If one of them is removed, XORc3 is transformed
to a simple sequence whose outgoing branch is executed at run-time. If both of them
are kept, XORc3 is transformed to a normal XOR whose decision is made at run-time.

We define a configurable BPMN notation (C-BPMN for short) in which the control
flow elements (i.e. activities, gateways and events) can be configurable. Configurable
activities and gateways have been discussed in [34, 149]. In this work, we introduce
the new concept of configurable events.

A configurable activity can be included (i.e. configured to ON), excluded (i.e.
configured to OFF) or optionally excluded (i.e. configured to OPT) from the process
model (Figure 3.1). The latter can be seen as a combination of an ON configuration
(i.e. the activity is included in the model) in an exclusive choice. The exclusive
choice allows to make a run-time decision to execute or skip the activity. Thus, in
the remainder of this thesis we omit such configuration.

A configurable gateway has a generic behavior which is restricted by configuration.
A gateway can be configured by (1) changing its type while preserving its behavior
and/or (2) restricting its incoming (respectively outgoing) branches in case of a join
(respectively split). Table 3.1 illustrates the configuration constraints of gateways’
types [34]. A configurable gateway is denoted by [type] c. Each row in the table
corresponds to a configurable gateway which can be configured to one or more of the
gateways presented in columns. The last column (i.e. Seq) corresponds to a Sequence
flow. For example, the configurable OR (ORc) can be configured to any gateway’s
type while a configurable AND (ANDc) can be only configured to an (AND). Please
note that a gateway with a join behavior cannot be configured to a gateway with
a split behavior (and vice versa). These configuration constraints are formalized
through the partial order �g that specifies which concrete gateway may be used for

Process Modeling Standards 61

A

A A A

Configurable activity

Configuration ON Configuration OFF Configuration OPT

Figure 3.1: A configurable activity and it possible configuration choices

OR AND XOR Seq

ORc X X X X
ANDc X
XORc X X

Table 3.1: Configuration constraints of configurable gateways

a given configurable gateway [34].

Definition 3.2.1 (Partial order �g). Let gc be a configurable gateway and g be a
normal gateway or a sequence flow (i.e. “Seq”). g �g gc iff (gc = ORc) ∨ (gc =
XORc ∧ g = Seq) ∨ (gc = g).

For example, in the configurable process model in Figure 1.7, the configurable
gateway XORc1 can be configured to an XOR with the same outgoing branches or a
Seq with the restriction of one of its outgoing branches.

A configurable event can be included (i.e. enable), excluded (i.e. disable) or
change its type to one of the BPMN events’ types (e.g. Message, Error, etc.) (Fig-
ure 3.2). The latter configuration is allowed when the corresponding configurable
event has an abstract type, i.e. a configurable event without a type. We use the
None event (i.e event without label) from BPMN to denote a configurable abstract
event. These configuration constraints are formalized through the partial order �e
that specifies which concrete event may be used for a given configurable event.

Definition 3.2.2 (partial order �e). Let ec be a configurable event and e be a normal
event. e �e ec iff (ec = None) ∨ (e = ec).

62 Preliminaries

Configurable Message event

Configuration
enable

Configuration
disable

Configurable Abstract event

Configuration
Message

Configuration
disable

Configuration
Timer

Figure 3.2: Configurable events and their possible configuration choices

For example, in the configurable process in Figure 1.7, the event cancel request is
configurable. It can be configured to enable (i.e. it remains as a cancel request event)
or to disable (i.e. excluded from the model).

3.2.3 Petri Nets

Petri nets [17] are formal models for describing concurrent distributed systems. They
are widely used for modeling, analyzing and verifying business processes [150,151] as
they have a mathematical foundation of their execution semantics. A simple graphical
notation is also available to support the modeling with Petri nets. A Petri net graph
consists of places (represented with circles), transitions (represented with rectangles)
and arrows connecting them in a bipartie manner. A transition is equivalent to a
task in high level process modeling languages (e.g. activity in BPMN). An example
of a Petri net for the flight booking process variant in Figure 1.4b is illustrated in
Figure 3.3. The formal definition of a Petri net is given in Definition 3.2.3.

Definition 3.2.3 (Petri net). A Petri net is a tuple PN = (P, T, F) where P is the
set of places, T is the set of transitions such that P ∩T = φ and F = (P×T)∪(T×P)
is the set of arcs connecting the places and transitions referred to as flow transitions.

p0

a1 a2

a3 a4 a6

a7

a8

a5
p1 p2

p3

p4

p5

p6

p7

p8

p9 p10t1 t2

t3 t4

t5

t7

t8

t10

t9t6

Figure 3.3: An example of a Petri net

Process Modeling Standards 63

A labeled Petri net is a Petri net with a labeling function that assigns labels
to transitions. For example, in the Petri net in Figure 3.3, a1 is the label of the
transition t1. Some transitions in a Petri net do not have labels and are represented
by a filled black rectangle. They refer to silent transitions or τ -transition and they
only distribute the tokens. In the remainder of this thesis we refer to a labeled Petri
net by “Petri net”.

The sets of input and output transitions of a place p ∈ P are denoted by •p and
p• respectively. Similarly, the sets of input and output places of a transition t ∈ T
are denoted by •t and t• respectively. We denote by pi such that •pi = φ the start
place of a Petri net and pf such that pf• = φ its final place.

The formal execution semantics of a Petri net are defined in terms of its markings
and fired transitions. A marking represents the execution state of a Petri net in
terms of consumed and produced tokens. Tokens represent the pre- and post-states
of an executed transition. A transition consumes a token, represented by a black dot,
from each of its input places to be executed (i.e. fired). Once executed, it produces
tokens in each of its output places. As a consequence, a new marking of the Petri
net is obtained. The marking of a Petri-net and the enabled and fired transition are
formally given in Definition 3.2.4.

Definition 3.2.4 (Marked Petri net, enabled and fired transition). (Adapted
from [152]) A marked Petri net is denoted as PM = (P,M) where P is a Petri net and
M → N is a function that assigns tokens to the Petri net places. A transition t ∈ T
is enabled in the marking M , denoted as M [t〉 iff ∀p ∈ t• : M(p) ≥ 1. An enabled
transition can be fired. The firing of an enabled transition t changes the marking of a
Petri net PM to PM ’ such that PM ’ is defined as: ∀p ∈ •t : M(p) = M(p)− 1 ∧ ∀p ∈
t• : M(p) = M(p) + 1. The firing of t and the transition to the new marking is
denoted as M [t〉M ’.

We denote by PMi the initial marked Petri net, i.e. the marking where the initial
place pi is the only place that contains a token. Similarly, the final marked Petri net
PMf

denotes the marking where the final place is the only place that contains tokens.
For example, the Petri net in Figure 3.3 is an initial marked Petri net as the start
place p0 is the only one that has a token. In this marking, the transition a1 is enabled
and can be fired. Therefore, it removes the token from p0 and produces a token in
each of its output places, i.e. in p1.

A transition sequence represents the firing of a sequence of transitions leading
from a marked Petri net PM to another marked Petri net PM ′ . It is complete if PM
is the initial marked Petri net and PM ′ is the final marked Petri net.

Definition 3.2.5 ((Complete) Transition sequence). Let PM = (P,M) be a Petri net
in the marking M . A transition sequence σ =< t1, t2, ..., tn >∈ T ∗ denotes that there
exists a sequence of fired transitions t1, t2, ..., tn in P that leads from PM to PM ′ such
that M [t1〉M1 ∧Mn[tn〉M ′ ∧ ∀1 < i < n : Mi[ti〉Mi+1 where T ∗ represents all possible

64 Preliminaries

sequences of transitions in T . σ is called a complete transition sequence if PM = PMi

and PM ′ = PMf
.

For example, in the Petri net in Figure 3.3, the sequence σ =< t1, t2, t3, t4, t6, t7, t8, t10 >
is a complete transition sequence as it leads from the initial marking (where the token
is in p0) to the final marking (where the token is in p10).

3.3 Process Graphs

As the structure of a business process model can be mapped to a graph, we choose
graph theory to present a business process. A process model can be represented as
a directed graph called process graph that captures the types of nodes and edges as
attributes. This representation is derived from the common constructs of graphical
process modeling notations and thus can be generalized for most of them (e.g. BPMN
and EPC) [153].

Definition 3.3.1 (Process graph). A process graph P = (id,N,E, T, L, I) is a labeled
directed graph where:

• id is its unique identifier;

• N is the set of nodes. In case of BPMN, N is the set of activities, events and
gateways;

• E ⊆ N ×N is the set of edges connecting two nodes. We denote by sourcee and
targete the source and target nodes of an edge e ∈ E;

• T : N → T where T is the set of the modeling languages metamodel elements’
types and T is a function that assigns for each node n ∈ N a type t ∈ T . In case
of BPMN, T = {activity, Start event, End event, Intermediate event, gateway};

• L : N → L where L is the universe of elements’ labels and L is a function
that assigns for each node n ∈ N a label l ∈ L. In case of BPMN, if T (n) ∈
{event,activity}, then L(n) is its name, and if T (n) = gateway then L(n) ∈
{OR,XOR,AND}.

• I : N → N is a function that assigns for each node n ∈ N a unique identifier
id ∈ N.

An example of a process graph representing the process model in Figure 1.4b is
depicted in Figure 3.4. The nodes are attached to a text annotation including their
types, labels and identifiers.

Let P = (id,N,E, T, L, I) be a process graph. A path from a node nx to a node
ny in the process graph P is a sequence of nodes leading from nx to ny. Since there
may exist multiple path between two nodes, we define the shortest path that has the
minimal number of nodes. The definitions of path and shortest path are given in
Definition 3.3.2.

Process Graphs 65

n1 n2 n3 n5

n6 n7

n12n11 n13n10 n14n9
T(n1)=RStartREvent
L(n1)=S1

I(n1)=1

T(n2)=Ractivity
L(n2)=a1

I(n2)=2

T(n3)=Ractivity
L(n3)=a2

I(n3)=3
T(n5)=Rgateway
L(n5)=XOR2

I(n5)=5

T(n6)=Ractivity
L(n6)=a3

I(n6)=6

T(n7)=Rgateway
L(n7)=XOR4

I(n7)=7
T(n8)=Ractivity
L(n8)=a4

I(n8)=8

T(n9)=Rgateway
L(n9)=XOR3

I(n9)=9

T(n11)=Ractivity
L(n11)=a5

I(n11)=11

T(n10)=RintermediateRevent
L(n10)=T1

I(n10)=10

T(n12)=Ractivity
L(n12)=a6

I(n12)=12

T(n13)=Ractivity
L(n13)=a7

I(n13)=13

T(n14)=REndRevent
L(n14)=E1

I(n14)=14

n4

n8

T(n4)=Rgateway
L(n4)=XOR1

I(n4)=4

Figure 3.4: An example of a process graph

Definition 3.3.2 (Path P , Shortest path SP). A path from a node nx ∈ N to a
node ny ∈ N is denoted as Pny

nx =< n1, n2, ..., nn > where n1 = nx , nn = ny ∧
∀1 ≤ i ≤ n : (ni, ni+1) ∈ E. The shortest path between nx and ny denoted as
SPny

nx is the path having the minimal number of nodes, i.e. SPny
nx = Pny

nx such that
@P ′ny

nx
: |P ′ny

nx
| < |Pny

nx |.

For example, in the process graph in Figure 3.4, two paths exist from n3 to n9:
Pn9
n3

=< n3, n4, n5, n6, n8, n9 > and P ′n9
n3

=< n3, n4, n7, n8, n9 >; |P ′| < P, thus P ′ is
the shortest path, i.e. SP = P ′.

The preset and postset of n ∈ N is the set of elements in its incoming and outgoing
branches respectively (Definition 3.3.3).

Definition 3.3.3 (preset •, n, postset n •). The preset of an element n ∈ N denoted
as •n is defined as •n = {nx ∈ N : (nx, n) ∈ E}. The postset of n denoted as n • is
defined as n • = {nx ∈ N : (n, nx) ∈ E}.

A gateway g is a split if |g • | > 1; it is a join if | • g| > 1.

A configurable process graph is a process graph in which the nodes can be either
configurable or not. A configurable node has a set of configuration choices. In case
of BPMN, the configurable nodes can be activities, events and gateways and their
configuration choices are as presented in Section 3.2.2. Formally, the configuration of
a node is given in Definition 3.3.4.

Definition 3.3.4 (Configuration Conf). A configuration of a configurable node nc

denoted as Confnc is defined as following:

• if T (nc) = activity then Confnc ∈ {ON,OFF};

• if T (nc) = event then Confnc ∈ {enable, disable, e} such that e �e nc.

• if T (nc) = gateway then Confnc ∈ {(c’, s) : (c’, s) ∈ CT × P(S)} where:

66 Preliminaries

– CT = {OR,AND,XOR,Seq} and c’ �g nc,
– S = •nc (respectively S = nc •) in case nc is a join (respectively split)

gateway.

We denote by Cnc the set of all configurations of the configurable element nc. For
example, in Figure 1.7, the set of configurations of the configurable gateway XORc1
is CXORc

1
= {(XOR, {XORc2, XOR3}), (Seq, {XORc2}), (Seq, {XOR3})}.

Definition 3.3.5 (Configurable process graph). A configurable process graph is de-
noted as P c = (id,N,E, T, L, I, B,C∗) where:

• id,N,E, T, L, I are as specified in Definition 3.3.1;

• B : N → {true, false} is a boolean function returning true for configurable
nodes;

• C∗ = {Cn : n ∈ N ∧ B(n) = true} is the set of configurations of all configurable
nodes.

3.4 Event Logs

Event logs are commonly used to represent the processes execution history recorded by
information systems. They are used by process mining techniques to discover process
models, to check the conformance of a-priori process models, to detect execution
errors or to observe social behaviors. An example of an event log for a process that
handles fines [1] is illustrated in Table 3.2.

An event log stores the execution history of one process. A log case corresponds to
one process instance execution. For example, the log in Table 3.2 records 4 executions
(Case ID = 1, 2, 3, 4) of the process. Each row corresponds to one executed event in
a specific case and the events are ordered chronologically. Each event is associated
with two mandatory attributes: (i) Case ID which refers to the process instance id of
the event and (ii) Task Type which refers to the activity name executed in the event.
Additional attributes can be related to an event such as: (i) Event Type which refers
to the event state such as started, paused, resumed, completed 1, etc., (ii) Resource
which refers to the resource name that initiates the event, (iii) Date and Time which
refer to the date and the time at which the event has been executed. For example, in
Table 3.2, the first event belongs to the process instance with id=1. The activity “a”
(File Fine) is executed by the resource “Anne” and the event has been completed.

A record, called trace, is a sequence of a valid execution of one process instance.
For example, in Table 3.2, for the Case ID = 1, the sequence of events 2 < a, b, c, d > is

1In the remainder of this thesis, when we refer to an event, we refer to its completed state
2In this thesis, we mainly focus on the control-flow perspective of a process and therefore, we refer

to an event by its task name attribute

Event Logs 67

Case ID Task Name Event Type Resource Date Time ...

1 File Fine (a) Completed Anne 20-07-2004 14:00:00 ...
2 File Fine (a) Completed Anne 20-07-2004 15:00:00 ...
1 Send Bill (b) Completed system 20-07-2004 15:05:00 ...
2 Send Bill (b) Completed system 20-07-2004 15:07:00 ...
3 File Fine (a) Completed Anne 21-07-2004 10:00:00 ...
3 Send Bill (b) Completed system 21-07-2004 14:00:00 ...
4 File Fine (a) Completed Anne 22-07-2004 11:00:00 ...
4 Send Bill (b) Completed system 22-07-2004 11:10:00 ...
1 Process Payment (c) Completed system 24-07-2004 15:05:00 ...
1 Close Case (d) Completed system 24-07-2004 15:06:00 ...
2 Send Reminder (e) Completed Mary 20-08-2004 10:00:00 ...
3 Send Reminder (e) Completed John 21-08-2004 10:00:00 ...
2 Process Payment (c) Completed system 22-08-2004 09:05:00 ...
2 Close Case (d) Completed system 22-08-2004 09:06:00 ...
4 Send Reminder (e) Completed John 22-08-2004 15:10:00 ...
4 Send Reminder (e) Completed Mary 22-08-2004 17:10:00 ...
4 Process Payment (c) Completed system 29- 08-2004 14:01:00 ...
4 Close Case (d) Completed system 29-08-2004 17:30:00 ...
3 Send Reminder (e) Completed John 21-09-2004 10:00:00 ...
3 Send Reminder (e) Completed John 21-10-2004 10:00:00 ...
3 Process Payment (c) Completed system 25-10-2004 14:00:00 ...
3 Close Case (d) Completed system 25-10-2004 14:01:00 ...

Table 3.2: Example of event log for a process that handle fines [1]

executed. A trace includes the execution orders of the activities involved in a process
instance. For example in the aforementioned trace, b is executed after a and before
c. A log is composed by traces that may be repeated in the log. Therefore, a log is a
multiset of traces (Definition 3.4.1).

Definition 3.4.1 (Trace, Event log). Let A ⊆ UA be a set of activities in some
universe of activities UA. A trace σ ∈ A∗ is a sequence of activities. An event log
L ∈M(A∗) is a multiset of traces.

For example, the event log in Table 3.2 can be represented as: [< a, b, c, d >,<
a, b, e, c, d >,< a, b, e, e, e, c, d >,< a, b, e, e, c, d >]. Based on the activities execution
orders in traces, four ordering relations can derived from an event log: >L, →L, ||L
and #L [127].

Definition 3.4.2 (Log-based ordering relations [127]). Let L ∈ M(A∗) be an event
log over A. Let a, b ∈ A. The four ordering relations: precedence (>L), causality
(→L), parallelism (||L) and choice (#L) are defined as follows:

• Precedence: a >L b iff ∃σ =< a1, a2, ...an >∈ L and 1 ≤ i ≤ n − 1 such that
ai = a ∧ ai+1 = b.

• Causality: a→L b iff a >L b ∧ b 6>L a.

68 Preliminaries

• Parallelism: a||Lb iff a >L ∧ b >L a.

• Choice: a#Lb iff a 6>L b ∧ b 6>L a.

For example, the ordering relations that can be derived from the event log in
Table 3.2 are: precedence (a >L b; b >L c; c >L d; b >L e; e >L c; c >L d; e >L e)
and causality (a >L b; b >L c; c >L d; b >L e; e >L c; c >L d).

Based on the four log-based ordering relations, a process model describing the be-
havior observed in the event log can be discovered using an existing mining algorithm
(e.g. [127,154]). For example, the process model in Figure 3.5 is mined from the event
log in Table 3.2 and is represented using Petri-nets.

File Fine
(a)

Send Bill
(b)

Send
Reminder

(e)

Process
Payment

(c)

Close Case
(d)

Figure 3.5: The process discovered from the event log in Table 3.2 [1]

Event data can be recorded in event logs using the eXtensible Event Stream
(XES) [155] standard which is an XML-based standard for storing event logs on disk
and the successor of the MXML standard [156]. In addition to storing event event
logs, XES provides a standard format for interchanging event log data between tools
and application domains.

Chapter 4

Assisting Process Design with
Configurable Process Fragments

Contents

4.1 Introduction . 69

4.2 Aggregated Neighborhood Context Graph 70

4.3 Deriving Aggregated Neighborhood Context Graphs 75

4.3.1 Extracting Neighborhood Context Graphs 76

4.3.2 Clustering Neighborhood Context Graphs 78

4.3.3 Merging Neighborhood Context Graphs 80

4.3.3.1 Merging vertices/edges 81

4.3.3.2 Defining edges’ labels . 83

4.3.3.3 Handling edges sharing their source or target 89

4.3.4 Behavior Preservation of the Merging Algorithm 89

4.3.5 Computational Complexity . 90

4.4 From Aggregated Neighborhood Context Graph to C-BPMN 91

4.5 Conclusion . 92

4.1 Introduction

This chapter presents our approach for assisting the design of configurable process
models with configurable process fragments. For this purpose, we adapt and reuse the
neighborhood context graph [2] as a process fragment model which has been developed
in a previous work. Basically, the neighborhood context graph is defined as a process
fragment around an activity that consists of relations between the associated activity
and its neighbors. The neighbor context presents the behavior of the associated
activity within the process.

We start the chapter by introducing our notion of aggregated neighborhood context
graph which consists of an aggregated representation of multiple neighborhood context
graphs (Section 4.2).

69

70 Assisting Process Design with Configurable Process Fragments

Next, we present an algorithm that, given an activity selected by the process
provider in an ongoing designed process, returns a set of aggregated neighborhood
context graphs that include the desired activity and all its possible relations to its
activities’ neighbors in a repository of process graphs (Section 4.3).

An algorithm is then proposed to transform the aggregated neighborhood context
graphs to configurable process fragments in the C-BPMN notation (Section 4.4). The
resulted configurable fragments are presented to the process provider who can choose
to integrate one of them in the ongoing designed process. The process provider can
also choose to re-merge two or multiple of them in order to derive richer configurable
fragments with more functionalities.

We reuse our motivating example presented in Section 1.3 to illustrate our ap-
proach. We assume that a process provider is designing a configurable “travel-
booking” process. He sketches out the business process as illustrated in Figure. 4.1.
At this stage, he needs an assistance to complete the missing parts represented by
the symbol “?”. He selects the activity “Select a flight” and asks for configurable
fragments that are appropriate to fill-in the first missing part.

Select a flight
Send email

confirmation?
Request

credit card
info

?

Figure 4.1: BP c: An incomplete configurable reference travel booking process

We also assume that there exists a repository of process graphs from which we show
the two variants in Figure 4.2 (taken from our motivating example in Section 1.3).
In the remainder of this thesis we present the process graphs in the BPMN notation
to illustrate our examples. We demonstrate our approach for proposing configurable
process fragments for the selected activity “Select a flight”.

The work in this chapter was published in conference proceedings [157] and peer-
reviewed journal [158].

4.2 Aggregated Neighborhood Context Graph

A process fragment is a process building block containing local knowledge [159]. In
other word, a business process graph consists of a set of fragments, which composed
together, accomplish a global goal. The neighborhood context graph is a process
fragment model that represents the behavior of an activity in terms of its relations
to its activities’ neighbors. It is presented as a graph in which the associated activity
is located at the center and its activities’ neighbors are located around it in virtual
layers. In this work, we define an aggregated neighborhood context graph that consists
of a concise representation of multiple neighborhood context graphs. We present in the
following some definitions that are used to formally define an aggregated neighborhood

Aggregated Neighborhood Context Graph 71

Starty(S1)

Searchyflightsy
(a1)

Selectyayflighty
(a2) AND2

Requestycredity
cardyinfoy(a4)

Requesty
personalyinfoy

(a3)

AND3

Confirmy
paymenty(a5)

Sendyemaily
confirmationy

(a6)
Endy(E2)

XOR1

Endy(E1)

Messagey(M1)

(a) BP1: A flight booking process variant

Startn0S1A

Searchnflightsn
0a1A

choosenan
flightn0a2A XOR2

Searchnhotelsn
0a6A

Processnrequestn0T1A

Validaten
paymentn0a5A

Endn0E1A

GetnUsern
personalninforn

0a3A

Getnusern
creditncardn

infon0a4A

XOR1

Selectnanhoteln
0a7A

Recommendn
flightsn0a0A

AND3
AND4

(b) BP2: A flight and hotel booking process variant

Figure 4.2: Two process variants of a travel booking process

context graph.
Let P = (id,N,E, T, L, I) be a process graph. We define a connection flow be-

tween two nodes nx and ny in P as the shortest path SPny
nx (Definition 3.3.2) relating

nx to ny such that the elements in the path are either sequence flows, gateways or
intermediate events (we refer to these elements by connection elements and to the
activities, start and end events by vertices). A connection flow path exists between
two vertices vu and vz if there exists a sequence of connection flows between vu and vz.
The shortest connection flow path is the connection flow path that has the minimal
number of nodes.

Definition 4.2.1 (Connection element, vertex). A connection element denoted as
c̃ can be either a sequence flow (sequence for short), a gateway or an intermediate
event. We denote by C̃ the set of connection elements in P . A vertex denoted as v can
be either an activity or a start or an ened event. We denote by V the set of vertices
in P .

Definition 4.2.2 (Connection flow). A connection flow between two vertices vx, vy ∈
V is denoted as F

vy
vx such that:

• if |SPvyvx | = 2 (i.e. (vx, vy) ∈ E), then F
vy
vx =< sequence >;

• else F
vy
vx =< SPvyvx [2], ...,SPvyvx [n − 1] > where |SPvyvx | = n ∧ ∀2 ≤ i ≤ n −

1,SPvyvx [i] ∈ C̃.

For example, in Figure 4.2a, the connection flow between the activities a1 and a2 is
F a2a1 =< sequence >; the connection flow between a2 and a3 is F a3a2 =< XOR1, AND2 >.

72 Assisting Process Design with Configurable Process Fragments

Definition 4.2.3 (Connection flow path, shortest connection flow path). A connec-
tion flow path between two vertices vu and vz is denoted as PF

vz
vu =< F1, F2, ...Fn >

such that ∃v1, ..., vn ∈ V : v1 = vu, vn = vz ∧ ∀1 ≤ i ≤ n : Fi ∈ {F vi+1
vi , F vivi+1

}.
The shortest connection flow path is denoted as SFvzvu = PF

vz
vu such that @PF ′vzvu :

|PF ′vzvu | < |PF
vz
vu |.

According to Definition 4.2.3, a connection flow path is undirected which means
that connection flows between the vertices can be oriented in different directions. For
example, in Figure 4.2b, a connection flow path that exists between a2 and a7 is

PF
a7
a2 =< F a6a2 , F

a7
a6 >; Two possible connection flow paths that exist between a3 and

a4 are: PF
a4
a3 =< F a3a2 , F

a4
a2 > and PF

′a4
a3 =< F a5a3 , F

a5
a4 >; SFa4a3 =P F

a4
a3 =P F

′a4
a3 .

We define the kth-layer neighbor of a vertex vx as the vertex vy having a shortest
connection flow path to vx of length k (Definition 4.2.4). We also attribute to the
connection flows between the vertices located on the same or adjacent layers a zone
number based on the associated vertices’ layer numbers (Definition 4.2.5).

Definition 4.2.4 (kth-layer neighbor). vy ∈ V is a kth-layer neighbor of vx ∈ V iff
SFvyvx = k. We denote by Lkvx as the set of kth-layer neighbors of vx.

Definition 4.2.5 (kth-zone flow). F
vj
vi is a kth-zone flow of vx iff (vi, vj ∈ Lk−1

vx) ∨
(vi ∈ Lk−1

vx ∧ vj ∈ Lkvx) ∨ (vi ∈ Lkvx ∧ vj ∈ Vk−1
vx). We denote by Zkvx as the set of

kth-zone flows of vx.

The zone number k of F
vj
vi is calculated as follows: if vi and vj are located on two

adjacent layers, k is equal to the greater layer number; if vi and vj are located on
the same layer, k is equal to their upper layer number. For example, in Figure 4.2b,
L1
a2 = {a0, a6, a3, a4} and L2

a2 = {a1, a7, a5}. a6 ∈ L1
a2 and a7 ∈ L2

a2 , therefore
F a7a6 =< sequence > is a 2nd-zone flow. Z2

a2 = {F a0a1 , F
a7
a6 , F

a3
a7 , F

a4
a7 , F

a6
a7 }.

Having presented the concepts of layer neighbors and zone flows, we define the
neighborhood context graph of a vertex v ∈ V of size k as a graph that consists of v,
the vertices in 1st- to kth-layer neighbor and the edges in 1st- to kth-zone flow labeled
with connection flows.

Definition 4.2.6 (Neighborhood Context Graph). The neighborhood context graph
of a vertex vx ∈ V denoted by Gkvx = (idG, Vvx , Evx , Lvx , I) is a labeled directed graph
created from P = (idP , N,E, T, L, I) where:

• k is the number of layers in Gkvx;

• idG = idP ;

• Vvx ⊆ V such that ∀vi ∈ Vvx , vi ∈ L
j
vx , 1 ≤ j ≤ k is the set of vertices;

• Evx ⊆ Vvx × Vvx is the set of edges such that ∀(vi, vj) ∈ Evx ,∃F
vj
vi : F

vj
vi ∈

Z lvx , 1 ≤ l ≤ k;

Aggregated Neighborhood Context Graph 73

• Lvx : Evx → F ∗ is a function that assigns labels to the edges such that Lvx((vi, vj)) =
F
vj
vi ;

• I : is as defined for P (Definition 3.3.1).

For example, the neighborhood context graphs of the activities a2 and a2 in the
process graphs in Figure 4.2a and 4.2b within two layers (i.e. k = 2) are depicted in
Figure 4.3a and 4.3b respectively. The neighborhood context graphs are presented as
circles centered with their associated activities. The activities neighbors are presented
on virtual layers around the center and the edges are located in zones between the
layers.

An aggregated neighborhood context graph represents a concise representation of
multiple neighborhood context graphs. In the following, we give a generic definition
of an aggregated neighborhood context graph and we detail its construction later in
this chapter (Section 4.3.3)

Definition 4.2.7 (Aggregated neighborhood context graph). The aggregated neigh-
borhood context graph of a vertex vx ∈ V denoted by aGkvx = (idavx , V

a
vx , E

a
vx , L

a
vx , C̃

a, τ, λ)
is a labeled directed graph created from a set of neighborhood context graphs G =
{Gkvxi

= (idi, Vi, Ei, Li, Ii) : i ≥ 1} where:

• k is the number of layers;

• idavx is a unique identifier;

• V a
vx ⊆

⋃
Vi is the set of vertices;

• Eavx ⊆ V
a
vx × V

a
vx is the set of edges;

• τ : P(cod(L)) → (F a)∗ where cod(L) = ∪i≥1cod(Li) is the set of connection
flows in the neighborhood context graphs in G and τ is a function that generates
from a set of connection flows {Fi : 1 ≤ i ≤ |G|} ∈ P(cod(L)) one connection
flow F a ∈ (F a)∗;

• Lavx : Eavx → (F a)∗ is a function that assigns connection flows (i.e. labels) to
the edges;

• C̃a is the set of connection elements in the connection flows in (F a)∗;

• λ : V a
vx ∪ C̃

a → P(ID × cod(I)) where ID = {idi : i ≥ 1} and cod(I) =
∪i≥1cod(Ii) is a function that assigns for each vertex va ∈ V a

vx and each con-

nection element c̃a ∈ C̃a a set of identifiers {(idGi , idc̃i) : 1 ≤ i ≤ |G|} ∈
P(ID× cod(I)) denoting the identifiers of the neighborhood context graphs and
their corresponding elements from which va and c̃a originate.

74 Assisting Process Design with Configurable Process Fragments

a2

a3

a4

a5

Lzefog=gLze5og=g<gsequence>g
Lze2og=gLze3og=g <gXORf0gAND2 >g
Lze4og=g<gXORf >
Lze6og=gLze7og=g<gAND3 0gMf0>

e2

ef

af

e3 e7

e4

Edges’glabels:

fstglayer

2nd layer

fstgzone

2ndgzone

Ef

Sf

e6

e5

Iza2og=g3g Iza5og=gffg
Izafog=g2g IzXORfog=g4g
Iza3og=g7g IzMfog=gfi
Iza4og=g8g IzAND2og=g6
IzEfog=g5g IzAND3og=g9
IzSfog=g fg

Elements’gidentifiers:

(a) G2
1: A neighborhood context graph of the activity

a2 in the process graph in Figure 4.2a

a2

a6

a3

a5

Lte1y0=0Lte5y0=0Lte6y0=0<0sequence >0
Lte2y0o0Lte7y0=0<0XOR1o0XOR2 >0
Lte3y0o0Lte4y0o0Lte8y0o0Lte9y0=0<0XOR1o0XOR2o0T1 o0AND3>
Lte1fy0o0Lte11y0=0<0AND40>

e2

e1

af

e3

Edges’0labels:

1st0layer

2nd layer

1st0zone

2nd0zone

e5

Ita2y0=040 ItXOR1y0=050
Itafy0=030 ItXOR2y0=06
Ita6y0=0140 ItT1y0=07
Ita3y0=090 ItAND3y0=080
Ita4y0=01f0 ItAND4y0=011
Ita7y0=0150
Ita1y0=020
Ita5y0=0120

Elements’0identifiers:

a7

a4

e4

a1

e6

e7

e9

e1f

e8

e11

(b) G2
2: A neighborhood context graph of the activity

a2 in the process graph in Figure 4.2b

Figure 4.3: Two neighborhood context graphs with 2 layers

Figure 4.4 illustrates an example of an aggregated neighborhood context graph de-
rived from the neighborhood context graphs in Figure 4.3 (its construction is detailed

Deriving Aggregated Neighborhood Context Graphs 75

a-

ai

aC
a7

a{

}st>layer -nd layer

}st>zone

-nd>zone

E}

S}

af

am

e}{

e9

e}C

e}

ei

em

eC

e}i

a}

ef

e-

e}}

LAe}N>=>LAe-N>=> <>XORi>
LAe7N>g>LAe8N>g>LAe}iN>=><>sequence>>>
LAeCN>g>LAeiN>=><>XOR}b} g>OR-b- g>Tb}>g>ORbC>
LAeiN>=><>XOR}b} g>OR-b->>
LAemN>g>LAe}CN>=><>XOR}b}>g>OR-b->
LAefN>=><>XOR}b} >>
LAe9N>g>LAe}{N>=><>ANDCbC g>M}b>>
LAe}}N>g>LAe}-N> => <>XOR}b} g>OR-b- g> Tb} g>ORbC>

Edges’>labels:

λ>AXOR}b}N>=>{>A}giNg>A-gmN>}>
λ>AOR-b-N>=>{>A}gfN>g>A-gfN>}
λ>ATb}N>=>{>A}g’N>g>A-g>7N>}
λ>AORbCN>=>{>A}g’N>g>A-g>8N>}>
λ>AANDCbCN>=>{>A}g9N>g>A-g}}N>}
λ>AM}bN>=>{>A}g}{N>g>A-g’N>}
λ>AXORiN>=>{>A}g}iNg>A-g}mN>}>

Connection>elements’>identifiers:

e7

e8

e}-

Figure 4.4: Ga12: The aggregated neighborhood context graph resulted from merging
the neighborhood context graphs in Figure 4.3

in Section 4.3). V a = {a2, a0, a1, a4, a3, a6, E1, S1, a5, a7}; Ea = {e1, e2, e3, .., e14};
(F a)∗ = {L(e1), L(e2), L(e3), .., L(e14}; C̃ = {XOR4, XOR1.1, OR2.2, ...}.

In the next section, we present an algorithm, that given an activity, it extracts,
clusters and merges different neighborhood context graphs into one or multiple ag-
gregated neighborhood context graphs.

4.3 Deriving Aggregated Neighborhood Context Graphs

This section presents our approach for deriving aggregated neighborhood context
graphs from a repository of process graphs. Let P = {Pi = (idi, Ni, Ei, Ti, Li) : i ≥ 1}
be a repository of process graphs, ax an activity selected by the process provider
and k an integer chosen by the process provider representing the desired size of the
returned fragments (k refers to the desired number of layers in the neighborhood
context graphs).

