N

N

Timed FSM strategy for optimizing web service
compositions w.r.t. the quality and safety issues
Olga Kondratyeva

» To cite this version:

Olga Kondratyeva. Timed FSM strategy for optimizing web service compositions w.r.t. the quality
and safety issues. Networking and Internet Architecture [cs.NI]. Université Paris-Saclay; Université
d’Etat de Tomsk, 2015. English. NNT: 2015SACLL004 . tel-01256692

HAL Id: tel-01256692
https://theses.hal.science/tel-01256692
Submitted on 15 Jan 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-01256692
https://hal.archives-ouvertes.fr

universite

PARIS-SACLAY

National Research
Tomsk
State
University

NNT : 2015SACLL004

TELECOM
SudParis

THESE DE DOCTORAT
de
L’ UNIVERSITE D’ETAT DE TOMSK
et de
L UNIVERSITE PARIS-SACLAY
préparée a TELECOM SudParis

ECOLE DOCTORALE N°580
Sciences et technologies de I'information et de la communication

Spécialité de doctorat : Informatique

Par

Mlle Olga Kondratyeva

Stratégie basée sur les machines a états finis temporisées pour optimiser la
composition de services web a I'égard de la qualité et de la sécurité

Timed FSM strategy for optimizing web service compositions w.r.t. the quality and
safety issues

These présentée et soutenue a Evry, le 03 décembre 2015 :

Composition du Jury :

M. Pascal Poizat Professeur, Université Paris Ouest Nanterre la Défense ~ Président

M. Roland Groz Professeur, Grenoble INP Rapporteur
M. Sébastien Salva Professeur, Université d'Auvergne Rapporteur
M. David Sadek Directeur de la recherche, Institut Mines-Télécom Examinateur
Mme Fatiha Zaidi Maitre de Conférences, Université Paris-Sud XI Examinatrice
Mme Nina Yevtushenko Professeure, Université d'Etat de Tomsk (Russie) Co-directrice

Mme Ana Cavalli Professeure, Télécom SudParis Co-directrice

Abstract

Timed FSM strategy for optimizing web service compositions w.r.t. the

quality and safety issues

by Olga KONDRATYEVA

Service-oriented architecture (SOA) together with a family of Everything-as-a-
Service (XaaS) concepts nowadays are used almost everywhere, and the proper orga-
nization of collaborative activities becomes an important challenge. With the goal of
bringing to the end-user safe and reliable service with the guaranteed level of quality,
issues of service compositions verification and validation become of high practical and
theoretical interest. In the related works, numerous models and techniques are proposed,
but mostly focused on functional and non-functional issues in isolation, while integration
of these parameters within unified formal framework still remains a problem to be solved

— and therefore became one of the core objectives of this thesis.

In our work, we address the problems of web service composition verification and op-
timization with respect to functional, quality and safety properties of the composition.
Finite state models are proven to be useful for testing and verification purposes as well as
for service quality evaluation at each step of service development. Therefore, we propose
to use the model of Finite State Machine with Timeouts (TFSM) for integrating func-
tional service description with time-related quality and safety parameters, and suggest
the extension of the model in order to adequately inherit significant nondeterminism due
to the lack of observability and control over third-party component services. For the
purpose of component optimization in the composition, we propose a method for deriv-
ing the largest solution containing all allowed component service implementations, based
on solving TFSM parallel equation. Further, techniques for extracting restricted solu-
tions with required properties (minimized/maximized time parameters, deadlock- and
livelock-safety, similarity to the initially given component, etc.) have been proposed.
In cases when the specification of a composite service is provided as a set of functional
requirements, possibly, augmented with quality requirements, we propose a technique
to minimize this set with respect to the component under optimization. Application
of the obtained results for more efficient candidate component services discovery and
binding, alongside with extending the framework for more complex distributed modes

of communications, are among the future work.

Acknowledgements

I would like to express my gratitude to my supervisors Professor Ana Cavalli and Pro-
fessor Nina Yevtushenko for granting me the opportunity to work with both their teams,

in France and in Russia, and all their patience and support during these three years.

Besides my supervisors, I also would like to thank the Fondation Telecom for the schol-
arship within the Futur &Rutpure program without which financial support it would not
be possible for me to have this unique opportunity of working alongside international

multi-cultural team in one of the most beautiful countries in the world.

I am sincerely grateful to the reviewers of my thesis — Professor Roland Groz and Profes-
sor Sébatsien Salva — for all the time they spent on commenting my manuscript and for
their insightful revisions. I also thank Professor Pascal Poizat, Fatiha Zaidi and David

Sadek for joining my thesis jury and for their consideration of my work.

In addition, I would like to thank all the colleagues from the teams of former Logiciels-
Réseaux (LOR) department (currently joined to RS2M) at Telecom SudParis and In-
formation technologies in the study of discrete structures department at Tomsk State
University for continuous support and interesting discussions. In particular, I am grate-
ful to Professor Stephane Maag for practical case studies, to Natalia Kushik for being a
motivating co-author, and to Maxim Gromov for introducing me to the world of research

during my undergraduate study.

On a more personal level, I would like to mention how much I appreciate the support
from my family and friends. Special thanks are to my sister Evgeniya for always being
there for me, to Jorge and Diego for all the coffee we drank together, to Joao for all the
mood-enlightening pictures shared, and to Christopher the Silent Fish for watching and

motivating me from the wall over my desk.

iii

Contents

Abstract ii
Acknowledgements iii
Contents iv
List of Figures vii
List of Tables ix
List of Algorithms X
Abbreviations xi
1 Introduction 1
1.1 General Context and Motivations 1
1.2 Objectives and Contributions 5
1.3 Thesisplan e 7
1.4 List of publications 8
2 Background for the State Models in Service Quality Evaluation 10
2.1 Introduction 10
2.2 Preliminaries on web serviceso 11
2.2.1 Service-oriented architecture 11
2.2.2 Service quality parameters. 12
2.2.3 Service composition realizability and optimization 14

2.3 Evaluating quality of web services at development steps using finite state
models e e e 16
2.3.1 Web service development steps 16
2.3.2 Specifying service requirements and deriving a formal specification 18
2.3.3 Estimating reachable quality of the service under development . . 20
2.3.4 Service composition and implementation 22
2.3.4.1 Aggregation functions for quality evaluation 23
2.3.4.2 Quality-aware component selection 25
2.3.4.3 The implementation issues 25
2.3.5 Service usage and management 26
2.4 Chapter conclusions 27

v

Contents v

3 Finite State Machines with Timeouts as a Formal Model for Web Ser-

vices 28
3.1 Introduction e 28
3.2 TFSM definitions and notations 29
3.2.1 General definition 29
3.2.2 TFSM behavior description 31

3.3 Conformance relations for TFSMs 34
3.4 From real to integer values of time variable 37
3.4.1 Integer-valued conformance relations 37
3.4.2 Corresponding Finite Automata 39

3.5 Web service TFSM descriptions 47
3.6 Chapter conclusions 50
4 Parallel Composition of TFSMs as a Service Composition 52
4.1 Introduction e 52
4.2 Parallel composition as a service composition L. 52
4.3 TFSMs parallel composition 54
4.3.1 Formal definition of parallel composition 56
4.3.2 Composition traces: external, internal and global 56
4.3.3 TFSMs closure properties under parallel composition 59

4.4 Safe TFSM composition o 61
4.4.1 Livelock-safe composition 62
4.4.2 Deadlock-safe composition00 65
4.4.3 Deriving safe parallel composition 67

4.5 Discussion e e 69
4.6 Chapter conclusions L Lo 70

5 Service Composition Optimization Based on TFSM Equation Solving 71

5.1 Introduction e 71
5.2 TFSM parallel equation 72
5.2.1 Preliminaries on solving parallel language equations 73
5.2.2 Deriving the largest solution for TFSM equation 74
5.2.3 Verification of composition realizability 76
5.3 Solving equations for partial specifications 78
5.4 Minimizing composition specification w.r.t. component under optimization 81
5.4.1 Determining the set of all internal traces violating a given compo-
sition requiremento o Lo 81
5.4.2 Minimizing the set of requirements 84
5.5 Chapter conclusions 86
6 Extracting Restricted Solutions with Required Properties 87
6.1 Introduction 87
6.2 Safe component selection 89
6.3 Most similar substitution o oo 89
6.4 Managing output delays values oL 91
6.5 Manipulating component number of states L. 94
6.5.1 TFSM state minimization 94

6.5.2 Manipulating timeout values in equation solutions 95

Contents vi
6.6 Chapter conclusions 98
7 Conclusions 99
7.1 Summary of Contributions oo 99
7.2 Perspectives and Future Work 100
Bibliography 102

List of Figures

2.1
2.2
2.3
2.4

2.5
2.6

3.1
3.2

3.3

3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4

4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6

5.7

Web service development steps Lo
Finite automaton model for the Vacation Planner service
Weighted automaton for the Vacation Planner service
Basic compositional patterns: (a) sequential, (b) conditional, (c) parallel,

(d) synchronizing, (e) concurrent, (f) loop
Workflow for the Vacation Planner service
An example of response time SLA restrictions

TFSM description of Vacation Planner service
Automaton P (a), expansion of P to alphabet {a,b} (b), and restriction

of Pyapey to alphabet {a,u} (c) oo
The maximal TFSM over alphabets I = {i;...4,,} and O = {o;...0x}

(left) and its corresponding automaton (right)
The sample TFSM description for Ready-Go Virtual Golf Tournament . .
The TFSM description of the Compensator service
The Assessor component TFSM for the Loan Approval Service
The Approver component TFSM for the Loan Approval Service

General topology of the parallel composition.
Service orchestration in form of parallel composition
Parallel composition of the TFSMs Sand P
An example of t-nondeterministic composition (c) of ¢-deterministic com-

ponents S and P (a) with corresponding global automaton (b)
The composed TFSM for Loan Approval Service
The automata Aut(I,0) (left) and (Aut(I, O)quuv,)qqey (right) with al-

phabets I = {i}, O = {0}, U = {u}, V = {v} and length bound [=2 . . .

The Delivery Service composition specification (top) and the component
service - Store Service (bottom)o oo
The largest solution for Warehouse component with restriction in delivery
time e
The largest solution for Warehouse component with no time restrictions
in composition specificationo
Composite TESMo
The context TEFSM o
The automaton D(a;f1) with the set of unexpected external traces for
requirement TCT oL e
The set of internal traces violating the requirement TCy

vii

List of Figures viii

6.1

6.2

The maximal TFSM over alphabets Ix = {z1...x,} and
Ox ={y1...yn} with the output delays no less than k,;, and no greater
than Kpazr - - -« o v o e e 93

The restricted solution for the warehouse service with maximized timeouts 97

List of Tables

2.1 Aggregation functions for quality parameters 24
2.2 Aggregation functions for quality parameters when probabilities are involved 24

X

List of Algorithms

3.1
3.2
3.3
4.1
4.2
4.3
5.1
6.1

6.2

Deriving the automaton representing the values of the set of linear functions 42

Deriving the corresponding automaton for given TESM 44
Restore TFSM from corresponding automaton 48
Deriving the maximal TFSM for deadlock-safe component 66
Deriving the deadlock-safe reductions of given components 67
Safety-aware parallel composition 68
Deriving a set of internal traces violating a composition requirement af. . 83

Extracting the solution containing the correct behavior of the given com-

Web services:
WS

SOA

SOAP

XaaS
BaaS
IaaS

SaaS
PaaS

QoS

SOA
WSDL
BPEL
WS-CDL
RPC
XML

Formal model:

FA
FSM
TFSM
CUO

Abbreviations

Web Service
Service-Oriented Architecture

Simple Object Access Protocol

Everything-as-a-Service
Business-as-a-Service
Infrastructure-as-a-Service
Software-as-a-Service

Platform-as-a-Service

Quality of Service

Quality of Experience

Service-Oriented Architecture

Web Service Definition Language

Business Process Execution Language

Web Service Choreography Description Language
Remote Procedure Call

Extended Markup Language

Finite Automaton
Finite State Machine
Finite State Machine with Timeouts

Component Under Optimization

X1

Chapter 1

Introduction

1.1 General Context and Motivations

Nowadays web services are used almost everywhere [1], and the family of concepts of
providing something “as-a-service”goes far beyond web service per se. In particular,
synchronizing or even moving everyday routine and/or professional activities to clouds
have already made it nearly impossible to remember life without Everything-as-a-Service
(XaaS). Send an email, share a project report with colleagues, create an electronic
rsvp form for a party, or design animated presentation on-line using yearly subscription
instead of often over-priced in-box license - the typical examples of Software-as-a-Service
(SaaS), also referred to as “on-demand software” [2]. Need to deploy an application, and
want to avoid the trouble of physical maintaining of servers and data centers, thinking
about operating systems and runtime - the solution is Platform-as-a-Service (PaaS)
[2], e.g., Google App Engine [3]. Though, if you prefer to be in control of everything
but hardware - Infrastructure-as-a-Service (IaaS) [2] is another model, and one of the
classical example for IaaS are Amazon Web Services (AWS) [4, 5]. And the list of “as-a-
service” concepts and models could be continued. Practically, in Web 3.0 [6] era saying

that everything is a service - is not an exaggeration anymore.

The number of services increases very fast in order to allow users an easy manipulation
of various online applications. Different services developed for the same purpose can be
found in service repositories (see, for example, [7]). Nevertheless, the same functional

properties do not mean that those web services have the same quality. Thus, in order

Introduction 2

to efficiently select the best web service among the great number of available services it

is necessary to have the adequate evaluation of the service quality.

Service-oriented architecture (SOA) is an emerging technology, gaining its popularity
from a range of benefits: heterogeneity, scalability, flexibility, reusability of the compo-
nents, etc. [8], becoming a basis for various internet applications such as online multi-
media services, purchase and payment systems, e-government, and many others. The
service can be defined as a self-contained unit of functionality, logically representing a
repeatable business activity with a specified outcome [9]. Simple functionality is usually
implemented as a solid entity while complex services are built up from a simpler ones,

often provided by a third-party.

Considering any service realizability issues, especially for composite services, it is im-
portant to take into account not only functional aspects of components behavior and
interactions, but non-functional as well. Among the components with similar function-
ality, the optimal choice maybe done with respect to their quality parameters. Variety of
quality metrics can be assigned to services, while the most popular and widely-used are
objective QoS (Quality of Service) attributes. In most papers, the quality of a given web
service is defined as a set or a pattern of attributes/parameters of this service [1, 10-12].
As it is mentioned in [11], the major attributes to define the Quality of Service (QoS) are
the time delay, the package loss percentage, the service access facility (the availability),
the reliability, etc. All these parameters are rather objective and thus, can be evaluated

automatically when a range of possible values is specified in advance for each parameter.

Standardized descriptions of service functionality with languages like WSDL, BPEL
or WS-CDL, usually do not contain any quality information, though some extensions
were recently proposed [8, 9, 13, 14]. The quality information about services becomes
the essential part of Service Level Agreement (SLA), the service level contract between
service provider and service user describing mutual responsibilities [8, 9, 15]. One of
the most common features of the SLAs is a contracted delivery time, related to timed-
dependent QoS parameters like response delays, mean time between failures, execution

time and timeouts.

The literature survey clearly shows that more research is needed in usage of finite state
models for the evaluation of the quality of web services, especially while considering

complex services. Often, finite state models augmented with weights and probabilities

Introduction 3

such as Markov chains, probabilistic automata, weighted automata, etc., allow more
accurate estimating of some parameters which are important for the quality of web ser-
vices. In most works, the quality of web service compositions is evaluated with respect
to a number of composition types and the quality of the composite service is aggre-
gated from the values of quality parameters for service components. Though, sometimes
workflows, which are often used for representing such composition, are insufficient for
the precise evaluation of the quality of the composite service. Thus, more complex finite
state models such as extended finite transition systems are needed to accurately evaluate

the quality of the composition when the component quality is given.

There are two main concepts of service composition that are widely discussed in the lit-
erature: orchestration and choreography. Orchestration is considered to be centralized
composition with the dedicated service (called orchestrator) to manage all the interac-
tions in the system and be a mediator between the user of the service and components
involved in producing the final result. Choreography, on the contrary, is considered as
distributed decentralized composition, with no dedicated service to organize collabora-
tive work, with each involved agent knowing when and with whom to engage in inter-
action, and with possibility of moving the user-interaction point from one component
to another according to composition goals. Different from orchestration, choreography
does not describe any internal actions and internal (control) message exchanges between
components, only sequences of messages that are observable from global point of view.
Often [16—-18] choreography is considered as a communication protocol to which the col-
laborative behavior of individual peers (component services) has to conform, and in the
thesis we adapt this latter interpretation of the choreography concept, with no focus on

implementation details of composition, whether it is distributed or centralized.

In this thesis, we do not go deeply in the implementation and deployment questions
of choosing centralized or decentralized architecture, but rather consider choreography
and orchestration being composition descriptions at different levels of abstraction: while
orchestration description languages, like BPEL, already provide processes that can be
executed, the choreographies represent the specification, the observable desired joint

behavior of the system.

The composition mode in focus of this thesis is the parallel composition, based on the

suggestion that the components of a composition communicate with each other in form

Introduction 4

of dialogs, exchanging requests and responses, one at a time, in order to process an
external request to the composition and produce an external composite response to it.
Moreover, the internal communications between components can be hidden from the

external viewer while describing composite behavior.

In this communication model, the orchestration architecture might be represented, for
instance, as parallel composition of the orchestrator - which will be the context, that
treats all external communications - and the pool of candidate component services that
are being orchestrated and might be seen as an embedded component, communicating
with the environment only through the context. Correlation of the parallel composition
to choreography in general case is more complicated, though, the resulting composition
could be considered as a result of choreography between components, while the internal
dialogs-mode communications could be considered as control messages that components
in choreography might exchange in order to coordinate their joint behavior. However,
the mode of communication we consider cannot be directly applied to the distributed
computations with multiple communications and synchronizations or simultaneously
working components, neither for centralized nor decentralized architecture, and those

issues are left for the future work.

The use of finite state models for dealing with composition realization issues (i.e. ver-
ifying whether the given set of components can work together according to composi-
tion specification) has proven to be perspective. Often [17-20] the specification and
component behaviors are represented with variants of finite automata and finite state
machines, based on which authors propose formal algorithms for checking composition

implementability and even derive skeletons for candidate component services.

Though, the quality issues of service compositions are mostly treated separately from
functional. Integrated consideration of both functional and nonfunctional requirements
may be done based on finite state models augmented with additional parameters, similar
to [21-23]. In the thesis, we assume that behavior of the components and specification of
the composition are representable with Finite State Machines with Timeouts (TFSM):
classical FSMs augmented with timed functions for input and output symbols to inte-
grate service time-related quality parameters, — and show how this model can be used

for verifying safety properties of service composition.

Introduction 5

1.2 Objectives and Contributions

In the thesis we address two main questions on service composition within TFSM frame-

work:

1. Whether the parallel composition of given components satisfies given functional
and quality requirements, while providing safe communication between compo-

nents?

(a) If the composition satisfies functional, but not quality requirements, is it
possible to reconsider quality requirements in such way, that the composition

is able to meet them?

(b) If the composition does not satisfy functional requirements, what part of the
specified behavior can it implement? Is it possible to choose components with
different quality parameters so that composition functional requirements are

met?

2. Whether it is possible to optimize some of the components to ensure that compo-

sition meets quality restrictions?

(a) Is it possible to substitute a component so that a composition conforms the
specification with timed restrictions?

(b) ...without livelocks and deadlocks? (safety requirements)

(c) ...with optimal delays? (quality requirements)
Therefore, we are stating the following objectives for the thesis:
1. Propose a finite state model capable of integrating functional, quality and safety

requirements for complex services.

2. Define a composition for the proposed model for describing communicative behav-

ior of complex services.

3. Develop methods for effective optimal component selection based on proposed

model.

Introduction 6

The work performed to fulfill the stated objectives resulted into the following contribu-

tions:

1. A FSM with Timeouts (TFSM) model has been proposed as a model for service

description that integrates functional, quality-related and safety parameters.

The FSM with Timeouts model is an extension of classical FSMs with timeout
and output delays functions, therefore allowing to describe as sequences of re-
quest /response aspects of service behavior, as time-related quality properties like
performance within the same model. The behavior of a component service involved
in composition can be significantly nondeterministic due to possible interactions
with other users and services, which we do not observe nor control, hence, in or-
der to adequately inherit such nondeterminism in the model, an extension of the

TFSM model has been also proposed.

2. A correspondence between functional conformance relations for service modeled

by TFSMs in cases of real and integer-valued time variable has been established.

In communicating service components, time variable may have any real value,
which is adapted in the proposed TFSM model. Though, checking conformance
between two models becomes a complex issue. Therefore, we prove that two given
TFSMs are conforming while time variable has any possible real value if and only
if they are in conformance while time variable has only integer values. The estab-
lished correspondence allows adaptation of formal language approaches for com-

position and component selection issues within TFSM framework.

3. A method for deriving the largest solution containing all allowed component service

implementations has been proposed based on solving TFSM parallel equation.

It is also stated that if the solution to corresponding TFSM equation does not
exist, then the composition cannot be implemented with given functional and/or

quality requirements.

4. A method for minimization of the set of composite service requirements has been

proposed.

In cases when the specification of a composite service is provided as a set of func-
tional requirements, possibly, augmented with quality requirements, this set can be

minimized with respect to the component under optimization. The minimization

Introduction 7

technique is based on determining which requirements are applied to the context
only, and comparing which parts of the component under optimization are involved

in satisfying or violating given requirements.
5. Techniques for extracting restricted solutions with required properties have been
proposed.

Namely, we consider four most interesting component service optimization issues:

e selection of safe component service with respect to livelock-free composition;
e selection of the component service with minimal number of states;

e selection of the component service with minimal (best) or maximal (least

restrictive) output delays as service quality parameter.

e selection of the component service with minimal required changes to be made

comparing with the initially given component.

The theoretical contributions are of importance not only in composite service quality
evaluation and optimization domain, but also in domain of automata theory. The ap-
plications of theoretical contributions are illustrated on examples of composite services

throughout the thesis.

1.3 Thesis plan

In accordance with the above objectives and to provide logical proof of contributions,
the thesis is organized in 7 chapters, including Introduction (Chapter 1) and Conclusions

(Chapter 7):

e Chapter 2 is devoted to the state-of-the-art in web service quality evaluation mod-

els and optimization throughout the service development steps.

e Chapter 3 focuses on the TFSM model definitions and properties, as a formal

model for describing web service functional and non-functional properties.

e In Chapter 4 we discuss the correlation between web services composition concepts
and the parallel composition, and formally define the parallel composition over

TFSMs, providing the algorithms to derive the safety-aware composition.

Introduction 8

e In Chapter 5 the general procedure for design of the component under optimization

is provided, based on solving the parallel equation over TFSM.

e The restricted solutions correlating to the particularly interesting cases while op-

timizing service component are discussed in Chapter 6.

e In Conclusions (Chapter 7) we summarize the contributions and discuss the direc-

tions for future work.

1.4 List of publications

Journal papers

1. Kondratyeva O., Kushik N., Cavalli A., Yevtushenko N. Using Finite State Models
for Quality Evaluation at Web Service Development Steps. International Journal

on Service Computing (1JSC), ISSN 2330-4472, 2013. Issue 1(1), pp. 1-12.

2. Kondratyeva O., Yevtushenko N., Cavalli A., Solving parallel equations for Finite
State Machines with Timeouts. Proceedings of the Institute for System Program-

ming. 2014. Volume 26 (Issue 6), P. 85-98 (peer-review journal, in Russian)

3. Kondratyeva O., Yevtushenko N., Cavalli A., Parallel composition of nondeter-
ministic Finite State Machines with Timeouts. Tomsk State University Journal of
Control and Computer Science. 2014. Volume 2 (Issue 27). P. 73-81. (peer-review

journal, in Russian)

Conference publications

1. Kondratyeva O., Kushik N., Cavalli A., Yevtushenko N. Evaluating Quality of Web
Services: a Short Survey / Proceedings of the IEEE 20th International Conference
on Web Services (ICWS 2013), July 2013. — pp. 587-594. (rank A conference)

2. Kondratyeva O., Kushik N., Cavalli A., Yevtushenko N. Evaluating Web Service
Quality using Finite State Models / Proceedings of the 13th International Confer-
ence on Quality Software (QSIC 2013), July 2013. — pp. 95-102.

Introduction 9

Participation in seminars and conferences

1. Poster presentation at La Journée Futur & Ruptures (I'Institut Mines-Télécom),

the best poster award, January 2014

2. International Conference on Web Services (ICWS 2013), 27 June — 2 July 2013,

Santa Clara, California, USA (rank A conference)

3. First Franco-Russian Seminar on Software Verification, Testing, and Quality Es-

timation, November 2014, Paris, France

4. 10th International Summer School on Training And Research On Testing (TAROT
2014), 30 June — 04 July 2014, Porto, Portugal

5. Tarragona International Summer School on Trends in Computing (SSTiC 2014),
07 July — 11 July 2014, Tarragona, Spain

Chapter 2

Background for the State Models

in Service Quality Evaluation

2.1 Introduction

We start the chapter with the general preliminaries and the context for web services and
service quality evaluation, and continue with the survey of the formal models useful for

the quality evaluation at each step of service development process.

The development steps we consider are inspired by [24] with some modifications accord-
ing to quality evaluation goals at each step. Namely, the steps are: service requirements

specification, provisioning, composition, implementation, and usage and management.

The step we are most interested in is the service composition, including issues of com-
position realizability and functional and non-functional optimization of the composition

via component quality-aware selection and substitution.

10

Chapter 2. Finite state models in service quality evaluation 11

2.2 Preliminaries on web services

2.2.1 Service-oriented architecture

Service-oriented architecture (SOA) is an emerging technology, gaining its popularity
from a range of benefits: heterogeneity, scalability, flexibility, reusability of the com-
ponents, etc. [8], becoming a basic for various internet applications such as online
multimedia and OTT services, online purchase and payment systems, e-government,

and many others.

