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Abstract

Over the last two decades cosmology has been transformed from a data-starved
to a data-driven, high precision science. This transformation happened thanks
to improved observational techniques, allowing to collect progressively bigger and
more powerful data sets. Studies of the Cosmic Microwave Background (CMB)
anisotropies have played, and continue on doing so, a particularly important and
impactful role in this process. The huge data sets produced by recent CMB ex-
periments pose new challenges for the field due to their volumes and complexity.
Its successful resolution requires combining mathematical, statistical and computa-
tional methods all of which form a keystone of the modern CMB data analysis.

In this thesis, I describe data analysis of the first data set produced by one of
the most advanced, current CMB experiments, Polarbear and the major results
it produced. The Polarbear experiment is a leading CMB B-mode polarization
experiment aiming at detection and characterization of the so-called B-mode signa-
ture of the CMB polarization. This is one of the most exciting topics in the current
CMB research, which only just has started yielding new insights onto cosmology in
part thanks to the results discussed hereafter.

In this thesis I describe first the modern cosmological model, focusing on the
physics of the CMB, and in particular its polarization properties, and providing an
overview of the past experiments and results. Subsequently, I present the Polar-
bear instrument, data analysis of its first year data set and the scientific results
drawn from it, emphasizing my major contributions to the overall effort. In the
last chapter, and in the context of the next generation CMB B-mode experiments, I
present a more systematic study of the impact of the presence of the so-called E-to-
B leakage on the performance forecasts of CMB B-mode experiments, by compar-
ing several methods including the pure pseudospectrum method and the minimum
variance quadratic estimator. In particular, I detail how the minimum variance
quadratic estimator in the case of azimuthally symmetric patches can be used to
estimate efficiently parameters, and I present an efficient implementation based on
existing parallel algorithms for computing Spherical Harmonic Transforms.
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Résumé

L’évolution des techniques d’observation au cours des deux dernières décennies a
rendu possible l’obtention de jeux de données de plus en plus précis, et a permis
l’évolution de la cosmologie vers une science de haute précision. Les études menées
sur les anisotropies du Fond Diffus Cosmologique n’ont jamais cessé de jouer un
rôle prépondérant dans cette transformation, tant leurs impacts ont été importants.
Néanmoins, les jeux de données extrêmement volumineux et complexes produits par
les expériences de Fond Diffus en cours posent un nouveau défi pour le domaine, à
tel point que la réussite de l’analyse moderne des données du Fond Diffus repose
sur une forte interdisciplinarité combinant de la physique, des mathématiques, des
méthodes statistiques ainsi que des méthodes de calcul numérique.

Dans cette thèse, j’expose l’analyse du premier jeu de données produit par Po-
larbear, l’une des expériences actuelle de premier plan sur le Fond Diffus, ainsi que
les résultats majeurs obtenus. L’expérience Polarbear est spécifiquement dédiée
à la détection et à la caractérisation de la signature des modes B de la polarisation
du Fond Diffus Cosmologique. La recherche des modes B est l’un des sujets actuel
les plus passionnants pour le Fond Diffus, qui a commencé à ouvrir de nouvelles
perspectives sur la cosmologie, en partie grâce aux résultats présentés et discutés
dans ce travail.

Dans cette thèse, je décris en premier lieu le modèle cosmologique actuel, en
me concentrant sur la physique du Fond Diffus, et plus particulièrement ses pro-
priétés de polarisation; ainsi qu’une vue d’ensemble des contributions et des résul-
tats des expériences antérieures et en cours. Dans un deuxième temps, je présente
l’instrument Polarbear, l’analyse des données prises lors de la première année
d’observation, ainsi que les résultats scientifiques qui en ont été tirés, en soulig-
nant principalement ma contribution au projet dans son ensemble. Dans le dernier
chapitre, et dans le contexte des prochaines générations d’expérience sur les modes
B, je détaille une étude plus systématique concernant l’impact de la présence des
fuites des modes E dans les modes B sur les performances prévues par ces fu-
tures expériences, notamment en comparant plusieurs méthodes dont la méthode
des pseudospectres pures ainsi que l’estimateur quadratique à variance minimum.
En particulier, dans le cas d’observation du ciel présentant une symétrie azimutale,
je détaille comment l’estimateur quadratique à variance minimum peut être utilisé
pour estimer de manière efficace les paramètres cosmologiques, et je présente une
implémentation performante basée sur des algorithmes parallèles existants pour le
calcul des transformations en harmoniques sphériques.
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1.1 From first observations to modern cosmology

1.1.1 That’s all started with observations

On a clear night far from big cities, if you raise your eyes to the sky, you might be
enough lucky to see stars. It’s one of those things. For centuries all observations
were made in the visible light, which is the one accessible to our eyes. There was
not yet the necessary knowledge and technology to probe the full electromagnetic
spectrum. But in the middle of the 20th century, boosted by the second World War
and the development of radars, people started turning towards the sky detectors
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sensitive to different part of the electromagnetic spectrum such as infrared, radio,
X-rays, etc... The sky that they thought they knew everything showed its true
colors! So much to understand now. The story that I will tell you is mainly in the
radio band, but be sure that most frequency bands will appear as well!

1.1.2 Homogeneity, isotropy

Do we have a special position in our Universe? For long time, people wondered
whether this was the case or not. Due to the lack of formalism and observations,
this question was debated metaphysically rather than scientifically. And for long
time, a majority of scientists and philosophers had no doubt that our position had
to be special, otherwise why we would be here ? Nonetheless the whole scientific
community were in two minds about the matter and little by little the so-called
"Cosmological Principle"1 became viable. It states that the most important feature
of our universe is its large scale homogeneity and isotropy2, e.g. [Mukhanov 2005].
This feature ensures that observations made from our single vantage point are rep-
resentative of the universe as a whole and can therefore be legitimately used to test
cosmological models. Homogeneity states that the universe has the same properties
at all locations, and isotropy states that it has the same appearance in all directions.
At the beginning of the 20th, this principle was the result of intuitive guesses in con-
trast to laws, which refer to experimentally established facts. We needed to wait for
the end of the 20th century to be able to collect data. The main observational fact
in favor of the Cosmological Principle has been brought by the detection of the Cos-
mological Microwave Radiation Background in the early 90’s [Mather et al. 1990],
which revealed to us a uniform sky, with fluctuations of the order of 10−5, whatever
the observed direction!

1.1.3 The foundation of the Standard Model

The Cosmological Principle in hands, one can start elaborating a theory describing
the evolution of the universe. The different fundamental interactions that we know
are: the weak interaction, the strong interaction, the electromagnetic force and the
gravitational interaction. The weak and strong interactions do not play a direct
role in the evolution of the universe3. Only the electromagnetic and gravitational
interactions have an infinite range. Due to the global neutrality of the universe, the
electromagnetic force is negligible at long range (screening effect). We thus need
a theory of the gravitation to build a model capable of describing the evolution

1There are presently several versions of this principle such as the Weak Cosmological Principle,
the Strong Cosmological Principle, the Final Cosmological Principle, etc. All versions, formulated
in markedly different ways, in one way or another interrelate the properties of the universe, the
properties of elementary particles, and the very fact that mankind exists in this universe. There
exists several variations under the denomination Copernician Principle, Anthropic Principle, etc.

2We really talk about statistical homogeneity and isotropy.
3Rigorously, they do not play a role in the recent evolution of the Universe. But it is worth

mentioning that they certainly play a big role during the Primordial Big Bang Nucleosynthesis. In
addition they are of a great importance for other probes.
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and the structure of our universe. This theory is the General Relativity, initially
formulated by Albert Einstein in 1916, and it is the foundation of the Standard
Model in cosmology4.

General relativity links gravity to the underlying curvature of the space-time
manifold (a shape in three spatial and one time dimensions). This curvature in
turn, is described by a metric, gµν , which encodes the distances between any two
points on the manifold. The invariant (under transformations, such as Poincaré,
Lorentz) interval is defined by5

ds2 = gµνdx
µdxν . (1.1)

The Einstein’s field equations are given by

Gµν = 8πGTµν , (1.2)

where Gµν is called the Einstein tensor and encodes information about the geome-
try of the universe, and the right-hand side is the stress-energy tensor (symmetric
tensor describing the content of the Universe). The 00 component of the stress-
energy tensor corresponds to the energy density, the 0i components correspond to
momenta, and the ii components correspond to the pressure. The constant of pro-
portionality comes from the newtonian limit for weak gravitational fields (Poisson
equation, ∆φ = 4πGρ). From the Einstein’s field equations and Bianchi identities
and assuming that there is no torsion6, we can show that DµG

µ
ν = 0 implies

DµT
µ
ν = 0. (1.3)

The last equality is the generalization of the conservation laws for energy in a curved
space-time. The simplest solution (different from zero) which satisfies the last equal-
ity in Eq. 1.3 is the metric itself. In this case, this particular solution is generally
written as an additional term in Einstein’s field equations, defining the so-called
cosmological constant Λ such as:

Gµν + Λgµν = 8πGTµν . (1.4)

1.1.4 The expanding universe

We wish to expand this discussion to General Relativity to a cosmological context.
For this we need a support from the observations. In 1929, Hubble measured the red-
shift of nearby galaxies [Hubble 1929]. He showed that galaxies seem to be receding
from us, no matter the direction of observation. Combined with the Cosmological

4Despite the fact that we need the full artillery of General Relativity to fully describe modern
cosmology, we many aspects of cosmology using Newtonian mechanics and gravity. I will not enter
into details here.

5I will use the Einstein summation convention, where we summed over repeated indices.
6The full definition of terms and the demonstrations of statements are beyond the scope of this

thesis. For an advanced discussion about the torsion see e.g. (in French) [Cartan 1923, Cartan 1924,
Cartan 1925].



4 Chapter 1. Introduction to the Standard Model of Cosmology

principle, the galaxies have to escape from any point. Hubble pointed out also that
the bigger the redshift the faster the galaxy is escaping from us.

Expansion Continuing, let’s consider first on the meaning of expansion. On scales
corresponding to nearby galaxies, we can think of the expansion as a relative velocity
between any two galaxies, increasing with time and distance. On larger scales, such
that the time between the emission of light from the distant galaxy and its reception
is large, speaking of velocity relative to us loses its meaning7. Same is true when
speaking about the distance to that galaxy. There are different ways to define
distances in an expanding universe, and we choose the one which expands with
it. This coordinate system is called a comoving coordinate system. Objects that
we observe may have small motions, called peculiar velocities, with respect to this
coordinate system, but on average8 they are at rest with respect to this coordinate
system as the universe expands. A comoving observer is an (hypothetical) observer
expanding along with these comoving coordinates.

Figure 1.1: Relation between distance and radial velocity among extra-galactic neb-
ulae. The original figure is from [Hubble 1929]. The units on the diagram are not
really clear. On the one hand we have the open points and their best fit in dashed
line corresponding to original measurements, and on the other hand the filled points
and their best fit in solid line are the same measurements but corrected for the sun’s
motion.

Scale factor and Hubble’s law Hubble’s law is one of the pillars of the Hot Big
Bang scenario that describe later in Sec. 1.2. Let’s consider two points i and j at

7Think of very distant galaxy for which such a reasoning would give a relative velocity v ≥ c!
8Due to homogeneity and isotropy of the universe, see the Cosmological Principle.
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some time t1 in the universe, and then later at some time t2. If the universe is in
expansion, the distance between i and j at a given time rij(t) = ri(t) − rj(t) must
be scaled as a function of time (but not position). That is9:

rij(t1) = a(t1)rij(t0) (1.5)

rij(t2) = a(t2)rij(t0) (1.6)

where t0 is some arbitrary time, which is often taken to be the present day. The
quantity a(t), called the scale factor, describes the evolution of the universe, and
for an homogeneous and isotropic universe, it tells us almost everything we need to
know about the dynamics. In the 2-sphere analogy, a(t) has a precise geometrical
interpretation as the radius of the sphere. Here the value of the scale factor a(t) itself
has no geometrical meaning and its normalization can be chosen arbitrarily. Once
the normalization is fixed, the scale factor a(t) describes the coordinate distance
between observers as a function of time. We can easily combine both equations, and
noticing that at a general time t we have:

a−1(t)rij(t) = const. (1.7)

Taking the derivative with respect to time of the previous equation, and rearranging
terms, we end up with:

ȧ

a
=
ṙij
rij
, (1.8)

where time dependency has been dropped for more clarity. Interestingly enough,
the right-hand side of Eq. 1.8 does depend on i and j but not the left-hand side.
Therefore, the scaling between two points is just a function of time and can be
written more generally:

ȧ

a
=
ṙ

r
, (1.9)

for an arbitrary distance r. The left-hand side of Eq. 1.9 is often called the expansion
rate or Hubble parameter :

H(t) =
ȧ

a

∣∣∣
t

(1.10)

and more specifically today at time t = t0:

H0 = H(t0) =
ȧ

a

∣∣∣
t=t0

(1.11)

is the expansion rate today, one of the most important quantities in cosmology, and
still difficult to measure precisely [Planck Collaboration 2015d]. The most common
form of the Hubble’s law used today is under the form:

9Eq. 1.5 & 1.6 makes use of a(t) without units, but I could have chosen a(t) units of length,
and so to have a factor a(t)/a0 instead of a(t) only. a0 is a normalization that is often set to the
value of a today.
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v = H0d (1.12)

where v is the velocity of the object that we are observing relative to us, and d is
its coordinate distance. See the Fig. 1.1 for the first measurements from Hubble.

Robertson-Walker metric What would be the metrics which would satisfy the
geometry of the universe, meaning what would be the metrics satisfying at least the
symmetries on large scales imposed by the Cosmological Principle and expansion ?
There are several, but they can all be reduced to the Robertson-Walker metric. In
a spherical coordinate system, choosing the signature to be (− + ++), this metric
is given by

ds2 = −dt2 + a2(t)
[ dr2

1− κr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (1.13)

where a(t) is the scale factor, which encodes the expansion of the Universe. To
try to understand what sort of manifolds are behind this metric, let’s start in two
spatial dimensions, much easier to picture for our brain. What two-dimension shapes
satisfy the requirements of homogeneity and isotropy ? So does the sphere, so does
the infinite plan and not so obviously does the hyperbolic paraboloid (also known
as Lobachevski space). it turns out that in 3+1 dimensions, we have the same set of
homogeneous and isotropic manifolds but promoted to higher dimensionality: the
three-sphere, the flat space in 3 dimensions and the three-hyperboloid.

The term κ in the Eq. 1.13 is a real number with dimension [length]−2. The
sign of κ sets the possible manifolds described above, and so it sets the cur-
vature of our space. The choice k > 0 corresponds to the three-sphere, the
choice k = 0 corresponds to the flat space (Minkowski plus expansion), and the
choice k < 0 corresponds to the three-hyperboloid. Although, we should men-
tion that General Relativity itself places no restrictions upon the topology of the
Universe [De Sitter 1917], and many searches are done to assess the properties of
anisotropic geometries and non-trivial topologies, as in [Planck Collaboration 2014f,
Planck Collaboration 2015f] and references therein.

Friedmann-Lemaître equations The Robertson-Walker metric describes the
universe at a given time, but we need now to discuss how the universe evolves with
time. The equations of Friedmann-Lemaître do so, and they come from the Ein-
stein’s field equations by inserting the Robertson-Walker metric. All computations
done, it reads:

H2(t) =
( ȧ
a

)2
=

8πGρ

3
− κ

a2
+

Λ

3
, (1.14)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
(1.15)
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where a, ρ (energy density) and P (pressure) are all functions of time. From those
two equations (or from the conservation of the stress-energy tensor Eq. 1.3), one
has the continuity equation

ρ̇+ 3H(ρ+ P ) = 0 (1.16)

which can also be viewed from the first law of thermodynamics (dE = −pdV ).
However in Eq. 1.16, the quantities ρ and P are not independent quantities and are
linked via the equation of state

P = wρ, (1.17)

with w being a real constant. In order to gain in intuition, let’s rewrite the Fried-
mann equations in terms of densities( ȧ

a

)2
=

8πG

3

(
ρ− ρκ + ρΛ

)
. (1.18)

ρ = ρm + ρr is the sum of matter density (non-relativistic) and radiation (rela-
tivistic), ρκ = 3κ/(8πGa2) is the energy density associated with the curvature, and
ρΛ = Λ/(8πG) is the energy density related to the cosmological constant. Consider
today now a flat universe (κ = 0) with no cosmological constant (Λ = 0), in which
case we say that the density today is the critical density, ρc10. The first Friedmann
equation gives:

ρc =
3H2

0

8πG
. (1.19)

Then define the density parameter Ωi as:

Ωi =
ρi
ρc

(1.20)

such that ( ȧ
a

)2
= H2

(
Ωm + Ωr − Ωκ + ΩΛ

)
. (1.21)

The Ωi are functions of time through ρi, and therefore are functions of redshift11,
and one can define the density parameters today Ω0,i such as12:

Ωr = Ω0,r(1 + z)4 (1.22)

Ωm = Ω0,m(1 + z)3 (1.23)

Ωκ = Ω0,κ(1 + z)2 (1.24)

ΩΛ = Ω0,Λ(1 + z)0 = Ω0,Λ. (1.25)
10The critical density changes with time. However, it is common to define ρc to be a constant,

the critical density today.
11Remember that a(t) = 1/(1 + z).
12Notice that Eqs. 1.22 & 1.23 are exact only if there is no conversion between components due

to particle decays for instance.
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Let’s rewrite the first Friedmann equation one more time:

H(t) =
ȧ

a
= H0E(z) = H0

√
Ω0,m(1 + z)3 + Ω0,r(1 + z)4 + Ω0,κ(1 + z)2 + ΩΛ.

(1.26)
The function E(z), first popularized by J. Peebles in his books and papers is some-
times called the Hubble Function. In particular, at z = 0 (today), E(0) = 1 so
1 = Ω0,m + Ω0,r + Ω0,κ + ΩΛ. Because all Ωi, but Ωκ, are physical densities, we
define the total density parameter as:

Ωtot = Ω0,m + Ω0,r + ΩΛ = 1− Ω0,κ (1.27)

Figure 1.2: Left panel: energy density ρ as a function of the scale factor a. Right
panel: Scale factor a versus time t, in our universe. In the early times, the Universe
is in an inflation epoch. As time increase, the dominant component is first the
radiation (a ∝ t2/3), and then the matter (a ∝ t1/2). We are today in a cosmological
constant domination era (a ∝ eHt). Figure taken from [Errard 2012].

Evolution of the scale factor By combining the equation of state and the con-
tinuity equation to get ρi(a), and using the first Friedmann equation, we get the
time dependency of the scale factor:

• Radiation domination era: pr = (1/3)ρr
Eq.1.16−→ ρr ∝ a−4 Eq.1.26−→

a(t) ∝ t1/2

• Matter domination era: pm = 0× ρm Eq.1.16−→ ρm ∝ a−3 Eq.1.26−→ a(t) ∝
t2/3

• Cosmological constant domination era: pΛ = −ρΛ
Eq.1.16−→ ρΛ ∝ a0 Eq.1.26−→

a(t) ∝ eHt

The case where the curvature dominates is a bit different, since there exists a
physical solution to the first Friedmann equation only if in an open Universe (κ < 0),
which gives:
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( ȧ
a

)2
= − κ

a2

Eq.1.26−→ a(t) ∝ t. (1.28)

We can see that each density of component does not depend on the scale factor the
same way. If we go back in time sufficiently far, the early universe was dominated
by the radiation. However, the energy density of the radiation being proportional
to a−4, it drops quicker than the non-relativistic matter component which is cubic
in the inverse scale factor. So starting from a radiation dominated era, if we let the
time to go forward there is a moment when matter and radiation energy densities
are equal, and then a matter domination era. Finally, the energy density associated
with the cosmological constant is constant with respect to the scale factor. So given
that all other components have an energy density which decreases as a function
of the scale factor a, they will have an energy density lower than the one of the
cosmological constant at some point. This is the cosmological constant domination
era that we experience nowadays. As of now, we interpret this era as the domination
of a new form of energy, of unknown fundamental nature, called the dark energy.
Those behaviors are summarized in Fig. 1.2.

Recent observations revealed that the curvature is negligible
[de Bernardis et al. 2000, Balbi et al. 2000] (we live in a nearly perfectly flat
universe), and the universe seems to be currently in a cosmological constant
domination era [Riess et al. 1998, Perlmutter et al. 1999]. The latest measurements
from the satellite Planck unveiled a universe with roughly: Ω0,k = 0, Ω0,m ≈ 0.3,
Ω0,r ≈ 10−5 and ΩΛ = 1 − (Ω0,m + Ωr) ≈ 0.7 (Planck temperature, polarization
and lensing [Planck Collaboration 2015d]).

1.1.5 Dark energy

If we sum up matter and radiation components and consider that the curvature is
negligible (critical Universe), we quickly find a huge budgetary shortfall. Around
70% of the energy density of the Universe is missing. This missing energy seems
not to interact with ordinary matter, and is in an unclustered form. It has been
called the dark energy. While it remained of theoretical interest for long time, in
1998 two independent groups observing supernovae reported direct evidence for the
dark energy [Riess et al. 1998, Perlmutter et al. 1999]. To study models of dark
energy, we sometimes parametrize the relation between pressure and energy density
as P = wρ (equation of state), and try to constrain the value of w. Applied to
the cosmological constant we have w = −1. From supernovae measurements, values
of w greater than ∼ −0.5 are disfavored, and a cosmological constant is consistent
with the data. However, one should keep in mind that the cosmological constant
is by no means the only possible explanation, and on the theoretical grounds, it is
indeed not the preferred solution.
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1.2 Thermodynamics and the Hot Big Bang scenario

In the previous sections, we focused on the geometrical description of our universe.
We would like to have now a microscopical picture of the universe and in particular
the evolution of its different components and fundamental interactions. From what
we derived previously, on all epochs (era), the scale factor grows with time, and
so approaches zero as expansion is extrapolated back in time up to the theoretical
t = 0. This would formally give an infinite energy density, which gave rise to the
popular name Big Bang to refer to the singularity in our model of space-time.

1.2.1 Thermal history of the universe

The universe is considered as adiabatically expanding. In an FRLW expanding uni-
verse the energy density of photons decreases as a−4. For most of the Universe
history the photons are in thermal equilibrium, therefore the spectrum shape is a
Planckian distribution13 and thus is preserved all along the universe history. There-
fore, it is possible to define a temperature of the Universe, related to the thermal
distribution of the photons. The distribution is only governed by the dilution due
to the expansion, and as we go further back in time the universe gets hotter as

T (t) =
1

a(t)
T0, (1.29)

where T0 is the equivalent temperature now. This increase of temperature gave rise
to the name Hot Big Bang scenario.

The Big Bang nucleosynthesis If the universe is in expansion, there should
exists a moment in its past when it is sufficiently hot and dense such as there are
no neutral atoms or even bound nuclei. The vast amounts of radiation in such a
hot environment ensures that any atom produced would be immediately destroyed
by a high energy photon. As the universe cooled (expanded) well below the binding
energies of typical nuclei, light elements begin to form. Nowadays, our universe is
made of 90% of Hydrogen, a bit less than 10% of Helium, and the rest in heavy
elements (heavier than Helium). In 1946, Gamov published a theory in which he
claimed that almost all matter in the universe was created in the first 3 minutes
[Gamov 1946]. It is now known under the name Big Bang primordial nucleosyn-
thesis [Gamov 1946], and it is a remarkable combination of Cosmology and Nuclear
Physics. The Big Bang primordial nucleosynthesis gives us a way of constrain-
ing the baryon density in the universe. Combining the knowledge from the Stan-
dard Model in Particle Physics and the production rates as measured in colliders
for instance or issued from numerical model of nuclear reactions, we can predict
the relative abundances of each species [Kolb & Turner 1990], [Burles et al. 2001a],
[Burles et al. 2001b] as a function of the ratio baryon over photon η (supposed con-
stant over time). Since we know how those densities scale as the universe evolves

13Bose-Einstein distribution with zero chemical potential.



1.2. Thermodynamics and the Hot Big Bang scenario 11

(see Eq. 1.23), we can also turn the measurements of light element abundances
into estimates of the baryon density today. The figure 1.3 shows the constraint on
the baryon density from Big Bang Nucleosynthesis (from [Nollett & Burles 2000]).
The colored curves (green, red, blue, purple) are predictions from the primordial
nucleosynthesis and their width corresponds to the 95% confidence level from cross-
sections. The rectangles are different observations from [Bonifacio & Molaro 1997],
[Izotov & Thuan 1998], [Olive et al. 1997]. The light blue vertical band is the η
value estimated by [Burles & Tytler 1998].

Figure 1.3: Constraint on the baryon density from Big Bang Nucleosynthesis. See
text for more explanations. Figure adapted from [Nollett & Burles 2000].

The radiation/matter decoupling In the primordial plasma, the photons are
coupled to electrons via Compton scattering: e− + γ → e− + γ, with a rate Γ given
by:

Γ = σnv, (1.30)

where σ is the cross-section of the interaction, n is the number density of electrons
and v their relative velocity. Photons and electrons remain in thermodynamics
equilibrium only if their mean time Γ−1 between two interactions is less than the
Hubble time H−1. Given that the cross-section decreases with the temperature, the
mean time increases. That means that there exists a moment when photons and
electrons stop interacting. In other words, if the universe expands away more rapidly
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than the particles can interact, most particles do not experience the interaction, and
hence fall out of equilibrium. We call this departure from equilibrium freeze-out, and
this special moment is called the matter/radiation decoupling. Since this moment,
the photons propagate freely through the universe (their comoving abundance is
frozen). However, radiation/matter decoupling does not mean that matter and
radiation lose all thermal contact. We can show that the interaction of a small
number of photons with matter keeps the temperatures of matter and radiation
equal down to redshifts z ∼ 100. Only after that does the temperature of baryonic
matter begin to decrease faster than that of radiation [Mukhanov 2005]. We can
predict that the photons from the decoupling should have a equivalent temperature
brightness of the order of 3 K today (see Sec. 1.2.2).

Figure 1.4: Frequency spectrum of the Cosmic Microwave Background radiation
measured by the FIRAS instrument on the COBE satellite [Mather et al. 1990].

The whole thermal history in few steps At higher temperature, more interac-
tions take place because the average energy of particles increases. By extrapolation,
at the earliest times, all possible particles were relativistic and if interactions were
strong enough, they remained in thermal equilibrium. Doing the reverse pass, as
the universe cools the particles become non-relativistic and some of them fall out
of equilibrium, leaving around relics that we see today and making departures from
thermal equilibrium what makes life interesting. Non-equilibrium dynamics allows
massive particles to acquire cosmological abundances. In addition, deviations from
equilibrium are also crucial for understanding the origin of the Cosmic Microwave
Background and the formation of the light elements. In Table 1.1, we show some of
the most important steps in the history of the universe according to the approximate
temperature of the universe and the approximative moment it happened.
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1.2.2 The Cosmic Microwave Background

The first predictions of the Cosmic Microwave Background have been made in the
late 40’s [Gamow 1948, Alpher & Herman 1948]. It was the consequence of a model
of universe in expansion with an early phase hot and dense. As we have seen previ-
ously, the thermal distribution of the photons should have a blackbody (Planckian)
distribution. The photons in the Cosmic Microwave Background last scattered off
electrons and then traveled freely trough space. That’s why the CMB is the oldest
accessible light in the Universe, and one of the most powerful probe of the early Uni-
verse. But the physicists thought at first that the detection of such a weak signal
(attenuated by the expansion the Universe) would be impossible, and the prediction
remained of theoretical interest for couples of decades. However, by a lucky coinci-
dence, two engineers from Bell’s laboratories Penzias and Wilson, found in 1964 an
excess of noise while calibrating their antenna [Penzias & Wilson 1965]. This signal
was consistent with a value in temperature units of the order of 3.5 K on several sep-
arated positions on the sky14. The Cosmic Microwave Background was discovered
[Dicke et al. 1965]! However Penzias and Wilson made a measurement at a single
wavelength, and the Planck form of the radiation frequency distribution was still
to be verified. Other measurements consistent with the expected equivalent black-
body temperature of the CMB were even done earlier, by using absorption of light by
molecules in interstellar space [McKellar 1941], but due to a lack of clear conclusion
at that time they were not considered as strongly as the measurement of Penzias
and Wilson. In the 90’s, the FIRAS instrument embarked on the COBE satellite
([Mather et al. 1990], [Mather et al. 1994]) made the most precise measurement of
the frequency spectrum of the Cosmic Microwave Background radiation observed
today, as shown in the Fig. 1.4. This spectrum is consistent with a black body
spectrum with temperature at 2.725 K. We will see later (see Chap. 2) that in ad-
dition to this remarkable agreement with an isotropic radiation, the CMB has small
anisotropies which can be understood by going beyond the Standard Model.

1.2.3 Interaction rates and the Boltzmann equation in a expanding
universe

If we look around us, we find only matter. That means that there is no or very
very little anti-matter. The most recent estimation gives a present-day asymme-
try between matter and anti-matter of the order of one-in-a-billion or so. We
could ask the question why such an asymmetry.This question was investigated by
Andrei Sakharov, and he defines three necessary conditions for such asymmetry
[Sakharov 1967]. Let X and Ȳ be some particle and some antiparticle respectively:

• Baryon number violation. Particle physics must allow interactions which
change the number of baryons, including X + Ȳ → B, where B represents
some state of particles with net baryon number different from zero.

14The temperature nowadays of the CMB is very small because it has been redshifted by roughly
a factor 1,000 since its emission.
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Table 1.1: The history of the universe in few facts.

T (K) t (s)
1032 10−43 The Planck era: Classical GR breaks down

1029−27 10−(35−38) Thermal Equilibrium established. GUT transition ?
1015 10−11 Electroweak phase transition

1− 5× 1012 10−(5−6) Quark confinement ("chiral symmetry breaking")
1011 10−4 µ+µ− annihilation (and freeze out)
1010 1 ν decoupling

5× 109 3− 4 e+e− annihilation, leaves mainly γ,
(νν̄) separately in equilibrium

1011−9 180 Primordial nucleosynthesis → 4He, D, T, Li
105−3 1010−11 Matter domination (matter/radiation equality ∼ 65,000 K)
103−2 1011−13 H recombination (e+ p→ H + γ),

Universe becomes neutral and transparent
101 - Structure formation

2.725 1017 today

Note. — Temperature and time values are approximative.

• CP violation. If CP is not violated, then in quantum field theory for any
interaction, the related interaction with all particles replaced by antiparticles
and vice versa will have exactly the same rate.

• Departure from equilibrium. In thermal equilibrium, the rate of a reaction
going forward (X + Ȳ → B) will be the same as the rate of the reaction going
backward (B → X + Ȳ ), again canceling out any change in baryon number.

They are the Sakharov conditions.But even if they are all satisfied, in order to
calculate the abundance of some particle species in more generalities, we need to
consider its interactions in detail.

The Eq. 1.29 implicitly assumes that the universe is in thermal equilibrium 15 ,
but we saw that there have been several departures from thermal equilibrium. If the
mean time Γ−1 of the interaction becomes bigger than the Hubble time H−1, then

15The dominant interaction in the primordial plasma (before recombination) is the Compton
interaction between photons and electrons (protons are off due to the ratio (me/mp)

2 << 1). This
interaction does not allow the plasma to have a black body distribution, that is the distribution in
frequency of the photons is a Bose-Einstein distribution Sµ:

Sµ(ν;T, µ) =
2hc2ν3

ex+µ − 1
(1.31)

where x = hcν/(kT ). Double Compton interaction is needed to reach the thermal equilibrium
([Danese & De Zotti 1982], [Bartlett 2001]) because it allows the number of photons to change,
and set to zero the chemical potential.
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we should expect departure from thermal equilibrium, a freeze-out16. A particle
that freezes out when its kT >> mc2 is called a hot relic, and one that freezes out
when kT << mc2 is a cold relic. These deviations from equilibrium have led to
some relics such as light elements (H, He, ... - cold relics), a neutrino and photon
backgrounds (hot relics), etc. and quite possibly in production of dark matter in
the early universe.

For phenomena that are the result of nonequilibrium physics, the appropriate
formalism is here the Boltzmann equation. In its general form, the Boltzmann
equation tells us for species i that only the interactions can change the distribution
function form:

L
[
fi

]
= C

[
fi

]
(1.32)

where fi f is the phase space density (the time-dependent density of particles in
position and momentum for non-relativistic species) and L is the Liouville operator,
just the total time derivative of the distribution function for particle species i:

L = pα∂α − Γαβγp
βpγ

∂

∂pα
. (1.33)

The quantity C
[
fi

]
17 represents the effect of interactions, which unfortunately can

possibly depend on the distribution function of all other species j. Naturally, we
want to perform computation in a FLRW universe, homogeneous and isotropic, so
we must take into account the expansion of the universe. The easiest case is when
there are no interactions, and the comoving number density of particles is conserved
(a fact that was known from the continuity equation 1.16)

dn

dt
+ 3

ȧ

a
n = 0, (1.34)

where n is the number density. In this context, the Liouville operator is simply
L = d/dt + 3ȧ/a. We shall now write explicitly the collision operator C, which
depends on the interactions we are considering. In thermal equilibrium, we know
that the number density n should obey the equilibrium distributions (Bose-Einstein
or Fermi-Dirac, not discussed here). Consider interactions such as annihilation or
recombination (two-particle to two-particle interaction). In equilibrium, the number
of forward interactions is the same as inverse interactions. The forward rate is σ|v|n2,
where σ is the cross-section, and |v| the relative velocity of the particles. The inverse
rate must be such that the collision term is zero when n = neq, the number density
in equilibrium. That is, we can re-write Eq. 1.32 as:

dn

dt
+ 3

ȧ

a
n = − < σ|v| >

(
n2 − n2

eq

)
(1.35)

16The comparison between the rate of interactions Γ and the rate of expansion H is the key to
understanding the thermal history of the Universe.

17C is sometimes called the collision operator.
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where < σ|v| > is the thermally-averaged product of the cross section and the
relative velocity. The second factor on the left-hand side accounts for the dilution
effect due to the expansion of the universe and the right-hand side term accounts for
the interactions that change the number of particles. We can rewrite the equation
one more time to get:

ṅ

neq
= −Γ

( n2

n2
eq

− 1
)
− 3

ȧ

a

n

neq
(1.36)

where Γ =< σ|v| > neq is the interaction rate. The solution of this equation is
usually solved numerically, and we show such a solution in Fig. 1.5. The dashed
line shows the solution at the equilibrium, and the solid line corresponds to freeze-
out. Notice that in general higher Γ results in latter departure from equilibrium
(plateau appears for higher value of redshift).

Figure 1.5: Free electron fraction as a function of redshift. The dashed line shows
the solution at the equilibrium (called Saha approximation), and the solid line cor-
responds to freeze-out. Recombination takes place almost suddenly at z ∼ 1000

corresponding to T ∼ 1/4 eV. The fact that the decoupling happened in an interval
∆z and not instantaneously has important observational consequences as we will
see later. Figure adapted from [Mukhanov 2005].
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1.2.4 Limits of the model

The Hot Big Bang scenario that we outlined in the previous sections is a remarkably
simple model describing the expansion of the universe, the Big Bang primordial
nucleosynthesis and the Cosmic Microwave Background. However, there are some
observables that cannot be explained by the model, and require further extensions18.
I briefly mention four of them here:

The problem of (in)homogeneities or origins of structures. We built our
cosmological model based on the Cosmological Principle which states statistical
homogeneity and isotropy at large scales. However, we do observe structures today
(think of the galaxies, the clusters of galaxies and so on). Those structures could
come from the gravitational collapse of small inhomogeneities. To account for the
structures that we see in the Universe, we therefore need a model to explain the
seeds of inhomogeneities.

Flatness. Going back to the Friedmann equation:

Ωtot − 1 =
κ

a2H2
, (1.37)

and noticing that a(t) is only an increasing function of the time t, the term |Ωtot−1|
diverges while t tends towards zero. That means that to observe today a flat universe
we would need at Planck’s time (10−43 s):

Ωtot − 1 ∼ 10−60. (1.38)

A priori, nothing prevents such a value, but we are facing a very special initial
condition. We often find the term fine tuning in the literature to illustrate the fact
that Ωtot is set optimally in the early universe to give a nearly perfectly flat universe
today.

Horizon. We call (particle) horizon the maximum distance that a light ray can
travelled from a given time ti to a time t. Let dr = a(t)dt be the radial trajectory
of the light (ds2 = 0), that is the horizon dHt can be expressed as:

dH(t) = a(t)

∫ t

ti

dt′

a(t′)
= a(t)

t1−p − t1−pi

1− p , (1.39)

assuming a(t) ∝ tp. In the standard cosmology (p < 1), the integral does converge
in the limit ti → 0 and the horizon has a finite size, of the order of the Hubble
radius:

dH(t) =
p

1− pH
−1. (1.40)

18The problem of dark energy is treated elsewhere (see Secs. 1.1.5 & 3.6).
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From the measure of H0 today and considering its evolution in a matter dominated
era, one can compute the the size of the horizon at the moment of the matter/radi-
ation decoupling. However, Cosmic Microwave Background observations show that
the universe at that time was extremely homogeneous (of the order of 10−5) over
much bigger distances. So we need a mechanism to explain that the universe be
homogeneous over scales bigger than the horizon scale19.

The monopoles. We do not observe monopole relics which would be nonetheless
expected by the Theory of Grand Unification (GUT) due the transition phases in
the early universe.

In the early 80’s, while the Hot Big Bang scenario was in a strong bargain-
ing position thanks to more and more observational facts, it couldn’t answer those
questions. As of now, only the paradigm of inflation seems to give the most com-
prehensive answer to all of those problems.

1.3 Inflation as tentative answer to the limitation of the
HBB scenario

The inflation epoch is defined as a period of accelerating expansion of the universe
and was first introduced by Starobinski (1979) and Guth (1981). The inflation
scenario was proposed to solve the horizon and monopole problems as discussed in
the previous section over the Standard Model of Big Bang20.

Inflation, by supposing that the expansion of the universe undergoes an acceler-
ated phase before the radiation domination era solves all the problems mentioned
earlier21. According to it, the matter fluctuations would be the results of quantum
fluctuations of a given field which would have experienced a quantum-classical tran-
sition during the inflation era. The generic consequences of these models are the
following: gaussian initial fluctuations with a scale-invariant spectrum of pertur-
bations, and a nearly zero-curvature universe (flat). Those three consequences are
consistent with all the recent data.

I will neither give an exhaustive presentation of inflation theories22, nor describe
all the zoology of inflationary models. For a comprehensive review of inflation and
inflationary models, see for instance [Martin et al. 2014]. Instead, I will briefly
describe a simple toy model of inflation to provide the intuition on the Physics
of inflation and the consequences of such a model in the early Universe, loosely
following [Baumann 2009].

19Of course, one assumes a finite speed of light and finite age for the universe.
20The fact that inflation deals with fluctuations was not initially thought.
21Although there are models of early Universe which do not require accelerated phase, see for

example the varying speed of light model [Albrecht & Magueijo 1999].
22There are several, inflation being a generic name which postulated an accelerated phase in the

early universe
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1.3.1 Scalar fields dynamics

As a simple toy model for inflation we consider a single scalar field. In the context
of Inflation, this scalar field is called the inflaton23 φ(t,x). The value of the field
can depend on time t and the position in space x. Associated with each field value
is a potential energy density V (φ). If the field changes with time (i.e. is dynamical)
then it also carries kinetic energy density and if the stress-energy associated with the
scalar field dominates the universe, it sources the evolution of the FRW background.
Starting from the action of a scalar field, one can express its stress-energy tensor
Tµν :

Tµν = ∂µφ∂νφ− gµν
(1

2
gαβ∂αφ∂βφ− V (φ)

)
. (1.41)

Following symmetries defined in Sec. 1.1.2, we require that the background value of
the inflaton only depends on time t (homogeneity). Relating the 00 component of
the stress-energy tensor to the energy density of the field ρφ, and the ii component
(space-space component, T ij = −Pφδij) to the pressure Pφ of the field we have:

ρφ =
1

2
φ̇2 + V (φ) (1.42)

Pφ =
1

2
φ̇2 − V (φ), (1.43)

where φ̇ = ∂tφ. One can immediately see that if the potential energy dominates over
the kinetic energy, a configuration leading to inflation corresponds to Pφ < −1/3ρφ.
From the Friedmann equations defined earlier, one can write the evolution equation
for the field, or also named the Klein-Gordon equation of the field:

φ̈+ 3Hφ̇+ V ′ = 0. (1.44)

In the language of mechanics, it is interesting to notice that the potential acts like
a force (V ′ = dV/dφ), while the expansion of the Universe play the role of friction
(Hφ̇). Finally, the Friedmann equations in a flat Universe would lead to:

H2 =
8πG

3

(1

2
φ̇2 + V (φ)

)
(1.45)

Ḣ +H2 = −4πG

3

(
ρφ + 3Pφ

)
(1.46)

1.3.2 Physics of Inflation

In this section, we want to determine under which conditions we end up with an
accelerated expansion. In order to have an inflationary period24, the simplest con-
dition is to have:

23We will not discuss here the physical nature of this field, but simply use it as an order parameter
to parametrize the time evolution of the inflationary density.

24that is a decrease of the comoving Hubble radius.
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d

dt

( 1

aH

)
< 0, (1.47)

or equivalently ä > 0. In the literature, the inequality above is often re-written in
term of the parameter ε:

d

dt

( 1

aH

)
= −1

a
(1 +

Ḣ

H2
) = −1

a
(1− ε) < 0. (1.48)

The shrinking comoving Hubble sphere therefore also corresponds to:

ε = − Ḣ

H2
< 1. (1.49)

The first Friedmann equation and the continuity equation together imply that in-
flation requires negative pressure or a violation of the strong energy condition:

ε = − Ḣ

H2
=

3

2

(
1 +

Pφ
ρφ

)
< 1. (1.50)

How much "inflation" do we need to solve the horizon problem that is how long
should last inflation? The length of inflation can be in general expressed as a number
of the so-called e-fold. Let’s rewrite the inequality 1.49 in a slightly different fashion:

ε = − Ḣ

H2
= −d lnH

dN
< 1, (1.51)

where dN is defined as dN = d ln a = Hdt, and measure the number of e-folds N
of inflationary expansion. Typically, in order for inflation to solve the problem of
horizon, N ∼ 40 − 60 e-folds is required. In addition, Eq. 1.51 tells us that the
fractional change of the Hubble parameter per e-fold is small. That is ε should
remain small for time periods much longer than the Hubble times. In order to
quantify this statement, let’s define a second parameter, called η, such as:

η =
d ln ε

dN
=

ε̇

Hε
, (1.52)

and require that |η| < 1 together with ε < 1. ε can also be written in terms of the
kinetic energy of the field and the total energy density of the field:

ε = −4πG
φ̇2

H2
= −3

1

2
φ̇2

ρφ
. (1.53)

Therefore, the inequality 1.49 is satisfied only if the kinetic energy makes a small
contribution to the total energy density ρφ. This situation is called slow-roll infla-
tion. It is noteworthy that we didn’t use any approximations so far. We just noted
that in the regime {ε, η} << 1, inflation occurs and its duration to be sufficient to
solve the different problems of the Standard Model of Cosmology. Let’s now use
this approximation ({ε, η} << 1) to simplify the first Friedmann equation 1.45 and
the Klein-Gordon equation 1.44 respectively:
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H2 ≈ 8πG

3
V (1.54)

3Hφ̇ ≈ −V ′. (1.55)

Finally, a convenient way to assess whether a given potential V (φ) can lead to
slow-roll inflation is to compute the potential slow-roll parameters:

εv =
1

16πG

(V ′
V

)2
(1.56)

|ηv| =
1

8πG

|V ′′|
V

. (1.57)

Successful slow-roll inflation occurs when these parameters are small together,
{εv, |ηv|} << 1

Under some assumptions, the latest derived constraints for the first two slow-roll
potential parameters from the Planck satellite [Planck Collaboration 2015g] are25:

εv < 0.0068 (95% CL, Planck TT + LowP) (1.58)

ηv = −0.010+0.005
−0.009 (68% CL, Planck TT + LowP) (1.59)

Figure 1.6: Marginalized joint 68% and 95% CL regions for ns and r0.002 from
Planck in combination with other data sets, compared to the theoretical predictions
of selected inflationary models. R2 inflation seems favor, but the constraints are on
overall not very tight. Figure adapted from [Planck Collaboration 2015g].

25Assuming standard slow-roll single-field inflationary models, and using the Planck intensity
power spectrum (TT) and polarized spectra (LowP).
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1.3.3 Reheating

During inflation most of the energy density in the universe is in the form of the
inflaton potential energy V (φ). Inflation ends when the potential steepens (for most
classes of inflation) and the inflaton field picks up kinetic energy. But the question
is how the energy in the inflaton sector has been transferred to the particles of the
Standard Model, and how did such a transition take place from an universe which
had an equation of state with negative pressure to a universe with a more natural
equation of state? A process called reheating is largely evoked within the literature
and this is when the Hot Big Bang phase starts.

After inflation, the inflaton field φ undergoes a phase of oscillation. It begins to
oscillate at the bottom of the potential, and the expansion time scale soon becomes
much longer than the oscillation period that is H−1 >> m−1 (assuming a potential
V (φ) = 1/2m2φ2). From the continuity equation, one can notice that the oscillating
field therefore behaves like pressure-less matter, and the fall in the energy density is
reflected in a decrease of the oscillation amplitude. Then to avoid that the universe
ends up empty, the inflaton has to couple to the fields of the Standard Model. The
energy stored in the inflaton field is then be transferred into ordinary particles.
The particles produced by the decay of the inflaton interact, create other particles
through particle reactions, and the resulting particle soup eventually reaches thermal
equilibrium.

1.3.4 Generation of cosmological fluctuations

So far, we discussed the classical evolution of a scalar field called the inflaton field on
top of a homogeneous and isotropic universe. One can show that if we consider quan-
tum fluctuations of the inflaton, accelerated inflation provides an elegant mechanism
for converting initial vacuum quantum fluctuations into macroscopic cosmological
perturbations. In other words, quantum fluctuations during the accelerated infla-
tion are the source of the primordial power spectra of scalar and tensor fluctuations.
We should also keep in mind that even if we used a quantum description for the
scalar field, the cosmological perturbations that we are seeing are usually described
classically. Roughly speaking, the transition between the quantum and classical
(although stochastic) descriptions takes place when the perturbations exit the Hub-
ble radius (quantum-classical transition) [Langlois 2005]. Perturbations are pushed
outside the radius of causal contact (Hubble radius) by the rapid expansion, and
they only re-enter the horizon again at some point during the radiation or matter
dominated eras, as shown in Fig. 1.7. A complete treatment of the problem is
beyond the scope of this introduction, so I will highlight the main results of interest
for us for the scalar and tensor cases. This part follows closely the treatment done
by [Langlois 2005].

Perturbed inflaton in a perturbed metric - the scalar case The treatment
of fluctuations in the early universe, either classical or quantum, must thus involve
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Figure 1.7: Evolution of perturbations during and after the inflationary period. The
comoving scales k−1 (blue) remain constant, but the comoving Hubble radius during
inflation, (aH)−1, shrinks and the perturbations exit the horizon and freeze until
horizon re-entry at late times. After that the fluctuations re-enter the horizon, they
give rise to anisotropies in the CMB and perturbations in the large-scale structure.
Figure taken from [Baumann 2009].

both the scalar field perturbations and metric perturbations. The homogeneities
grow because of the gravity is attractive, and so inhomogeneities were much smaller
in the past. For most of their evolution, inhomogeneities can be treated as lin-
ear perturbations, and the linear treatment only starts to be no more valid in our
recent past. However, the linear assumption is quite accurate when describing per-
turbations at the moment of the recombination. Therefore that’s why the CMB is
currently the best observational probe of those primordial perturbations. So start-
ing from a metric in a de Sitter space, we need also to take into account the linear
perturbations. In its most general form, one can write:

ds2 = a2
{
− (1 + 2A)dτ2 + 2Bidx

idτ + (δij + hij)dx
idxj

}
, (1.60)

where A and Bi are a scalar field and a vector field respectively, and δij and hij
are the spatial metric and a symmetric tensor field respectively. Those quantities
are related to the so-called scalar, vector and tensor modes. Note that we assume a
spatially flat metric. The full action for the inflaton (scalar field) and for gravity is
given by:

S = Sφ + SEH =

∫
d4x
√−g

(
− 1

4
∂µφ∂

µφ− V (φ)
)

+
M2
p

2

∫
d4x
√−gR. (1.61)

In order to study the linear perturbations about the FLRW background (homoge-
neous and isotropic), we restrict ourself to the flat gauge corresponding to the choice
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hij = a2(t)δij . So the scalar fields on the corresponding (flat) hypersurfaces can be
decomposed into a spatially homogeneous background φ̄ and its perturbation δφ as:

φ = φ̄+ δφ. (1.62)

Expanding to quadratic order the action in Eq. 1.61, one can show that the scalar
part can be expressed as26:

S(2)
sca =

1

2

∫
dτd3xa2

[
δφ̇2 − 1

a2
∂iδφ∂

iδφ−M2δφ2
]
, (1.63)

withM being an effective mass, given by:

M2 = V ′′ − 1

a3

d

dt

(a3

H
φ̇2
)
. (1.64)

One can define the canonical perturbation v such as

v = aδφ (1.65)

leading to the action

S(2)
sca =

1

2

∫
dτd3x

[
(v′)2 + ∂iv∂

iv +
z′′

z
v2
]
, (1.66)

This leads to a power spectrum Pv(k) such that

Pv(k) = k3 |vk|2
2π2

(1.67)

However in the literature, instead of v, we often see the comoving curvature pertur-
bation R, related to v by

v = zR (1.68)

with corresponding power spectrum

PR(k) = k3 |vk|2
2π2z2

. (1.69)

We can even go further by assuming the slow roll approximation, leading to z′′/z ≈
a′′/a and

PR(k) ≈ ~
4π2

(H4

φ̇2

)
k=aH

=
~

2M2
p ε∗

(H∗
2π

)2
(1.70)

where quantities with stars are evaluated at Hubble crossing (k=aH). This power
spectrum is the so-called spectrum of scalar cosmological perturbations generated
from vacuum fluctuations during a slow roll inflation phase.

26The zeroth order of the development of the action contains only the homogeneous part, the
first order contains all terms linear in the perturbations, but only the second order contains the
terms quadratic in the linear perturbations.
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Perturbed inflaton in a perturbed metric - the tensor case As seen in the
Eq. 1.60, tensor fluctuations are transverse-traceless perturbations to the metric,
which can be viewed as gravitational waves. In the inflationary scenario primordial
gravitational waves are generated from vacuum fluctuations as the scalar perturba-
tions. Expanding to quadratic order the action in Eq. 1.61, one can show this time
that the tensor part can be expressed as:

S
(2)
tens =

M2
p

8

∫
dτd3xa2ηµν∂µĒ

i
j∂νĒ

j
i (1.71)

where ηµν is the Minkowski metric and Eij a symmetric tensor depending on hij and
derivatives of the lapse function. One can show that the gravitational waves can be
viewed as two massless scalar fields - one for each polarization - and so the power
spectrum of tensor cosmological perturbations generated from vacuum fluctuations
is given by

PT (k) = 2× 2~
M2
p

(H
2π

)2 slow roll
=

8~
M2
p

(H∗
2π

)2
. (1.72)

It is interesting to note that the power spectrum of tensor depends only on H∗, while
the power spectrum of scalar depends on both H∗ and the slow roll parameter ε∗.
Thus a measurement of the tensor amplitude would direction probe energy scales
during inflation. In addition, one can define the so-called tensor-to-scalar ratio r as

r =
PT
PR

(1.73)

given at a certain scale k. For example, the best constraints from B-modes is from
the joint analysis Planck x BICEP2. They quoted an upper limit on r at scale
k = 0.05 Mpc−1, r0.05 < 0.12 at 95% confidence level [Ade et al. 2015].

1.3.5 Implication from inflation

The theoretical aspects of inflation described above are interesting because they can
be tested experimentally using present and future cosmological data sets. To com-
pare different inflationary predictions, the primordial spectra of scalar and tensor
perturbations in Eq. 1.69 and 1.72 are often parametrized by an amplitude A and
a spectral index n such as27

PR(k) = As

( k
k∗

)ns−1
(1.74)

PT (k) = At

( k
k∗

)nt
, (1.75)

where k∗ is a scale of reference (arbitrarily chosen). The scalar spectral index ns
equal to one corresponds to a scale-invariant spectrum of perturbations. So a mea-
surement of ns different than one would mean a departure from the scale invariance.

27No running is considered here.
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Recently, Planck in combination with other experiments measured a value of ns
slightly different from one, with ns = 0.9673 ± 0.0045 (see also Fig. 1.6). Another
robust and model-independent prediction of inflationary models is the production
of a stochastic background of gravitational waves. In addition, the amplitude of the
primordial spectrum of tensor perturbations is only dependent of the Hubble cross-
ing scale H∗ (k=aH). Those two spectra (scalar and tensor) are connected through
the tensor-to-scalar ratio r, which is is a valuable source of information for the
physics of the primordial universe since it directly sets the energy scale for inflation

V 1/4 ≈
( r

0.01

)1/4
1016 GeV (1.76)

where we supposed that the spectrum of scalar perturbations is fixed and the one
for tensor is proportional to the potential V (φ). This prediction means that any
measurement of a primordial gravitational waves signature would give information
about energy scale of inflation and distinguish between models of inflation. This
also means that a measured value of r ≥ 0.01 corresponds to test a physical regime
in the playground of Grand Unified Theories. In addition, the tensor-to-scalar ratio
is directly related to the number of e-folds, Ninf , and the excursion of the scalar
field, ∆φ, from the instant when cosmological fluctuations observed in the CMB are
created during inflation to the end of inflation [Lyth 1997]:

Ninf =

√
8

r
× ∆φ

Mp
, (1.77)

with Mp = 1/
√

8πG the reduced Planck mass. Single field inflationary models can
be roughly classified between large fields models and small fields models, whether the
excursion of the scalar field is transplanckian or subplanckian, respectively. Though
the value ∆φ/Mp = 1 should not be considered as a sharp and univocally defined
frontier between small fields and large fields models, a precise measure of r then
allows for discriminating between this two classes of models. For Ninf ∼ 30, a value
of r greater than ∼ 0.01 would correspond to a large fields model of inflation (see
however Ref. [Chatterjee & Mazumdar 2015] and references therein for examples of
small fields models evading the Lyth bound). As we will see in the next chapter, the
B-modes power spectrum is the main source of information on r, as its amplitude
is directly proportional to r, therefore the most dramatic confirmation of inflation
would come from a detection of primordial B-mode polarization.