Algorithm 1 illustrates the main steps for deriving aggregated neighborhood con-
text graphs. It takes as input the process repository P, the selected activity ax
and the integer k. It provides as output the set of aggregated neighborhood context
graphs Ga. The algorithm proceeds in three main steps. Firstly, the neighborhood
context graphs of the activities that are similar to ax within k layers are extracted
from P (Line 3 detailed in Section 4.3.1). Secondly, the extracted neighborhood
context graphs are clustered using a clustering algorithm Cluster (Line 4 detailed
in Section 4.3.2). Cluster takes as input the set of extracted neighborhood context

76 Assisting Process Design with Configurable Process Fragments

graphs G, a distance matrix Mdist that stokes the distance between the neighborhood
context graphs in G and a minimum similarity threshold minSimG as a stopping cri-
teria for the clustering. It provides as output the set of created clusters D. Lastly,
each cluster in D is merged into one aggregated neighborhood context graph which
is stocked in Ga (Lines 5 - 7, detailed in Section 4.3.3).

Algorithm 1 Algorithm for deriving aggregated neighborhood context graphs

1: input: P, k, ax
2: output: Ga = {aiGka :MA(ax) = a ∧ 1 ≤ i ≤ |G|}
3: G = extractNCG(P, k, ax);
4: D = Cluster(G,Mdist,minSimG);
5: for C ∈ D do
6: aGk = Merge(C)
7: Ga = Ga ∪ {aGk}
8: end for

4.3.1 Extracting Neighborhood Context Graphs

For each process Pi ∈ P, we search for the activity ax and extract its neighborhood
context graph Gki = (idGi , VGi , EGi , LGi , IGi) according to Definition 4.2.7. However,
in real business processes, it is unrealistic to search for an exact matching of ax.
Therefore, we target to extract the neighborhood context graphs of the activities that
are similar to ax. To this end, we use a combination of syntactic and linguistic simi-
larity metrics that are widely used for computing the similarity between the activities’
labels in business process models [91].

Let a ∈ Ni such that Ti(a) = activity be an activity in Pi. To compute the
similarity SimA between a and ax, we integrate the bag-of-words similarity with label
pruning technique presented in [97] which has been proved to increase the recall of the
activity label matching to 0.44 1 without sacrificing the precision. We use Stanford
Part-of-Speech (POS) [108, 109] for stemming string and removing function words
from the activities’ labels. Then, we prune words from the longer label and measure
the similarity of two labels based on the pruned words. The similarity between two
labels Li(a) and L(ax) is computed as follow:

SimA(L(ax), Li(a)) =∑wax

i=1 maxw
a

j=1(sim(priax ,pr
j
a))+

∑wa

j=1max
wa

i=1(sim(priax ,pr
j
a))

2×min(|wax |,|wa|)

(4.1)

where wax and wa are the list of words contained in the labels L(ax) and Li(a)
after applying the POS technique; prax = pru(wax , wa) and pra = pru(wa, wax) are

1Prior research achieved a recall value around 0.26 [97]

Deriving Aggregated Neighborhood Context Graphs 77

the pruned list of words from wax and wa respectively; pri is the ith word in the list of
pruned words. The function sim computes the similarity between the pruned words
using existing similarity metrics. In our work, we use a combination of syntactic and
linguistic similarity metrics for computing sim since they are popular for measuring
the similarity between activities’ labels in business process models [91]. We use a
syntactic similarity based on Levenshtein distance [102] which computes the number
of edit operations (i.e. insert, delete or substitute a character) needed to transform one
string into another. For the linguistic similarity, we use WordNet database [106] which
is a lexical database for English words. The WordNet similarity package includes a set
of algorithms for returning the synonyms between two words such as Lin metric [110].
The total similarity sim is the weighted average of the syntactic and the linguistic
similarity of two words (Equation (4.2)).

sim(priax , pr
j
a) =

w1 × LD(priax , pr
j
a) + w2 × Lin(priax , pr

j
a)

w1 + w2

(4.2)

where 0 ≤ sim ≤ 1, LD and Lin are functions returning the Levenshtein distance
and the WordNet based similarity respectively between priax and prja; w1 and w2 are
two user’s specified weights such that 0 < w1, w2 ≤ 1.

We say that a is the best activity matching for ax if ax and a have a similarity
above a user specified threshold and there does not exists another activity in Ni having
a higher similarity with ax. Formally, we define the mapping functionMA that maps
an activity from one process graph P1 to the best activity matching in another process
graph P2 (Definition 4.3.1).

Definition 4.3.1 (Activity mapping MA). An activity mapping, denoted as MA :
N2 → N1 is a partial injective function that maps an activity n2 ∈ N2 to an activity
n1 ∈ N1 such that SimA(L1(n1), L2(n2)) ≥ minSimA ∧ @nx ∈ N2 : SimA(L2(n1), L2(nx)) >
SimA(L1(n1), L2(n2)), where minSimA is a user specified threshold.

For example, according to our motivating example, ax = {select a flight}, P1, P2 ∈
P where P1 and P2 are the process graphs in Figure 4.2a and 4.2b respectively.
The activity a2 ∈ N1 is an exact matching for ax; therefore MA(ax) = a2. For a
minSimA = 0.5, a2 ∈ N2 is the best matching of ax, therefore MA(ax) = a2. For
a k = 2, the extracted neighborhood context graphs of the activities a2 ∈ N1 and
a2 ∈ N2 are depicted in Figure 4.3a and Figure 4.3b respectively.

This step is repeated for all the processes in P. At the end of this step, a set of
neighborhood context graphs denoted as G = {Gka : MA(ax) = a} is extracted. In
the next step, the extracted neighborhood context graphs are clustered according to
their similarity before being aggregated.

78 Assisting Process Design with Configurable Process Fragments

4.3.2 Clustering Neighborhood Context Graphs

In the previous step, we extracted a set of neighborhood context graphs of the ac-
tivities that are similar to a selected one. In this step, the extracted neighborhood
context graphs are clustered in order to create groups of similar neighborhood con-
text graphs that are later merged. This step is required since merging completely
different neighborhood context graphs may result in complex and incomprehensible
graphs [42].

In order to apply a clustering technique, the distance between each pair of the
extracted neighborhood context graphs needs to be computed. To do so, we adopt the
well know graph-edit-distance [160] as it is widely used for business process model
matching [55]. The graph edit distance of two graphs is the minimal set of edit
operations (node substitution, node insertion/deletion and edge insertion/deletion)
required to transform one graph into the other. In our case, nodes are the vertices
in the neighborhood context graph (i.e. activities, start and end events) and edges
are the sequence flows between the vertices. A vertex substitution denotes that a
vertex in one of the neighborhood context graphs is mapped to a vertex in the other
neighborhood context graph. In this respect, we consider that activities are mapped
according to the mapping function MA as defined in Definition 4.3.1. The activities
that are not mapped are considered as either inserted in one neighborhood context
graph or deleted in the other one. Similarly, the events are mapped if they have the
same type (i.e. they are either start or end events). We denote by Mev the mapping
function that maps the start and end events from one neighborhood context graph
to another. The events that are not mapped are considered as either inserted in one
neighborhood context graph or deleted in the other one. An edge is inserted in one
neighborhood context graph (or deleted from the other) if at least one of its source
or target vertices are not mapped or if its mapped source and target vertices are not
connected through an edge in one of the neighborhood context graphs.

Let Gk1 and Gk2 be two neighborhood context graphs in G; suba is the set of
substituted activities, i.e. ∀a ∈ suba : a ∈ dom(MA) ∪ cod(MA); skipa is the set of
inserted/deleted activities, i.e. ∀a ∈ skipa : a /∈ dom(MA) ∪ cod(MA). Similarly,
subev is the set of substituted events, i.e. ∀ev ∈ subev, ev ∈ dom(MEv) ∪ cod(MEv);
skipev is the set of inserted/deleted events, i.e. ∀ev ∈ skipev : ev /∈ N1 ∩N2; skipe is
the set of inserted/deleted edges, i.e. ∀(vi, vj) ∈ skipe : (vi /∈ dom(MA)∪cod(MA))∨
(vj /∈ dom(MA) ∪ cod(MA)) ∨ ((M(vi),M(vj)) /∈ E2). The graph edit distance
between Gk1 and Gk2 is computed as follow [55]:

GED(Gk1, G
k
2) =

1− wsuba×fsuba+wskipa×fskipa+wsubev×fsubev+wskipev×fskipev+wskipe×fskipe
wsuba+wskipa+wsubev+wskipev+wskipe

(4.3)

where 0 ≤ wsuba, wskipa, wsubev, wskipev, wskipe ≤ 1 are relative weights of the

Deriving Aggregated Neighborhood Context Graphs 79

edit operations; fskipa, fskipev and fskipe are the fraction of skipped activities,
event and edges respectively; fsuba and fsubev are the average distances between the
substituted activities and events respectively and are defined as follow:

fskipa =
|skipa|
|A1|+ |A2|

fskipev =
|skipev|

|Ev1|+ |Ev2|
fskipe =

|skipe|
|E1|+ |E2|

(4.4)

where A1 ⊆ N1 and A2 ⊆ N2 are the activities in Gk1 and Gk2 respectively; Ev1 ⊆ N1

and Ev2 ⊆ N2 are the start and end events in Gk1 and Gk2 respectively.

fsuba =
2×

∑
(a,b)∈MA

(1.0− SimA(L1(a), L2(b)))

|suba|

fsubev =
2×

∑
(ev1,ev2)∈MEv

(1.0− SimEv(L1(ev1), L2(ev2)))

|subev|

(4.5)

where SimEv(L1(ev1), L2(ev2)) is equal to 1 if ev1 and ev2 have equal types (i.e. both
are start or end events) and to 0 otherwise; MEv maps the events from one graph to
another according to SimEv. A GED is equal to 1 if the corresponding neighborhood
context graphs are exact matching. It is equal to 0 if they are completely dissimilar.

Since the graph matching is known to be NP-complete [160], many heuristics
have been proposed such as using a greedy algorithm [55] which is still expensive for
computing the graph edit distance. Accordingly, in our approach, we benefit from
the neighborhood context graph structured in layers and zones in order to speed up
the matching of elements. Instead of searching in the whole graph for a mapping, we
search only in common layers. In case a matching satisfying the minimum similarity
threshold is found, the elements are mapped. Otherwise, the search is expanded to
the next layer and so on until it reaches the last layer (which is limited and equal to
k).

For example, suppose that we want to match the neighborhood context graphs in
Figure 4.3. We refer to the first neighborhood context graph in Figure 4.3a by G2

1 and
to the second one in Figure 4.3b by G2

2. In the basic setting (i.e. without considering
the layers), in order to find the mapping of a4 ∈ V1 (L1(a4) = Request personal info),
a4 needs to be matched with all the vertices in V2. Then, the vertex having the
best matching, which is a5 (L2(a5) = Get user personal info), is taken as a mapping.
Considering our proposed approach, a4 is only matched with the vertices of the first
layer in V2. As a5 ∈ V2 is the best match of a4 among the vertices in this layer, it
is mapped to a4. Take another example which is a3. a3 does not have any matching
in the first layer of G2

2. Therefore, the search is expanded to the second layer. In
this latter, a6 is the best matching of a3, thus it is mapped to a3. The GED between
G2

1 and G2
2 with wsuba = wskipa = wsubev = wskipev = wskipe = 1 is computed

as follows: MA(a2) = a2;MA(a1) = a1;MA(a4) = a5;MA(a3) = a6;MA(a6) = a7;

S1 ∈ N2 is mapped to S1 ∈ N1; GED = 1−
2.04
10

+ 2
13

+ 0
2

+ 1
3

+ 14
18

5 = 0.71.

80 Assisting Process Design with Configurable Process Fragments

The GED between every possible pair of neighborhood context graphs in G is
computed and stored in a m×m matrix where m = |G|. The column and rows corre-
spond to the neighborhood context graphs. The (i, j)th entry contains the GED of Gki
and Gkj , 1 ≤ i, j ≤ |G|. A clustering algorithm Cluster is then applied. Cluster takes
as input the similarity matrix Mdist (or a dissimilarity matrix in which the dissimilar-
ity is defined as 1−GED), a user specified similarity threshold minSimG and the set
G. It provides as output a set of clusters of neighborhood context graphs. minSimG

is the minimal similarity between the neighborhood context graphs within the same
cluster. Since our aim is to create clusters in which each pair of neighborhood context
graphs has a similarity above minSimG, we use the adapted Agglomerative Hierar-
chical Clustering (AHC) presented in [89] for clustering business process fragments.
AHC starts with singleton clusters and iteratively combines the pairs of clusters that
have the highest similarity that is above minSimG. The similarity between two
clusters is equal to the highest similarity found between the pairs of neighborhood
context graphs in the two clusters (known as complete linkage strategy). The process
of combining the clusters continues until there is only one cluster left or the minimal
similarity minSimG threshold is no more satisfied.

The result of the clustering can be visualized as a dendrogram D. Figure 4.5
shows an example of a dendrogram resulted from clustering five neighborhood context
graphs represented as leaf nodes (in the bottom of the dendrogram). At each level
of the dendrogram (in a bottom-up traversal), an intermediate cluster resulting from
combining the low level clusters is visualized (e.g. C1 is an intermediate clusters).
The upper level contains the final clusters (C3 and C2).

In the next section, we present an algorithm that takes the clusters at the top of
D and merges each cluster into one aggregated neighborhood context graph.

G2
1 G2

2 G2
3 G2

4 G2
5

C1 = {G2
1 , G2

2}

C3 = {G2
1 , G2

2, G2
3}

C2 = {G2
4 , G2

5}

Figure 4.5: A dendrogram illustrating the result of the AHC algorithm

4.3.3 Merging Neighborhood Context Graphs

In this section, we present our merging algorithm to build an aggregated neighborhood
context graph of a selected activity ax that preserves the behavior of the merged

Deriving Aggregated Neighborhood Context Graphs 81

fragments. Let D = {Ci = {Gkj } : i, j ≥ 1} be the set of clusters at the top
of the dendrogram obtained from the previous step (Line 4 in Algorithm 1). Our
algorithm iterates on each C ∈ D (Line 5 in Algorithm 1), merges the neighborhood
context graphs in C into one aggregated neighborhood context graph aGk (Line 6
in algorithm 1) and adds the result to the set of aggregated neighborhood context
graphs Ga (Line 7 in Algorithm 1).

In order to merge the neighborhood context graphs in one cluster, our algorithm
starts by merging a pair of neighborhood context graphs and then iteratively merges
the result with another neighborhood context graph until all the graphs are merged.
The choice of the neighborhood context graphs to be merged is taken from the dendro-
gram structure which is traversed in a bottom up fashion. For example, in Figure 4.5,
suppose that we want to merge the cluster C3. The neighborhood context graphs G2

1

and G2
2 are first merged. Then, the resulted neighborhood context graph is merged

with G2
3. Algorithm 2 presents the steps for merging a pair of neighborhood context

graphs. It takes as input a pair of neighborhood context graphs Gk1 and Gk2, the set of
substituted activities (suba) and events (subev) and the set of inserted/deleted activ-
ities (skipa), events (skipev) and edges (skipe). It provides as output an aggregated
neighborhood context graph aGk12. It starts by attributing a random identifier to the
aggregated neighborhood context graph aGk12 (Line 3). Then, it proceeds in three
main steps: (i) merge the vertices and edges (Lines 4-21 detailed in Section 4.3.3.1),
(ii) merge the edges’ labels (Line 25 detailed in Section 4.3.3.2) and (iii) handle the
shared vertices (Line 26 detailed in Section 4.3.3.3).

4.3.3.1 Merging vertices/edges

The first step of the algorithm consists of creating an aggregated neighborhood context
graph in which the substituted vertices are added once (Lines 4 in algorithm 2). For
the merged vertices (i.e. substituted ones), we choose the labels of those originating
from the first neighborhood context graph (i.e. the vertices in V1). However, one can
define more sophisticated rules as for example picking labels from a domain ontology.

Secondly, the edges in E1 are added to the set of edges in E. Regarding the edges
in E2, only those that belong to skipe are added to E (Line 6). However, since the
substituted vertices that originate from V2 are removed from V , one has to substitute
the edges’ sources and targets with their mappings in V1 before adding them to V
(Lines 7-14).

Lastly, the identifiers of the vertices are identified (Lines 15-24). The identifiers
of the merged vertices correspond to the identifiers of the substituted vertices in V1

and V2 (Lines 15-16) while the identifiers of the unmerged vertices correspond to
their identifiers in the neighborhood context graphs from which they originate (Lines
19-24).

An example of the intermediate representation of the aggregated neighborhood
context graph resulting from merging G2

1 and G2
2 in Figure 4.3 after this step is

82 Assisting Process Design with Configurable Process Fragments

Algorithm 2 Merging algorithm

1: input: Gk1 = (id1, V1, E1, L1, I1), Gk2 = (id2, V2, E2, L2, I2), suba, subev, skipa,
skipev, skipe

2: output: aGk12 = (id, V, E, L, C̃, τ, λ)
3: id = newID()
{Step 1: Merge vertices and edges}

4: V = (V1 ∪ V2) \ (V2 ∩ (suba ∪ subev))
5: E = E1

6: for e2 ∈ E2 ∩ skipe do
7: if (sourcee2 ∈ suba ∪ subEv) ∨ (targete2 ∈ suba ∪ subEv) then
8: if sourcee2 ∈ suba ∪ subEv then
9: E = E ∪ {(M−1(sourcee2), targete2)} {M can be either MA or Mev de-

pending on the vertex type}
10: else
11: E = E ∪ {(sourcee2 ,M−1(targete2))}
12: end if
13: end if
14: end for
15: for v ∈ V ∩ (suba ∪ subEv) do
16: λ(v) = λ(v) ∪ {(id1, I1(v)), (id2, I2(M(v)))}
17: end for
18: for v ∈ skipa ∪ skipEv do
19: if v ∈ V1 then
20: λ(v) = λ(v) ∪ {(id1, I1(v))}
21: else
22: λ(v) = λ(v) ∪ {(id2, I2(v))}
23: end if
24: end for
{Step 2: Merge edges’ labels}

25: MergeLabels(aGk12, G
k
1, G

k
2, skipe, sube)

{Step 3: Handle shared vertices}
26: addXORToSemiSharedEdges(E,L, C̃, λ)

depicted in Figure 4.6. The merged vertices are a2, a1, a4, a3 and a5 while the
remaining ones are unmerged. The merged edges are e3, e4, e9 and e10. The remaining
ones are unmerged and their sources or targets that were initially substituted are
updated before being added. For example, the edge e3 that originates from NCG2

2

has the source node a2 ∈ N2 which is substituted with a2 ∈ N1. Since only the copy
of a2 ∈ N1 is added to the aggregated graph, the source of e3 is updated to this copy.

In the next step, we define the edges’ labels. We present an approach for merging
the labels of the merged edges. The labels of the unmerged edges are simply added.

Deriving Aggregated Neighborhood Context Graphs 83

a2

a4

a3
a7

a0

a2:ySelectyayflight
a1:y Searchyflights
a4:yRequestycreditycardyinfo
a6:ySearchyhotels
a3:yRequestypersonalyinfo
S1:yStart
a5:yConfirmypayment
a7:ySelectyayhotel
E1:yEnd

1stylayer 2nd layer

1styzone

2ndyzone

E1

S1

a6

a5

e10

e9

e13

Vertices’ylabels: Vertices’yidentifiers:

λy.a282)y=y{y.1,3)y,y.2,4)y}y
λy.a0)y=y{y.2,3)y}
λy.a1)y=y{y.1,2)y,y.2,2)y}y
λy.a4)y=y{y.1,8)y,y.2,10)y}
λy.a3)y=y{y.1,7)y,y.2,9)y}
λy.a6)y=y{y.2,14)y}y
λy.E1)y=y {y.1,5)y}y
λy.S1)y=y{y.1,1)y}
λy.a5)y=y{y.1,11)y,y.2,12)y}
λy.a7)y=y{y.2,15)y}y

e1

e4

e5

e3

e14

a1

e6

e2

e11

e7

e8

e12

Figure 4.6: The aggregated neighborhood context graph after merging the vertices
and edges

4.3.3.2 Defining edges’ labels

In the second step of the algorithm, we define the edges’ labels (Line 25 in algorithm 2
detailed in Algorithm 3). Firstly, the labels of the unmerged edges that originate
either from E1 or E2 are simply added. The connection elements in each label are
added to the set of the connection elements C̃ and their identifiers are defined (Lines
2-16 in Algorithm 3).

Secondly, the labels of the merged edges are merged (Lines 17-21). Since edges’ la-
bels are sequences of connection elements (i.e. connection flows) which can be mapped
to sequences of characters, we define the function τ (Line 18) that (1) matches the
labels to be merged by aligning the connection elements (Connection flow align-
ment), then (2) merges the aligned connection elements (Merging aligned con-
nection flows).

(1) Connection flow alignment. Inspired from the approach presented in
[161] where log traces are aligned in order to analyze their behavior, we propose to

84 Assisting Process Design with Configurable Process Fragments

Algorithm 3 MergeLabels(aGk12, G
k
1, G

k
2, skipe, sube)

1: {Define labels for unmerged edges}
2: for e ∈ skipe do
3: if e ∈ E1 then
4: L(e) = L1(e)
5: C̃ = C̃ ∪ {L1(e)[i] : 1 ≤ i ≤ |L1(e)|}
6: for c ∈ C̃ ∩ {L1(e)[i]} do
7: λ(c) = λ(c) ∪ {(id1, I1(L1(e)[i]))}
8: end for
9: else

10: L(e) = L2(e)
11: C̃ = C̃ ∪ {L2(e)[i] : 1 ≤ i ≤ |L2(e)|}
12: for c ∈ C̃ ∩ {L2(e)[i]} do
13: λ(c) = λ(c) ∪ {(id2, I1(L2(e)[i]))}
14: end for
15: end if
16: end for
{Define labels for merged edges}

17: for (x, y) ∈ E ∩ sube do
18: L((x, y)) = τ(L1((x, y)), L2((M(x),M(y))))
19: C̃ = C̃ ∪ {L((x, y))[i] : 1 ≤ i ≤ |L((x, y))|}
20: λ for each c̃ ∈ C̃ ∩ {L((x, y))[i]} is defined in τ
21: end for
22: UpdateLabels()

align the connection flows (edge’s labels) in order to merge them. The alignment
of a set of connection flows is the set of edit operations applied to transform the
flow connections into each others, with the allowable edit operations being insertion,
deletion, or substitution of elements. A gap “− ” is added to denote the insertion or
deletion of an element.

Let Fyx = {F1, F2} : F1 = L1((x, y)) ∧ F2 = L2((M(x),M(y))) 2 be the con-
nection flows of the merged edge (x, y) ∈ E. For example, in Figure 4.6, Fa4a2 =
{L1(e3), L2(e3)}. In Definition 4.3.2, we give a formal definition of the connection
flow alignment.

Definition 4.3.2 (Connection flow alignment). The connection flow alignment of a
pair of connection flows F = {F1, F2} is defined as the transformation of F into FA

where FA = {FA1 , FA2 } and FAi = Fi ∪ {−}∗ such that:

• |FA1 | = |FA2 | = m

2M can be either MA or MEv depending on x and y types

Deriving Aggregated Neighborhood Context Graphs 85

• 6 ∃p, 1 ≤ p ≤ m such that FA1 [p] = FA2 [p] = “− ”

An alignment can be considered as a 2×m matrix where the lines are the connec-
tion flows and gap elements; and the columns are the matched connection elements.
The first requirement in Definition 4.3.2 states that the aligned connection flows
have the same length after applying the edit operations. The second requirement
states that there does not exist a column in the alignment where all the elements
are gaps. Two examples of a connection flow alignment for Fa4a2 = {F1, F2} where
F1 =< XOR1, AND2 > and F2 =< XOR1, XOR2, T1, AND3 > are illustrated in
Figure 4.7 and Figure 4.8. The first alignment is FA1 = {FA1

1 , FA1
2 } and the second is

FA2 = {FA2
1 , FA2

2 }

FA1
1 : XOR1 AND2 − −
FA1

2 : XOR1 XOR2 T1 AND3

Figure 4.7: FA1 : One possible alignment of F1 and F2

FA2
1 : − − − XOR1 AND2

FA2
2 : XOR1 XOR2 T1 − AND3

Figure 4.8: FA2 : One possible alignment of F1 and F2

In order to derive a valid connection flow, only elements having the same type
can be substituted. In other words, a gateway cannot be substituted with an event
and vice versa. For example, the two alignments in Figure 4.7 and Figure 4.8 are
valid. Since there exist many possible valid alignments of a set of connection flows,
we target to find the best alignment between the connection flows. We use the Lev-
enshtein distance (LD) [102] to compute the best alignment. The minimal LD value
corresponds to the best alignment. We add a weight W for each edit operation in
a way that it minimizes the effect of the substitution operation and maximizes that
of the insertion/deletion operation. We consider that the weight of substituting two
elements having the same type and the same labels (e.g two XOR elements) is less
than the weight of substituting two elements having the same type but different la-
bels (e.g. an XOR and AND elements). And this is in its turn less than the inserting
or deleting an element. We denote by S(c1, c2) the substitution of the connection
elements c1 ∈ F1 and c2 ∈ F2 and Indel(c1) the insertion or deletion of c1 into FA1 or

86 Assisting Process Design with Configurable Process Fragments

FA2 . The operations weights are presented in Equation 4.6.
WS(c1,c2) = −1 if c1 = c2

WS(c1,c2) = 0 if T (c1) = T (c2) &

L(c1) 6= L(c2)

WIndel(c1) = 1

(4.6)

The LD of the alignment of a pair of connection flows denoted as FA12 = {FA1 , FA2 }
is defined as:

LD(FA12) =
m∑
1

wi (4.7)

where

wi =


WS(c1,c2) if FA1 [i] = c1 & FA2 [i] = c2

WIndel(c1) if FA1 [i] = c1 & FA2 [i] = “− ”

or FA1 [i] = “− ” & FA2 [i] = c1

(4.8)

For example, in Figure 4.7 and Figure 4.8, the alignments FA1 and FA2 have LD = 1
and LD = 3 respectively. LD(FA1) < LD(FA2), therefore FA1 is the best alignment.
To compute the best alignment, we refer to [162] where a dynamic programming
algorithm has been proposed in order to find the optimal alignment between two
amino-acid sequences. The algorithm takes as input the operations weights defined
in Equation 4.6 and provides as output the alignment with the minimal LD.

Once we compute the best alignment for two connection flows of a merged edge,
we proceed in the next step to define a set of rules for merging the aligned connection
elements into one connection flow.

(2) Merging aligned connection flows. Once edge’s connection flows are
aligned, we merge each column of the alignment into one connection element. A gap
“− ” in an alignment represents an empty position in our merged fragment. In order
to preserve the behavior of the merged elements, we define a set of merging rules for
gateways and events that comply to Definition 3.2.1 and Definition 3.2.2.

1. If the elements are of type T = “gateway” (in this case, the gap is treated as a
Sequence):

• If they have the same label, the result is the same gateway. For example a
set of AND gateways is merged into an AND.

• If they are a set of XOR and Sequence, the result is an XOR;

• if they have different labels, the result is an OR. For example, a set of
AND, XOR and Sequence is merged into an OR.

2. If the elements are of type T = “event”:

Deriving Aggregated Neighborhood Context Graphs 87

• If they have the same labels, the result is an event with the same label.
For example a set of Message events M is merged into the same Message
event M .

• If they have different labels, the merged event is an abstract event, i.e.
none. For example, a Message event M aligned with a timer event T are
merged into a none.

For example, the merging result of the alignment presented in Figure 4.7 is illus-
trated in Figure 4.9.

FA1
1 : XOR1 AND2 − −
FA1

2 : XOR1 − T1 AND3

XOR OR T OR

Figure 4.9: The merging result of the alignments in Figure 4.7

The identifier λ of each merged element is defined as the set of identifiers of the
neighborhood context graphs and the elements from which it originates. For example
in Figure 4.9, the identifier of the first merged XOR is λ(XOR) = {(1, 4), (2, 4)}
where (1, 4) refers to XOR1 in G2

1 (i.e. idG2
1

= 1 and I1(XOR1) = 4) and (2, 4) refers

to XOR1 in G2
2 (i.e. idG2

1
= 2 and I2(XOR1) = 4).

This aligning/merging procedure is repeated for all the merged edges in aGk12. At
the end of this step, an aggregated neighborhood context graph with merged labels is
obtained. An example of the aggregated neighborhood context graph resulted after
this step is illustrated in Figure 4.10a. In this example, the labels of the merged
edges e3, e4, e9 and e10 are merged while the others labels are simply added as they
appear in their origin neighborhood context graphs. Please note that the elements
are indexed with subscripts to differentiate between them. The identifier of each
connection element is depicted in the left of the figure.

One issue encountered after this step is that some of the connection elements that
have been merged for some edges remain unchanged for the unmerged edges. Take
for example the elements XOR1.1 and XOR1 in Figure 4.10a. XOR1.1 is the result
of merging XOR1 ∈ G2

1 and XOR1 ∈ G2
2; XOR1 ∈ G2

1 in the unmerged edges (e.g.
in e4, e6, etc.) has not been updated to XOR1.1. Therefore, in the last step of the
algorithm (Line 22 in Algorithm 3) the unmerged connection elements are tested and
updated if require. This is done through testing the identifiers of the connection
elements for membership. In case the identifier of an unmerged connection element
belongs to the identifier of a merged one, the former is updated in the labels where it
appears. For example, in Figure 4.10a, the different colors in the connection elements’
identifiers part refer to the unmerged connection elements that should be updated by
the merged ones having the same color. For instance, AND2 should be updated to

88 Assisting Process Design with Configurable Process Fragments

a-

ai

aC
a7

a{

}stulayer -nd layer

}stuzone

-nduzone

E}

S}

af

am

e}{

e9

e}C

e}

ei

em

eC

e}i

a}

ef

e-

e}}

LAe}NguLAe-NuguLAe7NuguLAe8NuguLAe}iNu=u<usequenceu>u
LAeCNuguLAeiNu=u<uXOR}b} guOR-b- guTb}uguORbC>
LAeiNu=u<uXOR} guAND-u>
LAemNuguLAe}CNu=u<uXOR}uguXOR-u>
LAefNu=u<uXOR} >u
LAe9NuguLAe}{Nu=u<uANDCbC guM}bu>
LAe}}NuguLAe}-Nu =u <uXOR} guXOR- guT}uguAND->

Edges’ulabels:

λuAXOR}b}Nu=u{uA}giNguA-gmNu}u
λuAOR-b-Nu=u{uA}gfNuguA-gfNu}
λuATb}Nu=u{uA}g’NuguA-gu7Nu}
λuAORbCNu=u{uA}g’NuguA-gu8Nu}
λuAXOR}Nu=u{uA}giNu}
λuAAND-Nu=u{uA}gfNu}u
λuAXOR}Nu=u{uA-gmNu}
λuAXOR-Nu=u{uA-gfNu}
λuAANDCbCNu=u{uA}g9NuguA-g}}Nu}
λuAM}bNu=u{uA}g}{NuguA-g’Nu}
λuAT}Nu=u{uA-gu7Nu}
λuAAND-Nu=u{uA-g8Nu}

Connectionuelements’uidentifiers:

e7

e8

e}-

(a) The aggregated neighborhood context graph after
defining the edges’ labels

a-

ai

aC
a7

a{

}stulayer -nd layer

}stuzone

-nduzone

E}

S}

af

am

e}{

e9

e}C

e}

ei

em

eC

e}i

a}

ef

e-

e}}

LAe}NguLAe-NuguLAe7NuguLAe8NuguLAe}iNu=u<usequenceu>u
LAeCNuguLAeiNu=u<uXOR}b} guOR-b- guTb}uguORbC>
LAeiNu=u<uXOR}b} guOR-b-u>
LAemNuguLAe}CNu=u<uXOR}b}uguOR-b->
LAefNu=u<uXOR}b} >u
LAe9NuguLAe}{Nu=u<uANDCbC guM}bu>
LAe}}NuguLAe}-Nu =u <uXOR}b} guOR-b- gu Tb}uguORbC>

Edges’ulabels:

λuAXOR}b}Nu=u{uA}giNguA-gmNu}u
λuAOR-b-Nu=u{uA}gfNuguA-gfNu}
λuATb}Nu=u{uA}g’NuguA-gu7Nu}
λuAORbCNu=u{uA}g’NuguA-gu8Nu}
λuAANDCbCNu=u{uA}g9NuguA-g}}Nu}
λuAM}bNu=u{uA}g}{NuguA-g’Nu}

Connectionuelements’uidentifiers:

e7

e8

e}-

(b) The aggregated neighborhood context graph after
updating the unmerged connection elements

Figure 4.10: The aggregated neighborhood context graphs during the definition of
the edges’ labels

Deriving Aggregated Neighborhood Context Graphs 89

OR.3, T1 to T.1, XOR1 and AND2 to OR2.2 and so on. The result of this step is
illustrated in Figure 4.10b.

The last step in the merging algorithm is to handle the edges sharing exclusively
their sources or targets.

4.3.3.3 Handling edges sharing their source or target

So far, our merging algorithm focuses on merging the labels of merged edges and
keeping others unchanged. However, we can face the case where some edges share
exclusively their source or target. In fact, in our merged fragment, a set of edges
having the same source share it if the source is a merged vertex and the edges are
unmerged ones (the same holds for the shared target). In this case, we add a split
XOR (respectively join XOR) to the beginning (respectively end) of the edges’ labels
sharing their source (respectively target) (Line 26 in Algorithm 2). For example, in
the aggregated neighborhood context graphs in Figure 4.10b, the edges e1 and e2 are
unmerged ones and have the same merged target a2. Therefore, e1 and e2 share their
target and a join XOR is added at the end of their corresponding labels (XOR4 in
Figure 4.4). A new random identifier is defined for the added XOR that takes the
form of {(idGk

1
, nb1), (idGk

2
, nb2)} where nb1 and nb2 are two random numbers. And

last, XOR is added to the set of connection elements C̃.

4.3.4 Behavior Preservation of the Merging Algorithm

In this section, we show that, by construction, our configurable process fragment
resulted from our merging algorithm preserves the behavior of the input merged
fragments (Proposition 4.3.1).

Let aGkax = (ida, V a, Ea, La, C, τ, λ) be an aggregated neighborhood context graph
resulted from merging the neighborhood context graphs: Gax = {G1, G2} such that
∀i : 1 ≤ i ≤ n,Gi = (idi, Vi, Ei, Li, Ii).

Proposition 4.3.1. cGkax subsumes the behavior of Gax if:

1. ∀v ∈ Vi, 1 ≤ i ≤ 2 =⇒ ∃v ∈ V a

2. ∀(a, b) ∈ Ei, 1 ≤ i ≤ 2 =⇒ ∃(a, b) ∈ Ea

3. ∀e ∈ Ei, Li(e) = Fi ∧ 1 ≤ i ≤ 2 =⇒ ∃ea ∈ Ea, La(ea) = F a such that
∀k, 1 ≤ k ≤ |Fi| : Fi[k] = F a[k] ∨ Fi[k] � F a[k], �∈ {�g,�e}

Proof. The first step of our merging algorithm (Section 4.3.3.1) consists of merging
the vertices and the edges that are substituted. Therefore, for each substituted vertex
a ∈ ∪iVi one copy is added to V a and for each edge substituted (a, b) ∈ ∪iEi one copy
is added to Ea. The unsubstituted vertices and edges are simply added. Consequently,
the first two requirements are met.