The core unit of SOA is service, which can be defined from different points of view.
The Open Group [9] defines the service as a self-contained logical representation of
a repeatable business activity, which may be composed of other activities, given to
consumers as a “black box” and has a specified outcome. Another way of defining a
service is as a composition of web applications where a server (client) in one application
can be turned into a client (server) in another application, for example, in [8] a service
is defined as “a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-processable format
(specifically, WSDL). Other systems interact with the service in a manner prescribed
by its description using SOAP messages, typically conveyed using HT'TP with an XML

serialization in conjunction with other web-related standards”.

The Open Group consortium [9] defines SOA as an architectural style supporting service-

orientation, i.e., it is comprised of the following principles [25]:

e Standardized Service Description.

e Service Abstraction: service descriptions only contain essential information; im-

plementation details are not provided to service consumer.
e Service Reusability: services can be positioned as reusable enterprise resources.

e Service Discoverability: services are supplemented with communicative meta data

by which they can be effectively discovered and interpreted.

o Service Composability: services are effective composition participants, regardless

of the size and complexity of the composition:

Chapter 2. Finite state models in service quality evaluation 12

The communication of simple component services may be organized via a remote pro-
cedure call (RPC technology), though, the Simple Object Access Protocol (SOAP) or
Representational State Transfer (REST) are more often used. In order to support main
features of the heterogeneous service oriented architecture (SOA), the interaction with
services is processed through public interfaces that are often defined and described using

XML-based languages.

The service description should contain the description of service semantics and a
machine-processable description of the messages that are processed by the service [8].
One of the basic standard languages is the web service description language (WSDL).
A number of service depositories publish and provide the automatic analysis of WSDL
service files; for example, in [26], a “WSDL Analyzer” extracts the list of supported
operations and a required transport protocol that usually is HT'TP. Complex services
may be derived as a composition of simpler ones, and special languages for the composite

service description are developed.

The simple functionality is usually implemented as a solid entity while complex services
are built up from simpler ones, often provided by a third-party. Therefore, the properties
of the services involved in the design of a new composite service must be carefully eval-
uated, and before engaging a service component into the desired collaboration, it should
be verified whether it would be able to provide the required compositional behavior or
not. Workflows which support the logic execution of composite complex services can be
described using the business process execution language (BPEL) that, for each compo-
nent service, defines which messages it gets from and sends to other components. The
sequences of the message exchange occurred in the system are usually described using
the web service choreography description language (WS-CDL) [20]. Canonical descrip-
tions of services allow an automatic search for a service with the required functionality,

though, the information on the quality of a selected service is usually not presented.

2.2.2 Service quality parameters

In order to efficiently select the best service among the great number of available ser-
vices which can provide the required functionality it is necessary to have the adequate

evaluation of the service quality.

Chapter 2. Finite state models in service quality evaluation 13

In most papers, the quality of a given service is defined by a set or a pattern of at-

tributes/parameters of this service [1, 10-12].

The QoS (Quality of Service) can be defined by a set of attributes (or parameters), such
as the response time, availability, reliability, etc., corresponding to a given web service
and allowing to compare and rank services with similar functionalities [1, 10-12]. This
set of attributes is often mapped into a single value, quality score, using an appropriate
computable function and the result of this function can be an integer, a rational, a
(fuzzy) logic constant, etc. The QoS parameters are rather objective and thus, can be
evaluated automatically when a set of possible values is specified in advance for each

parameter.

For estimating the quality of web services based on the above parameters heuristic
methods are usually proposed [10, 27]. A usual way when evaluating the QoS based
on traffic analysis is to use a linear combination of weighted network parameters [12].
Sometimes coefficients of the formula are not given as they can be a know-how of a
company that evaluates the service quality for its own purposes. For many services that
are located in repositories the QoS is evaluated based on parameters mostly related to
traffic analysis. However, the parameters used in traffic analysis are more concerned
about the transport level than about service issues; thus, new parameters appear that
have to be considered when evaluating the service quality. Such parameters may be the
amount of money to be spent, service reputation, the comfort of a solution proposed by
the service, etc. A single utility function that maps the values of all parameters into
a single resulting value still is used for QoS evaluation [28] but usually it is difficult
to represent all these parameters by means of a single value. Correspondingly, the
service quality is represented as a set or a vector of heterogeneous attributes [28-30].
The parameters which are related to the traffic analysis are usually evaluated based
on the traffic monitoring but such parameters as the comfort of a proposed solution,
money to be spent etc. can hardly be estimated applying traffic based methods and
thus, there is a need for more complex models to be involved. Taking into account
sequences of various user requests, cancellations etc., web services are often described
by the sets of permissible sequences of actions [1, 31] and for this reason, researchers
turn their attention to trace models such as flow graphs, Markov chains, weighted and

probabilistic automata, Petri nets, fuzzy logic [21, 28, 32], etc.

Chapter 2. Finite state models in service quality evaluation 14

2.2.3 Service composition realizability and optimization

In this section, we consider in more details specifications of composite services, on dif-
ferent abstraction levels, and discuss whether two main composition concepts (namely,

orchestration and choreography) are indeed so different.

Choreographies are becoming one of the most powerful, scalable and flexible way of de-
scribing collaboration of heterogeneous distributed components, varying its applications
from service compositions [33] to complex business processes [34, 35], and far beyond,
from ubiquitous systems [36] to Internet of Things [37] and coordination of mobile de-

vices, people and offline services with online ones [38].

One of the problems of components involved in choreographies is that they cannot be
forced to proceed in one or another way, unlike when having an orchestrator-manager
which is eligible for making any decisions. But in real-world compositions it is not always
possible to design an appropriate orchestrator, for various reasons: involved services
should preserve the control of interaction with the user to themselves for security and
privacy reasons (e.g., payment services like PayPal, Verified-by-Visa, WebMoney, etc.,
must never share with sellers the details of clients payment information), or physical
impossibility (airport timetable service cannot gain any control over the planes and
the air companies crews), etc. These type of compositions can be efficiently treated
as choreographies, moreover, choreographies with partial specifications requiring from
involved components to be able to support desired conversations/interactions but not
being able to force them to do it, or ensuring that whatever components do they would
never cause undesirable behavior of composition, or verifying that the components can

be involved only in specified allowed conversations and none of the others.

The matter of distinguishing choreographies and orchestrations in complex services de-
scription is sometimes related not only to the degree of distribution of the control over
process among involved components, but also to the level of abstraction at which the

system behavior is considered.

Considering any service realization issues, especially for composite services, it is impor-
tant to fulfill not only functional aspects of components behavior and interactions, but

non-functional as well. Among the components with similar functionality the optimal

Chapter 2. Finite state models in service quality evaluation 15

choice maybe done with respect to their quality parameters. Variety of quality met-
rics can be assigned to services, while the most popular and widely-used are objective
parameters-related QoS (Quality of Service) attributes, subjective evaluation of end-
user satisfaction with QoE (Quality of Experience) and revenue-related QoBiz (Quality
of Business) [8]. Standardized descriptions of service functionality with languages like
WSDL, BPEL or WS-CDL, usually do not contain any quality information, though some
extensions were recently proposed [8, 9, 13]. The quality information about services be-
comes the essential part of Service Level Agreement (SLA), the service level contract
between service provider and service user describing mutual responsibilities [8, 9, 15].
One of the most common features of the SLAs is a contracted delivery time, related
to timed-dependent QoS parameters like response delays, mean time between failures,

execution time and timeouts.

There are two main issues with service composition that can be addressed within formal

models frameworks:

e Given a composition specification (most likely, choreography), whether the com-
position of given components conforms specification? If yes, can the composition
of given components satisfy all the quality restrictions? (composition realizability

issue)

e Given a composition specification and the components that conform to it, whether
it is possible to optimize some of the components to ensure that the composition
meets quality restrictions? What restrictions should be put to components so that
they satisfy both functional and quality requirements of the composite service?

(composition quality- and safety-aware optimization issue)

In related work, the questions of composition realizability are handled within appropriate
finite automata-like models, like component automata [17], conversation protocols [16],
symbolic transition systems [39], and the usual way of deriving the components from the
composition specification is to perform natural projection [17] and/or augment the result
of the projection with special control messages to ensure that involved components are

aware of the nondeterministic choices made by other components [18]. In [18] it is also

Chapter 2. Finite state models in service quality evaluation 16

shown that realization of given choreography can be done either in centralized or decen-
tralized manner, using special control messages in both cases to overcome drawbacks of

simple natural projection and allow realization of more challenging choreographies.

In most cases, the models used to analyze the realizability of given composition are

based on finite state models augmented with corresponding communication operators.

2.3 Evaluating quality of web services at development

steps using finite state models

2.3.1 Web service development steps

As any software product, a web service passes different steps while being developed,
and these major steps can be defined in different ways: starting from classical software
development life cycle models [40, 41] to business process development [42, 43]. Whatever
chosen development steps are, evaluating quality of the service under development and
verifying its conformance to functional requirements at each step are important issues for
more flexible modification and re-design of either service or requirements. We consider a
chain of five development steps inspired by [24] and slightly modified to be better adapted
for the quality-aware service development, namely, service requirements specification,
provisioning, composition, implementation, and usage and management (Fig. 2.1). An
implementation step is explicitly distinguished and the usage and management steps are

united as they are closely related when evaluating the quality.

1. Service requirements specification: at this step, functional and non-functional re-
quirements for a service under construction are set, the service and interface de-

scriptions are specified; in particular, a formal service model can be derived.

2. Service provisioning: this step is used for estimating required and/or available

provider and business resources.

3. Composition of services: at this step, a service under construction is decomposed
into simpler services. A decision is made on already implemented component
services that could be selected in order to guarantee the necessary functionality

and quality of the composite service.

Chapter 2. Finite state models in service quality evaluation 17

Requirements
specification

Usage and T
Provisioning
management
Implementation Composition

FIGURE 2.1: Web service development steps

4. Service implementation: at this step, implemented components of a composite
service are combined together; verification and testing of the new service are also

performed.

5. Service usage and management: as the main goal of each service is to satisfy an
end-user, the quality of a developed service should be monitored during its usage
by collecting and analyzing corresponding data. If the provided quality is under

the given threshold then there can be a need for the service optimization.

Service quality can be eventually improved /deteriorated at each development step. Gen-
erally, this does not guarantee the optimum of the final service quality but usually helps
to get closer to the target. For this reason, a quality evaluation is performed at each
service development step. At the first two steps, the specification and provisioning steps,
a set of service requirements as well as a set of available resources needed for the service

implementation are determined.

Example 2.1. Throughout the section we illustrate the use of finite state models at
different development steps for the quality evaluation with the example of a Vacation
Planner service. This example, with slight modifications, is taken from [44, 45]. The
service allows a user to purchase flight tickets and to book an accommodation at the
destination point. A user submits traveling dates and the planner proposes a number
of available options for flight tickets and hotel rooms. If the user and planner agree on
the flight ticket and hotel room then the vacation is successfully booked. Otherwise, the

vacation reservation has failed. A

Chapter 2. Finite state models in service quality evaluation 18

2.3.2 Specifying service requirements and deriving a formal specifica-

tion

The first step - the service specification - has the following goal: describe what the
service under development should be able to do and what is the expected quality of the

service we hope to be able to provide.

The requirements for the service under construction can be implicitly divided into two
groups: functional and non-functional requirements. At the first step it is important
to specify which quality parameters are crucial for the service quality and this choice
essentially depends on web service features. The choice of quality parameters has a

significant impact on the further attractiveness of the constructed service.

The list of crucial parameters is usually defined as the quality vector QoS =
(q1,92,--.,qn). The restrictions on parameter values (if there are any) can be, for in-
stance, stated by a system of equations or inequalities. Equivalence and order relations
can be used for specifying the priorities over quality parameters [46]. For example, the

notations below can be used:

® g; = q; — parameter ¢; is more important than parameter g;;
® g; => q; — parameter g; is much more important than parameter g;;

e ¢; ~ q; — parameters ¢; and ¢; have the same importance.

To be able to produce a “better” service than those which already exist, it is necessary to
define the notion “to be better” for two services. Two most popular approaches for such

evaluation are the usage of a utility function and the Pareto-dominance relationship.

Utility function [28, 29, 47] is a computable function that maps the QoS vector into
a single quality score F'(QoS). In other words, given two services S; and Sp with the
quality vectors QoS and QoSs, the service S; is better than Sy if F(QoS1) > F(QoS2).
There are many ways for defining utility functions; the simplest option is to define such

a function as a weighted sum of quality parameter values, F'(QoS) = Z w;q; where
q;€QoS
the main question is how to choose weights. In [28], weights are chosen in such a way

4

that a weighted parameter value is between 0 and 1 where 0 corresponds to the “worst”

parameter value while 1 corresponds to the “best”. In [46], the weights are calculated

Chapter 2. Finite state models in service quality evaluation 19

based on a partial order relation between parameters. The “worst” and “best” parameter
values essentially depend on a parameter. For instance, for the response time the less
the value is, the better it is for the service quality, while for the availability or popularity

a better value is the greater one.

The utility function is not always appropriate for the service quality comparison, espe-
cially for composite services. Last years, the Pareto-dominance relationship, also often
called skyline, is increasingly used [46, 48]. Once the relation “better” is set for the set
of values of each parameter, the quality vector QoS is said to dominate vector QoSs if
all components of QQoS; are “not worse” than corresponding components of QoSs and
at least one component of QoS is better than that of QoS5. The importance of param-
eters may be easily taken into account, by considering the domination only over most
important parameters. Less important parameters are not taken into consideration at

all or the maximal discrepancy value can be set for these parameters.

As web services often process permissible sequences of actions, finite state models are
widely used for their analysis and synthesis. In [19], the authors extract a Finite State
Machine (FSM) from the WS-CDL description using the tool DIEGO 2.0. In [20], the
BPEL and WS-CDL descriptions are translated into a system of communicating timed
automata. In most papers, the extracted finite state models are used for automatic
composition of services [49] or testing and verification purposes [50, 51]. In the next
sections, we show that finite state models can also be helpful for more precise quality

evaluation.

Example 2.2. For the vacation planner informally described in Example 2.1, we set the
following functional requirements: 1) Vacation is booked if both a flight ticket and a hotel
room are reserved, 2) Flight tickets are proposed before booking a hotel room. Quality
requirement at this step can be expressed with a restriction, that each user request has

to be processed in at most 30 seconds.

For the formal specification, on a high level of abstraction, the functional requirements

can be represented by transitions of a finite automaton in Fig. 2.2.

The service starts with waiting in the initial state qo for users request on preferable travel
dates, replying in the state g1 with the dates available for flight tickets. Then the user

might agree or disagree with proposed options (moving from state g2 to q3). In case of

Chapter 2. Finite state models in service quality evaluation 20

Inot reserved
FIGURE 2.2: Finite automaton model for the Vacation Planner service

disagreement, the service moves to state qq and proposes user to either check other travel

dates and continue (back to state qi) or quit the service via state q7.

If the user accepts the ticket provided by the service at state q3, then the service confirms
available dates and options for booking a hotel room, moves to state qs and waits for
user to decide on hotel reservation. After receiving the answer from the user, the service
quites to the final state (coinciding with the initial one) with confirmation or cancellation

of the travel booking (with corresponding outputs !reserved or !not_reserved). A

2.3.3 Estimating reachable quality of the service under development

The service provisioning step includes the analysis of available and required resources
for the service under development. This issue involves business processes and related
resources such as human-hours to be spent, the cost of implementation of a new service
comparing to the usage of existing components, etc. All these parameters significantly
influence the system architecture as well as a choice of component services and the imple-
mentation quality but their influence is rather implicit and for this reason, such business
issues are left out of the scope of this thesis. Nevertheless, knowing some network re-
sources (server quality, internet speed, etc.) gives a chance for more precise evaluation
of some service parameters such as the response time or availability of the service. The
marketing analysis of the target audience can also refine the evaluation. The quality
evaluation at this step can become a part of Service Level Agreement (SLA) [52]. If the
predicted quality is under desirable standards then the service requirements specification

should be revised, i.e., a developer should come back to the previous development step.

Given a finite state model extracted from some service description, at the provision-

ing step the model can be refined by augmenting its states and/or transitions with

Chapter 2. Finite state models in service quality evaluation 21

weights, probabilities or other attributes based on the quality requirements. In partic-
ular, in [21], weighted automata are used for more precise service quality evaluation.
The weight associated with each automaton transition represents the cost of the corre-
sponding transaction execution (in terms of time, money, etc). The quality parameter
values can be estimated via different execution paths of the corresponding automaton

and some conclusions about the service quality can be drawn.

Example 2.3. Continuing with the Vacation Planner service example, we illustrate
the benefits of using weighted automata comparing to the simple rough estimation. For
the purpose, the automaton from Fig. 2.2 is augmented with weights for transitions
corresponding to service transactions, weights representing the estimated maximal time
to perform each operation. The transitions corresponding to the actions of the user (input
actions marked with “?”) are not weighted because the user might take as much time as
he/she needs to perform a chosen operation, and hence are not taking into account for

evaluation of service quality. The resulting automaton is shown in Fig. 2.3.

ldate |10 s o 2fstat

'not reserved | 3 s
<+ qs

Inot reserved | 3 s ldate | 13 s

FIGURE 2.3: Weighted automaton for the Vacation Planner service

The rough quality estimation that does not take into account the order of operations
(and corresponding paths), could be done by simple sum of all known transaction delays,
which in our example return 36 seconds and violates the quality requirement described

for the vacation planner in Example 2.2.

Though, if the estimation is done based on the formal model, weighted automaton in this
case, the more accurate value may be obtained by considering traces from the initial to the
final state. As mentioned in [21], the weight of each simple trace (without cycles) may
be calculated and the longest transaction time corresponds to a trace with the mazximal
weight - in this example, such trace is the one through sequences states qoq14293959690

with total weight 29 seconds. AN

Chapter 2. Finite state models in service quality evaluation 22

2.3.4 Service composition and implementation

When a new service is derived by composing already existing services, possibly devel-
oped by a third-party, two main questions arise: what service quality can be provided
by existing components, and how to select components to achieve a higher quality of

composite service.

For quality evaluation purposes, the functioning of the component services and the
content of the messages they exchange are often not considered. When designing the ar-
chitecture of a composite service, task invocations between components can be expressed
with a corresponding workflow and Fig. 2.4 illustrates the basic composition patterns
in which the workflow can be decomposed. When a component service is invoked, it
executes some task (according to the composition requirements), and after completing
the task, the service either produces the result if it is the final task, or invokes other
components to execute further composition tasks. The same component service can
be used for executing different composition tasks. To avoid any ambiguity further the

execution of some task by the service is referred to as a component service.

The simplest workflow compositional pattern is sequential (Fig. 2.4a) where the compos-
ite service is organized as follows: when the service Sy completes a task then the service
Sy is invoked. In a conditional pattern (Fig. 2.4b), also referred to as XOR-~split pattern,
So invokes one and only one of services St,...,S; depending on the results of the task
execution. When probabilities are involved for each possible invocation, the equality
Zf:o p; = 1 must be held. When the service Sy invokes several services Si,...,S; a
parallel pattern (Fig. 2.4c), or an AND-split pattern, is considered. Services executing
tasks in parallel can be further merged in order to execute a required later task. If the
next service is invoked only when all preceding services have completed their tasks, the
synchronizing pattern (Fig. 2.4d), or AND-joint pattern, is considered. Otherwise, if the
next service is invoked after at least one service completes its task, a concurrent pattern
(Fig. 2.4e), or a XOR-joint pattern, is at hand. When some tasks should be repeated,
the loop pattern (Fig. 2.4f) is involved, and the number of repetitions may be either

known a priori or can be calculated during the task execution.

Without loss of generality, loops are considered to have a single starting point (service
Sp in Fig. 2.4f) and any number of exits (service S; in Fig. 2.4f). For each exit point,

the probabilities of continuing the loop or of going out may be specified.

Chapter 2. Finite state models in service quality evaluation 23

FIGURE 2.4: Basic compositional patterns: (a) sequential, (b) conditional, (c) parallel,
(d) synchronizing, (e) concurrent, (f) loop

FIGURE 2.5: Workflow for the Vacation Planner service

Example 2.4. For the Vacation Planner service (Examples 2.1 to 2.3) the workflow
consists of two components - Flight Booking (FB) and Hotel Booking (HB) services,
which are invoked sequentially, and the Flight Booking may be re-invoked repeatedly in

a loop, as shown in Fig. 2.5. A

2.3.4.1 Aggregation functions for quality evaluation

Given a set {S1,S59,...,S5,} of component services, their QoS vectors {Q1,Q2,...,Qn}
(for instance, published by service providers or so-called service brokers [53], and the

composition structure, the question is: what is the quality) of the composite service?

For all basic patterns and their combinations the question of overall QoS evaluation has
been studied properly and aggregation functions have been elaborated for a number of
QoS parameters. The result of each aggregation function is the value of a corresponding
attribute of the composite service. Some of these functions without considering prob-

abilities for XOR-splits are summarized in Table 2.1. In Table 2.2, probabilities for

Chapter 2. Finite state models in service quality evaluation 24

TABLE 2.1: Aggregation functions for quality parameters

. Compositional pattern
QoS Attribute Sequential | XOR-split | AND-joint XOR-joint Loop References
Cost (c) S S S S ny ¢ [29, 53]
i=1 i=1 i=1 i=1 i=1
k k k k k n
Availability (a) I a: 11 a: I a: 1—[] (1—as) (I ai> [28, 53]
i=0 i=0 i=0 i=0 i=0
k k
Response time (t) St max (t;) max (t;) min (t;) ny t [29, 53]
=1 i=1
0 2 % % 5 n
Reliability (r) I 7 11 7 11 7 1— I (1 =) (11 ri) [28, 30, 53]
i=0 i=0 i=0 i=0 i=0
. 1 & 1 & L& | L&
Reputation (q) % Zl qi % 21 i % Zl qi % Zl qi % 2:1 qi [28, 30]
1= 1= 1= 1= 1=

TABLE 2.2: Aggregation functions for quality parameters when probabilities are in-

volved
. Compositional pattern
QoS Attribute XOR-split Toop References
% % T T Y(1—p. T oamk 5 Sk o
Cost (c) S pici) (szo P%)(p.])(1:kl c1+]_[21:1 Pi 2i=jt1 C’) [29, 53]
i=1 j=1 (1—Hi_1 m)
& k T Y(1—02)T o
Availability (a) > pia; > (H":Ulp:) (kl pJ‘) U1=1 & [29]
i=1 j=1 [pias
% k 71 V(1—p- T L L
Response time (t) S pits > (ITi=g p:) (1) le‘l tl+l_[2”:1 P iy) [29, 53]
i=1 =1 (1-T1%_, i)

XOR-splits and loops are taken into account when deriving aggregation functions. In
these tables, the integer k& denotes the number of involved services while the integer n is
used for the number of loop iterations, and p; is the probability of invoking the service

Si.

In fact, the set of functions in Table 2.1 is incomplete, since more attributes can be
considered such as popularity, especially for social networks [54]. When involving some
logic models, such as fuzzy logic, k value logic etc., or modular arithmetic models,
aggregation functions which use only sum and multiplication operators do not seem to

be sufficient and thus, novel corresponding aggregation functions have to be elaborated.

Table 2.2 contains no aggregation functions for sequential and parallel patterns since
they coincide with those in Table 2.1. For a conditional pattern the average quality
evaluation is calculated, though the quality often is computed for each path separately,
which allows to assess the worst case, the best case, and/or the quality along the most
probable execution path [53]. When probabilities are given, the quality of a loop pattern

is calculated for an arbitrary (not limited) number of iterations.

However, sometimes workflows, which are often used for calculating the composition

QoS, are insufficient for the precise evaluation of the quality of the composite service.

Chapter 2. Finite state models in service quality evaluation 25

Thus, more complex trace models such as extended finite transition systems are needed
to accurately evaluate the quality of the composition when service component qualities

are given.

2.3.4.2 Quality-aware component selection

When the estimated quality of a composite service is unsatisfactory the question arises
how the quality could be enhanced. According to the previous section, the quality of a
composite service significantly depends on the composition structure and the quality of
component services. The composition structure is mainly pre-determined by functional
requirements and hence, cannot be easily changed. Correspondingly, in order to enhance
the quality of a composite service there is an option of selecting a “better” component
service, a so-called the quality-aware component selection problem. A “better” com-
ponent service can be selected from a collection of services with similar functionalities

based on a corresponding utility function or a skyline order relation.

The quality-aware component selection is a multi-dimensional optimization problem and
often can be reduced to the well-known combinatorial problems such as the multi-choice
knapsack problem [55], the resource constraint project scheduling [56], or the derivation
of a shortest graph path under some constraints [57], etc. Local and/or global approaches
can be applied [28, 55, 58|. Local selection approaches focus on choosing the best compo-
nent for each task independently of other tasks, while the global optimization objective
is to derive a composition with a better overall quality. For partially specified or derived
on-the-fly compositions a local selection approach is reasonable, though, it cannot guar-
antee that the composite service satisfies the given quality requirements [59]. Global
approaches which can ensure the composite service quality utilize the multi-dimensional
optimization [58-60] and these approaches are rather computationally expensive. Novel

promising approaches are rather the mixture of local and global approaches [28, 46, 48|.

2.3.4.3 The implementation issues

When all decisions are taken about the service hierarchy and components, the non-
existing component services and the overall composition are implemented. At this step,

formal descriptions using finite state models can essentially help as there are many tools

Chapter 2. Finite state models in service quality evaluation 26

Service Description Response Solution

Level Time Time

Gold Premier support service, Recommended for business | 1 hour 1 day
critical environments.

Silver Recommended for non-critical machines that are used for | 4 hours 3 days

development & testing purposes or low-risk production
environments.
Bronze Recommended for low-risk machine environments that | 1day 1 week
are used for irregular activities (e.g., ad-hoc Research &
Development).