Chapter 2

CMB anisotropies

Contents
2.1 From primordial fluctuations to anisotropies in the CMB . 27

2.2 CMB anisotropies: temperature . . . . . . . . . . . . . . . . 29

2.2.1 The angular power-spectrum . . . . . . . . . . . . . . . . . . 29

2.2.2 Primordial anisotropies . . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Secondary anisotropies . . . . . . . . . . . . . . . . . . . . . . 35

2.3 CMB anisotropies: polarization . . . . . . . . . . . . . . . . . 37

2.3.1 Electromagnetic wave and Stokes formalism . . . . . . . . . . 38

2.3.2 Sources of polarized radiation . . . . . . . . . . . . . . . . . . 42

2.3.3 E and B fields . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.4 Polarized angular power spectra . . . . . . . . . . . . . . . . 46

2.4 Cosmological parameters . . . . . . . . . . . . . . . . . . . . . 52

2.5 Overview of the field as of 2013 . . . . . . . . . . . . . . . . . 54

2.6 Other cosmological probes . . . . . . . . . . . . . . . . . . . . 57

2.1 From primordial fluctuations to anisotropies in the
CMB

The inflationary phase left density fluctuations as we have seen previously, and the
amplitude of those fluctuations remains constant as long as they are larger than the
size of the horizon. Depending on their comoving size (k−1), the modes re-enter
the horizon at a different time, see Fig. 1.7. For large-scale perturbations (with
wavelength greater than the horizon size), the perturbations is frozen into its initial
conditions and it does not evolve much. For smaller perturbations, the re-entry is
done earlier and the evolution of the modes becomes more complex. As the Universe
expands and the temperature decreases, the matter starts little by little to dominate
over the radiation, and the overdense region starts to collapse under the action of the
gravity (the perturbations grow). The density in those overdense regions increases,
and so does the radiation pressure. However, the baryons are still strongly coupled
to radiation at that time, and so the amplitude of the overdense regions decreases,
leading to a decrease of the temperature and the radiation pressure becomes so large
that it can withstand the tendency towards collapse. When the radiation pressure
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is too low, the gravity (matter) wins again, and there is a new collapse. This scheme
repeats again and resulting in what we call the acoustic oscillation, which is a phase
of oscillation of densities1. Physically these density oscillations represent the heating
and cooling of a fluid (photon-baryon fluid) that is compressed and rarefied by a
standing sound or acoustic wave.

Given that the re-entry of the horizon depends only on the comoving size of the
fluctuations, the smallest fluctuations start to oscillate first, and all the fluctuations
with the same comoving size start to oscillate at the same time. This mechanism of
oscillation stops the moment the coupling photon-baryon becomes negligible.This
moment is called the recombination (or decoupling). From that moment, the baryon
can freely collapse in the potential wells of a non-baryonic matter, called dark matter,
and which doesn’t oscillate because it has no coupling with the radiation (dark
matter needs to be non-baryonic so that the primordial potential in which baryons
fall into can already be in place). As a result of those collapses the structures
that we observe today form later: large-scale structures, cluster of galaxies and
galaxies. The only overdensities that can grow with time has size greater than the
Jeans length [Peebles & Dicke 1968]. On the other hand, the photons can escape
from the potential wells, and freely travel in the Universe. We observe today those
Cosmic Microwave Background photons via a quasi isotropic radiation with small
fluctuations related to the density fluctuations of the baryons at the moment of
recombination.

So if our comprehension of the structure formation via gravitational instability
and collapse is correct, density fluctuations should also exist at the moment of
the recombination. We should be able to detect those density fluctuations, that
is the temperature variations of the Cosmic Microwave Background radiation. We
know today that those fluctuations ∆T/T0 are of the order of 10−5, that’s why it
took 20 years to build an instrument sensitive enough to detect them2. And the
first evidence of anisotropies in the Cosmic Microwave Background was brought by
the data taken by the instrument DMR embarked on the satellite COBE (COsmic
Background Explorer) [Smoot et al. 1992].

In addition the standing sound waves3 that propagated in the hot plasma
of tightly coupled photons and baryons in the early Universe should leave a
faint imprint in the clustering of galaxies and matter today, see for instance
[Peebles & Yu 1970, Bond & Efstathiou 1984]. The signature is a small excess in
number of pairs of galaxies separated by a certain scale, corresponding to roughly 150
Mpc in radius at recombination. These features are often referred to as the baryon
acoustic oscillations (BAO), and the first measurement has been done via the large-
scale correlation function of SDSS luminous red galaxies [Eisenstein et al. 2005].

1Those oscillations naturally gives rise to peaks that we see in the power spectrum of the
anisotropies, described later.

2Before the first measurements, models predicted fluctuations of the order of 10−5 and even
smaller in a large number of scenarios.

3The same sound waves that revealed as the acoustic oscillations in the anisotropies of the
Cosmic Microwave Background.
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2.2 CMB anisotropies: temperature

2.2.1 The angular power-spectrum

Models of structure formation which describe the origin of the anisotropies predict
only their statistical properties. Accordingly, the first statistical quantity on which
we focus on is the two-point correlation functions4. Notice that our universe is
one realization of those initial stochastic processes. Since the CMB spectrum is an
extremely good blackbody [Mather et al. 1994] with a nearly constant temperature
across the sky T, we generally describe this observable in terms of a temperature
fluctuation ∆T/T . The temperature field in the universe is given by:

T (x, p̂, t) = T (t)
[
1 +

∆T

T
(x, p̂, t)

]
, (2.1)

where x is our position in the universe, p̂ is the direction of the incoming photons
(three-dimensional vector), and t is the conformal time (sometimes noted η). We
do not need to define this field at every point in space and time, since we can
observe it only here and now. From this information, observers typically make
maps of the sky, displaying a pattern of hot and cold spots. Usually, we work with
spherical coordinates (θ, φ). But how do the anisotropies of the Cosmic Microwave
Background look like projected on our sky? We can answer this question by going
back to the properties of the initial fluctuations: most of the inflationary models
predict gaussian temperature anisotropies, with preferred angular sizes set by the
physics at the moment of recombination. In Fig. 2.1, three all-sky maps delivered by
the three satellites COBE [Bennett et al. 1996], WMAP [Bennett et al. 2013] and
Planck [Planck Collaboration 2014a] are shown. Those are supposedly cleaned maps
of the anisotropies of the Cosmic Microwave Background, at different sensitivities,
pixelization sizes and beams. But they all give a picture of our universe back in time
at the moment of recombination. A more complete description of the mapmaking
process is done later in this manuscript (see Sec. 8).

Let’s now project the fluctuations of our scalar field T on the basis of the spherical
harmonic5, well suited for functions defined on the sphere:

∆T

T
(x, t, θ, φ) =

∞∑
`=1

∑̀
m=−`

a`m(x, t)Y`,m(θ, φ). (2.2)

The subscripts ` and m are conjugate to the real space unit vector (θ, φ). Notice
that there is no loss of information at this point, all the information contained in the
temperature field T is also contained in the space-time dependent amplitudes a`m
(but the monopole). Instrumental setup will further put some constraints on the

4The mean - or monopole - is left on aside.
5We are all familiar with one-dimensional Fourier transforms, so it is useful to think of the

expansion in terms of spherical harmonics as a kind of generalized Fourier transform. A detailed
work on the harmonic analysis and spectral estimation on the sphere with application to CMB
can be found for instance in [Guilloux 2008]. More generally there exists now an ample literature
about spherical harmonic transforms applied for CMB purposes.
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Figure 2.1: Maps of the anisotropies of the Cosmic Microwave Background. Maps
taken from the results of the satellites: COBE (left), WMAP (middle) and Planck
(right). The color scale, the pixelization size, the sensitivity, the beam and the
treatment to get a cleaned map are not the same for all three pictures but we
can see the resemblance between them and the progress achieved over the last two
decades.

maximum multipole ` that we can probe. Ultimately, we would also be interested
in the inverse transform, that is find the relation between the coefficients a`m and
the temperature field. To do so, one needs to invoke the orthogonality properties of
spherical harmonics: ∫

dΩY`m(θ, φ)Y ∗`′m′(θ, φ) = δ``′δmm′ , (2.3)

where Ω is the solid angle spanned by (θ, φ). Using this inverse transform, one has:

a`m(x, t) =

∫
dΩY ∗`m(θ, φ)

∆T

T
(x, t, θ, φ). (2.4)

This equation is sometimes written with the Fourier transform of ∆T/T (x, t, θ, φ),
since this is the object that we usually get from earlier computations. In
practice with real data, the integral is replaced by finite sums by means of
(exact or approximate) quadrature formulae, which are implemented in stan-
dard packages for CMB data analysis such as HEALPix [Gorski et al. 2005],
GLESP [Doroshkevich et al. 2005], ECP [Crittenden & Turok 1998], or S2HAT
[Szydlarski et al. 2014]. From what we previously discussed about the randomness of
the density perturbations, we cannot make predictions about any particular a`m co-
efficient. Different theories cannot predict where precisely perturbations arise. But
we know about the distribution from which they are drawn, a distribution which
has its origin to the quantum fluctuations first laid down during inflation. That is
the mean value of all the a`m is zero, with a non-zero variance. The variance of the
a`m is called the power-spectrum, noted C`:
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< a`m >= 0 and < a`ma
∗
`′m′ >= δ``′δmm′C` (2.5)

Note that, for a given multipole `, each corresponding harmonic coefficient a`m has
the same variance, because they are all drawn from the same distribution. However,
Eq. 2.5 is not the one we usually use in the analysis. Indeed, this equation implies
that we are able to average the a`m over all sets of realization of those perturbations,
or strictly speaking on an infinite set of Universe. So instead we build an estimator
of C`, denoted Ĉ` by replacing the mean on an infinite set of Universe by the mean
on 2` + 1 m modes for each `. The consequence of this replacement is represented
through the Cosmic Variance. Loosely speaking it states that parameters, including
the value of the estimator itself, are inevitably affected by an intrinsic uncertainty
which cannot be canceled (the variability due to the peculiar realization of the
random field that we are able to observe). This effect is more pronounced at low
` and is smaller for higher multipoles. When ` is large, we are effectively sampling
the distribution, but not for lower ` (2`+ 1 m modes are available for each `). This
estimator is given by:

Ĉ` =< |a`m|2 >=
1

2`+ 1

∑̀
m=−`

|a`m|2, (2.6)

and its variance (mode-by-mode) is given by:

∆Ĉ` =
2

2`+ 1
Ĉ2
` . (2.7)

2.2.2 Primordial anisotropies

The primordial anisotropies of the Cosmic Microwave Background are the
anisotropies generated at or before the last scattering surface. By understanding
the evolution of the photon perturbations, we can make predictions about the ex-
pected anisotropy spectrum today. However, there are more subtleties involved
when passing from acoustic oscillations to anisotropies. The previous discussion
in Sec. 2.1 helps to get a qualitative understanding of the acoustic peaks in the
power spectra of the temperature, but we must consider more carefully the sources
of anisotropies and their projection into multipole moments [Hu & Dodelson 2002].
The observed anisotropy today Θ = ∆T/T is

Θ(n̂ = (θ, φ), η0) =
∑
`m

Y`m(n̂)
[
(−i)`

∫
d3k

(2π)3
a`(k)Y ∗`m(k̂)

]
(2.8)

where the projected source6 a`(k) = [Θ + Ψ](k, η∗)j`(kD∗), with j` the spherical
Bessel function and D∗ = η0 − η∗. Notice that the one-to-one relation between k

6Note that since it is the effective temperature Θ + Ψ that oscillates, acoustic oscillations occur
even if the temperature fluctuation Θ is zero. The quantity Θ+Ψ can be thought of as an effective
temperature which is the observed temperature fluctuation.



32 Chapter 2. CMB anisotropies

Figure 2.2: Temperature angular power spectrum CTT` : power on the sky as a func-
tion of the multipole `. The three effects discussed in the previous section, that is
Sachs-Wolfe effect, acoustic peaks and the damping are labeled on the figure. No-
tice that CTT` `(` + 1)/(2π) is plotted on the y-axis rather than CTT` . The insert
on the right is a zoom over the region of damping. If there were only primordial
anisotropies (solid line), the power-spectrum would fall abruptly. However, sec-
ondary anisotropies (dashed line) are dominant at the high multipoles end, which
makes even more difficult the characterization of the primordial anisotropies in this
region of the spectrum.
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and ` is related to the presence of the spherical Bessel function, although it is only
approximately true (Bessel functions are peaked at kD∗ ≈ `). Eq. 2.4 implies that
a`m today is given by the integral in square brackets today in Eq. 2.8 (orthogonality
properties of spherical harmonics).

In the previous discussion, we have not mentioned the fact that the acoustic
motion of the photon-baryon fluid also produces a Doppler shift in the radiation
that appears to the observer as a temperature anisotropy as well. Doppler peaks
are out of phase with the acoustic ones because the velocity is out of phase of 90◦ with
respect to the variations of potential. However, the Doppler effect has a directional
dependence as well since it is only the line-of-sight velocity that produces the effect.
Formally, it is a dipole source of temperature anisotropies and hence has an ` = 1

structure (dipole). The coupling of the dipole and plane wave angular momenta
implies that in the projection of the Doppler effect involves a combination of j`±1

that may be rewritten as the derivative of j`(x) over x. The structure of j′` lacks a
strong peak at x = ` which corresponds to the fact that the velocity vb is irrotational
and hence has no component in the direction orthogonal to the wavevector (unlike
the acoustic peaks which correspond to contributions in the direction orthogonal to
the wavevector where the correspondence between ` and k is almost one-to-one).
Correspondingly, the Doppler effect cannot produce strong peak structures, and the
observed peaks must be acoustic peaks in the effective temperature not "Doppler
peaks" [Stompor 1994]. Put differently, the baryons while increasing the effective
mass of the oscillating system, decrease the velocity such that this Doppler effect
becomes subdominant.

We also saw that radiation leads to decay of the gravitational potentials. Resid-
ual radiation after decoupling therefore implies that the effective temperature is not
precisely [Θ + Ψ](k, η∗). The photons actually have slightly shallower potentials to
climb out of and lose the perturbative analogue of the cosmological redshift, so the
[Θ + Ψ](k, η∗) overestimates the difference between the true photon temperature
and the observed temperature.

From all those effects, the source term a` in Eq. 2.8 gets generalized to
[Hu & Dodelson 2002]

a`(k) ≈ [Θ + Ψ](η∗)j`(kD∗) + vb(k, η∗)j
′
`(kD∗) +

∫ η0

η∗
dη(Ψ̇− Φ̇)j`(kD). (2.9)

This equation shows that the fluctuations of the CMB temperature, propagated
until the present epoch, can be affected by the evolution of the gravitational poten-
tial Ψ in time (referred to as Sachs-Wolfe effect [Sachs & Wolfe 1967]), and Doppler
effects due to the baryon peculiar velocity vb between the last scattering surface
and the observers.Note that residual radiation driving is particularly important be-
cause it adds in phase with the monopole: the potentials vary in time only near
recombination, so the Bessel function can be set to its value at recombination and
removed from the integral in Eq. 2.9. This complication has the effect of decreasing
the multipole value of the first peak as the matter-radiation ratio at recombination
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decreases [Hu & Sugiyama 1995]. Finally, we mention that time varying potentials
can also play a role at very late times due to non-linearities or the importance of
a cosmological constant for example. Those contributions, to be discussed more
in the next section, are sometimes referred to as late Integrated Sachs-Wolfe ef-
fects, and do not add coherently with the effective temperature [Θ + Ψ](k, η∗). See
[Stompor 1994] for the first estimate of the contribution of each terms to the total
spectrum. Nowadays, popular codes like cmbfast [Seljak & Zaldarriaga 1996] and
CAMB [Lewis et al. 2000] exploit these properties to calculate the anisotropies in
linear perturbation efficiently (in addition they adopt a line of sight approach).

In addition, the photon-baryon fluid has slight imperfections mainly due to two
physical processes corresponding to bulk viscosity and heat conduction in the fluid.
These imperfections damp acoustic oscillations. The source of damping comes from
the free streams of those photons in this transition phase. The free stream damps all
perturbations with characteristic length smaller than the diffusion length of photons
at that moment. This effect is called the Silk Damping [Silk 1968]. In addition, the
decoupling is not instantaneous as seen in Fig. 1.5, but there is a given width
in redshift. All the modes with a (temporal) period lower than this window of
decoupling have contributions from different moments of the decoupling phase. The
sum of those contributions are incoherent and so the total contribution of those
modes is damped. Note that even if recombination had occurred instantaneously,
the anisotropies on smallest angular scales would have been damped. This is because
the Universe before recombination would not have been infinitely optically thick and
photons would still stream between scatterings, hence damping fluctuations on the
smallest scales given by the mean free path (the width of the last scattering surface),
given thus rise to a different pattern of the peaks.

Once we multipoles of the distribution are known, we obtain the power spectrum
of the acoustic oscillations as a projection

C` =
2

π

∫
dkk2a2

` (k, η0). (2.10)

We shall also emphasize the link between the size of perturbations at recombination
to the scale of anisotropies we observe today. Photons from over and under densities
separated by a typical distance k−1 travel to us coming from an angular distance
θ ≈ k−1/(η0 − η∗), where η is the conformal time and η0 − η∗ is the comoving
distance between us and the last scattering surface (assuming that the Universe
is flat). Using a decomposition of the temperature field into multipole moments
` ∼ 1/θ, we have ` ≈ kη0, using η0 >> η∗. Modes which have their maxima or
minima of oscillation at the moment of recombination correspond respectively to
odd and even peaks according to the relation kn = nπ/s∗, where s∗ is the distance
sound has travelled inside the horizon at recombination. In the harmonic domain,
this relation implies a series of peaks located at `n = nπη0/s∗.
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2.2.3 Secondary anisotropies

Once the recombination takes place, the mean free path of the photons becomes so
big that we can consider the photons as essentially free. But this is only partially
true. Even if subdominant with respect to primordial anisotropies, there are other
physical process involving photon7-matter interactions between the last scattering
surface and us. We call them the secondary anisotropies, and by convention, they do
not include foregrounds or weak gravitational lensing which are treated separately
later (see Sec. 3 and 4). Several factors came into play but the origins of the
secondary anisotropies are either gravitational or linked to a period of reionization8.

Integrated Sachs-Wolfe effect (gravitational). The integrated Sachs-Wolfe
effect (ISW) is another aspect of the Sachs-Wolfe effect. It takes into account the
variation of the potential between the moment when the photon enters and leaves
this potential. Photons gain energy if the depth of the potential is shallower and
they lose energy otherwise. We can distinguished between two integrated Sachs-
Wolfe effect: the late and the early. On the one hand, the late ISW effect is due to
the growth rate of the fluctuations just after the decoupling, and does not contribute
for short potential fluctuations, because the number of over- and under-densities
should be equal and thus their effects compensate. However, the bigger the size
of the potential, the more significative this effect is, and it is even dominant at
the largest scales. We can think of the late ISW in the light of a universe in a
cosmological constant domination era, which freezes the evolution of some modes of
the gravitational potential. On the other hand, the early ISW finds its origin in the
fact that the radiation density tends to damp the fluctuations of the potential which
are entering the horizon. So all the potential modes entering the horizon between
the decoupling and the matter domination era can give rise to an important early
ISW. This effect starting at the moment of decoupling, it could be categorized
into the primordial anisotropies. The ISW effect is especially important in that it is
sensitive to the dark energy: its amount, equation of state and clustering properties,
see e.g. [Stompor & Efstathiou 1999]. Unfortunately, it is severely limited by cosmic
variance near w = −1.

Rees-Sciama effect (gravitational). The Rees-Sciama effect
[Rees & Sciama 1968] arises if the modes of the potential start to have a
non-linear evolution (and so a fast evolution). In a bottom-up model (from small
scales to large scales), small fluctuations become non-linear first, so this effect
should be mainly seen at small scales. However, this is a small effect on overall,
leading to variation of the order of ∆T/T ∼ 10−7 at degree scales [Hu et al. 1997],
and ∆T/T ∼ 10−(5−6) at arcminute scales [Seljak & Zaldarriaga 1997].

7from CMB
8Interactions through Compton effect, with the electrons in the ionized medium.
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Period of reionization Recombination led to a neutral universe.However, the
Gunn-Peterson test [Gunn & Peterson 1965] showed that the universe has been
reionized somewhere between 5 ≤ z ≤ 209. The exact cause of this reionization
period is not known, but it might be related to the first population of free stars10.
During this phase, the free electrons interact once again with photons through the
Compton diffusion (first order effect, involving the monopole). The effect on the
Cosmic Microwave Background photons is seen both locally around the galaxy clus-
ters (decrease of power) but also more globally at large scales. Due to diffusion of
these photons, all primordial anisotropies smaller than the size of the horizon at
the moment of the reionization is damped. Also, inhomogeneities at the moment
of the reionization could imprint signature which would be difficult to disentangle
from the primordial anisotropies. Hopefully, for a reionization around z ∼ 6 (from
recent data), the size of the horizon θr at the moment of reionization is somehow
similar to the damping length at recombination, θD.

Ostriker-Vishniac effect (reionization). The Ostriker-Vishniac effect is a non-
linear effect which is due to correlations between density perturbations and velocity
perturbations (of the electrons which diffuse the photons) along the line of sight.
The amplitude of the effect depends on the precise history of the reionization, but it
is commonly accepted that this effect starts to contribute for multipoles ` > 2000.

Sunyaev-Zel’dovich effect The Sunyaev-Zel’dovich effect
([Zeldovich & Sunyaev 1969], [Sunyaev & Zeldovich 1970]) is an inverse Compton
effect which involves Cosmic Microwave Background photons and free electrons
from the inter-cluster hot gas. This thermal effect modifies locally the angular
spectrum of the Cosmic Microwave Background photons, hence is more visible at
small angular scales. In addition, if the cluster has a motion, a kinetic effect created
by Doppler effect has to be taken into account. In addition, both thermal and
kinetic effects have a specific effect of the frequency spectrum, and their amplitudes
inform us on the thermal history of the cosmic gas. Fig. 2.3 shows the predictions of
these effects as well as observational results. On top, the diffusion on free electrons
of the Local cluster produced a large scale effect. The produced anisotropies can
reach ∆T/T ∼ 10−4 for scales between the degree and the arcminute. It is by far
the most dominant secondary effect on the Cosmic Microwave Background, and
very recently, the satellite Planck delivered full-sky maps of the Sunyaev-Zel’dovich
emission [Planck Collaboration 2015h]. The study of the Sunyaev-Zel’dovich effect
allows to put constraints on the moment of reionization as well as its duration
[Zahn et al. 2005], [Zahn et al. 2012], [Planck Collaboration 2015i].

All those anisotropies - primordial and secondary - contribute to the observed
power spectrum of the anisotropies of the Cosmic Microwave Background. Our

9In fact, analyzing the spectra of the most distant quasars, one can conclude that most of the
intergalactic hydrogen is ionized at z ∼ 5.

10Or more speculatively the disintegration of exotic particles.
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comprehension of the Standard Cosmological Model depends on the knowledge of
all of them.

Figure 2.3: Expected spectra of the thermal (blue) and kinetic (red) Sunyaev-
Zel’dovich effect. Notice the different scales. The thermal effect, multi-band ob-
servations of the galaxy cluster Abell 2319 from the satellite Planck is over plotted,
bringing a remarkable confirmation of the predictions.

2.3 CMB anisotropies: polarization

Whereas anisotropies in the temperature of the CMB and inhomogeneities in the
density field were studied and discovered back in the 20th century, the radiation of
the Cosmic Microwave Background - which is an electromagnetic radiation - is also
expected to be polarized because of Compton scattering at the time of decoupling.
Up to now, we have focused on the temperature fluctuations in the Cosmic Mi-
crowave Background, because the two-point function for temperature provides the
single, most powerful test for distinguishing cosmological models and determining
cosmological parameters. However, there is more information to be gained by mea-
suring the polarization and its correlation with the temperature fluctuations11. In

11Moreover, in the Standard Cosmological Model, the polarization peaks and correlation are
precise predictions of the temperature peaks as they depend on the same physics. As such their
detection would represent a sharp test on the implicit assumptions of the working model, especially
its initial conditions and ionization history. Recently, and before their polarization release, Planck
delivered a very precise power-spectrum of E-modes and temperature-polarization correlation
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particular, polarization provides the cleanest and most sensitive method of probing
the primordial spectrum of gravitational waves predicted by models of inflation, one
of the most challenging predictions to verify - or reject. The scientific community
just started to observe polarization of the background radiation [Kovac et al. 2002],
[QUaD Collaboration 2008], [Chiang et al. 2010], [Quiet Collaboration 2011],
[POLARBEAR Collaboration 2014c], [Hanson et al. 2013], [Naess et al. 2014]
[Planck Collaboration 2015a], so it is a true 21st century observational challenge
and it promises to deliver much cosmological information in the nearly future.

2.3.1 Electromagnetic wave and Stokes formalism

Electromagnetic wave and experimental context. Let’s first recall the for-
malism of the polarization of the light. In order to make things easier, we work with
plane waves, and more precisely harmonic plane waves. For a harmonic plane wave
E(M=(x,y,z),t) we can write in a cartesian basis :

E(M, t) = E0x cos(ωt−k.r+φx)ux+E0y cos(ωt−k.r+φy)uy+E0z cos(ωt−k.r+φz)uz,
(2.11)

where E0i and φi(t) are constant amplitudes and time dependent phases of each
components of the wave. Written in a complex way :

E(M, t) = E0(t)ei(ωt−k.r). (2.12)

We are interested to define the polarization of these waves. Let E(M, t) be an
electromagnetic harmonic plane wave which is monochromatic, ie the frequency
content is around an average value ω. Let us propagate this wave along the z axis
in a cartesian basis. The nonzero components of E are :

Ex(z, t) = E0xe
i(ωt−k.z+φx(t)) (2.13)

Ey(z, t) = E0ye
i(ωt−k.z+φy(t)). (2.14)

By definition, the wave is assumed polarized if there is a dependence between the
time evolution of Ex and Ey. We are interested by the sinusoidal evolution of the
wave in a wavefront, i.e. we study the curve describes by the extremity of the vector
E in a wavefront in such a way that the observer sees the wave arriving toward him.
Moreover, as all wavefronts are equivalent to describe polarization, we do not take
into account the spatial part in the wave, and so set z = 0. From one wavefront to
another, there is only a constant phase, which does not affect results. So we end up
with waves of the form

power-spectrum based on their temperature power-spectrum only [Planck Collaboration 2014b].
Impressive!
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Ex(t) = E0xe
iωt (2.15)

Ey(t) = E0ye
i(ωt+φ(t)) (2.16)

where φ(t) is the relative phase between the two components. In the general case of
polarization, the two parameters describe an ellipse. We have two particular cases:
φ = 0 - the wave is said linearly polarized - and φ = π/2 with E0x = E0y - the wave
is said circularly polarized. Notice that there exists no choice of these parameters
corresponding to unpolarized light. Instead, unpolarized light can be represented as
a linear combination of plane waves with different phases and polarization angles.
This results in light with polarization changing rapidly over short time scales, adding
up to a zero net polarization. So the knowledge on the polarization state of an
electromagnetic wave is equivalent to determine the parameters E0x, E0y and φ(t)

of Eqs. 2.16. Let’s imagine that we dispose of an instrument capable of disentangling
the two projections Ex and Ey of the electrical field12. We do not have easily access
to Ex(t) or Ey(t) just from the basic fact that the light we are trying to measure
have a frequency of the order of the Giga-Hertz, and no instrument is up to now
capable to record such a high frequency signal. So instead, we only have access to
intensities (averaged quantities) as <| Ex|2> or <| Ey|2>, where the average is done
over the integration time of the detector supposed to be big compared to the period
of the wave. Finally, to disentangle the parameters of Eqs. 2.16, meaning to find
the value of the semi-axis of the ellipse and its orientation, we have perform several
measures of intensity with different orientations of the instrument. This is not very
far from what we do with Polarbear on a daily basis in Chile!

Stokes parameters: definition. A useful way of characterizing the electromag-
netic waves is in terms of the Stokes parameters. There are 4 parameters, labelled
I, Q, U and V . Following our notation defined previously, the intensity I is just the
sum of the intensities measured by the detector:

I =< |Ex|2 > + < |Ey|2 >= Ix + Iy (2.17)

In our context, I is just the temperature of the photons from the Cosmic Microwave
Background that we described earlier. Then, the second quantity to characterize
the parameters of the ellipse is Q. the Stokes parameter Q is the difference between
the intensity along x-axis and y-axis:

Q = Ix − Iy (2.18)

If the sign of Q is positive, then the major axis of the ellipse is more along the
x-axis, and if Q is positive the major axis is more along the y-axis, as shown in Fig.
2.4. We say that Q represents the linear polarization along the x (positive) and
y (negative) axes, However, this is not sufficient to describe the polarization state

12Just use two orthogonal polarizers for instance.
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given that there exists several ellipse configurations with the same Q. So the idea
is to construct another quantity, called U . The coordinate system used to construct
U is at 45◦ of the one of Q, and we define U as:

U = 2Re(ExE∗y) = I45
x − I45

y =
1√
2
<
∣∣∣Ex+Ey

∣∣∣2 > +
1√
2
<
∣∣∣−Ex+Ey

∣∣∣2 > (2.19)

So U represents the linear polarization along the x+y (positive) and x−y (negative)
axes. In this new basis (at 45◦), U is the equivalent of Q in the old basis. There
exists a fourth Stokes parameter called V and given by:

V = 2Im(ExE
∗
y), (2.20)

and which probes the right-handed (positive) and left-handed (negative) circular
polarization. The Stokes parameters describe not only completely polarized light
but unpolarized and partially polarized light as well. A useful quantity for the rest
of this manuscript is the degree of polarization p, defined as:

p =

√
Q2 + U2 + V 2

I
(2.21)

However, as far as the physics of the Cosmic Microwave Background is concerned, V
polarization is not generated, and so the sign of the phase is not known13. And for
the rest of the manuscript, we only refer to the linear degree of polarization (unless
specified):

p =

√
Q2 + U2

I
. (2.22)

p is consequently ranging from 0 for an unpolarized light to 1 for a totally polarized
light. A partially polarized light has its polarization degree such as 0 < p < 1.

Finally, if we operate a rotation of the coordinate system, I and V are unchanged,
while (Q, U) rotates as a spin-2 quantity. That is, under a rotation ψ around the
z-axis of the local coordinate system,(

Q

U

)
→
(
Q′

U ′

)
=

(
Q cos 2ψ − U sin 2ψ

U cos 2ψ +Q sin 2ψ

)
(2.23)

This transformation defines a rotation invariant quantity Q2 + U2 and the angle

α =
1

2
tan−1 U

Q
, (2.24)

which transforms under rotation as α − ψ. Compared to a description in terms
of polarization fraction and polarization angles, the Stokes parameters are useful
because they add linearly when combining radiation from multiple sources. And
the physical observable connected to polarization is defined as a headless vector P
whose components are Q and U . P is orthogonal to the direction of propagation,
with magnitude

√
Q2 + U2 and polar angle α.

13For a nice discussion about the Stokes parameter V , see [Fabbian 2013].
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Figure 2.4: On the left, it is shown the effect of a linear polarizer or an interaction
(Compton scattering for instance) pictured as a grid on an incident unpolarized
light: the scattered light is linearly polarized. Then, the panel on the right is
an illustration of the linear polarization Stokes parameters Q, U , and the circular
polarization parameter V (not present in the CMB). Stokes parameters are useful
due to their linearity when combining light from multiple sources and the ease
of measuring them, but they are arbitrary in the sense that they depend on the
orientation of the coordinate system.
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2.3.2 Sources of polarized radiation

The previous section was somewhat general in the sense that it describes the po-
larization in general.Concerning the physics at the moment of recombination, the
Thomson scattering is a perfect mechanism for producing polarized radiation. It
allows all transverse radiations to pass through, while any radiation parallel to the
outgoing direction is completely stopped. However, every electron is heat up by
many photons, and a priori the total outgoing polarization would be most likely
zero (incident polarizations all cancel out each other). But there should be a way...

Thomson scattering, quadrupole and... polarization! Thomson scattering
is the low energy limit of Compton scattering, and we find both denomination in the
literature. This paragraph follows loosely14 the treatment done by [Kosowsky 1996].
So let’s consider the Thomson scattering off of photons with electrons in the pri-
mordial plasma. Let ε̂ (ε̂′) be the incident (scattered) polarization directions. The
differential cross-section of the reaction could be expressed as :

dσ

dΩ
=

3σT
8π
|ε̂sca.ε̂inc|2 (2.25)

Where σT is the Thomson cross section, ε̂sca and ε̂inc are the unit vectors labeling
the linear polarization of the scattered and incident photons respectively, and dΩ

is the surface element. Let us consider unpolarized photons scattering of a single
electron from the point of view of an observer. The diffusion plan makes an angle φ
with respect to the plan of the observer (x,z). If in addition the incident intensity
varies with the direction, that is it has a direction dependent intensity Iinc(θ, φ), one
can derived the scattered intensity and polarization using the previous equation:

Isca =
3σT

16πσb
Iinc(1 + cos θ) (2.26)

Qsca =
3σT

16πσb
Iinc cos θ2 cos 2φ (2.27)

Usca = − 3σT
16πσb

Iinc cos θ2 sin 2φ (2.28)

where σb is the surface of interaction. Thomson scattering cannot create circular
polarization as it does not modify the phases but only the amplitudes of each com-
ponent of the electrical field. Then by summing over all possible incident directions
we obtain the scattered Stokes parameters (in the rest frame of the electron):

14For a more detailed treatment of it, see the results obtained from generalized Boltz-
mann equation including polarization source functions by [Kamionkowski et al. 1997b] and
[Zaldarriaga & Seljak 1997].
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Isca =
3σT

16πσb

∫
dΩIinc(1 + cos θ) (2.29)

Qsca =
3σT

16πσb

∫
dΩIinc cos θ2 cos 2φ (2.30)

Usca = − 3σT
16πσb

∫
dΩIinc cos θ2 sin 2φ (2.31)

Using the decomposition in spherical harmonic of the incident intensity15,

Iinc(θ, φ) =

∞∑
`=0

∑̀
m=−`

a`m(x, t)Y`,m(θ, φ) (2.32)

one can show that:

Isca =
3σT

16πσb

[8

3

√
πa00 +

4

3

√
π

5
a20

]
(2.33)

Qsca =
3σT
8πσb

√
2π

15
Re(a22) (2.34)

Usca = − 3σT
8πσb

√
2π

15
Im(a22) (2.35)

From the last set of equations, we can clearly see that Thomson scattering generates
polarization from an unpolarized radiation if the incident radiation at a given point
as a function of direction has a non-zero a22 quadrupole moment. More generally,
starting from an unpolarized light, only quadrupole patterns of the incident radiation
can create polarization from the observer point of view. However, if we have many
scatterings, the total net polarization is most likely zero (polarization is erased,
rather than accumulate). Therefore the polarization that is detected by a distant
observer comes from the very last period of decoupling.

Sources of quadrupole. In this paragraph, instead of the Stokes parameter Q
and U , we talk in terms of transformed Stokes Parameters Qr and Ur, first intro-
duced by [Kosowsky 1996], [Kamionkowski et al. 1997a]. These transformed Stokes
parameters are defined with respect to the new coordinate system that is rotated
by φ, and thus they are defined with respect to the line connecting the tempera-
ture spot and the polarization at an angular distance θ from the center of this spot
[Komatsu et al. 2011]. We will see later that Qr and Ur are easier to relate to E
and B modes than Q and U while interpreting the data.

There are three types of perturbations, related to three different physical sources,
that give rise to quadrupole anisotropies and thus can induce Cosmic Microwave
Background polarization. These are:

15In the general case, when the direction of observation n̂ is not aligned with the direction of
propagation ẑ (implicitly assumed here), one needs to introduce the rotation R which transforms
ẑ into n̂.
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• Scalar, from density fluctuations (compressional). Electrons fall into potential
wells, corresponding to matter over-densities, and do so as more rapidly as
they are close the center. Considering an electron, other plasma particles
aligned on the same radius go away whereas those which belong to the same
iso-contour of density come closer. The same reasoning applies for electron
escaping matter under-densities. At recombination, a quadrupole is produced
as photons started to free-stream. A that moment every electron see more and
more anisotropic incoming radiation. The resulting quadrupole is proportional
to the velocity field. Moreover an acoustic wave perturbation is π/2 out of
phase with respect to the velocity, so we expect the peaks of the polarized
power-spectra to be out of phase with respect to the temperature ones. Scalar
perturbations are invariant by parity, thus it only produces Qr polarization
field.

• Vector, due to the motion of vortices (vortical). They are not related to
density fluctuations at first order. Vector perturbations create both Qr and
Ur. Vector perturbations are however suppressed in pre-decoupling period -as
most of the non-gravitational effects - and are typically negligible compare
to other contributions in inflationary models. Cosmic strings could however
produce a non-negligible fraction of vector perturbations [Durrer et al. 2002],
which could generate B modes (see e.g. [Moss & Pogosian 2014] for a recent
study).

• Tensor, related to the passage of gravitational waves as first mentioned by
[Polnarev 1985]. Tensor fluctuations are transverse-traceless perturbations to
the metric, which can be viewed as gravitational waves. A plane gravitational
wave perturbation represents a quadrupole "stretching" of space in the plane of
the perturbation. A gravitational wave passing through a density fluctuation
changes the shape of he potential well. Density contours are no longer circular
but become elliptical, thus forming quadrupole perturbations and losing their
symmetry properties. Tensor perturbations create both Qr and Ur.

2.3.3 E and B fields

As we just saw, the CMB linear polarization is completely described by the Q and
U Stokes parameters. They can be combined into two spin-2 and spin-(-2) fields
defined as:

±2P = Q± iU. (2.36)

If we restrict ourself to an all-sky problem16, the spin fields can be expressed in the
harmonic space making use of the spin-weighted (2 and -2) spherical harmonic basis

16The case of cut-sky is an entire field of development for polarization, since it introduces un-
wanted artifact , [Lewis et al. 2001], [Bunn 2002], [Bunn et al. 2003], [Grain et al. 2009]. See also
Sec. 9.
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17:

±2P (θ, φ) =
∑
`m

±2a`m±2Y`m(θ, φ) (2.37)

The ±2Y
m
` are the spin-2 spherical harmonics, complex-valued functions on the

sphere that are related to the usual spherical harmonics Y m
l by derivative operators.

They constitute a complete, orthonormal basis for spin-2 fields, i.e., fields of headless
vectors, defined on a sphere [Newman & Penrose 1962]. Going further, and following
[Grain et al. 2009], any complex, spin-±2 field18, with ±2P

† = ∓2P is completely
characterized by its projection on the spin-2 spherical harmonics, defining its (scalar)
harmonic representation,

±2a`m =

∫
dΩ±2P ±2Y

†
`m (2.38)

However, Q and U are not the most natural description of a statistically isotropic
radiation field, as the definition of the linear polarization parameters Q and U de-
pends on the arbitrary choice of a preferred direction, which results in Q rotating
into U and vice versa during a rotation of the coordinate system. Instead we intro-
duce two new quantities called E and B. E is a scalar field and B is a pseudo-scalar
field19 that are rotationally invariant alternatives to Q and U . E and B are re-
spectively curl-free and gradient- free, and the names of these quantities come from
analogy with mathematical properties the electromagnetic field. The value of E and
B in a given point can be defined as radially-weighted averages of Qr and Ur, the
transformed Stokes parameters defined in the previous section.

In the harmonic space, these two approaches are related via the relation:

aE`m = −1

2
(2a`m + −2a`m)

aB`m =
i

2
(2a`m − −2a`m). (2.39)

This decomposition allows to distinguish physical causes generating those geomet-
rical patterns. Density or scalar perturbations only generate parallel polarization
(E-modes polarization, about 100 times lower in overall amplitude than the temper-
ature anisotropies or T-modes) whereas gravitational waves generate both E-modes
and B-modes and so therefore create a nonzero B-modes polarization (about 10 times
weaker than the E-modes). These latter, named hereafter primordial B-modes, to
avoid confusion with lensed B-modes, generated by the gravitational lensing of the
E-mode polarization, and are treated in a specific section Sec. 3.

Continuing in this decomposition, we can define the E and B spherical harmonic
basis for a spin-s field as

17Notice that we could expand the polarization field P in terms of scalar harmonics, but in this
case the harmonic coefficients would be spin-±2 and therefore depend on the choice of coordinate.

18More generally any spin-s field.
19That is E-modes have (−1)` parity while B-modes have (−1)`+1 parity.
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sYE
`m = sDEY`m =

1

2

√
(`− s)!
(`+ s)!

(
∂s + (−1)s∂̄s

−i(∂s − (−1)s∂̄s)

)
Y`m

sYB
`m = sDBY`m =

1

2

√
(`− s)!
(`+ s)!

(
i(∂s − (−1)s∂̄s)

∂s + (−1)s∂̄s

)
Y`m (2.40)

where we have defined two differential operators DE and DB which generalizes to
arbitrary spin the operators used in [Bunn et al. 2003]. The harmonic representation
of the field P (polarization signal as measured on the sky) in the E and B subspaces
then reads,

aE`m =

∫
dΩ P . 2Y

E†
`m

aB`m =

∫
dΩ P . 2Y

B†
`m. (2.41)

The E and B subspaces defined previously are orthogonal, thus for any complex
spin-±2 field, ±2DE†.±2DB = 0. If the fields are defined over the all-sky (more
generally a over a surface without boundary) this decomposition into E and B is
unique. However, if we introduce boundaries to our surface, the decomposition is
more complicated as we shall see later in this manuscript.

2.3.4 Polarized angular power spectra

Figure 2.5: Left: Power spectra for temperature (top left), and E modes (bottom
left). Right : E-modes and primordial B-modes power spectra with (solid line) and
without (dotted line) reionization assumed. Figure taken from [Mukhanov 2005].

The polarization signal is very weak: it is expected to be only 10% of the total
temperature fluctuations on small angular scales, decreasing to much less than 1%
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on large angular scales. This is due to the fact that the CMB is only partially
polarized because of two facts: Thomson scattering is not so efficient in converting
unpolarized light to polarized light, and the process of recombination is somehow
too short to expect all the photons from the Cosmic Microwave Background to
be polarized. To be even more specific, degree of polarization is proportional to
the duration of recombination and vanishes if recombination is instantaneous. But
we know that recombination was not instantaneous, so we are left now with three
observables: the temperature T , and the polarization via E and B. Just as with the
temperature fluctuations, a useful quantity to compute is the two-point correlation
function for polarization, and so we can form up to 6 two-point functions including
temperature and polarization information20. Although the tensor harmonics are
technically more complicated than the scalar harmonics, the point is that, given
the orthogonality relations, the analysis of the polarization correlation functions is
exactly parallel to that of the correlation function for the temperature fluctuations
introduced in Sec. 2.2.1.

< aT`ma
T∗
`′m′ > = δ``′δmm′C

TT
` (2.42)

< aE`ma
E∗
`′m′ > = δ``′δmm′C

EE
` (2.43)

< aB`ma
B∗
`′m′ > = δ``′δmm′C

BB
` (2.44)

< aT`ma
E∗
`′m′ > =< aE`ma

T∗
`′m′ >= δ``′δmm′C

TE
` (2.45)

< aT`ma
B∗
`′m′ > =< aB`ma

T∗
`′m′ >= δ``′δmm′C

TB
` (2.46)

< aE`ma
B∗
`′m′ > =< aB`ma

E∗
`′m′ >= δ``′δmm′C

EB
` (2.47)

From parity consideration, T and E being even quantities and B being an odd
quantity, the last two cross-correlations vanish in the Standard Cosmology:

CTB` = 0 (2.48)

CEB` = 0. (2.49)

This prediction is true assuming the Standard Cosmological Model, but there exists
alternative models which predict non-vanishing TB and EB power spectra, e.g.
[Contaldi et al. 2008, Magueijo & Benincasa 2011, Ferte & Grain 2014, Ferté 2014].
A detection of non-zero EB or TB spectra would signify a deviation from the
Standard Cosmological Model, and thus open a window on to new physics21. In the
following, we will assume the Standard Cosmological Model, and we are left with 4
non-zero estimators:

20Theoretically, up to 9, but the cross-correlation terms are symmetrical.
21However, as we will see later on section 10, there are several ways to generate non-zero EB and

TB not related with the physics of the universe, but due to instrumental systematic errors, which
are as of now order of magnitudes higher than any predictions from those alternative models.
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ĈTT` =
1

2`+ 1

∑̀
m=−`

|aT`m|2 (2.50)

ĈEE` =
1

2`+ 1

∑̀
m=−`

|aE`m|2 (2.51)

ĈBB` =
1

2`+ 1

∑̀
m=−`

|aB`m|2 (2.52)

ĈTE` =
1

2`+ 1

∑̀
m=−`

aT`ma
∗E
`m. (2.53)

Fig. 2.5 shows the power-spectra of temperature (top left), E modes (bottom left).
Also is shown on the right panel, the power spectra for E modes (scalar + tensor)
and B modes (tensor), with or without reionization assumed, and one can see that
the power spectrum is a invaluable information to disentangle between two different
models.

Figure 2.6: Power spectra for temperature (left), E modes (middle right),
temperature-polarization cross spectrum (TE, middle left) and B modes (right).
The dashed lines represent the power spectra of the scalar perturbations, while the
solid lines represent the power spectra of perturbations due to gravitational waves.
However, since the B modes do not have a scalar counterpart, the dashed line stands
instead for a power spectrum of perturbations due to gravitational waves but gen-
erated using a reionized model with optical depth τ = 0.166 to the surface of last
scattering. In the figure, G and C stand for gradient and curl respectively, alterna-
tive names to talk about E and B modes. We notice easily that contributions from
gravitational waves are mainly at low multipoles (large angular scales) while scalar
perturbations exhibit more power at intermediate scales (degree to arcminute). In
the Standard Model of Cosmology, the cross correlation TB and EB are vanishing.
Figure adapted from [Cabella & Kamionkowski 2004].

Scalar and tensor contributions. As we discussed previously, there are scalar
contributions and tensor contributions in the primordial Universe. While in reality
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we measure the sum of both, let’s see individually what is their contribution in the
harmonic domain. We argued that a scalar perturbation can generate temperature,
and polarization of type E only, while the tensorial perturbations can generate all
components, that is T , E and B. As shown in figure 2.6, scalar and tensor con-
tributions are very different. The tensor contributions are more pronounced at low
multipoles (large angular scales), whereas the scalar contribution, via the acoustic
peaks, have a typical signature at intermediate scales (degree to arcminute scales).
The B modes polarization is an especially important object of Cosmic Microwave
Background measurement, since in the Standard Cosmological Model, the presence
of primordial B mode is then related to the presence of gravitational waves in the
early Universe. Moreover as of now it is the most decisive and probably the only
realistic way of detecting the nearly scale-invariant spectrum of gravitational waves
predicted by inflation. Therefore a discovery of the B-mode of the CMB polariza-
tion, which is related to tensor metric perturbations, would be a strong argument in
favor of the simplest versions of chaotic inflation, whereas the absence of the B-mode
would rule out the simplest versions of chaotic inflation without helping much in dis-
tinguishing between many other versions of inflationary theory [Linde et al. 2005].
While we can predict the shape of this spectrum, its amplitude is related to the
amount of gravitational waves in the early universe, which is not predictable. This
makes the search for primordial tensor modes difficult, and in the same time what
makes it so exciting. One way to see this problem is to wonder what is the contri-
bution of tensor perturbations with respect to scalar ones. One way to answer this
question is to define the tensor-to-scalar ratio, called r, defined by the amplitude of
the tensor power spectrum relative to the amplitude of the scalar spectrum22. The
primordial power spectrum of B modes then have a fixed shape and its amplitude
is proportional to r.

Pattern in maps and power-spectra. In the same way as for temperature, the
polarization spectra exhibit oscillations for sub-degree scales, but those oscillations
are more peaked because they come from the velocity gradient of the photon-baryon
fluid at the moment of decoupling (Doppler) (temperature gets in addition the drag-
ging from baryons). Moreover as mentioned earlier, the acoustic wave perturbations
are π/2 out of phase with respect to the velocity, so the peaks of the polarized
power-spectra are out of phase with respect to the temperature one, as clearly seen
in Fig. 2.5. In addition, another feature of this temperature-polarization correlation
is the non-zero TE correlation which bring additional informations, at least from
the fact that it is supposedly noiseless (noise of T and E are at zeroth order uncor-
related.). And last but not the least, due to the fact that the process of polarization
is partial at the moment of recombination, the amplitude of the polarized spectra
is a fraction of the amplitude of the temperature power spectrum plus the fact that
we cannot predict the amplitude of primordial B modes (current bound at r < 0.11

from [Ade et al. 2015]).

22For more details on the definition of r, see Sec. 1.3.4.
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Following and complementing the very comprehensive article
[Cabella & Kamionkowski 2004], here are some interesting features on both
temperature and polarization spectra :

• Acoustic peaks (TT , EE): as said earlier the acoustic wave perturbations
are π/2 out of phase with respect to the velocity, so the peaks of the polarized
power-spectra are out of phase with respect to the temperature one, as seen
in Fig. 2.5.

• Acoustic peaks (TE): the maxima and minima of temperature and polar-
ization respectively correspond to the zeros of the TE cross-correlation.

• Highest acoustic peak (TT , EE): the temperature power spectrum has its
highest peak at ` ∼ 200 whereas the one for E modes peaks around ` ∼ 1000

pointing out that polarization contains more power at smaller scales than
temperature. That can be explained by noticing that polarization induced
by a particular harmonic mode of the primordial density field depends on the
gradient of that density field (as velocity).

• Reionization bump (TE, EE, BB): reionization induces an excess of
power in all spectra at very large scales (` ≤ 10), as shown in Fig. 2.6. This
is simply due to scattering of the quadrupole by reionized gas at the moment
of the reionization. Notice that the position of this peak gives an information
on the moment of reionization: `reio ∝

√
zreio.

• Drop, scalar (TT , EE, TE): as mentioned earlier in section 2.2.2, the
damping of anisotropies is due to the fact that decoupling is not instantaneous
plus the free-streaming of photons. The damping can be seen as the envelope
of the power spectra, with a typical cut-off at ` ∼ 1500.

• Drop, tensor (TT , EE, TE, BB): The power spectra due to gravitational
waves drop precipitously for ` ≥ 100, as seen on Fig. 2.6. This is because
on smaller scales, the gravitational waves have entered the horizon and their
amplitudes were redshifted away by the time of recombination.

• Tensor contributions (TT , EE, BB, TE): Gravitational waves spectrum
exhibits a plateau at low `, just like density perturbations. However, the
cosmic variance removes our ability to detect an excess of a tenth over the
density perturbation contribution to temperature, even if we could predict
theoretically the density-perturbation amplitude. For E modes and TE cross
correlation, in addition to the cosmic variance, there is the reionization bump
which, if too big, can completely masked the tensor contribution, both effects
acting at low multipoles. No, really our major hope is low-` B modes!

Let’s also give a description of the polarization patterns in the real domain,
that is in maps of the sky. As discussed earlier, E and B quantities have specific
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Figure 2.7: Polarization patterns in the real domain. Top: The norm of the polar-
ization vector, defined by P =

√
Q2 + U2, is plotted in color, while the arrows are

the polarization angle α, defined in Eq. 2.24. For this panel, a map from primordial
B modes only (r = 0.5) has been generated, to highlight its curly pattern. Notice
the large scale structures (one pixel has a size of 15′.) Middle: Same but for E
modes only (pixels have a size of 1.5′). Notice that the scale is not the same as
top panel: E modes are expected to have more power at sub-degree scales while
primordial B modes have a peak around the degree scale. Bottom: The tempera-
ture anisotropies are in color instead of the polarization vector, and both B modes
and E modes are used to compute the polarization angle. Notice that the major
contribution comes from E modes. We can also see that polarization patterns follow
the temperature patterns, from the fact that scalar perturbations are directly linked
to density perturbations. Units in the figure are given in µKCMB.
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properties, the main being that E is even-parity and B is odd-parity. As for power
spectra, the difference of power between E and B makes the E pattern majority. The
norm of the polarization vector P =

√
Q2 + U2, with arrows overlaid representing

the polarization angle α defined in Eq. 2.24, is often displayed. In some context, we
also find the map of temperature anisotropies instead of the polarization vector, to
highlight the correlation between temperature and polarization. I show an example
of such a patterns for three different cases in Fig. 2.7: polarization vector + α in a
case with only primordial B modes, polarization vector + α in a case with only E
modes, and temperature + α in a case with both E and B modes. The pixel size is
different between the case with B modes only and the other, to highlight the large
scale structures inherent to primordial B modes.

Note that if we replace (Q,U) by (U ,−Q), then E → B and B → −E (on
a`m, power spectra being squared quantities, this effect is only positive). This tells
us therefore, that a pure-E polarization pattern becomes a pure-B pattern if we
rotate each polarization vector by 45◦, and vice versa. It has a lot of consequences,
discussed in the next section on weak gravitational lensing23.

2.4 Cosmological parameters

Going back to the section 1.1.4, we would like to extract informations from our
observables (the angular power spectra of the anisotropies, the lensing, etc.) to con-
strain our cosmological model. To do so, we usually described cosmological models
by a set of parameters. Different cosmological models predict different observables
and thus, extracting cosmological information means constraining the parameters of
a model given the data, including confidence intervals. More specifically, cosmology
is a stochastic theory which requires observation of statistical quantities (think of
homogeneity, isotropy for instance), and a given set of parameters produces predic-
tion for these statistical quantities. Therefore, one needs to know how to infer the
value of the parameters given the data. This problem is known as inverse problem,
that is having a set of data x, how to interpret it in terms of a model. But this is
not the only need for parameter estimation. Assuming a particular model we would
like for instance to be able to forecast the performance of future experiments for
experimental design.

World is often in two minds when speaking about parameter estimation: Fre-
quentists or Bayesians. Roughly speaking, Frequentists only consider probability
distributions of events (occurence) while Bayesians consider hypothesis as events
(degree of belief). Obviously for both, the rules of probability apply. We do not
follow only strictly one or the other throughout this manuscript, but rather use one
or the other approach depending on the context. One of the pillar of the parameter
estimation is the Bayes theorem, which states that the probability of the hypothesis
H given the data D is given by:

23But also for E/B leakage due to cut-sky or filtering, or instrumental systematics unfortu-
nately... This is also discussed later.
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P(H|D) =
P(D|H)P(H)

P(D)
, (2.54)

where P(H|D) is also called the posterior, P(D|H) is the likelihood meaning the
probability of the data given the hypothesis, P(H) is called the prior, and P(D)

is called the evidence. Although we may have the full probability distribution for
the parameters and using marginalizations, often one simply uses the peak of the
distribution as the estimate of the parameters, making the maximum likelihood
often used as a method of parameter estimation to determine the best-fit model.
Given a class of models and an observed data set, the probability distribution of
the data (sometimes multiplied by prior functions) is maximized as a function of
the parameters. Note that if the priors are not flat, the peak in the posterior is
not necessarily the maximum likelihood estimate. Then the goodness-of-fit must
be constructed in order to decide if the best-fit model is indeed a good description
of the data. If it is, one has to determine confidence intervals on the parameters
estimation. One strength of this formalism is that we can naturally update the
probability distribution for a parameter by including new constraints from other
data sets than the initial one. The literature on the subject is broad, see for instance
the reviews [Verde 2010, Heavens 2009].

The predominant use of Bayesian methodology in cosmology is partly motivated
by the fact that one observes a single realization of the Universe, and has been
boosted by the introduction of Markov chain Monte Carlo (MCMC) techniques
[Christensen et al. 2001]. Indeed, finding the maximum of the likelihood surface
in a multi-dimensional space can be very computationally heavy. At first, solvers
discretized the space in order to estimate the cosmological parameters. For each set
of parameters in a predetermined grid, they can store either all statistical informa-
tion or only the likelihood value, L, before marginalizing or minimizing. Nowadays,
popular sophisticated softwares using fast MCMC exploration of cosmological
parameter space24 are publicly available, regularly updated and widely used such as
COSMOMC [Lewis & Bridle 2002] and MONTE PYTHON [Audren et al. 2013].
They are often interfaced to Boltzmann codes such as CAMB [Lewis et al. 2000] or
CLASS [Blas et al. 2011] which are called to give the theoretical prediction for the
data being tested. In the frequentist framework, profile likelihoods [Wilks 1938] are
instead built for individual variables and, by construction, the individual parameter
estimates match (up to numerical accuracy) the maximum likelihood estimator
values [Planck Collaboration 2014c].