90 Assisting Process Design with Configurable Process Fragments

The third requirement states that, for each edge’s label Fi in Gi, we can find
either the same edge associated to the same label (i.e. Fi) in aGkax , or the same
edge associated to a label F a that includes its behavior. Returning back to the
second step of our merging algorithm (Section 4.3.3.2), the edges’ labels of aGkax are
defined in two steps. First, if the corresponding edge has not been merged, then the
same label as it appears in Gi is added. Therefore, ∀k, 1 ≤ k ≤ |Fi|, F a[k] = Fi[k].
Hence, the third requirement is validated. Second, if the edge has been merged, then
their corresponding labels in each of the Gi sources are also merged. The labels’
merging is defined in the second step of our merging algorithm using two operators:
the connection flow alignment and the connection elements merger. Let F1, F2 be
two labels of the merged edge (a, b) ∈ Ea; FA = {FA1 , FA2 } is the resulted alignment
and F a is the resulted merged label. From the connection flow alignment definition
(Definition 4.3.2) and from our merging rules we have:

• |FA1 | = |FA2 | = |F a| = m: the alignment and the merging result have the same
sizes;

• each column p in the alignment FA is merged into one connection element based
on the partial order for gateways (Definition 3.2.1) and events (Definition 3.2.2).
Therefore, ∀1 ≤ k ≤ m, 1 ≤ p ≤ 2 : FAp [k] = c then ∃ca : F a[k] = ca ∧ c � ca.

Hence, the third requirement is validated for the alignment FAi of Fi.

From the connection flow alignment definition (Definition 4.3.2), we also have |Fi| ≤
|FAi |, i.e. the sizes of Fi and FAi are equals or FAi contains gap elements. However,
the inserted gap elements into FAi are silent elements (they represent a sequence in
the case of a gateway and a disabled event in the case of an event) and do not alter
the order or the behavior of the connection elements. Thus Fi and FAi have the same
behavior and consequently the third requirement validated on FAi is also valid for Fi,
i.e. ∀k : Fi[k] = c,∃ca : F a[k] = ca ∧ c � ca, 1 ≤ k ≤ m.

In the fourth step of our merging algorithm, we add an XOR for the edges that
share their source or target. this XOR is transformed to a configurable one in the C-
BPMN notation. Therefore, it can be configured to a sequence flow (i.e. sequence �g
XOR). Thus, the inserted XOR elements do not alter the behavior of aGkax (i.e.
silent elements).

4.3.5 Computational Complexity

Our merging algorithm (Algorithm 2) consists of two main steps. The first one consists
of merging the activities and edges within the same layer and zone respectively. The
worst case of this computation step is O(k × n2

a × n2
e × nG) ' O(n5) where k is the

number of layers in the extracted neighborhood context graphs, na is the maximum
number of vertices on a layer, ne is the maximum number of edges in a zone and nG
is the number of neighborhood context graphs to be merged. On one hand, we match
only the activities and edges within the same layer and zone respectively. On the

From Aggregated Neighborhood Context Graph to C-BPMN 91

other hand, the number of activities on the same layer is not great, so is the number
of edges within the same zone. Therefore, we don’t face the problem of the whole
graph matching that has been demonstrated to be NP-complete [115].

The second steps consists of merging the connection flows of the merged edges.
It calls for two operators: (1) the connection flow alignment and (2) the connection
elements merger. The complexity of the first operator is O(n′e × n2 × l2) ' O(n5)
where n′e is the number of merged edges, n is the number of connection flows to be
aligned and l is the size of a connection flow. The aligned connection flows are then
merged using the connection elements merger operator. The alignment can be seen
as matrix where each column is merged into one element. Thus, the complexity of
this operator is O(n′e × n × l) ' O(n3). The overall complexity of this algorithm is
O(n5). Accordingly, our merging algorithm is performed in a polynomial time and
the worst case computation is O(n5).

4.4 From Aggregated Neighborhood Context Graph to
C-BPMN

The aggregated neighborhood context graphs resulted from our merging algorithm are
transformed to a configurable standard modeling notation. In our work, we use the
C-BPMN notation. Let aGk = (ida, V a, Ea, La, C, τ, λ) be an aggregated neighbor-
hood context graph and P c = (id,N,E, T, L, I, B,C∗) be its corresponding C-BPMN
notation. P c is derived from aGk as follows:

• the set of vertices in aGk is added to the set of nodes in P c and their types are
defined (i.e. activity or start or end event);

• The set of connection elements C̃ in aGk are added to the set of nodes in P c,
their types in P c are set to gateway and their labels (OR, AND or XOR) are
defined.

• for each edge ea = (va1 , v
a
2) ∈ Ea and its corresponding label La(e) =< c̃1, c̃2, ..., c̃n >

in aGk, a sequence of edges (ni, ni+1), 0 ≤ i ≤ n + 1 such that n0 = va1 and
nn+1 = va2 and 1 ≤ i ≤ n, ni = c̃i is added to the set of edges in P c;

• The configurable elements in P c are the connection elements in C̃ whose identi-
fier set size is greater than 1. This means that they are the result of a merging
step. For example, in Figure 4.4, the size of the identifier sets of the connection
elements is 2. Therefore, they are configurable.

Formally, the configurable process graph P c derived from the aggregated neighbor-
hood context graphs aGk is given in Definition 4.4.1.

Definition 4.4.1 (From aGk to P c). A configurable process graph P c is derived from
an aggregated neighborhood context graph aGk as follows:

92 Assisting Process Design with Configurable Process Fragments

a2

a0

a3

a6

a4

S1.1

a5

a7

XOR1.1 OR2.2

T.1
AND3.3

E1

a1

XOR4

OR.3

Figure 4.11: A C-BPMN derived from the aggregated neighborhood context graph in
Figure 4.4

• id = ida

• N = V a ∪ C̃;

• E =
⋃

(x,y)∈Ea(∪i=n+1
i=0 (ni, ni+1) : n0 = x ∧ nn+1 = y ∧ ∀1 ≤ i ≤ n, ni =

La(x, y)[i]);

• T and L are as defined in Definition 3.3.5. They assign types and labels to the
elements.

• B : N → {true,false} is a boolean function such that B(c) = true, c ∈ N ∩ C̃ iff(
|λ(c)| > 1

)
;

• C∗ is as defined in Definition 3.3.5. It defines the valid configurations of con-
figurable elements according to Definition 3.3.4.

An example of the configurable process graph derived from the aggregated neigh-
borhood context graph in Figure 4.4 is illustrated in Figure 4.11.

4.5 Conclusion

In this chapter, we answered the two questions raised in the thesis problematic (
section 1.2.1), which are: How to identify process fragments that are close to process
provider interests? and How to derive configurable process fragments?.

To identify process fragments that are close to process provider interests, we used
the neighborhood context graph which is defined as a process fragment around a se-
lected activity. It contains the associated activity and the relations to its closest
neighbors.

To derive configurable process fragments, we extracted the neighborhood context
graphs of the activities that are similar to the selected one in different business process
models. The extracted graphs are matched and clustered based on their similarity

Conclusion 93

before being merged. We developed a merging algorithm that takes as input a clus-
ter of neighborhood context graphs and iteratively merge them into one aggregated
neighborhood context graph. This latter is a concise representation of the merged
fragments. The aggregated neighborhood context graph is then transformed to a
C-BPMN fragment.

In contrast to creating configurable process models at once, recommending con-
figurable fragments allows process providers to flexibly adjust and improve their de-
signed processes. It gives them the hand to define specific configurable parts in their
processes. Our approach can be used when a process provider is looking for small
fragments to complete missing parts in an ongoing designed process, to replace some
parts or to extend an existing configurable process.

Our principles presented in Section 1.4.1 are respected:

• Automation: We propose an automated approach to derive configurable frag-
ments. We do not ask the process provider for any additional manual effort
except selecting the position (represented by an activity) in the process graph
for which he needs to discover a configurable fragment.

• Implicit knowledge exploitation: We exploit activity neighborhood context
which is implicit knowledge hidden in process models to derive our process
fragments.

• Focused results: We merge configurable process fragments instead of entire
process models. So, our approach do not make process providers confused with
large and complex merged models.

• Balanced computation: We match specific parts represented as small frag-
ments instead of entire process models to derive our configurable fragments. The
neighborhood context graph structured in layers allows us to employ a simple
heuristic. We match only activities located on the same layer to find the best
mapping. If a matching is not found, the search is expanded to the next layer.
Since the number of layers in a neighborhood context graph is limited and in
general is not too big (for a process fragment use, it does not exceed 4 layers),
our approach we do not face the NP-complete problem. The computational
complexity of our approach is polynomial.

94 Assisting Process Design with Configurable Process Fragments

Chapter 5

Supporting Process
Configuration with

Configuration Guidance Models

Contents

5.1 Introduction . 95

5.2 Motivating Example . 96

5.3 Configuration Guidance Model 99

5.4 Approach Overview . 102

5.5 Extracting configuration guidelines from existing process models103

5.5.1 Retrieving process elements’ configurations 103

5.5.2 Apriori-based approach for deriving configuration guidelines 106

5.6 Inferring Configuration Steps order 108

5.7 Formalizing Configuration Guidelines Dependencies Relations 110

5.7.1 Deriving a transition system from configuration guidelines 110

5.7.2 Deriving a Petri-Net using Theory of Regions 113

5.8 Conclusion . 114

5.1 Introduction

This chapter presents our approach for supporting business process configuration. As
mentioned in Chapter 1, configurable process models tend to be very complex which
makes their configuration an increasingly difficult task. To this end, many approaches
have been proposed to build configuration support systems that assist process users
selecting desirable configuration choices according to specific requirements (e.g. [6,7,
50]). Nevertheless, these systems are actually manually created by domain experts,
which is undoubtedly a time-consuming, and tedious task. In addition, relying solely
on the expert knowledge is not only error-prone, but also challengeable, especially in
todays’ dynamic and fast changing business requirements.

95

96 Supporting Process Configuration with Configuration Guidance Models

In this chapter, we present an automated approach for supporting the creation of
configuration support systems. Inspired by the need to integrate the users’ experi-
ence in process configuration [3, 34], we propose to learn from the experience gained
through past process configurations in order to extract useful and implicit knowledge
for configuration decision making.

We start the chapter by presenting a motivating example and the challenges that
arise when it comes to configure a process (Section 5.2). In light of the identified
challenges, we present in Section 5.3 our configuration guidance model that aims to
fulfill the requirements for a configuration support system. Basically, a configuration
guidance model targets to answer the following questions:

1. How an element is configured given the previously selected choices?

2. How often a specific decision has been made?

3. When a configuration decision can be taken for a configurable element?

In Section 5.4, we present an overview of the proposed approach for the auto-
matic extraction of configuration guidance models which consists of three steps: (i)
extracting configuration guidelines, (ii) inferring the configuration steps order and (iii)
formalizing the guidelines dependencies’ relations. Sections 5.5, 5.7 and 5.6 detail the
different steps of our approach. Finally, we conclude the chapter in Section 5.8

The work in this chapter was published in conference proceedings [163,164].

5.2 Motivating Example

We reuse our motivating example presented in Section 1.3 to illustrate our approach.
We assume that a process provider has designed a configurable travel booking process
(Figure 5.1) with the assistance of our previously presented approach (Chapter 4).

The configurable process in Figure 5.1 includes four main functionalities: (1) flight
booking with alternatives, (2) recommendation, (3) discount offer and (4) payment
(see Figure 1.7 for the explicit visualization of the different functionalities’ parts). It
contains 17 configurable elements (9 gateways, 7 activities and 1 event) which are
graphically modeled with a thick line 1. These elements are configured according to
the process users’ specific needs. For example, one process user may not need a rec-
ommendation functionality neither a discount offer. This corresponds to configuring
XORc1 to a sequence starting with XOR2 (i.e. the outgoing branch of XORc1 starting
with XOR3 is removed) and a16 to OFF . However, in order to be inline with the
best practices in a given domain, process users need guidelines on how to configure
the elements and derive process variants. Examples of such guidelines are:

1Please note that the end events in the BPMN notation are modeled with a thick line but are not
configurable

Motivating Example 97

Startp3S14

Searchpflightsp
3a14

Selectpapflightp
3a24

ORc
5

ORc
6

GetpPackagep
discountp3a164

Bookp3a174

ORc
11

Cashppaymentp
3a194

ORc
12

Endp3E24

XORc
1

Newpuserp
3a94

XOR3

XORc
4

Analyzepuserp
profilep3a1v4

Recommendp
flightsp3a114

ORc
7

ORc
8

Selectppackagep
3a154

XOR9

XORc
1v

Recommendp
hotelsp3a124

Recommendp
carsp3a134

Requestp
creditpcardp
infop3a184

Requestp
personalpinfop

3a2v4

Recommendp
trainsp3a144

Makepapreservationp3M14

Sendpapconfirmationp3M24

XOR2Endp3E14

Selectpaphotelp
3a64

Selectpapcarp
3a74

Selectpaptrainp
3a84

Searchphotelsp
3a34

Searchpcarsp
3a44

Searchptrainsp
3a54

Cancelprequest
3Er14

Figure 5.1: P c: A configurable travel booking process

1. if the recommendation functionality is included in the derived variant, then the
discount offer is also included;

98 Supporting Process Configuration with Configuration Guidance Models

2. if the trains and cars booking are included in the derived variant, then the cash
payment is also included;

3. if the hotel booking functionality is included in the derived variant, then the
hotel recommendation functionality is also included.

These guidelines are related to the best practices in the travel booking domain
and can be formally modeled as if→then rules where the if and then parts contain
configurations of different configurable elements. Table 5.1 illustrates an excerpt
of the configuration guidelines identified for the process in Figure 5.1. The first
configuration guideline G1 states that if the configurable gateway XORc1 is configured
to an XOR with the outgoing branches starting with XOR2 and XOR3, then the
configurable activity a16 is configured to ON . This rules matches the first guideline
in the aforementioned example since the recommendation functionality (i.e. branch
starting with XOR3) and the discount offer (i.e. activity a16) are included. Similarly,
G2 states that if a4 and a7 are configured to ON , then ORc11 is configured to an OR
with the outgoing branches starting with a18, a19 and a20. G2 and G3 match the
second guideline in the aforementioned example.

G1 XORc
1 = (XOR, {XOR2, XOR3})→ a16 = ON

G2 a4 = ON ∧ a5 = ON → ORc
11 = (OR, {a18, a19, a20})

G3 ORc
5 = (OR, {a4, a5})→ ORc

11 = {AND, {a19, a20}}
G4 XORc

1 = (Seq, {XOR2})→ XORc
10 = (Seq, {ORc

6})
G5 a4 = ON → ORc

5 = (OR, {a4, a5})
G6 a5 = ON → a14 = ON

G7 ORc
5 = {Seq, {a3}} → a12 = ON

G8 ORc
5 = {Seq, {a3}} → ORc

7 = (Seq, {a12})
G9 XORc

1 = (Seq, {XOR3})→ XORc
4 = (Seq, {XOR9})

G10 a16 = OFF → a12 = OFF ∧ a13 = OFF ∧ a14 = OFF

G11 ORc
11 = (AND, {a19, a20}) ∧ORc

12 = (AND, {a19, a20})→ a4 = ON ∧ a3 = ON

G12 ORc
11 = (AND, {a19, a20})→ ORc

12 = (AND, {a19, a20})
G13 a16 = OFF → ORc

5 = (Seq, {a3})

Table 5.1: An excerpt of the configuration guidelines for the configurable process
model in Figure 5.1

This simple example raises three main issues. First, since there may exist a large
number of interdependencies between different configuration choices in a configurable
process model [7,34], manually identifying the configuration guidelines is a tedious, if
not impossible task. Second, this large number of interdependencies results in a high
number of configuration guidelines which may confuse the end user and lead to an
inconsistent and incorrect application of the guidelines. For example, in Table 5.1,
we can observe that G1 and G4 cannot be applied concurrently as they result in dif-
ferent configurations for the configurable element XORc1; Similarly, G2 and G3 result
in different configurations for the configurable element ORc11 and cannot be applied

Configuration Guidance Model 99

concurrently; G5 and G6 should be applied before G2; and so on. These interde-
pendencies between the configuration guidelines are not intuitive and may become
more complex [34]. Thus, they should be explicitly and formally represented to the
end users in order to assist them correctly applying them during the configuration
process. Third, as there may exist a large number of configurable elements that may
have all kind of interdependencies between their configuration choices, end users need
to know the order in which the elements are configured.

In order to overcome these issues, we introduce in the next section our configu-
ration guidance model that implements three main functionalities to overcome the
above presented limitations: (i) recommending the configuration guidelines, (ii) ex-
plicitly represent their dependencies relations and (iii) recommending the order in
which the configuration steps are performed.

5.3 Configuration Guidance Model

Inspired from variability modeling approaches in software product line engineering [84,
165] and taking into account the requirements identified in section 5.1, we define a
configuration guidance model as a tree-like structure with cross-tree relations. An
excerpt of the configuration guidance model for the configurable process in Figure 5.1
is illustrated in Figure 5.2.

The tree structure allows a “hierarchical” ordering of the configurable elements of a
process model in a parent-child fashion, that is the parent element is configured before
the child element. Roughly speaking, the parent-child relation encodes a configuration
dependency, i.e. the configuration of the child element is probably unknown until, at
least, the parent element is configured. The tree elements are graphically modeled
with circles. For example, in Figure 5.2, the configuration of the connectors XORc4
and XORc10 depends on that of XORc1, thus they are child of the parent XORc1.

Each tree element has multiple configuration choices (Definition 3.3.4) labeled with
their probability of selection. Graphically, the configuration choices are modeled with
dotted rectangles attached to their configurable elements. For example, in Figure 5.2,
the element XORc1 has the configuration choices (Seq, {XOR2}, (Seq, {XOR3}) and
(XOR, {XOR2, XOR3}) with probabilities 0.5, 0.3 and 0.2 respectively. This means
that, in 50%, 30% and 20% of the previously derived variants, the configurations
(Seq, {XOR2}), (Seq, {XOR3}) and (XOR, {XOR2, XOR3}) are respectively se-
lected.

The configuration guidelines represented as coss-tree relations are graphically
modeled with dotted lines between the different elements and have also their prob-
ability of certainty. The probability of certainty expresses to which extent a con-
figuration guideline is valid. For example, in Figure 5.2, the configuration guideline
XORc1 = (XOR, {Seq, {XOR2}}) → XORc4 = (Seq, {XORc2}) has a probability
equal to 0.82. This means that in 82% of the cases, whenever the configuration
(Seq, {XOR2}) of XORc1 is selected, the configuration (Seq, {XORc2}) of XORc4 is

100 Supporting Process Configuration with Configuration Guidance Models

Root

a16XORc
1

ORc
11 ORc

12 ORc
6

OR8

ORc
5

GSeqd{XOR2}>
G0h5>

GSeqd{XOR3}>
G0h3>

a3 a4 a5

ON
G0h85>

OFF
G0h15>

XORc
4 XORc

10

GSeqd{a9}>
G0h55>

GSeqd{XORc
2}>

G0h3>

GiORd{ia4d a5i}i>
G0h45>

GiSeqd{ia3i}i>
G0h55>

Configurableielement
<G>

CrossLtreeirelationsi
Gconfigurationiguidelines>

Legend

GXORd{dXOR2dXOR3}>
G0h2>

Configurationi
choices

Figure 5.2: An excerpt of the configuration guidance model extracted for the config-
urable process model in Figure 5.1

also selected.
Besides, a configuration guidance model provides also an explicit representation of

the dependencies relations that may exist between the configuration guidelines. We
have identified three main relations: causality (i.e. which guidelines can be applied
given a set of already applied guidelines), concurrency (i.e. which guidelines can be
applied in parallel) and exclusiveness (i.e. which guidelines exclude each others). The
dependencies relations are formally represented using Petri-nets in which each tran-
sition corresponds to a configuration guideline and the flow relation between them
correspond to their dependencies’ relations. We refer to the resulted net as as config-
uration system. An excerpt of the resulted configuration system for the configuration
guidelines in Table 5.1 is illustrated in Figure 5.3. Each trace in the resulted petri-net
corresponds to one possible application of the configuration guidelines. For example,
one can apply the guidelines (i) G7 and G8 then G2 or (ii) G3, G12, G11 then G5.

Let P c = (N,E, T, L,B,C∗) be a configurable process model. A configuration
guidance model GcM is formally given in Definition 5.3.1.

Definition 5.3.1 (Configuration guidance Model). A configuration guidance model
is defined as GcM = (T c,C∗F ,G, Pconf , P, CS) where:

• T c = (N c, E) is a directed acyclic graph whose underlying undirected graph is a
tree where N c ⊆ N is the set of configurable elements in P c and E ⊆ N c ×N c

is the set of edges.

• C∗ is the set of valid configuration choices for the configurable elements;

• F : N c → P(C∗) is a function that maps a tree element n ∈ N c to its valid
configurations Cn ⊆ C∗;

Configuration Guidance Model 101

G1

G7

G8

G2

p0

G3 G11G12 G5

Figure 5.3: An excerpt of the configuration system derived from the configuration
guidelines in Table 5.1

• G is the set of configuration guidelines;

• Pconf : C∗ → D is a function that assigns for each configuration choice conf ∈
C∗ a probability of occurrence;

• P : G→ D is a function that assigns for each inclusion and exclusion relation a
probability of certainty, i.e. to which extent we are certain that a configuration
guideline holds;

• CS = (P,G, F) is the configuration system that formalizes the configuration
guidelines dependencies’ relations where:

– P is the set of places;

– G is the set of configuration guidelines such that P ∩G = φ;

– F ⊆ (P ×G) ∪ (G× P) is the set of guidelines’ relations.

For example, the configuration guidance model in Figure 5.2 is defined as follows:

• T c = (N c, E) where N c = {XORc1, a6, OR
c
5, XOR

c
4, ...}, E = {(XORc1, XORc4),

(XORc1, XOR
c
10), (a16, a3), (a16, a4), ...};

• C∗ is as defined for P c;

• F(XORc1) = {(Seq, {XOR2}), (Seq, {XOR3}), (XOR, {XOR2, XOR3})}; F(a3) =
{ON,OFF}, etc.;

• G = {G1, G2, G3, ...} are the configuration guidelines which are cross-tree rela-
tions; examples of configuration guidelines are shown in Table 5.1;

• Pconf

(
(Seq, {XOR2})

)
= 0.5; Pconf

(
(Seq, {XOR3})

)
= 0.3; etc.;

102 Supporting Process Configuration with Configuration Guidance Models

• P (G1) = 0.73; P (G2) = 0.55; etc.

• CS is the configuration system depicted in Figure 5.3.

In the next section, we present an overview of our approach for extracting config-
uration guidance models from business process repositories.

5.4 Approach Overview

In this section, we present an overview of our automated approach for extract-
ing configuration guidance models from business process repositories. Let P c =
(N c, Ec, T c, Lc, B,C∗) be a configurable process model andP = {Pi = (Ni, Ei, Ti, Li) :
i ≥ 1} a set of existing process models that are previously derived from P c. The pro-
cesses in P can be collected by computing a similarity value (e.g. using behavioral
profiles [166]). P c and P are used as inputs by our algorithm (Algorithm 4) to gen-
erate a configuration guidance model GcM .

Algorithm 4 Building a configuration guidance model

1: input: P c, P
2: output: GcM = (T c,C∗,F ,G, Pconf, P)
{extract configuration guidelines G and probability information Pconf

and P}
3: Econf = geElementConf(P c,P)
4: G = Apriori(Econf ,minS,minC)
5: Pconf (Ci) = Sup(Ci) : Ci ∈ C∗
6: P (Gi) = Sup(Gi) : Gi ∈ G
{derive tree hierarchy T c}

7: derive probabilistic dependency matrix MP = getProbabilisticMatrix(G, 2)
8: derive implication graph G→ = getImplicationGraph(Mp

→)
9: generate tree hierarchy T c = getTreeHierarchy(G→)
{Formalize configuration guidelines dependencies}

10: TS = generateTS(G)
11: PN = synthetizePN(TS)

The algorithm proceeds in three main steps. In the first step, the set of configu-
ration guidelines and the probability information are extracted from existing process
models in P (Lines 3-6 detailed in Section 5.5). Then, in the second step, the tree
hierarchy which represents the configuration steps order is derived from the extracted
guidelines (Lines 7-9 detailed in Section 5.6). The third step consists of formalizing
the dependencies relations between the configuration guidelines to ensure that they
are are correctly and consistently applied (Lines 10-11, detailed in Section 5.7).

Since our approach requires as input a configurable process model and an existing
business process repository, we assume that a large number of configured process

Extracting configuration guidelines from existing process models 103

variants are collected in a business repository. These variants may be similar or
derived from the configurable process model and may have undergone further changes
according to the companies specific requirements. For example, the process variant
in Figure 5.4a is derived from the configurable process model in Figure 5.1 and has
undergone some additional changes. Table 5.4b show the configuration choices that
have been taken for each configurable element to derive the process variant and the
additional changes that have been done after the configuration.

In the following sections, we show how our approach can extract the correct config-
urations from existing business processes even with the presence of additional changes
based on a similarity notion.

5.5 Extracting configuration guidelines from existing pro-
cess models

The first step of our proposed approach consists of extracting the set of configuration
guidelines G from existing business process repositories. As mentioned in Section 5.4,
our aim is to extract for a configurable process model P c its configuration guidelines
G from a set of process models P. The extraction of the configuration guidelines
consists of two main steps. First, the set of the elements’ configurations in P c are
extracted from the processes in P (see Section 5.5.1). Then, the configuration guide-
lines are derived from the extracted configurations using association rule mining (see
Section 5.5.2).

5.5.1 Retrieving process elements’ configurations

In this step, we extract from each process variant Pi ∈ P the configurations corre-
sponding to the configurable elements in P c and store them in a configuration matrix,
a data structure suitable for applying association rule mining techniques. For exam-
ple, let P c be the process in Figure 5.1 and P1 ∈ P be the process in Figure 5.4a. The
gateway XORc1 in P c has a configuration ConfXORc

1
= (Seq, {XOR2}) as XOR2

in P1 is similar to XOR2 in P c; Similarly the gateway ORc6 has a configuration
ConfORc

6
= (OR6, {a6, a7}) in P1 as the activities a6, a7 ∈ P c are similar to the activ-

ities a6, a7 ∈ P1. This example shows that existing process variants may not contain
the same elements as those in the configurable process and therefore retrieving exact
configurations is not realistic. Thus, in order to retrieve the elements configurations,
we use a similarity metric to match the configurable elements in P c and their can-
didate configurations in the existing processes Pi. We compute three similarities:
the similarity SimA between activities, SimG between gateways and SimE between
events.

Retrieving activities’ configuration. A configurable activity ac ∈ N c can be
configured to ON or OFF . A configuration Confac = ON is retrieved from a process
variant Pi, if there exists an activity a′ ∈ Ni such that a′ is the best activity mapping

104 Supporting Process Configuration with Configuration Guidance Models

Start84S1C

Search8
flights84a1C

choose8a8
flight84a2C

OR5

OR6

Book8travel8
4a17C

OR11

OR12

End84E2C

Request8credit8
card8info84a18C

Request8personal8
info84a20C

Make8a8reservation84M1C

Send8a8confirmation84M2C

XOR2End84E1C

book8hotel8
4a6C

Rent8a8car84a7C

Search8hotels8
4a3C

Search8cars8
4a4C

Cancel8request
4C1C

skip84a5C

(a) P1: A process variant derived
from the configurable process model
in Figure 5.1

Configurable
Element configuration

element

XORc
1 (Seq, {XOR2})

Cancel request ON

XORc
4 (Seq, {XOR2})

ORc
5 (OR, {a3, a4, a5})

ORc
6 (OR, {a6, a7})

Search hotels ON

Search cars ON

XORc
10 (Seq, {ORc

6})
a16 OFF

ORc
11 (OR11, {a18, a19})

ORc
12 (OR12, {a18, a19})

add a5

rename a2

rename a2, a6, a7, a17

(b) The selected elements’ configurations and
the additional changes

Figure 5.4: A configured process variant derived from the process model in Figure 5.1
and the selected configurations

Extracting configuration guidelines from existing process models 105

to a according to Definition 4.3.1. Otherwise, the configuration Confac = OFF holds.
For example, in our running example in Figures 5.1 and 5.4a, for a minSimA = 0.5,
the configurable activity a16 in P c does not have any best mapping in P1 thus the
configuration Confa16 = OFF is retrieved from P1.

Retrieving gateways’ configuration. Let gc ∈ N c such that T c(gc) = gateway
and g1 ∈ N1 such that T1(g1) = gateway be two gateways in P c and P1 respectively.
The similarity between gateways cannot be computed in the same way as activities
since gateways’ labels do not have linguistic semantics. Hence, in order to compute the
similarity SimG between g1 and g2, we compute a similarity based on (1) the gateways’
behavior which can be inferred from the partial order �g (Definition 3.2.1) and (2)
the similarity between the nodes in their preset and postset (adapted from [43]). The
similarity SimG between gateways is computed as:

SimG(gc, g1) =

{ |M(gc •,g1 •)|+|M(• gc,• g1)|
|gc •|+|• gc| if g1 �g gc

0 otherwise
(5.1)

where |M(gc •, g1 •)| (respectively |M(• gc, • g1)|) returns the number of best ele-
ments’ matching (activities, events or gateways) in g1 • (respectively • g1) that cor-
respond to those in gc • (respectively gc •). We say that g1 is the best gateway
matching for gc iff: SimG(gc, g1) ≥ minSimG ∧ @gx ∈ N1 : SimG(gc, gx) >
SimG(gc, g1) where minSimG is a user specified threshold. For example, in Figure 5.1
and 5.4a, the similarity between ORc6 in P c and OR6 in P1 is SimG(ORc6, OR6) =
2+0
1+3 = 0.5. For a minSimG = 0.5, OR6 is the best gateway matching for ORc6 as it
has the highest similarity value.

A configurable split (respectively join) gateway gc ∈ N c can be configured with
respect to its type and postset (respectively preset) (Definition 3.3.4). A configuration
Confgc = (gi, g •) 2 is retrieved from a process variant Pi:

• if there exists a gateway gi ∈ Ni such that:

1. gi is the best gateway matching for gc,

2. g • is the set of elements in gc • that have best elements’ matching in gi •
according to Equation 5.1.

• else if there exists an edge (e’, e”) ∈ N such that e” is the best element matching
for epost ∈ gc • and e’ is the best element matching for epre ∈ • gc. In this case,
gc is configured to a sequence, i.e. g’ = Seq and g • = {epost}.

For example, for a minSimG = 0.5, the configuration ConfORc
6

= (OR6, {a6, a7}) of
the configurable connector ORc6 in P c is retrieved from P1 since (1) OR6 in P1 is the
best gateway matching for ORc6 in P c, and (2) a6, a7 ∈ N c have a6, a7 ∈ N1 as the
best activities’ matching respectively.

2we show the case for a split gateway

106 Supporting Process Configuration with Configuration Guidance Models

Retrieving events’ configurations. Let ec ∈ N c such that T c(ec) = event
and e1 ∈ N1 such that T1(e1) = event be two events in P c and P1 respectively.
The similarity between events is computed based on (i) their behavior which can be
inferred from the partial order �e (Definition 3.2.2) and (2) the similarity between the
nodes in their preset and postset. The similarity SimE between events is computed
as:

SimE(ec, e1) =

{ |M(ec •,e1 •)|+|M(• ec,• e1)|
|ec •|+|• ec| if e1 �e ec

0 otherwise
(5.2)

where |M(ec •, e1 •)| (respectively |M(• ec, • e1)|) returns the number of best ele-
ments’ matching (activities, events or gateways) in e1 • (respectively • e1) that corre-
spond to those in ec • (respectively ec •). We say that e1 is the best event matching
for ec iff: SimE(ec, e1) ≥ minSimE ∧ @ex ∈ N1 : SimE(ec, ex) > SimG(ec, e1) where
minSimE is a user specified threshold. For example, in Figure 5.1 and 5.4a, the sim-
ilarity between the events Er1 in P c and C1 in P1 is SimE(Er1, C1) = 1+1

1+1 = 1. For
a minSimE = 0.5, C1 is the best gateway matching for Er1 as it has the highest
similarity value.

A configurable event ec ∈ N c can be configured to enable, disable or to an event
e such that e �e ec. A configuration Confec = enable is retrieved from a process
variant Pi, if there exists an event e′ ∈ Ni such that e′ is the best matching to e and
Li(e

′) = Lc(ec) (i.e. ec and e′ have equal labels). In case they have different labels,
the configuration Confec = e′ is retrieved. Otherwise, the configuration Confec =
disable holds. For example, in our running example in Figures 5.1 and 5.4a, for a
minSimA = 0.5, the configurable event Er1 in P c has the event C1 in P1 as a best
event matching; L(Er1) = L(C1) = Error thus the configuration ConfEr1 = enable
is retrieved from P1.

5.5.2 Apriori-based approach for deriving configuration guidelines

So far, we extracted for each configurable element in P c, the set of its configurations
from each process variant Pi ∈ P. The extracted configurations are used as input in
order to derive the configuration guidelines using association rule mining techniques.
Association rule mining [62] is one of the most important techniques of data mining.
It aims to find rules for predicting the occurrence of an item based on the occurrences
of other items in a transactional database or other repositories. It has been first ap-
plied to the marketing domain for predicting the items that are frequently purchased
together. Thereafter, it manifested its power and usefulness in other areas such as
web mining [167] and recommender systems [168]. The Apriori algorithm [169] is one
of the earliest and relevant proposed algorithms for extracting association rules.

In our work, we also use the Apriori algorithm for deriving our configuration
guidelines. In order to be able to apply Apriori, we store our retrieved configurations
in a suitable data structure called configuration matrix and denoted as Mc. Mc

is a p×m matrix where p is the number of process variants in P and m is the number

Extracting configuration guidelines from existing process models 107

Pid XORc
1 Er1 XORc

4 ORc
5 a3 a12

P1 (Seq, {XOR2}) enable (Seq, {XOR2}) (OR, {a3, a4}) ON OFF
P2 (XOR, {XOR2, XOR3}) disable (XOR, {XOR2, a9}) (AND, {a3, a4}) ON ON
P3 (Seq, {XOR3}) disable (Seq, {e9}) (SEq, {a5}) OFF OFF
..

Table 5.2: An excerpt of a configuration matrix

of configurable elements in P c. A row in the configuration matrix corresponds to one
process variant in P. A column corresponds to one configurable element in P c. The
(i, j)th entry contains the configuration of the jth element in P c retrieved from the ith

process Pi ∈ P. An example of the configuration matrix for the configurable process
in Figure 5.1 is depicted in Table 5.2. For example, the second row corresponds to
the configurations retrieved from the process variant P1 in Figure 5.4a. A dash “-”
denotes that there does not exist a configuration in the corresponding process.