FIGURE 2.6: An example of response time SLA restrictions [63]

which allow automatic code generation (see, for example, [61]). A developed implemen-
tation is then verified and tested for checking that the implementation conforms to its
specification [50, 51, 62]. Other properties of the implementation such as security and
robustness can be also tested at this level. Nevertheless, the quality related features
which are expected according to the service specification usually are tested at the next
step when the service is started to be used. If some parameter values do not satisfy a

developer he/she can come back to the previous steps in order to redesign the service.

2.3.5 Service usage and management

The main objectives of service management include, but are not restricted to, improv-
ing service quality and ensuring that the service satisfies functional and non-functional
requirements [8, 15]. Requirements that service should meet can be specified in the
Service Level Agreement [52] and are checked via service monitoring when various data
are collected and analyzed. At this step, detecting the SLA violations becomes one of

the main service management objectives.

The quality information about services becomes the essential part of Service Level Agree-
ment (SLA), the service level contract between service provider and service user describ-
ing mutual responsibilities [8, 9, 15]. One of the most common features of the SLAs is
a contracted delivery time, related to timed-dependent QoS parameters like response
delays, mean time between failures, execution time and timeouts. In this paper we fo-
cus on those parameters, integrating them into the state model of service behavior in
terms of dedicated timed functions. The example of timed-related fragment of an SLA

document for a simple IT helpdesk service from [63] is shown in Fig. 2.6.

Monitoring the conformance of service performance to the specification of composition

and SLA requirements is one of the crucial objective at this development step. In cases

Chapter 2. Finite state models in service quality evaluation 27

if specification and/or SLA violations are detected, the optimization of the service,

including substitution of some components, might be required.

2.4 Chapter conclusions

The finite state models relying on input/output sequences of service specification aug-
mented with appropriate parameters can increase the accuracy of the QoS evaluation in
some cases, compared to linear combinations and workflow-based aggregation functions.
We have also discussed how the quality of a composite web service can be evaluated by
the use of such models and how the selection of a QoS-aware component service can
be performed. Also, time-related quality parameters are remaining one of the crucial
for evaluating the service quality and in many services has an important influence on

end-user satisfaction as well.

Therefore, in the following chapters we investigate the finite state model augmented

with timed parameters in more details.

Chapter 3

Finite State Machines with
Timeouts as a Formal Model for

Web Services

3.1 Introduction

The finite state models proved their usefulness for various purposes while dealing with
discrete event systems - including web services, especially while considering composite
services: often [17-20] the service composition functional specification is treated as a
conversation protocol, described with variants of finite automata and finite state ma-

chines, so that formal algorithms for its optimization and verification can be applied.

Similar to [21-23], to integrate service quality parameters into a functional model, we
augment classical finite state model with additional functions. In the thesis, we in-
tegrate into the functional model one quality parameter - response time, for several
reasons: first, it is one of the most popular quality parameter to consider while eval-
uating service quality and SLA negotiations; second, for wide range of services it also
has a great impact on user satisfaction; third, it is often useful for detecting some safety
issues in communication between several components; forth, response time is one of the
most representative cumulative (or, additive) parameter, i.e., the aggregation of such
parameters in complex processes is based on sum operator (for example, in aggregation

functions in Table 2.1).

28

Chapter 3. TFSM as a formal model for web services 29

Therefore, in the thesis we consider the specification and components behavior being rep-
resented with Finite State Machines with Timeouts (TFSM): classical FSMs augmented
with timed functions for input and output symbols. In this Chapter, we investigate
essential properties and relations for the TFSM model, starting from the general def-
inition. Then, we propose a nondeterministic extension to model lack of control and
observability while dealing with third-party components. For verification and testing
purposes, the conformance relations are defined over TFSMs, and we show that it is
sufficient to consider TFSM behavior only at integer-valued time instances. The latter
allows to establish the correspondence between TFSMs and classical Finite Automata
(FA), opening the way for the efficient adaptation of well-developed formal techniques.
The established correspondence holds due to the cumulative nature of time parameter,
and in the future work might be investigated for other than time quality parameters and

metrics.

3.2 TFSM definitions and notations

3.2.1 General definition

Definition 3.1. A Finite State Machine with Timeouts (TFSM) is a T7-tuple
S =(S,1,0, \s, 50, As, 05), where:
e the 5-tuple (S,1,0, As, so) is an (underlaying) FSM:

— S is the finite non-empty set of states with the designated initial state sg;
— I and O are the input and the output alphabets, respectively;

— As €5 x I x O xS is the transition relation;
o Ag: S5 — S x (NU{oo}) is a timeout function, and
e 0s: As — Time is an output delay function.
The timeout function Ag(s) = (s, T) prescribes for each state s € S the maximal time

T € (NU{oo}) (timeout) of the idle waiting at the state s for an input to be applied;

and the next state sp € S which the machine moves to if no input has been applied

Chapter 3. TFSM as a formal model for web services 30

before the timeout expires. If Ag(s) = (sp,00), then by definition, sp = s , i.e., the

machine can stay waiting for an input at state s infinitely long.

The output delay os : As — Time function defines for each transition (s1,1, s2,0) € As
the set of timed intervals {[l;7)|l < rAl,r € (NU{0,00})} within which the machine can

process the applied input, execute the transition and produce the output [64-67]. A

Each TFSM has an internal time variable — timer — which is reset to 0 when either of

the following occurs:

o TFSM is reset (i.e. TFSM current state is set to the initial state);

TFSM receives an input;

TFSM produces an output;

TFSM state changes (due to input-output transition or timeout).

In other words, the value of TFSM timer shows how much time has passed since the

TFSM reached its current state or received the input that is currently processed.

Definition 3.2. A TFSM is complete if the underlying FSM is complete; the latter
means that for each state s € S the behavior of the machine is defined for any input
i € 1, i.e., for each state s € S and input ¢ € I there is at least one pair (0,s") € O x S
such that (s,i,0,s’) is transition of the underlying FSM; otherwise the TFSM is called

partial.

For a given state s € S, we denote inputsg(s) the set of inputs that are defined in the
state s, i.e.,

inputss(s) = {i € I|13(0,s") € O x S : (s,i,0,5) € As}.

Definition 3.3. A TFSM is functionally-deterministic (f-deterministic) if the underly-
ing FSM is deterministic, i.e., for each state s € S and input ¢ € I there is at most one

pair (0,s") € O x S such that (s,i,0,s’) is transition of the underlying FSM.

A TFSM is time-deterministic (t-deterministic) if for each transition (s,i,0,s’) € As
the output delay function is a single interval, i.e., for each (s,4,0,s’) € Ag it holds that

os((s,i,0,8)) ={[k;k+1)},k € NUO.

Chapter 3. TFSM as a formal model for web services 31

A TFSM is deterministic if it is both f- and ¢-deterministic, otherwise, the TFSM is

called nondeterministic. AN

Example 3.1. The Vacation Planner service, described as weighted automaton in Fx-
ample 2.3, also can be represented by TFSM model in Fig. 3.1, where weights are wrapped
as output delays values and requests and responses are paired. The resulting TFSM is

partial and functionally-deterministic.

?fchoice / fstat ([0;1))

??afoe ! c;_fv)aur ?date / lfvar ?nsat/ 2fbook /
i10) ([0;10)) Inot_reserved o
- (10:3)) (

?exit / [not_resere/?é:ﬁ_l)) ([0;11))

——C)

?hbook / Ireserved([0;5) 2hchoice / Thstat { [0:1))

?nsat/ Inot_reserved([0;3))

F1GURE 3.1: TFSM description of Vacation Planner service

3.2.2 TFSM behavior description

The behavior of the TFSM is characterized by the set of (timed) traces it accepts.

Further we denote the set of non-negative real as RT.

Definition 3.4. A timed input is a pair (i,t) € [x RT which indicates that an input 4
is applied when TFSM time variable (timer) has value t, i.e. at the time instance ¢ after

the previous output was observed or the current state was reached.

A timed output is a pair (0,t) € O x Rt which indicates that an output o is produced

when the timer has value ¢, i.e. exactly at the moment ¢ after an input was applied.

A sequence (i1,t1) ... (im, ty) of timed inputs is a timed input sequence, while a sequence

(01,k1) .. (Om, km) of timed outputs is a timed output sequence. A

Given the state s and input ¢ € inputss(s), denote outputsg(s,i) C O x {os} the set of

all output symbols paired with their possible delays, i.e.,

outputsg(s,i) = {{0,05(tr)) | Vo€ O3s' € S: tr = (s,i,0,5') € As}.

Chapter 3. TFSM as a formal model for web services 32

Given the state s and input i € inputsg(s), denote next_statesg(s,i) C S the set of

successors of the state s under input i, i.e.,

next_statesg(s,i) = {s' | Jo € O : (s,4,0,5") € A\s}.

In order to extend the transition relation on timed inputs and outputs, we define the

following functions:

o timeg : S x RT — S — for a given state s and time value t, function timeg
computes the state of the TFSM ¢ time units after reaching the state s according

to the timeout function;

e clocks : S x Rt — RT — for a given state s and time value ¢, function clocksg

computes the value of the timer ¢ time units after reaching the state s.

To calculate the value of timeg(s,t), we calculate the chain of timeout transi-
tions As(s) = (s1,71), As(s1) = (s2,12), ..., As(sp—1) = (sp,Tp) such that
Tv+To+...+T,—1 <t,but T +T5+...4+ T, > t. In this case, it holds timeg(s,t) = s
and the value of time variable is clockg(s,t) =t — (T1 + T2 + ...+ Tp—1), since the last

reset of the timer is performed when reaching the state s,,.
If As(s) = (s,00), then timeg(s,t) = s and for any value of ¢, it is set clocks(s,t) = 0.

By definition, the following properties hold: for Ag(s) = (s, T)

timeg(s,t +T) = timeg(timeg(s,T), 1),

clocks(s,t +T) = clocks(timeg(s,T),t).

In order to calculate the output that TFSM produces in response to a timed input (i, t)
applied in state s, we first compute to which state s, TFSM moves according to the
timeout function after waiting ¢ timed units, i.e., the input ¢ is applied when TFSM is

in the state s, = timeg(s,t).

Therefore, for each timed input (i,t) the transition relation A\g is extended with tran-
sition (s, (i,t),0,s"), i.e., (s, (i,t),0,8') € A, and output delay function is defined as

os(s, (i, t),0,8") = os({times(s,t),1,0,5")).

Chapter 3. TFSM as a formal model for web services 33

Receiving the input i in s,, the TFSM can produce an output o if there is a transition
(sp,i,0,8") € As in response after any time instance ¢ € os((sp,1,0,s")) (i.e., t’ being

within some interval from os((sp,,0,5’))).

The corresponding timed output (o, ') is a possible response of the TFSM to the timed
input (i,t) applied at the state s.

Consider the sequence a = (i1,t1)(i2,t2) ... (in,tn). Timed input sequence «
is called acceptable by TFSM S in state s if there exist a timed output se-
quence B = (o1,k1){02,k2) ... {(0n, k) and a chain of states si,s9,...,s, such that
AL contains transitions (s, (i1,t1),01, 1), (s1,(i2,t2),02,82), .. (Sn—1, (in,tn), On, Sn)
and output delays are k; € os((s, (i1,t1),01,51)), k2 € os({s1, (i2,t2),02,52)), ...

k'n S 0-3(<37L71> <in>tn>70na Sn>)

Then, «/f is called the timed trace of the TEFSM § in state s, and the transition relation

is extended with the transition (s, a, 3, sn) € AG.

Denote the set of all traces of S in state s as trace(s) and the set of all timed output

sequences 3, such that o/ is a timed trace, as outi(s, a).

For notation simplicity, we further omit superscripts ¢ and « in extended transition
relations and use As everywhere. Where appropriate, we also use the following no-
tation for transitions and timeout transitions: (s,i,0,s’) € As with output delays

i/o(K
K = os5((s,i,0,5")) as s HoE), s'; and timeout Ag(s) = (¢,T) as timeout transition

T
5= q.

Further, we also refer to the set of all traces of TFSM S in the initial state trace(sy)

as the behavior of TFSM S.

Remark 3.5. For the sake of consistency, we further consider only TFSMs under the

following assumptions:

e Since we condiser only initilized TFSMs, we also assume TFSMs to be initially con-
nected, i.e., that each state of the TFSM is reachable form the initial state. In other

words, that for each s € S there exists o/ € traceﬂg(so) so that (s, , 3,s) € As.

e In case of partial nondeterministic TFSMs, we further assume that all traces

are harmonized [68], meaning that acceptance of input sequences in states does

Chapter 3. TFSM as a formal model for web services 34

not depend on outputs. In other words, we require for any s, s1,se2 € S that if

(s,a, B1,51) € As and (s, v, B2, $2) € As then inputsg(sy) = inputss(sz). A

In terms of traces, we can redefine notions of determinism and completeness as follows.
The TFSM S is complete if any timed input sequence « is acceptable in the initial state
of S, otherwise the TFSM & is partial . The TFSM S is deterministic if for any timed
input sequence « there exists at most one timed output sequence (8 so that «/f is a

timed trace of the TFSM S, otherwise the TFSM S is nondeterministic.

The set of all acceptable timed input sequences in the state s is further denoted as

in%(s) ={a € (IxRY)*| 3B € (0OxR"*:a/f c traced(s)}.

3.3 Conformance relations for TFSMs

In order to design and analyze different interactive systems formal relations between two
systems have to be established to compare their behaviors. For FSMs, such relations
are well defined; and this is another reason why we use this model for service design and

analysis. We modify these relations for FSMs with timeouts.

Definition 3.6. TFSMs S and P over the same input and output alphabets are
equivalent, written S = P, if the sets of their traces coincide, i.e., it holds that
traceg(so) = tracel(po); otherwise, TFSMs S and P are distinguishable. In other
words, for the equivalent TFSMs, the sets of defined timed input sequences coincide
(they have the same specification domain) and the equivalent TFSMs produce the
same output sequences in response to each defined timed input sequence. Formally,
traceX(so) = trace%(po) iff in%(so) = in%(po) and for all o € ink(s) it holds that

outl (sg,) = outR(po,). A

Sometimes, it is said that the equivalent TFSMs have the same behavior.

Definition 3.7. The TFSM S is called a reduction of the TFSM P, denote S < P, if

tmce%(so) C trace%(pg), i.e., if sets of defined timed input sequences of S is a subset

Tt is sufficient in this definition that the completeness requirement is set for the initial state only,
because we consider all traces to be harmonized and the TFSM being initially connected. Otherwise,
the requirement should be set for each state of the TFSM, since some input sequences may lead to both
complete and partial states with different output responses.

Chapter 3. TFSM as a formal model for web services 35

of that of P and for each defined timed input sequence, the output response of TFSM
S to this sequence is in the set of output responses of P to this sequence. Formally,

in%(so) C inf(po) and for all a € in%(sp) it holds out%(sg, a) C outS(po, @). A

The equivalence and reduction relations are defined regardless of whether compared TF-
SMs are complete and deterministic or partial and nondeterministic. For partial TFSMs
the equivalence means that behaviors of both compared TFSMs should be defined on

the same sets of input sequences.

As service specifications are often partial and nondeterministic, special corresponding
relations between partial FSMs should be adapted to TFSMs, namely, quasi-equivalence

and quasi-reduction [68, 69].

Definition 3.8. The TFSM S is called quasi-equivalent to the TFSM P, § 3 P, if
in%(so) 2 in(po) and for all o € ink(po) it holds outk(sp,) = out(po,), i.e. S and

‘P have the same output responses to all the input sequences that are accepted by P. A

Definition 3.9. The TFSM § is called a quasi-reduction of the TFSM P, S < P, if
in%(s0) 2 inft(po) and for all o € in¥(py) it holds out%(sp, o) C outR(po,), i.e. for all
input sequences accepted by the TFSM P, the TFSM S can produces some of output
responses produced by P. A

Proposition 3.10. Given TFSMs S and P with harmonized traces, the following con-
formance relations properties hold.
1. § and P are equivalent if and only if S is a reduction of P and P is a reduction

of S: SEPifand only if S <P and P < S.

2. § and P are equivalent if and only if S is a quasi-equivalent to P and P is quasi-

equivalent to S: S =P if and only if S I P and P I S.

3. § and P are equivalent if and only if S is a quasi-reduction of P and P is a quasi-

reduction of S: S =P if and only if S <P and P < S.

4. If § is a quasi-reduction of P and P is a reduction of S, then S is quasi-equivalent

toP: if SSP and P < S then S I P.

Proof. 1. SZPifandonlyif S<Pand P<S

Chapter 3. TFSM as a formal model for web services 36

The property holds by definition, since tracef(so) = trace®(po) if and only if

traces(so) C traces(po) and trace(po) C trace(so).

2. S Pifandonlyif SIPand P S

—
=

(a) S = P holds, by definition, if and only if tracef(so) = trace®(po), hence, i
and only if in(sg) = infs(po) and for all a € inf(sg) it holds outs(sg, o) =
outS (po,).

(b) in&(so) = inS(po) if and only if ink(sg) C inf(po) and ins(po) C ink(so).

By definition of quasi-equivalence, if in(so) C infs(po) and for all a € in(sg) it

holds outk(sg, o) = outl(py, @) means S J P.
3. S=Pifandonlyif SSPand PSS
(a) S = P holds, by definition, if and only if tracef(so) = trace%(po), hence, if
and only if in%(so) = inf(po) and for all a € in%(sp) it holds out%(sp, @) =
outS (po,).
(b) in%(so) = in(po) if and only if in%(so) C inft(po) and in%(so) 2 i (po)
(c) and for all o € in%(sp) = in%(py) it holds outf(so,a) = outP(po,)

if and only if outf(sp,a) C outf(pg,a) for all a € inf(py) and

out¥(sp, &) 2 out(po, @) for all o € ink(sp).
The latter matches the definition of quasi-reduction.

4. ifSSPand P<Sthen SIP
If S < P then it holds in%(sg) 2 inf(po) and outf(so,) C outf(po,) for all
a € in(po).
If P < S then it holds trace(so) 2 tracel(po), therefore, inf(po) C in(so) and

outls(po, @) C out(so,) for all a € inlp(po).

Hence, in%(so) 2 in'S(po) and outs(so, o) = outS(po, @) for all a € inS(po), which

matches the definition of quasi-equivalence.

Chapter 3. TFSM as a formal model for web services 37

3.4 From real to integer values of time variable

The problem now is that all these relations are defined over sets of timed sequences
for real time instances and, hence, time variable has infinite number of values within
any interval. But since all the timeouts in the TFSMs and boundaries of intervals for
output delays are integers and time variable is reset after each transition, we can restrict
the sets of traces to integer time instances preserving the above conformance relations

between TFSMs.

3.4.1 Integer-valued conformance relations

Given TFSM S, the following formula can be established.
First, for any state s it holds that timeg(s,n 4 0) = timeg(s,n) for all n € NU {0} and
J€[0,1):
1. if As(s) = (¢/,T) and n < T or As(s) = (s,00) then n+ 3§ < T and timeg(s,n +
0) = timeg(s,n) = s;
2. if Ag(s) = (¢/,T) and n =T then timeg(s,n + 0) = timeg(s’,0) = s since § < 1;
3. if As(s) = (¢/,T) and n > T then timeg(s,n + 0) = timeg(s’,n — T + &) which
iteratively is reduced to the clauses n < T
Therefore, (s, (i,n +9),0,s,) € As if and only if (s, (i,n),0,s,) € As.

Consider a timed input sequence a = (i1,t1)(i2,t2) ... (i, tx) where t; = n; + 0;,

§; € [0,1) for all 1 < j < k. We denote o™ = (i1, n1)(ig, n2) ... {ig, ng).

Proposition 3.11. For any state s it holds that o € in(s) if and only if ™ € in%(s).

Proof. Consider two sequences o = (i,n + 0)a’ and oy = (i,n)d’.

It holds that o € ink(s) if and only if i € inputss(times(s,n + 6)), i.e., there exist s1
and o such that (timeg(s,n+0),4,0,s1) € As, and o’ € in&(s1). Since timeg(s,n+4) =
timeg(s,n), it holds that i € inputss(times(s,n)) and o/ € in§(s1) implies a; € in%(s).

The proposition then can be proven using the induction on the length of sequence /. [

Chapter 3. TFSM as a formal model for web services 38

Proposition 3.12. For any state s and any input sequence «, it holds that outﬂg(s, a) =
outl (s, o).

Proof. The proof is a corollary (by induction) of the property that for all 6 € [0,1) it
holds (s, (i,n + 9),0,sp) € As if and only if (s, (i,n),0, s,) € As. O

On the other hand, we consider that the global timer which measures time intervals
between applying an input and observing an output is most likely discrete, then if an
output o is produced at some time instance n+ 9, n € NU{0} and § € [0,1), we observe
the timer value n and denote this timed output as (o,n). Therefore, timed output
(o,n) is interpreted as an output o produced at any time instance between [n,n + 1)
after a corresponding input was applied, and two timed outputs (0,n) and (o,n+¢) are

considered equivalent for all n € NU{0} and ¢ € [0,1) and treated as the same output.

Denote ing(s) = {a™ | a € ing(s)} the set of integer-valued timed input sequences
defined in the state s, the outg(s,a) = {8™ | B € out%(s,a)} the set of integer-valued
timed output sequences in response to the sequence « in state s, while traceg(s) =
{ait/pint | /B € trace(s)} denotes the set of all integer-valued timed traces in state

S.

Proposition 3.13. Given TFSMs S and P, the following statements holds:

1. § = P iff traces(so) = tracep(po);
2. § < P iff traces(so) C tracep(po);

3.8 3 P iff ins(so) 2 inp(po) and for all « € inp(po) it holds outg(sp,) =

outp(po, @);
4.8 S P iff ing(so) 2 inp(po) and for all o € inp(pg) it holds outg(sp,) C

outp(po, @);
Proof. Directly follows from Propositions 3.11 and 3.12. O

According to Proposition 3.13, when talking about conformance relations it is sufficient

to consider timed traces where time instances are integers.

Chapter 3. TFSM as a formal model for web services 39

Correspondingly, we can restrict the definition of the output delay function of TFSM
from intervals to sets of integer values without breaking a considered conformance rela-

tion. Therefore, the following definition can be considered without loss of generality.

Definition 3.14. A Finite State Machine with Timeouts (TFSM) is a T7-tuple
S = (5,1,0,)s, s0,As, 0s), where:

e the 5-tuple (S, 1,0, As, so) is an FSM;
e As: S — Sx (NU{cc}) is a timeout function, and

® 05 :As — QNU{O}/@ is an output delay function that defines the non-empty (pos-

sibly, infinite) set of allowed delays for the machine. A

Moreover, in this thesis, we assume that the set of values of og for each transition can

be represented as a set of values of linear functions {b+ kt | b,k € {0} UN}.

Since the timed behavior aspects of TFSM can be adequately modeled at integer time
instances, it is possible to represent waiting for one time unit using dedicated discrete
action 1 and characterize the behavior of the TFSM with a regular language of a corre-

sponding finite automaton.

3.4.2 Corresponding Finite Automata

The behavior of a TFSM can be described by a corresponding regular language and,
similar to classical FSMs, the composition of TFSMs can be derived based on operations
over corresponding finite automata (FA). Therefore, in this section, we first remind
necessary operations over finite automata and then define the correspondence between

TFSMs and FA.

A Finite Automaton (FA) is a 5-tuple P = (P, A, dp, po, @), where P is finite non-empty
set of states with the designated initial state py and the set @ C P of final (accepting)

states, A is a finite alphabet of actions, p C P x (A X €) x P is the transition relation.

Further, we also refer to a finite automaton simply as an automaton where it does not

cause any ambiguity.

Chapter 3. TFSM as a formal model for web services 40

(a)) (©

FIGURE 3.2: Automaton P (a), expansion of P to alphabet {a,b} (b), and restriction
of Pyiap,cp to alphabet {a,u} (c)

For each state p € P denote the set of actions under which an outgoing transitions are

defined as actionsp(p) = a | Ip’ € P(p,a,p’) € dp.

By induction, the transition relation is extended to sequences of A*. The automaton
accepts (recognizes) a string o € A* if there exists a state ¢ € @ such that (pg, o, q) € dp.
The set of all strings accepted by the automaton is the language of the automaton and
is denoted L(P). Automata P and S are equivalent if they accept the same language,
ie., L(P) = L(S).

An FA P is deterministic if 5p C P x A x P and for each pair (p1,a) € P x A there
is at most one state po € P such that (pi1,a,p2) € dp, otherwise, the finite automaton
is mondeterministic. It is known that for each nondeterministic automaton there ex-
ists an equivalent deterministic automaton which can be derived by the use of subset

construction [70].

The expansion of an automaton P = (P, A, dp, po, @) to alphabet B (or the B-expansion)
is the automaton Py = (P, AUB, 68, py, Q) where 68 = §pU{(p, b, p)|p € PAb € B\ A},
L(Pyp) = L(P)4p- [71] In other words, in order to get the B-expansion of the automaton
P we add a self-loop at each state p labeled with every action from B that is not in the
alphabet A. The restriction of an automaton P to alphabet C' C A is an the automaton
Pyc = (P,C, 6%, po, Q) where for all (p1,a,ps) € 6p , if a € C then (p1,a,ps) € 5%, else
if a € A\ C then (p1,¢€,p2) € 6%.

In other words, to extend an automaton we add a loop at each state for each new symbol
we extend to. To restrict an automaton we hide symbols we are not interested in by

replacing them with an the empty move.

The expansion and restriction operations on automaton are shown in Figure 3.2.

Chapter 3. TFSM as a formal model for web services 41

By definition, the operators {} and |} possess the following features: L(Pyp) = L(P)4p
and L(Pyc) = L(P)yc[71].

Given two automata P = (P, A,dp,po,@Qp) and R = (R, A, 0, 10, QR), the intersection
C = PNTR is the automaton C = (P x R, A,dc, (po,70), @p X Qr) so that for all
(p,r) € PxRandalla € Aitholds ((p,7),a, (p',r")) € d¢ if and only if (p,a,p’) € dp and
(r,a,r") € ég. [70] Intersection operation can be considered as a special variant of more
general product operation for deriving the common behavior of two automata. Due to
automaton-language correspondence, it holds by definition that L(PNR) = L(P)NL(R).
Further, referring to automata intersection, we also assume, that unreachable states are

either deleted or not derived.