The base ΛCDM model recently released by the satellite Planck is made of
6 cosmological parameters25: the Cold dark matter density (today) ΩDMh

2, the
Baryon density (today) Ωbh

2, 100 times the ratio of the Comoving size of the
sound horizon over the angular distance at the moment of recombination 100θMC ,

24While the methods using grids scale exponentially with the number of parameters, the MCMC
method scales at its best linearly.

25This is remarkably simple.
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the Thomson scattering optical depth due to reionization τ , the log power of
the primordial curvature perturbations ln(1010As) (at k0 = 0.05 Mpc−1), the
Scalar spectrum power-law index ns (at k0 = 0.05 Mpc−1). The most recent
constraints on the base ΛCDM cosmology from the Planck CMB power spectra
[Planck Collaboration 2015d] (temperature, polarization, lensing) are shown in Fig.
2.8. Other standard parameters can be derived from the base set, such as the age
of the universe for instance. Usually, the likelihood function is not a linear function
of the cosmological parameters since the parameters enter through the covariance
matrix in a non-linear way. Moreover, the complexity of the problem is increased
by the size of the data set. On the one hand, if we work directly with maps, the size
of the problem is given by the number of pixel (can reach easily o(106) pixels), and
becomes quickly too big for the current computer speed. On the other hand, if we
work with the angular power spectrum, the size of the problem is given by the num-
ber of bandpowers (up to o(103)). Thus, the angular power spectrum is preferred,
as it reduces significantly the size of the data set without any loss of information,
for the case of Gaussian fluctuations. It has to be noticed also that couple of these
parameters are degenerated and those are generally broken using other observations
such as galaxy surveys, supernovae surveys, or the abundance of light elements as
predicted by the Big Bang primordial Nucleosynthesis.

2.5 Overview of the field as of 2013

CMB investigations have been and continue to be a very active and exciting area
of research, which has excellent potential to impact profoundly our understanding
of cosmology and fundamental physics in its broadest sense, providing a new and
unique window on the physics of both the early Universe and the growth of its
large-scale structure.

The observational results about CMB started in 1965 by the discovery of
the CMB radiation by radio astronomers Arno Penzias and Robert Wilson
[Penzias & Wilson 1965], leading to the Nobel prize in 1978. The first accurate
measurements of both the CMB radiation and anisotropies were made between 1989
and 1996, with the instruments FIRAS and DMR embarked in the satellite COBE
[Mather et al. 1990, Smoot et al. 1992], also leading to Nobel prizes! On the one
hand, their measure of the CMB frequency spectrum confirmed it as being a black
body with temperature of 2.725 K to within experimental limits, making the CMB
spectrum the most precisely measured black body spectrum in nature. On the other
hand, the existence of fluctuations in the CMB temperature, of the order of 10−5, was
put forward observationally. Several ground-based and balloon-borne experiments
took over the measurements of anisotropies at intermediate angular scales during the
90’s, for instance [Cheng et al. 1993, De Bernardis et al. 1994, Devlin et al. 1994,
Dragovan et al. 1994, Gutierrez de La Cruz et al. 1995, Piccirillo & Calisse 1993,
Netterfield et al. 1997]. A small revolution has been performed at the end of the
90’s, by the balloon-borne BOOMERanG [de Bernardis et al. 2000], and MAX-
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Figure 2.8: Most recent constraints on the base ΛCDM cosmology from the Planck
CMB power spectra (temperature, polarization, lensing). The tabular shows the
latest constraints (68% C.L.) from Planck angular power spectra in combination with
the CMB lensing likekihood on the 6 base parameters plus 9 derived parameters.
Figure adapted from [Planck Collaboration 2015d].
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IMA [Hanany et al. 2000] which provided accurate constraints on the first acoustic
peak in temperature, and revealed the flatness of the Universe (ΩK ≈ 0). They
have been followed by the ground-based experiment DASI [Halverson et al. 2002]
and the balloon-borne ARCHEOPS [Benoit et al. 2003]. In the 2000’s, the satellite
WMAP26 was launched, and quickly provided very tight constraints on the first
acoustic peaks (from degree scale down to few tens of arcminute). It successfully
delivered unprecedented constraints on CMB temperature and polarization but also
astrophysical results for almost 10 years. Its successor, the satellite Planck27 has
been launched in 2009, and mapped the sky during almost 2 years. Planck deliv-
ered the ultimate constraints on CMB temperature, together with very high con-
straints on polarization and astrophysics from arcminute scales to largest scales. In
the meantime, ground-based experiments with very high resolution mapped out the
sky from few tens arcminute scales down to arcminute scales, probing the damping
tail of the CMB and the secondary anisotropies with high precision, such as ACT
[Fowler et al. 2010] and SPT [Lueker et al. 2010].

Figure 2.9: Measurements of the angular temperature power-spectrum early
2000 (left, [Hu & Dodelson 2002]) and after Planck release in 2013 (right,
[Planck Collaboration 2014a]). The improvement in terms of error bars and scale
coverage is impressive.

Concerning polarization, the first successful measurements were done early
2000 by the experiment DASI [Kovac et al. 2002], with the detection of E-
modes. Then, a number of experiments delivered better characterization on
E-modes and temperature-polarization correlation (TE) in the following years:
WMAP, QUIET [Quiet Collaboration 2011], BICEP [Chiang et al. 2010], QUaD
[QUaD Collaboration 2008]. Since 2012-2013, there has been a complete change
of the landscape, with the start of operation of large arrays of powerful detectors
enabling to reach very low instrumental noise levels such as Polarbear, ACT-

26http://map.gsfc.nasa.gov
27http://www.cosmos.esa.int/web/planck

http://map.gsfc.nasa.gov
http://www.cosmos.esa.int/web/planck
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pol, SPTpol, and BICEP2, in addition to the satellite Planck launched in 2009.
Their first results are discussed in Chap. 11, along with the results of this thesis.

2.6 Other cosmological probes

The observation of the Cosmic Microwave Background provides a unique window
onto the physics of the very early universe and an exceptional probe of the laws
governing at the highest energies. However the CMB is one cosmological probe
among others.

While the CMB measurements are relatively insensitive to the dark energy and
the epoch of cosmic acceleration, supernovae observations have recently provided
evidence that the expansion of the Universe is undergoing a late time acceleration
[Perlmutter et al. 1999], [Schmidt et al. 1998], [Riess et al. 1998]. The past years,
surveys such as the Sloan Digital Sky Survey (SDSS) and the Supernova Legacy
Survey (SNLS) provided tight cosmological constraints from the Hubble diagram
of type Ia supernovae, and will be followed for instance by the Dark Energy Survey
(DES) experiment, which has just begun its high-redshift supernovae survey.

Concerning the mapping of large-scale structure of the Universe, the next galaxy
surveys such as DES, Dark Energy Spectroscopic Instrument (DESI), Large Syn-
optic Survey Telescope (LSST), and Euclid will allow to probe diverse aspects of
cosmology, from the distribution of dark matter and nature of dark energy, to the
neutrino mass hierarchy and absolute mass scale. In particular Baryon Acoustic Os-
cillation (BAO) measurements form a key part of the observation program of these
experiments, boosted by recent discoveries. The first measurement of the BAO sig-
nal has been done via the large-scale correlation function of SDSS luminous red
galaxies [Eisenstein et al. 2005]. More recently, the BAO distance scale has been
measured in the three dimensional correlation of the Ly-α forest in nearby quasar
lines of sight from the BOSS survey [Busca et al. 2013].

The gravitational lensing is another very active topic in cosmology, see e.g.
[Wittman et al. 2000] (and the particular case of CMB weak lensing is discussed
later in this thesis). The ability of weak lensing to constrain the matter power spec-
trum makes it a potentially powerful probe of cosmological parameters, especially
when combined with other observations such as the Cosmic Microwave Background,
Supernovae, and galaxy surveys. Future major experiments such as LSST and
Euclid satellite, by exploiting at the same time the gravitational lensing, mea-
surements of BAO, and measurements of galactic distances by spectroscopy should
deliver unprecedented constraints on dark energy and dark matter distribution over
a large range of redshifts.

Currently, a consortium of major radio astronomy institutions across the world is
planning the world’s next generation large radio telescope, the Square Kilometer Ar-
ray (SKA). In parrallel, several ground-breaking observatories aiming at measuring
and characterisation of the 21 cm signal start observing and herald a coming-of-age of
a new and quickly growing area of research, which offers complementary constraints
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to those expected from the CMB. The 21 cm line is of great interest in cosmology
because it is the only known way to probe the Universe from the recombination to
the reionization, namely the so-called "dark ages".

All those cosmological probes are complementary in many ways. Combining
these probes together will not only help to break statistical degeneracies present in
some of them and tighten the statistical uncertainties but also to better control and
understand systematic errors specific to and different for each of them, helping thus
to obtain more robust and reliable results.



Chapter 3

Weak gravitational lensing of the
CMB by large-scale structure

Contents
3.1 Bending the light . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.1 Deflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.2 Born approximation . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 The lensing potential . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 The lensed CMB temperature power spectrum . . . . . . . 63

3.3.1 Taylor expansion: pros and cons . . . . . . . . . . . . . . . . 65

3.3.2 Lensed temperature power spectrum . . . . . . . . . . . . . . 65

3.4 The lensed CMB polarization power spectra . . . . . . . . . 66

3.5 Reconstructing the lensing potential . . . . . . . . . . . . . . 69

3.5.1 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.2 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.3 Some limitations . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Weak lensing, dark energy and cosmological neutrinos . . . 72

3.7 Observational status as of 2012 . . . . . . . . . . . . . . . . . 74

3.8 Delensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

We were interesting so far in the physics of the early Universe, that is at a
redshift greater than z ∼ 1000. At the epoch of the recombination, the Uni-
verse becomes transparent to photons. However the CMB photons and the matter
continue to interact gravitationally at lower redshifts while large-scale structures
form. A detailed study of the perturbed CMB allows us to probe the more re-
cent history of the Universe, see e.g. the early papers [Blanchard & Schneider 1987,
Cole & Efstathiou 1989, Cayon et al. 1993]. As we shall see later, on the one
hand the lensing is probing the matter distribution at the level which is sensi-
tive to "late-time" parameters that modify the growth of structure such as neu-
trino mass [Bond et al. 1980] or dark matter as the magnitude of the lensing ef-
fect is sensitive to the whole clustered mass [Blanchard & Schneider 1987]. On the
other hand, lensing can be used to break the degeneracy of geometrical parame-
ters that CMB measurements alone cannot, such as the curvature of the universe
[Stompor & Efstathiou 1999]. What makes also unique the CMB in the context
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of lensing is that CMB acts as a backlight, thought of as a single source plane,
and extended across the entire sky. However, we should keep in mind two general
properties while studying the lensing on fluctuations in the CMB. First, the lensing
conserves surface brightness, meaning that if the primordial CMB was completely
isotropic gravitational lensing would have no effect on it. Second, it is not the ab-
solute value of the light deflection due to lensing which matters, but the relative
deflection of neighbouring light rays which is of importance to capture the effect of
gravitational lensing [Bartelmann & Schneider 2001]. Most importantly, the effect
of the lensing on E mode introduces a B mode polarization pattern on the sky, over-
whelming the primordial B mode signal on small scales. Therefore the detection
of those B-modes arising from the primordial E-modes in the presence of matter
perturbations is a crucial consistency check for our understanding of the gravity,
the structure formation, and the physics at the moment of recombination. The
four first subsections follow broadly the detailed review [Lewis & Challinor 2006]
on weak lensing. We then focus on the reconstruction of the lensing potential and
the observational status, and we conclude by highlighting the main challenge of the
delensing.

3.1 Bending the light

The bending of the CMB photon trajectories due to gravitational lensing is at the
core of this section since it enables us the reconstruction of the gravitational poten-
tial. The bending of the light by massive object is not a specific feature of General
Relativity, and could be also interpreted within the Newtonian theory of gravity
(although it was not made for initially).

3.1.1 Deflections

Let’s consider a photon with velocity v passing close to a point of mass M . The
idea behind the weak lensing - weak in the sense that the effect is small (small
deviations, small angles) and is accurately described by first-order developments in
the deviations - is that the photon has its initial trajectory deviates, due to the fact
that the mass induces a transverse acceleration, proportional to the gradient of the
potential Ψ:

v̇⊥ = −∇⊥Ψ. (3.1)

However as far as General Relativity in concerned, one also has to incorporate the
effect of the curvature of the space-time not taken into account in the Newtonian
approach. The General Relativity predicts the local deflection angle δβ to be

δβ = −2δχ∇⊥Ψ, (3.2)

where δχ is a small distance along the photon path and χ represents the comoving
(conformal) distance. From the point of view of an observer observing the CMB at
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comoving distance χ∗ and the point of mass (M,Ψ) at comoving distance χ from
the observer, the observed deflection δθχ in the direction of ∇⊥Ψ is given by:

δθχ =
fK(χ∗ − χ)

fK(χ∗)
δβ, (3.3)

where fK is the angular diameter distance and encodes the relationship between
comoving distance and angle.

Let’s consider now that our photon undergoes several deviations from its emis-
sion at the moment of recombination until now. Here again, assuming weak gravi-
tational lensing and lowest order in the potential, the total deflection angle α is the
summation of the deflection angles defined in Eq. 3.3 and can be expressed as:

α = −2

∫ χ∗

0
dχ
fK(χ∗ − χ)

fK(χ∗)
∇⊥Ψ(χn̂, η0 − χ), (3.4)

where the quantity η0−χ is the conformal time at which the photon was at position
χn̂, and n̂ is the line of sight.

3.1.2 Born approximation

The exact calculation of Eq. 3.4 is in practice difficult as it would require to perform
the integral over the perturbed path of the photon. However, since we are working
to first order in Ψ (small deflections), we can evaluate the integral along the unper-
turbed path of the photon. More specifically, starting from the geodesic equation
for the photon, one has:

χ = η0 − η − 2

∫ η

η0

dη′Ψ(η′). (3.5)

Assuming Born approximation is equivalent to set χ = η0 − η (that is approxi-
mating the light path by the unperturbed line of sight), and makes computation
much simpler without losing much in precision. Under the Born approximation, the
transverse derivative in the Eq. 3.4 can be identified to derivative over the line of
sight n̂:

α = −2

∫ χ∗

0
dχ

fK(χ∗ − χ)

fK(χ∗)fK(χ)
∇n̂Ψ(χn̂, η0 − χ). (3.6)

This is a good approximation if the deflection angles are sufficiently small, or if all
the lensing occurs in a single thin plane [Hanson et al. 2010]. The validity of the
single lens approximation in the context of CMB has been recently investigated in
[Calabrese et al. 2015] who tested the validity of Born approximation against more
physically motivated ray tracing techniques. They found the difference between the
two methods to be very small. By some intuitive order of magnitude calculations
[Lewis & Challinor 2006, Hanson et al. 2010], one can show that taking each lens to
be independent the total quadratic mean deflection is about 2" (assuming that each
photon undergoes 50 deviations on average from the last scattering to us), while the
typical coherence scale of the deflection field is about 2◦.
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3.2 The lensing potential

In the Born approximation, we define the (projected) lensing potential Ψ as

ψ(n̂) = −2

∫ χ∗

0
dχ

fK(χ∗ − χ)

fK(χ∗)fK(χ)
Ψ(χn̂, η0 − χ). (3.7)

The deflection angle is given by the derivative over the line of sight of the lensing
potential α(n̂) = ∇ψ(n̂). Although in principle, we probe projected effects between
the last scattering surface (z ∼ 1100) and us (z = 0), most of the constraints come
from a range of redshift around z ∼ 2 up to z < 20, as depicted in the figure 3.1.
Indeed, after the recombination, there are no structures yet formed in the Universe,
and most of the photons are not bent. One has to wait for the first large-scale
structures to form to start to have significant effect. One can also notice in Eq. 3.7
that the lensing potential is an integrated measure of the mass distribution back
to the moment of recombination, including geometrical effects of the background
(through fK).

As for the temperature perturbations, the lensing potential can be decomposed
into multipole moments (all-sky) or Fourier moments (flat-sky):

ψ(n̂) =
∑
`m

ψ`mY
m
` (n̂), (3.8)

ψ(n̂) =

∫
d2l

(2π)2
ψ(l)eil.n̂, (3.9)

where (`,m) and l are conjugate to the real space unit vector n̂ in all-sky and flat-
sky respectively. The assumption of linear evolution from the primordial density
fluctuations and Gaussian primordial primordial fluctuations implies that the lensing
potential is also Gaussian, and therefore can be completely described by its power
spectrum1. The power spectra of the lensing potential in the all-sky and flat-sky
cases can be expressed as:

< ψ`mψ
∗
`′m′ > = δ``′δmm′C

ψψ
` , (3.10)

< ψ(l)ψ∗(l′) > = (2π)2δ(l− l′)Cψψl . (3.11)

Note that one can relate the all-sky and the flat-sky limits power spectra Cψψ` and
Cψψl , as shown in e.g. [Hu 2000].

The computation of the lensing potential depends on a given cosmology, that is
the geometry of the universe and the gravitational potential along the line of sight.
Following the same treatment as for CMB temperature, and also assuming linear
evolution from the primordial density fluctuations, one can evaluate numerically the

1The gaussianity of lensing potential is just an approximation. However [Schäfer et al. 2012]
showed non gaussianities induced by non linearities to be small analytically.
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power spectrum of the lensing potential in terms of the gravitational potential power
spectrum expressed in the harmonic space [Lewis & Challinor 2006]:

Cψψl = 16π

∫
dk

k
PR(k)

[∫ χ∗

0
dχTΨ(k; η0 − χ)jl(kχ)

(
fK(χ∗ − χ)

fK(χ∗)fK(χ)

)]2

(3.12)

where jl(kχ) is a spherical Bessel function, which can be expressed in terms of
standard functions. TΨ(k; η) is the transfer function in the linear theory in the
Fourier space such that the gravitational potential at later epoch Ψ(k; η) is Ψ(k; η) =

TΨ(k; η)R(k), with R(k) being the primordial comoving curvature fluctuations (set
at the inflationary time, see Sec. 1.3.4) with 3D power spectrum PR(k). So given
some primordial power spectrum, the Eq. 3.12 can be computed numerically using
Boltzmann codes such as CAMB [Lewis et al. 2000] or CLASS [Blas et al. 2011].

Since the deflection angle is the gradient of the lensing potential, its power
spectrum is related via:

Cααl = l(l + 1)Cψψl . (3.13)

Given that deflection angles are physically relevant, the last relationship explains
why in the literature many authors choose to plot l(l + 1)Cψψl rather than Cψψl

2.
Such a power spectrum is depicted in Fig. 3.1. One can see that its maximum is
reached for a multipole l ∼ 60, and then decreases very steeply. In addition, the
variance of the deflections < α >2 is given by:

∫
d ln l

[l(l + 1)]2Cψψl
2π

≈< α >2, (3.14)

and its square root is of the order of few arc minutes.

3.3 The lensed CMB temperature power spectrum

There are many ways to study the lensing effects, but we are interested in the effects
on the CMB observables, namely the angular power spectra. In this section, we focus
on the temperature power spectrum, and we extend the discussion to polarized
power spectra in the next section. Neglecting non-Gaussianity of the anisotropies
at the moment of recombination, the primordial power spectrum can be worked out
accurately in linear theory. The most intuitive way of seeing the weak lensing of
the CMB and of studying the properties of the lensed CMB, is to think in terms of
remapping the primary anisotropies according to the deflection angle α. To do so,
we often use a Taylor expansion of the lensing displacements on the nearest pixel
center assuming flat-sky approximation:

2To be precise, l(l + 1)/2π × l(l + 1)Cψψl is often plotted.
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Figure 3.1: Left: Cumulative contribution of different redshifts to the power spec-
trum of the lensing potential for a concordance ΛCDM model. Note that main
contribution come from the more recent history of the Universe, z < 20. Right:
The power spectrum of the deflection angle for a concordance ΛCDM model.
The solid black line corresponds to the linear theory spectrum and the dashed
red line is the same model including non-linear corrections. Figures taken from
[Lewis & Challinor 2006].

T̃ (n̂) = T (n̂ + α)

= T (n̂ + ∇ψ)

= T (n̂) +
[
∇iψ∇iT

]
(n̂) +

1

2

[
∇iψ∇jψ∇i∇jT

]
(n̂) + ... (3.15)

where we denote with a tilde a lensed quantity. Assuming flat-sky approximation
for simplicity, the equation 3.15 can be expand in Fourier domain to second order in
the lensing potential [Lewis & Challinor 2006, Challinor & Chon 2002, Hu 2000]:

T̃ (l) ≈ T (l)−
∫
d2l1
2π

l1(l− l1)ψ(l− l1)T (l1)

− 1

2

∫
d2l1
2π

∫
d2l2
2π

l1.[l1 + l2 − l]l1.l2T (l1)ψ(l2)ψ∗(l1 + l2 − l) (3.16)

It is interesting to notice that lensing affects the unlensed multipoles by coupling
different scales: a mode of the lensing potential ψ(l − l1) with wavevector l − l1
couples the unlensed temperature at wavevector l1 into the observed temperature at
wavevector l. We have a mode-coupling effect, and for a fixed realization of lenses,
it introduces off-diagonal components into the covariance matrix of the observed
temperature, with a characteristic spacing given by the peak of the deflection power
spectrum (see Fig. 3.1). More specifically, large-wavelength modes of the lensing
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potential introduce correlations between CMB modes on much smaller scales. In
addition, small scales correlate also with the large ones. Particularly this is true and
more evident for B-modes (see discussion in [Fabbian & Stompor 2013]). We see
later how the current CMB experiments derive lensing by measuring these lensing-
induced mode correlations.

3.3.1 Taylor expansion: pros and cons

On the one hand, the Taylor expansion of the lensed temperature field is often used
to get simpler derivation and qualitatively correct results for the lensed temperature
power spectrum. Moreover, it helps to gain intuition on the physical and geomet-
rical effects of lensing onto the unlensed CMB. On the other hand, one can show
that the Taylor expansion is not a good approximation on all scales. The Taylor
expansion is not good when deflections are comparable to the scales under investiga-
tion (few arcminutes). However, it gives good results on large scale when order zero
dominates, and in very small scale when order zero is negligible. In a CMB analy-
sis, we do not focus on one lens only, and we rather work with ensemble-averaged
quantities. In this case, the Taylor expansion gives reasonable results, as it is rela-
tive displacements and no more absolute displacements which are of importance to
capture the effect [Bartelmann & Schneider 2001, Hanson et al. 2009b]. Neverthe-
less, the expansion is not accurate enough to reach a percent level calculation of the
lensed power spectrum.

3.3.2 Lensed temperature power spectrum

In the following, we work in the flat-sky approximation. The covariance for the
lensed temperature field defined in Eq. 3.16 remains diagonal due to statistical
isotropy:

< T̃ (l)T̃ ∗(l′) >= δ(l− l′)C̃TTl . (3.17)

Working to lowest order in the lensing potential power spectrum Cψψl , and neglecting
the averaged correlations between the temperature field and the lensing potential
< T (l)ψ∗(l) > (assuming that primordial small scale temperature at the moment
of recombination is uncorrelated with the late time potentials responsible for the
lensing, i.e. neglecting the ISW effect), one obtains:

C̃TTl ≈ CTTl
(

1−
∫

d2l1
(2π)2

(l.l1)2Cψψl1

)
+

∫
d2l1

(2π)2
(l− l1)2l21C

TT
l1 Cψψ|l−l1| (3.18)

The last integral in the previous equation represents a convolution of the unlensed
temperature power spectrum with the lensing potential power spectrum. Intrinsic
features in the unlensed temperature power spectrum with width in harmonic space
less than the characteristic spacing given by the peak of the deflection power spec-
trum are washed out by the convolution term, that is it leaves a small blurring of
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the acoustic peaks. In addition, this equation tells us that the smoothing effect
- even for high multipoles where the flat-sky approximation is suitable - mainly
comes from a range of wavelength from the lensing potential given by the peak of
the lensing potential power spectrum, that is around δl ≈ 50. The width of this
peak being broad, each modes receive in fact a broader contributions from other
modes, as shown in e.g. [Fabbian & Stompor 2013].

As we have seen before there is a damping of primordial anisotropies due to the
fact that decoupling is not instantaneous plus the free-streaming of photons. The
damping can be seen as the envelope of the power spectra, with a typical cut-off at
multipole ≈ 1500. So at smaller scales (larger multipoles) the unlensed CMB has
very little power. Therefore in Eq. 3.18, most of the contributions at large multipole
l of the lensed temperature power spectrum from the unlensed temperature power
spectrum are from modes l′ of the unlensed power spectrum such that l′ << l.

To summarize, the weak lensing affects the unlensed temperature power spec-
trum by smoothing the peaks (large scale lenses) and boosting small-scale power in
the damping tail (small scales lenses on the large-scale temperature gradient). In
addition, we should stress that if the weak lensing alters photon directions, it does
not change the variance in any given direction. It can be seen as a reshuffling of
power in space, but the total variance is conserved.

3.4 The lensed CMB polarization power spectra

We have seen previously that the CMB linear polarization is completely described
by the Q and U Stokes parameters. They can be combined into two spin-2 and
spin-(-2) fields defined as:

±2P = Q± iU. (3.19)

In the flat-sky approximation, the Fourier representation of the polarization field
reads:

±2P (n̂) = −
∫

d2l
(2π)2±2P (l)e±2iφleil.n̂ (3.20)

±2P (l) = E(l)± iB(l), (3.21)

where φl is azimuthal angle of l (the angle between l and l′). Similarly to the
definition of Sec. 2.3.4, one can define the different power spectra under the flat sky
approximation:

< X(l)Y ∗(l′) >= δ(l− l′)CXYl , (3.22)

where X,Y denotes T,E or B. The lensing of the polarization field may be obtained
by following the same steps as for the temperature field [Hu 2000]:



3.4. The lensed CMB polarization power spectra 67

±2P̃ (n̂) = ±2P (n̂ + α)

= ±2P (n̂ + ∇ψ)

= ±2P (n̂) +
[
∇iψ∇i±2P

]
(n̂) +

1

2

[
∇iψ∇jψ∇i∇j±2P

]
(n̂) + ... (3.23)

Notice that we have to add one more complication with respect to the case of
temperature, as the polarization field is a tensor field and therefore requires parallel
transport along deflection vectors. We can expand in the Fourier domain the last
equation:

Ẽ(l)± iB̃(l) ≈ [E(l)± iB(l)]−
∫
d2l1
2π

l1(l− l1)ψ(l− l1)[E(l1)± iB(l1)]e±2i(φl1−φl)

− 1

2

∫
d2l1
2π

∫
d2l2
2π

l1.[l1 + l2 − l]l1.l2[E(l1)± iB(l1)]ψ(l2)ψ∗(l1 + l2 − l)e±2i(φl1−φl).

(3.24)

Using Eq. 3.22, we can compute all combinations between lensed fields T̃ , Ẽ and
B̃. Assuming that the lensing conserves the statistical parity invariance, the two
cross-correlations T̃ B̃ and ẼB̃ vanish. Stopping our development to the lowest order
in the lensing power spectrum, we are left with:

C̃EEl ≈ CEEl
(

1−
∫

d2l1
(2π)2

(l.l1)2Cψψl1

)
+

1

2

∫
d2l1

(2π)2
(l− l1)2l21C

ψψ
|l−l1|[(C

EE
l1 + CBBl1 ) + cos 4φl1(CEEl1 − CBBl1 )] (3.25)

C̃BBl ≈ CBBl
(

1−
∫

d2l1
(2π)2

(l.l1)2Cψψl1

)
+

1

2

∫
d2l1

(2π)2
(l− l1)2l21C

ψψ
|l−l1|[(C

EE
l1 + CBBl1 )− cos 4φl1(CEEl1 − CBBl1 )] (3.26)

C̃TEl ≈ CTEl
(

1−
∫

d2l1
(2π)2

(l.l1)2Cψψl1

)
+

∫
d2l1

(2π)2
(l− l1)2l21C

TE
l1 Cψψ|l−l1| cos 2(φl1 − φl) (3.27)

Notice that even if the primordial B mode component is zero to start with, the total
B modes spectrum is always non zero due to the presence of E mode and the lensing
potential! It is often referred as to lensing B-modes. Such a B-mode angular power
spectrum is shown on lower right panel in the Fig. 3.2.

The E-mode power spectrum peaks around l ∼ 1000, so the lensed B-modes
coming from E-modes in Eq. 3.26 (last integral term) for modes l < 1000 is some-
how independent of the multipole considered (white noise spectrum). In terms of
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Figure 3.2: Effect of the lensing on the power spectra. (a), (b), and (c) panels
show the unlensed (solid black) and lensed (dashed red) TT, EE and TE power
spectra. The small panels under TT and EE show the relative difference between
the lensed and unlensed spectra (in blue. The small panel under TE shows the ratio

(CTE,lensed` − CTE,unlensed` )/
√
CTT,unlensed` CEE,unlensed` . One can easily see both

suppression of oscillations and enhancement of power on small scales. The panel
(d) shows the B modes spectrum generated via gravitational lensing of E modes
(dashed red). The B modes spectrum from tensor perturbation for r = 0.05 and
τ = 0.0866 (solid bold black line) and the total contribution (solid thick black line)
is also overplotted. Spectra have been generated using CAMB.
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instrumental white noise level, it would correspond to roughly 5 µK.arcmin. De-
pending on the value of the scalar-to-tensor ratio, the lensed B-modes may be an
important contaminant in the search for primordial B-modes on large angular scales
(l < 200).

To conclude, we shall also stress that an important effort has been done
in order to model accurately the gravitational lensing effect on the primordial
CMB. An important part of this effort involves simulating very accurate, high-
resolution maps of the CMB total intensity and polarization, covering a large frac-
tion of the sky and with lensing effects included [Lewis 2005, Basak et al. 2009,
Lavaux & Wandelt 2010, Fabbian & Stompor 2013].

3.5 Reconstructing the lensing potential

We previously saw how the large-scale structure affects the primordial CMB
anisotropies. However, since we don’t know the primordial shape of the CMB a
priori we need to use more statistical information to extract the lensing deflection
field. One of the effect of lensing is to introduce small amounts of non-Gaussianity
(when marginalized over realizations of the lenses) or statistical anisotropy (for a
fixed distribution of lenses) [Lewis & Challinor 2006]. At first, people tried to use
the lensing information contained in CMB maps as a probe of the projected mass
density κ [Zaldarriaga & Seljak 1999, Guzik et al. 2000]. The projected matter dis-
tribution κ is related to the deflection field α by:

κ = −1

2
∇.α (3.28)

In order to estimate the projected mass distribution, a particular quadratic combi-
nation of derivatives of the CMB temperature field was constructed (averaged over
realizations of the CMB). But quickly one of the difficulty was to build an estimator
able to reach high signal-to-noise ratio. Since then, two main optimal estimators
for the lensing deflection field have emerged: the first method is to use optimal
quadratic estimators [Hu & Okamoto 2002, Okamoto & Hu 2003] while the second
employs maximum likelihood techniques [Hirata & Seljak 2003]. In this section, we
only review the optimal quadratic estimator for temperature and polarization.

3.5.1 Temperature

One important effect of the remapping due to lensing is to boost the small-scale
(non-Gaussian) power in the damping tail of the CMB temperature anisotropy, as
measured by the four-point function. One can show under some assumptions that
there exists a quadratic estimator that maximizes the signal-to-noise ratio infor-
mation available in this four-point function. On top of the fact that we assume
Gaussianity and statistical isotropy for the unlensed CMB, we need to assume first
that the lensing potential is a Gaussian random field, then that the noise is Gaussian
and uncorrelated with the signal and that the deflections due to lensing are small.
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As we discussed previously, for a given fixed lensing potential, the distribution of
the observed (and so lensed) temperature T̃ is not isotropic. The Taylor expansion
of the lensed temperature field to first order in the deflection angle shown in Eq.
3.16 reveals that the off-diagonal elements of the two-point correlation function of
T̃ are proportional to the lensing deflection field. The simplest estimator (to lowest
order in the lensing potential) should therefore be quadratic in T̃ , and we define
the quadratic estimator of the lensing potential on our specific sky by a weighted
average of the off-diagonal terms [Hu & Okamoto 2002]:

ψ̂(l) = N(l)
∫

d2l1
(2π)2

T̃ (l1)T̃ ∗(l1 − l)g(l1, l), (3.29)

where g is a function (called the filter) that is used to optimize the signal-to-noise
ratio, and

N−1(l) =

∫
d2l1

(2π)2

(
(l− l1).lCTT|l1−l| + l1.lCTTl1

)
g(l1, l) (3.30)

is a normalization so that the estimator is unbiased at lowest order in ψ. Note
that the unlensed (and so theoretical) CTTl appears in this equation. We thus
need to suppose an early cosmology to reconstruct the lensing potential. Instead
of the predicted unlensed CMB power spectrum, we could use the observed lensed
CMB power spectrum or any slightly incorrect assumption, and it would simply
degrade the signal-to-noise ratio by a correspondingly small amount but it does not
introduce spurious structures in the ensemble-averaged recovery. Indeed, assuming
that there exists a parametrization in which the unlensed CMB power spectrum
can be reconstructed from the lensed CMB power spectrum (what we do explicitly),
using wrong assumptions appears as a calibration error [Hu 2001]3. The optimal
filter function g is then chosen in order to minimize the leading-order variance <
ψ̂(l)ψ̂∗(l′) > such that:

g(l1, l) =
(l− l1).lCTT|l1−l| + l1.lCTTl1

2C̃totl1 C̃
tot
|l1−l|

, (3.31)

where C̃totl = C̃TTl +Nl andNl is the instrumental noise power spectrum. Combining
all the results, the power spectrum of the optimal quadratic estimator of the lensing
potential on our specific sky is given by:

< ψ̂(l)ψ̂∗(l′) >= (2π)2δ(l− l′)(Ĉψψl +N (0)(l)) +O[(Ĉψψl )2] (3.32)

Here, N(l) is the lowest order noise on the reconstructed potential, given by the
Eq. 3.30, and is often called the Gaussian bias. The four-point correlation func-
tion4 takes advantage of the fact that gravitational lensing converts Gaussian pri-
mary anisotropy to a non-Gaussian lensed anisotropy. When calculating this non-
Gaussian signal, however, there is a term N which is the disconnected part in

3See also [Anderes & Paul 2012] for a robust technique to mis-specification of the model.
4Recall that < ψψ >∝< TTTT >.
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the four-point correlation that has to be subtracted. Notice that we truncate
the computation of the estimator to the lowest order in the lensing potential.
In fact, the estimator is severely biased by also highest-order terms in the noise,
which are significant when attempting to estimate the lensing potential power spec-
trum from the variance, such as the so-called N (1) and N (2) biases which matter
at large and smale scales [Kesden et al. 2003, Hanson et al. 2011, Anderes 2013].
Fortunately, those biases can be estimated, and removed, in several ways, as
done for instance for the Gaussian bias in [Das et al. 2011, van Engelen et al. 2012,
Planck Collaboration 2014d].

3.5.2 Polarization

Although high precision polarization measurements are more difficult to obtain than
temperature, the polarization measurements have greater potential to improve the
lensing reconstruction in the case of low instrumental noise. The lensing effects are in
general stronger in polarization, and the lens-induced B-modes arise from smaller-
scale lenses than for temperature (typically l ∼ 1000, where the E-modes peak)
which makes the reconstruction of the lensing potential better in principle. Following
the same steps as in temperature, one can define optimal quadratic estimator ψ̂XY :

ψ̂XY (l) = NXY (l)
∫

d2l1
(2π)2

X̃(l1)Ỹ ∗(l1 − l)gXY (l1, l), (3.33)

where X, Y are T , E or B. The signal-to-noise ratio reachable with those esti-
mator depends on the correlation between X and Y and the effect of the lensing
on them. For statistical parity invariance, the two cross-correlations TB and EB

should vanish. Therefore, their estimator does not suffer from the cosmic variance
from the unlensed E and B fields on small scales, unlike other correlations. For
example, ψ̂BB gives little information if there are no unlensed B-modes, while the
correlation between the lens-induced B-modes with the E-modes gives a powerful
estimator. In order to increase even more the signal-to-noise ratio and have a better
estimate of the lensing potential, one can combine all the estimators to give a total
minimum-variance estimator estimator:

ψ̂MV (l) =
∑
p

ψ̂p(l)Wp(l) (3.34)

NMV (l) =
(∑

pq

(N−1)pq

)−1
(3.35)

where p and q are the possible auto and cross correlations between T , E and B

(without permutations). The weights Wp are given by:

Wp =

∑
q(N

−1)pq∑
qn(N−1)qn

(3.36)
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3.5.3 Some limitations

I highlighted the reconstruction of the lensing potential in an ideal case, where
we have all-sky measurements. In general, working with a partial sky coverage
makes the reconstruction more difficult, including leakage of E-modes into B-modes
[Pearson et al. 2014]. In addition, for a nonuniform survey geometry, with perhaps
foreground-contaminated regions removed, more sophisticated techniques than the
Fourier transform weighting scheme employed here would have to be developed
[Hu 2001, Hanson et al. 2009a].

3.6 Weak lensing, dark energy and cosmological neutri-
nos

The CMB lensing is an early dark energy probe. For instance the B modes directly
feel the intensity of lensing from the Hubble expansion at high redshift [Hu 2005,
Acquaviva & Baccigalupi 2006]. Concerning the background evolution, many of the
dark energy models are parametrized by essentially two parameters: the present
value w0 of the equation of state and its first derivative with respect to the scale
factor a, −wa

w(a) = w0 + wa(1 + a). (3.37)

In particular an accurate measurement of the lensing peak may break the degeneracy
between those two parameters. As seen in Fig. 3.3, we show the effect of different
values for w0 and wa on the lensed B modes power spectrum.

Dark energy is not the only component to modify the structure formation rate.
Since the detection of neutrino oscillations has proved that neutrinos have mass,
the idea that massive neutrinos could play a significant role in the history of the
Universe and in the formation of structures becomes an active field of research (see
[Bond et al. 1980] or [Lesgourgues & Pastor 2006] for a review of the field). Even if
the effect of such a component is a priori small, observational cosmology reached re-
cently such a high precision that it is unavoidable to take into account the presence
of massive neutrinos, in particular in the observable matter density power spec-
trum [Planck Collaboration 2015d]. The latter would be for instance damped in a
noticeable way by massive neutrinos as shown in Fig. 3.4. The effect on the back-
ground cosmology from the neutrinos is highly degenerate and can be compensated
by changes in other cosmological parameters (such as H0). There is, however, some
sensitivity of the CMB anisotropies to neutrino masses as the neutrinos start to be-
come less relativistic at recombination5 (modifying the early ISW effect), and from
the late-time effect of lensing on the power spectrum. The latest constraints from the
satellite Planck (assuming three species of degenerate massive neutrinos), in com-
bination with other experiment gives

∑
mν < 0.17 eV [Planck Collaboration 2015d]

5Neutrinos became non-relativistic after recombination.
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Figure 3.3: Left panel: Measure of the redshift distribution of the lensing effect com-
ing from the background cosmological expansion (lensing kernel) for two different
dark energy models: SUGRA (inspired by supergravity theories, dashed line) and
ILP (inverse power law potentials, solid line). Right panel: Lensed B modes power
spectrum for various possible values of the dark energy parameters: w0 = −0.9 and
wa = 0.5 (solid line), w0 = −0.965 and wa = 0.665 (dashed line), w0 = −0.8 and
wa = 0.24 (dotted line). The change in amplitude is noticeable. Figures taken from
[Acquaviva & Baccigalupi 2006].

and an experiment like Simons Array in combination with galaxy surveys fore-
casts an error on the total sum of the neutrino masses of σ(

∑
mν) = 0.04 eV after

foregrounds subtraction.

Figure 3.4: CMB temperature anisotropy spectrum and matter power spectrum for
three models: ΛCDM model with three massless neutrinos (red), and two models
with three massive degenerate neutrinos and a total density fraction fν = 0.1. In
the last two models, ωb and ωcdm have been kept fixed (to the value of the model
with massless neutrino), and so it implies a shift either in h (dashed green) or in ΩΛ

(dotted blue). Figures taken from [Lesgourgues & Pastor 2006].
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3.7 Observational status as of 2012

The first observational constraints on CMB lensing are quite recent given the fact
that they require measurements of CMB power spectra at high resolution with
low instrumental noise. So at first, people tried to put constraints on the gravita-
tional lensing potential by measuring its correlation with other large-scale tracers of
the gravitational lensing potential. For example, we discussed previously the Inte-
grated Sachs-Wolfe effect which takes into account the variation of the gravitational
potential between the moment when the photon enters and leaves this potential.
This effect is extremely sensitive to the background properties of the dark energy
[Coble et al. 1997] and can provide an unique probe on its clustering properties. Un-
fortunately, the ISW effect is difficult to capture as it is hidden by larger primordial
anisotropy. But using the fact that both ISW and the deflection field of CMB lensing
are large-scale tracers of the same gravitational potential, their cross correlation can
be probed [Seljak & Zaldarriaga 1999, Goldberg & Spergel 1998] and can be used
to isolate the ISW effect or measure the matter power spectrum. While lensing
measurements from the CMB alone provide direct constraints on the evolution of
gravitational potentials, cross-correlations with tracers of large-scale structure have
the advantage of being less sensitive to systematic errors and have potentially larger
detection significance which makes that cross correlations happened earlier than the
direct detections. The first detections of CMB lensing were obtained through cross-
correlation with radio and optical galaxies [Smith et al. 2007, Hirata et al. 2008].
Finally, the first detection of the CMB lensing potential power spectrum using the
four-point function has been made recently by ACT using the CMB temperature
lensing alone [Das et al. 2011]. The observational field is now extremely active, and
the publications made during the period 2012-2015 (which covers my PhD study)
and a more extensive account of the latest results on the subject is provided in the
Chap. 11.

3.8 Delensing

The lens-induced B-modes pattern is added on top of any B-modes produced earlier,
such as the primordial ones related to tensor metric perturbations and which are a
key prediction of many inflationary models, see Sec. 2.3. The tensor contributions
are more pronounced at low multipoles (large angular scales), whereas the lensed
contribution has a typical signature at small scales (arcminute scales) as shown in
the Fig. 3.2. So for a relatively high value of the tensor-to-scalar ratio r, those
two effects can be loosely distinguished on the extrema of the spectrum (very low
multipoles vs very high multipoles). Therefore if we want a precise characteriza-
tion of the primordial B-modes power spectrum, the lensing contribution acts as a
strong contaminant. In addition, the smaller the value of r, the more difficult is the
separation of effects.

Observations from large-scale CMB B-mode polarization put already several
upper limits on the value of the tensor-to-scalar ratio, reaching recently r < 0.12
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(95% C.L.) [Ade et al. 2015]. For long time, experiments were in an instrumental
noise-limited regime and upper limits decreased as the observation time increased.
Recently, large arrays of detectors sensitive to polarization have been deployed and
observe the sky for few years now. The instrumental sensitivities of those different
experiments are now reaching a turning point where their "noise" levels will be soon
limited by the lensing amplitude6. Leaving foreground contamination on aside,
the limiting factor in constraining the amplitude of the primordial B-modes power
spectrum will be the lensing B-modes, acting as a source of noise for scales larger
than the arcminute.

So in order to get rid of the contamination of lensing, and put tighter con-
straints on primordial B-modes, we needs to "delens" the observations7. Such al-
gorithms already exist and are based on a statistical separation of the tensor and
lensing B-mode signals. Those mainly fall into two categories, internal delensing
[Knox & Song 2002, Kesden et al. 2002, Seljak & Hirata 2004] and external delens-
ing [Smith et al. 2012, Simard et al. 2014, Sherwin & Schmittfull 2015], but both
are based on the same idea: given a noisy observation of E-modes and an estimate
of the CMB lensing deflection field, one can form an estimate of the large-scale
lensing B-mode and subtract it from the observed B-mode to reduce the level of
lensing contamination. The definition of internal or external methods relies on the
type of data sets used to estimate the CMB lensing deflection field. In the case of
internal delensing, the CMB lensing deflection field is estimated from the same data
sets used to estimate the CMB angular power spectra, while in the case of the case
of external delensing, one tries to obtain maps of the integrated mass distribution
from observations of large-scale structure which are tracers of the same underlying
mass distribution.

Ideally, one would like to use internal delensing, as it requires only one data set.
However, to achieve best delensing perfomance, this also requires very low noise
levels and high angular resolution experiments. The latter is crucial as the large-
scale lensing B-modes receive contributions from E-modes and gravitational lensing
on small scales. So, for low noise experiment limited by the lensing, large and small
scales become linked [Smith et al. 2012]. So far, major ground-based experiments
focusing only on large-scale B-modes have been using large beams (degree scales) and
they do not have the internal capability of delensing as they cannot determine with
high fidelity the small scale polarization. In this respect, relying on an external
delensing seems promising with such experiments. On the contrary, experiment
with small beams (arcminute scale) like Polarbear and its upgrades will have the
capability of using internal delensing with their upcoming data sets8. As of now,

6We recall that the lensed B-modes coming from E-modes for modes l << 1000 is somehow
independent of the multipole considered (white noise spectrum). in terms of instrumental white
noise level, it would correspond to roughly 5 µK.arcmin.

7Theoretically it is not actually needed if one knows the full statistical distribution of the
lensed sky accurately enough by using the full true likelihood [Lewis & Challinor 2006]. However
in practice, building such a likelihood is not trivial and delensing algorithms appear easier to handle
at first even though limitations of such algorithms are their efficiency to actually delens.

8The main difficulty for those small beam experiments will be to be able to reconstruct the
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the delensing algorithms are not perfect in the sense that simulations shown that we
cannot completely remove the effect of the lensing, and are yet to be validated on
real data. The main realistic forecasts predict an improvement on the constraints
on r of a factor less than 10 [Sherwin & Schmittfull 2015].

largest modes. This requires a perfect control of systematic effects, and a long integration time.
For ground-based experiments, there are also the problem of the atmosphere and the foreground
removal. This is discussed later in the manuscript.
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4.1 We live in a complex world

Observations of the CMB are conducted from the inside of our Galaxy. The pho-
tons collected by the instruments are a mixture of CMB photons and photons that
come from many physical mechanisms that generate microwave emissions in the
sky. In addition to contaminants from our galaxy, there are also extra-Galactic con-
taminants such as point sources (quasars or distant galaxies) or emission from the
Sunyaev Zel’dovich effect. Those emissions make measurement of CMB temperature
anisotropies difficult, and some of the effects are also believed to be polarized. The
main foregrounds for intensity measurements are:

• Synchrotron radiation: Relativistic electrons which undergo an acceleration
by a magnetic field produce a synchrotron radiation. The spectrum is func-
tion of the intensity of the magnetic field but also the energy of the electrons.
The magnetic field of our Galaxy (few nG) is sufficient to produce a large syn-
chrotron emission for frequency up to 100 GHz. The spectrum is often modeled
by a power law νβs , where ν is the frequency and βs ∼ 3 [De Zotti et al. 1999].

• Galactic dust: Cold dust within our own Galaxy can emit via thermal radiation
(vibrational dust). At frequencies above 100GHz, the dominant radiation
mechanism is thermal dust emission. The characteristic frequency is function
of the dust grains, and therefore varies with dust population and environment.
The thermal dust has been recently modeled as a modified black body with free
temperature Td and spectral index βd per pixel [Planck Collaboration 2015c].
On average, the spectral index is around βd ∼ 1.5 and the dust temperature
Td ∼ 20 K.

• Thermal Sunyaev-Zeldovich: Inverse Compton effect which implies Cosmic
Microwave Background photons and free electrons from the inter-cluster
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hot gas. This thermal effect modifies the spectrum of the Cosmic Mi-
crowave Background photons, parametrized by the Compton parameter ysz
[Planck Collaboration 2015h].

• Free-free emission, or bremsstrahlung: This radiation arises from electron-
ion collisions, and therefore is well characterized by physical considerations
[Dickinson et al. 2003].

• Spinning dust: Cold dust within our own Galaxy can also emit by excitation
of their electrical dipolar moment (rotational dust) [Draine & Lazarian 1998].
It has been shown that simple two-parameter model can accommodate
a large number of spinning dust model variations to high precision
[Bennett et al. 2013, Planck Collaboration 2015c].

In polarization, the status is somewhat different. We do not have as many mea-
surements as for intensity, and as of now we have often to rely only on models. On
the other hand, while in intensity between 10 and 20 different diffused components
for a proper model depending on the level of details required have been identified
[Planck Collaboration 2015c], there are only two clearly detected foregrounds in po-
larization:

• Synchrotron: The exact level of polarization fraction is not really known, and
vary across the sky. Several predictions and measurements reported polariza-
tion fraction between 3% and 20% (Galactic plane vs high Galactic latitudes)
[Page et al. 2007], while other analyses report polarization fractions as high as
40-50% [Kogut et al. 2007] with a maximum of 70% [Pacholczyk 1970].

• Thermal dust: Depending on the alignment of dust grains with the magnetic
fields, thermal dust radiation can be polarized. Here again, the exact level of
polarization fraction is not exactly known. The balloon-borne Archeops
gave the first constraints at large angular scales [Ponthieu et al. 2005],
and recently the satellite Planck released higher precision measures
[Planck Collaboration 2015b, Planck Collaboration 2015c]. The effect of po-
larized dust has been shown to be a high contaminant at large angular scales
for frequency above 90GHz, thus particularly dangerous for ground-based ex-
periments exploiting those range of frequency to observe the CMB.

4.2 Challenges for polarization measurements

"One of the main challenges facing upcoming CMB experiments will be to distin-
guish the cosmological signal from foreground contamination". This sentence could
have been written in an article this year, but it has been written almost 20 years
ago in [Tegmark et al. 2000]! In fact the problem of foregrounds is well known
for long time [Bennett et al. 1992, Brandt et al. 1994, Dodelson & Stebbins 1994].
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Figure 4.1: Brightness temperature rms as a function of frequency and astrophysical
component for temperature (left) and polarization (right). Notice that they vary
depending on location on the sky, angular resolution and sky coverage. One can
clearly see the different behaviours of the component with respect to the frequency,
which help in performing a component separation (cleaning) to get the CMB. Figure
adapted from [Planck Collaboration 2015c].

For sure our knowledge on foregrounds is way better than 20 years ago thanks
to better measurements and better models, but they still remain one of the main
contaminant of CMB measurements. Concerning polarization measurements, we
are entering into a era of precision measurements. In the early 2000, first mea-
surements of E-modes were published [Kovac et al. 2002]. Luckily, the amplitude
of E-modes on the region measured was still higher than any foreground con-
tamination. However, during my thesis, first B-modes measurements came out
along with the first trouble due to foregrounds. At first, results were focused on
small scales B-mode, were the levels of polarized foregrounds are supposedly low.
The experiment Polarbear reported its first measurement of B-modes at sub-
degree scales, with a contamination of foreground much lower than the statisti-
cal uncertainties [POLARBEAR Collaboration 2014c]. But shortly after, the BI-
CEP2 experiment claimed detection of B-mode polarization at degree angular scales
[BICEP2 Collaboration 2014], consistent with a tensor contribution with tensor-to-
scalar ratio r = 0.2+0.07

−0.05. Right after, a detailed study by the satellite Planck of
the polarized dust over the sky [Planck Collaboration 2014g] and latter a joint anal-
ysis Planck x BICEP2 revealed that the excess of power found by the BICEP2
team was mainly due to polarized dust contamination, leaving an upper limit on
the tensor-to-scalar ratio r < 0.12 at 95% confidence [Ade et al. 2015].

The weakness of the BICEP2 experiment was its lack of frequency coverage.
They observed mainly at one frequency, 150 GHz, and so they didn’t have the
capability to disentangle the different contributions. However, the satellite Planck
has 9 frequency bands, which make it a powerful machine to separate the different
sky components. Unfortunately, the sensitivity of Planck compared to ongoing
and future experiment is not very good, and is quickly the limiting factor while
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Figure 4.2: Top: Estimated contamination at 150 GHz at ` = 80 from dust in rd
units from the Planck data (see [Planck Collaboration 2014g] for more explana-
tions and definitions). Maps are in orthographic projection and Northern (South-
ern) Galactic hemisphere is on the left (right). Bottom: Associated uncertainty.
The main message of these figures is that there exists no regions where the contami-
nation of polarized dust can be safely neglected. Even low dust regions have a large
uncertainties. Figures taken from [Planck Collaboration 2014g].
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cross-correlating with others. Future ground-based experiments already plan to
have multi-frequency detector arrays, with O(104) detectors, enabling an efficient
component separation such as Polarbear-2 [Barron et al. 2014]. These hardware
upgrades have also to be coupled to new, statistically robust and numerically efficient
component separation algorithms and methodologies to enable unlocking the full
scientific potential of the data1. In this manuscript, I will detail the analysis of
Polarbear-1, which firstly target the part of the B modes at high multipoles
(>500), believed to have little contribution from polarized foregrounds (at 150 GHz).

1Although I worked on component separation over the course of my PhD with collaborators
from APC (FR), SISSA (IT) and LBNL (US), with potential application to future Polarbear
data sets, this is not discussed later in this manuscript (not yet published and released).
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Polarbear is a new generation CMB B-mode polarization experiment. It con-
sists of the Polarbear receiver and the Huan Tran Telescope (HTT). Since the
beginning of 2012, Polarbear is located at the James Ax Observatory in the At-
acama Desert in Chile. During the first half of the first campaign of observations
(2012-2014), it focused on small patches on the sky (10 deg2 each) with approx-
imately 3.5 arcminute resolution and precise control and mitigation of systematic
effects. These regions on the sky were scanned repetitively at constant elevation
with the polarization of the incident radiation modulated by a cold stepped half-
wave plate (HWP). The observations were performed with 1,274 bolometric detec-
tors operating simultaneously all along the first campaign. In order to handle such
a huge flow of data (about 10 times more than Planck), Polarbear instrument
includes a complex detector/readout system. Its operation involved multiple modu-
lations on different timescales to allow for discrimination of the sky signals from the
instrumental or atmospheric ones. Mid-2014 to the end of 2015, we switched to the
observation of a bigger patch on the sky (roughly 400 deg2), and the cold stepped
HWP was replaced by a warm (outside the receiver) and continuously rotated HWP.
During observations, the instrument is observing the sky with the initial array at
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Figure 5.1: Polarbear experiment at the James Ax Observatory in Northern
Chile on Cerro Toco at West longitude 67◦ 47’ 10.40”, South latitude 22◦ 57’ 29.03”,
elevation 5,200m.

150 GHz. The future upgrades of the instrument (Polarbear-2 and Simons Ar-
ray) will have several frequency bands of observation to allow an efficient cleaning
of the cosmological signal of interest from various astrophysical contaminations.

Test phase
2010

2011
Move to Chile

First light
2012/01

2012/05 - 2013/06
1st season

2013/10 - 2014/04
2nd season

2014/05 - 
3rd season

Small patches Small patches Large patch

Figure 5.2: Timeline for the first campaign of the Polarbear experiment. I started
to work on Polarbear in April 2012, just before the first season, and my thesis
finishes at the end of 2015, at the end of the 3rd season of observation.

5.1 Science goals

Polarbear is dedicated to characterize the B-mode polarization of the CMB on
both large and small angular scales (for more informations about B-modes science,
see Chap. 1, 2, 3, 4). Its relatively small angular resolution (3.5 arcminutes) allows
to probe the small scales down to ` ∼ 2500 while its location in Chile gives in prac-
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tice access to more than half-sky coverage revealing the largest scales. In its first
campaign, Polarbear focused on small patches on the sky, and integrated deeply
to quickly achieve a very low level of noise.This strategy was devised in order to
characterize first the gravitational lensing signal. This strategy has been a success,
and based on one year of the data the signal has been detected using three different
observables as described in three major papers [POLARBEAR Collaboration 2014a,
POLARBEAR Collaboration 2014b, POLARBEAR Collaboration 2014c]. Com-
bining all probes (galaxy cross-correlation, deflection field power spectrum, and
direct B-power measurement), Polarbear achieved a 4.7σ rejection of the null
hypothesis of no B-modes. The second season focused also on the small patches,
while the third season seen a change of scanning strategy. A large portion of the sky
is now under observations (∼ 400 sq. degrees), in order to also probe larger scales.
Polarbear and its successor, so-called Simons Array, are projected to achieve
a 2σ detection of r = 0.001 and will also continue to characterize the gravitational
lensing signals in an attempt to measure properties of cosmological neutrinos and
dark energy properties.