Taking the configuration matrix as input, the Apriori algorithm proceeds in two
phases. In the first phase, the set of frequent correlated configurations (i.e. con-
figurations that often appear together in the same row in the configuration matrix)
are discovered according to a frequency threshold. The Apriori algorithm uses the
monotonicity property that all subsets of a frequent correlated set are also frequent.
Therefore, Apriori starts by selecting the frequent single configurations, then gener-
ates the candidate pairs of configurations (i.e. correlated sets of two configurations)
from the frequent singles and so on, until it finds all possible correlated configurations
according to the frequency metric. It uses Support, a well known metric to compute
the frequency of a set of correlated configurations. The support is defined as the
fraction of process variants in which the correlated configurations appear together.
Let C = {Confi : 1 ≤ i ≤ k} be a set of k-correlated configurations. The support is
computed as:

Sup =
|PC |
|P|

(5.3)

where |PC | is the number of process variants in P that contain the configurations
in C and |P| is the number of process variants in P. A support is equal to 1 if all
the process variants in the process repository contain the correlated configurations.
A support is equal to 0 if none of the process variants contain the corresponding
configurations together. A set of correlated configurations is frequent if its support is
above a given threshold minSupp.

In the second step of the algorithm, the set of relevant configuration guidelines in
the form of LHS → RHS are derived from the frequent correlated configurations. For
example, for a frequent correlated configuration set C = {(Seq, {XOR2}), (Seq, {a3}),
ON}, multiple possible configuration guidelines exist such as (Seq, {XOR2})∧ (Seq,
{a3})→ ON ; (Seq, {XOR2})→ (Seq, {a3})∧ON ; (Seq, {a3})→ ON∧(Seq, {XOR2}),
etc. In order to keep only relevant guidelines, the confidence metric is computed to
evaluate the probability of occurrence of a guideline. The confidence of a config-

108 Supporting Process Configuration with Configuration Guidance Models

uration guideline G : LHS → RHS is defined as the probability of occurrence of
the configurations in the right-hand side RHS given that the configurations in the
left-hand side LHS are selected. It is computed as:

C =
Sup(RHS ∪LHS)

SupRHS
(5.4)

where Sup(RHS ∪LHS) is the support of the configurations in the right-hand and left-
hand sides of G and SupRHS is the support of the configurations in the right-hand
side. A confidence is equal to 1 if whenever the configurations in the right-hand side
are selected, then the configurations in the left-hand side are also selected. A con-
figuration guideline is relevant if its confidence is above a given confidence threshold
minConf . An example of a subset of the configuration guidelines returned by Apriori
for a support S = 0.2 and a confidence C = 0.5 is given in Table 5.1.

5.6 Inferring Configuration Steps order

In this section, we present our approach for deriving the tree hierarchy T c of the
configuration guidance model GcM. The tree hierarchy T c consists of parent-child
relations between the configurable elements. An element nc1 is a candidate parent
of a child element nc2 if the configuration of nc2 highly depends on that of nc1. The
dependencies relations between the configurable elements can be derived from their
configuration choices. In fact, the more are their configuration choices dependent, the
more are the configurable elements dependent. The dependency of a configuration
choice conf2 on another configuration choice conf1 corresponds to their conditional
probability P (conf2|conf1) which can be derived from the confidence of their config-
uration guideline conf1 → conf2 ∈ G. It is computed as:

P (conf2|conf1) =
P (conf1 ∩ conf2)

P (conf2)
=
Sup(conf1 ∪ conf2)

Sup(conf2)
= C(conf1 → conf2)

(5.5)
where P (conf1 ∩ conf2) is the probability of co-occurrence of conf1 and conf2;
P (conf2) is the probability of occurrence of conf2. The probabilities are derived
from the support metric computed by Apriori. Having the dependencies probabilities
between the configuration choices, the conditional probability between two config-
urable elements nc1 and nc2 is computed as:

P (nc2|nc1) =

∑
j P (confnc

2j
|nc1)

#confnc
2j

=

∑
j

∑
i P (confnc

2j
|confnc

1i
)

#confnc
1i

#confnc
2j

(5.6)

where P (nc2|nc1) is the average of the conditional probabilities between the configu-
ration choices of nc1 and nc2.

∑
j P (confnc

2j
|nc1) is the sum of the conditional prob-

abilities between each configuration choice confnc
2j

of nc2 and the configurable ele-

ment nc1. The probability P (confnc
2j
|nc1) is in turn defined as the average of the

Inferring Configuration Steps order 109

conditional probabilities between the configuration choice confnc
2j

and each configu-
ration choice confnc

1i
of nc1. It can be computed by dividing the sum of the con-

ditional probabilities between confnc
2j

and each confnc
1i

of nc1 by the number of

confnc
1i

such that P (confnc
2j
|confnc

1i
) 6= 0; #confnc

2j
is the number of the config-

uration choices of nc2 such that P (confnc
2j
|nc1) 6= 0. For example, the probability

P (OR8|a10) can be computed from the configuration guidelines in Table 5.4b as:
P (XORc1|a6) = ((P (a|ON) + P (a|OFF))/2 + P (a′|ON) + P (a”|OFF))/3 where
a = (XOR, {XOR2, XOR3}), a′ = (Seq, {XOR2}) and a” = (Seq, {XOR3}) are
the configuration choices of XORc10.

The conditional probabilities between each pair of configurable elements are com-
puted and stored in a dependency probabilistic matrix denoted as MP . MP is a m×m
matrix where m is the number of configurable elements. An entry (i, j) in MP cor-
responds to the conditional probability P (ncj |nci) where ncj is the element in the jth

column and nci is the element in the ith row. We say that a configurable element
nc2 depends on another element nc1 denoted as nc1 → nc2 iff P (nc2|nc1) ≥ minP where
minP is a given threshold.

The derived dependencies’ relations with their probabilities are modeled in a
graph, called implication graph G→ [170]. The nodes in G→ correspond to the config-
urable elements. A weighted edge exists from a node nc1 to nc2 iff nc1 → nc2; the edge’s
weight is the probability P (nc2|nc1). An excerpt of G→ derived from a set of dependen-
cies relations is illustrated in Fig. 5.5a. Having G→, the tree hierarchy corresponds

a16

XORc
1

ORc
12

ORc
6

ORc
11

ORc
5

1

0.58

a3

a4

a5

XORc
4 XORc

10

(a)

a16

XORc
1

ORc
12 ORc

6

ORc
11

OR6

ORc
5

1

0
.9
5

a3

a4

a5

XORc
4

XORc
10

(b)

Figure 5.5: (a) An implication graph and (b) its derived optimal spanning tree

to extracting a spanning tree (called arborescence for directed graphs) [170]. Since,
there exist multiple possible spanning trees, we aim at deriving the optimal hierarchy
that maximizes the dependencies’ relations weights. The problem can be mapped to
finding the minimal spanning tree which can be solved using existing algorithms such
as Edmonds’ algorithm [171] and efficient implementations such as [65]. Figure 5.5b
illustrates an excerpt of the optimal spanning tree extracted from the implication
graph in Fig. 5.5a which contains multiple trees. In this case, an artificial root node
is added and connected to them in order to obtain the tree hierarchy in Figure 5.2.

110 Supporting Process Configuration with Configuration Guidance Models

5.7 Formalizing Configuration Guidelines Dependencies
Relations

In this section, we complete our approach for deriving a configuration system from the
extracted configuration guidelines. Our aim is to formalize the dependencies’ relations
between the configuration guidelines in order to assist users incrementally applying
them in a consistent and valid way. Let G = {Gi : i ≥ 1} be the set of the extracted
configuration guidelines for a configurable process model P c = (N c, Ec, T c, Lc, B,C∗).
In the following sections, an approach based on the Theory of Regions is proposed
to derive the configuration system. To do so, we first generate a transition system
from the configuration guidelines in G (Section 5.7.1). Then, we use the Theory of
Regions to synthesize a Petri-net (Section 5.7.2).

5.7.1 Deriving a transition system from configuration guidelines

In order to build a transition system hat explicitly shows the process configuration
states resulting from the application of the configuration guidelines and all possible
transitions between them, we need to identify (1) the process configuration states,
i.e. the states in which a process can be as a result of applying the configuration
guidelines and (2) the transitions between the states labeled with the configuration
guidelines, i.e. which configuration guideline leads from one state to another.

A process configuration state represents the set of selected elements’ configuration
at an instant t. It is formally defined as a m-dimensional vector, where m is the num-
ber of configurable elements in P c and each entry in the vector represents a selected
configuration of one configurable element. An entry is set to “-” if no configuration
is selected for the corresponding configurable element.

Definition 5.7.1 (process configuration state Vc). A process configuration state of
a configurable process P c is a m-dimensional vector denoted as Vc where:

1. m = |n ∈ N c : B(n) = true|, i.e. m is the number of configurable elements in
P c;

2. ∀i : 1 ≤ i ≤ m, Vc[i] ∈ {Confai , “ − ”} where ai ∈ N c ∧ B(ai) =
true ∧ Confai ∈ Cai; each entry in the vector represents a configuration of
one configurable element in P c. A “-” denotes that the corresponding element
is not configured yet.

For example, in our running example in Figure 5.1, if at some instant of the
configuration process, the configurable elements XORc1 and XORc4 are configured
to ConfXORc

1
= (Seq, {XOR3}) and ConfXORc

4
= (Seq, {a9}) respectively, then the

resulted process configuration state is Vc
1 = [(Seq, {XOR3}), (Seq, {e9}),−,−, ...,−]

where each entry in the vector corresponds to the configuration of one configurable

Formalizing Configuration Guidelines Dependencies Relations 111

element in P c (i.e. the size of the vector is equal to the number of configurable
elements in P c).

A configuration guideline G : LHS → RHS can be triggered if there exists a
state, called pre-configuration state, in which the configurations in the LHS part are
selected. If triggered, a new configuration state, called post-configuration state, in
which the configurations in the RHS are added to the already selected configurations
is resulted. The pre-and post-configuration states of a configuration guideline G ∈ G
are formally given in Definition 5.7.2.

Definition 5.7.2 (pre- and post- configuration states). A pre-configuration state of
a configuration guideline G denoted as Vc

G.pre is defined as:

1. ∀conf ∈ LHS, ∃1 ≤ i ≤ |Vc
G.pre| : Vc

G.pre[i] = conf ;

2. ∃conf ∈ RHS : ∀1 ≤ i ≤ |Vc
G.pre|,Vc

G.pre[i] 6= conf .

A post-configuration state of G denoted as Vc
G.post is defined as:

1. ∀ Vc
G.pre[i] 6= “− ”, 1 ≤ i ≤ |Vc

G.pre| : Vc
G.post[i] = Vc

G.pre[i];

2. ∀conf ∈ RHS, ∃1 ≤ i ≤ |Vc
G.post| : Vc

G.post[i] = conf .

The first requirement in Definition 5.7.2 for Vc
G.pre states that all the configu-

rations in the left-hand side LHS of G should be selected in Vc
G.pre. The second

requirement prevents the case in which the pre- and post-configuration states of G
are equal. The first requirement for Vc

G.post states that Vc
G.post has the same se-

lected configurations as Vc
G.pre. The second requirement, states that the configura-

tions in the RHS part of G are set in Vc
G.post. For example, let Vc = [−, .., a4 =

ON, .., a5 = ON,−] be a process configuration state for the process in Figure 5.1.
Vc is a pre-configuration state of the configuration guidelines G2, G5 and G6 in Ta-
ble 5.1. The post-configuration state of G2 is Vc

G2.post
= [−, .., a4 = ON, .., a5 =

ON, .., (OR, {a18, a19, a20}), ..]. A configuration guideline may have multiple possi-
ble pre- and post-configurations states. For example, all configuration states having
the configurations a4 = ON and a5 = ON are possible pre-configuration states of
G2, G5 and G12. Thus, we denote by PreG and PostG the sets of the pre- and
post-configuration states of G respectively.

A transition labeled with a configuration guideline G ∈ G exists from a process
configuration state Vc

1 to another state Vc
2 iff Vc

1 ∈ PreG and Vc
G ∈ PostG. There-

fore, a transition system derived from the set of configuration guidelines G represents
the set of pre- and post-configuration states of each guideline G ∈ G and the transi-
tions between them labeled with the corresponding guidelines. Formally, it is defined
as:

Definition 5.7.3 (Transition system TSG). A labeled transition system TSG =
(S, T,G, Si, Sf) is derived from the guidelines in G such that:

112 Supporting Process Configuration with Configuration Guidance Models

Si

[(XOR,{XOR2,XOR3})
..., - , - , -]

[(XOR,{XOR2,XOR3} , -
..., - ,ON , -,-]

[(Seq,{XOR2}) , - , -
, - , -, -]

[(Seq,{XOR2}) , -
,..., (Seq,{OR6}), -]

G
4

[- , - , - , (Seq,{a3}) ,
…, ON]

[(Seq,{XOR3}) , - , -
, - , -, -]

[(Seq,{XOR3}) , -
,(Seq,{XOR9}) , ..., -]

S1
S2 S3

S6
S7

S8

S10

[- , - , - , (Seq,{a3}) ,
(Seq,{a12}), -]

[- , - , - , (Seq,{a3}) ,
(Seq,{a12})…, ON]

S11

S12

[- , - , - , - , OFF, -]

S4

[- , - , - , (Seq,{a3}) ,
OFF, -]

S9

G
13

Figure 5.6: An excerpt of a transition system TSG derived from the configuration
guidelines in Table 5.1

s4

s9

G
13

s10 s11

s12

Figure 5.7: Transition
system

R1 {s4}
R2 {s9, s11}
R3 {s9, s10}
R4 {s10, s12}
R5 {s11, s12}

Figure 5.8: Regions

G13

R1

G7

R2

G8

R3

R4 R5

Figure 5.9: Synthesized petri
net

• S = PreG ∪ PostG : G ∈ G is the set of process configuration states;

• G is the set of transitions’ labels;

• T = {(s,G, s′) ∈ S ×G × S} is the set of relations connecting two states such
that s ∈ PreG ∧ s′ ∈ PostG;

• Si ∈ S is the initial state such that in(Si) = φ where in(s) returns the set of
states in the incoming branches of s ∈ S;

• Sf ⊆ S is the set of final states such that ∀sf ∈ Sf : out(sf) = φ where out(s)

Formalizing Configuration Guidelines Dependencies Relations 113

returns the set of states in the outgoing branches of s ∈ S.

An excerpt of the transition system derived from the configuration guidelines in
Table 5.1 is illustrated in Figure 5.6. The state Si is an artificial added start state
that is connected to the states initially with no incoming branches (According to
Definition 5.7.3, a transition system TSG has one start state). The final states are
modeled with thick lines. For instance, there exists a transition from the process
configuration state S1 to S6 labeled with the guideline G1 as S1 and S6 belong to its
pre- and post-configuration states respectively. Since TSG is a directed acyclic graph
(see A for a proof), it is always possible to define the initial and final states.

5.7.2 Deriving a Petri-Net using Theory of Regions

Having the transition system TSG as input, we use the Theory of Regions [64] in
order to derive a configuration system CS represented as a Petri net. The theory of
regions is well known for net synthesis and has been first applied to the synthesis of
Petri nets. First, we give the classical definition of a region adapted from [172]. More
details on the region extraction algorithms can be found in [64,173,174].

Definition 5.7.4 (Region). Let TSG = (S, T,G, Si, Sf) be a transition system de-
rived from the guidelines in G and S′ ⊆ S be a subset of states. S′ is a region, if for
each configuration guideline G ∈ G one of the following conditions hold:

1. all the transitions (s1, G, s2) enters S′, i.e. s1 ∈ S′ ∧ s2 /∈ S′. We say that S′ is
a post-region of G;

2. all the transitions (s1, G, s2) exist S′, i.e. s1 /∈ S′ ∧ s2 ∈ S′. We say that S′ is
a pre-region of G;

3. all the transitions (s1, G, s2) do not cross S′, i.e. s2, s2 ∈ S′ ∨ s1, s2 /∈ S′.

Two trivial regions, φ (the empty region) and S (the region consisting of all states)
exist in any transition system TSG. In the remainder we only consider non-trivial
regions. A fragment of a transition system extracted from the one in Figure 5.6 and
its set of regions are illustrated in Figures 5.7 and 5.8 respectively. For example,
R1 satisfies the second requirement in Definition 5.7.4 since all transitions labeled
with G13 (i.e. (s4, G13, s9)) exit it; R1 is a pre-region of G13; R5 satisfies the first
requirement since all transitions labeled with G8 (i.e. (s9, G8, s11) and (s10, G8, s12))
enter it; R5 is a post-region of G8.

A region r′ is a sub-region of a region r if r′ ⊂ r. For instance, in our example in
Figures 5.7 and 5.8, R1 and R2 are sub-regions of the region R = {{}, {s4}, {s9, s11}}.
A region r is minimal if there is no other region r′ which is a sub-region of it. For
example, the regions in our example in Figure 5.8 are minimal regions.

A configuration system CS, represented as a Petri net, is derived from TSG using
the Theory of Regions through the following steps:

114 Supporting Process Configuration with Configuration Guidance Models

1. each minimal region corresponds to a place in CS;

2. each configuration guideline (i.e. transition label in TSG) corresponds to a
guideline G ∈ G in CS;

3. The flow relations of CS are built in the following way: for each place pi,
G ∈ pi • if there exists a region ri such that ri is a pre-region of G; and G ∈ •pi
if ri is a post-region of G.

An example of a Petri net derived from the transition system in Figure 5.7 is given in
Figure 5.9. The above presented steps for Petri net synthesis work well for a special
class of transition systems, called elementary transition systems. In [175, 176], the
algorithm is generalized for handling any transition system.

5.8 Conclusion

In this chapter, we answered the question raised in the thesis problematic (sec-
tion 1.2.2), which is: How to assist the creation of configuration support systems?
and its two sub-questions which are: How to assist the identification of domain con-
straints? and How to assist the identification of configuration steps order?

To assist the creation of configuration support systems, we introduced our con-
figuration guidance model which aims at providing relevant recommendations for the
creation of configuration support systems. These recommendations are mainly related
to (i) the configuration guidelines that need to be integrated in a configuration sup-
port system and (ii) the order in which the configuration steps are performed. They
are provided to answer the two sub-questions on how to assist the identification of
domains constraints and how to assist the identification of configuration steps order.

To construct our model, we proposed an automated approach that learns from
the previous experience in process modeling and configuration. We used Data Mining
techniques in particular Association Rule Mining to extract configuration guidelines
from existing business process models. These guidelines reveal how the configuration
choices are interrelated in a configurable process model. In order to ensure a correct
and consistent application of the guidelines, we proposed to formalize their depen-
dencies’ relations using Petri-nets. Finally, we proposed to infer the order in which
the configuration steps are performed using Graph theory in particular the derivation
of optimal spanning trees.

Our principles presented in Section 1.4.1 are respected:

• Automation: We propose an automated approach to extract configuration
guidance models from business process repositories. We do not ask the process
provider for any additional manual effort.

• Implicit knowledge exploitation: We exploit the information hidden in
process models to infer the functionalities of a configuration guidance model.

Conclusion 115

We extract configuration guidelines and infer the configuration steps order from
the extracted guidelines.

• Focused results: Our configuration guidance model assists step by step the
process provider and recommends elements’ configurations instead of entire pro-
cess configurations.

• Balanced computation: To derive the configuration guidelines, we match
and extract only the elements’ configurations instead of entire process models
from existing business process repositories. Our computation time is bounded
by the used techniques such as the derivation of association rules and of op-
timal spanning trees for which efficient algorithms have been developed in the
literature [169,171,177].

Our approach is complementary to the existing domain-based ones. Along with
the domain expert knowledge, it improves the quality of created configuration sup-
port systems by (i) integrating the users’ experience in process configuration and (ii)
reducing time and manual effort.

116 Supporting Process Configuration with Configuration Guidance Models

Chapter 6

Using event Logs for
Configurable Process Design and

Configuration

Contents

6.1 Introduction . 117

6.2 Deriving Configurable Process Fragments from Event Logs . . 120

6.2.1 Extracting Log-based Neighborhood Contexts 121

6.2.2 Mining Configurable Process Fragments 123

6.3 Mining Ranked Configuration Guidelines 125

6.3.1 A frequency suffix tree for configuration executions 125

6.3.2 Deriving ranked configuration guidelines 128

6.4 Conclusion . 131

6.1 Introduction

In this chapter, we present an approach that builds upon event logs to assist the
design and configuration of configurable process models using event logs. We exploit
event logs because of four reasons:

1. They exist in all transactional information systems such as ERP, CRM, or work-
flow management systems [127]. So, they are large resources that are commonly
available.

2. Business process models do not always exist. For example, in case of the flow
of patients in a hospital, all activities are logged but information about the un-
derlying process is typically missing [127]. In this case, our previous techniques
presented in the previous chapters cannot be applied. Therefore, we propose to
use logs as an alternative input.

117

118 Using event Logs for Configurable Process Design and Configuration

3. They present the reality of the business process execution. They include the
activity execution frequency, which is useful information to identify the impor-
tance of a particular configuration and is not presented byan a-priori process
model.

4. They contain useful information that can be discovered to assist the business
process design and diagnosis. For example, they can be mined to check the
conformance of a-priori business process models [93, 128], to detect execution
errors [129,130] or to observe social behaviors between users or services [131].

Given a collection of event logs for different variants of the same process, we pro-
pose to discover, for a selected position in a process graph, a configurable process
fragment. Then, we propose a frequency-based approach that guides the configu-
ration of the discovered fragment with ranked configuration guidelines. Thanks to
these guidelines, a process user is interactively assisted with recommendations on the
suitable elements’ configurations that are frequently executed together.

Concretely, we define and capture the log-based neighborhood context from a col-
lection of event logs. We merge the extracted log-based neighborhood contexts into
one log and propose to discover a single process fragment that describes the behavior
of all merged logs. Configurable elements are then identified using the notion of log-
based shared and unshared activities. To derive ranked configuration guidelines, we
propose to explore and model the activities’ execution importance reflected by their
frequency of appearance in the merged logs using suffix trees [66,178]. Suffix trees are
efficient data structure that provide linear-time solutions for pattern matching prob-
lems. Then, using concepts from Set theory, we derive the elements’ configurations
and rank their execution frequency from the suffix tree. The ranked configuration
executions are presented as guidelines to the process user and are updated after each
step to take into account the already chosen ones.

We reuse our motivating example presented in Section 1.3 to illustrate our ap-
proach. We assume that a process provider is designing a travel booking process
(Figure 6.1). He is using our approach for having recommendations on the config-
urable fragments to fill-in the missing parts in the process. He selects the activity a4

(Request credit card info), set the number of considered layers to k = 2 and asks the
system for recommendation.

Select a flight
Send email

confirmation?
Request

credit card
info

?

Figure 6.1: An ongoing design of a travel booking process

We also assume that there exists a collection of event logs that record the exe-

Introduction 119

cution of different processes from which we show two excerpts of event logs 1 L1 in
Table 6.1 (which corresponds to the process variant in Figure 6.2a) and L2 in Ta-
ble 6.2 (which corresponds to the process variant in Figure 6.2b). Each activity may
be executed in different logs and each trace may be executed multiple times. For
example, the execution of the activities a1 and a2 are recorded in L1 and L2; the
trace < a1, a2, a4, a3, a5, a8, a9 > is executed 4 times (Trace ID = 1, 3, 4, 5, 6).

Trace ID Log traces

1 < a1, a2, a4, a3, a5, a8, a9 >
2 < a1, a2, a3, a4, a5, a8, a9 >
3 < a1, a2, a4, a3, a5, a8, a9 >
4 < a1, a2, a4, a3, a5, a8, a9 >
5 < a1, a2, a4, a3, a5, a8, a9 >
6 < a1, a2, a4, a3, a5, a8, a9 >
7 < a1, a2, a3, a4, a5, a8, a9 >

Table 6.1: L1: Event log of the process
variant in Figure 6.2a

Trace ID Log traces

1 < a1, a0, a2, a6, a7, a3, a4, a5 >
2 < a1, a0, a2, a6, a7, a4, a3, a5 >
3 < a1, a0, a2, a4, a3, a5 >
4 < a1, a0, a2, a3, a4, a5 >
5 < a1, a0, a2, a6, a7 >
6 < a1, a0, a2, a6, a7 >
7 < a1, a0, a2, a6, a7 >
8 < a1, a0, a2, a3, a4, a5 >
9 < a1, a0, a2, a4, a3, a5 >

Table 6.2: L2: Event log of the process
variant in Figure 6.2b

Starty(S1)

Searchyflightsy
(a1)

Selectyayflighty
(a2) AND2

Requestycredity
cardyinfoy(a4)

Requesty
personalyinfoy

(a3)

AND3

Confirmy
paymenty(a5)

Sendyemaily
confirmationy

(a8)
Endy(E2)Messagey(M1)

Archivey(a9)

(a) BP1: A flight booking process variant

StartEDS1)

SearchEflightsE
Da1)

selectEaEflightE
Da2) XOR2

SearchEhotelsE
Da6)

ProcessErequestEDT1)

confirmE
paymentEDa5)

EndEDE1)

RequestE
personalEinfoE

Da3)

RequestE
creditEcardE

infoEDa4)

XOR1

SelectEaEhotelE
Da7)

RecommendE
flightsEDa0)

AND3
AND4

(b) BP2: A flight and hotel booking process variant

Using our approach, we recommend a configurable fragment discovered from the
collection of event logs. We also discover a set of ranked configuration guidelines for
assisting the configuration of the configurable elements. An example of the discovered
fragment and its configuration guidelines are illustrated in Figure 6.3. The fragment

1The event logs are shown in the form of multisets of traces and we assume that no error occurs
during the business process execution

120 Using event Logs for Configurable Process Design and Configuration

a0

a1
XOR1

a2
OR2

a6 a7
AND3

OR4

OR5

a3

a4

AND6

a5 a8

ConfXOR1=(Seq,h{a0}):hhigh
ConfXOR1=(Seq,h{a1}):hmedium

ConfOR2=h(AND,h{a3,a4})h:hhigh
ConfOR2=h(Seq,h{a6})h:hmedium

ConfOR5=h(Seq,h{a2})h:hhigh
ConfOR5=(XORh,h{a2,a7})h:hmedium

Confa8=ON:hhigh
Confa8=OFF:hmedium

ConfOR4=h(Seq,h{a2})h:hhigh
ConfOR4=(XORh,h{a2,a7})h:hmedium

Figure 6.3: The discovered configurable fragment of the activity a4 within 2-layers
and the ranked configuration guidelines attached to the configurable elements as text
annotations

includes the selected activity a4, its activities’ neighbors and their relations through
configurable elements. The discovered configuration guidelines are attached to the
configurable elements in text annotations. They depict the rank of the elements’
configurations which reflect their importance, in terms of frequency of execution in
the logs. These guidelines are updated after each configuration step in order to take
into account the already selected ones.

The work in this chapter was published in conference proceedings [179].

This chapter is organized as follows: In Section 6.2, we elaborate our technique for
deriving configurable process fragments from a collection of event logs. Section 6.3
presents our approach to mine ranked configuration guidelines for the discovered
configurable fragment. Finally, we conclude the chapter in Section 6.4.

6.2 Deriving Configurable Process Fragments from Event
Logs

This section elaborates our approach to mine a configurable process fragment out of
collections of event logs. Let L = {Li ∈ M(A∗i) : i ≥ 1} be a collection of event
logs where Ai is a set of activities in some universe of activities UA; ax and k are the
activity and the desired number of layers selected by the process designer.

Algorithm 5 illustrates the different steps to discover a configurable fragment
P c = (N,E, T, L,B,C∗). First, we extract from each event log Li ∈ L, the log-based
neighborhood context of ax (Lines 3-8, detailed in Section 6.2.1). Then, a configurable
process fragment is discovered from the extracted log-based neighborhood contexts
in two steps (Lines 10-11, detailed in Section 6.2.2).

Deriving Configurable Process Fragments from Event Logs 121

Algorithm 5 Algorithm for deriving configurable fragments from a collection of event
logs

1: input: L, ax, k
2: output: P c = (N,E, T, L,B,C∗)
3: for Li ∈ L do
4: Ckax = {ax →j b} ∪ {b→j ax}, 1 ≤ j ≤ k ∧ b ∈ Ai
5: P kax = {ax ||j b}, 1 ≤ j ≤ k ∧ b ∈ Ai
6: Ckax = {ax #j b}, 1 ≤ j ≤ k ∧ b ∈ Ai
7: Lkax = ∪σ∈Li(σ↓{ax}∪Ck

ax
∪Pk

ax
∪Ek

ax
)

8: Lkax = Lkax ∪ L
k
ax

9: end for
10: Lmerged = Merge(Lkax)
11: P = MineProcess(Lmerged)
12: P c = setConfigurableElements(P,∪iAkaxi

)

6.2.1 Extracting Log-based Neighborhood Contexts

The log-based neighborhood context of an activity ax ∈ A derived from an event log L
within k-layers represents the portions of traces in L that contain ax and its neighbor
activities within a distance of length k. A neighbor activity can be connected to ax via
one of the log-based ordering relations (Definition 3.4.2): causality (→), parallelism
(||) or choice (#). The causality relation ax → b assumes that b is a direct successor
of ax. Therefore, the distance from ax to b is equal to 1 and b is a 1st-layer neighbor
of a. In order to define a kth-layer neighbor, we define the distance k of a causal
relation (Definition 6.2.1). This definition is inspired from an earlier work on Petri-
nets semantics [180].

Definition 6.2.1 (kth-causality). Two activities a, b ∈ A are in a kth-causal relation
in the event log L denoted by a →k b iff: ∃σ ∈ L and 1 ≤ i ≤ |σ| − k such that
σ[i] = a, σ[i+ k] = b ∧ ∀i ≤ j ≤ i+ k : σ[j]→ σ[j + 1].

For example, in the event log in Table 6.1, a1 is in a 2nd-causal relation with
a4 (i.e. a1 →2 a4) since there exists the trace < a1, a2, a4, a3, a5, a8 > and we have
a1 → a2 and a2 → a4.

In contrast to the causal relation, the parallel and choice relations do not reference
a distance notion. This issue is illustrated in Figure 6.7. The process fragment in
Figure 6.5 is mined from the log traces in Table 6.4. This fragment contains the
activity d which is in a parallel relation with b and c (i.e. from the log traces, we
have d||b and d||c). The neighborhood context graph of the activity d within 3-layers
is depicted in Figure 6.6. The activity a is on the 1st-layer of d since |SFad| = | <
F da > | = 1; b is on the 2nd-layer since |SFbd| = | < F da , F

b
a > | = 2 and c is on the

3rd-layer since |SFcd| = | < F da , F
b
a , F

c
a > | = 3 (Definition 4.2.4). Therefore, if we

122 Using event Logs for Configurable Process Design and Configuration

Trace ID Log traces

1 < a, b, c, d >
2 < a, b, d, c >
3 < a, d, b, c >

Figure 6.4: An example of an event log
with parallel relations

a

b c

d

Figure 6.5: The fragment corre-
sponding to the event log in Fig-
ure 6.4

d a b c

1st layer 2nd layer 3rd layer

Figure 6.6: The neighborhood
context graph of the activity g in
the process fragment in Figure 6.7

Figure 6.7: The parallel relations in neighborhood context graphs

want to extract the log-based neighborhood context of the activity d from the event
log in Table 6.4 and within 2-layers, only the activities a and b should be considered.
This issue comes from the fact that the activities in a neighborhood context graph
are distributed over the layers based on a causal relation. For example, b is on the
2nd-layer of d because there exists a path from a to b then from a to b; c in on the
3rd-layer because there exists a path from a to d, then from a to b and last from b to
c. In order to overcome this issue, we introduce the notion of distance in parallel and
choice relations in an event log (Definition 6.2.2 and Definition 6.2.3).

Definition 6.2.2 (kth-parallelism). Two activities a, b ∈ A are in a kth-parallel re-
lation in the event log L denoted by a||kb iff: a||b and ∃al ∈ A such that al →k−1

a ∧ al →1 b.

Definition 6.2.3 (kth-choice). Two activities a, b ∈ A are in a kth-choice relation in
the event log L denoted by a#kb iff: a#b and ∃al ∈ A such that al →k−1 a ∧ al →1 b.

Referring to the log traces in Table 6.4, we have d ||3 c since d||c and there exists
a, b ∈ A where a→2 c and a→1 d.

Having introduced the kth-causal, -parallel and -choice relations with an activity
ax in an event log L, the first step of our approach consists of extracting the activities
that are within 1st- to kth relations with ax in each event log Li ∈ L (Lines 3-6 in
Algorithm 5). The log-based neighborhood context graph of ax within k-layers is then

Deriving Configurable Process Fragments from Event Logs 123

defined as the projection of the log traces on the extracted activities (Line 7). For
example, the log-based neighborhood context graphs of the activity a4 within 2-layers
extracted from the event logs in Table 6.1 and Table 6.2 are depicted in Table 6.3 and
Table 6.4 respectively. L2

a41
is the projection of L1 on {a1, a2, a3, a4, a5, a8} as we have

the following relations a2 →1 a4; a4 →1 a5; a1 →2 a4; a3 ||2 a4 and a4 →2 a8. L2
a42

is the projection of L2 on {a0, a2, a3, a4, a5, a6, a7} as we have the following relations
a2 →1 a4; a4 →1 a5; a7 →1 a4; a0 →2 a4; a6 →2 a4 and a4 ||2 a3.

Trace ID Log traces

1 < a1, a2, a4, a3, a5, a8 >
2 < a1, a2, a3, a4, a5, a8 >
3 < a1, a2, a4, a3, a5, a8 >
4 < a1, a2, a4, a3, a5, a8 >
5 < a1, a2, a4, a3, a5, a8 >
6 < a1, a2, a4, a3, a5, a8 >
7 < a1, a2, a3, a4, a5, a8 >

Table 6.3: L2
a41

: Log-based event log ex-
tracted from L1 in Table 6.1

Trace ID Log traces

1 < a0, a2, a6, a7, a3, a4, a5 >
2 < a0, a2, a6, a7, a4, a3, a5 >
3 < a0, a2, a4, a3, a5 >
4 < a0, a2, a3, a4, a5 >
5 < a0, a2, a6, a7 >
6 < a0, a2, a6, a7 >
7 < a0, a2, a6, a7 >
8 < a0, a2, a3, a4, a5 >
9 < a0, a2, a4, a3, a5 >

Table 6.4: L2
a42

: Log-based event log ex-
tracted from L2 in Table 6.2

At the end of this step, a set of extracted logs stocked in Lkax is obtained (Line 8).
This log set is used in the next step in order to mine a configurable process fragment.

6.2.2 Mining Configurable Process Fragments

The logs in Lkax obtained from the previous step are merged into one log Lmerged

(Line 10 in Algorithm 5). The merged log is then used as input for an existing mining
algorithm (such as alpha algorithm [127,154]) in order to discover a process fragment
that describes the recorded behavior (Line 11). An example of the discovered process
fragment from the merged lof Lmerged = Merge(L2

a41
, L2

a42
) is illustrated in Figure 6.8.

a0

a1
XOR1

a2
OR2

a6 a7
AND3

OR4

OR5

a3

a4
AND6

a5 a8

Figure 6.8: The process fragment discovered from the logs L2
a21

and L2
a42

in Table 6.3
and Table 6.4 respectively

However, as existing mining algorithms are not able to explicitly specify the con-

124 Using event Logs for Configurable Process Design and Configuration

figurable elements in the discovered fragment, we provide in the following a simple
approach for detecting configurable activities and gateways (Line 12).