A finite automaton Aut(S) corresponds to a given TFSM S if for each timed trace
af = (i1, t1).(o1, k1).(i2, t2).(02, k2) . .. (in, tn).(On, ky) of the TFSM S the automaton
Aut(S) has a trace 1t141%10, .. 1tng 1k, where symbol 1 denotes the waiting for one

time unit.

The general idea of deriving the corresponding automaton can be summarized by fol-
lowing rules.
i/o(k
1. Each transition s m q of the TFSM is unfolded into a chain of transitions

PRLN (s,1) L. i><s, i, k) % ¢, where all intermediate states (i.e. all states except
———

k
s and ¢q) are non-final.

2. For each infinite timeout the automaton has a loop under 1 in the corresponding

state, i.e., if Ag(s) = (s,00) then the automaton has a transition s L.

3. A timeout transition s i> s’ for t < oo is unfolded into a chain of transi-

tions s - (s,1) L8 (s,t—1) L ¢, all intermediate states (s,j) being final

N~

t
and “copies”of s, i.e. has the same transitions under ¢ € I as the state s.

In other words, we unfold each input/output transition of TFSM § and add several
transitions labeled with the action 1 between an input and an output according to
the output delay value. Timeout transitions (i.e., transitions according to the timeout
function) are unfolded into a chain of transitions labeled with action 1 preceding a

corresponding input, similar to that in [66] for corresponding FSM.

Chapter 3. TFSM as a formal model for web services 42

In more details, the process of deriving the corresponding automaton is shown in the

Algorithm 3.2.

For t-nondeterministic TFSM, if output delay function is periodical for some transitions,
it cannot be unfolded into a chain of transitions under 1 directly. Though, for any set
of linear functions there exists a regular language (i.e., the language of some finite
automaton) so that the set of length of its words coincides with the set of values of
these linear functions.? In other words, any set of linear functions can be represented
with some one-letter finite automaton. In our case, we unfold sets of linear functions
to automata over one-letter alphabet {1}, representing given set of output delays, in
Algorithm 3.1. The algorithm, in general, returns non-deterministic finite automaton
which can be determinized by any known procedure (e.g., see [70]) if needed. In the
non-deterministic automaton, derived by Algorithm 3.1, the number of cycles is equal
to the number of functions with non-zero period k; # 0 in the set, with lengths £;, and
all cycles contain only one final state. After the determinization, the automaton will

contain the single cycle of length LCM;(k;) with multiple final states.

Algorithm 3.1 Deriving the automaton representing the values of the set of linear
functions
Input: The set of linear functions o = {b; + k;t | (1 < j <n) A (bj,k; e NU{0})}.
Output: The corresponding automaton Aut(c) = (P,{1},0p,po, Pin), so that
1* € L(Aut(0)) if and only if & € o.
if 0 € o then py € Py, end if
bmaz = maxi<j<n(bj).
for all 1 <b < bye, do add state (p,b) to the set P
end for
for all 1 < b < bz do add transition ((p,b—1),1,(p,b)) to dp
end for
Add transition (pg, 1, (p,1)) to dp
for each b; # 0 do set (p,b;) € Prin
end for
for each k; # 0 do a loop of length k; from corresponding final state:

forall 1 <k <k; do

Add state (p,b;)x—1 to P.
Add transition ((p,b;)k—1,1, (p,b;)x) to dp

end for

Add transition ((p,b;), 1, (p,bj)1) to dp

Add transition ((p, b;)r,—1, 1, (p, b;)) to dp
: end for
: Determinize derived Aut(o) if needed.

e e e e e e
I A T A T

2The length sets of regular languages are known to be semi-linear (i.e., the finite unions of linear
sets) [72], which can be shown as a particular case of the Parikh theorem for context-free grammars.

Chapter 3. TFSM as a formal model for web services 43

Given the TFSM S, the corresponding automaton Aut(S) is derived by Algorithm 3.2.
By construction, the following proposition holds.

Proposition 3.15. Given a TFSM S, an automaton Aut(S) derived by Algorithm 3.2
accepts a trace a € [11i11%101 .. 1Pi11Fn0,]1* if and only if the TFSM S has a trace
<i1, t1>.<01, /{1> e (in, tn>.<0n, kn>

Proof. The proposition holds by construction. Suffix 1* after each trace means that
TFSM does not stop functioning but continue waiting for a next input with correspond-

ing changing of states according to the timeout function. O

Consider the TFSM § = (S, I, O, sp, \s, As,0s). Let Ty,q, denote the maximal
finite timeout, K4, - the maximal finite output delay without cycles, n = |[S|, m = |1],
k =]0|, and [- the maximal number of output symbol variants for each input applied
at a given state. In practice, the value of [is usually essentially less than |O|, and
somehow can be used as a measure of functional nondeterminism of the TFSM. For
f-deterministic TFSMs [= 1. Then, the corresponding automaton Aut(S) has at most
n - T final states (states of the TFSM plus their “copies ”via timeout transitions
unrolling). Each transition of the TFSM is unrolled into a chain of transitions starting
from states of form (s,) and there are at most n - m of those states. The last non-final
states in such unrolled chains are states from which transitions under output symbols are
defined to states from S, and hence there are at most n-k last non-final states of unrolled
transition chains. The length of a chain of transitions and number of intermediate states
it traverses are defined by the maximal output delay value. In case of periodic output
delays, the maximal number of intermediate states is also defined by the maximal output
delay value without going into cycles. The chain of transitions under 1 starting from
states of form (s, i) can lead to at most [last non-final states due to f-nondeterminism.

Therefore, there are at most m - [- K4, such intermediate states.

Overall, the corresponding automaton has at most n - (Tyee + m + k) + m - 1 - Kipag

states.

Taking into account that modern FA-processing tools (see, for example, BALM [71])
efficiently process finite automata with hundred thousands of states, and that this worst

evaluation is practically unreachable (especially for partial TFSMs), the transformation

Chapter 3. TFSM as a formal model for web services 44

Algorithm 3.2 Deriving the corresponding automaton for given TFSM

Input: The TFSM § = (S, I, O, sg, As, As,058)
Output: The corresponding automaton Aut(S) = (Q U F, I UO U{1},dg, s0,Q), with
the set of final states @ C SU (S x N) and the set of non-final states F' C (S x I)U
(S xIxN).
1: Set Q = S, the initial state is sq .
Unfold all transitions
for each tr = (s,i,0,s') € A\s do
Add state (s,) to the set F.
Add transition (s, 1, (s,i)) to dg.
if 0 € os(tr) then add transition ((s,%),0,s’) to s end if
if os(tr) # {0} then
Unfold non-zero output delays
7 if |os(tr)| =n < oo then k4, = max(k; € os(tr))
Unfold deterministic delay into a simple chain of transitions
for all 1 <k < ke do add (s, i, k) to the set F

: end for
10: for all 1 < k < kg, do add transition ((s,i,k — 1),1, (s,i,k)) to dg
11: end for
12: Add transition ((s,i),1, (s,i,1)) to dg
13: for each k; € os(tr) do add transition ((s, i, k;),0,s’) to dg
14: end for
15: else if og(tr) = {b1 + kit;ba + kat;...b, + knt} then

Unfold non-deterministic delays into a finite automaton using source state of the
TFSM transition as initial state for the automaton representing delays

16: Derive an automaton Aut(os(tr)) = (P, {1},ép,po,Ptin) by Algo-
rithm 3.1

17: Add P to the set of non-final states F

18: Merge pg to (s, 1)

19: Add all transitions from dp to dg

20: for all p € Py;,, do add (p,o,s’) to dg

21: end for

22: end if

23: end if

24: end for

Unfold timeouts
25: for each s € S do
26: if As(s) = (s,00) then add transition (s, 1, s) to dg

27: else if Ag(s) = (s/,1) then add transition (s, 1,s’) to dg

28: else if Ag(s) = (¢/,T) with 1 < T < oo then

29: for cach 1 <t < T do

30: Add state (s,t) € Q

31: for all (s, i, (s,i)) € 0 do add transition ((s,?),1, (s,7)) to dg
32: end for

33: end for

34: Add transition (s, 1, (s, 1)) to dg

35: for each 1 < ¢t < T do add transition ((s,t — 1), 1, (s,t)) to dg
36: end for

37: Add transition ((s,T —1),1,s’) to dg

38: end if

39: end for

Chapter 3. TFSM as a formal model for web services 45

I‘]/rOl(N [, {0}),
it/o(N w{0}),

Ty A5 50

;';,f;ok(N w{0}), .
irio1(N w{0}),

inloi(N U{0})

FIGURE 3.3: The maximal TFSM over alphabets I = {i;...iy,} and O = {o1...04}
(left) and its corresponding automaton (right)

from TFSMs to FA and performing operations over TFSMs via operations over cor-
responding FA seems a practical approach. The bottle-neck of the approach lays in
operations involving FA determinisation (which is known to have exponential complex-
ity), and development of work-around solutions is an interesting perspective for future

work.

The language L(S) of the automaton Aut(S) is further called the time advanced language
of the TFSM S, or further on just language of the TFSM S for short. Here we note
that the language L(S) indeed contains not only traces corresponding to timed traces
of the TFSM S, but also all their continuations with the suffixes of the set 1*; the
latter means, that after producing the tail output of the trace, the TFSM not necessary
resets to the initial state or stops functioning but can continue to change its states
according to the timeout function. Due to the correspondence of traces and languages

and Proposition 3.15 the following proposition holds.

Proposition 3.16. Given TFSMs S and P, the TFSMs are equivalent (or S is reduction
of P), if and only if their languages L(S) and L(P) coincide, L(S) = L(P) (or, the
language L(S) is contained in the language L(P), L(S) C L(P)).

Definition 3.17. The TFSM M/ o over alphabets I and O is called the mazimal TFSM

if any TFSM S over alphabets I and O is the reduction of Mo, ie., S < Mrpo. A

Correspondingly, the maximal TFSM M o has the language L(Mr o) = [1*11*O]*1*.
An example of the maximal TFSM and its corresponding automaton are shown in

Fig. 3.3.

Definition 3.18. The TFSM S with the language L(S) = 1* is called trivial. A

Chapter 3. TFSM as a formal model for web services 46

The set of traces of trivial TFSM is empty, though, unlike the trivial classical FSM, its
corresponding automaton accepts not only empty sequence, but any sequence of time

symbol 1 as well.

However, not each automaton over input and output actions and action 1 has the lan-

guage that is the language of some TFSM.

Proposition 3.19. The language L(S) C L(Mj,0) of some TFSM S is [1* U 1*11*0]-
prefiz-closed, i.e., for any o € L(Mj o) and b € [1*U1*I1*O] it holds that if ab € L(S),
then o € L(S) as well.

Proof. The proposition holds due to the semantics of TFSM: all the states of TFSM are
considered final, input symbols can be applied only at some states, and after producing

an output symbol, the execution of transition moves TFSM to some state. 0

Proposition 3.20. Given an automaton P = (P,1 U O U{1},dp,po,Q), with the lan-
guage L(P) C L(Mr,0), it corresponds to some TFSM if all the following properties
hold:

1. The initial state is final, py € Q.

2. Each final state has an outgoing transition labeled by symbol 1, i.e., for each p € Q
it holds 1 € actionsp(p). Hence, 1* C L(P).

3. Fach non-final state has at least one outgoing transition labeled either by symbol 1
and/or an output symbol, i.e., for each p € P\ Q it holds |actionsp(p)| > 1 and
actionsp(p) C O U{1}.

4. A transition labeled by symbol 1 can be made only between two final states or two
non-final states, and there is no transition labeled by symbol 1 between a final
and a non-final state, i.e., for all (p1,1,p2) € 0p it holds either p1,p2 € Q or
p1,p2 € P\ Q.

5. A transition labeled with an input symbols is an outgoing transition from a final
state and an incoming transition to a non-final state, i.e., for all (p1,i,p2) € dp it

holds p1 € Q and pa € P\ Q. For all p € Q it holds actionsp(p) C I U {1}.

Chapter 3. TFSM as a formal model for web services 47

start / ask_login login / confirm_role tourRG / listRG

login / fail
continue /
check

sign_to_RG/
fail

sign_to_RG/ start_ RC

exit / logout

submit_result/
get_ran
submit_result/

disqualification
12 hours

FIGURE 3.4: The sample TFSM description for Ready-Go Virtual Golf Tournament

6. A transition labeled with an output is an outgoing transition from a non-final state
and an incoming transition to a final state, i.e., for all (p1,0,p2) € dp it holds

p2 € Q andp; € P\ Q. Forallp € P\ Q it holds actionsp(p) C O U {1}.

If the above properties hold then we can restore a corresponding TFSM, following the

Algorithm 3.3.

3.5 Web service TFSM descriptions

In this section we provide some samples of using TFSMs for modeling service behavior.

Example 3.2. In Fig. 3.4, an example of TFSM description for participating in Virtual
Golf Tournament is shown. Player signs up for participation after login in the personal
account (input login), then searching for a tournament (input tour RG) that is ready to
start (output list RG with available options). After choosing a tournament to participate
(input signiorG), the player is registered for the participation (startrG), and allowed
to participate in one tournament at a time - attempt to apply sign:orG for the second
time leads to a fail output. After the tournament is started, the player has 12 hours
(timeout in state e) to complete the tour and submit his results, otherwise, the player
is disqualified (output disqualification from state f). After the current tournament is

completed, the player can continue and choose the next one to participate.
A

Example 3.3. Another sample TFSM, inspired by the TFSM description of Trenitalia
compensation policy [13], is shown in Fig. 3.5 - the Compensator service. The service

receives notifications on departure and arrival of the train, and in case of delays, the

Chapter 3. TFSM as a formal model for web services 48

Algorithm 3.3 Restore TFSM from corresponding automaton

Input: The deterministic automaton P = (P, TUOU{1},p, po, @) for which properties
from Proposition 3.20 hold.
Output: The TFSM § = (S, I, O, so, As, As,0s) so that Aut(S) =P
1: Sg = qo, add sg to S
2: for each s € S do
Calculate timeout:

3: if (s,1,s) € 0p then add s in S and define Ag(s) = (s,00).
4: else if (s,1,s') € dpthent=1,¢g=4¢
5: while s(+1) =£ s(F) for all 0 < k < t where (s(),1,s(41) € 6p do
6: if for all i € I it holds (s, i, f) € dp if and only if (s),4, f) € §p then
7: g=s"D andt=t+1
8: end if
9: end while
10: Add sin S
11: if s+ = 5% for some 0 < k <t then define Ag(s) = (s, 00).
12: else add ¢ in S and define Ags(s) = (¢, 1)
13: end if
14: end if
Calculate transitions:
15: for each i € actionsp(s) NI do
16: k =0, assign the set label(p) = {0} where (s,i,p) € dp
17: Assign to intermediate non-final states their delays from an input:
18: q=2p
19: while (q,1, f) € ép and |label(f)] <1 do
20: kE=k+1
21: if label(f) = 0 then assign label(f) = {k}
22: else if |label(f)| = {b} then re-assign label(f) = {b+ (k — b)t}
23: end if
24: Move ¢ = f
25: end while
26: Use assigned delays to restore input/output transitions:
27: Start from ¢ = p where (s,i,p) € dp
28: while (q, 1, f) € 6p and label(f) # () do
29: for each o € actionsp(f) N O and (f,0,s') € ép do
30: if s’ ¢ S then add s’ to S end if
31: if (s,4,0,5") ¢ A\s then add (s,i,0,s’) to As end if
32: Define os((s,4,0,5")) = 0s5({s,1,0,5")) Ulabel(f)
33: Empty label to mark state f as explored: label(f) = ()
34: end for
35: Move q = f
36: end while

37: end for
38: end for

Chapter 3. TFSM as a formal model for web services 49

reimbursement for the ticket is provided for train delays over 60 minutes (timeouts in

states wait_to_depart and wait_to_arrive), if claimed within 12 month after late arrival

(timeout in state late_arrival).

wat to
depart

80 minutes

notify_ ontime ! delay
late notify_delays delay
departure

notify_ontlme / delay
notify_delay/ delay

reim bourse

FIGURE 3.5: The TFSM description of the Compensator service

notify_dep / departure notify_am/ arrival

notify_ontime / ontime notify_getime / ontime

notify_delay / ontime btify_delay/ ontime

rotify_ontime / delay, ate
rits 12 month srehel notify_delay / delay
reim bourse

comp_reqg / no_reimb

80 minutes

Spart_reimb
comp_reg S full_reimb Rl e

A

Example 3.4. Let us consider a simple Loan Approval Service [74, 75], that has two
components: the Assessor (Fig. 3.6) and the Approver (Fig. 3.7). The Loan Approval
service is a loan bank service allowing to accept a loan for a customer or not. This service
has been mainly standardized by IBM [74] but is nowadays customized and implemented

by the majority of the banks in the world.

ves/Ack yes(1) @ AA/A[L)
10
IAnr/A(2)
1Ar/18Ar(1
I e - o)
@-‘

OK/outl(1)

NAA/
NA(1)

no/Ack noll OK/

out2{1)

F1GURE 3.6: The Assessor component TFSM for the Loan Approval Service

First, the clients of the service send the loan request to the bank Assessor, their personal
IDs and the requested amount. By using this information, the loan service may accept or
refuse the loan. This decision depends on the requested amount as well as the risk linked
to the client. For low amount requests (e.g., less than 10k euros) and non risky clients

(input I Anr in the Fig. 3.7), the Assessor grants the loan (input A) which is provided

3We thank prof. Stephane Maag for this modified example of TFSM for the Loan Approval Service

Chapter 3. TFSM as a formal model for web services 50

Ack_yes/AA{1) Ack_no/AA(1)

IAAF/SA(1),
Ack_no/SAl1)

IAAr/SA(1L),
Ack yes/SA(1)

1AAr/yes(d)
Ack yes/SA(1),
Ack_no/SA(1)

F1GURE 3.7: The Approver component TFSM for the Loan Approval Service

(output outl) when the client asks for it (OK at state pl). In case the clients asks for
a loan without assessment (OK at state p0), the Assessor rejects the request (output
out2). For upper amounts or with a high risk, the Assessor forwards the loan request for
additional evaluation (output I AAr). If the loan is approved by the bank (input yes), the
loan is provided by the assessor after some acknowledgment phases (input AA). If the
loan is not approved (input no), the request is rejected (output out2). In all cases, the
Assessor waits for a confirmation (from the client or the additional evaluation from the
bank) during 10 time units. If the confirmation is not received before timeout exrpires,

the request is canceled. A

3.6 Chapter conclusions

To summarize results of the chapter, we have proposed the FSM model augmented with
timeout functions, relying on single unique time variable, synchronized with the global
timer of the environment /user, for description of web service behavior integrating time-
related quality parameters in output delays function. For the proposed model, which
is a time-nondeterministic extension of the one known from the related works, we have
established and investigated conformance relations with respect to different value domain
for the time variable, and showed that all conformance relations in consideration are
preserved when restricting the values of time variable form real to integer domain. The
latter allows to establish sound correspondence between TFSMs and Finite Automata
and to solve many TFSM problems using well-developed automata theory methods and

tools.

Some discussion on the seemingly-limited expressive power of TFSM model for service
quality evaluation, taking into account only time parameter, is provided in Section 4.5,

where we point out that all the obtained results for TFSM to FA correspondence as well

Chapter 3. TFSM as a formal model for web services 51

as composition could be directly applied to the cases when time variable of the TFSM

is interpreted as any other cumulative quality parameter.

Chapter 4

Parallel Composition of TFSMs

as a Service Composition

4.1 Introduction

Complex services are often derived as a composition of already existing ones. In order
to formally impose the restrictions on functional and non-functional service parame-
ters which are described by TFSMs, in this chapter we define the parallel composition
operator and discuss safety issues that may appear in the communication. Since the
behavior of component services involved in the composition might be significantly non-
deterministic and partial due to lack of observability and control of component service
side communications with other services/users/applications outside the scope of the one
in consideration, the distinctive discussion on the composition of partial nondeterminis-

tic machines need to be done.

4.2 Parallel composition as a service composition

The general topology for the parallel composition is shown in Fig. 4.1. In this thesis
we consider only binary composition, though, in many cases it can be hierarchically

extended to the arbitrary number of components.

We assume, that components communicate in so-called slow environment, i.e., the next

external request can be applied only after the response to the previous one has been

92

Chapter 4. Parallel composition of TFSMs as a service composition 53

Parallel composition

Internal
Component dialog Component
——P

External
communication

FIGURE 4.1: General topology of the parallel composition

received. In other words, we assume that communication starts with receiving the
request, ends with producing the response, and in the process of producing the response
only relevant internal dialog is considered. In case of multiple users, only one process is
considered at each moment of time, enclosing possible influences of other communications

in nondeterministic behavior of components.

The communication is organized in a following way: after the composition receives the
external request from the environment (e.g., service user or some other services), the
request is processed by the responsible component, and either an external response is
produced, or an internal request to another component is sent. Another component
processes the request and either produces an external response, or sends an internal
request to the first component. The internal dialog proceeds until the external response
is produced. All internal communications are not observable from the environment (or

by users).

For service composition, there are two main concepts widely discussed in the literature:
orchestration and choreography. Orchestration is considered to be centralized composi-
tion with the dedicated service (called orchestrator) to manage all the interactions in the
system and be a mediator between the user of the service and components involved in
producing the final result. Choreography, on the contrary, is considered as distributed
decentralized composition, with no dedicated service to organize collaborative work,
with each involved agent knowing when and with whom to engage in interaction, and
with possibility of moving the user-interaction point from one component to another
according to composition goals. Different from orchestration, choreography does not
necessarily describe internal actions and internal (control) message exchanges between

components, primarily sequences of messages that are observable from global point of

Chapter 4. Parallel composition of TFSMs as a service composition 54

‘&dﬂes’cfa’ced invokations of componey

User's | | Orchestrator Responses
requests to user

FIGURE 4.2: Service orchestration in form of parallel composition

view. Often [17, 18] choreography is considered as a communication protocol to which

the collaborative behavior of individual peers (component services) has to conform.

In our work, we omit the discussion of implementation details, whether the composition
is centralized or not. The crucial point of parallel composition concept lays in request-
response mode of communication of the composition with the environment (or, user)
and between components. Therefore, the adaptation of such composition to common

service composition concepts, might be done, for example, as follows.

In orchestration, the communication of user with the service goes through the orches-
trator, and all other components can be considered as an embedded pool of components
(Fig.4.2) to which the orchestrator makes requests according to the external one from
a user. In choreography, the communication with user might be switched from one to
another component service, i.e., all components might receive and/or produce external
requests and responses, and the internal non-observable communications are dedicated

to the invocation and confirmation requests between components.

More complex and detailed consideration of orchestration and choreography, including
the representation of distributed behavior with simultaneous work of several components,

is a question for future work.

4.3 TFSMs parallel composition

The behavior of a service can be described by sequences of inputs (requests), with time
stamps of applying, followed by outputs (responses), with time stamps of receiving,

therefore, represented by a TFSM.

Chapter 4. Parallel composition of TFSMs as a service composition 55

FIGURE 4.3: Parallel composition of the TFSMs S and P

For each user, the service (TFSM) parallel composition can be described in the following
way. Consider the composition in Fig. 4.3, where [= Is U Ip and O = Og U Op are the
external input and output alphabets of composition, U and V are internal alphabets, in
which the dialog between components is performed. Each component and composition
have their own independent timers, which increase their values with the same speed
synchronized with global time, but are independently reset according to transitions and
timeouts happening in each component. Composition is considered to be in its initial

state when both components are in their initial states and all timers are reset to 0.

The work of composition is initiated by the request via Is or Ip. Without loss of
generality, suppose, that the request is applied via Is. Then, the service & processes
the request, and, after some delay, either replies with the external response via Og, or
sends an internal request to P via U. In both cases, while S processes applied input,
the component P might change its state according to the timeouts. After receiving the
request from S via U, the component P processes it, and either produces an external
response via Op or replies to § via V. The internal dialog continues until one of the
components produces the external output (response). After that, the composition is

ready to receive and process next external input (request).

The dialog between components should be finite and result into some external output,
otherwise, unsafe behavior of the composition might be observed: the absence of livelocks
(infinite internal dialogs) and deadlocks (impossibility of continuing any dialog) is one
of the crucial safety requirements for communicating components. Safety-awareness of
composition is considered further in Section 4.4.3. As we notice, the opportunity to
deal with a number of users is modeled by functional and time non-determinism in the
components. The assumption of non-zero minimal output delay might be useful for

safety-aware composition, because in this case, each internal dialog has non-zero length

Chapter 4. Parallel composition of TFSMs as a service composition 56

in time and, hence, the livelocks can be detected by exceeding of expected maximal

delay in the composition.

4.3.1 Formal definition of parallel composition

According to the above description, the behavior of the parallel composition of two
TFSMs can be described based on the automata which correspond to component TFSMs
(Section 3.4.2). However, the language of the parallel composition of two automata is
not necessarily a TFSM language. For this reason, the obtained language should be
intersected with the language of the maximal TFSM M o, where I and O are external
input and output alphabets of composition, to ensure that each input is followed by

some output.

Proposition 4.1. If § and P are TFSMs then the language of the automaton
Aut(S)O Aut(P) N Aut(M; o) = (Aut(S)ﬂIPUOP ﬂAut(P)Msuos)MUOU{l} N Aut(Mr.0)
accepts a TFSM language.[76]

The automaton Aut(S)QAut(P) N Aut(M;,o) then can be transformed into a TFSM.

Definition 4.2. Given the TFSMs S and P, the TFSM C = SOP with the corre-
sponding automaton Aut(C) = [Aut(S)0Aut(P)] N Aut(Mro) = (Awf(s)ﬂ]puop N
Aut(’P)MSUoS) NAut(Mr,0) is called the parallel composition of S and P. A

JIuou{1}

4.3.2 Composition traces: external, internal and global

Given the component TFSMs S§ = (S, Is U V,0s U U,sp,As,As,0s) and
P = (P, Ip UUOpUYV,py, \p, Ap,op) with corresponding finite automata Aut(S)
and Aut(P), respectively, denote the external alphabets of composition I = Ig U Ip,
O = Og5 U Op, for short.