5.2 Instrument overview

The following sections describe the instrument’s detectors and optics depicted also
in Fig. 5.4. Informations and descriptions are taken from [Arnold et al. 2010,
Kermish et al. 2012, Errard 2012].

5.2.1 Huan Tran Telescope

The Huan Tran Telescope is an off-axis Gregorian telescope with a 2.5 meter primary
aperture that provides the 3.5 arcminute angular resolution necessary to characterize
the gravitational lensing and leading to low edge diffraction. The telescope was de-
signed for large optical troughput while simultaneously mitigating systematic effects
such as temperature-to-polarization leakage and cross polarization.

5.2.2 Receiver

The fundamental noise limit for any CMB experiment is known as photon noise,
which is set by the quantum fluctuations in the arrival rate of photons. CMB
polarimeters seek to minimize all other noise sources, as phonon noise or readout
noise, such that photon noise dominates. To achieve a high level of sensitivity, the
Polarbear focal plane is cooled to 250 milliKelvin so that thermal carrier noise in
the detectors is smaller than the photon noise. A closed-cycle refrigeration is used
to achieve this cooling.

5.2.3 Detectors Array

Because only bolometers operated from sub-Kelvin platforms and at frequencies less
than 90 GHz are sensitive enough to be photon noise limited, the Berkeley group
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(i)
(ii)
(iii)
(iv)

Figure 5.3: The Huan Tran telescope at the James Ax Observatory. The labels on
the picture are (i) the primary guard ring, (ii) the precision primary mirror surface
(2.5 meter primary aperture), (iii) the prime-focus baffle, and (iv) the co-moving
shield. The secondary mirror and receiver are not visible within their respective
enclosures.

created a crossed double slot dipole, TES Bolometer which can measure polarized
radiation with the required sensitivity. Gains in sensitivity were made using huge
number of these TES bolometers and by increasing the throughput of the telescope.

Antenna The antenna used in our detector is a double slot dipole. The antenna
is used in conjunction with a silicon hyper hemi-spherical lens on which the detector
chip sits on. The combination antenna/lens couples efficiently to typical telescope
optics. Each antenna is also linearly polarized and a dual linearly polarized version
can be used. This is convenient in our application, since the polarization of the
incident light is what we want to measure.

Superconducting Microstrip The antenna is connected to a transmission line,
which brings the incoming optical power to the detector. Conventional transmission
line materials would be very high loss at these frequencies, which would be unaccept-
able for an experiment such as this where we are already looking for an extremely
weak signal. However, superconducting microstrip is a very low loss transmission
line that works well in our application. A convenient choice of materials is niobium,
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1274 bolometers @ 150 GHz
Cooled to 250mK

Hex Module

6mm lenslet

8cm

POLARBEAR-I receiver

Antenna Microstrip Filter
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1 mm

Figure 5.4: Overview of the Polarbear receiver. A zoom is progressively made
on the focal plane which contains 7 wafers (Hex module), in which are allocated
the 1,274 bolometers grouped in 637 pixels of two bolometers. The small white
and black "balls" seen in focal plane and in the Hex module are the hemi-spherical
lenslets. The microstrip filters and the antennas can also be seen on the last picture.

which has the highest superconducting temperature of all the elements.

Band defining microstrip filter An advantage of the use of microstrip to con-
nect the antenna to the bolometer is that band defining microstrip filters can be
integrated into the transmission line [Myers et al. 2008]. In a conventional millime-
ter wave receiver, band defining filters are metal mesh off-chip optical filters. In
our detectors, the filters are integrated on the chip and different pixels can easily
have different frequency sensitivities. Increasing the level of integration eases the
scaling of current receivers to higher pixel counts (strategy used for Polarbear-2
for instance).

Bolometers The bolometers are composed of a terminating resistor and a super-
conducting Transition Edge Sensor (TES) located on a leg isolated silicon nitride
substrate. The incoming power on the superconducting microstrip is dissipated in
the load resistor as heat, and the change in temperature is measured by the TES.
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The bath temperature must be below 300 mK in order to achieve the sensitivity
needed, that is reducing the detector noise to below that in the incident light. TESs
have many advantages over conventional semiconducting bolometers. Probably the
most important one in our application is that the TES readout electronics can be
multiplexed, so that the signal for more than one pixel can be brought out on each
pair of wires.

5.2.4 Multiplexing

Figure 5.5: Schematic outlining the demonstration of an eight-channel readout mul-
tiplexer. Also shown is a picture of the inductor chip.

Polarbear focal plane hosts more than a thousand of bolometric detector, and
thus they require sophisticated readout schemes. To reduce thermal loading onto
the coldest stages of the experiment and to reduce the complexity of instrumenting
large arrays, a readout multiplexing scheme has been developed and demonstrated
at Berkeley (digital frequency domain multiplexer, or DfMux [Smecher et al. 2012]).
Bias signals, which are sinusoidal voltage at a unique frequency, must be sent from
room temperature electronics down to cryogenic focal planes and readout signals
must get back out without exceeding the cryogenic budgets of feasible milliKelvin re-
frigerators [Kermish et al. 2012]. The sensor signals are thus separated in frequency
space and can by summed before being readout by SQUID electronics (supercon-
ducting quantum interference device).

5.2.5 Half-wave plate

The rotated (stepped) half-wave plate is a 3.1 mm thick single crystal disk of A-plane
sapphire. Because of its birefringent properties, rotation of the HWP modulates
the polarization of the sky signal (and not the instrumental one), and thus allows
for mitigation of instrumental systematic effects which do not have the requisite
symmetry of true CMB polarization such as 1/f noise of scan-synchronous noise.
It also ease requirements on the levels of instrumental and cross-polarization and
allow such systematic errors to be better characterized and corrected later in the
data analysis step. In the first season, the HWP was at the entrance of the receiver
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and stepped everyday by an angle of 11.25 degrees. For the 3rd season, we stopped
using this HWP, and we instead installed a warm (outside the receiver) continuously
rotated HWP.

5.3 Observations

5.3.1 Different types of observation

As mentioned previously, Polarbear is a dedicated B-modes experiment. Our
main objective is to observe the CMB, and extract the polarization information with
an unprecedented precision. For the first and second season, we scanned repetitively
three patches on the sky. The patch locations, reported in table 5.1, have been
chosen to optimize a combination of low dust intensity, availability throughout the
day, and overlap with other observations for cross-correlation studies (e.g. QUIET,
HERSCHEL).

Table 5.1: The three Polarbear patches.

Patch RA Dec Effective Area
RA23 23h1m48s -32◦48’ 8.8 deg2

RA12 11h53m0s -0◦30’ 8.7 deg2

LST 4h40m12s -45◦ 7.0 deg2

Driven by our cooling system, we operate with a 36 hour observation cycle,
shown in Fig. 5.6. We start the cycle by performing observations of astrophysical
calibrators such as radio sources, planets and polarized sources (Tau A or Cen A).
Those observations are used afterwards to model the different instrument properties,
as described in Chap. 6. Then the first patch shows up above the horizon, and
we start observing it. Before and after each hour long observation of CMB patch
(and before/after each planet/radio sources/polarized source measurements), we
perform two calibration measurements: the stimulator (gain calibration) and the
elevation nods (weather). We continue to observe during 36 hours in total, and
then we perform a fridge cycle, and we start again observing once the first patch
or astrophysical source shows up again. The main type of scans performed are
summarized in Tab. 6.1.

5.3.2 The scanning strategy for the CMB patches

Each patch is available from 6 to 8 hours per day. We break up each patch obser-
vation into approximately 15 minutes long scans, called Constant Elevation Scans
(CES). During each CES, we work at constant elevation, and we scan back and
forth in azimuth while the patch moves in the sky. Each sweep in azimuth is called
a subscan. After approximately 15 minutes, the patch is entirely scanned and has
disappeared from our field of view, and we change the elevation of the telescope
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Calibration:
Radio sources

Planets
TauA

... ...

Helium fridge recycle every 36 hours

Stimulator scans
Elevation dips (el. nod)

Constant elevation
Scans (CES) x 5 

Stimulator scans
Elevation dips (el. nod)

Constant elevation
Scans (CES) x 5 

Stimulator scans
Elevation dips (el. nod)

Constant elevation
Scans (CES) x 5 

Patch 1 Patch 2&3

Figure 5.6: Diagram of a typical observation cycle, with observations of astrophysical
sources and CMB. Ground-based calibrator measurements (stimulator) are often
performed in order to latter calibrate the bolometers. The cycle last for 36 hours
and then we restart again the whole cycle.

to catch up with the patch, and we start again scanning in azimuth. Per day and
per patch, we have about 30 CES, and each CES consists in roughly 200 subscans.
This scanning strategy has the advantage of taking benefit of the rotation of the
sky in the telescope frame. Indeed for a given patch, we scan the same sky for all
CES, but the "attack angle" (value of the polarization angle projected on the sky)
is not the same between two different CES. This allows us to break degeneracies in
polarization as we need at least two measurements with different polarization angle
values to disentangle Q and U inside a pixel. It also mitigates the spurious signals
which are coming from the instrument or from the ground and therefore which do
not rotate with the sky. Such an illustration of the mitigation of systematic effects
is shown in Fig. 5.7 and is quantified latter in Chap. 10.

5.3.3 Remote observations

I also participated to the routine operations of the telescope through remote ob-
servations. In order to improve the efficiency of the observations as well as the
quality of the data, a set of tools has been created to watch the site activities at
all times. Those shifts are shared between people in US, Chile, Europe and Japan
so that there is always someone watching the operations and operating remotely or
contacting the site team quickly. In this way we find and correct problems more
quickly and minimize down time. Those shifts are usually 4 hours long, with several
reports used afterwards to build statistics.

5.4 Data analysis framework

The data analysis of an experiment such as Polarbear is not the task of a single
person. The volume of data recorded, and the complexity of the data set require a
broad panel of knowledge in instrumentation, signal processing, statistics, physics,
astrophysics, CMB data analysis as well as high level coding skills. Fortunately,
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Figure 5.7: The CMB signal (red star) is fixed in sky coordinates while the leakage
signal (blue star) is fixed in ground coordinates, leading to an averaging of leakage
due to sky rotation when we compute sky maps.

the development over the last decades of efficient programming languages and col-
laborative tools made this task easier for many people with different skills to work
together efficiently. At any given time, the data analysis team was constituted of
about 10-15 people, distributed all over the world (US-Europe-Japan-Chile). We
used a collaboration platform (Twiki1) to share all kind of materials and news, and
regular teleconferences (1-3 per week as far as I was concerned) were done in order
to report everyone’s work to the collaboration. I also did several extended visits in
both the US (University of California, Berkeley) and Japan (KEK, Kavli IPMU).

5.4.1 AnalysisBackend

AnalysisBackend is Polarbear’s analysis package, designed both for in-the-field
use for Chile data, as well as for analysis the data from elsewhere in the world.
AnalysisBackend is a stand-alone package in the sense that we can analyze the data
from row timestreams up to the power-spectrum estimation. It can also serve as an
interface with already existing analysis tools, by first pre-processing the data (un-
packing and calibration). Working on AnalysisBackend codes involves dealing with
rapid development and changes from up to a dozen users, so we make use of Git
which is a distributed version control system2 (free and open source). The program-
ming language chosen was Python3. One of the main advantage of this language
is it’s open source license. Also, Python allows for easy interfacing with other pro-
gramming language, and we sometimes make use of C to get better computational

1http://twiki.org
2http://git-scm.com
3https://www.python.org

http://twiki.org
http://git-scm.com
https://www.python.org


92 Chapter 5. The Polarbear experiment

Figure 5.8: One of the page of the web interface of the LivePB software (Yuji
Chinone). We can easily check out the azimuth, elevation, RA, Dec, the feature
flags (describing operations ongoing), etc. We can see for example a typical CMB
scan between 5 am and 12pm, with constant elevation period changing every 15
minutes and quick azimuth sweeping meanwhile.

performances.

5.4.2 High performance computing: the era of supercomputers

We collect the data at a rate of about few Terabytes per year. Exact analysis of the
data set produced is a serious computational challenge, which cannot be done on a
single laptop or simple workstation. This has to be matched by sophisticated and
robust analysis performed on powerful machines, as we need to process several times
the data set, or even simulate it thousands times. Most of the work done in this thesis
has been performed at the National Energy Research Scientific Computing Center4

(NERSC), which is a scientific computing facility based in California (USA). NERSC
provides several of the largest computing systems of the world. All along my thesis,
I mainly performed my data analysis work on three machines: Edison, Hopper and
Carver. The data were mostly processed on the Edison machine, which is a Cray
XC30 supercomputer with 133,824 compute cores, grouped in 5,576 computes nodes
(2x12-core Intel "Ivy Bridge" processor at 2.4 GHz). Each node has 64 GB memory,
and each core has 19.2 Gigaflops/sec at the peak performance. Over the course of
my three years of thesis, I used about 1.5×106 CPUhours, with 3/4 of it devoted to
the analysis of the first and second seasons of observation.

4https://www.nersc.gov

https://www.nersc.gov
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The calibration of the data is the first step, and at this early stage of the experi-
ment, it’s one of the longest in order to have the cleanest data possible. While I only
had a small contribution to the calibration for the first release, mostly learning from
experienced observers, I was highly involved in the calibration throughout the second
release by leading the overall effort. In addition, I was leading the gain calibration
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pipeline for the second release, while contributing to modeling the beams in the
meantime. I completely automated and parallelized the gain calibration pipeline,
so that as a result we can generate the gain model for more than 2 years of data
in less than an hour. While working on the gain calibration, and motivated by a
discrepancy between the two first seasons, I also extended the framework to use
Saturn’s observations consistently, by for instance accounting for the contribution
from its rings in the analysis. I only participated indirectly to the effort to model the
pointing by providing the inputs and feedback from the studies I led, and followed
closely on the work related to the polarization angle calibration to ensure its coher-
ence with other steps of the calibration pipeline. The atmosphere correction and the
pixel differencing technique were already in place when I arrived, but I participated
to the characterization of the performances for real observations.

6.1 Overview

The Polarbear instrument is a complex system, operating in a complex and chang-
ing environment. In order to do any meaningful analysis, we need to calibrate the
data taken by the instrument. Calibrating the data consists in building a coherent
data model in which we can compare and combine different measurements of the
same quantity. This means establishing a relation between reference measurements
with uncertainties and any "real life" measurements with their uncertainty used to
derive the scientific results. Ideally, the reference measurements (calibrator) have
smaller uncertainties than the measurements used for scientific purposes, so that
the calibration should only be a small part of the total error budget in the final
results. In order to maintain the quality of measurement as well as to monitor the
performance of the instrument, we perform some of the calibration steps recurrently.

There are four primary instrument properties to be modeled: individual detector
pointing (Sec. 6.3), thermal-response calibration (Sec. 6.5), the instrument effective
beam (Sec. 6.6), and the polarization angle (Sec. 6.7). In addition, specifically
to ground-based experiment, one needs to take into account the influence of the
atmosphere through its transmission, the weather and the surrounding environment:
Polarbear is set on the ground and surrounded by mountains!

The low level processing is a long and complex task. There are few and rather
general recipes available in the literature given that each experiment is unique and
requires a unique treatment, and so we need the in-depth knowledge of the instru-
ment and its environment in order to clean the data at best. We often process
iteratively, by refining models and testing new hypotheses. It is also illusory to try
to separate the calibration work into independent pieces as they are all entangled.
So despite the four several models listed above, one upgrade in one model needs
to be checked and propagated into the other models. One of the main change in
calibration tools between the first release and the second release was the automation
of the different pipelines. In addition, calibration is a never ending process in the
sense that we can always do better at the price of spending more time and effort
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Table 6.1: Main types of scan performed.

Type Comments
Science CES/elnod/stimulator scans

Radio pointing Track and raster for a long time over one or many sources
Optical pointing Track and fixed
Array beam maps Track and raster covering many pixels,

with many sets of sky offsets (planets and Tau A)
Tuning performance Run stimulator calibration at several elevations

Note. — The complete list is bigger, including more than 30 different feature flags.

on it. The real question is what are the requirements to have a sufficiently good
calibration in a reasonable amount of time? This answer is not obvious. We will see
later that we make use for instance of different null tests and checks for systematics
to assess the quality of the data and so the calibration.

6.2 Organizing the data

6.2.1 From Chile to elsewhere

The data is backed up on several disks in Chile down the mountain at a rate of about
50 Mb/s and then sent everyday from Chile into different places around the world
at a rate of 10 Mb/s (Internet) in order to perform the data analysis. The archive
file indexing software constructs a table of observations. The table describes the
contents and start and stop times for observations and scans. A scan is defined as a
timer period where the scan name, source, and feature registers are constant. Scans
are named in a human readable format according to the starting time of observation
YYMMDD_HHMMSS (gregorian date). The main type of scans are summarized
in Tab. 6.1.

6.2.2 Downsampling

We record the data at a rate of 190.73 Hz. The telescope azimuth and elevation
encoders are queried at 95.4 Hz.The telescope pointing is reconstructed using the
procedure described in Section 6.3 and linearly interpolated to the bolometer sample
times. Because the analysis of the first season and the second season focused on
scales ` < 2100, corresponding to time domain frequencies less than 4.2 Hz (at
constant velocity of 0.75 deg/s on the sky), we downsample the bolometer TOD
and we reconstruct pointing by a factor of six to 31.8 Hz. The downsampling is
performed in a single stage, with a single antialiasing filter. The antialiasing filter
is constructed using a Kaiser window function (α = 6) which gives a 3 dB point at
the new Nyquist frequency, which means the very top end of the band takes a small
aliasing penalty and have a small roll off. The band of interest of this filter goes
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from 0-14Hz and has negligible ripple, so this gives plenty of margin if we want to
go for even smaller scales (up to ` ∼ 6500 theoretically). In addition, performing a
downsampling of the timestreams allows to process a smaller amount of data, and
reduce the memory consumption for the next steps of the analysis. We store on
disks both the fullsampled and the downsampled data.

6.2.3 Deconvolution of time constants

The bolometer optical response times, which are between 1-3 ms, are small enough
that deconvolving these transfer functions is not necessary [Arnold et al. 2010]. The
mean and maximum values of the time constants for each bolometer over the first
season is shown in Fig. 6.1. The values of the time constants for the second season
are similar to the first season. We checked that the bolometers with very high time
constant (higher than the science band) are discarded from the analysis.
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Figure 6.1: Left panel: Mean values of the time constants τ (in second) for each
bolometer over all measurements of the first season. Most of the values are less
than 10 milliseconds. For comparison, the grey shaded region corresponds to the
science band (1-3 Hz). Right panel: Correlation between time constants (in second)
and stimulator measurements (in ADC) for the first season. Most of the high values
for the time constants correspond to small values of the stimulator (poor signal-to-
noise).

6.3 Individual detector pointing

A five-parameter pointing model [Mangum 2001] characterizes the relationship be-
tween the telescope’s encoder readings and its true boresight pointing on the
sky. Of the parameters described in this reference, Polarbear uses IA, the
azimuth encoder zero offset, IE, the elevation encoder zero offset, CA, the colli-
mation error of the electromagnetic axis, AN, the azimuth axis offset/misalign-
ment (north-south) and AW, the azimuth offset/misalignment (east-west). We
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experimented with extending and modifying this parameter set, by adding more
parameters and/or splitting the data as a functions of different criteria (dis-
tance to the Sun/Moon, weather, temperature of the ground, etc.). So far we
did not find substantial improvements to the model reported above and used in
[POLARBEAR Collaboration 2014c]. The pointing model is created by observing
bright extended and point-like millimeter sources that were selected from known
source catalogs [Wrobel et al. 1998, Murphy et al. 2010] to span a wide range in az-
imuth and elevation. These pointing observations occurred several times per week
during observations. For the first release of data, the best-fit pointing model recovers
the source positions for the sources that were used to create it with an accuracy of
25” RMS. Individual detector beam offsets are determined relative to the boresight
using raster scans across Saturn and Jupiter and offsets are then combined with the
boresight pointing model to determine the absolute pointing of each bolometer. In
order to characterize the fluctuations, we made offset measures several times per
week during observations for both seasons, and we found an RMS fluctuation of less
than 6” over time. The offsets show arcsecond-level differential pointing between
the two detectors in a pixel, which is shown to be a negligible contaminant in Sec.
10.3.5. I was not directly involved in the estimation of the pointing model during
my thesis.

6.4 Saturn as a calibrator

6.4.1 From planet measurements to absolute calibration

Relative gain calibration using the stimulator occurs at the beginning and at the
end of each hour-long CMB observation block. Ideally, we would like also to know
the absolute and relative gain calibration for our CES science scans. To do so, we
perform observations of planets1 in combination with external relative measurements
(stimulator, see next section on gains) to find the conversion from ADC counts
to physical temperature units. This involves using our knowledge of the planet
temperature, the angular size on the sky during the measurement, the atmospherical
condition, and the beam of each bolometer in order to determine the gain of the
bolometers mapping the planet. We have typically O(102) observations of each
planet per season of observation.

Planet gain factor G When a detector is observing, the signal received is not
exactly the same as the emitted one due to the diffraction-limited optics in the
telescope: the input signal is convolved with the beam of the instrument. We define
the planet gain factor G as the response of the detector to a signal, that is the
conversion (or transfer function) from detector units to physical units. So ideally
we would like to have a source filling the entire detector beam B, in order to have
access to this quantity defined as

1We observe Jupiter, Saturn and Venus. For the gain model, we use only observations of Saturn.
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G =

∫ ∫
dθdφB(θ, φ). (6.1)

Let’s now assume that we are observing a planet. For a given bolometer, we make
a beam map m which is the true spatial distribution of the planet T convolved with
the beam B of the bolometer such that

m(θ, φ) = (T ∗B)(θ, φ) =

∫ ∫
dθ1dφ1T (θ − θ1, φ− φ1)B(θ1, φ1). (6.2)

In order to simplify the calibration, we approximate the planet as a point source
with brightness temperature Tp. This is justified by the small angular diameter of
the planets that we use to calibrate ( typically 15-50 arcseconds as shown in Fig.
6.2) with respect to the beam of each bolometer (typically 3.5 arcminutes). So the
Eq. 6.2 can be simplified as

m(θ, φ) ≈ TpΩpB(θ, φ), (6.3)

where Ωp is the actual solid angle of the planet with angular diameter 2rp (Ωp =

πr2
p). So finally, the planet gain factor can be expressed as a function of the measured

beam map m and the planet parameters Tp and Ωp as

G ≈
∫ ∫

dθdφ
m(θ, φ)

TpΩp
. (6.4)

Model In the actual analysis, we do not solve the Eq. 6.4 explicitly. The reason
is that our scanning strategy doesn’t allow us to scan entirely the planet for each
bolometer at each scan. We observe planets using raster scans that is we track the
planet as it moves across chopping around with a throw large enough so all detectors
in a row see the planet. We also perform elevation steps between each azimuth scan,
but they are too widely spaced (2 arcminutes) to capture all the important features
of a detector beam in this direction. This scanning strategy results in individual
detector beam maps having long stripes along azimuth at constant elevations. It is
thus insufficient to simply integrate the map obtained from the planet scan, as it
has only partial information. The technique we employ instead is to use the planet
data to fit an elliptical Gaussian model to the beam core data in combination to an
integral of the map residuals to that fit to account for near-sidelobes. For a given
channel and a given observation, the gain planet factor Gch,obs is modeled as

Gch,obs = α(obs)
I1(ch, obs) + I2(ch, obs)

Tsatπr2
sat(obs)

, (6.5)

where α contains the atmosphere transmission correction (weather), Tsat is the mi-
crowave brightness temperature of Saturn, rsat is half the average angular diameter
of Saturn, and I1 and I2 are the integrated Saturn intensity (in ADC.steradian)
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coming from the main lobe and the sidelobes respectively. The last two terms ac-
count for any dilution of intensity due to the beam of the bolometers or any intensity
coming from the sidelobes.

• α(obs): The inverse of the atmospheric transparency estimated either from
APEX or from Polarbear measurements of sky brightness at different ele-
vations. This coefficient is computed per observation and it is the same for all
bolometers. See also Sec. 6.8.1.

• Tsat: the microwave brightness temperature of Saturn. See Sec. 6.4.2 for more
details on the computation of the temperature.

• rsat(obs): Half the average angular diameter of Saturn. This number is com-
puted for each observation using ephemeris.

• I1(ch, obs): Contribution from the main lobe. Computed for each bolometer
and each observation.

• I2(ch, obs): Contribution from the sidelobes. Computed for each bolometer
and each observation.
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Figure 6.2: Average angular diameter (in arcsecond) for Saturn (left) and Jupiter
(right) as a function of the date of observation (MJD). The angular diameter is
computed for each observation using ephemeris. First season is shown with the blue
circle and second season with the green cross. We do not attempt to model the
change of the opening angle of Saturn’s rings as viewed from Earth.

Integrated Saturn intensity from the main lobe: I1 The Eq. 6.5 contains
two contributions from the beam of each detector. The I1 term is the contribution
from the main lobe of the beam, that is the integral of the intensity map of Saturn
as seen by the main lobe of the detector. In order to determine this term, we first
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Table 6.2: Fitted parameters after data selection.

Amplitude
√

8 log 2σx
√

8 log 2σy dx dy
[ADC] [arcmin] [arcmin] [arcsec] [arcsec]

Free amplitude
first season 222.5 3.47 3.47 0.125 -0.009

first season-p2 237.0 3.48 3.54 0.091 -0.046
second season 240.9 3.50 3.53 0.076 -0.064

Note. — Amplitudes are not normalized for the coaddition. The first season-p2 contains Saturn
data from March-June 2013. The differences in amplitude are mostly due to a change of Saturn’s
brightness temperature.

fit (within a radius r ∼ 4 arcmin) a 2D Gaussian G(A, σx, σy, xc, yc) to the filtered
timestream of a bolometer (5th order polynomial filter) dch,obs with

G(A, σx, σy, xc, yc) = A exp
(
− 1

2
vTC−1v

)
, (6.6)

where v=
(
x− xc
y − yc

)
and C=

(
σ2
x 0

0 σ2
y

)
. Then we estimate the I1 term by inte-

grating the 2D Gaussian with the fitted parameters

I1 =

∫ ∫
dxdyG(A, σx, σy, xc, yc) = 2πAσxσy. (6.7)

Integrated Saturn intensity from the sidelobes: I2 The second term in the
Eq. 6.5 concerns the sidelobes. In order to determine the effect of the sidelobes,
we first subtract to the filtered timestream a simulated timestream from the 2D
gaussian model defined above, and then we integrate the intensity between an inner
radius and an outer radius

I2 =

∫ ∫ rext

rint

dxdy(dch,obs − dsimch,obs). (6.8)

Typically, rint = 4 arcmin and rext = 15 arcmin. The distribution of I1 and I2 are
shown in Fig. 6.4. Typically, the near-sidelobes (I2) contributes to 10% of the total.

6.4.2 Saturn’s rings impact

So far, we didn’t take into account the variation of the brightness temperature of
Saturn. For the first release, we used only 4 months of data for Saturn (June-
September 2012), and we assumed the temperature of Saturn to be constant, with
Tsat = 148 KRJ . However, when we analyzed the data for the full two seasons
(May 2012 - April 2014), we saw variations up to 10% in the calibration products
using Saturn as a calibrator, such as the planet gain factor defined in Eq. 6.5. The
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Figure 6.3: Co-added Saturn beam maps for the first release of data (left), the
first season of the second release of data (middle) and the second season of the
second release of data (right). This is for visualization purpose only as for gain
calibration we do not use full season co-added maps, but individual observation
maps to compute the planet gain factor (Eq. 6.5). The maps have been normalized
to one at the peak.
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Figure 6.4: Histogram of the estimated gain planet factors for all observations, and
all focal plane detectors (green) and the different contributions to the gain planet
factor from the beam of each detector (Eq. 6.5): main lobe (from I1, in blue) and
sidelobes ( from I2, in red). The sidelobes contribute to ∼10% of the total.

problem with the calibration is that we have to deal with a huge parameter space,
and it is difficult to isolate where the problem comes from2. We investigate several
possibilities such as an elevation dependency or correlations with the quality of the

2Assuming that the problem comes from one place, which is rarely the case ;-)
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weather (miscorrection of the atmosphere contribution, see Sec. 6.8.1), problem of
the stimulator (see next section), change in main beam parameters, or even changes
of sidelobes between seasons. But none gave a satisfactory explanation for the shift
of ∼10% in between the two seasons. At some point, we wondered whether it was
the right things to keep constant the brightness temperature of Saturn for such
a long period of time (almost 2 years of data). Given the angular size of Saturn
with respect to our beam size, we cannot resolve the details of the planet, and the
variations in the atmosphere of Saturn (poles/equator differences, clouds, seasonal
variations, etc.) are not under consideration. But Saturn has rings and even if we
cannot resolve them, their inclination with respect to the plan of observation of
an observer on Earth produces a variation in the measured microwave brightness
temperature, see e.g. [Dunn et al. 2002, Weiland et al. 2011, Hasselfield et al. 2013].

Opening angle The observer’s viewing angle or opening angle is the angle made
by the plane of the rings and the line of sight of the observer. Our site of observation
is located at the James Ax Observatory in Northern Chile on Cerro Toco at West
longitude 67◦ 47’ 10.40”, South latitude 22◦ 57’ 29.03”, elevation 5,200m. During
the first two seasons of observations, the opening angle varied from ∼ 12◦ to ∼ 23◦3.
The evolution of the opening angle is shown in Fig. 6.5. Each season has its own
range of opening angles which is not shared with the other, and so we can start to
guess that each season will be impacted differently.

Model The ring system is complex and rich, and has been studied by different
telescopes and orbiters such as Hubble Space Telescope, Cassini, and Voy-
ager. The contribution of the rings to the total temperature brightness of Saturn
is twofold: they obscure the main disk and therefore reduce the flux coming from
the main disk, but they also radiate at a lower temperature and contribute to the
total signal through a mix of scattering and thermal emission of planetary emis-
sion (at 150 GHz, the thermal emission dominates over the scattering), see e.g.
[Schloerb et al. 1979, Marouf et al. 1983, Dowling et al. 1987, Poulet et al. 2000].
The change in opening angle allows us to break the degeneracy between the con-
tribution of the disk and that of the rings. We follow closely the empirical model
proposed by WMAP in [Weiland et al. 2011]. The total brightness temperature of
Saturn is modeled as a contribution from the disk with seven surrounding rings (A,
Cassini division, Outer B, Inner B, Outer C, Middle C, Inner C)

T (θ) = Tdisk[Aud(θ) +
7∑
i=1

e−τ0,i| csc θ|Aod,i(θ)] + Tring

7∑
i=1

Ar,i(θ), (6.9)

where Aud is the projected area of the unobscured disk, Aod,i is the projected area
of the ring i on the disk, and Ar,i is the projected area of the ring i on the plane of
observation. Nominal disk and rings radii have been taken from Table 2 and 10 in
[Weiland et al. 2011], and all the projected areas depend on the opening angle at the

3http://new-pds-rings-2.seti.org/tools/viewer2_sat.html

http://new-pds-rings-2.seti.org/tools/viewer2_sat.html
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Figure 6.5: Opening angle θ of the rings of Saturn as a function of the date of
observations for the first season (blue circle) and the second season (green diamond).
The small cartoons represent how Saturn (body + rings) was seen by the telescope
for three distinct periods: first half of the first season (θ ∼ 14◦), second half of the
first season (θ ∼ 18◦), and second season (θ ∼ 22◦).

moment of observation. Note that we suppose seven rings, but we only use one global
temperature Tring to characterize them, and both Tdisk and Tring temperatures are
assumed time invariant. This is rather convenient than physical, and it could have
been different. However, we suppose that each ring i has its own ring-normal optical
depth τ0,i, whose values have been taken from [Dunn et al. 2002]. Concerning rings,
the thermal emission dominates over the scattering at 150 GHz, so we do not correct
for the part coming from the scattering while estimating the temperature of the rings
(see e.g. Fig. 7 in [Dunn et al. 2002]).

Setup and results We use 132 observations of Saturn selected for their high qual-
ity of data (the data selection is the same as the gain model, see next section). The
observations of Saturn are not calibrated in physical units, therefore we cannot esti-
mate the temperature directly4. As an external calibrator, we use the observations

4This is a funny situation. We usually use planet observations to calibrate the timestreams,
because we assume that we know the temperature. But in this case, we want to estimate the
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Table 6.3: Rayleigh-Jeans temperature of the disk and the rings for the different
wafers.

Array number of pixels Tdisk σdisk Tring σring χ2 (ddof)
Wafer 10.4 19 125.9 1.2 18.5 2.5 322 (283)
Wafer 8.2.0 32 131.6 1.0 5.8 1.9 667 (478)
Wafer 10.3 40 130.7 0.9 17.6 2.2 1149 (598)
Wafer 10.2 59 123.6 0.6 22.9 1.3 946 (883)
Wafer 10.1 29 130.2 1.4 19.1 2.6 715 (433)
Wafer 10.5 49 123.7 0.8 24.7 1.6 1569 (733)
Wafer 9.4 53 130.2 0.6 21.3 1.2 805 (793)

Note. — We performed observations at 148 GHz only, so the thermodynamic brightness tem-
peratures are obtained by adding 3.5 K to the RJ values. The uncertainties contain only statistical
uncertainties. The wafer 8.2.0 is not used in the global fit.

of Jupiter, which is believed to have a stable temperature over the two seasons (at
least more stable than Saturn). From Eq. 6.5 we compute an average of the gain
planet factor per pixel over the whole seasons < GJuppix >. This number is then used
in combination to Eq. 6.5 for the observations of Saturn

Gsatpix,obs

< GJuppix >
T satpix,obs = α(obs)

I1(pix, obs) + I2(pix, obs)

< GJuppix > πr2
sat(obs)

, (6.10)

where we combined the data of each detector within a pixel. Ideally, the ratio
Gsatpix,obs/ < GJuppix > should be one. The two main conditions to fullfill are: the
temperature of Jupiter has to be stable over the two years and the observations
of Jupiter should be not too much affected by non-linearities (saturation of the
bolometers because the temperature of Jupiter is too bright). So far, we found that
both conditions are satisfied within our errorbars5. We then combine observations of
Saturn per pixel into periods of 15-30 days, taking the uncertainty in each combined
measurement to be the error in the mean of the contributing data. We fit the model
Eq. 6.9 simultaneously to all the pixels for the temperature of the disk Tdisk and the
combined temperature of the rings Tring. The binned data points, and the best-fit
model for few pixels are shown in Fig. 6.6. The uncertainties include those from
Jupiter measurements, those from Saturn beam measurements, and scatter in each
bin. The resulting models are good fits with χ2 per degree of freedom ∼ 1 − 2

depending on the portion of the focal plane used. We show the fitted parameters in
Rayleigh-Jeans units and their uncertainties per-wafer in the Table 6.3. The results
are consistent except one wafer (8.2.0) which exhibits a low ring temperature. We
do not understand yet this results, so we discard it from further analysis. If we use

temperature, so we need to calibrate first. Some experiments use the CMB to calibrate, see for
instance [Hasselfield et al. 2013].

5Although non-linearities are still under investigation at the time of writing.
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Figure 6.6: Binned data points, and the best-fit model of effective Saturn brightness
as a function of the opening angle for two focal plane pixels. In the range of opening
angles spanned (12◦ to 23◦), the total temperature brightness is only increasing.
The total uncertainties include those from Jupiter measurements, those from Saturn
beam measurements, and the scatter in each bin. The data for the first season (May
2012 - September 2012) are in blue, the data from the first season (October 2012 -
June 2013) are in green, and the data for the second season (December 2013 - April
2014) are in red. The fit is done simultaneously on all the data of all the pixel.

the full focal plane (excluding the wafer 8.2.0), we found the model fit parameters
and uncertainties (χ2 per degree of freedom ∼ 2)

Tdisk = 129.2± 0.4(stat)± 2.4(syst) K (6.11)

Tring = 16.6± 0.9(stat)± 5.2(syst) K, (6.12)

where the temperatures are in Kelvin Rayleigh-Jeans (add 3.5 K to the temperature
at 150 GHz to obtain the thermodynamic brightness temperatures). The systematic
uncertainty has been estimated from the wafer-by-wafer variations. Notice that in
the range of opening angles spanned (12◦ to 23◦), the total temperature brightness
is only increasing. ACT’s team reported complementary measurements at 148 GHz
from -2◦ to 12◦ in [Hasselfield et al. 2013]. They found Tdisk = 133.8 ± 3.2 K and
Tring = 17.7± 2.2 K, which is consistent with our values. A compilation of several
measurements at various frequencies around 148 GHz is shown in Fig. 6.7. The
features of the power spectrum are complex to explain, and a complete explanations
would be beyond the scope of this thesis. In [Weiland et al. 2011], it is argued that
the rings primarily scatter rather than absorb CMB radiation and so temperature
of the rings must not be corrected to absolute brightness as for the disk. We did not
follow this approach in our measurements, and both temperatures for Polarbear
in Fig. 6.7 have been corrected to absolute brightness temperature (+3.5 K).
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Figure 6.7: Measurements of brightness temperature of Saturn’s disk (left) and of
Saturn’s combined rings (right) from: [Ulich 1981] (green plus), [Grossman 1990]
(blue box), [de Pater & Dickel 1991] (green circle), [Dunn et al. 2005] (black trian-
gle), [Weiland et al. 2011] (black diamond), [Hasselfield et al. 2013] (blue cross) and
Polarbear (red circle).

6.5 Thermal-response calibration

While performing observations, we register the bolometer Time-Ordered Data
(TOD), which are the electrical current in the detector. However we would like
to convert this current into temperature units. There are two issues : the absolute
gain calibration and the relative gain calibration between detectors. To perform
the gain calibration, we used different relative calibrators such as astrophysical and
ground-based calibrators. The determination of the gain for each bolometer is done
in two ways: from observations of planets (main method) or from observations of the
atmosphere (cross-check method). This section describes how we use observations
of planets in combination with measurements from the stimulator to derive the gain
model (bootstrapping). The stimulator is a thermal calibration source of known
temperature of 700◦C located behind the secondary mirror of the telescope. The
light runs from the stimulator to the focal plane via a small hole in the secondary
mirror, and the effective intensity of the source varies across the focal plane from
about 35-85 mK.

Once we have made measurements from the stimulator, the gain pipeline pro-
ceeds in three steps to do the gain calibration. The first step is to determine the
intensity template used to perform an absolute calibration. The intensity template
is computed individually for each channel from stimulator measurements without
accounting for stimulator polarization (Sec. 6.5.1). So in a second step we character-
ize the polarization of the thermal source by computing a polarization template(s)
using measurements of different astrophysical sources at different HWP rotation
angles (Sec. 6.5.2). The last step consists in gathering those two informations - in-
tensity and polarization - and generate the effective temperature template which is
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used to recover the absolute gain in ADC/KRJ of each pixel for all the observations
(Sec. 6.5.3). In addition to those 3 steps, we have a two iteration process to take
into account the impact of the atmosphere on the detectors.

Intensity 
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Model
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Data
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Figure 6.8: Schematic view of the computation of the gain model. The first iteration
is made using atmosphere correction from APEX. Then from the first gain model,
we estimate the PWV correction from the elnod measurements - believed to be more
accurate than the one from APEX-, and we re-estimate the model of gain. At the
end, we apply the data selection to remove data of bad quality, and we use the
gain model to calibrate the CMB observations. Notice that only Saturn data are
used to compute the beam calibration and the intensity template, while all planet
observations (Saturn, Jupiter, Venus) are used to constrain the polarized templates.

6.5.1 Intensity template

6.5.1.1 Algebra to compute the intensity template

We use the stimulator measurements taken before and after the planet scan to
compare the stimulator amplitude to the gain determined from the planet scan. For
each channel ch and each planet observation obs, we first take the mean Ach,obs of
pre- and post- amplitudes from the stimulator for a planet observation (in ADC
units)

Ach,obs =
Aprech,obs +Apostch,obs

2
(6.13)

∆Ach,obs =
∣∣∣(Aprech,obs + ∆Aprech,obs)− (Apostch,obs −∆Apostch,obs)

2

∣∣∣. (6.14)

Using the planet gain factor Gch,obs (from Eq. 6.5, in ADC/KRJ units) determined
from the planet observations, we can convert the stimulator measurements into per-
channel stimulator effective temperatures T effch,obs such as
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T effch,obs =
Ach,obs
Gch,obs

(6.15)

∆T effch,obs

T effch,obs

=

√(∆Ach,obs
Ach,obs

)2
+
(∆A

A

)2
+
(∆σx
σx

)2
+
(∆σy
σy

)2
, (6.16)

where A, σx and σy are beam parameters coming from the determination of
the planet gain factor (see Sec. 6.4.1). For each observation we then combine the
per-channel stimulator effective temperature between the two channels in a pair to
form the per-pixel intensity T effp,obs

T effp,obs =
T efftop,obs + T effbottom,obs

2
(6.17)

∆T effp,obs =

√√√√(∆T efftop,obs

)2
+
(

∆T effbottom,obs

)2

4
. (6.18)

If the stimulator source temperature is stable enough then this quantity should
be independent of the gain of the bolometers on a given day. So we average the
different per-pixel intensity for all the planet observations to form the intensity
template Ieffp

Ieffp =

∑
obs T

eff
p,obswp,obs∑

obswp,obs
(6.19)

∆Ieffp =

√√√√∑obs

(
Ieffp − T effp,obs

)2
wp,obs∑

obswp,obs
, (6.20)

where wp,obs = 1/(∆T effp,obs)
2 is the pixel inverse variance estimate for each per-pixel

intensity (assuming uncorrelated errors between two measurements).

6.5.1.2 Results for first and second seasons

The current calculation of the intensity template Ieffp is done using observations of
Saturn only. Saturn has been shown to give better performance than other planets as
far as gains are concerned. Jupiter is boderline for the gain calibration, as bolometers
can be saturated and therefore move into a non-linear regime6, and we have too few
observations of Venus to calibrate correctly the gains with it.

Dates of observations We do not use all the data from Saturn to compute the
intensity template. We discard data based on some data selection criteria such as
a too low number of channels available (typically the observation is rejected if the

6We are still investigating better this effect, to see whether we should worry about it.
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Figure 6.9: Intensity template Ieffp in KRJ for first season (top left) and second
season (top right) without temperature correction. The bottom row shows the
fractional variation between first and second seasons (s1-s2)/s1, in a focal plan view
(bottom left) or as an histogram (bottom right). The mean (bottom left) and the
median (bottom right) are quoted. For all pairs, there is roughly 10% difference
between both seasons.

number of channel is < 300) or a too high number of negative planet gain factor
(>20) for a given observation. Having a negative gain indicates problem during the
observation for the channel. For the first release (first season), we restricted the
data from June 2012 to September 2012, leading to 21 observations. For the second
release, we took all the data available within the two years of observations. After
data selection, we are left with ∼132 observations. However, we found a discrepancy
of an order 10% for all bolometers between the template values of the first and the
second season. After several investigations, we found out that the difference was
coming from the change in brightness temperature of Saturn, due to a change of the
opening angle of its rings with respect to the date of the observation. Thus, for the
second release we implemented a temperature correction as described in Sec. 6.4.2.

Intensity templates and fractional errors The figures 6.9 and 6.10 show the
intensity templates for first season and second season and their fractional variation.
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Figure 6.10: Intensity template Ieffp in KRJ for first season (top left) and second
season (top right) using the temperature correction. The bottom row shows the
fractional variation between first and second seasons (s1-s2)/s1, in a focal plan view
(bottom left) or as an histogram (bottom right). The mean (bottom left) and the
median (bottom right) are quoted. The difference between both seasons is much
smaller than in Fig. 6.9 (and smaller than the uncertainites, not shown here).

The Fig. 6.9 shows the templates without the temperature correction whereas the
Fig. 6.10 displays the templates with the temperature correction. Using the new
template for the first season, the model contains 908/1274 working bolometers for
first season and 812/1274 working bolometers for the second season. Bolometers
not registered in a template are not used for the rest of the analysis.

6.5.2 Polarization template(s)

6.5.2.1 Algebra to compute the polarization template

The effective intensity template is unfortunately not sufficient to calibrate the pairs
of bolometers. The problem is that individual detectors may have polarized response
to the stimulator, which depends on several factors : elevation, time (long-term
dependence) and HWP position. Because the elevation at which the measurements
is taken is highly correlated with the time of the year, it is difficult to isolate these
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effects which are gathered. For that, we define different epochs of the year, and we
compute one polarization template per epoch. The dependence of the individual
top and bottom bolometer effective temperatures on HWP angle has also to be
accounted for. To compute the polarization template, we start from Eq. 6.15, but
we introduce explicitly the HWP angle dependency θHWP

T effch,obs(θHWP ) =
Ach,obs
Gch,obs

(θHWP ). (6.21)

Then for a given θHWP , we compute per observation the per-pixel per-observation
fractional stimulator polarization

Pfrac,p,obs(θHWP ) =
T efftop,obs(θHWP )− T effbottom,obs(θHWP )

T efftop,obs(θHWP ) + T effbottom,obs(θHWP )
, (6.22)

and we take the median value of all corresponding observations to compute the
per-pixel fractional stimulator polarization

Pfrac,p(θHWP ) = Median({Pfrac,p,obs(θHWP )}). (6.23)

In practice, the planet measurements are sorted by HWP angle θHWP , and we
use only measurements for which the HWP table reports no confusion about the
position. All the measurements are fit simultaneously to the model

Pmodelfrac,p(θHWP ) = ONR + Pa cos(4θHWP − 2α), (6.24)

where ONR represents any offset polarization that is not rotated by the HWP (such
as mismatched bandpass spectra), Pa the fractional amplitude of rotated polariza-
tion, and α the phase. The model is fit to the three parameters ONR, Pa and α.
If we don’t have at least three measurements for a given θHWP , we replace this
measurement with the model, even though we used this point to fit the model.

6.5.2.2 Results for first and second seasons

Epochs For the first season, we used four different epochs

• 20110101_000000 - 20120923_142400 : 49 observations

• 20120923_213600 - 20121003_120000 : 8 observations

• 20121003_213600 - 20130128_000000 : 63 observations

• 20130130_000000 - 20130901_000000 : 66 observations.

The HWP was stepped almost every day of an angle 11.25◦, from 0◦ to 168.75◦.
The current calculation of the polarization templates is done using observations of
Saturn, Jupiter and Venus. For the first season, we took all the data from May
2012 to June 2013, leading to a total of 233 planet observations. After cuts, each
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epoch has respectively 49, 8, 63 and 66 observations left for the analysis. For the
second season we have a total of 131 observations. The HWP was not stepped,
therefore there is only one angle position which is at 45◦. The stimulator pipe has
been rotated February 22 2014, so we have two epochs

• 20130904_000000 - 20140222_000000 : 56 observations

• 20140222_000000 - 20140407_000000 : 48 observations.

The per-pixel per-observation fractional stimulator polarization measured Pfrac,p
is small but not negligible as shown in Fig. 6.11 for the different epochs of the first
season (|Pfrac,p| < 10%). The distributions are rather broad, and we performed
several systematic checks in order to probe the influence of the polarized contribution
in the gain model.
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Figure 6.11: Histograms for the per-pixel per-observation fractional stimulator po-
larization measured Pfrac,p (left) and errors (right) for the four epochs of the first
season.

6.5.3 Effective temperature

6.5.3.1 Definition

For the top and the bottom bolometers of a given pair, we model the effect of the
polarization of the thermal source on the intensity template Ieffp at a given HWP
angle as

Ieffp,top(θHWP ) = Ieffp (1 + Pfrac,p(θHWP )) (6.25)

Ieffp,bottom(θHWP ) = Ieffp (1− Pfrac,p(θHWP )) (6.26)

where Ieffp is the intensity template computed on the previous step, using Eq.
6.19, and Pfrac the per-pixel fractional stimulator polarization computed via Eq.
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6.23. Then for a given observation obs and a given pixel dp, a summed/differenced
timestream is formed from top dtop,obs and bottom dbottom,obs bolometer timestreams
as

d±p,obs =
Ieffp,top(θHWP )

Atop,obs
dtop,obs ±

Ieffp,bottom(θHWP )

Abottom,obs
dbottom,obs. (6.27)

6.5.3.2 Results for first and second seasons

For each observation, we generate the gain calibration files using the coefficients of
the Eq. 6.27. Those coefficients imply a measure of the light from the stimulator by
the detectors. While for planet observations the stimulator amplitudes Achannel,obs
are measured right before and right after the observation, for CES the stimulator
measurements are taken at the beginning and at the end of a group of 5 CES.
Those two measurements are called the pre- and the post-stimulator measurement
respectively. For the first release of papers, we rejected the group of CES which
had not both the pre- and post-stimulator measurements. Those CES were never
used elsewhere for the first release of data. For the remaining groups of CES, we
decided to linearly interpolate the pre- and post-stimulator values in order to give
to each CES inside a group, its pre- and post-stimulator amplitudes, and account
for possible drifts in the gains. The Fig. 6.12 displays the number of gain files - one
gain file being a CES or a planet observations - generated using the interpolation
of the stimulator. However, for the second release of data, we decided also to keep
in the analysis the group of CES having only a pre-stimulator measurement only
(but not post-stimulator measurement only). Although having only one stimulator
measurement may be a sign of a problem, we rather prefer to include them in the
analysis and rely on the cuts applied to the data in the next steps of the analysis.
This single measurement is used for all the observations until the next two stimulator
measurements. For the first data release, we also restricted our dates from late
June 2012 to early June 2013. No data from May and early June 2012 were used,
even if available. However, in the second release, we decided to include those data
relying on later data cuts, and the dates range from May 2012 to April 2014. The
total number of files for the second season (2013-2014) is smaller than in the first
season (2012-2013), reaching 7,731 observations with interpolation of the stimulator
measurements, 291 observations with only a pre-stimulator measurement, and 5 files
with only a post-stimulator measurement.

Since we have stimulator measurements before and after a group of several CMB
observations, we can study the variation of the measures for each channel. In prin-
ciple, we would like the measured amplitudes to be constant or to have a small
variation in between the two stimulator runs. Most of the relative variations are
below 1%, and a non-negligible fraction of all measurements is even below 0.1%.
Estimates of the uncertainties for each stimulator runs (relative) are equal or higher
in general than the variation in between the two stimulator runs. Similarly to the
first season, the estimates of the uncertainties for each stimulator run (relative) for
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the second season are low (≤ 10 %) and equal or higher in general than the variation
in between the two stimulator runs.
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Figure 6.12: Left : Distribution of gain files per month generated using interpolation
between pre- and post-stimulator measurements for the first season. Months such as
October or November 2012 contain almost 2,000 observations each (CMB or planet
observations), and the total number of gain files generated using interpolation for
the first season is 16,563. Right : Distribution of gain files per month generated
with only a pre-stimulator measurement (green, 496 observations) or only a post-
stimulator measurement (red, 23 observations). This single measurement is used for
all the observations until the next two stimulator measurements.

6.5.4 Automation of the pipeline

Automation of tasks is highly recommended from a data analysis point of view as it
avoids mistakes, forgetfulnesses, and difficulty to keep track on all the details which
went through a particular run. We are using pipelet7 to perform the automation of
the pipeline. One of the main change in terms of data analysis tools from the first
release to the second was to build automated pipelines.

6.6 Instrument effective beam

As mentioned previously, when a detector is observing, the signal received is not
exactly the same as the one sent due to the diffraction-limited optics in the telescope.
As a consequence, all the scales undergo a suppression of signal, and the smaller the
scales the bigger is the suppression. The effect start to be non-negligible at the level
of the beam size, that is at scales equal to the effective Full Width Half Maximum
(FHWM) if the beam would have been represented by a circular 2D Gaussian. On
the observed map levelm, the effect of the beam can be represented by a convolution
with the sky signal S

7http://www.apc.univ-paris7.fr/~lejeune/pipelet/html/index.html

http://www.apc.univ-paris7.fr/~lejeune/pipelet/html/index.html
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m(θ, φ) = (S ∗B)(θ, φ) =

∫ ∫
dθ1dφ1S(θ − θ1, φ− φ1)B(θ1, φ1), (6.28)

where B is the effective beam of the instrument. The Fig. 6.13 represents a simu-
lated map convolved with a beam of FWHM of 3.5’ and 30’. On the second figure,
the map seems blurred, and the smallest structures are no more visible.

-300 300
µKCMB

-300 300
µKCMB

Figure 6.13: Simulated intensity map convolved with a circular gaussian beam of
FWHM of 3.5’ (left) and 30’ (right). The level of details is clearly different in both
figures. If we want to be able to measure small scales, the detector beams have to
be sufficiently small with respect to the desired CMB fluctuations.

Currently, the estimation of each detector beam is made in two steps. We
first make use of observations of Jupiter to determine the beam profile, and then
we modify the beam profile to account for blurring in the maps due to pointing
model inaccuracies, evaluated using point sources in the patches. I was not involved
directly in the estimation of beams for the first release, but I participated to the
characterization of it for the second release.

6.6.1 Beam profile from Jupiter measurements

We use Jupiter to fill the entire detector beam B. In order to simplify the calibration,
we saw that we approximate a planet as a point source with brightness temperature
Tp. This is justified by the small angular diameter of the planet that we use to
calibrate (see Fig. 6.2) with respect to the effective FWHM of each bolometer
(typically 3.5 arcminutes). So the Eq. 6.28 can be re-written as the Eq. 6.3 and the
beam profile is given by

B(θ, φ) =
m(θ, φ)

TpΩp
. (6.29)

Individual detector maps are made from timestreams that are filtered to reduce
the effect of atmospheric fluctuations. This filtering is accomplished with a masked
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polynomial: a first-order polynomial that is fit to the timestream everywhere outside
of a 50’ radius around the planet. The individual detector maps are combined to
create a single-observation map with adequate coverage (see Fig. 6.14 for the full
season coadded map and Fig. 6.15 for the per-wafer beam maps). The weighting
used to combine individual detector maps is a noise weighting calculated from the
RMS of the map outside of the mask radius.
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Figure 6.14: Coadded beam map from measurements of Jupiter during the first
season (left), and beam profile (right) for Jupiter (blue) and Saturn (red). The
stripes parallel to the azimuth axis seen in the map on the left are typical from the
planet scanning strategy: the telescope tracks the planet as it moves across the sky
and relative to that tracking performs azimuth scans with elevation steps (raster
scans). Similar patterns are seen in Fig. 6.3. To get the beam profile from the
map, we bin radially. We can clearly see the transition between the main lobe and
the sidelobes around 4 arcmin. We overplot the radial profile from a 2D Gaussian
with FWHM of 3.5 arcmin for comparison (dashed black line). I also included the
fractional variation (planet-gaussian)/planet on the right panel.