Let P = (N,E, T, L) be the discovered process fragment from the merged log
Lmerged and Ak

ax =
⋃
iA

k
axi

be the set of alphabets of the extracted logs Lkax =⋃
i L

k
ax . We say that an activity a ∈ P is shared if it belongs to multiple alphabets,

i.e. a ∈
⋂

2≤i≤|Lk
ax |
Lkaxi

; otherwise it is unshared. For example, in the log-based

neighborhood contexts in Table 6.3 and Table 6.4, the activities a2, a3, a4 and a5 are
shared as they are common between the two logs while a1 and a8 in L1

a41
and a0, a6

and a7 in L2
a42

are unshared as they belong only to L1
a41

and L2
a42

respectively.
A shared activity means that it appears in all the origin event logs and therefore

it is always included in the derived variants and cannot be configurable, e.g. it
cannot be configured to OFF to exclude it. While an unshared activity means that
in some process variants, this activity does not appear and therefore is configurable,
e.g. it can be configured to OFF to exclude it from the derived process variant or to
ON to keep it. For example, in the process fragment in Figure 6.8, the activities a0,
a1, a6, a7 and a8 should be configurable.

A split (respectively join) gateway is configurable if it has unshared ac-
tivities in its transitive postset 2 (respectively transitive preset) and those activities
originate from different alphabets. For example, in Figure 6.8, the join XOR1 has
two unshared activities a0 and a1 in its transitive preset that originate from L2

a42
and

L2
a41

respectively, therefore it is configurable. OR2 has the unshared activity a6 in its
transitive postset, thus it is configurable. The same holds for OR4 and OR5. AND3

and AND4 have the shared activities a3 and a4 in their transitive postset and preset
respectively, thus they are not configurable. An example of the resulted configurable
process fragment after this step is illustrated in Figure 6.9.

a0

a1
XOR1

a2
OR2

a6 a7
AND3

OR4

OR5

a3

a4
AND6

a5 a8

Figure 6.9: The resulted configurable process fragment after applyinh the
shared/unshared activity strategy

In this example, the activities a0 and a1 are unnecessary configurable since XOR2

is configurable. Through the configuration of XOR2, a0 and a1 can be included or
excluded. The same holds for a6 and a7 which can be included or excluded through
the configuration of the configurable gateways OR2, OR4 andOR5. Therefore, unnec-
essary configurable activities are those that are in the transitive postset or preset of a

2The transitive postset of a gateway g denoted as g •c is the set of activities in its outgoing
branches that are reachable from g via a chain of gateways [43]

Mining Ranked Configuration Guidelines 125

configurable gateway. One could apply this reduction rule to remove the unnecessary
configurable elements in the discovered fragment. The resulted fragment after this
step is illustrated in Figure 6.3.

In the next section, we present our frequency-based approach to derive ranked
configuration guidelines for the configurable elements in P c that are attached as text
annotations to the configurable elements in P c (e.g. in Figure 6.3). These guidelines
assist the process user selecting desirable configuration choices.

6.3 Mining Ranked Configuration Guidelines

This section elaborates our approach to derive ranked configuration guidelines that
assist the configuration of the discovered process fragment P c. Basically, we pro-
pose to explore the recorded executions in the merged sublog Lmerged in order to
recommend the frequently executed paths as ranked guidelines. An example of these
guidelines is depicted in Figure 6.3. The guidelines are attached as text annotations
to the configurable elements. For example, the guidelines of the configurable XOR1

state that the configuration (Seq, {a0}) is highly executed while (Seq, {a1}) is mod-
erately executed in Lmerged. The guidelines of the configurable OR2 state that the
configuration (AND, {a3, a4}) 3 is highly executed while (Seq, {a6}) is moderately
executed in Lmerged. These guidelines are dynamic in the sense that they are updated
after each configuration step in order to take the already chosen configurations into
consideration.

To extract the guidelines, first, we model the traces recorded in Lmerged in a
frequency-based suffix tree (Section 6.3.1). Then, for each configurable element in
P c, we derive its configurations and rank them with high, medium or low depending
on their frequencies recorded by the suffix tree and taking into account the previously
chosen configurations (Section 6.3.2).

6.3.1 A frequency suffix tree for configuration executions

Since the log traces are sequences of executed activities, finding a specific configuration
in an event log can be mapped to a string pattern matching problem. For example,
finding a configuration ConfANDc =< AND, {a, b} > refers to searching for a parallel
relation between a and b; that is, searching for the traces including a and b in different
orders. We say that a configuration ConfANDc has been executed x times if, in
Lmerged, the activities a and b appears x times in the parallel relation.

In light of the above, we propose to use suffix trees [178] to model all possible exe-
cuted configurations and their frequencies. A suffix tree is an efficient data structure
for storing all possible substrings of a given string in a linear time [181]. It provides
linear-time solutions for string pattern matching problems and has been widely used

3Please note that in this chapter we represent the outgoing branches of a split gateway configura-
tion by the transitive postset as the logs record only the activities’ executions

126 Using event Logs for Configurable Process Design and Configuration

in biological domain for DNA sequence analysis. A suffix tree for a string S hav-
ing l distinct characters is a rooted directed tree where each edge is labeled with a
nonempty substring of S and each internal node has at least two children. Two edges
issued from the same node cannot have the same labels. Furthermore, the concate-
nation of the edges’ label of every path from a root to an internal node represents
a suffix of S. A suffix tree can be efficiently built using Ukkonen’s algorithm [181]
which is a linear-time algorithm for building incrementally the suffix tree for a set
of strings. Some variants of the suffix tree have been proposed such as the proba-
bilistic suffix tree [182] and the weighted suffix tree [183]. In our work, we propose
to use a frequency-based suffix tree where each node is labeled by the frequency of
occurrence of the suffix starting from the root to that node in an event log. An
excerpt of the frequency suffix tree for Lmerged = Merge(L2

a41
, L2

a41
) is illustrated in

Figure 6.10. For example, in this suffix tree, < a1, a2 > is executed 7 times in Lmerged,
< a1, a2, a4, a3, a5, a8 > is executed 5 times, and son on.

7
16 16 13 7

5 2

8 5

5

a 8

2

a 8

8 5

4

a 5a 8

5

2

a 8

7

a 8

9

4

2 2

a 4
, a

3
 ,

a 5

...

a 7

... ...

...

Figure 6.10: An excerpt of a frequency suffix tree derived from Lmerged

In order to build the frequency suffix tree for the elements’ configurations in P c

referred to as Sconf, we propose to project the traces in Lmerged on (i) the configurable
activities and (ii) the activities in the transitive preset and postset of the configurable
gateways. We refer to the projected log as Configuration log (Definition 6.3.1).

Definition 6.3.1 (Configuration log). A configuration log Lconf derived from Lmerged

and P c is the projection of Lmerged on (i) the configurable activities and (ii) the ac-
tivities in the transitive preset and postset of the join and split configurable gateways
respectively, i.e. Lconf =

⋃
σ∈Lmerged

σ↓C where C = A ∪ T such that A = {a ∈ N :

B(a) = true ∧ T (a) = activity} and T = {a ∈ N : a ∈ •cg ∧ B(g) = true ∧ | • g| >
1} ∪ {a ∈ N : a ∈ g •c ∧ B(g) = true ∧ |g • | > 1}.

For example, the configuration log Lconf derived from Lmerged = Merge(L2
a41
, L2

a42
)

and the configurable fragment in Figure 6.3 is illustrated in Table 6.5 and is defined

Mining Ranked Configuration Guidelines 127

as the projection of Lmerged on the activities a1, a0, a2, a3, a4, a6, a7 and a8 (a1 and
a2 are in the transitive preset of the configurable gateway XOR1; a2 and a7 are in
the transitive preset of OR4 and OR5; a6, a3 and a4 are in the transitive postset of
OR2: a8 is a configurable activity). The corresponding suffix tree Sconf is illustrated
in Figure 6.11.

Trace ID Log traces

1 < a1, a2, a4, a3, a8 >
2 < a1, a2, a3, a4, a8 >
3 < a1, a2, a4, a3, a8 >
4 < a1, a2, a4, a3, a8 >
5 < a1, a2, a4, a3, a8 >
6 < a1, a2, a4, a3, a8 >
7 < a1, a2, a3, a4, a8 >
8 < a0, a2, a6, a7, a3, a4 >
9 < a0, a2, a6, a7, a4, a3 >
10 < a0, a2, a4, a3 >
11 < a0, a2, a3, a4 >
12 < a0, a2, a6, a7 >
13 < a0, a2, a6, a7 >
14 < a0, a2, a6, a7 >
15 < a0, a2, a3, a4 >
15 < a0, a2, a4, a3 >

Table 6.5: the configuration log Lconf derived from Lmerged

7
16 16 7

5 2

8 5

5

a 8

8 5

4

a 8

9

4 2 2

a 4
, a

3

...

a 7

... ...

...

Figure 6.11: The suffix tree Sconf of the configuration log Lconf

128 Using event Logs for Configurable Process Design and Configuration

In the next section, we propose an approach to derive from Sconf, the elements’
configurations and their execution frequencies as ranked configuration guidelines.

6.3.2 Deriving ranked configuration guidelines

Using the frequency-based suffix tree Sconf, we compute for each configurable ele-
ment the frequency of execution of all its possible configurations. Then, based on a
predefined execution frequency threshold, we attribute to each configuration a rank
r ∈ {high, medium, low}. This process is repeated after each selected configuration
in order to recompute the configurations’ frequencies of the remaining configurable
elements based on the previously chosen ones. Algorithm 6 illustrates the different
steps. It takes as input the suffix tree Sconf, the configurable fragment P c, the set of
configurable elements Ec in P c and the list of selected elements’ configuration L which
is initially empty and provides as output the list of ranked configuration guidelines
Lguid.

The algorithm consists of a loop that is repeated until there are no more config-
urable elements in Ec (Line 3), i.e. all configurable elements have been configured
by the process user. After each selected configuration, the list of ranked configura-
tion guidelines Lguid is reset in order to recompute the new guidelines that take into
account the already chosen configurations (Line 4). For each configurable element
ec ∈ Ec, we get its possible configurations according to Definition 3.3.4 (Lines 5-6).
Then, we compute for each configuration, its frequency of execution derived from
Sconf (Lines 7-19). Two cases can be presented: (i) we are at the initial stage where
no elements are configured yet (Lines 8-10) or (ii) there exists a set of already selected
configurations in L (Lines 10-15).

For the first case, the elements’ configurations and their frequencies of execution
are derived from Sconf as follows. If ec is an activity (Line 9), then the frequency of the
configuration ON , denoted Fec=ON is equal to the frequency of the suffix ec in Sconf.
For example, for the configurable activity a8 in the configurable process in Figure 6.3,
the frequency of the configuration Ca8 = ON in Sconf in Figure 6.11 is Fa8=ON = 7.
The frequency Fa8=OFF of the configuration Ca8 = OFF is equal to the maximal
frequency in Sconf minus FC=ON . For example, for a8, Fa8=OFF = 16− 7 = 9.

Regarding the configuration of the gateways (OR, AND and XOR), we show that
using the frequency suffix tree, we compute the frequency of an AND configuration
denoted as F∧C , from which we can derive the frequencies of an XOR configuration
denoted as F×C and an OR configuration denoted as F∨C . In the following, we show
the split gateway case; the same holds for a join gateway. Let C = (AND,P) such
that P ∈ P(ec •c) be a configuration of the gateway element ec. To find the frequency
of C, we search in Sconf for all the suffixes containing the activities in P in different
positions. For example, Let C = (AND, {a3, a4}) be a configuration of OR2 in the
configurable process in Figure 6.3. Searching in the suffix tree in Figure 6.11 for the
configuration C returns the suffixes a4a3 and a3a4. For each matched suffix m, we

Mining Ranked Configuration Guidelines 129

Algorithm 6 Algorithm for deriving ranked guidelines

1: input: suffix tree Sconf, P
c configurable elements Ec = {e ∈ N : B(e) = true},

list of selected configurations L = {Cconfi : 1 ≤ i ≤ |Ec|}
2: output: list of ranked guidelines Lguid
3: while Ec 6= φ do
4: Lguid = new List()
5: for ec ∈ Ec do
6: Get the set of all valid configurations based on Definition 3.3.4
7: for each possible configuration C do
8: if L = φ {Initially no configured elements} then
9: if ec is an activity: Compute the frequency FC of the configuration Cec

10: if ec is a gateway: Compute the frequency F×C and/or F∧C according
to its type

11: else
12: get the logical formula LF = ∧|L|i=1Ci ∧ C where Ci is a previously

selected configuration and C is the current one
13: Get the disjunctive normal form DN of LF
14: Compute the frequency F×DN of DN
15: end if
16: Compute the corresponding execution ratio RC
17: add the guideline G =< C, r > to the list Lguid where r is the rank

corresponding to RC
18: end for
19: end for
20: add the selected configuration to L
21: remove the corresponding configurable gateway from Ec

22: end while

denote by fm its frequency of occurrence. For example the frequency of the matches
a3a4 and a4a3 are fa3a4 = 16 and fa4a3 = 8 respectively (the frequencies in the nodes
in red color in the suffix tree in Figure 6.11). In order, to find the frequency F∧C of
C, we sum the frequencies of all found matches:

F∧C =
∑
i

fmi (6.1)

The execution of an XOR configuration C =< XOR,P > represents the cases
in which the corresponding activities in P are not executed together. While the
execution of an OR configuration C =< OR,P > includes those of the AND and
the XOR executions. To derive the frequency of execution of an XOR, we use
the Set theory to represent the activities in P according to the configuration type
(AND, OR or XOR). For example, suppose that P = {A,B}, then C = (AND,P),

130 Using event Logs for Configurable Process Design and Configuration

C = (XOR,P) and C = (OR,P) are represented as in Figure 6.12. Consequently,
the configurations F×C is computed using the statistical theory as follows:

F×C =

n∑
i=1

fai −
n∑
k%2

k ×
∑
k

F∧Pk
+

n∑
l=k%2+1

l ×
∑
l

F∧Pl
(6.2)

where n = |P |; Pk, Pl ∈ P(P); |Pk| = k and |Pl| = l. For example, the frequency
of execution of the XOR configuration C =< XOR, {a3, a4, a6} > is F×(a3,a4,a6) =
fa3 + fa4 + fa6 − 2× (F∧(a3,a4) + F∧(a4,a6) + F∧(a3,a6)) + 3× F∧(a3,a4,a6).

A B

A ˄ B A x B

A B

A v B

A B

Figure 6.12: The representation of the three relations AND, XOR and OR using the
set theory

The frequency of execution of an OR configuration denoted as F∨C is the sum of
F∧C and F×C . Since F∨C would be the highest in all cases, we omit ranking the
OR configurations in this work, and we let its choice to the process user.

Having derived and computed the frequencies of the elements’ configurations, we
rank each configuration C of the element ec by computing its frequency ration RC
(Line 16) as:

RC =
FC

max(∪iFCi)
(6.3)

where FC is the frequency of the corresponding configuration and max(∪iFCi) is the
maximal frequency among all possible configurations of ec. A ratio equal to 1 denotes
that the corresponding configuration appears in all possible executions, while a ratio
equal to 0 denotes that it has been never executed. Based on RC , we propose to
assign a rank r ∈ {high,medium, low} such that:

r =


high if minH ≤ RC ≤ 1

medium if minM ≤ RC < minH

low if 0 < RC < minM

(6.4)

Where minH and minM are two predefined thresholds. The derived configu-
rations and their computed rank are added to the list of guidelines Lguid (Line 17)
which is presented to the process user as a set of text annotations attached to the
configurable elements (Figure 6.3).

For the second case where the set of selected configurations L is not empty (Lines
12-14), we compute the configurations frequencies and rank them by taking into

Conclusion 131

account the frequency of the already selected configurations in L. To do so, we
create the logical formula LF by intersecting the previous configurations with the
current one (Line 12). For example, in Figure 6.3, suppose that the configuration
CXOR1 = (XOR, {a1, a0}) is selected by the process user and added to L. To compute
the frequency of the configuration COR2 = (AND, {a3, a4}), we derive the logical
formula LF = (a1 × a0) ∧ (a3 ∧ a4). Since, the frequency of an AND configuration
is the basis for deriving the others frequencies, we transform the logical formula LF
into its disjunctive normal form DF (i.e. the disjunction of conjunction) (Line 13).
Having DF , we can now compute the final frequency F×DF (Line 14). For example,
the disjunctive normal form of LF is DF = (a1∧a3)×(a1∧a4)×(a2∧a3)×(a2∧a4) =
A×B × C ×D where A = a1 ∧ a3, B = a1 ∧ a4, C = a2 ∧ a3 and D = a2 ∧ a4. The
corresponding frequency F×{A,B,C,D} = FA+FB+FC +FD−2×(F∧{A,B}+F∧{A,C}+
F∧{A,D}+F∧{B,C}+F∧{B,D}+F∧{C,D})−4×F∧{A,B,C,D}+3×(F∧{A,B,C}+F∧{A,B,D}+
F∧B,C,D). F×{A,B,C,D} corresponds to the frequency of occurrence of the configuration
COR2 = (AND, {a3, a4}) along with CXOR1 = (XOR, {a0, a1}). The corresponding

execution ratio is RC =
F×DF

max(∪FCOR2
) . In this way, the ranked configuration guidelines

are repeatedly updated after each configuration step to take into account the newly
added configurations to L.

6.4 Conclusion

In this chapter, we answered the question raised in the thesis problematic (Sec-
tion 1.2), which is: Can execution logs be useful? and How?. We showed that event
logs can be useful in both cases: (i) to assist the design of configurable process mod-
els and (ii) to support their configuration. We proposed to discover a configurable
process fragment from a collection of event logs and a set of configuration guidelines
for assisting its configuration. We captured and extracted the log-based neighborhood
contexts of an activity from different event logs. We merged the extracted logs and
used an existing mining algorithm to discover a fragment that describes the behavior
of all merged logs. To identify configurable elements, we defined a set of rules based
on the notion of log-based shared and unshared activities.

We then explored the recorded executions in the merged logs in order to recom-
mend the frequently executed configurations as ranked guidelines. We modeled the
activities’ executions and their frequencies in a suffix tree which provide linear-time
solutions for pattern matching problems. We used concepts from Set theory to derive
the elements’ configurations and ranked their frequency of execution from the suffix
tree. The ranked configuration executions are updated after each configuration step
to take into account the already chosen ones.

Compared to the approaches that propose to mine process models and iden-
tify their elements’ configurations by replaying the logs on the discovered model
(e.g. [46,47]), our approach is simpler and faster. It does not only identify the config-

132 Using event Logs for Configurable Process Design and Configuration

urable elements and their configurations but also their importance reflected by their
frequency of execution in the event logs. It also provides an interactive configuration
assistance by recommending the elements’ configurations that are suitable taking into
account the previously selected ones.

Our principles presented in Section 1.4.1 are also respected in this chapter:

• Automation: We use process mining techniques to automatically discover
configurable process fragments and mine configuration guidelines. We do not
ask process providers for any additional manual effort or input data except
the activity in the process graph for which he needs to discover a configurable
fragment.

• Implicit knowledge exploitation: We exploit the log-based activity neigh-
borhood context and the elements’ configuration execution importance which
are implicit knowledge hidden in event logs.

• Focused results: We recommend configurable fragments instead of entire con-
figurable models. We also recommend ranked configuration guidelines for each
element configurations instead of entire process configurations.

• Balanced computation: We discover configurable fragments instead of en-
tire process models from event logs. We project the logs on a small subset of
activities that represent the closet neighborhood context of a selected one. We
use suffix trees to mine the configuration guidelines which provide linear-time
solutions. Our approach does not face the NP-complete problem.

Chapter 7

Evaluation and Validation

Contents

7.1 Introduction . 134

7.2 Proof of Concept . 135

7.2.1 Signavio Extension . 135

7.2.2 ProM Plug-in . 137

7.3 Experimentation . 139

7.3.1 Configurable Process Design Experiments 140

7.3.1.1 Approach feasibility and parameter impact 141

7.3.1.2 Results quality . 143

7.3.1.3 Algorithm performance 145

7.3.1.4 Synthesis . 146

7.3.2 Process Configuration Experiments 147

7.3.2.1 Results quality and parameter impact 148

7.3.2.2 Approach accuracy and parameter impact 150

7.3.2.3 Synthesis . 151

7.3.3 Log-based Experiments . 152

7.3.3.1 Configurable fragments quality 153

7.3.3.2 Configuration guidelines efficiency 155

7.3.3.3 Synthesis . 156

7.4 Case Study . 156

7.4.1 Case Study Objective . 157

7.4.2 Design, Data Collection and Execution 157

7.4.3 Results Analysis and Findings . 158

7.4.4 Threats to Validity . 160

7.5 Conclusion . 160

133

134 Evaluation and Validation

7.1 Introduction

In this chapter, we present (i) the implementation we have done to realize our auto-
mated support techniques, (ii) the experiments we have made to evaluate the efficiency
of our solutions and (iii) the case study we have conducted to show the effectiveness
of a frequency-based approach for process configuration. Our goal is (i) to prove
that our approach is feasible and accurate in real use-cases and (ii) to analyze the
parameters that impact our results’ quality.

We implemented three proof of concepts as extensions of two open-source business
process management tools, namely Signavio which is a web based process modeling
tool and ProM which is an extensible framework for process mining.

• The first proof of concept, named FragMerg, is an extension of Signavio process
modeling editor. It assists the process provider while designing a configurable
process by recommending configurable fragments. Its implementation is based
on the algorithms presented in Chapter 4.

• The second proof of concept, named ConfRule, is also an extension of Signavio
process modeling editor. It extracts a configuration guidance model for assisting
the process provider building a configuration support system. It implements the
approach for extracting configuration guidance models presented in Chapter 5.

• The third proof of concept, named MineFrag, is an extension of ProM. It im-
plements the log-based approach for assisting the design and configuration of
process models presented in Chapter 6. It recommends configurable fragments
for selected positions in an ongoing designed process. It also recommends ranked
guidelines for assisting the configuration of the fragment.

We performed experiments on two large public datasets. The first one is shared
by the Cognitive Computing and Industry Solutions (formerly known as Business
Integration Technologies) research group at the IBM Zurich Research Laboratory.
The second one is from the SAP reference model.

• For the automated support of the configurable process design, we used the large
public dataset of real business processes shared by an IBM research group. We
showed that our approach is feasible by providing statistics on the recommended
results and analyzing the parameters that impact them. We evaluated the
quality of the resulted configurable fragments in terms of model complexity and
understandability. We also evaluated the performance of our algorithms in terms
of execution time and compared our approach with the existing ones.

• For the automated support of the process configuration, we used the dataset
from the SAP reference model. We provided statistics on the extracted configu-
ration guidelines to assess their complexity and completeness. We also evaluated

Proof of Concept 135

the accuracy of the extracted configuration guidance models by computing their
Precision and Recall metrics. We analyzed the parameters that impact each of
the computed metrics.

• For the log-based approach, we used synthetic event logs generated from the
IBM dataset. We evaluated the quality of the discovered configurable fragments
and observed the parameter impact on it. We also evaluated the efficiency of
the ranked configuration guidelines.

We carried-out a case study From the Telecommunication domain with domain
and IT experts in order to show the practical usefulness of a frequency-based ap-
proach for process configuration. Through this case study, we aimed to assess the
usefulness of our configuration guidance models when process providers build their
configuration support systems using existing manual approaches. We followed the
guidelines presented in [184] for conducting the case study. We defined the case study
objective, collected and executed the data and analyzed the results. The results show
that our approach saves time and recommends configuration guidelines that would
have not be possible to be identified based only on the domain experts knowledge.

We present in Section 7.2 our three implemented proof of concepts. The experi-
ments and related discussion are presented in Section 7.3. In Section 7.4, we describe
and present the results of our case study. Finally, we conclude the chapter in Sec-
tion 7.5.

7.2 Proof of Concept

In this section, we present the proof of concepts that we have developed to realize our
approach. We firstly present the Signavio extensions for process design and config-
uration (section 7.2.1). These applications use an existing process model repository
to derive configurable fragments and extract configuration guidance models. Sec-
ond, we present a ProM plugin for the log-based process design and configuration
(section 7.2.2). This application uses an existing repository of event logs to mine
configurable process fragments and configuration guidelines.

7.2.1 Signavio Extension

We have implemented and deployed our approaches for process design and configu-
ration presented in Chapter 4 and Chapter 5 as extensions of Signavio 1, an open
source web-based application for modeling business processes using BPMN. Signavio
has two versions: commercial and open source. The open source version with limited
features is published 2 for free downloading and testing.

1http://www.signavio.com/
2http://code.google.com/p/signavio-core-components/

136 Evaluation and Validation

By developing our approaches based on Signavio, we achieve two targets: (1)
we make our approach more user-friendly through the graphical suite and (2) we
widen the user community and make our approach more visible as Signavio is widely
known in the community. Our tool for merging process fragments named FragMerg is
published at: http://www-inf.it-sudparis.eu/SIMBAD/tools/fragmerg/ . The
tool for extracting configuration guidance models named ConfRule is published at:
http://www-inf.it-sudparis.eu/SIMBAD/tools/confRule/.

Since Signavio does not allow for a configurable business process modeling, we
extended BPMN 2.0 with configurable elements 3 and integrated it within Signavio.
Configurable elements are graphically modeled with thick lines. A screen-shot of the
graphical interface is shown in Figure 7.1.

Figure 7.1: A screen-shot of the graphical interface for configurable process modeling
in Signavio

Regarding FragMerg, the process provider can select the activity to which he
needs some assistance, and the number of layers to be considered. FragMerg runs
the algorithms presented in Chapter 4 for collecting process fragments from existing
designed business processes and merging them into one configurable fragment. We
used business processes from three domains (movie purchase, hotel reservation and
book purchase) and stored them in a MySQL database.

Regarding ConfRule, we have extended Signavio with three main functionalities
to allow the extraction of configuration guidance models as presented in Chapter 5:

1. Configuration guidelines’ extraction and visualization: This functionality allows
the extraction of configuration guidelines from our existing process repository

3the C-BPMN schema definition can be found here: http://www-inf.it-sudparis.eu/SIMBAD/

tools/confRule/cbpmn.xsd

Proof of Concept 137

as described in Section 5.5. The process provider can choose (1) a minimum
support and confidence values for the Apriori algorithm and (2) a minimum
similarity value for computing the similarity between the configurable process
elements and the candidate configurations in the existing process variants. The
set of extracted guidelines are returned and visualized in a pop-up window
(Figure 7.2).

2. Petri-net derivation and visualization: This functionality allows the derivation
of a configuration system from the extracted guidelines as described in Sec-
tion 5.7. A graphical representation of the derived model is visualized in petri
nets (Figure 7.3).

Figure 7.2: A screen-shot of the Signavio graphical interface for visualizing the con-
figuration guidelines

7.2.2 ProM Plug-in

We have implemented our log-based approach presented in Chapter 6 as a plugin in
PRoM framework 4 named mineFrag. ProM is a well-known open-source framework
for implementing process mining tools. Our objective is twofold: (1) we validate
our approach using a proof of concept to show the feasibility of our approach and
(2) we implement a tool, which is a plug-in within ProM, to make our approach
more visible and widely used by the community. Source codes and tutorial of our
mineFrag application are published at: http://www-inf.it-sudparis.eu/SIMBAD/
tools/mineFrag/. A screen-shot of the application is shown in Figure 7.4.

4http://www.promtools.org/prom6/http://www.promtools.org/prom6/

138 Evaluation and Validation

Figure 7.3: A screen-shot of the Signavio graphical interface for visualizing the con-
figuration guidelines dependencies’ in Petri-nets

Figure 7.4: A screen-shot of the mineFrag plugin in ProM

The plugin takes as input an existing event log for which it discovers a process frag-
ment in the EPC notation. It uses the alpha algorithm [127] and the EPCConversion
plugins available in ProM in order to discover a petri-net based process and convert
it into the EPC notation. The process user selects an activity from the discovered
process for which he needs to discover a configurable fragment and its configuration
guidelines. A screen-shot of this step is shown in Figure 7.5.

Experimentation 139

Figure 7.5: An activity selected in an existing business process for which a configurable
fragment and its configuration guidelines will be discovered

We extended the alpha algorithm to mine a configurable process fragment. The
output of the alpha algorithm is a Petri net. Therefore, we reused the EPCConve-
rion plugin to convert the petri net into the EPC notation and then identify the
configurable elements according to our approach (Section 6.2). The derivation of
ranked configuration guidelines requires the computation of disjunctive normal forms
(Section 6.3) which is NP-complete. Therefore, we used a Shared Binary Decision Di-
agram (SBDD) solver 5 that provides efficient algorithms to derive disjunctive normal
forms. A screen-shot of the fragment configuration assisted with the derived ranked
guidelines is shown in Figure 7.6.

7.3 Experimentation

In this section, we present the experiments that we performed to evaluate our ap-
proach. We firstly present the experiments for assisting the design of configurable
process models (Section 7.3.1). We run the algorithms presented in chapter 4 on
the public dataset from IBM research group. This dataset consists of real business
processes designed for financial services, telecommunications and other domains. We
evaluate the quality of the recommended configurable fragments. We also present
the computation time of our algorithms. We analyze the parameters that impact the
quality of our results and make a comparison with existing approaches mainly the
works presented in [43,44] as they are directly related to ours.

5We used the BDDC calculator available at: http://www-verimag.imag.fr/~raymond/tools/

bddc-manual/bddc-manual-pages.html

140 Evaluation and Validation

Figure 7.6: The configuration of the process fragment assisted with the ranked con-
figuration guidelines

Second, we present the experiments for supporting the process configuration with
configuration guidance models (Section 7.3.2). We run the algorithms presented in
Chapter 5 on a dataset from the SAP reference model. We evaluate the accuracy of
our extracted configuration guidance models by computing their precision and recall.
We also evaluate the quality of the extracted configuration guidelines. We analyze
the parameters that impact the quality of our results. We do not make a quantitative
comparison with existing approaches as they are manual.

Thirdly, we present the experiments for the log-based process design and config-
uration (Section 7.3.3). We run the algorithms presented in Chapter 6 on a set of
synthetic logs generated from the IBM dataset. We evaluate the quality of the dis-
covered configurable fragments and analyze the parameters that impact it. We also
evaluate the efficiency of our guideline-driven approach by computing the amount of
reduction in the space of possible configurations.

7.3.1 Configurable Process Design Experiments

We performed our experiments on a large collection of real business process models.
This dataset is shared by the Cognitive Computing and Industry Solutions research
group 6 at the IBM Zurich Research Laboratory. It was presented in [69]. It contains
business process models designed for financial services, telecommunications, and other
domains. It is presented in XML format following BPMN 2.0 standard. Each XML
file stores the data of a business process, including elements’ IDs, activity names, and

6http://www.research.ibm.com/labs/zurich/ics/

Experimentation 141

the sequence flows between elements. The dataset consists of 560 business processes
with 6363 activities. There are 3781 different activities in which 1196 activities appear
in more than one process. In average, there are 11.36 activities, 2.59 start events, 3.42
end events, 18.96 gateways (including OR, AND and XOR) and 46.81 sequence flows
in a process (Table 7.1). In order to have focused results and show the performance of
our approach with existing ones, we pre-processed the data to get only the activities
that appear in more than 5 processes. We were left with 386 processes in which 162
activities appear in more than one process. Each activity is repeated in at least 5
processes and at most 65 processes.

Min. Max. Avg.

Nb. of activities in a process 1 195 11.36

Nb. of start events in a process 1 32 2.59

Nb. of end events in a process 1 32 3.42

Nb. of gateways in a process 1 139 18.96

Nb. of sequence flows in a process 2 326 46.81

Table 7.1: Statistics of the dataset [2]

We performed three experiments to show that our approach is feasible, of good
results’ quality and of good performance. In the first experiment, we evaluate the
feasibility of our approach by measuring the number of extracted fragments for a
selected activity, the number of merged fragments and their reduction in size. We
observe the impact of (i) the number of considered layers and (ii) the clustering step
on the results’ statistics (Section 7.3.1.1). In the second experiment, we evaluate
the quality of the recommended configurable fragments in terms of complexity and
comprehensibility metrics (Section 7.3.1.2). In the third experiment, we measure the
performance of our algorithm based on the computation time. We compare the results
with the works of La Rosa et al. [43] and Derguech et al. [44] (Section 7.3.1.3).

7.3.1.1 Approach feasibility and parameter impact

In this experiment, we run the proposed algorithm in chapter 4 (i) with different kth-
layer values and (ii) with and without the clustering step. We compute the similarity
between each activity and the other activities in the other processes. Due to the
limitation of the dataset, which provides only the elements’ identifiers, the similarity
between activities is based on a perfect syntactical matching of the activities’ names.
As presented in Chapter 4, we use the Agglomerative Hierarchical Clustering (AHC)
algorithm with a complete link between clusters. We set the minimum similarity
threshold to 0.5. We observe the overall minimum, maximum and average number of
returned configurable fragments and their sizes with different parameter values. To
assess the size of a configurable fragment and compare it with its merged fragments,

142 Evaluation and Validation

we compute the compression factor [185] which is defined as:

C = 1− (size(aGk)/
∑
i

(size(Gki)) (7.1)

where aGk is the configurable process fragment of the activity ax within k-layers,
resulted from merging the set of the process fragments Gki . The size of the process
fragment is the number of nodes (activities, events and gateways) in the graph (after
transformation to the C-BPMN notation). The compression factor ranges from 0 to
1 and reflects the reduction in size of the merged fragment with respect to the sizes
of the input process fragments. A compression factor close to 0.5 means that the
merged fragment size is roughly half the sum of the input process fragments sizes and
that the input process fragments are similar. A compression factor close to 0 means
that the merged fragment size is equal to the sum of the input process fragments size
and that the input process fragments are totally different.

Min. Max. Avg.
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

Nb. of extracted fragments 6 65 8

Results without clustering

Nb. of configurable fragments 1 1 1

Compression factor 0.38 0.14 0.132 0.81 0.72 0.7 0.44 0.33 0.26

Results with clustering

Nb. of configurable fragments 1.2 1.89 2.05 4.67 7.12 10.55 1.55 2.58 3.45

Compression factor 0.56 0.5 0.42 0.92 0.85 0.83 0.61 0.52 0.45

Table 7.2: The overall minimum, maximum and average number of recommended
fragments and their compression with different kth-layer values/ with and without
clustering

Table 7.2 summarizes the results for k ∈ {1, 2, 3}. It shows that our algorithm
can find, for a selected activity, at least 6, at most 65 and in average 8 activities that
are similar to the selected one.

Without the clustering step, the extracted fragments are merged at once and
therefore one configurable fragment is recommended. With the clustering step, the
extracted fragments are clustered based on their similarity and therefore the number
of recommended fragments depends on the number of created clusters. We notice that
the number of created clusters increases when k increases meaning that the similarity
between the extracted fragments decreases when k increases. This can be explained
by the fact that our algorithm merges similar activities and the connection flows
connecting them. Since the behavior of an activity is strongly reflected by its closest
neighbors, when k increases, the number of unmatched activities increases faster than
the matched activities. This yields the reduction of similar fragments and therefore
the increasing in the number of created clusters with larger values of k.

On the other side, the compression factor records larger values with the clustering
step than without it. This is because with the clustering step, only highly similar

Experimentation 143

fragments are merged which leads to the increase of the compression factor. Without
the clustering step, all the extracted fragments that may contain similar and dissimilar
fragments are merged. This leads to the decrease of the compression factor. In
both cases (with and without the clustering step), we notice that the compression
factor decreases when k increases. Again this can be explained by the fact that the
similarity between fragments decreases when k increases yielding to the reduction of
the compression factor with larger values of k.