Definition 4.3. An automaton Globe(SOP) = (Aut(S)prpuop NAUL(P)g15004) is called
a global automaton of the composition C = SOP (or simply a global automaton Globe if

there is no ambiguity). A

Definition 4.4. Given a composition C = SOP, the following types of traces are asso-

ciated with it:

Chapter 4. Parallel composition of TFSMs as a service composition 57

e Global traces of the composition are the strings accepted by the global automaton
and representing the communication process between components started by ap-
plying external inputs and tailed by external outputs, i.e., the traces v € L(Globe)
so that v € (1*I(UUV U{1})*O)*.

o FExternal traces of the composition are the strings accepted by the automaton
corresponding to the composition TFSM, i.e., 7y is an external trace if v € L(C) =

L(Globe)yruouqsy N L(Mr.0).

e Internal traces of the composition are the strings w of the set vy vy € (U U
V U {1})* where v € L(Globe) N (1*I(U UV U {1})*O)* is a global trace of the
composition, i.e., internal traces represent internal dialogs between components.

A

Remark 4.5. Since for web service composition, as mentioned, the particular case
of the composition with embedded component is often useful, we note, that if one of
the component is embedded (i.e., its external alphabets are empty) and all the external
communications are made via another component (context), then the context component

contains all the possible global traces of the composition. A

External and global composition traces have the following relationship.

Proposition 4.6. A trace v € (1*11*0O)* is an external trace of the composition if and

only if there exists a global trace v € (1*I(U UV U{1})*1*0)* such that v = vyjuouf1}-

Proof. By the definition of parallel composition and global automaton, it holds Aut(C) =
Globe(C)lquU{l}ﬂ Aut(M;0).

= Consider a trace v € (1*I(1*U1*V)*1*O)* being a global trace v € L(Globe),
then VU]UOU{i} € L(GlObe)lHUOU{i} and VllIUOU{l} € (1*_[1*0)*, which means that
virwoufry € L(Globe)yruougy N L(Mro). As the latter is the language of the

automaton Aut(C), the vy ouqqy is an external trace of the composition.

< Consider an external trace v € (1*11*0)* that is a string in the language of the au-
tomaton Aut(C) = Glober oug1yNAut(Mj o). Due to the properties of operations
over finite automata and regular languages [71], since [L(M710)qvuv]yruou(iy =

L(Mjo) it holds that Aut(C) = [Globe N Aut(Mro)tvuvlyuou(sys i-e.

Chapter 4. Parallel composition of TFSMs as a service composition 58

v € [L(Globe) N L(M; 0)qvuv]yruoui} and there exists at least one (global) trace
w, w € L(Globe) and w € L(Mj 0)pvuv, and v = wyruoufi}-

O]

Consider an external trace v = 1%1i11% 0, ... 1!, 1%70, denote 75 = 1%y ... 1, the
external input sequence corresponding to the timed input sequence o = (i1,¢1) ... (in, tn)
of the composition, and yjp = 1k10, ... 1Fn0, the external output sequence correspond-
ing to the timed output sequence 8 = (01,k1) ... (0pn, kyn) of the composition. For the

simplicity of notations, denote v = af.

Definition 4.7. An external timed input sequence « induces a global trace v, if there
exists an external timed output sequence 3 such that a8 = vy uouq1), and in this case

the global trace v is said to support an external trace af.

A global trace v is said to wviolate an external trace af if v is induced by « and af #

Vy1uou{i}s i-e., there exist 3’ # B such that af’ = vyruou1}- A

Definition 4.8. Given an external timed input sequence « and an internal trace vy, «
induces an internal trace 7 if o induces a global trace v such that v = vyyuyuqy; in
this case, the internal trace v is said to support the external trace a8 = vyryouf1y- An
internal trace -y is said to violale an external trace a3 if v = vyyuyu1y is induced by «

and the global trace v violated af. A

The set of all global traces of the composition that support given external trace af is

denoted sup9*a(aB) = L(Global) N (aB) gLy

The set of all internal traces of the composition that support given external trace o is

denoted Supinternal(aﬁ) — SupglObal(aB)UUUVU{l}'

Proposition 4.9. Given an external trace aff and an internal trace v, v violates v if o

induces a global trace v such that vyrou(1y = af’ with vyouvufay € Y1° while 87 # B.

Proof. This proposition holds due to the definition of violating internal traces and prop-
erties of the restriction and expansion operators. A suffix 1* after an internal trace
indicates when the next internal symbol may appear after the next external input, and,
by definition of the TFSM and corresponding automata, for all traces « it holds that

*

~v1* are also traces of corresponding automaton. O

Chapter 4. Parallel composition of TFSMs as a service composition 59

4.3.3 TFSMs closure properties under parallel composition

Proposition 4.10. The set of deterministic TFSMs is closed wunder parallel
composition. [76]

However, if TFSMs S and/or P are t-deterministic but f-nondeterministic, then, in

general case, the composition SOP can be both t- and f-nondeterministic.

Proposition 4.11. The set of time-deterministic TFSMs is not closed under parallel
composition. [76]

Proof. We prove this statement with a counter-example in Fig. 4.4. Both components S
and P are t-deterministic, while the component S is f-nondeterministic. Therefore, in
the global automaton of the composition of SOP there exist two different traces induced
by the external input symbol ¢ and leading to producing the external output y: ilulivly
and 111w111v1y, both taking the global automaton (Fig. 4.4b) from initial state to initial
state. The latter cause the composition TFSM (Fig. 4.4c) to have two different output

delays values for the same loop transition in the state (s, a) under input-output pair i/o.

e Liw@) N 1773
r‘ ._._ 3 =T :'_P-.(),I }-—--{ffq,al:-
(1) (8 (9) Wl 1N
" way N [
5 o
(La)
g pA— A &
w2, N gl e e At
win(3) '\a/ (@‘,e(:uL:QY C?; e L4 Lp,(i_}-L::g,bj:'—i“ ,'\.“,CE)
P Globe = Aut(5) Aut(PYnyiyy o Aut{M iy, 1530 o) SOP

(a) (b) (©

FIGURE 4.4: An example of t-nondeterministic composition (c) of ¢-deterministic com-
ponents S and P (a) with corresponding global automaton (b)

Proposition 4.12. The set of TFSMs is closed under parallel composition.[76]

Proof. The proposition holds due to the Proposition 4.1 and closure properties of finite

automata. Any sub-graph of a finite automaton is a finite automaton, therefore, any

Chapter 4. Parallel composition of TFSMs as a service composition 60

group of transitions by special symbol 1 between transition by input symbol and transi-
tion by output symbol, is a finite automaton and can be represented with a set of linear
functions. Therefore, any output delay even in case of nondeterministic components can

be expressed in form {{kt 4 b}|k,b € N}. O

Definition 4.2 returns only the enabled behavior of parallel composition, with no con-
sideration of safety and robustness properties. If any livelock without a possibility of
producing an external output appears, or a deadlock (i.e., if during the communication
one of the components attempts to apply an input to another component that is not
defined in it - and, hence, with catastrophic interpretation may cause damage to the
system [77]), such sequences will be just cut off by restriction, intersection with maxi-
mal compositional automaton and resulting TFSM retrieval operations. If some livelock
in composition of nondeterministic components may lead to the producing of external
output, it will be relflected by the periodic output delay in corresponding transition in

the resulting TFSM.

For complete components, either deterministic or not, the given definition is representa-
tive enough, since if the resulting TFSM has some input sequences undefined, it directly
indicates the livelock (internal infinite cycle without producing an external output) and

such sequences could be just forbidden as unsafe.

Example 4.1. As an example of parallel composition, let us derive the composition
of the Assessor and the Approver components of the Loan Approval Service from the

Fig. 3.7 and Fig. 3.6. The resulting composed service is shown in Fig. 4.5.

1AnrfA(2)
1Ar/NA(S) n@
IAr/A(8)

F1GURE 4.5: The composed TFSM for Loan Approval Service

However, for partial components, if resulting composition TFSM has undefined input

sequences, the reasons may vary: undefined because of components partiality - and no

Chapter 4. Parallel composition of TFSMs as a service composition 61

addition control needed there, - or because livelock or deadlock are induced, and the

latter may lead to unpredictable behavior of the component including system crush [77].

Since web services models are essentially nondeterministic and partial, it would be too
arrogant and insufficient to consider the parallel composition derivation that is repre-

sentative for complete components only.

Therefore, in the next section the safety issues of the composition are considered and

the algorithms of verifying the safety of composition are proposed.

The general language-based definition of parallel composition does not capture some
features and properties valuable for the compositions of partial and nondeterministic
components. In particular, language-based parallel composition of TFSMs fails to resolve
compositional safety and interoperability issues without additional control. For complete
deterministic components, occurrence of livelocks results in composition TFSM being
partial, while for partial and/or nondeterministic components partiality of composition

TFSM may or may not be caused by any live- or deadlock in components communication.

4.4 Safe TFSM composition

Definition 4.13. Given the TFSMs S and P, the parallel composition C = SOP is safe

if it never falls neither into livelock nor deadlock.

Given the TFSMs S and P, the parallel composition C = SOP is said to fall into a
livelock if the components S and P induce an infinite internal dialog without producing
any external output, i.e., if the global automaton of the composition has cycles labeled

with internal and time symbols only.

Given the TFSMs S and P, the parallel composition C = SOP is said to fall into a
deadlock if neither the producing of the external output nor continuation of the internal
dialog between components is possible, i.e., if the global automaton of the composition

has reachable non-final states with no outgoing transitions. A

Throughout this thesis we adopt catastrophic interpretation for either livelocks or dead-
locks, meaning, that if there exists a possibility of composition to produce unsafe be-

havior, the unsafe behavior will be eventually produced. In more details, for livelock it

Chapter 4. Parallel composition of TFSMs as a service composition 62

means that if the global automaton has a cycle label by internal and time symbols only,
but this cycle has an exit by an external output (nondeterministic choice of whether to
leave or continue the cycle is in place), then we still consider such situation as livelock-

unsafe.

Deadlocks in composition may appear in case of partial components, if one component
tries to apply an internal symbol to the another component that is not allowed in the
another component - and, hence, the continuation of the communication between com-

ponents becomes unpredictable and/or impossible.

The interpretation of partiality in TFSMs can vary, two major types being 1) don’t care
sequences (allowing any possible behavior for undefined input sequences), and 2)forbid-
den behavior (the threat of unpredictable catastrophic consequences of applying unde-
fined input sequences[77], or physical impossibility of applying). The first type (don’t
care) is solved by explicit definition of don’t care behavior, therefore, we further assume
that all partiality in component TFSMs are of second type (forbidden sequences). We

remind, though, that in any case we consider TFSMs with harmonized traces only.

4.4.1 Livelock-safe composition

Since we use non-determinism for modeling the behavior due to queries via other chan-
nels (which are not considered in our model) we consider the crucial interpretation of
livelocks. In other words, if an input sequence induces a cycle of internal actions (and,
possibly, a timed symbol) then this sequence has to be forbidden, i.e., has to be excluded

from the corresponding composed TFSM.

Similar to the classical FSMs, one way of restricting livelock possibility is to restrict the
length of internal dialogs between components [71]. If the internal communication exceed
the length bound, presence of the livelock might be suspected and corresponding input

sequence is forbidden in the composition. This approach can be adapted to TFSMs.

Length-bounded composition

Length of the internal dialog is a number of internal actions the components exchange

before producing an external output. In the general definition of parallel composition,

Chapter 4. Parallel composition of TFSMs as a service composition 63

FIGURE 4.6: The automata Aut(I,0) (left) and (Aut(I,O)quuv,i)qeqay (right) with
alphabets I = {i}, O = {0}, U = {u}, V = {v} and length bound | = 2

the length of internal dialogs is not bounded.

Let | € N be the length bound, denote L4y, the l-expansion of L, i.e., the the lan-
guage (Lqyuvy)yvuv has words no longer than I. Denote Aut(I,O) the automaton
with language (IO)*. Then, the Aut(I,O)yyuv, is the automaton with all possible
communications between components with the internal dialogs not longer than [, while
(Aut(I,O)quuvy) 41y Tepresents all possible length-bounded communications with arbi-

trary delays between symbols.

Definition 4.14. Given the TFSMs S and P, the l-bounded parallel composition is
the TFSM C = SO;P with corresponding automaton Aut(C) = [Aut(S)OAut(P)] N

Aut(Mr0) = [Aut(S)prpuop N Aut(Prrsuos) N (Aut(l, O)qvovi)p{iyluruougy N
Aut(Mr,0). A

The automaton (Aut(l, O)yuuv,)pq1y (shown in Fig. 4.6 for a simple case) represents all
possible communication between components such that there are no more than [internal

symbols U UV in each dialog, with no restriction on the time length.

However, in practice, measuring time between requests and responses is more applica-
ble than observing and counting internal actions, and transition from length-bounded

composition to time-bounded composition might be useful.

Time-bounded composition

In general case, we do not restrict output delays in components, though, often in practice
the measure of one time unit is chosen in such way that the minimal output delay is

non-zero.

Chapter 4. Parallel composition of TFSMs as a service composition 64

Using properties of restriction and expansion operations [71], let us move Aut(M;y o)

inside the brackets, i.e., we re-write the composition in form

Aut(C) = [Aut(S)p1pu0pNAUE(P) g 15005 N(Aut (L, O)guov,)piyNAut (M o) uuv]yivouis}

and consider the intersection (Aut(I, O)yvuvy)gqay N Aut(Mi0)pvuyv. From

L(I,0)pvuvi)pqy = (HO)juuvi)aeys
and

L(M;0)gvuv = (L 11°0)" 1" ooy,

we conclude

L(I, O)ﬂUUV,l)ﬂ{l} N L(MLO)TTUUV = (1*1[([] U V)Sl]ﬂ{i}l*O)*l*

Let us denote m,n € N the minimal and maximal output delays in component S,

respectively.

In any sequence o from L(S) 1,00, NL(L, O)qvuvi)pi1yNL(Mr,0)quuy there are at most
[symbols from U UV between each input and output symbol, and since in L(S)41,00p
there are at most n symbols 1 between any two neighbor symbols, then in any « between

input and output symbols there are at most n(l + 1) symbols 1.

In other words, we transform length-bounded composition to time-bounded composition:

L(C) = [L(S)OL(P)] N [1*11lmnFDI0)* 4%,

In case at least one of the components is defined with minimal non-zero output delay,
there is no internal cycle with zero time-length possible, i.e., all possible livelocks have

non-zero duration.

Therefore, based on length-bound for composition and knowing the maximal output
delay for components, we can calculate the maximal output delay for the bounded

composition.

Chapter 4. Parallel composition of TFSMs as a service composition 65

The explicit length-bound, then, might be omitted and completely substituted with

timed-bound.

Time-bound is quite a practical approach; for classical FSMs, for example, the detection
of livelocks is based on setting the maximal waiting time. The difference of TFSMs from
FSMs, for detecting livelocks, lays in possibility to calculate this maximal time (time-
bound) based on the delays defined in components, and, hopefully, set more adequate

maximal waiting time.

Definition 4.15. Given TFSMs S and P, the t-bounded parallel composition is
the TFSM C = SO.P with corresponding automaton Aut(C) = [Aut(S)QAut(P)] N
Aut(Mr o) where L(M o) C (1*I(1)(15H)0)*1*. A

Remark. The timed-bounded composition has two bounds: minimal and maximal
output delay, and, in general, does not necessarily imply the length bound on communi-
cation. The minimal bound is used to cut out from composition all livelocks with zero
duration. However, by practical reasons, it is worth to use either the assumption of
non-zero minimal output delay in components, or non-zeno runs assumption from timed
automata [78] implying that in a finite time interval there could not happen infinite
number of actions. For parallel composition, the latter results in the requirement, that
though some transitions might have zero output delays, there are no cycles with zero
duration possible. In other words, all cycles in global automaton must contain at least
one symbol 1. The maximal bound is useful to cut out livelocks including the ones with
periodic output delays and possibility to produce an external output. Therefore, in case
of livelock-unsafe composition, t-bounded composition might be used efficiently to refine
the composition specification, and, using results of Chapter 5 and Chapter 6, optimize

components to meet safety requirements. A

4.4.2 Deadlock-safe composition

In case of partial component TFSMs, we assume, that any undefined external input
sequences is never applied to the composition. Then, deadlocks occur in the composition

if one component attempts to apply an undefined symbol to another component.

Therefore, to verify and ensure deadlock-safety of the composition, it is essential to

determine the allowed internal input sequences for each component.

Chapter 4. Parallel composition of TFSMs as a service composition 66

Given a partial component TFSM S, the set of all internal input sequences accepted
by S defines the set of allowed internal output sequences for another component P. If
‘P never produces internal sequence out of allowed set, then it never causes deadlock
in the component S. If another component produces output sequences only from the
allowed set, then it never causes any deadlocks to ensure deadlock-free composition, and
vice-versa. So, given the component TFSM, it is possible to derive the maximal TFSM

for another component that communicates deadlock-free with the given component.

Algorithm 4.1 Deriving the maximal TFSM for deadlock-safe component

Input: The component TFSM § = (S, Is U V, Og U U, so, As, As,08)
Output: The maximal TFSM M‘f}y such that S OM‘EV is deadlock-free
Derive a finite automaton that represents the set of 7accepted timed input sequences
ins(so):
Derive 8" = (S, Is U V,{e}, so, Ns, As,0%) so that:
for each transition (sj,1,0, s2) € As do
there is a transition (si,1,€, s2) € N
with output delay function value o’s((s1,1,€, s2)) = {0}
end for
Derive Aut(S’) using Algorithm 3.2.
Leave external input sequences out of consideration:
7: Restrict Aut(S’) yvu{1} to represent accepted internal input sequences.
Inverse internal input symbols to become internal output symbols:
8: Expand Aut(S')yv.
9: Intersect Aut(M) = Aut(S")qu N Aut(Myy) where L(Myy) = (1*UL*V)*1*.
Result:
10: Restore Aut(M) into TFSM MSvV using the Algorithm 3.3.

The result of Algorithm 4.1 is the maximal TFSM that contains all the allowed internal

sequences that do not induce a deadlock in the given component.

To ensure the deadlock-free composition, such maximal TFSMs should be derived for
both components. If the internal part of first component’s behavior is contained in the
maximal TFSM derived by the Algorithm 4.1 from the second component, then the first

component never apply any undefined sequences to the second component.

Given two components, that might have deadlocks in communication, based on the re-
sults of the Algorithm 4.1 it is possible to derive their largest reductions which commu-
nicate without deadlocks, as proposed in Algorithm 4.2. Though, there is no guarantee
that the derived deadlock-safe composition will be non-trivial. If Algorithm 4.1 for one
of the components return an empty result, it means that the given components cannot

communicate in a deadlock-safe manner, and such composition should be re-designed.

Chapter 4. Parallel composition of TFSMs as a service composition 67

Algorithm 4.2 Deriving the deadlock-safe reductions of given components

Input: The component TFSMs § = (S, Ig U V, Os U U, sg, s, As,o0s) and
P = (P, Ip U U, Op UV, pg, Ap, Ap,Up)

Output: The component TFSMs 8% < § and P < P so that S¥OP% is deadlock-

free

Derive ngv and M%;U using Algorithm 4.1.

Derive Aut(/\/lgv) and Aut(ML)).

Derive Aut(Mgv)ﬂ[PUOP N Aut(prquPUv) Aut(Ml‘_!,s).

Derive AUt(MEU)ﬂIsUOs N AUt(MISUVOSUU) Aut(Mng).

Intersect Aut(PdS) Aut(P) N Aut(ME).

Intersect Aut(S%) = Aut(S) N Aut(ME).

Restore TESMs P% - the largest reduction of P which does not induce any undefined

behavior in S.

8: Restore TFSMs S% - the largest reduction of S which does not induce any undefined
behavior in P.

9: if 8% and P are non-trivial then

10: SdsoPds is deadlock-free.

11: elseDeadlock-free communication between given components is impossible.

12: end if

4.4.3 Deriving safe parallel composition

Verification whether the composition of given components is safe or not may be done
during the composition derivation, aborting the process with the verdict “unsafe”as
soon as a livelock loop, labeled with internal and time symbols only, or deadlock state,

non-final state with no outgoing transitions, are reached in global automaton.

Another way, though, is to preserve in the resulting composition machine all the safety
threats, enabling further analysis of possible reasons for unsafe behavior and definition
of safe composition specification (either cutting all unsafe input sequences, or redefining
their responses in a safe way) for further component substitution via equation solving

(Chapter 6).

Definition 4.16. Given the component TFSMs S and P, the TFSM C with special
designated output symbols livelock and deadlock and lock state is called the safety-
aware parallel composition of S and P, denote C = SQq4.P, if its largest sub-machine
without these special symbols and state is the parallel composition of given components,
all transitions with livelock and deadlock outputs necessarily lead to the state lock and

correspond to the safety threat in communication between S and P. A

The Algorithm 4.3 describes how to derive such safety-aware composition.

Chapter 4. Parallel composition of TFSMs as a service composition 68

After the safety-aware composition is derived, if the state lock is reachable and/or there
are transitions with infinite sets of output delays, then at least one of the components
should be substituted in order to provide a safe composition. For the purpose, locking
transitions should be substituted with expected ones (or erased as forbidden) and the

resulting TFSM could be used as a specification for the parallel equation.

The minimal value for the output delay on locking transitions provides a minimal value
for a timed-bound, i.e., a minimal value for waiting for a response from the composition
before deciding that (while using and/or testing a composite system) the system falls

into deadlock or livelock and should be reset.

Algorithm 4.3 Safety-aware parallel composition

Input: The component TFSMs § = (S, Ig U V, Os U U, sg, s, As,o0s) and
P = (P, Ip U U, Op UV, pg, Ap, Ap, Up)

Output: The TFSM C = (C U {lock},Is U Ip,Os U Op U
{livelock, deadlock}, co, A\c, Ac,0c) that is the parallel composition of given
components augmented with safety parameters, C = SOgqreP

1: Derive Aut(S) and Aut(P) using Algorithm 3.2.
2: Derive Aut(S)y1,u0, by adding a loop in each state of Aut(S) for all a € Ip U Op,
derive Aut(P)q415004 by adding a loop in each state of Aut(P) for all b € IgU Og.
3: Derive the global automaton Globe = Aut(S)yr,u0, N Aut(P)yrsu04
4: Add the final state of Globe the special state lock € G .
Explore Globe = (G, Ip U UU Op UV, 6G, (so,po),Gfin): G C S for deadlocks.
5. for each (s,p) € G\ Gy, do where s is a state of Aut(S)q4r,u0, and p is a state of
Aut(p)ﬂIsUOS

6: for eacha e UUV do

7: if a € actionsg(s) \ actionsp(p) or a € actionsp(p) \ actionss(s) then
8: add to d¢g transition ((s,p), deadlock, lock)

9: end if

10: end for

11: end for

Explore Globe for livelocks:
12: for each (s,p) € G\ Gy, do

13: if (s,p) starts a cycle via non-final states only then
14: add to d¢ transition ((s, p), livelock, lock)

15: end if

16: end for

17: Derive the intersection G = Globe N Aut(M oufiivelock,deadiock}) U,V ensuring that
after each external input after some internal dialog the external output (or a decision
on safety threat) is produced.

18: Derive the restriction to external alphabets Aut(C) = Gyruouf1}Uftivelock,deadiock} -

19: Restore Aut(C) into TFSM C using the Algorithm 3.3.

In the next chapters, we assume that composition is always derived with safety-

awareness, and hence denote the safety-aware composition operator simply by ¢.

Chapter 4. Parallel composition of TFSMs as a service composition 69

4.5 Discussion

One of the interesting and perspective discussion about the model could be raised in
generalization of the semantics of a timer associated with the TFSM. The crucial utility
characteristics of timeouts, defined by means of the timer, is the possibility of the ma-
chine to produce different responses to the same requests depending on the value of the
timer. Considering time as a resource, output delays as an amount of resource consump-
tion per operation, the timeouts could be seen as boundary conditions, differentiating
responses depending on the resource amount spent for applying the request. Therefore,
changing interpretation of time, it is possible to use the same TFSM model to embed

other quality parameters of service without changing the model.

For cumulative parameters, like time and cost, the defined correspondence with finite
automata preserves its usefulness as defined, unrolling the value into a chain of transi-
tions under one unit, as far as parameter value boundaries are integers. For other types
of parameters (e.g., multiplicative like availability) another correspondence should be
sought, or a transformation to another form of the metric should be done (for example,

using logarithmic scale to switch from multiplication to addition).

A discussion about generalization of TFSM timer from representing time to any additive
parameter is applicable while considering the composition, too. One of the essential
correlation to be considered in TFSM parallel composition is the correlation of output
delays of one component to timeouts in another. For example, changing from time to cost
parameter, output delays become the price of the transition they associated with, and
timeouts could be used to represent, for instance, different service levels depending on the
amount spent on applied input. Then, the resulting output delays of the composition,
accumulating all the hidden internal communications between components, corresponds
to the overall price of the end-to-end operation. Output delays of one component causing
timeout transitions in another are the prices of internal communications, and timeouts

themselves represent decisions on the how to process each request depending on its price.

Though, the more thorough investigation of parameter-specific features of such TFSM

is needed.

Chapter 4. Parallel composition of TFSMs as a service composition 70

4.6 Chapter conclusions

In the chapter, we defined the parallel composition operator and investigated its prop-
erties as for deterministic as for nondeterministic and partial TFSM components. In
communication of TFSM components both livelocks and deadlocks might appear, and,
using catastrophic interpretation, we discuss these safety issues and provide algorithms
for deriving safety-aware composition. Explicit consideration of time in the TFSM model
allows to use time-bounded composition instead of length-bounded like in classical FSMs
while restricting the livelock-dangerous internal communications between components.
Cumulative nature of time parameter and established correspondence of TFSMs and
FAs allows to efficiently derive parallel composition based on operations over finite au-
tomata preserving the correlation between output delays in one component to timeouts
in another. Substituting time with other cumulative quality parameters while preserving

model syntax and operators seems to be a perspective discussion for future work.