We do not deconvolve the beam of each detector from timestreams in the map
space. The convolution is a heavy operation, and if the beam is sufficiently az-
imuthally symmetric it is much simpler to work in the harmonic domain. Indeed,
the convolution product in the real domain is simply a multiplication in the harmonic
domain. In addition, the beam can be approximated as azimuthally symmetric in
intensity because of the rotation of the instrument beams as projected on the CMB
patch due to changes in patch parallactic angle over the course of the day from our
mid-latitude site. The azimuthally averaged Fourier components8 are then found
for each single-observation map (daily map) and the multipole components of the
detector-combined beam for each single-observation is expressed as

B` =
M`

T`W`
, (6.30)

8Given the relatively small patch size for beam, we work in the flat-sky approximation.
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Figure 6.15: Per-wafer beam maps from all Jupiter observations for the first season
(left) and the second season (right). Notice that the colorscale is the same as Fig.
6.14 but there is a zoom on the main lobes (±7.5 arcmin). The results for the two
seasons are consistent as far as the main lobes are concerned.

whereM` is the average over φ` of the two-dimensional Fourier transformM(`, φ`) of
the temperature-calibrated map m(θ, φ), T` is the angular Fourier response function
for a finite planetary disk, and W` is the pixel window function which takes into
account the effect of the pixelization of the map. The multipole components and
covariance matrix of the beam are estimated by the inverse-noise-weighted mean
values and covariance matrix of the power spectra of many planet observations.
The resulting B` and its uncertainty in each multipole bin from observations of
Jupiter of the first season are shown in Fig. 6.16. The Polarbear beam can
be approximate by a circular 2D Gaussian with FWHM of about 3.5 arcmin. The
degree of ellipticity has been found to be much less than 5%.

6.6.2 Effective beams from point sources in the CMB patches

While co-adding the data of the CMB maps, there is a blurring effect due to inac-
curacies in our pointing model. To take into account that effect we model the effect
of an RMS pointing error in map space, σp, as

Beff
` = B` × e−`(`+1)σ2

p/2, (6.31)

where Beff
` is called the effective beam and where σp for each field is estimated by

fitting each point source with the Jupiter beam profile convolved with a Gaussian
smoothing kernel. We estimate a σp likelihood function for each individual point
source in each map. We then combine the sources within each patch to find a joint
likelihood for the RMS pointing error on that patch. The results are shown in Tab.
6.4 and the patch-specific beam functions are displayed in Fig. 6.16.

One can clearly see that the uncertainty in Beff
` has increased to account for

discrepancies in the measurements of σp. The measurements of σp from the ten point
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Table 6.4: Pointing error for Polarbear observing fields

Field RMS pointing error [”] Number of sources
RA23 64.5 ± 20.9 4
RA12 26.7 ± 18.2 5
RA4.5 31.5 ± 15.3 10

Note. — The amount of blurring is much bigger in the RA23 than in the other field. We do not
understand fully the effect (is that still true), but we think that the difference on the amount of
sources and their locations within each patch play some role.

sources in RA4.5 exhibited statistically significant differences with one another,
implying that the amount of blurring is not constant throughout the map, or that
the model for the blurring is not capturing the entire effect; we do not understand
the origin of this effect yet. One possibility would be the difference in signal-to-noise
ratio between each patch. For RA23, we have only few point sources and all of them
are located at the edge of the patch where the noise is very high, while for RA4.5
we get 10 point sources located everywhere in the patch.
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Figure 6.16: Left: Beam profile in the harmonic domain measured from Jupiter
(red) or from fitting point sources with a Gaussian-smoothed Jupiter beam (blue
solid line) with 1σ uncertainty (blue region) for each patch. (Courtesy: D. Schenck
and Z. Kermish) Right: Same but the beam uncertainties are shown separately for
more clarity. From [POLARBEAR Collaboration 2014c].

Given that the beam profile and the absolute gain calibration are partially de-
generated, the beam uncertainty also increases the uncertainty of our absolute gain
calibration by a factor of 1.5, from 2.8% to 4.1%. Fortunately, due to the fact that
the blurring is a sub-arcminute effect, the differences and uncertainties in the patch-
specific beam functions primarily affect the `-range at the high end of our reported
band powers and beyond (` > 1500), having little effect on the constraint of the lens-
ing amplitude, where most of the significance comes from the low end of the reported
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`-range. For the first season, an analysis using simply the Jupiter beams, calibrated
using the CMB temperature power spectrum, results in a lensing amplitude that
differs by 0.3% from the reported result [POLARBEAR Collaboration 2014c].

6.7 Polarization angle calibration

Each of the Polarbear detectors’ response to polarized signal, including its polar-
ization angle, polarization efficiency, and leakage due to relative-gain miscalibration,
is modeled. Also modeled are non-idealities in the HWP, which may vary for differ-
ent detectors across the focal plane. This section describes the polarization model
as developed using two astrophysical calibrators: Tau A and Cen A. We first de-
scribe the procedure to calibrate the individual pixel polarization angles with their
uncertainties, and the global angle calibration. In the end, we propose an alterna-
tive method to estimate the individual pixel polarization angles. I’m not directly
involved in the polarization angle calibration. Most of the work described in sections
6.7.1 to 6.7.3 are from discussion with H. Nishino during my stay in Nov. 2014 at
Kavli IPMU, and it is primarily based on his work. However, Sec. 6.7.4 is based on
my idea, but it has never been applied to the data yet.

6.7.1 Individual pixel angle calibration

Tau A and Cen A data Taurus A (Tau A) is a supernova remnant that emits
a polarized signal, mainly from the synchrotron emission of the central pulsar, and
its interaction with the surrounding gas. Tau A was first used for polarization
angle calibration by COMPASS [Farese et al. 2004] and was later characterized by
WMAP between 23 and 94GHz [Weiland et al. 2011], and by the IRAM 30m tele-
scope at 90GHz [Aumont et al. 2010]. The frequency dependence of the flux can
be well described by a simple power law. The index of the power law has been
measured by e.g. WMAP in combination with other experiments, giving an index
value around -0.3 [Weiland et al. 2011]. Centaurus A (Cen A) is a fainter polarized
radio-bright galaxy that has been characterized in the millimeter range by QUaD
[Zemcov et al. 2010]. It is used as a consistency check. The polarization angle of
each detector relative to the instrumental reference frame is found from observa-
tions of Tau A (and Cen A) while section 9.3.2 describes calibration of the overall
instrument polarization angle using the CMB itself.

During the first season, Polarbear observed Tau A several times per week,
leading to 125 observations9. After data cuts, almost 70 observations were used for
the final analysis. The timestreams are calibrated using either the processed stim-
ulator measurements (see Sec. 6.5) or gains derived from the elnods measurements
(only relative calibration). The first low-level processing consists in an operation of
filtering to reduce the effect of atmospheric fluctuations. First for each observation

9Notice that we do not use data when Tau A is within 30◦ of the Sun, which means May-
September from Chile.
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and each focal plane pixel we construct the intensity and polarization timestreams
s±p by summing and differencing the individual bolometers s�/⊥ within each pair

s+
p (t) =

s�(t) + s⊥(t)

2
(6.32)

s−p (t) =
s�(t)− s⊥(t)

2
. (6.33)

Then, we mask time samples lying within 5 arcminute from the center of the source,
and we fit a 5th-order polynomial for both intensity and polarization timestreams.
The templates are then subtracted from the whole timestreams. Detector differenc-
ing and polynomial baseline subtraction both act to remove atmospheric signals.

Figure 6.17: First season co-added maps of Tau A observed by Polarbear:
intensity (top left), Stokes Q parameter (bottom left) and Stokes U parameter
(bottom right). I also show the (linear) polarization intensity map, defined as
P =

√
Q2 + U2. The orientations of bars in map pixels represent polarization

angles at each map pixel.



6.7. Polarization angle calibration 121

Beam convolution and simulated timestreams We use the observations of
Tau A from the IRAM experiment [Aumont et al. 2010] to calibrate the polarization
angles. To do so, we first convolve the intensity and polarization maps X of IRAM
with the bolometer beam map B for each Polarbear bolometer belonging to a
focal plane pixel p1011

X�/⊥(q) = (B�/⊥ ∗X)(q) =

∫
dΩq′B�/⊥(q,q′)X(q′) (6.35)

where � and ⊥ stand for top and bottom bolometers respectively and q is the
pointing direction at time t: q(t)=[θ(t), φ(t)]. The fact that we convolve the input
Tau A maps from IRAM with different beam maps makes X⊥ and X� different. The
bolometer beam maps are generated using an elliptical model, whose parameters are
obtained using observations of planets (see Sec. 6.6). We then project out those
maps in time domain using the real pointing of Polarbear observations to form
for each focal plane pixel the top and bottom timestreams X�/⊥

X�/⊥(t) =
∑
q

AtqX�/⊥(q), (6.36)

where Atq is the pointing for sky pixel q and time t.

Data model The Polarbear data model in this context for a focal plane pixel
p at a time t for the two bolometers can be written as

d�(t) = (1 + ∆g(p))I�(t) + ε(p)[ Q�(t) cos 2Θ�(t) + U�(t) sin 2Θ�(t) ] (6.37)

d⊥(t) = (1−∆g(p))I⊥(t) + ε(p)[ Q⊥(t) cos 2Θ⊥(t) + U⊥(t) sin 2Θ⊥(t) ], (6.38)

where ∆g is the pixel relative-gain error and ε is the pixel polarization efficiency. A
priori, both parameters depend on time, but we assume that they are constant over
the full season. It only depends on the considered focal plane pixel. Notice that ∆g is
equivalent toONR defined in Sec. 6.5.2, so we have at least two independent methods
to estimate it. This redundant information is used later to estimate the systematic
uncertainty (see Sec. 10.3.6). Two bolometers in a pixel are orthogonally oriented,
so for two orthogonal detectors of a focal plane pixel p, the detector polarization
angle projected on the sky in equatorial coordinates Θ�/⊥ can be expressed as

10In principle, we should first deconvolve the IRAM beam map and then convolve with Polar-
bear beam maps. However, the IRAM beam size is approximately 27", much smaller than the
Polarbear beam size (∼ 3.5 arcminutes).

11Maps are here in in RA and DEC coordinate, otherwise if they are in azimuth and elevation
coordinates we have to include the polarization rotation operator P with parallactic angle and R
a vector rotation operator to convert from az/el to RA/DEC :

X�/⊥(q) =

∫
dΩq′B�/⊥(q,q′)PX(Rq′) (6.34)
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Θ⊥(t) = (π/2− θ�/⊥) + 2θHWP + θPA(t) = Θ�(t) + π/2, (6.39)

where θ�/⊥ is the detector polarization angle (not projected), θHWP is the HWP an-
gle, and θPA is the parallactic angle. We are here interested in polarized timestreams,
so we differentiate the two orthogonally oriented bolometers inside a pixel p

d−p (t) =
d�(t)− d⊥(t)

2
(6.40)

=
I�(t)− I⊥(t)

2
+ ∆g(p)

I�(t) + I⊥(t)

2

+ ε(p)
[Q�(t) +Q⊥(t)

2
cos 2Θ�(t) +

U�(t) + U⊥(t)

2
sin 2Θ�(t)

]
.. (6.41)

The difference of the intensity from the bolometers contains for instance the differ-
ential beam effects. However in this part of the analysis, we do not include the HWP
angle dependent differential beam effects in the beam parameters used to generate
beam maps, and we believe this effect to be negligible. We also need to apply the
absolute gain correction to IRAM data with respect to Polarbear ones. We sum
the Polarbear timestreams and we compare it to summed timestreams generated
using convolved IRAM maps for each pixel, and we estimate the normalization

IRAM : d+
p (t) =

d�(t) + d⊥(t)

2
≈

[I�(t) + I⊥(t)]

2
(6.42)

Polarbear : s+
p (t) =

s�(t) + s⊥(t)

2
≈ Ip,PB(t) + n+

p,PB(t) (6.43)

Here all the terms are negligible with respect to the sum of intensity terms. n+
p,PB is

the intensity noise for the pixel p. The Polarbear data are fit to the model using
a linear model

s+
p,model(t) = αp

[I�(t) + I⊥(t)]

2
+ βp. (6.44)

Note that the "noise" term βp is here just a global offset per focal plane pixel. We
then use αp to normalize the IRAM timestreams.

Fitting The 3 parameters which are unknown in the simulated timestreams given
by Eq. 6.41 are : ∆g, ε and θ�/⊥. The best-fit parameters for a focal plane pixel p
are obtained by minimizing the following χ2

χ2(p) =
∑
n

[
s−p (tn)− αpd−p (tn)

]2

σ2
p,n

, (6.45)

where the sum is performed over the different observations of Tau A. s−p is the polar-
ized timestream for the pixel p for Polarbear and σ2

p,n is the standard deviation
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of s−p for the nth observation. Notice that the HWP was stepped for the first season,
so there are several values of the HWP angle θHWP corresponding to different obser-
vations, allowing us to determine the detector polarization angle. After subtracting
the mean-wafer polarization angle, we discard the pixels being more than 3σ away.

Results Unfortunately, while writing this thesis, I cannot put out the full results
of this analysis as it will be included in a later publication dedicated to the analysis
of Tau A.

Some limitations The data model used in Eq. 6.41 assumes an ideal HWP,
meaning that the HWP just rotates the incident polarization by 2θHWP . However
the HWP has some non-idealities such as differential reflection and non optimal
retardance for frequencies which are far from its optimized frequency at 150 GHz.
Those effects can be described by using the Mueller matrix model for the HWP.

6.7.2 Estimation of uncertainties

The polarization model is based on a hierarchical understanding of our polarization
calibration, consisting of a global reference polarization angle, the wafer-averaged
polarization angles relative to that global angle, and the individual pixel angles
relative to the wafer-averaged angle. We consider uncertainty in each of these. The
systematic uncertainty in the global reference angle and wafer-averaged angle are
shown in Table 6.5. These are dominated by uncertainties in the pixel-pair relative
gain and in the non-axisymmetric beam model and the substructure of Tau A at 148
GHz. Non-idealities in the HWP over the finite Polarbear spectral bandwidth are
also an important source of uncertainty, both in rotation angle of linear polarization
and in the mixing of circular polarization into linear polarization. Using the upper
limit on Tau A’s circular polarization fraction of 0.2% [Wiesemeyer et al. 2011], the
systematic error from the circular polarization of Tau A is estimated to be 0.09◦.
The individual pixel polarization angle uncertainty in each wafer is estimated to be
1.0◦ from the spread of the pixel polarization angle distribution from the Tau A
measurement. The other systematic effects we evaluated, listed in Table 6.5, are all
negligible. The impact of all these uncertainties on the BB and EB power spectra
are addressed in Chap. 10.

6.7.3 Global polarization angle using Tau A

Once the timestreams are calibrated (gains and individual pixel angle), we coadd
the data from every pixel for each observation : In, Qn and Un. Due to noise
residuals outside Tau A, and due to the fact that Tau A is slightly extended, we
have a variation of the angle of polarization. To minimize this, we restrict the fit to
sky pixels q lying within 10 arcminute from the center of the source. This angle is
computed for each observation as
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Table 6.5: Systematic uncertainties in global reference and wafer-
averaged polarization angle, as measured using Tau A. Table from
[POLARBEAR Collaboration 2014c].

Angle Uncertainty Global Reference Wafer-Averaged
Absolute pointing uncertainties 0.12◦ -
Beam uncertainties 0.21◦ 0.23◦

Relative gain uncertainties 0.22◦ 0.42◦

Non-ideality of HWP 0.21◦ 0.64◦

Circular polarization of Tau A 0.09◦ � 0.1◦

HWP angle uncertainties 0.15◦ 0.13◦

Pixel pointing uncertainties � 0.1◦ 0.18◦

Bolometer time constant � 0.1◦ � 0.1◦

Filtering effect � 0.1◦ � 0.1◦

Polarized dust � 0.1◦ � 0.1◦

Total 0.43◦ 0.83◦

Note. — Uncertainty in the global reference angle as measured using EB power spectra is
addressed in Sec. 9.3.2.

αTauA =
1

2
arctan

(∑
q Un(q)∑
q Qn(q)

)
(6.46)

The variation of this angle over the first season is 1.2◦ (RMS). The second season
data exhibit some contradiction in the value and dispersion for the angle of Tau
A. This is currently investigated (HWP not in a quantized position?). The final
absolute value of the angle has not been published, because it will be the purpose
of a calibration paper.

6.7.4 Extending the model

The Eq. 6.45 compares two quantities which haven’t been processed the same way12.
The Polarbear data have been filtered, whereas the timestreams from IRAM
data are just maps projected on the time domain. Given the structure of Tau A
(quasi point-like for Polarbear ) and the relatively low order of polynomial (5th),
one could argue that the signal from Tau A is not affected by the filtering, and only
atmospheric effects are effectively suppressed. However this hypothesis has not been
tested so far. The data model for the difference timestream in the time domain for
a given observation n and a given focal plane pixel p can be written as

d = As + Ll + n. (6.47)

12Which is wrongly reported in the first release.
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l is the amplitudes of the Legendre modes we want to remove from the data. The
rectangular matrix L has size [nt×npoly] and contains the coefficients of the Legendre
polynomials, and the columns of it are orthonormalized, that is LtL = 1. n is the
noise vector of the pixel p for the nth observation, with size nt. A is a rectangular
matrix whose the number of rows is the number of time samples nt and number
of columns is the number of sky pixels nq multiplied by the number of parameters
nparam to recover. A can be seen as a pointing matrix (see Sec. 8), which relates
time t and position on the sky q(t) = (θ(t), φ(t)). For a given observation n and a
given focal plane pixel p, it has nparam non-zero entries for each row corresponding
to time t

As =


At0q0 . . . At0qnq−1

...
...

...
...

...
...

Atnt−1q0 . . . Atnt−1qnq−1

×
 s(q0)

...
s(qnq−1)

 (6.48)

where Atiqi is a [1× 4] matrix with values

Atiqi =

 [1/2,∆g(p)/2,
ε(p)

2
cos 2Θ�(t),

ε(p)

2
sin 2Θ�(t)]; if (θ(ti), φ(ti)) ∈ qi

[0, 0, 0, 0, 0]; otherwise,
(6.49)

and s(qi) is a [4 × 1] matrix which contains the combination of beam-smoothed
Stokes parameters in pixel qi from IRAM re-observed maps

s(qi) =


I�(qi)− I⊥(qi)

I�(qi) + I⊥(qi)

Q�(qi) +Q⊥(qi)

U�(qi) + U⊥(qi)

 . (6.50)

We want to estimate the pixel parameters from all observations of Tau A, so we
concatenate the data for each observations13. For convenience, we re-write the Eq.
6.47 as

d = As + Ll + n = [A L]

[
s

l

]
+ n = Ãs̃ + n (6.51)

The elements of the vector s are known (from IRAM maps), and we want to con-
strain the elements of A and P. The single-pixel multi-observations log-likelihood
is given by

− 2 lnLdata = const−
(
d− Ãs̃

)T
N−1

(
d− Ãs̃

)
(6.52)

were N is the time domain noise correlation matrix of pixel p for all observations.
At the maximum of the likelihood, we have an estimate of s̃, so we can eliminate

13Notice that the matrices L are uncorrelated between observations. Idem for A.
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it from Eq. 6.52 to obtain the spectral likelihood which allows us to determine the
maximum likelihood estimates of the parameters

−2 lnLspec = const−
(
ÃTN−1d

)T(
ÃTN−1Ã

)−1(
ÃTN−1d

)
(6.53)

ÃTN−1Ã =

[
ATN−1A ATN−1L

LTN−1A LTN−1L

]
(6.54)

The typical numbers per focal plane pixel for Polarbear data of the two seasons
are : nobs ∼ 102, nt ∼ 105, npix ∼ 103, npoly = 6, nparam = 4. Further symmetries
could be exploited14.

6.8 Environment

6.8.1 Atmosphere correction

While looking at planet, we need to correct for the absorption due to the change
in optical depth of the atmosphere and the variable amount of precipitable water
vapor in the atmosphere (PWV). The PWV values are either read and interpolated
from APEX weather station15 (first iteration of the calibration) or derived from sky
brightness measurements at several zenith angles (elnods, second iteration of the cal-
ibration). Concerning the transmission of the atmosphere, we rely on atmospheric
opacity simulations. We pre-computed transmission templates with the ATM soft-
ware [Pardo et al. 2001] for various values of PWV. Such templates16 are shown in
Fig. 6.18.

The atmospheric transparency, or transmission Tx is simply modeled as

Tx(z, PWV ) = e−τ(PWV )A(z), (6.55)

where τ is the atmospheric optical depth and A = sec(z) is the airmass at zenith
angle z17. Assuming that the form of the water vapor distribution above the site
does not change, the transmission models compute, for each frequency requested,
the atmospheric optical depth as [M.A. Holdaway 1997]

τ(ν, PWV ) = τw(ν)× PWV + τd(ν) (6.56)

where τd represents the dry opacity terms due to atmospheric constituents which
do not change with time, and τw represents wet opacity terms, which scale with
the amount of precipitable water vapor (PWV) in the atmosphere (depending on

14In Eq. 6.45, we used one single number per observation and per pixel for the noise (the
standard deviation of the timestream). We could assume the same which will make the structure
of the noise covariance matrix easier to exploit.

15http://www.apex-telescope.org/weather/
16https://almascience.eso.org/about-alma/weather/atmosphere-model
17The zenith angle z is related to the elevation angle el by z =

π

2
− el.

http://www.apex-telescope.org/weather/
https://almascience.eso.org/about-alma/weather/atmosphere-model
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Figure 6.18: Atmospheric transmission between 70 and 960 GHz for a range of com-
mon PWV values at the site (left panel) based on ATM software [Pardo et al. 2001],
and a zoom over the frequency range of interest for Polarbear, between 120 and
180 GHz (right panel). We can see that the transmission depends strongly on the
amount of precipitable water vapor in the atmosphere, and so we need to have an
accurate estimation of it to correct the observations.

the time of observation, highly variable). In the case of Polarbear we measure
the sky brightness at a single frequency ν = 150 GHz, and all those corrections are
incorporated into the coefficient α in Eq. 6.5, computed for each observation

α(obs) =
1

Tx(obs)
. (6.57)

The Fig. 6.19 shows the histogram of the PWV values estimated for each observation
for the first season.

6.8.2 Pixel differencing and atmospheric/ground rejection

The bolometers of the focal plane are grouped per pair. Each pixel in a Polarbear
module contains detectors for two orthogonal polarizations. Assuming the simplest
model, the Polarbear data model in this context for the two bolometers within a
focal plane pixel can be written as

d�(t) = I(t) +Q(t) cos 2Θ(t) + U(t) sin 2Θ(t) (6.58)

d⊥(t) = I(t)−Q(t) cos 2Θ(t)− U(t) sin 2Θ(t), (6.59)

where I, Q and U are the Stokes parameters and Θ is the detector polarization angle
projected on the sky. From this simple model, one can immediately see that one can
have I by summing the two bolometer timestreams, and Q and U by differencing
the two timestreams. This is the strategy used for the first and second seasons
of the first campaign (small patches). This approach has several pros and cons.
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Figure 6.19: Histogram of the PWV values estimated for each observation for the
first season (left panel) and complementary cumulative distribution for PWV val-
ues for first and second season (right panel). We discard from the analysis the
observations taken with a PWV value higher than 4 mm (∼ 7%).

The main advantage of this technique, is that any spurious signal coming from the
ground or from the atmosphere behaves like I and so is not modulate by Θ. In
this respect, differencing the two timestreams allows to get rid of a large amount of
those spurious signals. Fourier transforming this differential timestream allows us to
see how well the unpolarized atmosphere is suppressed at atmospheric frequencies
(low frequencies). The cutoff of this low frequency noise informs our scan strategy
to measure the large angular scale polarization signals. The sum and difference
amplitude spectral densities for one focal plane pixel and observation of one of our
CMB patches during 15 minutes are shown in Fig. 6.20. Pixel differencing with this
simple calibration method effectively suppresses by several order of magnitudes the
atmospheric fluctuations over a large bandwidth. Concerning intensity, since we sum
the two bolometer timestreams, the resulting timestream data are affected by the
atmospherical signal or the signal coming from the ground at low and intermediate
frequencies (< 5 Hz). We will see later how to get rid of most of those signal by
using appropriate filters (see Sec. 8.4).

Although this differencing method has the advantage of suppressing intensity-
like signal common to both bolometers inside a pixel, it is likely dangerous if each
bolometer see a different signal at a given time. In this case, differencing the
timestreams of the bolometers generates a spurious polarization term coming from
two unpolarized intensity terms. Especially effects such as pixel-pair differential
gains, or differential pointing should be carefully controlled. We will see later how
to address those issues, and what are the methods used to set up upper limits or
constraints on those effects (see Chap. 10).
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Figure 6.20: Binned intensity (blue circle) and polarization (green cross) timestream
noise spectral densities for one focal plane pixel and observation of one of our CMB
patches during 15 minutes. The red shaded region corresponds to our science band
for the first two seasons (1.04-3.13 Hz). Pixel differencing with this simple calibra-
tion method effectively suppresses by several order of magnitudes the atmospheric
fluctuations over a large bandwidth, and the noise is almost white over the region
of interest. For more informations about the noise estimation, see Sec. 8.2.
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Figure 6.21: Top panel : Calibrated (relatively) timestreams data for two bolometers
of the same pair (top in blue, bottom in red) during 100 seconds. The atmospheric
fluctuations are clearly seen as large scales, and the two bolometers almost see the
same amount of atmospheric signal at each given time. Middle panel : Difference
timestream between the two bolometers of the top panel (divided by two). Most of
the atmospheric fluctuations vanished, but we can see some long trends left. Bottom
panel : Difference timestream between the two bolometers of the top panel (divided
by two) and after the filtering step. We apply a mask in between subscans (sample
discarded) and remove linear trends in polarization (see Sec. 8). The resulting
difference timestream is almost perfectly white (noise dominated).
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Once the timestreams are calibrated, we need to clean them from any instrumen-
tal or environmental contamination. This section is a description of the data cuts
and the data selection used in Polarbear. There exists no recipes in the literature,
and so it requires an understanding of the data properties and particularities of all
possible pathologies. Another requirements is to be able to generate the minimum
set of tests that can detect those pathologies, producing fast and reliable results at
the same time. I was highly involved in the data selection process for Polarbear.
While I mostly learned from more experienced collaborators during the first season,
I took over the leadership for the second season. Based on my experience and gen-
eral feedbacks gained during the first season, I redefined the data selection criteria
for the second release. I also improved the analysis used for the first release (espe-
cially concerning the non-Gaussianity of the noise). I finally developed automated
pipelines to speed-up this step and to back up all the details which go through each
particular run. This step is highly connected to the calibration, and so we need to
have a good overview of both.

7.1 First season statistics

We started observing on May 2012 and ended on June 2013. We define the first
season to begin and end with the first science observations that are actually included
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Table 7.1: Different steps of the data selection for the first release of the data.

Steps Section Comments
All seasons 7.1 Total time in the field (8,420 hours)
+ Patch hours 7.1 Availability of the patches
+ CMB hours 7.1 Time observing CMB
+ Gain avail. (raw) 7.2.1 Gain files generated
+ Gain & PSD avail. (raw) 7.2.1 Gain and noise files generated
+ Turnaround data cut 7.2.2 Accelerated data discarded
+ Data quality (observation) 7.2.3 Discard contaminated CES
+ Optical response 7.3.2 Discard broken detector
+ Data quality (detectors) 7.3.3 Discard contaminated detector
+ Centroids & Pol. angle 7.3.4 Systematic requirements
+ Non-gaussianities of the noise 7.3.5 Skewness & Kurtosis tests
+ Subscans masking 7.3.6 Mainly deglitching

Note. — In reality, the data selection is not such a linear process that is the cuts are often
entangled.

in the analysis reducing the dates from June 27th, 2012 to June 13th, 2013. Between
these two dates we have a total time of 8,420 hours available. However, the 3 patches
observed by Polarbear are not always available and their presence represent only
86% of the total time. Within this science time, the CMB observations represent
3,045 hours. Given that Polarbear has a total number of bolometers of 1,274 we
defined the bolometers hours being the product between the hours of observation
and the number of bolometers considered. In total the time spent observing the
CMB represents 36% of the total first season time. The remaining time was spent
in calibration (planets, elnods, stimulator), re-pointing, fridge cycles and shutdowns
of the telescope.

7.2 Cuts removing CES

There are two types of data selection criteria which filter out entire CES. The first
one is based on the availability of the gain and noise files for a CES. The second one
is based on data quality arguments.

7.2.1 Gain and PSD files generation

There are different ways to generate the gain files as seen in Sec. 6.5. We just check
all the gain files generated in our gain model (planet observations). In addition, we
retain only CES with both gain file and noise file (PSD) generated.



7.3. Cuts removing channels 133

7.2.2 Accelerated portion of scans

For the first release, we immediately discarded all data obtained while the telescope
was accelerating, which removed 36% of our observation time. The constant velocity
portions are based on a GCP binary register which tells us when the telescope is
scanning at constant velocity. However, for the second release of data (including a
re-processing of the first season of data), we decided to include part of the data inside
the turnarounds (portion of scans while the telescope is accelerating). Therefore, in
addition to the data taken at the constant velocity portion on the sky of 0.75◦/s,
we decided to keep data taken from this velocity down to 0.50◦/s on the sky. This
is how we define our subscans for the second release of data.

7.2.3 Data quality

Gains and PSD files have been generated for individual CES on a previous step.
Once a CES has both a gain and a PSD for at least one pair of bolometers (pixel) it
becomes part of the statistics described here. This is the first intentionally imposed
cuts therefore the cuts are enforced by generating a new set of gain files excluding
entire CES or individual pixels that we want to cut. For the first release of data,
we had 21 imposed cuts. For the second release of data, we decided to keep only 17
of those cuts, and some of the kept tests were less conservative. This data selection
drops entire CES because of e.g. bad weather (PWV ≥ 4mm), being too close to
the Sun (≤ 30◦) or Moon (≤ 20◦), the remaining yield being too low (less than 50
bolometers for the observation), problematic scan length (less than 1 min and more
than 15 min), bad encoder data (see Fig. 7.1), etc. An example of such cuts for one
of our CMB patch is shown in Tab. 7.2.

7.3 Cuts removing channels

The next step is to loop over the remaining CESes, and identifying pathological
behavior of individual bolometers1. In this section we assume the full length of each
bolometer2.

7.3.1 Dark bolometers

A dark a bolometer is a bolometer which shares the same readout circuit as the
normal bolometers, but are not coupled to the optical signal. The focal plane of
Polarbear has 70 dark bolometers (10 per wafer). For the first releases, they
haven’t been used for the final analysis, but we should definitely use them to probe
systematic effects or to remove from the live bolometers any spurious signal from

1During observations, readout channels that show anomalously high noise properties are turned
off so that pathological noise effects are not induced in other detectors. Those channels are already
off when we start the data selection.

2The tests are done using data from the first subscan to the last subscan of the bolometer,
including non-constant velocity portion of the timestream.
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Table 7.2: Typical fraction of data cut by each criterion and the cumulative
fraction for one patch (RA23)

First release Second release Second release
Name of the cut (s1) (s2)
Bad weather † - 6.98 (6.98) 7.86 (7.86)

Too close from the Moon† - 4.02 (10.9) 5.13 (12.6)
Too close from the Sun† - 2.31 (12.6) 1.62 (14.2)
Bad encoder record† - 2.54 (14.6) 11.2 (24.9)

Bad days† - 2.80 (15.9) 4.83 (26.4)
Array median slope too high - 2.81 (17.4) 3.26 (28.0)
Differential gain outlier - 0.80 (17.5) 0.79 (28.1)
Differential gain variance - 0.18 (17.7) 0.14 (28.2)
Differential gain median - 1.19 (18.7) 1.56 (29.3)

Bad pairs - 1.03 (19.6) 0.84 (29.9)
Differential gain slope - 1.50 (19.8) 2.13 (30.3)

Difference PSD Lower Bound - 0.86 (20.4) 0.66 (30.7)
Mean Gain - 0.14 (20.4) 0.21 (30.8)

Channel slope deviation from median - 3.66 (21.2) 5.46 (32.1)
Pair noise deviation from median - 5.65 (26.0) 4.89 (36.0)

Scan length† - 0.11 (26.1) 0.12 (36.0)
Ground Signal - 18.4 (32.9) 21.4 (42.0)

Yield † - 18.0 (33.0) 29.4 (42.2)
Total cut (in %) - 33.0 42.2
Number of CES 8,354 10,239 4,326

Number of pixel-hours 479,998 631,116 231,447

Note. — Fraction of the entire data set (in %) removed by each data quality cut. Since cuts can
overlap, the cumulative fraction is shown in parenthesis. Cuts with a † discard entire CES, while
the others discard pixels inside each CES. Notice that the total is expressed in pixel-hours rather
than bolometer-hours (boloh = 2 × pixelh).
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Figure 7.1: Left panel : Number of CES cuts due to an azimuth/elevation encoder
misbehavior. The first season in labelled in blue and the second season in red.
We can see that there was a lot of CES cut due to a problem with our encoder
in March 2014. We had to change some part of it because it was not working
properly. Right panel : Example of an encoder problem concerning the recording of
the azimuth. The green crosses are the expected azimuth and the black crosses are
the measured azimuth from the encoder. The small sub panels under the main panel
are respectively the gradient of the recorded azimuth and the difference between
expected and measured azimuth. We apply a maximum tolerance of 0.5◦ between
the expected and the measured azimuth and we drop CES with over 1 zero-motion
point per subscan.

the telescope such as thermal drifts. We have also 168 ’demodulator’ bolometers not
used for the science but for the calibration of the focal plane only. The repartition
of detectors is shown in Tab. 7.3.

7.3.2 Bolometers with optical response

In addition to dark and demodulator bolometers, we have broken bolometers which
are defective bolometers and cannot be used in the analysis. Individual pixels are
permanently excluded when they show no optical response in either one or two of the
bolometers. There are typically 933 detectors out of the 1,512 showing an optical
response.

7.3.3 Data quality

We follow the cuts defined in Sec. 7.2.3, but this time we are interested by the
number of bolometers discarded. So in addition to the fact that entire CES can be
removed, for each remaining CES, pixels are excluded from a single scan for having
an outlier gain or differential gain value or if either of these quantities changes too
rapidly over the course of the scan (gFrac). The number of channel cut on average
is 377 ± 129, 383 ± 143 and 365 ± 124 for RA23, RA12 and LST respectively (out
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Table 7.3: Typical number of detectors cut by each criterion and effective number
of detectors per CES for the 3 patches for the 1st season.

RA23 RA12 LST
Number of detectors

Detectors w/ optical response 933
Dark detectors 70
Demod detectors 168
Broken detectors 341

Total 1512
Cuts applied to live detectors*

Gain available -377 ± 129 -383 ± 143 -365 ± 124
Centroids and pol. angle -27 ± 8 -28 ± 9 -30 ± 8

Skewness -12 ± 9 -12 ± 11 -13 ± 11
Kurtosis -14 ± 10 -13 ± 11 -15 ± 11

Effective number of detectors 503 ± 118 497 ± 130 510 ± 115

Note. — ∗ The cuts are applied consecutively. Errors are the standard deviation of the number
of detectors.

of 933 live detectors). To get the number of bolometer hours, we use the time of
all the subscans from each included CES and multiply it by the number of channels
alive after cuts.

7.3.4 Centroids and polarization angle

We check whether the centroid is too far from the center of the pixel for a given
detector pair. For that we know the position in the focal plane of the bolometers
for each pair xpos and ypos and we compute

dr =
√

(xtpos − xbpos)2 + (ytpos − ybpos)2 (7.1)

where t and b stand for top and bottom bolometer. If dr is greater than 1 arcminute,
we reject the pair from the analysis. In addition, we check whether there is an
estimate of the polarization angle for this pair. If not, the pair is discarded. This
cut discards on average 30 pairs per observation, after all other cuts.

7.3.5 Non-Gaussianity of the noise

To address pathologies related to noise properties, we put limits on the skewness and
the kurtosis of the signal. We form polarized timestream by differentiating bolometer
timestreams for each pair and we remove linear trends which could generate non-
gaussianity. Then, to avoid the influence from low frequency signals dominated by
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atmospheric signal, the data are high-pass filtered above 1 Hz3. Given the typical
length of a CES (around 15 minutes), we expect the timestreams to be dominated by
detector noise, expected to be gaussian. We put constraints such that the skewness
should be between -0.5 and 0.5, and the kurtosis should lie between -1 and 1. This
data selection rejects around 30 pairs per observation after all other cuts mentioned
previously.

7.3.6 Cuts removing subscans

Figure 7.2: Preliminary number of bolometers on average per observation after data
cuts. The second season has a lower yield, due to several problems (partly due to
encoder fault).

The last step consists to take the remaining CES and their bolometers alive after
all previous cuts, and to loop over the timestreams to identify bad subscans of data.
Typically this is the moment where the deglitching is done. Subscans that show
these glitches are simply removed from the data set. To flag subscans containing
glitches, we convolve differenced timestreams with a set of Lorentzian-based kernels
and remove subscans which exceed eight times the median absolute deviation of
the convolved timestream. There are other flagging criteria imposed on subscans
where there were problems with the bolometer or telescope pointing data acquisition
systems.

3this procedure was not implemented for the first release.
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This section focuses on the mapmaking step, that is the estimation of the sky
maps from the cleaned and calibrated Time Ordered Data (TOD). I was highly in-
volved in the mapmaking stage for Polarbear all along my thesis. I was an active
contributor of the primary mapmaker, and a co-leader of the PCG mapmaker, by
optimizing the performances, implementing routines, testing and using the pipelines
almost daily. Part of my time was also devoted to check the consistency of both
pipelines, by running regularly test cases and implementing new features from one
pipeline to the other when needed. The PCG mapmaker has been entirely imple-
mented by the APC team during my thesis. I also worked actively on the noise
estimation and characterization. A special attention is made in this chapter to the
correlated noise (from atmosphere and scan-synchronous signals) and its removal:
time-domain visualization tools, jackknives, time-domain filtering, specific model of
data (IGQU).
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8.1 Introduction to Mapmaking and challenges for Po-
larbear

Polarbear scans the sky with roughly a thousand detectors at a rate of 190 Hz,
and for the first two years of data we downsampled the data down to 30 Hz (see Sec.
6.2.2). Observations are performed every day, and after cleaning and performing the
data selection, the data set collected is of the order of few Terabytes per year (time
samples), and we want to make sky maps with O(105) pixels. Exact analysis of the
data set produced is a serious computational challenge, since most of the numerical
method scales as the number of time sample or pixels squared or cube1. Such a
data set cannot be handled on a single laptop, and we always rely on the latest
supercomputers in order to analyze efficiently the data. This growth of data and
the use of supercomputers was predicted long time ago [Borrill 1999] and many
efforts have been conducted to design robust data analysis algorithms and their
implementations such as in [Stompor et al. 2001].

8.1.1 Data model

While recording the sky signal, we also record the pointing information of the tele-
scope which is the position on the sky p(t) = (θ(t), φ(t)) as a function of the time.
From the pointing, we associate each time sample value d to a pixel s on the sky.
In addition to be sensitive to the intensity of the CMB, the detectors of Polar-
bear are polarization sensitive (linearly), that is any time sample value contains
information from the three Stokes parameters of interest (I, Q, and U) convolved
with the instrumental beam of the instrument. We can model such a detector as
a (partial) polarizer followed by a total power detector, and the timestream data d
for one detector may be expressed in its simplest form as a linear combination of
the Stokes parameter maps

d(t) = I(p(t)) +Q(p(t)) cos 2Θ(t) + U(p(t)) sin 2Θ(t) + n(t), (8.1)

where n(t) represents usually the instrumental noise, and the polarization angle Θ is
defined in Eq. 6.39. The projection from a time t to a sky pixel p can be encoded in
a matrix which is called the pointing matrix A whose number of rows is the number
of time samples nt and number of columns is the number of sky pixels np multiplied
by the number of Stokes parameters to recover2. The matrix A is in general very
sparse as it contains only three non-zero values (intensity and 2 polarizations) in
each row, as each sample is sensitive to only one pixel of the convolved sky. The
scanning strategy of Polarbear is such that we come back to the same pixel

1As an example, multiplying an [m × n] matrix and an [n × p] matrix involves 2 ×m × n × p
operations, and inverting brute force a matrix of size n involves n3 operations.

2Strictly speaking, AT is the pointing matrix, meaning going from time to pixel domain, while
applying A is the transformation from pixel to time domain. Notice also that ATA is a diagonal
matrix whose diagonal coefficients corresponding to intensity in A are the number of times a pixel
has been seen.
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very frequently to have a lot of redundancy. So still for one detector, but several
measurements, the equation 8.1 can be rewritten as


d(t0)
...
...

d(tnt−1)

 =


At0p0 . . . At0pnp−1

...
...

...
...

...
...

Atnt−1p0 . . . Atnt−1pnp−1

×
 s(p0)

...
s(pnp−1)

+


n(t0)
...
...

n(tnt−1)

 , (8.2)

where Atipi is a [1× 3] matrix with values

Atipi =

{
[1, cos 2Θ, sin 2Θ]; if (θ(ti), φ(ti)) ∈ pi
[0, 0, 0]; otherwise,

(8.3)

and s(pi) is a [3× 1] matrix which contains the beam-smoothed Stokes parameters
in pixel pi

s(pi) =

 I(pi)

Q(pi)

U(pi)

 . (8.4)

For many detectors, the generalization of the Eq. 8.2 is quite simple. We just have
to stack vertically the timestreams from different detectors as well as for the other
components of the equation. For convenience, we rewrite the Eq. 8.2 for multiple
detectors and multiple measurements as

d = As + n, (8.5)

where each component of the equation is a multi-detector version the one defined in
8.2.

8.1.2 Map solution

The mapmaking method is the method to estimate s from Eq. 8.5. There exists
many methods to estimate s, and in Polarbear we decided to use the maximum
likelihood method. Under the assumption of Gaussianity, the noise probability
distribution is

P(n) = (2π)nt/2 exp
[
− 1

2
(nTN−1n + Tr(lnN))

]
, (8.6)

where N is the time-time noise correlation matrix given by

N =< nnT > . (8.7)

Ideally, we would like the noise to be white. However, the instrumental noise is
sometimes not white and contains some low frequency components. In addition,
the noise coming from the atmosphere is mostly not white and dominates at low
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frequencies. The treatment of the low frequency modes from the atmosphere will
be the subject of a particular treatment later in this chapter. Using Eq. 8.5 to
eliminate the noise vector, we can recast the Eq. 8.6 as the probability of the data
for a particular sky signal

P(d|s) = (2π)nt/2 exp
[
− 1

2
((d−As)TN−1(d−As) + Tr(lnN))

]
. (8.8)

Assuming flat map prior P(s) (i.e. all sky maps are a priori equally likely), this
probability distribution is proportional to the likelihood of a particular sky signal
given the data (see Eq. 2.54). The optimal solution for the map is given by the
maximum-likelihood estimate ŝ which is obtained by solving the generalized least-
squares (GLS) equation

ŝ =
(
ATN−1A

)−1ATN−1d (8.9)

However, since we are basically now solving for the model of a sky that is constant
in time for every pixel in the map, the estimate ŝ is not a simple projection from
time to pixel domain but a map solution3. The form of the maximum likelihood so-
lution suggests the two main considerations: removing correlated noise components
(N−1d) and undoing the transfer function of those filters,

(
ATN−1A

)−1. However,
in experiments with a large number of detectors and long time-scale correlations in
the timestream data, it is computationally intensive, and even impossible in prac-
tice, to invert or even build the [npnStokes × npnStokes] full ATN−1A matrix (the
inverse of the pixel-pixel covariance matrix of the resulting map). The goal is then
to find some filters or models that optimally capture noise and correlations between
detectors. In practice, we also filter the timestreams in order to get rid of the corre-
lated component of the noise, that is the data model and the mapmaking equation
read

d = As + Zz + n (8.10)(
ATFA

)
ŝ = ATFd. (8.11)

z is the amplitudes of the modes we want to remove from the data, and Z is the
corresponding pointing matrix which defines where we have to filter the data. The
matrix F contains the effect of the time-domain filters and the noise weights (N−1):

F = N−1 −N−1Z
(
ZTN−1Z

)−1
ZTN−1. (8.12)

The different mapmakers developed to analyze the data of Polarbear make use
of different assumption to solve Eq. 8.11.

3Note that a maximum likelihood map is not only a good visual representation of the data,
but it is also a lossless way to compress CMB information. The power spectra derived from
the map and directly from the timestream data will have the same uncertainty [Tegmark 1997a,
Ferreira & Jaffe 2000].
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8.1.3 Implementation for Polarbear: primary mapmaker

In an experiment such as Polarbear, the mapmaking is a necessary step, which
has to be performed several times. Therefore, the mapmaking method has to be
robust and reliable while taking a reasonable amount of time.
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Figure 8.1: Schematic diagram of the primary mapmaking. The full data set is split
between different processors. Each processor processes the data corresponding to
one CES. Then the CES maps of each day are coadded into a single daily map.
Notice that we started from a data set of the order of few TB, and we end up with
few hundred maps, each of size few MB. This scheme has to be repeated for each
sky patch separately.

The primary pipeline of Polarbear implements the simplest and fastest res-
olution of the mapmaking equation, widely used in the data analysis of CMB data
sets (SPT, QUaD, BICEP, QUIET, etc.). It starts from the mapmaking equation
8.11 and makes the following assumptions

• Noise is assumed white, meaning N is a diagonal matrix.

• The time-domain filters are not taken into account in the pixel-pixel covariance
matrix. Therefore it becomes

(
ATN−1A

)
, which is a block diagonal matrix.

Each block is a full 3x3 matrix corresponding to a sky pixel (I, Q, and U).
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We construct an estimate ŝ of the sky signal s from the detector timestreams d,
the diagonal detector variance estimatesN, a set of filters F (noise and time-domain
filters), and the pointing matrix A, using(

ATN−1A
)
ŝ = ATFd. (8.13)

This is a noise-weighted, biased estimate of the sky signal. The full noise covariance
matrix is in general unknown, so we use an approximation of it. For a each sky pixel
p, the [3× 3] inverse covariance matrix (ATN−1A

)
p
is given by

(ATN−1A)p =

∑
t∈p

σ−2
+ (t) 0 0

0
∑
t∈p

σ−2
− (t) cos2 2Θ(t)

∑
t∈p

σ−2
− (t) cos 2Θ(t) sin 2Θ(t)

0
∑
t∈p

σ−2
− (t) cos 2Θ(t) sin 2Θ(t)

∑
t∈p

σ−2
− (t) sin2 2Θ(t)


p

(8.14)

with σ−2
± (t) being the inverse pixel sum/difference timestream noise at time t which

are assumed to be constant over a scan and are estimated from the Power Spectra
Densities (see Sec. 8.2.1). Under this assumption, the noise weighting for each CES
is taken as if the noise was white i.e. σ−2

± (t) = σ−2
± . Given that we assume no

pixel-pixel correlations, we solve the mapmaking equation for each pixel separately.

Processing of the data Given the large amount of data, one needs to rely on
the latest supercomputer to process the data set. The data set is divided into
small chunks of data, each corresponding to roughly 15 minutes observation (one
CES). According to the fact that we estimate the noise weights from the detector
timestreams, the chunk boundaries are chosen to maximize the accuracy of the
noise, while processing a sufficiently long timestreams to be able to have enough
constraints on each pixel. The data for one CES (timestreams, pointing information,
filters, noise weights etc.) is either read from the disk or computed on-the-fly and
stored in the memory of one processor. Different processors do not interact each
others, meaning that there is no need for communication between processors in this
simple scheme and therefore the process of all the data is trivially scalable to many
processors.

Once the data are sent to processors, we noise weight the timestreams to project
out three types of low signal-to-noise-ratio modes: i) high frequencies, ii) low-order
polynomials per subscan, and iii) scan synchronous signals. The high frequencies i)
mainly come from the aliasing from the pixelization. Those modes are removed by
applying a convolutional low-pass filter to the timestreams, where the 3 dB frequency
of the filter is flpf = 6.3 Hz (` ∼ 3500). Low-order polynomials ii) are used to remove
excess low-frequency noise, mainly coming from atmosphere. Linear polynomials
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are used for difference (polarization) timestreams, and cubic polynomials for sum
(temperature) timestreams. For each detector we subtract a polynomial per CES
subscan (one subscan is about 4 seconds). The scan synchronous signals iii) are more
difficult to subtract from the data. Those signals mainly come from emissions of light
from the ground and the mountains around the telescope which fall into the focal
plane (far sidelobe scanning the ground). Fortunately, our scan strategy is designed
to concentrate scan-synchronous signals (see Sec. 5.3.2), into a small number of
modes which can be easily filtered. During a CES, scan-synchronous signals repeat
in azimuth for the duration of the scan. Therefore, we project out scan-synchronous
signals by averaging the timestreams in 0.08◦ azimuth bins for each bolometer to
build a scan-synchronous signal template during a Constant Elevation Scan (CES).
One major issue for the first season was that the telescope had over-primary sidelobe
which can see the mountain nearby (TOCO) in a certain azimuth range (150◦ ≤
az ≤ 250◦, el≥ 70◦). Let’s denote G and P the pointing matrices for the ground
template and the polynomial filters respectively. The data model reads4

d = As + Gg + Pp + n, (8.15)

where g and p are a binned ground signal and the amplitudes of the Legendre modes
we want to remove from the data respectively. The general form of the filter defined
in Eq. 8.12 would then be

F = N−1 −N−1[G,P]
([GT

PT

]
N−1[G,P]

)−1
[
GT

PT

]
N−1. (8.16)

Given that we filter CES independently, and within a CES the noise is assumed to be
white (diagonalN), we factorize the noise term and perform the noise weighting only
once (after the filtering). In addition, we do not implement the orthogonalization
of the filters. Therefore, the filter operator reduces to

F = N−1
(
1− [G,P]

[
GT

PT

])
. (8.17)

We can see the effect of the time-domain filters on the timestream data (polar-
ization) in the Fig. 6.21. Most of the large scale fluctuations are removed.

Co-addition The timestream data being filtered, we use the transpose of the
pointing matrix AT to map the time-domain vector into the map domain. We co-
add the single-CES, all-detector maps into a set of single-day I, Q, and U maps
using the covariance matrix of each map. The coaddition is done pixel per pixel as

ŝd(p) =

∑
c∈d

(ATN−1A
)
p,c
ŝc(p)∑

c

(ATN−1A
)
p,c

, (8.18)

4The high-pass filter is put on aside.
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where d is the day of interest, and c represents the CES belonging to that day.
Concerning the first season, the sky patches LST, RA12, and RA23 have 148, 139,
and 189 daily maps respectively. We project the data onto a flat map using the
cylindrical equal area projection centered at the nominal patch center. The map
pixels have a width of 2’.

8.1.4 Implementation for Polarbear: PCG mapmaker

Parallel to the development of the main pipeline described above, we developed
specifically at APC a second mapmaking pipeline with a different approach to the
data. The primary mapmaker is able to produce fast sky maps, but those maps are
biased renditions of the sky since they still contain the effect of the time-domain
filters. Therefore, we wanted to go beyond, and be able to produce unbiased sky
maps.
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Figure 8.2: Schematic diagram of the PCG mapmaking. The full data set is split
between different processors. Each processor processes the data corresponding to one
day. There are typically 20-30 CES per day that are concatenated. Each processor
then produces a daily map using an iterative method (PCG). The runtime depends
on the number of iterations required. Notice that we started from a data set of the
order of few TB, and we end up we few hundred maps, each of size few MB. This
scheme has to be repeated for each sky patch separately.
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Table 8.1: Comparison between the primary and the PCG mapmaker with default
configuration to produce the full season map of one patch.

Mapmaker Runtime (CPUh) Memory/task (GB) Output
Primary O(102) O(1) Biased map
PCG O(103) O(10) Unbiased map

Note. — The increase in memory for the PCG mapmaker is due to the fact that each task
processes all the data for one day (∼30 CES) while the primary mapmaking processes one CES
data per task. We report performances for 100 iterations of the PCG.

Starting from the mapmaking equation 8.11 we make the following assumption

• Noise is assumed white, meaning N is a diagonal matrix.

Note that unlike the primary pipeline, the effect of filters are kept in the pixel-
pixel covariance matrix. Unfortunately, constructing and inverting explicitlyATFA
given the size of the Polarbear data set is extremely difficult and costly in terms
of memory and number of operations. So we decided to solve the Eq. 8.11 by using
an iterative numerical method called Preconditioned Conjugate Gradient (PCG)
method, which will be detailed in Sec. 8.3. Given that each iteration of the PCG
corresponds roughly to the primary mapmaking, the total runtime is that of the
primary mapmaker multiplied by the number of steps for the PCG.

Processing of the data The data set is still divided into CES (15 minutes long
observation), but we process all the CES of one day at once. By using all the CES of
a day in the same time, we increase the cross-linking per pixel and we benefit from
a large modulation of the polarization angle, which minimizes the risk of singularity
for ATFA in each pixel. However, the data for one day usually don’t fit into the
memory of one single core of a computer, and we have to use the memory of several
cores for one job to have access to a larger memory (up to 30 Gb per processed day).
The comparison of performances between the two pipelines is shown in Tab. 8.1.

The filtering of the timestream data is very close to the primary mapmaker
described above. We first subtract a linear polynomial for polarization and cubic
polynomial for temperature per CES subscan. Then we bin the timestreams in
azimuth to form the ground template that we subtract to the data in order to
project out scan-synchronous signals. The only difference is that we do not apply
the low-pass filter to the timestreams. It was motivated by the fact that we didn’t
see any change by applying it or not, so we decided to not use it, to make the
filtering step simpler.

Map solution Unlike the primary mapmaker, we project the data onto curve sky
maps by using the HEALPix pixelization scheme [Gorski et al. 2005], with a res-
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olution of about 1.7’ (nside=2048)5. This point was crucial since the HEALPix
package is widely used in the community, and having maps with this pixelization
scheme allows to use existing tools and libraries which are very efficient. It also
allows easily cross-correlations with maps from other experiments using this pix-
elization scheme (e.g. Planck). In addition, having already maps in curve sky
doesn’t require any change of the pipeline once larger fraction of the sky will be
scanned while the flat sky approximation will not hold.

8.2 Noise estimation and characterization

The optimal estimation of maps relies crucially on the ability to accurately model
the noise properties of the instrument [Stompor et al. 2001, Hivon et al. 2002]. The
raw sensitivity of the instrument determines the signal-to-noise ratio of the TOD,
which is modulated by the distribution of integration time once projected on the sky
maps. A good estimation of both is required to determine with fidelity the recovered
sky maps.

8.2.1 Power spectral density

How to estimate the noise weights to have a map solution sufficiently close to the op-
timal solution? The answer is not totally trivial. In our case, if we take a sufficiently
small chunk of data, the timestream data are noise dominated, and we are able to
extract the noise information. But there are several different noise contributions
at all frequencies, and we would like to pick up only the needed contributions (the
frequency range of interest) while keeping the method simple and fast. For the first
release, we decided to use the time-domain Power Spectral Density (PSD) which is
the distribution of the strength of a signal in the frequency domain6.

The procedure is the following. For each observation (CES), we load and cali-
brate the data of each pair. We sum and differentiate the timestream data inside
each pair to form the intensity and polarization timestreams. We subtract a first
order polynomial to both intensity and polarization timestreams to avoid drifts and
we subtract the mean of each timestream. We then compute the PSD for each.
Finally, the intensity and polarization noise weights for this CES are the average of
the corresponding PSD inside the science band, that is between 1.04 Hz and 3.13
Hz. Since we estimate the noise weights from the same data that we use to make
maps, we introduce a small non-linearity in the analysis7. But given that there are
so many samples used to estimate the weights (roughly O(104) per CES), this effect
should be negligible. Such PSD are shown in Fig. 6.20. Since we produce one PSD

5Let’s also acknowledge the Python wrapper, Healpy, intensively used throughout this thesis:
https://github.com/healpy.

6At the very beginning of the analysis, we started to weight the timestream by using their
variance. But this overestimated the real noise contribution as the noises at all frequencies - and
not just the science band - were picked up.