The compression factor has been also studied in [43,44]. In Table 7.3 we compare
the results of these works with ours taking into account the clustering step. It is worth
noting that the results of La Rosa et al. [43] are for pairs of merged fragments from
the SAP reference model having a similarity above 0.5. The results of Derguech et
al. [44] are for 5 merged registration processes taken from the civil affairs department
of Dutch municipalities [186]. The similarity between the merged processes is not
referenced in this work. In our approach, we merge at least 4, at most 26 and in
average 3 fragments that have a similarity above 0.5. The results show that our
approach records higher compression factor values in most cases. Especially, with
k = 1, our approach performs better. The results can be explained by the fact
that we focus on small parts instead of the entire processes. These parts reflects
the behavior of similar activities in different processes which show a high similarity
between each others.

Compression factor
La Rosa et al. [43] Derguech et al. [44] Our approach

(pairs) (5 processes) k = 1 k = 2 k = 3 Nb. fragments
Min. 0.5 0.37 0.56 0.5 0.42 4
Max. 1.06 0.52 0.92 0.85 0.83 26
Avg. 0.69 0.44 0.61 0.52 0.45 3

Table 7.3: Comparison of the compression factor values with existing works

7.3.1.2 Results quality

In this experiment, we assess the quality of the recommended configurable fragments
in terms of their structural complexity. We compute the well known complexity
metrics proposed in the literature: CFC (Control Flow Complexity), ACD (Average
Connector Degree), CNC (Coefficient of Network Connectivity) and density. The
CFC [187] metric evaluates the complexity of the fragment by the presence of XOR-
split, OR-split and AND-split and is defined as:

CFC =
∑

c∈AND
1 +

∑
c∈XOR

|c • |+
∑
c∈OR

2|c•| + 1 (7.2)

The ACD [188] metric gives the number of nodes a connector is in average connected
to and is defined as:

ACD =
1

|C|
∑
c∈C
|c • |+ | • c| (7.3)

144 Evaluation and Validation

The CNC [189] gives the ratio of edges to nodes and is defined as:

CNC =
|A|
|N |

(7.4)

where |A| is the number of edges and |N | is the number of nodes. An increase in
the CNC means that there exists a high number of connections between a relatively
smaller number of nodes. The density metric [190] relates the number of available con-
nections (i.e. edges) to the number of maximum connections that may exist between
nodes and is defined as:

density =
|A|

|N | × (|N | − 1)
(7.5)

The density ranges from 0 to 1. A density close to 1 means that the process graph is
highly dense, i.e. all possible connections between the nodes are present.

We set the size of fragments to k = 1 and conduct a comparative analysis of the
structural complexity between the proposed configurable fragments on the one side
and the input process fragments on the other side. Our objective is to demonstrate
that, although we aggregate multiple fragments into one model, our approach can
recommend a configurable fragment of a reasonable complexity when compared to
the average complexity of its input merged fragments. Table 7.4 summarizes the
obtained results.

Complexity metric Merged fragment input fragments

CFC (avg) 7.41 3.71

ACD (avg) 2.92 2.57

CNC (avg) 0.95 1.13

density (avg) 0.05 0.22

Table 7.4: Structural complexity metrics for the configurable fragments and the av-
erage of their corresponding merged fragments

We observe that the recommended configurable fragments have roughly the same
structural complexity as the average complexity of the input merged fragments. How-
ever, a noticeable difference in the CFC metric can be detected. The CFC of our
configurable fragments is in average twice the average of the CFC of the input frag-
ments. This can be explained by the fact that in our merging algorithm, the matched
connectors with different types are merged into an OR. From equation 7.2, we can
see that the increase in the number of OR-split, increases the CFC metric. Nonethe-
less, as the authors in [191] state, models with the same structure but with different
connector labels may have a huge difference in CFC while they are equally easy to
understand. Yet, our approach can be optimized in order to minimize the CFC met-
ric. For instance, we can impose a penalty weight when matching connectors with
different types which would reduces the injection of OR-splits in the configurable
fragment.

Experimentation 145

We also notice that the density records a very low value for the configurable
fragments (0.05) which is less than the average of that of their input merged fragments
(0.22). This can be explained by the fact that, when the input fragments are less
similar or similar activities are connected with less similar connection flows, many
configurable connectors are injected in the configurable fragment. This leads to the
increase of the number of connections that may exist in the configurable fragment
while the number of available connections remain slightly the same as in the input
merged fragments. Consequently, the density of the configurable fragment decreases
significantly compared to the average density of the input merged fragments.

The complexity of merged process models has been studied in the work of La
Rosa et al. [43] in terms of density, structuredeness, and sequentiality [192]. The
structuredeness refers to the degree to which a process graph is composed of single-
entry single-exit (SESE) fragments. This metric is not valuable in our study as we
merge small fragments representing the relations of an activity to its closest neighbors.
Therefore, we cannot ensure the detection of SESE fragments. Sequentiality measures
the degree to which a graph is constructed of sequences of nodes. In our approach,
a high sequentiality (which is positively correlated with the understandibility of a
process graph) can be obtained only if in the input process fragments, there exist
similar activities that are directly connected through a sequence flow. Therefore,
the sequentiality does not depend on our merging algorithm but rather on the input
fragments structure and therefore has not been considered in our study. The average
result of the density metric in [43] for merged processes from the SAP reference model
is 0.127 versus a density of 0.158 for the average of the input process models (modeled
as “juxtaposed” models). The low difference between the density of configurable
models and that of the input merged models in these results can be explained by the
fact that the authors reduced the number of configurable elements in the configurable
process by analyzing the“entanglement” causes in the merged models. This approach
can be also directly applied on our configurable fragments to reduce the number of
configurable elements.

7.3.1.3 Algorithm performance

We performed the experiments on a laptop with i5-3360M CPU, 2.80Hz, 8 GB mem-
ory, running Windows 7 64 bits and Java Virtual Machine version 1.5 with 512 MB
of allocated memory. We set the number of considered layers to k = 3. We took
three cases: first, we merged 6 fragments having a size between 3 and 19. Second,
we merged 65 fragments having a size between 11 and 475. And last, we computed
the average number of processes in which an activity is repeated. We found that,
in average, an activity is repeated in 8 processes, and the corresponding fragments
have a size between 3 and 475. The execution time results include the matching and
merging time and are illustrated in Table 7.5. These results show that our algorithm
can deal with a high number of fragments (65 fragments) in a small fraction of time

146 Evaluation and Validation

(2093 msec from which the merging takes 94 msec). Compared to the works in [43,44]
that deal with only few numbers of complete process models, our approach can merge
a larger number of fragments in a smaller time. For example, in [43], 2 process mod-
els having the sizes 339 and 357 respectively are merged in 7409 ms. And in [44], 5
processes having a minimal size of 24 and a maximal size of 56 are merged in 157 ms
(this corresponds to the merging algorithm time, the matching time is not considered
in this work).

Nb. input fragments Min (size) Max (size) execution time (in msec)

6 3 19 108(16)

65 11 475 2093(94)

Average

8 3 475 (1904)16.48

La Rosa et al. [43]

2 339 357 7409(79)

2 22 78 78(0)

Derguech and Bhiri. [44]

5 24 56 157 (157)

Table 7.5: The execution time of our proposed algorithm compared with the existing
works

7.3.1.4 Synthesis

We performed experiments to evaluate the feasibility of our approach. We also ob-
served the impact of parameters (including the kth-layer and the clustering) on the
number and compression of the recommended configurable fragments. Experimental
results showed that our approach is feasible. They also showed that when k increases
the similarity between the process fragments decreases and therefore the number of
created clusters (which corresponds to the number of derived configurable fragments)
increases. On the other side, we noticed that the clustering step is in favor of the
reduction in size of the configurable fragments (which is computed in terms of the
compression factor). The results showed that the configurable fragments obtained
with a clustering step record higher compression factor values since they are resulted
from merging highly similar fragments. We compared the obtained compression fac-
tor values of our results with the works of La Rosa et al. [43] and Derguech et al. [44]
to show that merging small and focused fragments instead of entire process models
improve the concision of the results and the computation time performance.

To evaluate the quality of our results, we computed the structural complexity of
the configurable process fragments using well known complexity metrics proposed in
the literature. We compared the obtained values with the average complexity of the
input merged fragments. The results showed that, although we aggregate multiple

Experimentation 147

fragments into one model, our approach can recommend configurable fragments of a
reasonable complexity. We analyzed the complexity metrics used in the approach by
La Rosa et al. [43] and showed that the density metric was the only relevant one in our
study. Although we obtained lower density values, our approach does not address the
complexity caused by possible “entanglements” in the configurable fragments as the
authors did in [43]. However, the “entanglements” in our fragments can be avoided
using the same approach as in [43] since we use the C-BPMN notation which share
common elements with the C-EPC notation used in [43].

To evaluate the performance of our algorithm, we measured the computation time.
Experimental results showed that our algorithm has acceptable computation time as it
computes the configurable fragments from 65 input fragments within a short time (in
approximately 2 seconds) which is not very long for a business process matching and
merging approach. Moroeover, the comparative analysis with existing works [43, 44]
showed that our approach performs much more better, especially for the matching
step. Our employed heuristics based on the neighborhood context graph structured
in layers reduces greatly the matching time.

7.3.2 Process Configuration Experiments

In order to evaluate the configuration-based approach presented in Chapter 5, we
performed experiments on a dataset from the SAP reference model which contains
604 models in EPC notation [70]. Our approach requires as input a configurable
process model for which we extract the configuration guidance model from an existing
business process repository. We take the SAP dataset as a business process repository.
To create configurable process models, we propose to merge the similar processes in
the SAP dataset into configurable process models in C-EPC notation. We do so
by clustering similar processes using Agglomerative Hierarchical Clustering (AHC)
method [193] and merging the resulted clusters using the merging algorithm presented
in [43]. We chose in particular AHC with a complete link between clusters to compute
their similarity, as it generates clusters with a high benefit-to-cost ratio for the SAP
dataset [89]. To compute the similarity between process models, we use the graph
edit distance [194] as it performs well for business process model matching [99]. The
similarity between activities’ labels is computed as described in Section 4.3.1. We
tune AHC to a minimum similarity threshold equal to 0.8 with a maximal number of
possible clusters (i.e. AHC algorithm stops when the number of clusters is equal to
1 or there are no more clusters having a similarity value above 0.8). The rationale
behind choosing a minimal similarity threshold equal to 0.8 is that we want to generate
configurable process models from the highly similar processes in the SAP dataset and
leave those that are less similar (e.g those that have a similarity above 0.5 and less than
0.8) to be used, with the highly similar ones, for extracting the configuration guidance
models. By doing so, we simulate a real setting, in which we have a business process
repository containing previously configured processes (in our case, the processes that

148 Evaluation and Validation

have been merged to create configurable ones) and other existing ones (in our case,
the processes that have not be merged but that may be similar to a configurable
process).

As a result, we obtain 20 clusters, each of them having at least two processes
(trivial clusters with one process model are removed from the set of clusters). Each
cluster is then merged into one configurable process model. The characteristics of
each obtained cluster and the resulted configurable process models are reported in
Table 7.6.

Nb. processes/cluster size (Nb. nodes) Nb. configurable nodes
min max avg. min max avg. min max avg.

cluster 3 8 4.35 3 94 23.15 - - -
configurable model - - - 3 95 34.175 1 36 5.575

Table 7.6: Statistics of the clusters and the configurable process models

The obtained configurable process models along with the SAP dataset have been
used as inputs for the evaluation of the quality and accuracy of our results. In the first
experiment, we evaluate the quality of the recommended configuration guidelines in
terms of completeness and complexity (Section 7.3.2.1). In the second experiment, we
evaluate the accuracy of the extracted configuration guidance models by computing
the Precision and Recall values (Section 7.3.2.2). We also observe and analyze the
impact of the Apriori support and confidence thresholds values on the results’ quality
and accuracy.

7.3.2.1 Results quality and parameter impact

In this experiment, we target to study the relation between the support threshold val-
ues, the complexity and the completeness of the extracted configuration guidelines. To
do so, we compute (1) the number of extracted guidelines, (2) the number of con-
figurations per guideline and (3) the percentage of extracted configurations per con-
figurable element with different support threshold values and a confidence threshold
C = 0.8. The complexity is expressed in term of the number of extracted guidelines.
The higher the number of extracted guidelines, the more the complexity increases.
The completeness is expressed in terms of the number of configurations per guideline
and the percentage of extracted configurations per configurable element. On the one
hand, a high number of configurations per guideline means that we are able to cover
the association between the configurations of all configurable elements in a process
model. On the other hand, a high percentage of retrieved configurations per element
means that our guidelines cover all possible elements’ configuration choices and that
we are able to assist process users in almost all their configuration decisions.

The minimum, maximum and average number of extracted configuration guide-
lines with different support values are shown in Table 7.7. In Figure 7.7, the minimum,

Experimentation 149

maximum and average number of configurations per guideline and the percentage of
extracted configurations per configurable element are depicted.

guidelines Min. Max. Avg.

S = 0.01 2 7.5× 102 101.7

S = 0.05 2 6× 102 92.32

S = 0.1 2 123 40.56

S = 0.3 0 30 10.7

S = 0.5 0 10 5.2

Table 7.7: Number of guidelines for different minimum support threshold values and
a minimum confidence threshold C = 0.8

0

10

20

30

40

50

60

0

5

10

15

20

25

30

S=0,01 S=0,03 S=0,1 S=0,3 S=0,5

%
 c

o
n

fi
gu

ra
ti

o
n

s/
e

le
m

e
n

t

n
b

 o
f

co
n

fi
gu

 r
at

io
n

s/
gu

id
e

lin
e

Support threshold values

Min

Max

Avg.

%mconfigurations/element

Figure 7.7: Number of configurations per guideline and per element for different
minimum support thresholds and a minimum confidence threshold C = 0.8

The results show three interesting findings. First, low support values (S = 0.01
and S = 0.05) record (1) a high number of extracted guidelines (101.7 and 92.32 in
average in Table 7.7), (2) a high number of configurations per guidelines (20 and 17
in average in Figure 7.7 for a maximal number of 36 configurable elements), and (2)
a high percentage of retrieved configurations per configurable element (50% and 40%
in Figure 7.7). This leads to the conclusion that the complexity of the configuration
guidelines is positively correlated with their completeness (i.e. when the complexity
increases the completeness increases) while both the completeness and complexity
are negatively correlated with the support threshold value (i.e. when the support
decreases, the completeness and complexity increase). Therefore, one has to choose
or to find a compromise between the complexity and the completeness of the results.

Second, for relatively low support values (S = 0.3 and S = 0.5), the number of
guidelines (10.7 and 5.2 in average), the number of configuration per guidelines (3 in
average) and the percentage of configurations per element (4% and 2% in average)
are relatively too small. Thus, for higher support values, one can expect an empty

150 Evaluation and Validation

set of configuration guidelines. This can be explained by the fact that, even in one
specific domain, the specific requirements of process users are largely diverse. Hence,
the configuration decisions are closely related to the specific needs and therefore those
that are selected in almost all process configurations are scarce.

Third, as shown in Figure 7.7, the percentage of retrieved configurations per
element is the half of the valid element’s configurations even with very low support
threshold value (S = 0.01). Again, this result shows that many configuration choices
may be valid from the technical perspective of the configurable process language but
invalid from a business perspective.

7.3.2.2 Approach accuracy and parameter impact

In the second experiment, we compute the precision and recall metrics of our config-
uration guidance models for different support and confidence threshold values. For
each obtained configurable process model P c, we extract its configuration guidance
model GcM from P. P is constructed from the process models in the SAP dataset
and contains the merged models of P c and the process models that have a similarity
above 0.5.

The configurations generated by our configuration guidance model GcM and the
configurations retrieved from the process models in P are stored in the matrices
Mgenerated and Mrelevant respectively. Mgenerated is a n × m matrix where n is the
number of generated configurations by GcM and m is the number of configurable el-
ements in GcM. The ith row corresponds to one process configuration generated by
GcM. It is computed by generating one trace from the petri-net based representation
(Section 5.7). The (i, j)th entry corresponds to a configuration of the jth element gen-
erated by the ith process configuration. Mrelevant is constructed from the processes
in P in the same way. Each row in Mrelevant corresponds to a process configura-
tion retrieved from Pi ∈ P (see Section 5.5 for more details on the construction of
Mrelevant). Having Mgenerated and Mrelevant, the precision and recall are computed as
in Equation (7.6).

precision =
|Mgenerated| ∩G |Mrelevant|

|Mgenerated|
recall =

|Mgenerated| ∩R |Mrelevant|
|Mrelevant|

(7.6)

where |Mgenerated| and |Mrelevant| return the number of rows in Mgenerated and Mrelevant

respectively; |Mgenerated| ∩G |Mrelevant| and |Mgenerated| ∩R |Mrelevant| are defined as in
Equation (7.7).

|Mgenerated| ∩G |Mrelevant| =
∑
i

maxj(
Mgenerated[i] ∩Mrelevant[j]

|Mgenerated[i]|
)

|Mgenerated| ∩R |Mrelevant| =
∑
j

maxi(
Mgenerated[i] ∩Mrelevant[j]

|Mrelevant[j]|
)

(7.7)

Experimentation 151

where i = |Mgenerated| and j = |Mrelevant|; |Mgenerated[i]| returns the number of ele-
ments’ configurations in the ith row.

The results for the average values of the precision and recall with different Apriori
support and confidence threshold values are reported in Figure 7.8.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Avg. Precison

Avg. Recall

Figure 7.8: The average precision and recall values with different support and confi-
dence thresholds

First, we notice that, both the precision and recall depend on the minimal support
threshold rather than the minimal confidence threshold. Indeed, for the same support
with different confidence values, we can see that the precision and recall curves do
not record significant variations. For example, for a support S = 0.1, the precision is
equal to 0.65 and 0.68 with confidence values equal to 0.4 and 0.7 respectively. While,
for the same confidence with different support values, we clearly see the precision and
recall curves’ variations. For example, for a confidence C = 0.4, the precision is equal
to 0.67 and 0.1 with support values equal to 0.01 and 0.5 respectively. This can
be explained by the fact that the support threshold value determines the number of
retrieved elements’ configurations and therefore the generated process variants.

Second, we notice that the precision and recall values are inversely proportional to
the support values. A low support records high precision and recall values while a high
support records low precision and recall values. Thus, we can conclude that a high
number of retrieved configurations (i.e. low support) is in favor of the configuration
guidance model reproducibility (i.e. high recall) but, may be in our specific setting,
to the detriment of the system generalization (i.e. high precision, the configuration
guidance model is too specific, it does not generate new variants that may be inspired
from the existing ones).

7.3.2.3 Synthesis

We performed experiments to evaluate the quality and accuracy of our approach. We
observed the impact of the Apriori support and confidence thresholds values on the
quality and accuracy of our results. We evaluated the quality of the recommended
configuration guidelines in terms of completeness and complexity. Evaluation results

152 Evaluation and Validation

showed that the completeness of the configuration guidelines is positively correlated
with their complexity. This means that when the completeness increases, the com-
plexity also increases. The results also showed that the completeness and complexity
are negatively correlated with the support threshold value. In other words, higher
completeness and complexity values are achieved with lower support threshold values.
Therefore, the process provider has to carefully select the support threshold value in
order to balance between the completeness and the complexity of the returned results.

To evaluate the accuracy of our approach, we computed the Precision and Re-
call values of the extracted configuration guidance models. We examined 5 cases in
which we computed the precision and recall values with different support and confi-
dence threshold values. The results showed that the support threshold has a direct
impact on the variations in the precision and recall while the confidence threshold
does not record significant modifications. These results are explained by the fact
that the number of retrieved configurations is determined by the support threshold
rather than the confidence threshold. Experimental results showed also that higher
precision and recall values are achieved with lower support values. Although, this is
a desirable result, one may agree that moderate precision values may be preferred for
a process provider who does not want to be restricted with the available information
and therefore searches for more generalized configuration guidance models. Again, a
compromise between the model reproducibility (i.e. high recall) and generalization
(i.e. moderate precision) has to be found by carefully choosing the support threshold.

7.3.3 Log-based Experiments

In order to evaluate the log-based approach presented in Chapter 6, we conducted
experiments on a set of synthetic event logs generated from the IBM dataset. Indeed,
getting real logs from big size workflow examples that are enough various turns out
to be a difficult task. The advantage in using simulated logs is that it is easier to
fix and vary external factors ensuring a better diversity of the examples and a better
and more accurate validation.

To generate logs, we use a log simulating tool [195] which creates random XML
logs by simulating already designed workflow processes based on CPN tools. These
tools support the modeling, the execution and the analysis of colored Petri nets [196].
They enable to create simulated logs conforming with the XML structure proposed
in [197]. Modifications were brought to these tools to call predefined functions that
create logs for each executed workflow instance. This stage implies modifications in
the modeling level of CPN workflow declarations, particularly in the actions and the
transition input/output levels. These functions indicate in particular the place, the
prefix and the extension of the XML files that CPN tools create for each executed
workflow instance.

Our set consists of 719 event logs in XES format for 560 different processes. The
average number of traces in each log is between 50 and 299 traces. There exist in total

Experimentation 153

3003 distinct activities, from which 996 appear in multiple event logs. In average, an
activity appears in 2 to 115 event log. In order to have focused results, we reduced
the number of logs by taking those that contain the activities appeared in 10 to 20
logs. We were left with 223 event logs.

We evaluated our approach with respect to (i) the quality of the discovered config-
urable fragments (Section 7.3.3.1) and (ii) the efficiency of the discovered configuration
guidelines (Section 7.3.3.2).

7.3.3.1 Configurable fragments quality

In this experiment, we assess the quality of the discovered configurable fragments
in terms of their similarity with the origin process fragments from which they are
discovered. This metric has been identified as a quality dimension in process discov-
ery [138] and allows to quantify the difference between the discovered configurable
process fragments and their input fragments with the aim of improving the process
discovery. To compute the similarity, we use the structural and behavioral precision
and recall metrics that were proposed in [93] to quantify the amount of equivalence
between two process models based on observed behavior. Structural precision and
recall compare two models M1 and M2 based on their graphical structure and are
defined as:

PrecisionS(M1,M2) =
|E1 ∩ E2|
|E2|

; RecallS(M1,M2) =
|E1 ∩ E2|
|E1|

(7.8)

where E1 and E2 are the set of edges in M1 and M2 respectively; E1 returns the num-
ber of edges in M1; |E1 ∩E2| returns the set of common edges. PrecisionS(M1,M2)
returns the fraction of edges in M2 that are also present in M1. RecallS(M1,M2)
returns the fraction of edges in M1 that are also present in M2.

Behavioral precision and recall are inspired by the fitness notion [198,199]. They
compare two models M1 and M2 on the basis of an existing event log L that records
a typical behavior and are defined as:

Precision(M1,M2, L) =

∑
t∈L

#t
|t|
∑|t|−1

i=0
|enabled(M1,t[i],L)∩enabled(M2,t[i],L)|

|enabled(M2,t[i],L)|

|L|

Recall(M1,M2, L) =

∑
t∈L

#t
|t|
∑|t|−1

i=0
|enabled(M1,t[i],L)∩enabled(M2,t[i],L)|

|enabled(M1,t[i],L)|

|L|

(7.9)

where:

• t is a trace in L; #t is the number of traces in L; |t| is the number of events in
t; t[i] is the ith event in t;

• enabled(M1, t[i], L) returns, if it exists, the activity in M1 enabled by the event
t[i] in L;

154 Evaluation and Validation

• |enabled(M1, t[i], L) ∩ enabled(M2, t[i], L)| returns the number of activities en-
abled by the event t[i] in both M1 and M2;

• |enabled(M2, t[i], L)| returns the number of activities enabled by the event t[i]
in M2.

To compute the structural and behavioral precision and recall values of our dis-
covered configurable fragments, we followed the following steps:

1. For each activity repeated in multiple event logs, we discover its corresponding
configurable fragment P c. Let L = {Li} be the set of event logs from which the
fragment is discovered;

2. For each Li ∈ L, we discover a single process fragment. Let P = {Pi} be the
set of process fragments discovered from the set L such that ∀1 ≤ i ≤ |L|,
Pi is discovered from Li. Each discovered fragment represents one possible
configuration of the configurable process fragment P c;

3. We compute the structural precision and recall of P c with each of the processes
Pi ∈ P;

4. We compute the behavioral precision and recall of P c with each of the processes
Pi ∈ P based on the merged event log L.

The results for the minimal, maximal and average of the structural and behavioral
precision and recall values with varied kth-layer values are reported in Figure 7.9a and
Figure 7.9b respectively.

0

0,2

0,4

0,6

0,8

1

1,2

Precision
(k=1)

Recall (k=1) Precision
(k=2)

Recall (k=2) Precision
(k=3)

Recall (k=3)

Min

Max

Avg.

(a) Minimum, maximum and average val-
ues of the structural precision and recall
values with different kth-layer values

0

0,2

0,4

0,6

0,8

1

1,2

Precision
(k=1)

Recall (k=1) Precision
(k=2)

Recall (k=2) Precision
(k=3)

Recall (k=3)

Min

Max

Avg.

(b) Minimum, maximum and average val-
ues of the behavioral precision and recall
values with different kth-layer values

Figure 7.9: Precision and recall metrics values with different kth-layer values

As a first inspection of the results, we can see that in overall the structural and
behavioral recall are negatively correlated with k. They record high values for low k
values. For instance, the structural precision with k = 1 records a minimum of 0.433,

Experimentation 155

a maximum of 1 and an average of 0.88. However, low values can be observed when
k increases. For example, the structural recall with k = 2 records a minimum of 0.13,
a maximum of 0.39 and an average of 0.27; similarly, the behavioral recall with k = 3
records a minimum of 0.27, a maximum of 0.412 and an average of 0.4. These results
validate the fact that, when k increases, the dissimilarity between process fragments
increases leading to a configurable fragment with a relatively large size and many
differences with respect to its input fragments. We also notice that the behavioral
recall values outperform those of the structural recall even for low values. This can
be explained by the fact that although when input fragments show many differences
in their structure, they still share behavioral commonalities.

The results also show that in overall the differences between the minimum, max-
imum and average values are noticeable. For instance, the structural precision with
k = 2 records a minimum of 0.32, a maximum of 1 and an average of 0.63; the same
holds for the behavioral recall with k = 1 which records a minimum of 0.38, a max-
imum of 1 and an average of 0.61. This result means that, for the same kth-layer
value, some of the recommended configurable fragments are highly similar to their
input fragments while others are highly dissimilar. To overcome this issue, log traces
need to be clustered based on their similarity before a configurable fragment is dis-
covered using for example the approaches presented in [139,200,201]. In this way, we
can ensure that configurable fragments are discovered only from highly similar input
fragments.

7.3.3.2 Configuration guidelines efficiency

In our approach, we do not replay the event logs on the discovered configurable frag-
ment to identify elements’ configurations as in [46,47]. Instead, we mine a configurable
process fragment that can be freely configured by the process user. Then, we mine
ranked guidelines to assist the process users’ configuring the fragments.

In this experiment, we evaluate the space of valid configurations with and with-
out our configuration guidelines. We compute the average number of all possible
configurations for each configurable process fragment. Then, we show that using our
guideline driven approach, we restrict this number by assisting the process user in
deriving a suitable fragment. We take the scenario for deriving the configurations
having a high ranking (i.e. r = high).

configurable Total possible configurations
elements configurations r = high

Avg. Nb. 25 68× 1019 1565

Table 7.8: The average number of possible configurations

The results reported in Table 7.8 show that, using our approach, the space of
possible configurations is strongly reduced. The results also show that, among the

156 Evaluation and Validation

configurations observed in the event logs, only a small portion has a high frequency
of execution. Therefore, depicting the frequency in configuration guidelines allows
filtering the irrelevant configurations.

7.3.3.3 Synthesis

We performed experiments to evaluate the quality of our discovered configurable
fragments. We computed the similarity between the configurable process fragments
and each of their input fragments from which they are discovered. We used the
structural and behavioral precision and recall values proposed in [93]. We observed
the impact of the kth-layer values on the quality of the configurable fragments.

The results showed that in overall, we achieve good quality values. These values
decrease when the values of k increase. These results, also inline with the results of
the compression factor computed in Section 7.3.1.1, validate our hypothesis that the
dissimilarity between fragments increases when k increase. The results also showed
that the behavioral recall values outperform those of the structural recall in almost
all the cases meaning that even when a structural dissimilarity exists, behavioral
similarity can be always observed. Finally, we observed that there exists a noticeable
difference between the minimum, maximum and average values of the quality results
for the same k value. This means that some of the results have relatively high quality
values (i.e. the configurable fragment and its origin fragments are relatively similar)
while others have relatively low values (i.e. the configurable fragment and its origin
fragments are relatively dissimilar). To overcome this issue, we propose to cluster
the log traces based on their similarity before discovering our configurable fragments.
In this way, we can expect that configurable fragments are discovered from relatively
similar process fragments and therefore share many similarities with them. We leave
this for a future work.

We evaluated also the efficiency of our ranked configuration guidelines. We com-
puted the space of valid configurations that can be generated by our configurable
fragments with and without the assistance of the guidelines. We took the case for the
guidelines having a high rank (i.e. guidelines for the configurations that are frequently
executed in the logs). The results showed that the space of allowed configurations
is dramatically reduced by our guidelines. They also showed that, among the con-
figurations observed in the event logs, only a small portion has a high frequency of
execution.

7.4 Case Study

To evaluate the practical usefulness of our frequency-based approach for process con-
figuration (Chapter 5), we conducted a case study with a group of professionals (engi-
neers in Service Oriented Architecture domain) and academics (from Business Process
Management and Service Oriented Architectures fields). Our case study methodology

Case Study 157

follows the guidelines presented in [184] and is structured in three main steps:

1. Define the case study objective in terms of research questions related to hypoth-
esis [202] (Section 7.4.1);

2. Design the case, collect the data and execute them on the studied case (Sec-
tion 7.4.2);

3. Analyze the results and present the findings (Section 7.4.3).

7.4.1 Case Study Objective

Through this case study, we aim to assess the usefulness of a configuration guidance
model when process providers create their configuration configuration support systems
using existing manual approaches. Therefore, our research questions are defined as
follows:

• Q1: How configuration guidance models can assist process providers in the cre-
ation of their configuration support systems?

• Q2: Do configuration guidance models provide sufficient and necessary infor-
mation for the configuration support system construction?

In order to answer these questions, we formulate two hypotheses:

• h1: Configuration guidance models save time and facilitate the identification of
the configuration steps order and the configuration guidelines;

• h2: When configuration guidance models are used, additional configuration guide-
lines that were unknown according to the process provider knowledge can be
identified.

Given the above questions and hypotheses, we present in the next section the case
design, data collection and execution.

7.4.2 Design, Data Collection and Execution

Our case study is from the Telecommunication domain and corresponds to a config-
urable service supervision process adopted by Orange, a french telecommunication
company. This process is used by different affiliates of Orange in different cities and
countries and is configured according to their specific needs. After different meetings
with Orange agents, we collected different variants used by Orange affiliates. The
collected variants along with the configurable process are used as inputs in order to
extract a configuration guidance model.

With a population of around 20 participants, we targeted to build a configuration
support system that assists Orange affiliates during the configuration of the pro-
cess. The participants are professionals (engineers in Service Oriented Architecture

158 Evaluation and Validation

domain) and academics (from Business Process Management and Service Oriented
Architectures fields) that are familiar with process configuration. With the purpose
of collecting different results, we partitioned the population into two ways. First, the
persons are divided into binomials groups of (1) domain experts who do not under-
stand the technical details of the configurable process and (2) business process experts
who are aware of the configurable process technical details. Then, half of the groups
are asked to manually create a configuration support system (we refer to them as
group GM) while the other half are provided a configuration guidance model and are
asked to create the configuration support system (we refer to them as group GA).

The configuration support systems are modeled according the questionnaire ap-
proach [7]. Briefly, this approach consists of a framework that allows to capture the
process model variability based on a set of questions defined by domain experts. This
questionnaire model includes order dependencies and domain constraints represented
as logic expressions over facts (i.e. answers to questions). We choose in particular
this approach because (1) it provides an abstraction from the notation used to model
the configurable process and (2) it is suitable to the users who are not competent in
modeling notations [203].

After a workshop organized to explain the basics needed in this study, we asked
the groups in GA and GM to build a configuration support system for our configurable
process model. Then, we asked them to map the created configuration support sys-
tems to the variation points in the configurable process. This step allows to link the
questions and answers in the configuration support system (i.e. questionnaire model)
to the configurable elements and configuration choices in the configurable process.

The resulted configuration support systems with the established mappings are
then collected for comparison. In order to answer the two identified research questions
and confirm their hypotheses, we evaluated the results according to two parameters:
(1) the time needed to build the configuration support system and to define the
mapping with and without the assistance of a configuration guidance model and (2)
the amount of information provided by the configuration support systems constructed
with and without the assistance of a configuration guidance model. The amount of
information is computed based on the number and the granularity of the identified
domain constraints.

7.4.3 Results Analysis and Findings

Firstly, regarding the time needed to build the configuration support system, the
groups in GM took in average 12 man-hours while the groups in GA took 6 man-
hours. Table 7.9 shows the distribution of the time on the different parts of the work.
From this table, we notice that the two groups took approximately the same time
to define the set of questions. This is mainly because the domain experts, who are
naturally responsible of defining the questions, will not take advantage of the technical
guidance provided by our configuration guidance model. Therefore, they were based

Case Study 159

on their own knowledge to define the questions.

Identify questions
Identify order Identify domain

Define mapping
dependencies constraints

GM 2 man-hours 4 man-hours 5 man-hours 1 man-hour

GA 2.5 man-hour 2 man-hours 1 man-hour 0.5 man-hour

Table 7.9: The average time in man-hour unit spent to build a configuration support
system with and without the assistance of configuration guidance models

The remaining parts of the work show a significant difference in the time. In
order to understand these results, we asked the groups in GA on the methodology they
followed to do the job. First, most of the groups affirmed that, in order to benefit from
the information provided by the configuration guidance model, they unconsciously
defined the mapping between the questions and the configurable elements in the
configuration guidance model before starting the other steps. Once this mapping is
established, they easily followed (1) the order dependencies between the configurable
elements in the configuration guidance model and mapped them to the questions order
and (2) the inclusion and exclusion relations in the configuration guidance model and
mapped them to the domain constraints. These results support the hypothesis that
configuration guidance model can save time and assist the creation of configuration
support systems, mainly in the identification of the questions’ order (i.e. configuration
steps order) and the configuration constraints (i.e. configuration guidelines).

Secondly, the created configuration support systems were compared against the
number and the granularity of the identified domain constraints. We found that the
groups in GA identified approximately triple the number of the constraints identified
by the groups in GM . A closer analysis allowed us to group many of the constraints
identified by GA and map them to individual constraints identified by GM . This
result can be explained by the fact that the constraints derived from the configuration
guidance model are related to the process structure and are defined at a fine granular
level (i.e. at the level of the process elements). While in reality, the domain experts
define more generic constraints that may encompass many configuration decisions.
Although the high number of configuration constraints may increase the complexity
of the model, a lower number with more generic constraints can make the mapping
between the configuration support system and the configurable process a tedious task.
Therefore, a compromise between the granularity of a technical-based model and the
generality of a business-based model should be found.