Chapter 5

Service Composition
Optimization Based on TFSM

Equation Solving

5.1 Introduction

Once the composition of the set of given services is derived and verified (Chapter 4), or
during the monitoring of service usage (Chapter 2), it might turn out that one or several
components are not working at their best or fail to provide the required composition,

and hence should be either optimized or substituted.

Therefore, in this chapter, we address the following questions:

1. If the parallel composition of given components does not conform the specification,

can it be fixed by substituting one of the components?

2. Given a set of requirements for composition and one of the components, whether it
is possible to design another, somehow better component which in communication

with the known one meets given composition requirements?

3. Given a set of requirements for composition and one of the components, whether
it is possible to minimize the set with respect to another component (component

under design)?

71

Chapter 5. Service composition optimization based on TEFSM equation solving 72

Within the TFSM framework, these questions could be answered based on solving the

corresponding TFSM equation.

First, we provide an algorithm on deriving the largest (general) solution to the paral-
lel TFSM equation with respect to reduction and equivalence conformance relations,
based on solving the corresponding language equation from which the largest TFSM-
language solution is extracted. Then, we discuss the special case of partial specification
for composition, and two main approaches for solving the equation with respect to the
quasi-conformance relations, based on completion of the specification and/or refining
the complement operation. The latter is shown to be useful for the minimization of

composition specification in cases when it is given as a set of requirements or tree FSM.

After the deriving the largest solution, it is crucial to choose solutions with required

properties, and useful restricted solutions are discussed in the next chapter (Chapter 6).

5.2 TFSM parallel equation

Given a TFSM A with input alphabet I; UU and output alphabet V U O1, and TFSM
C with input alphabet I = I U I and output alphabet O = O1 U Oy. The expression

AQX ~ C

is a parallel equation [71] over TFSMs, where TFSM C is the specification of the system
while TFSM A describes the behavior of the known part of the system under design,
usually called context, TFSM X is the unknown component to be designed with input
alphabet Is UV and output alphabet U UQOs, ¢ is the parallel composition operator and

~ is the conformance relation required between the specification and composition.

Further, we consider the solution against the reduction (<) and the equivalence (%)
relations between TFSMs, though, we show how the specification can be refined in order

to treat quasi-reduction and quasi-equivalence in cases of partial specification.

Sometimes, the expression AQX < C is also called a parallel inequality over TFSMs.

Chapter 5. Service composition optimization based on TEFSM equation solving 73

The formal procedure to derive the largest solution for the TFSM equation, similar to
classical FSMs, is based on solving the corresponding language equation, therefore, we

briefly remind the known results for regular language equations [71].

5.2.1 Preliminaries on solving parallel language equations

As usual, B is a solution to the equation AQX ~ C if it holds AQB ~ C.
An equation AQX ~ C is solvable if there exists a solution.

Solution M to the equation AQX ~ C is called the largest solution if it contains every

solution to the equation.

Let the coefficients of the equation AQX ~ C be regular languages, the language A over
alphabet Fj U Fs, the unknown language X over alphabet Eo U Es3, the language C over
alphabet F7 U FEj3, the operation ¢ be the parallel composition and the conformance

relation ~ be the subset relation C.

As it is shown in [71], the largest solution to the language equation is given by the

expression

Largest = COA = (Cpp, N Agps) 4 B2UE;

If Largest = () then the equation has only trivial solution'.

If AQLargest = C then the equation with respect to the equivalence relation is solvable.
Otherwise, if AQLargest C C then the equation with the equivalence relation has no so-
lution and C' = A{QLargest is the largest composition language that can be implemented

with the given context A.

Solving equations over finite automata is a special case of solving equations over regular

languages.

Given the equation Aut(A)QAut(X) < Aut(C), its largest solution may be obtained by

following procedure.

!By definition, for any languages A and C' it holds AQ® = () and) C C, therefore, the §) is always a
solution to parallel equation with reduction relation.

Chapter 5. Service composition optimization based on TEFSM equation solving 74

1. If the automaton Aut(C) is nondeterministic and/or partial, then determinize it
and complete (e.g. using demonic completion procedure). Make all the final states
non-final and all the non-final states to be final, to obtain the automaton that

accepts the complement of the language accepted by Aut(C), denote Aut(C).

2. Build an automaton Aut(C)ﬂ g, by adding a loop (s, e, s) for each state and each

symbol e € Fj.

3. Build an automaton Aut(A),p, by adding a loop (s, e, s) for each state and each

symbol e € Ej3.
4. Derive an intersection Aut(C),p, N Aut(A),p, .

5. Restrict the derived intersection to the alphabets of unknown component, i.e.
(Aut(C)4p, N Aut(A)gp,)yE,uE, by substituting each transition (s1,a,s2) with
a ¢ Ey U Ey with transition (si,€,s2) and further determinisation of the finite

automaton with e-transitions.

6. Derive the complement to the obtained automaton by interchanging final and

non-final states, denote Aut(S) = (Aut(C)4p, N Aut(A)yp,)yEuE,- If Aut(S)
accepts non-empty language, then it is the largest automaton solution, otherwise

the equation has only a trivial solution.

5.2.2 Deriving the largest solution for TFSM equation

Consider the equation AQX < C, where coefficients A and C and the unknown compo-
nent X are TFSMs, ¢ is TFSM parallel composition operator and < is the reduction

relation.

Since we established the correspondence between TFSMs and Finite Automata (Sec-
tion 3.4.2), the TFSM equation similar to classical FSM equations [71] can be trans-

formed and solved based on corresponding equation over regular languages:
AQX <C

4

Aut(A)QAut(X) N Aut(Me) < Aut(C)

Chapter 5. Service composition optimization based on TEFSM equation solving 75

4

LAYOL(X) N L(Me) € L(C)

which is using the known set theory transformation AN B = C < A = C'U B is turned

into

LIAOL(X) C L(C) UL(Mo).

The largest solution of the latter is known (Section 5.2.1) to be

Lsotution = L('A)O(L(C) N L(MC))

The language Lgsoiution is regular, but in general case is not a TFSM language. The re-
sulting language has to be intersected with the language of the maximal TFSM My for
the unknown component and then the largest prefix-closed subset of Lgoution N L(My)
can be derived to obtain the largest TFSM solution. For short, denote Ix and Ox the

input and the output alphabets of the unknown component correspondingly.

Proposition 5.1. [79] The largest solution of the TFSM equation (inequality) AQX < C
is the TESM S such that L(S) is the largest [1* U 1*Ix1*Ox|-prefiz-closed subset of the

langua'ge LSolution N L(MX); where L.S'olution = L(A<><L(C) N L(MC)) and MX is the

mazimal TFSM for the unknown component. If Lsoution = 0, then the equation has no
solution. If Lsoution 7 0, but L(S) = 0, then the equation has no TFSM solution. If

L(S) = 1* then the equation (inequality) has only trivial solution.

Example 5.1. We illustrate the process of solving TFSM equation on a simplified De-
livery Service, which specification is shown in Fig. 5.1(top). The specification provides
the single quality and functional requirement: after the order is placed (request input

symbol), the delivery should be made within 7 days.

This Delivery Service consists of two components: Store service (shown in Fig. 5.1(bot-

tom)) and Warehouse service, the latter to be designed.

The Store Service proceeds as follows: after the receiving of the order (request input),

it checks the availability of the ordered item in the Warehouse (output check) within

Chapter 5. Service composition optimization based on TEFSM equation solving 76

one or two days. If the item is available (product input from Warehouse), it is sent
for delivery to the customer (deliver output), otherwise (no_product input) the shipment
from another stock is ordered and processed within two days (ship output), and after

receiving the item (get_product) the checking of its compliance to the order is performed

(check).
request /
deliver ‘
({0,1,2,3,4,5,6,7})

request / check ({1,2}) no_product / ship (2)

product / deliver (1) get_product / check (1)

FIGURE 5.1: The Delivery Service composition specification (top) and the component
service - Store Service (bottom)

The largest solution for the Warehouse component in such case is shown on Fig. 5.2.

check /product (1)

check/product
12345

check/

in
il no_product (1)

get_product (1)

check fproduct
({1,234}

FIGURE 5.2: The largest solution for Warehouse component with restriction in delivery
time

5.2.3 Verification of composition realizability

If the non-trivial largest solution exists, the next step is to check:

1. What is the maximal composition behavior that can be possible realized with a
given context. That is, if S is the largest solution to the equation X¢A < C,
then the maximal realizable composition is ' = SO.A and the question is whether

C' < Cor C'=C. The former means that the equation X(.A = C has no solutions.

Chapter 5. Service composition optimization based on TEFSM equation solving 77

2. Whether the component under design/optimization can be implemented with re-
quired minimal behavior constrains without violating composition specification.
Le., given the requirement X > S, in, whether the derived largest solution satis-

fies it: S > Spmin.

The latter question appears because of the web service composition interpretation we
use. Since we do not consider possible involvement of the components in multi-user
communications, the behavior of the component in the considered communication might

be essentially nondeterministic.
Let us illustrate this intuition on the following example of simple delivery service.

Example 5.2. Since there is no control from the store over the availability of the pur-
chased product at the warehouse, it is essential that the warehouse service is able to
response both “available”or “not available” (outputs product and no_product) when the
the request “check”is made for the first time. Though, the largest solution in Fig. 5.2 to
the equation with quality restriction “delivery within 7 days”in one of the states allows
only response “available” (output product). It indicates that either the store service in

Fig. 5.1 should be optimized or the quality restriction should be revised. A

The minimal behavior restriction is formalized as TFSM Sgnin and is assumed to be

consistent with composition specification, i.e.,

then the TFSM equation solving is considered as solving the system of equations

AQX < C
X Z Sxmin

which is obviously reduced to a single equation when the minimal component behavior

is trivial TFSM, i.e. if L(Symin) = 1%

If the solution to the given TFSM equation does not exist or does not satisfy the min-
imal behavior requirement, it is necessary to check whether the problem occurs due to
functional or non-functional requirements. It can be done by checking if the equation is

solvable when the specification has no delay restrictions.

Chapter 5. Service composition optimization based on TEFSM equation solving 78

If the equation with no delay restrictions is solvable, then it means that the initial qual-
ity requirements cannot be met by the given components and either the context requires
optimization or requirements should be revised. If the equation with no output delay
restrictions is unsolvable, then it means that the required functionality cannot be imple-
mented with the given component whatever other component it would be communicating

with.

Example 5.3. In Example 5.2, the retrieval point service cannot be implemented with
required nondeterminism to guarantee the delivery within 7 days. Therefore, we attempt
to derive the largest solution for this service without restrictions on the delivery delay.
The largest solution for this case is shown in Fig 5.3 and does satisfy the requirement
for supporting nondeterministic response for “check”request. Transitions denoted with *

correspond to don’t care behavior of the component.

check /
no_product (N)

ship
get_product (N)

product (N)

FI1GURE 5.3: The largest solution for Warehouse component with no time restrictions
in composition specification

5.3 Solving equations for partial specifications

Often, the service composition specification is given as a set of requirements. Therefore,
it is rational to consider not equivalence and/or reduction relations but rather quasi-
conformance relations for partial machines while solving corresponding equation, i.e., in

this section we consider the equation

XOASC

Chapter 5. Service composition optimization based on TEFSM equation solving 79

One approach is to complete the partial TFSM C based on the considered interpretation

of specification partiality, and transform the equation to

XOA < Ccompleted

By definition, in¢(cp), where ¢ is the initial state of the TFSM C, denotes the set of all

(timed) input sequences for which the behavior of C is defined.

Then, the set of input sequences, for which the behavior of C is undefined, is the set

undefe = (I x N)*\ in¢(co)).-

We distinguish two types of undefined input sequences in partial specification: forbidden
and “don’t care”ones. Let us denote forbide C undefe the set of the input sequences
that are forbidden for the composition, while indife C undefe being the set of “don’t
care”input sequences that allow any behavior the composition. For consistency reasons,

it is assumed forbide Nindife = 0 and forbide Uindife = undefc.

Then the completion of the partial specification is made as follows:

tracec = tracec U {indifc x (O x N)*}.

completed

If forbide # 0 then Ceompleted s still a partial TFSM, but all undefined input sequences
are considered only as forbidden ones and therefore the quasi-reduction relation in the

equation is consistently substituted with reduction relation.

Another approach is based on the key observation, that the chosen conformance relation
for the equation can be taken into account by revising the complementation operation

while deriving the largest solution.

Informally, the process of solving FSM equation may be summarized as following:

1. Derive the forbidden behavior of the composition. While considering strict equiva-
lence and reduction relations or/and the specification is complete, this step corre-
sponds to the complement operation over the corresponding specification automa-

ton.

Chapter 5. Service composition optimization based on TEFSM equation solving 80

2. Derive the global behavior that is possible with the given context and induces the
forbidden behavior of the composition. This step corresponds to the extension of
the automaton representing forbidden composite behavior to internal actions and

intersection with the automaton representing the behavior of the context.

3. Extract the behavior of the component under optimization (unknown component)
that may cause the forbidden behavior of the composition. Using automata rep-
resentation, this step corresponds to the restriction operation applied to the au-

tomaton derived at the previous step.

4. Derive the allowed behavior of the unknown component, i.e., the largest behavior
of the unknown component that in communication with the context does not cause
the forbidden behavior of composition. Using automata representation, this step
corresponds to the complement operation applied to the automaton derived at the

previous step.

This generalized idea behind the FSM equation solving can be effectively adapted for
solving equations with partial specifications and quasi- conformance relations by refining

the complement operation instead of specification completion.

If applied to the set of requirements, analysis of the results of the Step 3 of described
process can be used for minimizing the set of compositional requirements with respect to

the unknown component (component under optimization) as we show in the Section 5.4.

Consider the TFSM C with alphabets I and O, and the language L(C) of its corre-
sponding finite automata. Derive the maximal TFSM P¢ defined over the same input
sequences, i.e., the TFSM with the same set of input sequences but with any output

response, i.e., tracep, = inc(co) x (O x N)*. Then, we call the partial complement for

L(C) the language L(C)" = L(P¢) \ L(C).

The largest solution of the TFSM equation AQX < C is the TFSM S such that L(S)
is the largest [1* U 1*Ix1*Ox|-prefix-closed subset of the language Lgoiution N L(Mx),
where Lgoution = L(AO(W})p and My is the maximal TFSM for the unknown
component. If Lgoution = 0, then the equation has no solution. If Lgoution # 0, but
L(8) = 0, then the equation has no TFSM solution. If L(S) = 1* then the equation has

only trivial solution.

Chapter 5. Service composition optimization based on TEFSM equation solving 81

5.4 Minimizing composition specification w.r.t. compo-

nent under optimization

Given the composite service specification as a set of requirement, the question is whether
it can be minimized preserving the requirements applied for the component under opti-

mization.

In this sections, we consider the component under optimization to be embedded, i.e.,
having empty external alphabets and communicating with the environment only via the

context component.

5.4.1 Determining the set of all internal traces violating a given com-

position requirement

In this section, given the TFSMs C and B, the TFSM B being embedded, a timed
external input sequence a and the expected output response 8 of the TFSM COB to «,
a procedure is proposed for deriving a special automaton R(«f) over internal alphabets
such that an internal trace takes the automaton to a final state if and only if this trace
violates the given composition requirement «5. We can then check which external traces

are violated by the same sets of internal traces.

Example 5.4. The minimization of the set of requirements we consider with an abstract

TFSM example, for more illustrative purpose.

i>/y.(4) io/y1(4)

'.1!{}"1 (1): 1

FIGURE 5.4: Composite TFSM

¥ ifu(l),1

W (2 (o) i
ifu(1),
Zfy»(2)

FIGURE 5.5: The context TFSM

Chapter 5. Service composition optimization based on TEFSM equation solving 82

Consider the composed TFSM in Fig. 5.4 and the context TFSM in Fig. 5.5. The

following set of requirements T'S can be applied for the composition:

TCy = (ir, 1)-(iz, 1)/ (y1, 1) (Y2, 4)

TCy = (i1, 1)(i1,0)-(i2,0)/{y1, 1)-(y1, 1)-(y1, 4)

TCs = (i1, 1)-(i2,0)-(i1,0)/(y1,1)-(y1,4)-(y1,4)

TCy = (ig, 1)-(i1,0)/(y2,4)-(y1,4)

TCs = (i1,0)-(i1,0)/(y1,4)-(y1,4)

TCs = (ia,0)-(iz, 1)/ (y1, 1)-(y1,4)

TCr = (i, 0)-(ix, 1)/ (y1, 1)-(y1, 1)

TCs = (ig,0).(i1,0).(i1,0)/(y1, 1) -(y1,4) - (y1, 4)

TCy = (ig,0).(i2,0).(i1,0)/(y1,1)-(y1, 1)-(y1, 4)

Respectively, a global trace induced by the input sequence (i1, 1).(i2, 1) can be: al—1 —

bl—i1 — ml—1 — nl—y; — bl—1 — bl—is — t1-1 — rl—u — a2—1 — b3—29 —

qgl—1 — cl—1 — dl—y;.

Since TCy1 = (i1,1).(i2, 1) /{y1,1).(y2,4) we conclude that if an embedded component
has an internal trace (u,4).(z1,1) then such implementation of the embedded component

TFSM B wiolates the requirement T'CY.

On the other hand, a global trace corresponding to (i1,1).(i1,0).(i2,0) can be: al—1 —
bl—i; - ml-1 — nl —y; — bl—i3 — ml—-1 — nl—y; — bl—iy — t1-1 — rl

—u — a2—1 — b3 —z1 - pl—1 — hl—1 — sl—ypo.

Since TCy = (i1,1).(i1,0).(i2,0) /(y1,1).(y1, 1).(y1,4) we conclude that if an embedded
component has an internal trace (u,4). (z1,1) then such implementation of the embedded

component TESM B violates the requirement TC,. A

Given the composition requirement a3, according to the structure of an implementation
system, all the possible global traces of a composition under design are traces of the

given context. Correspondingly, we can leave in the context TFSM only those global

Chapter 5. Service composition optimization based on TEFSM equation solving 83

traces that are induced by the external input sequence « (steps 1-3 in Algorithm 5.1).
First, we derive the automaton A(a/3) accepting the only trace, corresponding to the
given composition requirement. Second, we derive the automaton D(af) = M, \ A(af)
that contains all possible external traces with output sequences different from the ref-
erence (given in the requirement) output sequence. Then, at steps 4 and 5 in Algo-
rithm 5.1, we extract from the context automaton the submachine that has the set
of traces {v|vyuouq1y € D(aB)}, ie., those global traces that correspond to an un-
expected external output sequences when a timed input sequence « is applied to the
context TESM. Last (steps 6-8 in Algorithm 5.1), we hide external symbols in the in-
tersection and obtain the set of internal traces that can be traversed in the composition
when the output sequence of the composed TFSM to « is different from . The sequence
of transitions under 1 after the last internal output v € V' does not influence violating

internal traces and thus, it may be eliminated.

Algorithm 5.1 Deriving a set of internal traces violating a composition requirement
af.
Input: The context TFSM C and an external composition requirement trace af =
(i1,t1).(01, k1).(i2, t2). (02, ka) ... (in,tn).(On, kn).
Output: An automaton R(af) accepting all internal traces that lead to violation of
the requirement of.
Deriving violating external traces with the input sequence a:
1: Derive an automaton A(«af) with the initial state so that accepts the only sequence
1131170y ... 1t 100,
2: Derive an automaton M, with the set 1114;1*O...1%,1*O of traces.
3: An automaton B(af) = M, \ A(af) accepts all violating external traces with the
input sequence «.
Deriving global traces with the external input sequence o and external
output sequence different from :
4: Derive the automaton B(af)uuv, i-e., expand the automaton B(af) to the internal
alphabets adding loops at each state labeled by internal symbols.
5: Intersect B(af)quuy with the automaton of the context TFSM C: G(af) =
B(aB)suoy N Aut(C).
Deriving the set of violating internal traces:
6: Hide in G(af) external symbols, and replace each sequence of transitions v(1)*,
v € V, to a final state with a transition labeled by v.
7: Denote G'(af8)yyuvuqiy the obtained automaton.
8: Intersect G'(af)yuuvugiy with the automaton Aut(U,V):
R(aB) = G'(aB)yrovupy NAut(U, V).

Proposition 5.2. Given the specification requirement o of the composed TFSM COB
and the automaton R(af), returned by the Algorithm 5.1, an implementation € of the

Chapter 5. Service composition optimization based on TEFSM equation solving 84

embedded component B is violating the requirement afB if and only if £ has a trace that

takes the automaton R(a/B) from the initial state to a final state.

Proof. The requirement «f3 is violated by an implementation £ of B if and only if it is
violated by some internal trace v that is a trace of £. It means that there exists a global
trace v € Globe(COE) such that vy ou) = b’ where 8 # B and vyyuyupy € 715, By
construction, a3 is accepted by A(af) and for all 5" # (3 it holds a3’ is a trace of D(af3),
i.e. vyruouqiy is a trace of D(af3), therefore, due to the properties of the restriction and
expansion operations, all the traces v € (vyjuouf1})gvuv are accepted by D(af)quuv-
From the definition of the global automaton, v is accepted by Aut(C), then v is a trace
of Aut(C) N D(aB)quuv = G(aB) and vyyuyugy is accepted by G(aB)yruvugy- Since
vypuvuqiy € v1* and to derive G'(aB)yuuvugy we cut off all the suffixes containing
symbol 1 only, we conclude that v is accepted by G'(af3) yuuvuqiy and hence 7 takes the

R(ap) from initial state to a final state. O

5.4.2 Minimizing the set of requirements

The minimization of the set of requirements allows to make the testing and verification
process faster after the substitution of a component is made, because the complexity of
checking whether composition meets the requirements or not is essentially depending on

the number of requirements to check.

The minimization of the set of requirements can be made based on the similar process

as solving an equation.

The problem of the set of requirements minimization is stated as follows: given a compo-
sition specification in form of the set of input/output sequences (the set of requirements)
TS and the context A, we are required to derive a minimal subset TS’ C T'S such that
the composition AQX satisfy T'S” if and only if AQX satisfy T'S.

In other words, if the set of requirements T'S is represented by the TFSM Crg, then
we are required to derive such Crg: < Cpg so that the equations XQA < Cpg and

XOA S Crg have the same sets of solutions.

Similar to the test minimization procedures for classical FSMs [80], the minimization of

the set of requirement for composition includes the following steps:

Chapter 5. Service composition optimization based on TEFSM equation solving 85

1. Delete from the set of requirements TS requirements that are applied to the context

only and do not induce any communication between components.

2. Determine for each requirement in T'S the set of internal traces that violate the
requirement, derive the union R of such internal traces and determine a subset
TS" C TS of external requirements such that the union of the sets of traces

violating requirements T'S” coincides with R.

In this case, the full set of requirements T'S is met if and only if T'S’ is.

Example 5.5. For the running example, consider requirements TCy1 = (i1,1).{i2, 1)/
(y1,1).(y2,4) and TCy = (i1,1).(i1,0).(i2, 1) /{y1, 1).(y1, 1).(y2,4). The set of unexpected
external traces for a1y is {(i1, 1).(o1, k1).(ia, 1).(02, k2) |01,02 € Y Ak1,ke € N, (01 #
y1 Vki #1Voy #ysVke #4)} and the automaton D(«aq/31) with this set of traces is
represented in Fig. 5.6 where actions corresponding to the timed input sequence oy are
shown in bold. The reference behavior is represented with a sequence of transitions eg—1
— e —t] —+e2 —1 —e3 —y1 wes —1 —e5 —ia e —1 e =1 -eg —1 —eg —1

— €10 —y1, and therefore this sequence is eliminated from automaton D(aqf1).

FIGURE 5.6: The automaton D(«4/51) with the set of unexpected external traces for
requirement 7'Cy

At the next step, we add loops under internal actions u, z1, and zo at each state of
the automaton D(«y 1) and then intersect the obtained automaton with the automaton
Aut(C) for the context TFSM. At the last step we hide all external symbols i1, i2, Y1
and y and the obtained automaton R(ayf1) is shown in Fig. 5.7, where there is the
only accepting state F' (Fail). According to the above procedure, states 9 and 10 will
be merged with the state F, and thus, a requirement T'Cy is violated by each component
TFSM B that has a trace from the set {(u,4).(z2, k), k € N} U{(u,4).(z1,k), k € N\{1}}

and only such implementations.

Chapter 5. Service composition optimization based on TEFSM equation solving 86

FIGURE 5.7: The set of internal traces violating the requirement T'C1

After deriving R(agfB2) for the TCo, one can check that R(cayf1) and R(agf2) have the
same languages, i.e. T'Ch and T'Cy are violated by the same set of faulty implementations
of the embedded component TFSM B and, hence, TCy is satisfied if and only if TCs is
satisfied, and one of them therefore can be deleted from the set of requirements. The
input sequence of T'Co is longer and thus, TCy is preferable to be deleted. In the same
way, one can assure that requirements TCg and T'Cs are violated by one and the same set
of internal traces and therefore, TCg also can be deleted. As a result, six of requirements
are sufficient to satisfy while substituting the embedded component, i.e. a minimized set
of requirements T'Syin, = {TC1,TC3,TCy, TC5,TCg, TCq} can be used while optimizing

the embedded component. A

Example 5.6. For the Loan Approval Service from Ezxample 3.4, the set
TS = {(IAr,k).(OK,t)/(A,8).(outl,1) : Yk > 0,t < 10;(IAr,k)/(NA,8):Vk > 0}

of given requirements can be minimized down to

TSmin = {(IAr,1).(0K,1)/(A,8).(outl,1); (IAr, 1)/(N A, 8)}.