7Which is not taken into account in simulations because we use the same weights.

https://github.com/healpy
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Figure 8.3: Frequency-space waterfall plots for calibrated TOD obtained from in-
tensity timestream (left) and polarization timestream (right) for 15 minutes of data
(one CES). The y-axis corresponds to the different pairs of detectors sorted by
wafers. White rows are broken pairs of detectors or pairs which have been discarded
from the analysis by the data selection. The y-axis corresponds to the frequency
(binned). The lower frequencies are dominated by 1/f noise. We can also see cor-
relations among different pairs (frequency lines) such as around 300 mHz. Those
lines are mostly scan harmonics. Notice than the colorscale is not the same for both
panels. This plot comes from a simple software which displays PSD as well as time
and elevation for each observation, in order to have a quick look on the data quality
before processing the data.

file per observation, we have a lot of them to produce (O(104)). Fortunately, we
could trivially parallelized the computation over many processors since two different
observations are uncorrelated.

Assuming a constant velocity on the sky of 0.75◦/s, the science band corresponds
to roughly a range of multipole [500, 1500], which is the region of the spectrum
targeted for the first releases - the lensing B-modes peaking at ` ∼ 1, 000. For the
difference timestream, any power due to correlated sources should decrease in the
resulting PSD. Assuming that atmosphere is not (or weakly) polarized, we should
remove most of the contribution from the atmosphere. We can clearly see this effect
in the PSD of the difference timestream in Fig. 6.20, where the noise contribution
in the difference timestream is mostly white.
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PSD as a monitor of problems The distribution of the signal in the frequency
domain is a good indicator of the quality of the data. The telescope is complex,
and its functioning can affect the data. For example, we found excess of signals in
the band 9-10 Hz or around 40 Hz, corresponding to telescope vibrations confirmed
afterwards by both accelerometer measurements and encoder data. There are also
known signals such as signals coming from the MUX boards which generate a 6
mHz tone in many pixels, or the spectral lines from the cryostat mostly at high
frequencies, or even the frequencies of scans (motion of the telescope). Such signals
are easy to detect since they appear on all the pairs simultaneously. Therefore, we
often perform quick overviews of the PSD to detect gross problems during scans and
we designed filters to remove periodical ones. In this respect, we also implemented
a software which displays PSD for every observations. An example is shown in Fig.
8.3.

8.2.2 Simulating white noise from real data

In practice, we never have white noise in the map. Even if we the detector noise is
truly white to start with, the operation of filtering correlates scales:

F = N−1︸︷︷︸
diagonal

−N−1 [G,P]

[
GT

PT

]
︸ ︷︷ ︸

not diagonal

. (8.19)

However, we want to have a way to quickly perform white noise simulations based
on the real data, in order to compare with real data. Let the matrix M be the pixel-
pixel noise correlation matrix for two Q and U Stokes parameter maps (assumed
block diagonal). For simplicity in the notation, we only focus on the polarized
part, but adding the temperature to the computation is trivial. In our specific
case, M−1 is made of [2 × 2] non-zero blocks which contain the polarization noise
weights estimated from the PSD (unique number per observation and pixels are
uncorrelated), with each block M−1

p given by

M−1
p = (AtN−1A)p =

σ−2
∑
t∈p

cos2 2Θ(t) σ−2
∑
t∈p

cos 2Θ(t) sin 2Θ(t)

σ−2
∑
t∈p

cos 2Θ(t) sin 2Θ(t) σ−2
∑
t∈p

sin2 2Θ(t)


p

. (8.20)

Intuitively, this covariance matrix gives us the level of noise per pixels (squared) as
if it was white noise only. We need first to invert M−1, and perform a Cholesky
decomposition on each block to have access to the level of noise per pixel for the Q
and U maps:

(AtN−1A)−1/2
p =

(
a00 a01

0 a11

)
p

. (8.21)
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Then, we want to perform white noise simulations. The terms a00 and a11

represent Q and U (white) noise level respectively for a given pixel p, whereas a01

represents the correlation between Q and U within the pixel p. For a white noise
map, we expect the distribution of pixel values to follow a Gaussian distribution
with zero mean and unit variance, meaning no pixel-pixel correlations. So when
we simulate noise maps NQ and NU , we draw for each map a vector of random
numbers x of size number of pixels from a Gaussian distribution with mean = 0 and
rms =1, and we multiply the matrix defined in Eq. 8.21 by this vector:(

NQ

NU

)
p

= (AtN−1A)−1/2
p xp. (8.22)
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Figure 8.4: Simulated white noise maps NI , NQ and NU based on one of our sky
patch (first season only). The raw sensitivity of the instrument is modulated by
the distribution of integration time once projected on the sky maps, giving an in-
homogeneous distribution of the noise. The center of the patch is observed roughly
few ten times more than the edge. Each map contains roughly 55,000 pixels at a
resolution of nside=2048 (1.7’ resolution).

Simulated white noise maps for I, Q and U based on the RA23 patch (first
season only) are shown in Fig. 8.4. We can clearly see the effect of the scanning
strategy which makes the noise inhomogeneous as the center of the patch is more
observed than the edge.

8.2.3 Correlated noise

White noise is clearly an ideal case, and if we analyze raw observations, without
any pre-processing, the timestream noise is likely dominated by correlated noise.
We call systematic or correlated noise any noise which affects more than a single
detector at a time and thus producing correlations between detectors8. The biggest
correlated signal for Polarbear is the signal coming from the atmosphere. The

8Those correlated signals can also have a coherence length in the time direction.
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amplitude and correlation of atmospheric fluctuations depend on both the scanning
strategy and the properties of the atmosphere at the time of observation, such as
the wind direction and speed [Errard et al. 2015]. This noise depends on the fre-
quency considered (colored noise, mostly affects the low frequencies) and spatially
correlates different timestream detectors. In addition, the functioning of the tele-
scope produces correlated noise. Thermal drifts arise from the fact that all detectors
are in the same temperature bath. Mechanical vibrations happen very often, and
produce known lines in the PSD of each detectors (scan harmonics). We have also
other contamination such as magnetic contamination, electronic noise, and thermal
oscillations. Given the fact that those signals are correlated between detectors, their
contribution does not average out well9 as the white noise does, at least for sam-
ples acquired within the time scale of the correlation. In addition these effects are
arising from strong time dependent effects, but they are not necessarily correlated
in map-space. In other words, the features that they can produce in map space
are not as strongly localized as the correlated features in the TOD. So we need to
perform checks in TOD rather than map-space which makes it more difficult given
that the size of the time-domain data set is many order of magnitudes bigger than
in map-space.

We can divide the correlated signals into two categories. The first category is
almost 3 orders of magnitude higher than the CMB signal in the frequency range
of interest, and it contains the atmospheric fluctuations. The second category is
made of all other correlated signals, and has been found weaker than the white
noise level and the CMB. So only the first category requires a specific treatment as
of now10. This means that almost any correlation that can be found between de-
tectors is almost surely due to correlated contamination from the atmosphere drift
at low frequencies. To get rid of most the atmosphere fluctuations during observa-
tions, we subtract linear polynomials for difference (polarization) timestreams, and
cubic polynomials for sum (temperature) timestreams. The filtering is done for each
subscan (each sweep in azimuth). This is clearly sub-optimal as the level of atmo-
spheric fluctuations is not the same for every subscans. As of now, based on the
PSD (see for instance Fig. 6.20), we found that the third order polynomials and the
first order polynomials were describing well the low frequency parts of the spectrum.
But we could have adapted a specific subtraction for each subscan or more clever
method such as a singular value decomposition [Dünner et al. 2013]. But our simple
method gives somehow good performances to remove most of the correlated noise
and it doesn’t affect dramatically the runtime of the mapmakers.

The level of correlated signal between detectors is easily seen through a corre-
lation matrix C. Each column and each row of the matrix represents a detector,
and each element in the matrix represents the level of correlation between the total

9They do not fall as the square root of the integration time.
10As observations are done, the relative level between white noise and correlated noise may

change, and we will need also a specific treatment for the second category. Dark bolometers are
very good probe for correlated noise of the second category.
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calibrated and filtered data

calibrated data

Figure 8.5: Correlation matrices for live detectors in the focal for a CES (15 minute
long observation). Matrices have been normalized so that the diagonal elements are
equal to one, and detectors are sorted by wafers. The top panels show the correlation
matrices using calibrated intensity (left) and polarization (right) timestreams. Both
matrices are dominated by long modes which correlate the timestreams of all the
detectors. The detectors inside wafers are the most correlated due to their spatial
proximity. The bottom panels show the same timestream correlations but after
filtering. The decorrelation works well, especially for detectors not belonging to
the same wafers. The Q factor drops from O(1) to O(10−2) in intensity and from
O(10−2) to O(10−4) in polarization. Notice that the colorscale is not the same for
each panel.

signal11 of the detectors associated to it. Notice that C is a symmetric matrix. In
order to ease the detection of correlation by eyes, the best is to organize detectors
as they are put in the focal plane, that is grouped by wafers. In this respect, we

11The total signal is made of CMB signal, white noise and correlated noise. In principle for a
short period of time, only the noise terms is dominant.
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Figure 8.6: Distribution of the quality factor Q for the two first seasons of ob-
servations before polynomial filtering (black) and after polynomial filtering (red).
Intensity timestreams are shown in the left panel, and polarization timestreams are
shown in the right panel. For some observations, the decorrelation doesn’t work
well. Most of the times, those observations correspond to a moment of very bad
weather (PWV > 4 mm) or are affected by ground signals, and they will be removed
by the data selection step. Notice that y-axis do not have the same scale on each
panel.

highlight better the spatial correlations. In addition, we would like also to assess the
level of correlated signal no matter how we organize the detectors inside our matrix
Following [Dünner et al. 2013], we define a quality factor defined as the mean of the
off-diagonal elements squared of the correlation matrix

Q =
2

N(N − 1)

∑
i>j

C2
ij , (8.23)

where Cij is the correlation between the detector timestreams i and j, and N is the
number of detector timestreams. Q quantifies the amount of correlation between
all detectors in the focal plane. A good timescale to compute Q is a CES (15
minute observation), as atmosphere properties are likely to be rather stable. Such
correlation matrices and their quality factor are shown in Fig. 8.5 for a given CES.
We also show the effect of the polynomials filtering. We can see that the filters
decorrelate well the timestreams detectors, reducing the quality factor by few order
of magnitudes12.

12For a fair comparison, it is worth mentioning that the number of degree of freedom is given
by nsubscan(npoly + 1)ndet, where nsubscan is the number of subscans (∼ 102), npoly is the order of
polynomials (0, 1 or 3) and ndet is the number of live detectors (∼ 102 − 103).
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8.3 Performances of the PCG mapmaker and maps

The choice of a good linear solver is primordial, on the one hand for its speed,
but also for its robustness and the core memory which it requires. Therefore, a
compromise is to be operated between these stresses.

8.3.1 Algorithm and performances in more details

As described previously, the PCG mapmaker shares the same low-level pre-
processing and filtering13 than the primary mapmaker, but the method to get the
map solution is different. We recall that the equation that we are trying to solve is
a generalized least-squares equation, given by

(
ATFA

)
ŝ = ATFd, (8.24)

where F contains both the effect of the filtering of the timestreams and the noise
weights, as defined in Eq. 8.17. In practice, ATFA is extremely difficult to build
and to invert due to the size of the problem. We have few Terabyte data in time-
space (O(108) samples after calibration), and we want to make maps with O(105)

pixels (the brute force inversion of a matrix scales as n3
pix). So we decided to

make use of an iterative method called Preconditioned Conjugate Gradient (PCG)
[Golub & Van Loan 2012]. The idea behind the PCG method is to be able to esti-
mate s without building and inverting explicitly the whole system. In each iteration
of the PCG, it is necessary to apply the pixel-pixel covariance matrix ATFA to the
map-domain vector ŝj and this can be achieved by using its factors in the following
procedure

• Use the pointing matrix, A, to project the map-domain vector ŝj at iteration
j into the time domain.

• Apply the filtering operator and the inverse noise covariance matrix N−1 to
the time-domain vector.

• Use the transpose of the pointing matrix AT to map the time-domain vector
back into the map domain.

The first and the third steps are quick because the pointing matrix is sparse.
The second step is the longest because of the filters (recall that the noise covariance
matrix is diagonal). Unfortunately, a standard Conjugate Gradient (CG) method
convergence is largely dependent on the condition number of the matrix ATFA.
The condition number is the ratio of the smallest and the biggest eigenvalues of
the system. The smaller the condition number, the faster the convergence. In the
case of Polarbear, the condition number for each blocks (pixels) of ATFA can be
huge, especially for pixels which haven’t been observed well. So we use a technique

13Except that the low-pass filter is not used.
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to "precondition" the system before solving it. The idea is rather to solve Eq. 8.24,
we solve for

P−1ATFAŝ = P−1ATFd, (8.25)

were P is a symmetric, positive-definite matrix that approximates ATFA, but is
easier to invert. In the case of the PCG mapmaker, we choose P to be the diagonal
of AtN−1A, that is a block diagonal matrix with each block being a full sub-matrix
of size [3x3] corresponding to a sky pixel. In principle, the matrix P−1ATFA has
a smaller condition number than ATFA, and so the convergence is better (Precon-
ditioned Conjugate Gradient). In the pipeline, we chose to put a threshold on the
condition number equal to 103, to avoid to include highly degenerate pixels. We
also carefully discard those data from the time domain for consistency.
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Figure 8.7: Typical trend for the convergence of the PCG for one day of data
processed. There is a quick decrease of the convergence in the first steps (<40),
and then the convergence reaches a plateau. This plateau is a consequence of long
modes which are badly conditioned. In most of the case, the plateau is not overcame,
even with few hundreds of steps. Each step takes from few seconds to few minutes,
depending on the volume of data to process per day.

Convergence criterion In principle, the PCG method guarantees to reach the
solution with numerical precision in a finite number of steps. Unfortunately, due to
roundoff errors and very badly conditioned modes, the convergence always reaches
a plateau. We define the convergence at step k to be the ratio between the residual
at step k and the RHS b:

nk =
|rk|
|b| . (8.26)

With this definition, the convergence is equal to one at the zeroth step and it de-
creases as the number of steps increase. Such a convergence for a typical day is shown
in Fig. 8.7. We usually reach a convergence of O(10−3), with best performances
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around O(10−4). We put a minimum convergence of 10−6, but it is never reached
in practice, and we stop the PCG after typically 100 iterations. The behavior of
the convergence can be tuned via the parameter β used to update the conjugate
direction (see the detail of the algorithm in Appendix A). There exists several form
for this parameter in the literature, and we tried different ones. However, we found
that in our specific case, there was no improvement to choose one or the other, and
we implement the rather standard Polak-Ribière formula [Polak & Ribière 1969].
While in principle the residual cannot grow up, it does sometimes in practice due
to numerical precision. To prevent the behavior to start to be meaningless, we im-
plement a restart of the algorithm if such a case happens. Typically, this happens
when the convergence is in the plateau, and the PCG experiences the nearly singular
modes of ATFA. The filtering step also introduce spurious pixel-pixel correlations,
and the influence of the filtering for the convergence is detailed in Sec. 8.4.
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Figure 8.8: Total memory used by one MPI task as the function of the different
actions of the PCG mapmaker for the first season data using the first method (see
text). The case with 1 CES (blue) stopping at the step 0 of the PCG would roughly
correspond to the primary mapmaker. We emphasize the case with 31 CES processed
at once (cyan) which is a typical day. We split up the functioning in three categories:
calibration, data manipulation and PCG. We stop the x-axis at 2 steps, because the
memory remains the same for the steps after.

Memory We process all the data for one day at once. The processing of the data
means to store in the memory the timestreams data, but also the pointing of the
observations, the masks of the timestreams (to flag bad samples), the noise weights,
and the calibration products. We easily reach tens of GB for most of the days as
shown in Fig. 8.8. In order to manage such a big amount of memory, we designed
two modes of functioning. The first mode is to use the memory of several cores at
once. In the supercomputer (Edison machine), approximately 61 GB of memory can
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be allocated from within an MPI program using a full node (24 cores). Therefore we
use less MPI tasks per node in order to increase the memory available for each task
(typically 2-4 cores/node). The drawback of this method is that we have to allocate
the full node regardless of how many cores we actually use, and so this is somehow
a decrease of "efficiency". The second mode of functioning is still to process the
data of each day at once, but inside each task the processing is done wafer-by-wafer,
meaning 1/7th of the focal plane at each time. By doing so, we decrease the memory
by a factor roughly 7, but we have to perform 7 times the PCG14. The cross-linking
for each pixel is also a bit reduced, but given the huge redundancy even at the level
of a wafer, we did not see a reduction of quality in the final map.

Convergence in the map The convergence can be also checked at the level of
the map itself. We can compute the rms amplitude of the correction for each steps,
in µK/iteration, that is the change in pixel value between subsequent iterations.
We expect that the distribution converges towards a zero mean and zero standard
deviation at the end of the PCG run. In practice, we reach almost zero mean
but never zero standard deviation, but we checked that the last corrections are
sufficiently small. This is shown in Fig. 8.9 for pre-whitened intensity and Stokes
Q parameter, for 20, 40, 60, 80 and 99 iterations. The change in pixel value for
intensity is still large after 99 iterations, due to the poor convergence of the long
modes (the residual in each pixel oscillates a lot), but the distributions for Q and
U are quickly stable.

8.3.2 Maps for the first season

Table 8.2: The three Polarbear patches.

Patch Raw area Effective area White noise level
RA23 46 deg2 8.6 deg2 8.3 µK.arcmin
RA12 45 deg2 9.0 deg2 12.6 µK.arcmin
LST 42 deg2 7.2 deg2 11.0 µK.arcmin

Note. — The raw area is computed by using the same weight to all observed pixels, and zero
otherwise. The computation of the effective area includes the effect of the scanning strategy, which
makes the core pixels more observed than the ones at the edge. The values for the effective area are
slightly different than those reported in Tab. 5.1 based on the maps from the primary mapmaker
(biased maps). The differences mainly come from the masks used and the assumptions used to
compute them.

Unfortunately at the moment of writing those lines, the maps of the second
14Note that the PCG scales linearly with time samples, and in principle we do not loose much in

terms of real time. In practice, we observe an increase of time of 20% with respect to the previous
method.
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Figure 8.9: Change in pixel value between subsequent iterations for the full intensity
map (top left panel) and the full Stokes Q map (bottom left panel). The change are
shown for 20, 40, 60, 80 and 99 iterations of the PCG. After roughly 50 iterations,
most of the pixels which are still converging are located at the edge of the map (not
well seen so badly conditioned). The convergence is also slowed down due to pixel-
pixel correlations not properly accounted for. Each map contains roughly O(104)

sky pixels. We also show the evolution of the core of the intensity map (top right
panel) and Stokes Q map (bottom right panel) for one of the sky patch for 0, 1, 20,
40 and 99 iterations.

season are not yet published. Therefore, I’m only presenting the results concerning
the first season. In addition, we only focus on the maps from the PCG mapmaker
(unbiased maps). Q and U maps from the primary mapmaker (biased maps) can be
found in [POLARBEAR Collaboration 2014c]. The full season co-added maps from
the PCG mapmaker of the three sky patches are shown in Fig. 8.10 and 8.10. The
approximate raw sky coverage are 46 deg2, 45 deg2, and 42 deg2 for RA23, RA12,
and LST respectively. We have a well observed core of about 3◦× 3◦, where we can
see the structures from the CMB. Given the relative small size of the sky patches,
we see only sub-degree structures. The "griddy" structures for Q and U maps are
clearly detected, although the level of noise is still high. At the edges, which are
less observed, the noise level is increasing very fast, and we can see long modes
(mainly residual from atmosphere). The different characteristics of the patches are
summarized in the Tab. 8.2.

We also have point sources clearly detected in intensity within the maps as
shown in Fig. 8.12 for LST (the same point sources used for the pointing and
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beam calibration, see Sec. 6.3 & 6.6). Those point sources have often a counter
part in the Planck intensity map at 143 GHz (data from the 2015 release). RA23
and RA12 do not have currently polarized counterparts to point sources detected
in intensity. The locations of sources make it also more difficult to identify the
polarized counterpart (often close to the edge in the noisy regions). In the LST sky
patch, we identified one mildly polarized signal at the location of source detected in
intensity. This source (first column in Fig. 8.12) shows a clear spot in the U Stokes
parameter, but the Q Stokes doesn’t have a clear counter part. This polarized source
has been identified by the Australia Telescope 20-GHz (AT20G J043900-452222), in
which they report a polarization fraction of 6-8% and a polarization angle from 0-
10◦. Other catalogs such as the Bright Extra-Galactic AT20G Sources Polarizations
Catalog (at20gbspol) report polarization fraction around 3%, which is consistent
with what we estimate for this source (although we do not have yet done a clear
analysis). For precaution, we apply the same mask of point sources in temperature
and in polarization (for the filtering and the power-spectrum estimation).
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Figure 8.10: First season Polarbear maps from the PCG mapmaker. Each column
corresponds to one sky patch: RA23, RA12, and LST. Each row correspond to a
Stokes parameter: I, Q, and U .
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Figure 8.11: Similar plot as in Fig. 8.10, but we apply a zoom over the center region
(4.5◦ × 4.5◦) of the first season Polarbear maps from the PCG mapmaker.
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Figure 8.12: Zoom over the 10 identified point sources in intensity in the LST patch
(each circle has a diameter of 45 arcminutes). Few of them seem to have a counter
part in polarization (second and third row), but for precaution, we apply the same
point source mask in intensity and in polarization. The last row shows the same
region of the sky in intensity seen by the satellite Planck (2015 release) at 143
GHz.
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8.3.3 Noise properties

We want to check the noise properties of our maps, and eventually compare to the
white noise case described in Sec. 8.2.2. Let Q0, Q1 and U0, U1 be subsets of the
Q and U coadded maps of the full season such that

Q0 +Q1 = Q (8.27)

U0 + U1 = U. (8.28)

Let Qn and Un be estimates of the noise of the Q and U maps from jackknives,
meaning:

Q0 −Q1

2
= Qn (8.29)

U0 − U1

2
= Un (8.30)

-20 20
µKCMB

-20 20
µKCMB

Figure 8.13: Simulated white noise maps NQ based on one of our sky patch (left)
and estimate of the Stokes Q noise, Qn, in the same patch (right). The estimate of
the noise is done by performing a jackknife map from two halves of the first season.
Both contains an inhomogeneous distribution of the noise, arising from the scanning
strategy of Polarbear. The real data map has a small amount of long modes and
stripes which arise from a combination of atmospheric fluctuation residual, and
incomplete convergence of the PCG due to nearly singular modes of the pixel-pixel
covariance matrix (mostly due to filtering). Maps contain about 55,000 pixels, with
roughly 1.7’ pixel size.
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In the ideal case, Qn and Un are (inhomogeneous) white noise maps, as de-
scribed previously. However the reality is more complex. Due to residuals from
atmosphere fluctuations, and incomplete convergence of the PCG due to nearly
singular modes (mostly due to filtering), the noise maps contain some level of pixel-
pixel correlations, as shown in Fig. 8.13. In both maps in this figure, we can see
the inhomogeneity of the noise, typical from our scanning strategy, but only the real
data exhibit (small!) correlations between pixels. If we would like to describe the
properties of the noise maps for real data, we would need a huge multi-dimensional
probability distributions, with the number of dimensions equal to the number of
pixels in the map considered. So a simple histogram of the pixel values is likely to
display significant deviations from the 1-dimensional Gaussian distribution even for
the truly Gaussian case [Stompor et al. 2001]. Instead, to look at noise properties
of the maps, we want to compute Q̃n and Ũn for a given sky pixel p given by(

Q̃n
Ũn

)
p

= M−1/2
p

(
Qn
Un

)
p

, (8.31)

where the matrix M−1
p = (ATN−1A)p is the inverse covariance matrix (defined in

Eq. 8.20) and M−1/2
p is obtained by performing a Cholesky decomposition15. This

corresponds to a pre-whitening of the maps, that is a decorrelation of the measure-
ments in the different pixels. Because Qn and Un are computed from jackknives, we
need to know the combined covariance matrix, given by the individual covariance

15 Performing one Cholesky decomposition for one sky pixel is fast, but we have O(104) sky pixels
for each map. In order to test the method, or to have a quick view on the noise properties, without
performing Cholesky decomposition, we could also work with a simplified method. Re-writing the
inverse covariance matrix as

M−1
01 = 4

 ∑
i=(0,1)

(
a00 a01
a10 a11

)−1

i

−1

, (8.32)

we find the eigenvalues

λ±01 = TrM−1
01

1±
√

1− 4detM−1
01

2

 . (8.33)

Then we construct our inverse coupling matrix M̃−1
01 for a given pixel by choosing the smallest

eigenvalue so that

M̃−1
01 =

(
λ−01 0

0 λ−01

)
, (8.34)

and

(
Q̃

Ũ

)
=

√λ−01 0

0
√
λ−01

(Qn
Un

)
. (8.35)

In practice, we found this simplification to give almost the same results as the Cholesky decom-
position, because the cross-term a10 is very small compared to the diagonal coefficients in most of
the case.
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matrices of the half maps 0 and 1 as

Mp,01 =
Mp,0 + Mp,1

4
=

1

4

(
(ATN−1A)−1

p,0 + (ATN−1A)−1
p,1

)
, (8.36)

If we estimate correctly the noise correlations, then the components of Q̃n and Ũn
are uncorrelated and their variances are equal to one. In addition, if the noise in the
pixel domain is Gaussian then each of the components of Q̃n and Ũn is randomly
drawn from the Gaussian distribution in one dimension with the unit variance.
Therefore, by pre-whitening the noise, we reduce our multi-dimensional problem
to a one-dimensional one, easier to test. However, if the noise is somehow badly
modeled (pixel-pixel correlations), we should start to see deviations to the Gaussian
distribution. The results for the first season Polarbear maps are shown in Fig.
8.14. We are in good agreement with the Gaussian distribution with unit variance
(variance is roughly 1.06 in both cases, for maps with 55,000 pixels). The results to
the one-dimensional Kolmogorov-Smirnov test are quite good with a significance of
7.6% and 43% for Q̃n and Ũn respectively. However, we have very small departures
from the Gaussian case in the tails (not shown here). The latter points towards a
refining of our model for the noise, by including properly pixel-pixel correlations.
We will see later that those long modes are mostly outside our science band (` =

500−2100), and most of the scales of interest are on good agreement with the white
noise assumption.
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Figure 8.14: Probability distribution functions of the pixel amplitudes for the
prewhiten noise maps Q̃n (left) and Ũn (right) computed as a difference of two
maps made from two halves of the first season. Histograms show the results for
the real data and smooth green curves the Gaussian curves fitted to best match
the actual results. The results compatible from the Gaussian distribution with unit
variance, as both probability distribution functions give a variance of the order 1,06
(55,000 pixels). The results to the one-dimensional Kolmogorov-Smirnov test are
quite good with a significance of 7.6% and 43% for Q̃n and Ũn respectively.
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8.3.4 Extension of the mapmaker: IGQU model

In order to have a better control of the unwanted scan-synchronous signals in the
polarized timestreams (difference of the two bolometers within a pair p), we use a
slightly different version data model as the one presented in Eq. 8.1. Let’s model
d�/⊥ the two orthogonal timestream data inside a pair as

d�/⊥(t) = I(t)±G(t)±Q(t) cos 2Θ(t)± U(t) sin 2Θ(t) + n�/⊥(t), (8.37)

where G is a map which contains contributions from the polarized timestreams
(G vanishes if we sum the timestreams) which are not modulated by the polarization
angle Θ (any intensity to polarization leakage for instance)16. In the presence of
G, the pointing matrix is modified (4 non-zero components entries for each row
corresponding to time t), and the pixel inverse covariance matrix in Eq. 8.14 is
extended as

(ATN−1A)p =

∑
t∈p


σ−2

+ (t) 0 0 0

0 σ−2
+ (t) σ−2

− (t) cos 2Θ(t) σ−2
− (t) sin 2Θ(t)

0 σ−2
− (t) cos 2Θ(t) σ−2

− (t) cos2 2Θ(t) σ−2
− (t) cos 2Θ(t) sin 2Θ(t)

0 σ−2
− (t) sin 2Θ(t) σ−2

− (t) cos 2Θ(t) sin 2Θ(t) σ−2
− (t) sin2 2Θ(t)


p

,

(8.38)

where the lower [3x3] full block is the polarized part, including G, Q, and U . The
preconditioner is also updated accordingly. Correlation of G maps with temperature
maps can be used to estimate differential gain leakage or put upper limits on it. No
power is detected in any of the TG cross-spectra; the measured leakage value for
each pixel type on each wafer is consistent with zero (within the noise). All the
maps in this manuscript have been computed using the IGQU model of the data.

8.4 A more detailed study of the filtering and the PCG

We filter the map to remove slow drifts in each telescope scan, and scan-synchronous
signals which could contaminate our data (see Sec. 8.1.4 and 8.2.3). All filters have a
specific effect on the data, but they also interact between each other. As an example,
the effect of the ground template and the effect of the polynomials filtering are not
independent if the filters are not orthogonal17. On overall, the combinatory between
filters is not very big, but it is not straightforward to have a good intuition on the
interactions.

16Despite the same name, this G has nothing to do with the ground template defined earlier.
17Unfortunately, we do not have yet orthogonalized the filters. This is still under study at the

moment that I write those lines. We believe that the orthogonalization of filters will bring better
results for the convergence of the PCG, and the quality of the results in general.
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Figure 8.15: Schematic view of the filters. The polynomials filtering is done subscan-
by-subscan, that is following the path of the scan, while the ground templates are
built at constant azimuths. In the mapmaking, we first subtract the polynomials
filters and then we estimate and subtract the ground templates.

The filtering is not performed on the entire timestreams. First of all, the
timestreams are not continuous. During scans, packet drops or failures happen.
Then, we also cut data which are found to be of not sufficient quality based on
our data selection. Those cuts are based on the data quality, which means that
the structure of each timestream is different depending on how much data the cuts
remove. Finally, we mask the point sources in the timestreams during the filter-
ing, to avoid a leakage of power. This last point is maybe true in the case of the
temperature, but can be questioned for the case of the polarized timestreams18.

8.4.1 Ground template

We would like to build an estimate of the ground signal and remove it from the
timestreams. Let’s consider a Constant Elevation Scan (CES). During this CES we
scan back and forth in azimuth while the CMB field moves across the sky. There
are about 15 minutes between the time when a given sky pixel is first scanned to
when it is last scanned. In the meantime the sky rotated by ∼ 4◦. By making
the hypothesis that the ground signal remains constant over the time of a CES,
it is therefore possible to separate the signal on the sky which moves around from
the signal from the ground which doesn’t, over scales smaller than ∼ 4◦. Within
this subset of data, the elevation is constant and so the ground signal estimates or
ground templates are constructed as a function of azimuth only. For a CES i, and
for a channel j in that CES, we model our timestream data as following:

dj∈i(t) = sj∈i(p(t)) + gj∈i(α(t)) + nj∈i(t). (8.39)

18As far as we know, there is no evidence (or few) in the Polarbear patches of strong polarized
sources.
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dj∈i(t) is the timestream for the channel j in the CES i at the time t. sj∈i(p(t))
is the sky signal in the direction p(t) = (θ(t), φ(t)) on the sky for the channel j in
the CES i, and nj∈i(t) is the noise component 19 for the channel j in the CES i at
the time t. Finally gj∈i(α(t)) is the ground signal as a function of azimuth α(t) for
the channel j in the CES i. For more clarity, we drop the indices and just write the
multi-detector multi-observations system as

d = As + Gg + n, (8.40)

where A and G are the pointing matrices for the sky signal and the ground signal
respectively. To build the ground templates, we have to remap the time within a
CES into the corresponding azimuth20. To do so, we have to choose a resolution
for the ground signal map. By default we use a ground pixel size ∆α in azimuth
of 0.08◦ (for comparison, we project the timestream data into maps with a pixel
size of approximately 0.028◦.). To construct the templates of the ground we simply
bin the timestream data in azimuth. For each bolometer and each ground pixel, an
estimate of the ground signal is computed as

ĝ(α) =
1∑

t∈∆αW (t)

∑
t∈∆α

d(t), (8.41)

where the sum is over all data of a channel in a CES which fall in the azimuth range
∆α. W (t) is the mask applied to the timestream data for the filtering, equal to 1

if the sample is good, 0 otherwise. Given that the size of a subscan (time between
two turnarounds, which spans the full range of azimuth) is typically O(102) time
samples, the choice of the ground pixel size matters. Too small ground pixel sizes
lead to spurious effects during the averaging of the timestreams. On the other hand,
a too big ground pixel size is not enough sensitive to the ground variation, and the
timestreams will not be correctly cleaned. Fortunately there is a large range of pixel
sizes for which the ground maps are equivalent, meaning that the ground signal
varies quite smoothly on azimuth. I show in Fig. 8.17 the map of ground signal for
different ground pixel sizes.

The constructed ground templates also contain sky signal and noise. The expec-
tation value of the constructed templates is given by:

< ĝ(α) >= g(α) +
1∑

t∈∆αW (t)

[ ∑
t∈∆α

s(p(t)) +
∑
t∈∆α

n(t)
]

(8.42)

In the limit of highly redundant scan strategy, the term which contains the CMB
signal averages to the monopole (total intensity) or zero (polarization). The term of
noise averages to zero only in the case of uncorrelated noise. In the case of a realistic
scan strategy Polarbear these terms are unfortunately non zero, and large scales

19In [Brown et al. 2009b] they split the noise component into a random part and a correlated
part (atmosphere fluctuations). Here, both are in the noise component as we assume that the
correlated component has been removed by the polynomials filtering.

20Ground templates are built independently for each bolometer.
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(CMB and noise) are filtered out when we subtract the ground templates to the
timestream data. Finally we construct the timestream data which are (in principle)
free of ground signal from the original timestream data as:

dclean = d−Gĝ. (8.43)

To give an order of magnitude, for a given CES with somewhat regular cuts, the
number of time samples is O(104), the number of ground pixels is O(102) and the
number of channels is O(102). The algorithm can be slightly modified to separate
left and right going subscans to form two distinct ground templates21.
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Figure 8.16: Left : Azimuth as a function of the time for one CES (the elevation is
69.6◦) and for one channel. The range of azimuth is fairly constant over the entire
CES (only a fraction of the CES is shown here). The regions in red are the masked
regions not used to compute the ground template. They concern mainly data in
turnarounds, but one can also see a subscan completely masked because the data
were not good (t ∼ 410 seconds). Right : Number of hits each 0.08◦ azimuth bin
received for two particular channels (blue and green). One can see that the number
of hits is not the same, and there are spikes which may denote the fact that the size
of the pixels for the ground template is not correctly set.

As seen in Eq. 8.42, the ground template subtraction removes part of the CMB
signal. Ignoring the ground signal and the noise, one can re-write Eq. 8.42 as:

< ĝCMB(α) >=
1∑

t∈∆αW (t)

∑
t∈∆α

s(p(t)). (8.44)

We know that we should lose some large scales, due to the fact that given the length
of observation for a CES, we can only separate scales smaller than ∼ 4◦. Bigger
scales are stationary over the time of observation, and are completely degenerated
with a ground-like signal. In order to quantify the loss, we scan an input map

21In fact, we already used this distinction to process the data of the first and the second releases.
This allows to separate specific behaviors specific to only right or only left going scans (vibrations
mainly).
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Figure 8.17: Ground signal level per detector for one CES as a function of azimuth
for different ground pixel sizes: ∆α = 0.04◦, 0.08◦, 0.16◦ and 1.6◦. If the size of
the ground pixel is too small, we see vertical stripes due to a bad averaging of the
timestreams. For too big pixel size, we can clearly see a smoothing of the structures.
White rows are discarded bolometers (data quality). In this figure, the azimuth is
between 234◦ and 242◦ and elevation at 69.6◦.

which contains only a CMB component, and applying only the ground template
subtraction (not the polynomials removal). After 100 iterations of the PCG, we look
at the output map, and we compare it to the input map (residual=output-input). In
Fig. 8.19, we show the residual maps after 100 iterations for all Stokes parameters
using the pointing information from an entire day (29 CES). On all residuals for
all Stokes parameters by using only the ground template (third row), we can see
horizontal stripes, due to the fact that modes that are constant in the direction
of sky motion (RA) are by design in the null space of the scan-synchronous signal
filter, and therefore can not be solved for by the mapmaker. For the mapmaking,
the ground template removal is done on the level of a CES, so even if we come
back several time on the same pixel, it is always at the same elevation. Projected
on the sky, the ground template bins are at constant declination. One interesting
fact is that the residual in the case of the Q Stokes parameter is always bigger with
more stripes than the residual in the case of the U Stokes parameter. This could be
directly linked to the fact that Q presents structures parallel to the RA axis.

8.4.2 Effects in the map and convergence

We have seen that the PCG doesn’t converge to numerical precision, that is we do
not obtain the exact solution at the end of the run, as shown in the Fig. 8.18. The
filters play a major role in the convergence of the PCG, and we need to understand
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their effects. Let’s first look at the effect of the filters using a set of simulated signal
only input maps (I, Q and U). We use the pointing information from an entire day
of data for one patch (29 CES), and we look at the residual maps (output-input)
after 100 iterations of the PCG. The effect of the filters is shown in Fig. 8.19. The
first row shows the output I, Q and U maps if no filters are used22. The other
rows correspond to the residual maps for a run of the mapmaking with a particular
combination of the filters: only polynomials filtering (second row), only ground
templates subtraction (third row), and both filters (fourth row). The residuals in
the case of polynomials filtering only are made of long modes, mainly "gradient-
like" in the case of the polarization. For the intensity, the residual follows more
or less the large-scale structures in the patch (with a minus sign coming from the
fact that residual=output-input). We can also see stripes following the scans of the
patch at the edge of the patch, which correspond to pixels observed only few times
(with bad condition numbers). In the case we use only the ground templates, the
residuals are seen as horizontal stripes, due to the fact that modes that are constant
in the direction of sky motion (RA) are by design in the null space of the scan
synchronous signal filter, and therefore can not be solved for by the mapmaker (see
previous section). In the case both filters are used, the residuals are a combination of
the two previous residuals. We can easily see the long modes from the polynomials
modulated by the stripes from the ground templates. Concerning the amplitude of
the residuals, there is a factor ∼2 for intensity and ∼20 for polarization23. The fact
that the residuals are not zero doesn’t necessarily mean that we do things wrongly
or we hardly biased our results. It depends on the nature of the residuals. Given
the relative small size of our patches (∼3◦x3◦), we do not have access to all the
modes. Our science band covers the range of multipoles between 500 and 2100.
We found that the typical scales of the residuals are much lower than a multipole
of 500, therefore poorly biasing our science results. We also tried to see whether
those problems of convergence could be bypassed by using a different version of the
preconditioner, or by solving the mapmaking equation with more data at once to
decrease the condition number of the covariance matrix. We found, in a different
analysis which goes beyond the scope of this mapmaking section24, that there are
true singular modes of ATFA, meaning no matter what we try, they are always
here. In fact, using the default configuration for the mapmaking (including filters
and data selection), each map has two singular modes, and several nearly singular
modes (null vectors are induced by the cut pixels and filters).

We also show the results of the filters on the real data, in Fig. 8.20 (the same
day as in Fig. 8.18 and 8.19). For a short period of time (one day), the maps are
dominated by noise, especially correlated noises from atmospheric fluctuations and
ground signals, and so we want to probe the effectiveness of the filters to remove
them. Without filtering (top panels), the intensity map is completely dominated by

22It is worth mentioning that the PCG converges in one step to numerical precision in this case.
23recall that we probe here the effect of the filters on the CMB component only, that is the

nature of being unbiased and not the efficiency of the filters to remove spurious signals.
24and not done by myself.
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Figure 8.18: Convergence of the PCG by using a simulated input data (CMB only,
left) and real data (right) for one day of data (29 CES). In both cases the PCG
doesn’t converge to numerical precision. In each case, a different combination of
filters is used: polynomials filters only (green diamond), ground templates only (red
cross), and both filters (blue circle). Although there are some small differences
between the different cases, the behavior is always the same: a quick decrease the
first tens iterations, and then a plateau. The polynomials filters are the ones which
made the convergence of the PCG the slowest.

long modes, and the amplitude is huge (O(105) µK) compared to what we would
expect from CMB only (O(102) µK). These long modes are typically arising from
atmosphere fluctuations. The Q and U maps are dominated by residuals of atmo-
sphere, one or two orders of magnitude higher than the expected white noise level
for such a period of time (one day). It is worth noting that without filters, the PCG
converges to numerical precision in one step. If we now try to subtract those long
modes, by using polynomials filters (cubic for intensity and linear for polarization),
we obtain the panels on the second row. The polynomials filtering works quite well,
and for the intensity map we start to see some CMB structures popping out from
the noise, especially in the core of the patch where the pixels have been observed the
more. The Q and U maps are still strongly contaminated. We have here the typical
signature of signals coming from the ground: long modes with a "quadrupolar-like"
shape. The maps on the third row are the maps after only ground templates sub-
traction. Unfortunately, the dominant contribution to the correlated noise being the
atmosphere (which is not correlated with the azimuth at different time), the ground
templates subtraction alone is not very effective, and we are left with similar maps
than int the no filter cases. Finally, with all the filters on (fourth row in the figure),
most of the atmosphere fluctuations have been removed, as well as the spurious
scan-synchronous signals. The intensity map exhibits clear CMB structures in the
core. The Q and U maps still suffer from a small residuals of long modes (which
are still here, but dimer, in the final coadded maps, see Fig. 8.13 and 8.10). We
are still working on improving the filtering methods in order to remove at best the
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signals which could contaminate our data.
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Figure 8.19: Effect of the filters using a set of simulated signal only input maps
(I, Q and U) for one day after 100 iterations of the PCG. The first row shows
the output I, Q and U maps if no filters are used. The other rows correspond
to the residual maps (output-input) for a run of the mapmaking with a particular
combination of the filters: only polynomials filtering (second row), only ground
templates subtraction (third row), and both filters (fourth row). See text for more
explanations.
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Figure 8.20: Effect of the filters on one day of data (29 CES). We stop the PCG
after 100 iterations. Each column is a Stokes parameter (I, Q, and U). The first
row shows the output maps without any filtering. The other rows correspond to
the output maps for a run of the mapmaking with a particular combination of the
filters: only polynomials filtering (second row), only ground templates subtraction
(third row), and both filters (fourth row). See text for more explanations.
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Power spectrum estimation
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Once we have the maps of each sky patch, we estimate the angular power-spectra.
The geometry of the patches as well as the inhomogeneous sky coverage, and the
different transfer functions of the instrument have to be taken into account to have a
correct estimation. I was highly involved in the power-spectrum estimation through-
out my thesis. More specifically, I focused on the pure powerspectrum reconstruction
of the B-mode. I adapted and validated the X2pure code for Polarbear, and I
maintained a version up-to-date for the collaboration at NERSC. I conducted many
tests and proposed optimization procedures, specific to small patches (geometry of
the masks, optimal division of data, influence of point sources). I also participated
in estimating uncertainties, and in conducting the massive runs of Monte Carlo
simulations to validate the estimator.

9.1 Pure pseudospectrum formalism

We already introduced the basics about temperature and polarization power spec-
tra, see Sec. 2.2.1 and 2.3.4. There are several ways to estimate the angular power
spectra. In principle, assuming that we know the pixel-pixel correlation matrix,
we could use a maximum likelihood formalism, e.g. see [Jaffe et al. 2003]. In prac-
tice, we do not know this matrix in general (at best a diagonal estimate), and the
maximum likelihood techniques are computationally expensive requiring O(N3

pix)

time and O(N2
pix) memory. Given our large number of pixel Npix ∼ 105, we can-

not use this technique easily. So in order to estimate the angular power spectra
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from the maps, we use rather a pseudospectrum technique [Wandelt et al. 2001,
Tegmark & de Oliveira-Costa 2001, Hivon et al. 2002, Tristram et al. 2005]. The
idea is to estimate directly the pseudospectrum from the data, and correct in the
harmonic domain the different biasing effects such as the mode-mode couplings in-
duced by the small and irregular size of the patch, the beam function, and the
pixelization. The pseudospectrum technique is very fast (requiring O(N3/2) time)
and it is frequently near-optimal for temperature in practice. The estimation of
polarized spectra however suffers from a spurious mixing of E and B modes, called
E-to-B leakage, which has to be taken into account carefully to obtain the near
optimality of the estimator.

9.1.1 Mode-mixing matrix: the standard case

For temperature and polarization anisotropies, the partial-sky pseudo-multipoles are
defined as :

ãT`m =

∫
4π
WI

(∆T

T
Y ∗`m

)
d~n

ãE`m = −1

2

∫
4π
WP

[
2P 2Y

∗
`m + −2P−2Y

∗
`m

]
d~n

ãB`m =
i

2

∫
4π
WP

[
2P 2Y

∗
`m − −2P−2Y

∗
`m

]
d~n (9.1)

where WI and WP are window function applied to the temperature map (intensity)
and polarized maps (polarization). In Polarbear, we use the same window func-
tion WP for both Q and U maps (or E and B fields). The multipole decompositions
on the sphere of the three fields ∆T/T (spin 0), ±2P (spin ±2) and the window
functions are given by 1:

∆T

T
(~n) =

∑
`m

aT`mY`m(~n)

±2P (~n) = (Q± iU)(~n) = −
∑
`m

(aE`m ± iaB`m)±2Y`m(~n)

WI/P (~n) =
∑
`m

w
I/P
`m Y`m(~n) (9.2)

So using the set of equations in Eq. 9.1 and Eq. 9.2, we obtain

1I denote partial-sky pseudo-multipoles with a tilde (ãX), estimates of the full-sky multipoles
with a hat (âX), and full-sky multipoles without anything (aX)
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ãT`m =
∑

`′m′,`′′m′′
wI`′m′a
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`′′m′′
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4π
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∗
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wP`′m′

∫
4π

(
aB`′′m′′

[
Y`′m′(~n)2Y`′′m′′(~n)2Y

∗
`m(~n) + Y`′m′(~n)−2Y`′′m′′(~n)−2Y

∗
`m(~n)

]
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[
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∗
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∗
`m(~n)

])
d~n

(9.3)

A useful property of the spin-weighted spherical harmonics can be used to ease the
computation2

∫
4π

sY`′m′(~n)sY`′′m′′(~n)sY
∗
`m(~n)d~n =

√
(2`+ 1)(2`′ + 1)(2`′′ + 1)

4π

(
` `′ `′′

s s′ s′′

)(
` `′ `′′

m m′ m′′

)
,

(9.4)
where we have introduced the so-called Wigner-3j symbols
[Varshalovich et al. 1988]. Let’s define J (T ) and J (±) which help to the clar-
ity as

J (T )(`, `′, `′′) =

(
` `′ `′′

0 0 0

)
J (±)(`, `′, `′′) =

(
` `′ `′′

−2 2 0

)
±
(
` `′ `′′

2 −2 0

)
. (9.5)

We recall that if we assume that the temperature and polarization fields are Gaussian
and isotropic random fields, then the angular power spectra are given by

〈
aX`ma

Y ∗
`′m′
〉

=
〈
CXY`

〉
δ`,`′δm,m′ , (9.6)

where X, Y ∈ (T,E,B) and we can define a pseudo-power spectrum estimator as

C̃XY` =
1

2`+ 1

∑̀
m=−`

ãX`mã
Y
`m (9.7)

The couplings due to inhomogeneous coverage of the sky do not mix spectra between
them but CEE` and CBB` spectra. If we write the estimates of the true spectra in a
vector such as

2This is defined as the Gaunt integral.
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Ĉ` =
(
ĈTT` , ĈEE` , ĈBB` , ĈTE` , ĈTB` , ĈEB`

)
, (9.8)

so that the total mode-mode coupling matrix is diagonal by block and could be
written as :

M``′ =



MTT,TT
``′ 0 0 0 0 0

0 MEE,EE
``′ MEE,BB

``′ 0 0 0

0 MBB,EE
``′ MBB,BB

``′ 0 0 0

0 0 0 MTE,TE
``′ 0 0

0 0 0 0 MTB,TB
``′ 0

0 0 0 0 0 MEB,EB
``′


(9.9)

then the effect of an incomplete sky coverage is summarized in the following equation

C̃` =
∑
`′
M``′Ĉ`′ . (9.10)

The non-vanishing3 mode-mode mixing matrices in the standard formalism are

MTT,TT
``′ =

2`′ + 1

4π

∑
`′′m′′

∣∣wI`′′m′′J (T )(`, `′, `′′)
∣∣2 (9.11)

MEE,EE
``′ = MBB,BB

``′ =
2`′ + 1

16π

∑
`′′m′′

∣∣wP`′′m′′J (+)(`, `′, `′′)
∣∣2 (9.12)

MEE,BB
``′ = MBB,EE

``′ =
2`′ + 1

16π

∑
`′′m′′

∣∣wP`′′m′′J (−)(`, `′, `′′)
∣∣2 (9.13)

MEB,EB
``′ =

2`′ + 1

16π

∑
`′′m′′

[∣∣wP`′′m′′J (+)(`, `′, `′′)
∣∣2 − ∣∣wP`′′m′′J (−)(`, `′, `′′)

∣∣2] (9.14)

MTE,TE
``′ = MTB,TB

``′ =
2`′ + 1

8π

∑
`′′m′′

wI`′′m′′w
P
`′′m′′J

(T )(`, `′, `′′)J (+)(`, `′, `′′) (9.15)

We have then to solve the Eq. 9.10 to obtain the estimates of the true spectra.
However, because of the non-zero mixing between E and B, the standard pseudo-
spectrum estimator suffers from E-to-B leakage, although it is unbiased.

9.1.2 E and B mixing

Applying standard pseudospectrum technique to partial sky maps in the polarization
context leads to a mix between E and B modes. In other words, for a noiseless
CMB realization containing only E-modes, the estimated B-mode bandpowers are

3J(+) vanish for odd values of (` + `′ + `′′) while J(−) vanish for even values of (` + `′ + `′′).
The vanishing terms involve cross terms such as J(+)J(−).
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non-zero4, and depending on the experimental setup the leakage can completely
dominate the B-mode signal at low multipoles. These past years several efforts
have been done to treat this effect such as in [Lewis et al. 2001, Bunn et al. 2003,
Smith 2006, Grain et al. 2009].

We saw that the space of polarization can be decomposed in two orthogonal
subspaces E and B defined through the ±2Y

E/B
`m (see Sec. 2.3.3). However these

subspaces are orthogonal only if we consider the full sky5. If the polarization field is
known on a limited part of the celestial sphere, the reconstruction of E and B modes
by projecting the measured polarization on the ±2Y

E/B
`m is "nonpure", meaning that

the estimated E or B multipoles receive contributions from both true E and true B
modes. It is the so-called E/B leakage. In a ensemble of realizations, the estimated
B-modes leaking from E-modes are zero in the mean -due to the fact that pseudo-Cl
are unbiased by construction-, but because they are non-zero in each realization,
E-mode signal power does contribute to the variance of the B-mode estimators.
Therefore, if the power contained in one of the polarization states is much higher
than the other, as it is the case for the CMB anisotropies, the errors bars estimated
for the mode with lower power are drastically exaggerated due to sample variance
of the leaked contribution [Grain et al. 2009]. As E-modes are much bigger than
B-modes the effect of this variance in the measure of B is enormous. So when using
a limited part of the sky, a new subspace has to be taken into account : the subspace
containing these ambiguous E/B modes. Let’s re-write the polarized component in
Eq. 9.2 as

ãE`m =
∑
`′m′

M
(+)
`m,`′m′a

E
`′m′ + iM

(−)
`m,`′m′a

B
`′m′ (9.16)

ãB`m =
∑
`′m′

M
(+)
`m,`′m′a

B
`′m′ − iM

(−)
`m,`′m′a

E
`′m′ . (9.17)

The M(±) matrices are kernels, which in general can be all different for E and B, non-
vanishing, and non-diagonal in both ` and m. In particular for the pseudo-power
spectra, we have (

C̃EE`
C̃BB`

)
=

(
M

(+)
``′ M

(−)
``′

M
(−)
``′ M

(+)
``′

)(
ĈEE`′
ĈBB`′

)
.

where the kernels M (±) correspond to Eq. 9.12 and 9.13, and have been defined as

M
(±)
``′ =

`′∑
m′=−`′

1

2`+ 1

∑̀
m=−`

|M (±)
`m,`′m′ |2. (9.18)

4And vice versa. But the E modes being stronger than the B-modes, we mainly care about the
E-to-B leakage.

5This is only theoretically. In practice, even if we observe the full sky, we always have to subtract
for instance region contaminated by foregrounds or to mask point sources, and so we never have a
real full sky.
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Therefore, we need to go beyond to avoid this leakage from E to B as soon one has
uncomplete sky. The corrections can directly be done in the definition of the ±2Y`m
and ãE/B`m with

±2Ỹ
E/B
`m = ±2DE/B(WY`m), (9.19)

where the W function is zero for non-observed pixel, and non-zero otherwise (we
implicitly define the mask by W ). We can understand this definition by noticing
that applying 2DB to the polarization field corresponds to a local filtering of the E-
modes whereas projecting on the 2Y

B†
`m basis corresponds to a global filtering and so

suffers from partial sky effects. Thus, if the window function satisfies the Neumann
and Dirichlet conditions, the estimated multipoles are pure and we have a block
diagonal mixing matrix, and hence we avoid coupling between E and B-modes :(

C̃EE`
C̃BB`

)
=

(
M

(+)
``′ 0

0 M
(+)
``′

)(
ĈEE`′
ĈBB`′

)
.

In order to remove efficiently the modes which are neither solely E nor B, we
have to find a suitably chosen sky apodization W . The corresponding mode-mode
mixing matrices within the pure formalism are somewhat similar (but more complex
to deduce) to the ones shown in Eq. 9.11-9.15, and their expressions can be found
in [Grain et al. 2012].

9.2 X2pure and applications for Polarbear

To compute our spectra, we use the X2pure software which implements the
pure pseudo-spectrum techniques described above and in [Grain et al. 2009,
Grain et al. 2012]. This software is mainly written in C, and is interfaced with
few Fortran routines. The code makes use of the publicly available software pack-
age S2HAT containing MPI-parallel routines permitting quick computation of the
pure multipoles. The runs for Polarbear are performed mainly at NERSC, on
the Hopper machine. The code was already written when I started to work on it
in 2012. However all along my thesis I was an active contributor, participating to
the development of a specific framework for Polarbear, and I was in charge to
maintain a version of the code updated and available for collaborators at NERSC
(including people from Polarbear and EBEX, and independent groups). The
code proceeds in 3 steps. First it computes the spin-weighted apodizations given
an input spin-0 window. Then it computes the pure mode-mode coupling matrices
from the spin-weighted apodizations. Finally it solves the Eq. 9.27 to find the pure
estimator. The code is fully parallel (in time and memory), and achieves excellent
performances as reported in Tab. 9.1.

9.2.1 Pre-processing for Polarbear

The masks that we use to construct our mode-mode mixing matrices are a combi-
nation of the estimate of the inverse covariance matrices and analytic windows. On
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Table 9.1: Elapsed real time between invocation and termination (in second) of
the different steps of the power spectrum computation for a standard Polarbear

run on the Hopper machine, using 96 cores.