On the other side, we noticed that approximately 30% of the constraints identified
by GA were missed by GM . The missed constraints were mainly those that are not
directly related to the domain but are rather reflected by the users’ behavior and
therefore included in the configuration guidance model. Yet, the domain experts
confirmed that these constraints are not contradictory with the domain. These results
confirm our second hypothesis that configuration guidance models provide additional

160 Evaluation and Validation

information on the configuration constraints that should be taken into account when
creating a configuration support system.

7.4.4 Threats to Validity

There are several threats to validity in our study. The first one is related to our
assumption that we collected a representative set of process variants, from which we
learned the configuration guidance model. However, in order to ensure the extraction
of a representative and generalized configuration guidance model, a large number
of process variants that represent the entire configuration space is required. In the
current study, we have not fully explored this assumption apart from ensuring that
the identified process variants are relevant and depict various business needs.

The second one is related to the validity and generalization of our case study
results. Our method has been applied on one case study from an industrial partner
and has been conducted by group of professionals and academics. The results depend
on the specific domain chosen for the study and the participants background. While
insights can be drawn from our study results, we do not claim that they can be
generalized. These results serve as a basis for evaluating a frequency-based approach
for process configuration. We believe that a broader set of domains and a larger
group of participants with varied backgrounds need to be studied in order to ensure
the external validity and reliability of the case study results [184]. We leave this to a
future work.

The third one is that we did not considered in this study the approach for assisting
the design of configurable process models. We believe that the potential economic
benefits (e.g. time-savings, errors reduction, increased model quality, etc.) of reusing
previously modeled processes to create new ones have been well studied and proved
in the literature [24,204,205].

7.5 Conclusion

In this chapter, we answered the question raised in the thesis problematic (Sec-
tion 1.2), which is: How efficient our approach is? We presented the implementations,
experiments and case study to validate our approach. Three applications, developed
as extensions of Signavio and ProM, were implemented to prove that our approach is
feasible.

We performed experiments with two large datasets from IBM and the SAP ref-
erence model. Experimental results showed that our approach recommends compre-
hensible configurable fragments of low complexity and has a good performance. They
also showed that the extracted configuration guidance models are of good quality and
accurate.

We conducted a case study with professionals and academics to evaluate the prac-
tical usefulness of a frequency-based approach for process configuration. The study

Conclusion 161

results showed that our approach saves time and recommends configuration guidelines
that were not be possible to be identified based only on the expert knowledge.

162 Evaluation and Validation

Chapter 8

Conclusion and Future Works
G

The research problem of this thesis is expressed by this interrogation: How to
propose an automated support for configurable process models? Previous chapters
presented in details our solutions to answer the raised question. In this chapter, we
summary our work 8.1 and present the future work 8.2.

8.1 Contributions

Configurable process models allow a systematic reuse of business processes in a flexible
way. They are gaining momentum due to their capability of explicitly representing
the common and variable parts of similar processes into one customizable process
model. A configurable process model needs to be configured to derive individual
process variants that suit the specific requirements of an organization. Supporting the
variability in configurable process models has been a hot topic over the last years. It
became a big challenge that involves many researches in both academics and industry.

Contemporary approaches address this problem in different ways. They develop
configurable process modeling languages to allow process variability modeling. They
propose automated approaches to build configurable process models by merging or
mining similar process variants. To derive individual variants, they create configura-
tion support systems that assist process users selecting desirable configuration choices.
Despite the considerable advances achieved by exiting works, serious challenges still
exist regarding the (i) the complexity of the created configurable process models and
(ii) the level of automation in the creation of configuration support systems.

On the one hand, existing approaches target to build entire configurable processes
which result in large and complex models that are difficult to reuse and manage.
They also face the computational complexity and scalability problems when merging
or mining a high number of large processes with hundreds of process elements. To
address this issue, we proposed in this thesis an approach for assisting the design of
configurable process models in a fine-grained way using configurable process fragments.
Our approach gives the hand to process providers to specify the configurable parts in
their processes and can be used in two typical cases:

163

164 Conclusion and Future Works

• when a process provider is looking for process fragments that are suitable to
fill-in a missing part in an ongoing designed process;

• and when he wants to extend or improve specific parts in an existing configurable
process.

To identify process fragments that are close to process provider interests, we used
the neighborhood context graph which is defined as a process fragment around a se-
lected activity. A neighborhood context graphs contains the associated activity and
the relations to its closest neighbors. To derive configurable process fragments, we
proposed to extract the neighborhood context graphs of the activities that are similar
to a a selected one from different business process models. The extracted graphs are
matched and clustered based on their similarity before being merged. We also pro-
posed to capture and extract the log-based neighborhood contexts of an activity from
a collection of event logs and then mine a configurable process fragment.

On the other hand, existing approaches for creating configuration support systems
rely heavily on the domain expert knowledge. The configuration support systems are
to a large extent manually constructed by domain experts, which is time-consuming
and costly. In addition, relying solely on the expert knowledge is not only error-prone,
but also challengeable in todays’ dynamic and fast changing business requirements.
To address this issue, we proposed in this thesis an automated approach for extract-
ing configuration guidance models from existing business process repositories. Our
configuration guidance models can be used in three typical cases:

• when a process provider needs an assistance to create a configuration support
system for a configurable process model. Instead of starting from scratch, a
configuration guidance model recommends him the order in which the configu-
ration steps are performed and the configuration guidelines. These information
are necessary for creating a configuration support system;

• when a process provider wants to understand and analyze the variability in his
process. Such analysis can yield useful information in order to improve the
quality of the designed configurable process. In this regard, learning from pre-
vious process configurations gives him insights on how the configurable process
is actually used by process users;

• when a process user is aware of the technical details of the configurable pro-
cess model. Instead of using a business-driven model, he can directly use our
configuration guidance model as a configuration support system.

We proposed a two-step approach for extracting a configuration guidance model
from a repository of process models. The first step consists of extracting configura-
tion guidelines using data mining techniques in particular Association Rule Mining.
We also proposed to formalize the guidelines dependencies’ relations represented in

Contributions 165

Petri-nets using the Theory of Regions. This step is required to ensure a correct
application of the guidelines. The second step consists of inferring the order in which
the configuration steps are performed using Graph Theory techniques in particular
the derivation of optimal spanning trees.

To validate our approach, we developed three proof of concepts FragMerg, Con-
fRule and MineFrag as extensions of Signavio and ProM. FragMerg and ConfRule are
developed as extensions of Signavio to validate our approach for recommending con-
figurable process fragments and extracting configuration guidance models. MineFrag
is developed as a plugin in ProM to validate our log-based approach for mining con-
figurable process fragments and configuration guidelines. We performed experiments
with two large datasets from IBM and the SAP reference model. Experimental results
showed that our approach (i) recommends comprehensible configurable fragments of
low complexity, (ii) extract accurate configuration guidance models and (iii) has a
good performance. We also conducted a case study with professionals and academics
to evaluate the practical usefulness of a frequency-based approach for process con-
figuration. The study results showed that our approach saves time and recommends
configuration guidelines that were not be possible to be identified based only on the
expert knowledge.

The principles presented in Section 1.4.1 have been respected:

• Automation: We propose an automated approach for deriving configurable pro-
cess fragments and supporting the creation of configuration support systems.
Our solutions use automated techniques such as similarity search, clustering,
process merging, process mining and data mining. We do not ask process
providers for additional information. We learn from existing data, which are
business process models and event logs to generate our results.

• Implicit knowledge exploitation: We exploit implicit knowledge hidden in ex-
isting data. Concretely, we extract (i) neighborhood contexts of activities for
deriving our configurable fragments and (ii) configuration guidelines for creating
our configuration guidance models from process models and event logs.

• Focused results: For process design, our approach recommends configurable pro-
cess fragments instead of entire business processes. For process configuration,
our approach recommends the configuration steps order and the element’ con-
figurations instead of entire process configurations. So, our recommendations
are focused and easy to apprehend.

• Balanced computation: The complexity of our algorithms is polynomial and we
do not face the NP-complete problem. The computation time is acceptable for
users.

Last but not least, our approach is complementary and can be associated to other
approaches to better provide an automated support. For example, in the process con-
figuration context, our approach can be associated to the domain-based approaches

166 Conclusion and Future Works

to build configuration support systems that take into account specific business con-
siderations but also best practices in a specific domain.

8.2 Future work

In the future work, we intend to improve the automated support quality of our current
work (Section 8.2.1) and extend the applicability of process configuration to the cloud
computing environment (Section 8.2.2).

8.2.1 Improving automated support quality

Currently, our work takes into account only the control-flow perspective in business
processes. In our future work, we intend to extend our approach by taking into ac-
count other equally important perspectives such as the resource and data perspectives.
We intend to automatically derive configurable process fragments that capture the
resources and data involved in the execution of the activities. We could represent our
fragments using the configurable multi-perspective process modeling language called
C-iEPC that has been recently proposed as an extension of the C-EPC notation [73].

We also want to enrich our configuration guidance models with multi-perspective
configuration guidelines. Currently our configuration guidelines depict how the con-
figuration choices of the control flow elements are interrelated in a process model.
By taking into account other perspectives, one can derive four types of configura-
tion guidelines: (i) control-flow based guidelines, (ii) resource-based guidelines, (iii)
data-based guidelines and (iv) hybrid guidelines. The latter allows to depict how the
configuration choices of different perspectives are interrelated.

Moreover, we intend to improve our configuration guidance model in two ways.
First, we aim at providing a zooming-in/-out facility that allows to navigate at differ-
ent levels of abstractions. We could use natural language processing [206], clustering
and business process abstraction techniques [207] to identify and group the closely
related configurable elements in the configuration guidance model. Second, we plan
to map our model to a domain-based representation by using domain ontologies for
example. This allows us to enrich the model with business-driven information and
facilitate its use by domain experts.

Our approach can be also extended to take into account the structural (absence of
disconnected nodes) and behavioral (absence of deadlocks and livelocks) correctness of
the variants that can be derived by our configuration guidance model. Currently, our
approach ensures a consistent and correct application of the configuration guidelines.
For instance, we guarantee that some of the guidelines cannot be applied concur-
rently as they result in different configurations for the the same configurable element.
However, we do not guarantee that the application of the guidelines does not result
in structural or behavioral issues in the derived variants. Although some approaches
have been proposed to verify the correctness of the configured variants [58, 59], it

Future work 167

would be interesting to allow an a-priori detection of the configuration guidelines
that result in structural and behavioral anomalies so that they can be removed from
the configuration guidance model.

In our approach, we consider the best configurations as those that are frequently
selected in a process model or recorded in an event log. Additional parameters can be
considered for a best configuration selection such as the configurations that maximize
some performance metrics (e.g. configuration with a minimal execution time, a mini-
mal cost, or a combination of these two metrics, etc.). This issue, identified in [3] as a
serious limitation has not been addressed before. For example, we could use existing
works in process mining for performance analysis [208–210] in order to mine perfor-
mance metrics for the variation points. We can leverage the process configuration to
a Constraint Satisfaction Problem (CSP) [211] in order to derive a configuration that
satisfies a user defined performance constraints. We use a CSP solver along with a
user specified objective function to find all the optimal configurations.

8.2.2 Business process configuration in the cloud

Cloud Computing has emerged as an advanced paradigm for developing and providing
services over the internet. Its innovation lies in its economic model for enabling
ubiquitous, convenient and on demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications and services) that
can be rapidly provisioned and released with a minimal effort [212]. In this paradigm,
there are basically three layers of services known as “IaaS” for Infrastructure as a
Service, “PaaS” for Platform as a Service and “SaaS” for Software as a Service.

Provisioning business processes in the cloud allows enterprises to adopt agile,
flexible and cost-effective business solutions and also to reduce process development
and maintenance costs. Specifically, using configurable business processes allows a
cloud provider to share a common process among different tenants that is customized
and executed according to specific needs [213].

The provisioning of cloud-based configurable business processes consists of two
main steps (i) allocating the required cloud resources (from IaaS, PaaS or SaaS) to
host and execute the process activities and (iii) deploying the process before starting
configuring and executing it by different tenants. The resource allocation consists of
specifying the needed resources for each activity, their providers, the dependencies
that may exist between them (e.g. substitution, backup, peering, etc.), the allowed
actions (e.g. create, edit, duplicate), etc. following one of the Cloud standards such
as TOSCA (Topology and Orchestration Specification for Cloud Applications) [214]
or OCCI (Open Cloud Computing Interface defined by the Open Grid Forum) [215].
The deployment consists of instantiating the process and its specified resources. The
instantiation of the resources consists of creating the manifest file in OCCI or the
topology instance in TOSCA.

However, in such a multi-tenant environment, following a traditional resource al-

168 Conclusion and Future Works

location approach in which the needed resources, their dependencies and actions are
pre-defined in a rigid and static way is unrealistic. Since different tenants have differ-
ent requirements and needs, the resource allocation should also account for variability.
In fact, the configurable process model should be extended with resource configuration
facilities that allow the tenants to customize the needed resources, their dependencies
and the actions allowed on them. Although there exist some works on resource con-
figuration in business processes [5,49,73], they all addressed the problem in a generic
way and did not take into account the specificity of cloud resources’ properties (such
as elastic or not, shareable or not) nor the configuration of the dependencies and
actions between them. The identification of the configuration operations for cloud
resource allocation remains an open question.

In addition, the deployment of a cloud-based configurable process model should
take into account the variable, dynamic and economic nature of the cloud ecosystem
(e.g. pay-as-you go model, dynamic resource assignment and release, variable and
dynamic cloud offers, etc.). It would be inefficient if all the allocated process resources
are instantiated along with their dependencies and actions while some of them will not
be used if they are not selected by the tenant during process configuration. Therefore,
a configurable deployment approach that allows to explicitly state that some of the
allocated resources need to be configured and should not be physically instantiated
is required. Once the tenant completes the configuration, a deployment configuration
in which the selected resources can be physically instantiated is derived. To enable
such a configurable deployment, cloud resources’ definition and management should
be also extended with configuration facilities.

Appendices

169

Appendix A

Proof for TSG is a directed
acyclic graph

First, we give two definitions, a configuration path and a state length in TSG.

Definition A.0.1 (configuration path P smsn). A configuration path from a state sn ∈ S
to a state sm ∈ S denoted as P smsn =< sn, ..., sm > is a sequence of states si ∈ S : 1 ≤
i ≤ k such that s1 = sn, sk = sm ∧ ∀1 ≤ i ≤ k − 1, (si, Gi, si+1) ∈ T .

Definition A.0.2 (State length |s 6=−|). The length of a process configuration state
s ∈ S, denoted as |s 6=−| is the number of entries in its corresponding vector that are
different from “-”.

Proposition A.0.1. The transition system TSG is a directed acyclic graph, i.e.
@P sms1 =< s1, ...sm >: s1 = sm.

Proof. (By contradiction) TSG is cyclic iff it contains a loop, i.e. ∃P sms1 : s1 =
sm. According to Definition 5.7.2, for a configuration guideline G, |Vc

G.pre6=−
| <

|Vc
G.post 6=−

|, i.e. the number of configured entries in the pre-configuration state of G
is strictly less than the number of configured entries in the post-configuration state.
According to Definition 5.7.3, a transition (s′, G, s′′) ∈ T , iff s′ ∈ PreG ∧ s′′ ∈ PostG,
therefore ∀(s′, G, s′′) ∈ T we have |s′6=−| < |s′′6=−|.

Three cases can be presented:

1. P sms1 is a self-loop, i.e. s1 = sm ∧ (s1, G, s1) ∈ P . In this case we have |s16=− | <
|s16=− | which is contradictory.

2. P sms1 is a direct loop, i.e. ∃G,G′ ∈ G : (s1, G, sm) ∈ T ∧ (sm, G
′, s1) ∈ T . In this

case we have |s16=− | < |sm 6=− | and |sm 6=− | < |s16=− | which is contradictory.

3. P sms1 is an indirect loop, i.e. ∃G1, G
′, Gm ∈ G ∧ ∃s′ ∈ P sms1 : (s1, G1, s

′) ∈
T ∧ (s′, G′, sm) ∈ T ∧ (sm, Gm, s1) ∈ T . In this case we have |s1 6=− | < |s′6=−| and
|s′6=−| < |sm 6=− | and |sm 6=− | < |s16=− |. Thus |s16=− | < |sm6=− | and |sm6=− | < |s16=− |
which is contradictory.

171

172 Proof for TSG is a directed acyclic graph

Appendix B

List of Publications
Journal Article

1. Nour Assy, Nguyen Ngoc Chan, Walid Gaaloul and Bruno Defude, An Auto-
mated Approach for Assisting the Design of Configurable Process Models, IEEE
Transactions on Services Computing, 2015 (To appear).

2. Karn Yongsiriwit, Nour Assy and Walid Gaaloul, A Semantic Framework for
Multi-tenant Business Process Design, Journal of Networking and Computer
Applications published by Elsevier, 2015 (To appear).

3. Nour Assy, Nguyen Ngoc Chan, Walid Gaaloul and Bruno Defude, Deriving
Configurable Fragments for Process Design, International Journal of Business
Process Integration and Management, IJBPIM 2014, InderScience, ISSN:1741-
8771, Volume 7, pages 2-21, 2014.

Conference Proceeding

1. Nour Assy and Walid Gaaloul, Extracting Configuration Guidance Models from
Business Process Repositories, Business Process Management - 13th Interna-
tional Conference, BPM 2015, Innsbruck, Austria, August 31 - September 3,
2015.

2. Nour Assy and Walid Gaaloul, Configuration Rule Mining for Variability Anal-

ysis in Configurable Process Models, 12th International Conference on Service
Oriented Computing, ICSOC 2014, France, Paris, November 03-06, 2014.

3. Nour Assy, Walid Gaaloul and Bruno Defude, Mining Configurable Process
Fragments for Business Process Design, 9th International Conference, DESRIST
2014, Miami, FL, USA, May 22-24, 2014.

4. Nour Assy, Karn Yongsiriwit, Walid Gaaloul and Imen Grida Ben Yahia, A
Framework for Semantic Telco Process Management-An Industrial Case Study,
14th International Conference on Intelligent Systems Design and Applications,
IEEE ISDA 2014, Okinawa, Japan, November 27-29, 2014.

173

174 List of Publications

5. Nour Assy, Nguyen Ngoc Chan and Walid Gaaloul, Assisting Business Process
Design with Configurable Process Fragments, 10th International Conference on
Services Computing, IEEE SCC 2013, Santa Clara, CA, USA, June 27-July 2,
2013.

Appendix C

Proof of Concepts
1. “Merging configurable process fragments”, extension of Signavio process editor

at http://www-inf.it-sudparis.eu/SIMBAD/tools/fragmerg/

2. “Mining configurable process fragments”, a ProM plugin at http://www-inf.

it-sudparis.eu/SIMBAD/tools/mineFrag/

3. “Assisting the configuration of business process models”, extension of Signavio
at http://www-inf.it-sudparis.eu/SIMBAD/tools/confRule/

175

176 Proof of Concepts

Appendix D

Résumé
Les systèmes d’information centrés processus sont de plus en plus adoptés par les en-
treprises d’aujourd’hui afin d’assurer une gestion et une exécution optimales de leurs
processus explicitement conçus, dénommés processus métiers [10]. Cependant, avec
l’évolution rapide et continue dans les exigences métiers, il n’y a aucun doute que la
mise en place de nouveaux paradigmes pour la gestion des processus des entreprises
se transforme en un besoin pressant. Dans un tel environnement très dynamique, la
réutilisation [24] et l’adaptabilité [25] des processus devient une exigence pour une con-
ception de processus prospère. À cette fin, les modèles de processus configurables [34]
fournissent un moyen de modélisation de la variabilité dans les modèles de processus
de référence. Un modèle de processus configurable est un modèle générique qui intègre
multiples variantes d’un même processus dans un seul modèle personnalisable grâce à
des points de variation. Ces points sont appelés éléments configurables et permettent
de multiples options de conception dans le modèle de processus. Un modèle de pro-
cessus configurable doit être configuré selon une exigence spécifique en sélectionnant
une option de conception pour chaque élément configurable. De cette manière, une
variante individuelle du processus est dérivée avec un effort de conception minimal.

La conception et la configuration des modèles de processus configurables im-
pliquent de plus en plus de nombreuses activités de recherche dans les secteurs
académiques et industriels. D’une part, la conception manuelle des modèles de pro-
cessus configurables est sans aucun doute une tâche coûteuse et source d’erreurs. Bien
que des approches automatiques ont été proposées dans la littérature, elles ont tous
ciblées la construction d’un modèle de processus configurable en entier [43–47]. Cela a
conduit à des processus très larges et complexes qui sont difficiles à réutiliser. D’autre
part, avec un nombre croissant d’éléments configurables dans le modèle de processus
et de nombreuses interdépendances entre leurs choix de configuration, les utilisateurs
ont besoin de moyens de soutien pour configurer le processus. Pour combler cette
lacune, certains travaux proposent d’utiliser des questionnaires [7], des modèles de
fonction connu sous feature models [6, 50] ou des ontologies [48] afin d’assister les
utilisateurs pour choisir les bonnes configurations selon leurs besoins. Cependant,
les approches existantes nécessitent un travail manuel coûteux de la part des experts
de domaine pour (1) analyser et identifier les contraintes de domaine et (2) créer le
système de configuration (à savoir les questionnaires, les feature models, les ontologies)
pour guider le processus de configuration. D’une part, la capture et l’identification

177

178 Résumé

manuelle de toutes les contraintes de domaine possibles nécessitent un travail intensif.
D’autre part, elles sont non seulement sujettes aux erreurs, mais aussi représentent
un défi.

Dans cette thèse, nous abordons les inconvénients mentionnés ci-dessus en pro-
posant une approche automatisée pour soutenir la conception et la configuration des
modèles de processus configurables. Nous ciblons assister les analystes métiers (i) à
concevoir leurs modèles de processus configurables d’une manière fine pour éviter des
résultats larges et complexes et (ii) à créer leurs systèmes d’aide à la configuration avec
un effort manuel minimal. Pour ce faire, nous proposons d’apprendre de l’expérience
passée dans la modélisation et la configuration des processus afin (i) de dériver des
fragments de processus configurables qui répondent aux besoin des analystes et (ii)
de générer des modèles d’aide à la configuration en utilisant des techniques de fouilles
de données et de la théorie des graphes.

Afin de recommander des fragments configurables, nous définissons un fragment
de processus comme un graphe qui se compose d’une activité et des ses relations à
ses activités de voisinage [2], dénommé Neighborhood Context Graph (NCG). Cette
définition est ciblée et granulaire de sorte qu’elle permet aux analystes métiers de voir
les interactions possibles d’une activité à ses plus proches voisins. Pour une activité
choisie par l’analyste, nous proposons de découvrir à partir des processus dans un
référentiel existant, les NCGs autour des activités ayant une fonctionnalité similaire
à celle sélectionnée. Ces fragments sont extraits, regroupés et fusionnés en fragments
de processus configurables. Les fragments configurables générés contiennent l’activité
choisie et ses relations avec ses plus proches voisins dans les différents processus à
travers des éléments configurables.

Pour soutenir la création de systèmes d’aide à la configuration, nous introduisons
le nouveau concept configuration guidance model (CGM) qui fournit des recommanda-
tions sur (i) les directives de configuration pour la sélection des choix de configuration
souhaitables dans un processus configurable et (ii) l’ordre des étapes de configura-
tion. Nous proposons une approche automatisée pour extraire les CGMs à partir des
référentiels de processus existants.

La première étape consiste à extraire des directives de configuration à partir de
modèles de processus métier existants. Ces directives montrent comment les décisions
de configuration sont interdépendantes dans un modèle de processus configurable.
Pour ce faire, nous proposons d’utiliser des techniques de fouille de données [61], en
particulier la fouille des règles d’association [62]. Nous remarquons que les directives
de configuration dérivées doivent être soigneusement et correctement appliquées pour
éviter des résultats de configuration incohérents. Par conséquent, nous poussons plus
loin notre travail et nous proposons de formaliser les dépendances entre les directives
de configuration à l’aide des réseaux de Petri [63]. Nous identifions trois principales
relations de dépendances qui peuvent exister entre les différentes directives de con-
figuration: causalité, concurrence et exclusivité. Ces relations sont automatiquement
dérivées en utilisant la théorie des régions [64].

179

La deuxième étape consiste à déduire l’ordre dans lequel les étapes de configuration
sont effectuées. Pour ce faire, nous proposons de déduire un ordre partiel entre les
éléments configurables du modèle de processus. Nous remarquons que la structure du
processus impose un ordre partiel entre les éléments configurables, mais ce dernier ne
reflète pas leur dépendance d’un point de vue de la configuration. Par conséquent,
nous proposons une autre approche qui tient compte de la dépendance entre les choix
de configuration des éléments et construit une structure en forme d’arbre constitué
d’éléments configurables dans des relations parents-enfants (à savoir l’élément parent
est configuré avant l’élément enfant). Pour ce faire, nous utilisons des techniques de
la Théorie des graphes, en particulier la dérivation de arbres couvrant [65].

Enfin, nous proposons une approche basée sur les historiques d’exécution des pro-
cessus pour aider à la conception et à la configuration des modèles de processus
configurables. Nous proposons d’utiliser les techniques de fouille de processus (connu
sous process mining) afin de découvrir des fragments de processus configurables à
partir des traces d’exécution. Nous proposons également de découvrir des directives
de configuration pour supporter la configuration du fragment découvert. Ces direc-
tives tiennent compte de l’importance de l’exécution des activités qui se traduit par
leur présence dans les traces d’exécution. Pour ce faire, nous utilisons les arbres de
suffixes [?] et la théorie des ensembles.

Nous avons validé notre approche en trois étapes. Tout d’abord, nous avons
développé trois proof-of-concepts FragMerg, ConfRule et MineFrag comme des ex-
tensions de Signavio [?], un outil de modélisation de processus basé sur le Web et
ProM [68], un framework extensible de fouille de processus. FragMerg est une ex-
tension de Signavio et permet de modéliser et de recommander des fragments de
processus configurables pour une activité choisie dans un processus métier. ConfRule
est aussi une extension de Signavio et permet d’extraire un CGM pour un proces-
sus configurable. MineFrag est un plugin de ProM et permet de recommander des
fragments de processus configurables avec des directives de configuration.

Deuxièmement, nous avons effectué des expérimentations avec deux grands en-
sembles de modèles de processus d’IBM [69] et de SAP [70]. Nous avons évalué la
faisabilité,l’efficacité et la précision de nos solutions proposées. Nous avons calculé
des statistiques sur les résultats pour estimer leur qualité. En plus, nous avons calculé
les valeurs précision et de rappel et nous avons mesuré les performances de nos algo-
rithmes en terme de temps de calcul. Nous avons également analysé les paramètres
qui influent sur la qualité de nos résultats.

Troisièmement, nous avons réalisé une étude de cas avec des professionnels et des
universitaires afin de montrer l’utilité pratique d’une approche basée sur l’apprentissage
du passé pour la configuration des processus. Grâce à cette étude de cas, nous avons
cherché à évaluer l’utilité de nos CGMs lorsque les analystes métiers construisent leurs
systèmes d’aide à la configuration en utilisant les approches manuelles existantes.

180 Résumé

Bibliography
[1] H.M.W. Eric Verbeek and R. P. Jagadeesh Chandra Bose. ProM 6 Tutorial.

Technical report, 2010.

[2] Ngoc Chan Nguyen. Service recommendation for individual and process use.
PhD thesis, Th. doct. : Informatique, Université d’Evry Val d’Essonne, Insti-
tut Mines-Télécom-Télécom SudParis, Directeur de thèse: TATA Samir, En-
cadrant: GAALOUL Walid, december 2012, 2012.

[3] F. Gottschalk. Configurable Process Models. Phd thesis, Eindhoven University
of Technology, December 2009.

[4] Marcello La Rosa, Wil M.P. van der Aalst, Marlon Dumas, and Fredrik P. Mi-
lani. Business process variability modeling : A survey, 2013. ACM Computing
Surveys.

[5] Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Capturing variability
in business process models: The provop approach. J. Softw. Maint. Evol., 22(6-
7):519–546, 2010.

[6] Gerd GröNer, Marko BošKović, Fernando Silva Parreiras, and Dragan GašEvić.
Modeling and validation of business process families. Information Systems,
38(5):709 – 726, 2013.

[7] Marcello La Rosa, WilM.P. van der Aalst, Marlon Dumas, and ArthurH.M. ter
Hofstede. Questionnaire-based variability modeling for system configuration.
Software & Systems Modeling, 8(2):251–274, 2009.

[8] Antonucci Y.L. Using workflow technologies to improve organizational compet-
itiveness. International journal of management, 14(1):117–126, 1997.

[9] Richard Lenz and Manfred Reichert. It support for healthcare processes -
premises, challenges, perspectives. Data Knowl. Eng., 61(1):39–58, April 2007.

[10] Marlon Dumas, Wil M. van der Aalst, and Arthur H. ter Hofstede. Process-
aware Information Systems: Bridging People and Software Through Process
Technology. John Wiley & Sons, Inc., New York, NY, USA, 2005.

[11] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Mathias Weske.
Business process management: A survey. In Business Process Management,
International Conference, BPM 2003, Eindhoven, The Netherlands, June 26-
27, 2003, Proceedings, pages 1–12, 2003.

[12] Mathias Weske. Business Process Management - Concepts, Languages, Archi-
tectures, 2nd Edition. Springer, 2012.

181

182 Bibliography

[13] Howard Smith and Peter Fingar. Business process management: the third wave.
Springer, 2003.

[14] Wil M. P. van der Aalst and Kees M. van Hee. Workflow Management: Models,
Methods, and Systems. MIT Press, 2002.

[15] Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An overview of
workflow management: From process modeling to workflow automation infras-
tructure. Distrib. Parallel Databases, 3(2):119–153, April 1995.

[16] Becker J., Kugeler M., and Rosemann M. Process Management: A guide for he
design of business processes. Springer, 2003.

[17] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[18] W. M. P. van der Aalst and A. H. M. ter Hofstede. Yawl: Yet another workflow
language. Inf. Syst., 30(4):245–275, June 2005.

[19] OMG. Business process model and notation (bpmn) 2.0. http://www.omg.

org/spec/BPMN/2.0/, 2011.

[20] v2.3 OMG. Unified modelling language. http://www.omg.org/spec/uml/2.3/.

[21] Wil M. P. van der Aalst. Process Mining: Discovery, Conformance and En-
hancement of Business Processes. Springer Publishing Company, Incorporated,
2011.

[22] Jörg Becker, Martin Kugeler, and Michael Rosemann. Process management
: a guide for the design of business processes / Jörg Becker, Martin Kugeler,
Michael Rosemann, editors. Springer Berlin ; Heidelberg ; New York, 2003.

[23] Wil M. P. van der Aalst. Workflow verification: Finding control-flow errors
using petri-net-based techniques. In Business Process Management, Models,
Techniques, and Empirical Studies, pages 161–183, London, UK, UK, 2000.
Springer-Verlag.

[24] Peter Fettke and Peter Loos. Classification of reference models: a methodology
and its application. Information Systems and eBusiness Management, 2003.

[25] Helen Schonenberg and et al. Towards a taxonomy of process flexibility. In
CAiSE Forum, pages 81–84, 2008.

[26] Rania Khalaf. From rosettanet pips to bpel processes: a three level approach
for business protocols. In BPM ’05, 2005.

Bibliography 183

[27] Matthias Kunze and Mathias Weske. Metric trees for efficient similarity search
in large process model repositories. In Business Process Management Workshops
’10. 2010.

[28] Zhiqiang Yan, Remco M. Dijkman, and Paul W. P. J. Grefen. Fast business
process similarity search. Distributed and Parallel Databases, 2012.

[29] Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. Context-based service
recommendation for assisting business process design. In E-Commerce and Web
Technologies - 12th International Conference, EC-Web 2011, Toulouse, France,
August 30 - September 1, 2011. Proceedings, pages 39–51, 2011.

[30] Nguyen Ngoc Chan, Walid Gaaloul, and Samir Tata. Assisting business pro-
cess design by activity neighborhood context matching. In Service-Oriented
Computing - 10th International Conference, ICSOC 2012, Shanghai, China,
November 12-15, 2012. Proceedings, pages 541–549, 2012.

[31] Gabriel Hermosillo, Lionel Seinturier, and Laurence Duchien. Using Complex
Event Processing for Dynamic Business Process Adaptation. In IEEE Interna-
tional Conference on Services Computing, pages 466–473, 2010.

[32] Manfred Reichert and Barbara Weber. Enabling Flexibility in Process-Aware
Information Systems: Challenges, Methods, Technologies. Springer Publishing
Company, Incorporated, 2012.

[33] Irina Rychkova and Selmin Nurcan. Towards adaptability and control for
knowledge-intensive business processes: Declarative configurable process speci-
fications. pages 1–10. IEEE Computer Society, 2011.

[34] M. Rosemann and W. M. P. van der Aalst. A configurable reference modelling
language. Inf. Syst., 32(1):1–23, 2007.

[35] Michiel Koning, Chang-ai Sun, Marco Sinnema, and Paris Avgeriou. Vxbpel:
Supporting variability for web services in bpel. Inf. Softw. Technol., 2009.

[36] Walid Fdhila, Aymen Baouab, Karim Dahman, Claude Godart, Olivier Per-
rin, and François Charoy. Change propagation in decentralized composite web
services. In Dimitrios Georgakopoulos and James B. D. Joshi, editors, Collab-
orateCom, pages 508–511. ICST / IEEE, 2011.

[37] Chang-ai Sun, Rowan Rossing, Marco Sinnema, Pavel Bulanov, and Marco
Aiello. Modeling and managing the variability of web service-based systems. J.
Syst. Softw., 2010.

[38] Milan Milanovic, Dragan Gasevic, and Luis Rocha. Modeling flexible business
processes with business rule patterns. EDOC ’11.

184 Bibliography

[39] Gabriel Hermosillo, Lionel Seinturier, and Laurence Duchien. Creating context-
adaptive business processes. In PaulP. Maglio, Mathias Weske, Jian Yang, and
Marcelo Fantinato, editors, Service-Oriented Computing, volume 6470 of Lecture
Notes in Computer Science, pages 228–242. Springer Berlin Heidelberg, 2010.

[40] Lionel Seinturier, Philippe Merle, Romain Rouvoy, Daniel Romero, Valerio Schi-
avoni, and Jean-Bernard Stefani. A component-based middleware platform for
reconfigurable service-oriented architectures. Softw. Pract. Exper., 42(5):559–
583, May 2012.

[41] Florian Gottschalk, Wil M. P. van der Aalst, Monique H. Jansen-Vullers, and
Marcello La Rosa. Configurable workflow models. Int. J. Cooperative Inf. Syst.,
17(2):177–221, 2008.

[42] Remco M. Dijkman, Marcello La Rosa, and Hajo A. Reijers. Managing large
collections of business process models - current techniques and challenges. Com-
puters in Industry, 2012.

[43] Marcello La Rosa, Marlon Dumas, Reina Uba, and Remco Dijkman. Business
process model merging: An approach to business process consolidation. ACM
Trans. Softw. Eng. Methodol., 22(2):11:1–11:42, 2013.

[44] Wassim Derguech and Sami Bhiri. An automation support for creating config-
urable process models. In Web Information System Engineering - WISE 2011
- 12th International Conference, Sydney, Australia, October 13-14, 2011. Pro-
ceedings, pages 199–212, 2011.