5.5 Chapter conclusions

We proposed how to derive the largest solution, i.e., the collection of all component ser-
vice behaviors that can substitute given (unknown) component under optimization. The

further choice of restricted solutions with required properties is discussed in Chapter 6.

Also, based on the equation solving procedure, we showed how the set of composition
requirements, given in the form of input-output sequences (corresponding as to a list of
requirements and/or a collection of desired scenarios to fulfill), can be minimized with
respect to the component under optimization. The minimization of requirement set can
be used, for example, for fastening the testing and verification of the composition against

given set of requirements after each substitution of the component under optimization.

Chapter 6

Extracting Restricted Solutions

with Required Properties

6.1 Introduction

In this section we consider some intuitions on how useful and interesting particular

solutions might be extracted from the largest solution of the solvable equation.!

Primarily, we consider algorithms of deriving sub-machines of the largest solution rather
than reductions, since similar to classical FSMs, the task of deriving a reduction with
desirable properties is known to be quite complicated [71], while for a sub-machine

extraction efficient algorithms might be developed.

Since the main objectives of the thesis are concerned on web services optimization, we

extract restricted solutions interesting from the service optimization points of view.

In particular, we consider the issues of extracting safe components with manageable

quality properties.
Therefore, the following restricted solutions are considered in this section:

1) faster component: at each state for each input the transition with the smallest output

delay value is chosen. This restricted solution being composed with the given context

!The results of this chapter have been partly obtained within the project Ne14-08-31640 mol_a “Soft-
ware quality evaluation based on logic circuit analysis and learning”funded by Russian Foundation for
Basic Research (project coordinator - Natalia Kushik)

87

Chapter 6. Extracting restricted solutions with required properties 88

allows to estimate achievable quality of the composition with the given context, and in
case it is not satisfactory, either reconsider the specification promises or redesign the
context; though, the existence of faster reductions, rather than sub-machines, might be

further considered, e.g., by unrolling cycles before choosing a sub-machine;

2) least restrictive requirements: choosing the slowest transitions in the component under
design, we evaluate the most relaxed requirements the component needs to possess in

order to have the composition that still conforms to the specification;

3) mazimizing/minimizing timeouts in the component: the fact, that the component is
not reachable from the context at any time instance with any possible input allows to
manipulate timeout values for some states. Deriving the component with maximized
timeouts might be useful to make the component more tolerant towards the quality
violations in the context, preserving the same functionality during longer time intervals.
On the other hand, for more time-sensitive services, it might be useful to minimize
timeouts instead, correlating them to the session timeouts and producing appropriate

error or reset messages if the context component violates its quality requirements.

4) safe components: choose those restricted solutions that do not cause any livelocks or

deadlocks in composition with the given context.

5) minimal changes required: minimize distance in the number of transitions with the
initial component that was decided to be optimized/substituted, e.g., because of safety
reasons. This can be done by some special intersection of the largest solution with
this initial component, assuming, that if the largest solution has variants of transition
options for a transition of the initial component, then the latter is chosen, otherwise,
the transition between variants is chosen based on output delay value. The choice from
multiple options for the output responses in the largest solution that are all differ from
the ones of the initial component might be done by any convenient ranking of the outputs.
For example, based on semantical interpretation of abstract outputs, or by preferences

of one type of messages over others.

Chapter 6. Extracting restricted solutions with required properties 89

6.2 Safe component selection

In this section we show that the largest livelock-safe solution is exactly the one obtained

for the equation with restricted values for output delay.

Livelock-safe solutions are reductions (sub-machines in simplified case) of the largest
solution for the equation with the specification with restricted output delays values, in

cases when the context has the minimal non-zero output delay.
Otherwise, the component should be chosen to have non-zero delays.

Unlike classical FSMs, the TFSMs do not require usage of I-bounded composition op-
erator in equations in order to derive livelock-safe components, since, as we show in
Section 4.4, if at least one of the components of composition has non-zero minimal
output delay, then l-bounded composition could be substituted by time-bounded one.
Therefore, it is enough to bound specification and use the general parallel composition

operator.

However, the question of how to choose an appropriate time bound may arise. If the
equation does not have non-trivial solutions with given bound, it does not mean that it

does not have livelock-safe solutions with greater bound.

Example 6.1. The largest solution for the warehouse from Ezxample 5.3 shown in
Fig. 5.3 does not guarantee livelock-safety, while the largest solution derived for the

time-restricted specification in Fig. 5.2 does. A

6.3 Most similar substitution

As noted before, the task of solving an equation may be applied for the component
substitution problem, if the given components are unable to provide the required com-
position with desirable quality. In this case, the substituting component may be sought

as some restricted solution to the corresponding equation.

In this section we discuss how to choose this restricted solution being similar to the
initially given component, i.e. such solution that would require as least as possible

changes to be made in initial component to satisfy the composition specification.

Chapter 6. Extracting restricted solutions with required properties 90

Therefore, we consider given service components S and P and the composition specifi-

cation C, so that SOP o C, where ~€ {=, <, 1, <} is a particular conformance relation.

We assume that at least one of the components should be re-designed/optimized, which
may be done via solving a corresponding equation XOP ~ C. Using the results of
Chapter 5, the largest solution Sx to this equation may be derived (for any chosen

conformance relation).

The goal of this section is to extract all those solutions that preserve the ‘correct’part
of the behavior of the given component & and modify only those transitions that lead

to the composition specification violations.

Since all the traces of the component under optimization that are not violating the speci-
fication are contained in the largest solution, then the largest correct part of the behavior
of the given component is contained in the TFSM Sconr = SN Sx. If L(Seony) = 17,
i.e. tracesscons = {€}, then the component S should be re-designed completely and no

parts of its behavior could be included into the solution.

For a given component S = (S, Ix,Ox, o, A\s, As,0s) and the derived largest solution

Sx = (X,Ix,0Ox,x9, \x,Ax,0x), the algorithm is based on three main steps:

1. Determine, which part of the initially given component induces the behavior con-
formant to the specification composition, and preserve it, i.e., preserve in the
solution all traces of the initially given component that are included in the largest

solution (tracesg(so) Ntracesx(xop)).

2. For all input sequences that are undefined in the initially given component, choose
output responses from the largest solution, i.e., add to the solution traces {af|a ¢

ins(so) A af € tracesx(zo)}.

3. For the part of the given component that violates composition specification, i.e., for
the traces from the set tracesg(so) \ tracesx(x¢), re-define output responses from
the largest solution, i.e., add to the solution traces {af|a € ing(so) Aouts(sg, @) N

outx(xo,) =0 A af € tracesx(xg)}.

Constructively, the extracting of the solution close to the initial component, is based
in the intersection of the given component and the largest solution, with some minor

modifications to take into account steps 2 and 3.

Chapter 6. Extracting restricted solutions with required properties 91

Algorithm 6.1 considers the reduction conformance relation. As we shown in Chapter 5,
quasi-reduction relation in equation solving can be transformed to reduction by redefin-
ing the specification for don’t care sequences, while equivalence and quasi-equivalence
relations just require additional verification of the result. Therefore, Algorithm 6.1 may

be easily adapted to treat other than reduction relation if necessary.

Proposition 6.1. The TFSM R derived by the Algorithm 6.1 is a solution to the equa-
tion XOP < C.

Proof. By construction, L(R) C L(Sx), i.e., R is a reduction to Sx and hence ROP <
SxOP <C. O

Remark 6.2. While comparing the outputs of the given component to the outputs
allowed in the largest solution, when outputs of the initially given component should be
substituted (at the step 16), the decision on the choice of one output option from the
largest solution might be done based on some similarity function defined over output
symbols. In particular, in cases when the TFSM representation of the service com-
ponents behavior is derived from the data-enabling models (like TEFSM [23] or STS
[81, 82]), the values of the data variables are split into domains and those domains are
encapsulated into new abstract input and output symbols. Then, new output symbols
corresponding to the same output with different data values might be considered as more
similar to each other than the symbols corresponding to different data values, and the

preference in output symbols substitution might be based on such similarity.

6.4 Managing output delays values

Two approached can be used to restrict the output delays for extracting solutions from

the largest solution.

1. First, the solutions with upper and lower bounds on output delays value might be

considered.

Given the largest solution Sx with alphabets Iy and Oy, the largest solution with
output delays not less than k is the TFSM Sx >; with the language L(Sx >k) =
L(Sx) N (1*Ix1F1*Ox)*1*.

Chapter 6. Extracting restricted solutions with required properties 92

Algorithm 6.1 Extracting the solution containing the correct behavior of the given
component

Input: The equation XYOP ~ C, the largest solution Sx = (X, Ix,Ox,xo, Ax, Ax,0x)
and the component S = (S, Ix, Ox, so, A\s, As,0s) so that SOP +« C.
Output: The TFSM R = (R, Ix,Ox, 19, AR, AR, 0R) so that ROP ~ C and R is as
similar as possible to S.
1: Add to R the initial state is ro = ((sp,ts = 0), (xo,tx = 0)).
2: Set current state r = rg, mark r unexplored.
3: for each unexplored r = ((s,tg), (z,tx)) € R do
4: for each i € Ix do

5: if i € inputsg(s) Ninputsx(z) then

6: if outputsg(s,i) N outputsx(z,i) # 0 then

7: for each o € outputsg(s,i) Noutputsx(z,i) do

8: r’ = ((s,0), (2,0)), where (s,7,0,s') € As and (z,i,0,2") € Ax
9: Add (r,i,0,7") to Ag

10: Define output delays:

11: if 0s((s,1,0,8)) Nox((z,i,0,2')) # () then

12: or((ryi,o0,7")) = os((s,i,0,8)) Nox((z,i,0,2))
13: else og((r,i,0,7")) = ox({x,i,0,2"))

14: end if

15: end for

16: else

17: for each o € outputsx(x,i) do

18: ' = ((s,0),(2',0)), where (x,i,0,2") € Ay and

19: either (s,i,0',s') € As for some o # o' ¢ outputsx(x,i) or s = s.
20: Add (r,i,0,7") to Ag

21: Define output delays: or({r,i,0,7")) = ox({z,i,0,2'))
22: end for

23: end if

24: else

25: for each i € inputsx(x) do

26: for each o € outputsx(x,i) do

27 r’ = ((s,0), (z/,0)), where (z,4,0,2') € Ay

28: Add (r,i,0,7") to A\g

29: Define output delays: og({r,i,0,7")) = ox({x,i,0,2'))
30: end for

31: end for

32: end if

33: end for

34: Define timeout for r:

35: T:min(Ag(s)iN —ts,A/y(x)¢N —tx)

36: " = ((times(s,ts+T),clocks(s,ts+T)), (timex (z,tx+T),clockx(x,tx+T)))
37: Define Ag(r) = (', T)

38: if 7 ¢ R then add ' to R and mark not explored.

39: end if

40: Mark r as explored and take next unexplored r € R.

41: end for

Chapter 6. Extracting restricted solutions with required properties 93

-xl"l{}"l({kmilb kmin & 1; vens kmcr(o 1; kmax});
xml"(}"rs({kmm; kmirs 2 1; sisdny kmax - 1; kmax})

FIGURE 6.1: The maximal TFSM over alphabets Ix = {x;...2,} and
Ox = {y1...yn} with the output delays no less than kp,;, and no greater than k.

Given the largest solution Sx with alphabets Ix and Ox, the largest solution
with output delays not greater than k is the TFSM Sx <; with the language
L(SX’gk) = L(Sx) N (1*leSkOx)*1*.

In other words, given the largest solution Sx and the maximal TFSM My, o,
with maxmin restrictions on output delays values, the largest restricted solution
is the intersection Sy N My, o, . An example of such maximal TFSM is shown in

Fig. 6.1.

2. Second, the solutions with upper and lower restrictions on output delays values

chosen for each transition individually.

In the latter case, intersection with the maximal TFSM is not enough, and transitions

of the largest solution should be explored explicitly.

Since the problem of extracting reduction with required properties is known to be quite
complex, similar to classical FSMs, for minimal and maximal output delays on transi-

tions we extract sub-machines rather then reductions.

Choosing among existing option the ones with minimal output delays is aimed on min-

imizing output delays in composition.

Though, in practice it might be more interesting to choose the component with maximal
output delays, since our solution - it is not a component implementation which parame-
ters we actually can enforce, but rather a recommended specification and requirements
for the component to be searched for in order to provide the desired composition. More-
over, the dynamic nature of the real networks environment should also be taken into
account. The maximal output delays provide the most relaxed and least restrictive
requirements for the components - and usage of this result for component implemen-
tation/discovery may enable bigger choice of actual service components that might be

used in the composition.

Chapter 6. Extracting restricted solutions with required properties 94

6.5 Manipulating component number of states

The TFSM, representing the largest solution of the equation, has two types of transi-
tions: transitions, that are involved in communication with context and satisfying the
specification of composition, and transitions, that are not reachable from context and
therefore can be defined in any way suitable. The latter might be used for manipulating
the number of states in the extracted components, as well as for manipulating the values
of timeouts in some states of the component, which allows to make it either more or less

tolerant towards timed properties of the context component.

6.5.1 TFSM state minimization

Definition 6.3. The TFSM S is called reduced, if all states are pair-wise distinguishable.

The TFSM S is called minimal if it is reduced and there is no other equivalent TFSM

with fewer states.

Given TFSM P, the minimal TFSM S that is equivalent to P is called the minimal form
of the TFSM P. A

For deterministic classical FSMs it is known [70], that the minimal form is unique (up

to isomorphism), while for TFSMs it is not necessarily the case.

One of the ways to perform TFSM state minimization is based on deriving the corre-
sponding minimal classical FSM [83], though, the further timeout manipulations issues

are not considered on the approach.

Definition 6.4. Given states s and p, state p is called a copy of s if inputsg(s) =
inputss(p), and (p,i,0,s") € As if and only if (s,4,0,5") € A\s and os((p,i,0,5")) =
os((s,i,0,5")). Le., if the state p has the same transitions as the state s except, maybe,

for timeout transition. A

Another way of deriving some minimal form of TFSM is based on following three main

steps:

1. Derive the partition of the set of states induced by the equivalence relation.

Chapter 6. Extracting restricted solutions with required properties 95

Detailed discussion of how to derive the partitioning induced by the equivalence
falls out of the scope of this thesis, assuming some adaptation of classical al-
gorithms. For example, for iterative split of equivalence classes according to k-
equivalence relation, such adaptation is made by adding a condition on timeout
function: at k’s step, two states s; and sg stay in the same equivalence class if
timeg(s1,k) and timeg(s2, k) were in the same l-equivalence class (i.e., were in

the same class at initial step, distinguishing states by the outputs).

2. Merge all the timeout transitions traversing the chains of “copies” (Definition 6.4).

In other words, for all si,se € S such that As(s1) = (s2,71), As(s2) = (s3,12)
and s is a copy of s1, redefine As(sy) = (s3,71 + T2). And if sy was reachable
only by timeout from s;, then ss becomes unreachable from the initial state and,

therefore, should be deleted:

3. Delete all states unreachable from the initial state.

Therefore, based on the step 2, timeouts can be used as a key for state number manip-

ulations in TFSMs while preserving the functional and timed requirements.

Remark 6.5. The considered algorithm is oriented to complete machines, though, might
be adapted to incompletely specified ones similar to classical FSMs (see, for example,

84, 85)). A

6.5.2 Manipulating timeout values in equation solutions

The transitions in the largest solution TFSM can be divided in two types:
1. Transitions, that define desired functionality and are required/allowed by commu-
nication with the context;

2. Transitions, that are not reachable from the context and, hence, don’t care tran-

sitions.

Chapter 6. Extracting restricted solutions with required properties 96

And while the former might be necessary to provide the desired behavior of compo-
sition TFSM, the latter can be manipulated in any desired way without violating the

composition specification.

For instance, correlating don’t care transitions with the specified ones, we might extract

component with greater or lesser values of timeouts.

The states, for which it is possible to manipulate timeout values, should satisfy the

following conditions.

e Consider the state s and with transitions defined on inputs inputsg(s), the timeout

in the state s is finite: Ag(s) = (s1,7), T < 0.

o If for all ¢ € inputsg(s) the state s; has only don’t care transitions, then the

transitions from the state s; are redefined so that s; becomes a copy of s.

e Then, the timeout for the state s is redefined as Ags(s) = (s2,7 + 11), where
As(s1) = (s2,T1), and Ag(s) = (s,00) if T1 = 0.

As a result, the component with close-to-minimal number of states is extracted from
the largest solution, and such component might be considered as more tolerant for
the context quality violations, preserving the same functional behavior within longer

intervals of time.

In case of a less tolerant component is desired, one way to achieve it is to define all
transitions that are not reachable from the context to be transitions with error messages,
resetting the component due to time requirement violations and, possibly, asking user
to repeat the request. For example, if booking of a flight via the Internet is not paid
before the expiration of timeout, the booking is canceled, the reserved places are made

available for other bookings, and the payment is withdrawn.

Chapter 6. Extracting restricted solutions with required properties 97

check / no_product (1)

check /
product (1)

ship / get_product (1)

FIGURE 6.2: The restricted solution for the warehouse service with maximized timeouts

Example 6.2. Let us consider the largest solution for the warehouse service in Fig. 5.5.

State “a” has don’t care transitions and reaches state “b”after the timeout, therefore, we

“a”. Then, we

redefine transitions in state “a’so that state “b”becomes a copy of state
do the same with the state “f”, which reaches state “a”by timeout. Similar, we combine
states “c”and “d”. Then, choosing output delays to be minimal non-zero delays (1 in

this case), we obtained the restricted solution in Fig. 6.2 that has only infinite timeouts.

However, since we used the largest solution that is not livelock-safe, the further check of
livelock-safety might be required. Though, if the solution would’ve been extracted from
the livelock-safe largest solution, it would also be livelock-safe and would require only the

check on equivalence of the composition and specification. A

Algorithm 6.2 Extracting the solution with maximized timeouts

Input: The largest solution Sy = (X, Ix,Ox, o, \x, Ax,0x)
Output: The restrcited solution R = (R, Ix,Ox, 10, AR, Ar,or) < Sx.

1: Assign R = Sx.

2: for each state r € R do

3 if Ag(r) = (r',T) where T < co then

4 if inputsr(r’) C inputsg(r)

5: and for all i € inputsg(r) it holds outputsg(r,i) = O

6 then

7 Delete all the transitions starting from r

8 For each (r',i,0,7") € A\g,

9: add (r,i,0,r") to Ag, with og((r,i,0,7")) = o ({(r',i,0,1"))
10: Re-define Ag (r) = (rr, Tsym) where Ag (1) = (rT, "Yand Tsy = T+T'
11: if 7’ is not input-reachable then
12: Delete 7’ together with it’s all outgoing transitions.

13: end if
14: end if
15: end if

16: end for

Chapter 6. Extracting restricted solutions with required properties 98

6.6 Chapter conclusions

For some restrictions required from the solution, like the upper- or lower bound of
the output delays, the largest solution satisfying the restriction may be derived as an
intersection of the general largest solution with the maximal TFSM representing the
restriction. Such restrictions include maxmin requirements for the output delays and
intervals between applying the next input, forbidden input sequences (in this case max-
imal TFSM is partial), restriction on the output responses options for certain inputs
and input options after producing certain outputs (though, the latter might violate the

assumption of harmonized traces, and therefore should be considered with great care).

Other restrictions, like choosing the minimal output delay among allowed options for
each transition, cannot be expressed with a maximal TFSM, and might require explicit

traversing of transitions in question.

In the chapter we discussed variants of restricted solutions of both types that might
be useful in the service composition optimization. Though, the efficient application of
provided solutions for discovery and binding of the real services is yet a question to be

thoroughly investigated in the future work.

Chapter 7

Conclusions

7.1 Summary of Contributions

Automata theory and its extensions offer powerful and efficient instrumentation for
solving various software and digital devices related problems, including the problems

from the emerging domain of “everything-as-a-service”.

The contributions of the performed work are mainly theoretical. However, preliminary
performance experiments with the prototype tool, implementing the construction of
TFSM parallel composition, show that machines with hundreds states might be pro-
cessed efficiently despite the issue of state explosion while transforming from TFSMs to

corresponding finite automata.

The correlation of service composition optimization issues to the optimization of finite
state model composition allows to integrate quality- and safety-aware design and testing

of composite services based on formal specifications.
To sum up, the main contributions include:
1. The nondeterministic extension of FSM with Timeouts (TFSM) model for service
description integrating time-related quality and safety parameters.

2. A correspondence between functional conformance relations for service modeled

by TFSMs in cases of real and integer-valued time variable has been established.

99

Conclusions 100

3. A method for iterative optimization of service composition with dialog-mode com-
munication between components, based on deriving the largest solution for the

corresponding TFSM parallel equation.

4. A method for minimizing the set of composite service requirements with respect
to the component under optimization, which can be used to shorten the testing

and verification of the composition after the substitution of the component.

5. Techniques for extracting restricted solutions with required properties (livelock/
deadlock-safety, number of states and timeout values, least or most restrictive
output delays requirements, similarity to the initial behavior of the component

under optimization).

7.2 Perspectives and Future Work

One of the serious drawbacks of the approach we are proposing, lays within its scala-
bility towards multiple interacting components. The parallel composition operator we
rely on focuses on the dialog-mode interactions and tracks the interactions when at each
moment of time only one component is considered working. For orchestrations, such
concept might be enough as far as parallel execution is not in need; then, the orches-
trator communication on request-response basis with the pool of component services,
leading them through the desired workflow, is represented as a parallel composition of
the orchestrator and the pool. For scenario-based user-driven choreographies the par-
allel composition also might be applied, assuming that the component in work is the

component currently in charge of user-service interaction.

However, the current definition of the operator does not capture independent parallel
execution with further concurrency and/or synchronization of the processes, and for the

future work should be therefore updated.

Discussion on capabilities of the model itself to integrate the quality parameters other
than time is also an interesting topic for further research. For cumulative quality pa-
rameters, e.g. cost, all the results obtained in the thesis, might be applied with some
minor changes. Timeouts, in such case, are interpreted as the boundary conditions

for different levels of quality, changing the responses of the service depending on the

Conclusions 101

quality value. In composition, the correlation between components on quality param-
eters is made between output delays and timeouts, and for additive parameters this
correlation is preserved: output delays represent the consumption of quality parameter
for operation, and timeouts in another components ensure responses depending on this
consumption. Therefore, the correspondence of TFSMs to finite automata can be used
in composition with TFSM timer interpreted as any other additive parameter, without

major adjustments.

Though, direct adaptation of the timeouts to other types of quality parameters is not
obvious and require further research. It seems, that methods over the model and com-
position may be preserved for other types of parameters in place of time, using timeouts
as conditions and output delays as applied values of parameter, but with different defi-
nition for aggregation of parameter values in composition. Cost, like time, is an additive
parameter: having sequences of internal operations, the resulting value is obtained as
a sum of partial values. That is the basis that allows to unroll each transition under k
time units into a chain of k transitions for a single 1 unit, as well as then fold it back
together without loosing value in translation. For other types of parameters, multiplica-
tive or minmax, for instance, such transformation requires thorough investigation of a
unit value and unrolling concept, that would allow to use finite automata operations

without additional symbolic refinements.

To summarize, the main directions of the future work include the extension of the
composition operator for more complex modes of communication, including multi-stimuli
composition, and investigation of properties of the model to integrate other than additive

quality parameters within the same framework.

Bibliography

1]

Eyhab Al-Masri and Qusay H. Mahmoud. Investigating web services on the world
wide web. Proceedings of the 17th international conference on World Wide Web,
pages 795-804, 2008. doi: 10.1145/1367497.1367605. 1367605 795-804.

Ade McCormack. Cloud — everything as a service? Report, 2013. URL http://
www8.hp.com/uk/en/pdf/Auridian_Paper2_aw_High_tcm_183_1326448.pdf.

Google app engine: Platform as a service. URL https://cloud.google.com/

appengine/docs.
Amazon web services. URL http://aws.amazon.com/.

Mathew Sajee. Overview of amazon web services, 2014. URL http://do0.

awsstatic.com/whitepapers/aws-overview.pdf.

Steve Bratt. Web 3.0 emerging, 2007. URL http://www.w3.org/2007/Talks/
0123-sb-W3CEmergingTech/#(2).

F. Curbera, M. Duftler, R. Khalaf, W. Nagy, Nirmal Mukhi, and S. Weerawarana.
Unraveling the web services web: an introduction to soap, wsdl, and uddi. Internet

Computing, IEEFE, 6(2):86-93, 2002. ISSN 1089-7801. doi: 10.1109/4236.991449.

David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion,
Chris Ferris, and David Orchard. Web services architecture, 2004. URL http://

www.w3.org/TR/ws-arch/.

The Open Group SOA Working Group. Service oriented architecture: What is soa?

URL http://www.opengroup.org/soa/source-book/soa/soa.htm.

102

Bibliography 103

[10]

[12]

[13]

[14]

Stas Khirman and Peter Henriksen. Relationship between quality-of-
service and quality-of-experience for public internet service. Proceed-
ings of the Passive and Active Network Measurement Workshop PAMO2,
2002. doi: citeulike-article-id:8507159. URL http://www.pamconf.net/2002/

Relationship_Between_(QoS_and_QoE.pdf.

Kim Hyun-Jong, Lee Dong Hyeon, Lee Jong Min, Lee Kyoung-Hee, Lyu Won,
and Choi Seong-Gon. The qoe evaluation method through the qos-qoe correlation
model. Proceedings of the 4th International Conference on Networked Computing
and Advanced Information Management, NCM 08, 2:719-725, 2008. doi: 10.1109/
NCM.2008.202.

Anderson Morais and Ana Cavalli. Deliverable d2.1 — state of the art of sqm/cem
technology, tools, and standartization. Report, 2012. URL http://projects.

celtic-initiative.org/ipngqsis/IPNQSIS-D21.pdf.

C.K. Fung, P.C.K. Hung, R.C. Linger, and G.H. Walton. Extending business pro-
cess execution language for web services with service level agreements expressed in
computational quality attributes. In System Sciences, 2005. HICSS ’05. Proceed-

ings of the 38th Annual Hawaii International Conference on, pages 166a—166a, Jan
2005. doi: 10.1109/HICSS.2005.268.