Step Cores used Time (second)
Mask apodizations 1 7

Spin-weighted windows 96 40
Mode-mode mixing matrices 96 400

Pure estimator 96 40

Note. — Only the mask apodization is a separate code from X2pure, written by M. Betoule.
To perform Monte Carlo, we pre-compute first the spin-weighted windows and the mode-mode
mixing matrices, and only the last step is repeated. A large number of Monte Carlo (∼500) can
be performed on thousand cores in less than an hour. The ACML package which provides a full
suite of Linear Algebra (LAPACK) routines has been used to perform calculations.

the one hand, the inverse covariance matrix provides an estimate of the noise per
pixel, and it is used to weight the contribution of each pixel in the computation of
the power spectrum, so that we can naturally incorporate inhomogeneous noise as
shown in Fig. 8.13. Unfortunately, we do not include the pixel-pixel correlations,
therefore we are not able to weight properly the correlated modes. On the other
hand, we use analytic window functions to control the E-to-B leakage arising from
the sharp transition at the edges or around masked point sources. The analytics
windows are construct from the binary version of the inverse covariance matrix (pixel
value is 1 if the pixel has been seen, 0 otherwise), and we apply a function which
goes smoothly to zero at the boundaries. Formally speaking, calling δp the distance
between the p− th observed pixel and the boundary, meaning the smallest angular
distance from the considered pixel to the contour of the mask or a hole due to a
masked point source, we adopt the C2-window defined in [Grain et al. 2009]

Wp =

 −
1

2π
sin(2π

δp
δc

)− δp
δc

if δp < δc,

1 if δp > δc,
(9.20)

and vanishes outside the mask. δc is called the apodization length and we treat
it as an adjustable parameter. The choice of δc is crucial since we want to treat
correctly the E-to-B leakage without degrading the sensitivity. Indeed, a too small
apodization length does not take into account sufficiently the spurious effects arising
at the irregular boundaries, and a too wide apodization length drastically reduces
the effective sky area used to compute the power spectra. For our typical patch
size of 3◦, we found that δc = 30 arcminutes leads to reasonable performances.
Those analytics windows are in general not well suited for providing an optimal
performance in the presence of low instrumental noise because they assume nothing
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about the properties of the data in the map (sky signal). However, they are quick
to calculate, do not require any prior knowledge about the sky signals and can fulfill
the boundary conditions with high precision. Furthermore in our case, given that
the level of noise is still high compared to the targeted signal in polarization, there
is no gain to run optimization procedures to get windows adapted to the specific
properties of the data, because the procedure naturally converges to the inverse
noise weights. So for each pixel p, the spin-0 mask that we use is given by

W 0
p = Wp × λminp , (9.21)

where λminp is the smallest eigenvalue of the estimate of the polarized 2x2 inverse

covariance matrix
(
ATN−1A

)
p
. As seen in Eq. 9.19, we need to apply the derivative

operator to products of the spherical harmonics times the window functions and
perform then integral by parts. So we also define two spin-weighted windows

W 1 = ðW 0 (9.22)

W 2 = ð2W 0. (9.23)

Such windows using the co-added data from one patch are shown in Fig. 9.1.
The resulting mode-mode mixing matrices M (±)

``′ for the standard case (no specific
treatment of E-to-B leakage) and the pure case (E-to-B leakage is minimized) are
shown in Fig. 9.2.

The typical size of the patch tells us that the smaller multipole that we can
constrain is about `min ∼ 180◦/3◦ = 60. However, this limit is an optimistic esti-
mate coming from simple geometrical consideration. In practice, we start at a much
higher multipole because our noise model is not sufficient to weight properly the
low multipoles (noise is not really white). There are also a potential contamination
from instrumental systematic effects or the effect of the time-domain filters which
decrease our ability to constrain the low multipoles. For the first season of obser-
vation, our science band was defined between ` = 500 and ` = 21006. In addition,
we cannot constrain all the modes within this science band. The finite size of the
patch introduces mode-mode correlations with a typical width given by the size of
the patch, as seen in the Fig. 9.2. The mode-mode mixing matrixM (+)

``′ for instance
is diagonal dominated, with a correlation length of about 100 modes. Therefore
we cannot constrain individually modes separated by less than ∼ 100. The angu-
lar power spectra are reconstructed within bandpowers, labelled b hereafter, with
bandwidths ∆`. The binned power spectrum is given by Cb =

∑
` Pb` C`, where the

binning operator is defined as

Pb` =

 `(`+ 1)

2π∆`
if ` ∈ b,

0 if ` /∈ b,
(9.24)

6The upper mode is driven by our beam size of 3.5 arcminutes. For modes > 2000, the noise
start to be exponentially boosted by the deconvolution of the beam function.
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Figure 9.1: W 0 (left), and its derivatives for the sky patch RA23: Re(W 1) (top
middle), Im(W 1) (bottom middle), Re(W 2) (top right), Im(W 2) (bottom right).
The holes are the masks for the point sources.

with the interpolation operator, Qb`:

Qb` =


2π

`(`+ 1)
if ` ∈ b,

0 if ` /∈ b.
(9.25)

For the first season of observation, we were rather conservative, and we chose ∆` =

400. In addition to this mode coupling effect, we take into account the beam of
the instrument which is represented by a single function B` of the multipole for all
the bolometers (Sec. 6.6). The effect of the pixelization has to be also corrected.
The pixels act as a low-pass filter in the harmonic domain, which is represented as
a decreasing function p` of the multipole. All those functions are shown in Fig. 9.3,
and are incorporated into the binned mode-mode mixing matrix

M̃bb′ =
∑
`∈b

∑
`′∈b′

Pb`M``′B
2
`′p

2
`′Qb′`′ , (9.26)

and the pseudo-spectra and estimate of the true spectra are related by
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Figure 9.2: Mode-mode mixing matrices for the sky patch RA23 in the case of the
standard computation (no specific treatment of E-to-B leakage) and in the case of
the pure case (E-to-B leakage is minimized). The first row shows the BBBB (M (+)

``′ )
component, and the second row shows the cross term EEBB (M (−)

``′ ). In the case of
the standard method, the BBBB component is diagonal, and the cross term is non
zero. In the case of the pure-pseudo spectrum method, the BBBB case exhibits a
large correlation of low multipoles of the spectrum (horizontal `′), correlated with
all multipoles of the pseudo-spectrum (vertical `), while the EEBB component is
vanishing. These features are here to ensure that the E-to-B leakage is minimized.

C̃b =
∑
b′
M̃bb′Ĉb′ . (9.27)

The functional dependence of the binned band powers Ĉb on the true high-resolution
power spectra is given by the band power window functions wb`, where

Ĉb =
∑
`

wb`C` (9.28)

wb` =
∑
b′`′

M̃−1
bb′ Pb′`′M`′`B

2
` p

2
` (9.29)
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Figure 9.3: The three upper panels are the beam function as a function of the
multipole for the three sky patches (RA23, RA12 and LST). The lower panel show
the pixel window function from the package HEALPix for a resolution of nside =
2048.

The resulting band power window function (for the four bins of science band) for
TT and BB are shown in Fig. 9.4.

In practice, two small effects are not taken into account in the analysis and they
are not corrected by the pure-pseudo spectra formalism. First we expect that some
residual E-to-B leakage is present due to the sky discretization. Second, the time-
domain filters can generate mixing between E and B modes. While our maps are
unbiased, the fact that we do not orthogonalized properly the filters can leave some
unwanted pixel-pixel correlations and E-to-B leakage.

9.2.2 Power spectrum uncertainty estimation

If we co-add the data of the full season into a single set of I, Q, U maps, and we
compute the pure estimator using Eq. 9.27, the estimator is noise biased. Given the
relatively high level of noise compared to the expected B-modes signal, we would like
to get rid of the noise component. To do so, we compute "cross-spectra" instead of
"auto-spectra", as described for instance in [Tristram et al. 2005]. Given two maps
a and b7, we can rewrite equation 9.27 by explicitly separating the signal and the
noise contributions

C̃XY,abb =
∑
b′
M̃XYXY,ab
bb′ ĈXY,abb′ +NXY,ab

b (9.30)

7b as a subscript denotes a bin number, while b as a superscript denotes a map.
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Figure 9.4: Band power window functions wb` for TT (dashed red lines) and BB
(solid black lines) for the sky patch RA23. The four bins used for the first release of
data are shown. The band power window functions describe the transfer function
for temperature (TT here) or polarization (BB here) power from a `(`+ 1)C`/(2π)

power spectrum to binned band powers, as described in equation 9.29.

where X,Y = (T,E,B). If the two maps are different, i.e. a 6= b and their noise
are uncorrelated, we have statically NXY,ab

b = 0 (although the noise of each map
contributes to the variance of the estimator). As mentioned in the mapmaking
section we compute daily maps, so in principle we could perform cross-spectra among
all the daily maps (O(102)). However, the exact computation of all the "cross mode-
mode mixing matrices" (M̃XYXY,ab

bb′ ) becomes extremely time consuming. Instead,
we co-add the daily maps into eighth of the full season (correspond to roughly 1.5
months of data) and we perform cross-spectra with the eight sets of maps. From
N = 8 input maps and for each polarization mode, we can obtain N(N − 1)/2 = 28

cross-power spectra Cab` (a 6= b) which are unbiased estimates of the angular power
spectrum but which are not all independent. Let a, b, c, and d labels for maps, and
let’s define the cross-correlation matrix Ξab,cd``′ for cross-spectra ab (a 6= b) and cd

(c 6= d) by

Ξab,cd``′ =
〈(
Ĉab` −

〈
Ĉab`
〉)(

Ĉcd`′ −
〈
Ĉcd`′
〉)∗〉

. (9.31)

Using the relation between pseudo-spectrum and spectrum, we can rewrite the cross-
correlation matrix as

Ξab,cd``′ = [M̃ab
``1 ]−1

〈(
C̃ab` −

〈
C̃ab`
〉)(

C̃cd`′ −
〈
C̃cd`′
〉)∗〉

([M̃ cd
`′`2 ]−1)T (9.32)

where M̃ab
``′ = Mab

``′B
a
`′B

b
`′p

a
`′p

b
`′ . After a quite long calculation detailed in

[Efstathiou 2004, Tristram et al. 2005, Tristram 2005, Efstathiou 2006], we finally
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end up with the expression for the cross-correlation matrix8 :

Ξab,cd``′ = [M̃ab
``1 ]−1

(M̃ (2)
`1`2

(
W ac,bd

)
Ĉac`1 Ĉ

bd
`2

+ M̃
(2)
`1`2

(
W ad,bc

)
Ĉad`1 Ĉ

bc
`2

2`2 + 1

)
([M̃ cd

`′`2 ]−1)T ,

(9.33)
with M (2)

`1`2

(
W ac,bd

)
defined as :

M
(2)
`1`2

(
W ac,bd

)
= (2`2 + 1)

∑
`3

(2`3 + 1)

4π
W ac,bd
`3

(
`1 `2 `3
0 0 0

)2

(9.34)

W ac,bd
`3

=
1

2`3 + 1

∑
m3

wac`3m3
wbd

∗
`3m3

. (9.35)

However the numerical calculation of Eq. 9.33 is prohibitively slow in our case. The
MASTER approach [Hivon et al. 2002] proposed a simplification under the hypoth-
esis that all the masks have the same sky coverage (almost true in our case, given
that each map has roughly 1.5 months of data). Let’s first define wi the i − th

moment of the mask W as9

wi =
1

4πfsky

∫
4π
d~nW i(~n) (9.37)

We want to relate the different moments of the mask to power spectra of the mask.
For simplicity of notation, let’s drop indices for masks (since it is the same mask for
both maps). We can show that :

fskyw2 =
1

4π

∫
4π
d~nW 2(~n) =

1

4π

∑
`

(2`+ 1)W` (9.38)

fskyw4 =
1

4π

∫
4π
d~nW 4(~n) =

1

4π

∑
`

(2`+ 1)W
(2)
` (9.39)

where W (2)
` is the cross spectrum of the product of masks defined in Eq. 9.35. The

RHS of equations above can be identified to a simplified version of the mode-mode
mixing matrix as defined in 9.34. Given that, the cross-correlation matrix can be
written as :

Ξab,cd``′ =
1

ν(`′)

(
Ĉac` Ĉ

bd
`′ + Ĉad` Ĉ

bc
`′

)
(9.40)

8In practice we work with the binned cross-correlation matrix, and a term ∆` appears in the
denominator.

9For HEALPix we have :

wi =
1

4πfsky

∫
4π

d~nW i(~n) ≈ 1

4πfsky

∑
pixel

Ω(p)W i(p) ≈ 1

Npixfsky

∑
pixel

W i(p) (9.36)
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where ν(`) is a function of the multipole which contains the effect of the inho-
mogeneous sky coverage (cut-sky and inhomogeneous weights per pixel). We can
associate this function to the degrees of freedom of the distribution function χ2

` of
the C` on the sky. Using previous equations, this function is given by :

ν(`) = (2`+ 1)fsky
w2

2

w4
(9.41)

where fsky is the sky fraction over which the weighting is non-zero (each pixel has
a value one if seen, zero otherwise). In practice we do not work with the mode-by-
mode version, and we rather use ν(b) = (2`mid + 1)∆`fskyw

2
2/w4, with `mid being

the center of the bin b. Using a gaussian approximation of the likelihood, that is

− 2 lnL =
∑
ij

[
(Ĉib − Cb)|Ξ−1|ijbb′(Ĉ

j
b′ − Cb′)

]
, (9.42)

where i and j are combinations of maps : i, j = (ab, cd) with a 6= b and c 6= d, the
cross-correlation matrices and error bars are related through10

(
∆Ĉb

)2
=

1∑
ij |Ξ−1|ijbb

, (9.45)

and the final cross (in terms of all maps for each patch) spectrum is given by :

Ĉb =
1

2

∑
ij

[
|Ξ−1|ijbbĈ

j
b + Ĉib|Ξ−1|ijbb

]∑
ij |Ξ−1|ijbb

. (9.46)

This estimator does not contain the noise bias, but its variance does (through auto-
spectra of individual maps). The three sky patches are treated independently. We
estimate the power-spectra and their uncertainties for all three sky patches using Eq.
9.46 and 9.45, and we combine them into a single power-spectrum using a weighted
coaddition:

Ĉtotb =

∑
p=patch

Ĉpb /
(
∆Ĉpb

)2
∑

p=patch

1/
(
∆Ĉpb

)2 (9.47)

with variance
10 For XX ∈ TT,EE, and BB, the uncertainty estimate is

∆ĈXX,ib =

√
2

ν(b)
(ĈXX,ib + N̂XX,i

b ). (9.43)

For XY ∈ TE, TB, and EB, the uncertainty estimate is

∆ĈXY,ib =

√
(ĈXY,ib )2 + (ĈXX,ib + N̂XX,i

b )(ĈY Y,ib + N̂Y Y,i
b )

ν(b)
. (9.44)
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(
∆Ĉtotb

)2
=
( ∑
p=patch

1/
(
∆Ĉpb

)2)−1
. (9.48)

In addition, we also take into account uncertainties coming from the beams (in-
cluding pointing error), and from the gain calibration. This binned uncertainty
estimation is validated using full-season Monte Carlo simulations including signal
and noise. We chose two noise models on which to test this estimator, a white noise
model and a correlated noise mode [Errard et al. 2015]. In each case, the spread in
the power spectra obtained from the Monte Carlo simulations is consistent with the
mean result of the analytic binned uncertainty estimator to 10% (although we do
not seem to reproduce correctly all correlations in temperature).
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Figure 9.5: Estimate of the noise (solid curve) and estimate of the signal plus noise
uncertainty (dashed curve) for EE (circle) and BB (cross) for one sky patch. The
mean and the standard deviation from 100 Monte Carlo simulations using white
noise (no CMB signal) are overplotted in color (EE in blue, and BB in red). The
E-modes are signal dominated in the range 500 < ` < 2000, while B-modes are
noise-dominated all along the multipole range. The noise has been estimated as
the difference between the auto-spectrum of the full season and the cross-spectrum.
The difference at low ` between real data noise and simulations is mainly due to
unmodeled correlations (such as residual signal from atmosphere). Fiducial models
for EE and BB based on the WMAP-9 ΛCDM best-fit parameters are overplotted
for comparison (thick solid line). The science band is from ` = 500 to ` = 2100.

The Fig. 9.5 displays the results for 100 Monte Carlo simulations using white
noise maps for E and B modes compared to the real data. The white noise model
adds random spectrally flat noise to the timestream of each detector variance equiv-
alent to that measured from the detectors as described in Sec. 8.2. The simulated
timestreams are passed through the whole pipeline (PCG with filtering and power
spectrum estimation) and we use the same pointing and detector weighting as the
real data, and include signal from a beam-convolved realization of a WMAP-9
ΛCDM power spectrum that includes the effect of gravitational lensing. Given the
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size of the whole data set, the amount of time required to run large Monte Carlo
simulations is one of the limiting step of the PCG mapmaker (∼ 50,000 CPUh for
100 MC just for the mapmaking step). At the moment of writing, we are still in-
vestigating how to obtain more realistic simulations (beyond the white noise) and
we are still also trying to boost the performances (speed and memory) of the code.
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Figure 9.6: Estimate of the noise (solid curve) and estimate of the signal plus
noise uncertainty (dashed curve) for EE (circle) and BB (cross). The estimates for
the three sky patches are shown from left to right: RA23, RA12, and LST. The
E-modes are signal dominated in the range 500 < ` < 2000, while B-modes are
noise-dominated all along the multipole range. The noise has been estimated as
the difference between the auto-spectrum of the full season and the cross-spectrum.
Fiducial models for EE and BB based on the WMAP-9 ΛCDM best-fit parameters
are overplotted for comparison (thick solid line). The science band is from ` = 500

to ` = 2100.

9.2.3 Application to the maps of the PCG mapmaker

Unfortunately at the moment of writing those lines, the power spectra of the second
season are not published, and are even kept blind for us (see Sec. 10.1 about the
blindness policy). In the remaining part of this chapter, I will only present the
results concerning the first season.

The first release of papers including [POLARBEAR Collaboration 2014c] makes
primarily use of the maps coming from the naive mapmaker linked to a flat sky pure
pseudospectrum estimator, called hereafter primary pipeline. During this period,
the PCG mapmaker, linked to X2pure and called hereafter the PCG pipeline, was
used to cross-check the results from the latter pipeline. One way to check the
convergence of the PCG is to look at the evolution of the pseudo-spectra of the full
co-added maps for different step of the procedure, as shown in Fig. 9.7 (see also Fig.
8.9) for one sky patch. We find that in the range of multipoles under consideration
(500-2100), after 100 iterations, the fractional change of the pseudo-spectra for TT
and EE was less than 0.1%, and for BB it the fractional change is less than 3% in
the multipole range [500, 700] and then less than 1% for higher multipoles.

The final results of the PCG pipeline are consistent with the results of the
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Figure 9.7: The fractional change in the angular pseudospectra for TT (top panel),
EE (middle panel), and BB (bottom panel) from maps at subsequent iterations
of the PCG mapmaker: 0, 20, 40, 60, 80 and 99 iterations. The largest scales
(<500) take the longest to converge, and the BB signal generally takes longer to
converge than does the temperature or E-modes. The science band is from ` = 500

to ` = 2100.

primary pipeline as shown in Fig. 9.9. Concerning the BB spectrum, we also fit
the band powers to a ΛCDM cosmological model with a single ABB amplitude
parameter. We find ABB = 1.24± 0.68(stat)+0.04

−0.12(sys)± 0.05(multi), where ABB =

1 is defined by the WMAP-9 ΛCDM spectrum. With the primary pipeline, we
measure an amplitude of ABB = 1.12 ± 0.61(stat)+0.04

−0.12(sys) ± 0.07(multi). The
difference in the uncertainty related to multiplicative effect between the two pipelines
comes from the fact that the PCG pipeline do not use a filter transfer function to
de-bias the spectra (see Sec. 10.3 for the detail of uncertainties). We also show the
detailed results for the PCG pipeline for all the spectra in Fig. 9.8.
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Figure 9.8: First season Polarbear power spectra used for calibration and cross-
checks from the PCG pipeline. Red dots show the measured band powers, with
vertical bars representing the uncertainty due to noise, sample variance, and beam
uncertainty (the diagonal of the band power covariance matrix). The black curve
is the WMAP-9 ΛCDM theory. The small panels under main spectra shows the
deviation with respect to the binned theory (data - theory). The two panels at the
bottom right are the TB and EB spectra, with a theoretical TB and EB spectra
(dashed curves), expected if the instrument polarization angle calibration is incorrect
(fitted to the data, see Sec. 9.3.2). For the TT panel, a zoom is made over the high
` part, where a model without foreground (dashed curve) and with foreground (solid
curve) are plotted for comparison. The absolute gain correction has been applied
to all spectra, but not the polarization angle calibration based on the EB spectrum.
The science band is from ` = 500 to ` = 2100.
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Figure 9.9: Binned BB spectrum measured using data from all three patches (∼
25deg2) from the PCG pipeline (red) and the primary pipeline (blue) described
in [POLARBEAR Collaboration 2014c]. For clarity, the measurements have been
slightly shifted horizontally by ± 10 multipoles around the center of the bin. A
theoretical WMAP-9 ΛCDM high-resolution BB spectrum with ABB = 1 is shown.
The uncertainty shown for the band powers is the diagonal of the band power
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9.3 Late calibration using power spectra

In addition to the calibration step described in Chap. 6, we use the estimated
power-spectra to further calibrate our results.

9.3.1 Absolute calibration

Although we already applied an absolute and relative gain correction for each pixel
in the focal plane (see Sec. 6.5), the global calibration of the whole focal plane
can be slightly different from unity. A single estimate of the power spectra ĈXYb

from the three patches is created using the band powers and their covariance ma-
trices from Eq. 9.47. The power spectra are gain-calibrated by fitting the patch-
combined TT power spectrum to the WMAP-9 ΛCDM spectrum. We find that the
patch-combined and individual patch spectra are consistent with the ΛCDM model
(probability-to-exceed > 20%), where the binned uncertainties on each spectra are
from sample variance, noise variance, and beam uncertainty.

9.3.2 Polarization angle calibration

As described in Sec. 6.7, Tau A is used to calibrate the relative pixel polarization an-
gles. We use simulations of instrumental systematic effects in Sec. 10 to show that
our uncertainty in relative pixel polarization angle, and in all other instrumental
systematics, does not contribute significantly to the BB or EB spectra. This allows
us to use the EB spectrum as a more precise calibration of instrument polarization
angle to search for the signature of gravitational lensing in BB [Keating et al. 2013].
Miscalibration of the instrument polarization angle biases the measured BB spec-
trum and produces non-zero EB and TB spectra. The bias in BB and non-zero EB
corresponding to an instrument polarization angle error ∆ψ � π are given by

C ′`
BB ' 4∆ψ2CEE` , (9.49)

C ′`
EB ' 2∆ψCEE` . (9.50)

A cosmic rotation of polarization would produce a non-zero EB that is degenerate
with an instrument polarization angle miscalibration. Either signal can be removed
by rotating the instrument polarization angle to minimize the best-fit angle as mea-
sured by EB and TB. For the first season analysis, we calibrate the instrument polar-
ization angle using the patch-combined EB spectrum, which is more sensitive than
TB11. We then find consistency between TB and EB, and find that each patch is indi-
vidually consistent with the single EB-defined instrument polarization angle, which
has a statistical uncertainty of 0.20◦. Note that this process is expected to minimize
the measured BB, as any miscalibration of polarization angle or cosmic rotation of
polarization increases the power in BB [Ferte & Grain 2014, Kaufman et al. 2014].

11We also fitted simultaneously EE, EB, TE, and EB. The resulting angle was consistent with
the fit using EB only.
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Figure 9.10: Patch-combined EB spectrum from the Tau A-derived polarization
(black) and patch-combined EB spectrum after the subtraction of a bias corre-
sponding to an instrument polarization angle error ∆ψ = −1.01◦ (red). The ex-
pected theoretical EB spectrum (dashed curves) corresponding to a miscalibration
of -1.01◦± 0.2◦ is shown (dashed curve with the shaded region). For clarity, the
measurements have been slightly shifted horizontally by ± 10 multipoles around the
center of the bin. The science band is from ` = 500 to ` = 2100.

The measurements in black in Fig. 9.10 shows the EB power spectrum mea-
sured using the Tau A calibration of instrument polarization from the PCG pipeline
( PCG mapmaker and X2pure). This shows that the instrument polarization angle
calibrated by EB is different from the Tau A-derived polarization angle by -1.01◦;
the statistical uncertainty in the global EB-derived instrument polarization angle is
0.20◦12. Given the uncertainty in the IRAM-measured angle of 0.5◦, the Polar-
bear measurement uncertainty estimated in Sec. 6.7 of 0.43◦, and the statistical
uncertainty of in the EB-derived angle, there is slight tension between the Tau A an-
gle measurement and the EB angle measurement. Recently, the ACTpol team also
reported an inconsistency of 1.0◦± 0.5◦between their Tau A angle measurement and
their EB measurement [Naess et al. 2014] (the sign of EB is matter of convention).
As of 2015, we still do not understand the reason of this tension. We show in Chap.
10 that Tau A is more than sufficient as a relative calibration between pixel angles,
because relative uncertainties across the focal plane are mitigated by averaging of
many pixels and sky rotation. The effect of the EB statistical uncertainty on BB is
shown in Fig. 10.3, and corresponds to less than 2% contamination of the measured
BB signal.

12The primary pipeline finds -1.08◦± 0.20◦.
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This chapter describes our evaluation of spurious instrumental effects on the BB
and EB spectra. The blindness policy adopted in the team forced us to develop
several frameworks in order to assess the quality of the data without looking at the
final products. I contributed to the null tests effort, especially for the PCG pipeline,
but my main contribution in the systematic effect characterization is about the
simulations of instrumental effects. Together with G. Fabbian, we implemented
a high-resolution simulation pipeline in order to determine the effect of instrument
model uncertainties on the maps and the power-spectra. This systematics pipeline is
common to both the primary and the PCG pipeline (mapmaker and power-spectrum
estimation). Complementary informations and results about this pipeline can be
found in [Fabbian 2013].

10.1 Blind analysis

As of 2012 when we started the analysis of the first season of observation, the B-
modes were not measured. Both lensing B-modes and primordial B-modes remained
theoretical. The difficulty of the B-mode measurement mainly comes from the weak-
ness of the signal. The Polarbear experiment is designed to reach high enough
sensitivity to detect it. But such a high sensitivity means that we are also more
prone to detect any spurious signals, which were considered until now too weak to
matter.

The possibility of data analyzers biasing their result toward their own precon-
ceptions, known as "observer bias", is a form of systematic bias that can affect
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the result of an experiment [Klein & Roodman 2005]. Examples of preconceptions
include theoretical predictions, the statistical significance that the team expect to
obtain, or consistency with previous measurements. Since it is difficult to estimate
the effects of observer bias, we employed an analysis methodology designed to min-
imize its impact.

Therefore we decided to adopt a blind-analysis framework, which is a stan-
dard technique to minimize observer bias, frequently employed in particle and nu-
clear physics, but also recently in cosmology [Araujo et al. 2012]. In our frame-
work, no one in the team viewed the measured BB power-spectrum values, the
deflection power spectra based on B-modes [POLARBEAR Collaboration 2014a,
POLARBEAR Collaboration 2014b], or the corresponding maps, until we elimi-
nated possible sources of observer bias by finalizing calibration, filtering, data se-
lection, data validation and showed that all systematic uncertainties were small1.
This framework forced us to develop quantitative tools, including null tests and
simulations, that convincingly argued for analysis choices and constraints without
showing the BB angular power-spectrum, thus removing the possibility that people
within the team would be more convinced by an argument or method because of
the BB spectrum that it produced. Other power spectra and maps were used as
subsidiary information in this work, and they were unblinded in stages during the
analysis procedure.

Although we stick to the blindness policy until the last moment, we are not
immune to mistakes. After the unblinding the results have to go over a battery of test
and pass them all without any changes to the data selection or its characterization.

10.2 Null tests framework

In order to assess the quality of the data, that is to show that the data set is internally
consistent and to search for possible systematic contamination in the power-spectra,
we partly rely on null tests. In a null test, the full season data set is split into two
parts based on configurations associated with possible sources of contamination or
miscalibration. Unlike the primary pipeline which produces biased maps, the PCG
pipeline can directly work in the map domain to perform null tests as the maps
are unbiased (see Sec 7.3 from [POLARBEAR Collaboration 2014c] for the biased
approach). However for the PCG pipeline we decided to stick with the harmonic
approach developed for the primary pipeline, in order to compare easily the results.
Explicitly, a binned null power spectrum is defined by

Ĉnull
b = ĈAb + ĈBb − 2ĈABb , (10.1)

ĈAb and ĈBb are two spectra formed by cross-correlating data in the same fashion as
the PCG pipeline, but for only the selected data in A and B (see Sec. 9.2). ĈABb

1The calibration and the data validation is not yet done for the second season of observation.
This is the reason why I cannot show the maps and power-spectra of the second season while
writing this manuscript.
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corresponds to cross-pseudo-power spectra between two data sets. We primarily
estimate the EB and BB null binned power spectra. The TT and EE power-spectra
have a too high signal-to-noise to be useful in detecting systematics, and TB is too
noisy (due to uncertainty from temperature). As stressed previously, we do not
have yet the capability in the PCG pipeline to perform large runs of Monte Carlo
simulations, so the results of this pipeline are used to support and validate the results
from the primary pipeline. In addition, the primary pipeline checks for consistency
with the results of 500 Monte Carlo simulations per null test that include signal and
white noise.

The null tests are performed for several interesting splits of the data, chosen to be
sensitive to various sources of systematic contamination or miscalibration. We also
required that the data divisions for different null tests be reasonably independent.
The data splits are:

• “First half vs. second half”: probes time variation on month-long time-scales.
This test is sensitive to systematic changes in the calibration, beams, tele-
scope, and detectors, and effects due to the mid-season addition of absorptive
shielding above the primary mirror.

• “Rising vs. setting”: checks for systematic bias due to poor sky rotation. This
is also sensitive to residual ground signal via the far sidelobe, which for RA23
sees a nearby hill in only the setting scans (see Sec. 8.4).

• “High elevation vs. low elevation”: tests for contamination caused by noise or
glitches due to the faster telescope motion required at higher elevation.

• “High gain vs. low gain”: probes for problems due to linearity or saturation
power of the detectors, and checks for miscalibration.

• “Good vs. bad weather”: checks for residual problems after the PWV cut (see
Sec. 6.8.1 and Chap. 7) is made.

• “Pixel type”: each detector wafer is fabricated with pixels at two different
polarization orientation angles. We split the data into the two individual types
of pixels to check for systematic contamination or miscalibration by different
cross-linking, bandwidth, or microfabrication differences.

• “Left-side vs. right-side”: checks for optical distortion on one side of the focal
plane versus another, or for different map coverage.

• “Left- vs. right-going subscans”: probes for residual atmosphere (which is
asymmetric in telescope direction due to wind), and for contamination due
to vibration, which may be asymmetric in velocity.

• “Moon distance”: checks for residual contamination after setting the moon
proximity threshold for an observation to be considered for analysis.
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Figure 10.1: Each plot shows a PTE distribution from the null suite of the CBBb and
CEBb power spectra of the three patches (PCG pipeline). (a) and (b) corresponds to
distribution of χ2

null(b), and χ
2
null by spectrum respectively. Each is consistent with

the uniform expectation.

We also established a “Sun distance” null test, but it was highly correlated with
the “high gain vs. low gain” test for the LST patch, and also correlated with the
“first half vs. second half” test for RA12 and RA23, so we did not include it. For
each null power spectrum bin b over 500 < b < 2100, and for EB and BB separately,
we calculate the statistic χ2

null(b) ≡ (Ĉnull
b /σb)

2, where σb is an analytic estimation
of the corresponding standard deviation. Fig. 10.1 shows the probability-to-exceed
(PTE) distribution of the χ2

null by (a) bin, and (b) spectrum for the three patches
and for EB and BB. We require that each of these sets of PTEs be consistent with a
uniform distribution, as evaluated using a KS test, requiring a p-value (probability
of seeing deviation from uniformity greater than that which is observed given the
hypothesis of uniformity) greater than 5%. These distributions are consistent with a
uniform distribution from zero to one. In addition, those distributions are consistent
with the ones from the primary pipeline, see [POLARBEAR Collaboration 2014c].
We found no evidence for systematic contamination or miscalibration based on those
null tests in the Polarbear data set and analysis.
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10.3 Simulations of instrumental effects

We apply three frameworks for the investigation of instrumental bias. We already de-
scribed in the previous sections the blind analysis and the null test framework and we
show that the data set is internally consistent. Special analyses of the data focused
on illuminating possible effects of instrumental contamination (beams and crosstalk)
are used but it will not be described here (see [POLARBEAR Collaboration 2014c])
as I didn’t perform this work. Finally, signal-only simulations used to determine the
effect of instrument model uncertainties on the power spectrum are described in this
section.

The result of all these analyses is that none of the instrumental effects taken
into account produces significant contamination of the Polarbear B-mode mea-
surement. The calculated upper bound on the sum of all considered systematic con-
tamination in the BB power-spectrum is shown in Fig. 10.3. To evaluate the effect
of this systematic uncertainty on the measurement, these binned upper bound values
are conservatively added linearly together with the binned upper bounds on fore-
ground contamination given in the Tab. 4 in [POLARBEAR Collaboration 2014c].
Those values are then subtracted from the measured B-mode power-spectrum,
and the significance with which we reject the null hypothesis is calculated us-
ing these reduced band powers, combined with their statistical uncertainties.
The ABB fit to these reduced band powers sets the lower bound of the re-
ported asymmetric systematic uncertainty on the measured ABB in Chap. 9 and
[POLARBEAR Collaboration 2014c].
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10.3.1 High-resolution simulation pipeline

Figure 10.2: Schematic view of the pipeline used to study the impact of the instru-
mental effects. The systematics are introduced on-the-fly in the timestreams.

All of the instrumental effects (except beam asymmetries and crosstalk) in Tab.
10.1 were analyzed using signal-only simulations from a high-resolution simulation
pipeline to highlight the effect of specific instrumental uncertainties. This pipeline
is fairly general with respect to the types of systematic errors it can simulate, and
is particularly well-suited to effects that involve small deflections in map-space.

12◦ × 12◦ sky maps with 3 arcsecond resolution pixels are created from real-
izations of the theoretical unlensed ΛCDM spectra multiplied by the symmetric
Polarbear B2

` . These realizations contain TT, TE and EE temperature and po-
larization power, but no BB power. The maps are scanned with the actual Polar-
bear pointing and the instrumental effects in question are injected directly into the
timestreams on the fly. I, Q and U maps are then reconstructed at the standard
Polarbear map resolution. No filtering is included in this process2. The power
spectra of these maps are then estimated using the X2pure code described in the
previous section, which implements the pure-pseudospectrum technique to minimize
the effects of the E-to-B leakage due to the cut-sky effects. Finally, the power spec-
tra from each patch are combined into a single power spectrum as for the real data
(see Chap. 9). As a result of this framework, any non-zero EB or BB power is spuri-
ous, and a measurement of the instrumental systematic effect. This pipeline, which
co-adds daily observations and then auto-correlates to measure power spectra, is
slightly more sensitive to some systematic errors than the primary pipeline, which
cross-correlates data from different days. Of course, instrumental effects could also
distort an existing BB power-spectrum, and these effects could be understood using

2For the first season, we wanted to keep separated the instrumental effects and the filtering
effects. Especially, the latter introduces E-to-B leakage, which overwhelms any signal from the
former. However, there could be potentially a correlation term between instrumental effects and
filter, which is therefore not probed here. For the analysis of the second season, we include both
effects in the simulation, with a specific E-to-B leakage (due to filtering) removal.
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the pipeline described above by including B-mode power in the simulated maps.
We expect these effects to be small, given the already faint B-mode signal. In the
future, these effects will have to be understood to precisely characterize the B-mode
power spectrum. Given the statistical uncertainties reported here, we chose not
to investigate effects distorting the BB power-spectrum for the analysis of the first
season (although we performed some checks, as described in Sec. 10.3.4).

The method outlined above was used to investigate five systematic instru-
mental effects: uncertainty in instrument polarization angle; uncertainty in rel-
ative pixel polarization angles; uncertainty in instrument boresight pointing
model; differential pointing between the two bolometers in a pixel; and rela-
tive gain calibration uncertainty between the two bolometers in a pixel. All of
these instrumental systematic uncertainties have also been described analytically,
see e.g. [Hu et al. 2003, O’Dea et al. 2007, Shimon et al. 2008, Miller et al. 2009,
Brown et al. 2009a, Su et al. 2009]. All five were found to produce spurious BB
power well below the statistical uncertainty in the measurement of CBB` , and EB
power substantially smaller than the signal discussed in Sec. 9.3.2. The simulated
contamination is shown in Figs. 10.3 and 10.4. The results for ` (`+ 1)CBB` /2π are
enumerated in Tab. 10.1. Each individual simulation is described in more detail
below.

10.3.2 Uncertainty in polarization angle

All pixel polarization angles are referenced to the instrument’s global reference an-
gle. How this angle maps to the sky is the sum of different contributions, described
in equation 6.39. The miscalibration of this angle has been studied analytically
by [Keating et al. 2013]. Simulations with an incorrect instrument polarization an-
gle were consistent with these analytic results. We simulated 100 realizations of
miscalibration of the instrument polarization angle based on estimate described in
Sec. 9.3.2, and found that they produced bias in CEB` and CBB` expected from
the analytical calculation. For the Polarbear CBB` results, the global reference
angle was measured using CEB` with an uncertainty of 0.20◦ as discussed in Sec.
9.3.2. All of the relative polarization angle uncertainties were simulated 100 times,
and in each simulation the instrument angle was measured from CEB` , with realistic
variance in the angle added to the noiseless simulations. In this way, we calibrated
the instrument angle for the systematic uncertainty simulations in the same way it
is calibrated in the analysis.

10.3.3 Uncertainty in relative pixel polarization angle

The relative polarization angles of each pixel are measured using Tau A, as described
in Sec. 6.7.1. We simulate the noise in this measurement with two random com-
ponents (see Fig. 10.5): one component which is common across the detectors in
each wafer (the uncertainty of wafer-averaged polarization angles) and a component
that is a pixel-by-pixel random uncertainty within each wafer (the individual pixel
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Figure 10.3: Estimated levels or upper bounds on instrumental systematic uncer-
tainties in the CBB` power spectra for the three CMB patches combined, as described
in Sec. 10.3. Both the individual sources of uncertainty (solid color) and the cu-
mulative bias coming from their combination (black dashed) are displayed after
the combination of all CMB patches. The grey-shaded region show the 1σ bounds
on the cumulative bias limit, after the self-calibration procedure described in Sec.
9.3.2. This is found through Monte Carlo simulations of our observations with the
systematics included. The effects included in this analysis were the boresight and
differential pointing uncertainty (light blue cross mark), the residual uncertainty in
instrument polarization angle after self-calibration (purple plus mark), the differen-
tial beamsize and ellipticity (yellow arrow and black square mark respectively), the
electrical crosstalk (blue arrow mark), the drift of the gains between two consecutive
thermal source calibrator measurements (red star mark), and the HWP-independent
and HWP-dependent terms of the relative gain model (green diamond and blue cir-
cle mark respectively). Also shown are the theoretical unlensed ΛCDM CBB` (solid
black line) and the binned statistical uncertainties (black bullets with horizontal
bars).
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Figure 10.4: Impact of instrumental systematic uncertainties on the CEB` power
spectra for the three CMB patches combined, as described in Sec. 10.3. See Fig.
10.3 for details on the individual sources of uncertainty. The shaded region shows
the 1σ boundaries of the uncertainty in the CEB` self-calibration procedure described
in Sec. 9.3.2. Note that all of the systematic uncertainties are much smaller than
this statistical uncertainty.
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polarization angle uncertainty). The amplitude of each is based on the measurement
uncertainty discussed in Sec. 6.7.2. We also include day-to-day variations in the in-
strument polarization angle at the largest level allowed by measurements of Tau A.
Note that we do not expect or see evidence for day-to-day variations, however this
treatment accounts for any possible rotation (jitter) of the stepped and fixed HWP.
The combined uncertainty in CEB` and CBB` due to polarization angle calibration
uncertainty, after self-calibration using CEB` , is shown in Figs.10.3 and 10.4. We
found that the global reference angle uncertainty has a somewhat larger contribu-
tion to this uncertainty than the relative pixel polarization angle uncertainty. The
grey-shaded region in Figs. 10.3 and 10.4 shows the 1σ bounds on the cumulative
bias limit for the polarization angles from 100 realizations after the self-calibration
procedure.

(a)

(b)

(c)

Figure 10.5: Schematic view of the three different contributions used to model the
uncertainty in the polarization angles. The uncertainty in relative pixel polarization
angle (Sec. 10.3.3) has two random components: a component that is a pixel-by-
pixel random uncertainty within each wafer (a) and one component which is common
across the detectors in each wafer (b). The uncertainty in polarization angle (Sec.
10.3.2) is a single number across all the detectors (c).
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10.3.4 Uncertainty in the reconstructed telescope pointing

The effect of incorrect pointing reconstruction can be evaluated in this simulation
pipeline by scanning the noiseless map into timestreams using one pointing model
– the scanning pointing model – but then reconstructing the map using a second
pointing model – the mapping pointing model. Measuring the spurious CEB` and
CBB` created by this procedure is a measure of how different the pointing models are,
referenced to power spectrum space. The different models are built from planets
observations, Tau A observations, radio source observations, or a combination of
them.
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Figure 10.6: Left: Systematic bias on B-modes introduced by a pointing model
misestimation. Right: Relative error between the recovered E-modes and the input
E-modes for various pointing model misestimations. In all the cases, the scanning
pointing model is the model of reference, but the mapping pointing model is changed.
We can see the smoothing introduced by a pointing model misestimation. This level
of systematic error in pointing model would have been responsible for more beam-
smearing than was observed in the Polarbear maps and spectra.

The covariance matrix of the five parameters in the pointing model describes
the constraints that the pointing data have put on the model parameters. For
the pointing model to be precise enough, inaccuracies in these parameters within
the space of this covariance matrix must be acceptable. 100 realizations of the
pointing model within the parameter covariance matrix were generated and used
as the mapping pointing model in the simulation. The mean of the spurious signal
created in these simulations was found to be negligible compared to the systematic
uncertainty in the pointing model described in the next paragraph.

Systematic differences in pointing reconstruction were noticed depending on the
sources used to create the pointing model. To ensure that these differences were
unimportant in this measurement of CBB` , simulations were done with each of these
systematically different pointing models used as the mapping pointing model. The
largest spurious CBB` and CEB` found in these simulations is shown in Figs. 10.3 and
10.4. This level of systematic error in pointing model would have been responsible



10.3. Simulations of instrumental effects 211

for more beam-smearing than was observed in the Polarbear maps (as described
in Sec. 6.6 and Fig. 10.6), but the spurious CEB` and CBB` are still small compared
to the statistical uncertainties in the measurement. While sufficiently accurate for
the measurement of CBB` reported here, in the future, we plan to establish a more
precise and consistent pointing model for Polarbear through more detailed point-
ing calibration observations.

10.3.5 Differential pointing between two pixel-pair bolometers

The differential pointing between two detectors in a pixel is measured from ob-
servations of planets. It is estimated independently for each HWP position. The
mean differential pointing magnitude is 5 arcseconds (from planet measurements).
This is one of the most important instrumental systematic effects because it creates
spurious polarization proportional to the derivative of the CMB intensity.

Data averaged over different angles between the sky polarization and the dif-
ferential pointing vector act to average out the effect of differential pointing. This
averaging out is provided by sky rotation as the CMB patch rises and sets, and
HWP rotation from one angle to another [Miller et al. 2009]. The simulations show
that a majority of this leakage-mitigation provided by the Polarbear observation
strategy has occurred after several days of observation. The Fig. 10.7 shows the
spurious CBB` signals created by the differential pointing from 1/4 to 17 days of
observation of RA23, and how the mitigation takes place. Figs. 10.3 and 10.4 show
the spurious CBB` and CEB` signals created by the differential pointing in an entire
season for the three patches combined.

10.3.6 Uncertainty in pixel-pair relative gain

Miscalibrations of relative bolometer gains in a pixel pair will “leak” temperature
signal into Q or U . A systematic miscalibration between two bolometers does not
necessarily lead to a significant systematic bias in polarization maps.

The relative gain model we use has a term motivated by the polarization of the
thermal calibration source which depends on the angle of the HWP, and a term
motivated by variations in detector properties which has no HWP dependence. Un-
certainty in either of these terms can lead to leakage of temperature into polarization.
We evaluate our uncertainty in the term that changes with HWP position by com-
paring two different gain models with an independent determination of this term,
as described in more detail below. We evaluate uncertainty in the term that does
not change when the HWP rotates in two ways: via a comparison of different gain
models with separate measurements of this HWP-independent term, and also via
differential gain map-making described in [POLARBEAR Collaboration 2014c].

The simulation pipeline described above is used to compare relative gain models.
In each case, a simulated map with noB-modes is “observed,” producing timestreams
using the gain model under question, and then reconstructed using the standard
analysis gain model. The level of resulting CBB` quantifies the difference in these
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Figure 10.7: Evolution of the differential pointing effect over time as simulated by
the pipeline. Residual Stokes Q maps (input-output) are shown for 1/4, 1, and 3
days of observations. We can see that after one day of observation, the patch has
almost its definitive geometry and we almost keep observing the same area the next
days. In principle, the averaging out provided by sky rotation should stop after one
day, but because we do not span all the possible orientations every day (mainly due
to data cuts), few days are required to see a saturation of the effect. In addition, the
HWP provides further mitigation of the effect (15 possible positions, one per day).
The plot on the bottom shows the differential pointing effect in the harmonic domain
for 1, 3, 11 and 17 days of observations. In all the cases, the input B-mode spectrum
has been set to zero. For comparison, the residual without differential pointing error
is shown (pixelization effect), as well as the theoretical lensing B-modes.
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gain models in power spectrum space.
As explained in Sec. 6.7.1, each pixel’s polarization angle relative to the instru-

ment frame is measured using Tau A. This fit also returns a single value for the
average relative gain miscalibration over the course of the year, which we use to
independently determine our non-HWP dependent gain model term. The difference
between this measurement and the measurement by planets that is used to calibrate
the pixel-pair relative gain was analyzed with the simulation pipeline. The resulting
CBB` bias is shown in Fig. 10.3 and enumerated in Tab. 10.1.

Elevation nods can also be used to establish the relative gain between detectors.
We use this technique to determine our HWP-dependent relative gain model term
and compare to the planet-derived term with the same simulation process. We find
the difference to be small, as shown in Figs. 10.3 and 10.4 and Tab. 10.1.

Our normal procedure to correct for gain drift over the duration of a scan is to in-
terpolate our gains between measurements of the thermal calibration source taken at
the beginning and end of hour-long observation periods. In order to understand the
impact of potential errors in this interpolation, we constructed a set of gains based
only on the measurements taken at the beginning of every hour and thus use no
interpolation. We find the impact, evaluated through a simulation comparing these
two models, to be negligible as shown in Tab. 10.1. All four probes of the relative
gain model described here show that the uncertainty in the Polarbear relative gain
model is small compared to the statistical uncertainty in CBB` . We perform a further
systematic check on all sources of differential gain via a cross-correlation of temper-
ature maps with B-mode maps, described in [POLARBEAR Collaboration 2014c],
and find consistency with zero leakage to within this test’s statistical power.
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11.1 2012-2015: fast evolution of the field

11.1.1 Recent constraints on weak gravitational lensing of the
CMB

In the section 3.7, we presented the status of the field concerning the
weak gravitational lensing as of 2012. From 2012, there has been
the publication of an important number of observational constraints
on CMB lensing using different techniques: cross-correlations with
infrared-selected galaxies [Bleem et al. 2012, Planck Collaboration 2014d],
high-redshift submillimeter galaxies [Bianchini et al. 2014], quasars
[Sherwin et al. 2012, Planck Collaboration 2014d, Geach et al. 2013], gamma-rays
[Fornengo et al. 2014], the cosmic shear from optical galaxies [Hand et al. 2013],
galaxy clusters emitting in the X-ray [Planck Collaboration 2014d] and via the
Sunyaev-Zel’dovich effect [Hill & Spergel 2014].

Among all different tracers, one of the most used recently is the Cosmic
Infrared Background (CIB). Recent studies have measured the cross-correlation
of the flux of the CIB and CMB temperature lensing [Holder et al. 2013,
Planck Collaboration 2014e]. As far as polarization is concerned, a non-zero cross-
correlation of the flux of the CIB and CMB polarization lensing has been mea-
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sured by several teams [Hanson et al. 2013, POLARBEAR Collaboration 2014a,
van Engelen et al. 2014], as shown in Fig. 11.1.
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Figure 11.1: Lensing reconstruction from polarization data cross-correlated with the
CIB (three-point function): SPTpol [Hanson et al. 2013] (EB only, in blue), Po-
larbear [POLARBEAR Collaboration 2014a] (EE and EB estimators combined,
in red), ACTpol [van Engelen et al. 2014] (EE and EB estimators combined, in
purple). For comparison, the Planck 2013 results using temperature data is shown.
A color correction to normalize everything at 545GHz has been applied because
the results for SPTpol and Polarbear use flux maps from Herschel at 500µm,
whereas ACTpol and Planck results use Planck CIB maps at 545GHz. Po-
larbear and ACTpol use the same binning scheme, and in order to have a better
visualization, the ACTpol data have been shifted horizontally (+50). The signif-
icances for polarization data are of the order of 5σ. I would like to thank A. van
Engelen and D. Hanson for data.

Since the first measurement of the CMB lensing potential power spectrum
from the CMB temperature data [Das et al. 2011], there have been several other
measurements using temperature data by different experiments such as SPT
[van Engelen et al. 2012] or the satellite Planck [Planck Collaboration 2014d].
The first measurements using polarization data have been made very recently by Po-
larbear [POLARBEAR Collaboration 2014b], SPTpol [Story et al. 2014], and
Planck [Planck Collaboration 2015e] thanks to the development of large arrays of
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powerful detectors enabling to reach very low instrumental noise levels and powerful
data analysis tools to deal with those huge and complex data sets. Such measure-
ments of the CMB lensing potential power-spectrum are shown in Fig. 11.2 and
11.3.

Figure 11.2: Planck 2015 full-mission and Planck 2013 nominal-
mission minimum-variance lensing potential power spectrum measurements
[Planck Collaboration 2015e, Planck Collaboration 2014d]), as well as those pre-
viously reported for temperature by SPT [van Engelen et al. 2012], and ACT
[Das et al. 2014]. Figures taken from [Planck Collaboration 2015e].

11.1.2 Recent constraints on CMB polarization

After the first successful measurements of the E-modes polarization and the
T-E cross-correlation described in Sec. 2.5, there have been several high
signal-to-noise ratio measurements published in the course of 2014: Polar-
bear [POLARBEAR Collaboration 2014c], SPTpol [Crites et al. 2014], ACTpol
[Naess et al. 2014], and Planck [Planck Collaboration 2015d]. The quest for the
B-modes is however just starting. The first constraint on CMB B-modes was put in
2013 by SPTpol with an indirect detection of B-modes by combining E-mode polar-
ization measured with estimates of the lensing potential from a Herschel-SPIRE map
of the cosmic infrared background [Hanson et al. 2013]. By comparing the resulting
template for the lensing B-mode signal to their measured B-modes, they found a
non-zero correlation of 7.7σ. Shortly after, the Polarbear experiment puts out
results on i) the cross-correlation of the flux of the CIB (from Herschel) and their
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Figure 11.3: CMB lensing potential power-spectrum measurements (as in Fig.
11.2) using polarization data: Polarbear [POLARBEAR Collaboration 2014b]
(only EE and EB estimators used, in red), SPTpol [Story et al. 2014] (minimum-
variance, in blue), Planck [Planck Collaboration 2015e] (minimum-variance, in
green). As of now, the reconstruction of the lensing potential is still dominated
by the temperature data, as the signal-to-noise ratio is much higher. The first
measurements using polarization have been published very recently and they are
expected very soon to surpass the ones in temperature as soon as experiments
will reach very low instrumental noise levels. The black solid line shows the
Planck+Lens+WP+highL best-fit ΛCDM model.

CMB polarization lensing, leading to evidence of (lensing) B-modes with a signif-
icance around 2.3σ [POLARBEAR Collaboration 2014a] and ii) the first detection
of the CMB lensing potential power spectrum using the four-point function with
polarization data only, rejecting the absence of polarization lensing at a significance
of 4.2σ [POLARBEAR Collaboration 2014b].

Few months later, Polarbear announced the first direct measurement of the
CMB B-mode polarization power-spectrum [POLARBEAR Collaboration 2014c].
This measurement has been done at sub-degree scales (lensing B-modes domina-
tion). Since then, ACTpol [Naess et al. 2014] and SPTpol [Keisler et al. 2015]
released also their sub-degree B-modes power-spectrum measurements, summa-
rized in Fig. 11.5. Concerning primordial B-modes, the BICEP2 exper-
iment claimed a detection of B-mode polarization at degree angular scales
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early 2014 [BICEP2 Collaboration 2014] (one week after Polarbear announce-
ment!), but the Planck satellite shortly after rejected their conclusions
[Planck Collaboration 2014g], pointing out that the level of polarized dust emission
(at 353 GHz) was sufficient to explain the 150 GHz excess observed by BICEP2,
although with relatively low signal-to-noise. This rejection has been confirmed by a
joint analysis of the Planck and BICEP2 data sets [Ade et al. 2015]. Regardless
of the interpretation of the excess B-mode signal, the joint analysis also reported
a 7σ detection of lensing B-modes at degree scale, the tightest direct constraint so
far. As of now, the quest for precision measurements of the lensing B-modes starts,
and the existence of primordial B-modes is still to be proven. Both will continue to
drive the main efforts in the CMB community for the upcoming years.
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Figure 11.4: Recent measurements of EE and TE angular power spectra from small-
scale experiments: Polarbear (PCG pipeline, red), ACTpol [Naess et al. 2014]
(green), SPTpol [Keisler et al. 2015] (blue). The Planck 2015 results are also
shown (grey). The black solid line shows the Planck+Lens+WP+highL best-fit
ΛCDM model.
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Figure 11.5: Constraints on CMB B-modes from many CMB experiments as of June
2015. Measurements from Polarbear [POLARBEAR Collaboration 2014c], SPT-
pol [Keisler et al. 2015], and ACTpol [Naess et al. 2014] are highlighted. They
first focus on the part of the spectrum dominated by the lensing B-modes (small
scales), and will progressively go down to larger scales. The major challenges when
reaching small multipoles from the ground will be foreground contamination, atmo-
sphere contamination, and to have access to a large portion of sky (after cuts). The
results of the joint analysis between Planck and BICEP2 [Ade et al. 2015] (BKP)
is also shown. All results with high significance have been announced between the
previous year and now. Courtesy: Yuji Chinone.

11.2 Evidence for Gravitational Lensing of the CMB Po-
larization from Cross-correlation with the CIB

This section is a summary of the results published by the Polarbear Collabora-
tion in [POLARBEAR Collaboration 2014a].

At frequencies higher than 300 GHz, the Cosmic Infrared Background (CIB) is
the dominant extragalactic signal. It is composed of redshifted thermal radiation
from UV-heated dust, enshrouding young stars. The CIB contains much of the en-
ergy from processes involved in structure formation [Planck Collaboration 2014e].
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The CIB around CMB frequencies (submillimeter and millimeter) has a flux
distribution that peaks around a redshift of z ∼ 1.5 − 2 [Viero et al. 2009,
Béthermin et al. 2013]. High correlation between the CMB lensing and CIB fields
was found, with a maximal correlation coefficient of ∼ 80% observed at a CIB
wavelength of approximately ∼ 500µm.