[45] Florian Gottschalk, Wil M. Aalst, and Monique H. Jansen-Vullers. Merging
event-driven process chains. In OTM ’08. 2008.

[46] Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst.
Mining configurable process models from collections of event logs. In Busi-
ness Process Management - 11th International Conference, BPM 2013, Beijing,
China, August 26-30, 2013. Proceedings, pages 33–48, 2013.

[47] Florian Gottschalk, Wil M. P. van der Aalst, and Monique H. Jansen-Vullers.
Mining reference process models and their configurations. In On the Move to
Meaningful Internet Systems: OTM 2008 Workshops, OTM Confederated Inter-
national Workshops and Posters, ADI, AWeSoMe, COMBEK, EI2N, IWSSA,
MONET, OnToContent + QSI, ORM, PerSys, RDDS, SEMELS, and SWWS
2008, Monterrey, Mexico, November 9-14, 2008. Proceedings, pages 263–272,
2008.

[48] Ying Huang, Zaiwen Feng, Keqing He, and Yiwang Huang. Ontology-based
configuration for service-based business process model. In IEEE SCC, pages
296–303, 2013.

Bibliography 185

[49] Akhil Kumar and Wen Yao. Design and management of flexible process variants
using templates and rules. Comput. Ind., 63(2):112–130, 2012.

[50] Mohsen Asadi, Bardia Mohabbati, Gerd Gröner, and Dragan Gasevic. Devel-
opment and validation of customized process models. Journal of Systems and
Software, 96:73–92, 2014.

[51] Jan Mendling and Carlo Simon. Business process design by view integration.
In Johann Eder and Schahram Dustdar, editors, Business Process Management
Workshops, volume 4103 of Lecture Notes in Computer Science, pages 55–64.
Springer Berlin Heidelberg, 2006.

[52] Mehrdad Sabetzadeh and Steve Easterbrook. An algebraic framework for merg-
ing incomplete and inconsistent views. Technical report, 2004.

[53] Hajo A. Reijers, R. S. Mans, and Robert A. van der Toorn. Improved model
management with aggregated business process models. Data Knowl. Eng., 2009.

[54] Monique H. Jansen-Vullers, Wil M. P. van der Aalst, and Michael Rosemann.
Mining configurable enterprise information systems. Data Knowl. Eng., 2006.

[55] Remco Dijkman, Marlon Dumas, and Luciano Garcia-Banuelos. Graph match-
ing algorithms for business process model similarity search. In BPM ’09.

[56] Matthias Weidlich, Remco Dijkman, and Jan Mendling. The icop framework:
identification of correspondences between process models. In CAiSE ’10.

[57] Marcello La Rosa and Marlon Dumas. Configurable process models: How to
adopt standard practices in your own way?, 2008.

[58] Wil M. P. van der Aalst, Niels Lohmann, and Marcello La Rosa. Ensur-
ing correctness during process configuration via partner synthesis. Inf. Syst.,
37(6):574–592, 2012.

[59] Wil M. P. van der Aalst, Marlon Dumas, Florian Gottschalk, Arthur H. M. ter
Hofstede, Marcello La Rosa, and Jan Mendling. Preserving correctness during
business process model configuration. Formal Asp. Comput., 22(3-4):459–482,
2010.

[60] WilM.P. van der Aalst. Challenges in business process analysis. In Joaquim
Filipe, José Cordeiro, and Jorge Cardoso, editors, Enterprise Information Sys-
tems, volume 12 of Lecture Notes in Business Information Processing, pages
27–42. Springer Berlin Heidelberg, 2008.

[61] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques, Second Edition (Morgan Kaufmann Series in Data Man-
agement Systems). Morgan Kaufmann Publishers Inc., 2005.

186 Bibliography

[62] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association
rules between sets of items in large databases. In ACM SIGMOD’93, pages
207–216.

[63] Jörg Desel and Javier Esparza. Free Choice Petri Nets. Cambridge University
Press, New York, NY, USA, 1995.

[64] Jörg Desel and Wolfgang Reisig. The synthesis problem of petri nets. Acta
Informatica, 33(4):297–315, 1996.

[65] H N Gabow, Z Galil, T Spencer, and R E Tarjan. Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs. Combinatorica,
6(2):109–122, January 1986.

[66] Edward M. McCreight. A space-economical suffix tree construction algorithm.
J. ACM, 1976.

[67] Signavio. http://www.signavio.com/.

[68] van Dongen and et al. The prom framework: A new era in process mining tool
support. ICATPN ’05.

[69] Dirk Fahland, Cédric Favre, Jana Koehler, Niels Lohmann, Hagen Völzer, and
Karsten Wolf. Analysis on demand: Instantaneous soundness checking of in-
dustrial business process models. Data Knowl. Eng., 2011.

[70] Gerhard Keller and Thomas Teufel. Sap R/3 Process Oriented Implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1998.

[71] GeorgeM. Giaglis. A taxonomy of business process modeling and information
systems modeling techniques. International Journal of Flexible Manufacturing
Systems, 13(2):209–228, 2001.

[72] Jan Recker, Michael Rosemann, Wil M. P. van der Aalst, and Jan Mendling.
On the syntax of reference model configuration - transforming the C-EPC into
lawful EPC models. In Business Process Management Workshops, BPM 2005
International Workshops, BPI, BPD, ENEI, BPRM, WSCOBPM, BPS, Nancy,
France, September 5, 2005, Revised Selected Papers, pages 497–511, 2005.

[73] Marcello La Rosa, Marlon Dumas, Arthur H. M. ter Hofstede, and Jan
Mendling. Configurable multi-perspective business process models. Inf. Syst.,
36(2):313–340, April 2011.

[74] Mark Vervuurt. Modeling business process variability : a search for innovative
solutions to business process variability modeling problems, October 2007.

Bibliography 187

[75] Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Managing process
variants in the process life cycle. Technical report, University of Twente, 2007.

[76] Frank Puhlmann, Arnd Schnieders, Jens Weiland, and Mathias Weske. Vari-
ability Mechanisms for Process Models. Technical report.

[77] Arnd Schnieders and Frank Puhlmann. Variability mechanisms in e-business
process families. In Proc. International Conference on Business Information
Systems (BIS 2006, pages 583–601. 2006.

[78] Monika Weidmann, Falko Kötter, Maximilien Kintz, Daniel Schleicher, Ralph
Mietzner, and Frank Leymann. Adaptive Business Process Modeling in the
Internet of Services (ABIS). In Proceedings of the Sixth International Confer-
ence on Internet, Web Applications, and Services (ICIW) 2011, editors, Adap-
tive Business Process Modeling in the Internet of Services (ABIS), pages 29–34.
Xpert Publishing Services, March 2011.

[79] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and J. Mylopoulos. On Goal-based
Variability Acquisition and Analysis. In Proceedings of the 14th IEEE Interna-
tional Requirements Engineering Conference (RE’06), 2006.

[80] Florian Gottschalk, Wil M. P. van der Aalst, Monique H. Jansen-Vullers, and
H. M. W. Verbeek. Protos2cpn: using colored petri nets for configuring and
testing business processes. STTT, 10(1):95–110, 2008.

[81] Maryam Razavian and Ramtin Khosravi. Modeling variability in business pro-
cess models using uml. In Proceedings of the Fifth International Conference on
Information Technology: New Generations, ITNG ’08, pages 82–87, 2008.

[82] D. M. M. Schunselaar and H. M. W. Verbeek. Creating sound and reversible
configurable processes models using cosenets. Technical report, 2011.

[83] August-Wilhelm Scheer. ARIS - vom Geschäftsprozess zum Anwendungssystem.
Springer, 4., durchges. aufl. edition, 2002.

[84] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. ACM Press/Addison-Wesley Publishing Co., 2000.

[85] A. Lie, R. Conradi, T. M. Didriksen, and E.-A. Karlsson. Change oriented
versioning in a software engineering database. SIGSOFT Softw. Eng. Notes,
14(7):56–65, 1989.

[86] Eirik Tryggeseth, Bjorn Gulla, and Reidar Conradi. Modelling systems with
variability using the proteus configuration language. In Selected Papers from the
ICSE SCM-4 and SCM-5 Workshops, on Software Configuration Management,
pages 216–240, London, UK, UK, 1995. Springer-Verlag.

188 Bibliography

[87] Florian Gottschalk, WilM.P. van der Aalst, and MoniqueH. Jansen-Vullers.
Configurable process models — a foundational approach. In Jörg Becker and
Patrick Delfmann, editors, Reference Modeling, pages 59–77. Physica-Verlag
HD, 2007.

[88] C. Li, M. Reichert, and A. Wombacher. The MINADEPT Clustering Approach
for Discovering Reference Process Models Out of Process Variants. International
Journal of Cooperative Information Systems, 19(3-4):159–203, 2010.

[89] Chathura C. Ekanayake, Marlon Dumas, Luciano Garćıa-Bañuelos, Marcello La
Rosa, and Arthur H. M. ter Hofstede. Approximate clone detection in reposi-
tories of business process models. In BPM, volume 7481, pages 302–318. 2012.

[90] Roger Tregear. Business process standardization. In Handbook on Business
Process Management 2, Strategic Alignment, Governance, People and Culture,
2nd Ed., pages 421–441. 2015.

[91] Remco Dijkman, Marlon Dumas, Boudewijn van Dongen, Reina Käärik, and
Jan Mendling. Similarity of business process models: Metrics and evaluation.
Inf. Syst., 36(2):498–516, April 2011.

[92] Matthias Kunze, Matthias Weidlich, and Mathias Weske. Behavioral similarity
- a proper metric. In BPM, pages 166–181. 2011.

[93] A. K. Alves de Medeiros, W. M. P. van der Aalst, and A. J. M. M. Weijters.
Quantifying process equivalence based on observed behavior. Data Knowl. Eng.,
2008.

[94] Remco Dijkman. A classification of differences between similar business pro-
cesses. In Proceedings of the 11th IEEE International Enterprise Distributed
Object Computing Conference, EDOC ’07, pages 37–, Washington, DC, USA,
2007. IEEE Computer Society.

[95] Chen Li, Manfred Reichert, and Andreas Wombacher. On measuring pro-
cess model similarity based on high-level change operations. In Qing Li, Ste-
fano Spaccapietra, Eric Yu, and Antoni Olivé, editors, Conceptual Modeling -
ER 2008, volume 5231 of Lecture Notes in Computer Science, pages 248–264.
Springer Berlin Heidelberg, 2008.

[96] Marc Ehrig, Agnes Koschmider, and Andreas Oberweis. Measuring similarity
between semantic business process models. In Proceedings of the Fourth Asia-
Pacific Conference on Comceptual Modelling - Volume 67, APCCM ’07, pages
71–80, Darlinghurst, Australia, Australia, 2007. Australian Computer Society,
Inc.

Bibliography 189

[97] Christopher Klinkmueller, Ingo Weber, Jan Mendling, Henrik Leopold, and
Andre Ludwig. Increasing recall of process model matching by improved activity
label matching. In International Conference on Business Process Management,
pages 211–218. China, 2013.

[98] Abel Armas-Cervantes, Paolo Baldan, Marlon Dumas, and Luciano Garćıa-
Bañuelos. Behavioral comparison of process models based on canonically re-
duced event structures. In Shazia Sadiq, Pnina Soffer, and Hagen Völzer, edi-
tors, Business Process Management, volume 8659 of Lecture Notes in Computer
Science, pages 267–282. Springer International Publishing, 2014.

[99] Boudewijn F. van Dongen, Remco M. Dijkman, and Jan Mendling. Measuring
similarity between business process models. In CAiSE, volume 5074, pages
450–464, 2008.

[100] B. Mahleko and A. Wombacher. Indexing business processes based on annotated
finite state automata. In IEEE International Conerence on Web Services, ICWS
2006, pages 303–311, Los Alamitos, September 2006. IEEE Computer Society
Press.

[101] Marlon Dumas, Luciano Garćıa-Bañuelos, Marcello La Rosa, and Reina Uba.
Fast detection of exact clones in business process model repositories. Inf. Syst.,
38(4):619–633, 2013.

[102] VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady, 1966.

[103] H. Bunke. On a relation between graph edit distance and maximum common
subgraph. Pattern Recogn. Lett., 18(9):689–694, 1997.

[104] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology language
overview. Technical report, W3C, 2004.

[105] Alexander Maedche and Steffen Staab. Measuring similarity between ontologies.
In EKAW ’02: Proceedings of the 13th International Conference on Knowledge
Engineering and Knowledge Management. Ontologies and the Semantic Web,
pages 251–263, London, UK, 2002. Springer-Verlag.

[106] Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Wordnet: : Sim-
ilarity - measuring the relatedness of concepts. In AAAI, pages 1024–1025,
2004.

[107] Saartje Brockmans, Marc Ehrig, Agnes Koschmider, Andreas Oberweis, and
Rudi Studer. Semantic alignment of business processes. In IN: PROCEED-
INGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON ENTER-
PRISE INFORMATION SYSTEMS (ICEIS 2006, pages 191–196. INSTICC
Press, 2006.

190 Bibliography

[108] Daniel Jurafsky and James H. Martin. Speech and Language Processing (2Nd
Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2009.

[109] Kristina Toutanova and Christopher D. Manning. Enriching the knowledge
sources used in a maximum entropy part-of-speech tagger. In Proceedings of
the 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language
Processing and Very Large Corpora: Held in Conjunction with the 38th Annual
Meeting of the Association for Computational Linguistics - Volume 13, EMNLP
’00, pages 63–70. 2000.

[110] Dekang Lin. An information-theoretic definition of similarity. In Proceedings of
the Fifteenth International Conference on Machine Learning, ICML ’98, pages
296–304. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

[111] Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient consistency
measurement based on behavioral profiles of process models. IEEE Trans. Soft-
ware Eng., 37(3):410–429, 2011.

[112] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Sim-
ilarity Search: The Metric Space Approach. Springer Publishing Company,
Incorporated, 1st edition, 2010.

[113] Contextual petri nets, asymmetric event structures, and processes. Information
and Computation, 171(1):1 – 49, 2001.

[114] Rob van Glabbeek and Ursula Goltz. Equivalence notions for concurrent sys-
tems and refinement of actions. In Antoni Kreczmar and Grazyna Mirkowska,
editors, Mathematical Foundations of Computer Science 1989, volume 379 of
Lecture Notes in Computer Science, pages 237–248. Springer Berlin Heidelberg,
1989.

[115] Mohammad Abdulkader Abdulrahim. Parallel algorithms for labeled graph
matching. PhD thesis, Golden, CO, USA, 1998.

[116] Reina Uba, Marlon Dumas, Luciano Garćıa-Bañuelos, and Marcello La Rosa.
Clone detection in repositories of business process models. In Stefanie Rinderle-
Ma, Farouk Toumani, and Karsten Wolf, editors, Business Process Manage-
ment, volume 6896 of Lecture Notes in Computer Science, pages 248–264.
Springer Berlin Heidelberg, 2011.

[117] Jochen Malte Küster, Christian Gerth, Alexander Förster, and Gregor Engels.
A tool for process merging in business-driven development. In CAiSE ’08.

[118] Shuang Sun, Akhil Kumar, and John Yen. Merging workflows: A new perspec-
tive on connecting business processes. Decision Support Systems, 42(2):844 –
858, 2006.

Bibliography 191

[119] MohamedAnis Zemni, NejibBen Hadj-Alouane, and Amel Mammar. Business
process fragments behavioral merge. In Robert Meersman, Hervé Panetto,
Tharam Dillon, Michele Missikoff, Lin Liu, Oscar Pastor, Alfredo Cuzzocrea,
and Timos Sellis, editors, On the Move to Meaningful Internet Systems: OTM
2014 Conferences, volume 8841 of Lecture Notes in Computer Science, pages
112–129. Springer Berlin Heidelberg, 2014.

[120] J. Vanhatalo, H. Völzer, and F. Leymann. Faster and More Focused Control-
Flow Analysis for Business Process Models Through SESE Decomposition. In
B. Krämer, K. Lin, and P. Narasimhan, editors, Proceedings of Service-Oriented
Computing (ICSOC 2007), volume 4749 of Lecture Notes in Computer Science,
pages 43–55. Springer-Verlag, Berlin, 2007.

[121] Luciano Garćıa-Bañuelos, Marlon Dumas, Marcello La Rosa, Jochen De Weerdt,
and Chathura C. Ekanayake. Controlled automated discovery of collections of
business process models. Information Systems, 46:85 – 101, 2014.

[122] W. M. P. van der Aalst and H. M. W. Verbeek. Process discovery and confor-
mance checking using passages. Fundam. Inf., 131(1):103–138, January 2014.

[123] Joos C. A. M. Buijs, Boudewijn F. van Dongen, and Wil M. P. van der Aalst.
Discovering and navigating a collection of process models using multiple quality
dimensions. In Business Process Management Workshops - BPM 2013 Inter-
national Workshops, Beijing, China, August 26, 2013, Revised Papers, pages
3–14, 2013.

[124] Chathura C. Ekanayake, Marlon Dumas, Luciano Garćıa-Bañuelos, and Mar-
cello La Rosa. Slice, mine and dice: Complexity-aware automated discovery of
business process models. In Proceedings of the 11th International Conference
on Business Process Management, BPM’13, pages 49–64, Berlin, Heidelberg,
2013. Springer-Verlag.

[125] SanderJ.J. Leemans, Dirk Fahland, and WilM.P. van der Aalst. Scalable pro-
cess discovery with guarantees. In Khaled Gaaloul, Rainer Schmidt, Selmin
Nurcan, Sérgio Guerreiro, and Qin Ma, editors, Enterprise, Business-Process
and Information Systems Modeling, volume 214 of Lecture Notes in Business
Information Processing, pages 85–101. Springer International Publishing, 2015.

[126] A. J. M. M. Weijters and W. M. P. van der Aalst. Rediscovering workflow
models from event-based data using little thumb. Integr. Comput.-Aided Eng.,
2003.

[127] Wil van der Aalst, Ton Weijters, and Laura Maruster. Workflow mining: Dis-
covering process models from event logs. IEEE Trans. on Knowl. and Data
Eng., 2004.

192 Bibliography

[128] Jorge Munoz-Gama, Josep Carmona, and WilM.P. van der Aalst. Conformance
checking in the large: Partitioning and topology. In Florian Daniel, Jianmin
Wang, and Barbara Weber, editors, Business Process Management, volume 8094
of Lecture Notes in Computer Science, pages 130–145. Springer Berlin Heidel-
berg, 2013.

[129] Jan Mendling, Gustaf Neumann, and Wil van der Aalst. Understanding the
occurrence of errors in process models based on metrics. In Robert Meersman
and Zahir Tari, editors, On the Move to Meaningful Internet Systems 2007:
CoopIS, DOA, ODBASE, GADA, and IS, volume 4803 of Lecture Notes in
Computer Science, pages 113–130. Springer Berlin Heidelberg, 2007.

[130] J. Mendling, H.M.W. Verbeek, B.F. van Dongen, W.M.P. van der Aalst, and
G. Neumann. Detection and prediction of errors in {EPCs} of the {SAP} ref-
erence model. Data & Knowledge Engineering, 64(1):312 – 329, 2008. Fourth
International Conference on Business Process Management (BPM 2006)8th In-
ternational Conference on Enterprise Information Systems (ICEIS’ 2006)Four
selected and extended papersThree selected and extended papers.

[131] WilM.P. van der Aalst and Minseok Song. Mining social networks: Uncovering
interaction patterns in business processes. In Jörg Desel, Barbara Pernici, and
Mathias Weske, editors, Business Process Management, volume 3080 of Lecture
Notes in Computer Science, pages 244–260. Springer Berlin Heidelberg, 2004.

[132] Process discovery: Capturing the invisible. IEEE Comp. Int. Mag., 5(1):28–41,
2010.

[133] Jonathan E. Cook and Alexander L. Wolf. Automating process discovery
through event-data analysis. In Proceedings of the 17th International Con-
ference on Software Engineering, ICSE ’95, pages 73–82, New York, NY, USA,
1995. ACM.

[134] W. M. P. van der Aalst, H. A. Reijers, A. J. M. M. Weijters, B. F. van Dongen,
A. K. Alves de Medeiros, M. Song, and H. M. W. Verbeek. Business process
mining: An industrial application. Inf. Syst., 32(5):713–732, July 2007.

[135] The process mining toolkit 5.0. http://www.promtools.org/doku.php?id=

prom65.

[136] A. Rozinat and W. M. P. van der Aalst. Decision mining in prom. In Proceedings
of the 4th International Conference on Business Process Management, BPM’06,
pages 420–425, Berlin, Heidelberg, 2006. Springer-Verlag.

[137] Jan Claes and Geert Poels. Process mining and the prom framework: An
exploratory survey. In Marcello La Rosa and Pnina Soffer, editors, Business

Bibliography 193

Process Management Workshops, volume 132 of Lecture Notes in Business In-
formation Processing, pages 187–198. Springer Berlin Heidelberg, 2013.

[138] JCAM Buijs. Flexible Evolutionary Algorithms for Mining Structured Process
Models. PhD thesis, PhD thesis. Eindhoven, The Netherlands: Technische Uni-
versiteit Eindhoven, 2014 (cit. on p. 179), 2014.

[139] Y.P.J.M. van Oirschot. Using Trace Clustering for Configurable Process Dis-
covery Explained by Event Log Data. Master’s thesis, 2014.

[140] Marcello La Rosa, Johannes Lux, Stefan Seidel, Marlon Dumas, and
ArthurH.M. ter Hofstede. Questionnaire-driven configuration of reference pro-
cess models. In John Krogstie, Andreas Opdahl, and Guttorm Sindre, editors,
Advanced Information Systems Engineering, volume 4495 of Lecture Notes in
Computer Science, pages 424–438. Springer Berlin Heidelberg, 2007.

[141] Colin Atkinson, Philipp Bostan, Daniel Brenner, Giovanni Falcone, Matthias
Gutheil, Oliver Hummel, Monika Juhasz, and Dietmar Stoll. Modeling compo-
nents and component-based systems in kobra. In Andreas Rausch, Ralf Reuss-
ner, Raffaela Mirandola, and Frantǐsek Plášil, editors, The Common Component
Modeling Example, volume 5153 of Lecture Notes in Computer Science, pages
54–84. Springer Berlin Heidelberg, 2008.

[142] Shamim Hasnat Ripon, Kamrul Hasan Talukder, and M. Khademul Islam
Molla. Modelling variability for system families. CoRR, abs/1009.5088, 2010.

[143] H.M.W. Verbeek W.M.P. van der Aalst D. Schunselaar, H. Leopold and H.A.
Reijers. Configuring configurable process models made easier: An automated
approach. In International Workshop on Process Model Collections: Manage-
ment and Reuse (PMC-MR). 2015.

[144] Alexei Lapouchnian, Yijun Yu, and John Mylopoulos. Requirements-driven
design and configuration management of business processes. In Gustavo Alonso,
Peter Dadam, and Michael Rosemann, editors, Business Process Management,
volume 4714 of Lecture Notes in Computer Science, pages 246–261. Springer
Berlin Heidelberg, 2007.

[145] Paul C. Clements. Managing variability for software product lines: Working
with variability mechanisms. In SPLC, pages 207–208, 2006.

[146] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (foda) feasibility study. Technical report, Carnegie-
Mellon University Software Engineering Institute, November 1990.

[147] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow patterns. Distrib. Parallel Databases, 14(1):5–51, July 2003.

194 Bibliography

[148] Michael Zur Muehlen and Jan Recker. How much language is enough? theoret-
ical and practical use of the business process modeling notation. In Proceedings
of the 20th International Conference on Advanced Information Systems Engi-
neering, CAiSE ’08, pages 465–479, Berlin, Heidelberg, 2008. Springer-Verlag.

[149] W.M.P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann, and M.H.
Jansen-Vullers. Configurable process models as a basis for reference modeling.
Business Process Management Workshops, 2006.

[150] Wil M. P. van der Aalst. The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[151] Wil van der Aalst and Christian Stahl. Modeling Business Processes: A Petri
Net-Oriented Approach. The MIT Press, 2011.

[152] Mourad Amziani, Tarek Melliti, and Samir Tata. A generic framework for
service-based business process elasticity in the cloud. In Business Process Man-
agement - 10th International Conference, BPM 2012, Tallinn, Estonia, Septem-
ber 3-6, 2012. Proceedings, pages 194–199. 2012.

[153] Marcello La Rosa, Hajo A. Reijers, Wil M.P. van der Aalst, Remco M. Di-
jkman, Jan Mendling, Marlon Dumas, and Luciano Garćıa-Bañuelos. Apro-
more: An advanced process model repository. Expert Systems with Applications,
38(6):7029 – 7040, 2011.

[154] A. K. A. de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, and A. J.
M. M. Weijters. Process mining: Extending the alpha-algorithm to mine short
loops. In Eindhoven University of Technology, Eindhoven, 2004.

[155] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst.
XES, XESame, and ProM 6. In P. Soffer and E. Proper, editors, Information
Systems Evolution, volume 72 of Lecture Notes in Business Information Pro-
cessing, pages 60–75. Springer-Verlag, Berlin, 2010.

[156] B. F. Van Dongen. A meta model for process mining data. In In Proceedings
of the CAiSE WORKSHOPS, pages 309–320, 2005.

[157] Nour Assy, Nguyen Ngoc Chan, and Walid Gaaloul. Assisting business process
design with configurable process fragments. In SCC ’13.

[158] Nour Assy, Nguyen Ngoc Chan, Walid Gaaloul, and Bruno Defude. Deriving
configurable fragments for process design. International Journal of Business
Process Integration and Management 10, 7(1):2–21, 2014.

Bibliography 195

[159] Hanna Eberle, Tobias Unger, and Frank Leymann. Process fragments. In
On the Move to Meaningful Internet Systems: OTM 2009, Confederated In-
ternational Conferences, CoopIS, DOA, IS, and ODBASE 2009, Vilamoura,
Portugal, November 1-6, 2009, Proceedings, Part I, pages 398–405.

[160] Bruno T. Messmer. Efficient Graph Matching Algorithms. PhD thesis, Switzer-
land, 1995.

[161] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Trace alignment
in process mining: Opportunities for process diagnostics. In BPM, 2010.

[162] Saul B. Needleman and Christian D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48, 1970.

[163] Nour Assy and Walid Gaaloul. Configuration rule mining for variability analysis
in configurable process models. In ICSOC, volume 8831, pages 1–15. 2014.

[164] Nour Assy and Walid Gaaloul. Extracting configuration guidance models from
business process repositories. In Business Process Management - 13th Interna-
tional Conference, BPM 2015, Innsbruck, Austria, August 31 - September 3,
2015, Proceedings, pages 198–206, 2015.

[165] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., 2005.

[166] Matthias Weidlich, Jan Mendling, and Mathias Weske. Efficient consistency
measurement based on behavioral profiles of process models. IEEE Trans.
Softw. Eng., 37(3):410–429, May 2011.

[167] Xiaobin Fu, Jay Budzik, and Kristian J. Hammond. Mining Navigation History
for Recommendation. In IUI ’00, pages 106–112. 2000.

[168] Weiyang Lin, Sergio A. Alvarez, and Carolina Ruiz. Collaborative recommen-
dation via adaptive association rule mining. In Data Mining and Knowledge
Discovery. 2000.

[169] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associa-
tion rules in large databases. In Proceedings of the 20th International Conference
on Very Large Data Bases, VLDB ’94, pages 487–499. 1994.

[170] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and Krzysztof
Czarnecki. Reverse engineering feature models. In ICSE. 2011.

[171] Jack Edmonds. Optimum Branchings. Journal of Research of the National
Bureau of Standards, 71B:233–240, 1967.

196 Bibliography

[172] Wil M.P van der Aalst, V. Rubin, B. F. Van Dongen, E. Kindler, and C. W.
Günther. Process mining: A two-step approach using transition systems and
regions. Technical report, BPM Center Report BPM-06-30, BPM Center, 2006.

[173] Eric Badouel and Philippe Darondeau. Theory of regions. In Lectures on Petri
Nets I: Basic Models, Advances in Petri Nets, the volumes are based on the
Advanced Course on Petri Nets, held in Dagstuhl, September 1996, volume 1491
of Lecture Notes in Computer Science, pages 529–586. Springer, 1998.

[174] The synthesis problem for elementary net systems is np-complete. Theoretical
Computer Science, 186(1–2):107 – 134, 1997.

[175] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving petri nets
from finite transition systems. Computers, IEEE Transactions on, 47(8):859–
882, Aug 1998.

[176] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Synthesizing petri
nets from state-based models. In Computer-Aided Design, 1995. ICCAD-95.
Digest of Technical Papers., 1995 IEEE/ACM International Conference on,
pages 164–171. Nov 1995.

[177] Ferenc Bodon. A fast apriori implementation. In Proceedings of the IEEE ICDM
Workshop on Frequent Itemset Mining Implementations (FIMI’03), volume 90
of Workshop Proceedings, 2003.

[178] Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer
Algorithms. Addison-Wesley Longman Publishing Co., Inc., 1974.

[179] Nour Assy, Walid Gaaloul, and Bruno Defude. Mining configurable process
fragments for business process design. In DESRIST, volume 8463, pages 209–
224. 2014.

[180] Matthias Weidlich and Jan Martijn E. M. van der Werf. On profiles and foot-
prints - relational semantics for petri nets. In Petri Nets, volume 7347, pages
148–167, 2012.

[181] Esko Ukkonen. On-Line Construction of Suffix Trees. Algorithmica, 1995.

[182] Gill Bejerano and Golan Yona. Variations on probabilistic suffix trees: statisti-
cal modeling and prediction of protein families. Bioinformatics, 2001.

[183] Iliopoulos and et al. The weighted suffix tree: An efficient data structure for
handling molecular weighted sequences and its applications. Fundam. Inform.,
2006.

Bibliography 197

[184] Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Softw. Engg., 14(2):131–164,
April 2009.

[185] David Salomon. Data compression - The Complete Reference, 4th Edition.
Springer, 2007.

[186] Configurable process models : experiences from a municipality case study. In
21th International Conference on Advanced Information Systems Engineering,
10-12 June 2009, Amsterdam, the Netherlands, 2009.

[187] Jorge Cardoso. Evaluating the process control-flow complexity measure. In
IEEE ICWS ’05.

[188] Jorge Cardoso, Jan Mendling, Gustaf Neumann, and Hajo A. Reijers. A dis-
course on complexity of process models. In Business Process Management Work-
shops ’06.

[189] Beate List and Birgit Korherr. An evaluation of conceptual business process
modelling languages. In Proceedings of the ACM symposium on Applied com-
puting ’06, 2006.

[190] Hajo A. Reijers and Irene T. P. Vanderfeesten. Cohesion and coupling metrics
for workflow process design. In BPM ’04.

[191] Jan Mendling. Detection and prediction of errors in EPC business process mod-
els. PhD thesis, 2007.

[192] Jan Mendling. Metrics for Process Models: Empirical Foundations of Verifi-
cation, Error Prediction, and Guidelines for Correctness. Springer Publishing
Company, Incorporated, 1 edition, 2008.

[193] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining, (First Edition). Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2005.

[194] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Trans. Systems Science
and Cybernetics, 4(2):100–107, 1968.

[195] A. K. Alves De Medeiros and C. W. Günther. Process mining: Using cpn tools
to create test logs for mining algorithms. In Proceedings of the Sixth Workshop
and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, pages
177–190, 2005.

[196] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Prac-
tical Use, Vol. 2. Springer-Verlag, London, UK, UK, 1995.

198 Bibliography

[197] Wil M. P. van der Aalst, Ana Karla A. de Medeiros, and A. J. M. M. Wei-
jters. Process equivalence: Comparing two process models based on observed
behavior. In Schahram Dustdar, José Luiz Fiadeiro, and Amit P. Sheth, edi-
tors, Business Process Management, volume 4102 of Lecture Notes in Computer
Science, pages 129–144. Springer, 2006.

[198] A.K.Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic
process mining: A basic approach and its challenges. In ChristophJ. Bussler
and Armin Haller, editors, Business Process Management Workshops, volume
3812 of Lecture Notes in Computer Science, pages 203–215. Springer Berlin
Heidelberg, 2006.

[199] A. Rozinat. Conformance testing: Measuring the fit and appropriateness of
event logs and process models. In BPM 2005 Workshops (Workshop on Business
Process Intelligence), volume 3812 of Lecture Notes in Computer Science, pages
163–176. Springer-Verlag, 2006.

[200] Minseok Song, ChristianW. Günther, and WilM.P. van der Aalst. Trace clus-
tering in process mining. In Danilo Ardagna, Massimo Mecella, and Jian Yang,
editors, Business Process Management Workshops, volume 17 of Lecture Notes
in Business Information Processing, pages 109–120. Springer Berlin Heidelberg,
2009.

[201] R. P. Jagadeesh Chandra Bose and Wil M. P. van der Aalst. Context aware
trace clustering: Towards improving process mining results. In Proceedings of
the SIAM International Conference on Data Mining, SDM 2009, April 30 -
May 2, 2009, Sparks, Nevada, USA, pages 401–412, 2009.

[202] Robert K. Yin. Case Study Research: Design and Methods, 3rd Edition (Ap-
plied Social Research Methods, Vol. 5). SAGE Publications, Inc, 3rd edition,
December.

[203] Marcello La Rosa. Managing variability in process-aware information systems.
PhD thesis, Queensland University of Technology, 2009.

[204] W. C. Lim. Effects of reuse on quality, productivity, and economics. Software,
IEEE, 1994.

[205] Oliver Holschke, Jannis Rake, and Olga Levina. Granularity as a cognitive
factor in the effectiveness of business process model reuse. In Business Pro-
cess Management, 7th International Conference, BPM 2009, Ulm, Germany,
September 8-10, 2009. Proceedings, pages 245–260, 2009.

[206] Vijayan Sugumaran and Veda C. Storey. A semantic-based approach to com-
ponent retrieval. SIGMIS Database, 34(3):8–24, August 2003.

Bibliography 199

[207] Sergey Smirnov, Hajo A. Reijers, Mathias Weske, and Thijs Nugteren. Business
process model abstraction: A definition, catalog, and survey. Distrib. Parallel
Databases, 30(1):63–99, February 2012.

[208] C.W. Günther. Process Mining in Flexible Environments. Phd thesis, Eindhoven
University of Technology, September 2009.

[209] W.M.P. van der Aalst and B.F. van Dongen. Discovering workflow performance
models from timed logs. In Yanbo Han, Stefan Tai, and Dietmar Wikarski, edi-
tors, Engineering and Deployment of Cooperative Information Systems, volume
2480 of Lecture Notes in Computer Science, pages 45–63. 2002.

[210] P.T.G. Hornix. Performance Analysis of Business Processes using Process Min-
ing. Phd thesis, Eindhoven University of Technology, January 2007.

[211] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1995.

[212] Peter M. Mell and Timothy Grance. Sp 800-145. the nist definition of cloud
computing. Technical report, 2011.

[213] W.M.P. van der Aalst. Business process configuration in the cloud: How to sup-
port and analyze multi-tenant processes? Web Services, European Conference
on, 0:3–10, 2011.

[214] Topology and orchestration specification for cloud applications version
1.0. http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.

html, January 2013.

[215] Occi open cloud computing interface specification. http://occi-wg.org/

about/specification/.