F. Rosenberg, C. Enzi, A. Michlmayr, C. Platzer, and S. Dustdar. Integrating
quality of service aspects in top-down business process development using ws-cdl
and ws-bpel. In Enterprise Distributed Object Computing Conference, 2007. EDOC
2007. 11th IEEFE International, pages 15-15, Oct 2007. doi: 10.1109/EDOC.2007.
23.

H. Kreger. Web services conceptual architecture (wsca 1.0). Technical report,
IBM Software Group, May 2001. URL http://www.csd.uoc.gr/~hy565/newpage/

docs/pdfs/papers/wsca.pdf.

Pablo Rabanal, Ismael Rodriguez, Jose A. Mateob, and Gregorio Diaz. Im-
proving the automatic derivation of choreography-conforming web services sys-
tems. In Proceedings of the International Conference on Computational Sci-
ence, ICCS 2012, volume 9, page 449-458, 2012. ISBN - 1877-0509. doi:
-http://dx.doi.org/10.1016/j.procs.2012.04.048.

Bibliography 104

[17]

[21]

[22]

Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreography
realizability. SIGPLAN Not., 47(1):191-202, 2012. ISSN 0362-1340. doi:
10.1145/2103621.2103680.

Ismael Rodriguez, Gregorio Diaz, Pablo Rabanal, and Jose Antonio Ma-
teo. A centralized and a decentralized method to automatically derive
choreography-conforming web service systems. The Journal of Logic and
Algebraic Programming, 81(2):127 — 159, 2012. ISSN 1567-8326. doi:
http://dx.doi.org/10.1016/j.jlap.2011.10.001. URL http://www.sciencedirect.
com/science/article/pii/S1567832611000762. Formal Languages and Analysis
of Contract-Oriented Software (FLACOS’10).

Pablo Rabanal, Ismael Rodriguez, Jose A. Mateo, and Gregorio Diaz. Im-
proving the automatic derivation of choreography-conforming web services sys-
tems. Procedia Computer Science, 9(0):449-458, 2012. ISSN 1877-0509. doi:
http://dx.doi.org/10.1016 /j.procs.2012.04.048. URL http://www.sciencedirect.
com/science/article/pii/S187705091200169X.

Gregorio Diaz, Juan-José Pardo, Maria-Emilia Cambronero, Valentin Valero, and
Fernando Cuartero. Automatic Translation of WS-CDL Choreographies to Timed
Automata, volume 3670 of Lecture Notes in Computer Science, book section 17,
pages 230-242. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-28701-8. doi:
10.1007/11549970_17. URL http://dx.doi.org/10.1007/11549970_17.

Pierre-Cyrille Héam, Olga Kouchnarenko, and Jéréme Voinot. Component
simulation-based substitutivity managing qos and composition issues. Sci-
ence of Computer Programming, 75(10):898-917, 2010. ISSN 0167-6423. doi:
http://dx.doi.org/10.1016/j.s¢ic0.2010.02.004. URL http://www.sciencedirect.
com/science/article/pii/S0167642310000316.

Ching-Seh Wu and Chi-Hsin Huang. The web services composition testing based
on extended finite state machine and uml model. In Service Science and Innovation
(ICSSI), 2013 Fifth International Conference on, pages 215-222, May 2013. doi:
10.1109/1CSSI1.2013.46.

M. Lallali, F. Zaidi, and A. Cavalli. Timed modeling of web services composition for

automatic testing. In Signal-Image Technologies and Internet-Based System, 2007.

Bibliography 105

[24]

28]

[30]

SITIS °07. Third International IEEE Conference on, pages 417-426, Dec 2007. doi:
10.1109/SITIS.2007.110.

A. Sahai and S. Graupner. Web Services in the Enterprise: Concepts, Standards,
Solutions, and Management. Kluwer Academic/Plenum Publishers network and
systems management. Springer, 2007. ISBN 9780387275970. URL http://books.

google.fr/books?id=zU0CzkY_OFoC.
Service orientation. URL http://serviceorientation.com/.
Web service depository xmethods. URL http://www.xmethods.net.

P. Reichl, S. Egger, R. Schatz, and A. DAlconzo. The logarithmic nature of qoe
and the role of the weber-fechner law in qoe assessment. In Communications (ICC),
2010 IEEE International Conference on, pages 1-5, 2010. ISBN 1550-3607. doi:
10.1109/1CC.2010.5501894.

Sherry X. Sun and Jing Zhao. A decomposition-based approach for service
composition with global qos guarantees. Information Sciences, 199(0):138-153,
2012. ISSN 0020-0255. doi: http://dx.doi.org/10.1016/j.ins.2012.02.061. URL

http://www.sciencedirect.com/science/article/pii/S0020025512001892.

Jorge Cardoso, Amit Sheth, John Miller, Jonathan Arnold, and Krys Kochut. Qual-
ity of service for workflows and web service processes. Web Semantics: Science,

Services and Agents on the World Wide Web, 1(3):281-308, 2004. ISSN 1570-8268.

J. El Hadad, M. Manouvrier, and M. Rukoz. Tqos: Transactional and qos-aware
selection algorithm for automatic web service composition. Services Computing,
IEEE Transactions on, 3(1):73-85, 2010. ISSN 1939-1374. doi: 10.1109/TSC.2010.
5.

C. C. Chang and Lu Hsueh-Ming. Integration of heterogeneous medical decision
support systems based on web services. In Bioinformatics and BioEngineering,
2009. BIBE 09. Ninth IEEE International Conference on, pages 415-422, 2009.
doi: 10.1109/BIBE.2009.59.

B. Pernici and S. H. Siadat. Evaluating web service qos: A neural fuzzy approach.
Proceedings of the IEEE International Conference on Service-Oriented Computing

and Applications (SOCA2011), pages 1-6, 2011. doi: 10.1109/SOCA.2011.6166267.

Bibliography 106

[33]

[38]

LeonardoA.F. Leite, Gustavo Ansaldi Oliva, GuilhermeM. Nogueira, MarcoAurélio
Gerosa, Fabio Kon, and DejanS. Milojicic. A systematic literature review of service
choreography adaptation. Service Oriented Computing and Applications, 7(3):199—
216, 2013. ISSN 1863-2386. doi: 10.1007/s11761-012-0125-z. URL http://dx.
doi.org/10.1007/s11761-012-0125-z.

Alex Norta, Lixin Ma, Yucong Duan, Addi Rull, Merit Kolvart, and Kul-
dar Taveter. econtractual choreography-language properties towards cross-
organizational business collaboration. Journal of Internet Services and Appli-
cations, 6(1), 2015. ISSN 1867-4828. doi: 10.1186/s13174-015-0023-7. URL
http://dx.doi.org/10.1186/s13174-015-0023-7.

Alistair Barros. Process Choreography Modelling, pages 279-300. International
Handbooks on Information Systems. Springer Berlin Heidelberg, 2015. ISBN 978-
3-642-45099-0. doi: 10.1007/978-3-642-45100-3_12. URL http://dx.doi.org/10.
1007/978-3-642-45100-3_12.

Carlos Rodriguez-Dominguez, Tomaéas Ruiz-Lépez, JoséLuis Garrido, Manuel
Noguera, and Kawtar Benghazi. Leveraging the Model-Driven Architecture for
Service Choreography in Ubiquitous Systems, volume 8276 of Lecture Notes
i Computer Science, pages 303-310. Springer International Publishing,
2013. ISBN 978-3-319-03175-0. doi: 10.1007/978-3-319-03176-7_-39. URL
http://dx.doi.org/10.1007/978-3-319-03176-7_39.

Kashif Dar, Amirhosein Taherkordi, Roman Vitenberg, Romain Rouvoy, and
Frank Eliassen. Adaptable service composition for very-large-scale inter-
net of things systems. In Proceedings of the Workshop on Posters and
Demos Track, PDT ’11, pages 11:1-11:2, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-1073-4. doi: 10.1145/2088960.2088971. URL
http://doi.acm.org/10.1145/2088960.2088971.

Valérie Issarny, Antonia Bertolino, Guglielmo De Angelis, Amira Ben Amida,
Jean-Pierre Lorré, Nikolaos Georgantas, Animesh Pathak, James Lockerbie, and
et al. Deliverable d1.1: Choreos state of the art, baseline, and beyond. Re-
port, 2011. URL http://www.choreos.eu/bin/download/Share/Deliverables/

CHOReOS-StateoftheArt-BaselineandBeyond-VA.O.pdf.

Bibliography 107

[39]

[42]

[43]

[46]

[47]

Lina Bentakouk, Pascal Poizat, and Fatiha Zaidi. Checking the behavioral con-
formance of web services with symbolic testing and an smt solver, 2011. 2025940

33-50.
ISO/IEC. Software life cycle processes, 1995.

Rong Huigui, zhou Ning, Chen HongQin, and Cheng Hongli. Research on strategy
of web service composition based on software life cycle. Proceedings of 4th Interna-
tional Conference on Wireless Communications, Networking and Mobile Comput-

ing, WiCOM 08, pages 1-4, 2008. doi: 10.1109/WiCom.2008.2002.

Diego R. Ferreira. Business networking with web services: Supporting the full life
cycle of business collaborations. FElectronic Commerce: Concepts, Methodologies,
Tools, and Applications, pages 2225-2239, 2008. ISSN 9781599049434. doi: 10.4018/
978-1-59904-943-4.ch170. URL http://services.igi-global.com/resolvedoi/
resolve.aspx?doi=10.4018/978-1-59904-943-4.ch170.

Shu Zhang and Meina Song. An architecture design of life cycle based sla manage-
ment. Proceedings of the 12th International Conference on Advanced Communica-

tion Technology (ICACT), 2:1351-1355, 2010. ISSN 1738-9445.

Jose Pablo Escobedo Del Cid. Symbolic test case generation for testing orchestrators

in context. Thesis, 2011.

Christophe Gaston and Pascal Le Gall. About incremental model-based testing
of web service orchestrations, 2012. URL http://tarot2012.univ-fcomte.fr/

7?talks.

Zhao Xin, Shen Li Wei, Peng Xin, and Zhao Wenyun. Finding preferred skyline so-
lutions for sla-constrained service composition. IEEE 20th International Conference

on Web Services (ICWS13), pages 195-202, 2013. doi: 10.1109/ICWS.2013.35.

F. Lalanne, A. Cavalli, and S. Maag. Quality of experience as a selection criterion
for web services. Proceedings of the 8th International Conference on Signal Image
Technology and Internet Based Systems (SITIS12), pages 519-526, 2012. doi: 10.
1109/SITIS.2012.81.

Zhang Shaogian, Dou Wanchun, and Chen Jinjun. Selecting top-k composite web

services using preference-aware dominance relationship. Proceedings of the IEEE

Bibliography 108

[49]

[50]

[55]

[56]

20th International Conference on Web Services (ICWS13), pages 75-82, 2013. doi:
10.1109/ICWS.2013.20.

Maurice Beek, Antonio Bucchiarone, and Stefania Gnesi. A survey on service com-
position approaches: From industrial standards to formal methods, 2006. URL
http://fmt.isti.cnr.it/WEBPAPER/TRWS-FMO6.pdf.

Cao Tien-Dung, P. Felix, and R. Castanet. Wsotf: An automatic testing tool for web
services composition. Proceedings of the 5th International Conference on Internet

and Web Applications and Services, pages 7-12, 2010. doi: 10.1109/ICIW.2010.9.

Gao Honghao and Li Ying. Generating quantitative test cases for probabilistic
timed web service composition. IEEFE Asia-Pacific Services Computing Conference

(APSCC), pages 275283, 2011. doi: 10.1109/APSCC.2011.13.

Alexander Keller and Heiko Ludwig. The wsla framework: Specifying and moni-

toring service level agreements for web services. Report, IBM, 2002.

Huiyuan Zheng, Weiliang Zhao, Jian Yang, and Athman Bouguettaya. Qos analysis
for web service compositions with complex structures. Services Computing, IEEE

Transactions on, 6(3):373-386, 2013. ISSN 1939-1374. doi: 10.1109/TSC.2012.7.

E. Billionniere, D. Greiman, and K. Gosha. A comparison of social service selec-
tion techniques. Proceedings of the Eighth IEEE International Conference on De-
pendable, Autonomic and Secure Computing, DASCO09, pages 260-265, 2009. doi:
10.1109/DASC.2009.24.

Deng Xiaopeng and Xing Chunxiao. A qos-oriented optimization model for web
service group. Proceedings of the 8th IEEE/ACIS International Conference on
Computer and Information Science, ICIS09, pages 903-909, 2009. doi: 10.1109/
I1CIS.2009.91.

M. C. Jaeger, G. Rojec-Goldmann, and G. Muhl. Qos aggregation for web service
composition using workflow patterns. Proceedings of the 8th IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2004, pages 149-159,
2004. ISSN 1541-7719. doi: 10.1109/EDOC.2004.1342512.

Bibliography 109

[57]

[60]

Yu Tao and Lin Kwei-Jay. Service selection algorithms for web services with end-
to-end qos constraints. Proceedings of the IEEE International Conference on e-
Commerce Technology, CEC 2004, pages 129-136, 2004. doi: 10.1109/ICECT.
2004.1319726.

Du Wu and Fan Hong. An automatic service composition algorithm for constructing
the global optimal service tree based on qos. Proceedings of the IEEFE International
Geoscience and Remote Sensing Symposium (IGARSS), pages 3976-3979, 2010.
ISSN 2153-6996. doi: 10.1109/IGARSS.2010.5650959.

Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and
Quan Z. Sheng. Quality driven web services composition. Proceedings of the 12th
international conference on World Wide Web, pages 411-421, 2003. doi: 10.1145/
775152.775211. 775211 411-421.

O. Moser, F. Rosenberg, and S. Dustdar. Domain-specific service selection for
composite services. Software Engineering, IEEE Transactions on, 38(4):828-843,
2012. ISSN 0098-5589. doi: 10.1109/TSE.2011.43.

J. Mtsweni. Exploiting uml and acceleo for developing semantic web services.
Proceedings of the International Conference For Internet Technology And Secured

Transactions, 2012, pages 753-758, 2012.

M. Lallali, F. Zaidi, A. Cavalli, and Hwang Iksoon. Automatic timed test
case generation for web services composition. Proceedings of the IEEE 6th
European Conference on Web Services, ECOWS 08, pages 53-62, 2008. doi:
10.1109/ECOWS.2008.14.

Ethical IT. Example sla v1, 2008. URL http://www.ictknowledgebase.org.uk/

fileadmin/ICT/pdf/support_contracts/Ethical _IT_Example_SLA_v1.pdf.

M. G. Merayo, M. Nunez, and I. Rodriguez. Extending efsms to specify and test
timed systems with action durations and time-outs. Computers, IEEE Transactions

on, 57(6):835-844, 2008. ISSN 0018-9340. doi: 10.1109/TC.2008.15.

Maxim Gromov, Khaled El-Fakih, Natalia Shabaldina, and Nina Yevtushenko.

Distinguishing Non-deterministic Timed Finite State Machines, volume 5522 of

Bibliography 110

[67]

[68]

[69]

Lecture Notes in Computer Science, pages 137-151. Springer Berlin Heidel-
berg, 2009. ISBN 978-3-642-02137-4. doi: 10.1007/978-3-642-02138-1.9. URL
http://dx.doi.org/10.1007/978-3-642-02138-1_9.

M. Zhigulin, N. Yevtushenko, S. Maag, and A. Cavalli. Fsm-based test deriva-
tion strategies for systems with time-outs. In Quality Software (QSIC), 2011
11th International Conference on, pages 141-149, 2011. ISBN 1550-6002. doi:
10.1109/QSIC.2011.30.

Davide Bresolin, Khaled El-Fakih, Tiziano Villa, and Nina Yevtushenko. Deter-
ministic timed finite state machines: Equivalence checking and expressive power.
In Adriano Peron and Carla Piazza, editors, Proceedings Fifth International Sym-
posium on Games, Automata, Logics and Formal Verification, GandALF 2014,
Verona, Italy, September 10-12, 2014., volume 161 of EPTCS, pages 203-216, 2014.
doi: 10.4204/EPTCS.161.18. URL http://dx.doi.org/10.4204/EPTCS.161.18.

Alexandre Petrenko and Nina Yevtushenko. Conformance tests as checking
experiments for partial nondeterministic fsm. In Wolfgang Grieskamp and
Carsten Weise, editors, Formal Approaches to Software Testing, volume 3997
of Lecture Notes in Computer Science, pages 118-133. Springer Berlin Hei-
delberg, 2006. ISBN 978-3-540-34454-4. doi: 10.1007/117597449. URL
http://dx.doi.org/10.1007/11759744_9.

AlexD.B. Alberto and Adenilso Simao. Iterative minimization of partial finite state
machines. Central European Journal of Computer Science, 3(2):91-103, 2013. ISSN
1896-1533. doi: 10.2478/s13537-013-0106-0. URL http://dx.doi.org/10.2478/
s13537-013-0106-0.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation. Addison-Wesley Publishing Com-
pany, 2nd edition, 2001. ISBN 020102988X. 574901.

Tiziano Villa, Nina Yevtushenko, RobertK Brayton, Alan Mishchenko, Alexandre
Petrenko, and Alberto Sangiovanni-Vincentelli. The Unknown Component Problem.
Springer US, 2012. ISBN 978-0-387-34532-1. doi: 10.1007/978-0-387-68759-9_2.
URL http://dx.doi.org/10.1007/978-0-387-68759-9_2.

Bibliography 111

[72]

78]

[79]

[80]

Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikh’s
theorem: A simple and direct automaton construction. Inf. Process. Lett., 111(12):

614-619, 2011. ISSN 0020-0190. doi: 10.1016/j.ipl.2011.03.019.

Davide Bresolin, Khaled El-Fakih, Tiziano Villa, and Nina Yevtushenko. Deter-
ministic timed finite state machines: Equivalence checking and expressive power.
Presentation at Fifth International Symposium on Games, Automata, Logics and
Formal Verification (GandALF), in Verona, Italy, 10th - 12th September 2014,
2014.

IBM WebSphere Integration Developer. The loan application, version 6.0.2, 2006.

Boston Redevelopment Authority. Application for loan and grant, part ii; local

project approval data, 2010.

Olga Kondratyeva, Nina Yevtushenko, and Ana Cavalli. Parallel composition of
nondeterministic finite state machines with timeouts. Journal of Control and Com-
puter Science, Tomsk State University, Russia, 2(27):73-81, 2014. ISSN ISSN 2311-
2085 (Online), ISSN 1998-8605 (Print).

1.B. Bourdonov and A.S. Kossatchev. Interaction semantics with refusals,
divergence, and destruction. Programming and Computer Software, 36(5):
247-263, 2010. ISSN 0361-7688. doi: 10.1134/S0361768810050014. URL
http://dx.doi.org/10.1134/S0361768810050014.

R. Alur. Timed automata. Verification of Digital and Hybrid System, 170:233-264,
2000. ISSN 0258-1248. URL <GotoISI>://W0S:000087176700012.

Olga Kondratyeva, Nina Yevtushenko, and Ana Cavalli. Solving parallel equations
for finite state machines with timeouts. Proceedings of the Institute for System
Programming, 26(6):85-98, 2014. ISSN ISSN 2220-6426 (Online), ISSN 2079-8156
(Print). doi: 10.15514/ISPRAS-2014-26(6)-8.

Ricardo Anido, Ana R. Cavalli, Luiz Paula Lima, and Nina Yevtushenko. Test suite
minimization for testing in context. Software Testing, Verification and Reliability,

13:141-155, 2003. doi: 10.1002/stvr.275.

H.N. Nguyen, P. Poizat, and F. Zaidi. Automatic skeleton generation for data-
aware service choreographies. In Software Reliability Engineering (ISSRE), 2013

Bibliography 112

[82]

[85]

IEEE 2/th International Symposium on, pages 320-329, Nov 2013. doi: 10.1109/
ISSRE.2013.6698885.

Sébastien Salva and Tien-Dung Cao. A model-based testing approach com-
bining passive conformance testing and runtime verification: Application to
web service compositions deployed in clouds. In Roger Lee, editor, Soft-
ware Engineering Research, Management and Applications, volume 496 of Stud-
ies in Computational Intelligence, pages 99-116. Springer International Publish-
ing, 2014. ISBN 978-3-319-00947-6. doi: 10.1007/978-3-319-00948-3_7. URL
http://dx.doi.org/10.1007/978-3-319-00948-3_7.

Alexandre Tvardovskii. On the minimization of timed finite state machines. Pro-

ceedings of the Institute for System Programming, 26(6):77-84, 2014.

June kyung Rho, Gary D. Hachtel, Fabio Somenzi, and Reily M. Jacoby. Exact and
heuristic algorithms for the minimization of incompletely specified state machines.

IEEE Transactions on Computer-Aided Design, 1994.

A.S. Klimowicz and V.V. Solov’ev. Minimization of incompletely specified mealy
finite-state machines by merging two internal states. Journal of Computer and
Systems Sciences International, 52(3):400-409, 2013. ISSN 1064-2307. doi: 10.1134/
$106423071303009X. URL http://dx.doi.org/10.1134/5106423071303009X.

UnlverSIté ‘;i’ii".?"ormai:ion

PARIS-SACLAY e

=V,

 «

iences et technologies

de la communication (STIC)

Titre : Stratégie basée sur les machines a états finis temporisées pour optimiser la composition de
services web a 1'égard de la qualité et de la sécurité
Mots clés : machine temporisée a états finis, composition de services web, optimisation, qualité de

service, sécurité

Résumé : Les concepts d’architecture orientée
services (SOA) ainsi que tout une panoplie de
technologies «en tant que service» (ana) sont
utilisées quasiment partout de nos jours, et
I’organisation optimisée d’activités synchronisées
devient un défi important. Dans le but de proposer a
I’utilisateur final un service sécuritaire et fiable sans
compromettre la qualité, les questions concernant la
vérification et la validation des compositions des
services deviennent d’un grand intérét tant théorique
que pratique. Dans les autres travaux traitant du
sujet, de nombreux modéles et techniques sont
proposés, mais la plupart mettent 1’accent sur les
aspects fonctionnels ou non-fonctionnels pris
séparément, alors que 1’intégration de ces parametres
en un modele formel unifié reste un probléme qui
doit étre résolu — ce qui est devenu par conséquent
un des objectifs fondamentaux de cette these.

Dans notre travail, nous réfléchissons au probléme
de I’optimisation des compositions des services web.
Tout ceci est ¢ctudié dans Doptique de la
fonctionnalité des systémes, de leur qualité et de la
sécurité des compositions. Il a été prouvé que les
modeles a états finis sont utiles a des fins de tests et
de vérification, de méme que pour le contrdle qualité
a chaque étape du développement du service. C’est
pour cette raison que nous proposons d’utiliser le
modéle de machine temporisce a états finis (TFSM)

pour intégrer une description fonctionnelle du
service avec les paramétres de sécurité et de qualité
lies au temps.

L’extension du modele permettra alors d’interpréter
adéquatement le non-déterminisme significatif causé
par un manque d’observabilité ou/et de contrdle sur
les services tiers. Dans le but d’optimiser les
compositions des systémes, nous proposons une
méthode pour dériver la solution la plus globale
contenant tous les composants autorisés pour la mise
en ceuvre du service, basée sur la resolution de
I’équation parallele du TFSM. Ensuite, les
techniques pour extraire des solutions restreintes
avec les propriétés requises (paramétres de temps
minimisé/lr)naximisé, interblocages actifs ou passifs,
similarité avec le composant d’origine donné, etc.)
ont été proposées. Dans le cas ou les spécifications
d’un service composite consistent en un ensemble
d’exigences fonctionnelles, éventuellement
renforcées par des exigences de qualité, nous
proposons une technique de minimisation de
I’ensemble, dans le respect du composant a
optimiser. L’apﬁ)lication des résultats obtenus a la
découverte et a la mise en place de composants plus
efficaces, ainsi que 1’extension du modéle a des
modes de communication plus complexes font partie
des sujets possibles pour des études futures.

Title : Timed FSM strategy for optimizing web service compositions w.r.t. the quality and safety

1ssues

Keywords : FSM with timeouts, web service composition optimization, quality evaluation, safety

Abstract: Service-oriented architecture (SOA)
together with a family of Everything-as-a-Service
(XaaS) concepts nowadays are used almost
everywhere, and the proper organization of
collaborative activities becomes an important
challenge. With the goal of bringing to the end-
user safe and reliable service with the guaranteed
level of quality, issues of service compositions
verification and validation become of high
practical and theoretical interest. In the related
work, numerous models and techniques are
proposed, but mostly focused on functional and
non-functional issues in isolation, while
integration of these parameters within a unified
formal framework still remains a problem to be
solved — and therefore became one of the core
objectives of this thesis.

In our work, we address the problems of web
service composition verification and optimization
with respect to functionality, quality and safety
properties of the composition. Finite state models
are proven to be useful for testing and verification
purposes as well as for service quality evaluation
at each step of service development. Therefore,
we propose to use the model of Finite State

Machine with Timeouts (TFSM) for integrating
functional description with time-related quality and
safety parameters, and suggest the extension of the
model in order to adequately inherit significant
nondeterminism due to the lack of observability and
control over third-party component services. For the
purpose of component optimization in the
composition, we propose a method for deriving the
largest solution containing all allowed component
service implementations, based on solving TFSM
parallel equation. Further, techniques for extracting
restricted solutions with required properties
(minimized/maximized time parameters, deadlock-
and livelock-safety, similarity to the initially given
component, etc.) have been proposed. In cases when
the specification of a composite service is provided as
a set of functional requirements, possibly, augmented
with quality requirements, we propose a technique to
minimize this set with respect to the component under
optimization. Application of the obtained results for
more efficient candidate component services
discovery and binding, alongside with extending the
framework for more complex distributed modes of
comlinunications, are among the topics for the future
work.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de I'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