In this paper, we measure the gravitational lensing of CMB polarization by cross-
correlating CMB polarization lensing convergence κ from Polarbear with maps
of the cosmic infrared background from Herschel. The purpose of this work is
threefold: first, to measure the gravitational lensing of polarization and the lensing
B-mode polarization and test that the data agree with the prediction of the standard
ΛCDM cosmological model; second, to support the concurrent direct detection of
the polarized lensing deflection power spectrum by Polarbear with an indepen-
dent measurement of polarized lensing via the robust cross-correlation channel; third
(and probably most importantly), to demonstrate the new, promising technique of
polarization lensing reconstruction in practice. Recently, a similar cross-correlation
result was published by the SPTpol collaboration [Hanson et al. 2013]. This work
differs in some aspects (for example, our lensing maps have higher signal-to-noise
per mode on a smaller area), but it essentially confirms the SPTpol results. This
is a non-trivial check of a challenging observation, using an independent experiment
with potentially different systematic errors (e.g., due to differences in map depth,
scan strategy, observing location or experiment design).

We use the observations of Herschel H-ATLAS survey at 500 µm as an es-
timate of the CIB emission in the RA23 and RA12 regions1 and the convergence
extracted from Polarbear maps in the same fields. We use Polarbear data
from the first season of observation. The Polarbear maps come from the pri-
mary pipeline (biased maps), and the cut-sky and filter effects are corrected in the
harmonic domain2.

As described in Chap. 3, gravitational lensing by large-scale structure results
in a remapping of the CMB photons by the lensing deflection field d (called α in
Chap. 3) – typically few arcminutes in magnitude – which points from the direc-
tion in which a CMB photon is received to the direction in which it was originally
emitted. Lensing converts E modes into B modes and thus induces a correlation
between the lensing B modes and E modes; similar correlations are also introduced
between formerly independent pairs of E polarization modes. The optimal polarized
quadratic estimators for lensing (described in Sec. 3.5) make use of these changes
in the statistical properties of the CMB sky, and estimate lensing by measuring the
characteristic lensing-induced correlation between different polarized Fourier modes.
In this work, we focus only on the so-called EB and EE estimators which are given
by:

κ̂EB(L) =

∫
d2l

(2π)2
gEB(L, l)E(l)B(L− l) (11.1)

1Herschel maps and LST do not overlap.
2We left for future work the estimation of the CMB polarization lensing convergence κ using

unbiased maps from the PCG pipeline.
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κ̂EE(L) =

∫
d2l

(2π)2
gEE(L, l)E(l)E(L− l) (11.2)

where g is a function chosen as in [Hu & Okamoto 2002] to normalize and optimize
the estimator, and κ is the lensing convergence, defined from the lensing deflection
field d by κ = −∇ · d/2. In the estimators, we only use scales 500 ≤ ` ≤ 2700 in
the polarization maps.

Using these estimators, we calculate a noisy map of the lensing convergence field
κ which can be correlated with the Herschel submillimeter background maps. The
correlation with the EB reconstruction channel in all the patches provides evidence
at 2.3σ level of the presence of lensing generated B-modes. The combination of
the EE and EB channels in all the patches provides a 4σ measurement of polarized
lensing (see Figs. 11.6 & 11.1). We also perform different tests to estimate the
effects of potential sources of systematic error (astrophysical and instrumental) on
the polarization lensing – CIB cross-correlation. The data were analyzed using
a blind analysis framework (see Sec. 10.1) and checked for spurious systematic
contamination using null tests (see Sec. 10.2) and specific combinations of the data
(curl and swap-field null-tests). No evidence of contamination was found.
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Figure 11.6: Cross-power spectra of CMB polarization lensing and the 500µm Her-
schel CIB flux. Left panel : the cross power of EB-reconstructed lensing with the
Herschel maps; constructed from the EB estimator applied to both Polarbear
maps, this result corresponds to 2.3σ evidence for lensing B-modes. Right panel :
the minimum variance combination of all polarization lensing measurements cross-
correlated with the Herschel maps; this result corresponds to 4σ evidence for
gravitational lensing of CMB polarization. The fiducial theory curve for the lensing
– CIB cross-spectrum [Holder et al. 2013] is also shown (Note that it slightly differs
from the one in Fig. 11.1, which is based on the Planck 2013 best-fit).
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11.3 Measurement of the CMB Polarization Lensing
Power Spectrum with the Polarbear experiment

This section is a summary of the results published by the Polarbear Collabora-
tion in [POLARBEAR Collaboration 2014b].

A companion paper to this one has shown the evidence of the CMB lens-
ing – Cosmic Infrared Background cross-correlation results using Polarbear
data [POLARBEAR Collaboration 2014a], finding good agreement with the SPT-
pol measurements [Hanson et al. 2013]. This cross-correlation is immune to several
instrumental systematic effects but the cosmological interpretation of this measure-
ment requires assumptions about the relation of sub-mm galaxies to the underlying
mass distribution [Abazajian et al. 2013]. In this work, we present the first direct
evidence for gravitational lensing of the polarized CMB using first season data from
the Polarbear experiment. The calibration and data selection of those data is de-
scribed in Chaps. 6 & 7. The maps are computed from the primary pipeline (biased
maps), and the cut-sky and filter effects are corrected in the harmonic domain3.

The gravitational lensing of large-scale structure on CMB changes the statistical
properties of the primordial CMB signal. Lensing in fact acts as a convolution
in harmonic domain and correlates different Fourier modes which are otherwise
independent as discussed in Chap. 3. This off-diagonal non-Gaussian feature can
be exploited to reconstruct the underlying deflection field d (called α in Chap. 3)
from the observed CMB. Quadratic estimators take advantage of this feature to
measure CMB lensing. The channels chosen for the reconstruction are the so-called
EE and EB channels. The power-spectrum of these estimators are given by

〈dα(L)d∗β(L′)〉 = (2π)2δ(L− L′)(CddL +N
(0)
αβ (L) + higher-order terms). (11.3)

Here, CddL is the deflection power spectrum and N (0)
αβ is the lensing reconstruction

noise, α and β are chosen from {EE,EB}, however we do not use α = β = EE as
our focus is on the direct probe of CMB lensing represented by the conversion of
E -to-B patterns. The BB estimator also probes B -modes, but it does not make a
substantial contribution to the deflection power spectrum [Hu & Okamoto 2002], so
it is not used in this work. The estimator is affected by the presence of the so-called
lensing Gaussian bias term N

(0)
αβ , which is the disconnected part in the four-point

correlation, and by higher order biases that depend on the lensing field itself. Though
higher order terms are found to be negligible, the N (0)

αβ has to be subtracted as often
it is larger than the deflection field power spectrum. We create 500 simulated lensed
and unlensed maps to estimate the Gaussian bias and establish the lensing transfer
function. In addition, the data were analyzed using a blind analysis framework
(see Sec. 10.1) and checked for spurious systematic contamination using null tests

3We left for future work the estimation of the power spectrum of the lensing deflection field
using maps from the PCG pipeline.
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(see Sec. 10.2), simulations, and specific combinations of data (curl and swap-
field null-tests). No evidence of contamination was found. The rejection of the
hypothesis of no lensing on CMB polarization has a significance of 4.2σ combining
statistical and systematic errors in quadrature. We note however that since the
lensing reconstruction exploits peculiar off-diagonal correlation, it is less sensitive to
systematics than standard CMB analysis. The 〈EEEB〉 channel used alone provides
an evidence of lensing generated B-modes at 3.2σ level. If we include the presence
of lensing in our data set, the measured lensing amplitude is consistent at 2σ level
with ΛCDM predictions (see Figs. 11.7 and 11.3).
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FIG. 3: Polarization lensing power spectra co-added from the three patches and two estimators are shown in red. The lensing
signal predicted by the ΛCDM model is shown as the dashed black curve in the left panel and the solid black curve in the
right panel, respectively. The polarization lensing power spectrum 〈EEEB〉 is in blue and 〈EBEB〉 dark green. Left: A 4.2σ
rejection of the null hypothesis of no lensing. These data indicate a lensing amplitude A = 1.37± 0.30± 0.13 normalized to the
fiducial ΛCDM value. Right: The same data, assuming the existence of gravitational lensing to calculate error bars, including
sample variance and including the covariance between 〈EEEB〉 and 〈EBEB〉. In this case, the lensing amplitude is measured
as A = 1.06 ± 0.47+0.35

−0.31 , corresponding to 54% uncertainty on the Cdd
L power spectrum (27% uncertainty on the amplitude of

matter fluctuations). The histograms of the amplitudes A from 500 unlensed and lensed simulations are shown in the inset
boxes.

is detected at 3.2σ significance statistically.

The right panel of Fig. 3 assumes the predicted amount
of gravitational lensing in the ΛCDM model. In this
case, the 〈EEEB〉 and 〈EBEB〉 estimators are corre-
lated, which changes the optimal linear combination of
the two, and requires that lensing sample variance be
included in the band-power uncertainties. Under this
assumption, the amplitude of the polarization lensing
power spectrum is measured to be A = 1.06 ± 0.47+0.35

−0.31.
The last term gives an estimate of systematic error. Since
A is a measure of power and depends quadratically on
the amplitude of the matter fluctuations, we measure the
amplitude with 27% error. The measured signal traces
all the B -modes at sub-degree scales. This signal is pre-
sumably due to gravitational lensing of CMB, because
other possible sources, such as gravitational waves, po-
larization cosmic rotation [35] and patchy reionization
are expected to be small at these scales.

Conclusions: We report the evidence for gravitational
lensing, including the presence of lensing B-modes, di-
rectly from CMB polarization measurements. These
measurements reject the absence of polarization lensing

at a significance of 4.2σ. We have performed null tests
and have simulated systematics errors using the mea-
sured properties of our instrument, and we find no sig-
nificant contamination. Our measurements are in good
agreement with predictions based on the combination of
the ΛCDM model and basic gravitational physics. This
work represents an early step in the characterization of
CMB polarization lensing after the precise temperature
lensing measurement from Planck. The novel technique
of polarization lensing will allow future experiments to go
beyond Planck in signal-to-noise and scientific returns.
Future measurements will exploit this powerful cosmo-
logical probe to constrain neutrino masses [17] and de-
lens CMB observations in order to more precisely probe
B -modes from primordial gravitational waves.
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Figure 11.7: Polarization lensing power spectra co-added from the three patches
and two estimators (in red). The lensing signal predicted by the ΛCDM model is
shown in black dashed curve and solid curve in the left and right panel respectively.
The reconstructed lensing potential from 〈EEEB〉 and 〈EBEB〉 is shown in blue
and green respectively. Left A 4.2σ rejection of the null hypothesis of no lensing.
Right : The same data, assuming the existence of gravitational lensing to calculate
error bars, including sample variance and including the covariance between the two
reconstruction channels 〈EEEB〉 and 〈EBEB〉. The histograms of the expected
amplitudes of A from 500 unlensed and lensed simulations are shown in the inset
boxes.

11.4 A Measurement of the CMB B-Mode Polarization
Power Spectrum at Sub-Degree Scales with Polar-
bear

This manuscript describes in details the alternative pipeline (PCG pipeline) used
to support and to validate the results from the primary pipeline described in
[POLARBEAR Collaboration 2014c]. The calibration, data selection and instru-
mental systematics characterization parts (see Chaps. 6, 7, & 10) are shared be-
tween the two pipelines, but the mapmaking and power-spectrum steps adopt dif-
ferent approaches to the data. However, as shown in this work the results of the
PCG pipeline are consistent with the results of the primary pipeline, with a mea-
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surement of the CMB’s B-mode angular power spectrum, CBB` , over the multipole
range 500 < ` < 2100 with a significance about 2σ.

We previously presented evidence for gravitational lensing of the CMB in Po-
larbear data using the non-Gaussianity imprinted in the CMB by large-scale struc-
ture [POLARBEAR Collaboration 2014a, POLARBEAR Collaboration 2014b].
We can calculate the combined significance with which those measurements of
non-Gaussian B-modes and the CBB` measurements reported here reject the
hypothesis that there are no CMB lensing B-modes. In this null hypothesis,
the signals are uncorrelated (when using a realization-dependent lensing bias
subtraction to calculate the deflection field), so a simple quadrature sum of the
rejection significance is appropriate. This calculation results in a rejection of the
hypothesis that there are no lensing B-modes with 4.7σ confidence for a normal
distribution.
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Though the impact of the E-to-B leakage on the variance of the B-mode power
spectrum is generally acknowledged, it is rarely included in projecting performance
of planned CMB experiments or instrumental concepts from the point of view
of their setting constraints on the tensor-to-scalar ratio, r. Instead, the major
body of work (see [Caligiuri & Kosowsky 2014, Wu et al. 2014] for some recent ex-
amples) in this area is based on simplified mode-counting arguments (see, how-
ever e.g., [Smith & Zaldarriaga 2007, Stivoli et al. 2010] for some exceptions). This
stemmed mostly from the practical reasons, as the impact of the leakage is neither
calculable analytically nor analysis method independent.

In this chapter, I first describe a minimum variance quadratic estimator in the
case of azimuthally symmetric patches which can be used to estimate efficiently
parameters. I implemented the algebra in a massively-parallel code, nicknamed
fiSher2HAT for Fisher using Scalable Spherical Harmonic Transforms (S2HAT).
Then, in collaboration with A. Ferté, J. Grain, and R. Stompor, we presented a
more systematic study of the impact of the presence of the leakage on the perfor-
mance forecasts of CMB B-mode experiments, by comparing results from the pure
pseudospectrum method, the minimum variance quadratic estimator, and the naïve
mode counting method.
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12.1 Minimum variance quadratic estimator in the case
of azimuthally symmetric patches

12.1.1 Fisher matrix formalism

Translating the uncertainties on the B-mode angular power spectrum recon-
struction into error bars on the measured tensor-to-scalar ratio, σr, can be
done using a Fisher matrix formalism. Consider the error bars that could
be incurred by using a minimum variance quadratic estimator [Tegmark 1997b,
Tegmark & de Oliveira-Costa 2001]. The estimator is defined as follows:

ĈBB` =
1

2

∑
`′

F−1
``′

{
Tr

[
m†
(

C−1 ∂C

∂CBB`′
C−1

)
m

]
− Ñ`′

}
. (12.1)

In the above, C =
〈
mm†

〉
is the covariance matrix of the maps of the Stokes

parameter, and m is the column vector composed of noisy (I, Q, U). The quantity
Ñ`′ stands for the noise debias. Finally, F is the Fisher information matrix given
by:

F``′ =
1

2
Tr

[
∂C

∂CBB`
C−1 ∂C

∂CBB`′
C−1

]
. (12.2)

It is then shown that the covariance of the above estimator is given by the inverse
of the Fisher matrix, i.e. Cov

(
ĈBB` , ĈBB`′

)
= F−1

``′ . We remind that this estimator
is precisely built to be the quadratic estimator with the lowest variance.

If the B-mode power spectrum is indeed estimated for each multipole, ` (for
a discussion on the binning, see the section 12.2), this directly gives the following
expression for the error bars expected on r:

(σr)
−2 = Frr =

1

2
Tr

[
∂C̃

∂r
C̃−1∂C̃

∂r
C̃−1

]
, (12.3)

with C̃ the same covariance matrix but assuming that only CBB` does depend on r,
in line with our approach consisting in constraining the tensor-to-scalar ratio from
the B-mode’s measurements only1. In practice, the exact computation of such a
Fisher matrix for current and future CMB experiments is impossible. Indeed, the
brute force inversion of the covariance matrix of the maps of the Stokes parameter
C is a O(N3

pix) operations, where Npix is the number of pixel Npix ∼ 106 times the
number of Stokes parameters.

12.1.2 Fisher analysis with azimuthal symmetry

In the case of azimuthally symmetric patches, the numerical computation of such
Fisher matrices (either F``′ or Frr), can be performed in a reasonable time using the
expression found in the appendix F of Ref. [Smith 2006], and by using the S2HAT

1More generally, all spectra (TT, EE, BB, TE) have a dependency on r.
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package to perform spherical harmonic transforms [Szydlarski et al. 2014]. In this
section, we therefore work with a specific mock survey which is a spherical cap of
radius R. The covariance matrix of the maps of the Stokes parameter C can be
written as the sum of the signal S and the noise N. If we take the Fourier transform
in the azimuthal coordinate φ, the covariance matrices S and N become block
diagonal in the azimuthal number m and so their computation and the inversion
become affordable (however, while N is diagonal in the coordinate θ, S is still dense
in θ). Consider uncorrelated noise between pixels and isotropic in each pixels but
not necessarily homogeneous, we can write the noise part of the covariance as〈

nQ(p)nQ(p′)
〉

=
〈
nU (p)nU (p′)

〉
= η(θ)2δ(2)(p− p′), (12.4)

where η(θ) is the noise profile in the θ direction and p, p’ are pixels (p = (θ, φ)).
For homogeneous noise, η(θ) = η a constant with units µK.arcmin. If the noise is
inhomogeneous, we can take for example

η(θ) = η′
( R

R− cosR

)
sin θ, (12.5)

where R is the radius of our spherical cap. For convenience, let’s change variable
from {Q,U} to Π± = (Q ± iU). Taking the Fourier transform in the azimuthal
coordinate φ, we obtain

Π̃±m(θ) =

∫ 2π

0
dφ[Q± iU ](θ, φ)eimφ. (12.6)

The noise part of the covariance then reads

〈
Π̃+∗
m (θ)Π̃+

m′(θ
′)
〉

=
〈
Π̃−∗m (θ)Π̃−m′(θ

′)
〉

= 4π
η(θ)2

sin(θ)
δ(θ − θ′)δmm′ , (12.7)

which is diagonal in both m and θ. The change of variable makes the signal part
of the covariance diagonal in m, but it is still dense in θ:

〈(Π̃+∗
m (θ)

Π̃−∗m (θ)

)(
Π̃+
m′(θ

′)Π̃−m′(θ
′)
) 〉

= 4π2δmm′×∑
`

(
(CEE` + CBB` )−2Ylm(θ, 0)−2Ylm(θ′, 0) (CEE` − CBB` )−2Ylm(θ, 0)2Ylm(θ′, 0)

(CEE` − CBB` )2Ylm(θ, 0)−2Ylm(θ′, 0) (CEE` + CBB` )2Ylm(θ, 0)2Ylm(θ′, 0)

)
.

(12.8)

CEE` and CBB` are the fiducial angular power spectra used (we assume that only
CBB` depends on the tensor-to-scalar ratio). Due to the azimuthal symmetry, we can
notice that there is a spin symmetry, i.e. the signal covariance matrix remains the
same under the change ±2Ylm(θ, 0)→ ∓2Ylm(θ, 0). We also assume that the angular
resolution is given by an azimuthally symmetric, gaussian beam with a width σb so
that the signal covariance matrix is given by
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〈(Π̃+∗
m (θ)

Π̃−∗m (θ)

)(
Π̃+
m′(θ

′)Π̃−m′(θ
′)
) 〉

= 4π2δmm′×∑
`

(
C+
` −2Ylm(θ, 0)−2Ylm(θ′, 0) C−` −2Ylm(θ, 0)2Ylm(θ′, 0)

C−` 2Ylm(θ, 0)−2Ylm(θ′, 0) C+
` 2Ylm(θ, 0)2Ylm(θ′, 0)

)
(12.9)

with

C±` = (CEE` ± CBB` )e−`(`+1)σ2
b . (12.10)

Now let’s consider discrete computation. We replace the continuous coordinate θ by
a set of Nθ equally spaced values {θi}i=0,..,Nθ , with a constant spacing ∆θ. We use
an ECP pixelization scheme [Crittenden & Turok 1998], and the ±2Ylm that we use
are defined in such a way that they are not orthogonal on the sphere. We need to
take into account a normalization factor W (θ) which carries the resolution element
information, which is the ring in the case of azimuthal symmetry (in Healpix scheme
for instance the resolution element is the pixel and all pixels have equal area, but
this is not the case in the ECP pixelization). The weights are explicitly added in
the definition of Π±

Π±(θi, φj) =
√
W (θi)(Q± iU)(θi, φj) (12.11)

where W (θi) is the area of the ith ring, meaning W (θi) ≈ 2π∆θ sin(θi) in the ECP
scheme. Changing variable from pixels to rings, the equation 12.4 then reads

〈
nQ(θi, 0)nQ(θj , 0)

〉
=
〈
nU (θi, 0)nU (θj , 0)

〉
= η(θi)

2 δ(θi − θj)
W (θi)

, (12.12)

and the Eq. 12.6 becomes

Π̃±m(θi) =

∫ 2π

0
dφ
√
W (θi)[Q+ iU ](θi, φ)eimφ. (12.13)

The noise covariance elements of the previous discretized variables are then given
by

〈
Π̃±∗m (θi)Π̃

±
m′(θj)

〉
= 4π2

√
W (θi)

√
W (θj)

(〈
nQ(θi, 0)nQ(θj , 0)

〉
+
〈
nU (θi, 0)nU (θj , 0)

〉)
δmm′

= 4π2
√
W (θi)

√
W (θj)

(
2η(θi)

2 δ(θi − θj)
W (θi)

)
δmm′

= 8π2η(θi)
2δ(θi − θj)δmm′ (12.14)

So the full [2Nθ × 2Nθ] noise covariance is then given by

N(m) = 8π2

(
η(θi)

2δij 0

0 η(θi)
2δij

)
δmm′ (12.15)
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By using 12.13, we can also construct the [2Nθ × 2Nθ] signal covariance

S(m) = 4π2δmm′×
`max∑

`=max(2,m)

(
C+
` A(θi, θj)−2Ylm(θi, 0)−2Ylm(θj , 0) C−` A(θi, θj)−2Ylm(θi, 0)2Ylm(θj , 0)

C−` A(θi, θj)2Ylm(θi, 0)−2Ylm(θj , 0) C+
` A(θi, θj)2Ylm(θi, 0)2Ylm(θj , 0)

)
(12.16)

where A(θi, θj) =
√
W (θi)

√
W (θj). The Fisher matrix is then given by summing

over m and tracing over θ :

F``′ =
1

2

mmax∑
m=−mmax

Tr
(
S

(m)
` (S(m) + N)−1S

(m)
`′ (S(m) + N)−1

)
(12.17)

=
1

2
Tr
(
S

(0)
` (S(0) + N)−1S

(0)
`′ (S(0) + N)−1

)
(12.18)

+

mmax∑
m=1

Tr
(
S

(m)
` (S(m) + N)−1S

(m)
`′ (S(m) + N)−1

)
. (12.19)

In the expression above, S
(m)
` is the signal covariance matrix associated to each flat

bandpower in BB (derivative of the signal covariance matrix S(m) with respect to
CBB` ). Then the value for the error bars expected on r, (σr)

−2 = Frr, is computed
using derivatives of CBB` over r. Exploiting the azimuthal symmetry of both signal
and noise in the survey allows to decrease the computational cost of the Fisher
matrix element. In the standard case, for brute force calculation it requires O(N3

pix)
to be evaluated, but in this calculation, evaluating the spin harmonics by recursion
in ` makes the computational cost as O(N3

θmmax), where Nθ is the number of rings
actually used.

I implemented the method described here (minimum variance quadratic estima-
tor in the case of azimuthally symmetric patches) in a massively parallel C code,
nicknamed fiSher2HAT for Fisher using Scalable Spherical Harmonic Transforms
(S2HAT). The algorithmic description of this code is given in Appendix B. With
the current implementation, on the Hopper machine at NERSC, a case assuming
10% of the sky (Nθ(fullsky) = 1024, Nθ(10%) = 210) with `max = 512 is done in
∼20 minutes using 384 cores2.

A comparison of the best r achievable at 2σ between this method and the naïve
mode counting3 (or so-called fsky formula) is shown in Fig. 12.1. We always start
from the North pole (θ = 0) and we play with the aperture by setting θmax (θmax = π

at the South pole). In this configuration, the parameter fsky used in the standard
2If we assume a map with Npix = N2

θ pixels, the speed-up of this method over the brute force
is in principle given by O(N3

θ /mmax).
3The naïve mode counting is essentially used as a benchmark as such an evaluation of the

statistical error bars on the B-mode reconstruction underestimates the error bars coming from any
numerical methods to be applied to the data.
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Figure 12.1: Limits on detectability on the parameter r with respect to the sky
coverage by solving the equation r = n

√
(Frr)−1 for n = 2. In other words, it is

the best r achievable at 2σ for a given sky coverage. The black points show the
results from the azimuthal method and the red ones from the simple fsky formula
as given by Eq. 12.21. The boxes represent intervals. The noise level in the full
sky coverage is 80 µK.arcmin and then scale as noise/

√
fsky = cst. The highest

multipole is lmax = 256 and the resolution is Nθ = 512.

Fisher approximation and the parameter θmax used in the azimuthal method are
related by

fsky =
1

2
(1− cos θmax). (12.20)

In the case of the naïve mode counting expression, the covariance on r is approxi-
mated by:

Frr =

lmax∑
`=2

(2`+ 1)fsky
2

[
CBB` + η2e`(`+1)σ2

b

]−2(∂CBB`
∂r

)(∂CBB`
∂r

)
(12.21)

where CBB` = CBB,prim` (r) + CBB,lensed` . In the case of full sky coverage, the az-
imuthal method and the mode-counting expression give the same values for r. How-
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ever as soon as we decrease the sky coverage the methods show some differences. As
clearly shown in Fig. 12.1, there exists a value of the sky coverage, which minimizes
the best r achievable at 2σ (maximizes the signal-to-noise ratio). This optimal value
of fsky was already observed in [Jaffe et al. 2000], using only the mode-counting ex-
pression for the statistical error bars on the B-mode estimation though. We found
that such an optimal value also exists using the minimum variance quadratic es-
timator (and more generally also for the pure pseudo-C` estimator even if this is
less pronounced, see next section for more details). In the Fig. 12.2, we show the
best achievable r at 2σ if we include explicitly the r dependency for the EE angular
power spectrum in addition to BB. The contribution from EE to the total is weak,
bringing at most 8% better constraints on the detectability of r with respect to the
case with only BB power spectrum (for large sky coverage).
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Figure 12.2: The best r achievable at 2σ computed by the azimuthal method for
different sky coverages. Black : Computed only by using the r dependency of the
BB power spectrum. Red : Computed by assuming that both EE and BB angular
power-spectra depends on r. Only the high sky coverages are affected by adding
information from the EE spectrum, but the contribution is not very significant :
the gain is at best 8%, for high sky coverages. This simulation has been done
for a level of noise of 80 µK.arcmin in the full sky coverage (noise scales then as
noise/

√
fsky = cst).

We note that this way of estimating the uncertainties on the power spectrum
reconstruction is also relevant for maximum-likelihood approaches (it makes optimal
power spectrum estimation affordable), see e.g. Ref. [Bond et al. 1998], assuming
that we use surveys in which both the sky coverage and noise are azimuthally sym-
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metric. Such surveys therefore permit benchmark comparisons between pseudo-C`
estimators and optimal, likelihood-based methods, for survey sizes which are large
enough that comparison would normally be infeasible as mentioned in [Smith 2006].
This was investigated recently in [Ferté et al. 2015], and this work is described in
the Sec. 12.2.

12.2 Detecting the tensor-to-scalar ratio with the pure
pseudospectrum reconstruction of B-mode

This section is based on the work (submitted to Physical Review D) in
[Ferté et al. 2015]. In this paper, we investigate how the tensor-to-scalar ratio
quantifying the amplitude of primordial gravity waves, can be constrained using
the pure pseudospectrum estimation of the B-modes of CMB anisotropies (see
[Smith 2006, Grain et al. 2009] and Sec. 9.1 for details about the pure pseudospec-
trum method). We also include comparisons with the minimum variance quadratic
estimator described in the Sec. 12.1. We consider realistic experimental setups,
including ground-based and/or balloon-borne experiments, as well as a potential
satellite mission. So far, the efficiency of the pure pseudospectrum methods has
been considered from the perspective of the reconstruction of the angular power
spectrum only, but rarely included in projecting performance of planned CMB ex-
periments or instrumental concepts from the point of view of their setting constraints
on the tensor-to-scalar ratio. Instead, the major body of work in this area is based
on simplified mode-counting arguments. The objective of this work is to fill this gap
and present a more systematic study of the impact of the presence of the leakage
on the performance forecasts of CMB B-mode experiments.

In the following, I summarize the main results of the paper. For more details,
see [Ferté et al. 2015].

12.2.1 Measuring the tensor-to-scalar ratio for idealized small-
scale experiment

We consider first the case of small-scale experiments in an idealized way. The
observed part of the celestial sphere is assumed to be azimuthally symmetric. We
work with spherical caps, with sky coverages ranging from 0.5% to 10%. The noise
is an homogeneous, white noise, and its level is fixed at nP (1%) = 5.75µK.arcmin
for fsky = 1% (a typical level for ongoing small-scale experiments). For a fixed
sensitivity and a fixed time of observation, the noise level (in µK.arcmin) scales as:

nP (fsky) =

√
fsky[%]

1%
× nP (1%). (12.22)

The instrumental noise reprojected on the sky thus varies from 4.1µK.arcmin to
18µK.arcmin for an observed fraction of the sky of 0.5% and 10%, respectively.
Finally, the angular resolution is given by an azimuthally symmetric, gaussian beam
with a width of 8 arcminutes.
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Our chosen bandpowers for reconstructing CBB` are the following. The first bin
starts at ` = 20 and we use a constant bandwidth, ∆` = 40. Our last bin extends
up to ` = 1020. In addition, for the experimental cases under consideration, we use
beamwidths up to 8 arcminutes, corresponding to a cut-off of ` ∼ 1300.

We subsequently investigate the signal-to-noise ratio, (S/N)r = r/σr, as a
function of the sky coverage, for four values of the tensor-to-scalar ratio: r =

0.07, 0.1, 0.15 and 0.2. We remind that the the error bars on r are derived from
the Fisher matrix via:

(σr)
−2 = Frr =

∑
b,b′

(
∂CBBb
∂r

)(
Σ−1

)
bb′

(
∂CBBb′
∂r

)
. (12.23)

In the above, Σbb′ = Cov
(
ĈBBb , ĈBBb′

)
, which stands for the covariance matrix of

the reconstructed, binned angular power spectrum of the B-mode. (Note that ĈBB`
denotes the estimator of the angular power spectrum, CBB` .) All the challenge here
is to find a way to estimate Σbb′ . In this respect we investigated the performances
of three different methods. First, we rely on a naïve mode-counting expression (or
so-called fsky-formula). In this case, the covariance on ĈBB` is approximated by:

Cov
(
ĈBB` , ĈBB`′

)
=

2δ`,`′

(2`+ 1)fsky

(
CBB` +

N`(fsky)

B2
`

)2

, (12.24)

with N` the noise power spectrum, B` the beam of the telescope, and, fsky the
portion of the celestial sphere, which is observed (or kept in the analysis). The
noise power spectrum scales linearly with the sky coverage. The covariance matrix
for the binned power spectrum is thus given by:

Σnaive
bb′ =

[∑
`∈b

(Pb`)
2 × Cov

(
ĈBB` , ĈBB`

)]
δb,b′ , (12.25)

where Pb` is the binning operator defined in 9.24. This simple method is essentially
used as a benchmark as such an evaluation of the statistical error bars on the B-mode
reconstruction underestimates the error bars coming from any numerical methods
to be applied to the data.

Second we consider the error bars that could be incurred by using the minimum
variance quadratic estimator (QML) defined in the previous section (recall that the
patches are azimuthally symmetric). On can show that the covariance matrix for
the binned power spectrum is given by

ΣQML
bb′ = [F̃−1]bb1

[
Pb1`1 F`1`′1

Pb′1`′1

]
[(F̃−1)†]b′1b′ , (12.26)

where summations over repeated indices (i.e. b1, b′1 and `1, `′1) is implicitly assumed,
and † means the transpose operation. The Fisher matrix F is defined in 12.2, and

F̃bb′ =
∑
`∈b

∑
`′∈b′

Pb`F``′B
2
`′Qb′`′ , (12.27)
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Figure 12.3: Signal-to-noise ratio for the estimation of r from B-mode polarization
data shown as a function of the sky coverage. The uncertainties are computed
using three different approaches: mode-counting (black crosses), minimum variance
quadratic estimator (red crosses) and pure pseudospectrum estimator (blue crosses).
Each panel corresponds to a different fiducial value of the tensor-to-scalar ratio,
r = 0.07, 0.1, 0.15 and 0.2 from left to right and top to bottom.

where Qb` is the interpolation operator defined in Eq. 9.25.
Third, we make use of the x2pure code and Monte-Carlo simulations to estimate

the covariance matrix expected for the pure pseudospectrum approach. In practice,
the power spectrum is estimated within bandpower and the covariance matrix re-
constructed from the MC simulations is directly Σpure

bb′ . We ran 500 MC simulations
for each value of r and each sky fraction.

Our numerical results on the signal-to-noise ratio for r are gathered in Fig. 12.3,
showing (S/N)r as a function of the sky coverage. Each panel corresponds to a given
value of the tensor-to-scalar ratio, r = 0.07, 0.1, 0.15, and, 0.2 (from left to right,
and top to bottom). For each panel, the black, red, and blue crosses correspond to
the signal-to-noise ratio derived by using the mode-counting, the minimum variance
quadratic estimator, and, the pure pseudo-C` estimator, respectively. The horizon-
tal, dashed line marks a 3σ detection. The sky fraction varies from 0.5% to 10%,
what is wide enough to sample the maximal values of the signal-to-noise ratio.
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As already pointed out in [Jaffe et al. 2000] and highlighted in Fig. 12.3, the
trade-off between sampling variance and noise variance translates into the fact that
for a given value of r (and a given experimental configurations, i.e. sensitivity and
time of observation), there exists a value of fsky which maximizes the signal-to-noise
ratio. We note that the signal-to-noise ratio keeps decreasing for fsky > 10%. This
is because for the level of noise and values of r here considered, the uncertainties
on the reconstructed B-mode are noise dominated at all scales for fsky > 10%.
Similarly, the (S/N)r keeps decreasing for fsky < 0.5%, because the uncertainties
on angular scales greater than a degree are dominated by the sampling variance
for such low values of the sky fraction. As expected from the error bars on the
reconstructed B-mode, the highest and lowest (S/N)r’s are respectively obtained
from the mode-counting estimation, and the pure pseudospectrum estimator, while
the (S/N)r from the minimum variance quadratic estimator lies between those two.
This is the case for all the values of the tensor-to-scalar ratio we consider. At the
peak, the signal-to-noise ratio from the pure pseudospectrum estimation of the CBB`
is ∼15% (r = 0.2) to ∼20% (r = 0.07) smaller than the signal-to-noise ratio derived
from the optimistic mode-counting. This means that the statistical significance on
the measurement of r by using the optimistic mode-counting is overestimated by a
factor∼ 1.25 as compared to the more realistic case of the pure pseudoreconstruction
of the B-mode. Similarly, the (S/N)r from the pure pseudospectrum estimator is
∼1.5% (r = 0.2) to ∼8% (r = 0.07) smaller than the signal-to-noise ratio derived
from the minimum variance, quadratic estimator. Using the minimum variance,
quadratic estimator to estimate the B-mode, as compared to the use of the pure
pseudospectrum, thus translates into a gain in the statistical significance on the
measurement of r, of a factor 1.01 to 1.08. This gain appears rather small but is
larger for smaller values of the tensor-to-scalar ratio.

For the two specific cases of the mode-counting uncertainties and the minimum
variance, quadratic estimator, we note that an explicit reconstruction of the power
spectrum is not mandatory to derive the (S/N)r in the Fisher formalism. One
can indeed directly plugged in Eq. (12.23) the formulas (12.25) or (12.26). This
allows for a study of the impact of binning on the signal-to-noise ratio, letting the
bandwidth to vary from ∆` = 1 (i.e. no binning) to ∆` = 40 (i.e. the binning
imposed by the use of the pseudospectrum estimator in this analysis).

The impact of binning is illustrated in Fig. 12.4 showing the signal-to-noise
ratio on r = 0.1 as a function of the sky coverage. The overall effect of increasing
the width of the bandpower is to lower the signal-to-noise ratio. The decrease is
however more pronounced for the case of the minimum variance, quadratic estimator
than for the mode-counting estimation of the error bars on the reconstructed B-
mode. This is due to the fact that correlations between multipoles (or bandpowers)
are accounted for in the minimum variance, quadratic estimator, while those are
supposed to be systematically vanishing for the mode-counting estimation of the
covariance matrix. This additional piece of information contained in the correlations
is therefore partially lost by averaging over bandpowers. We also checked that
artificially imposing those off-diagonal correlations to be zero lowered the signal-to-



238 Chapter 12. Forecasts for ongoing and future CMB experiments

0 2 4 6 8 10
Fraction of sky in %

2

3

4

5

6

S
/
N
 
o
n
 
r

r=0.1

Mode counting

QML

Pure method

Figure 12.4: Signal-to-noise ratio for r = 0.1 as a function of the observed sky
fraction, derived for three methods used to estimate the uncertainties on the B-mode
reconstruction: mode-counting (black area), minimum variance quadratic estimator
(red area), and, pure pseudospectrum estimator (blue crosses). For the two first
methods, we let the bandwidth of the bins to vary from ∆` = 1 (highest (S/N)r)
to ∆` = 40 (lowest (S/N)r). For the specific case of the pure pseudospectrum
estimator, the reconstruction of the CBB` requires to use the bandwidth ∆` = 40

(we remind that the range of multipoles used to compute the signal-to-noise ratio
is 20 ≤ ` ≤ 1020).
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noise ratio in the minimum variance method, although we note that once the bins
are sufficiently wide the effect of the binwidth on the (S/N)r should be weak.

12.2.2 Measuring the tensor-to-scalar ratio: selected realistic ex-
amples

In a second time, we focus on more realistic experimental cases. A spherical cap
is ideal because it leads to the smallest amount of leakages for a given sky fraction
since its contour has the smallest perimeter for that given sky fraction (the issue
of leakages is strongly related to the detailed shape of the contours of the kept-in-
the-analysis portion of the sky, as pointed by e.g. [Grain et al. 2009] in the Fig.
20), but it does not correspond to usual scanning strategy. Therefore, we consider
three archetypal cases, which capture the main characteristics of ongoing, or being-
deployed, small-scale experiments (ground-based or balloon-borne, covering ∼1% of
the sky), a possible upgrade of those ground-based experiments to an array covering
a rather large fraction of the sky (∼50% but keeping ∼ 36% for the analysis)4, and,
a possible satellite mission covering the entire celestial sphere (but keeping only
∼71% of the sky).

Figure 12.5: Spin-0 (scalar) component of the optimized sky apodization for a small-
scale experiment covering ∼1% of the sky with inhomogeneous noise (left panel),
for a possible array of ground-based telescope covering ∼36% of the sky with homo-
geneous noise (middle panel), and, for a possible satellite mission covering ∼71% of
the sky with homogeneous noise (right panel). This sky apodization is optimized for
a bandpower ranging from ` = 60 to ` = 100 and for a value of the tensor-to-scalar
ratio r = 0.05.

The computation of the signal-to-noise ratio on the tensor-to-scalar ratio is done
by using the same Fisher matrix formalism as employed in the previous section,
however we now add the largest angular scales, from ` = 2 to ` = 20 gathered in
one single bandpower, in the summation in Eq. 12.23. The results on the signal-
to-noise ratio for r ranging from 0.001 to 0.2 are shown in Fig. 12.6. From a

4We note that this sky coverage is just the restriction to the galactic south hemisphere of the
kept-in-the-analysis portion of the sky for a satellite mission as defined below. In reality, an array
of telescopes is more likely to cover the ecliptic south hemisphere. However, from the point of view
of the leakage, one or the other are equivalent (large sky areas with complicated shapes).
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qualitative viewpoint, the signal-to-noise ratios computed in the framework of the
mode-counting expression are always higher compared to the signal-to-noise ratios
assuming the pure pseudospectrum reconstruction of B-mode (this is obviously ex-
pected from the fact that the mode-counting approach is an idealized and underesti-
mated computation of the uncertainties). We observe that the overestimation using
the mode-counting expression (as compared to the more realistic pure pseudospec-
trum reconstruction of CBB` ) is less marked for higher values of r. This behavior
is common to the three experimental configurations here-considered, though there
are differences from a quantitative viewpoint. The reason is that for low values of
r, most of the information comes from the largest scales, which is precisely at those
large scales that the underestimation of the B-mode reconstruction using the mode-
counting formulæ is more marked. We also stress that in the case of mode-counting
approach, the leakages are ignored. On the contrary, the pure pseudospectrum ap-
proach consistently includes them but corrects them in the analysis. This explains
why the mode counting approach overestimates the signal-to-noise ratio on r.

Figure 12.6: Signal-to-noise ratio for the detection of r using pure pseudospectrum
reconstruction for a potential small-scale experiment (fsky = 1% and inhomogeneous
noise at an average level of 5.75µK-arcminute) in the top left panel, an array of tele-
scope (fsky = 36% and homogeneous noise at 1µK-arcminute) in the top right panel,
and, a satellite mission (fsky = 71% and homogeneous noise at 2.2µK-arcminute) in
the bottom panel. Red crosses assume the mode-counting expression for the error
bars on the reconstructed CB` and black crosses assume the pure pseudospectrum
error estimated using Monte-Carlo simulations.

Adding the smallest scales (from ` = 2 to ` = 20) is relevant for the case of an
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array of telescopes, and the case of a satellite mission. The impact of the first bin on
the measurement of r is shown in Fig. 12.7 (note that we use the binned covariance
for both the mode-counting and the pure pseudospectrum reconstruction of CBB` ).
We define the relative decrease as

δ =

∣∣∣∣∣(S/N)(`>20)
r − (S/N)r
(S/N)r

∣∣∣∣∣ , (12.28)

with (S/N)r the signal-to-noise on r accounting for all the angular scales, and
(S/N)(`>20)

r the signal-to-noise ratio obtained by discarding the first bandpower.
This relative decrease can alternatively be interpreted as the relative contribution
from the first bin to the signal-to-noise on r since:

δ =

∣∣∣∣∣(S/N)(`<20)
r

(S/N)r

∣∣∣∣∣ , (12.29)

with (S/N)(`<20)
r the signal-to-noise ratio on r that would be obtained by using

the first bandpower only. Removing the first bins can be viewed as the worst case
scenario where the foreground contamination could not be removed at all on the
largest scale, meaning that the information from the reionization peak is no more
taken into account in the computation of the signal-to-noise ratio. This study shows

Figure 12.7: Relative decrease of the signal-to-noise ratio (in percent) if the infor-
mation from the reionization peak (i.e. the first bin) is discarded from the analysis.
The top left, top right and bottom panels are for the small-scale experiment, an
array of telescopes and a satellite mission, respectively.
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Table 12.1: The minimal accessible value r with at least a 3σ statistical
significance, regarding the experimental setups and the estimation of the variance

on the B-mode reconstruction.

Small-scale exp. Telescopes array Satellite mission
Mode-counting:

Case A r & 0.038 r & 0.0011 r & 0.0009

Case B r & 0.04 r & 0.0016 r & 0.0013

Pure pseudo-C` :
Case A r & 0.11 r & 0.0051 r & 0.0026

Case B r & 0.11 r & 0.0053 r & 0.0028

Note. — The case A means that all the bins are used. The case B means that the information
from the reionization peak (i.e. the first bin from ` = 2 to ` = 20) has been removed. The results
in this table are obtained by linearly interpolating the computed (S/N)r on our grid of values of r.

the relative importance of the reionization peak. The case of a small-scale experi-
ment is poorly affected by the removal of the first bin using the pure peudospectrum
reconstruction of CB` , the relative decrease of the signal-to-noise ratio on r being
systematically smaller than 0.1%. For the case of an array of telescopes, the relative
decrease ranges from 0.4% for r = 0.2 to roughly 3% for r = 0.001. Finally, in the
case of a satellite mission, the relative decrease varies from 0.35% for r = 0.2 to 9%
for r = 0.0005.

Thus considering the realistic forecasts performed thanks to the pure estimation
of the B-mode power spectrum, we conclude that a satellite mission would give
access to the largest range of r, with a minimal r value of 2.6 × 10−3. A typical
small scale experiment is indeed expected to reach only r higher than 0.1 at 3σ (note
that r = 0.05 is detectable at 2σ). Between these two cases lies the one of an array
of telescopes, which warrants a detection of the tensor-to-scalar ratio if it is higher
than 5.1× 10−3. As a result, each studied experiments widens the accessible range
of the tensor-to-scalar ratio r. In terms of minimal detectable vlaue of r, one gains
about a factor 20 from small-scale experiments to an array of telescopes, and about
a factor 2 between the latter and a satellite mission.







Conclusion

CMB investigations have been and continue to be a very active and exciting area
of research, which has excellent potential to impact profoundly our understanding
of cosmology and fundamental physics in its broadest sense, providing a new and
unique window on the physics of both the early Universe and the growth of its
large-scale structure.

In this thesis, I have presented my contribution to the data analysis of a
ground-based CMB B-modes experiment, Polarbear. Notably, I have gained
unique experience in all stages of data analysis of the CMB data sets, from the
low-level processing of raw data to sophisticated techniques for statistically robust
and numerically efficient estimation of the sky maps and their statistical properties.
I have successfully applied all this expertise in the analysis of the first year of the
Polarbear data as published in 3 papers by the collaboration. Those results
include the first measurement of the CMB’s B-mode angular power spectrum,
CBB` , over the multipole range 500 < ` < 2100 with a significance about 2σ
[POLARBEAR Collaboration 2014c]. We also measure the gravitational lensing
of CMB polarization by cross-correlating CMB polarization lensing convergence κ
from Polarbear with maps of the cosmic infrared background from Herschel
[POLARBEAR Collaboration 2014a], and present the first direct evidence for
gravitational lensing of the polarized CMB using first season data from the
Polarbear experiment [POLARBEAR Collaboration 2014b].

In chapter 6, I have detailed the parts of the calibration process which I
was responsible for or involved in. The calibration is a long and complex task,
which requires the in-depth knowledge of the instrument. While I only had a
small contribution to the calibration for the first release, mostly learning from
experienced observers, I was highly involved in the calibration throughout the
second release by coordinating the overall effort. In this thesis I have presented
an end-to-end procedure to use consistently observations of planets in combination
with external relative measurements to find the conversion from ADC counts to
physical temperature units. I specifically focused on Saturn accounting for the im-
pact from its rings in the analysis. Then from an already existing thermal-response
calibration pipeline, I implemented an automated and parallelized fast pipeline
which take into account results from planet observations to perform an absolute
and relative calibration of pair of detectors, and correct for unwanted polarized
response of each detector arising from the ground-based calibrator. Although I was
not directly involved in the calibration of the instrument effective beam nor the
polarization angle, I followed closely on the development of the models and the
characterization of the observations by providing the inputs and feedback from the
studies I led. In the context of the polarization angle calibration, I also proposed
an alternative model, which may be of interest for the future work. Finally the



246 Conclusion

atmosphere correction and the pixel differencing technique were already in place
when I started to work on, but I participated in the characterization of their
performances from real data.

Once data are calibrated, we clean them from any instrumental or environmental
contamination as described in chapter 7. It required a good understanding of
the data properties and particularities of all possible pathologies. While I mostly
learned from more experienced collaborators during the first season, I again took
over the leadership for the second season. In particular, I redefined the data
selection criteria for the second release. One of the limitations when I took over this
task was the slowness of the pipeline which applies the data selection. Therefore I
developed automated and parallelized pipelines to speed-up this step and to back
up all the details which go through each particular run in order to compare easily
different versions of data cuts.

In chapter 8, I have described the estimation of the sky maps from the cleaned
and calibrated Time Ordered Data. I was an active contributor of the primary
mapmaker, and a co-leader of the alternate pipeline (PCG mapmaker, entirely
implemented by the APC team during my thesis). All along my thesis I optimized
the performance, implemented routines, tested and used the pipelines almost daily.
Part of my time was also devoted to check the consistency of both mapmakers,
by running regularly test cases and implementing new features from one pipeline
to the other when needed. I also worked actively on the estimation of the noise
and its characterization. A special attention has been made to the correlated noise
(from atmosphere and scan-synchronous signals) and its removal: time-domain
visualization tools, jackknives, time-domain filtering, specific model of data (IGQU).

I was highly involved in the power-spectrum estimation throughout my thesis,
and I have detailed an existing formalism and the way I applied it on Polarbear
data on chapter 9. More specifically, I focused on the pure powerspectrum
reconstruction of the B-mode, to minimize the so-called E-to-B leakage as on an
incomplete sky coverage the E-mode signal is unavoidably mislabeled as B-modes
and vice-versa. I adapted the X2pure code for the alternate pipeline of Polarbear,
and I maintained a version up-to-date for the collaboration at NERSC. I conducted
numerous tests and proposed optimization procedures specific to small patches
(geometry of the masks, optimal division of data, influence of point sources), in
order to obtain the lowest uncertainties. I have also participated in conducting
the massive runs of Monte Carlo simulations to validate the estimator. I have
finally showed the consistency between the primary pipeline and the PCG pipeline
concerning the B-modes measurement.

In chapter 10 I described the three frameworks applied for the investigation of
instrumental biases. I contributed to the null tests effort, especially for the PCG
pipeline, but my main contribution in the systematic effect characterization was
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about the simulations of instrumental effects. I co-led the implementation and
the use of a high-resolution simulation pipeline in order to determine the effect
of instrument model uncertainties on the maps and the power-spectra. I have
investigated several effects: global polarization angle miscalibration, uncertainty
in relative pixel polarization angle, uncertainty in the reconstructed telescope
pointing, differential pointing between two pixel-pair bolometers, and uncertainty
in pixel-pair relative gain. The result of all these analyses is that none of the
instrumental effects taken into account produce significant contamination of the
Polarbear B-mode measurement.

In chapter 11, I described the latest results from the field, with a special focus
on polarization. I have also showed Polarbear results along with the latest
results from major ongoing experiments, namely ACTpol, BICEP2, SPTpol,
and Planck. I have also summarized the first three science results of Polarbear.

As of now, I am co-leading and finalizing the analysis of the second season of
observations (including a re-analysis of the first season), and the analysis of the
third season just started. In addition, the Polarbear program will be upgraded
very quickly with two forthcoming reincarnations of the current instrument, which
are referred to as Polarbear-2 and Simons Array. Their anticipated data sets
alone will be already extremely powerful in constraining the cosmology. They will
be however even more impressive, when co-analyzed with other data sets, including
data from galaxy surveys, e.g., for studying gravitational lensing effects, but also
the Planck public data set with unique insights it will offer into the physics of the
galactic emissions, which unavoidably contaminate the measured CMB signals.

In the last chapter, and in the context of those next generation CMB B-mode
experiments, I presented a more systematic study of the impact of the presence of
the leakage on the performance forecasts of CMB B-mode experiments, by compar-
ing results from the pure pseudospectrum method, the minimum variance quadratic
estimator, and the naïve mode counting method as described in [Ferté et al. 2015].
I have also described how the minimum variance quadratic estimator in the case
of azimuthally symmetric patches can be used to estimate efficiently parameters. I
have developed a massively-parallel code, nicknamed fiSher2HAT, to implement
this idea. This code is fairly general, and it is not limited to the tensor-to-scalar
ratio r.

During my thesis, I also had the chance to work on other topics, not described in
this thesis, and not published yet. I would like to mention the work in collaboration
with G. Fabbian and R. Stompor on the development of a bandlimited interpolation
algorithm capable of preserving the bandlimit properties of the signal while reducing
at the same time the computational cost. Our technique capitalizes on state-of-the-
art approaches developed in the context of so-called Fast Multipole Methods. This
interpolation technique should result in significant speed-ups in computation of spin-
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weighted spherical harmonics on irregular grids of points as, for instance, required
in CMB lensing simulations and promises to supersedes any of the methods used
to date, enabling massive Monte Carlo simulations and opening the doors to new
investigations, which where hitherto either limited in scope or outrightly impossible
due the numerical workload they implied.







Appendix A

Mapmaking: PCG algorithm

Algorithm 1: PCG

COMMENT : Each processor has the data for one day of observation.
- Inverse covariance: M=ATFA
- RHS: b=ATFd
- Trial solution: x0=0
- Residual: r0 = b - Mx0

- Apply preconditioner: z0=P−1r0

- Convergence: n0 =
|r0|
|b|

- Initialize: p0 = z0

- Initialize: restart = False
- Define stop: nmin
for k in 0,...,niter do

- Apply inverse covariance matrix: Mpk

- Compute step: αk =
rTk zk

pTkMpk
- Move: xk+1 = xk + αkpk
- New residual: rk+1 = rk − αkMpk
- New convergence: nk+1 =

|rk+1|
|b|

if nk+1 < nmin then
- Solution is xk+1

- exit
end if
if k > 1 and nk+1 ≥ nk and not restart then
- pk = zk
- restart = True

else
- restart = False
- Apply preconditioner: zk+1=P−1rk+1

- Polak-Ribière formula: βk =
zTk+1(rk+1 − rk)

zTk rk
- Update the conjugate direction: pk+1 = zk+1 + βkpk

end if
end for k
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fiSher2HAT: algorithm

The main code to compute the Fisher matrix is presented as Algorithm 1. The
code we discuss here uses the binned C` as the parameters. However there is also
the possibility of taking the parameters as the cosmological parameters that enter
into the power-spectrum, as the tensor-to-scalar ratio r.

Algorithm 1 Fisher computation. Main part.

COMMENT : Each MPI process executes a part of the m loop.
for m in 0,..., mmax do

- Compute P`m using S2HAT library (fixed m, ` in max(2,m),..,`max)
for ` in max(2,m),..., `max do
- Compute S(m), S

(m)
` and N(m)

- Compute Fisher elements
end for `
- Update Fisher matrix

end for m

This algorithm is made of 3 sub-algorithms plus Plm computation describing
the computation of the key elements. For the computation of the signal and the
noise covariance matrices, we loop over the number of iso-latitude rings of the full
sky map covering the Northern hemisphere (plus equatorial ring if present) and
pick only observed ones. Due to this special implementation (loop over m plus ring
description), the number of computed (ie non-zero value) Legendre polynomials
Plm is reduce to Nobs(`max + 1−m), where Nobs is the number of iso-latitude rings
of the full sky map observed either in the Northern hemisphere or in the Southern
hemisphere (plus equatorial ring if present).

Algorithm 1.1 S(m) computation

COMMENT : Computation for a given m.
for every ring r do

for ` in max(2,m),...,`max do
- Compute S(m) using Eq. [12.16]

end for `
end for r
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Algorithm 1.2 S
(m)
` computation

COMMENT : Computation for a given m.
for every ring r do

for ` in max(2,m),...,`max do
- Compute S

(m)
` from derivatives of Eq. [12.16]

end for `
end for r

Algorithm 1.3 Fisher element computation

COMMENT : Computation for a given m.
- Compute (S(m) + N)−1 using a Singular Value Decomposition
for ` in max(2,m),...,lmax do

- Compute (S(m) + N)−1S
(m)
`

end for `

The code is parallelized in the way that each MPI process carries a range of m
values, and the data distribution over the processors is determined by taking into
account map parameters such as pixelization scheme and fraction of the observed
sky, and the maximum value of ` (or m here). Concerning the factorization and
inversion routines used in the Algorithm 1.3, I had some trouble in using Cholesky
decomposition in the noiseless (or low noise) case (only S(m) contributing). Indeed,
this matrix is supposed to be positive definite, but due to numerical precision, some
of its eigenvalues are very close to zero but negative, which makes the decomposition
failed. Therefore a singular value decomposition is performed instead. The code
also carries cut-sky analysis by choosing upper and lower observed rings. Exploiting
the azimuthal symmetry of both signal and noise in the survey allows to decrease
the computational cost of the Fisher matrix element. In the standard case, for
brute force calculation it requires O(N3

pix) to be evaluated, but in our calculation,
evaluating the spin harmonics by recursion in ` makes the computational cost as
O(N3

θmmax), where Nθ is the number of rings.
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